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1.INTRODUCTION TO SIGNALS 

Signal: Signals are represented mathematically as functions of one or more independent 

variables. It mainly focuses attention on signals involving a single independent variable. 

For convenience, this will generally refer to the independent variable as time. It is defined 

as physical quantities that carry information and changes with respect to time. 
Ex: voice, television picture, telegraph. 

 

Continuous Time signal – If the signal is defined over continuous-time, then the signal is a 

continuous- time signal. 

Ex: Sinusoidal signal, Voice signal, Rectangular pulse function 

 

Discrete Time signal – If the time t can only take discrete values, such as t=kTs is called 

Discrete Time signal 
 

 
 

Unit Step Signal: 

 

The Unit Step Signal u(t) is defined as 
 

 
 

Graphically it is given by 
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Ramp Signal: 

 

 
 
 
 
 
 
 

Graphically it is given by 
 

 
Pulse Signal: 

 

A signal is having constant amplitude over a particular interval and for the 

remaining interval the amplitude is zero. 

 

Impulse Signal: 
 

 

Impulse Signal DT representation 
 
 

 
Impulse Signal CT representation 
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Exponential Signal: 

 

Exponential signal is of two types. These two type of signals are real exponential signal and 

complex exponential signalwhich are given below. 

 

Real Exponential Signal: A real exponential signal is defined as x(t)=Aeσt 

Complex exponential Signal: The complex exponential signal is given by x(t)=Aest where 

s=σ+jω 
 
 

Basic Operations on signals: 

 

Several basic operations by which new signals are formed from given signals are familiar 

from the algebra and calculus of functions. 

 

1. Amplitude Scaling :y(t)= a x(t), where a is a real (or possibly complex) constant. C 

x(t) is a amplitude scaled version of x(t) whose amplitude is scaled by a factor C. 

 

2. Amplitude Shift: y(t)= x(t)+ b, where b is a real (or possibly complex) constant 
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3. Signal Addition: y(t)= x1(t) + x2(t) 
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As seen from the diagram above, 

 

-10 < t < -3 amplitude of z(t) = x1(t) + x2(t) = 0 + 2 = 2 

 

-3 < t < 3 amplitude of z(t) = x1(t) + x2(t) = 1 + 2 = 3   

 3 < t < 10 amplitude of z(t) = x1(t) +x2(t) = 0 + 2 = 2 

 

4. Signal Multiplication: y(t)= x1(t). x2(t) 
 

 
As seen from the diagram above, 

 

-10 < t < -3 amplitude of z (t) = x1(t) ×x2(t) = 0 ×2 = 0 

 

-3 < t < 3 amplitude of z (t) = x1(t) ×x2(t) = 1 ×2 = 2  

 3 < t < 10 amplitude of z (t) = x1(t) × x2(t) = 0 × 2 = 0 

 

5. Time Shift: If x(t) is a continuous function, the time-shifted signal is 

defined as 

y(t)  x(t  t0 ) . 
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If t0 > 0, the signal is shifted to the right, and if t0< 0, the signal is shifted to the left. 

 
x(t ± t0) is time shifted version of the signal x(t).  

x (t + t0) →→ negative shift 
x (t - t0) →→ positive shift 

 
  

 
 

 

6. Time Reversal: If x(t) is a continuous function, the time-reversed signal is defined 

as y(t) = x(-t). x(-t) is the time reversal of the signal x(t). 
 

 

 

7. Time Scaling:  If x(t) is a continuous function, a time-scale version of this signal is defined as y(t) 
= x(at). If a>1, the signal y(t) is a compressed version of x(t), i.e., the time interval is compressed 

1 
to .  If  0<a< 1, the signal y(t) is a stretched version of  x(t), i.e., the time interval is stretched by 

a 

1 
. When operating on signals, the time-shifting operation must be performed first, and then the 

a 
time-scaling operation is performed. x(At) is time scaled version of the signal x(t). where A is 
always positive. 

 
|A| > 1 →→ Compression of the signal 

 
|A| < 1 →→ Expansion of the signal 
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1. A triangular pulse signal x(t) is depicted below. 

 
-1 0 1 t 

     Sketch each of the following signals: 
   (a) x(3t) 

(b) x(3t  2)    

(c) x(2t 1) 

(d) x(0.5t 1) 

 

 

2. Draw the waveform x(-t) and x(2-t) of the signal x(t) = t     0≤t≤3 
 

                          0 t>3 
 
 

 

 

x(t) 
1 

X(t) 

X(-t) 

0 1 2 3 t 

-3  -2   -1 0 t 
X(2-t) 

-1 0 1 2 t 
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Classification of DT and CT Signals: 

 

1. Even and Odd signal 

2. Deterministic and Random Signal 

3. Periodic and Aperiodic signal 

4. Energy and Power signal 
 
Even and Odd Signal: 

An even signal is any signal 'x' such that x(t) = x(-t). Odd signal is a signal 'x' for which  

x(t) = -x(-t). The even and odd parts of a signal x(t) are 

The even and odd parts of a signal are given by 

x (t)  
1 
x(t)  x(t)



e 
2

 

x (t)  
1 
x(t)  x(t)



o 
2

 

 
Here xe(t) denotes the even part of signal x(t) and xo(t) denotes the odd part of signal x(t). 

 

Deterministic Signal: 

 

Deterministic signals are those signals whose values are completely specified for any given 

time. Thus, a deterministic signals can be modeled exactly by a mathematical formula are 

known as deterministic signals. 

 

Random (or) Nondeterministic Signals: 

 

Nondeterministic signals and events are either random or irregular. Random signals are 

also called non deterministic signals are those signals that take random values at any given 

time and must be characterized statistically.Random signals, on the other hand, cannot be 

described by a mathematical equation they are modeled in probabilistic terms. 

Periodic signal: 

 

A CT signal x(t) is said to be periodic if it satisfies the following property: x(t)=x(t+T) at all 

time t, where T=Fundamental Time Interval (T=2π/ω) 
 

Ex: 

 

1. x(t)=sin(4πt). It is periodic with period of 1/2 

2. x(t)=cos(3πt). It is periodic with period of 2/3 
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Aperiodic Signal: 

 

A CT signal x(t) is said to be periodic if it satisfies the following property: x(t)≠x(t+T) at all 

time t, where T=Fundamental Time Interval 

 

Energy Signal: 

  The Energy in the signal is defined as : 

 
 

Power Signal: 

 

The Power in the signal is defined as 
 

 
 

If 0<E<∞ then the signal x(t) is called as Energy signal. However there are signals where 

this condition is not satisfied. For such signals we consider the power. If 0<P<∞ then the 

signal is called a power signal. Note that the power for an energy signal is zero (P=0) and 

that the energy for a power signal is infinite (E=∞). Some signals are neither energy nor 

power signals. 

1. Draw the signal x(n) = u(n) – u(n-3) 
 

 
 

u(n) 

1 

0 1   2 3   4 5 6 7 n 

u(n-3) 
 

1 

0 1  2 3 4 5 6 7 8   9 n 

X(n)=u(n)-u(n-3) 

1 

0 1 2 n 
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 
2 
  

2 

 
2 



 
 

 
2. What is the total energy of the discrete time signal x(n) which takes the value of 

unity at n= - 1,0,1? 

 

Energy of the signal is given as, 
∞ 1 

 
E =  ∑ │x(n)│2 = ∑ │x(n)│2

 

 
n = -∞ n = -1 

 
 

= │x(-1)│2 + │x(0)│2 + │x(1)│2 = 3 

 
 

3. Determine if the following signals are Energy signals, Power signals, or neither, and evaluate E 

and P for each signal a(t )  3sin(2t ),   t   , 

 

Ea   | a(t ) |
2 
dt   | 3sin(2t ) |

2 
dt 

 

 
1
 

 9 1 cos(4  t ) dt 


  
1 



 9  dt  9  cos(4t )dt 
 

  J 

 

Pa 
1 

1 1 

| a(t ) | dt 
1 

0 0 
1 

 

| 3sin(2t ) |
2 
dt 
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

1 

 9 
1 
1 cos(4t )dt 

0 2 

0 1 

 9 dt  9cos(4t )dt 

0  
2 

0 

9  9 
1

 

 
2 
 
 4 

sin(4t )



 
9 

W 
2 

 

So, the energy of that signal is infinite and its average power is finite (9/2). This means that it 

is a power signal as expected. It is a power signal. 

Real and Complex signals: 

 

Exponential signal is of two types. These two type of signals are real exponential signal and 

complex exponential signalwhich are given below. 

 

Real Exponential Signal: A real exponential signal is defined as x(t)=Aeσt 

 

Complex exponential Signal:The complex exponential signal is given by x(t)=Aest where 

s=σ+jω 
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2.1 

 

II. ANALYSIS OF CONTINUOUS TIME SIGNALS 
 

 

Continuous Time Fourier Transform 
 

Any continuous time periodic signal x(t) can be represented as a linear combination of 

complex exponentials and the Fourier coefficients ( or spectrum) are discrete. The 

Fourier series can be applied to periodic signals only but the Fourier transform can also 

be applied to non-periodic functions like rectangular pulse, step functions, ramp 

function etc. The Fourier transform of Continuous Time signals can be obtained from 

Fourier series by applying appropriate conditions. 

The Fourier transform can be developed by finding Fourier series of a periodic function 

and the tending T to infinity. 

Representation of Aperiodic signals: Starting from the Fourier series 

representation for the continuous-time periodic square wave: 

 

The Fourier coefficients akfor this square wave is 
 

 

          2.2 
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or alternatively 2.3 

 

 

where 2 sin(wT1 ) / w represent the envelope of Tak 

When T increases or the fundamental frequency w 0 2p / T decreases, the envelope  is  

sampled with a closer and closer spacing. As T becomes arbitrarily large, the original  

periodic square wave approaches a rectangular pulse. 

Tak becomes more and more closely spaced samples of the envelope, as T →∞, the 

Fourier series coefficients approaches the envelope function. 

 

 
This example illustrates the basic idea behind Fourier’s development of a representation for 

aperiodic signals. 

 
Based on this idea, we can derive the Fourier transform for aperiodic signals. 

From this aperiodic signal, we construct a periodic signal (t) , shown in the figure below. 
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2.4 

 

 

2.5 
 

 

 

2.6 
 

 

 

 
 

 

 

Define the envelope X ( jw ) of Tak as, 

 

 
2.7 
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2.8 
 
 

 
 

Equation 2.8 becomes representation of x(t). In addition the right hand side of equation 

becomes an integral. 

This results in the following Fourier Transform. 

 

 

2.9 

 

 

 

 
2.10 

 

 

Convergence of Fourier Transform 
 

If the signal x(t ) has finite energy, that is, it is square integrable, 

 

 

Then we guaranteed that X( jw ) is finite or equation 2.10 converges. If  

We have 

 

An alterative set of conditions that are sufficient to ensure the convergence: 

Contition1: Over any period, x(t ) must be absolutely integrable, that is 

 

 
Condition 2: In any finite interval of time, x(t ) have a finite number of maxima and minima. 
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Condition 3: In any finite interval of time, there are only a finite number of discontinuities. 

Furthermore, each of these discontinuities is finite. 

 

 
Examples of Continuous-Time Fourier Transform 

 

 

 

 

If a is complex rather than real, we get the same result if Re{a}>0 
 

The Fourier transform can be plotted in terms of the magnitude and phase, as shown in 

the figure below. 
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Example 
 

Calculate the Fourier transform of the rectangular pulse signal 
 

 
 

The inverse Fourier Transform of the sinc function is 

 

 
Comparing the results we have, 

 

FT 

Square wave Sinc Function 

FT-1 

 

This means a square wave in the time domain, its Fourier transform is a sinc function. 

However, if the signal in the time domain is a sinc function, then its Fourier transform is a 

square wave. This property is referred to as Duality Property. 

We also note that when the width of X( jw) increases, its inverse Fourier transform x(t) will 

be compressed. When W → ∞, X( jw) converges to an impulse. The transform pair with 

several different values of W is shown in the figure below. 
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0 

 
 

 
 

 

The Fourier Transform for Periodic Signals 
 
 

 
Properties of Fourier Transform 

 

1. Linearity 
 

If x(t)FX( jw) y(t)FY( jw) 

then 

ax(t)  by(t)FaX ( jw)  bY ( jw) 

2. Time Shifting 

If x(t)FX( jw) 

Then 

x(t-t0) 
F

 e-jwt X(jw) 
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3. Conjugation and Conjugate Symmetry 
 

 

F 
If x(t) 

 

Then 

x*(t) 
F

 

 
 

 
X*(-jw) 

X(jw) 

 

 
 

4. Differentiation and Integration 
 

 

 

5. Time and Frequency Scaling 
 

 

  

 

From the equation we see that the signal is compressed in the time domain, the spectrum will 

be extended in the frequency domain. Conversely, if the signal is extended, the corresponding 

spectrum will be compressed.
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If a = -1, we get from the above equation, 
 

𝐹 

X(-t) 𝑋(𝑗𝜔) 
 

That is reversing a signal in time also reverses its Fourier transform. 
 

6. Duality 

 
The duality of the Fourier Transform can be demonstrated using the following 

example 

 
 

 

 
 

For any transform pair, there is a dual pair with the time and frequency variables 

interchanged. 
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Parseval’s Relation 

 
 

If x(t) 𝑋(𝑗𝜔), 
 

 

 

 

We have, 

 
 

 
 
 

 
∞ 

      𝑥(𝑡) 2𝑑𝑡 = 
−∞ 

 
 
 

 
1 

 
 

2𝜋 

 
 
 
 
 

 
∞ 

      𝑋(𝑗𝑤) 2 𝑑𝜔 
−∞ 

 
 
 
 
 
 

Parseval‟s relation states that the total energy may be determined either by computing  

the  energy  per  unit  time   𝑥(𝑡) 2   and  integrating  over  all  time   or  by computing  

the  energy  per  unit  frequency    𝑥(𝑗𝜔)  2  2𝜋   and  integrating   over  all 
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frequencies. For this reason, 𝑥(𝑗𝜔) 2 is often referred toas the energy density spectrum. 

