
1

SCHOOL OF ELECRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SECA1201 - DIGITAL LOGIC CIRCUITS
UNIT I

NUMBER SYSTEMS, LOGIC FUNCTIONS AND BOOLEAN ALGEBRA

Number systems – Number systems conversions - Binary arithmetic – Binary codes – Logic
functions- Universal gate functions - Boolean algebra – Functionally complete operation sets,
Reduction of switching equations using Boolean algebra, Realization of switching function.

REVIEW OF NUMBER SYSTEMS
Many number systems are in use in digital technology. The most common are the decimal,
binary, octal, and hexadecimal systems. The decimal system is clearly the most familiar to us
because it is tools that we use every day.
Types of Number Systems are

• Decimal Number system
• Binary Number system
• Octal Number system
• Hexadecimal Number system

Table: Types of Number Systems
DECIMAL BINARY OCTAL HEXADECIMAL

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

2

Table: Number system and their Base value

Decimal system: Decimal system is composed of 10 numerals or symbols. These 10 symbols
are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Using these symbols as digits of a number, we can express any
quantity. The decimal system is also called the base-10 system because it has 10 digits. Even
though the decimal system has only 10 symbols, any number of any magnitude can be
expressed by using our system of positional weighting.

103 102 101 100 10-1 10-2 10-3
=1000 =100 =10 =1 . =0.1 =0.01 =0.001

Most
Significant

Digit

 Decimal
point

 Least
Significant

Digit

Example: 3.1410 , 5210 ,102410

Binary System: In the binary system, there are only two symbols or possible digit values, 0
and 1. This base-2 system can be used to represent any quantity that can be represented in
decimal or other base system.

23 22 21 20 2-1 2-2 2-3
=8 =4 =2 =1 . =0.5 =0.25 =0.125

Most
Significant

Digit

 Binary point Least
Significant

Digit

In digital systems the information that is being processed is usually presented in binary form.
Binary quantities can be represented by any device that has only two operating states or
possible conditions. E.g.. A switch is only open or closed. We arbitrarily (as we define them)
let an open switch represent binary 0 and a closed switch represent binary 1. Thus we can
represent any binary number by using series of switches.
Binary 1: Any voltage between 2V to 5V Binary 0: Any voltage between 0V to 0.8V
Not used: Voltage between 0.8V to 2V in 5 Volt CMOS and TTL Logic, this may cause error
in a digital circuit. Today's digital circuits works at 1.8 volts, so this statement may not hold
true for all logic circuits.

Octal System: The octal number system has a base of eight, meaning that it has eight
possible digits: 0,1,2,3,4,5,6,7.

3

83 82 81 80 8-1 8-2 8-3
=512 =64 =8 =1 . =1/8 =1/64 =1/512

Most
Significant

Digit

 Octal
point

 Least
Significant

Digit

Hexadecimal System: The hexadecimal system uses base 16. Thus, it has 16 possible digit
symbols. It uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit
symbols.

163 162 161 160 16-1 16-2 16-3
=4096 =256 =16 =1 . =1/16 =1/256 =1/4096

Most
Significant

Digit

 Hexadeci
mal point

 Least
Significant

Digit

Code Conversion
Converting from one code form to another code form is called code conversion, like
converting from binary to decimal or converting from hexadecimal to decimal.

• Binary-To-Decimal Conversion: Any binary number can be converted to its decimal
equivalent simply by summing together the weights of the various positions in the binary
number which contain a 1.

Binary Decimal
110112

= (1*24)+(1*23)+0+(1*21)+(1*20) =16+8+0+2+1
Result 2710

• Decimal to binary Conversion:

There are 2 methods:
• Reverse of Binary-To-Decimal Method
• Repeat Division

Reverse of Binary-To-Decimal Method

Decimal Binary
4510 =32 + 0 + 8 + 4 +0 + 1

 =25+0+23+22+0+20
Result =1011012

http://csetube.weebly.com/

4

Repeat Division-Convert decimal to binary: This method uses repeated division by 2.

Division Remainder Binary
25/2 = 12+ remainder of 1 1 (Least Significant Bit)
12/2 = 6 + remainder of 0 0
6/2 = 3 + remainder of 0 0
3/2 = 1 + remainder of 1 1
1/2 = 0 + remainder of 1 1 (Most Significant Bit)

Result 2510 = 110012

• Binary-To-Octal / Octal-To-Binary Conversion Binary to octal

 100 111 0102 = (100) (111) (010)2 = 4 7 28

Octal to Binary

• Decimal -To-Octal / Octal-To- Decimal Conversion Decimal to octal

Division Result Binary
177/8 = 22+ remainder of 1 1 (Least Significant Bit)
22/ 8 = 2 + remainder of 6 6
2 / 8 = 0 + remainder of 2 2 (Most Significant Bit)

Result 17710 = 2618
Binary = 0101100012

Octal to Decimal

5

• Hexadecimal to Decimal/Decimal to Hexadecimal Conversion Decimal to

Hexadecimal

Division Result Hexadecimal
378/16 = 23+ remainder of 10 A (Least Significant Bit)23

23/16 = 1 + remainder of 7 7
1/16 = 0 + remainder of 1 1 (Most Significant Bit)

Result 378 10 = 17A 16

• Binary-To-Hexadecimal /Hexadecimal-To-Binary Conversion

Binary-To-Hexadecimal: 1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16

Hexadecimal to binary

• Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion

• Convert Octal (Hexadecimal) to Binary first.
• Regroup the binary number by three bits per group starting from LSB if Octal is

required.
• Regroup the binary number by four bits per group starting from LSB if

Hexadecimal is required.

Octal to Hexadecimal

Octal Hexadecimal
= 2 6 5 0

010 110 101 000 = 0101 1010 1000 (Binary)
Result =(5A8)16

Hexadecimal to octal

Hexadecimal Octal
(5A8)16 = 0101 1010 1000 (Binary)

 = 010 110 101 000 (Binary)
Result = 2 6 5 0 (Octal)

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

6

1’s and 2’s complement

Complements are used in digital computers to simplify the subtraction operation and
for logical manipulation. There are TWO types of complements for each base-r system: the
radix complement and the diminished radix complement. The first is referred to as the r's
complement and the second as the (r - 1)'s complement, when the value of the base r is
substituted in the name. The two types are referred to as

The 2's complement and 1's complement for binary numbers and the 10’s complement
and 9's
complement for decimal numbers.

• The 1’s complement of a binary number is the number that results when we
change all 1’s to zeros and the zeros to ones.
• The 2’s complement is the binary number that results when we add 1 to the 1’s

complement. It is used to represent negative numbers.
 2’s complement=1’s complement+1

Example 1) : Find 1’s complemnt of (1101)2
 1 1 0 1 number
 0 0 1 0 1’s complement

Example 2) : Find 1’s complemnt of (1001)2
 1 0 0 1 number

 0 1 1 0 1’s complement
+ 1
 = 0 1 1 1

ARITHMETIC OPERATIONS

Binary Equivalents
1 Nybble (or nibble) = 4 bits 1 Byte = 2 nibbles = 8 bits
1 Kilobyte (KB) = 1024 bytes
1 Megabyte (MB) = 1024 kilobytes = 1,048,576 bytes
1 Gigabyte (GB) = 1024 megabytes = 1,073,741,824 bytes

Binary Addition

Rules of Binary Addition

• 0 + 0 = 0
• 0 + 1 = 1
• 1 + 0 = 1
• 1 + 1 = 0, and carry 1 to the next more significant bit

7

Example : 00011010 + 00001100 = 00100110

Binary Subtraction
Rules of Binary Subtraction

• 0 - 0 = 0
• 0 - 1 = 1, borrow 1 from the next bit
• 1 - 0 = 1
• 1 - 1 = 0

Example

00100101 - 00010001= 00010100
0 0 1 0 0 1 0 1

 + 0 0 0 1 0 0 0 1

 0 0 0 1 0 1 0 0

Binary Multiplication
Rules of Binary Multiplication

• 0 x 0 = 0
• 0 x 1 = 0
• 1 x 0 = 0
• 1 x 1 = 1, and no carry or borrow bits

Example

 0 0 1 0 1 0 0 1

× 0 0 0 0 0 1 1 0

 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 +

0 1 0 1 0 0 1 +
0 1 1 1 1 0 1 1 0

00101001 × 00000110 = 11110110

Binary Division

Binary division is the repeated process of subtraction, just as in decimal division.

Example 1: 00101010 ÷ 00000110 = 00000111

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

8

Example 2: 10000111 ÷ 00000101 = 00011011
•
•
•

BINARY CODES

Binary codes are codes which are represented in binary system with modification
from the original ones. There are two types of binary codes: Weighted codes and Non-
Weighted codes. BCD and the 2421 code are examples of weighted codes. In a weighted
code, each bit position is assigned a weighting factor in such a way that each digit ca n be
evaluated by adding the weight of all the 1’s in the coded combination.

9

Weighted Code

• 8421 code , Most common, Default
• The corresponding decimal digit is determined by adding the weights associated with
the 1s in the code group. 62310 = 0110 0010 0011

 2421, 5421,7536, etc… codes
• The weights associated with the bits in each code group are given by the name of the

code
Nonweighted Codes

• 2421 code : This is a weighted code; its weights are 2, 4, 2 and 1. A decimal number
is represented in 4-bit form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the
2421 code represents the decimal numbers from 0 to 9.
• 5211 code: This is a weighted code; its weights are 5, 2, 1 and 1. A decimal number

is represented in 4-bit form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the
5211 code represents the decimal numbers from 0 to 9.

Reflective code : A code is said to be reflective when code for 9 is complement for the code
for 0, and so is for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3
are reflective, whereas the 8421 code is not.

Sequential code : A code is said to be sequential when two subsequent codes, seen as
numbers in binary representation, differ by one. This greatly aids mathematical manipulation
of data. The 8421 and Excess-3 codes are sequential, whereas the 2421 and 5211 codes are
not.

• Excess-3 code: Excess-3 is a non weighted code used to express numbers. The
code derives its corresponding 8421 code plus 0011(3).

Example: 1000 of 8421 = 1011 in Excess-3

• Gray code : The gray code belongs to a class of codes called minimum change
codes, in which only one bit in the code changes when moving from one code to the next.
The Gray code is non-weighted code, as the position of bit does not contain any weight. In
digital Gray code has got a special place.

Decimal Number Binary Code Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
file:///C:%5CUsers%5C7PLUS%5Cthe%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22%20%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22fact%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22%20%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22that%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22%20%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22each%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22%20%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22binary%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22%20%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22code%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22%20%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22is%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22%20%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22the%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22%20%20HYPERLINK%20%22http:%5Ccsetube.weebly.com%5C%22correspon
http://csetube.weebly.com/
http://csetube.weebly.com/

10

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

The gray code is a reflective digital code which has the special property that any two
subsequent numbers codes differ by only one bit. This is also called a unit-distance code.

Important when an analog quantity must be converted to a digital representation. Only one bit
changes between two successive integers which are being coded.

Error Detecting and Correction Codes

• Error detecting codes : When data is transmitted from one point to another, like
in wireless transmission, or it is just stored, like in hard disks and there are chances that
data may get corrupted. To detect these data errors, we use special codes, which are error
detection codes.

• Error correcting code : Error-correcting codes not only detect errors, but also
correct them. This is used normally in Satellite communication, where turn-around delay is
very high as is the probability of data getting corrupt.

• Hamming codes : Hamming code adds a minimum number of bits to the data
transmitted in a noisy channel, to be able to correct every possible one-bit error. It can detect
(not correct) two-bit errors and cannot distinguish between 1-bit and 2-bits inconsistencies. It
can't - in general - detect 3(or more)-bits errors.

• Parity codes : A parity bit is an extra bit included with a message to make the total
number of 1’s either even or odd. In parity codes, every data byte, or nibble (according to
how user wants to use it) is checked if they have even number of ones or even number of
zeros. Based on this information an additional bit is appended to the original data. Thus if
we consider 8-bit data, adding the parity bit will make it 9 bit long.
At the receiver side, once again parity is calculated and matched with the received parity (bit
9), and if they match, data is ok, otherwise data is corrupt.

Two types of parity

1) Even parity: Checks if there is an even number of ones; if so, parity bit is zero.
When the number of one’s is odd then parity bit is set to 1.

2) Odd Parity: Checks if there is an odd number of ones; if so, parity bit is zero. When

the number of one’s is even then parity bit is set to 1.

Alphanumeric codes

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

11

The binary codes that can be used to represent the letters of the alphabet, numbers
and mathematical symbols, punctuation marks are known as alphanumeric codes or
character codes. These codes enable us to interface the input-output devices like the
keyboard, printers, video displays with the computer.

• ASCII codes : Codes to handle alphabetic and numeric information, special symbols,
punctuation marks, and control characters. ASCII (American Standard Code for Information
Interchange) is the best known. Unicode – a 16-bit coding system provides for foreign
languages, mathematical symbols, geometrical shapes, dingbats, etc. It has become a world
standard alphanumeric code for microcomputers and computers. It is a 7-bit code
representing 128 different characters. These characters represe upper case letters (A to Z), 26
lowercase letters (a to z), 10 numbers (0 to 9), 33 special characters and symbols and 33
control characters.

• EBCDIC codes : EBCDIC stands for Extended Binary Coded Decimal Interchange.
It is mainly used with large computer systems like mainframes. EBCDIC is an 8-bit code and
thus accommodates up to 256 characters. An EBCDIC code is divided into two portions: 4
zone bits (on the left) and 4 numeric bits (on the right).

Example 1: Give the binary, BCD, Excess-3, gray code representations of numbers:
5,8,14.

Decimal Number Binary code BCD code Excess-3 code Gray code

5 0101 0101 1000 0111

8 1000 1000 1011 1100

14 1110 0001 0100 0100 0111 1001

Example 2: Binary To Gray Code Conversion

Example 3: Gray Code To Binary Code Conversion

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

12

BOOLEAN ALGEBRA
INTRODUCTION:

In 1854, George Boole, an English mathematician, proposed algebra for
symbolically representing problems in logic so that they may be analyzed
mathematically. The mathematical systems founded upon the work of Boole are called
Boolean algebra in his honor.

Fundamental postulates of Boolean algebra:
The postulates of a mathematical system forms the basic assumption from which it is possible
to deduce the theorems, laws and properties of the system.
The most common postulates used to formulate various structures are
Closure:
A set S is closed w.r.t. a binary operator, if for every pair of elements of S, the binary
operator specifies a rule for obtaining a unique element of S.
The result of each operation with operator (+) or (.) is either 1 or 0 and 1, 0 ЄB.

Identity element:
e* x = x * e = x

Eg: 0+ 0 = 0 0+ 1 = 1+ 0 = 1 a) x+ 0= x
1 . 1 = 1 1 . 0 = 0 . 1 = 1 b) x. 1 = x

Commutative law:
A binary operator * on a set S is said to be commutative if,
x * y = y * x

Eg: 0+ 1 = 1+ 0 = 1 a) x+ y= y+ x
 0 . 1 = 1 . 0 = 0 b) x. y= y. x

Distributive law:
If * and • are two binary operation on a set S, • is said to be distributive over +
whenever,

13

x . (y+ z) = (x. y) + (x. z)

Similarly, + is said to be distributive over • whenever,
x + (y. z) = (x+ y). (x+ z)

Inverse:
a) x+ x’ = 1, since 0 + 0’ = 0+ 1 and 1+ 1’ = 1+ 0 = 1
b) x. x’ = 1, since 0 . 0’ = 0. 1 and 1. 1’ = 1. 0 = 0

Summary:
Postulates of Boolean algebra:

POSTULATES (a) (b)

Postulate 2 (Identity) x + 0 = x x . 1 = x
Postulate 3 (Commutative) x+ y = y+ x x . y = y. x
Postulate 4 (Distributive) x (y+ z) = xy+ xz x+ yz = (x+ y). (x+ z)
Postulate 5 (Inverse) x+x’ = 1 x. x’ = 0

Basic theorem and properties of Boolean algebra:

Basic Theorems:

The theorems, like the postulates are listed in pairs; each relation is the dual of the one paired
with it. The postulates are basic axioms of the algebraic structure and need no proof. The
theorems must be proven from the postulates. The proofs of the theorems with one variable
are presented below. At the right is listed the number of the postulate that justifies each step
of the proof.
1a) x+ x = x
1b) x. x = x
2) x .0 = 0
3) (x’)’ = x
Absorption Theorem:
x+ xy = x

x+ xy = x. 1 + xy ------- by postulate 2(b) [x. 1 = x]
= x (1+ y) ------- 4(a) [x (y+z) = (xy)+ (xz)]
= x (1) ------- by theorem 2(a [x+ 1 = x]
= x. ------- by postulate 2(a)[x. 1 = x]

x. (x+ y) = x
x. (x+ y) = x. x+ x. y --------- 4(a) [x (y+z) = (xy)+ (xz)]

14

= x + x.y ---------- by theorem 1(b) [x. x = x]
= x. ----------- by theorem 4(a) [x+ xy = x]

x+ x’y = x+ y
x+ x’y = x+ xy+ x’y ------------------- by theorem 4(a) [x+ xy = x]
= x+ y (x+ x’) ----------------by postulate 4(a) [x (y+z) = (xy)+ (xz)]

= x+ y (1) ------------------- 5(a) [x+ x’ = 1]
= x+ y ------------------- 2(b) [x. 1= x]

x. (x’+y) = xy
x. (x’+y) = x.x’+ xy --------- by postulate 4(a) [x (y+z) = (xy)+ (xz)]
= 0+ xy -------------------5(b) [x. x’ = 0]
= xy. -------------------2(a) [x+ 0= x]

Properties of Boolean algebra:

Commutative property:

Boolean addition is commutative, given by
x+ y = y+ x
According to this property, the order of the OR operation conducted on the variables makes
no difference.
Boolean algebra is also commutative over multiplication given by,
x. y = y. x
This means that the order of the AND operation conducted on the variables makes no
difference.
Associative property:
The associative property of addition is given by,
A+ (B+ C) = (A+B) + C

The OR operation of several variables results in the same, regardless of the grouping of the
variables.
The associative law of multiplication is given by,
A. (B. C) = (A.B) . C
It makes no difference in what order the variables are grouped during the AND operation of
several variables.

Distributive property:
The Boolean addition is distributive over Boolean multiplication, given by
A+ BC = (A+B) (A+C)

The Boolean addition is distributive over Boolean addition, given by

15

A. (B+C) = (A.B)+ (A.C)

Duality:
It states that every algebraic expression deducible from the postulates of Boolean algebra
remains valid if the operators and identity elements are interchanged.
If the dual of an algebraic expression is desired, we simply interchange OR and
AND operators and replace 1’s by 0’s and 0’s by 1’s.
x+ x’ = 1 is x. x’ = 0
Duality is a very important property of Boolean algebra.

Summary:

Theorems of Boolean algebra:

 THEOREMS (a) (b)

1

Idempotent

x + x = x x . x = x
x + 1 = 1 x . 0 = 0

2 Involution (x’)’ = x
3

Absorption
x+ xy = x x (x+ y) = x

x+ x’y = x+ y x. (x’+ y)= xy
4 Associative x+(y+ z)= (x+ y)+ z x (yz) = (xy) z
5 DeMorgan’s Theorem (x+ y)’= x’. y’ (x. y)’= x’+ y’

DeMorgan’s Theorems:
Two theorems that are an important part of Boolean algebra were proposed by DeMorgan.
The first theorem states that the complement of a product is equal to the sum of the
complements.
(AB)’ = A’+ B’
The second theorem states that the complement of a sum is equal to the product of the
complements.
(A+ B)’ = A’. B’

Consensus Theorem:
In simplification of Boolean expression, an expression of the form AB+ A’C+ BC, the term
BC is redundant and can be eliminated to form the equivalent expression AB+ A’C. The
theorem used for this simplification is known as consensus theorem and is stated as,
AB+ A’C+ BC = AB+ A’C
The dual form of consensus theorem is stated as,
(A+B) (A’+C) (B+C) = (A+B) (A’+C)

BOOLEAN FUNCTIONS:

16

Minimization of Boolean Expressions:
The Boolean expressions can be simplified by applying properties, laws and theorems of
Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals:

1. x (x’+y)
= xx’+ xy [x. x’= 0]
= 0 + xy [x+ 0 = x]
= xy.

2. x+ x’y
= x + xy + x’y [x+ xy= x]
= x+ y (x+x’)
= x+ y (1) [x+ x’ = 1]
= x+ y.

3. (x+ y) (x’+ z) (y+ z)
= (x+ y) (x’+ z) [dual form of consensus theorem,
(A+ B) (A’+ C) (B+ C) = (A+ B) (A’+ C)]

4. x’y+ xy+ x’y’
= y (x’+ x) + x’y’ [x (y+ z) = xy+ xz]
= y (1) + x’y’ [x+ x’ = 1]
= y+ x’y’ [x+ x’y’ = x+ y’]
= y+ x’.

5. x+ xy’+ x’y
= x (1+ y’)+ x’y
= x (1) + x’y [1+ x = 1]
= x+ x’y [x+ x’y = x+ y]
= x+ y.

6. AB + (AC)' + AB’C (AB + C)
= AB + (AC)' + AAB'BC + AB'CC
= AB + (AC)' + 0+ AB'CC [B.B' = 0]
= AB + (AC)' + AB'C [C.C = 1]
= AB + A' + C' +AB'C [(AC)' = A' + C']
= AB + A’ + C' + AB' [C’ + AB’C = C’ + AB’]
= A' + B+ C’+ AB’ [A’ + AB = A’ + B]
Re- arranging,
= A' + AB’+ B+ C' [A’ + AB = A’ + B]

17

= A' + B’+ B+ C' [B’+ B= 1]
= A' +1+ C’ [A+ 1= 1]
= 1

7. (x’+ y) (x+ y)
= x’.x+ x’y+ yx+ y.y
= 0+ x’y+ xy+ y [x.x’= 0]; [x. x= x]
= y (x’+ x+ 1)
= y(1) [1+ x = 1]
= y.

8. x’yz+ xy’z’+ x’y’z’+ xy’z+ xyz
= yz (x’+x) + xy’z’+ x’y’z’+ xy’z
= yz (1) + y’z’ (x+ x’) + xy’z [x+ x’=1]
= yz+ y’z’ (1) + xy’z [x+ x’=1]
= yz+ y’z’+ xy’z
= yz+ y’ (z’+ xz)
= yz+ y’ (z’+ x) [x’+ xy = x’+ y]
= yz+ y’z’+ xy’

9. [(xy)’+ x’+ xy]’
= [x’+ y’+ x’+ xy]’
= [x’+ y’+ xy]’ [x+ x= x]

= [x’+ y’+ x]’ [x’+ xy = x’+ y]
= [y’+ 1]’ [x+ x’= 1]
= [1]’ [1+ x = 1]
= 0.

10. [xy+ xz]’+ x’y’z
= (xy)’. (xz)’+ x’y’z
= (x’+ y’). (x’+ z’)+ x’y’z
= x’x’+ x’z’+ x’y’+ y’z’+ x’y’z
= x’+ x’z’+ x’y’+ y’z’+ x’y’z [x+ x= x]
= x’+ x’z’+ x’y’+ y’ [z’+ x’z]
= x’+ x’z’+ x’y’+ y’ [z’+ x’] [x’+ xy = x’+ y]
= x’+ x’y’+ y’ [z’+ x’] [x+ xy = x]
= x’+ x’y’+ y’z’+ x’y’
= x’+ y’z’+ x’y’ [x+ xy = x]
= x’+ y’z’. [x+ xy = x]

11. xy+ xy’(x’z’)’
= xy+ xy’ (x’’+ z’’)
= xy+ xy’ (x+ z) [x’’ = x]
= xy+ xy’x+ xy’z

18

= xy+ xy’+ xy’z [x. x= x]
= xy+ xy’ [1+ z]
= xy+ xy’ [1] [1+ x = 1]
= xy+ xy’
= x(y+ y’)
= x [1] [x+ x’= 1]
= x.

12. [(xy’+ xyz)’+ x (y+ xy’)]’
= [x(y’+yz)’+ x (y+ xy’)]’
= [x(y’+z)’+ x (y+ x)]’ [x’+ xy = x’+ y]; [x+ x’y = x+ y]
= [x(y’+z)’+ xy+ x.x)]’
= [(xy’+xz)’+ xy+ x)]’ [x. x= x]
= [(xy’+xz)’+ x)]’ [x+ xy = x]
= [(xy’)’. (xz)’+ x]’
= [(x’+y’’). (x’+z’)+ x]’
= [(x’+y). (x’+z’)+ x]’ [x’’ = x]
= [(x’+ yz’)+ x]’ [(x+ y) (x+ z)= x+ yz]
= [x’+ yz’+ x]’
= [1+ yz’]’ [x+ x’= 1]
= [1]’ [1+ x = 1]
= 0.

