

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – I – Programming in MATLAB – SEC1618

SEC1618-PROGRAMMING IN MATLAB

MATLAB® is a very powerful software package that has many built-in tools for solving

problems and for graphical illustrations. The simplest method for using the MATLAB product is

interactively; an expression is entered by the user and MATLAB immediately responds with a

result. It is also possible to write programs in MATLAB, which are essentially groups of

commands that are executed sequentially. This chapter will focus on the basics, including many

operators and built-in functions that can be used in interactive expressions. Means of storing

values, including vectors and matrices, will also be introduced.

MATrix LABoratory (MATLAB)

o Basically deals with interactive matrix calculations

o Special purpose computer program optimized to perform Engineering and Scientific

calculations

 Has built in integrated development environment

o Supports different platform (windows 9x/NT/ 2000, Unix,etc.,)

o Has extensive library and built in functions for various field.

o MATLAB complier is an interpreter

o Includes tools that allow Graphical User Interface (GUI)

 Visit : https://in.mathworks.com

GETTING INTO MAT LAB

MATLAB is a mathematical and graphical software package; it has numerical, graphical, and

programming capabilities. It has built-in functions to do many operations, and there are

toolboxes that can be added to augment these functions (e.g., for signal processing). There are

versions available for different hardware platforms, and there are both professional and student

editions. When the MATLAB software is started, a window is opened: the main part is the

Command Window (see Figure 1.1). In the Command Window, there is a statement that says:

In the Command Window, you should see:

>>

The >> is called the prompt. In the Student Edition, the prompt

appears as: EDU>>

UNIT 1 INTRODUCTION

Menus & Tool bars, Variables – Matrices and Vectors- initializing vectors- data types-

Functions –user defined functions-passing arguments-writing data to a file-reading data from a

file- using functions with vectors and matrices- cell arrays & structures -Strings -2D strings-

String comparing- Concatenation – Input and Output statements - Script files

Figure 1.1 MATLAB Window

In the Command Window, MATLAB can be used interactively. At the prompt, any MATLAB

command or expression can be entered, and MATLAB will immediately respond with the result.

It is also possible to write programs in MATLAB, which are contained in script files or M-files.

There are several commands that can serve as an introduction to MATLAB and allow you to get

help:

info will display contact information for the product

demo has demos of several options in MATLAB

help will explain any command; help help will explain how help works

help browser opens a Help Window

lookfor searches through the help for a specific string (be aware that this can take a long

time)

To get out of MATLAB, either type quit at the prompt, or chooses File, then Exit MATLAB

from the menu. In addition to the Command Window, there are several other windows that can

be opened and may be opened by default. What is described here is the default layout for these

windows, although there are other possible configurations. Directly above the Command

Window, there is a pull-down menu for the Current Directory. The folder that is set as the

Current Directory is where files will be saved. By default, this is the Work Directory, but that

can be changed.

To the left of the Command Window, there are two tabs for Current Directory Window and

Workspace Window. If the Current Directory tab is chosen, the files stored in that directory are

displayed. The Command History Window shows commands that have been entered, not just in

the current session (in the current Command Window), but previously as well. This default

configuration can be altered by clicking Desktop, or using the icons at the top-right corner of

each window: either an ―x,‖ which will close that particular window; or a curled arrow, which in

its initial state pointing to the upper right lets you undock that window. Once undocked, clicking

the curled arrow pointing to the lower right will dock the window again.

VARIABLES AND ASSIGNMENT STATEMENTS

In order to store a value in a MATLAB session, or in a program, a variable is used. The

Workspace Window shows variables that have been created. One easy way to create a variable is

to use an assignment statement. The format of an assignment statement is

variablename = expression

The variable is always on the left, followed by the assignment operator, = (unlike in

mathematics, the single equal sign does not mean equality), followed by an expression. The

expression is evaluated and then that value is stored in the variable. For example, this is the way

it would appear in the Command Window:

>> mynum = 6

mynum

= 6

>>

Here, the user (the person working in MATLAB) typed mynum = 6 at the prompt, and

MATLAB stored the integer 6 in the variable called mynum, and then displayed the result

followed by the prompt again. Since the equal sign is the assignment operator, and does not

mean equality, the statement should be read as

―mynum gets the value of 6‖ (not ―mynum equals 6‖). Note that the variable name must always be

on the left, and the expression on the right. An error will occur if these are reversed.

>> 6 = mynum

??? 6 = mynum

|

Error: The expression to the left of the equals sign is not a valid target for an

assignment. Putting a semicolon at the end of a statement suppresses the output.

For example,

>> res = 9 – 2;

>>

This would assign the result of the expression on the right side, the value 7, to the variable res; it

just doesn‘t show that result. Instead, another prompt appears immediately. However, at this

point in the Workspace Window the variables mynum and res can be seen.

Note: In the remainder of the text, the prompt that appears after the result will not be shown. The

spaces in a statement or expression do not affect the result, but make it easier to read. The

following statement that has no spaces would accomplish exactly the same thing as the previous

statement:

>> res = 9–2;

MATLAB uses a default variable named ans if an expression is typed at the prompt and it is not

assigned to a variable. For example, the result of the expression 6 3 is stored in the variable ans:

>> 6 + 3

ans

= 9

This default variable is reused any time just an expression is typed at the prompt. A short-cut for

retyping commands is to press the up-arrow, which will go back to the previously typed

command(s). For example, if you decided to assign the result of the expression 6 3 to the variable

res instead of using the default ans, you could press the up-arrow and then the left-arrow to

modify the command rather than retyping the whole statement:

>> res = 6 + 3

res

= 9

This is very useful, especially if a long expression is entered with an error, and you want to go

back to correct it. To change a variable, another assignment statement can be used that assigns

the value of a different expression to it. Consider, for example, the following sequence of

statements:

>> mynum = 3

mynum

= 3

>> mynum = 4 + 2

mynum =

6

>> mynum = mynum + 1

mynum

= 7

In the first assignment statement, the value 3 is assigned to the variable mynum. In the next

assignment statement, mynum is changed to have the value of the expression 4 2, or 6. In the

third assignment statement, mynum is changed again, to the result of the expression mynum 1.

Since at that time mynum had the value 6, the value of the expression was 6 1, or 7. At that point,

if the expression mynum 3 is entered, the default variable ans is used since the result of this

expression is not assigned to a variable.

Thus, the value of ans becomes 10 but mynum is unchanged (it is still 7). Note that just typing

the name of a variable will display its value.

>> mynum + 3

ans =

10

>>

mynum

mynum =

7

INITIALIZING, INCREMENTING, AND DECREMENTING

Frequently, values of variables change. Putting the first or initial value in a variable is called

initializing the variable. Adding to a variable is called incrementing. For example, the statement

mynum = mynum + 1

increments the variable mynum by 1.

VARIABLE NAMES

Variable names are an example of identifier names. We will see other examples of identifier

names, such as filenames, in future chapters. The rules for identifier names are:

 The name must begin with a letter of the alphabet. After that, the name can contain

letters, digits, and the underscore character (e.g., value_1), but it cannot have a space.

 There is a limit to the length of the name; the built-in function namelengthmax tells how

many characters this is.

 MATLAB is case-sensitive. That means that there is a difference between upper- and

lowercase letters. So, variables called mynum, MYNUM, and Mynum are all different.

There are certain words called reserved words that cannot be used as variable

names. Names of built-in functions can, but should not, be used as variable

names.

Additionally, variable names should always be mnemonic, which means they should make some

sense. For example, if the variable is storing the radius of a circle, a name such as ―radius‖ would

make sense; ―x‖ probably wouldn‘t. The Workspace Window shows the variables that have

been created in the current Command Window and their values.

The following commands relate to variables:

 who shows variables that have been defined in this Command Window (this just shows

the names of the variables)

 whos shows variables that have been defined in this Command Window (this shows

more information on the variables, similar to what is in the Workspace Window)

clear clears out all variables so they no longer exist

clear variablename clears out a particular variable

If nothing appears when who or whos is entered, that means there aren‘t any variables! For

example, in the beginning of a MATLAB session, variables could be created and then selectively

cleared (remember that the semicolon suppresses output):

>> who

>> mynum = 3;

>> mynum + 5;

>> who

Your variables are:

Ans mynum

>> clear mynum

>> who

Your variables are:

ans

EXPRESSIONS

Expressions can be created using values, variables that have already been created, operators,

built-in functions, and parentheses. For numbers, these can include operators such as

multiplication, and functions such as trigonometric functions. An example of such an expression

would be:

>> 2 * sin(1.4)

ans =

1.970

9

The Format Function and Ellipsis

The default in MATLAB is to display numbers that have decimal places with four decimal

places, as already shown. The format command can be used to specify the output format of

expressions. There are many options, including making the format short (the default) or long.

For example, changing the format to long will result in 15 decimal places. This will remain in

effect until the format is changed back to short, as demonstrated with an expression and with the

built-in value for pi.

>> format long

>> 2 * sin(1.4)

ans =

1.9708994599769

20

>>

pi

ans

=

3.141592653589793

>> format short

>> 2 * sin(1.4)

ans =

1.970

9

>> pi

ans =

3.141

6

The format command can also be used to control the spacing between the MATLAB command

or expression and the result; it can be either loose (the default) or compact

>> format loose

>> 2^7

ans

=

128

>> format compact

>> 2^7

ans

=

128

Especially long expressions can be continued on the next line by typing three (or more) periods,

which is the continuation operator, or the ellipsis. For example,

>> 3 + 55 – 62 + 4 – 5 .â•›.â•›.

+ 22 – 1

ans

= 16

BUILT-IN FUNCTIONS AND HELP

There are many, many built-in functions in MATLAB. The help command can be used to find

out what functions MATLAB has, and also how to use them. For example, typing help at the

prompt in the Command Window will show a list of help topics, which are groups of related

functions. This is a very long list; the most elementary help topics are in the beginning.

For example, one of these is listed as matlab\elfun; it includes the elementary math functions.

Another of the first help topics is matlab\ops, which shows the operators that can be used in

expressions. To see a list of the functions contained within a particular help topic, type help

followed by the name of the topic. For example,

>> help elfun

will show a list of the elementary math functions. It is a very long list, and is broken into

trigonometric (for which the default is radians, but there are equivalent functions that instead use

degrees), exponential, complex, and rounding and remainder functions. To find out what a

particular function does and how to call it, type help and then the name of the function. For

example,

>> help sin

will give a description of the sin function.

To call a function, the name of the function is given followed by the argument(s) that are passed

to the function in parentheses. Most functions then return value(s). For example, to find the

absolute value of –4, the following expression would be entered:

>> abs(–4)

which is a call to the function abs. The number in the parentheses, the –4, is the argument. The

value 4 would then be returned as a result. In addition to the trigonometric functions, the elfun

help topic also has some rounding and remainder functions that are very useful. Some of these

include fix, floor, ceil, round, rem, and sign. The rem function returns the remainder from a

division; for example 5 goes into 13 twice with a remainder of 3, so the result of this expression

is 3:

>> rem(13,5)

ans

= 3

Another function in the elfun help topic is the sign function, which returns 1 if the argument is

positive, 0 if it is 0, and –1 if it is negative. For example,

>> sign(–5)

ans =

–1

>> sign(3)

ans

= 1

CONSTANTS

Variables are used to store values that can change, or that are not known ahead of time. Most

languages also have the capacity to store constants, which are values that are known ahead of

time, and cannot possibly change. An example of a constant value would be pi, or , which is

3.14159…. In MATLAB, there are functions that return some of these constant values. Some of

these include:

pi 3.14159….

i square root of 1

j square root of 1

inf infinity

NaN stands for ―not a number‖; e.g., the result of 0/0

TYPES

Every expression, or variable, has a type associated with it. MATLAB supports many types of

values, which are called classes. A class is essentially a combination of a type and the operations

that can be performed on values of that type. For example, there are types to store different kinds

of numbers. For float or real numbers, or in other words numbers with a decimal place (e.g., 5.3),

there are two basic types: single and double. The name of the type double is short for double

precision; it stores larger numbers than single. MATLAB uses a floating point representation for

these numbers. For integers, there are many integer types (e.g., int8, int16, int32, and int64).

The numbers in the names represent the number of bits used to store values of that type. For

example, the type int8 uses eight bits altogether to store the integer and its sign. Since one bit is

used for the sign, this means that seven bits are used to store the actual number. Each bit stores

the number in binary (0‘s or 1‘s), and 0 is also a possible value, which means that 2 ^ 7 – 1 or

127 is the largest number that can be stored. The range of values that can be stored in int8 is

actually from –128 to 127. This range can be found for any type by passing the name of the type

as a string (which means in single quotes) to the functions intmin and intmax. For example,

>> intmin(‘int8’)

ans =

–128

>> intmax(‘int8’)

ans

=

127

The larger the number in the type name, the larger the number that can be stored in it. We will

for the most part use the type int32 when an integer type is required. The type char is used to

store either single characters (e.g., ‗x‘) or strings, which are sequences of characters (e.g.,

‗cat‘). Both characters and strings are enclosed in single quotes. The type logical is used to store

true/false values. If any variables have been created in the Command Window, they can be seen

in the Workspace Window. In that window, for every variable, the variable name, value, and

class (which is essentially its type) can be seen. Other attributes of variables can also be seen in

the Workspace Window. Which attributes are visible by default depends on the version of

MATLAB. However, when the Workspace Window is chosen, clicking View allows the user to

choose which attributes will be displayed. By default, numbers are stored as the type double in

MATLAB. There are, however, many functions that convert values from one type to another.

The names of these functions are the same as the names of the types just shown. They can be

used as functions to convert a value to that type. This is called casting the value to a different

type, or type casting. For example, to convert a value from the type double, which is the default,

to the type int32, the function int32 would be used. Typing the following assignment statement:

>> val = 6+3

would result in the number 9 being stored in the variable val, with the default type of double,

which can be seen in the Workspace Window. Subsequently, the assignment statement

>> val = int32(val);

would change the type of the variable to int32, but would not change its value. If we instead

stored the result in another variable, we could see the difference in the types by using whos.

>> val = 6 + 3;

>> vali = int32(val);

>> whos

Name Size Bytes Class Attributes

val 1x

1

8 doubl

e

vali 1x

1

4 int32

One reason for using an integer type for a variable is to save space.

RANDOM NUMBERS

When a program is being written to work with data, and the data is not yet available, it is often

useful to test the program first by initializing the data variables to random numbers. There are

several built-in functions in MATLAB that generate random numbers, some of which will be

illustrated in this section. Random number generators or functions are not truly random.

Basically, the way it works is that the process. starts with one number, called a seed. Frequently,

the initial seed is either a predetermined value or it is obtained from the built-in clock in the

computer. Then, based on this seed, a process determines the next random number. Using that

number as the seed the next time, another random number is generated, and so forth. These are

actually called pseudo-random; they are not truly random because there is a process that

determines the next value each time. The function rand can be used to generate random real

numbers; calling it generates one random real number in the range from 0 to 1. There are no

arguments passed to the rand function. Here are two examples of calling the rand function:

>> rand

ans =

0.9501

>> rand

ans =

0.2311

The seed for the rand function will always be the same each time MATLAB is started, unless the

state is changed, for example, by the following:

rand(‘state’,sum(100*clock))

This uses the current date and time that are returned from the built-in clock function to set the

seed. Note: this is done only once in any given MATLAB session to set the seed; the rand

function can then be used as shown earlier any number of times to generate random numbers.

Since rand returns a real number in the range from 0 to 1, multiplying the result by an integer N

would return a random real number in the range from 0 to N. For example, multiplying by 10

returns a real in the range from 0 to 10, so this expression rand*10

would return a result in the range from 0 to 10. To generate a random real number in the range

from low to high, first create the variables low and high. Then, use the expression rand*(high–

low) low. For example, the sequence

>> low = 3;

>> high = 5;

>> rand*(high–low)+low

would generate a random real number in the range from 3 to 5.

However, in MATLAB, there is another built-in function that specifically generates random

integers,

randint. Calling the function with randint(1,1,N) generates one random integer in the range from

0 to N –

1. The first two arguments essentially specify that one random integer will be returned; the third

argument gives the range of that random integer. For example,

>> randint(1,1,4)

generates a random integer in the range from 0 to 3. Note: Even though this creates random

integers, the type is actually the default type double. A range can also be passed to the randint

function. For example, the following specifies a random integer in the range from 1 to 20:

>> randint(1,1,[1,20])

VECTORS AND MATRICES

Vectors and matrices are used to store sets of values, all of which are the same type. A vector

can be either a row vector or a column vector. A matrix can be visualized as a table of values.

The dimensions of a matrix are r × c, where r is the number of rows and c is the number of

columns. This is pronounced ―r by c.‖ If a vector has n elements, a row vector would have the

dimensions 1 × n, and a column vector would have the dimensions n × 1. A scalar (one value)

has the dimensions 1 × 1. Therefore, vectors and scalars are actually just subsets of matrices.

Here are some diagrams showing, from left to right, a scalar, a column vector, a row vector, and

a matrix:

3

7

4

5 88 3 11

9 6 3

5 7 2

4 33 8

5

The scalar is 1 × 1, the column vector is 3 × 1 (3 rows by 1 column), the row vector is 1 × 4 (1

row by 4 columns), and the matrix is 3 × 3. All the values stored in these matrices are stored in

what are called elements. MATLAB is written to work with matrices; the name MATLAB is

short for ―matrix laboratory.‖ For this reason, it is very easy to create vector and matrix variables,

and there are many operations and functions that can be used on vectors and matrices. A vector

in MATLAB is equivalent to what is called a one-dimensional array in other languages. A

matrix is equivalent to a two-dimensional array. Usually, even in MATLAB, some operations

that can be performed on either vectors or matrices are referred to as array operations. The term

array also frequently is used to mean generically either a vector or a matrix.

CREATING ROW VECTORS

There are several ways to create row vector variables. The most direct way is to put the values

that you want in the vector in square brackets, separated by either spaces or commas. For

example, both of these assignment statements create the same vector v:

>> v = [1 2 3 4]

v =

1 2 3 4

>> v = [1,2,3,4]

v =

1 2 3 4

Both of these create a row vector variable that has four elements; each value is stored in a

separate element in the vector.

The Colon Operator and Linspace Function

If, as in the earlier examples, the values in the vector are regularly spaced, the colon operator

can be used to iterate through these values. For example, 1:5

results in all the integers from 1 to 5:

>> vec = 1:5

vec =

1 2 3 4 5

Note that in this case, the brackets [] are not necessary to define the vector.

With the colon operator, a step value can also be specified with another colon, in the form

(first:step:last). For example, to create a vector with all integers from 1 to 9 in steps of 2:

>> nv = 1:2:9

nv =

1 3 5 7 9

Similarly, the linspace function creates a linearly spaced vector; linspace(x,y,n) creates a vector

with n values in the inclusive range from x to y. For example, the following creates a vector with

five values linearly spaced between 3 and 15, including the 3 and 15:

>> ls = linspace(3,15,5)

ls =

3 6 9 12 15

Vector variables can also be created using existing variables. For example, a new vector is created

here consisting first of all the values from nv followed by all values from ls:

>> newvec = [nv ls]

newvec =

1 3 5 7 9 3 6 9 12 15

Putting two vectors together like this to create a new one is called concatenating the vectors.

REFERRING TO AND MODIFYING ELEMENTS

A particular element in a vector is accessed using the name of the vector variable and the element

number (or index, or subscript) in parentheses. In MATLAB, the indices start at 1. Normally,

diagrams of vectors and matrices show the indices; for example, for the variable newvec created

earlier the indices 1–10 of the elements are shown above the vector:

1 2 3 4 5 6 7 8 9 10

1 3 5 7 9 3 6 9 12 15

For example, the fifth element in the vector newvec is a 9.

>> newvec(5)

ans

= 9

A subset of a vector, which would be a vector itself, can also be obtained using the colon

operator. For example, the following statement would get the fourth through sixth elements of

the vector newvec, and store the result in a vector variable b:

>> b = newvec(4:6)

b =

7 9 3

Any vector can be used for the indices in another vector, not just one created using the colon

operator. For example, the following would get the first, fifth, and tenth elements of the vector

newvec:

>> newvec([1 5 10])

ans =

1 9 15

The vector [1 5 10] is called an index vector; it specifies the indices in the original vector that are

being referenced. The value stored in a vector element can be changed by specifying the index or

subscript. For example, to change the second element from the vector b to now store the value 11

instead of 9:

>> b(2) = 11

b =

7 11 3

By using an index, a vector can also be extended. For example, the following creates a vector

that has three elements. By then referring to the fourth element in an assignment statement, the

vector is extended to have four elements.

>> rv = [3 55 11]

rv =

3 55 11

>> rv(4) = 2

rv =

3 55 11 2

If there is a gap between the end of the vector and the specified element, 0‘s are filled in. For

example, the following extends the variable created earlier again:

>> rv(6) = 13

rv =

3 55 11 2 0 13

CREATING COLUMN VECTORS

One way to create a column vector is by explicitly putting the values in square brackets, separated

by semicolons:

>> c = [1; 2; 3; 4]

c

=

1

2

3

4

There is no direct way to use the colon operator described earlier to get a column vector.

However, any row vector created using any of these methods can be transposed to get a column

vector. In general, the transpose of a matrix is a new matrix in which the rows and columns are

interchanged. For vectors, transposing a row vector results in a column vector, and transposing a

column vector results in a row vector. MATLAB has a built-in operator, the apostrophe, to get a

transpose.

>> r = 1:3;

>> c = r

c

=

1

2

3

CREATING MATRIX VARIABLES

Creating a matrix variable is really just a generalization of creating row and column vector

variables. That is, the values within a row are separated by either spaces or commas, and the

different rows are separated by semicolons. For example, the matrix variable mat is created by

explicitly typing values:

>> mat = [4 3 1; 2 5 6]

mat =

4 3 1

2 5 6

There must always be the same number of values in each row. If you attempt to create a matrix

in which there are different numbers of values in the rows, the result will be an error message;

for example:

>> mat = [3 5 7; 1 2]

??? Error using ==> vertcat

CAT arguments dimensions are not consistent. Iterators can also be used for the values on the

rows using the colon operator; for example:

>> mat = [2:4; 3:5]

mat =

2 3 4

3 4 5

Different rows in the matrix can also be specified by pressing the Enter key after each row

instead of typing a semicolon when entering the matrix values; for example:

>> newmat = [2 6 88

33 5 2]

newmat =

2 6 88

33 5 2

Matrices of random numbers can be created using the rand and randint functions. The first two

arguments to the randint function specify the size of the matrix of random integers. For

example, the following will create a 2 × 4 matrix of random integers, each in the range from 10

to 30:

>> randint(2,4,[10,30])

ans =

29 22 28 19

14 20 26 10

For the rand function, if a single value n is passed to it, an n × n matrix will be created, or

passing two arguments will specify the number of rows and columns:

>> rand(2)

ans =

0.2311 0.4860

0.6068 0.8913

>>

rand(1,3)

ans =

0.7621

0.4565

0.018

5

MATLAB also has several functions that create special matrices. For example, the zeros

function creates a matrix of all zeros. Like rand, either one argument can be passed (which will

be both the number of rows and columns), or two arguments (first the number of rows and then

the number of columns).