The Parseval's theorem states that the inner product between signals is preserved in 

going from time to the frequency domain. This is interpreted physically as “Energy 

calculated in the time domain is sameas the energy calculated in the frequency domain” 

The convolution properties 
 

 

𝑦 (𝑡 )= ℎ (𝑡) ∗ 𝒙 (𝑡)= 𝑌 (𝑗𝜔) = 𝐻 𝑗𝜔 𝑋(𝑗𝜔) 
 

The equation shows that the Fourier transform maps the convolution of two signals 

into product of their Fourier transforms. 

H(j𝜔), the transform of the impulse response is the frequency response of the LTI 

system, which also completely characterizes an LTI system. 

Example 
 

The frequency response of a differentiator. 
 

y(t)= 
𝑑𝑥 (𝑡) 

𝑑𝑡 
 

From the differentiation property, 
 

Y(j𝜔)= j𝜔𝑋 𝑗𝜔  
 

The frequency response of the differentiator is, 
 

H(j𝜔)= 𝑌(𝑗𝜔 ) =j𝜔 
𝑋(𝑗𝜔 ) 

 

The Multiplication Property 
 

 

Multiplication of one signal by another can be thought of as one signal to scale or 

modulate the amplitude of the other, and consequently, the multiplication of two signals 

is often referred to as amplitude modulation. 

 
 

Laplace Transform 
 

The Laplace Transform is the more generalized representation of CT complex 

exponential signals. The Laplace transform provide solutions to most of the signals 
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and systems, which are not possible with Fourier method. The Laplace transform  can 

be used to analyze most of the signals which are not absolutely integrable such as the 

impulse response of an unstable system. Laplace Transform is a powerful tool for 

analysis and design of Continuous Time signals and systems. The Laplace Transform 

differs from Fourier Transform because it covers a broader class of CT signals and 

systems which may or may not be stable. 

Till now, we have seen the importance of Fourier analysis in solving many problems 

involving signals. Now, we shall deal with signals which do not have a Fourier 

transform. We note that the Fourier Transform only exists for signals which can 

absolutely integrated and have a finite energy. This observation leads to generalization 

of continuous-time Fourier transform by considering a broader class of signals using the 

powerful tool of "Laplace transform". With this introduction let us  go on to formally 

defining both Laplace transform. 

 

 
Definition of Laplace Transform 

 

The Laplace transform of a function x(t) can be shown to be, 
 

This equation is called the Bilateral or double sided Laplace transform equation. 
 
 

 
This equation is called the Inverse Laplace Transform equation, x(t) being called the 

Inverse Laplace transform of X(s). 

The relationship between x(t) and X(s) is 
 

LT 

x(t) X(s) 
 

 
Region of Convergence (ROC): 

 

The range of values for which the expression described above is finite is called as the 

Region of Convergence (ROC). 

Convergence of the Laplace transform 
 

The bilateral Laplace Transform of a signal x (t) exists if 
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X(s)= ∞ 
−∞ 

𝑥(𝑡)𝑒−𝑠𝑡 𝑑𝑡 
 

Substitute s=𝜎 + 𝑗𝜔 
 

X(s) = ∞ 
−∞ 

𝑥(𝑡)𝑒−𝜎𝑡 𝑒−𝑗𝜔𝑡 𝑑𝑡 

 
 
 

Relationship between Laplace Transform and Fourier Transform 

 

The Fourier Transform for Continuous Time signals is in fact a special case of Laplace 

Transform. This fact and subsequent relation between LT and FT are explained below. 

Now we know that Laplace Transform of a signal 'x'(t)' is given by: 
 
 

 
 

The s-complex variable is given by  
 

But we consider𝜎 = 0 and therefore „s‟ becomes completely imaginary. Thus we have 

s=jΩ. This means that we are only considering the vertical strip at𝜎 = 0. 

 

 
From the above discussion it is clear that the LT reduces to FT when the complex 

variable only consists of the imaginary part. Thus LT reduces to FT along the jΩ axis. 

(imaginary axis) 

Fourier Transform of x (t) = Laplace Transform of 𝑥(𝑡) 𝑠=𝑗Ω 

 

 
Laplace transform becomes Fourier transform 

 

if σ=0 and s=jω. 
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Example of Laplace Transform 
 

(1) Find the Laplace transform and ROC of x(t) = 𝑒−𝑎𝑡 𝑢(𝑡) 
 

we notice that by multiplying by the term u(t) we are effectively considering the 

unilateral Laplace Transform whereby the limits tend from 0 to +∞ 

Consider the Laplace transform of x(t) as shown below 

 

 

(2) Find the Laplace transform and ROC of x(t)=-𝑒−𝑎𝑡 𝑢(−𝑡) 
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If we consider the signals e-atu(t) and -e-atu(-t), we note that although the signals are 

differing, their Laplace Transforms are identical which is 1/( s+a). Thus we conclude 

that to distinguish L.T's uniquely their ROC's must be specified. 

Properties of Laplace Transform 

 
1. Linearity 

 

 
 

2. Differentiation in the time domain 
 

 

 
 

 

3. Time Shift 

 
 

4. Time Scaling 
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5. Multiplication 

 
 

6. Time Reversal 

 

When the signal x(t) is time reversed(180° Phase shift) 

 
 

7. Frequency Shifting 

 

 
 

 
8. Conjugation symmetry 

 

 

 
 

 

9. Parseval’s Relation of Continuous Signal 

 
It states that the total average power in a periodic signal x(t) equals the sum of the 

average in individual harmonic components, which in turn equals to the squared 

magnitude of X(s) Laplace Transform. 

 

 
 

10. Differentiation in Frequency 
 

When x(t) is differentiated with respect to frequency then, 
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11. Integration Property 

 

When a periodic signal x(t) is integrated, then the Laplace Transform becomes, 
 
 

 
 
 

12. Convolution Property 

 
 

13. Initial Value Theorem 

 

The initial value theorem is used to calculate initial value x(0+) of the given sequence 

x(t) directly from the Laplace transform X(S). The initial value theorem does not 

apply to rational functions X(S) whose numerator polynomial order is greater than 

the denominator polynomial orders. 

 

The initial value theorem states that, 
 

 

 
14. Final Value Theorem 

 

It states that,

lim 𝑆𝑋 𝑆 = 𝑋(0+) 
           𝑠→∞ 

 

lim 𝑆𝑋 𝑆 = 𝑋(∞) 
𝑠→∞ 
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III.LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS 
 
 
System 

 
A system may be defined as a set of elements or functional blocks which are connected 

together and produces an output in response to an input signal. The response or output of 

the system depends upon transfer function of the system. Mathematically, the functional 

relationship between input and output may be written as 

 

y(t)=f[x(t)] 

 
Types of system 

 

Like signals, systems may also be of two types as under: 

 
1. Continuous-time system 
2. Discrete time system 

 

Continuous time System 

 

Continuous time system may be defined as those systems in which the associated signals 

are also continuous. This means that input and output of continuous – time system are 

both continuous time signals. 

 

For example: 

 

Audio, video amplifiers, power supplies etc., are continuous time systems. 

 

Discrete time systems 

 

Discrete time system may be defined as a system in which the associated signals are also 

discrete time signals. This means that in a discrete time system, the input and output are 

both discrete time signals. 

 

For example, microprocessors, semiconductor memories, shift registers etc., are discrete 

time signals. 

 

LTI system:- 

Systems are broadly classified as continuous time systems and discrete time 

systems. Continuous time systems deal with continuous time signals and discrete time 

systems deal with discrete time system. Both continuous time and discrete time systems 

have several basic properties. Out of these several basic properties of systems, two 

properties namely linearity and time invariance play a vital role in the analysis of signals 

and systems. If a system has both the linearity and time invariance properties, then this 

system is called linear time invariant (LTI) system. 
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DT system 

 

CT system 

 

Characterization of Linear Time Invariant (LTI) system 

 

Both continuous time and discrete time linear time invariant (LTI) systems exhibit one 

important characteristics that the superposition theorem can be applied to find the response 

y(t) to a given input x(t). 

Hence, following steps may be adopted to find the response of a LTI system using              

super position theorem: 

1. Resolve the input function x(t) in terms of simpler or basic function like impulse 

function for which response can be easily evaluated. 

2. Determine individually the response of LTI system for the simpler input impulse 

functions. 

3. Using superposition theorem, find the sum of the individual responses, which will 

become the overall response y(t) of function x(t). 

 

From the above discussions, it is clear that to find the response of a LTI system to any given 

function, first we have to find the response of LTI system input to an unit impulse called unit 

impulse response of LTI system. 

Hence, the impulse response of a continuous time or discrete time LTI system is the output 

of the system due to an unit impulse input applied at time t=0 or n=0. 
 
 

x(t)=δ(t )  y(t)=h(t) 
 

Here, δ(t) is the unit impulse input in continuous time and h(t) is the unit impulse response of 

continuous time LTI system. Continuous time unit impulse response h(t) is the output of a 

continuous time system when applied input x(t) is equal to unit impulse function δ(t) 
 

 

x(n)=δ(n)    y(n)=h(n) 
 

Similarly, for a discrete time system, discrete time impulse response h(n) is the output of a 

discrete time system when applied input x(n) is equal to discrete time unit impulse function 

δ(n). Here, δ (n) is the unit impulse input in discrete time and h(n) is the unit impulse 

response of discrete time LTI system. Therefore, any LTI system can be completely 

characterized in terms of its unit impulse response. 

 

Properties of Linear time invariant (LTI) system:- 

 

The LTI system has number of properties not exhibited by other systems. Those are as under: 

 

 Commutative property of LTI systems 

 Distributive property of LTI systems 

 Associative property of LTI systems 

 Static and dynamic LTI systems 

 Invertibility of LTI systems 

 Causality of LTI systems 

 Stability of LTI systems 

 Unit-step response of LTI systems 
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Commutative property: 

 

The commutative property is a basic property of convolution in both continuous and 

discrete time cases, thus, both convolution integral for continuous time LTI systems and 

convolution sum for discrete time LTI systems are commutative. According to the property, 

for continuous time LTI system. The output is given by 

 

 

 

Thus, we can say that according to this property, the output of a continuous time LTI system 

having input x(t) and unit impulse h(t) is identical to the output of a continuous time LTI 

system having input h(t) and the unit impulse response x(t). 

 

Distributive property: 

 

The distributive property states that both convolution integral for continuous time LTI 

system and convolution sum for discrete time LTI system are distributive. 

 

For continuous time LTI system, the distributive property is 

expressed as The output, y(t) = x(t) ∗ [ℎ1(t) + ℎ2(t)] 

Or 
 

y(t) = x(t) ∗ ℎ1(t) + x(t) ∗ ℎ2(t) 

 

Thus, the two continuous time LTI systems, with impulse responses h1(t) and h2(t), have 

identical inputs and outputs are added as 

 

y1(t)  =  x(t) ∗ ℎ1(t) 

 

y2(t)  =  x(t) ∗ ℎ2(t) 

 

The output y(t) = y1(t) + y2(t) 

 

y(t) =  x(t) ∗ ℎ1(t) +   x(t) ∗ ℎ2(t) 
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h1(t)+h2( 

 

 
input x (t) +  outputy(t) 

 

 
 
 
 
 
 

  x(t) t) y(t) 
 

 

Fig 3.1The distributive property of convolution integral for a parallel interconnection of 

continuous time LTI system 

 
 

Associative Property of LTI system: 

 

According to associative property, both convolution integral for continuous time LTI 

systems and convolution sum for discrete time LTI systems are associative. 

 

For continuous time LTI system, according to associative property, 

 

The output 

 

y(t) =  x(t) ∗ [ℎ1(t) ∗ ℎ2(t)] 

 

or 

 

y(t) =  [x(t) ∗ ℎ1(t)] ∗ ℎ2(t) 

h1(t) 

h2(t) 
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x(t)  z ( t ) y(t) 
 
 
 
 
 
 

X(t)    

h( 

 
 

y(t) 
 
 
 

Fig 3.2: The associative property of convolution integral for a cascade interconnection of continuous 

time LTI systems 

 
Here we have y(t)=z(t) *h2(t)But z(t)=x(t)*h1(t). Therefore y(t)=[x(t)*h1(t)*h2(t)] 

 
Static and Dynamic property: 

 
Static systems are also known as memory less systems. A system is known as static if its 

output at any time depends only on the value of the input at the same time. A continuous time 

system is memory less if its unit impulse response h(t) is zero for t≠0. These memory less LTI 

systems are characterized by y (t) =Kx (t) where K is constant. And its impulse response 

h(t)=Kδ(t) .If K=1 ,then these systems are called identity systems. 

 

Invertibility of LTI systems: 

 

A system is known as invertible only if an inverse system exists which, when cascade with 

the original system, produces and output equal to the input at first system. If an LTI system is 

invertible then it will have a LTI inverse system. This means that we have a continuous time 

LTI system with impulse response h(t) and its inverse system with impulse response h1(t) 

which results in an output equal to x(t). Cascade interconnection of original continuous time 

LTI system with its inverse system is given as identity system. 

 

Thus, the overall impulse response of a system with impulse response h(t) cascaded with its 

inverse system with Impulse response h1(t) is given as h(t)*h1(t)=δ(t) 

h1 (t) 

 

 
t)=h1(t)+h2(t) 

h2(t) 
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Fig3.3: An inverse system for continuous time LTI system 

 

Causality for LTI System 

 

This property says that the output of a causal system depends only on the present and past 

values of the input to the system. 