COMPLEMENT OF A FUNCTION:

The complement of a function F is F’ and is obtained from an interchange of 0’s for 1’s
and 1’s for 0’s in the value of F. The complement of a function may be derived
algebraically through DeMorgan’s theorem.
DeMorgan’s theorems for any number of variables resemble in form the two- variable case
and can be derived by successive substitutions similar to the method used in the preceding
derivation. These theorems can be generalized as –

(A+ B+ C+ D+ … + F)’ = A’ B’ C’ D’ … F’

(A B C D … F)’ = A’+B’+ C’+ D’+ … +F’.

Find the complement of the following functions,

1. F= x’yz’+ x’y’z
F’= (x’yz’+ x’y’z)’
= (x”+ y’+ z”) . (x”+ y”+z’)
= (x+ y’+ z). (x+ y+ z’).

2. F= (xy + y’z + xz) x.

19

F’ = [(xy + y’z + xz) x]’
= (xy + y’z + xz)’ + x’
= [(xy)’ . (y’z)’. (xz)’] + x’
= [(x’+y’). (y+z’). (x’+z’)] + x’
= [(x’y+ x’z’+ 0+ y’z’) (x’+z’)] + x’
= x’x’y+ x’x’z’+ x’y’z’+ x’yz’+ x’z’z’+ y’z’z’+ x’
= x’y+ x’z’+ x’y’z’+ x’yz’+ x’z’+ y’z’+ x’ [x+ x = x], [x. x = x]
= x’y+ x’z’+ x’z’ (y’+ y) + y’z’+ x’ [x+ x’= 1]
= x’y+ x’z’+ x’z’ (1) + y’z’+ x’
= x’y+ x’z’+ y’z’+ x’
= x’y+ x’+ x’z’+ y’z’
= x’(y+1) + x’z+ y’z’ [y+1= 1]
= x’ (1+z) + y’z’ [y+1= 1]
= x’+ y’z’

3. F= x (y’z’+ yz)
F’= [x (y’z’+yz)]’
= x’+ (y’z’+ yz)’
= x’+ (y’z’)’. (yz)’
= x’+ (y”+ z”) . (y’+ z’)
= x’+ (y+ z) . (y’+ z’).

4. F= xy’+ x’y
F’= (xy’+ x’y)’
= (xy’)’. (x’y)’
= (x’+y) (x+y’)
= x’x+ x’y’+ yx+ yy’
= x’y’+ xy.

5. f = wx’y + xy’+ wxz
f’ = (wx’y + xy’+ wxz)’
= (wx’y)’ (xy’)’ (wxz)’
= (w’+x+ y’) (x’+ y) (w’+ x’+ z’)
= (w’x’+ w’y+ xx’+ xy+ x’y’+ yy’) (w’+ x’+ z’)
= (w’x’+ w’y+ xy+ x’y’) (w’+ x’+ z’)
= w’x’. w’+ w’y. w’+ xy. w’+ x’y’. w’+ w’x’. x’+w’y. x’+ xy. x’+ x’y’. x’+ w’x’. z’+ w’y.
z’+ xy. z’+ x’y’.z’
= w’x’+ w’y+ w’xy+ w’x’y’+ w’x’+ w’x’y+ 0 + x’y’+ w’x’z’+ w’yz’+ xyz’+ x’y’z’
= w’x’+ w’y+ w’xy+ w’x’y’+ w’x’y+ x’y’+ w’x’z’+ w’yz’+ xyz’+ x’y’z’

20

= w’x’(1+ y’+ y+ z’)+ w’y(1+ x+ z’)+ x’y’(1+ z’)+ xyz’
= w’x’(1)+ w’y(1)+ x’y’(1)+ xyz’
= w’x’+ w’y+ x’y’+ xyz’

LOGIC GATES BASIC LOGIC GATES:

Logic gates are electronic circuits that can be used to implement the most elementary
logic expressions, also known as Boolean expressions. The logic gate is the most basic
building block of combinational logic.

There are three basic logic gates, namely the OR gate, the AND gate and the NOT
gate. Other logic gates that are derived from these basic gates are the NAND gate, the NOR
gate, the EXCLUSIVE- OR gate and the EXCLUSIVE-NOR gate.

GATE SYMBOL OPERATION TRUTH TABLE

NOT
(7404)

NOT gate (Invertion), produces
an inverted output pulse for a
given input pulse.

AND
(7408)

AND gate performs logical
multiplication. The output is
HIGH only when all the inputs
are HIGH. When any of the
inputs are low, the output is
LOW.

OR
(7432)

OR gate performs logical
addition. It produces a HIGH on
the output when any of the inputs
are HIGH. The output is LOW
only when all inputs are LOW.

NAND
(7400)

It is a universal gate. When any
of the inputs are LOW, the
output will be HIGH. LOW
output occurs only when all
inputs are HIGH.

21

NOR
(7402)

It is a universal gate. LOW
output occurs when any of its
input is HIGH. When all its
inputs are LOW, the output is
HIGH.

EX- OR
(7486)

The output is HIGH only when
odd number of inputs is HIGH.

EX- NOR

The output is HIGH only when
even number of inputs is HIGH.
Or when all inputs are zeros.

UNIVERSAL GATES:
The NAND and NOR gates are known as universal gates, since any logic function can be
implemented using NAND or NOR gates. This is illustrated in the following sections.

• NAND Gate:
The NAND gate can be used to generate the NOT function, the AND function,

the OR function and the NOR function.
• NOT function:

By connecting all
the inputs together and creating a single common input.

NOT function using NAND gate

• AND function:
By simply inverting output of the NAND gate. i.e.,

22

AND function using NAND gates

• OR function:

By
simply inverting inputs of the NAND gate. i.e.,

OR function using NAND gates

Bubble at the input of NAND gate indicates inverted input.

• NOR function:
By inverting inputs and outputs of the NAND gate.

NOR function using NAND gates

• NOR Gate:
Similar to NAND gate, the NOR gate is also a universal gate, since it can be used to generate
the NOT, AND, OR and NAND functions.

• NOT function:
By connecting all the inputs together and creating a single common input.

NOT function using NOR gates

23

• OR function:

By simply
inverting output of the NOR gate. i.e.,

OR function using NOR gates

• AND function:
By simply inverting inputs of the NOR gate. i.e.,

AND function using NOR gates

Bubble at the input of NOR gate indicates inverted input.

Truth table

• NAND Function:

24

By
inverting inputs and outputs of the NOR gate.

NAND function using NOR gates

Conversion of AND/OR/NOT to NAND/NOR:
• Draw AND/OR logic.
• If NAND hardware has been chosen, add bubbles on the output of each AND gate
and bubbles on input side to all OR gates.
If NOR hardware has been chosen, add bubbles on the output of each OR gate and bubbles on
input side to all AND gates.
• Add or subtract an inverter on each line that received a bubble in step 2.
• Replace bubbled OR by NAND and bubbled AND by NOR.
• Eliminate double inversions.

Implement Boolean expression using NAND gates:

Original Circuit:

Soln:
NAND Circuit:

25

26

TEXT BOOKS:
1. Morris Mano, “Digital design”, 3rd Edition, Prentice Hall of India, 2008.

REFERENCE BOOKS:
1. Milos Ercegovac, Jomas Lang, “Introduction to Digital Systems”, Wiley publications,
1998.
2. John M. Yarbrough, “Digital logic: Applications and Design”, Thomas – Vikas Publishing
House, 2002.
3. R.P.Jain, “Modern digital Electronics”,3rd Edition, TMH, 2003.
4. William H. Gothmann, “Digital Electronics”, Prentice Hall, 2001.

QUESTION BANK

PART-A

1.Practice Subtraction of (0101) 2 from(1110)2 using 2’s complement method.
2. Describe BCD code and its advantages.
3. Illustrate the Logic Diagram for AND, OR and NOT using only NAND.
4. Convert (345.54)8 to decimal.
5. Convert (ABC.EF)16 to Octal.
6. State DeMargan’s Theorems.
7. Relate the equivalent Gray code for the binary number 110110.
8. Define the meaning of self-complementing code, Give an example.
9. Recall 2 input XOR gate using only NOR gate.
10. Illustrate 2 input XNOR gate using only NAND gate.

PART-B

1. Implement AND, OR, NOT, XOR, XNOR using universal gates.
2. Practice the following conversion

 (a) (11101)2= (?)10
 (b) (1110101) 2 = (?)16
 (c) (24.32) 10 = (?)2
 (d) (5E7) 16= (?)2
 (e) (157) 8= (?)2

3.Examine and simplify the following boolean expressions
a) AB C+A’B+ABC’
b) X’YZ+XZ
c) (X+Y)’ (X’+Y’)

4.Explain briefly about the binary codes.
5.Apply Boolean theorems to simplify the following expression to a minimum number of
literals.

 i. ABC+A’B+ABC’
 ii. (X+Y)’ (X’+Y’)

 iii. (BC’+A’D)(AB’+CD’)
 iv. a+ab’+ab’c’+ab’c’d’

27

UNIT II
DESIGN OF COMBINATIONAL LOGIC

Design procedure of Combinational Logic – Design of two level gate networks -Sum of
Products (SOP) - Product of Sums(POS) - Canonical SOP - Canonical POS - Karnaugh Map
- Simplifications of Boolean functions using Karnaugh Map and implementation using Logic
function – Advantages and limitations of K-Map - Tabulation method - Simplifications of
Boolean functions using Tabulation method.

CANONICAL AND STANDARD FORMS:
Minterms and Maxterms:
A binary variable may appear either in its normal form (x) or in its complement form (x’).
Now either two binary variables x and y combined with an AND operation. Since each
variable may appear in either form, there are four possible combinations:
x’y’, x’y, xy’ and xy Each of these four AND terms is called a ‘minterm’.
In a similar fashion, when two binary variables x and y combined with an OR operation, there
are four possible combinations: x’+ y’, x’+ y, x+ y’ and x+ y
Each of these four OR terms is called a ‘maxterm’.
The minterms and maxterms of a 3- variable function can be represented as in table below.

Variables Minterms Maxterms

x y Z mi Mi
0 0 0 x’y’z’ = m0 x+ y+ z= M0
0 0 1 x’y’z = m1 x+ y+ z’= M1
0 1 0 x’yz’ = m2 x+ y’+ z= M2
0 1 1 x’yz = m3 x+ y’+ z’= M3
1 0 0 xy’z’ = m4 x’+ y+ z= M4
1 0 1 xy’z = m5 x’+ y+ z’= M5
1 1 0 xyz’ = m6 x’+ y’+ z= M6
1 1 1 xyz = m7 x’+ y’+ z’= M7

Sum of Minterm: (Sum of Products)

The logical sum of two or more logical product terms is called sum of

products expression. It is logically an OR operation of AND operated variables such as:

28

Sum of Maxterm: (Product of Sums)

A product of sums expression is a logical product of two or more

logical sum terms. It is basically an AND operation of OR operated variables such as,

Canonical Sum of product expression:
If each term in SOP form contains all the literals then the SOP is known as standard (or)
canonical SOP form. Each individual term in standard SOP form is called minterm canonical
form.
F (A, B, C) = AB’C+ ABC+ ABC’

Steps to convert general SOP to standard SOP form:

1) Find the missing literals in each product term if any.
2) AND each product term having missing literals by ORing the literal and its

complement.
3) Expand the term by applying distributive law and reorder the literals in the product

term.
4) Reduce the expression by omitting repeated product terms if any.

Obtain the canonical SOP form of the function:
1) Y(A, B) = A+ B

= A. (B+ B’)+ B (A+ A’)
= AB+ AB’+ AB+ A’B
= AB+ AB’+ A’B.

2) Y (A, B, C) = A+ ABC

= A. (B+ B’). (C+ C’)+ ABC
= (AB+ AB’). (C+ C’)+ ABC
= ABC+ ABC’+ AB’C+ AB’C’+ ABC
= ABC+ ABC’+ AB’C+ AB’C’
= m7+ m6+ m5+ m4
= ∑m (4, 5, 6, 7).

3) Y (A, B, C) = A+ BC

= A. (B+ B’). (C+ C’)+(A+ A’). BC

29

= (AB+ AB’). (C+ C’)+ ABC+ A’BC
= ABC+ ABC’+ AB’C+ AB’C’+ ABC+ A’BC
= ABC+ ABC’+ AB’C+ AB’C’+ A’BC
= m7+ m6+ m5+ m4+ m3
= ∑m (3, 4, 5, 6, 7).

 4) Y (A, B, C) = AC+ AB+ BC

= AC (B+ B’)+ AB (C+ C’)+ BC (A+ A’)
= ABC+ AB’C+ ABC+ ABC’+ ABC+ A’BC
= ABC+ AB’C+ ABC’+ A’BC
= ∑m (3, 5, 6, 7).

5) Y (A, B, C, D) = AB+ ACD

= AB (C+ C’) (D+ D’) + ACD (B+ B’)
= (ABC+ ABC’) (D+ D’) + ABCD+ AB’CD
= ABCD+ ABCD’+ ABC’D+ ABC’D’+ ABCD+ AB’CD
= ABCD+ ABCD’+ ABC’D+ ABC’D’+ AB’CD.

Canonical Product of sum expression:
If each term in POS form contains all literals then the POS is known as standard (or)
Canonical POS form. Each individual term in standard POS form is called Maxterm
canonical form.

• F (A, B, C) = (A+ B+ C). (A+ B’+ C). (A+ B+ C’)
• F (x, y, z) = (x+ y’+ z’). (x’+ y+ z). (x+ y+ z)

Steps to convert general POS to standard POS form:

1) Find the missing literals in each sum term if any.
2) OR each sum term having missing literals by ANDing the literal and its complement.
3) Expand the term by applying distributive law and reorder the literals in the sum term.
4) Reduce the expression by omitting repeated sum terms if any.

Obtain the canonical POS expression of the functions:
1. Y= A+ B’C

= (A+ B’) (A+ C) [A+ BC = (A+B) (A+C)]
= (A+ B’+ C.C’) (A+ C+ B.B’)
= (A+ B’+C) (A+ B’+C’) (A+ B+ C) (A+ B’+ C)
= (A+ B’+C). (A+ B’+C’). (A+ B+ C)
= M2. M3. M0
= ∏M (0, 2, 3)

30

2. Y= (A+B) (B+C) (A+C)
= (A+B+ C.C’) (B+ C+ A.A’) (A+C+B.B’)
= (A+B+C) (A+B+C’) (A+B+C) (A’+B+C) (A+B+C) (A+B’+C)
= (A+B+C) (A+B+C’) (A’+B+C) (A+B’+C)
= M0. M1. M4. M2
= ∏M (0, 1, 2, 4)

3. Y= A. (B+ C+ A)

= (A+ B.B’+ C.C’). (A+ B+ C)
= (A+B+C) (A+B+C’) (A+B’+C) (A+ B’+C’) (A+B+C)
= (A+B+C) (A+B+C’) (A+B’+C) (A+ B’+C’)
= M0. M1. M2. M3
= ∏M (0, 1, 2, 3)

4. Y= (A+B’) (B+C) (A+C’)

= (A+B’+C.C’) (B+C+ A.A’) (A+C’+ B.B’)
= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C) (A+B+C’) (A+B’+C’)
= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C) (A+B+C’)
= M2. M3. M0. M4. M1
= ∏M (0, 1, 2, 3, 4)

KARNAUGH MAP MINIMIZATION:

The simplification of the functions using Boolean laws and theorems becomes complex with
the increase in the number of variables and terms. The map method, first proposed by Veitch
and slightly improvised by Karnaugh, provides a simple, straightforward procedure for the
simplification of Boolean functions. The method is called Veitch diagram or Karnaugh
map, which may be regarded as a pictorial representation of a truth table.
The Karnaugh map technique provides a systematic method for simplifying and
manipulation of Boolean expressions. A K-map is a diagram made up of squares, with
each square representing one minterm of the function that is to be minimized. For n
variables on a Karnaugh map there are 2n numbers of squares. Each square or cell
represents one of the minterms. It can be drawn directly from either minterm (sum-of-
products) or maxterm (product-of-sums) Boolean expressions.

Two- Variable, Three Variable and Four Variable Maps
Karnaugh maps can be used for expressions with two, three, four and five variables.
The number of cells in a Karnaugh map is equal to the total number of possible input
variable combinations as is the number of rows in a truth table. For three variables, the
number of cells is 23 = 8. For four variables, the number of cells is 24 = 16.

31

Product terms are assigned to the cells of a K-map by labeling each row and each column of
a map with a variable, with its complement or with a combination of variables &
complements. The below figure shows the way to label the rows & columns of a 1, 2, 3 and
4- variable maps and the product terms corresponding to each cell.

It is important to note that when we move from one cell to the next along any row or from
one cell to the next along any column, one and only one variable in the product term changes
(to a complement or to an uncomplemented form). Irrespective of number of variables the
labels along each row and column must conform to a single change. Hence gray code is used
to label the rows and columns of K-map as shown ow.

32

Grouping cells for Simplification:

The grouping is nothing but combining terms in adjacent cells. The simplification is achieved
by grouping adjacent 1’s or 0’s in groups of 2i, where i = 1, 2, …, n and n is the number
of variables. When adjacent 1’s are grouped then we get result in the sum of product form;
otherwise we get result in the product of sum form.

Department of Information Technology
Grouping Two Adjacent 1’s: (Pair)
In a Karnaugh map we can group two adjacent 1’s. The resultant group is called
Pair.

33

Examples of Pairs

Grouping Four Adjacent 1’s: (Quad)
In a Karnaugh map we can group four adjacent 1’s. The resultant group is called Quad. Fig
(a) shows the four 1’s are horizontally adjacent and Fig (b) shows they are vertically
adjacent. Fig (c) contains four 1’s in a square, and they are considered adjacent to each other.

Examples of Quads

The four 1’s in fig (d) and fig (e) are also adjacent, as are those in fig (f) because, the top
and bottom rows are considered to be adjacent to each other and the leftmost and
rightmost columns are also adjacent to each other.

Grouping Eight Adjacent 1’s: (Octet)

In
a Karnaugh map we can group eight adjacent 1’s. The resultant group is called Octet.

Simplification of Sum of Products Expressions: (Minimal Sums)

The generalized procedure to simplify Boolean expressions as follows:

1) Plot the K-map and place 1’s in those cells corresponding to the 1’s in the sum of
product expression. Place 0’s in the other cells.

2) Check the K-map for adjacent 1’s and encircle those 1’s which are not adjacent to any
other 1’s. These are called isolated 1’s.

34

3) Check for those 1’s which are adjacent to only one other 1 and encircle such
 pairs.

4) Check for quads and octets of adjacent 1’s even if it contains some 1’s that have

already been encircled. While doing this make sure that there are minimum number of
groups.

5) Combine any pairs necessary to include any 1’s that have not yet been
grouped.

6) Form the simplified expression by summing product terms of all the groups.

Three- Variable Map:

1. Simplify the Boolean expression,
F(x, y, z) = ∑m (3, 4, 6, 7).
Soln:

F = yz+ xz’

2. F(x, y, z) = ∑m (0, 2, 4, 5, 6).

F = z’+ xy’

3. F = A’C + A’B + AB’C + BC
Soln:

= A’C (B+ B’) + A’B (C+ C’) + AB’C + BC (A+ A’)

= A’BC+ A’B’C + A’BC + A’BC’ + AB’C + ABC + A’BC

= A’BC+ A’B’C + A’BC’ + AB’C + ABC

35

= m3+ m1+ m2+ m5+ m7

= ∑ m (1, 2, 3, 5, 7)

F = C + A’B

4. AB’C + A’B’C + A’BC + AB’C’ + A’B’C’
Soln:

= m5 + m1 + m3 + m4 + m0
= ∑ m (0, 1, 3, 4, 5)

F = A’C + B’

Four - Variable Map:

1. Simplify the Boolean expression,
Y = A’BC’D’ + A’BC’D + ABC’D’ + ABC’D + AB’C’D + A’B’CD’

Soln:
Therefore, Y= A’B’CD’+ AC’D+ BC’

36

2. F (w, x, y, z) = ∑ m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)
Soln:

Therefore,
F= y’+ w’z’+ xz’

3.F= A’B’C’+ B’CD’+ A’BCD’+ AB’C’
= A’B’C’ (D+ D’) + B’CD’ (A+ A’) + A’BCD’+ AB’C’ (D+ D’)
= A’B’C’D+ A’B’C’D’+ AB’CD’+ A’B’CD’+ A’BCD’+ AB’C’D+ AB’C’D’
= m1+ m0+ m10+ m2+ m6+ m9+ m8

= ∑ m (0, 1, 2, 6, 8, 9, 10)
Therefore,
F= B’D’+ B’C’+ A’CD’.

4.Y= ABCD+ AB’C’D’+ AB’C+ AB

= ABCD+ AB’C’D’+ AB’C (D+D’)+ AB (C+C’) (D+D’)
= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ (ABC+ ABC’) (D+ D’)
= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ ABCD+ ABCD’+ ABC’D+ ABC’D’
= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ ABCD’+ ABC’D+ ABC’D’
= m15+ m8+ m11+ m10+ m14+ m13+ m12

= ∑ m (8, 10, 11, 12, 13, 14, 15)

37

Therefore,
Y= AB+ AC+ AD’.

5. Y (A, B, C, D)= ∑ m (7, 9, 10, 11, 12, 13, 14, 15)

Therefore, Y= AB+ AC+ AD+BCD.

6. Y= A’B’C’D+ A’BC’D+ A’BCD+ A’BCD’+ ABC’D+ ABCD+ AB’CD
= m1+ m5+ m7+ m6+ m13+ m15+ m11

= ∑ m (1, 5, 6, 7, 11, 13, 15)

In the above K-map, the cells 5, 7, 13 and 15 can be grouped to form a quad as indicated
by the dotted lines. In order to group the remaining 1’s, four pairs have to be formed.
However, all the four 1’s covered by the quad are also covered by the pairs. So, the quad in
the above k-map is redundant.
Therefore, the simplified expression will be,

Y = A’C’D+ A’BC+ ABD+ ACD.

38

7. Y= ∑ m (1, 5, 10, 11, 12, 13, 15)

Therefore, Y= A’C’D+ ABC’+ ACD+ AB’C.

8.F (A, B, C, D) = ∑ m (0, 1, 4, 8, 9, 10)

9.

Therefore, F= A’C’D’+ AB’D’+ B’C’.

Simplification of Sum of Products Expressions: (Minimal Sums)

1. Y= (A+ B+ C’) (A+ B’+ C’) (A’+ B’+ C’) (A’+ B+ C) (A+ B+ C)

= M1. M3. M7. M4. M0
=∏ M (0, 1, 3, 4, 7)
= ∑ m (2, 5, 6)

Y’ = B’C’+ A’C+ BC.

Y= Y” = (B’C’+ A’C+ BC)’
= (B’C’)’. (A’C)’. (BC)’
= (B”+ C”). (A”+C’). (B’+ C’)
Y = (B+ C). (A+C’). (B’+ C’)

39

2. Y= (A’+ B’+ C+ D) (A’+ B’+ C’+ D) (A’+ B’+ C’+ D’) (A’+ B+ C+ D) (A+ B’+ C’+ D)
(A+ B’+ C’+ D’) (A+ B+ C+ D) (A’+ B’+ C+ D’)

= M12. M14. M15. M8. M6. M7. M0. M13
= ∏M (0, 6, 7, 8, 12, 13, 14, 15)

Y’ = B’C’D’+ AB+ BC

Y= Y” = (B’C’D’+ AB+ BC)’
= (B’C’D’)’. (AB)’. (BC)’
= (B”+ C”+D”). (A’+B’). (B’+ C’)
= (B+ C+ D). (A’+ B’). (B’+ C’)
Therefore, Y= (B+ C+ D). (A’+ B’). (B’+ C’)

3. F(A, B, C, D)= ∏M (0, 2, 3, 8, 9, 12, 13, 14, 15)

Y’ = A’B’D’+ A’B’C+ ABD+ AC’

Y= Y” = (A’B’D’+ A’B’C+ ABD+ AC’)’
= (A’B’D’)’. (A’B’C)’. (ABD)’. (AC’)’
= (A”+ B”+ D”). (A”+ B”+C’). (A’+ B’+ D’). (A’+ C”)
= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C)

Therefore, Y= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C)

40

4. F(A, B, C, D)= ∑m (0, 1, 2, 5, 8, 9, 10)
= ∏M (3, 4, 6, 7, 11, 12, 13, 14, 15)

Y’ = BD’+ CD+ AB

Y= Y” = (BD’+ CD+ AB)’
= (BD’)’. (CD)’. (AB)’ = (B’+ D”). (C’+ D’). (A’+ B’)
 = (B’+ D). (C’+ D’). (A’+ B’)
Therefore, Y= (B’+ D). (C’+ D’). (A’+ B’)

Don’t care Conditions:
A don’t care minterm is a combination of variables whose logical value is not specified.
When choosing adjacent squares to simplify the function in a map, the don’t care minterms
may be assumed to be either 0 or 1. When simplifying the function, we can choose to include
each don’t care minterm with either the 1’s or the 0’s, depending on which combination gives
the simplest expression.
1. F (x, y, z) = ∑m (0, 1, 2, 4, 5)+ ∑d (3, 6, 7)

F (x, y, z) = 1

2. F (w, x, y, z) = ∑m (1, 3, 7, 11, 15)+ ∑d (0, 2, 5)

41

F (w, x, y, z) = w’x’+ yz

3. F (w, x, y, z) = ∑m (0, 7, 8, 9, 10, 12)+ ∑d (2, 5, 13)

F (w, x, y, z) = w’xz+ wy’+ x’z’.

