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UNIT I    FUNDAMENTALS OF ANN  

Fundamentals of ANN – Biological Neurons and Their Artificial Models – Types of ANN 

– Properties – Different Learning Rules – Types of Activation Functions – Training of 

ANN – Perceptron Model (Both Single &Multi-Layer) – Training Algorithm – Problems 

Solving Using Learning Rules and Algorithms – Linear Separability Limitation and Its 

Over Comings 

1. FUNDAMENTALS OF ANN  

Neural computing is an information processing paradigm, inspired by biological 

system, composed of a large number of highly interconnected processing elements(neurons) 

working in unison to solve specific problems. 

Artificial neural networks (ANNs), like people, learn by example. An ANN is 

configured for a specific application, such as pattern recognition or data classification, through 

a learning process. Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurons. This is true of ANNs as well.  

1.1  THE BIOLOGICAL NEURON 

The human brain consists of a large number, more than a billion of neural cells that 

process information. Each cell works like a simple processor. The massive interaction between 

all cells and their parallel processing only makes the brain’s abilities possible. Figure 1 

represents a human biological nervous unit. Various parts of biological neural network(BNN) 

is marked in Figure 1. 

 

Figure 1: Biological Neural Network 



3 

Dendrites are branching fibres that extend from the cell body or soma. 

Soma or cell body of a neuron contains the nucleus and other structures, support 

chemical processing and production of neurotransmitters. 

Axon is a singular fiber carries information away from the soma to the synaptic sites of 

other neurons (dendrites ans somas), muscels, or glands. 

Axon hillock is the site of summation for incoming information. At any moment, the 

collective influence of all neurons that conduct impulses to a given neuron will determine 

whether or n ot an action potential will be initiated at the axon hillock and propagated along 

the axon. 

Myelin sheath consists of fat-containing cells that insulate the axon from electrical 

activity. This insulation acts to increase the rate of transmission of signals. A gap exists 

between each myelin sheath cell along the axon. Since fat inhibits the propagation of electricity, 

the signals jump from one gap to the next. 

Nodes of Ranvier are the gaps (about 1 μm) between myelin sheath cells. Since fat 

serves as a good insulator, the myelin sheaths speed the rate of transmission of an electrical 

impulse along the axon. 

Synapse is the point of connection between two neurons or a neuron and a muscle or a 

gland. Electrochemical communication between neurons take place at these junctions. 

Terminal buttons of a neuron are the small knobs at the end of an axon that release 

chemicals called neurotransmitters. 

Information flow in a neural cell 

The input/output and the propagation of information are shown below. 

1.2 ARTIFICIAL NEURON MODEL 

An artificial neuron is a mathematical function conceived as a simple model of a real 

(biological) neuron. 

 The McCulloch-Pitts Neuron 

This is a simplified model of real neurons, known as a Threshold Logic Unit. 

 A set of input connections brings in activations from other neuron. 
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 A processing unit sums the inputs, and then applies a non-linear activation function 

(i.e. squashing/transfer/threshold function). 

 An output line transmits the result to other neurons. 

1.2.1  Basic Elements of ANN 

Neuron consists of three basic components –weights, thresholds and a  single activation 

function.  An Artificial neural network(ANN) model based on the biological neural sytems is 

shown in Figure 2. 

 

Figure 2: Basic Elements of Artificial Neural Network 

1.3  DIFFERENT LEARNING RULES 

A brief classification of Different Learning algorithms is depicted in figure 3. 

 Training: It is the process in which the network is taught to change its 

weight and bias. 

 Learning: It is the internal process of training where the artificial neural 

system learns to update/adapt the weights and biases. 

Different Training /Learning procedure available in ANN are 

 Supervised learning  

 Unsupervised learning 

 Reinforced learning 

 Hebbian learning 

 Gradient descent learning 
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 Competitive learning 

 Stochastic learning 

1.3.1 Requirements of Learning Laws 

• Learning Law should lead to convergence of weights 

• Learning or training time should be less for capturing the information from 

the training pairs 

• Learning should use the local information 

• Learning process should able to capture the complex non linear mapping 

available between the input & output pairs  

• Learning should able to capture as many as patterns as possible 

• Storage of pattern information's gathered at the time of learning should be 

high for the given network 

 

Figure 3: Different Training methods of Artificial Neural Network 

1.3.1.1 Supervised learning  

Every input pattern that is used to train the network is associated with an output pattern 

which is the target or the desired pattern. 

A teacher is assumed to be present during the training process, when a comparison is 

made between the network’s computed output and the correct expected output, to determine 

the error.The error can then be used to change network parameters, which result in an 

improvement in performance. 
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1.3.1.2 Unsupervised learning 

In this learning method the target output is not presented to the network.It is as if there 

is no teacher to present the desired patterns and hence the system learns of its own by 

discovering and adapting to structural features in the input patterns. 

1.3.1.3 Reinforced learning 

In this method, a teacher though available, doesnot present the expected answer but 

only indicates if the computed output correct or incorrect.The information provided helps the 

network in the learning process. 

1.3.1.4 Hebbian learning 

This rule was proposed by Hebb and is based on correlative weight adjustment.This is 

the oldest learning mechanism inspired by biology.In this, the input-output pattern pairs (𝑥𝑖 , 𝑦𝑖) 

are associated by the weight matrix W, known as the correlation matrix. 

It is computed as 

   W = ∑ 𝑥𝑖𝑦𝑖
𝑇𝑛

𝑖=1            ----------- eq (1) 

Here 𝑦𝑖
𝑇 is the transposeof the associated output vector 𝑦𝑖.Numerous variants of the rule have 

been proposed. 

1.3.1.5 Radient descent learning 

This is based on the minimization of error E defined in terms of weights and activation 

function of the network.Also it is required that the activation function employed by the network 

is differentiable, as the weight update is dependent on the gradient of the error E. 

Thus if ∆𝑤𝑖𝑗 is the weight update of the link connecting the 𝑖𝑡ℎ and 𝑗𝑡ℎ neuron of the 

two neighbouring layers, then ∆𝑤𝑖𝑗 is defined as, 

∆𝑤𝑖𝑗 = ɳ 
𝜕𝐸

𝜕𝑤𝑖𝑗
         ----------- eq (2) 

Where, ɳ is the learning rate parameter and 
𝜕𝐸

𝜕𝑤𝑖𝑗
 is the error gradient with reference to the 

weight 𝑤𝑖𝑗. 

1.3.1.5 Competitive learning 

In this method, those neurons which respond strongly to input stimuli have their weights 

updated. 
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When an input pattern is presented, all neurons in the layer compete and the winning 

neurons undergoes weight adjustment.Hence it is a winner-takes-all strategy. 

1.3.1.6 Stochastic learning 

In this method, weights are adjusted in a probablistic fashion.An example is evident in 

simulated annealing the learning mechanism employed by Boltzmann and Cauchy machines, 

which are a kind of NN systems. 

1.3.2 Different Learning Rules 

1. Hebb’s Learning Law 

2. Perceptron Learning Law 

3. Delta Learning Law 

4. Wldrow and Hoff LMS Learning Law 

5. Correlation Learning Law 

6. lnstar (Winner-take-all) Learning Law 

7. Outstar Learning Law 

The different learning laws or rules with their features is given in Table1 which is given 

below  

Table 1: Different learning laws with their weight details and learning type 
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1.4 TYPES OF ACTIVATION FUNCTIONS  

Common activation functions used in ANN are listed below 

1.4.1  Identity Function 

             f(x) = x  - for all x       ----------- eq (3) 

 

Figure 4: Identity function 

 Linear functions are simplest form of Activation function.Refer figure 4 . f(x)  is just 

an identity function.Usually used in simple networks. It collects the input and produces an 

output which is proportionate to the given input. This is Better than step function because it 

gives multiple outputs, not just True or False 

1.4.2. Binary Step Function (with threshold ) (aka Heaviside Function or Threshold 

Function) 














  x if      0

  x if     1
)(xf

      ----------- eq (4) 

 

                                               Figure 4: Binary step function 

Binary step function is shown in figure 4. It is also called Heaviside function. Some 

literatures it is also known as Threshold function. Equation 4 gives the output for this function. 
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1.4.3. Binary Sigmoid 

This is also known as  Logistic function.The graphical representation is provided in 

figure5.Equation 5 gives the output values for this function. 