 

A continuous time LTI system is called causal system if its impulse response h(t) is 

zero t<0. For a causal continuous time 

 LTI system, convolution integral is given as 

 
 

For pure time shift with unit impulse response h(t)=δ(t-t0) is a causal continuous time LTI 
system for t≥0. In this case time shift is known as a delay. 

 

Stability for LTI systems 

 

A stable system is a system which produces bounded output for every bounded input. 

Condition of Stability for continuous time LTI system: 

Let us consider an input x(t) that is bounded in magnitude |x(t)|<M for all values of t 

 

Now, we apply this input to an continuous time LTI system with unit impulse response h(t). 

Output of this LTI system is determined by convolution integral and is given by 
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Magnitude of output y(t) is given as 

 

 ∞ 

 

From the above equation we can conclude that if the impulse response h(t) is absolutely 

integerable then output of a continuous time LTI system is bounded in magnitude, and thus, 

the system is bounded input, bounded output(BIBO) stable. 

 

Unit step response of an LTI system: 

 

Unit step response is the output of a LTI system for input is equal to unit step function or 

sequence. Unit step response of continuous time LTI system is found by convolution integral 

of u(t) with unit impulse response h(t) and is expressed as 

 
g(t)=u(t)*h(t)=h(t)*u(t) 

 
according to commutative property. Therefore, unit step response g(t) may be viewed as the 

response to the input h(t) of a continuous time LTI system with unit impulse response u(t). 

 
Input x(t)=u(t) output y(t)=g(t) 

Fig 3.4: Continuous time LTI system 

 
 

 
 
 
 
 

Continuous time LTI 

system 
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Classification of CT LTI system:- 

 

The systems are classified into two types: continuous time and discrete time systems, Now 

these two broad types of systems are further classified on the basis of system properties as 

under: 

 

 

 

 Causal system and non causal system 

 Time invariant and time variant system 

 Stable and unstable system 

 Linear and Non-linear system 

 Static and Dynamic systems 

 Invertible and noninvertible system 
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Causal systems and Non-causal systems 

 

A system is causal if the response or output does not begin before the input function is 

applied. This means that if input is applied at t=t0,then for causal system, output will depend 

on values of input x(t) for t≤t0. 

 

Mathematically, 

y(t0)=f[x(t),t≤t0]. 

In other words we can say that, the response or output of the causal system to an input does 

not depend on future values of that input but depends only on the present or past values of 

the input.This means that all the real-time systems are also causal systems since these systems 

cannot know the future values of the input signal when it constructs output signal.Thus, 

causal systems are physically realizable. For example a resister is a continuous time causal 

systembecause voltage across it is given by the expression v(t)=R.i(t) and output v(t),i.e., 

voltage depends only on the input i(t) i.e., current at the present time. 

 
Time invariant and time variant system 

 
A system is said to be time invariant if its input –output characteristics do not change with 

time. H{x(t)}=y(t) implies that ,H{x(t-t0)}=y(t-t0) for every input signal x(t) and every time 

shift t0A system is said to be time variant if its input- output characteristics changes with 

time. 

 

Procedure to Test for Time Invariance:- 

 

1. Delay the input signal by t0 units of time and determine the response of the system for 

this delayed input signal. Let this response be y(t-t0). 

 

2. Delay the response of the system for undelayed input by t0 units of time. Let this 

delayed response be yd(t). 

 

3. Check whether y(t-t0)=yd(t). If they are equal then the system is time invariant. 

Otherwise the system is time variant. 

 

 
Stable and unstable system 

 
A system is called bounded input, bounded output(BIBO) stable if and only if every bounded 

input results in a bounded output. The output of such a system does not diverge or does not 

grow unreasonably large. 

 

Condition of Stability for continuous time LTI system: 

 

Let us consider an input x(t) that is bounded in magnitude 

 

|x(t)|<M<∞ for all values of t 
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Now, we apply this input to an continuous time LTI system with unit impulse response h(t). 

Output of this LTI system is determined by convolution integral and is given by 

 

Magnitude of output y(t) is given as 

 

 

 

From the above equation we can conclude that if the impulse response h(t) is absolutely 

integerable then output of a continuous time LTI system is bounded in magnitude, and thus, 

the system is bounded input, bounded output(BIBO) stable. 

 

The systems not satisfying the above conditions are unstable. 

 

Linear and nonlinear system 

 
A linear system is one that satisfies the superposition principle. The principles of 

superposition requires that the response of the system to a weighted sum of the signals is 

equal to the corresponding weighted sum of the responses of the system to each of the 

individual input signals. 

 
A system is linear if 

 

H{a1x1(t)+a2x2(t)}=a1H{x1(t)}+a2H{x2(t)} for any arbitrary input sequences x1(t) and x2(t) and 

for any arbitrary constants a1 and a2. 

 

If a relaxed system does not satisfy the super position principle as given by the above 

definition, then the system is nonlinear. 
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Static and dynamic system 

 

A continuous time system is called static or memory less if its output at any instant t 

depends on present input but not on the past or future samples of the input. These systems 

contain no energy storage elements. This means that the equation relating its output signal to 

its input signal contains no derivative, integrals or signal delays. 

 

As an example, consider the system described by the following relationship 

 

Y(t)=x2(t) this system is memory less because the value of the output signal y(t) at time t 

depends only on the present value of the input signal x(t).In any other case the system is said 

to be dynamic or to have memory. Dynamic systems have one or more energy storage 

elements. Input output relationship of a dynamic continuous time system is described by its 

differential equation. 

 

Invertible and non invertible system 

 

A system is said to be invertible if there is a one to one correspondence between its 

input and output signals. If a system is invertible, then an inverse system exists. The 

cascading of and invertible system and its inverse system is equivalent to the identity system. 
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The frequency response of an inverse system is basically reciprocal of the frequency response 

of the original system or invertible system. 

An example of an invertible continuous time system is given by 

 

 
   

Convolution integral:- 

 
The output of any general input may be found by convolving the given input signal x(t) 

with the LTI systems unit impulse response h(t). 

 
 

 

 
 
 

 
 
 
 
 
 
 
 
 

 

 

 Commutative property 

 Distributive property 

 Associative property 

 

Commutative property: 
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The commutative property is a basic property of convolution in both continuous and 

discrete time cases, thus, both convolution integral for continuous time LTI systems and 

convolution sum for discrete time LTI systems are commutative. According to the property, 

for continuous time LTI system. The output is given by 

 

 
 

Thus, we can say that according to this property, the output of a continuous time LTI system 

having input x(t) and unit impulse h(t) is identical to the output of a continuous time LTI 

system having input h(t) and the unit impulse response x(t). 

 

The distributive property: 

 

The distributive property states that both convolution integral for continuous time LTI 

system and convolution sum for discrete time LTI system are distributive. 

For continuous time LTI system, the distributive property is 

expressed as The output, y(t) = x(t) ∗ [ℎ1(t) + ℎ2(t)] 

Or 
 

y(t) = x(t) ∗ ℎ1(t) + x(t) ∗ ℎ2(t) 

Thus, the two continuous time LTI systems, with impulse responses h1(t) and h2(t), have 

identical inputs and outputs are added as 

 

y1(t)  =  x(t) ∗ ℎ1(t) 

 

y2(t)  =  x(t) ∗ ℎ2(t) 

 

The output y(t) = y1(t) + y2(t) 

 

y(t) =  x(t) ∗ ℎ1(t) +   x(t) ∗ ℎ2(t) 
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+ 

1(t)+h2(t) 

h2(t) 

 
h1(t) 

 

 

input x (t) outputy(t) 
 

   

 

 

 
 

 

 

 

 

 
 

x(t)   h y(t) 
 

 

Fig3.1: The distributive property of convolution integral for a parallel interconnection of 

continuous time LTI system 
 

Associative Property of LTI system: 

 
According to associative property, both convolution integral for continuous time LTI 

systems and convolution sum for discrete time LTI systems are associative. 

 

For continuous time LTI system, according to associative property, 

 
 

Fig 3.2:The associative property of convolution integral for a cascade interconnection of 

continuous time LTI systems 
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Here we have y(t)=z(t) *h2(t). But z(t)=x(t)*h1(t). Therefore y(t)=[x(t)*h1(t)*h2(t)] 

 
Linear constant coefficient differential equation: 

 

The continuous time linear time invariant (LTI) systems are described by their linear 

constant coefficient differential equations. For this, let us consider a first order differential 

equation as under  

 

 

 
 

Where x (t) and y(t) are the input and output of the continuous time LTI system. A is a 

constant value. The first order differential equation can be extended for higher order 

differential equations. A general Nth order linear constant coefficient differential equation 

can be given by 

 

 
       

 
 
 

The complete solution of differential equation consists of the sum of particular solution yp(t) 
and homogenous solution yh(t). 

 

The homogeneous solution of a differential equation is possible by substituting 

 
 

 
 

This solution to differential equation is also known as natural response of the system. 
 

A particular case of differential equation is determined by putting N=0, we obtain 
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Transfer function: 

Transfer functions are commonly used in the analysis of systems such as single-input single-output filters, 

typically within the fields of signal processing, communication theory, and control theory. The term is often 

used exclusively to refer to linear, time-invariant systems (LTI). Most real systems have non-linear 

input/output characteristics, but many systems, when operated within nominal parameters have behavior 

that is close enough to linear that LTI system theory is an acceptable representation of the input/output 

behavior. 

The descriptions below are given in terms of a complex variable, , which bears a brief 

explanation.  In  many  applications,  it  is  sufficient  to  define  (and  ), which reduces 

the Laplace transforms with complex arguments to Fourier transforms with real argument ω. The 

applications where this is common are ones where there is interest only in the steady-state response of an 

LTI system, not the fleeting turn-on and turn-off  behaviors  or stability issues. That is usually the case       

for signal processing and communication theory. 

 

Thus, for continuous-time input signal x(t) and output y(t0, the transfer function H(s) is the 

linear mapping of the Laplace transform of the input, X(s)=L{x(t)}, to the Laplace transform 

of the output Y(s)=L{y(t)}: 

 

Y(s)=H(s)X(s) 

 

 

 

 

 
  

https://en.wikipedia.org/wiki/Single-input_single-output
https://en.wikipedia.org/wiki/Single-input_single-output
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/LTI_system
https://en.wikipedia.org/wiki/Non-linear
https://en.wikipedia.org/wiki/LTI_system_theory
https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Communication_theory
https://en.wikipedia.org/wiki/Continuous-time
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Conditions required for transfer function: 

(i) System should be in unloaded condition (initial conditions are zero) 

(ii) The system should be linear time invariant. 

Impulse Response: 

In signal processing, the impulse response, of a dynamic system is its output when presented 

with a brief input signal, called an impulse. More generally, an impulse response refers to the 

reaction of any dynamic system in response to some external change. In both cases, the 

impulse response describes the reaction of the system as a function of time. In all these cases, 

the dynamic system and its impulse response may be actual physical objects, or may be 

mathematical systems of equations describing such objects. Since the impulse function 

contains all frequencies, the impulse response defines the response of a linear time- invariant 

system for all frequencies. The impulse can be modeled as a Dirac delta function for 

continuous- time systems, or as. The Dirac delta represents the limiting case of a pulse made 

very short in time while maintaining its area or integral. While this is impossible in any real 

system, it is a useful idealization. In Fourier theory, such an impulse comprises equal portions 

of all possible excitation frequencies, which  makes it a convenient test probe. Any system in a 

large class known as linear, time-invariant (LTI) is completely characterized by its impulse 

response. That is, for any input, the output can be calculated in terms of the input and the 

impulse response. The impulse response of a linear transformation is the image  of Dirac's 

delta function under the transformation, analogous to the fundamental solution of a partial 

differential operator. It is usually easier to analyze systems using transfer functions as 

opposed to impulse responses. The transfer function is the Laplace transform of the impulse 

response. The Laplace transform of a system's output may be determined by the 

multiplication of the transfer function with the input's Laplace transform in the complex 

plane, also known as the frequency domain. An inverse Laplace transform of this result will 

yield the output in the time domain. To determine an output directly in the time domain 

requires the convolution of the input with the impulse response. When the transfer function 

and the Laplace transform of the input are known, this convolution may be more complicated 

than the alternative of multiplying two functions in the domain. It is obtained by taking 

inverse Laplace transform of transfer function H(s). 

 

 

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Dynamic_system
https://en.wikipedia.org/wiki/Dirac_delta_function
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Linear_time-invariant_system
https://en.wikipedia.org/wiki/Linear_time-invariant_system
https://en.wikipedia.org/wiki/Linear_time-invariant_system
https://en.wikipedia.org/wiki/Dirac_delta_function
https://en.wikipedia.org/wiki/Continuous-time
https://en.wikipedia.org/wiki/Continuous-time
https://en.wikipedia.org/wiki/Pulse_(signal_processing)
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Dirac%27s_delta_function
https://en.wikipedia.org/wiki/Dirac%27s_delta_function
https://en.wikipedia.org/wiki/Fundamental_solution
https://en.wikipedia.org/wiki/Partial_differential_operator
https://en.wikipedia.org/wiki/Partial_differential_operator
https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Complex_plane
https://en.wikipedia.org/wiki/Complex_plane
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Inverse_Laplace_transform
https://en.wikipedia.org/wiki/Time_domain
https://en.wikipedia.org/wiki/Convolution
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Frequency Response: 

 

Frequency response is the quantitative measure of the output spectrum of a system or device 

in response to a stimulus, and is used to characterize the dynamics of the system. It is a 

measure of magnitude and phase of the output as a function of frequency, in comparison to 

the input.It is obtained from the transfer function by substituting s=jω in transfer function. 