4. F (w, x, y, z) = ∑m (0, 1, 4, 8, 9, 10)+ ∑d (2, 11)
Soln:

F (w, x, y, z) = wx’+ x’y’+ w’y’z’.

5. F(A, B, C, D) = ∑m (0, 6, 8, 13, 14)+ ∑d (2, 4, 10)
Soln:

F(A, B, C, D) = CD’+ B’D’+ A’B’C’D’.

42

Five- Variable Maps:

A 5- variable K- map requires 25= 32 cells, but adjacent cells are difficult to identify
on a single 32-cell map. Therefore, two 16 cell K-maps are used.
If the variables are A, B, C, D and E, two identical 16- cell maps containing B, C, D and E
can be constructed. One map is used for A and other for A’.

In order to identify the adjacent grouping in the 5- variable map, we must imagine the two
maps superimposed on one another ie., every cell in one map is adjacent to the corresponding
cell in the other map, because only one variable changes between such corresponding cells.

Five- Variable Karnaugh map (Layer Structure)

Thus, every row on one map is adjacent to the corresponding row (the one occupying the
same position) on the other map, as are corresponding columns. Also,

the
rightmost and leftmost columns within each 16- cell map are adjacent, just as they are in any
16- cell map, as are the top and bottom rows.

43

Typical subcubes on a five-variable map
However, the rightmost column of the map is not adjacent to the leftmost column of the other
map.

1. Simplify the Boolean function
F (A, B, C, D, E) = ∑m (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31)
Soln:

F (A, B, C, D, E) = A’B’E’+ BE+ AD’E

2. F (A, B, C, D, E) = ∑m (0, 5, 6, 8, 9, 10, 11, 16, 20, 24, 25, 26, 27, 29, 31)
Soln:

F (A, B, C, D, E) = C’D’E’+ A’B’CD’E+ A’B’CDE’+ AB’D’E’+ ABE+ BC’

44

3. F (A, B, C, D, E) = ∑m (1, 4, 8, 10, 11, 20, 22, 24, 25, 26)+∑d (0, 12, 16, 17)

F (A, B, C, D, E) = B’C’D’+ A’D’E’+ BC’E’+ A’BC’D+ AC’D’+ AB’CE’
4. F (A, B, C, D, E) = ∑m (0, 1, 2, 6, 7, 9, 12, 28, 29, 31)
Soln:

F (A, B, C, D, E) = BCD’E’+ ABCE+ A’B’C’E’+ A’C’D’E+ A’B’CD

5. F (x1, x2, x3, x4, x5) = ∑m (2, 3, 6, 7, 11, 12, 13, 14, 15, 23, 28, 29, 30, 31)
Soln:

F (x1, x2, x3, x4, x5) = x2x3+ x3x4x5+ x1’x2’x4+ x1’x3’x4x5

45

6. F (x1, x2, x3, x4, x5) = ∑m (1, 2, 3, 6, 8, 9, 14, 17, 24, 25, 26, 27, 30, 31)+ ∑d (4, 5)
Soln:

F (x1, x2, x3, x4, x5) = x2x3’x4’+ x2x3x4x5’+ x3’x4’x5+ x1x2x4+ x1’x2’x3x5’+ x1’x2’x3’x4

QUINE- MCCLUSKEY METHOD or TABULATION METHOD

RULES OF TABULATION METHOD

1. List all minterms in the binary form.
2. Arrange the minterms according to number of 1’s and separate by a horizontal line.
3. Compare each binary number with every term in the adjacent next higher category

and if they differ only by one position, put a check mark and copy the term in the next
column with ‘-’ in the position that they differed.

4. Apply the same process described in step 3 for the resultant column and continue
these until no further elimination of literals.

5. List all the prime implicants.
6. Select the minimum number of prime implicants which must cover all the minterms.

46

Simplify the given boolean expression using Tabulation method

47

48

49

50

Two Level Gate Network

• The SOP can be implemented using NAND – NAND logic
 1. Each product term is connected to NAND gates in level 1
 2. One NAND is connected in the second level 2

• The POS can be implemented using NOR – NOR logic

 1. Each sum term is connected to NOR gates in level 1
 2. One NOR is connected in the second level 2

Implement Using NAND – NAND logic

51

Implement Using NOR – NOR logic

52

TEXT BOOKS:
1. Morris Mano, “Digital design”, 3rd Edition, Prentice Hall of India, 2008.

REFERENCE BOOKS:
1. Milos Ercegovac, Jomas Lang, “Introduction to Digital Systems”, Wiley publications,
1998.
2. John M. Yarbrough, “Digital logic: Applications and Design”, Thomas – Vikas Publishing
House, 2002.
3. R.P.Jain, “Modern digital Electronics”,3rd Edition, TMH, 2003.
4. William H. Gothmann, “Digital Electronics”, Prentice Hall, 2001.

QUESTION BANK

PART-A

1. Distinguish between SOP and POS.
2. Examine Canonical SOP for F=A’C + BC’
3. Define prime implicant.
4. Describe don’t care terms.
5. Define K-Map and its advantages.
6. State the limitations of K-map.
7. Summarize the use of K-map and draw the format of 5 variables K-map.
8. Define the meaning of essential and non-essentialprime implicant.
9. Find Minimized SOP for F (a, b, c) = ∑m(3, 4, 6) + ∑d (0, 2) usingKarnaugh map method.
10. Produce minimized POS for F= π(2,4,6,7)

PART-B

1. Examine the Canonical SOP and Canonical POS for the expression
 F = A + B’C
2. Apply Karnaugh map to Simplify the following Boolean functions.

a) f(w,x,y,z)=∑ (0,2,5,6,7,8,10)
b) f(a,b,c,d)=π(1,3,5,7,13,15)

3. Examine and simplify the Boolean function using tabulation methods.
 F= ∑ (1, 2, 3, 8, 10, 11, 14, 15)

4. Apply Quine McCluskey method to simplify the boolean
 function

F= ∑ (0,1,2,3,6,7,13,15) and verify using k-map
5. Produce minimum sum of products of

 F(a,b,c,d) =∑m(2,3,6,7,11,13,14,15,23,30,31) using K-map.
6. Produce minimum sum of products form of
 f(A,B,C,D) = π (1,2,3,4,6,8,11,12,27,28)+d(9,16,17,18,19)

53

UNIT III

COMBINATIONAL CIRCUITS
Introduction to Combinational circuits – Half Adder, Full Adder - Half Subtractor, Full
Subtractor- Parallel binary Adder, Parallel binary Subtractor - Carry look ahead Adder- BCD
Adder- Decoders- Encoders - Priority Encoder- Multiplexers- MUX as universal
combinational modules- Demultiplexers- Code convertors- Magnitude Comparator.

INTRODUCTION:

The digital system consists of two types of circuits, namely
• Combinational circuits
• Sequential circuits

Combinational circuit consists of logic gates whose output at any time is determined from
the present combination of inputs. The logic gate is the most basic building block of
combinational logic. The logical function performed by a combinational circuit is fully
defined by a set of Boolean expressions.

Sequential logic circuit comprises both logic gates and the state of storage elements such as
flip-flops. As a consequence, the output of a sequential circuit depends not only on present
value of inputs but also on the past state of inputs.
In the previous chapter, we have discussed binary numbers, codes, Boolean algebra and
simplification of Boolean function and logic gates. In this chapter, formulation and analysis
of various systematic designs of combinational circuits will be discussed.

A combinational circuit consists of input variables, logic gates, and output variables. The
logic gates accept signals from inputs and output signals are generated according to the logic
circuits employed in it. Binary information from the given data transforms to desired output
data in this process. Both input and output are obviously the binary signals, i.e., both the
input and output signals are of two possible states, logic 1 and logic 0.

Block diagram of a combinational logic circuit

For n number of input variables to a combinational circuit, 2n possible combinations of
binary input states are possible. For each possible combination, there is one and only one
possible output combination. A combinational logic circuit can be described by m Boolean
functions and each output can be expressed in terms of n input variables.

54

DESIGN PROCEDURE:
• The problem is stated.
• Identify the input and output variables.
• The input and output variables are assigned letter symbols.
• Construction of a truth table to meet input -output requirements.
• Writing Boolean expressions for various output variables in terms of input

variables.
• The simplified Boolean expression is obtained by any method of minimization—

algebraic method, Karnaugh map method, or tabulation method.
• A logic diagram is realized from the simplified boolean expression using logic

gates.

The following guidelines should be followed while choosing the preferred form for hardware
implementation:

• The implementation should have the minimum number of gates, with the gates used
having the minimum number of inputs.

• There should be a minimum number of interconnections.
• Limitation on the driving capability of the gates should not be ignored.

ARITHMETIC CIRCUITS – BASIC BUILDING BLOCKS:

In this section, we will discuss those combinational logic building blocks that can be used to
perform addition and subtraction operations on binary numbers. Addition and subtraction are
the two most commonly used arithmetic operations, as the other two, namely multiplication
and division, are respectively the processes of repeated addition and repeated subtraction.
The basic building blocks that form the basis of all hardware used to perform the arithmetic
operations on binary numbers are half-adder, full adder, half-subtractor, full- subtractor.

Half-Adder:
A half-adder is a combinational circuit that can be used to add two binary bits. It has two
inputs that represent the two bits to be added and two outputs, with one producing the SUM
output and the other producing the CARRY.

Block schematic of half-adder

The truth table of a half-adder, showing all possible input combinations and the corresponding
outputs are shown below.

55

Truth table of half-adder
Inputs Outputs
A B Carry (C) Sum (S)
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

K-map simplification for carry and sum:

The Boolean expressions for the SUM and CARRY outputs are given by the equations,
Sum, S = A’B+ AB’
Carry, C = A . B
The first one representing the SUM output is that of an EX-OR gate, the second one
representing the CARRY output is that of an AND gate.
The logic diagram of the half adder is,

Logic Implementation of Half-adder

Full-Adder:
A full adder is a combinational circuit that forms the arithmetic sum of three input bits. It
consists of 3 inputs and 2 outputs.
Two of the input variables, represent the significant bits to be added. The third input
represents the carry from previous lower significant position. The block diagram of full adder
is given by,

56

Block schematic of full-adder

The full adder circuit overcomes the limitation of the half-adder, which can be used to add
two bits only. As there are three input variables, eight different input combinations are
possible. The truth table is shown below,

Truth Table:

Inputs Outputs
A B Cin Sum (S) Carry (Cout)
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

To derive the simplified Boolean expression from the truth table, the Karnaugh map method
is adopted as,

The Boolean expressions for the SUM and CARRY outputs are given by the equations,
Sum, S = A’B’Cin+ A’BC’in + AB’C’in + ABCin
Carry, Cout = AB+ ACin + BCin.

The logic diagram for the above functions is shown as,

57

Implementation of full-adder in Sum of Product
The logic diagram of the full adder can also be implemented with two half- adders and one
OR gate. The S output from the second half adder is the exclusive-OR of Cin and the output of
the first half-adder, giving

= C‘in (A‘B+AB‘) + Cin (A‘B+AB‘)‘ [(x‘y+xy‘)‘= (xy+x‘y‘)]
= C‘in (A‘B+AB‘) + Cin (AB+A‘B‘)
= A‘BC‘in + AB‘C‘in + ABCin + A‘B‘Cin .

and the carry output is,
Carry, Cout = AB+ Cin (A’B+AB’)
= AB+ A‘BCin+ AB‘Cin
= AB (Cin+1) + A‘BCin+ AB‘Cin [Cin+1= 1]
= ABCin+ AB+ A‘BCin+ AB‘Cin
= AB+ ACin (B+B‘) + A‘BCin
= AB+ ACin+ A‘BCin
= AB (Cin+1) + ACin+ A‘BCin [Cin+1= 1]
= ABCin+ AB+ ACin+ A‘BCin
= AB+ ACin+ BCin (A +A‘)
= AB+ ACin+ BCin.

Implementation of full adder with two half-adders and an OR gate

58

Half -Subtractor:

Block schematic of half-subtractor

A half-subtractor is a combinational circuit that can be used to subtract one binary digit from
another to produce a DIFFERENCE output and a BORROW output. The BORROW output
here specifies whether a ‗1‘ has been borrowed to perform the subtraction.

The truth table of half-subtractor, showing all possible input combinations and the
corresponding outputs are shown below.

Input Output

A B Difference (D) Borrow (Bout)
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

K-map simplification for half subtractor:

The Boolean expressions for the DIFFERENCE and BORROW outputs are given by the
equations,
Difference, D = A’B+ AB’
Borrow, Bout = A’ . B

The first one representing the DIFFERENCE (D)output is that of an exclusive-OR gate, the
expression for the BORROW output (Bout) is that of an AND gate with input A
complemented before it is fed to the gate.
The logic diagram of the half adder is,

59

Logic Implementation of Half-Subtractor

Comparing a half-subtractor with a half-adder, we find that the expressions for the SUM and
DIFFERENCE outputs are just the same. The expression for BORROW in the case of the
half-subtractor is also similar to what we have for CARRY in the case of the half-adder. If the
input A, ie., the minuend is complemented, an AND gate can be used to implement the
BORROW output.

Full Subtractor:

A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and
also takes into consideration whether a ‗1‘ has already been borrowed by the previous adjacent
lower minuend bit or not.

As a result, there are three bits to be handled at the input of a full subtractor, namely the two
bits to be subtracted and a borrow bit designated as Bin. There are two outputs, namely the
DIFFERENCE output D and the BORROW output Bo. The BORROW output bit tells
whether the minuend bit needs to borrow a ‗1‘ from the next possible higher minuend bit.

Block schematic of full-adder

60

The truth table for full-subtractor is,
Inputs Outputs

A B Bin Difference(D) Borrow(Bout)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

K-map

simplification for full-subtractor:

The Boolean expressions for the DIFFERENCE and BORROW outputs are given by the
equations,
Difference, D = A’B’Bin+ A’BB’in + AB’B’in + ABBin

Borrow, Bout = A’B+ A’Cin + BBin.

The logic diagram for the above functions is shown as,

61

Implementation of full-Subtractor using Half Subtractors

The logic diagram of the full-subtractor can also be implemented with two half- subtractors
and one OR gate. The difference,D output from the second half subtractor is the Ex -OR of
Bin and the output of the first half-subtractor, giving

= B‘in (A‘B+AB‘) + Bin (A‘B+AB‘)‘ [(x‘y+xy‘)‘= (xy+x‘y‘)]
= B‘in (A‘B+AB‘) + Bin (AB+A‘B‘)
= A‘BB‘in + AB‘B‘in + ABBin + A‘B‘Bin .

and the borrow output is,
Borrow, Bout = A’B+ Bin (A’B+AB’)’ [(x‘y+xy‘)‘= (xy+x‘y‘)]
= A‘B+ Bin (AB+A‘B‘)
= A‘B+ ABBin+ A‘B‘Bin
= A‘B (Bin+1) + ABBin+ A‘B‘Bin [Cin+1= 1]
= A‘BBin+ A‘B+ ABBin+ A‘B‘Bin
= A‘B+ BBin (A+A‘) + A‘B‘Bin [A+A‘= 1]
= A‘B+ BBin+ A‘B‘Bin
= A‘B (Bin+1) + BBin+ A‘B‘Bin [Cin+1= 1]
= A‘BBin+ A‘B+ BBin+ A‘B‘Bin
= A‘B+ BBin+ A‘Bin (B +B‘)
= A‘B+ BBin+ A‘Bin.

Therefore,
we can implement full-subtractor using two half-subtractors and OR gate as,

Implementation of full-subtractor with two half-subtractors and an OR gate

62

Binary Adder (Parallel Adder):

Fig. 4-bit binary parallel Adder

The 4-bit binary adder using full adder circuits is capable of adding two 4-bit
numbers resulting in a 4-bit sum and a carry output as shown in figure below. Since all the
bits of augend and addend are fed into the adder circuits simultaneously and the additions in
each position are taking place at the same time, this circuit is known as parallel adder.

Let the 4-bit words to be added be represented by, A3A2A1A0= 1111 and B3B2B1B0= 0011.

The bits are added with full adders, starting from the least significant position, to form the
sum it and carry bit. The input carry C0 in the least significant position must be
• The carry output of the lower order stage is connected to the carry input of the next
higher order stage. Hence this type of adder is called ripple-carry adder.
In the least significant stage, A0, B0 and C0 (which is 0) are added resulting in sum S0 and
carry C1. This carry C1 becomes the carry input to the second stage. Similarly in the second
stage, A1, B1 and C1 are added resulting in sum S1 and carry C2, in the third stage, A2, B2 and
C2 are added resulting in sum S2 and carry C3, in the third stage, A3, B3 and C3 are added
resulting in sum S3 and C4, which is the output carry. Thus the circuit results in a sum
(S3S2S1S0) and a carry output (Cout).
Though the parallel binary adder is said to generate its output immediately after the inputs are
applied, its speed of operation is limited by the carry propagation delay through all stages.
However, there are several methods to reduce this delay. One of the methods of speeding up
this process is look-ahead carry addition which eliminates the ripple-carry delay.

63

Carry Propagation–Look-Ahead Carry Generator:
In Parallel adder, all the bits of the augend and the addend are available for computation at the
same time. The carry output of each full-adder stage is connected to the carry input of the next
high-order stage. Since each bit of the sum output depends on the value of the input carry,
time delay occurs in the addition process. This time delay is called as carry propagation delay.

For example, addition of two numbers (0011+ 0101) gives the result as 1000. Addition of the
LSB position produces a carry into the second position. This carry when added to the bits of the
second position, produces a carry into the third position. This carry when added to bits of the
third position, produces a carry into the last position. The sum bit generated in the last
position (MSB) depends on the carry that was generated by the addition in the previous
position. i.e., the adder will not produce correct result until LSB carry has propagated through
the intermediate full-adders. This represents a time delay that depends on the propagation
delay produced in an each full-adder. For example, if each full adder is considered to have a
propagation delay of
30nsec, then S3 will not react its correct value until 90 nsec after LSB is generated. Therefore
total time required to perform addition is 90+ 30 = 120nsec.

4-bit Parallel Adder

Full-Adder circuit

The method of speeding up this process by eliminating inter stage carry delay is called look
ahead-carry addition. This method utilizes logic gates to look at the lower order bits of the
augend and addend to see if a higher-order carry is to be generated. It uses two functions:
carry generate and carry propagate.

Consider the circuit of the full-adder shown above. Here we define two functions:
carry generate (Gi) and carry propagate (Pi) as,

64

the output sum and carry can be expressed as,

Gi (carry generate), it produces a carry 1 when both Ai and Bi are 1, regardless of the input
carry Ci. Pi (carry propagate) because it is the term associated with the propagation of the
carry from Ci to Ci+1.
The Boolean functions for the carry outputs of each stage and substitute for each Ci its value
from the previous equation:
C0= input
carry C1= G0 + P0C0
C2= G1 + P1C1 = G1 + P1 (G0 + P0C0) = G1 + P1G0 + P1P0C0
C3= G2 + P2C2 = G2 + P2 (G1 + P1G0 + P1P0C0) = G2 + P2G1 + P2P1G0 + P2P1P0C0

Fig. Logic diagram of Carry Look-ahead Generator

Since the Boolean function for each output carry is expressed in sum of products, each function
can be implemented with one level of AND gates followed by an OR gate. The three Boolean
functions for C1, C2 and C3 are implemented in the carry look-ahead generator as shown below.

65

Note that C3 does not have to wait for C2 and C1 to propagate; in fact C3 is propagated at the
same time as C1 and C2.
Using a Look-ahead Generator we can easily construct a 4-bit parallel adder with a Look-
ahead carry scheme. Each sum output requires two exclusive-OR gates. The
output of the first exclusive-OR gate generates the Pi variable, and the AND gate generates
the Gi variable. The carries are propagated through the carry look-ahead generator and
applied as inputs to the second exclusive-OR gate. All output carries are generated after a
delay through two levels of gates. Thus, outputs S1 through S3 have equal propagation delay
times.

Fig. 4-Bit Adder with Carry Look-ahead

Binary Subtractor (Parallel Subtractor):

The subtraction of unsigned binary numbers can be done most conveniently by means of
complements. The subtraction A-B can be done by taking the 2‘s complement of B and
adding it to A. The 2‘s complement can be obtained by taking the 1‘s complement and adding

66

1 to the least significant pair of bits. The 1‘s complement can be implemented with inverters
and a 1 can be added to the sum through the input carry.

The circuit for subtracting A-B consists of an adder with inverters placed between each
data input B and the corresponding input of the full adder. The input carry C0 must be
equal to 1 when performing subtraction. The operation thus performed becomes A, plus
the 1‘s complement of B, plus1. This is equal to A plus the 2‘s complement of B.

Fig. 4-bit Parallel Subtractor

Parallel Adder/ Subtractor:

Fig. 4-Bit Adder Subtractor

The addition and subtraction operation can be combined into one circuit with one common
binary adder. This is done by including an exclusive-OR gate with each full adder. A 4-bit
adder Subtractor circuit is shown below.

The mode input M controls the operation. When M= 0, the circuit is an adder and when M=1,
the circuit becomes a Subtractor. Each exclusive-OR gate receives input M and one of the
inputs of B. When M=0, we have B Ex-OR 0 = B. The full adders receive the value of B, the
input carry is 0, and the circuit performs A plus B. When M=1, we have B Ex –OR 1= B‘

67

and C0=1. The B inputs are all complemented and a 1 is added through the input carry. The
circuit performs the operation A plus the 2‘s complement of B. The exclusive-OR with output
V is for detecting an overflow.

Decimal Adder (BCD Adder):
The digital system handles the decimal number in the form of binary coded decimal numbers
(BCD). A BCD adder is a circuit that adds two BCD bits and produces a sum digit also in BCD.
Consider the arithmetic addition of two decimal digits in BCD, together with an input carry
from a previous stage. Since each input digit does not exceed 9, the output sum cannot be
greater than 9+ 9+1 = 19; the 1 is the sum being an input carry. The adder will form the sum
in binary and produce a result that ranges from 0 through 19.
These binary numbers are labeled by symbols K, Z8, Z4, Z2, Z1, K is the carry. The columns under
the binary sum list the binary values that appear in the outputs of the 4- bit binary adder. The
output sum of the two decimal digits must be represented in BCD.

Binary Sum BCD Sum
Decimal

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19

68

In examining the contents of the table, it is apparent that when the binary sum is equal to or
less than 1001, the corresponding BCD number is identical, and therefore no conversion is
needed. When the binary sum is greater than 9 (1001), we obtain a non- valid BCD
representation. The addition of binary 6 (0110) to the binary sum converts it to the correct
BCD representation and also produces an output carry as required.
The logic circuit to detect sum greater than 9 can be determined by simplifying the boolean
expression of the given truth table.

To implement BCD adder we require:

• 4-bit binary adder for initial addition
• Logic circuit to detect sum greater than 9 and
• One more 4-bit adder to add 01102 in the sum if the sum is greater than 9 or carry is

69

Fig. Logic diagram of BCD adder

The two decimal digits, together with the input carry, are first added in the top4- bit binary
adder to provide the binary sum. When the output carry is equal to zero, nothing is added to the
binary sum. When it is equal to one, binary 0110 is added to the binary sum through the bottom
4-bit adder. The output carry generated from the bottom adder can be ignored, since it supplies
information already available at the output carry terminal. The output carry from one stage
must be connected to the input carry of the next higher-order stage.

MAGNITUDE COMPARATOR:

A magnitude comparator is a combinational circuit that compares two given numbers (A and
B) and determines whether one is equal to, less than or greater than the other. The output is in
the form of three binary variables representing the conditions A= B, A>B and A<B, if A and
B are the two numbers being compared.

Fig. Block diagram of magnitude comparator

For comparison of two n-bit numbers, the classical method to achieve the Boolean
expressions requires a truth table of 22n entries and becomes too lengthy and cumbersome.