F(x) = [ 1/(1+ e -ax)]         ----------- eq (5) 

 

Figure 5: Binary sigmoidal function 

1.4.4. Bipolar Sigmoid 

    Also known as Hyperbolic tangent or tanh function. It is a bounded function whose 

values lies in the range of (-1 to +1). This is a shifted version of binary Sigmoid Function. It is 

a Non Linear function.Equation 6 represents this type of function.The pictorial representation 

for this function is given in figure 6. 

F(x) = [ (1- e -ax)/(1+ e -ax)]        ----------- eq (6) 

It is better than Sigmoidal function and its output is zero centered 

                     

Figure 6: Bipolar sigmoidal function 
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1.5  PERCEPTRON MODEL  

1.5.1  Simple Perceptron for Pattern Classification  

Perceptron network is capable of performing pattern classification into two or more 

categories. The perceptron is trained using the perceptron learning rule. We will first consider 

classification into two categories and then the general multiclass classification later. For 

classification into only two categories, all we need is a single output neuron. Here we will use 

bipolar neurons. The simplest architecture that could do the job consists of a layer of N input 

neurons, an output layer with a single output neuron, and no hidden layers. This is the same 

architecture as we saw before for Hebb learning. However, we will use a different transfer 

function here for the output neurons as given below in eq (7). Figure 7 represents a single layer 

perceptron network. 

   ----------- eq (7)                

 

 

 

 

 

 

 

 

Figure 7: Single Layer Perceptron 

Equation 7 gives the bipolar activation function which is the most common function 

used in the perceptron networks. Figure 7 represents a single layer perceptron network. The 

inputs arising from the problem space are collected by the sensors and they are fed to the 

aswociation units.Association units are the units which are responsible to associate the inputs 

based on their similarities. This unit groups the similar inputs hence the name association unit.  
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A single input from each group is given to the summing unit.Weights are randomnly fixed 

intially and assigned to this inputs. The net value is calculate by using  the expression  

x = Σ wiai – θ         ----------- eq (8) 

This value is given to the activation function unit to get the final output response.The 

actual output is compared with the Target or desired .If they are same then we can stop training 

else the weights haqs to be updated .It means there is error .Error is given as δ = b-s , where  b 

is the desired / Target output and S is the actual outcome of the machinehere the weights are 

updated based on the perceptron Learning law as given in equation 9. 

Weight change is given as Δw= η δ ai. So new weight is given as  

  Wi (new) = Wi (old) + Change in weight vector (Δw)   ----------- eq (9) 

1.5.2 Perceptron Algorithm 

Step 1: Initialize weights and bias.For simplicity, set weights and bias to zero.Set 

learning rate in the range of zero to one. 

• Step 2: While stopping condition is false do steps 2-6 

• Step 3: For each training pair s:t do steps 3-5 

• Step 4: Set activations of input units  xi = ai 

• Step 5: Calculate the summing part value Net = Σ aiwi-θ  

• Step 6: Compute the response of output unit based on the activation functions  

• Step 7: Update weights and bias if an error occurred for this pattern (if  y is  not 

equal to  t) 

Weight (new) = wi(old) + atxi , & bias (new) = b(old) + at 

Else wi(new) = wi(old) & b(new) = b(old) 

• Step 8: Test Stopping Condition  

1.5.3 Limitations of Single Layer Perceptrons 

• Uses only Binary Activation function 

• Can be used only for Linear Networks  

• Since uses Supervised Learning ,Optimal Solution is provided 

• Training Time is More 

• Cannot solve Linear In-separable Problem  
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1.5.3 Multi-Layer Perceptron Model 

Figure 8 is the general representation of Multi layer Perceptron network.Inbetween the 

input and output Layer there will be some more layers also known as Hidden layers. 

 

Figure 8: Multi-Layer Perceptron 

1.5.4 Multi Layer Perceptron Algorithm 

1. Initialize the weights (Wi) & Bias (B0) to small random values near Zero 

2. Set learning rate η or α  in the range of “0” to “1” 

3. Check for stop condition. If stop condition is false do steps 3 to 7 

4. For each Training pairs do step 4 to 7 

5. Set activations of Output units:  xi = si for i=1 to N 

6. Calculate the output Response 

yin = b0 + Σ xiwi  

7. Activation function used is Bipolar sigmoidal or Bipolar Step functions 

For Multi Layer networks, based on the number of layers  steps 6 & 7 are repeated   

8. If the Targets is  (not equal to) = to the actual output (Y), then update weights and 

bias based on Perceptron Learning Law 

            Wi (new) = Wi (old) + Change in weight vector 

 Change in weight vector   = ηtixi        

                      Where   η  = Learning Rate 

                                    ti  = Target output of ith unit 

                         xi  = ith Input vector 

              b0(new) = b0 (old) + Change in Bias 

                      Change in Bias = ηti 

      Else   Wi (new) = Wi (old)  

                        b0(new) = b0 (old) 

9.  Test for Stop condition 
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1.6 LINEARLY SEPERABLE & LINEAR IN SEPARABLE TASKS 

 

Figure 9: Representation of Linear seperable & Linear-in separable Tasks 

Perceptron are successful only on problems with a linearly separable solution sapce. 

Figure 9 represents both linear separable as well as linear in seperable problem.Perceptron 

cannot handle, in particular, tasks which are not linearly separable.(Known as linear 

inseparable problem).Sets of points in two dimensional spaces are linearly separable if the sets 

can be seperated by a straight line.Generalizing, a set of points in n-dimentional space are that 

can be seperated by a straight line.is called Linear seperable as represented in Figure 9. 

Single layer perceptron can be used for linear separation.Example AND gate.But it cant 

be used for non linear ,inseparable problems.(Example XOR Gate).Consider figure 10. 

 

Figure 10: XOR representation (Linear-in separable Task) 
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Here a single decision line cannot separate the Zeros and Ones Linearly.At least Two 

lines are required to separate Zeros and Onesas shown in Figure 10. Hence single layer 

networks can not be used to solve inseparable problems. To over come this problem we go for 

creation of convex regions. 

Convex regions can be created by multiple decision lines arising from multi layer 

networks.Single layer network cannot be used to solve inseparable problem.Hence we go for 

multilayer network there by creating convex regions which solves the inseparable problem. 

1.6.1 Convex Region 

Select any Two points in a region and draw a straight line between these two points. If 

the points selected and the lines joining them both lie inside the region then that region is 

known as convex regions. 

1.6.2 Types of convex regions 

(a) Open Convex region                                       (b)   Closed Convex region 

                               

Figure 11: Open convex region 

  

 

 

 

 

  

Figure 12 A: Circle - Closed convex 

region 

Figure 12 B: Triangle - Closed convex 

region 
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2. MULTI LAYER NETWORKS 

UNIT II MULTI LAYER NETWORKS  

Back Propagation Networks (BPN) - Training - Architecture-Algorithm, Counter 

Propagation Network (CPN) - Training - Architecture, Bi-Directional Associative 

Memory (BAM) - Training-stability analysis, Adaptive Resonance Theory – Adaptive 

Resonance Theory (ART) - ART1- ART2 – Architecture -Training, Hop Field Network - 

Energy Function - Discrete - Continuous - Algorithm - Application – Travelling Sales 

Man Problem TSP 

2 BACK PROPAGATION NETWORKS (BPN) 

2.1 NEED FOR MULTILAYER NETWORKS  

 Single Layer networks cannot used to solve Linear Inseparable problems & can only be 

used to solve linear separable problems 

 Single layer networks cannot solve complex problems 

 Single layer networks cannot be used when large input-output data set is available 

 Single layer networks cannot capture the complex information’s available in the 

training pairs  

Hence to overcome the above said Limitations we use Multi-Layer Networks. 