 

 
 

Systems respond differently to inputs of different frequencies. Some systems may amplify 

components of certain frequencies, and attenuate components of other frequencies. The way 

that the system output is related to the system input for different frequencies is called the 

frequency response of the system. 

The frequency response is the relationship between the system input and output in the Fourier 

Domain. 

 

 

In this system, X(jω) is the system input, Y(jω) is the system output, and H(jω) is the 

frequency response. We can define the relationship between these functions as: 

     Y(jω)=H(jω)X(jω) 

 
 

 

Since the frequency response is a complex function, we can convert it to polar notation in the 

complex plane. This will give us a magnitude and an angle. 
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Amplitude Response: 

For each frequency, the magnitude represents the system's tendency to amplify or attenuate 

the input signal. 

 

 

Phase Response: 

The phase represents the system's tendency to modify the phase of the input sinusoids. 

 

 

The phase response, or its derivative the group delay, tells us how the system delays the input 

signal as a function of frequency. 

 

TEXT / REFERENCE BOOKS 

1. P.Ramesh Babu et al., “Signals and Systems”, 4th Edition, Scitech Publishers, 2017. 

2. Rodger E. Ziemer , William H Tranter, D. R. Fannin,”Signals and Systems: Continuous and 

Discrete”, 4th Edition, Pearson Education India, 2014. 

3. Haykin S. and Van Been B., “Signals and Systems”, 2nd Edition, John Wiley and Sons, 2015. 

4. H.P. Hsu, "Signals and Systems", 2nd Edition, Tata McGraw Hill, 2017. 

 



1  

 

SCHOOL OF ELECTRICAL AND ELECTRONICS 

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION 

ENGINEERING 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

UNIT - IV 

SIGNALS AND SYSTEMS – SECA1301 



2  

IV ANALYSIS OF DISCRETE TIME SIGNALS AND LTI DISCRETE 

TIME SYSTEMS 

 
Discrete Time Fourier Transform (DTFT) 

The discrete•time Fourier transform (DTFT) of a real, discrete•time signal x[n] is a 

complex•valued function defined by 

 for any (integer) value of n. 

Inverse Discrete Time Fourier Transform (IDTFT) 

The function X (ejω) or X () is called the Discrete•Time Fourier Transform(DTFT) of the 

discrete•time signal x(n). The inverse DTFT is defined by the following integral: 
 
 

Properties of DTFT 
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F 

F 

1. Find the DTFT of an impulse function which occurs at time zero. 

x[n]   [n] 

X e jw   [n]e jwn  1 

[n]1 
 

 

 

Discrete Fourier Transform 

[n  1](1)  e
 jw(1) 

The DFT is used to convert a finite discrete time sequence x (n) to an N point 

frequency domain sequence denoted by X (K). The N point DFT of a finite duration 

sequence x (n) is defined as 
N•1 

X (K) = ∑ x (n) e­j2הnk/Nfor K=0, 1, 2, …….N•1 
n=0 

The discrete Fourier transform (DFT) is the Fourier transform for finite•length 

sequences because, unlike the (discrete•space) Fourier transform, the DFT has a discrete 

argument and can be stored in a finite number of infinite word•length locations. Yet, it 

turns out that the DFT can be used to exactly implement convolution for finite•size arrays 

Inverse Discrete Fourier Transform 

 

The IDFT is used to convert the N point frequency domain sequence X (K) to an N point 

time sequence. The IDFT of the sequence X (K) of length N is defined as 
N•1 

x (n) =1/N ∑X (K) e+j2הnk/N for n=0, 1,2,……N•1 
K=0 

Properties of DFT 

1. Periodicity: X (K+N) =X (K) for all K. 

2. Linearity: DFT[a1 x1 (n)+a2 x2(n)]=a1 X1 (K)+a2 X2 (K) 

3. DFT of time reversed sequence: DFT[ x(N•n)]=X(N•K) 

4. Circular convolution :DFT[x1(n)*x2(n)]=X1(K) X2(K) 

5. Shifting: If DFT {x (n)} =X (K), then DFT{x (n•no)} =X (K) e •j2הno k/N 

6. Symmetry property 

Re[X(N•k)]=ReX(k) 

This implies that amplitude has symmetry Im[X(N•k)]= • Im[X(k)] 

This implies that the phase spectrum is antisymmetric. 

7. If x[n] is an even function xe[n] then 
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

This implies that the transform is also even 

8.If x[n] is odd function xo[n] than 

N 1 

Fxo n  Xo k    j xo nsinknT 
n0 

This implies that the transform is purely imaginary and odd 

9.Parseval’s Theorem 

The normalized energy in the signal is given by either of the following expressions 
 

N 1 

x2n


n0 

 

10. Delta Function 

1 N 1 

N k 0 

X k 2
 

FnT 1 

11. Unit step function 

 

Fu[n] 
  1  

 
  

w  2k  
1 e jw  

k 

F e jw0n    
   

2w  w   2k 
0 

k 

12. Fourier transform of a CT complex exponential is interpreted as an impulse at w=w0. For 
discrete•time we expect something similar but difference is that DTFT is periodic in w with 

period 2. This says that FT of x[n] should have impulses at w0, w0 ±2, w0±4 etc. 
 

n
u[n] 

F 

( n  1) 
1 

 
 

1e jw
 

13. Linear cross•correlation of two data sequences or series may be computed using DFTs. 

The linear cross correlation of two finite•length sequences x1[n] and x2[n] each of 

length N is defined to be: 
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



This circular correlation can be evaluated using DFTs as shown below: 
 

 

 
The circular correlation can be converted into a linear correlation by using augmenting 

zeros. If the sequences are x1[n] of length N1 and x2[n] of length N2, then their linear 

correlation will be of length N1+N2•1. 

To achieve this x1[n] is replaced by x1a[n] which consists of x1[n] with (N2•1) zeros added 

and x2[n] is augmented by (N1•1) zeros to become x2a[n]. 

 r ( j)  F 1X  k X k 
x1x2 1a 2a 

 

 

 

1. Find the DFT of the following signal x(n)=δ(n) 
N•1 

X (K) = ∑ x (n) e•j2הnk/N for K=0, 1, 2….,N•1 
n=0 

 
N•1 

X (K) = ∑ δ (n)e•j2הnk/N for K=0, 1, 2,…N•1 
n=0 

 
X (K) =1 

 
 

2. Consider a length­N sequence defined for n = 0,1,2,……,(N­1) where 
 

x[n]  





1 n  0 

otherwise 

 

 
Find the DFT of the given sequence. 

 
 

N 1 

X [k ]  x[n]WN 

 
k  0,1,2,....... ,(N 1) 

n0 

The N•point DFT is equal to  1 

Basic Principles of Z Transform: 

The z•transform is useful for the manipulation of discrete data sequences and has 

acquired a new significance in the formulation and analysis of discrete•time systems. It is 

used extensively today in the areas of applied mathematics, digital signal processing, 

control theory, population science, economics. 

These discrete models are solved with difference equations in a manner that is 

analogous to solving continuous models with differential equations. The role played by the 

z•transform in the solution of difference equations corresponds to that played by the 

Laplace transforms in the solution of differential equations. 

0 

kn 
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Types of Z Transform Unilateral Z•transform 

 
Alternatively, in cases where x[n] is defined only for n ≥ 0, the single­sided or unilateral Z­ 

transform is defined as 

 
 

In signal processing, this definition can be used to evaluate the Z•transform of the unit 

impulse response of a discrete•time causal system 

 

Bilateral Z•transform 

The bilateral or two•sided Z•transform of   a discrete•time signal x[n] is the 

formalpower series X(Z) defined as 
 

where n is an integer and z is, in general, a complex number: 

 
z= A ejɸ = A (cos ɸ+j sin ɸ) 

 

where A is the magnitude of z, j is the imaginary unit, and ɸ is the complex 

argument (also referred to as angle or phase) in radians. 

Inverse Z Transform 

 

 
1. The z•transform of the sequence  

find its Z transform 
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2. Find the z•transform of the unit pulse or impulse sequence 

 

  . 

3. The z•transform of the unit•step sequence       is  
 

. 
 

4. The z•transform of the sequence is     . 

. 
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. 

5. The z•transform of the exponential sequence is    . 

 
6. 

 

1 1 

2  

3  

4  

5  

6   n 
 
                     

7  
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9  

10  

11  

12  

13  
 

Properties of Z•Transform 

Z•Transform has the following properties: 

 

1. Linearity Property 

 

Then linearity property states that 
 
 

 
2. Time Shifting Property 

Then Time shifting property states that 

 

 

3. Multiplication by Exponential Sequence Property 

Then multiplication by an exponential sequence property states that 
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4. Time Reversal Property 

Then time reversal property states that 
 
 

 
5. Differentiation in Z•Domain OR Multiplication by n Property 

Then multiplication by n or differentiation in z•domain property states that 
 
 

 

 

6. Convolution Property 
 

Then convolution property states that 
 
 

 

7. Correlation Property 

Then correlation property states that 

 
 

8. InitialValueand FinalValueTheorems 

Initial value and final value theorems of z•transform are defined for causal signal. 
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Initial Value Theorem 

For a causal signal x(n), the initial value theorem states that 
 
 

This is used to find the initial value of the signal without taking inverse z•transform 

Final Value Theorem 

For a causal signal x(n), the final value theorem states that 

 

This is used to find the final value of the signal without taking inverse z•transform. 

Region of Convergence (ROC) of Z•Transform 

The range of variation of z for which z•transform converges is called region of convergence 

of z• transform. 

 

Properties of ROC of Z•Transforms 

 

 ROC of z•transform is indicated with circle in z•plane. 

 

 ROC does not contain any poles. 

 

 If x(n) is a finite duration causal sequence or right sided sequence, then the ROC is 

entire z• plane except at z = 0. 

 

 If x(n) is a finite duration anti•causal sequence or left sided sequence, then the ROC 

is entire z• plane except at z = ∞. 

 

 If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with 

radius a. i.e. |z| > a. 

 

 If x(n) is a infinite duration anti•causal sequence, ROC is interior of the circle with 

radius a. i.e. |z|< a. 

 

 If x(n) is a finite duration two sided sequence, then the ROC is entire z•plane except 

at z = 0 & z= ∞. 

 
The concept of ROC can be explained by the following example: 
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Example 1: Find z•transform and ROC of 

 
 

The plot of ROC has two conditions as a > 1 and a < 1, as the value of ‘a’ is not known. 

 

In this case, there is no combination ROC. 

 

Here, the combination of ROC is from 
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Hence for this problem, z•transform is possible when a < 1. 

 

1. The Z transform of a right sided signal         is 

 

 

 

For this summation to converge, i.e., for  to exist, it is necessary to have , i.e., the 

ROC is      . As a special case when  ,    and we have 

 
 

 

2. The Z•transform of a left sided signal is: 

 

 

= 
 
 
 

 

For the summation above to converge, it is required that , i.e., the ROC is . 

Comparing the two examples above we see that two different signals can have 

identical z•transform, but with different ROCs. 

 

3. Find the inverse of the given z•transform . 

Comparing this with the definition of z•transform: 
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we get  
 

In general, we can use the time shifting property 
 
 

 

to inverse transform the given above to directly. 

Zeros and Poles of Z•Transform 

 

All z•transforms in the above examples are rational, i.e., they can be written as a ratio of 

polynomials of variable in the general form 

 

 
 

where  is  the  numerator  polynomial  of  order      with roots  , and 

is the denominator polynomial of order       with roots . 

In general, we assume the order of the numerator polynomial is lower than that of the denominator 

polynomial, i.e.,  . If this is not the case, we can always expand into multiple terms so 

that is true for each of terms. 

The zeros and poles of a rational  
are defined as: 

 
 

 Zero: Each of the roots of the numerator polynomial for which 

 

 
is a zero of . 
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If  the  order  of exceeds  that  of (i.e., ),  then , i.e., 
there is a zero at infinity: 

 

 
 

 Pole: Each of the roots of the denominator polynomial for which 

  is a pole of . 
 
 

 

If  the  order  of exceeds  that  of (i.e., ),  then , i.e, 
there is a pole at infinity: 

 

 
Most essential behavior properties of an LTI system can be obtained graphically from the ROC and the zeros and 

poles of its transfer function on the z•plane 

Inverse Z Transform using Contour Integration Method 
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2. Evaluate the inverse z 

transform of integral. 

 

Long Division Method 

X z 
1
 

1  az 1 
,| z || a| 

 

using the complex inversion 

 

The z•transform is a power series expansion, 

 

where the sequence values x(n)are the coefficients of z •n in the expansion. Therefore, if 

we can find the power series expansion for X(z), the sequence values x(n)may be found by 

simply picking off the coefficients of z –n. 

 

1. Sometimes the inverse transform of a given can be obtained by long division. 

 

 
By a long division, we get 

 

 
 

which converges if the ROC is , i.e., and we get 
 
 

 

. Alternatively, the long division can also be carried out as: 

 

 
 

which converges if the ROC is , i.e., and we get 
 
 

 

2. To understand how an inverse Z Transform can be obtained by long division, 

consider the function 
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If we perform long division 

we can see that 
 

. 

So the sequence f[k] is given by 

Upon inspection 

 
 

3. Find the Inverse Z Transform using Long Division Method 

 
 

 

and the sequence f[k] is given by  
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Inverse Z Transform using Residue Method: 

Find the solution using the formula 
 

 

where are the poles of   . 

 

Partial fraction method 

Inverse Z Transform by Partial Fraction Expansion 

 

This technique uses Partial Fraction Expansion to split up a complicated fraction 

into forms that are in the Z Transform table. As an example consider the function 
 

For reasons that will become obvious soon, we rewrite the fraction before expanding it by 

dividing the left side of the equation by "z." 