>> zeros(3)

ans =

0 0 0

0 0 0

0 0 0

>> zeros(2,4)

ans =

0 0 0 0

0 0 0 0

REFERRING TO AND MODIFYING MATRIX ELEMENTS

To refer to matrix elements, the row and then the column indices are given in parentheses

(always the row index first and then the column). For example, this creates a matrix variable mat,

and then refers to the value in the second row, third column of mat:

>> mat = [2:4; 3:5]

mat =

2 3 4

3 4 5

>> mat(2,3)

ans

= 5

It is also possible to refer to a subset of a matrix. For example, this refers to the first and second

rows, second and third columns:

>> mat(1:2,2:3)

ans =

3 4

4 5

Using a colon for the row index means all rows, regardless of how many, and using a colon for the

column index means all columns. For example, this refers to the entire first row:

>> mat(1,:)

ans =

2 3 4

and this refers to the entire second column:

>> mat(:, 2)

ans

= 3

4

If a single index is used with a matrix, MATLAB unwinds the matrix column by column. For

example, for the matrix intmat created here, the first two elements are from the first column, and

the last two are from the second column:

>> intmat = randint(2,2,[0 100])

intmat =

100 77

28 14

>> intmat(1)

ans

=

100

>> intmat(2)

ans

= 28

>> intmat(3)

ans

= 77

>> intmat(4)

ans

= 14

This is called linear indexing. It is usually much better style when working with matrices to

refer to the row and column indices, however. An individual element in a matrix can be modified

by assigning a value.

>> mat = [2:4; 3:5];

>> mat(1,2) = 11

mat =

2 11 4

3 4 5

An entire row or column could also be changed. For example, the following replaces the entire

second row with values from a vector:

>> mat(2,:) = 5:7

mat =

2 11 4

5 6 7

Notice that since the entire row is being modified, a vector with the correct length must be

assigned. To extend a matrix, an individual element could not be added since that would mean

there would no longer be the same number of values in every row. However, an entire row or

column could be added. For example, the following would add a fourth column to the matrix:

>> mat(:,4) = [9 2]’

mat =

2 11 4 9

5 6 7 2

Just as we saw with vectors, if there is a gap between the current matrix and the row or column

being added, MATLAB will fill in with zeros.

>> mat(4,:) = 2:2:8

mat =

2 11 4 9

5 6 7 2

0 0 0 0

2 4 6 8

DIMENSIONS

The length and size functions in MATLAB are used to find array dimensions. The length

function returns the number of elements in a vector. The size function returns the number of

rows and columns in a matrix. For a matrix, the length function will return either the number of

rows or the number of columns, whichever is largest. For example, the following vector, vec, has

four elements so its length is 4. It is a row vector, so the size is 1 × 4.

>> vec = -2:1

vec =

-2 -1 0 1

>> length(vec)

ans

= 4

>> size(vec)

ans =

1 4

For the matrix mat shown next, it has three rows and two columns, so the size is 3 × 2. The

length is the larger dimension, 3.

>> mat = [1:3; 5:7]’

mat =

1 5

2 6

3 7

>> size(mat)

ans =

3 2

>> length(mat)

ans

= 3

>> [r c] = size(mat)

r

=

3

c =

2

Note: The last example demonstrates a very important and unique concept in MATLAB: the

ability to have a vector of variables on the left-hand side of an assignment. The size function

returns two values, so in order to capture these values in separate variables we put a vector of

two variables on the left of the assignment. The variable r stores the first value returned, which is

the number of rows, and c stores the number of columns.

MATLAB also has a function, numel, which returns the total number of elements in any array

(vector or matrix):

>> vec = 9:–2:1

vec =

9 7 5 3 1

>> numel(vec)

ans

= 5

>> mat = randint(2,3,[1,10])

mat =

7 9 8

4 6 5

>> numel(mat)

ans

= 6

For vectors, this is equivalent to the length of the vector. For matrices, it is the product of the

number of rows and columns. MATLAB also has a built-in expression end that can be used to

refer to the last element in a vector; for example, v(end) is equivalent to v(length(v)). For

matrices, it can refer to the last row or column. So, using end for the row index would refer to

the last row. In this case, the element referred to is in the first column of the last row:

>> mat = [1:3; 4:6]’

mat =

1 4

2 5

3 6

>> mat(end,1)

ans

= 3

Using end for the column index would refer to the last column (e.g., the last column of the second

row):

>> mat(2,end)

ans

= 5

This can be used only as an index.

CHANGING DIMENSIONS

In addition to the transpose operator, MATLAB has several built-in functions that change the

dimensions or configuration of matrices, including reshape, fliplr, flipud, and rot90. The

reshape function changes the dimensions of a matrix. The following matrix variable mat is 3 4,

or in other words it has 12 elements.

>> mat = randint(3,4,[1 100])

mat =

14 61 2 94

21 28 75 47

20 20 45 42

These 12 values instead could be arranged as a 2 x 6 matrix, 6 x 2, 4 x3, 1x 12, or 12 x1. The

reshape function iterates through the matrix columnwise. For example, when reshaping mat into

a 2 6 matrix, the values from the first column in the original matrix (14, 21, and 20) are used

first, then the values from the second column (61, 28, 20), and so forth.

>> reshape(mat,2,6)

ans =

14 20 28 2 45 47

21 61 20 75 94 42

The fliplr function ―flips‖ the matrix from left to right (in other words the left-most column, the

first column, becomes the last column and so forth), and the flipud functions flips up to down.

Note that in these examples mat is unchanged; instead, the results are stored in the default

variable ans each time.

>> mat = randint(3,4,[1 100])

mat =

14 61 2 94

21 28 75 47

20 20 45 42

>>

fliplr(mat)

ans =

94 2 61 14

47 75 28 21

42 45 20 20

>>

mat

mat =

14

61

2

94

21 28 75 47

20 20 45 42

>> flipud(mat)

ans =

20 20 45 42

21 28 75 47

14 61 2 94

The rot90 function rotates the matrix counterclockwise 90 degrees, so for example the value in

the top-right corner becomes instead the top-left corner and the last column becomes the first

row:

>> mat

mat =

14 61 2 94

21 28 75 47

20 20 45 42

>>

rot90(mat)

ans =

94 47

42

2 75 45

61 28 20

14 21 20

The function repmat can also be used to create a matrix; repmat(mat,m,n) creates a larger

matrix, which consists of an m × n matrix of copies of mat. For example, here is a 2 × 2 random

matrix:

>> intmat = randint(2,2,[0 100])

intmat =

100

 7

7

28 14

The function repmat can be used to replicate this matrix six times as a 3 × 2 matrix of the variable

intmat.

>> repmat(intmat,3,2)

ans =

100 77 100 77

28 14 28 14

100 77 100 77

28 14 28 14

28 14 28 14

EMPTY VECTORS

An empty vector, or, in other words, a vector that stores no values, can be created using empty

square brackets:

>> evec = []

evec

= []

>> length(evec)

ans

= 0

Then, values can be added to the vector by concatenating, or adding values to the existing vector.

The following statement takes what is currently in evec, which is nothing, and adds a 4 to it.

>> evec = [evec 4]

evec

= 4

The following statement takes what is currently in evec, which is 4,

and adds an 11 to it.

>> evec = [evec 11]

evec =

4 11

This can be continued as many times as desired, in order to build a vector up from nothing.

Empty vectors can also be used to delete elements from arrays. For example, to remove the third

element from an array, the empty vector is assigned to it:

>> vec = 1:5

vec =

1 2 3 4 5

>> vec(3) = []

vec =

1 2 4 5

The elements in this vector are now numbered 1 through 4. Subsets of a vector could also be

removed; for example:

>> vec = 1:8

vec =

1 2 3 4 5 6 7 8

>> vec(2:4) = []

vec =

1 5 6 7 8

Individual elements cannot be removed from matrices, since matrices always have to have the

same number of elements in every row.

>> mat = [7 9 8; 4 6 5]

mat =

7 9 8

4 6 5

>> mat(1,2) = [];

??? Indexed empty matrix assignment is not allowed. However, entire rows or columns could

be removed from a matrix. For example, to remove the second column:

>> mat(:,2) = []

mat =

7 8

4 5

CELL ARRAYS

It is a special MATLAB array whose elements are cells, container that can hold other MATLAB arrays

Cell array contains data structures instead of data

C{1,1} =

 1 2 3

 4 5 6

 7 8 3

C{2,1} =

 3.0000 + 4.0000i -5.0000 + 0.0000i

 2.0000 + 0.0000i 0.0000 -10.0000i

 C{1,2} =

 this is a text

 C{2,2} =

 []

TO CREATE CELL ARRAY

Using assignment statement

Assignment with content indexing

C{1,1} = [1 2 3; 4 5 6; 7 8 9];

C{1,2} = ‘ This is a text’;

C{2,1} = [3+4*I -5; 2 -10*i];

C{2,2} = [];

Assignment with cell indexing

C(1,1) = {[1 2 3; 4 5 6; 7 8 9]};

C(1,2) = {‘ This is a text’};

C(2,1) = {[3+4*I -5; 2 -10*i]};

C(2,2) = {[]};

Pre-allocating cell array with cell function

B=cell(2,3)

 This will create an empty 2X2 cell array. Once created using assignment statement the cells can

be filled with values.

>> B=cell(2,3)

B =

 [] [] []

 [] [] []

Use { } as cell constructor

Individual cell values can be created separated by comma

B = {[1 2],17,[2;3];3-4*I, ‘hello’, eye(3)}

>> B = {[1 2],17,[2;3];3-4*i, 'hello', eye(3)}

B =

 [1x2 double] [17] [2x1 double]

 [3.0000 - 4.0000i] 'hello' [3x3 double]

TO VIEW CONTENT OF CELL ARRAY

>> B

B =

 [1x2 double] [17] [2x1 double]

 [3.0000 - 4.0000i] 'hello' [3x3 double]

 >> celldisp(B)

 B{1,1} =

 1 2

B{2,1} =

 3.0000 - 4.0000i

 B{1,2} =

 17

 B{2,2} =

 Hello

B{1,3} =

 2

 3

B{2,3} =

 1 0 0

 0 1 0

 0 0 1

>> cellplot(B)

TO EXTENT CELL ARRAY

The existing cell array can be extended by assignment statement

>> B{4,4}=5

B =

 [1x2 double] [17] [2x1 double] []

 [3.0000 - 4.0000i] 'hello' [3x3 double] []

 [] [] [] []

 [] [] [] [5]

TO DELETE THE CONTENT OF CELL ARRAY

>> B(4,:) = []

B =

 [1x2 double] [17] [2x1 double] []

 [3.0000 - 4.0000i] 'hello' [3x3 double] []

 [] [] [] []

The fourth row is deleted

There are several methods of displaying cell arrays. The celldisp function displays all elements of

the cell array:

>> celldisp(cellrowvec)

cellrowvec{1

} = 23

cellrowvec{2

} = a

cellrowvec{3} =

1 3 5 7 9

cellrowvec{4

} = hello

The function cellplot puts a graphical display of the cell array in a Figure Window; however, it is

a high- level view and basically just displays the same information as typing the name of the

variable (e.g., it wouldn‘t show the contents of the vector in the previous example). Many of the

functions and operations on arrays that we have already seen also work with cell arrays. For

example, here are some related to dimensioning:

>> length(cellrowvec)

ans

= 4

>> size(cellcolvec)

ans =

4 1

>> cellrowvec{end}

ans

=

hello

It is not possible to delete an individual element from a cell array. For example, assigning an

empty vector to a cell array element does not delete the element, it just replaces it with the

empty vector:

>> cellrowvec

mycell =

[23] [1x5 double] ‗hello‘

>> length(cellrowvec)

ans

= 4

>> cellrowvec{2} = []

mycell =

[23]â [] [1x5 double] ‗hello‘

>> length(cellrowvec)

ans

= 4

However, it is possible to delete an entire row or column from a cell array by assigning the

empty vector (Note: use parentheses rather than curly braces to refer to the row or column):

>> cellmat

mycellmat =

[23] ‗a‘

[1x5 double] ‗hello‘

>> cellmat(1,:) = []

mycellmat =

[1x5 double] ‗hello‘

Storing Strings in Cell Arrays

One good application of a cell array is to store strings of different lengths. Since cell arrays can

store different types of values in the elements, that means strings of different lengths can be

stored in the elements.

>> names = {‘Sue’, ‘Cathy’, ‘Xavier’}

names =

‗Sue‘ ‗Cathy‘ ‗Xavier‘

This is extremely useful, because unlike vectors of strings created using char or strvcat, these

strings do not have extra trailing blanks. The length of each string can be displayed using a for

loop to loop through the elements of the cell array:

>> for i =

1:length(names)

disp(length(names{i}))

end

3

5

6

It is possible to convert from a cell array of strings to a character array, and vice versa.

MATLAB has several functions that facilitate this. For example, the function cellstr converts

from a character array padded with blanks to a cell array in which the trailing blanks have been

removed.

>> greetmat = char(‘Hello’,‘Goodbye’);

>> cellgreets = cellstr(greetmat)

cellgreets =

‗Hello‘

‗Goodbye‘

The char function can convert from a cell array to a character matrix:

>> names = {‘Sue’, ‘Cathy’, ‘Xavier’};

>> cnames = char(names)

cnames

= Sue

Cathy

Xavier

>> size(cnames)

ans =

3 6

The function iscellstr will return logical true if a cell array is a cell array of all strings, or logical

false if not.

>> iscellstr(names)

ans

= 1

>> iscellstr(cellcolvec)

ans

= 0

We will see several examples of cell arrays containing strings of varying lengths in the coming

chapters, including advanced file input functions and customizing plots.

STRUCTURE ARRAY

A cell array is a data type in which there is a single name for the whole data structure.

A Structure is a data type in which each individual element has a name. The individual elements of a

structure are known as fields.

CREATE STRUCTURE ARRAY

A Field at a time using assignment statement

Assignment Statement

>> student.name='ram';

>> student.regno='3513110';

>> student.add='1st street';

>> student.city='Chennai';

>> student.zip='600119';

These assignment statement will create a structure named student with fields – name, regno,add,city,zip

To add another database

>> student(2).name='shiva';

Using struct function

>> student_database=struct('name', 'sathya','regno', [3513120])

student_database =

 name: 'sathya'

 regno: 3513120

Will create a structure named student_database with fields name and regno

>> student2_database(1000)=struct('name',[],'regno',[],'add',[])

student2_database =

1x1000 struct array with fields:

 name

 regno

 add

Will create a structure named student2_database with fields name, regno and add

TO ADD FIELDS TO STRUCTURE

>> student(2).mark = [88 80 76 90 78 81 99]

student =

1x2 struct array with fields:

 name

 regno

 add

 city

 zip

 mark

The field mark is added to the structure named student

TO REMOVE FIELDS TO STRUCTURE

 >> student = rmfield(student,'zip')

student =

1x2 struct array with fields:

 name

 regno

 add

 city

 mark

The field ‘zip’ is removed from the structure named student

TO EXTRACT DATA FROM STRUCTURE ARRAY

To get the information in the structure

>> student(2).add

ans =

 []

Returns empty array, since there is no data added to the field for student(2)

>> student(2).mark

ans =

 88 80 76 90 78 81 99

Returns the marks corresponding to student(2)

>> student(2).mark(2)

ans =

 80

Returns the mark corresponding to student(2) with index 2

>> mean(student(2).mark)

ans =

 84.5714

Returns the mean of the marks corresponding to student(2)

Similarly any operation can be performed with the extracted data

TO EXTRACT/SET DATA

getfield is a function that gets the current value stored in the field

>> city= getfield(student(1),'city')

city =

Chennai

Returns the current value of the field ‘city’ corresponding to student(1)

setfield is a function that inserts new value in to the field

>> setfield(student(2),'regno',3513105')

ans =

 name: 'shiva'

 regno: 3513105

 add: []

 city: []

 mark: [88 80 76 90 78 81 99]

Sets the value to the field ‘regno’ corresponding to student(2)

PASSING STRUCTURES TO FUNCTIONS

An entire structure can be passed to a function, or individual fields can be passed. For example, here

are two different versions of a function that calculates the profit on a software package. The profit is

defined as the price minus the cost. In the first version, the entire structure variable is passed to the

function, so the function must use the dot operator to refer to the price and cost fields of the input

argument.

calcprof.m

function profit = calcprof(packstruct)

% Calculates the profit for a software package

% The entire structure is passed to the function

profit = packstruct.price – packstruct.cost;

>> calcprof(package)

ans =

19.9600

In the second version, just the price and cost fields are passed to the function using the dot operator in

the function call. These are passed to two scalar input arguments in the function header, so there is no

reference to a structure variable in the function itself, and the dot operator is not needed in the

function.

calcprof2.m

function profit = calcprof2(oneprice, onecost)

% Calculates the profit for a software package

% The individual fields are passed to the function

profit = oneprice – onecost;

>> calcprof2(package.price, package.cost)

ans = 19.9600

 It is important, as always with functions, to make sure that the arguments in the function call correspond

one-to-one with the input arguments in the function header. In the case of calcprof, a structure variable

is passed to an input argument, which is a structure. For the second function calcprof2, two individual

fields, which are double values, are passed to two double arguments.

RELATED STRUCTURE FUNCTIONS

There are several functions that can be used with structures in MATLAB. The function isstruct will

return 1 for logical true if the variable argument is a structure variable, or 0 if not. The isfield function

returns logical true if a fieldname (as a string) is a field in the structure argument, or logical false if

not

>> isstruct(package)

ans = 1

>> isfield(package,‘cost’)

ans = 1

The fieldnames function will return the names of the fields that are contained in a structure variable.

>> pack_fields = fieldnames(package)

pack_fields =

‗item_no‘

‗cost‘

‗price‘

‗code‘

Since the names of the fields are of varying lengths, the fieldnames function returns a cell array with

the names of the fields. Curly braces are used to refer to the elements, since pack_fields is a cell array.

For example, we can refer to the length of one of the strings:

>> length(pack_fields{2})

ans = 4

File I/O operations

fclose Close one or all open files

feof Test for end of file

ferror File I/O error information

fgetl Read line from file, removing newline characters

fgets Read line from file, keeping newline characters

fileread Read contents of file as text

fopen Open file, or obtain information about open files

fprintf Write data to text file

fread Read data from binary file

frewind Move file position indicator to beginning of open
file

fscanf Read data from text file

fseek Move to specified position in file

ftell Current position

fwrite Write data to binary file

SAVING VARIABLES TO FILES & LOADING VARIABLES FROM FILES

save filename x y -ASCII

 filename is the name of the file that you want to write data to.

• x, y are variables to be written to the file.

‣ If omitted, all variables are written.

• -ASCII tells Matlab to write the data in a format that you can read.

 ‣ If omitted, data will be written in binary format.

 ‣ best for large amounts of data

load filename x y

• This is the complimentary command to save.

• Reads variables x and y from file filename

‣ If variables are omitted, all variables are loaded...

FORMATTED OUTPUT IN MATLAB

disp(x) - prints the contents of variable x.

fprintf(...) - use for formatted printing

• Allows much more control over output

• Syntax: fprintf(‘text & formatting’,variables);

• Text formatting: ‣ %a.bc

 ‣ a - minimum width of output buffer

‣ b - number of digits past decimal point

‣ c - formatting scheme

‣ f - floating point (typical format) 12.345

‣ e - scientific notation - 1.2345e1

 ‣ s - string format

FILE OUTPUT IN MATLAB

• Open the file

 ‣ fid = fopen(filename,’w’);

‣ ‘w’ tells matlab that we want to WRITE to the file.

‣ see “help fopen” for more information.

• Write to the file

‣ fprintf(fid,format,variables);

• Close the file

 ‣ fclose(fid);

FILE INPUT IN MATLAB

Import wizard “File→Import Data”

• Allows you to import data from delimited files (spreadsheets, etc)

 Importing “spreadsheet” data

• dlmread - import data from a delimited file (you choose the delimiter)

• xlsread - import data from Excel.

General file input - three steps:

• fid=fopen(filename,’r’) - open a file to allow detailed input control.

‣ ‘r’ tells matlab that we want to READ from the file.

• a=fscanf(fid,format,size);

‣ Works like file writing, but use fscanf rather than fprintf.

‣ fid - file id that you want to read from

 ‣ format - how you want to save the information (string, number)

‣ ‘%s’ to read a string, ‘%f’ to read a floating point number, ‘%e’ to read scientific notation.

‣ size - how many entries to read.

‣ feof(fid) - returns true if end of file, false otherwise.

• fclose(fid);

CREATING STRING VARIABLES

A string consists of any number of characters (including, possibly, none). These are examples of

strings: ‗‘

‗x‘

‗cat‘

‗Hello there‘

‗123‘

A substring is a subset or part of a string. For example, ‗there‘ is a substring within the string

‗Hello there‘. Characters include letters of the alphabet, digits, punctuation marks, white space,

and control characters. Control characters are characters that cannot be printed, but accomplish

a task (such as a backspace or tab). Whitespace characters include the space, tab, newline

(which moves the cursor down to the next line), and carriage return (which moves the cursor to

the beginning of the current line). Leading blanks are blank spaces at the beginning of a string,

for example, ‗ hello‘, and trailing blanks are blank spaces at the end of a string. There are several

ways that string variables can be created. One is using assignment statements:

>> word = ‘cat’;

Another method is to read into a string variable. Recall that to read into a string variable using the

input

function, the second argument ‗s‘ must be included:

>> strvar = input(‘Enter a string: ’, ‘s’)

Enter a string:

xyzabc strvar =

xyzabc

If leading or trailing blanks are typed by the user, these will be stored in the string. For example,

in the following the user entered four blanks and then ‗xyz‘:

>> s = input(‘Enter a string: ’,‘s’)

Enter a string:

xyz s =

xyz

Strings as Vectors

Strings are treated as vectors of characters—or in other words, a vector in which every element

is a single character—so many vector operations can be performed. For example, the number of

characters in a string can be found using the length function:

>>

length(‗cat‘)

ans =

3

>> length(‗ ‘)

ans =

1

>>

length(‗‘)

ans =

0

Notice that there is a difference between an empty string, which has a length of zero, and a string

consisting of a blank space, which has a length of one. Expressions can refer to an individual

element (a character within the string), or a subset of a string or a transpose of a string:

>> mystr = ‘Hi’;

>> mystr(1)

ans

= H

>> mystr’

ans

= H

i

>> sent = ‘Hello there’;

>> length(sent)

ans

= 11

>> sent(4:8)

ans

= lo

th

Notice that the blank space in the string is a valid character within the string. A matrix can be

created, which consists of strings in each row. So, essentially it is created as a column vector of

strings, but the end result is that this would be treated as a matrix in which every element is a

character:

>> wordmat = [‘Hello’;‘Howdy’]

wordmat

= Hello

Howdy

>> size(wordmat)

ans =

2 5

This created a 2 5 matrix of characters. With a character matrix, we can refer to an individual

element, which is a character, or an individual row, which is one of the strings:

>> wordmat(2,4)

ans

= d

>> wordmat(1,:)

ans

=

Hell

o

Since rows within a matrix must always be the same length, the shorter strings must be padded

with blanks so that all strings have the same length, otherwise an error will occur.