2.2 MULTI-LAYER NETWORKS 

  Any neural network which has at least one layer in between input and output layers is 

called Multi-Layer Networks 

  Layers present in between the input and out layers are called Hidden Layers 

  Input layer neural unit just collects the inputs and forwards them to the next higher 

layer 

  Hidden layer and output layer neural units process the information’s feed to them and 

produce an appropriate output 

  Multi -layer networks provide optimal solution for arbitrary classification problems 

  Multi -layer networks use linear discriminants, where the inputs are non linear 
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2.3 BACK PROPAGATION NETWORKS (BPN) 

Introduced by Rumelhart, Hinton, & Williams in 1986. BPN is a Multi-layer 

Feedforward Network but error is back propagated, Hence the name Back Propagation 

Network (BPN). It uses Supervised Training process; it has a systematic procedure for training 

the network and is used in Error Detection and Correction.  Generalized Delta Law /Continuous 

Perceptron Law/ Gradient Descent Law is used in this network. Generalized Delta rule 

minimizes the mean squared error of the output calculated from the output. Delta law has faster 

convergence rate when compared with Perceptron Law. It is the extended version of Perceptron 

Training Law. Limitations of this law is the Local minima problem. Due to this the convergence 

speed reduces, but it is better than perceptron’s. Figure 1 represents a BPN network 

architecture. Even though Multi level perceptron’s can be used they are flexible and efficient 

that BPN. In figure 1 the weights between input and the hidden portion is considered as Wij 

and the weight between first hidden to the next layer is considered as Vjk. This network is valid 

only for Differential Output functions. The Training process used in backpropagation involves 

three stages, which are listed as below 

1. Feedforward of input training pair 

2. Calculation and backpropagation of associated error 

3. Adjustments of weights 

 

Figure 1: Back Propagation Network 
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2.3.1 BPN Algorithm 

The algorithm for BPN is as classified int four major steps as follows: 

1. Initialization of Bias, Weights 

2. Feedforward process 

3. Back Propagation of Errors 

4. Updating of weights & biases                  

Algorithm 

I.  Initialization of weights 

Step 1: Initialize the weights to small random values near zero 

Step 2: While stop condition is false , Do steps 3 to 10 

Step 3: For each training pair do steps 4 to 9 

II.   Feed forward of inputs 

Step 4: Each input xi is received and forwarded to higher layers (next hidden) 

Step 5: Hidden unit sums its weighted inputs as follows 

                                    Zinj = Woj + Σxiwij 

                     Applying Activation function 

                                     Zj = f(Zinj) 

                              This value is passed to the output layer 

            Step 6: Output unit sums it’s weighted inputs 

   yink= Voj + Σ ZjVjk 

                  Applying Activation function 

                                          Yk = f(yink) 

III.  Backpropagation of Errors 

Step 7:   δk = (tk – Yk)f(yink ) 

Step 8:   δinj = Σ δjVjk 

IV.  Updating of Weights & Biases 

            Step 8:  Weight correction  is  Δwij = αδkZj 

bias Correction is Δwoj = αδk 

 



5 

V.  Updating of Weights & Biases 

Step 9: continued: 

     New Weight is   

   Wij(new) = Wij(old) + Δwij 

    Vjk(new) = Vjk(old) + ΔVjk 

      New bias is 

   Woj(new) = Woj(old) + Δwoj 

                                             Vok(new) = Vok(old) + ΔVok  

Step 10:  Test for Stop Condition 

2.3.2  Merits 

• Has smooth effect on weight correction 

• Computing time is less if weight’s are small 

• 100 times faster than perceptron model 

• Has a systematic weight updating procedure 

2.3.3 Demerits 

• Learning phase requires intensive calculations 

• Selection of number of Hidden layer neurons is an issue 

• Selection of number of Hidden layers is also an issue 

• Network gets trapped in Local Minima 

• Temporal Instability 

• Network Paralysis 

• Training time is more for Complex problems  

2.4 COUNTER PROPAGATION NETWORK [CPN]  

This network was proposed by Hect & Nielsen in 1987.It implements both supervised 

& Unsupervised Learning. Actually it is a combination of two Neural architectures (a) Kohonan 

Layer - Unsupervised (b) Grossberg Layer – Supervised. It Provides good solution where long 

training is not tolerated. CPN functions like a Look-up Table Generalization. The training pairs 

may be Binary or Continuous. CPN produces a correct output even when input is partially 

incomplete or incorrect. Main types of CPN is  (a) Full Counter Propagation (b) Forward only 

Counter Propagation. Figure 2 represents the architectural diagram of CPN network. 
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• Forward only nets are the simplified form of Full Counter Propagation networks 

• Forward only nets are used for approximation problems 

The first layer is Kohonan layer which uses competative learning law.The procedure 

used here is , when an input is provided the weighted net values is calculated for each node. 

Then the node with maximum output is selected and the signals from other neurons are 

inhibited. This output from the wining neuron only is provided to the next higher layer, which 

is the Supervised Grosssberg layer.Grossberg processing is similar to that of an normal 

supervised algorithm. 

Training of Kohonan network 

• Kohonan training implements self organising Unsupervised training procedure 

which takes time. 

• Kohonan network involves winner takes tall weight updating rule 

• Uses Euclidean distance measure or Dot product for clustering/ grouping of inputs 

Training of Grossberg Network 

• Uses Supervised training 

• Similar to BPN forward pass 

• Weights are updated based on Delta Law 

2.4.1 Algorithm: Full CPN 

Step 1:  Initialize the weights & learning rate to a small random value near zero 

Step 2:  While stop condition is false , Do steps 3 to 9 

Step 3:  Set the X- input layer input Activations to vector X 

Step 4:  Each input xi is received and forwarded to higher layers (Kohonan Layer) 

Step 5:  Kohonan unit sums its weighted inputs as follows 

Inputs & Weights are normalised, then net value is calculated as follows 

                                    Kinj = Woj + XW  ( in vectors) 

     Applying Activation function 

                                    Kj = f(Kinj) 

Step 5A: Wining Cluster is identified.( The node with a maximum output is selected as Winner. 

Only this output is forwarded to the next Grossberg layer, All other units output are 

inhibited) 
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For clustering the inputs Xi’s ,  Euclidian Distance Norm function is used 

Dj = (xi-vij) ^ 2 + (yk-wkj) ^ 2                                               

                 Dj should be minimum 

Step 6:  Update the weights over the calculated winner unit Kj 

Step 7:  Test for stop condition of phase -I 

                                          (Phase –I : Input X layer to Z Cluster layers) 

         Phase – II :  Z Cluster layers to Y output layers 

Step 8:  Repeat steps 5,5A,6 for Phase –II layers 

Step 9:  Test for stop condition for phase II 

2.4.2 Merits 

 A combination of Unsupervised (Phase-I) & Supervised 

 Network works as like a Look Up Table 

 Fast and Coarse approximation 

 100 times faster than BPN model 

2.4.3 Demerits 

 Learning phase requires intensive calculations 

 Selection of number of Hidden layer neurons is an issue 

 Selection of number of Hidden layers is also an issue 

 Network gets trapped in Local Minima  

 

Figure 2: Counter Propagation Networks 
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2.5 BI-DIRECTIONAL ASSOCIATIVE MEMORIES 

• Developed by Kosko in 1988 

• Hetro Associative with Two layers (Input & Output) [Single layer] 

• Transmits signals back and forth between these layers  

• Stop condition is that the activations of all neurons remain constant for several 

iterations       

• It is used to store and retrieve the patterns  

• Utilizes directional weighted connection paths 

2.5.1 Types of BAM 

(a) Binary BAM 

(b) Bipolar BAM 

(c) Continuous BAM 

 Continuous BAM: Uses Log-sigmoidal Function for activation function 

                         

Figure 3: Bi-Directional Associative memory 

Image adapted from Laurene Fausett, “Fundamentals of Neural Networks, Architectures, 

Algorithms and Applications”, Prentice Hall publications. 
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 Figure 3 represents the BAM architecture. BAM contains  ‘n’ neurons in X layer and 

‘m’ neurons in Y layer. Both X & Y layers can act as input or Output layers. Weights 

for X layer is taken as Wij . Weights for Y layer is taken as Wij T. If Binary or Bipolar 

Activations are used then it is known as Discrete BAM. If Continuous Activations are 

used then it comes under Continuous BAM type. 