 

Now we can perform a partial fraction expansion 

http://lpsa.swarthmore.edu/SolutionMethods/LaplaceZTable/LaplaceZFuncTable.html
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These fractions are not in our table of Z Transforms. However if we bring the 

"z" from the denominator of the left side of the equation into the numerator of the 

right side, we get forms that are in the table of Z Transforms; this is why we 

performed the first step of dividing the equation by "z" 

So 

 

or 

http://lpsa.swarthmore.edu/SolutionMethods/LaplaceZTable/LaplaceZFuncTable.html
http://lpsa.swarthmore.edu/SolutionMethods/LaplaceZTable/LaplaceZFuncTable.html
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LTI – DT Systems: 

A DT System which satisfies Linearity and time invariance property is called LTI DT 

systems. LTI systems comprise a very important class of systems, and they can be 

described by a standard mathematical formalism. 

Characterization using difference equation: 

 

Systems described by constant-coefficient, linear difference equations are LTI systems. 

In exploring this fact, it is important to keep in mind that our default setting is that all 

signals are defined for –∞< n < ∞. The difference equation is a formula for computing an 

output sample at time n based on past and present input samples and past output 

samples in the time domain. The difference equation is as follows: 
 

 

 

 

 

 

Where x(n) is the input signal and y(n) is the output signal and constants 

 
, are called the coefficients. We have a system whose input 

and output signals are related by 

y[n] + ay[n -1] = bx[n] , - ∞ < n < ∞ 

where a and b are real constants. This is called afirst-order, constant-coefficient, linear 

difference equation. Given an input signal x[n], this can be viewed as an equation that 

must be solved for y[n] for each input signal x[n] thereis a unique solution for the output 

signal y[n]. 
∞ 

y[n] = ∑ (—a)n-kbx[k] 

k=-∞ 

Example 1: Find the solution to the following difference equation by using the z- 

transform x(k+2)+3x(k+1)+2x(k)=0, x(0)=0,x(1)=1 
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Solution: 

Take the z-transform of both side of the equation, we get z2 X (z) − z2x(0) − z ⋅x(1) + 3z ⋅X 

(z) − 3z ⋅x(0) + 2X (z) = 0 

Substituting in the initial conditions and simplifying gives 
 
 

 

Take the inverse Z transform of above equation we get, 
 

Example 2: Using the z-transform to solve the following difference equation x(k + 2) + 

0.4x(k +1) − 0.32x(k) = u(k), where x(0) = 0 and x(1) = 1. The input u(k) is a unit step 

input, i.e. u(k) = 1, for k ≥ 0. 

Solution: 

Take the z-transform of the difference equation we get 
 

 

Substituting the initial conditions and simplifying, we obtain 
 

 

The partial fraction expansion of the solution X(z) is 
 

The corresponding time sequence can be obtained by taking the inverse z-transform of the 

above equation: 

x(k) = 0.926 − 0.3704(−0.8)k − 0.5556(0.4)k, for k = 0, 1, 2, … 

 

Convolution Sum: To each LTI system there corresponds a signal h[n] such that the 

input-output behavior of the system is described by 

∞ 

y[n] = ∑ x[k]h[n-k] 

k=—∞ 



 

This expression is called the convolution sum representation for LTI systems. In addition, 

the shifting property easily shows that h[n] is the response of the system to a unit-pulse 

input signal. 

∞ ∞ 

y[n]= ∑ x[k]h[n — k]= ∑ g[k]h[n — k]= h[n] 

 
k=-∞ k=-∞ 

Thus the input-output behavior of a discrete-time, linear, time-invariant system is completely 

described by the unit-pulse response of the system. If h[n] is known, then the response to 

anyinput can be computed from the convolution sum. 

The system response to this inputsignal is given by 

 

To rewrite this expression, change the summation index from k to 1 = k — N, to obtain 
 

 
The convolution representation for linear, time-invariant systems can be developed by 

adopting a particular representation for the input signal and then enforcing the properties of 

linearity and time invariance on the corresponding response 

Example, if n = 3, then the right side is evaluated by the sifting property to verify 

∞ 

∑ x[k]h[3 - k] = x[3] 
 

k=-∞ 

We can use this signal representation to derive an LTI system representation as follows. 

The response of an LTI system to a unit pulse input, x[n] = u[n], is given the special 

notation y[n] = h[n]. Then by time invariance, the response to a k—shifted unit pulse, u[n] 

= δ[n — k] = h[n — k]. Furthermore, by linearity, the response to a linear combination of 

shifted unit pulses is the linear combination of the responses to the shifted unit pulses. That 

is, the response to x[n], as written above, is 
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∞ 

y[n]= ∑x[k] h[n — k] 

k=-∞ 

Thus have arrived at the convolution sum representation for LTI systems. The convolution 

representation follows directly from linearity and time invariance An alternate expression for 

the convolution sum is obtained by changing the summation variable from k to 1 = n - k: 

∞ 

y[ n]= ∑h[ l ] x[ n - l] 

k=-∞ 

It is clear from the convolution representation that if the unit-pulse response of an LTI 

system is known, then we can compute the response to any other input signal by evaluating 

the convolution sum. Indeed, we specifically label LTI systems with the unit-pulse response 

in drawing block diagrams, as shown below 
 

Example: convolve the following signals using matrix method x(n)={ 1 1 2 2}, h(n)={1 2 3 

4} Ans: y(n)={1 3 7 12 14 14 8} 

Properties of Convolution – Interconnections of DT LTI Systems 

Convolution of two signals given by 

∞ 

y[n] = x(n) * h(n) = ∑ x[k]h[n – k] 

k=-∞ 

For any n, the value of y[n] in general depends on all values of the signals x[n] and h[n], y[n] 

= x[n]* h[n], for example, y[2] = x[2]* h[2] . 

 Commutativity: Convolution is commutative. That is, x(n) * h(n) = h(n) * x(n)

∞ ∞ 

∑ x[ k] h[ n- k]= ∑h[ k] x[ n- k] , for all n 

 
k—∞ k—∞ 

∞ ∞ 

( x* h)[n]= ∑ x[k]h[n- k]= ∑ x[n- q]h[q] 

 
k=-∞ q=∞ 

∞ 

= ∑h[q]x[n- q]= h(n)* 

x(n) q=-∞ 

X(n) y(n) 
LTI h(n) 
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LTI (h1*h2)(n) 

Using this result, there are two different ways to describe in words the role of the unit- 

pulse response values in the input-output behavior of an LTI system. The value of h[n – k] 

determineshow the nth value of the output signal depends on the kth value of the input 

signal. Or, the value of h[q] determines how the value of y[n] depends on the value of x[n 

– q]. 

 
 Associativity:Convolution is associative. That is,

 
(x* h1 * h2))[n] = ((x* h1)* h2)[n] 

 

 Distributivity: Convolution is distributive (with respect to addition). That is, (x* (h1
+ h2))[n]= (x* hi)[n]+ (x* h2)[n] 

For any constant b,((bx)* h)[n] = b (x* h)[n] 

 Shifting Property:This is simply a restatement of the time-invariance property. For any integer
no , if i[n] = x[n — no], then 

h[n] = (x* h)[n — no] 

 
 Identity: It is worth noting that the "star" operation has the unit pulse as an 

identity element. Namely,
(x* S)[n] = x[n] 

This can be interpreted in system-theoretic terms as the fact that the identity system, y[n] = 

x[n] has the unit-pulse response h[n] = δ[n] .Also we can write (δ* δ)[n]= g[n]. The unit 

pulse is the unit-pulse response of the system whose unit-pulse response is a unit pulse. 

 

These algebraic properties of the mathematical operation of convolution lead directly to 

methods for describing the input-output behavior of interconnections of LTI systems. For 

example, 
 
 

has the same input-output behavior as the system 

 

 

both have the same input-output behavior as the system 

 
x(n) y(n) 

x(n) 
LTI Systems 

y(n) 

x(n) y(n) h1(n)+h2(n) 
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Transfer Function and Impulse Response Sequence 

The transfer function for the continuous-time system relates the Z transform of the 

continuous-time output to that of the continuous-time input. For discrete-time systems, 

the transfer function relates the z- transform of the output at the sample instance to 

that of the sampled input. Consider a linear time- invariant discrete-time system 

characterized by the following linear difference equation: 

where u(k) and y(k) are the system input and output, respectively, at the kth sample 

instances. If we take the z-transform and by using the time shift property of the z- 

transform, we obtain 
 

 
which can be written as 

 

where 

 

 

Consider the response of the linear discrete-time system described by Equation, initially 

atrest (y(k) = 0, k < 0), when the input u(k) is the Kronecker delta function δ0(k), i.e. 
 

 
Since 

 

 
then 
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Thus, G(z) is the z-transform of the response of the system to the Kronecker delta function 

input. The function G(z) is called the transfer function of the discrete-time system. In the 

above derivation, the role of the Kronecker delta function in discrete-time system is 

similar to that of the unit impulse function (the Dirac delta function) in continuous-time 

systems.The inverse transform of G(z) as given by Eq. 
 

 

is called the impulse response function (sequence).The system described by the difference 

equation 

 

 
where the system is initially at rest (y(k) = 0, k < 0) and the input u(k) = 0, for k < 0, can 

be represented by the transfer function G(z). 

 
 

Example Consider the difference equationy(k + 2) + a y(k +1) + a y(k) = b u(k + 2) + b u(k 

+1) + b u(k). Assuming that the system is initially at rest and u(k) = 0 for k < 0, find the 

transfer function. 

Solution: 

The z-transform of the difference equation is 

 

 
Collect common terms 
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−∞ 

To determine the initial conditions y(0) and y(1), we substitute k = −2 into the original 

difference equation and obtain 
 

 
 

which implies 
 

 

By substitute k = −1 into the original difference equation and obtain 
 

 

which implies y(1) =-a y(0)+ b u(1)+ b u(0) 

By substituting Equations we get 

 
Hence, if both y(k) and u(k) are zero for k < 0, then the system’s input and output are 

related by the above Equation.The transfer function G(z) = Y(z) / U(z) can be written as 
 

 

The above Equation is the same transfer function for the system described by the 

difference equation y(k) + a y(k − 1) + a y(k − 2) = b u(k) + b u(k − 1) + b u(k −2 ). 

 
Causality and Stability of LTI Systems 

A DT system is said to be a causal if the output of the system at any time depends only 

on the present input, past input but does not depend on future input and output 

Ex: y(n)=x(n), x(n-1), x(n-2)…. 

A system is said to be stable if and only if every bounded input produces a bounded output 

condition for stability is given by 

∞ |ℎ 𝑛 |<∞ 

 

Computation of Impulse response and Transfer function using Z Transform. 

Example: Assuming that the system is initially at rest, find the impulse response of the 

following discrete time system: 
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y(k + 3) = 2u(k + 3) − u(k + 2) + 4u(k +1) + u(k). Find the transfer function 

Solution: 

Transfer function of the system can be written as 

 

The impulse response of the system with zero initial condition is then the inverse z- 

transform of the pulse transfer function, 
 

 
Hence g(0) = 2, g(1) = −1, g(2) = 4, g(3) = 1, g(k) = 0, for k >3 

 

Frequency Response of Discrete-Time Systems 

In order for systems to possess a steady-state response to a sinusoidal input, in must be 

stable (all the poles of the transfer function must lie within the unit circle of the 

complex z plane). Let the system of interest be defined by 
 

where pi are the complex poles of the system. We further assume that the system is stable, 

i.e. pi <1 for all i. 

Let the input to the system be a cosine sequence of radian frequency ω, i.e. 
 

The corresponding z-transform of the input sequence is 

 

 

− 

Substituting the input equations the output Y(z) is given by 
 

 

A partial fraction expansion of the above equation can be written as 
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Each term in the summation on the right hand side of equation yields a time domain 

sequence of the form Di (pi) k, which if pi <1 will vanish when k gets larger and hence  

does not contribute to the steady-state response. The coefficients B and C in Eq. can be 

evaluated by the following formula 
 

j T 

 
Substituting Y(Z) in the above formula gives 

 

 

Thus the steady state response YSS(s) is 
 

 

Since G(z) is a rational function of the complex variable z, G(e jωT) is a complex number 

that can be written in polar forma as 
 

 

where φ is the phase angle of the complex number G(e jωT). With similar reasoning, 

G(e −jωT) will have the same magnitude and conjugate phase angle as G(e jωT), i.e. 
 

 
Substituting the values, the steady-state response can be written as 

 

 

Taking inverse z-transform of the above equation, we can obtain the time sequence of the 

steady state sinusoidal response to be 
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Using the Euler identity, the above equation can be further simplified and the steady-state 

sinusoidal response is 

 

From the above Equationwe see that, similar to the continuous-time case, the steady-state 

response of the system G(z) to a sinusoidal input is still sinusoidal with the same frequency 

but scaled in amplitude and shifted in phase. The amplitude of the steady-state response is 

scaled by a factor of G|ejwt|,which will be referred to as the system gain associated with G(z) 

at frequency ω . The complex function of ω, G(e jωT), is called the frequency response 

function of the system G(z). The frequency response function of a system can be obtained 

by replacing the z-transform complex variable z with e jωT, i.e. 
 

 
As in the continuous-time case, we are usually interested in the magnitude and 

phasecharacteristics of this function as a function of frequency. It is interesting to note 

that the DC gain of the system corresponds to the magnitude of the frequency response 

function at ω = 0, 

 

DC Gain=  

This is slightly different from the continuous-time case where the DC gain is evaluated 

by substituting the Laplace variable s by 0. 

 

Example: Find the frequency response for the discrete-time system described by the 

following difference equation: 

y(k) = e−2T y(k −1) + u(k), where T =π/5 

Solution: 

The impulse transfer function of the system can be found by taking the z-transform of 

thedifference equation and assuming zero initial conditions 
 

 

which implies 
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The frequency response of the system is 
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 V.REAL TIME APPLICATIONS OF SIGNALS AND SYSTEMS 

Signal modelling 

• Modelling of signal is basically mathematical representation of signal. 