70

2-bit Magnitude Comparator:
The truth table of 2-bit comparator is given in table below— Truth table:

Inputs Outputs

A3 A2 A1 A0 A>B A=B A<B
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
1 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0

K-map Simplification:

71

Logic Diagram:

72

CODE CONVERTERS:

Code to another code of binary code. The following are some of the most commonly used
code converters:

• Binary-to-Gray code
• Gray-to-Binary code
• BCD-to-Excess-3
• Excess-3-to-BCD
• Binary-to-BCD
• BCD-to-binary
• Gray-to-BCD
• BCD-to-Gray
• 8 4 -2 -1 to BCD converter

Binary to Gray Converters:
The gray code is often used in digital systems because it has the advantage that only one bit
in the numerical representation changes between successive numbers. The truth table for the
binary-to-gray code converter is shown below,

Truth table:

Decimal
Binary code Gray code

B3 B2 B1 B0 G3 G2 G1 G0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 0 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0

73

K-map simplification:

Now, the above expressions can be implemented using EX-OR gates as,

Logic Diagram:

74

Gray to Binary Converters:
The truth table for the gray-to-binary code converter is shown below,

Truth table:

Gray code Binary code
G3 G2 G1 G0 B3 B2 B1 B0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 0
0 1 1 1 0 1 0 1
1 0 0 0 1 1 1 1
1 0 0 1 1 1 1 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0

From the truth table, the logic expression for the binary code outputs can be written as,
G3= ∑m (8, 9, 10, 11, 12, 13, 14, 15)
G2= ∑m (4, 5, 6, 7, 8, 9, 10, 11)
G1= ∑m (2, 3, 4, 5, 8, 9, 14, 15)
G0= ∑m (1, 2, 4, 7, 8, 11, 13, 14)

K-map Simplification:
From the above K-map,

75

Now, the above expressions can be implemented using EX-OR gates as,

Fig. Logic diagram of 4-bit gray-to-binary converter

BCD –to-Excess-3 Converters:
Excess-3 is a modified form of a BCD number. The excess-3 code can be derived from the
natural BCD code by adding 3 to each coded number.
For example, decimal 12 can be represented in BCD as 0001 0010. Now adding 3 to each digit
we get excess-3 code as 0100 0101 (12 in decimal). With this information the truth table for
BCD to Excess-3 code converter can be determined as,

76

Truth Table:

Decimal
BCD code Excess-3 code

B3 B2 B1 B0 E3 E2 E1 E0
0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
8 1 0 0 0 1 0 1 1
9 1 0 0 1 1 1 0 0

From the truth table, the logic expression for the Excess-3 code outputs can be written as,
E3= ∑m (5, 6, 7, 8, 9) + ∑d (10, 11, 12, 13, 14, 15)
E2= ∑m (1, 2, 3, 4, 9) + ∑d (10, 11, 12, 13, 14, 15)
E1= ∑m (0, 3, 4, 7, 8) + ∑d (10, 11, 12, 13, 14, 15)
E0= ∑m (0, 2, 4, 6, 8) + ∑d (10, 11, 12, 13, 14, 15)

K-map Simplification:

77

Logic Diagram:

Excess-3 to BCD Converter: Truth table:

Decimal Excess-3 code BCD code
E3 E2 E1 E0 B3 B2 B1 B0

3 0 0 1 1 0 0 0 0
4 0 1 0 0 0 0 0 1
5 0 1 0 1 0 0 1 0
6 0 1 1 0 0 0 1 1

7 0 1 1 1 0 1 0 0

78

8 1 0 0 0 0 1 0 1

9 1 0 0 1 0 1 1 0
10 1 0 1 0 0 1 1 1
11 1 0 1 1 1 0 0 0
12 1 1 0 0 1 0 0 1

From the truth table, the logic expression for the Excess-3 code outputs can be written as,
B3= ∑m (11, 12) + ∑d (0, 1, 2, 13, 14, 15)
B2= ∑m (7, 8, 9, 10) + ∑d (0, 1, 2, 13, 14, 15)
B1= ∑m (5, 6, 9, 10) + ∑d (0, 1, 2, 13, 14, 15)
B0= ∑m (4, 6, 8, 10, 12) + ∑d (0, 1, 2, 13, 14, 15)

K-map Simplification:

Now, the above expressions the logic diagram can be implemented as,

79

Logic Diagram:

BCD –to-Binary Converters:
The steps involved in the BCD-to-binary conversion process are as follows:
• The value of each bit in the BCD number is represented by a binary equivalent or
weight.
• All the binary weights of the bits that are 1‘s in the BCD are added.
• The result of this addition is the binary equivalent of the BCD number.

Two-digit decimal values ranging from 00 to 99 can be represented in BCD
by two 4-bit code groups. For example, 1910 is represented as,
The left-most four-bit group represents 10 and right-most four-bit group represents 9. The
binary representation for decimal 19 is 1910 = 110012.

BCD Code Binary
B4 B3 B2 B1 B0 E D C B A
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1

80

0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 0 1
0 0 1 1 0 0 0 1 1 0
0 0 1 1 1 0 0 1 1 1
0 1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 1
1 0 0 0 0 0 1 0 1 0
1 0 0 0 1 0 1 0 1 1
1 0 0 1 0 0 1 1 0 0
1 0 0 1 1 0 1 1 0 1
1 0 1 0 0 0 1 1 1 0
1 0 1 0 1 0 1 1 1 1
1 0 1 1 0 1 0 0 0 0
1 0 1 1 1 1 0 0 0 1
1 1 0 0 0 1 0 0 1 0
1 1 0 0 1 1 0 0 1 1

K-map Simplification:

81

From the above K-map,

82

A= B0

B= B1B4‘+ B1’B4
= B1 Ex-OR B4

C= B4’B2 + B2B1’ + B4B2’B1

D= B4’B3 + B4B3’B2’ + B4B3’B1’

E= B4B3 + B4B2B1

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

83

Binary to BCD Converter:
The truth table for binary to BCD converter can be written as,
Truth Table:

Decimal
Binary Code BCD Code

D C B A B4 B3 B2 B1 B0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1
2 0 0 1 0 0 0 0 1 0
3 0 0 1 1 0 0 0 1 1
4 0 1 0 0 0 0 1 0 0
5 0 1 0 1 0 0 1 0 1
6 0 1 1 0 0 0 1 1 0
7 0 1 1 1 0 0 1 1 1
8 1 0 0 0 0 1 0 0 0
9 1 0 0 1 0 1 0 0 1
10 1 0 1 0 1 0 0 0 0
11 1 0 1 1 1 0 0 0 1
12 1 1 0 0 1 0 0 1 0
13 1 1 0 1 1 0 0 1 1
14 1 1 1 0 1 0 1 0 0
15 1 1 1 1 1 0 1 0 1

From the truth table, the logic expression for the BCD code outputs can be written as,
B0= ∑m (1, 3, 5, 7, 9, 11, 13, 15)
B1= ∑m (2, 3, 6, 7, 12, 13)
B2= ∑m (4, 5, 6, 7, 14, 15)
B3= ∑m (8, 9)
B4= ∑m (10, 11, 12, 13, 14, 15)

K-map Simplification:

84

From the above K-map, the logical expression can be obtained as,
B0= A
B1= DCB’+ D’B B2= D’C+ CB B3= DC’B’
B4= DC+ DB
Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

85

Gray to BCD Converter:

The truth table for gray to BCD converter can be written as,

Truth Table:
Gray Code BCD Code

G3 G2 G1 G0 B4 B3 B2 B1 B0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 1 1
0 1 1 0 0 0 1 0 0
0 1 1 1 0 0 1 0 1
0 1 0 1 0 0 1 1 0
0 1 0 0 0 0 1 1 1
1 1 0 0 0 1 0 0 0
1 1 0 1 0 1 0 0 1
1 1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1 0
1 0 1 1 1 0 0 1 1
1 0 0 1 1 0 1 0 0
1 0 0 0 1 0 1 0 1

K-map Simplification:

86

From the above K-map, the logical expression can be obtained as,
B0= G’2G1+ G’3G2G’1 B2= G’3G2+ G3G’2G’1 B3= G3G2G’1
B4= G3G’2+ G3G1

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

87

BCD to Gray Converter:

The truth table for gray to BCD converter can be written as,

Truth table:
BCD Code (8421) Gray code

B3 B2 B1 B0 G3 G2 G1 G0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1

K-map Simplification:

Now, from the above expressions the logic diagram can be implemented as,

88

Logic Diagram:

8 4 -2 -1 to BCD Converter:
The truth table for 8 4 -2 -1 to BCD converter can be written as,

Truth Table:
Gray Code BCD Code
D C B A B4 B3 B2 B1 B0

0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 1
0 1 1 0 0 0 0 1 0
0 1 0 1 0 0 0 1 1
0 1 0 0 0 0 1 0 0
1 0 1 1 0 0 1 0 1
1 0 1 0 0 0 1 1 0
1 0 0 1 0 0 1 1 1
1 0 0 0 0 1 0 0 0
1 1 1 1 0 1 0 0 1
1 1 1 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1
1 1 0 0 1 0 0 1 0

K-map Simplification:

89

From the above K-map, the logical expression can be obtained as,

B0= A
B1= A’B’CD+ (A Ex-OR B) (C’+D’)
B2= D’CB’A’+ C’ (A+B)
B3= D (ABC+ A’B’C’)
B4= CD (A’+B’)

90

Logic Diagram:

DECODERS:

91

General structure of decoder

A decoder is a combinational circuit that converts binary information from ‗n‘ input
lines to a maximum of ‗2n‘ unique output lines. The encoded information is presented as ‗n‘
inputs producing ‗2n‘ possible outputs. The 2n output values are from 0 through 2n-1. A
decoder is provided with enable inputs to activate decoded output based on data inputs. When
any one enable input is unasserted, all outputs of decoder are disabled.

Binary Decoder (2 to 4 decoder):
A binary decoder has ‗n‘ bit binary input and a one activated output out of 2n outputs. A
binary decoder is used when it is necessary to activate exactly one of 2n outputs based on an
n-bit input value.

2-to-4 Line decoder

Here the 2 inputs are decoded into 4 outputs, each output representing one of the minterms of the
two input variables.

Inputs Outputs
Enable A B Y3 Y2 Y1 Y0

0 x x 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

92

As shown in the truth table, if enable input is 1 (EN= 1) only one of the outputs (Y0 – Y3),
is active for a given input. The output Y0 is active, ie., Y0= 1 when inputs A= B= 0, Y1 is
active when inputs, A= 0 and B= 1, Y2 is active, when input A= 1 and B= 0, Y3 is active, when
inputs A= B= 1.
3 to-8 Line Decoder:

A 3-to-8 line decoder has three inputs (A, B, C) and eight outputs (Y0- Y7). Based on
the 3 inputs one of the eight outputs is selected.

The three inputs are decoded into eight outputs, each output representing one of the
minterms of the 3-input variables. This decoder is used for binary-to-octal conversion. The
input variables may represent a binary number and the outputs will represent the eight digits
in the octal number system. The output variables are mutually exclusive because only one
output can be equal to 1 at any one time. The output line whose value is equal to 1 represents
the minterm equivalent of the binary number presently available in the input lines.

Inputs Outputs
A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

93

3-to-8 line decoder
Applications of decoders:

• Decoders are used in counter system.
• They are used in analog to digital converter.
• Decoder outputs can be used to drive a display system.

ENCODERS:
An encoder is a digital circuit that performs the inverse operation of a decoder. Hence, the
opposite of the decoding process is called encoding. An encoder is a combinational circuit
that converts binary information from 2n input lines to a maximum of ‗n‘ unique output
lines.

94

General structure of Encoder

It has 2n input lines, only one which 1 is active at any time and ‗n‘ output lines. It encodes one
of the active inputs to a coded binary output with ‗n‘ bits. In an encoder, the number of
outputs is less than the number of inputs.

Octal-to-Binary Encoder:
It has eight inputs (one for each of the octal digits) and the three outputs that generate the
corresponding binary number. It is assumed that only one input has a value of 1 at any given
time.

Inputs Outputs
D0 D1 D2 D3 D4 D5 D6 D7 A B C
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

The encoder can be implemented with OR gates whose inputs are determined directly from
the truth table. Output z is equal to 1, when the input octal digit is 1 or 3 or 5 or 7. Output y
is 1 for octal digits 2, 3, 6, or 7 and the output is 1 for digits 4, 5, 6 or 7. These conditions can
be expressed by the following output Boolean functions:

z= D1+ D3+ D5+ D7

y= D2+ D3+ D6+ D7 x= D4+ D5+ D6+ D7

The encoder can be implemented with three OR gates. The encoder defined in the below
table, has the limitation that only one input can be active at any given time. If two inputs are
active simultaneously, the output produces an undefined combination.

For eg., if D3 and D6 are 1 simultaneously, the output of the encoder may be 111. This does
not represent either D6 or D3. To resolve this problem, encoder circuits must establish an
input priority to ensure that only one input is encoded. If we establish a higher priority for
inputs with higher subscript numbers and if D3 and D6 are 1 at the same time, the output will
be 110 because D6 has higher priority than D3.

95

Octal-to-Binary Encoder

Another problem in the octal-to-binary encoder is that an output with all 0‘s is generated
when all the inputs are 0; this output is same as when D0 is equal to 1. The discrepancy can
be resolved by providing one more output to indicate that atleast one input is equal to 1.

Priority Encoder:

A priority encoder is an encoder circuit that includes the priority function. In priority encoder,
if two or more inputs are equal to 1 at the same time, the input having the highest priority will
take precedence.

In addition to the two outputs x and y, the circuit has a third output, V (valid bit indicator). It
is set to 1 when one or more inputs are equal to 1. If all inputs are 0, there is no valid input
and V is equal to 0.

The higher the subscript number, higher the priority of the input. Input D3, has the highest
priority. So, regardless of the values of the other inputs, when D3 is 1, the output for xy is 11.

D2 has the next priority level. The output is 10, if D2= 1 provided D3= 0. The output for D1 is
generated only if higher priority inputs are 0, and so on down the priority levels.

Truth table:
Inputs Outputs

D0 D1 D2 D3 x y V
0 0 0 0 x x 0
1 0 0 0 0 0 1
x 1 0 0 0 1 1
x x 1 0 1 0 1
x x x 1 1 1 1

Although the above table has only five rows, when each don‘t care condition is replaced first by 0
and then by 1, we obtain all 16 possible input combinations. For example, the third row in the

96

table with X100 represents minterms 0100 and 1100. The don‘t care condition is replaced by
0 and 1 as shown in the table below.

Modified Truth table:
Inputs Outputs

D0 D1 D2 D3 X y V
0 0 0 0 X x 0
1 0 0 0 0 0 1
0 1 0 0 0 1 1
1 1 0 0
0 0 1 0
0
1

1
0

1
1

0
0 1 0 1

1 1 1 0
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

K-map Simplification:

97

The priority encoder is implemented according to the above Boolean functions.

• Logic Diagram of Priority Encoder

MULTIPLEXER: (Data Selector)
A multiplexer or MUX, is a combinational circuit with more than one input line, one output
line and more than one selection line. A multiplexer selects binary information present from
one of many input lines, depending upon the logic status of the selection inputs, and routes it
to the output line. Normally, there are 2n input lines and n selection lines whose bit
combinations determine which input is selected. The multiplexer is often labeled as MUX in
block diagrams.

98

Block diagram of Multiplexer

A multiplexer is also called a data selector, since it selects one of many inputs and steers the
binary information to the output line.

2-to-1- line Multiplexer:

The circuit has two data input lines, one output line and one selection line, S. When S= 0, the
upper AND gate is enabled and I0 has a path to the output.
When S=1, the lower AND gate is enabled and I1 has a path to the output.

Logic diagram

The multiplexer acts like an electronic switch that selects one of the two sources.

Truth table:
S Y
0 I0
1 I1

4-to-1-line Multiplexer:
A 4-to-1-line multiplexer has four (2n) input lines, two (n) select lines and one output line. It
is the multiplexer consisting of four input channels and information of one of the channels
can be selected and transmitted to an output line according to the select inputs combinations.
Selection of one of the four input channel is possible by two selection inputs.

99

4-to-1-Line Multiplexer

Each of the four inputs I0 through I3, is applied to one input of AND gate. Selection lines S1
and S0 are decoded to select a particular AND gate. The outputs of the AND gate are applied
to a single OR gate that provides the 1-line output.

Function table:
S1 S0 Y
0 0 I0
0 1 I1
1 0 I2
1 1 I3

To demonstrate the circuit operation, consider the case when S1S0= 10. The AND gate associated
with input I2 has two of its inputs equal to 1 and the third input connected to I2. The other
three AND gates have atleast one input equal to 0, which makes their outputs equal to 0. The
OR output is now equal to the value of I2, providing a path from the selected input to the output.

The data output is equal to I0 only if S1= 0 and S0= 0; Y= I0S1‘S0‘. The data output is equal to
I1 only if S1= 0 and S0= 1; Y= I1S1‘S0. The data output is equal to I2 only if S1= 1 and S0= 0;
Y= I2S1S0‘. The data output is equal to I3 only if S1= 1 and S0= 1; Y= I3S1S0.
When these terms are ORed, the total expression for the data output is,

Y= I0S1’S0’+ I1S1’S0 +I2S1S0’+ I3S1S0.
As in decoder, multiplexers may have an enable input to control the operation of the unit.
When the enable input is in the inactive state, the outputs are disabled, and when it is in the
active state, the circuit functions as a normal multiplexer.

100

Quadruple 2-to-1 Line Multiplexer:

This circuit has four multiplexers, each capable of selecting one of two input lines. Output Y0
can be selected to come from either A0 or B0. Similarly, output Y1 may have the value of A1
or B1, and so on. Input selection line, S selects one of the lines in each of the four
multiplexers. The enable input E must be active for normal operation.
Although the circuit contains four 2-to-1-Line multiplexers, it is viewed as a circuit that
selects one of two 4-bit sets of data lines. The unit is enabled when E= 0. Then if S= 0, the
four A inputs have a path to the four outputs. On the other hand, if S=1, the four B inputs are
applied to the outputs. The outputs have all 0‘s when E= 1, regardless of the value of S.
Application:

The multiplexer is a very useful MSI function and has various ranges of applications in data
communication. Signal routing and data communication are the important applications of a
multiplexer. It is used for connecting two or more sources to guide to a single destination
among computer units and it is useful for constructing a common bus system. One of the

101

general properties of a multiplexer is that Boolean functions can be implemented by this
device.

Implementation of Boolean Function using MUX:

Any Boolean or logical expression can be easily implemented using a multiplexer. If a
Boolean expression has (n+1) variables, then ‗n‘ of these variables can be connected to the
select lines of the multiplexer. The remaining single variable along with constants 1 and 0 is
used as the input of the multiplexer. For example, if C is the single variable, then the inputs
of the multiplexers are C, C‘, 1 and 0. By this method any logical expression can be
implemented. In general, a Boolean expression of (n+1) variables can be implemented using
a multiplexer with 2n inputs.

1) Implement the following boolean function using 4: 1 multiplexer,
F (A, B, C) = ∑m (1, 3, 5, 6).
Solution:
Variables, n= 3 (A, B, C) Select lines= n-1 = 2 (S1, S0)
2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX

Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3)

Implementation table:

Apply variables A and B to the select lines. The procedures for implementing the function
are:

• List the input of the multiplexer
• List under them all the minterms in two rows as shown below.

The first half of the minterms is associated with A‘ and the second half with A. The given
function is implemented by circling the minterms of the function and applying the following
rules to find the values for the inputs of the multiplexer.

• If both the minterms in the column are not circled, apply 0 to the corresponding input.

• If both the minterms in the column are circled, apply 1 to the corresponding input.

• If the bottom minterm is circled and the top is not circled, apply C to the input.

• If the top minterm is circled and the bottom is not circled, apply C‘ to the input.

Implementation Table:

102

Fig. Multiplexer Implementation

2. F (x, y, z) = ∑m (1, 2, 6, 7)
Solution: Implementation table:

 Fig. Multiplexer Implementation

103

3. F (A, B, C) = ∑m (1, 2, 4, 5)
Solution:
Variables, n= 3 (A, B, C) Select lines= n-1 = 2 (S1, S0)
2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX

Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3)

 Fig. Implementation table

Multiplexer Implementation:

4. F(P, Q, R, S)= ∑m (0, 1, 3, 4, 8, 9, 15)

Solution:
Variables, n= 4 (P, Q, R, S) Select lines= n-1 = 3 (S2, S1, S0)
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

104

Implementation table:

Multiplexer Implementation:

5)Implement the Boolean function using 8: 1 and also using 4:1 multiplexer
F (A, B, C, D) = ∑m (0, 1, 2, 4, 6, 9, 12, 14)
Solution:
Variables, n= 4 (A, B, C, D) Select lines= n-1 = 3 (S2, S1, S0)
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

105

Multiplexer Implementation (Using 8: 1 MUX):

Using 4: 1 MUX:

6. F (A, B, C, D) = ∑m (1, 3, 4, 11, 12, 13, 14, 15)

Solution:
Variables, n= 4 (A, B, C, D) Select lines= n-1 = 3 (S2, S1, S0)

106

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

Multiplexer Implementation:

7)Implement the Boolean function using 8: 1 multiplexer.
F (A, B, C, D) = A’BD’ + ACD + B’CD + A’C’D.

Solution:
Convert into standard SOP form,
= A‘BD‘ (C‘+C) + ACD (B‘+B) + B‘CD (A‘+A) + A‘C‘D (B‘+B)
= A‘BC‘D‘ + A‘BCD‘+ AB‘CD + ABCD +A‘B‘CD + AB‘CD +A‘B‘C‘D+ A‘BC‘D

= A‘BC‘D‘ + A‘BCD‘+ AB‘CD + ABCD +A‘B‘CD +A‘B‘C‘D+ A‘BC‘D
= m4+ m6+ m11+ m15+ m3+ m1+ m5
= ∑m (1, 3, 4, 5, 6, 11, 15)

107

Implementation table:

Multiplexer Implementation:

DEMULTIPLEXER:

Demultiplex means one into many. Demultiplexing is the process of taking information from
one input and transmitting the same over one of several outputs.
A demultiplexer is a combinational logic circuit that receives information on a single input
and transmits the same information over one of several (2n) output lines.

108

Block diagram of Demultiplexer
The block diagram of a demultiplexer which is opposite to a multiplexer in its operation is
shown above. The circuit has one input signal, ‗n‘ select signals and 2n output signals. The
select inputs determine to which output the data input will be connected. As the serial data is
changed to parallel data, i.e., the input caused to appear on one of the n output lines, the
demultiplexer is also called a ―data distributer‖ or a ―serial-to-parallel converter‖ .

1-to-4 Demultiplexer:

Logic Symbol

A 1-to-4 demultiplexer has a single input, Din, four outputs (Y0 to Y3) and two select inputs
(S1 and S0). The input variable Din has a path to all four outputs, but the input information is
directed to only one of the output lines. The truth table of the 1-to-4 demultiplexer is shown
below.

Truth table of 1-to-4 demultiplexer
Enable S1 S0 Din Y0 Y1 Y2 Y3

0 x x X 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 0

109

1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1

From the truth table, it is clear that the data input, Din is connected to the output Y0, when
S1= 0 and S0= 0 and the data input is connected to output Y1 when S1= 0 and S0= 1. Similarly,
the data input is connected to output Y2 and Y3 when S1= 1 and S0= 0 and when S1= 1 and
S0= 1, respectively. Also, from the truth table, the expression for outputs can be written as
follows,

Logic diagram of 1-to-4 demultiplexer

Y0= S1’S0’Din Y1= S1’S0Din Y2= S1S0’Din Y3= S1S0Din

Now, using the above expressions, a 1-to-4 demultiplexer can be implemented using four 3-
input AND gates and two NOT gates. Here, the input data line Din, is connected to all the
AND gates. The two select lines S1, S0 enable only one gate at a time
and the data that appears on the input line passes through the selected gate to the associated
output line.

1-to-8 Demultiplexer:

A 1-to-8 demultiplexer has a single input, Din, eight outputs (Y0 to Y7) and three select inputs
(S2, S1 and S0). It distributes one input line to eight output lines based on the select inputs.
The truth table of 1-to-8 demultiplexer is shown below.

110

Truth table of 1-to-8 demultiplexer
Din S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
0 x x x 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

From the above truth table, it is clear that the data input is connected with one of the eight
outputs based on the select inputs. Now from this truth table, the expression for eight outputs
can be written as follows:

Y0= S2‘S1‘S0‘Din Y4= S2 S1‘S0‘Din Y1= S2‘S1‘S0Din Y5= S2 S1‘S0Din
Y2= S2‘S1S0‘Din Y6= S2 S1S0‘Din Y3= S2‘S1S0Din Y7= S2S1S0Din

Now using the above expressions, the logic diagram of a 1-to-8 demultiplexer can be drawn
as shown below. Here, the single data line, Din is connected to all the eight AND gates, but
only one of the eight AND gates will be enabled by the select input lines. For example, if
S2S1S0= 000, then only AND gate-0 will be enabled and thereby the data input, Din will
appear at Y0. Similarly, the different combinations of the select inputs, the input Din will
appear at the respective output.