2.5.2 Algorithm 

The following steps explain the procedural flow of BiDirectional Associative Memory 

Step 0: Initialize the weights to store a set of input (P) Vectors. 

   Set all intial activations to Zero 

Step 1:  For each inputs do steps 2 to 6 

Step 2A: Present the input pattern x to X layer 

Step 2B:  Present the input pattern y to Y layer  

Step 3: While activations are not converged do steps 4 to 6 

Step 4:  Update the activations of units in Y layer.Compute Net value yin =  Σxiwij  and 

compute activatins  yj = f(yin). Send signal to X layer 

  Step 5: Update the activations of units in X layer. Compute Net value xin =  Σyjwij  and 

compute activatins  xi = f(xin). Send signal to Y layer 

Step 6:  Test for Convergence.If the activations of layers X and Y had reached equilibrium 

then stop else continue the above said process 

2.5.3  Merits 

• Unconditionally Stable network 

• Best for Content type of address memory 

• Special case of Hopfield network 

• Best Recall 

2.5.4 Demerits 

• Incorrect Convergence 

• Memory capacity is limited because storage of ‘m’ patterns should be lesser than  

‘n’ neurons of smaller layer 

• Sometimes the networks learns some patterns which are not provided to it 
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2.5.5 Applications of BAM 

• Fault Detection 

• Pattern Association 

• Real Time Patient Monitoring 

• Medical Diagnosis 

• Pattern Mapping 

• Pattern Recognition systems 

• Optimization problems 

• Constraint satisfaction problems 

2.6 ADAPTIVE RESONANCE THEORY 

 Invented by Grossberg in 1976 and based on unsupervised learning model. 

 Resonance means a target vector matches close enough the input vector. 

 ART matching leads to resonance and only in resonance state the ART network learns. 

 Suitable for problems that uses online dynamic large databases. 

 Types: 

(1) ART 1- classifies binary input vectors 

(2) ART 2 – clusters real valued input (continuous valued) vectors. 

 Used to solve Plasticity – stability dilemma. 

2.6.1 Plasticity - Stability 

How to learn a new pattern without forgetting the old traces (patterns) and how to adapt 

to the changing environment (i/p). When there is change in the patterns (plasticity) how to 

remember previously learned vectors (stability problem) is a problem. ART uses competitive 

law (self-regulating control) to solve this PLACITICITY – STABILITY Dilemma. The 

simplified ART diagram is given below in Figure 5. 

The Adaptive Resonance Theory (ART) consist of  

(1) F1 Layer: I/P processing unit also called comparison layer. 

(2) F2 Layer: clustering or competitive layer. 

(3) Reset mechanism. 

2.6.2 Comparison Layer: Take 1D i/p vector and transfers it to the best match in recognition 

field (best match - neuron in recognition unit whose weight closely matches with i/p 

vector). 
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2.6.3 Recognition Unit: produces an output proportional to the quality of match. In this way 

recognition field allows a neuron to represent a category to which the input vectors are 

classified. 

Vigilance parameter: After the i/p vectors are classified a reset module compares the 

strength of match to vigilance parameter (defined by the user). Higher vigilance produces fine 

detailed memories and lower vigilance value gives more general memory. 

  The schematic representation of ART-1 is shown in Figure 4.Figure 6 represents the 

supplementary units present in ART-1 networks 

2.6.4 Reset module: compares the strength of recognition phase. When vigilance threshold 

is met then training starts otherwise neurons are inhibited until a new i/p is provided. 

There are two set of weights  (1)   Bottom up weight - from F1 layer to F2 Layer 

(2) Top –Down weight – F2 to F1 Layer 

2.6.5 Learning in ART 

There are two types of Learning which are explained as below. 

Fast learning: Happens in ART 1 – Weight changes are rapid and takes place during 

resonance. The network is stabilized when correct match at cluster unit is reached. 

Slow Learning: Used in ART 2. weight change is slow and does not reach equilibrium 

in each learning iteration.so more memory to store more i/p patterns (to reach stability) is 

required. 

 

Figure 4: Schematic representation of ART-1 
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          Images adapted from Laurene Fausett, “Fundamentals of Neural Networks, 

Architectures, Algorithms and   

             Applications”, Prentice Hall publications 

 

Figure 5: Basic structure of ART-1 Network 

 

Figure 6: Supplementary Units for ART-1 
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Images adapted from Laurene Fausett, “Fundamentals of Neural Networks, 

Architectures, Algorithms and Applications”, Prentice Hall publications 

2.6.6 Basic ART Training Algorithm: 

Step 1:  Initialize the parameters 

Step 2:  For each input do steps 3 to 8 

Step 3:  Process F1 layer 

Step 4:  while Reset Condition is true do steps 5 -7 

Step 5:  Find a candidate to learn the input pattern. Select F2 unit with Maximum value 

Step 6:  F1(b) units combine their inputs with F1(a) and F2 layer 

Step 7:  Test reset condition. If Reset is true then the selected candidate is rejected else 

accepted. 

Step 8:  Learning weights are changed according to the differential equations 

Step 9:  Test for stop condition 

  2.6.7 Applications of ART 

• Pattern Recognition 

• Pattern Restoration 

• Pattern Generalization 

• Pattern Association 

• Speech Recognition 

• Image Enhancement 

• Image Restoration 

• Facial Recognition systems 

• Optimization problems 

• Used to solve Constraint satisfaction problems 

2.7 HOPFIELD NETWORKS 

The net is a fully interconnected neural net, in the sense that each unit is connected  

to every other unit. The net has symmetric weights with no self-connections, Wij =Wji and  

Wii = 0 

Only one unit updates its activation at a time and each unit continues to receive an 

external signal in addition to the signal from the other units in the net. The asynchronous 
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updating of the units allows a function, known as an energy or Lyapunov function, to be found 

for the net.  

2.7.1 Architecture of Hopfield Networks 

 The basic diagram for Hopfield Networks is given in Figure 7. Here no learning 

algorithm is used. No Hidden units/layers used. Patterns are simply stored by learning the 

energies. Similar to Human brain in storing and retrieving memory patterns. Some patterns / 

images are stored & when similar noisy input is provided the network recalls the related stored 

pattern. The neuron can be ONN(+1) or OFF(-1).The neurons can change state between +1 & 

-1 based on the inputs which they receives from other neurons. Hopfield Network is trained to 

store patterns(memories). It can recognize previously learned (stored) Pattern from partial 

(noisy) inputs. 