• Fourier series, Fourier transform are kind of signal models. 

 

 

 

Figure 1: Signal classification 

Speech Signal 

Time domain 

Energy 

 The amplitude of the speech signal varies over time due to the type of speech sound and to 

supra segmental factors. The short-time energy is a convenient way to represent these 

amplitude variations. For a digital signal  

 
where w(n) is a window function, which is nonzero over only the analysis time interval. 

That is, w(n) selects the interval to be analyzed. (For energy determination, the shape of w( 

n) is not critical j it is often a rectangular window, i.e., 1 over its nonzero extent. For 

spectral analysis (we shall note that the shape of wen is important.) Because of the 

squaring operation, the energy can be sensitive to large signal levels, and the computation 

can produce overflow on short word length computers. 

For analog signals, it is more convenient to measure magnitude, by means of a rectifier 

and low pass filter. Note that the impulse response of the low pass filter corresponds to the 

window function w(n) . Energy or magnitude provides a primary basis for separating 

speech from silence and, because voiced sounds are generally higher in amplitude than 

unvoiced, for distinguishing between voiced and unvoiced intervals. They are also useful 

for delineating syllables and for locating the syllable nucleus.  

 

DETERMINISTIC 

SIGNALS 

RANDOM 

INPUT WILL BE 

STOCHASTIC 

PROCESS,WHITE 

NOISE 
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Zero Crossings 

 It is well known that infinitely clipped speech is intelligible (although distorted), so there 

must be useful information in the zero-crossings of the signal. The zero-crossing rate 

(ZCR) is obtained by counting the number of times the signal changes sign during a fixed-

length analysis interval. This rate gives a very rough measure of the frequency content of 

the signal, as may be appreciated by noting that a sinusoid of frequency F gives an average 

ZCR of 2F sec- 1 ZCR is sometimes used after broad bandpass filters for a rough formant 

estimation, but the fact that the frequency ranges of the formants overlap limits the 

accuracy of these estimates. The ZCR also helps distinguish between speech and non 

speech and between voiced and unvoiced sounds (the mean ZCR for voiced sounds is about 

1500 sec- 1 and for unvoiced sounds 5000 sec- 1, but the distributions overlap (3)).  

 

Pitch Period Estimation  

Measurement of the pitch period (or equivalently the fundamental frequency) of voiced 

speech and separation of voiced from unvoiced intervals are problems for which many 

techniques have been devised. Some of these techniques are oriented toward the time 

domain, and these will be described here; others are frequency-domain oriented.  

 

Autocorrelation 

The short-time autocorrelation of the signal, 

 
peaks when K is equal to the pitch period, even if the signal is only approximately periodic, 

and this is the basis for autocorrelation methods. But the autocorrelation function also 

contains other information, enough to represent the entire spectrum. Autocorrelation 

peaks due to formant structure can be as large as peaks due to approximate periodicity. 

Therefore, before autocorrelating, it is useful to lowpass filter the speech (to remove the 

higher formants) and/or to flatten the spectrum (to remove formant information). Spectral 

flattening can be done by center-clipping (or linear prediction inverse filtering. 

 

FREQUENCY DOMAIN METHODS 

 The representation of signals as the sum of sinusoids or complex exponentials often leads 

to convenient solutions and insight into physical phenomena. For linear systems, (such as 

our model of speech production), it is convenient to determine the system response to such 

a representation. A spectral representation often displays characteristics not evident in the 

waveform, and we know that a kind of spectral analysis is performed in the ear. For these 

reasons, frequency domain methods are important in speech analysis. 

It is with frequency-domain methods, in which the shape of the spectrum is relevant, that 

the shape of the short-time window function is important. Windowing is multiplication of 

the waveform and window function, which appears in the frequency-domain as 

convolution of their Fourier transforms. Therefore, a narrow main lobe of the window's 

transform (to minimize "smearing" of the spectrum) and low side lobes (to minimize 

"leakage" from other parts of the spectrum) are desirable. In these respects, the 

rectangular window is inferior to smooth windows such as the Hann, Hamming, or Parzen 

windows (3-6). In analog filter bank spectral analysis , the window function is determined 

by the shape of the filter bandpass characteristics (a wider bandwidth yields sharper time 

resolution). Additional time-averaging is usually introduced by the smoothing of the 
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envelope detector following each filter. 

 

Music signal Analysis and modelling 

Pitch 

Most musical instruments—including string-based instrumentssuch as guitars, 

violins,and pianos,as well as instruments based on vibrating air columns such as flutes, 

clarinets, and trumpets—are explicitly constructed to allow performers to produce sounds 

with easily controlled, locally stable funda- mental periods. Such a signal is well described as 

a harmonic series of sinusoids at multiples of a fundamental frequency, and results in the 

percept of a musical note (a single perceived event) at a clearly defined pitch in the mind of 

the listener. With the exception of unpitched instruments like drums, and a few inharmonic 

instruments such as bells, the periodicity of individual musical notes is rarely ambiguous, 

and thus equating the perceived pitch with fundamental frequency is common. 

Harmony 

While sequences of pitches create melodies—the “tune” of a music, and the only part 

reproducible by a monophonic instrument such as the voice—another essential aspect of 

much music is harmony, the simultaneous presentation of notes at different pitches. Different 

combinations of notes result in different musical colors or “chords,” which remain 

recognizable regardless of the instrument used to play them. Consonant harmonies (those 

that sound “pleasant”) tend to involve pitches with simple frequency ratios, indicating many 

shared harmonics. Fig. 2 shows middle C (262 Hz), E (330 Hz), and G (392 Hz) played on a 

piano; these three notes together form a C Major triad, a common harmonic unit in western 

music. The figure shows both the spectrogram and the chroma representation. The ubiquity 

of simultaneous pitches, with coincident or near-coincident harmonics, is a major challenge 

in the automatic analysis of music audio: note that the chord in Fig. is an unusually easy case 

to visualize thanks to its simplicity and long duration, and the absence of vibrato in piano 

notes. 

 
Figure 2. Frequency Spectrum 

Medical uses of signal analysis and modelling 

Biomedical signal analysis allows us to extract meaningful information from biological 

processes, thus enabling the assessment, characterization, and understanding of their 

originating mechanisms. Biomedical signals, however, are nonstationary and have statistics 

that change over time. As a result, conventional frequency-domain signal analyses have their 

limitations and a more powerful analysis technique is needed, particularly one capable of 

characterizing the changes in spectral content over time. In this article, we propose one such 

spectrotemporal representation—the modulation spectrogram. We start by presenting the 

theoretical foundation behind the technique and compare three of the most utilized 

approaches to calculate the spectrotemporal representation, namely the short-time Fourier 

transform, the continuous wavelet transform, and the Hilbert transform. An open-source 

amplitude modulation analysis toolbox is presented to allow the reader to explore amplitude 

modulation analysis of different biomedical signals. Lastly, to illustrate the advantages of the 

https://www.sciencedirect.com/topics/neuroscience/fourier-transform
https://www.sciencedirect.com/topics/neuroscience/fourier-transform
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modulation spectrum analysis over conventional frequency-domain tools, several biomedical 

applications are described, ranging from detecting breathing rate from ECG signal, to 

improved Alzheimer’s disease diagnosis using novel features extracted 

from electroencephalograms, to artifact removal of wearable electrocardiograms. It is hoped 

that this article and its companion open-source toolkit will allow readers to quickly witness 

the advantages of the described spectrotemporal representation and explore novel biomedical 

signal analysis applications. 

 
 Figure 3. Medical Signal Processing and Analysis 

 
 

Figure 4. Pulse train 

 
 

Applications of Fourier Transform 

• The Fourier transform has many applications in any field of physical science that uses 

sinusoidal signals, such as engineering, physics, applied mathematics, and chemistry, 

will make use of Fourier series and Fourier transforms 

https://www.sciencedirect.com/topics/neuroscience/electrocardiography
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/electroencephalography
https://www.sciencedirect.com/topics/neuroscience/electrocardiography
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Figure No 5 FT of a signal with multiple frequencies 

Telecommunication 

• It’s a obvious for that there would be digital telecom without Nyquist-Shannon 

theorem and Fourier Transform. Both are extremely important. Fourier transform 

has greatly improved the way we are sending/collecting data. Note that mp3 file 

format uses transform. Transforms are used in file compression: for instance cosinus 

transform is also used in jpeg file compression. There are numerous applications in 

telecoms, and therefore I decided not to dwell on them and go further.  

Automotive 

•  A car is going to be have an engine test stand. A computer with multiple microphone 

is going to measure voice of the engine the car produces. The software analyses it and 

gives output that shows us how devastated engine is and what is its real distance. This 

is  comes in handy.  

• A system of Vibro-acoustic signal analysis (acceleration of the unsprung mass of 

passenger’s car suspension actuated to vibration by harmonic, kinematic vibration) 

that analized the suspension and adjusted it automatically to the current road 

condition.  

• Adaptive cruise control. The cruise control is a systems that controls your speed car. 

There are many improvements to this system. One is that it uses FFT while controlling 

speed.  

Voice recognition system. Driving a car requires a lot of attention. Sometimes it’s difficult to 

put the hands off the steering wheel and change the radio station. If we have to push one 

button, it is far less problematic than choosing a street number in a GPS receiver. The 
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automotive companies are working on a voice recognition systems 

 

The Fourier transform of the square wave generates a frequency spectrum that presents the 

magnitude of the harmonics that make up the square wave (the phase is also generated, but is 

typically of less concern and therefore is often not plotted).  

 The Fourier transform can also be used to analyze non-periodic functions such as 

transients (e.g. impulses) and random functions. With the advent of the modern computer the 

Fourier transform is almost always computed using the Fast Fourier Transform (FFT) 

computer algorithm in combination with a window function. 

 
Figure 6. Magnitude plot 

 Hearing devices 

• Beltone hearing device 

• You have from 9 up to 16 directed microphones, it minimizes and filters out the noise 

of a street. It is self adjusting – this means you get different voice intensification 

/amplification in different environments. This means that no mater where you are – in 

laboratory or in a public place, you can always talk and hear the person you are 

talking with. If you have a better one device – you can talk with your phone despite 

having the disability. This allows people for normality in their lives. Everything is 

packed in a small device,  which you can hardly see.   

• Voice recognition 

• There are attempts to perform automatic voice recognition system in customer 

support. The goal is to eliminate the extremely boring procedure in veryfing the right 

user asking questions like: what is mother’s maiden name, what is your postal code 

etc. The system may verify the user by analyzing its voice using Fourier Transform. It 

is right research direction in my opinion and will greatly facilitate our live. 

• Military 

• Submarine requires extremely reliable communication 
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• The main point of Fourier Transform in military applications is: perform reliable and 

safe communication. Using fourier transform you can decode your message in a 

special way.  

• cosinus tranform is used in jpeg file (->data compression). But the point is to sent a 

message under the noise level.  

Medical Imaging 

Selected methods of image processing have been applied to expert system supporting the 

process of identifying medical images. Fourier transform is well known tool for many 

applications in the processing of images in many fields of science and technology, also in 

medicine. In this case the image processing consists in spatial frequencies analysis of Fourier 

transforms of medical images. Skin lesions are studied on the base of their images and it 

seems that Fourier transformation is the right toll for such research. The distributions of 

selected colors in Fourier transform images are studied.  

NOISE REMOVAL IN medical IMAGES 

The use of the FT and its inverse to remove unwarranted information from an image. (a) An 

image obtained by adding the sine wave and chest radiography images together with its 

equivalent Fourier spectrum in (b). The unwanted interference caused by the sinusoidal 

brightness pattern can be removed by editing the spatial frequency information as shown by 

the blackened areas in (c). The inverse FT then recovers the original chest image largely 

undistorted as shown in (d). Further refinement of the editing process would allow complete 

restoration of the image quality, in theory.  

 
Figure 7. Noise removal using FT 

MEDICAL SIGNALS 

The EEG rhythms capture the nonlinear complex dynamic behavior of the brain system and 

the nonstationary nature of the EEG signals. This method analyzes common frequency 

components in multichannel EEG recordings, using the filter bank signal processing. The 

mean frequency (MF) and RMS bandwidth of the signal are estimated by applying Fourier-
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transform-based filter bank processing on the EEG rhythms, which we refer intrinsic band 

functions, inherently present in the EEG signals. The MF and RMS bandwidth estimates, for 

the different classes (e.g., ictal and seizure-free, open eyes and closed eyes, inter-ictal and 

ictal, healthy volunteers and epileptic patients, inter-ictal epileptogenic and opposite to 

epileptogenic zone) of EEG recordings, are statistically different and hence used to 

distinguish and classify the two classes of signals using a least-squares support vector 

machine classifier. 

 
Figure 7. Fourier transform of EEG signal 

• In recent years, detection of cardiovascular abnormalities in patients can be achieved 

by using electrocardiogram (ECG) recording. Initially, an effective FFT is used to 

extract the feature points in ECG signals, such as PQRST wave’s amplitude and wave 

function and then the proposed multi-objective genetic algorithm is used to classify the 

abnormality of heart patient. Basically, the ECG behaviour depends on various 

factors such as age, physical condition of patients and the surrounding environment.  