>> greetmat = [‘Hello’; ‘Goodbye’]

??? Error using ==> vertcat

CAT arguments dimensions are not consistent.

>> greetmat = [‘Hello ’; ‘Goodbye’]

greetmat

= Hello

Goodbye

>> size(greetmat)

ans =

2 7

Operations on Strings

MATLAB has many built-in functions that work with strings. Some of the string manipulation

functions that perform the most common operations will be described here.

Concatenation

String concatenation means to join strings together. Of course, since strings are just vectors of

characters, the method of concatenating vectors works for strings, also. For example, to create

one long string from two strings, it is possible to join them by putting them in square brackets:

>> first = ‘Bird’;

>> last = ‘house’;

>> [first

last] ans =

Birdhouse

The function strcat does this also horizontally, meaning that it creates one longer string from the

inputs.

>> first = ‘Bird’;

>> last = ‘house’;

>> strcat(first,last)

ans =

Birdhous

e

There is a difference between these two methods of concatenating, however, if there are leading

or trailing blanks in the strings. The method of using the square brackets will concatenate the

strings, including all leading and trailing blanks.

>> str1 = ‘xxx ’;

>> str2 = ‘ yyy’;

>> [str1 str2]

ans =

xxx

yyy

>> length(ans)

ans

= 12

The strcat function, however, will remove trailing blanks (but not leading blanks) from strings

before concatenating. Notice that in these examples, the trailing blanks from str1 are removed,

but the leading blanks from str2 are not:

>> strcat(str1,str2)

ans =

xxx

yyy

>>

length(ans)

ans =

9

>> strcat(str2,str1)

ans =

yyyxx

x

>> length(ans)

ans

= 9

The function strvcat will concatenate vertically, meaning that it will

create a column vector of strings.

>> strvcat(first,last)

ans =

Bird

hous

e

>> size(ans)

ans =

2 5

Note that strvcat will pad with extra blanks automatically, in this case to make both strings have

a length of 5.

Creating Customized Strings

There are several built-in functions that create customized strings, including char, blanks, and

sprintf. We have seen already that the char function can be used to convert from an ASCII code

to a character, for example:

>> char(97)

ans

= a

The char function can also be used to create a matrix of characters. When using the char

function to create a matrix, it will automatically pad the strings within the rows with blanks as

necessary so that they are all the same length, just like strvcat.

>> clear greetmat

>> greetmat = char(‘Hello’,‘Goodbye’)

greetmat

= Hello

Goodbye

>> size(greetmat)

ans

= 2 7

The blanks function will create a string consisting of n blank characters which are kind of hard to

see here! However, in MATLAB if the mouse is moved to highlight the result in ans, the blanks can

be seen.

>> blanks(4)

ans =

>> length(ans)

ans

= 4

Usually this function is most useful when concatenating strings, and you want a number of blank

spaces in between. For example, this will insert five blank spaces in between the words:

>> [first blanks(5) last]

ans =

Bird house

Displaying the transpose of the blanks function can also be used to move the cursor down. In the

Command Window, it would look like this:

>> disp(blanks(4)’)

This is useful in a script or function to create space in output, and is essentially equivalent to

printing the newline character four times. The sprintf function works exactly like the fprintf

function, but instead of printing it creates a string. Here are several examples in which the output

is not suppressed so the value of the string variable is shown:

>> sent1 = sprintf(‘The value of pi is %.2f’, pi)

sent1 =

The value of pi is 3.14

>> sent2 = sprintf(‘Some numbers: %5d, %2d’, 33, 6)

sent2 =

Some numbers: 33, 6

>> length(sent2)

ans

= 23

In the following example, on the other hand, the output of the assignment is suppressed so the

string is created including a random integer and stored in the string variable. Then, some

exclamation points are concatenated to that string.

>> phrase = sprintf(‘A random integer is

%d’, ›. randint(1,1,[5,10]));

>> strcat(phrase, ‘!!!’)

ans =

A random integer is 7!!!

All the conversion specifiers that can be used in the fprintf function can also be used in the sprintf

function.

Removing Whitespace Characters

MATLAB has functions that will remove trailing blanks from the end of a string and/or leading

blanks from the beginning of a string. The deblank function will remove blank spaces from the

end of a string. For example, if some strings are padded in a string matrix so that all are the same

length, it is frequently preferred to then remove those extra blank spaces in order to actually use

the string.

>> names = char(‘Sue’, ‘Cathy’,‘Xavier’)

names

= Sue

Cathy

Xavier

>> name1 = names(1,:)

name1

= Sue

>> length(name1)

ans

= 6

>> name1 = deblank(name1);

>> length(name1)

ans

= 3

Note: The deblank function removes only trailing blanks from a string, not leading blanks. The

strtrim function will remove both leading and trailing blanks from a string, but not blanks in the

middle of the string. In the following example, the three blanks in the beginning and four blanks

in the end are removed, but not

the two blanks in the middle. Selecting the result in MATLAB with the mouse would show the

blank spaces.

>> strvar = [blanks(3) ‘xx’ blanks(2) ‘yy’ blanks(4)]

strvar

= xx

yy

>> length(strvar)

ans

= 13

>> strtrim(strvar)

ans

= xx

yy

>> length(ans)

ans

= 6

Changing Case

MATLAB has two functions that convert strings to all uppercase letters, or all lowercase, called

upper and

lower.

>> mystring = ‘AbCDEfgh’;

>> lower(mystring)

ans =

abcdefg

h

>>

upper(ans)

ans =

ABCDEFG

H

Comparing Strings

There are several functions that compare strings and return logical true if they are equivalent, or

logical false if not. The function strcmp compares strings, character by character. It returns

logical true if the strings are completely identical (which infers that they must be of the same

length, also) or logical false if the strings are not the same length or any corresponding characters

are not identical. Here are some examples of these comparisons:

>> word1 = ‘cat’;

>> word2 = ‘car’;

>> word3 = ‘cathedral’;

>> word4 = ‘CAR’;

>> strcmp(word1,word2)

ans

= 0

>> strcmp(word1,word3)

ans

= 0

>> strcmp(word1,word1)

ans

= 1

>> strcmp(word2,word4)

ans

= 0

The function strncmp compares only the first n characters in strings and ignores the rest. The

first two arguments are the strings to compare, and the third argument is the number of

characters to compare (the value of n).

>> strncmp(word1,word3,3)

ans

= 1

>> strncmp(word1,word3,4)

ans

= 0

There is also a function strncmpi that compares n characters, ignoring the case.

Finding, Replacing, and Separating Strings

There are several functions that find and replace strings, or parts of strings, within other strings

and functions that separate strings into substrings. The function findstr receives two strings as

input arguments. It finds all occurrences of the shorter string within the longer, and returns the

subscripts of the beginning of the occurrences. The order of the strings does not matter with

findstr; it will always find the shorter string within the longer, whichever that is. The shorter

string can consist of one character, or any number of characters. If there is more than one

occurrence of the shorter string within the longer one, findstr returns a vector with all indices.

Note that what is returned is the index of the beginning of the shorter string.

>> findstr(‘abcde’, ‘d’)

ans

= 4

>> findstr(‘d’,‘abcde’)

ans

= 4

>> findstr(‘abcde’, ‘bc’)

ans

= 2

>> findstr(‘abcdeabcdedd’, ‘d’)

ans =

4 9 11 12

The function strfind does essentially the same thing, except that the order of the arguments does

make a difference. The general form is strfind(string, substring); it finds all occurrences of the

substring within the string, and returns the subscripts.

>> strfind(‘abcdeabcde’,‘e’)

ans =

5 10

For both strfind and findstr, if there are no occurrences, the empty vector is returned.

>> strfind(‘abcdeabcde’,‘ef’)

ans

= []

The function strrep finds all occurrences of a substring within a string, and replaces them with a

new substring. The order of the arguments matters. The format is: strrep(string, oldsubstring,

newsubstring) The following example replaces all occurrences of the substring ‗e‘ with the

substring ‗x‘:

>> strrep(‘abcdeabcde’,‘e’,‘x’)

ans =

abcdxabcd

x

All strings can be any length, and the lengths of the old and new substrings do not have to be the

same. In addition to the string functions that find and replace, there is a function that separates a

string into two substrings. The strtok function breaks a string into pieces; it can be called several

ways. The function receives one string as an input argument. It looks for the first delimiter,

which is a character or set of characters that act as a separator within the string. By default, the

delimiter is any whitespace character. The function returns a token, which is the beginning of the

string, up to (but not including) the first delimiter. It also returns the rest of the string, which

includes the delimiter. Assigning the returned values to a vector of two variables will capture

both of these. The format is

[token rest] = strtok(string)

where token and rest are variable names. For example,

>> sentence1 = ‘Hello there’

sentence1

= Hello

there

>> [word rest] = strtok(sentence1)

word

=

Hello

rest =

there

>> length(word)

ans

= 5

>> length(rest)

ans

= 6

Notice that the rest of the string includes the blank space delimiter. By default, the delimiter for

the token is a whitespace character (meaning that the token is defined as everything up to the

blank space), but alternate delimiters can be defined. The format

[token rest] = strtok(string, delimeters)

returns a token that is the beginning of the string, up to the first character contained within the

delimiters string, and also the rest of the string. In the following example, the delimiter is the

character ‗l‘.

>> [word rest] = strtok(sentence1,‘l’)

word

= He

rest =

llo there

Leading delimiter characters are ignored, whether it is the default whitespace or a specified

delimiter. For example, the leading blanks are ignored here:

>> [firstpart lastpart] = strtok(’ materials science’)

firstpart

=

material

s

lastpart

=

science

Evaluating a String

The function eval is used to evaluate a string as a function.For example, in the following, the

string ‗plot(x)‘ is interpreted to be a call to the plot function, and it produces the plot shown in

Figure 6.2.

>> x = [2 6 8 3];

>> eval(‘plot(x)’)

This would be useful if the user entered the name of the type of plot to use. In this example, the

string that the user enters (in this case ‗bar‘) is concatenated with the string ‗(x)‘ to create the

string ‗bar(x)‘; this is then evaluated as a call to the bar function as seen in Figure 6.3. The

name of the plot type is also used in the title.

The is functions for strings

There are several is functions for strings, which return logical true or false. The function isletter

returns logical true if the character is a letter of the alphabet. The function isspace returns logical

true if the character is a whitespace character. If strings are passed to these functions, they will

return logical true or false for every element, or, in other words, every character.

>> isletter(‘a’)

ans

= 1

>> isletter(‘EK127’)

ans =

1 1 0 0 0

>> isspace(‘a b’)

ans

= 0 1

0

The ischar function will return logical true if an array is a character array, or logical false if not.

>> vec = ‘EK127’;

>> ischar(vec)

ans

= 1

>> vec = 3:5;

>> ischar(vec)

ans

= 0

Converting between string and number types

MATLAB has several functions that convert numbers to strings in which each character element

is a separate digit, and vice versa. (Note: these are different from the functions char, double,

etc., that convert characters to ASCII equivalents and vice versa.) To convert numbers to strings,

MATLAB has the functions int2str for integers and num2str for real numbers (which also

works with integers). The function int2str would convert, for example, the integer 4 to the string

‗4‘.

>> rani = randint(1,1,50)

rani

= 38

>> s1 = int2str(rani)

s1

=

38

>> length(rani)

ans

= 1

>> length(s1)

ans

= 2

The variable rani is a scalar that stores one number, whereas s1 is a string that stores two

characters, ‗3‘ and ‗8‘. Even though the result of the first two assignments is 38, notice that the

indentation in the Command Window is different for the number and the string. The num2str

function, which converts real numbers, can be called in several ways. If only the real number is

passed to the num2str function, it will create a string that has four decimal places, which is the

default in MATLAB for displaying real numbers. The precision can also be specified (which is

the number of digits), and format strings can also be passed, as shown:

>> str2 = num2str(3.456789)

str2 =

3.456

8

>> length(str2)

ans

= 6

>> str3 = num2str(3.456789,3)

str3

=

3.46

>> str = num2str(3.456789,‘%6.2f’)

str

=

3.4

6

Note that in the last example, MATLAB removed the leading blanks from the string. The function

str2num

does the reverse; it takes a string in which a number is stored and converts it to the type double:

>> num = str2num(‘123.456’)

num =

123.4560

If there is a string in which there are numbers separated by blanks, the str2num function will

convert this to a vector of numbers (of the default type double). For example,

>> mystr = ‘66 2 111’;

>> numvec = str2num(mystr)

numvec

= 66 2

111

>> sum(numvec)

ans

=

179

Input and Output

The previous script would be much more useful if it were more general; for example, if the value

of the radius could be read from an external source rather than being assigned in the script. Also,

it would be better to have the script print the output in a nice, informative way. Statements that

accomplish these tasks are called input/output statements, or I/O for short. Although for

simplicity examples of input and output statements will be shown here from the Command

Window, these statements will make the most sense in scripts.

Input Function

Input statements read in values from the default or standard input device. In most systems, the

default input device is the keyboard, so the input statement reads in values that have been entered

by the user, or the person who is running the script. In order to let the user know what he or she

is supposed to enter, the script must first prompt the user for the specified values. The simplest

input function in MATLAB is called input. The input function is used in an assignment

statement. To call it, a string is passed, which is the prompt that will appear on the screen, and

whatever the user types will be stored in the variable named on the left of the assignment

statement. To make it easier to read the prompt, put a colon and then a space after the prompt.

For example,

>> rad = input(‘Enter the radius: ’)

Enter the radius: 5

rad =

5

If character or string input is desired, ‗s‘ must be added after the prompt:

>> letter = input(‘Enter a char: ’,‘s’)

Enter a char: g

letter

= g

Notice that although this is a string variable, the quotes are not shown. However, they are shown

in the Workspace Window. If the user enters only spaces or tabs before pressing the Enter key,

they are ignored and an empty string is stored in the variable:

>> mychar = input(‘Enter a character: ’, ‘s’)

Enter a

character:

mychar =

‗‘

Notice that in this case the quotes are shown, to demonstrate that there is nothing inside of the

string. However, if blank spaces are entered before other characters, they are included in the

string. In this example, the user pressed the space bar four times before entering ―go‖:

>> mystr = input(‘Enter a string: ’, ‘s’)

Enter a string: go

mystr =

go

>> length(mystr)

ans

= 6

It is also possible for the user to type quotation marks around the string rather than including the

second argument ‗s‘ in the call to the input function:

>> name = input(‘Enter your name: ’);

Enter your name: ‘Stormy’ However, it is better to signify that character input is desired in the

input function itself. Normally, the results from input statements are suppressed with a

semicolon at the end of the assignment statements, as shown here. Notice what happens if string

input has not been specified, but the user enters a letter rather than a number:

>> num = input(‘Enter a number: ’)

Enter a number: t

??? Error using ==> input

Undefined function or

variable ‗t‘.

Enter a number: 3

num

= 3

MATLAB gave an error message and repeated the prompt. However, if t is the name of a

variable, MATLAB will take its value as the input:

>> t = 11;

>> num = input(‘Enter a number: ’)

Enter a number: t

num =

11

Separate input statements are necessary if more than one input is desired. For example

>> x = input(‘Enter the x coordinate: ’);

>> y = input(‘Enter the y coordinate: ’);

Output Statements: disp and fprintf

Output statements display strings and the results of expressions, and can allow for formatting, or

customizing how they are displayed. The simplest output function in MATLAB is disp, which is

used to display the result of an expression or a string without assigning any value to the default

variable ans. However, disp does not allow formatting. For example,

>> disp(‘Hello’)

Hello

>> disp(4^3)

64

Formatted output can be printed to the screen using the fprintf function. For example,

>> fprintf(‘The value is %d, for sure!\n’,4^3)

The value is 64, for sure!

To the fprintf function, first a string (called the format string) is passed, which contains

any text to be printed as well as formatting information for the expressions to be printed.

In this example, the %d is an example of format information. The %d is sometimes called

a placeholder; it specifies where the value of the expression that is after the string is to be

printed. The character in the placeholder is called the conversion character, and it

specifies the type of value that is being printed. There are others, but what follows is a list

of the simple placeholders:

%d integers (it actually stands for decimal integer)

%f floats

%c single characters

%s strings

Don‘t confuse the % in the placeholder with the symbol used to designate a comment.

The character ‗\n‘ at the end of the string is a special character called the newline

character; when it is printed the output moves down to the next line. A field width can

also be included in the placeholder in fprintf, which specifies how many characters total

are to be used in printing. For example, %5d would indicate a field width of 5 for printing

an integer and %10â•›s would indicate a field width of 10 for a string. For floats, the

number of decimal places can also be specified; for example, %6.2f means a field width

of 6 (including the decimal point and the decimal places) with two decimal places. For

floats, just the number of decimal places can also be specified; for example, %.3f if

indicates three decimal places.

>> fprintf(‘The int is %3â•›d and the float is %6.2f\n’,5,4.9)

The int is 5 and the float is 4.90 Note that if the field width is wider than necessary,

leading blanks are printed, and if more decimal places are specified than necessary,

trailing zeros are printed. There are many other options for the format string. For

example, the value being printed can be left-justified within the field width using a minus

sign. The following example shows the difference between printing the integer 3 using

%5d and using %–5d. The x‘s are just used to show the spacing.

>> fprintf(‘The integer is xx%5dxx and xx%-5dxx\n’,3,3)

The integer is xx 3xx and xx3 xx

Also, strings can be truncated by specifying decimal places:

>> fprintf(‘The string is %s or

%.4s\n’, ‘truncate’,... ‘truncate’)

The string is truncate or trun. There are several special characters that can be printed in

the format string in addition to the newline character. To print a slash, two slashes in a

row are used, and also to print a single quote two single quotes in a row are used.

Additionally, \t is the tab character.

>> fprintf(‘Try this out: tab\t quote ‘‘ slash \\ \n’)

Try this out: tab quote ‗ slash \

Scripts with Input and Output

Putting all this together, we can implement the algorithm from

the beginning of this chapter. The following script calculates

and prints the area of a circle. It

first prompts the user for a radius, reads in the radius, and then

calculates and prints the area of the circle based on this radius.

script2.m

% This script calculates the area of a circle

% It prompts the user for the radius

% Prompt the user for the radius and calculate

% the area based on that radius

radius = input(‗Please enter

the radius: ‘); area = pi *

(radius^2);

% Print all variables in a sentence

format fprintf(‗For a circle with a

radius of %.2f,‘,radius) fprintf(‗the

area is %.2f\n‘,area)

Executing the script produces the following output:

>> script2

Please enter the radius: 3.9

For a circle with a radius of 3.90, the area is 47.78

Notice that the output from the first two assignment statements is suppressed by putting

semicolons at the end. That is frequently done in scripts, so that the exact format of what

is displayed by the program is controlled by the fprintf functions.

Introduction to File Input/Output (Load and Sav e)

In many cases, input to a script will come from a data file that has been created by

another source. Also, it is useful to be able to store output in an external file that can be

manipulated and/or printed later. In this section, we will demonstrate how to read from an

external data file, and also how to write to an external data file. There are basically three

different operations, or modes, on files. Files can be:

Read from

Written to

Appended to

Writing to a file means writing to a file, from the beginning. Appending to a file is also

writing, but starting at the end of the file rather than the beginning. In other words,

appending to a file means adding to what was already there. There are many different file

types, which use different filename extensions. For now, we will keep it simple and just

work with .dat or .txt files when working with data or text files. There are several

methods for reading from files and writing to files; for now we will use the load function

to read and the save function to write to files.

Writing Data to a File

The save function can be used to write data from a matrix to a data file, or to append to a

data file. The format is:

save filename matrixvariablename –ascii.

The -ascii qualifier is used when creating a text or data file. The following creates a

matrix and then saves the values of the matrix variable to a data file called testfile.dat:

>> mymat = rand(2,3)

mymat =

0.4565 0.821

4

0.6154

0.0185 0.444

7

0.7919

>> save testfile.dat mymat –ascii

This creates a file called testfile.dat that stores the numbers

0.4565 0.821

4

0.6154

0.0185 0.444

7

0.7919

The type command can be used to display the contents of the file; notice that scientific

notation is used:

>> type testfile.dat

4.5646767e–001 8.2140716e–001 6.1543235e–001

1.8503643e–002 4.4470336e–001 7.9193704e–001

Note: If the file already exists, the save function will overwrite it; save always begins

writing from the beginning of a file.

Appending Data to a Data File

Once a text file exists, data can be appended to it. The format is the same as previously,

with the addition of the qualifier -append. For example, the following creates a new

random matrix and appends it to the file just created:

>> mymat = rand(3,3)

mymat =

0.9218 0.4057 0.4103

0.7382 0.9355 0.8936

0.1763 0.9169 0.0579

>> save testfile.dat mymat –ascii –append

This results in the file testfile.dat containing

0.4565 0.821

4

0.6154

0.0185 0.444

7

0.7919

0.9218 0.405

7

0.4103

0.7382 0.935

5

0.8936

0.1763 0.916

9

0.0579

Note: Although technically any size matrix could be appended to this data file, in order to

be able to read it back into a matrix later there would have to be the same number of

values on every row.