 

Figure 7: Architecture of Hopfield Networks 

  2.7.2 Types of Hopfield Network 

Based on the activation functions used the Hopfield Network can Be classified into two  

types. They are 

(a) Discrete Hopfield network (b) Continuous Hopfield Network 



15 

Discrete Hopfield Network – Uses Discrete Activation Function 

Continuous Hopfield Network – Uses Continuous Activation Function 

Hopfield Networks Uses Lyapunov Energy Function. Energy function guarantees the 

network to reach a stable minimum local energy state which resembles the stored patterns 

2.7.3 Lyapunov Energy Function 

The Lyapunov Energy function for discrete Hopfield is given as follows 

 

                  Change in Energy is given as equal to [–(neti) ΔYi] 

The Lyapunov Energy function for Continuous Hopfield is given as follows 

 

2.7.4 Algorithm 

Step 1:  Initialize the weights To store the pattern 

Step 2:  For each i/p vector repeat steps 3 to 7 

Step 3:  Set the initial activations of the net equal to the external i/p vector X 

                                     Yi=Xi(i=1,2,…,n) 

Step 4:  Perform 5 to 7 for each unit yi  

Step 5: Compute  

                    yini= Xi + ΣyiWij 

Step 6:  Determine the activation response based on the activation function used 

Step 7:  Broadcast the value of Yi to all other units 

Step 8:  Test for Convergence 

2.7.5 Merits and Demerits of Hopfield Networks 

Merits 

 Unconditionally Stable network 

 Best for Content type of address memory 

 Special case of Hopfield network 

 Best Recall 
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Demerits 

 Incorrect Convergence 

 Memory capacity is limited because storage of ‘m’ patterns should be lesser than  ‘n’ 

neurons of smaller layer 

 Sometimes the networks learn some patterns which are not provided to it 
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2. MULTI LAYER NETWORKS 

UNIT III- SOM & SPECIAL NETWORKS  

SOM-Introduction - Kohonan SOM - Linear vector quantization, Probabilistic neural 

network, Cascade correlation, General Regression neural network, Cognitron - 

Application of ANN - Texture classification - Character recognition.  

2.1 SELF-ORGANISING NETWORKS (SOM) 

 Developed by Finish Prof Teuvo Kohonan in 1980’s. This network is also known as 

Topology Preserving maps. The name Topology preserving is provided since the location or 

position of the node varies in the stating time of training procedure and once the network 

learned the given input pattern the topology or the location of neural nodes are fixed. 

SOM is a Feedforward network with Single computational layer. It utilizes 

Unsupervised training and is used for Dimensionality reduction. The main goal of SOM is to 

change the arbitrary dimension of the given input pattern into a one- or two-Dimensional space. 

Map is a 2-Dimensional space where the nodes are organized in Rectangular or Hexagonal 

Grid. Figure 1 shows the grids used in SOM  

  

Figure 1(a). Rectangular Neural Grid (b) Hexagonal Grid 

Each node is provided with a weight vector which is nothing but the position of that 

node in the input space or Map. Job of training is to adjust this weight vector so the distance in 

the map reduces. The weight moves towards the input. Thus, from a higher dimension the map 

reduces to a 2 Dimension. This is the Dimensionality Reduction Process. After training, SOM 

can classify the input by selecting a nearest node (small distance) with closest weight vector to 

the input space vector 



3 

 This transformation is performed in an orderly manner. SOM uses only two-

dimensional discretized input space known as Maps for its operation. Instead of error correction 

learning SOM uses Competitive / Winner Takes All learning is utilized in SOM. 

SOM operates in Two modes 

 (1) Training 

 (2)  Mapping 

• Training Process: Develops the map using competitive procedure (Vector 

Quantization) 

• Mapping Process: Classifies the new supplied input based on the training 

outcomes 

2.1.1  SOM Algorithm 

            The general steps involved in SOM is given as follows 

Step 1:  Initialize the Weights Wij. Initialize the learning rate and topological  neighbourhood 

parameters 

Step 2:  While stop condition is false Do steps 3 to 9 

Step 3:   For each input Vector x, do steps 4 to 6 

Step 4:   For each j calculate D(j) = Σ (Wij – xi)2 

Step 5:  Find the index ‘j’ for which D(j) is Minimum 

Step 6:  For all units of j within a specific neighbourhood of j and for all i 

                                                    Wij (new) = Wij (old) + α [ xi – Wij (old)] 

Step 7:   Update Learning Rate 

Step 8:  Reduce the radius of Topological Neighbourhood at specific time periods 

Step 9:   Test for stop condition 

2.1.2  SOM Explanation  

• Initialization 

Weights are randomly initialized to a small value near zero (Wj) 

• Competition 

For the given each inputs patterns, the neurons calculate a discriminant function(Here 

we use Euclidean Distance function).This Discriminant function acts as a basis for the 
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competition among neurons. The neuron with smaller Distance value is selected as wining 

neuron(Winner Takes All law) 

• Cooperation 

The wining neuron determines the spatial locations of the excited neurons in that 

neighbourhood (Topological map). Thus, a cooperation between the neurons is established by 

the wining neuron in that rearranged neighbourhood 

• Adaptation 

The wining neurons by adjusting its weight values, tries to minimize the discriminant 

function (distance value) between them and the inputs. When similar inputs are provided the 

response of the wining neuron is enhance in a better way 

2.1.3 SOM Merits and Demerits 

Merits 

• Easy to interpret 

• Dimensionality Reduction 

• Capable of handling different types of classification problems 

• Can cluster large complex input set’s 

• SOM training Time is less 

• Simple algorithm 

• Easy to implement 

Demerits 

 It does not build a generative model for the data, i.e, the model   does not understand 

how data is created. 

 It does not behave so gently when using categorical data, even worse for mixed types 

data. 

 The time for preparing model is slow, hard to train against slowly evolving data 

2.1.4 Applications of SOM 

Applications 

• Character Recognition 

• Speech Recognition 
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• Texture Recognition 

• Image Clustering 

• Data Clustering 

• Classification problems 

• Dimensionality reduction applications 

• Seismic analysis 

• Failure Analysis etc 

2.2 LEARNING VECTOR QUANTIZATION [LVQ] 

• Supports Single as well as Multi Class Classification 

• CODE BOOK Vectors are Developed by Training process 

• Prediction is done similar to that of K-Nearest Neighbor procedure 

• Codebook vectors are created from the training dataset by moving them closer (when 

they are good match to the weight and input), and further away when they are a bad 

match. 

• When a Kt h new instance (i/p data) is given, the code book vectors are searched for a 

similar value. That node/codebook vector is selected and its associated output class is 

given as final output 

• To select a similar input for the given Kth instance or training dataset, Euclidian 

Distance measure is used as shown below 

           Euclidean Distance (X, Xi) = sqrt (SUM ((Xj – Xij) ^2) 

 

Figure 2: LVQ Schematic Diagram 



6 

2.2.1 Algorithm 

Step 1:   Initialize the weight vectors to the ‘m’ Training vectors, where ‘m’ is the number of 

different classification/Cluster. Start learning rate α near zero (small value) 

Step 2:    While Stop condition id false do steps 3 to 6  

Step 3:    For each input training vector X, do steps 4 to 5 

Step 4:    Find J such that D(J) is minimum 

Step 5:    Update the weights of Jth neural unit as given below 

IF T = Cj then 

Wj(new) = Wj(old) + α [x -wj(old)] [ Move the weight vector W towards the   input X]      

If T is Not Equal to C then 

Wj(new) = Wj(old) -  α[x -wj(old)] [ Move the weight vector W away from  the     input X]      

Step 6: Reduce Learning Rate α  

Step 7:  Test for stop condition (Either a fixed number of Iteration reached or Learning rate 

αhas reached a very minimum value 

2.2.2 Merits 

• Due to Normalization (Data Preparation) Dominance of one unit is avoided 

• Dimensionality Reduction 

• Feature Engineering 

• Multiple Best Matches 

• Multiple Passes (Multiple runs)(higher learning rate for CODE BOOK Pool 

Generation & Lower Learning rate for tuning the vectors) 

• Simple algorithm 

• Easy to implement 

• Precursor to K nearest Neighbour & SOM’s 

Demerits 

1. Data has to be prepared before executing this algorithm. 

2. Output class should be predefined 

2.3. PROBABILISTIC NEURAL NETWORKS [PNN] 

o PNN has three layers of Neural Node interconnections 

o Input layer can take ‘n’ number of nodes 

o Input nodes are connected with the feature vectors 
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o All input feature vectors are connected with the Middle-Hidden Layer 

o Hidden nodes are connected into groups and Each group denotes a particular class ‘K’ 

o Each node present in Hidden Layer resembles to a Gaussian Function centered on its 

Feature Vector for that Kth class 

o All of these Gaussian function outputs of a group/class are fed to the Kth Output unit 

o Hence, we have only ‘K’ Output units only 

o PNN is closely related to PARZEN Window PDF Estimator or Mixed Gaussian 

Estimator 

o For any output node ‘K’, all Gaussian values (of the previous Hidden layer) for that 

output class are summed up 

o This summed up value is scaled to a Probability Density Function (PDF) 

o  If class 1 contains ‘p’ feature vectors and Class 2 contains ‘Q’ feature vectors, Then P 

nodes are present in Hidden layer for the class 1 & Q nodes for class 2 is present 

o The equations for Gaussian functions for any input is given as  

 

The schematic representation of Probabilistic Neural Network is shown in Figure 3. 