 
Figure 8 ECG wave 
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Figure 9 Magnitude and Phase spectrum 
 

The Speech Communication Process 

  Speech is a complex sound produced by the human vocal apparatus, which consists of 

organs primarily used for breathing and eating: the lungs, trachea, larynx, throat, mouth, 

and nose. The source of energy for the production of these sounds is the reservoir of air in the 

lungs. Sound is generated in two ways. If air is forced through the larynx with the vocal folds 

appropriately positioned and tensioned, it sets them into oscillation, so that they release puffs 

of air in a quasi-periodic fashion at rates of about 80 to 200 Hz for male speakers, and at 

faster rates for women and children. This glottal source is rich in harmonics, and it excites 

the acoustic resonances of the vocal tract above the larynx, which filter the sound. These 

sharp resonances, called formants, are determined by the shape of the throat, mouth, and, if 

the velum (soft palate) is open, the nasal cavity. It is through manipulation of the vocal tract 

shape by the articulators (tongue, jaw, lips, and velum) that we control the formant 

frequencies that differentiate the various voiced speech sounds. These are the vowels, nasal 

consonants, liquids (/rl and Ill), and glides (/wl and Iy/). Only the lowest three or four 

formants, up to about 4 kHz, are perceptually significant. The other sound source used in 

speech is turbulent noise, produced by forcing air through some constriction (such as 

between the tongue and teeth in th-sounds) or by an abrupt release of pressure built up at 

some point of closure in the vocal tract (such as behind the lips in aIp/).  
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The spectral peaks associated with these fricated sounds generally lie between 2 and 8 kHz 

and are primarily determined by the position and the shape of the constriction. Some sounds, 

the voiced fricatives, such as Izl and lvi, have both voiced and turbulent excitation. 

Distinguishable differences in the voice signal can be produced by quite small changes in the 

way the vocal tract is manipulated, so a very large number of sounds can be produced. For 

the communication of language, however, only a restricted number of sounds, or more 

accurately, sound classes, are used. Words in English are made up of approximately 40 of 

these phonemes, which correspond roughly to the pronunciation symbols in a dictionary. 

Since there are relatively few of these elemental sound units, many speech recognition 

systems choose phonemes or phoneme-like units as the units of recognition. This concept of 

elemental units does not reduce speech recognition to the sequential recognition of 40 or so 

fixed pat terns. The acoustic realizations of phonemes in real speech are drastically different 

from their characteristics in isolated environments. When phonemes are strung together into 

words, the acoustic characteristics of successive phonemes become overlapped, due to the 

dynamics of the articulators and the tendency for an articulator to anticipate the position it 

will next assume. (For example, when you say the It I of the word "tin", the lips are spread 

apart, but in "twin", they are pursed together. Since the lips are not used for the articulation 

of the It I , they are free to assume the position for the following phoneme.)  

These context effects, along with effects due to linguistic stress, speed of talking, the 

size of a particular speaker's vocal tract, and variation in the way a speaker says a given 

word from repetition to repetition make the decoding of the speech signal a nontrivial 

problem. To be sure, the speech wave does contain much information directly related to the 

phonemes intended by the speaker, but the details of the coding are complex . The phonemes 

themselves can be grouped into classes according to the ways they can modify and affect one 

another when they are in proximity in normal speech. It is convenient to describe these 

classes in terms of about fifteen binary distinctive features (9-12), most of which have 

straightforward articulatory and acoustic attributes, such as voiced/unvoiced, 

nasal/nonnasal, fricated/unfricated, and tongue position: back/front, high/low, etc. Distinctive 

features have proved to be quite powerful in describing the phonological changes that 

underlie the contextual effects referred to above. For that reason, some speech recognition 

systems use them as recognition units or as ways of organizing their recognition of phoneme-

sized units. 
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Analog and Digital Techniques 

 

There is a major division of SSPFE techniques between analog and digital. Analog 

signal processing techniques are those performed on the (electrical analog of the) speech 

signal by means of electronic circuitry. This requires investment in special-purpose electronic 

equipment, which, although frequently modular, is somewhat inflexible, and furthermore, 

requires periodic calibration and adjustment. Digital signal analysis, on the other hand, can 

be performed on a general purpose digital computer, a microprocessor, or special purpose 

digital hardware. When implemented on a computer, such digital instrumentation is very 

flexible. Programming turns the computer into a custom-designed instrument; the 

characterh:tics of the instrument may be changed or even redesigned without recourse to a 

soldering iron or supply cabinet, and there is nothing that can go out of calibration. 

Furthermore, many of the digital techniques now available are simply not realizable in the 

analog domain. Perhaps the most notable drawback is that while analog instrumentation is 

inherently real-time, it is not always possible for digital techniques to be performed in real 

time. This is counterbalanced by the potentially far greater functionality of digital 

techniques. The same technological advances that have made computers faster and 

cheaperhave done the same for digital processing techniques, and we may expect this 

tendency to accelerate. The flexibility and capability of digital SSPFE methods, together with 

the increasing speed and decreaSing costs of computers and microprocessors, have 

established a trend of increaSing importance of digital techniques in all aspects of speech 

processing. It represents both analog and digital techniques, but the dominance of the digital 

domain is unavoidable. For a signal to be analyzed digitally, it must first be converted from 

the form of a continuous signal (an acoustic pressure wave or its electrical analog) to a digital 

signal. A digital signal is discrete in two ways: it consists of measurements of the speech signal 

amplitude of discrete, regularly spaced instants of time, and each of these samples has been 

quantized to a certain number of bits of precision. This transformation from a continuous 

waveform to a list of digital numbers is performed by an analog-to-digital converter. 

Nyquist's sampling theorem (see, for example, (3-6)) tells us that in order to capture the 

information contained in a bandwidth of B Hz, we must sample at a rate of a least 2B samples 

per second; furthermore, if the signal contains energy at frequencies higher than B Hz, the 

result will be distorted unless we first lowpass filter the signal at or below B Hz. For example, 
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an application in which the 0-5 kHz band is of interest may call for lowpassfiltering at or 

below 5 kHz and sampling at 10 ,000 samples per second, with each sample represented by a 

12 bit number. 

Time and Frequency Domain Approaches Another fundamental division of SSPFE 

approaches is between time domain and frequency domain approaches. Time domain 

approaches deal directly with the waveform of the signal, and these representations are often 

attractive because of their simplicity of implementation. In working with time domain 

representations, it must be noted that the shape of the waveform for voiced speech depends 

on (among other things) the pitch period, so we generally shouldn't pay attention to details of 

the waveform. Also, the perception of speech is only minimally dependent on the phase of the 

signal, so phase-independent measures are desirable. Frequency-domain approaches involve 

(explicitly or implicitly) some form of spectral representation. A spectral representation often 

displays characteristics not evident in the time domain, and we know that a kind of spectral 

analysis is performed in the ear. The above observations about pitch and phase have 

counterparts in the frequency domain. For voiced speech, the spectrum has both a fine and a 

coarse structure, due to the pitch harmonics and the vocal tract transfer function 

respectively. We use the magnitude or power spectrum, which does not contain phase 

information. A time/frequency dichotomy does not account for all SSPFE approaches. Some 

are hybrids of the two, and for others the concept of "time or frequency" seems ill-defined. 

Analysis and Synthesis Of Signals 

The task of an automatic speech recognition (ASR) system is to convert a speech signal 

into a linguistic representation of its content -- to "recognize" the linguistic message 

contained in the signal. A common aspect of all ASR systems is that they process the speech 

signal in some way in order to produce a representation of the signal that is better suited to 

the recognition process. This operation (or set of operations) is the function of the component 

that can be called "speech signal processing and feature extraction" (SSPFE). What do we 

mean by "speech signal processing" and by "feature extraction"? "Speech signal processing" 

refers to the operations we perform on the speech signal (e.g., filtering, digitization, spectral 

analysis, fundamental frequency estimation, etc.). "Feature extraction" is a pattern 

recognition term that refers to the characterizing measurements that are performed on a 

pattern (or signal); these measurements (" features") form the input to the classifier that 

"recognizes" the pattern. In many cases in speech recognition, it is impossible to separate 
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these functions; they are one and the same. 

Audio/speech processing is an important area of research in Forensic and Defense (speaker 

recognition) and in search engines (retrieval). In both cases, it is necessary to extract the 

features which describe the speech signal. Though considerable research is carried out in this 

area, these techniques are text and language dependent. Extracting the text features is highly 

complex. Also language dependency is yet another bottleneck in speech processing. Hence 

major research work aims at developing efficient speaker recognition/speech retrieval 

technique from the speech samples irrespective of the speech content and language. Major 

research challenge lies in the selection of appropriate transform for decomposing the signals, 

statistical features for aggregating the co-efficient and a classifier for identifying the speaker.  

 In case of defense organizations, forensic departments and biometric enabled 

industries, speech signals are processed to identify a speaker. On the other hand, search 

engines like Google and Yahoo need speech signal retrieval from queries. Both these cases 

involve the following steps: speech signal database, signal preprocessing, outlier removal, 

feature extraction for speech characterization and decision making. In both cases, Speech 

characterization necessitates the researcher to understand physics behind the generation of 

speech signals and the anatomy of vocal tract.  

 Human vocal system consists of lungs, trachea, vocal folds, epiglottis, tongue, 

velum and nasal cavity. When there is an urge to speak, the nerve cells receive the commands 

from brain and based on that the vocal system generates the speech signal. Air from the lungs 

passes to the larynx through the trachea and hence vibrates the vocal chords. It is the 

vibration of the vocal chords that result in sound generation. In addition, position of the 

tongue also alters the voice signal. Human vocal system is as shown in Figure 9.1. 
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Figure 9.1 Human vocal system 

 Speech signal consists of voiced sound, unvoiced sound and silence (Figure 9.2). In 

case of voiced sound, vocal cords are opened and closed periodically. It chops the airflow into 

periodic pulses. Voiced sound occurs during vowel production. Unvoiced sound occurs 

during consonants and vocal cords are randomly opened and closed and it results in noisy 

turbulent signal. Silence occurs when neither voiced nor unvoiced sound is produced. In 

general, speech signal is defined as a one Dimensional signal s(t) where ‘t’ denotes time and 

s(t) is the amplitude or intensity at ‘t’. If ‘s’ and ‘t’ are both finite, then it is called a digital 

speech signal.  



16 
 

 

Figure 9.2 Voiced, unvoiced and silent regions in speech signal 

 Owing to the presence of voiced, unvoiced and silent samples in speech, speech 

signals are non-stationary in nature. However it can also be viewed as a series of short term 

(time) periodic signals. Energy (measure of amplitude of the signal) decreases as signal 

traverses from voiced to silent through unvoiced sound. Due to randomness in unvoiced 

sound, Zero Crossing Rate (ZCR) of unvoiced sound is higher than that of voiced sound. 

Autocorrelation is the measure of repetitiveness in the signal while pitch is an indicator of 

fundamental frequency. Having understood the nature of speech signals, the next task is to 

develop speaker identification and speech retrieval systems. 

Speech Signal Feature Selection and Extraction 

 

 

 

Figure 9.3 Block Diagram of Speaker Recognition System 

 Speaker Recognition system validates the identity of a person using the features 

extracted from their voice signals. The two phases of a speaker recognition system is the 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
 Speech Signal

 Samples

 A
m

p
li

tu
d

e


Unvoiced  

Silent  

 Voiced  

Forward 

Transform 

Feature 

Aggregation 

Speech Signal 

0 5 10 15

x 10
4

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
voice signal of speaker 1

n

a
m

p
li
tu

d
e

Speaker 

Identification 



17 
 

feature extraction and speaker identification. In this chapter, various features selected for 

development of the proposed speaker recognition system, their significance and the various 

transforms used for extraction of those features are discussed. The block diagram of the 

proposed system is shown in Figure 9.3. 

Feature Selection 

 Speech waveform is produced by the human speech production system and the 

structure of their vocal tract.The voluntary movement of the anatomical structures present in 

our human speech production system generates an acoustic sound pressure wave called the 

speech waveform. Vocal folds, soft palate, tongue, teeth and lips are the finer anatomical 

components involved in the human speech production. These finer anatomical components 

are also called as articulators. Based on the movements and position of the articulators, the 

modulation occurs in the speech waveform. Larynx plays an important role in speech 

production as it provides the periodic excitation to the system for speech sound called as 

voice. Since the human system varies with time, the spectral characteristics of the speech 

waveform possess non stationary property. The prosodic features involved in the study of 

voicing are the fundamental period, fundamental frequency and pitch.Speech signal provides 

glottal information of the speaker, which by proper feature extraction gives the identity of the 

speaker. Features namely fundamental period, fundamental frequency, pitch and number of 

peaks for a smaller co articulation of the speakers along with a suitable feature extraction 

technique is responsible to explore the speaker identity. Significance of prosodic and 

statistical features for the representation of the speech signals is shown in Table 3.1. 

 As mentioned in Table 3.1, these features provide a holistic representation of the 

speech signal. These features can be used for both speaker recognition and speech ranking 

systems.  In this research work, these features are determined on the actual coefficients and 

also on the transformed coefficients. Transforms are selected based on the appropriateness in 

describing the speech signal.  

Transform Selection 

 As speech is a non-stationary signal and the information is present in low 
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frequencies, it necessitates a non-stationary tool that performs multi resolution analysis. 

Feature extraction on the components from non-stationary analysis is an efficient way to 

develop speaker recognition system.  Significance of various transforms on speech signals is 

shown in Table 3.2.  

Speech Feature Extraction 

 On the acquired speech signals, both prosodic and statistical features are 

determined from the transformed and time domain coefficients.  These aggregated features 

are used for developiing automated speaker recognition system and feature based speech 

ranking system. The tree diagram in Figure 3.2 depicts the various features extracted on 

speech signals.  

Table 3.1 Significance of Prosodic and Statistical Features 

Sl. 

No. 
Feature Formula Courtesy Significance 

1 Pitch f0 
0

sf
f

T
  

www.indiana.ed

u/~acoustic/s302/ 

phonation-

chap4.pdf 

For an adult male the vocal folds open and close 

completely 100 times in one second. For an adult 

female it is 200 times per second, for a child, it 

may be 300 times per second. Larger structures 

vibrate more slowly than smaller structures. 
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


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iitg.vlab.co.in,  

(2011). Short 

Term Time 

Domain 

Processing of 

Speech.  