Reading from a File

Once a file has been created (as previously), it can be read into a matrix variable. If the

file is a data file, the load function will read from the file filename.ext (e.g., the extension

might be .dat) and create a matrix with the same name as the file. For example, if the data

file testfile.dat had been created as shown in the previous section, this would read from it:

>> clear

>> load testfile.dat

>> who

Your variables are:

testfile

>> testfile

testfile =

0.4565 0.821

4

0.6154

0.0185 0.444

7

0.7919

0.9218 0.405

7

0.4103

0.7382 0.935

5

0.8936

0.1763 0.916

9

0.0579

Note: The load command works only if there are the same number of values in

each line, so that the data can be stored in a matrix, and the save command only

writes from a matrix to a file. If this is not the case, lower-level file I/O functions

must be used

REFERENCES

1. Stephen J Chapman, “ Programming in MATLAB for Engineers”, Brooks, 2002

2. Duane Hanselman ,Bruce LittleField, “Mastering MATLAB 7” , Pearson

Education Inc, 2005

3. William J.Palm, “Introduction to MATLAB 6.0 for Engineers”, Mc Graw Hill & Co,

2001

4. M.Herniter, “Programming in MATLAB”, Thomson Learning, 2001

QUESTION BANK

PART A CO

1. List the various windows available in MATLAB?

2. What is matrix?

3. List 5 built in functions in MATLAB

4. Develop MATLAB function for finding the determinant of a

matrix?

5. List the various relational operators in the MATLAB?

6. What is the use of strcat functions

7. Compare floor and ceil functions in MATLAB

8. What is the use of getfield command in MATLAB?

9. What is the need for celldisp command in MATLAB?

10. What is the use of CHAR command in MATLAB

1

1

1

1

1

1

1

1

1

1

PART B

1. Design a string calculator in MATLAB that performs various

string operations Compare and contrast the various input

and output statements in MATLAB support your answer with

suitable examples.

2. Develop a cell array(a) whose size is 2*2.

a(1,1)= ‘ India Australia Matches’

a(1,2)=[50 , 60, 100]

a(2,1)=’Viratkohli’

a(2,2)=[];

use preallocation and assignment statements .Also display

60.

1

1

1

3. Develop a software to assist the mentor in maintaining the

address details of each student use structure array

4. Explain the various ways of reading and writing data into

files. Illustrate with suitable examples

5. Explain the various data types used in MATLAB .support

your answer with suitable examples .

6. Develop a function foe finding factorial of a number. Also

design MATLAB codes for finding binomial co-efficient.

7. Explain different methods of string and accessing values

from matrices and vectors in MATLAB

1

1

1

1

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – II – Programming in MATLAB – SEC1618

UNIT 2 LOOPS & CONTROL STATEMENTS

Introduction; Relational & Logical operations –Example programs-Operator precedence – Control &

Decision statements- IF – IF ELSE - NESTED IF ELSE - SWITCH- TRY & CATCH - FOR –WHILE –

NESTED FOR- FOR with IF statements, MATLAB program organization, Debugging methods - Error trapping

using eval & lastern commands

OPERATORS

 Arithmetic Operations

Addition, subtraction, multiplication, division, power, rounding

 Relational Operations

Value comparisons

 Logical Operations

True or false (Boolean) conditions

 Set Operations

Unions, intersection, set membership

 Bit-Wise Operations

Set, shift, or compare specific bit fields

ARITHMETIC OPERATIONS

Operator Purpose Description

+ Addition A+B adds A and B.

+ Unary plus +A returns A.

- Subtraction A-B subtracts B from A

- Unary minus -A negates the elements of A.

* Matrix multiplication C = A*B is the linear algebraic product of the

matrices A and B. The number of columns

of A must equal the number of rows of B.

\ Matrix left division x = A\B is the solution to the equation Ax = B.

Matrices A and B must have the same number of

rows.

/ Matrix right division x = B/A is the solution to the equation xA = B.

Matrices A and B must have the same number of

columns. In terms of the left division

operator, B/A = (A'\B')'.

^ Matrix power A^B is A to the power B, if B is a scalar. For other

values of B, the calculation involves eigen values

and eigenvectors.

' Complex conjugate

transpose

A' is the linear algebraic transpose of A. For

complex matrices, this is the complex conjugate

transpose.

.^ Element-wise power A.^B is the matrix with elements A(i,j) to

the B(i,j) power.

./ Right array division A./B is the matrix with elements A(i,j)/B(i,j).

.\ Left array division A.\B is the matrix with elements B(i,j)/A(i,j).

.' Array transpose A.' is the array transpose of A. For complex

matrices, this does not involve conjugation.

RELATIONAL OPERATORS Conditions in if statements use expressions that are conceptually,

or logically, either true or false. These expressions are called relational expressions, or

sometimes Boolean or logical expressions. These expressions can use both relational operators,

which relate two expressions of compatible types, and logical operators, which operate on

logical operands.

Symbol Role

== Equal to

~= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

All concepts should be familiar, although the operators used may be different from those used in

other programming languages, or in mathematics classes. In particular, it is important to note that

the operator for equality is two consecutive equal signs, not a single equal sign (recall that the

single equal sign is the assignment operator). For numerical operands, the use of these operators

is straightforward.

For example,

3 < 5 means ―3 less than 5,‖

which is conceptually a true expression. However, in MATLAB, as in many programming

languages, logical true is represented by the integer 1, and logical false is represented by the

integer 0. So, the expression

3 < 5 actually has the value 1 in MATLAB.

Displaying the result of expressions like this in the Command Window demonstrates the values of

the expressions.

>> 3 < 5

ans = 1

>> 9 < 2

ans = 0

However, in the Workspace Window, the value shown for the result of these expressions would

be true or false. The type of the result is logical.

Mathematical operations could be performed on the resulting 1 or 0.

>> 5 < 7

ans = 1

>> ans + 3

ans = 4

Comparing characters, for example ‗a‘ < ‗c‘, is also possible. Characters are compared using

their ASCII equivalent values. So, ‗a‘ < ‗câ•›‘ is conceptually a true expression, because the

character ‗a‘ comes before the character ‗c‘.

>> ‘a’ < ‘c’

ans = 1

LOGICAL OPERATORS

Symbol Role

& Logical AND

| Logical OR

&& Logical AND (with short-circuiting)

|| Logical OR (with short-circuiting)

~ Logical NOT

All logical operators operate on logical or Boolean operands. The not operator is a unary

operator; the others are binary. The not operator will take a Boolean expression, which is

conceptually true or false, and give the opposite value. For example, (3 < 5) is conceptually false

since (3 < 5) is true. The or operator has two Boolean expressions as operands. The result is true

if either or both of the operands are true, and false only if both operands are false. The and

operator also operates on two Boolean operands. The result of an and expression is true only if

both operands are true; it is false if either or both are false. In addition to these logical operators,

MATLAB also has a function xor, which is the exclusive or function. It returns logical true if

one (and only one) of the arguments is true. For example, in the following only the first argument

is true,

so the result is true:

>> xor(3 < 5, ‘a’ > ‘c’)

ans = 1

In this example, both arguments are true so the result is false:

>> xor(3 < 5, ‘a’ < ‘c’)

ans = 0

Given the logical values of true and false in variables x and y, the truth table shows how the

logical operators work for all combinations. Note that the logical operators are commutative

(e.g., x || y is the same as y || x).

SPECIAL CHARACTERS

Symbol Role

, Use commas to separate row elements in an array, array

subscripts, function input and output arguments, and commands

entered on the same line.

: Use the colon operator to create regularly spaced vectors, index

into arrays, and define the bounds of a for loop.

; Use semicolons to separate rows in an array creation command,

or to suppress the output display of a line of code.

() Use parentheses to specify precedence of operations, enclose

function input arguments, and index into an array

[] Square brackets enable array construction and concatenation,

creation of empty matrices, deletion of array elements, and

capturing values returned by a function.

 {} Use curly braces to construct a cell array, or to access the

contents of a particular cell in a cell array.

% The percent sign is most commonly used to indicate

nonexecutable text within the body of a program. This text is

normally used to include comments in your code.

‘ ’ Use single quotes to create character vectors that have class char

OPERATOR PRECEDENCE RULES

1. Parentheses ()

2. Transpose (.'), power (.^), complex conjugate transpose ('), matrix power (^)

3. Power with unary minus (.^-), unary plus (.^+), or logical negation (.^~) as well as matrix power

with unary minus (^-), unary plus (^+), or logical negation (^~).

4. Unary plus (+), unary minus (-), logical negation (~)

5. Multiplication (.*), right division (./), left division (.\), matrix multiplication (*), matrix right

division (/), matrix left division (\)

6. Addition (+), subtraction (-)

7. Colon operator (:)

8. Less than (<), less than or equal to (<=), greater than (>), greater than or equal to (>=), equal

to (==), not equal to (~=)

9. Element-wise AND (&)

10. Element-wise OR (|)

11. Short-circuit AND (&&)

12. Short-circuit OR (||)

BRANCHES & LOOPS

BRANCHES are MATLAB statements that permit us to select and execute specific section of code called blocks,

while skipping other sections of code.

 if

 switch

 try-catch

LOOPS are MATLAB construct that allow us to execute a sequence of statements more than once

 for

 while

The If Statement

The if statement chooses whether or not another statement, or group of statements, is executed.

The general form of the if statement is:

if condition

action
end

A condition is a relational expression that is conceptually, or logically, either true or false. The

action is a statement, or a group of statements, that will be executed if the condition is true.

When the if statement is executed, first the condition is evaluated. If the value of the condition is

conceptually true, the action will be executed, and if not, the action will not be executed. The

action can be any number of statements until the reserved word end; the action is naturally

bracketed by the reserved words if and end. (Note: This is different from the end that is used as

an index into a vector or matrix.)

For example, the following if statement checks to see whether the value of a variable is negative.

If it is, the value is changed to a positive number by using the absolute value function; otherwise

nothing is changed.

if num < 0

num = abs(num)
end

If statements can be entered in the Command Window, although they generally make more sense

in scripts or functions. In the Command Window, the if line would be entered, then the Enter

key, then the action, the Enter key, and finally end and Enter; the results will immediately

follow. For example, the previous if statement is shown twice here. Notice that the output from

the assignment is not suppressed, so the result of theÂ€action will be shown if the action is

executed. The first time the value of the variable is negative so the action is executed and the

variable is modified, but in the second case the variable is positive so the action is skipped.

>> num = −4;

>> if num < 0

num = abs(num)

end

num = 4

>> num = 5;

>> if num < 0

num = abs(num)

end

>>

This may be used, for example, to make sure that the square root function is not used on a

negative number. The following script prompts the user for a number, and prints the square root.

If the user enters a negative number, the if statement changes it to positive before taking the

square root.

sqrtifexamp.m

% Prompt the user for a number and print its

sqrt num = input(‘Please enter a number: ‘);

% If the user entered a negative number,

change it

if num < 0

num = abs(num);

 end

fprintf(‘The sqrt of %.1f is %.1f\n‘,num,sqrt(num))

Here are two examples of running this script:

>> sqrtifexamp

Please enter a number: −4.2

The sqrt of 4.2 is 2.0

>> sqrtifexamp

Please enter a number: 1.44

 The sqrt of 1.4 is 1.2

In this case, the action of the if statement was a single assignment statement. The action can be

any number of valid statements. For example, we may wish to print a note to the user to say that

the number entered was being changed.

sqrtifexampii.m

% Prompt the user for a number and print its sqrt num =

input(‘Please enter a number: ‘);

% If the user entered a negative number, tell
% the user and change it

 if num < 0

disp(‘OK, we‘‘ll use the absolute value‘)

 num = abs(num);

end

fprintf(‘The sqrt of %.1f is %.1f\n‘,num,sqrt(num))

>> sqrtifexampii

Please enter a number: −25 OK, we‘ll use the

absolute value

The sqrt of 25.0 is 5.0

Notice the use of two single quotes in the disp statement in order to print one single quote

The If-Else statement

The if statement chooses whether an action is executed or not. Choosing between two actions, or

choosing from several actions, is accomplished using if-else, nested if, and switch statements.

The if-else statement is used to choose between two statements, or sets of statements.

The general form is:
if condition

 action1

 else

action2

end

First, the condition is evaluated. If it is conceptually true, then the set of statements designated as

action1 is executed, and that is it for the if-else statement. If instead the condition is

conceptually false, the second set of statements designated as action2 is executed, and that‘s it.

The first set of statements is called the action of the if clause; it is what will be executed if the

expression is true. The second set of statements is called the action of the else clause; it is what

will be executed if the expression is false. One of these actions, and only one, will be executed—

which one depends on the value of the condition. For example, to determine and print whether or

not a random number in the range from 0 to 1 is less than 0.5, an if-else statement could be used:

if rand < 0.5
disp(‘It was less than .5!‘)

else

disp(‘It was not less than .5!‘)

end

One application of an if-else statement is to check for errors in the inputs to a script. For

example, an earlier script prompted the user for a radius, and then used that to calculate the area

of a circle. However, it did not check to make sure that the radius was valid (e.g., a positive

number). Here is a modified script that checks the radius:

checkradius.m

% This script calculates the area of a circle

% It error-checks the user‘s radius
radius = input(‘Please enter the radius: ‘);

if radius <= 0

fprintf(‗Sorry; %.2f is not a valid radius\n‘,radius)
else

end

area = calcarea(radius);
fprintf(‗For a circle with a radius of %.2f,‘,radius)

fprintf(‗the area is %.2f\n‘,area)

Examples of running this script when the user enters invalid and then valid radii are shown here:

>> checkradius

Please enter the radius: −4

Sorry; −4.00 is not a valid radius

>> checkradius

Please enter the radius: 5.5
For a circle with a radius of 5.50, the area is 95.03

The if-else statement in this example chooses between two actions: printing an error message, or

actually using the radius to calculate the area, and then printing out the result. Notice that the

action of the if clause is a single statement, whereas the action of the else clause is a group of

three statements.

Nested If-Else Statements

The if-else statement is used to choose between two statements. In order to choose from more

than two statements, the if-else statements can be nested, one inside of another. For example,

consider implementing the following continuous

mathematical function y = f(x):

y = 1 for x < −1
y = x2 for −1 ≤ x ≤ 2

y = 4 for x > 2

The value of y is based on the value of x, which could be in one of three possible ranges. Choosing

which range could be accomplished with three separate if statements, as follows:

if x < −1

end

y = 1;

if x > = −1 && x < = 2
y = x^2;

end
if x > 2

end

y= 4;

Since the three possibilities are mutually exclusive, the value of y can be determined by using

three separate if statements. However, this is not very efficient code: all three Boolean

expressions must be evaluated, regardless of the range in which x falls. For example, if x is less

than –1, the first expression is true and 1 would be assigned to y. However, the two expressions

in the next two if statements are still evaluated. Instead of writing it this way, the expressions can

be nested so that the statement ends when an expression is found to be true:

if x < −1 else

y = 1;
% If we are here, x must be > = −1
% Use an if-else statement to choose
% between the two remaining ranges

if x > = −1 && x < = 2

y = x^2;

else
% No need to check
% If we are here, x must be > 2
y = 4;
end
end

By using a nested if-else to choose from among the three possibilities, not all conditions must be

tested as they were in the previous example. In this case, if x is less than –1, the statement to

assign 1 to y is executed, and the if-else statement is completed so no other conditions are tested.

If, however, x is not less than –1, then the else clause is executed. If the else clause is executed,

then we already know that x is greater than or equal to –1 so that part does not need to be tested.

Instead, there are only two remaining possibilities: either x is less than or equal to 2, or it is

greater than 2. An if-else statement is used to choose between those two possibilities. So, the

action of the else clause was another if-else statement. Although it is long, this is one if-else

statement, a nested if-else statement. The actions are indented to show the structure. Nesting if-

else statements in this way can be used to choose from among three, four, five, six, or more

options—the possibilities are practically endless! This is actually an example of a particular kind

of nested if-else called a cascading if-else statement. In this type of nested if-else statement, the

conditions and actions cascade in a stair-like pattern.

For example, if there are n choices (where n > 3 in this example), the following general form

would be used: if condition1

Action1

elseif condition2

action2

elseif condition3

action3

% etc: there can be many of

these else

actionn % the nth action

end

The actions of the if, elseif, and else clauses are naturally bracketed by the reserved words if,

elseif, else, and end. For example, the previous example could be written using the elseif clause

rather than nesting if- else statements:

So, there are three ways of accomplishing this task: using three separate if statements, using

nested if- else statements, and using an if statement with elseif clauses, which is the simplest. This

could be implemented in a function that receives a value of x and returns the corresponding value

of y:

Another example demonstrates choosing from more than just a few options. The following

function receives an integer quiz grade, which should be in the range from 0 to 10. The program

then returns a corresponding letter grade, according to the following scheme: a 9 or 10 is an ‗A‘, an

8 is a ‗B‘, a 7 is a ‗C‘, a 6 is a ‗D‘, and anything below that is an ‗F‘. Since the possibilities are

mutually exclusive, we could implement the grading scheme using separate if statements.

However, it is more efficient to have one if- else statement with multiple elseif clauses. Also, the

function returns the value ‗X‘ if the quiz grade is not valid. The function does assume that the

input is an integer.

letgrade.m

function grade = letgrade(quiz)

% This function returns the letter grade corresponding

% to the integer quiz grade argument

% First, error-check

 if quiz < 0 || quiz > 10

grade = ‗X‘;

% If here, it is valid so figure out the

% corresponding letter grade

elseif quiz == 9 || quiz == 10

 grade = ‗A‘;

elseif quiz == 8

grade = ‗B‘;

 elseif quiz == 7

grade = ‗C‘;

elseif quiz == 6

grade = ‗D‘;

else

grade = ‗F‘;

end

Here are three examples of calling this function:

>> quiz = 8;

>> lettergrade = letgrade(quiz)

lettergrade

= B

>> quiz = 4;

>> letgrade(quiz)

ans

= F

>> quiz = 22;

>> lg = letgrade(quiz)

lg = X

In the part of this if statement that chooses the appropriate letter grade to return, all the Boolean

expressions are testing the value of the variable quiz to see if it is equal to several possible

values, in sequence (first 9 or 10, then 8, then 7, etc.). This part can be replaced by a switch

statement.

The Switch Statement

A switch statement can often be used in place of a nested if-else or an if statement with many

elseif clauses. Switch statements are used when an expression is tested to see whether it is equal

to one of several possible values. The general form of the switch statement is:

switch

switch_expression

case caseexp1

action1

case caseexp2

action2

 case caseexp3

action3

% etc: there can be many of

these otherwise

actionn

end

The switch statement starts with the reserved word switch, and ends with the reserved word end.

The switch_expression is compared, in sequence, to the case expressions (caseexp1, caseexp2,

etc.). If the value of the switch_expression matches caseexp1, for example, then action1 is

executed and the switch statement ends. If the value matches caseexp3, then action3 is executed,

and in general if the value matches caseexpi, where i can be any integer from 1 to n, then actioni

is executed. If the value of the switch_expression does not match any of the case expressions, the

action after the word otherwise is executed. For the previous example, the switch statement can

be used as follows:

switchletgrade.m

function grade = switchletgrade(quiz)

% This function returns the letter grade corresponding

% to the integer quiz grade argument using switch
% First, error-check if quiz < 0 || quiz > 10

grade = ‗X‘;
else

% If here, it is valid so figure out the
% corresponding letter grade using a

switch switch quiz

case 10

case 9

case 8

grade = ‘B‘;

case 7

grade = ‘A‘;

case 6

grade = 'A‘;

grade = ‗D‘;

otherwise

grade = ‗F‘;

end

end

Here are two examples of calling this function:

>> quiz = 22;

>> lg = switchletgrade(quiz)

lg = X

>> quiz = 9;

>> switchletgrade(quiz)

ans

= A

Note that it is assumed that the user will enter an integer value. If the user does not, either an

error message will be printed or an incorrect result will be returned. Since the same action of

printing ‗A‘ is desired for more than one case, these can be combined as follows:

switch quiz

case {10,9}

grade = ‗A‘;
case 8

% etc.

grade = ‗B‘;

(The curly braces around the case expressions 10 and 9 are necessary.) In this example, we error-

checked first using an if-else statement, and then if the grade was in the valid range, used a

switch statement to find the corresponding letter grade.

Sometimes the otherwise clause is used instead for the error message. For example, if

the user is supposed to enter only a 1, 3, or 5, the script might be organized as follows:

switcherror.m
% Example of otherwise for error message choice =

input(‘Enter a 1, 3, or 5: ‘);

switch choice
case 1

case 3

case 5

disp(‗It‘‘s a one!!‘)

disp(‗It‘‘s a three!!‘)

disp(‗It‘‘s a five!!‘)

end

otherwise

disp(‗Follow directions next time!!‘)

In this case, actions are taken if the user correctly enters one of the valid options. If the user does

not, the otherwise clause handles printing an error message. Note the use of two single quotes

within the string to print one.

>> switcherror

Enter a 1, 3, or 5: 4

Follow directions next time!!

The for Loop

The for statement, or the for loop, is used when it is necessary to repeat statement(s) in a script

or function, and when it is known ahead of time how many times the statements will be repeated.

The statements that are repeated are called the action of the loop. For example, it may be known

that the action of the loop will be repeated five times. The terminology used is that we iterate

through the action of the loop five times. The variable that is used to iterate through values is

called a loop variable, or an iterator variable. For example, the variable might iterate through the

integers 1 through 5 (e.g., 1, 2, 3, 4, and then 5). Although variable names in general should be

mnemonic, it is common for an iterator variable to be given the name i (and if more than one

iterator variable is needed, i, j, k, l, etc.) This is historical, and is because of the way integer

variables were named in Fortran. However, in MATLAB both i and j are built-in values for -1 ,

so using either as a loop variable will override that value. If that is not an issue, then it is

acceptable to use i as a loop variable. The general form of the for loop is:

for loopvar = range
action

end

where loopvar is the loop variable, range is the range of values through which the loop variable is

to iterate, and the action of the loop consists of all statements up to the end. The range can be

specified using any vector, but normally the easiest way to specify the range of values is to use the

colon operator. As an example, to print a column of numbers from 1 to 5:

for i = 1:5

fprintf(‗%d\n‘,i)
end

This loop could be entered in the Command Window, although like if and switch statements,

loops will make more sense in scripts and functions. In the Command Window, the results would

appear after the for loop:

>> for i = 1:5

fprintf(‘%d\n’,i)

end

1

2

3

4

5

What the for statement accomplished was to print the value of i and then the newline character

for every value of i, from 1 through 5 in steps of 1. The first thing that happens is that i is

initialized to have the value

1. Then, the action of the loop is executed, which is the fprintf statement that prints the value of

i (1), and then the newline character to move the cursor down. Then, i is incremented to have the

value of 2. Next, the action of the loop is executed, which prints 2 and the newline. Then, i is

incremented to 3 and that is printed, then i is incremented to 4 and that is printed, and then

finally i is incremented to 5 and that is printed. The final value of i is 5; this value can be used

once the loop has finished.