2.3.1. Algorithm 

To Set the PNN following steps are used: 

Step 1:  Read the exemplars vectors and class numbers 

Step 2:  Sort the above into ‘K’ sets, where each set contains one class of vector 

Step 3:  Define a Gaussian function centered on each exemplar vector and define the 

summed up gaussian output function 

To Classify the following steps are used: 

Step 4:  Read the input and feed it to the Gaussian function in each set 

Step 5:  Calculate the Gaussian function values at the output 

Step 6:  Feed this gaussian out to single output of that group 

Step 7:  At each class output node, Sum all its input and multiply with a constant 

Step 8:  Find the maximum value of all summed function values at output 

Step 9:  Test for stop condition 
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Figure 3: General Probabilistic Neural Network Architecture Diagram 

2.4. CASCADE CORRELATION NEURAL NETWORKS [CCNN’s] 

•  Cascade Co-relation network is a Supervised Feedforward type of Network 

• Starts with a minimal network then automatically trains & adds more new Hidden 

nodes, thus creating a Multi-Layer Structure 

• Cascade Correlation contains two parts: First Hidden units are added one at a time and 

after added they don’t change 

• Second is the Learning process where the new hidden units are created and installed 

• For each new hidden unit CC tries to increase the magnitude of the correlation between 

the new unit's output and the residual error signal of the network 

• We train only one-layer weights, the rest are maintained as constant so the results are 

cached 

• Each unit sees the same inputs and error signals  

The CCNN architecture is shown Figure 4. 
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Cascade correlation addresses both issues of slow rate of convergence and fixation of 

nodes while training by dynamically adding hidden units to the architecture-but only the 

minimum number necessary to achieve the specified error tolerance for the training set. 

Furthermore, a two-step weight-training process ensures that only one layer of weights is being 

trained at any time. 

A cascade correlation net consists of input units, hidden units, and output units. Input 

units are connected directly to output units with adjustable weighted connections. 

Connections from inputs to a hidden unit are trained when the hidden unit is added to 

the net and are then frozen. Connections from the hidden units to the output units are adjustable. 

Cascade correlation starts with a minimal network, consisting only of the required input and 

output units (and a bias input that is always equal to 1). This net is trained until no further 

improvement is obtained; the error for each output unit is then computed (summed over all 

training patterns). 

Next, one hidden unit is added to the net in a two-step process. During the first step, a 

candidate unit is connected to each of the input units, but is not connected to the output units. 

The weights on the connections from the input units to the candidate unit are adjusted to 

maximize the correlation between the candidate's output and the residual error at the output 

units. The residual error is the difference between the target and the computed output, 

multiplied by the derivative of the output unit's activation function, i.e., the quantity that would 

be propagated back from the output units in the backpropagation algorithm. When this training 

is completed, the weights are frozen and the candidate unit becomes a hidden unit in the net. 

The second step in which the new unit is added to the net now commences. The new 

hidden unit is connected to the output units, the weights on the connections being adjustable. 

Now all connections to the output units are trained. (The connections from the input units are 

trained again, and the new connections from the hidden unit are trained for the first time.) 
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Figure 4. Schematic Representation of Cascade Corelation Network 

2.4.1. Merits 

• It learns at least 10 times faster than standard Back-propagation Algorithms. 

• The network determines its own size and topologies. 

• It is useful for incremental learning in which new information is added to the already 

trained network 

2.4.2. Applications 

• Recognition of different Geometric Shapes 

• Vowel Recognition 

• Cipher systems Identification 

• Fault Classification problems 

2.5. GENERAL REGRESSION NEURAL NETWORKS [GRNN’s] 

o General Regression Neural Networks [GRNN’s] was proposed by D.F. Specht in 1991 

o GRNN is a Single pass learning Network 
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o General Regression Neural Networks uses Gaussian Activation function for its Hidden 

Layers 

o GRNN is based on Function Approximation or Function estimation procedures 

o Output is estimated using weighted average of the outputs of training dataset, where the 

weight  is calculated using the Euclidean distance between the training data and  test 

data 

o If the distance is large then the weight will be very less and if the distance is small more 

weight is given to the output 

o Contains 4 layers: (1) Input layer (2) Hidden (pattern) Layer (3) Summation Layer (4) 

Output (division) Layer 

o GRNN’s Estimator is given by the equation                  

 

Where x   =  input  

xi   =  Training sample  

Y(xi)   =  Output for sample I 

di
2   = Euclidean Distance 

e-(d
i
2∕2σ2)  = Activation Function – This value is taken as weight value 

σ   = Spread constant (only Unknown parameter) 

Select σ when MSE is Minimum 

2.5.1. Training Procedure 

Used to calculate optimum value of σ. First divide the samples into two parts. One part 

is used to train and the other is used to Test the network. Apply GRNN to Test data based on 

Training data & calculate MSE for different σ . Select the Minimum MSE and its 

Corresponding σ. The architecture Diagram of GRNN is given in Figure 5. 
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Figure 5. General Regression Neural Network 

2.6. APPLICATIONS OF ANN 

The major application are  (1) Character Recognition system 

(2)  Texture Recognition System etc 

2.6.1. Character Recognition System  

Consider the characters given in figure 6. Now the objective is to recognise a particular 

alphabet, say ‘A’ in this example. Using Image analysis models the particular alphabet is 

segmented and converted into Intensity or Gray scale or Pixel values. The general work flow 

is shown in Figure 7. The first procedure is segmentation. Segmentation is the process of 

Subdividing the images into sub blocks. So alphabet “A” is isolated by using appropriate 

segmentation procedures like thresholding or region Growing or Edge detector based 

algorithms. 
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Figure 6. Input to Character recognition system 

                              

Figure 7. Work flow diagram for character recognition system 

After implementing the segmentation procedure, we will obtain an output as shown in 

figure 8a.  Now this image pattern has to be converted in terms of Binary values. The pattern 

is divided into different rows and columns as per the system resolution as shown in figure 8.b. 

Now for each square box values in the range of zero to 255 is provide if gray scale is used. 

These values represent whether the required object in present inside the square box or not. 

These Binary or Gray scale values are taken as input for further processing. 
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Figure 8a. Character Pattern values 
Figure 8b. Character Pattern conversion into 

intensity 

Figures 6,7,8 are adapted from Praveen Kumar et al. (2012), “Character Recognition 

using Neural Network”, vol3 ,issue 2., .Pp 978- 981, IJST 

            For figure 8.b Texture Features, Shape Features and or Boundary features etc can be 

extracted. This feature values are known as exemplars which is the actual input into the 

neural network. Consider any neural network. The input is the feature table created as 

explained in the above process, which is shown in Figure 9. This table is provided as in put to 

the neural system 

 

Figure 9: Character ‘a’ is segmented and binary values extracted from it 

  Figure 9 Adopted from Yusuf Perwej et al. (2011), “Neural Networks for Handwritten 

English Alphabet Recognition”, International Journal of Computer Applications (0975 – 

8887) Volume 20– No.7, April 2011. 

Figure 10 shows the full implementation using a multi-layer neural network 
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Figure 10. ANN implementation of character recognition system 

Figure 10: Adopted from Anita pal et al. (2010), “Handwritten English Character 

Recognition Using Neural Network”, International Journal of Computer Science & 

Communication, Vol. 1, No. 2, July-December 2010, pp. 141-144. 