Logic diagram of 1-to-8 demultiplexer

111

1)Design 1:8 demultiplexer using two 1:4 DEMUX.

2)Implement full subtractor using demultiplexer.

Inputs Outputs
A B Bin Difference(D) Borrow(Bout)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

112

TEXT BOOKS:
1. Morris Mano, “Digital design”, 3rd Edition, Prentice Hall of India, 2008.

REFERENCE BOOKS:
1. Milos Ercegovac, Jomas Lang, “Introduction to Digital Systems”, Wiley publications,
1998.
2. John M. Yarbrough, “Digital logic: Applications and Design”, Thomas – Vikas Publishing
House, 2002.
3. R.P.Jain, “Modern digital Electronics”,3rd Edition, TMH, 2003.
4. William H. Gothmann, “Digital Electronics”, Prentice Hall, 2001.

QUESTION BANK

PART-A

1. Describe combinational logic circuits.
2.Definedemultiplexer.
3.Illustrate the logic diagram of full adder.
4.Relate the other name for multiplexer and demultiplexer.
5.Illustrate a 4 : 1 MUX.
6.List the limitations of encoder.
7.Express the truth table for 2 bit subtractor.
8.Design MUX for the expression

 F(a,b,c) = π (0,3,4,5)
9.Illustrate 3 to 8 line decoder.
10.Define encoder.

PART-B

1. A combination circuit is defined by following three Boolean functions. Design the
circuit with a decoder f1=x’y’z’+xz,f2= xy’z’+x’y, f3=x’y’z+xy

2. Design 4:2 Priority Encoder.
3. Design and implement 8:3 Encoder circuit.
4. Design and implement 1:8 Demultiplexer circuit.
5. Interpret the following function with a multiplexer,

F(a,b,c,d) = ∑ (0,1,4,8,9,15)
6. Design a look ahead carry generator.
7. Design and implement 8:1 MUX circuit.
8. Design and implement a full adder and full subtractor circuit.
9. Design and implement 4 bit BCD adder circuit.
10. Design BCD to 7- segment display.

113

UNIT IV
SEQUENTIAL CIRCUITS

Introduction to Sequential circuits – Flip flops – SR, JK, D and T flip flops, Master Slave
flip flop, Characteristic and excitation table – Realization of one flip flop with other flip flops
– Regisrers – Shift registers – Counters – Synchronous and Asynchronous counters –
Modulus counters – Ring Counter – Johnson Counter – State diagram, State table, State
minimization – Hazards.

.INTRODUCTION

In sequential logic circuits, it consists of combinational circuits to which storage
elements are connected to form a feedback path. The storage elements are devices capable of
storing binary information either 1 or 0.

Fig. Sequential Circuit- Block Diagram

The information stored in the memory elements at any given time defines the present

state of the sequential circuit. The present state and the external circuit determine the output
and the next state of sequential circuits.

Thus in sequential circuits, the output variables depend not only on the present input
variables but also on the past history of input variables. The rotary channel selected knob on
an old-fashioned TV is like a combinational. Its output selects a channel based only on its
current input – the position of the knob. The channel-up and channel-down push buttons on a
TV is like a sequential circuit. The channel selection depends on the past sequence of
up/down pushes.

The comparison between combinational and sequential circuits is given in table below.
S.No Combinational logic Sequential logic

1

The output variable, at all times
depends on the combination of
input variables.

The output variable depends not only on the
present input but also depend
upon the past history of inputs.

2 Memory unit is not required
Memory unit is required to store the

past history of input variables.

114

3 Faster in speed Slower than combinational circuits.

4 Easy to design Comparatively harder to design.

5 Eg. Parallel adder Eg. Serial adder

Classification of Logic Circuits

The sequential circuits can be classified depending on the timing of their signals:

• Synchronous sequential circuits

• Asynchronous sequential circuits.

In synchronous sequential circuits, signals can affect the memory elements only at
discrete instants of time. In asynchronous sequential circuits change in input signals can
affect memory element at any instant of time. The memory elements used in both circuits are
Flip-Flops, which are capable of storing 1- bit information.

S.No Synchronous sequential

circuits
Asynchronous sequential circuits

1 Memory elements are clocked
Flip-Flops

Memory elements are either unclocked Flip-
Flops or time delay elements.

2 The change in input signals can
affect memory element upon
activation of clock signal.

The change in input signals can affect
memory element at any instant of time.

3 The maximum operating speed
of clock depends on time delays
involved.

Because of the absence of clock, it can
operate faster than synchronous circuits.

4 Easier to design More difficult to design

LATCHES:

Latches and Flip-Flops are the basic building blocks of the most sequential circuits.
Latches are used for a sequential device that checks all of its inputs continuously and changes

115

its outputs accordingly at any time independent of clocking signal. Enable signal is provided
with the latch. When enable signal is active output changes occur as the input changes. But
when enable signal is not activated input changes do not affect the output.
Flip-Flop is used for a sequential device that normally samples its inputs and changes its
outputs only at times determined by clocking signal.
SR Latch:

The simplest type of latch is the set-reset (SR) latch. It can be constructed from either two
NOR gates or two NAND gates.

SR latch using NOR gates:

The two NOR gates are cross-coupled so that the output of NOR gate 1 is connected to one of
the inputs of NOR gate 2 and vice versa. The latch has two outputs Q and Q’ and two inputs,
set and reset.

Fig. Logic Symbol

Logic Diagram
 Before going to analyse the SR latch, we recall that a logic 1 at any input of a NOR
gate forces its output to a logic 0. Let us understand the operation of this circuit for various
input/ output possibilities.
Case 1: S= 0 and R= 0

Initially, Q= 1 and Q’= 0

Let us assume that initially Q=1 and Q’=0. With Q’=0, both inputs to NOR gate 1 are at logic
0. So, its output, Q is at logic 1. With Q=1, one input of NOR gate 2 is at logic

116

Hence its output, Q’ is at logic 0. This shows that when S and R both are low, the output does
not change.

Initially, Q= 0 and Q’= 1

With Q’=1, one input of NOR gate 1 is at logic 1, hence its output, Q is at logic

• With Q=0, both inputs to NOR gate 2 are at logic 0. So, its output Q’ is at logic 1. In

this case also there is no change in the output state.

Case 2: S= 0 and R= 1

In this case, R input of the NOR gate 1 is at logic 1, hence its output, Q is at logic 0. Both
inputs to NOR gate 2 are now at logic 0. So that its output, Q’ is at logic 1.

Case 3: S= 1 and R= 0

117

In this case, S input of the NOR gate 2 is at logic 1, hence its output, Q is at logic 0. Both
inputs to NOR gate 1 are now at logic 0. So that its output, Q is at logic 1.

Case 4: S= 1 and R= 1

When R and S both are at logic 1, they force the outputs of both NOR gates to the low state,
i.e., (Q=0 and Q’=0). So, we call this an indeterminate or prohibited state, and represent this
condition in the truth table as an asterisk (*). This condition also violates the basic definition
of a latch that requires Q to be complement of Q’. Thus in normal operation this condition
must be avoided by making sure that 1’s are not applied to both the inputs simultaneously.
We can summarize the operation of SR latch as follows:

• When S= 0 and R= 0, the output, Qn+1 remains in its present state, Qn.

• When S= 0 and R= 1, the latch is reset to 0.

• When S= 1 and R= 0, the latch is set to 1.

• When S= 1 and R= 1, the output of both gates will produce 0. i.e., Qn+1= Qn+1’= 0.

S R Qn Qn+1 State

0

0

0

0

0

1

0

1

No Change

(NC)

0

0

1

1

0

1

0

0
Reset

1

1

0

0

0

1

1

1
Set

1

1

1

1

0

1

x

x

Indeterminate

*

118

SR latch using NAND gates:

The SR latch can also be implemented using NAND gates. The inputs of this Latch are S and
R. To understand how this circuit functions, recall that a low on any input to a NAND gate
forces its output high.

Fig. Circuit diagram

Fig. Logic Symbol

We can summarize the operation of SR latch as follows:

• When S= 0 and R= 0, the output of both gates will produce 0. i.e., Qn+1= Qn+1’= 1.
• When S= 0 and R= 1, the latch is reset to 0.

• When S= 1 and R= 0, the latch is set to 1.

• When S= 1 and R= 1, the output, Qn+1 remains in its present state, Qn.

S R Qn Qn+1 State

0

0

0

0

0

1

x

x

Indeterminate

*
0

0

1

1

0

1

1

1
Set

1

1

0

0

0

1

0

0
Reset

1

1

1

1

0

1

0

1

No Change

(NC)

119

Gated SR Latch:
In the SR latch, the output changes occur immediately after the input changes i.e, the

latch is sensitive to its S and R inputs all the time. A latch that is sensitive to the inputs only
when an enable input is active. Such a latch with enable input is known as gated SR latch.
The circuit behaves like SR latch when EN= 1. It retains its previous state when EN= 0

SR Latch with enable input using NAND gates Logic Symbol

The truth table of gated SR latch is show below.

EN S R Qn Qn+1 State

1

1

0

0

0

0

0

1

0

1
No Change (NC)

1

1

0

0

1

1

0

1

0

0
Reset

1

1

1

1

0

0

0

1

1

1
Set

1

1

1

1

1

1

0

1

x

x

Indeterminate

*
0

0

x

x

x

x

0

1

0

1
No Change (NC)

When S is HIGH and R is LOW, a HIGH on the EN input sets the latch. When S is LOW and
R is HIGH, a HIGH on the EN input resets the latch.

120

D Latch

In SR latch, when both inputs are same (00 or 11), the output either does not change or it is
invalid. In many practical applications, these input conditions are not required. These input
conditions can be avoided by making them complement of
each other. This modified SR latch is known as D latch.

Fig. Logic Diagram Fig. Logic Symbol

As shown in the figure, D input goes directly to the S input, and its complement is
applied to the R input. Therefore, only two input conditions exists, either S=0 and R=1 or
S=1 and R=0. The truth table for D latch is shown below.

EN D Qn Qn+1 State

1 0 x 0 Reset

1 1 x 1 Set

0 x x Qn No Change (NC)

As shown in the truth table, the Q output follows the D input. For this reason, D latch is
called transparent latch.

121

When D is HIGH and EN is HIGH. Q goes HIGH. When D is LOW and EN is HIGH, Q goes
LOW. When EN is LOW, the state of the latch is not affected by the D input.

TRIGGERING OF FLIP-FLOPS

The state of a Flip-Flop is switched by a momentary change in the input signal. This
momentary change is called a trigger and the transition it causes is said to trigger the Flip-
Flop. Clocked Flip-Flops are triggered by pulses. A clock pulse starts from an initial value of
0, goes momentarily to 1and after a short time, returns to its initial 0 value. Latches are
controlled by enable signal, and they are level triggered, either positive level triggered or
negative level triggered. The output is free to change according to the S and R input values,
when active level is maintained at the enable input. Flip-Flops are different from latches.
Flip-Flops are pulse or clock edge triggered instead of level triggered.

EDGE TRIGGERED FLIP-FLOPS :

Flip-Flops are synchronous bistable devices (has two outputs Q and Q’). In this case, the
term synchronous means that the output changes state only at a specified point on the
triggering input called the clock (CLK), i.e., changes in the output occur in synchronization
with the clock. An edge-triggered Flip-Flop changes state either at the positive edge (rising

122

edge) or at the negative edge (falling edge) of the clock pulse and is sensitive to its inputs
only at this transition of the clock. The different types of edge-triggered Flip- Flops are

• S-R Flip-Flop,

• J-K Flip-Flop,

• D Flip-Flop,

• T Flip-Flop.

Although the S-R Flip-Flop is not available in IC form, it is the basis for the D and J-K
Flip-Flops. Each type can be either positive edge-triggered (no bubble at C input) or negative
edge-triggered (bubble at C input). The key to identifying an edge- triggered Flip-Flop by its
logic symbol is the small triangle inside the block at the clock (C) input. This triangle is
called the dynamic input indicator.
S-R Flip-Flop

The S and R inputs of the S-R Flip-Flop are called synchronous inputs because data
on these inputs are transferred to the Flip-Flop's output only on the triggering edge of the
clock pulse. The circuit is similar to SR latch except enable signal is replaced by clock pulse
(CLK). On the positive edge of the clock pulse, the circuit responds to the S and R inputs.

 Fig. Logic diagram

When S is HIGH and R is LOW, the Q output goes HIGH on the triggering edge of
the clock pulse, and the Flip-Flop is SET. When S is LOW and R is HIGH, the Q output goes
LOW on the triggering edge of the clock pulse, and the Flip-Flop is RESET. When both S
and R are LOW, the output does not change from its prior state. An invalid condition exists
when both S and R are HIGH.

123

Truth table for SR Flip-Flop
CLK S R Qn Qn+1 State

1

1

0

0

0

0

0

1

0

1
No Change (NC)

1

1

0

0

1

1

0

1

0

0
Reset

1

1

1

1

0

0

0

1

1

1
Set

1

1

1

1

1

1

0

1

x

x

Indeterminate

*
0

0

x

x

x

x

0

1

0

1
No Change (NC)

Input and output waveforms of SR Flip-Flop

J-K Flip-Flop:

JK means Jack Kilby, Texas Instrument (TI) Engineer, who invented IC in 1958. JK
Flip-Flop has two inputs J(set) and K(reset). A JK Flip-Flop can be obtained from the clocked
SR Flip-Flop by augmenting two AND gates as shown below.

124

Fig. Logic Diagram

The data input J and the output Q’ are applied o the first AND gate and its output
(JQ’) is applied to the S input of SR Flip-Flop. Similarly, the data input K and the output Q
are applied to the second AND gate and its output (KQ) is applied to the R input of SR Flip-
Flop.

J= K= 0, When J=K= 0, both AND gates are disabled. Therefore clock pulse have no effect,
hence the Flip-Flop output is same as the previous output.
J= 0, K= 1, When J= 0 and K= 1, AND gate 1 is disabled i.e., S= 0 and R= 1. This condition
will reset the Flip-Flop to 0.
J= 1, K= 0, When J= 1 and K= 0, AND gate 2 is disabled i.e., S= 1 and R= 0. Therefore the
Flip-Flop will set on the application of a clock pulse.
J= K= 0, When J=K= 1, it is possible to set or reset the Flip-Flop. If Q is High, AND gate 2
passes on a reset pulse to the next clock. When Q is low, AND gate 1 passes on a set pulse to
the next clock. Eitherway, Q changes to the complement of the last state i.e., toggle. Toggle
means to switch to the opposite state.

The truth table of JK Flip-Flop is given below.

CLK
Inputs Output

State J K Qn+1
1 0 0 Qn No Change
1 0 1 0 Reset
1 1 0 1 Set
1 1 1 Qn’ Toggle

125

Fig. Input and output waveforms of JK Flip-Flop

Characteristic table and Characteristic equation:

The characteristic table for JK Flip-Flop is shown in the table below. From the table,
K-map for the next state transition (Qn+1) can be drawn and the simplified logic expression
which represents the characteristic equation of JK Flip-Flop can be found.
Characteristic table

Qn J K Qn+1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

K-map Simplification:

Characteristic equation: Qn+1= JQ’+ K’Q.

126

D Flip-Flop:

 Fig. Logic Diagram

Like in D latch, in D Flip-Flop the basic SR Flip-Flop is used with complemented
inputs. The D Flip-Flop is similar to D-latch except clock pulse is used instead of enable
input. To eliminate the undesirable condition of the indeterminate state in the RS Flip-Flop is
to ensure that inputs S and R are never equal to 1 at the same time. This is done by D Flip-
Flop. The D (delay) Flip-Flop has one input called delay input and clock pulse input. The D
Flip-Flop using SR Flip-Flop is shown below.

The truth table of D Flip-Flop is given below.

Clock D Qn+1 State

1 0 0 Reset

1 1 1 Set

0 x Qn No Change

Fig. Input and output waveforms of clocked D Flip-Flop

127

Looking at the truth table for D Flip-Flop we can realize that Qn+1 function follows
the D input at the positive going edges of the clock pulses.
Characteristic table and Characteristic equation:

The characteristic table for D Flip-Flop shows that the next state of the Flip- Flop is
independent of the present state since Qn+1 is equal to D. This means that an input pulse will
transfer the value of input D into the output of the Flip-Flop independent of the value of the
output before the pulse was applied.
The characteristic equation is derived from K-map.

Qn D Qn+1

0 0 0

0 1 1

1 0 0

1 1 1

Characteristic equation: Qn+1= D.

T Flip-Flop

The T (Toggle) Flip-Flop is a modification of the JK Flip-Flop. It is obtained from JK

Flip-Flop by connecting both inputs J and K together, i.e., single input. Regardless of the
present state, the Flip-Flop complements its output when the clock pulse occurs while input
T= 1.

When T= 0, Qn+1= Qn, ie., the next state is the sameas the present state and no change occurs.
When T= 1, Qn+1= Qn’,ie., the next state is the complement of the present state.

128

The truth table of T Flip-Flop is given below.
T Qn+1 State

0 Qn No Change

1 Qn’ Toggle

Characteristic table and Characteristic equation:

The characteristic table for T Flip-Flop is shown below and characteristic equation is
derived using K-map.

Qn T Qn+1

0 0 0

0 1 1

1 0 1

1 1 0

K-map Simplification:

Characteristic equation: Qn+1= TQn’+ T’Qn.

Master-Slave JK Flip-Flop

A master-slave Flip-Flop is constructed using two separate JK Flip-Flops. The first
Flip-Flop is called the master. It is driven by the positive edge of the clock pulse. The second
Flip-Flop is called the slave. It is driven by the negative edge of the clock pulse. The logic
diagram of a master-slave JK Flip-Flop is shown below.

129

 Fig. Logic diagram

When the clock pulse has a positive edge, the master acts according to its J- K inputs,
but the slave does not respond, since it requires a negative edge at the clock input. When the
clock input has a negative edge, the slave Flip-Flop copies the master outputs. But the master
does not respond since it requires a positive edge at its clock input.
The clocked master-slave J-K Flip-Flop using NAND gates is shown below.

Fig. Circuit diagram of Master-Slave JK Flip-Flop
APPLICATION TABLE (OR) EXCITATION TABLE:

The characteristic table is useful for analysis and for defining the operation of the
Flip-Flop. It specifies the next state (Qn+1) when the inputs and present state are known. The
excitation or application table is useful for design process. It is used to find the Flip-Flop
input conditions that will cause the required transition, when the present state (Qn) and the
next state (Qn+1) are known.
Characteristic Table

Present State
Inputs

Next State

Qn S R Qn+1
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 X

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 X

130

Excitation Table
Present State

Next State

Inputs

Inputs

Qn Qn+1 S

R

S

R

0

0

0

0

0

x

 0

0

0

1

0

1

1

0

1

0

1

0

0

1

0

1

1

1

0

0

x

0

 1

1

1

0

Modified Table

The above table presents the excitation table for SR Flip-Flop. It consists of present
state (Qn), next state (Qn+1) and a column for each input to show how the required transition is
achieved.

There are 4 possible transitions from present state to next state. The required Input

conditions for each of the four transitions are derived from the information available in the
characteristic table. The symbol ‘x’ denotes the don’t care condition, it does not matter
whether the input is 0 or 1.

Present State Next State
Inputs

Qn Qn+1 S R

0 0 0 x

0 1 1 0

1 0 0 1

1 1 x 0

131

Characteristic Table
Present State Inputs

Next State

Qn J K Qn+1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

 Modified Table

Present State Next State Inputs Inputs

Qn Qn+1 J K J K

0 0 0 0
0 X

0 0 0 1

0 1 1 0
1 X

0 1 1 1

1 0 0 1
x 1

1 0 1 1

1 1 0 0
x 0

1 1 1 0

Excitation Table
Present State Next State

Inputs
Qn Qn+1 J K

0 0 0 X

0 1 1 X

1 0 x 1

1 1 x 0

132

Characteristic Table
Present

State
Input

Next

State

Qn D Qn+1

0 0 0

0 1 1

1 0 0

1 1 1

Excitation Table

Present

State

Next

State
Input

Qn Qn+1 D

0 0 0

0 1 1

1 0 0

1 1 1

T Flip-Flop
Characteristic Table
Present State

Input
Next State

Qn T Qn+1

0 0 0

0 1 1

1 0 1

1 1 0

133

Modified Table
Present

State

Next

State
Input

Qn Qn+1 T
0 0 0

0 1 1

1 0 1

1 1 0

REALIZATION OF ONE FLIP-FLOP USING OTHER FLIP-FLOPS

It is possible to convert one Flip-Flop into another Flip-Flop with some additional
gates or simply doing some extra connection. The realization of one Flip- Flop using other
Flip-Flops is implemented by the use of characteristic tables and excitation tables. Let us see
few conversions among Flip-Flops.

• SR Flip-Flop to D Flip-Flop
• SR Flip-Flop to JK Flip-Flop
• SR Flip-Flop to T Flip-Flop
• JK Flip-Flop to T Flip-Flop
• JK Flip-Flop to D Flip-Flop
• D Flip-Flop to T Flip-Flop
• T Flip-Flop to D Flip-Flop

SR Flip-Flop to D Flip-Flop:

• Write the characteristic table for required Flip-Flop (D Flip-Flop).

• Write the excitation table for given Flip-Flop (SR Flip-Flop).

• Determine the expression for the given Flip-Flop inputs (S and R) by using K- map.
• Draw the Flip-Flop conversion logic diagram to obtain the required Flip- Flop (D

Flip-Flop) by using the above obtained expression.

The excitation table for the above conversion is

Required Flip-Flop (D)
Given Flip-Flop (SR)

Input Present state Next state Flip-Flop Inputs

D Qn Qn+1 S R

0 0 0 0 x

0 1 0 0 1

134

1 0 1 1 0

1 1 1 x 0

SR Flip-Flop to JK Flip-Flop

The excitation table for the above conversion is,

Inputs Present state Next state Flip-Flop Input

J K Qn Qn+1 S R
0 0 0 0 0 x
0 0 1 1 x 0
0 1 0 0 0 x
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 x 0
1 1 0 1 1 0
1 1 1 0 0 1

135

SR Flip-Flop to T Flip-Flop

The excitation table for the above conversion is

Input Present state Next state Flip-Flop Inputs

T Qn Qn+1 S R
0 0 0 0 x
0 1 1 x 0
1 0 1 1 0
1 1 0 0 1

JK Flip-Flop to T Flip-Flop

The excitation table for the above conversion is

Input Present state Next state Flip-Flop Inputs

T Qn Qn+1 J K
0 0 0 0 x
0 1 1 x 0
1 0 1 1 x
1 1 0 x 1

136

Input Present state Next state Flip-Flop Inputs

D Qn Qn+1 J K
0 0 0 0 x
0 1 0 x 1
1 0 1 1 X
1 1 1 x 0

D Flip-Flop to T Flip-Flop

The excitation table for the above conversion is

Input Present state Next state Flip-Flop Input

T Qn Qn+1 D

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

137

Input Present state Next state Flip-Flop Input

D Qn Qn+1 T

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

SHIFT REGISTERS:

A register is simply a group of Flip-Flops that can be used to store a binary number.
There must be one Flip-Flop for each bit in the binary number. For instance, a register used to
store an 8-bit binary number must have 8 Flip-Flops.

The Flip-Flops must be connected such that the binary number can be entered
(shifted) into the register and possibly shifted out. A group of Flip-Flops connected to
provide either or both of these functions is called a shift register.

The bits in a binary number (data) can be removed from one place to another in either
of two ways. The first method involves shifting the data one bit at a time in a serial fashion,
beginning with either the most significant bit (MSB) or the least significant bit (LSB). This
technique is referred to as serial shifting. The second method involves shifting all the data
bits simultaneously and is referred to as parallel shifting.

There are two ways to shift into a register (serial or parallel) and similarly two ways
to shift the data out of the register. This leads to the construction of four basic register type

• Serial in- serial out,

• Serial in- parallel out,

• Parallel in- serial out,

• Parallel in- parallel out.

138

 Serial in- serial out Parallel in- serial out

 Serial in- parallel out Parallel in- parallel out

Serial-In Serial-Out Shift Register:

The serial in/serial out shift register accepts data serially, i.e., one bit at a time on a
single line. It produces the stored information on its output also in serial form.

The entry of the four bits 1010 into the register is illustrated below, beginning with
the right-most bit. The register is initially clear. The 0 is put onto the data input line, making
D=0 for FF0. When the first clock pulse is applied, FF0 is reset, thus storing the 0.

Next the second bit, which is a 1, is applied to the data input, making D=1 for FF0 and
D=0 for FF1 because the D input of FF1 is connected to the Q0 output. When the second clock
pulse occurs, the 1 on the data input is shifted into FF0, causing FF0 to set; and the 0 that was
in FF0 is shifted into FFl.