The energy associated with voiced region is 

large compared to unvoiced region and silence 

region will not have least energy.  

4 Zero 

Crossing 

Rate 

(ZCR) 

_ sfZCR n cross
N

 

 

www-

gth.die.upm.es/p

artners/sony/Ch

apter7_b.doc 

If the number of zero crossings are more in a 

given signal, then the signal is changing rapidly 

and accordingly the signal may contain high 

frequency information.  
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Counting the number of positive peaks per 

second in the waveform determines the 

frequency of the waveform. 
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If N is small, the statistical noise in the 

calculated mean of the signal will be very large. 

In other words, you do not have access to 

enough data to properly characterize the signal. 

The larger the value of N, the smaller the 

expected error will become.  
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Standard deviation is used to evaluate the 

differences between speaking styles. The higher 

the standard deviation, the more lively the voice, 

and the more pleasant and interesting to listen 

to 
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Skewness is used to detect the polarity of the 

speech signal. It also provides vocal tract 

information and estimate on the glottal source. 

A positive skewness means the estimated glottal 

source will have a negative skewness. Higher 

skewness means higher excitation strength of 

the vocal tract 
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Feature Formula Courtesy Significance 
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Ali Mansour et 

al (1998), 

“Kurtosis: 

Definition and 

properties”, 

Kurtosis is negative during a silent period, and 

it becomes positive during the speech transient. 
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FUSION 98 
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Second order statistics is used to estimate the 

Number of harmonics present in the signal 
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Third order moment has the potential to 

capture nonlinear information and it is more 

immune to Gaussian noise 
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Music has a higher rate of change in the shape 

of the spectrum, and goes through more drastic 

frame-to-frame changes where speech typically 

has a more constant rate of change.   
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Spectral centroid describes the center of 

frequency at which most of the power in the 

signal is found. In speech signals the pitch of the 

audio signal stays in a more narrow range of 

low values. As a result, music has a higher 

spectral centroid than speech. 
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Table 3.2 Significance of Transforms on Speech Signals 

Sl.No. Transform Formula Courtesy Significance 

1 Stockwell 

Transform 

2 2( )

22
| |

( , ) ( )
2

t f

i ftf
S f h t e e dt






 






   
Localization 

of the 

complex 

spectrum: 

The S 

Transform 

S-transform 

uniquely 

combines a 

frequency 

dependent 

resolution of 

the time-

frequency 

space with 

absolutely 

referenced 

local phase 

information. 

2 Discrete 

Wavelet 

Transform 

1
( , ) ( )

t b
x a b x t dt

aa
 





 
  

 
  

A Wavelet 

Tour of 

Signal 

Processing: 

The Sparse 

Way 

DWT 

decomposes 

the signal into 

approximation 

coefficients 

and detailed 

coefficients 

Approximation 

coefficients  

correspond to 

low 

frequencies 

and detailed 

coefficients 

represent the 
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high frequency 

info.  present 

in the signal. 

3 Cepstrum 2 21 1

0 0

( ) log ( )
N N j kn j kn

N N

n n

C n x n e e
   

 

  
       
   

 

Digital 

Processing 

of Speech 

Signals 

Cepstral 

analysis 

separates the 

speech signal 

into 

component 

representing 

excitation 

source and 

vocal tract 

impulse 

response. So it 

provides 

information 

about pitch 

and vocal tract 

configuration. 

4 Autocorrelation 






1

0

)()()(
k

m

knxnxkA  
Digital 

Processing 

of Speech 

Signals 

One would 

expect exact 

similarity at a 

time lag of 

zero, with 

increasing 

dissimilarity as 

the time lag 

increases. 



23 
 

5 Empirical 

Mode 

Decomposition 

n

n

j
j rctx  

1

)(  
Hilbert-

Huang 

Transform 

and Its 

Applications 

 

any 

complicated 

data set can be 

decomposed 

into a finite 

and often small 

number of 

components. 

EMD 

preserves the 

characteristics 

of the varying 

frequency. 

 

 

 

 

 

 

 

 

 

Figure 3.2 Feature Extraction on Speech Signals 
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Text Independent Speaker Recognition System with Ann 

 

The robustness of any speaker recognition system depends on the appropriate selection of 

acoustic features, feature extraction technique and the classifier involved in the system. 

Initially text independent speaker recognition system using stockwell transform features and 

DWT features is proposed with Back Propagation Network (BPN) as classifier. 

The block diagram of ANN based speaker recognition system using stockwell transform 

features is shown in Figure 5.1. Stockwell Transform is then applied on these signals to 

obtain amplitude localized to both time and frequency. These amplitudes are then aggregated 

using the statistical parameters namely mean, variance, Skewness and kurtosis. These 

features are then used to train and test the ANN based classifier. In the proposed work, Back 

Propagation Network (BPN) with three hidden layers and one output layer is chosen. The 

number of neurons in the hidden layer is 10,10,5 respectively and one neuron in the output 

layer. The learning parameter and the momentum parameters are 0.6 and 0.9 as these are the 

optimized values. An exemplar is created with mean, variance, skewness and kurtosis as 

input parameters and speaker code as output parameter. The speakers are coded from 1 to 

10. Of the 100 exemplars generated, 50 are used for training and the other set of 50 is used 

for testing the Network. 

 

 

 

 

 

Figure 5.1 Block Diagram of ANN Based Speaker Recognition  System using Stockwell 

Transform Features 
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Feature aggregation using 
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 Separate set of exemplars are used for training and testing the network. The 

performance of the proposed technique is measured in terms of relationship between the 

desired and the actual output. 

Feature extraction on the components from nonstationary analysisis anefficient way to 

develop speaker recognition system. Discrete wavelet transform(DWT)is such a non 

stationary analysis tool for converting the signals from time domain to spectral domain. DWT 

decomposes the signal into approximation coefficients and detailed coefficients. 

Approximation coefficients correspond to low frequencies and detailed coefficients represent 

the high frequency information present in the signal. Since its formulation by Stephen Mallat, 

various wavelet packets are cited in the literature. Performance of wavelet transform based 

approaches is strongly dependent on the choice of the wavelet, order of the wavelet and level 

of decomposition. These coefficients are aggregated through statistical parameters namely,  

mean,  variance,  skewness, kurtosisetc. Figure 5.3 shows the various steps involved in an 

automatic speaker recognition system. The speech signals are storedin“. Wav”format. DWT is 

then applied on these signals to obtain amplitude localized to both time and frequency. These 

amplitudes are then aggregated using the statistical parameters namely mean, variance, 

Skewness, kurtosis, ZCR, Second order moments, third order moments and energy.These 

features are then used to train and test the ANN based classifier. 
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Figure 5.3 ANN Based Speaker Recognition System Using Discrete Wavelet Transform 
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 Applications of Fourier Transform 
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Sampling Theorem 

A signal has three properties like voltage or amplitude, frequency, phase. The signals 

are represented only in an analog form where the digital form of technology is not available. 

Analog signals are continuous in time and difference in voltage levels for different periods of 

the signal. Here, the main drawback of this is, the amplitude keeps on changing along with 

the period of the signal. This can be overcome by the digital form of signal representation. 

Here conversion of an analog form of the signal into digital form can be done using the 

sampling technique. The output of this technique represents the discrete version of its analog 

signal. Here in this article, you can find what is sampling theorem, definition, applications, 

and its types. 

 
What is the Sampling Theorem? 

A continuous signal or an analog signal can be represented in the digital version in the form 

of samples. Here, these samples are also called as discrete points. In sampling theorem, the 

input signal is in an analog form of signal and the second input signal is a sampling signal, 

which is a pulse train signal and each pulse is equidistance with a period of “Ts”. This 

sampling signal frequency should be more than twice of the input analog signal frequency. If 

this condition satisfies, analog signal perfectly represented in discrete form else analog signal 

may be losing its amplitude values for certain time intervals. How many times the sampling 

frequency is more than the input analog signal frequency, in the same way, the sampled 

signal is going to be a perfect discrete form of signal. And these types of discrete signals are 

well performed in the reconstruction process for recovering the original signal. 

 

Statement: A continuous time signal can be represented in its samples and can be recovered 

back when sampling frequency fs is greater than or equal to the twice the highest frequency 

component of message signal. i. e. 

fs≥2fm. 

 

Proof: Consider a continuous time signal x(t). The spectrum of x(t) is a band limited to fm Hz 

i.e. the spectrum of x(t) is zero for |ω|>ωm. 

 

Sampling of input signal x(t) can be obtained by multiplying x(t) with an impulse train δ(t) of 

period Ts. The output of multiplier is a discrete signal called sampled signal which is 

represented with y(t) in the following diagrams: 

 

 

https://www.elprocus.com/what-is-amplitude-modulation-derivations-typesand-applications/
https://www.elprocus.com/an-overview-of-li-fi-technology-and-its-benefits/
https://www.elprocus.com/analog-to-digital-adc-converter/
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Here, you can observe that the sampled signal takes the period of impulse. The process of 

sampling can be explained by the following mathematical expression: 

Sampled signal y(t)=x(t).δ(t)......(1) 
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Aliasing Effect 

The overlapped region in case of under sampling represents aliasing effect, which can be 

removed by 

 considering fs >2fm 

 By using anti aliasing filters. 

Applications 

There are few applications of sampling theorem are listed below. They are 

 To maintain sound quality in music recordings. 

 Sampling process applicable in the conversion of analog to discrete form. 

 Speech recognition systems and pattern recognition systems. 

 Modulation and demodulation systems 

 In sensor data evaluation systems 

 Radar and radio navigation system sampling is applicable. 

 Digital watermarking and biometric identification systems, surveillance systems. 

https://www.elprocus.com/voice-recognition-security-system/
https://www.elprocus.com/radar-basics-types-and-applications/
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Mathematical Models 

• Mathematical models serve as tools in the analysis and design of complex systems 

• A mathematical model is used to represent, in an approximate way, a physical 

process or system where measurable quantities are involved 

• Typically a computer program is written to evaluate the mathematical model of the 

system and plot performance curves – The model can more rapidly answer questions 

about system performance than building expensive hardware prototypes 

• Mathematical models may be developed with differing degrees of fidelity 

• A system prototype is ultimately needed, but a computer simulation model may be 

the first step in this process 

• A computer simulation model tries to accurately represent all relevant aspects of the 

system under study 

• Digital signal processing (DSP) often plays an important role in the implementation 

of the simulation model 

• If the system being simulated is to be DSP based itself, the simulation model may 

share code with the actual hardware prototype 

• The mathematical model may employ both deterministic and random signal models 
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Engineering Applications 

 

Communications, Computer networks, Decision theory and decision making, 

Estimation and filtering, Information processing, Power en- gineering, Quality control, 

Reliability, Signal detection, Signal and data processing, Stochastic systems, and others. 
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Random Signals in Practice 

 A typical application of random signals concepts involves one or more of the 

following: 

– Probability 

– Random variables 

– Random (stochastic) processes 

 

Example : Modeling with Random Processes 

 

 Consider a random or stochastic process of the form 
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x(t) = A cos(2π fct + θ) + n(t) 

which is a sinusoidal carrier plus noise 

 In this example the carrier phase θ is modeled as a random vari- able and n(t) is 

modeled as an independent stationary random process 

 We may be interested in how to recover the sinusoidal carrier from the noisy signal 

x(t) 

 The power spectral density of a random process allows us to see the spectral content of 

a signal 

 The power spectral density of a wide sense stationary random process x(t) is given by the 

Fourier transform of the autocorre- lation function 
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 Application Areas 

  

 • Control 

 • Communications 

 • Signal Processing 

 Control Applications 

 • Industrial control and automation (Control the velocity or position of an object) 

 • Examples: Controlling the position of a valve or shaft of a motor 

 • Important Tools: 

 – Time-domain solution of differential equations 

 – Transfer function (Laplace Transform) 

 – Stability 
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 Communication Applications 

 • Transmission of information (signal) over a channel 

 • The channel may be free space, coaxial cable, fiber optic cable 

 • A key component of transmission: Modulation (Analog and Digital 

Communication) 

  

Signal Processing Applications 

 • Signal processing=Application of algorithms to modify signals in a way to make 

them more useful. 

 • Goals: 

 – Efficient and reliable transmission, storage and display of information 

 – Information extraction and enhancement 

 • Examples: 

 – Speech and audio processing 

 – Multimedia processing (image and video) 

 – Underwater acoustic 

 – Biological signal analysis 

 Multimedia Applications 

 • Compression: Fast, efficient, reliable transmission and storage of data 

 • Applied on audio, image and video data for transmission over the Internet, storage 

 • Examples: CDs, DVDs, MP3, MPEG4  

 • Mathematical Tools: Fourier Transform, Quantization, Modulation Biological 

Signal Analysis 

 • Examples: 

 – Brain signals (EEG) 

 – Cardiac signals (ECG) 

 – Medical images (x-ray, PET, MRI) 

 • Goals: 

 – Detect abnormal activity (heart attack, seizure) 

 – Help physicians with diagnosis 

• Tools: Filtering, Fourier Transform 

 



44 
 

TEXT / REFERENCE BOOKS 

1. P.Ramesh Babu et al., “Signals and Systems”, 4th Edition, Scitech Publishers, 2017. 

2. Rodger E. Ziemer , William H Tranter, D. R. Fannin,”Signals and Systems: Continuous 

and Discrete”, 4th Edition, Pearson Education India, 2014. 

3. Haykin S. and Van Been B., “Signals and Systems”, 2nd Edition, John Wiley and Sons, 

2015. 

4. H.P. Hsu, "Signals and Systems", 2nd Edition, Tata McGraw Hill, 2017. 

 