If the feature sets matches between the trained and current input features the output 

produces “1” , which denotes that the particular alphabet is trained  else “0” not recognised. 

Note: Similar procedure is used for texture classification Application 
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4. INTRODUCTION TO FUZZY LOGIC 

UNIT IV- INTRODUCTION TO FUZZY LOGIC 

Classical set - Operations and properties - Fuzzy Set - Operations and properties - 

Problems, Classical Relations - Operations and Properties, Fuzzy Relations - Operations 

and Properties - Compositions Membership function -FLCS - Need for FLC- 

Fuzzification - Defuzzification.  

4.1 INTRODUCTION 

The classical set theory is built on the fundamental concept of “set” of which an 

individual is either a member or not a member. A sharp, crisp, and unambiguous distinction 

exists between a member and a nonmember for any well-defined “set” of entities in this theory, 

and there is a very precise and clear boundary to indicate if an entity belongs to the set. 

Namely, in the classical set theory, it is not allowed that an element is in a set and not 

in the set at the same time. Thus, many real-world application problems cannot be described 

and handled by the classical set theory, including all those involving elements with only partial 

membership of a set. On the contrary, fuzzy set theory accepts partial memberships, and, 

therefore, in a sense generalizes the classical set theory to some extent. 

Fuzzy logic is an extension of Boolean logic by Lot Zadeh in 1965 based on the 

mathematical theory of fuzzy sets, which is a generalization of the classical set theory. By 

introducing the notion of degree in the verification of a condition, thus enabling a condition to 

be in a state other than true or false, fuzzy logic provides a very valuable flexibility for 

reasoning, which makes it possible to take into account inaccuracies and uncertainties. In order 

to introduce the concept of fuzzy sets, we first review the elementary set theory of classical 

mathematics. It will be seen that the fuzzy set theory is a very natural extension of the classical 

set theory, and is also a rigorous mathematical notion. 

4.2 BASIC CONCEPTS OF FUZZY SETS 

4.2.1 Fuzzy Logic 

Fuzzy logic is defined as a Multivalued Logic with various degrees of values for its 

member elements.  Fuzzy logic is based on "degrees of truth" than the (1 or 0) Boolean logic 

on which the modern computer is based. 
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4.2.2 Classical Sets 

A classical set is defined by crisp boundaries; there is no uncertainty or vagueness in 

the prescription or location of the boundaries of the set. 

4.2.2.1 Operations on Classical Sets 

Let A and B be two subsets on the universe X. Operations are shown below 

Union A ∪ B = {x|x ∈ A or x ∈ B} …. (1) 

Intersection A ∩ B = {x|x ∈ A and x ∈ B} …. (2) 

Complement A = {x|x /∈ A, x ∈ X} …. (3) 

Difference A|B = {x|x ∈ A and x /∈ B} …. (4) 

 

4.2.2.2. Properties of Classical (Crisp) Sets 

Commutativity A ∪ B = B ∪ A  

 A ∩ B = B ∩ A. …….. (5) 

Associativity A ∪ (B ∪ C) = (A ∪ B) ∪ C  

 A ∩ (B ∩ C) = (A ∩ B) ∩ C …….. (6) 

Distributivity A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)  

 A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) …….. (7) 

Idempotency A ∪ A = A  

 A ∩ A = A …….. (8) 

Identity A ∪ Ø = A  

 A ∩ X = A  

 A ∩ Ø = Ø. …….. (9) 

A ∪ X = X. 

            Transitivity     If A ⊆ B and B ⊆ C, then A ⊆ C  ……… (10) 

Involution      A’’ = A      ……… (11) 
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4.2.3 Fuzzy Sets 

A fuzzy set is a set with a smooth boundary. Fuzzy logic is based on the theory of fuzzy 

sets, which is a generalization of the classical set theory. Saying that the theory of fuzzy sets is 

a generalization of the classical set theory means that the latter is a special case of fuzzy sets 

theory. To make a metaphor in set theory speaking, the classical set theory is a subset of the 

theory of fuzzy sets, 

A fuzzy set, is defined as a set containing elements that have varying degrees of 

membership values in the range of zero to one. 

4.2.3.1 Fuzzy Set Operations 

The following are commonly used fuzzy set operations 

Union          …. (15) 

Intersection                            …. (16) 

Complement         …. (17) 

Fuzzy logic is based on fuzzy set theory, which is a generalization of the classical set 

theory. The classical sets are also called clear sets, classical logic is also known as Boolean 

logic or binary. 

 

                                                                                                                          

Figure 1: Membership curve 

Figure 1 gives the Membership function characterizing the subset of 'good' quality of 

service. Let us consider X be a set. A fuzzy subset A of X is characterized by a membership 

function.  Let Input 1is quality of service. Subsets: poor, good and excellent. Input 2 is quality 

of food. Subsets: awful and delicious. Consider the output tip amount. Subsets: low, medium 
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and high. Refer figure 3. For ‘Good’ a value of ‘1’ is taken and for ‘Poor’ a value of ‘0’ is 

taken. This is how membership functions converts a classical value into Fuzzy value. 

The shape of the membership function is chosen arbitrarily by following the advice of 

the expert or by statistical studies: sigmoid, hyperbolic, tangent, exponential, Gaussian or any 

other form can be used. 

A fuzzy set is defined by a function that maps objects in a domain of concern into their 

membership value in a set. Such a function is called the membership function. 

A fuzzy set, then, is a set containing elements that have varying degrees of membership 

in the set. This idea is in contrast with classical, or crisp, sets because members of a crisp set 

would not be members unless their membership is full, or complete, in that set (i.e., their 

membership is assigned a value of 1). Elements in a fuzzy set, because their membership need 

not be complete, can also be members of other fuzzy sets on the same universe. 

4.3 DIFFERENCE BETWEEN CLASSICAL SETS AND FUZZY SET 

4.3.1 Classical set 

A classical set is defined by crisp boundaries. there is no uncertainty in the 

prescription or location of the boundaries of the set. Refer figure 2. 

 

                  Figure 2: Diagrams for (a) crisp set boundary and (b) fuzzy set boundary 

Examples 

The clock speeds of computer CPUs 

The operating currents of an electronic motor 

The operating temperature of a heat pump (in degrees Celsius) 
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The total number of elements in a universe X is called its cardinal number, denoted nx, 

where x is a label for individual elements in the universe. 

Collections of elements within a universe are called sets, and collections of elements 

within sets are called subsets. We define the null set, ∅, as the set containing no elements, and 

the whole set, X, as the set of all elements in the universe. 

4.3.2 Fuzzy Set 

A fuzzy set is prescribed by vague or ambiguous properties; hence its boundaries are 

ambiguously specified. Fuzzy set theory permits the gradual assessment of the membership of 

elements in a set, described with the aid of a membership function valued in the real unit [0,1]. 

Examples 

Words like young, tall, good or high are fuzzy. There is no single quantitative value 

which defines the young term. For some people, age 25 is young, and for others, age 35 is 

young. The concept young have no boundary. Refer figure 3. The linguistic terms middle age, 

old age, etc represents the member element AGE. 

 

Figure 3: Fuzzy set represented in linguistic terms 

4.3.2.1 Properties of Fuzzy set 

Two special properties of set operations are known as the excluded middle axioms and 

De Morgan’s principles. These properties are enumerated here for two sets A and B. The 

excluded middle axioms are very important because these are the only set operations described 

here that are not valid for both classical sets and fuzzy sets. There are two excluded middle 
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axioms. The first, called the axiom of the excluded middle, deals with the union of a set A and 

its complement; the second, called the axiom of contradiction, represents the intersection of a 

set A and its complement. 

All Properties of classical sets also hold for fuzzy sets, except for the excluded middle 

and contradiction axioms. Fuzzy sets can overlap. A set and its complement can overlap. The 

excluded middle axioms, extended for fuzzy sets, are expressed as 

 

 

Venn diagrams comparing the excluded middle axioms for classical (crisp) sets and 

fuzzy sets are shown in the below Figure 4. 