The third bit, a 0, is now put onto the data-input line, and a clock pulse is applied. The
0 is entered into FF0, the 1 stored in FF0 is shifted into FFl, and the 0 stored in FF1 is shifted
into FF2.

The last bit, a 1, is now applied to the data input, and a clock pulse is applied. This
time the 1 is entered into FF0, the 0 stored in FF0 is shifted into FFl, the 1 stored in FF1 is
shifted into FF2, and the 0 stored in FF2 is shifted into FF3. This completes the serial entry of
the four bits into the shift register, where they can be stored for any length of time as long as
the Flip-Flops have dc power.

139

Four bits (1010) being entered serially into the register

To get the data out of the register, the bits must be shifted out serially and taken off
the Q3 output. After CLK4, the right-most bit, 0, appears on the Q3 output.

140

When clock pulse CLK5 is applied, the second bit appears on the Q3 output. Clock

pulse CLK6 shifts the third bit to the output, and CLK7 shifts the fourth bit to the output.
While the original four bits are being shifted out, more bits can be shifted in. All zeros are
shown being shifted out, more bits can be shifted in.

Four bits (1010) being entered serially-shifted out of the register and replaced by all zeros

Serial-In Parallel-Out Shift Register:

In this shift register, data bits are entered into the register in the same as serial-in
serial-out shift register. But the output is taken in parallel. Once the data are stored, each bit
appears on its respective output line and all bits are available simultaneously instead of on a
bit-by-bit.

141

Serial-In parallel-Out Shift Register

142

Fig. Four bits (1111) being serially entered into the register

Parallel-In Serial-Out Shift Register:

In this type, the bits are entered in parallel i.e., simultaneously into their respective
stages on parallel lines. A 4-bit parallel-in serial-out shift register is illustrated below. There
are four data input lines, X0, X1, X2 and X3 for entering data in parallel into the register.
SHIFT/ LOAD input is the control input, which allows four bits of data to load in parallel
into the register. When SHIFT/LOAD is LOW, gates G1, G2, G3 and G4 are enabled, allowing
each data bit to be applied to the D input of its respective Flip-Flop. When a clock pulse is
applied, the Flip-Flops with D = 1 will set and those with D = 0 will reset, thereby storing all
four bits simultaneously.

143

Fig. Parallel-In Serial-Out Shift Register

When SHIFT/LOAD is HIGH, gates G1, G2, G3 and G4 are disabled and gates G5, G6
and G7 are enabled, allowing the data bits to shift right from one stage to the next. The OR
gates allow either the normal shifting operation or the parallel data- entry operation,
depending on which AND gates are enabled by the level on the SHIFT/LOAD input.
Parallel-In Parallel-Out Shift Register:

In this type, there is simultaneous entry of all data bits and the bits appear on parallel
outputs simultaneously.

Fig. Parallel-In Parallel-Out Shift Register

144

UNIVERSAL SHIFT REGISTERS

If the register has shift and parallel load capabilities, then it is called a shift register
with parallel load or universal shift register. Shift register can be used for converting serial
data to parallel data, and vice-versa. If a parallel load capability is added to a shift register,
the data entered in parallel can be taken out in serial fashion by shifting the data stored in the
register.
The functions of universal shift register are:

• A clear control to clear the register to 0.

• A clock input to synchronize the operations.

• A shift-right control to enable the shift right operation and the serial input and output lines
associated with the shift right.

• A shift-left control to enable the shift left operation and the serial input and output lines
associated with the shift left.

• A parallel-load control to enable a parallel transfer and the n input lines associated with
the parallel transfer.

• ‘n’ parallel output lines.

• A control line that leaves the information in the register unchanged even though the clock
pulses re continuously applied.

It consists of four D-Flip-Flops and four 4 input multiplexers (MUX). S0 and S1 are the two
selection inputs connected to all the four multiplexers. These two selection inputs are used to
select one of the four inputs of each multiplexer.

The input 0 in each MUX is selected when S1S0= 00 and input 1 is selected when
S1S0= 01. Similarly inputs 2 and 3 are selected when S1S0= 10 and S1S0= 11 respectively. The
inputs S1 and S0 control the mode of the operation of the register.

When S1S0= 00, the present value of the register is applied to the D-inputs of the Flip-
Flops. This is done by connecting the output of each Flip-Flop to the 0 input of the respective
multiplexer. The next clock pulse transfers into each Flip-Flop, the binary value is held
previously, and hence no change of state occurs.

When S1S0= 01, terminal 1 of the multiplexer inputs has a path to the D inputs of the
Flip-Flops. This causes a shift-right operation with the lefter serial input transferred into Flip-
Flop FF3.

145

Fig. Block 4-Bit Universal Shift Register

When S1S0= 10, a shift-left operation results with the right serial input going into
Flip-Flop FF1. Finally when S1S0= 11, the binary information on the parallel input lines (I1,
I2, I3 and I4) are transferred into the register simultaneously during the next clock pulse.

The function table of bi-directional shift register with parallel inputs and parallel
outputs is shown below.

Mode Control
Operation

S1 S0

0 0 No change

0 1 Shift-right

1 0 Shift-left

1 1 Parallel load

146

BI-DIRECTION SHIFT REGISTERS:

A bidirectional shift register is one in which the data can be shifted either left or right.
It can be implemented by using gating logic that enables the transfer of a data bit from one
stage to the next stage to the right or to the left depending on the level of a control line.
A 4-bit bidirectional shift register is shown below. A HIGH on the RIGHT/LEFT control
input allows data bits inside the register to be shifted to the right, and a LOW enables data
bits inside the register to be shifted to the left.

When the RIGHT/LEFT control input is HIGH, gates G1, G2, G3 and G4 are enabled,
and the state of the Q output of each Flip-Flop is passed through to the D input of the
following Flip-Flop. When a clock pulse occurs, the data bits are shifted one place to the
right.

When the RIGHT/LEFT control input is LOW, gates G5, G6, G7 and G8 are enabled,
and the Q output of each Flip-Flop is passed through to the D input of the preceding Flip-
Flop. When a clock pulse occurs, the data bits are then shifted one place to the left.

Fig. 4-bit bi-directional shift register

Counters
 A counter is a register capable of counting the number of clock pulses arriving at
its clock input. Count represents the number of clock pulses arrived. On arrival of each clock
pulse,

• In case of Up counter, the counter is incremented by one
• In case of down counter, it is decremented by one

147

Types of Counters

1) Asynchronous or ripplecounters 2) Synchronous counters
Asynchronous or ripplecounters
 A binary ripple / asynchronous counter consists of a series connection of
complementing flip –flops, with the output of each flip – flop connected to the clock input of
the next higher order flip- flop. The flip-flop holding the least significant bit receives the
incoming clock pulses.
Synchronous counters
 When counter is clocked such that each flip –flop in the counter is triggered at the
same time, the counter is called as synchronous counter.

S.No Asynchronous (ripple) counter Synchronous counter

1 All the Flip-Flops are not

clocked simultaneously.

All the Flip-Flops are clocked

simultaneously.
2 The delay times of all Flip- Flops are

added. Therefore there is considerable
propagation delay.

There is minimum propagation delay.

3 Speed of operation is low Speed of operation is high.

4 Logic circuit is very simple even for
more number of states.

Design involves complex logic circuit as
number of state increases.

5 Minimum numbers of logic

devices are needed.

The number of logic devices is more

than ripple counters.

6 Cheaper than synchronous counters. Costlier than ripple counters.

148

SYNCHRONOUS COUNTERS

Flip-Flops can be connected together to perform counting operations. Such a group of
Flip- Flops is a counter. The number of Flip-Flops used and the way in which they are
connected determine the number of states (called the modulus) and also the specific sequence
of states that the counter goes through during each complete cycle.
Counters are classified into two broad categories according to the way they are clocked:
Asynchronous counters, Synchronous counters.

In asynchronous (ripple) counters, the first Flip-Flop is clocked by the external clock
pulse and then each successive Flip-Flop is clocked by the output of the preceding Flip-Flop.
In synchronous counters, the clock input is connected to all of the Flip-Flops so that they are
clocked simultaneously. Within each of these two categories, counters are classified primarily
by the type of sequence, the number of states, or the number of Flip-Flops in the counter.
The term ‘synchronous’ refers to events that have a fixed time relationship with each other. In
synchronous counter, the clock pulses are applied to all Flip- Flops simultaneously. Hence
there is minimum propagation delay.
2-Bit Synchronous Binary Counter

Fig. Logic diagram of 2-Bit Synchronous Binary Counter

In this counter the clock signal is connected in parallel to clock inputs of both the
Flip-Flops (FF0 and FF1). The output of FF0 is connected to J1 and K1 inputs of the second
Flip-Flop (FF1).

Assume that the counter is initially in the binary 0 state: i.e., both Flip-Flops are
RESET. When the positive edge of the first clock pulse is applied, FF0 will toggle because
J0= k0= 1, whereas FF1 output will remain 0 because J1= k1= 0. After the first clock pulse
Q0=1 and Q1=0.

When the leading edge of CLK2 occurs, FF0 will toggle and Q0 will go LOW. Since
FF1 has a HIGH (Q0 = 1) on its J1 and K1 inputs at the triggering edge of this clock pulse, the
Flip-Flop toggles and Q1 goes HIGH. Thus, after CLK2,
Q0 = 0 and Q1 = 1.

When the leading edge of CLK3 occurs, FF0 again toggles to the SET state (Q0 = 1),
and FF1 remains SET (Q1 = 1) because its J1 and K1 inputs are both LOW (Q0 = 0). After this
triggering edge, Q0 = 1 and Q1 = 1.

149

Finally, at the leading edge of CLK4, Q0 and Q1 go LOW because they both have a
toggle condition on their J1 and K1 inputs. The counter has now recycled to its original state,
Q0 = Q1 = 0.

Timing diagram

3-Bit Synchronous Binary Counter

Fig. Logic diagram of 3-Bit Synchronous Binary Counter

A 3 bit synchronous binary counter is constructed with three JK Flip-Flops and an
AND gate. The output of FF0 (Q0) changes on each clock pulse as the counter progresses
from its original state to its final state and then back to its original state. To produce this
operation, FF0 must be held in the toggle mode by constant HIGH, on its J0 and K0 inputs.

The output of FF1 (Q1) goes to the opposite state following each time Q0= 1. This
change occurs at CLK2, CLK4, CLK6, and CLK8. The CLK8 pulse causes the counter to
recycle. To produce this operation, Q0 is connected to the J1 and K1 inputs of FF1. When Q0=
1 and a clock pulse occurs, FF1 is in the toggle mode and therefore changes state. When Q0=
0, FF1 is in the no-change mode and remains in its present state.

The output of FF2 (Q2) changes state both times; it is preceded by the unique
condition in which both Q0 and Q1 are HIGH. This condition is detected by the AND gate and
applied to the J2 and K2 inputs of FF3. Whenever both outputs Q0= Q1= 1, the output of the
AND gate makes the J2= K2= 1 and FF2 toggles on the following clock pulse. Otherwise, the
J2 and K2 inputs of FF2 are held LOW by the AND gate output, FF2 does not change state.

150

CLOCK Pulse Q2 Q1 Q0

Initially 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

8 (recycles) 0 0 0

Timing diagram

4-Bit Synchronous Binary Counter

This particular counter is implemented with negative edge-triggered Flip- Flops. The
reasoning behind the J and K input control for the first three Flip- Flops is the same as
previously discussed for the 3-bit counter. For the fourth stage, the Flip- Flop has to change
the state when Q0= Q1= Q2= 1. This condition is decoded by AND gate G3.

Fig. Logic diagram of 4-Bit Synchronous Binary Counter

151

Therefore, when Q0= Q1= Q2= 1, Flip-Flop FF3 toggles and for all other times it is in a
no-change condition. Points where the AND gate outputs are HIGH are indicated by the
shaded areas.

Timing diagram

4-Bit Synchronous Decade Counter: (BCD Counter):

BCD decade counter has a sequence from 0000 to 1001 (9). After 1001 state it must
recycle back to 0000 state. This counter requires four Flip-Flops and AND/OR logic as
shown below.

Fig. 4-Bit Synchronous Decade Counter

CLOCK Pulse Q3 Q2 Q1 Q0

Initially 0 0 0 0
1 0 0 0 1
2 0 0 1 0

152

3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10(recycles) 0 0 0 0

 First, notice that FF0 (Q0) toggles on each clock pulse, so the logic equation for its
J0 and K0 inputs is J0= K0= 1

This equation is implemented by connecting J0 and K0 to a constant HIGH level.
Next, notice from table, that FF1 (Q1) changes on the next clock pulse each time Q0 = 1 and
Q3 = 0, so the logic equation for the J1 and K1 inputs is J1= K1= Q0Q3’

This equation is implemented by ANDing Q0 and Q3 and connecting the gate output
to the J1 and K1 inputs of FFl. Flip-Flop 2 (Q2) changes on the next clock pulse each time
both Q0 = Q1 = 1. This requires an input logic equation as follows: J2= K2= Q0Q1

This equation is implemented by ANDing Q0 and Q1 and connecting the gate output
to the J2 and K2 inputs of FF3. Finally, FF3 (Q3) changes to the opposite state on the next
clock pulse each time Q0 = 1, Q1 = 1, and Q2 = 1 (state 7), or when Q0 = 1 and Q1 = 1 (state
9). The equation for this is as follows: J3= K3= Q0Q1Q2+ Q0Q3

This function is implemented with the AND/OR logic connected to the J3 and K3
inputs of FF3.

Timing diagram

Synchronous UP/DOWN Counter

An up/down counter is a bidirectional counter, capable of progressing in either
direction through a certain sequence. A 3-bit binary counter that advances upward through its

153

sequence (0, 1, 2, 3, 4, 5, 6, 7) and then can be reversed so that it goes through the sequence
in the opposite direction (7, 6, 5, 4, 3, 2, 1,0) is an illustration of up/down sequential
operation.

The complete up/down sequence for a 3-bit binary counter is shown in table below.
The arrows indicate the state-to-state movement of the counter for both its UP and its DOWN
modes of operation. An examination of Q0 for both the up and down sequences shows that
FF0 toggles on each clock pulse. Thus, the J0 and K0 inputs of FF0 are, J0= K0= 1

To form a synchronous UP/DOWN counter, the control input (UP/DOWN) is used to
allow either the normal output or the inverted output of one Flip-Flop to the J and K inputs of
the next Flip-Flop. When UP/DOWN= 1, the MOD 8 counter will count from 000 to 111 and
UP/DOWN= 0, it will count from 111 to 000.

When UP/DOWN= 1, it will enable AND gates 1 and 3 and disable AND gates 2 and
4. This allows the Q0 and Q1 outputs through the AND gates to the J and K inputs of the
following Flip-Flops, so the counter counts up as pulses are applied.
When UP/DOWN= 0, the reverse action takes place.

J1= K1= (Q0.UP)+ (Q0’.DOWN)

J2= K2= (Q0. Q1.UP)+ (Q0’.Q1’.DOWN)

Fig. Circuit diagram of 3-bit UP/DOWN Synchronous Counter

154

Design of Synchronous MOD Counter

The counter with ‘n’ Flip-Flops has maximum MOD number 2n. Find the number of Flip-
Flops (n) required for the desired MOD number (N) using the equation,

2n ≥ N

 For example, a 3 bit binary counter is a MOD 8 counter. The basic counter can be
modified to produce MOD numbers less than 2n by allowing the counter to skin those are
normally part of counting sequence.
n= 3 , N= 8 , 2n = 23= 8= N

MOD 5 Counter:

2n= N, 2n= 5 , 22= 4 less than N., 23= 8 > N(5)

Therefore, 3 Flip-Flops are required.

MOD 10 Counter:

2n= N= 10 , 23= 8 less than N, 24= 16 > N(10).

To construct any MOD-N counter, the following methods can be used.

• Find the number of Flip-Flops (n) required for the desired MOD number (N) using the

equation, 2n ≥ N.

• Connect all the Flip-Flops as a required counter.

• Find the binary number for N.

• Connect all Flip-Flop outputs for which Q= 1 when the count is N, as inputs to NAND
gate.

• Connect the NAND gate output to the CLR input of each Flip-Flop.

When the counter reaches Nth state, the output of the NAND gate goes LOW, resetting
all Flip-Flops to 0. Therefore the counter counts from 0 through N-1.

For example, MOD-10 counter reaches state 10 (1010). i.e., Q3Q2Q1Q0= 1 0 1 0. The
outputs Q3 and Q1 are connected to the NAND gate and the output of the NAND gate goes
LOW and resetting all Flip-Flops to zero. Therefore MOD-10 counter counts from 0000 to
1001. And then recycles to the zero value.

The MOD-10 counter circuit is shown below.

155

Fig. Logic diagram of MOD-10 (Decade) Counter

Design a MOD- 5 synchronous counter using JK flip flops and implement it, Also draw
the timing diagram

Step 1 : Determine the number of flipflop needed. Her N=5, 2n >= N, n=3 number of

flipflops.
Step 2: type of flipflop is JK
Step 3: Determine the execution table
Step 4: Find the input of the Flipflop using K-Map
Step 5: Draw the Circuit diagram

Excitation table of JK flip flop

Excitation table for the counter

156

Step 4: Simplification using K - Map

Step 5: Draw the Logic diagram

Timing Diagram

157

Asynchronous or ripple counters

Asynchronous 2 bit Up counter:

158

Asynchronous 3 bit Up counter :

159

Asynchronous 3 bit Down counter

160

Asynchronous Up / Down counter

161

Design of Asynchronous MOD Counter

Asynchronous BCD counter or MOD- 10 counter or Decade Counter
 BCD decade counter has a sequence from 0000 to 1001. After 1001 state it must
recycle back to 0000 state. This counter requites four Flip Flops and AND / OR logis as
shown below.
• Count from 0 – 9 (0000 – 1001)
• From 10 – 15 (1010 – 1111) Reset

162

Truth table:

Ring Counter
Count = Number of flipflops
Used to identify the active state with Logic 1

6 – bit Ring Counter circuit Diagram

163

Truth Table
Clk D1 D2 D3 D4 D5 D6

1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

State Diagram

Johnson Counter

Count = Number of Flipflops * 2
 Reduce the Number of Flipflops
Circuit Diagram

164

Truth Table
QA QB QC QD
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

HAZARDS

Hazards are unwanted switching transients that may appear at the output of a circuit
because different paths exhibit different propagation delays.

Hazards occur in combinational circuits, where they may cause a temporary false-
output value. When this condition occurs in asynchronous sequential circuits, it may result in
a transition to a wrong stable state.

Hazards in Combinational Circuits:

A hazard is a condition where a single variable change produces a momentary
output change when no output change should occur.

Types of Hazards:

Static hazard Dynamic hazard

• Static Hazard

In digital systems, there are only two possible outputs, a ‘0’ or a ‘1’. The hazard may produce
a wrong ‘0’ or a wrong ‘1’. Based on these observations, there are three types,
Static- 0 hazard,

Static- 1 hazard,

Static- 0 hazard:

When the output of the circuit is to remain at 0, and a momentary 1 output is possible
during the transmission between the two inputs, then the hazard is called a static 0-hazard.

Static- 1 hazard:

When the output of the circuit is to remain at 1, and a momentary 0 output is possible
during the transmission between the two inputs, then the hazard is called a static 1-hazard.

165

The below circuit demonstrates the occurrence of a static 1-hazard. Assume that all
three inputs are initially equal to 1 i.e., X1X2X3= 111. This causes the output of the gate 1 to
be 1, that of gate 2 to be 0, and the output of the circuit to be equal to 1. Now consider a
change of X2 from 1 to 0 i.e., X1X2X3= 101. The output of gate 1 changes to 0 and that of
gate 2 changes to 1, leaving the output at 1. The output may momentarily go to 0 if the
propagation delay through the inverter is taken into consideration.
The delay in the inverter may cause the output of gate 1 to change to 0 before the output of
gate 2 changes to 1. In that case, both inputs of gate 3 are momentarily equal to 0, causing the
output to go to 0 for the short interval of time that the input signal from X2 is delayed while it
is propagating through the inverter circuit.

Thus, a static 1-hazard exists during the transition between the input states

X1X2X3= 111 and X1X2X3= 101.

Circuit with static-1 hazard

Now consider the below network, and assume that the inverter has an appreciably
greater propagation delay time than the other gates. In this case there is a static 0-hazard in
the transition between the input states X1X2X3= 000 and X1X2X3= 010 since it is possible for
a logic-1 signal to appear at both input terminals of the AND gate for a short duration.

The delay in the inverter may cause the output of gate 1 to change to 1 before the
output of gate 2 changes to 0. In that case, both inputs of gate 3 are momentarily equal to 0,
causing the output to go to 1 for the short interval of time that the input signal from X2 is
delayed while it is propagating through the inverter circuit.

Thus, a static 0-hazard exists during the transition between the input states

X1X2X3= 000 and X1X2X3= 010.

166

Circuit with static-0 hazard

A hazard can be detected by inspection of the map of the particular circuit. To
illustrate, consider the map in the circuit with static 0-hazard, which is a plot of the function
implemented. The change in X2 from 1 to 0 moves the circuit from minterm 111 to minterm
101. The hazard exists because the change in input results in a different product term
covering the two minterrns.

Maps demonstrating a Hazard and its Removal

The minterm 111 is covered by the product term implemented in gate 1 and minterm 101 is
covered by the product term implemented in gate 2. Whenever the circuit must move from
one product term to another, there is a possibility of a momentary interval when neither term
is equal to 1, giving rise to an undesirable 0 output. The remedy for eliminating a hazard is to
enclose the two minterms in question with another product term that overlaps both groupings.
This situation is shown in the map above, where the two terms that causes the hazard are
combined into one product term. The hazard- free circuit obtained by this combinational is
shown below.

Hazard-free Circuit

167

The extra gate in the circuit generates the product term X1X4. The hazards in
combinational circuits can be removed by covering any two minterms that may produce a
hazard with a product term common to both. The removal of hazards requires the addition of
redundant gates to the circuit.

• Dynamic Hazard

A dynamic hazard is defined as a transient change occurring three or more times at an
output terminal of a logic network when the output is supposed to change only once during a
transition between two input states differing in the value of one variable.
Now consider the input states X1X2X3= 000 and X1X2X3= 100. For the first input state, the
steady state output is 0; while for the second input state, the steady state output is 1. To
facilitate the discussion of the transient behavior of this network, assume there are no
propagation delays through gates G3 and G5 and that the propagation delays of the other three
gates are such that G1 can switch faster than G2 and G2 can switch faster than G4.

Circuit with Dynamic hazard

When X1 changes from 0 to 1, the change propagates through gate G1 before gate G2
with the net effect that the inputs to gate G3 are simultaneously 1 and the network output
changes from 0 to 1. Then, when X1 change propagates through gate G2, the lower input to
gate G3 becomes 0 and the network output changes back to 0.

Finally, when the X1= 1 signal propagates through gate G4, the lower input to gate G5
becomes 1 and the network output again changes to 1. It is therefore seen that during the
change of X1 variable from 0 to 1 the output undergoes the sequence, 0 to 1 to 0 to 1,
which results in three changes when it should have undergone only a single change.

168

• Essential Hazard

An essential hazard is caused by unequal delays along two or more paths that originate from
the same input. An excessive delay through an inverter circuit in comparison to the delay
associated with the feedback path may cause such a hazard. Essential hazards elimination:
Essential hazards can be eliminated by adjusting the amount of delays in the

affected path. To avoid essential hazards, each feedback loop must be handled with
individual care to ensure that the delay in the feedback path is long enough compared with
delays of other signals that originate from the input terminals.

Design Of Hazard Free Circuits

Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (1, 3, 6, 7, 13, 15)

Soln:

• K-map Implementation and grouping

F=A’B’D+ A’BC+ ABD

• Hazard- free realization

The first additional product term A’CD, overlapping two groups (group 1 &

2) and the second additional product term, BCD, overlapping the two groups (group 2 & 3).

169

F=A’B’D+ A’BC+ ABD+ A’CD+ BCD

Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (0, 2, 6, 7, 8, 10, 12).

Soln:

K-map Implementation and grouping

F= B’D’+ A’BC+ AC’D’

• Hazard- free realization

The additional product term, A’CD’ overlapping two groups (group 1 & 2) for hazard free
realization. Group 1 and 3 are already overlapped hence they do not require additional
minterm for grouping.

170

F= B’D’+ A’BC+ AC’D’+ A’CD’

Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (1, 3, 4, 5, 6, 7, 9, 11, 15).

• K-map Implementation and grouping

F= CD+ A’B+ B’D

• Hazard- free realization

The additional product term, A’D overlapping two groups (group 2 & 3) for hazard
free realization. Group 1 and 2 are already overlapped hence they do not require additional
minterm for grouping.

F= CD+ A’B+ B’D+ A’D

171

Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (0, 2, 4, 5, 6, 7, 8, 10, 11, 15).