Finding Sums and Products

A very common application of a for loop is to calculate sums and products. For example, instead

of just printing the integers 1 through 5, we could calculate the sum of the integers 1 through 5

(or, in general, 1 through n, where n is any positive integer). Basically, we want to implement or

calculate the sum 1 + 2 + 3

+ … + n. In order to do this, we need to add each value to a running sum. A running sum is a

sum that will keep changing; we keep adding to it. First the sum has to be initialized to 0, then in

this case it will be 1 (0 + 1), then 3 (0 + 1 + 2), then 6 (0 + 1 + 2 + 3), and so forth. In a function

to calculate the sum, we need a loop or iterator variable i, as before, and also a variable to store

the running sum. In this case we will use the output argument runsum as the running sum. Every

time through the loop, the next value of i is added to the value of runsum. This function will

return the end result, which is the sum of all integers from 1 to the input argument n stored in the

output argument runsum.

sum_1_to_n.m

function runsum = sum_1_to_n(n)

% This function returns the sum of

% integers from 1 to

n runsum = 0;

for i = 1:n

runsum = runsum + i;
end

As an example, if 5 is passed to be the value of the input argument n, the function will calculate

and return 1 + 2 + 3 + 4 + 5, or 15:

>> sum_1_to_n(5)

ans

= 15

Note that the output was suppressed when initializing the sum to 0 and when adding to it during

the loop. Another very common application of a for loop is to find a running product. For

example, instead of finding the sum of the integers 1 through n, we could find the product of the

integers 1 through n. Basically, we want to implement or calculate the product 1 * 2 * 3 * 4 *…

* n, which is called the factorial of n, written n!.

For Loops that Do Not Use the Iterator Variable in the Action

In all the examples that we have seen so far, the value of the loop variable has been used in some

way in the action of the for loop: we have printed the value of i, or added it to a sum, or

multiplied it by a running product, or used it as an index into a vector. It is not always necessary

to actually use the value of the loop variable, however. Sometimes the variable is simply used to

iterate, or repeat, a statement a specified number of times. For example,

for i = 1:3

fprintf(‗I will not chew gum\n‘)

end

produces the output:

I will not chew gum

 I will not chew gum

I will not chew gum

The variable i is necessary to repeat the action three times, even though the value of i is not used

in the action of the loop.

Nested for Loops

The action of a loop can be any valid statement(s). When the action of a loop is another loop,

this is called a nested loop. As an example, a nested for loop will be demonstrated in a script

that will print a box of *‘s. Variables in the script will specify how many rows and columns to

print. For example, if rows has the value 3, and columns has the value 5, the

output would be:

Since lines of output are controlled by printing the newline character, the basic

algorithm is: For every row of output,

Print the required number of *‘s

Move the cursor down to the next line (print the ‗\n‘)

printstars.m

% Prints a box of stars

% How many will be specified by 2 variables
% for the number of rows and

columns rows = 3;

columns = 5;
% loop over the

rows for i=1:rows

% for every row loop to print *‘s and then one \n for j=1:columns

fprintf(‗*‘)
end

 fprintf(‗\n‘)

end

Running the script displays the output:

>> printstars

The variable rows specifies the number of rows to print, and the variable columns specifies how

many *‘s to print in each row. There are two loop variables: i is the loop variable for the rows,

and j is the loop variable for the columns. Since the number of rows and columns are known

(given by the variables rows and columns), for loops are used. There is one for loop to loop over

the rows, and another to print the required number of *‘s. The values of the loop variables are not

used within the loops, but are used simply to iterate the correct number of times. The first for

loop specifies that the action will be repeated rows times. The action of this loop is to print *‘s

and then the newline character. Specifically, the action is to loop to print columns *‘s across on

one line. Then, the newline character is printed after all five stars to move the cursor down for

the next line. The first for loop is called the outer loop; the second for loop is called the inner

loop. So, the outer loop is over the rows, and the inner loop is over the columns. The outer loop

must be over the rows because the program is printing a certain number of rows of output. For

each row, a loop is necessary to print the required number of *‘s; this is the inner for loop. When

this script is executed, first the outer loop variable i is initialized to 1. Then, the action is

executed. The action consists of the inner loop, and then printing the newline character. So, while

the outer loop variable has the value 1, the inner loop variable j iterates through all its values.

Since the value of columns is 5, the inner loop will print a * five times. Then, the newline

character is printed and the outer loop variable i is incremented to 2. The action of the outer loop

is then executed again, meaning the inner loop will print five *‘s, and then the newline character

will be printed. This continues, and in all, the action of the outer loop will be executed rows

times. Notice the action of the outer loop consists of two statements (the for loop and an fprintf

statement). The action of the inner loop, however, is only a single statement. The fprintf

statement to print the newline character must be separate from the other fprintf statement that

prints the *. If we simply had fprintf(‗*\n‘) as the action of the inner loop, this would print a long

column of 15 *‘s, not a box In these examples, the loop variables were used just to specify the

number of times the action is to be repeated. These same loops could be used instead to produce

a multiplication table by multiplying the values of the loop variables. The following function

multtable calculates and returns a matrix that is a multiplication table. Two arguments are passed

to the function, which are the number of rows and columns for this matrix

multtable.m

function outmat = multtable (rows, columns)

% Creates a matrix which is a multiplication table
% Preallocate the matrix

 outmat = zeros(rows,columns);

for i = 1:rows

for j = 1:columns

outmat(i,j) = i * j;
end

end

In the following example, the matrix has three rows and five columns:

>> multtable(3,5)

ans =
1 2 3 4 5
2 4 6 8 10

3 6 9 12 15

Notice that this is a function that returns a matrix; it does not print anything. It preallocates the

matrix to zeros, and then replaces each element. Since the number of rows and columns are

known, for loops are used. The outer loop loops over the rows, and the inner loop loops over the

columns. The action of the nested loop calculates i * j for all values of i and j. First, when i has

the value 1, j iterates through the values 1 through 5, so first we are calculating 1 * 1, then 1 * 2,

then 1 * 3, then 1 * 4, and finally 1 * 5. These are the values in the first row (first in element

(1,1), then (1,2), then (1,3), then (1,4), and finally (1,5)). Then, when i has the value 2, the

elements in the second row of the output matrix are calculated, as j again iterates through the

values from 1 through 5. Finally, when i has the value 3, the values in the third row are

calculated (3 * 1, 3 * 2, 3 * 3, 3 * 4, and 3 * 5). This function could be used in a script that

prompts the user for the number of rows and columns, calls this function to return a

multiplication table, and writes the resulting matrix to a file:

createmulttab.m

% Prompt the user for rows and columns and

% create a multiplication table to store in

% a file mymulttable.dat
num_rows = input(‘Enter the number of rows: ‘);

num_cols = input(‘Enter the number of columns: ‘);

multmatrix = multtable(num_rows, num_cols);

save mymulttable.dat multmatrix –ascii

Here is an example of running this script, and then loading from the file into a matrix in order to

verify that the file was created:

>> createmulttab

Enter the number of rows: 6

Enter the number of

columns: 4

>> load mymulttable.dat

>> mymulttable

mymulttable =
1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

5 10 15 20

6 12 18 24

Logical Vectors

The relational operators can also be used with vectors and matrices. For example, let‘s say that

there is a vector, and we want to compare every element in the vector to 5 to determine

whether it is greater than 5 or not. The result would be a vector (with the same length as the

original) with logical true or false values. Assume a variable vec as shown here.

>> vec = [5 9 3 4 6 11];

In MATLAB, this can be accomplished automatically by simply using the relational operator >.

>> isg = vec > 5

isg =

0 1 0 0 1 1
Notice that this creates a vector consisting of all logical true or false values. Although this is a

vector of ones and zeros, and numerical operations can be done on the vector isg, its type is

logical rather than double.

>> doubres = isg + 5

ans =

5 6 5 5 6 6

>> whos

Name Size Bytes Class

doubres 1x6 4 8 double array

isg 1x6 6 logical array

vec 1x6 48 double array

To determine how many of the elements in the vector vec were greater than 5, the sum

function could be used on the resulting vector isg:

>>

sum(isg)

ans =

3

The logical vector isg can also be used to index into the vector. For example, if only the elements

from the vector that are greater than 5 are desired:

>> vec(isg)

ans =

9 6 11

Because the values in the vector must be logical 1‘s and 0‘s, the following function that appears at

first to accomplish the same operation using the programming method, actually does not. The

function receives two input arguments: the vector, and an integer with which to compare (so it is

somewhat more general). It loops through every element in the input vector, and stores in the result

vector either a 1 or 0 depending on whether vec(i) > n is true or false.

testvecgtn.m

function outvec = testvecgtn(vec,n)

% Compare each element in vec to see whether it

% is greater than n or not
% Preallocate the vector

outvec = zeros(size(vec));

for i = 1:length(vec)

% Each element in the output vector stores 1 or 0

 if vec(i) > n

outvec(i) = 1;

 else

outvec(i) = 0;

end

end

Calling the function appears to return the same vector as simply vec > 5, and summing the result

still works to determine how many elements were greater than 5.

>> notlog = testvecgtn(vec,5)

notlog =

0 1 0 0 1 1

>> sum(notlog)

ans =

3
However, as before, it could not be used to index into a vector because the elements are double, not

logical:

>> vec(notlog)

??? Subscript indices must either be real positive integers or logicals.

While Loops

The while statement is used as the conditional loop in MATLAB; it is used to repeat an action

when ahead of time it is not known how many times the action will be repeated. The general

form of the while statement is:

while condition

action

end

The action, which consists of any number of statement(s), is executed as long as the condition is

true. The condition must eventually become false to avoid an infinite loop. (If this happens, Ctrl-

C will exit the loop.) The way it works is that first the condition is evaluated. If it is logically

true, the action is executed. So, to begin with it is just like an if statement. However, at that point

the condition is evaluated again. If it is still true, the action is executed again. Then, the action is

evaluated again. If it is still true, the action is executed again. Then, the action is… eventually,

this has to stop! Eventually something in the action has to change something in the condition so

it becomes false. As an example of a conditional loop, we will write a function that will find the

first factorial that is greater than the input argument high. Previously, we wrote a function to

calculate a particular factorial. For example, to calculate 5! we found the product 1 * 2 * 3 * 4 *

5. In that case a for loop was used, since it was known that the loop would be repeated five

times. Now, we do not know how many times the loop will be repeated. The basic algorithm is to

have two variables, one that iterates through the values 1, 2, 3, and so on, and one that stores the

factorial of the iterator at each step. We start with 1, and 1 factorial, which is 1. Then, we check

the factorial. If it is not greater than high, the iterator variable will then increment to 2, and find

its factorial (2). If this is not greater than high, the iterator will then increment to 3, and the

function will find its factorial (6). This continues until we get to the first factorial that is greater

than high. So, the process of incrementing a variable and finding its factorial is repeated until we

get to the first value greater than high. This is implemented using a while loop:

factgthigh.m

function facgt = factgthigh(high)
% Finds the first factorial >

high i=0;

fac=1;

while fac <= high

i=i+1;
fac = fac * i;

end

facgt = fac;

Here is an example of calling the function, passing 5000 for the value of the input argument high.

>> factgthigh(5000)

ans

=

5040

The iterator variable i is initialized to 0, and the running product variable fac, which will store

the factorial of each value of i, is initialized to 1. The first time the while loop is executed, the

condition is conceptually true: 1 is less than or equal to 5000. So, the action of the loop is

executed, which is to increment i to 1 and fac to 1 (1 * 1). After the execution of the action of the

loop, the condition is evaluated again. Since it will still be true, the action is executed: i is

incremented to 2, and fac will get the value 2 (1 * 2). The value 2 is still <= 5000, so the action

will be executed again: i will be incremented to 3, and fac will get the value 6 (2 * 3). This

continues until the first value of fac is found that is greater than 5000. As soon as fac gets to this

value, the condition will be false and the while loop will end. At that point the factorial is

assigned to the output argument, which returns the value. The reason that i is initialized to 0

rather than 1 is that the first time the loop action is executed, i becomes 1 and fac becomes 1 so

we have 1 and 1!, which is 1. Notice that the output of all assignment statements is suppressed in

the function.

Multiple Conditions in a While Loop

In the previous section, we wrote a function myany that imitated the built-in any function by

returning logical true if any value in the input vector was logical true, and logical false otherwise.

The function was inefficient because it looped through all the elements in the input vector, even

though once one logical true value is found it is no longer necessary to examine any other

elements. A while loop will improve on this. Instead of looping through all the elements, what

we really want to do is to loop until either a logical true value is found, or until we‘ve gone

through the entire vector. Thus, we have two parts to the condition in the while loop. In the

following function, we initialize the output argument to logical false, and an iterator variable i to

The action of the loop is to examine an element from the input vector: if it is logical true, we

change the output argument to be logical true. Also in the action the iterator variable is

incremented. The action of the loop is continued as long as the index has not yet reached the end

of the vector, and as long as the output argument is still logical false.

myanywhile.m

function logresult = myanywhile(vec)

% Simulates the built-in function any

% Uses a while loop so that the action halts
% as soon as any true value is

found logresult = logical(0);

i = 1;
while i <= length(vec) && logresult == 0

if vec(i) = 0

logresult = logical(1);

 end

i = i + 1;
end

The output produced by this function is the same as the myany function, but it is more efficient

because now as soon as the output argument is set to logical true, the loop ends.

Debugging Techniques

Any error in a computer program is called a bug. This term is thought to date back to the 1940s,

when a problem with an early computer was found to have been caused by a moth in the

computer‘s circuitry! The process of finding errors in a program, and correcting them, is still

called debugging.

Types of Errors

There are several different kinds of errors that can occur in a program, which fall into the

categories of syntax errors, run-time errors, and logical errors. Syntax errors are mistakes in

using the language. Examples of syntax errors are missing a comma or a quotation mark, or

misspelling a word. MATLAB itself will flag syntax errors and give an error message. For

example, the following string is missing the end quote:

>> mystr = ‘how are you;

??? mystr = ‗how are you;

|

Error: A MATLAB string constant is not terminated properly.

Another common mistake is to spell a variable name incorrectly, which MATLAB will also catch.

>> value = 5;

>> newvalue = valu + 3;

??? Undefined function or variable ‘valu’.

Run-time, or execution-time, errors are found when a script or function is executing. With most

languages, an example of a run-time error would be attempting to divide by zero. However, in

MATLAB, this will generate a warning message. Another example would be attempting to refer

to an element in an array that does not exist.

runtime_ex.m

% This script shows an execution-time

error vec = 3:5;

for i = 1:4

disp(vec(i))
end

This script initializes a vector with three elements, but then attempts to refer to a fourth. Running it

prints the three elements in the vector, and then an error message is generated when it attempts to

refer to the fourth element. Notice that it gives an explanation of the error, and it gives the line

number in the script in which the error occurred.

>> runtime_ex

3

4

5
??? Attempted to access vec(4); index out of bounds because

numel(vec)=3.

Error in ==> runtime_ex at 6
disp(vec(i))

Logical errors are more difficult to locate, because they do not result in any error message. A

logical error is a mistake in reasoning by the programmer, but it is not a mistake in the

programming language. An example of a logical error would be dividing by 2.54 instead of

multiplying in order to convert inches to centimeters. The results printed or returned would be

incorrect, but this might not be obvious. All programs should be robust and should wherever

possible anticipate potential errors, and guard against them. For example, whenever there is input

into a program, the program should error-check and make sure that the input is in the correct

range of values. Also, before dividing, the denominator should be checked to make sure that it is

not zero. Despite the best precautions, there are bound to be errors in programs.

Tracing

Many times, when a program has loops and/or selection statements and is not running properly, it

is useful in the debugging process to know exactly which statements have been executed. For

example, here is a function that attempts to display In Middle Of Range if the argument passed to

it is in the range from 3 to 6, and Out Of Range otherwise.

testifelse.m

function testifelse(x)
% This function will test the

debugger if 3 < x < 6

disp(‘In middle of range‘)
else

disp(‘Out of range‘)

end

However, it seems to print In Middle Of Range for all values of x:

>> testifelse(4)

In middle of range

>> testifelse(7)

In middle of range

>> testifelse(–2)

In middle of range

One way of following the flow of the function, or tracing it, is to use the echo function. The

echo function, which is a toggle, will display every statement as it is executed as well as results

from the code. For scripts, just echo can be typed, but for functions, the name of the function

must be specified, for example, echo function name on/off

>> echo testifelse on

Editor/Debugger

MATLAB has many useful functions for debugging, and debugging can also be done

through its editor, called the Editor/Debugger. Typing help debug at the prompt in the

Command Window will show some of the debugging functions. Also, in the Help

Browser, clicking the Search tab and then typing debugging will display basic

information about the debugging processes. It can be seen in the previous example that

the action of the if clause was executed and it printed In Middle Of Range, but just from

that it cannot be determined why this happened. There are several ways to set

breakpoints in a file (script or function) so that the variables or expressions can be

examined. These can be done from the Editor/Debugger, or commands can be typed from

the Command Window. For example, the following dbstop command will set a

breakpoint in the fifth line of this function (which is the action of the if clause), which

allows us to type variable names and/or expressions to examine their values at that point

in the execution. The function dbcont can be used to continue the execution, and dbquit

can be used to quit the debug mode. Notice that the prompt becomes K>> in debug

mode.

>> dbstop testifelse 5

>> testifelse(–2)

5 disp(‗In middle of range‘)

K>> x

x =

–2

K>> 3 < x

ans =

0

K>> 3 < x < 6

ans =
1

K>> dbcont

In middle

of range

end

>>
By typing the expressions 3 < x and then 3 < x < 6, we can determine that the expression

3 < x will return either 0 or 1. Both 0 and 1 are less than 6, so the expression will always

be true, regardless of the value of x!

Function Stubs

Another common debugging technique, which is used when there is a script main

program that calls many functions, is to use function stubs. A function stub is a

placeholder, used so that the script will work even though that particular function hasn‘t

been written yet. For example, a programmer might start with a script main program

that consists of calls to three function that accomplish all the tasks.

mainmfile.m

% This program gets values for x and y, and

% calculates and prints

z [x, y] = getvals;

z = calcz(x,y);

printall(x,y,z)

The three functions have not yet been written, however, so function stubs are put in place

so that the script can be executed and tested. The function stubs consist of the proper

function headers, followed by a simulation of what the function will eventually do (e.g., it

puts arbitrary values in for the output arguments).

getvals.m

function [x, y] = getvals

x = 33;

y = 11;

calcz.m

function z = calcz(x,y)

z = 2.2;

printall.m

function printall(x,y,z)

disp(‘Something‘)

Then, the functions can be written and debugged one at a time. It is much easier to write a

working program using this method than to attempt to write everything at once—then,

when errors occur, it is not always easy to determine where the problem is!

EXAMPLE PROBLEMS FOR BRANCHES

% TO FIND SOLUTION OF QUADRATIC EQUATION

a=input('a =');

b=input('b=');

c=input('c=');

y=b^2 -4*a*c;

if y>0

 x1=(-b+sqrt(y))/(2*a);

 x2=(-b-sqrt(y))/(2*a);

 disp(x1)

 disp(x2)

 disp('The roots are real and distinct')

elseif y==0

 x1=-b/(2*a);

 disp(x1)

 disp('The roots are real and repeated')

else

 x1=-b/(2*a);

 x2=sqrt(abs(y))/(2*a);

 s1=x1+1i*x2;

 s2=x1-1i*x2;

 disp(s1)

 disp(s2)

 disp('The roots are complex conjugate')

end

OUTPUT

>> quadra_soln

a =1

b=4

c=6

 -2.0000 + 1.4142i

 -2.0000 - 1.4142i

The roots are complex conjugate

% Example for switch case

value= input('enter the value');

switch(value)

 case{1,3,5,7,9,11}

 disp('odd number')

 case{2,4,6,8,10}

 disp('even number')

 otherwise

 disp('number out of range')

end

OUTPUT

>> sw_cs

enter the value3

odd number

>> sw_cs

enter the value6

even number

>> sw_cs

enter the value20

number out of range

% TO BUILD A CALCULATOR USING SWITCH CASE

a=input('enter a matrix');

b=input('enter b matrix');

option=input('enter option as string');

switch option

 case '+'

 c=a+b;

 case '-'

 c=a-b;

 case '*'

 c=a*b;

 case 't'

 c=a';

 case'in'

 c=inv(a);

 otherwise

 disp('invalid operation')

end

disp(c)

OUTPUT

>> calci

enter a matrix [2 3 4;5 6 7;1 8 9]

enter b matrix[1 2 3;-1 -2 -3;4 5 6]

enter option as string'+'

 3 5 7

 4 4 4

 5 13 15

>> calci

enter a matrix[1 2 3;-1 -2 -3;4 5 6]

enter b matrix[2 3 4;5 6 7;1 8 9]

enter option as string't'

 1 -1 4

 2 -2 5

 3 -3 6

% EXAMPLE FOR TRY/CATCH

a=[1 5 -6 8 9 -2];

try

 ind=input('Enter the subscript of the element to be displayed');

 disp(num2str(a(ind)));

catch

 disp(['Illegal subscript:' num2str(ind)]);

end

OUTPUT

>> ty_ct

Enter the subscript of the element to be displayed3

-6

>> ty_ct

Enter the subscript of the element to be displayed8

Illegal subscript:8

% PROGRAM TO ADD FIRST 10 DIGITS

n=0;

sum=0;

while n<11

 sum = sum+n;

 n=n+1;

end

fprintf('The sum of first 10 numbers \t %d \n',sum)

OUTPUT

>> sum_10_digit

The sum of first 10 numbers 55

% PROGRAM TO FIND SQUARE OF INTEGERS LESS THAN 5

k=0;

while k<5

 k=k+1;

 ksq=k^2;

 fprintf('square of %d is %d\n', k,ksq);

end

OUTPUT

>> sq_no

square of 1 is 1

square of 2 is 4

square of 3 is 9

square of 4 is 16

square of 5 is 25

%PROGRAM TO OBTAIN SUM OF ALL INTEGERS FROM 0 TO 20

sum=0;

for i=0:20

 sum=sum+i;

 end

disp(sum)

OUTPUT

>> sum_20_no

 210

% TO FIND MEAN, VARIANCE AND STANDARD DEVIATION OF A DATA

data = input('Enter the dataset');

n= length(data);

mean_value = sum(data)/n;

for i=1:n

 diff= data - mean_value;

 var=sum(diff.^2)/(n-1);

 std=sqrt(var);

end

disp(mean_value)

disp(var)

disp(std)

OUTPUT

>> mean_std

Enter the dataset[10 20 30 40 50]

 30

 250

 15.8114

REFERENCES

1. Stephen J Chapman, “ Programming in MATLAB for Engineers”, Brooks, 2002

2. Duane Hanselman ,Bruce LittleField, “Mastering MATLAB 7” , Pearson

Education Inc, 2005

3. William J.Palm, “Introduction to MATLAB 6.0 for Engineers”, Mc Graw Hill & Co,

2001

4. M.Herniter, “Programming in MATLAB”, Thomson Learning, 2001

QUESTION BANK

PART - B

 PART - A

CO

1 List out the relational operators that are used in matlab. 2

2 Differentiate conditional and unconditional looping. 2

3 Write the syntax for for loop. 2

4 Mention the special matlab statements that control the program

execution sequence

2

5 Write a matlab program, using while loop, for finding the squares of

integers less than 10.