Soln:

K-map Implementation and grouping

F= B’D’+ A’B+ ACD

Hazard- free realization

F= B’D’+ A’B+ ACD+ A’C’D’+ BCD+ AB’C

Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (0, 1, 5, 6, 7, 9, 11).

a) K-map Implementation and grouping

F= AB’D+ A’BC+ A’BD+ A’B’C’

b) Hazard- free realization:

172

F= AB’D+ A’BC+ A’BD+ A’B’C’+ A’C’D+ B’C’D

RACES:

A race condition is said to exist in an asynchronous sequential circuit when two or more
binary state variables change value in response to a change in an input variable.
Races are classified as:

• Non-critical races

• Critical races.

Non-critical races:

 the final stable state that the circuit reaches does not depend on the order in which the
state variables change, the race is called a non-critical race.

If a circuit, whose transition table (a) starts with the total stable state y1y2x= 000 and
then change the input from 0 to 1. The state variables must then change from 00 to 11, which
define a race condition. The possible transitions are:

00 11

00 01 11

00 10 11

173

In all cases, the final state is the
same, which results in a non-critical condition. In (a), the final state is (y1y2x= 111), and in
(b), it is (y1y2x= 011).

Examples of Non-critical Races

Critical races:

A race becomes critical if the correct next state is not reached during a state transition.
If it is possible to end up in two or more different stable states, depending on the order in
which the state variables change, then it is a critical race. For proper operation, critical races
must be avoided.

The below transition table illustrates critical race condition. The transition table (a)
starts in stable state (y1y2x= 000), and then change the input from 0 to 1. The state variables
must then change from 00 to 11. If they change simultaneously, the final total stable state is
111. In the transition table (a), if, because of unequal propagation delay, Y2 changes to 1
before Y1 does, then the circuit goes to the total stable state 011 and remains there. If,
however, Y1 changes first, the internal state becomes 10 and the circuit will remain in the
stable total state 101.

Hence, the race is critical because the circuit goes to different stable states, depending
on the order in which the state variables change.

174

Examples of Critical Races

CYCLES

Races can be avoided by directing the circuit through intermediate unstable states
with a unique state-variable change. When a circuit goes through a unique sequence of
unstable states, it is said to have a cycle.

`Again, we start with y1y2 = 00 and change the input from 0 to 1. The transition table

(a) gives a unique sequence that terminates in a total stable state 101. The table in (b) shows
that even though the state variables change from 00 to 11, the cycle provides a unique
transition from 00 to 01 and then to 11, Care must be taken when using a cycle that
terminates with a stable state. If a cycle does not terminate with a stable state, the circuit will
keep going from one unstable state to another, making the entire circuit unstable. This is
demonstrated in the transition table (c).

175

TEXT BOOKS:
1. Morris Mano, “Digital design”, 3rd Edition, Prentice Hall of India, 2008.

REFERENCE BOOKS:
1. Milos Ercegovac, Jomas Lang, “Introduction to Digital Systems”, Wiley publications,
1998.
2. John M. Yarbrough, “Digital logic: Applications and Design”, Thomas – Vikas Publishing
House, 2002.
3. R.P.Jain, “Modern digital Electronics”,3rd Edition, TMH, 2003.
4. William H. Gothmann, “Digital Electronics”, Prentice Hall, 2001.

QUESTION BANK

PART-A

1. Describeasynchronous sequential circuit.
2. Define state diagram.
3. Discuss about the conversion of SR flip flop to D flip flop.
4. Define Hazard
5. Recall the excitation table of JK flip flop.
6. Relate JK flip flop and T flip flop.
7. Illustrate the logic diagram of master slave JK flip flop.
8. Distinguish between a latch and a Flip flop.
9. Define Race in synchronous sequential circuits
10. Distinguish between asynchronous and synchronous counters.

PART-B

1. Describe flip – flop, Explain the principles and operation of SR flip flop and D flip
flop..

2. Design a synchronous counter which count through the sequences
 0, 3, 6, 9, 12, 15, 0… use D flip flops.
3. Design and implement 4 bit asynchronous up counter
4. Illustrate the logic circuit of 4 bit binary sync. Counter with ripple carry using JK FF

and explain its operation.
5. a) Explain JK flip flop

b) Explain T flip flop and master slave JK flip flop.
6. Illustrate the logic diagram of a four bit SISO and PIPO shift register and explain the

working principle.
7. Illustrate the logic diagram of a four bit SIPO and PISO shift register and explain the

working principle.
8. Design MOD-6 synchronous counter using T ff.

176

UNIT V
DIGITAL LOGIC FAMILIES, MEMORIES AND PROGRAMMABLE DEVICES

Classification and characteristics of logic family – Bipolar logic family – Saturated logic
family – Non saturated family – Unipolar family – MOS, CMOS logic families.
Classification and Organization of memories – Programmable Logic Devices –
Programmable Logic Array(PLA) – Programmable Array Logic (PAL) – Field
Programmable Gate Arrays (FPGA) .

DIGITAL LOGIC FAMILIES

The switching characteristics of semiconductor devices have been discussed.
Basically, there are two types of semiconductor devices: bipolar and unipolar. Based on these
devices, digital integrated circuits have been made which are commercially available.
Various digital functions are being fabricated in a variety of forms using bipolar and unipolar
technologies. A group of compatible ICs with the same logic levels and supply voltages for
performing various logic functions have been fabricated using a specific circuit configuration
which is referred to as a logic family.

Classification of logic family
Bipolar Logic Families

The main elements of a bipolar IC are resistors, diodes (which are also capacitors) and
transistors. Basically, there are two types of operations in bipolar ICs:

• Saturated, and Non-saturated.

In saturated logic, the transistors in the IC are driven to saturation, whereas in the case
of non-saturated logic, the transistors are not driven into saturation.

The saturated bipolar logic families are:

• Resistor–transistor logic (RTL)
• Direct–coupled transistor logic (DCTL)
• Integrated–injection logic (I L)
• Diode–transistor logic (DTL)
• High–threshold logic (HTL)
• Transistor-transistor logic (TTL)

The non-saturated bipolar logic families are:

• Schottky TTL, and
• Emitter-coupled logic (ECL).

177

Unipolar Logic Families

MOS devices are unipolar devices and only MOSFETs are employed in MOS logic circuits.
The MOS logic families are:

• PMOS
• NMOS
• CMOS

While in PMOS only p-channel MOSFETs are used and in NMOS only n-channel MOSFETs
are used, in complementary MOS (CMOS), both p- and n-channel MOSFETs are employed
and are fabricated on the same silicon chip.
CHARACTERISTICS:

With the widespread use of ICs in digital systems and with the development of
various tech-nologies for the fabrication of ICs, it has become necessary to be familiar with
the characteris-tics of IC logic families and their relative advantages and disadvantages.
Digital ICs are classi-fied either according to the complexity of the circuit, as the relative
number of individual basic gates (2-input NAND gates) it would require to build the circuit to
accomplish the same logic function or the number of components fabricated on the chip.

The various characteristics of digital ICs used to compare their performances are:

• Speed of operation
• Power dissipation
• Figure of merit
• Fan-out
• Current and voltage parameters
• Noise immunity
• Operating temperature range
• Power supply requirements
• Flexibilities available

1.Speed of Operation

The speed of a digital circuit is specified in terms of the propagation delay time. The
input and output waveforms of a logic gate are shown in below Figure. The delay times are
measured between the 50 per cent voltage levels of input and out-put waveforms. There are
two delay times: tpHL - when the output goes from the HIGH state to the LOW state and t p LH
– corresponding to the output making a transition from the LOW state to the HIGH state. The
propagation delay time of the logic gate

178

2.Power Dissipation
This is the amount of power dissipated in an IC. It is determined by the current, ICC ,

that it draws from the VCC supply, and is given by VCC * ICC . ICC is the average value of
ICC (0) and ICC (1). This power is specified in milliwatts.

3.Figure of Merit

The figure of merit of a digital IC is defined as the product of speed and power. The
speed is specified in terms of propagation delay time expressed in nanoseconds.
Figure of merit = propagation delay time (ns) *power (mW)

It is specified in pico joules (pJ) A low value of speed-power product is desirable. In a
digital circuit, if it is desired to have high speed, i.e. low propagation delay, then there is a
corresponding increase in the power dissipation and vice-versa.

4.Fan-Out

This is the number of similar gates which can be driven by a gate. High fan-out is
advantageous because it reduces the need for additional drivers to drive more gates.

5. Current and Voltage Parameters

The following currents and voltages are specified which are very useful in the design
of digital systems.

• High-level input voltage, VIH : This is the minimum input voltage which is
recognized by the gate as logic 1.

• Low-level input voltage, VIL: This is the maximum input voltage which is recognized
by the gate as logic 0.

• High-level output voltage, VOH : This is the minimum voltage available at the output
corre-sponding to logic 1.

• Low-level output voltage, VOL: This is the maximum voltage available at the output
correspond-ing to logic 0.

• High-level input current, IIH : This is the minimum current which must be supplied
by a driving source corresponding to 1 level voltage.

• Low-level input current, IIL: This is the minimum current which must be supplied by

a driving source corresponding to 0 level voltage.
• High-level output current, IOH : This is the maximum current which the gate can sink

in 1 level.
• Low-level output current, IOL: This is the maximum cur- rent which the gate can sink

in 0 level
• High-level supply current, ICC (1): This is the supply cur- rent when the output of the

gate is at logic 1. Low-level supply current, ICC (0): This is the supply cur- rent when
the output of the gate is at logic (0).

The current directions are illustrated in below Figure

179

6.Noise Immunity

The input and output voltage levels defined above are shown in Fig. Stray electric and
magnetic fields may induce unwanted voltages, known as noise, on the connecting wires
between logic circuits. This may cause the voltage at the input to a logic circuit to drop below
VIH or rise above VIL and may produce undesired operation. The circuit’s ability to tolerate
noise signals is referred to as the noise immunity, a quantitative measure of which is called
noise margin. Noise margins are illustrated in Fig. The noise margins defined above are
referred to as dc noise margins. Strictly speaking, the noise is generally thought of as an a.c.
signal with amplitude and pulse width. For high speed ICs, a pulse width of a few
microseconds is extremely long in comparison to the propagation delay time of the circuit
and therefore, may be treated as d.c. as far as the response of the logic circuit is concerned.
As the noise pulse width decreases and approaches the propagation delay time of the circuit,
the pulse duration is too short for the circuit to respond. Under this condition, a large pulse
amplitude would be required to produce a change in the circuit output. This means that a
logic circuit can effectively tolerate a large noise amplitude if the noise is of a very short
duration. This is referred to as ac noise margin and is substantially greater than the dc noise
margin. It is generally supplied by the manufacturers in the form of a curve between noise
margin and noise pulse width.

7.Operating Temperature

The temperature range in which an IC functions properly must be known. The
accepted temperature ranges are: 0 to + 70 °C for consumer and industrial applications and –
55 °C to + 125 °C for military purposes.

180

8. Power Supply Requirements

The supply voltage(s) and the amount of power required by an IC are important
characteristics required to choose the proper power supply.

9. Flexibilities Available

Various flexibilities are available in different IC logic families and these must be
considered while selecting a logic family for a particular job. Some of the flexibilities
available are:

• The breadth of the series: Type of different logic functions available in the series.

• Popularity of the series: The cost of manufacturing depends upon the number of

ICs manufactured. When a large number of ICs of one type are manufactured, the
cost per function will be very small and it will be easily available because of
multiple sources.

• Wired-logic capability: The outputs can be connected together to perform

additional logic without any extra hardware.

• Availability of complement outputs: This eliminates the need for additional

inverters. 5. Type of output: Passive pull-up, active pull-up, open-collector/drain,
and tristate.

SATURATED BIPOLAR LOGIC FAMILIES

RESISTOR-TRANSISTOR LOGIC (RTL)

RTL consists of resistors and transistors. In RTL, transistors operate in cut-off region
or saturation region as per the input voltage applied. The circuit of a two-inputs resistor-

181

transistor logic NOR gate is given below. Here A and B are the inputs of the gate and Y is the
output.

Operation
 When the transistor operates in saturation region, maximum current flows through

resistor RC. The output voltage VY = VCEsat (VCEsat = 0.2 V for silicon and 0.1 V
for germanium); it is logic 0 level voltage. When the transistor operates in cut-off, no
current flows through resistor RC and the output voltage VY = VCC = +5 V; it is logic
1 level voltage.

• When both the inputs are in logic 0, transistors T1 and T2 operate in cut-off, and the
output is +VCC, i.e. +5 V (logic 1).

• When any one of the inputs is at logic 1 level, the corresponding transistor operates in
saturation, and the output is VY = 0.2 V (logic 0).

• When both the inputs are at logic 1 level, both the transistors operate in saturation and
the output is VY = 0.2 V (logic 0).

The operation of circuit is summarized in the below table

VA VB Transistor T1 Transistor T2 VY
Logic 0 Logic 0 Cut-off Cut-off Logic 1
Logic 0 Logic 1 Cut-off Saturation Logic 0
Logic 1 Logic 0 Saturation Cut-off Logic 0
Logic 1 Logic 1 Saturation Saturation Logic 0

In terms of 0 and 1, the above table can be written as in the below Table

Operation of RTL NOR gate
VA VB VY
0 0 1
0 1 0
1 0 0
1 1 0

182

The circuit diagram acts as a two-inputs NOR gate and the above Table is the truth

table of NOR gate.

The RTL suffers from a few drawbacks as listed below:

• Low noise margin (Typically 0.1 V)
• Fan-out is poor (Typically 5)
• Propagation delay is high and the speed of operation is low (Typically 12 ns)
• High power dissipation (Typically 12 mW)

DIRECT COUPLED TRANSISTOR LOGIC (DCTL)

In direct coupled transistor logic, the input signal is directly given to the base of the
transistor. DCTL is simple than RTL. In DCTL, the transistor operates in saturation or cut-off
region. The circuit of a two-inputs DCTL NOR gate is given below.

Two-inputs DCTL NOR gate Operation:

The Operation of DCTL is same as that of RTL. When both the inputs are in logic
0,the transistors operate in cut-off, and the output is logic 1. When anyone of the inputs or
both the inputs are in logic 1, the corresponding transistor or transistors operate in saturation
and the output logic is 0. Although DCTL is simpler than RTL, it is not popular because of
current hogging problem.

DIODE-TRANSISTOR LOGIC (DTL)

The circuit of a DTL consists of diodes and transistors. The circuit of a two-inputs
diode-transistor logic NAND gate is shown below.

183

Two-inputs DTL NAND gate Operation

• When the transistor operates in saturation, the output voltage V(0) = VCEsat = 0.2 V;
and when it operates in cut-off, the output voltage V(1) = VCC = +5 V.

• When both the inputs are in logic 0, V(0) = VCEsat = 0.2 V, the input diodes are
forward biased, voltage at point x is Vx = V(0) + VD = 0.2 + 0.7 = 0.9 V which is not
sufficient to drive the transistor in saturation, because the voltage desired at point x to
drive the transistor in saturation should be VBEsat + VD4 + VD3 = 0.8 + 0.7 + 0.9 =
2.2 V. The transistor operates in cut-off and the output voltage is in logic 1 state.

• When any one of the inputs is in logic 1, the corresponding diode is forward biased.
Voltage at point x is Vx = 0.2 V + 0.7 V = 0.9 V; the transistor operates in cut-off and
the output voltage is in logic 1 state.

• When all the inputs are in logic 1 state, the diodes D1 and D2 are reverse biased. The
resistances R1 and R2 are selected such that the transistor operates in saturation and
the output voltage is in logic 0 state.

The operation of the circuit is summarized in Table below

Inputs Diodes Transistor Output

A B D1 D2 T Y

Logic 0 Logic 0
Forward
biased

Forward
biased Cut-off Logic 1

Logic 0 Logic 1
Forward
biased

Reverse
biased Cut-off Logic 1

Logic 1 Logic 0
Reverse
biased

Forward
biased Cut-off Logic 1

Logic 1 Logic 1
Reverse
biased

Reverse
biased Saturation Logic 0

In terms of 0 and 1, the above Table can be written as in Table below

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

184

Following are the advantages and disadvantages of DTL over RTL.
Advantages

• Fan-out is high
• Power dissipation is 8–12 mW
• Noise immunity is good

Disadvantages
• More elements are required
• Propagation delay is more (typically 30 ns) and hence the speed of operation is less

TRANSISTOR-TRANSISTOR LOGIC (TTL)

Transistor-transistor logic is one of the popular saturated logic families. Transistor is
the basic element of this logic family, which operates either in cut-off or saturation region.
The first version of TTL is known as the standard TTL.

Standard TTLs are available in various forms:

• TTL with passive pull-up
• TTL with totem-pole output
• TTL with open collector output
• Tristate TTL

TTL with Passive Pull-Up

Below diagram represents a two-input TTL NAND gate with passive pull-up.
Transistor T1 has two emitter terminals. These terminals act as the inputs of the gate, that is,
input A and input B. The input voltages are logic 0 or logic 1, where logic 0 corresponds to
0.2 V and logic 1 correspond to +5 V.

185

Two-input TTL NAND gate with passive pull-up Operation

• When both the inputs (A and B) are in logic 0, V(0) = VCEsat = 0.2 V, the emitter

junctions of transistor T1 are forward biased and the voltage at the base of transistor T1 is
VB1 = V(0) + VBE = 0.2 + 0.7 = 0.9 V. The minimum voltage required at the base of T1,
so that T2 and T3 start to conduct, is VBEcut (in) + VBEcut (in) + 0.7 = 0.5 + 0.5 + 0.7 =
1.7 V. The required voltage is greater than the voltage available at the base of T1 and
hence T2 and T3 are in cut-off and the output voltage is equal to the supply voltage VCC
(logic 1 level), output is in logic 1 state.

• When any one of the inputs is at logic 0 level, the corresponding emitter junction of T1 is
forward biased and the voltage at the base of T1 is VB1 = V(0) + VBE = 0.2 + 0.7 = 0.9 V.
The minimum voltage required at the base of T1, so that T2 and T3 start to conduct, is
VBEcut (in) + VBEcut (in) + 0.7 = 0.5 + 0.5 + 0.7 = 1.7 V. The required voltage is greater
than the voltage available at the base of T1 and hence T2 and T3 are in cut-off and the
output voltage is equal to the supply voltage VCC, output is in logic 1 state.

• When all the inputs are in logic 1 state, the emitter junctions of T1 are reverse biased and
the current supply by the source is sufficient to operate T2 and T3 in saturation and the
output is in logic 0 state.

Operation of TTL NAND gate

Inputs Transistors T1 Output

A B Junction A Junction B T2, T3 Y

Logic 0 Logic 0
Forward
biased

Forward
biased Cut-off Logic 1

Logic 0 Logic 1
Forward
biased

Reverse
biased Cut-off Logic 1

Logic 1 Logic 0
Reverse
biased

Forward
biased Cut-off Logic 1

Logic 1 Logic 1
Reverse
biased

Reverse
biased Saturation Logic 0

In terms of 0 and 1, Table above can be written as follows:

VA VB VY
0 0 1
0 1 1
1 0 1
1 1 0

186

TTL with Totem-Pole Output

The diagram below shows the circuit of a two-input TTL NAND gate with totem-pole output.
It is possible in TTL to improve the speed of operation by reducing the time constant without
increasing power dissipation with the help of active pull- up. TTL with active pull-up is
known as TTL with totem-pole output.

Two-input TTL NAND gate with totem-pole output Operation

When both the inputs are in logic 0, V(0) = VCEsat = 0.2 V, emitter junctions of T1
are forward biased and the voltage at the base of T1 is VB1 = V(0) + VBE = 0.2 + 0.7 = 0.9 V.
The minimum voltage required at the base of T1, so that T2 and T3 start to conduct, is
VBEcut (in) + VBEcut (in) + 0.7 = 0.5 + 0.5 + 0.7 = 1.7 V. The required voltage is greater
than the voltage available at the base of T1 and hence T2 and T3 are in cut-off and the output
voltage is equal to the supply voltage VCC (logic 1 level), output is in logic 1 state. Since T2
is in cut-off region, the current supply by the source VCC through RC2 is sufficient to operate
T4 in saturation.
• When any one of the inputs is at logic 0 level, the corresponding emitter junction of T1 is

forward biased and the voltage at the base of T1 is VB1 = V(0) + VBE = 0.2 + 0.7 = 0.9
V. The minimum voltage required at the base of T1, so that T2 and T3 start to conduct, is
VBEcut (in) + VBEcut (in) + 0.7 = 0.5 + 0.5 + 0.7 = 1.7 V. The required voltage is
greater than the voltage available at the base of T1 and hence T2 and T3 are in cut-off
and the output voltage is equal to the supply voltage VCC (logic 1 level), output is in
logic 1 state. Since T2 is in cut-off region, the current supply by the source VCC through
RC2 is sufficient to operate T4 in saturation.

• When all the inputs are in logic 1 state, the emitter junctions of T1 are reverse biased and
the current supply by the source is sufficient to operate T2 and T3 in saturation and the
output is logic 0 state. Since T2 is in saturation region, the voltage at the collector of T2
is low and T4 operates in cut-off.

187

Operation of TTL NAND gate

Inputs Transistors T1 Output
A B Junction A Junction B T2, T3 T4 Y

Logic 0 Logic 0
Forward
biased

Forward
biased Cut-off Saturation Logic 1

Logic 0 Logic 1
Forward
biased

Reverse
biased Cut-off Saturation Logic 1

Logic 1 Logic 0
Reverse
biased

Forward
biased Cut-off Saturation Logic 1

Logic 1 Logic 1
Reverse
biased

Reverse
biased Saturation Cut-off Logic 0

In terms of 0 and 1, Table Above can be written as in Table below.

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

The circuit shown above acts as a two-input NAND gate and its truth table is given in the
above Table.
TTL with Open Collector Output

TTL with totem-pole output has a major problem that the two outputs of the two gates
cannot be connected together. This problem of TTL with totem-pole output is overcome in
TTL with open collector output. Figure below shows the circuit of a TTL NAND gate with
open collector output.

188

TTL NAND gate with open collector output
The collector terminal of T3 is available outside the IC where the external resistor is

to be connected. The circuit acts as a TTL with passive pull-up and hence the advantages of
active pull-up cannot be achieved in the circuit but wired-AND connection is possible.
Tri-state TTL

A normal digital circuit has two output states: Low and High. The output is either in
high state or low state. If the output is not in the low state, it is definitely in the high state.
The tri-state TTL has three output states: High, Low, and High- impedance. In TTL with
totem-pole output, T3 is ON when the output is low and T4 is ON when the output is high.
In high-impedance state, both T3 and T4 in totem-pole arrangement are turned OFF and as a
result, the output is open or floating. When the output is low, the driver gate sinks the load
current as shown in below Fig a. When the output is high, the driver gate supplies the current
to the load as shown in Fig b below. When the output is in high-impedance state, it acts as
open or floating and there is no sink and source current as shown in Fig c below.

Tri-state Logic

INTEGRATED INJECTION LOGIC (I2L)

The integrated injection logic uses only transistors for the construction of a gate and
hence it becomes possible to integrate a large number of gates in a single package. This IC is
easier and cheaper to fabricate. The figure of merit of I2L circuits is quite small (4 PJ).
I2L NAND Gate

Figure below shows the I2L NAND gate. When inputs A and B are low or any one of
the inputs is low, the current provided by T2 is sinked by the source, T1 is OFF, and the
output is high. When both the inputs are high, the base current of T1 is the sum of currents
provided by the source and T2, transistor T1 is ON and the output is low.

189

Truth Table for NOR gate
Inputs Output
A B Y

0 0 1
0 1 1
1 1 1
1 1 0

I2L NOR Gate

Figure below shows the I2L NOR gate. The circuit has two inverters with their outputs
connected together. When both or any one of the inputs is high, the output of the
corresponding inverter is low and the resulting output is low. When both inputs are low, the
output of both the inverters is high and the result is also high.

Truth Table for NOR gate

Inputs Output
A B Y1 Y2 Y

Logic 0 Logic 0 1 1 1
Logic 0 Logic 1 1 0 0
Logic 1 Logic 0 0 1 0
Logic 1 Logic 1 0 0 0

High Threshold Logic (HTL) is a variant of Diode–transistor logic which is used in such
environments where noise is very high.

Operation : The threshold values at the input to a logic gate determine whether a particular
input is interpreted as a logic 0 or a logic 1.(e.g. anything less than 1 V is a logic 0 and
anything above 3 V is a logic 1. In this example, the threshold values are 1V and 3V). HTL
incorporates Zener diodeto create a large offset between logic 1 and logic 0 voltage levels.
These devices usually ran off a 15 V power supply and were found in industrial control,
where the high differential was intended to minimize the effect of noise.