2

6 What is meant by nested if structure. 2

7 Write a matlab program to find the average of any 10 numbers using for

statement.

2

8 Develop a matlab code to add given two row vectors [1 2 3] & [4 5].

Illustrate using try-catch structure

2

9 Differentiate between looping and branching structures. 2

10 List out the logical operators that are used in matlab format. 2

1 Design the matlab code for performing the basic arithmetic operations for

matrix manipulation by using the switch-case structures.

2

2 Develop a matlab code for finding the mean, standard deviation and

variance for a given n numbers.

2

3 Write a matlab code to sort the given numbers in descending order. 2

4 Develop a matlab coding for solving simultaneous equations consisting of

three variables and there by finding the variables.

2

5 Explain in detail the various operators used in matlab with the

expressions in both algebraic and matlab form. Also give the results of

2

the expressions.

6 Explain the control structures that cause specific group of instructions to

be repeated for a fixed no of times or until the specified condition is met.

2

7 Explain the control structures that cause specific block of instructions to

be executed until the condition is satisfied.

2

8 Write a matlab program to find the median of ‘n’ numbers. Assume the

input array is to be sorted first.

2

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – III – Programming in MATLAB – SEC1618

UNIT 3 PLOTS IN MATLAB & GUI

Basic 2D plots, Labels, Line style, Markers, plot, subplot, LOG, LOG-LOG,SEMILOG-POLAR-

COMET, Grid axis, , labeling, fplot, ezplot, ezpolar, polyval, exporting figures, HOLD, STEM, BAR, HIST,

Interactive plotting, Basic Fitting Interface- Polyfit- 3D plots- Mesh- Contour –Example programs. GUI-

Creation Fundamentals- Capturing mouse actions

Two Dimensional Plots(2D plots):

The common 2-D plot commands includes the following mentioned below.

 plot - Basic line plots

 plotyy - Plot multiple plots using two Y axes, one on each side

 polar - Polar coordinate plot

 loglog, semilogx, semilogy - logarithmic plots

 errorbar - Plot error bars along a curve, not necessarily equal.

 bar, barh - Bar plots, vertical or horizontal

 pie - Pie charts

 hist - Histograms

 contour - Contour plots.

 comet – Animated plot

 feather - Vectors distributed along a line.

 quiver - Vectors distributed over a 2-D field, e.g. wind directon & strength.

Basic 2D plots:

 “plot()” gives a linear plot. plot(x,y) plots vector y versus vector x. If x or y is a matrix, then the

vector is plotted versus the rows/columns of the matrix.

plot(y) plots the columns of y versus their index.

If y is complex, plot(y) is equivalent to plot(real(y),imag(y)).Mostly the imaginary part is normally

ignored.

x=1:0.5:10;

y=1:0.5:10;

plot(x,y);

xlabel('x axis name');

ylabel('y axis name');

title('Plot name');

The below fig 3.1 shows the basic plot.

Fig 3.1 Basic plot

The below figure 3.2 gives the various details of the plot

Fig 3.2 Plot with various parameters.

Line styles, Markers and Colours:

 Various line types, plot symbols and colors may be obtained with plot(x,y,s) where s is a

character string made from one element from any or all the following 3 columns given below,

 COLOURS PLOT SYMBOLS LINE TYPES

 b blue . point - solid

 g green o circle : dotted

 r red x x-mark -. dashdot

 c cyan + plus -- dashed

 m magenta * star (none) no line

 y yellow s square

 k black d diamond

 w white v triangle (down)

 ^ triangle (up)

 < triangle (left)

 > triangle (right)

 p pentagram

 h hexagram

Eg. plot(x,y,'c+:') plots a cyan dotted line with a plus at each data point whereas plot(x,y,'bd') plots blue

diamond at each data point but does not draw any line.

x=1:5;

y=1:5;

z=x+y;

plot(z,'r*--')

The fig 3.3 shows the plot for the above matlab program.

Fig 3.3 Plot command with various styles.

Legend:

 To plot multiple dependent vectors on the same plot and to distinguish them from each other via

a legend, the syntax is very similar to the axis labeling above. It is also possible to set colors for the

different vectors and to change the location of the legend on the figure.

The below example matlab program and fig 3.4 shows the details of the legend command.

clear all;

X = [3 9 27]; % dependent vectors of interest

Y = [10 8 6];

Z = [4 4 4];

t = [1 2 3]; % independent vector

hold on % allow all vectors to be plotted in same figure

plot(t, X, 'blue', t, Y, 'red', t, Z, 'green');

 title('Plot of Distance over Time') % title

ylabel('Distance (m)') % label for y axis

xlabel('Time (s)') % label for x axis

legend('Trial 1', 'Trial 2', 'Trial 3');

legend('Location','NorthWest') % move legend to upper left

Fig 3.4 Plot command with legend function

subplot:

 Another function that is very useful with any type of plot is subplot, which creates a matrix of

plots in the current Figure Window. Three arguments are passed to it in the form subplot(r,c,n); where

r and c are the dimensions of the matrix and n is the number of the particular plot within this matrix.

The plots are numbered row wise starting in the upper left corner. In many cases, it is useful to create

a subplot in a for loop so the loop variable can iterate through the integers 1 through n. When the

subplot function is called in a loop, the first two arguments will always be the same since they give

the dimensions of the matrix. The third argument will iterate through the numbers assigned to the

elements of the matrix.

 When the subplot function is called, it makes that element the active plot; then, any plot

function can be used complete with axis labeling, titles, and such within that element.

Plot Types:

 Besides plot and subplot, there are other plot types such as histograms, stem plots, area

plots and pie charts, as well as other functions that customize graphs. The functions bar, barh, area,

and stem essentially display the same data as the plot function, but in different forms. The bar()

function draws a bar chart , barh() draws a horizontal bar chart, area draws the plot as a continuous

curve and fills in under the curve that is created, and stem draws a stem plot or discrete plot.

For example, the following script creates a figure window that uses a 2 × 2 subplot to demonstrate

these four plot types using the same x and y points (see Figure 3.5).

x = 1:6;

y = [33 11 5 9 22 30];

subplot(2,2,1);

bar(x,y);

title('bar');

subplot(2,2,2);

barh(x,y);

title('barh');

subplot(2,2,3);

area(x,y);

title('area');

subplot(2,2,4);

stem(x,y);

title('stem');

Fig 3.5 Types of plot using subplot command

LOGLOG():

 It creates a plot using a logarithmic scale for both the x-axis and the y-axis

loglog(x,y,'LineWidth',2). Fig 3.6 shows the simulated output.

Fig 3.6 Example of loglog() command

SEMILOG():

(A) SEMILOGX():

 The syntax is semilogx(x, y) and the output is shown in fig 3.7

Fig 3.7 Example of semilogx() command

(B) SEMILOGY():

 The syntax is semilogy(x, y) and the output is shown in fig 3.8

Fig 3.8 Example of semilogy() command

POLAR():

 The polar function creates polar plots from angle and magnitude data. It takes the forms

polar(theta,rho), where theta corresponds to the angle (in radians) and rho corresponds to the

magnitude. The variables theta and rho must be identically sized vectors. An example is given below.

t = 0 : 2*pi/100 : 2*pi;

r = 1 - sin(t);

polar(t, r)

The output figure 3.9 obtained is shown below

Fig 3.9 Example of polar plot

COMET():

 comet(a) displays an animated comet plot of the vector a.

 comet(a, b) displays an animated comet plot of vector b vs. a.

 comet(a, b, p) uses a comet of length p*length(b). Default is p = 0.10.

Controlling Axes:

 The scaling and appearance of plot axis can be controlled with the axis function. To set scaling

for the x and y axes on the current 2-D plot, use the below given command

 axis([xmin xmax ymin ymax])

To scale the axes on 3-D plot, use the command for x,y,z min & max

Also,

axis('auto') - returns the axis scaling to its default where the best axis limits are computed automatically

axis('square') - makes the current axis box square in size, otherwise a circle will look like an oval;

axis('off ') - turns off the axes

axes axis('on') - turns on axis labeling and tic marks.

axis(manual) - freezes the scaling at the current limits, so that if hold is turned on, subsequent plots will

use the same limits.

axis(tight) - sets the axis limits to the range of the data.

axis(fill) - sets the axis limits and plot box aspect ratio so that the axis fills the position rectangle. This

option only has an effect if plot box aspect ratio mode or data aspect ratio mode are manual.

axis(equal) - sets the aspect ratio so that equal tick mark increments on the x-,y- and z-axis are equal in

size.

axis(normal) - restores the current axis box to full size and removes any restrictions on the scaling of

the units. This undoes the effects of axis square and axis equal.

Labeling:

 MATLAB also allows labelling of axes. ie x,y axes and title and is shown in fig 3.1

 xlabel() function allows to label the x axis.

 xlabel(‘string’)

 ylabel() function allows labelling of y axis

 ylabel(‘string’)

 title()– function allows giving title to our plot

 title(‘string’)

fplot():

 It is used to plot between the specified limits. The function must be of the form y=f(x), where x

is a vector whose specifies the limits, and y is a vector with the same size as x.

The syntax is given below

 fplot(fun, limits) – A function fun is plotted in between the limits specified

 fplot(fun, limits, linespace) – allows plotting fun with line specification

 fplot(fun, limits, tol) -allows plotting with relative error tolerance ‘tol’.If not specified

default tolerance will be 2e-3 ie .2% accuracy.

 fplot(fun, limits, tol, linespace) – allows plotting with relative tolerance and line

specification

The fig 3.10 below shows for the function

 fplot('x.^2' , [0,50])

Fig 3.10 Example of fplot().

ezplot():

 Easy to use function plotter

ezplot(fun) plots the expression fun(x) over the default domain -2π < x < 2π.

ezplot(f,[min,max]) plots f = f(x) over the domain: min < x < max.

For implicitly defined functions, f = f(x,y):

ezplot(f) plots f(x,y) = 0 over the default domain -2π < x < 2π, -2 π < y < 2 π.

ezplot(f,[xmin,xmax,ymin,ymax]) plots f(x,y) =0 over xmin < x < xmax and ymin < y < ymax.

ezplot(f,[min,max]) plots f(x,y) = 0 over min < x < max and min < y < max.

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and y = y(t) over the default domain

0< t < 2 π.

ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over tmin < t < tmax.

ezplot(...,figure) plots the given function over the specified domain in the figure window identified by

the handle figure.

ezpolar():

 Easy to use polar coordinate plotter

ezpolar(f) plots the polar curve rho = f(theta) over the default domain 0 < theta < 2

ezpolar(f,[a,b]) plots f for a < theta < b.

Example Program: To Plot the function 1+cos(t) over the domain [0,2π].

figure

ezpolar('1+cos(t)')

Fig 3.11 Example of ezpolar()

polyval():

 Polynomial evaluation in matlab.

y = polyval(p,x) returns the value of a polynomial(p) of degree n evaluated at x. The input argument p is

a vector of length N+1 whose elements are the coefficients in descending powers of the polynomial to

be evaluated.

 Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1)

x can be a matrix or a vector. In either case, polyval evaluates p at each element of x.

The polynomial coefficients in p can be calculated for different purposes by functions like polyint,

polyder, and polyfit, but we can specify any vector for the coefficients.

The polynomial is evaluated at x = 5, 7, and 9 with

p = [3 2 1];

polyval(p,[5 7 9])

and the output is 86 162 262

HOLD:

Retain current plot when adding new plots

Syntax

hold on retains plots in the current axes so that new plots added to the axes do not delete existing plots.

hold off sets the hold state to off so that new plots added to the axes clear existing plots and reset all

axes properties.

hold all is the same as hold on. This syntax will be removed in a future release. Use hold on instead.

hold toggles the hold state between on and off.

hold(ax,___) sets the hold state for the axes specified by ax instead of the current axes.

Example:

x = linspace(-pi,pi);

y1 = sin(x);

plot(x,y1)

hold on

y2 = cos(x);

plot(x,y2)

hold off

Fig 3.12 Example of hold command in plotting graphs

STEM():

 It is used for discrete plot.

stem(y) plots the data sequence y as stems from the x axis terminated with circles for the data value. If y

is a matrix then each column is plotted as a separate series.

stem(x,y) plots the data sequence y at the values specified in x.

The example for stem command is shown in fig. 3.5

BAR(): Bar Graph

 The bar(x,y) draws the columns of the m-by-n matrix y as m groups of n vertical bars. The

vector x must not have duplicate values. Similarly bar(y) uses the default value of x=1:m. for vector

inputs, bar(x,y) or bar(y) draws length(y) bars. Barh() is used for horizontal bar graphs. Fig.3.5 shows

the output of bar() and barh() command

HIST():

 hist() function is used to plot the histogram.

n=hist(y) - bins the elements in vector y into 10 equally spaced containers and returns the number of

elements in each container as a row vector.

n=hist(y,x) - where x is a vector, returns the distribution of y along length (x) bins with centers specified

by x.

n=hist(y,nbins) - where n bins is scalar and uses it as number of bins

x=rand(1000,1); % rand function generates nxn matrix ; rand(m,n) generates mxn square matrix

fix(x); % used to round it off to 0

hist(x,10) % returns the distribution of x in 10 length bin

Fig 3.13 Histogram Plot

Polyfit :

Polynomial curve fitting

p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits the data, p(x(i)) to y(i),

in a least squares sense. The result p is a row vector of length n+1 containing the polynomial coefficients

in descending powers

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p and a structure S for use with polyval to

obtain error estimates or predictions. If the errors in the data y are independent normal with constant

variance, polyval produces error bounds that contain at least 50% of the predictions.

 Polyfit is a Matlab function that computes a least squares polynomial for a given set of data.

Polyfit generates the coefficients of the polynomial, which can be used to model a curve to fit the data.

 Polyval evaluates a polynomial for a given set of x values. So, Polyval generates a curve to fit

the data based on the coefficients found using polyfit.

3D PLOTS

MESH

 mesh(X,Y,Z) creates a mesh plot, which is a three-dimensional surface that has solid edge colors

and no face colors. The function plots the values in matrix Z as heights above a grid in the x-y

plane defined by X and Y. The edge colors vary according to the heights specified by Z.

 mesh(Z) creates a mesh plot and uses the column and row indices of the elements in Z as the x-

and y-coordinates

 mesh(Z,C) additionally specifies the color of the edges.

EXAMPLE

1. CREATE MESH PLOT

Create three matrices of the same size. Then plot them as a mesh plot. The plot uses Z for both height

and color

[X,Y] = meshgrid(-8:.5:8);

R = sqrt(X.^2 + Y.^2) + eps;

Z = sin(R)./R;

mesh(X,Y,Z)

2. SPECIFY COLORMAP COLORS FOR MESH PLOT

Specify the colors for a mesh plot by including a fourth matrix input, C. The mesh plot uses Z for height

and C for color. Specify the colors using a colormap, which uses single numbers to stand for colors on a

spectrum. When you use a colormap, C is the same size as Z. Add a color bar to the graph to show how

the data values in C correspond to the colors in the colormap.

[X,Y] = meshgrid(-8:.5:8);

R = sqrt(X.^2 + Y.^2) + eps;

Z = sin(R)./R;

C = X.*Y;

mesh(X,Y,Z,C)

colorbar

3. SPECIFY TRUE COLORS FOR MESH PLOT

Specify the colors for a mesh plot by including a fourth matrix input, CO. The mesh plot uses Z for

height and CO for color. Specify the colors using truecolor, which uses triplets of numbers to stand for

all possible colors. When you use truecolor, if Z is m-by-n, then CO is m-by-n-by-3. The first page of

the array indicates the red component for each color, the second page indicates the green component,

and the third page indicates the blue component.

[X,Y,Z] = peaks(25);

CO(:,:,1) = zeros(25); % red

CO(:,:,2) = ones(25).*linspace(0.5,0.6,25); % green

CO(:,:,3) = ones(25).*linspace(0,1,25); % blue

mesh(X,Y,Z,CO)

CONTOUR

contour3(Z) creates a 3-D contour plot containing the isolines of matrix Z, where Z contains height

values on the x-y plane. MATLAB
®
 automatically selects the contour lines to display. The column and

row indices of Z are the x and y coordinates in the plane, respectively.

contour3(X,Y,Z) specifies the x and y coordinates for the values in Z

contour3(___,levels) specifies the contour lines to display as the last argument in any of the previous

syntaxes. Specify levels as a scalar value n to display the contour lines at n automatically chosen levels

(heights). To draw the contour lines at specific heights, specify levels as a vector of monotonically

increasing values. To draw the contours at one height (k), specify levels as a two-element row vector [k

k].

contour3(___,LineSpec) specifies the style and color of the contour lines.

EXAMPLES

1. CONTOURS OF SPACE

Define Z as a function of X and Y. In this case, call the sphere function to create X, Y, and Z. Then plot

the contours of Z.

[X,Y,Z] = sphere(50);

contour3(X,Y,Z);

2. CONTOURS AT FIFTY LEVELS

Define Z as a function of two variables, X and Y. Then plot the contours of Z. In this case, let

MATLAB® choose the contours and the limits for the x- and y-axes.

[X,Y] = meshgrid(-5:0.25:5);

Z = X.^2 + Y.^2;

contour3(Z)

Now specify 50 contour levels, and display the results within the x and y limits used to calculate Z.

contour3(X,Y,Z,50)

3. CONTOURS AT SPECIFIC LEVELS WITH LABELS

Define Z as a function of two variables, X and Y. Then plot the contours at Z = [-.2 -.1 .1 .2]. Show the

contour labels by setting the ShowText property to 'on'

[X,Y] = meshgrid(-2:0.25:2);

Z = X.*exp(-X.^2-Y.^2);

contour3(X,Y,Z,[-.2 -.1 .1 .2],'ShowText','on')

POLYFIT

Polynomial curve fitting

 p = polyfit(x,y,n) returns the coefficients for a polynomial p(x) of degree n that is a best fit (in a

least-squares sense) for the data in y. The coefficients in p are in descending powers, and the

length of p is n+1

p(x)=p1xn+p2xn−1+...+pnx+pn+1.

 [p,S] = polyfit(x,y,n) also returns a structure S that can be used as an input to polyval to obtain

error estimates.

 [p,S,mu] = polyfit(x,y,n) also returns mu, which is a two-element vector with centering and

scaling values. mu(1) is mean(x), and mu(2) is std(x). Using these values, polyfit centers x at

zero and scales it to have unit standard deviation,

ˆx=
x−

‾x
σ
x .

This centering and scaling transformation improves the numerical properties of both the

polynomial and the fitting algorithm.

EXAMPLE

1. FIT POLYNOMIAL TO TRIGONOMETRIC FUNCTION

Fit Polynomial to Trigonometric Function

x = linspace(0,1,5);

y = 1./(1+x);

Fit a polynomial of degree 4 to the 5 points. In general, for n points, you can fit a polynomial of degree

n-1 to exactly pass through the points.

p = polyfit(x,y,4);

Evaluate the original function and the polynomial fit on a finer grid of points between 0 and 2.

x1 = linspace(0,2);

y1 = 1./(1+x1);

f1 = polyval(p,x1);

Plot the function values and the polynomial fit in the wider interval [0,2], with the points used to obtain

the polynomial fit highlighted as circles. The polynomial fit is good in the original [0,1] interval, but

quickly diverges from the fitted function outside of that interval.

figure

plot(x,y,'o')

hold on

plot(x1,y1)

plot(x1,f1,'r--')

legend('y','y1','f1')

2. FIT POLYNOMIAL TO ERROR FUNCTION

First generate a vector of x points, equally spaced in the interval [0,2.5], and then evaluate erf(x) at those

points.

x = (0:0.1:2.5)';

y = erf(x);

Determine the coefficients of the approximating polynomial of degree 6.

p = polyfit(x,y,6)

p = 1×7

 0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

To see how good the fit is, evaluate the polynomial at the data points and generate a table showing the

data, fit, and error.

f = polyval(p,x);

T = table(x,y,f,y-f,'VariableNames',{'X','Y','Fit','FitError'})

T=26×4 table

 X Y Fit FitError

 ___ _______ __________ ___________

 0 0 0.00044117 -0.00044117

 0.1 0.11246 0.11185 0.00060836

 0.2 0.2227 0.22231 0.00039189

 0.3 0.32863 0.32872 -9.7429e-05

 0.4 0.42839 0.4288 -0.00040661

 0.5 0.5205 0.52093 -0.00042568

 0.6 0.60386 0.60408 -0.00022824

 0.7 0.6778 0.67775 4.6383e-05

 0.8 0.7421 0.74183 0.00026992

 0.9 0.79691 0.79654 0.00036515

 1 0.8427 0.84238 0.0003164

 1.1 0.88021 0.88005 0.00015948

 1.2 0.91031 0.91035 -3.9919e-05

 1.3 0.93401 0.93422 -0.000211

 1.4 0.95229 0.95258 -0.00029933

 1.5 0.96611 0.96639 -0.00028097

 ⋮

In this interval, the interpolated values and the actual values agree fairly closely. Create a plot to show

how outside this interval, the extrapolated values quickly diverge from the actual data.

x1 = (0:0.1:5)';

y1 = erf(x1);

f1 = polyval(p,x1);

figure

plot(x,y,'o')

hold on

plot(x1,y1,'-')

plot(x1,f1,'r--')

axis([0 5 0 2])

hold off

Text

 text(x,y,str)

 text(x,y,z,str)

 text(,Name,Value)

 t = text()

Description

text(x,y,str) adds a text description to one or more data points in the current axes using the text

specified by str. To add text to one point, specify x and y as scalars in data units. To add text to

multiple points, specify x and y as vectors with equal length.

text(x,y,z,str) positions the text in 3-D coordinates.

text(,Name,Value) specifies text object properties using one or more name-value pairs. For

example, 'FontSize',14 sets the font size to 14 points. You can specify text properties with any of

the input argument combinations in the previous syntaxes. If you specify the Position and String

properties as name- value pairs, then you do not need to specify the x, y, z, and str inputs.

t = text() returns one or more text objects. Use t to modify properties of the text objects after

they are created. For a list of properties and descriptions, see Text Properties. You can specify an

output with any of the previous syntaxes.

Example

Add Text to Figure Using Mouse

Create a simple line plot and use gtext to add text to the figure using the mouse.

x = 0:pi/20:2*pi;

y = sin(x);

plot(x,y)

text(pi,0,'\leftarrow sin(\pi)')

gtext

 Add text to figure

using mouse

 gtext(str)

 gtext(str,Name

,Value) t =

gtext()

Description

gtext(str) inserts the text, str, at the location you select with the mouse. When you hover

over the figure window, the pointer becomes a crosshair. gtext is waiting for you to

select a location. Move the pointer to the location you want and either click the figure or

press any key, except Enter.

gtext(str,Name,Value) specifies text properties using one or more name-value

pair arguments. For example, 'FontSize',14 specifies a 14-point font.

t = gtext() returns an array of text objects created by gtext. Use t to modify properties

of the text objects after they are created. For a list of properties and descriptions, see

Text Properties. You can return an output argument using any of the arguments from the

previous syntaxes.

For a list of Greek characters and other TeX markup, see the

Interpreter property description.

plot(1:10)

gtext('My

Plot')

GRAPHICAL USER INTERFACE

A Graphical User Interface (GUI) is a pictorial interface to a program. A good GUI can make

programs easier to use by providing them with a consistent appearance and with intuitive

controls like pushbuttons, list boxes, sliders, menus etc. The GUI must be developed in an

understandable and predictable manner. For example, when a mouse click occurs on a

pushbutton, the GUI should initiate the action performed on the label of the button. Three

principal elements to create a GUI are as follows:

Components: Each item on a MATLAB GUI (pushbuttons, labels, edit boxes etc.) is a

graphical component. The types of components include graphical controls (pushbuttons, edit

boxes, lists, sliders etc), static elements (frames and text strings), menus and axes. Graphical

Click the figure to place the text at the selected location.

controls and static controls are created by the function uicontrol, and menus are created by the

functions uimenu and uicontextmenu. Axes, which are used to display graphical data are created

by the function axes.

Figures: The components of a GUI must be arranged within a figure, which is a window on the

computer screen. In the past, figures have been created automatically whenever one has plotted

data. However, empty figures can be created with the function figure and can be used to hold

any combination of components.

Calbacks: A mouse click or a key press is an event, and the MATLAB program must respond to

each event if the program is to perform its function. For example, if a user clicks on a button, that

event must cause the MATLAB code that implements the function of the button to be executed.

The code executed in response to an event is known as a callback. There must be a callback to

implement the function of each graphical component on the GUI.

The following figure and table depicts the basic elements in GUI.

The basic steps involved in the creation of GUI are as follows;

 Decide what elements are required for the GUI and the function of each element.

 Use a MATLAB tool called GUIDE (GUI Development Environment) to lay out the

components on a figure. The size of the figure and the alignment and spacing of

components on the figure can be adjusted using built into guide.

 Use a MATLAB tool called the property inspector to give each component a name and to

set the characteristics of each component, such as its color, the text it displays and so on

 Save the figure to a file. When the figure is saved, two files will be created on disk with

the same name but different extents. The fig file contains the actual GUI and the M-file

contains the code to load the figure and skeleton callbacks for each GUI element.

 Write a code to implement the behavior associated with each callback function

As an example, create a GUI that has a pushbutton and axes. When the pushbutton is clicked

the image must be displayed on the axes.

To lay the components on the GUI, run the MATLAB function guide. When guide is

executed, it creates the window as shown below.

If needed, the size of the layout area can be changed. It is done by dragging the small square

on the lower right corner of the layout area until it has the desired size and shape. Click on

“pushbutton” button in the list of GUI components and create the shape of the pushbutton in the

layout area. Similarly place the axes above the pushbutton.

The next step is to go to property inspector and change the string and tag of pushbutton as

input

The next step is to save the figure. Once the figure is saved, automatically the M-file is also

opened where the code has to be modified.

Then the program has to be coded for the specific task as given below and is executed. Once

executed, the output figure window is opened.

On a mouse click on pushbutton, the program is executed and the output is obtained.

In this way, a GUI can be created for any specific task.

REFERENCES

1. Rudra Pratap, “Getting Started with MATLAB 6.0” ,1st Edition, Oxford University

Press-2004.

2. Stephen J Chapman, “ Programming in MATLAB for Engineers”, Brooks, 2002

3. Duane Hanselman ,Bruce LittleField, “Mastering MATLAB 7” , Pearson

Education Inc, 2005

4. William J.Palm, “Introduction to MATLAB 6.0 for Engineers”, Mc Graw Hill & Co,

2001

5. M.Herniter, “Programming in MATLAB”, Thomson Learning, 2001

QUESTION BANK

Part A CO

1. Write the syntax of ezplot 3

2. Develop a matlab code for stem plot 3

3. What is stair plot? 3

4. Compare bar and barh statement 3

5. What is pie plot? 3

6. Develop a matlab code for exploded slices in a pie graph 3

7. What is Histogram? 3

8. What is the difference between surf plot and mesh plot? 3

9. How to print a .tif file? 3

10. How to print a plot? 3

11. Explain GUI?

Part B

1. Explain the matlab operation to draw a two dimensional plots? 3

2. Write the coding to draw the following plots 3

a. Stem Plot

b. Stair plot

c. Bar plot

d. Pie plot

3. Explain about Histogram and also how to draw Histogram. 3

4. Explain about function handles for optimization with examples. 3

5. Explain the matlab programming to draw a three dimensional plots. 3

6. Write the program to draw the following plots 3

a. Contour Plot

b. mesh plot

c. surf plot

7. Explain GUI with any one as an example. 3

8. Develop a matlab code for performing result analysis of a class for 5

Different subjects in a semester.

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – IV – Programming in MATLAB – SEC1618

UNIT 4 MISCELLANEOUS TOPICS

File & Directory management - Native Data Files-data import & Export – Low Level File I/O

– Directory management – FTP File Operations – Time Computations -Date & Time – Format

Conversions – Date & Time Functions – Plot labels – Optimization – zero Finding – Minimization in

one Dimension - Minimization in Higher Dimensions- Practical Issues. Differentiation & Integration

using MATLAB, 1D & 2D Data Interpolation

FILE & DIRECTORY MANAGEMENT

Action Function Alternative

Create a new folder Use the mkdir function. For example, create a subfolder named

newdir in a parent folder named parentFolder:

mkdir('parentFolder','newdir');

Move a file or

folder

Use the movefile function. For example, move the file named myfile.min

the current folder to the folder, d:/work:

movefile('myfile.m','d:/work');

Rename a file or

folder

Use the movefile function. For example, in the current folder,

renamemyfile.m to oldfile.m:

movefile('myfile.m','oldfile.m');

Open a file in

MATLAB

Use the open function. The file opens in MATLAB or in an external

application, depending on the file extension.

Delete a file or folder To delete a file, use the delete function. For example, delete a file

named myfile.m in the current folder:

delete('myfile.m');

By default, files are permanently removed. To move deleted files to a

temporary folder instead, use the recycle function or set the Deleting

files preference.

To delete a folder, use the rmdir function.

Low Level File I/O operations

fclose Close one or all open files

feof Test for end of file

ferror File I/O error information

fgetl Read line from file, removing newline characters

fgets Read line from file, keeping newline characters

fileread Read contents of file as text

fopen Open file, or obtain information about open files

fprintf Write data to text file

fread Read data from binary file

frewind Move file position indicator to beginning of open

file

fscanf Read data from text file

fseek Move to specified position in file

ftell Current position

fwrite Write data to binary file

x = 100*rand(8,1);

fileID = fopen('nums1.txt','w');

fprintf(fileID,'%4.4f\n',x);

fclose(fileID);

View the contents of the file.

type nums1.txt

81.4724

90.5792

12.6987

91.3376

63.2359

9.7540

27.8498

54.6882

A = fscanf(fileID,formatSpec)

81.4724

90.5792

12.6987

91.3376

63.2359

9.7540

27.8498

54.6882

fid = fopen('badpoem.txt');

line_ex = fgetl(fid) % read line excluding

newline character

 line_ex = 'Oranges and lemons,'

frewind(fid);

line_in = fgets(fid) % read line including newline character

line_in = 'Oranges and lemons,

fid = fopen('badpoem.txt');

ftell(fid)

ans = 0

tline1 = fgetl(fid) % read the first line

tline1 = 'Oranges and lemons,'

 ftell(fid)

ans = 20

 Read the second line and examine the current position.

 tline2 = fgetl(fid) % read the second line

tline2 = 'Pineapples and tea.'

fseek(fid,20,'bof');

fgetl(fid)

ans = 'Pineapples and tea.’

fid = fopen('badpoem.txt');

while ~feof(fid)

tline = fgetl(fid);

disp(tline)

 End

Oranges and lemons,

Pineapples and tea.

 Orangutans and monkeys,

Dragonflys or fleas.

FILE FORMAT FOR IMPORT & EXPORT

File Content Description Import Export

MATLAB Saved MATLAB workspace load save

FTP FILE OPERATION

 FTP – File Transfer Protocol

 Connect to the server using the ftp function.

 Perform operations using the appropriate MATLAB® FTP functions, such as the cd,

dir, and mget functions.

 Specify the FTP object for all operations.

 When you finish work on the server, close the connection using the close function

open the connection.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

FTP Object

formatted

data

Partial access of variables in MATLAB

workspace

matfile matfile

Text Comma delimited numbers csvread csvwrite

Delimited numbers dlmread dlmwrite

Delimited numbers, or a mix of text

and numbers

textscan none

Column-oriented delimited numbers or a mix of text and

numbers

readtable Writetable

Spreadsheet Worksheet or range of spreadsheet xlsread Xlswrite

Column-oriented data in worksheet

or range of spreadsheet

readtable writetable

DMSP Solid_Earth

google12c4c939d7b90761.html mgg

INDEX.txt coastwatch hazards

pub

README.txt dmsp4alan index.html

tmp

STP ftp.html international

wdc

Snow_Ice geomag ionosonde

 host: ftp.ngdc.noaa.gov

 user: anonymous

 dir: /

 mode: binary

List the contents of the top-level folder on the FTP server. dir(ftpobj)

Download the file named INDEX.txt using the mget function. mget copies the

file to the current MATLAB folder on your local machine. To view the contents

of your copy of the file, use the type function.

mget(ftpobj,'INDEX.txt');

type INDEX.txt

DIRECTORY/FILE DESCRIPTION OF CONTENTS

 -------------- ---

pub/ Public access area

DMSP/ Defense Meteorological Satellite Data Archive

geomag/ Geomagnetism and geomagnetics models

hazards/ Natural Hazards data, volcanoes, tsunamis, earthquakes

Change to the subfolder named pub on the FTP server.

cd(ftpobj,'pub')

ans = '/pub'

List the contents. pub is now the current folder on the FTP server. However,

note that the current MATLAB folder on your local machine has not changed.

When you specify an FTP object using functions such as cd and dir, the

operations take place on the FTP server, not your local machine.

dir(ftpobj)

WebCD coast glac_lib krm outgoing results rgon

Close the connection to the FTP server.

close(ftpobj)

DATE AND TIME ARITHMETIC

Create a datetime scalar. By default, datetime arrays are not associated wtih

a time zone.

t1 = datetime('now')

t1 = datetime

26-Feb-2018 19:50:34

Find future points in time by adding a sequence of hours.

t2 = t1 + hours(1:3)

t2 = 1x3 datetime array

26-Feb-2018 20:50:34 26-Feb-2018 21:50:34 26-Feb-2018 22:50:34

Verify that the difference between each pair of datetime values in t2 is 1 hour.

dt = diff(t2)

dt = 1x2 duration array

01:00:00 01:00:00

diff returns durations in terms of exact numbers of hours, minutes, and seconds.

Subtract a sequence of minutes from a datetime to find past points in time.

t2 = t1 - minutes(20:10:40)

t2 = 1x3 datetime array

26-Feb-2018 19:30:34 26-Feb-2018 19:20:34 26-Feb-2018 19:10:34

Add a numeric array to a datetime array. MATLAB® treats each value in the numeric

array as a number of exact, 24-hour days.

t2 = t1 + [1:3]

t2 = 1x3 datetime array

 27-Feb-2018 19:50:34 28-Feb-2018 19:50:34 01-Mar-2018 19:50:34

t1 = datetime(2014,3,8,0,0,0,'TimeZone','America/New_York')

t1 = datetime

 08-Mar-2014 00:00:00

Find future points in time by adding a sequence of fixed-length (24-hour) days.

t2 = t1 + days(0:2)

t2 = 1x3 datetime array

08-Mar-2014 00:00:00 09-Mar-2014 00:00:00 10-Mar-2014 01:00:00

Add a number of calendar days to t1.

t3 = t1 + caldays(0:2)

t3 = 1x3 datetime array

08-Mar-2014 00:00:00 09-Mar-2014 00:00:00 10-Mar-2014 00:00:00

Add a number of calendar months to January 31, 2014.

t1 = datetime(2014,1,31)

t1 = datetime 31-Jan-2014

t2 = t1 + calmonths(1:4)

t2 = 1x4 datetime array

28-Feb-2014 31-Mar-2014 30-Apr-2014 31-May-2014

dt = caldiff(t2,'days')

dt = 1x3 calendarDuration array

 31d 30d 31d

t2 = datetime(2014,1,31) + calmonths(3) + caldays(30)

t2 = datetime

30-May-2014

d1 = calyears(1) + calmonths(2) + caldays(20)

d1 = calendarDuration

1y 2mo 20d

d2 = calmonths(11) + caldays(23)

d2 = calendarDuration

11mo 23d

d = d1 + d2d = calendarDuration

2y 1mo 43d

t1 = datetime('today')

t1 = datetime

26-Feb-2018

t2 = t1 + calmonths(0:2) + caldays(4)

t2 = 1x3 datetime array

02-Mar-2018 30-Mar-2018 30-Apr-2018

dt = between(t1,t2)

dt = 1x3 calendarDuration array

4d 1mo 4d 2mo 4d

>> calendar(date)

 Mar 2019

 S M Tu W Th F S

 0 0 0 0 0 1 2

 3 4 5 6 7 8 9

 10 11 12 13 14 15 16

 17 18 19 20 21 22 23

>> eomday(1976,2)

ans =

 29

>> weekday('21-dec-1994')

tic Start a stopwatch timer.

 tic and TOC functions work together to measure elapsed time.

 tic, by itself, saves the current time that TOC uses later to

 measure the time elapsed between the two.

 TSTART = tic saves the time to an output argument, TSTART. The

 numeric value of TSTART is only useful as an input argument

 for a subsequent call to TOC.

toc Read the stopwatch timer.

 TIC and toc functions work together to measure elapsed time.

 toc, by itself, displays the elapsed time, in seconds, since

 the most recent execution of the TIC command.

 T = toc; saves the elapsed time in T as a double scalar.

 toc(TSTART) measures the time elapsed since the TIC command that

 generated TSTART.

n = 1000;

tic;

sum = 0;

 for i=1:n

 tstart = tic;

 sum = sum + i;

 telapsed = toc(tstart);

>> t=now

t =

 7.3750e+05

>> datestr(t)

ans =

14-Mar-2019 21:52:55

>> date

ans =

14-Mar-2019

 % minTime = min(telapsed,minTime);

 end

 disp(telapsed)

cputime CPU time in seconds.

 cputime returns the CPU time in seconds that has been used by the MATLAB

process since MATLAB started.

 >> cputime

ans =

 75.3953

>> cputime

ans =

 75.6137

OPTIMIZATION

 Minimum of single and multivariable functions, nonnegative least-squares, roots of

nonlinear functions

 Optimizers find the location of a minimum of a nonlinear objective function. You can

find a minimum of a function of one variable on a bounded interval using fminbnd, or a

minimum of a function of several variables on an unbounded domain using fminsearch.

Maximize a function by minimizing its negative.

 Find a nonnegative solution to a linear least-squares problem using lsqnonneg.

 The equation solver fzero finds a real root of a nonlinear scalar function.

 Control the output or other aspects of your optimization by setting options

using optimset.

fminbnd Find minimum of single-variable function on fixed interval

fminsearch Find minimum of unconstrained multivariable function using

derivative-free method

lsqnonneg Solve nonnegative linear least-squares problem

fzero Root of nonlinear function

optimget Optimization options values

optimset Create or modify optimization options structure

fzero – zero finding

Root of nonlinear function. Furthermore, the fzero command defines a zero as a point where the

function crosses the x-axis. Points where the function touches, but does not cross, the x-axis are

not valid zeros. For example, y = x. ^2 is a parabola that touches the x-axis at 0.

x = fzero(fun,x0)

 tries to find a point x where fun(x) = 0.

This solution is where fun(x) changes sign—fzero cannot find a root of a function such as x^2.

fun = @sin; % function
x0 = 3; % initial point
x = fzero(fun,x0)
x = 3.1416

DIFFERENTIATION AND INTEGRATION

Differentiation

The derivative of a function y = f(x) is written as f’(x) and is defined as the rate of change of the

dependent variable y with respect to x. The derivative is the slope of the line tangent to the

function at a given point.

MATLAB has a function polyder, which will find the derivative of a polynomial.

For example, for the polynomial x
3
 + 2x

2
 – 4x + 3, which would be represented by the vector [1

2 - 4 3], the derivative is found by:

origp = [1 2 -4 3];

diffp = polyder(origp)

diffp =

3 4 -4

which shows that the derivative is the polynomial 3x
2
 + 4x – 4. The function polyval can then be

used to find the derivative for certain values of x;

for example for x = 1, 2, and 3:

polyval(diffp, 1:3)

ans =

3 16 35

MATLAB has a built-in function, diff, which returns the differences between consecutive

elements in a vector.

For example,

diff([4 7 15 32])

ans =

3 8 17

For a function y = f(x) where x is a vector, the values of f’(x) can be approximated as diff(y)

divided by diff(x). For example, the previous equation can be written as an anonymous function.

f = @ (x) x .^ 3 + 2 .* x .^ 2 - 4 .* x + 3;

 x = 1:3;

 y = f(x)

y =

2 11 36

diff(y)

ans =

9 25

diff(x)

ans =

1 1

diff(y) ./ diff(x)

ans =

9 25

To differentiate, syms function can be used as follows:

syms x f

f = x^3 + 2*x^2 - 4*x + 3

diff(f)

ans =

3*x^2-4+4*x

Integration

There are several functions in Symbolic Math Toolbox to perform calculus operations

symbolically; for example, diff to differentiate and int to integrate.

For example, to find the indefinite integral of the function f(x) = 3x2 – 1:

syms x

int(3*x^2 - 1)

ans =

x^3-x

Instead, to find the definite integral of this function from x = 2 to x = 4:

int(3*x^2 - 1, 2, 4)

ans =

54

Limits can be found using the limit function; for example, for the difference equation described

previously:

syms x h

f = x^3 + 2*x^2 - 4*x + 3

limit((f(x+h)-f(x))/h,h,0)

ans =

3*x^2-4+4*x

INTERPOLATION AND EXTRAPOLATION

 Since MATLAB only represents functions as arrays of values, a common problem that comes

up is finding function values at points not in the arrays. Finding function values between data

points in the array is called interpolation; finding function values beyond the endpoints of the

array is called extrapolation.

It can be done in three different ways

 Polynomial interpolation

o Using interp commands in MATLAB

o Using polyfit and polyval

 FFT based Interpolation

Polynomial Interpolation

The function interp1 performs one-dimensional interpolation, an important operation for data

analysis and curve fitting. This function uses polynomial techniques, fitting the supplied data

with polynomial functions between data points and evaluating the appropriate function at the

desired interpolation points.

Its most general form is

yi = interp1(x,y,xi,method) where y is a vector containing the values of a function, and x is a

vector of the same length containing the points for which the values in y are given. xi is a vector

containing the points at which to interpolate. method is an optional string specifying an

interpolation method.

Methods

 Nearest neighbor interpolation (method = 'nearest'). This method sets the value of an

interpolated point to the value of the nearest existing data point.

 Linear interpolation (method = 'linear'). This method fits a different linear function

between each pair of existing data points, and returns the value of the relevant function at

the points specified by xi. This is the default method for the interp1 function.

 Cubic spline interpolation (method = 'spline'). This method fits a different cubic

function between each pair of existing data points, and uses the spline function to

perform cubic spline interpolation at the data points.

 Cubic interpolation (method = 'pchip' or 'cubic'). These methods are identical. They use

the pchip function to perform piecewise cubic Hermite interpolation within the vectors x

and y. These methods preserve monotonicity and the shape of the data.

Example

x=[1 2 3 4 5]; y=[10 20 30 40 50];

x1=1.5;

y1=interp1(x,y,x1);

y1

=15

Extrapolation

If any element of xi is outside the interval spanned by x, the specified interpolation method is

used for extrapolation. Alternatively,

yi = interp1(x,Y,xi,method,extrapval) replaces extrapolated values with extrapval. NaN is often

used for extrapval.

Two Dimensional Interpolation

The function interp2 performs two-dimensional interpolation, an important operation for image

processing and data visualization.

Its most general form is

ZI = interp2(X,Y,Z,XI,YI,method) where Z is a rectangular array containing the values of a two-

dimensional function, and X and Y are arrays of the same size containing the points for which

the values in Z are given. XI and YI are matrices containing the points at which to interpolate the

data. method is an optional string specifying an interpolation method. There are three different

interpolation methods for two-dimensional data.

 Nearest neighbor interpolation (method = 'nearest'). This method fits a piecewise

constant surface through the data values. The value of an interpolated point is the

value of the nearest point.

 Bilinear interpolation (method = 'linear'). This method fits a bilinear surface through

existing data points. The value of an interpolated point is a combination of the values

of the four closest points. This method is piecewise bilinear, and is faster and less

memory-intensive than bicubic interpolation.

 Bicubic interpolation (method = 'cubic'). This method fits a bicubic surface through

existing data points. The value of an interpolated point is a combination of the values

of the sixteen closest points. This method is piecewise bicubic, and produces a much

smoother surface than bilinear interpolation. This can be a key advantage for

applications like image processing. Use bicubic interpolation when the interpolated

data and its derivative must be continuous.