190

Non -Saturated bipolar logic families:
Schottky TTL

All the transistors in the circuits of standard TTL, low power TTL, and high speed
TTL operate in saturation or cut-off region. When the transistor is in saturation, it stores the
charge and the operation causes a storage-time delay during the transistor transition from ON
to OFF; and this limits the circuit’s switching speed. In Schottky TTL families, Schottky
transistors are used instead of normal transistors. The Schottky transistor is operated in active
region or cut-off region, it never goes into saturation and the storage time delay is negligible.
The Schottky transistor is obtained by using a Schottky barrier diode between the base and
the collector terminals of the transistor as shown in Fig.(a). The Schottky diode has a forward
biased voltage of 0.25V. Because of this diode connected between the base and the collector
terminals of the transistor, the collector junction of the transistor cannot get forward biased
and the transistor never goes in saturation; the transistor operates in cut-off or active region.
The symbol of Schottky transistor is shown in Fig.(b).

 Schottky transistor and Schottky symbol

The 74S series is an example of Schottky TTL. The propagation delay of Schottky
TTL is 3 ns only, which is twice as fast as the 74H series. Figure below shows a basic NAND
gate in Schottky TTL series.

191

EMITTER COUPLED LOGIC

Emitter coupled logic (ECL) is faster than TTL family. The transistors of an emitter
coupled logic are operated in cut-off or active region, it never goes in saturation and therefore
the storage time is eliminated. Emitter coupled logic family is an example of unsaturated
logic family. Figure below shows the circuit of an emitter- coupled logic OR/NOR gate. The
circuit consists of difference amplifiers and emitter followers. Emitter terminals of the two
transistors are connected together and hence it is called as emitter coupled logic. The emitter
followers are used at the output of difference amplifier to shift the DC level. The circuit has
two outputs Y1 and Y2, which are complementary. Y1 corresponds to OR logic and Y2
corresponds to NOR logic.

Emitter coupled Logic OR/NOR gate Operation

192

The operation of the circuit is summarized in Table below.

Inputs Transistors Output
A B T1 T2 T3 T4 Y1 Y2

Logic 0 Logic 0 Cut-off Active Active Cut-off Logic 0 Logic 1
Logic 0 Logic 1 Cut-off Cut-off Cut-off Active Logic 1 Logic 0
Logic 1 Logic 0 Activ Cut-off Cut-off Active Logic 1 Logic 0
Logic 1 Logic 1 Activ Cut-off Cut-off Active Logic 1 Logic 0

In terms of 0 and 1, Table above can be written as in Table below.

A B Y1 Y2
0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

Symbol of OR / NOR gate

The circuit shown in above Fig acts as a two-input OR/NOR gate and its truth table is
given in Table above. Also, the logic symbol of emitter coupled logic OR / NOR gate is
shown here.

Classification of memories
Introduction: Memory is a collection of cells capable of storing a large quantity of binary
information. In to which binary information is transferred for storage and from which
information is available when needed for processing.
Memory Device: Device to which binary information is transferred for storage, and from
which information is available for processing as needed.
Memory Unit: Is a collection of cells capable of storing a large quantity of binary
Information Computer memory is broadly divided into two groups and they are:

• Primary /main memory
• Secondary memory/External Memory

193

Fig Classification of Memory

Primary memory:

Primary memory is the only type of memory which is directly accessed by the CPU.
The CPU continuously reads instructions stored in the primary memory and executes them.
Any data that has to be operated by the CPU is also stored. The information is transferred to
various locations through the BUS. Primary memories are of two types. They are:

• RAM
• ROM

RAM: It stands for Random Access Memory. Here data can be stored temporarily, so this
type of memory is called as temporary memory or volatile memory because when power fails
the data from RAM will be erased. The information stored in the RAM is basically loaded
from the computer’s disk and includes information related to the operating system and
applications that are currently executed by the processor. RAM is considered random access
because any memory cell can be directly accessed if its address is known. RAM is of distinct
types like SRAM, DRAM, and VRAM.

ROM: It stands for Read Only Memory. In this, the data will be furnished by the
manufacturers regarding the system, so this information can simply be read by the user but
cannot add new data or it cannot be modified.
Types of ROM:
The required paths in a ROM may be programmed in four different ways.

• Mask programming
• Read-only memory (PROM)
• Erasable PROM (EPROM)
• Electrically-erasable PROM (EEPROM)

PROM : The PROM units contain all the fuses intact initially. Fuses are blown by
application of a high voltage pulse to the device through a special pin by special instruments
called PROM programmers. The program is once Written / programmed then it is
irreversible. In A mask Programmable ROM, the data array is permanently stored during
fabrication. This is done by selectively including switching element where a 1 is desired in

194

the data array. The designer of the circuit should provide the ROM program, which is simply
the content of the storage array to the IC manufacture. Once the ROM is fabricated, the data
array cannot be charged. Mask prorgammable ROMs are used when the ROM contents are
not expected to change during the lifetime of the ROM.

EPROM: Floating gates served as programmed connections. When placed under ultraviolet
light, short wave radiation discharges the gates and makes the EPROM returns to its initial
state. It is reprogrammable. EPROMs use a special charge storage mechanism to enable or
disable the switching element in the data array. A PROM programmer is used to store the
charge at the selected switching elements while the EPROMs is programmed .The charge is
retained by the EPROM. Thereby retaining the program until the EPROM is erased by using
an ultraviolet light. Once erased, the EPROM can be reprogrammed. This type of ROM is
useful in the early development phased of Digital circuit design, when it is often necessary to
modify the data array

EEPROM: Erasable with an electrical signal instead of ultraviolet light. Longer time is
needed to write flash ROM. It has limited times of write operations.
Random Access Memory (RAM)

The Random access memory, called "RAM" in short, is also known as the primary
memory of the computer. RAM is considered as random access because of the fact that it can
access any memory cell directly with the knowledge of the point of intersection of the row
and column at that cell. It is also called as read write memory or the main memory or the
primary memory. The programs and data that the CPU requires during execution of a
program are stored in this memory. It is a volatile memory as the data loses when the power
is turned off. RAM is further classified into two types- SRAM (Static Random Access
Memory) and DRAM (Dynamic Random Access Memory).

Secondary memory: Secondary memory or auxiliary memory consists of slower and less
expensive device that communicates indirectly with CPU via main memory. The secondary
memory stores the data and keeps it even when the power fails. It is used to store or save
large data or programs or other information. The secondary storage devices are explained
below:

• Magnetic disks
• Magnetic tape
• Optical disk
• USB flash drive
• Mass storage devices

Magnetic disks: Magnetic disks are made of rigid metals or synthetic plastic material. The
disk platter is coated on both the surfaces with magnetic material and both the surfaces can be
used for storage. The magnetic disk furnishes direct access and is for both small and large
computer systems. The magnetic disk comes in two forms: Floppy disks and Hard disks

195

Magnetic tape: magnetic tape is serial access storage medium and it can store a large volume
of data at low costs. The conventional magnetic tape is in reels of up to 3600 feet made of
Mylar plastic tape. The tape is one-half inch in width and is coated with magnetic material on
one side. The reel of tape is loaded on a magnetic tape drive unit. During any read/write
operation, the tape is moved from one spool to another in the same way as in the
audiocassette tape recorder. The magnetic tape is densely packed with magnetic spots in
frames across its width.

Optical drives: optical drives are a storage medium from which data is read and to which it
is written by lasers. Optical disks can store much more data up to 6GB. Optical store devices
are the most widely used and reliable storage devices. The most widely used type of optical
storage devices are explained below:

• CD – ROM
• DVD – ROM
• CD – RECORDABLE
• CD – REWRITABLE
• PHOTO – CD

USB flash drives: USB flash drives are removable, rewritable and are physically much
smaller drives, which have the weight of less than 30g. In the year of 2010, the storage
capacity of the USB flash drives was as large as 256GB. Such devices are a good substitute
for floppy disks and CD – ROMs as they are smaller, faster, have thousands of times more
capacity, and are more durable and reliable. Until 2005, most desktop and laptop computers
had floppy disk drives, but nowadays floppy disk drives have been abandoned in favor of
USB ports. The USB connector is often protected inside a removable cap, although it is not
likely to be damaged if unprotected. USB flash drives draw power from the computer
through external USB connection. The most widely used USB flash drives are the memory
cards.
Mass storage devices: Mass storage devices refer to the saving of huge data in a persistent
manner. Mass storage machines can store up to several trillion bytes of data and hence are
used to store or save large databases, such as the information of customers of a big retail
chain and library transactions of students in a college. Some of the commonly used mass
storage devices are explained below:

• Disk array
• Automated tape
• CD – ROM jukebox

Memory Hierarchy : The total memory capacity of a computer can be visualized by
hierarchy of components. The memory hierarchy system consists of all storage devices

196

contained in a computer system from the slow Auxiliary Memory to fast Main Memory and
to smaller Cache memory.

Comparison between RAM and ROM:

S.No RAM ROM

1
RAMs have both read and write

capability.
ROMs have only read operation.

2 RAMs are volatile memories. ROMs are non-volatile memories.

3
They lose stored data when the

power is turned OFF.

They retain stored data even if power is

turned off.

4
RAMs are available in both

bipolar and MOS technologies.

RAMs are available in both bipolar and

MOS technologies.

5 Types: SRAM, DRAM, EEPROM Types: PROM, EPROM.

Comparison between SRAM and DRAM:

S.No Static RAM Dynamic RAM

1 It contains less memory cells per unit
area.

It contains more memory cells per unit
area.

2 Its access time is less, hence faster
memories.

Its access time is greater than static RAM

197

3 It consists of number of flip-
flops. Each flip-flop stores one
bit.

It stores the data as a charge on the
capacitor.
It consists of MOSFET and capacitor for
each cell.

4 Refreshing circuitry is not
required.

Refreshing circuitry is required to maintain
the charge on the capacitors every time
after every few milliseconds. Extra
hardware is required to control refreshing.

5 Cost is more Cost is less.

Comparison of Types of Memories:

Memory

type
Non- Volatile High Density

One- Transistor

cell

In-system

writ ability

SRAM No No No Yes

DRAM No Yes Yes Yes

ROM Yes Yes Yes No

EPROM Yes Yes Yes No

EEPROM Yes No No Yes

PROGRAMMABLE LOGIC DEVICES (PLDs)
INTRODUCTION:

 A combinational PLD is an integrated circuit with programmable gates divided
into an AND array and an OR array to provide an AND-OR sum of product implementation.
The PLD‘s can be reprogrammed in few seconds and hence gives more flexibility to
experiment with designs. Reprogramming feature of PLDs also makes it possible to accept
changes/modifications in the previously design circuits.

The advantages of using programmable logic devices are:

• Reduced space requirements.

• Reduced power requirements.

• Design security.

• Compact circuitry.

• Short design cycle.

• Low development cost.

198

• Higher switching speed.

• Low production cost for large-quantity production.

According to architecture, complexity and flexibility in programming in PLD‘s are

classified as

• PROMs : Programmable Read Only memories,

• PLAs : Programmable Logic Arrays,

• PAL : Programmable Logic Array,

• FPGA : Field Programmable Gate Arrays,

• CPLDs : Complex Programmable Logic Devices.

Programmable Arrays:

All PLDs consists of programmable arrays. A programmable array is essentially a grid of
conductors that form rows and columns with a fusible link at each cross point. Arrays can be
either fixed or programmable.

The OR Array:

It consists of an array of OR gates connected to a programmable matrix with fusible
links at each cross point of a row and column, as shown in the figure below. The array can be
programmed by blowing fuses to eliminate selected variables from the output functions. For
each input to an OR gate, only one fuse is left intact in order to connect the desired variable
to the gate input. Once the fuse is blown, it cannot be reconnected.
Another method of programming a PLD is the antifuse, which is the opposite of the fuse.
Instead of a fusible link being broken or opened to program a variable, a normally open
contact is shorted by ―melting‖ the antifuse material to form a connection.

199

Fig. An example of a basic programmable OR array
The AND Array:

This type of array consists of AND gates connected to a programmable matrix with
fusible links at each cross points, as shown in the figure below. Like the OR array, the AND
array can be programmed by blowing fuses to eliminate selected variables from the output
functions. For each input to an AND gate, only one fuse is left intact in order to connect the
desired variable to the gate input. Also, like the OR array, the AND array with fusible links or
with antifuses is one-time programmable.

Fig. An example of a basic programmable AND array

Classification of PLDs

There are three major types of combinational PLDs and they differ in the placement of the
programmable connections in the AND-OR array. The configuration of the three PLDs is
shown below.

200

Programmable Read-Only Memory (PROM):

A PROM consists of a set of fixed (non-programmable) AND array constructed as a decoder
and a programmable OR array. The programmable OR gates implement the Boolean
functions in sum of minterms

Fig. Programmable read- only memory (PROM)

.

Programmable Logic Array (PLA):
A PLA consists of a programmable AND array and a programmable OR array.
The product terms in the AND array may be shared by any OR gate to provide the required
sum of product implementation. The PLA is developed to overcome some of the limitations
of the PROM. The PLA is also called an FPLA (Field Programmable Logic Array) because
the user in the field, not the manufacturer, programs it.

Fig. Programmable Logic Array (PLA)

Programmable Array Logic (PAL):
The basic PAL consists of a programmable AND array and a fixed OR array. The

AND gates are programmed to provide the product terms for the Boolean functions, which
are logically summed in each OR gate. It is developed to overcome certain disadvantages of
the PLA, such as longer delays due to the additional fusible links that result from using two
programmable arrays and more circuit complexity.

Fig. Programmable Array Logic (PAL)

201

Array logic Symbols:

PLDs have hundreds of gates interconnected through hundreds of electronic fuses. It is
sometimes convenient to draw the internal logic of such device in a compact form referred to
as array logic.

PROGRAMMABLE ROM:

PROMs are used for code conversions, generating bit patterns for characters and as
look-up tables for arithmetic functions. As a PLD, PROM consists of a fixed AND-array and
a programmable OR array. The AND array is an n-to-2n decoder and the OR array is simply
a collection of programmable OR gates. The OR array is also called the memory array. The
decoder serves as a minterm generator. The n-variable minterms appear on the 2n lines at the
decoder output. The 2n outputs are connected to each of the ‗m‘ gates in the OR array via
programmable fusible links.

2n x m PROM

202

Implementation of Combinational Logic Circuit using PROM

1.Using PROM realize the following expression

F1 (A, B, C) = ∑m (0, 1, 3, 5, 7)

F2 (A, B, C) = ∑m (1, 2, 5, 6)

Truth table for the given function

A B C F1 F2

0 0 0 1 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 1

1 1 1 1 0

203

2. Design a combinational circuit using PROM. The circuit accepts 3-bit binary and
generates its equivalent Excess-3 code.
Truth table for the given function

B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 1 1

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 1

1 0 1 1 0 0 0

1 1 0 1 0 0 1

1 1 1 1 0 1 0

204

PROGRAMMABLE LOGIC ARRAY: (PLA)

The PLA is similar to the PROM in concept except that the PLA does not provide full
coding of the variables and does not generate all the minterms.
The decoder is replaced by an array of AND gates that can be programmed to generate any
product term of the input variables. The product term are then connected to OR gates to
provide the sum of products for the required Boolean functions. The AND gates and OR
gates inside the PLA are initially fabricated with fuses among them. The specific boolean
functions are implemented in sum of products form by blowing the appropriate fuses and
leaving the desired connections.

205

Fig. PLA block diagram

The block diagram of the PLA is shown above. It consists of ‗n‘ inputs, ‗m‘ outputs, ‗k‘
product terms and ‗m‘ sum terms. The product terms constitute a group of ‗k‘ AND gates and
the sum terms constitute a group of ‗m‘ OR gates. Fuses are inserted between all ‗n‘ inputs
and their complement values to each of the AND gates. Fuses are also provided between the
outputs of the AND gate and the inputs of the OR gates. Another set of fuses in the output
inverters allow the output function to be generated either in the AND-OR form or in the
AND-OR-INVERT form. With the inverter fuse in place, the inverter is bypassed, giving
an AND-OR implementation. With the fuse blown, the inverter becomes part of the circuit
and the function is implemented in the AND-OR- INVERT form.

Implementation of Combinational Logic Circuit using PLA
1.Implement the combinational circuit with a PLA having 3 inputs, 4 product terms and

2 outputs for the functions.
F1 (A, B, C) = ∑m (0, 1, 2, 4)

F2 (A, B, C) = ∑m (0, 5, 6, 7)

Solution:
Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 1 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 0

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1

Step 2: K-map Simplification

206

With this simplification, total number of product term is 6. But we require only 4 product
terms. Therefore find out F1‘ and F2‘.

Now select, F1‘ and F2, the product terms are AC, AB, BC and A‘B‘C‘

Step 3: PLA Program table:

 Product

term

Inputs Outputs

A B C F1 (C) F2 (T)

AB 1 1 1 - 1 1

AC 2 1 - 1 1 1

BC 3 - 1 1 1 -

A‘B‘C‘ 4 0 0 0 - 1

In the PLA program table, first column lists the product terms numerically as 1, 2, 3,
and 5. The second column (Inputs) specifies the required paths between the AND gates and
the inputs. For each product term, the inputs are marked with 1, 0, or - (dash). If a variable
in the product form appears in its normal form, the corresponding input variable is marked
with a 1. If it appears complemented, the corresponding input variable is marked with a 0. If
the variable is absent in the product term, it is marked with a dash (-). The third column
(output) specifies the path between the AND gates and the OR gates. The output variables are
marked with 1‘s for all those product terms that formulate the required function.

Step 4: PLA Diagram

207

The PLA diagram uses the array logic symbols for complex symbols. Each input and its
complement is connected to the inputs of each AND gate as indicated by the intersections
between the vertical and horizontal lines. The output of the AND gate are connected to the
inputs of each OR gate. The output of the OR gate goes to an EX-OR gate where the other
input can be programmed to receive a signal equal to either logic 1 or 0.

The output is inverted when the EX-OR input is connected to 1 ie., (x Ex-OR 1= x’). The
output does not change when the EX-OR input is connected to 0 ie., (x Ex – OR 0=
2.Implement the combinational circuit with a PLA having 3 inputs, 4 product terms and

2 outputs for the functions. F1 (A, B, C) = ∑m (3, 5, 6, 7), F2 (A, B, C) = ∑m (0, 2, 4, 7)
Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

208

Step 2: K-map Simplification

With this simplification, total number of product term is 6. But we require only 4 product
terms. Therefore find out F1‘ and F2‘.

Now select, F1‘ and F2, the product terms are B’C’, A’C’, A’B’ and ABC.

Step 3: PLA Program table

Product

term
Inputs Outputs

A B C F1 (C) F2 (T)
B‘C‘ 1 - 0 0 1 1
A‘C‘ 2 0 - 0 1 1
A‘B‘ 3 0 0 - 1 -
ABC 4 1 1 1 - 1

Step 4: PLA Diagram

209

3. Implement the following functions using PLA.

F1 (A, B, C) = ∑m (1, 2, 4, 6)

F2 (A, B, C) = ∑m (0, 1, 6, 7)

F3 (A, B, C) = ∑m (2, 6)

Solution:
Step 1: Truth table for the given functions

A B C F1 F2 F3
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 1 0 1
0 1 1 0 0 0
1 0 0 1 0 0
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 0 1 0

Step 2: K-map Simplification

210

Step 3: PLA Program table

 Product

Term

Inputs Outputs

A B C F1 (T) F2 (T) F3 (T)

A‘B‘C 1 0 0 1 1 - -

AC‘ 2 1 - 0 1 - -

BC‘
3 - 1 0 1 - 1

A‘B‘
4 0 0 - - 1 -

AB
5 1 1 - - 1 -

Step 4: PLA Diagram

211

4. A combinational circuit is designed by the function F1 (A, B, C) = ∑m (3, 5, 7)
F2 (A, B, C) = ∑m (4, 5, 7)
Solution:

Step 1: Truth table for the given functions

A B C F1 F2
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 1
1 0 1 1 1
1 1 0 0 0
1 1 1 1 1

212

Step 2: K-map Simplification

Step 3: PLA Program table

 Product

term

Inputs Outputs

A B C F1 (C) F2 (T)

AC BC
AB‘

1 1 - 1 1 1

2 - 1 1 1 -

3 1 0 - - 1

Step 4: PLA Diagram

213

Programmable Array Logic (PAL)

PAL is a programmable logic device that has Programmable AND array & fixed OR
array. The advantage of PAL is that we can generate only the required product terms of
Boolean function instead of generating all the min terms by using programmable AND gates.
The block diagram of PAL is shown in the following figure.

Here, the inputs of AND gates are programmable. That means each AND gate has
both normal and complemented inputs of variables. So, based on the requirement, we can
program any of those inputs. So, we can generate only the required product terms by using
these AND gates. Here, the inputs of OR gates are not of programmable type. So, the number
of inputs to each OR gate will be of fixed type. Hence, apply those required product terms to
each OR gate as inputs. Therefore, the outputs of PAL will be in the form of sum of products
form

Example
Let us implement the following Boolean functions using PAL.
A=XY+XZ′ ; B=XY′+YZ′

The given two functions are in sum of products form. There are two product terms
present in each Boolean function. So, we require four programmable AND gates & two fixed
OR gates for producing those two functions. The corresponding PAL is shown in the
following figure.

The programmable AND gates have the access of both normal and complemented

inputs of variables. In the above figure, the inputs X, X′, Y, Y′, Z & ′Z′, are available at the
inputs of each AND gate. So, program only the required literals in order to generate one
product term by each AND gate. The symbol ‘X’ is used for programmable connections.

214

Here, the inputs of OR gates are of fixed type. So, the necessary product terms are
connected to inputs of each OR gate. So that the OR gates produce the respective Boolean
functions. The symbol ‘.’ is used for fixed connections.

Comparison between PROM, PLA, and PAL:

S.No PROM PLA PAL

1
AND array is fixed
and OR array is
programmable

Both AND and OR
arrays are programmable

OR array is fixed and
AND array is
programmable

2 Cheaper and simpler

to use
Costliest and complex Cheaper and simpler

3 All minterms are decoded

AND array can be
programmed to get desired
minterms

AND array can be
programmed to get
desired minterms

Field Programmable Gate Arrays (FPGA)

A more advanced programmable logic than the Complex Programmable Logic
Devices (CPLD) is the Field Programmable Gate Array (FPGA). CPLDs are created that
consist of multiple PLDs with programmable wiring channels between the PLDs. An FPGA
is more flexible than CPLD, allows more complex logic implementations, and can be used for
implementation of digital circuits that use equivalent of several Million logic gates. An FPGA
is like a CPLD except that its logic blocks that are linked by wiring channels are much
smaller than those of a CPLD and there are far more such logic blocks than there are in a
CPLD. FPGA logic blocks consist of smaller logic elements. A logic element has only one
flip-flop that is individually configured and controlled. Logic complexity of a logic element is
only about 10 to 20 equivalent gates. A further enhancement in the structure of FPGAs is the
addition of memory blocks that can be configured as a general purpose RAM.

 Fig FPGA general structure

An FPGA is an array of many logic blocks that are linked by horizontal and vertical
wiring channels. FPGA RAM blocks can also be used for logic implementation or they can

215

be configured to form memories of various word sizes and address space. Linking of logic
blocks with the I/O cells and with the memories are done through wiring channels. Within
logic blocks, smaller logic elements are linked by local wires. IO Cells Programmable Wiring
Channels Logic Blocks RAM Blocks 129 FPGAs from different manufacturers vary in
routing mechanisms, logic blocks, memories and I/O pin capabilities.

216

TEXT BOOKS:
1. Morris Mano, “Digital design”, 3rd Edition, Prentice Hall of India, 2008.

REFERENCE BOOKS:
1. Milos Ercegovac, Jomas Lang, “Introduction to Digital Systems”, Wiley publications,
1998.
2. John M. Yarbrough, “Digital logic: Applications and Design”, Thomas – Vikas Publishing
House, 2002.
3. R.P.Jain, “Modern digital Electronics”,3rd Edition, TMH, 2003.
4. William H. Gothmann, “Digital Electronics”, Prentice Hall, 2001.

QUESTION BANK

PART-A

1. Define fan-out?
2. Illustrate the basic TTL NAND gate.
3. Define CMOS.
4. List the application of ROM.
5. Distinguish between ROM and RAM.
6. Recall flash memory?
7. Name the digital IC families?
8. Discuss EEPROM and its advantages.
9. Distinguish PLA and PAL.
10. List the advantages of ECL logic families
11. Define FPGA.

PART-B

1. Discuss the impact of characteristics of a logic family in choosing a suitable family.
2. RTL,DTL can be used for designing a logic gate, Justify the answer with suitable

circuit diagram
3. Explain about MOS and CMOS technologies for the design of logic circuits,

Illustrate your answer with suitable diagram.
4. Discuss the TTL and ECL families be used for the design of logic circuits.
5. Explain briefly about the bipolar transistor characteristics.
6. Distinguish the following memories.

a. RAM and ROM
b. ROM and EEPROM
c. EPROM and EEPROM
d. SRAM and DRAM