All of these methods require that X and Y be monotonic, that is, either always increasing or

always decreasing from point to point. One should prepare these matrices using the meshgrid

function, or else be sure that the “pattern” of the points emulates the output of meshgrid. In

addition, each method automatically maps the input to an equally spaced domain before

interpolating. If X and Y are already equally spaced, one can speed execution time by

prepending an asterisk to the method string, for example, '*cubic'.

Three dimensional and multidimensional interpolation functions are also available in

MATLAB

Polyfit and polyval functions

polyfit finds the coefficients of a polynomial that fits a set of data in a least-squares sense.

p = polyfit(x,y,n) where x and y are vectors containing the x and y data to be fitted, and n is the

order of the polynomial to return.

For example, consider the x-y test data.

x = [1 2 3 4 5]; y = [5.5 43.1 128 290.7 498.4];

A third order polynomial that approximately fits the data is

p = polyfit(x,y,3)

p =

-0.1917 31.5821 -60.3262 35.3400

Having determined the third order polynomial, using polyval function in MATLAB, values of y

for any values of x can be determined.

Here, let x2=[1.5,2.5];

y1=polyval(p,x2);

y1 =

15.2637 78.9181

In this way, polyfit and polyval functions can be used for interpolation.

In addition, to the above mentioned interpolation techniques, Linspace can also be used for

obtaining data points between any two values.

y = linspace(x1,x2,n) generates n points. The spacing between the points is (x2-x1)/(n-1).

• linspace is similar to the colon operator, “:”

• but gives direct control over the number of points and always includes the

endpoints

• “lin” in the name “linspace” refers to generating linearly spaced values

Example

y1 = linspace(-5,5,7)

 REFERENCES

1. Stephen J Chapman, “ Programming in MATLAB for Engineers”, Brooks, 2002

2. Duane Hanselman ,Bruce LittleField, “Mastering MATLAB 7” , Pearson Education Inc, 2005

3. William J.Palm, “Introduction to MATLAB 6.0 for Engineers”, Mc Graw Hill & Co, 2001

4. Chapman & Hall, “Basics of MATLAB and beyond”, Thomson Learning, 2001

 QUESTION BANK

Part A CO

1. List a few Low level file I/O commands with examples. 4

2. What is the difference between imread and imwrite commands? 4

3. What is the native format for Matlab? Explain with an example. 4

4. What are the features of native data file used in Matlab? 4

5. How the path management has been done in Matlab? 4

6. What is the syntax used to create FTP object? 4

7. Convert date time format of 01-Jan-1983 01:00:00 to numeric format. 4

8. What do you mean by ‘reshape’ and ‘squeeze’ in Matlab? 4

Part B

1. How import and export of data have been done in Matlab. Substantiate with

a. suitable examples? 4

2. Describe the FTP file operations with examples? 4

3. Explain about function handles for optimization with examples. 4

4. Brief on constrained and unconstrained Nonlinear Optimization Algorithms

a. inMatlab. 4

5. Write short notes on symbolic Math Toolbox used to calculate Gradients

a. and Hessians. 4

6. Briefly explain 1D and 2D data interpolation with specific examples? 4

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – V – Programming in MATLAB – SEC1618

UNIT V

How to create & run Simulink, Simulink Designing - Using SIMULINK Generating an AM
signal & 2nd order systems - Designing of FWR & HWR using Simulink - Creating a subsystem
in Simulink. Applications Programs - Frequency response of FIR & IIR filters. Open Loop gain
of OPAMP, I/P characteristics of BJT, Plotting the graph between Breakdown voltage & Doping
Concentration. PCM, DPCM

CREATING A SIMPLE MODEL IN SIMULINK

You can use Simulink® to model a system and then simulate the dynamic behavior of that
system. Simulink allows you to create block diagrams, where blocks you connect represent parts
of a system, and signals represent input/output relationships between those blocks. The primary
function of Simulink is to simulate behavior of system components over time. In its simplest
form, this task involves keeping a clock, determining the order in which the blocks are to be
simulated, and propagating the outputs, computed in the block diagram, to the next block.
Consider a switch that turns on a heater. At each time step, Simulink must compute the output of
the switch, propagate it to the heater, and then compute the heat output.

Often, the effect of a component's input on its output is not instantaneous. For example, turning
on a heater does not result in an instant change in temperature. Rather, this action provides input
to a differential equation, and the history of the temperature (a state) is also a factor. When the
simulation of a block diagram requires solving a differential or difference equation, Simulink
employs memory and numerical solvers to compute the state values for the time step.

Simulink handles data in three categories:

Signals Block inputs and outputs, computed during simulation
States Internal values, representing the dynamics of the block, computed during simulation
Parameters Values that affect the behavior of a block, controlled by the user

At each time step, Simulink computes new values for signals and states. By contrast, you specify
parameters when you build the model and can occasionally change them while simulation is
running.

Model Overview

The basic techniques you use to create a simple model in this tutorial are the same techniques
that you use for more complex models. This example simulates simplified motion of a car, after a
brief press of the accelerator pedal.

A Simulink block is a model element that defines a mathematical relationship between its input
and output. To create this simple model, you need four Simulink blocks.

Block name Block Purpose Model Purpose

Pulse Generator Generate an input signal for the model Simulate the accelerator pedal

Gain Multiply the input signal by a factor Simulate how pressing the accelerator
affects the car's acceleration

Integrator, Second-Order Integrate input signal twice Obtain position from acceleration

Outport Designate a signal as an output from
the model

Designate the position as an output from
the model

Simulating this model integrates a brief pulse twice to get a ramp and then displays the result in a
Scope window. The input pulse represents a press of the accelerator pedal in a car, and the output
ramp represents the increasing distance from the starting point.

Open New Model

Use the Simulink Editor to build your models.

1. Start MATLAB®. From the MATLAB Toolstrip, click the Simulink button .

2. Click the Blank Model template.

The Simulink Editor opens.

3. From the File menu, select Save as. In the File name text box, enter a name for your model,
For example, simple_model. Click Save. The model is saved with the file extension.slx.

Open Simulink Library Browser

Simulink provides a set of block libraries, organized by functionality in the Library Browser. The
following libraries are common to most workflows:

Continuous Building blocks for systems with continuous states
Discrete Building blocks for systems with discrete states
Math Operations Blocks that implement algebraic and logical equations
Sinks Blocks that store and show the signals that connect to them
Sources Blocks that generate the signal values that drive the model

1. From the Simulink Editor toolbar, click the Library Browser button .

2. Set the Library Browser to stay on top of the other desktop windows. On the Library Browser

toolbar, select the Stay on top button .

To browse through the block libraries, select a MathWorks® product and then a functional area in
the left pane. To search all of the available block libraries, enter a search term.

For example, find the Pulse Generator block. In the search box on the browser toolbar,
enter pulse, and then press the Enter key. Simulink searches the libraries for blocks with pulse in
their name or description, and then displays the blocks.

Get detailed information about a block. Right-click a block, and then select Help for the Pulse
Generator block. The Help browser opens with the reference page for the block.

Blocks typically have several parameters. You can access all parameters by double-clicking the
block.

Add Blocks to a Model

To start building the model, browse the library and add the blocks.

1. From the Sources library, drag the Pulse Generator block to the Simulink Editor. A copy of
the Pulse Generator block appears in your model with a text box for the value of
theAmplitude parameter. Enter 1.

Parameter values are held throughout the simulation.

2. Add the following blocks to your model using the same approach.

Block Library

Gain Simulink/Math Operations

Integrator, Second Order Simulink/Continuous

Outport Simulink/Sinks

3. Add a second Outport block right-clicking and dragging the existing one.
4. Your model should now have the blocks you need.
5. Arrange the blocks as follows by clicking and dragging each block. To resize a block, click

and drag a corner.

Connect Blocks

Connect the blocks by creating lines between output ports and input ports.

1. Click the output port on the right side of the Pulse Generator block.

The output port, and all input ports suitable for a connection get highlighted.

2. Click the input port of the Gain block.

Simulink connects the blocks with a line and an arrow indicating the direction of signal flow.

3. Connect the output port of the Gain block to the input port on the Integrator, Second
Order block.

4. Connect the two outputs of the Integrator, Second Order block to the two Outport blocks.
5. Save your model. Select File > Save and provide a name.

Your model is complete.

Add Signal Viewer

To view the results, connect the first output to a Signal Viewer.

Access the context menu by right-clicking the signal. Select Create & Connect Viewer >
Simulink > Scope. This creates a viewer icon on the signal, and opens a Viewer display.

You can open the viewer at any time by double-clicking the icon.

Run Simulation

After you define the configuration parameters, you are ready to simulate your model.

1. On the model window, set the simulation stop time by changing the value at the toolbar.

The default stop time of 10.0 is appropriate for this model. This time value has no unit. Time
unit in Simulink depends on how the equations are constructed. This example simulates the
simplified motion of a car for 10 seconds.

2. To run the simulation, click the Run simulation button .

The simulation runs and produces the output on the Viewer.

GENERATING AM IN SIMULINK

For generating AM we just have to implement the equation of AM in block level.

Blocks Required

Analyzing the equation we need,

1. Carrier Signal Source
2. Message Signal Source
3. Blocks for viewing the signals Scope
4. Product Block
5. Summer Block
6. Constant Block

Carrier, Message, Constant blocks

Simulink > Sources > Sine wave
Simulink > Sources > Constant

View Block

Simulink > Sink > Scope

Product and Summer Block

Simulink > Math Operations > Product
Simulink > Math Operations > Summer

Block Diagram

AM Generation using Simulink Block Diagram

Block parameters can be changed by selecting the block and parameter that I used are given
below..

Carrier Signal frequency = 2*pi*25 and sampling time=1/5000
Message Signal frequency = 2*pi and sampling time=1/5000
Amplitudes of both signals are 1

Output Waveforms

AM Generation using Simulink Message Signal

AM Generation using Simulink Carrier

AM Generation using Simulink Modulated Signal

GENERATING SECOND ORDER SYSTEM RESPONSE IN SIMULINK

To obtain the step response of a 2nd order system for both open and closed loop.

Blocks Required

Step input

Transfer Function

PID Controller

Summer block

Scope
Step input

Simulink > Sources > Step
View output

Simulink > Sink > Scope
Summer Block

Simulink > Math Operations > Summer
Transfer Function

Simulink > Continuous > Transfer function
PID Controller

Simulink > Continuous > PID controller

Block Diagram of Open Loop system and closed loop System

Open Loop Response

Closed Loop response

Full Wave Bridge Rectifier

Simulation Results from Scopes

Simulation Results from Simscape Logging

Plot "Bridge Rectifier Voltages and Currents" shows how AC voltage is converted to DC
Voltage. The dark blue line is the AC voltage on the source side of the bridge. There are two
paths for current flow through the diode bridge. The alternating peaks through diodes 1&4 and
diodes 2&3 show that current flow reaching the capacitor is flowing in the same direction even
though the polarity of the voltage is changing. The ripple in the load voltage corresponds to the
charging and discharging of the capacitor.

In the same manner half wave rectifier can be designed using Simulink.

AC current source is used. The diode is connected in series to the Source. The Output is taken
across the Load resister. Current and Voltage measurements can be seen through the Scope. The
output contains only one half of the cycle of the input waveform. The below figure shows the
output of a half wave rectifier.

Create a Subsystem

Subsystem Advantages

Subsystems allow you to create a hierarchical model comprising many layers. A subsystem is a
set of blocks that you replace with a single Subsystem block. As your model increases in size and
complexity, you can simplify it by grouping blocks into subsystems. Using subsystems:

Establishes a hierarchical block diagram, where a Subsystem block is on one layer and the blocks
that make up the subsystem are on another

Keeps functionally related blocks together

Helps reduce the number of blocks displayed in your model window

When you make a copy of a subsystem, that copy is independent of the source subsystem. To
reuse the contents of a subsystem across a model or across models, use either model referencing
or a library.

Ways to Create a Subsystem

You can create a subsystem using these approaches:

Add a Subsystem block to your model, and then open the block and add blocks to the subsystem
window. Create a Subsystem in a Subsystem Block.

Select the blocks that you want in the subsystem, and from the right-click context menu,
select Create Subsystem from Selection. Create a Subsystem from Selected Blocks.

Copy a model to a subsystem. In the Simulink® Editor, copy and paste the model into a
subsystem window, or use Simulink.BlockDiagram.copyContentsToSubsystem.

Copy an existing Subsystem block to a model.

Drag a box around the blocks you want in a subsystem, and select the type of subsystem you
want from the context options. Create a Subsystem Using Context Options.

Create a Subsystem in a Subsystem Block

Add a Subsystem block to the model, and then add the blocks that make up the subsystem.

1. Copy the Subsystem block from the Ports & Subsystems library into your model.

2. Open the Subsystem block by double-clicking it.

3. In the empty subsystem window, create the subsystem contents. Use Inport blocks to
represent input from outside the subsystem and Outport blocks to represent external output.

For example, this subsystem includes a Sum block and Inport and Outport blocks to represent
input to and output from the subsystem.

When you close the subsystem window, the Subsystem block includes a port for each Inport
and Outport block.

Create a Subsystem from Selected Blocks

1. Select the blocks that you want to include in a subsystem. To select multiple blocks in one
area of the model, drag a bounding box that encloses the blocks and connecting lines that you
want to include in the subsystem.

The figure shows a model that represents a counter. The bounding box selects the Sum and
Unit Delay blocks.

2. Select Diagram > Subsystems & Model Reference > Create Subsystem from Selection.

A Subsystem block appears, which encloses the selected blocks.

Tip

Resize the Subsystem block so the port labels are readable.

To edit the subsystem contents, open the Subsystem block. For example:

adds Inport and Outport blocks to represent input from and output to blocks outside the
subsystem.

You can change the name of the Subsystem block and modify the block the way that you do with
any other block (for example, you can mask the subsystem).

Create a Subsystem Using Context Options

1. Drag a box around the blocks you want in your subsystem.

2. View the subsystems you can create with these blocks by hovering over the first context
option that appears.

3. Select the type of subsystem you want to create from these options.

A Subsystem block appears, which encloses the selected blocks.

Few application programs in simulink

Example 1: AM Radio Receiver

This example shows a simplified AM radio receiver. A single tone signal at 2 kHz is transmitted
with a carrier frequency of 600 kHz. The variable capacitor, Cres, in the resonant circuit is used
in order to sweep through a certain frequency span. When the resonance passes through 600 kHz,
the signal is picked up and amplified by a two-stage Class A RF power amplifier. The signal is
finally extracted by a diode detector, where it would normally be passed on to an audio amplifier
(not included here). The Scope displays the final output, the value of the resonant capacitance,
and the received and amplified signals.
Model

Diode Detector Subsystem

Two-Stage Amplifier Subsystem

Class A Stage 1 Subsystem

Simulation Results from Simscape Logging

The plots below shows received, amplified, and output signals in the radio receiver. As the
resonance in the resonant circuit passes through 600 kHz, the signal is picked up and amplified
by a two-stage Class A RF power amplifier.

Example 2: FIR and IIR Filter Design and their Frequency Responses

This example shows how to design FIR and IIR filters based on frequency response
specifications using the designfilt function in the Signal Processing Toolbox® product. The
example concentrates on low pass filters but most of the results apply to other response types as
well. And also focuses on the design of digital filters rather than on their applications..
Low pass Filter Specifications

The ideal low pass filter is one that leaves unchanged all frequency components of a signal

c c. Because the
impulse response required to implement the ideal low pass filter is infinitely long, it is
impossible to design an ideal FIR low pass filter. Finite length approximations to the ideal

c) and the stop band

c) of the filter, as well as to a nonzero transition width between pass band and stop band.

Both the pass band/stop band ripples and the transition width are undesirable but unavoidable
deviations from the response of an ideal low pass filter when approximated with a finite impulse
response. These deviations are depicted in the following figure:

Practical FIR designs typically consist of filters that have a transition width and maximum pass
band and stop band ripples that do not exceed allowable values. In addition to those design
specifications, one must select the filter order, or, equivalently, the length of the truncated
impulse response.
A useful metaphor for the design specifications in filter design is to think of each specification as
one of the angles in the triangle shown in the figure below.

The triangle is used to understand the degrees of freedom available when choosing design
specifications. Because the sum of the angles is fixed, one can at most select the values of two of
the specifications. The third specification will be determined by the particular design algorithm.
Moreover, as with the angles in a triangle, if we make one of the specifications larger/smaller, it
will impact one or both of the other specifications.
FIR filters are very attractive because they are inherently stable and can be designed to have
linear phase. Nonetheless, these filters can have long transient responses and might prove
computationally expensive in certain applications.
Minimum-Order FIR Filter Design

Minimum-order designs are obtained by specifying pass band and stop band frequencies as well
as a pass band ripple and a stop band attenuation. The design algorithm then chooses the
minimum filter length that complies with the specifications.
Design a minimum-order low pass FIR filter with a pass band frequency of 0.37*pi rad/sample, a
stop band frequency of 0.43*pi rad/sample (hence the transition width equals 0.06*pi
rad/sample), a pass band ripple of 1 dB and a stop band attenuation of 30 dB.
Fpass = 0.37;
Fstop = 0.43;
Ap = 1;
Ast = 30;

d = designfilt('lowpassfir','PassbandFrequency',Fpass,...
'StopbandFrequency',Fstop,'PassbandRipple',Ap,'StopbandAttenuation',Ast);

hfvt = fvtool(d);

IIR Filter Design

One of the drawbacks of FIR filters is that they require a large filter order to meet some design
specifications. If the ripples are kept constant, the filter order grows inversely proportional to the
transition width. By using feedback, it is possible to meet a set of design specifications with a far
smaller filter order. This is the idea behind IIR filter design. The term "infinite impulse response"
(IIR) stems from the fact that, when an impulse is applied to the filter, the output never decays to
zero.
IIR filters are useful when computational resources are at a premium. However, stable, causal
IIR filters cannot have perfectly linear phase. Avoid IIR designs in cases where phase linearity is
a requirement.
Another important reason for using IIR filters is their small group delay relative to FIR filters,
which results in a shorter transient response.
Butterworth Filters

Butterworth filters are maximally flat IIR filters. The flatness in the pass band and stop band
causes the transition band to be very wide. Large orders are required to obtain filters with narrow
transition widths.
Design a minimum-order Butterworth filter with pass band frequency 100 Hz, stop band
frequency 300 Hz, maximum pass band ripple 1 dB, and 60 dB stop band attenuation. The
sample rate is 2 kHz.
Fp = 100;

Fst = 300;
Ap = 1;
Ast = 60;
Fs = 2e3;

dbutter = designfilt('lowpassiir','PassbandFrequency',Fp,...
'StopbandFrequency',Fst,'PassbandRipple',Ap,...
'StopbandAttenuation',Ast,'SampleRate',Fs,'DesignMethod','butter');

hfvt = fvtool(dbutter,dcheby1,dcheby2,dellip);
axis([0 1e3 -80 2]);
legend(hfvt,'Butterworth', 'Chebyshev Type I',...
'Chebyshev Type II','Elliptic')

Finite Gain Op-Amp

Finite Gain Op-Amp Subsystem

Simulation Results from Simscape Logging

Plot "Finite Gain Op-Amp Circuit Voltages" shows the input and output voltages for the circuit.
If the circuit used an infinite gain op-amp with no input and output resistances defined, the gain
would be 1+R2/R1 = 51. Since this model uses an op-amp with finite gain plus input and output
resistances, the circuit gain is slightly less.

NPN Bipolar Transistor Characteristics

This example shows generation of the Ic versus Vce curve for an NPN bipolar transistor. Define
the vector of base currents and minimum and maximum collector-emitter voltages by double
clicking on the block labeled 'Define Conditions (Ib and Vce)'. Run the tests and generate plots
of the curves by clicking in the model on hyperlink 'plot curves'.

This type of plot can be compared against a manufacturer datasheet to confirm a correct
implementation of the transistor parameters. You can also use this model to examine the
transistor characteristics in the reverse region by specifying a range of negative Vce values. In
this region, the gain is defined by the Reverse current transfer ratio BR parameter. Increase this
parameter above one to produce a reverse current gain.

To explore the properties of a PNP bipolar transistor, open model elec_pnp.

Model

Simulation Results from Simscape Logging

The plot below shows collector current (Ic) versus collector-emitter voltage (Vce) characteristics
for different levels of base current (Ib).

PCM and DPCM using Simulink

To generate Pulse Code Modulation

Blocks Required

1. Sine wave generator
2. Pulse generator
3. Product
4. Quantizer
5. Encoder
6. Integer to bit converter
7. Scope

Block Diagram for PCM

Quantized Output

Encoded Output

PCM Output

Block Diagram for DPCM

Output after introducing delay Element

Quantization Output

Encoded Signal

Inference

Pulse Time Modulation is also known as Pulse Width Modulation or Pulse Length Modulation.
In PWM, the samples of the message signal are used to vary the duration of the individual
pulses. Width may be varied by varying the time of occurrence of leading edge, the trailing edge
or both edges of the pulse in accordance with modulating wave. It is also called Pulse Duration
Modulation.

REFERENCES

1. Stephen J Chapman, “ Programming in MATLAB for Engineers”, Brooks, 2002

2. Duane Hanselman ,Bruce LittleField, “Mastering MATLAB 7” , Pearson Education Inc,

2005

3. Stormy Attaway, “MATLAB a practical introduction to programming and problem

solving”, BH, 5th edt., 2001

4. Amos Gilat, “MATLAB an introduction with applications”, Wiley, 2014

QUESTION BANK

PART A CO

1. What is Simulink? 5

2. Mention the advantages of Simulink. 5

3. List the applications of Simulink. 5

4. How to create and run Simulink? 5

5. Name the command used for opening Simulink window in the command

window 5

6. What is a subsystem? 5

7. Infer the significance of creating a subsystem. 6

8. Give the design procedure of any simple application in Simulink 6

9. Draw the Simulink model to get open loop gain of an OPAMP 6

10. List the standard test signals available in Simulink 6

PART B

1. Create a Simulink application to generate AM Signal 5

2. How to create a subsystem? Explain with suitable example. 5

3. Create a Simulink application to generate PCM 5

4. Design a Fullwave and Halfwave rectifier using Simulink 6

5. Create a Simulink application to generate DPCM 6

6. Design a 2nd order system in Simulink and plot its open and close

loop response. 5

7. Develop FIR filter and obtain the frequency response using

MATLAB 5