 

Figure 4(a) Crisp set A and its complement; (b) Fuzzy AA’ ; and (c) crisp A  A’ =  

All other operations on classical sets also hold for fuzzy sets, except for the excluded 

middle axioms. These two axioms do not hold for fuzzy sets since they do not form part of the 

basic axiomatic structure of fuzzy sets. Since fuzzy sets can overlap, a set and its complement 

can also overlap. The excluded middle axioms, extended for fuzzy sets, are expressed as: 

 

4.4 FUZZY LOGIC CONTROL PRINCIPLES (FLCS) 

Control systems abound in our everyday life; perhaps we do not see them as such, 

because some of them are larger than what a single individual can deal with, but they are 
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ubiquitous. For example, economic systems are large, global systems that can be controlled; 

ecosystems are large, amorphous, and long-term systems that can be controlled. 

The general form of a closed-loop control system is illustrated in Figure 5.        

 

Figure 5: General Closed Loop Control System 

Control systems are sometimes divided into two classes. If the objective of the control 

system is to maintain a physical variable at some constant value in the presence of disturbances, 

the system is called a regulatory type of control, or a regulator. The second class of control 

systems is set point tracking controllers. In this scheme of control, a physical variable is 

required to follow or track some desired time function. An example of this type of system is an 

automatic aircraft landing system, in which the aircraft follows a “ramp” to the desired 

touchdown point. 

4.4.1 Assumptions involved in Fuzzy Control System 

A number of assumptions are implicit in a fuzzy control system design. Six basic 

assumptions are commonly made whenever a fuzzy rule-based control policy is selected. 

The plant is observable and controllable: state, input, and output variables are usually 

available for observation and measurement or computation. There exists a body of knowledge 

comprising a set of linguistic rules, engineering common sense, intuition, or a set of input–

output measurements data from which rules can be extracted. A solution exists. The control 

engineer is looking for a “good enough” solution, not necessarily the optimum one. The 

controller will be designed within an acceptable range of precision. The problems of stability 

and optimality are not addressed explicitly; such issues are still open problems in fuzzy 

controller design. 



9 

Control system is a set of hardware component which regulates or alters or modifies 

the behavior of the system. Fuzzy control system uses approximation so that the nonlinearity, 

data or knowledge incompleteness is reduced. The General Block Diagram is shown in  

Figure 6. 

To design a FLCS we must take into consideration the following points: 

 The plant is observable and controllable 

 There exists a set of knowledge about that process from which the rules can be 

framed 

 There exists a solution 

 The control engineer is looking for “Good enough solution” and not an optimum 

one 

 Controller can be designed within an acceptable range of precision 

4.4.2 Steps Involved in Designing a FLCS 

 Identify the variables 

 By assigning appropriate membership function convert these parameters in fuzzy 

sub sets. 

 Assign fuzzy relationship to input states and fuzzy output states 

 Use fuzzy approximate reasoning to infer the outcomes 

 Aggregate the outcomes recommended by each rule 

 Apply Defuzzification to form a crisp output 

 

Figure 6: General Fuzzy logic based Control System 

4.5 FUZZY RELATIONS 

Fuzzy relations is used to map elements of one universe, say X, to those of another 

universe, say Y, with the help of Cartesian product. The “strength” of the relation measured 
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with a membership function having “degrees” of strength of the relation on the unit interval 

[0,1]. Hence, a fuzzy relation   is a mapping from the Cartesian space X × Y to the interval 

[0,1], where the strength of the mapping is expressed by the membership function   

Cardinality of Fuzzy Relations 

Cardinality of fuzzy sets is infinity; the cardinality of a fuzzy relation between two or 

more universes is also infinity. 

4.5.1 Operations of Fuzzy Relations 

Let  and  be fuzzy relations on the Cartesian space X × Y. Then the following 

operations apply for the membership values for various set operations 

Let R and S be fuzzy relations on the Cartesian space X × Y. Then the following 

operations apply for the membership values for various set operations (these are similar to the 

same operations on crisp sets 

 

 

4.5.2 Properties of Fuzzy Relations 

Just as for crisp relations, the properties of commutativity, associativity, distributivity, 

involution, and idempotency all hold for fuzzy relations. Moreover, De Morgan’s principles 

hold for fuzzy relations just as they do for crisp (classical) relations, and the null relation, O, 

and the complete relation, E, are analogous to the null set and the whole set in set-theoretic 

form, respectively. Fuzzy relations are not constrained, as is the case for fuzzy sets in general, 

by the excluded middle axioms. Since a fuzzy relation R also a fuzzy set, there is overlap 

between a relation and its complement; hence, 

The excluded middle axioms for fuzzy relations do not result, in general, in the null 

relation, O, or the complete relation, E. 

...........(24) 
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..............(25) 

From the above equations, the excluded middle axioms for fuzzy relations do not 

result, in general, in the null relation, O, or the complete relation, E. 

4.6 FUZZY CARTESIAN PRODUCT AND COMPOSITION 

Let    be a fuzzy set  on universe X  and be a fuzzy set on universe Y, then the 

Cartesian product between fuzzy sets  and  will result in fuzzy relation , which is given 

as 

     ...........(26) 

Where the fuzzy relation has membership function 

........(27) 

The Cartesian product defined by is implemented in the same way as the cross 

product of two vectors. Cartesian product is not the same as the arithmetic product. Cartesian 

product employs the idea of pairing of elements among sets. For example, for a fuzzy set 

A  has four elements, for a fuzzy set B that has five elements, then the resulting fuzzy 

relation  R will be represented by a matrix of size 4 × 5, that is,  R will have four rows and 

five columns. 

Fuzzy composition can be defined as of crisp relations. Suppose  is a fuzzy relation 

on the Cartesian space X × Y,  is a fuzzy relation on Y × Z, and  is a fuzzy relation on X × 

Z, then fuzzy max–min composition is defined in the following manner: 

.........(28) 

.........(29) 

and fuzzy max–product composition is defined in terms of the membership function theoretic 

notation as 

                .........(30) 
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It should be noted out that neither crisp nor fuzzy compositions are commutative in 

general so 

 

Different types of composition are (1) MAX-MIN (2) MAX –PRODUCT (3) MAX-

MAX (4) MIN- MIN (5) MIN-MAX etc., Compositions provides more information which 

reduces the impreciseness present in the problem. 

4.7 FUZZIFICATION 

Process of converting a crisp value into fuzzy. Example if we have a variable 

TEMPERATURE = 35 .C then this is converted into MAXTEMP, MINTEMP etc in the range 

of Zero to one by assigning membership functions. 

4.7.1 Fuzzification 

 Inference 

 Intuition 

 Rank ordering 

 Using GA 

 Using ANN 

 Inductive reasoning 

 Meta rules 

 Fuzzy statistics 

These are some methods used to generate membership values and there by used to 

convert a crisp value into fuzzy. 

4.8 FUZZY RULES 

In a FLS, a rule base is constructed to control the output variable. A fuzzy rule based 

system consists of simple IF-THE with a condition and a conclusion. Sample fuzzy rule for an 

air conditioner system is given below. 

IF Temp = Too Cold THEN Command is HEAT 

Table 1 shows the matrix representation of the fuzzy rules for the above said FLS. Row 

contains the values that current room temperature can take, column is the values for target 
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temperature, and each cell is the resulting command. For instance, if temperature is cold and 

target is warm then command is heat. 

 

Table 1: Fuzzy matrix example 

A fuzzy rule is defined as a conditional statement in the form: 

IF x is A  THEN y is B 

where x and y are linguistic variables; A and B are linguistic values determined by fuzzy sets 

on the universe of discourse X and Y, respectively. 

In the field of artificial intelligence (machine intelligence), there are various ways to 

represent knowledge. Perhaps the most common way to represent human knowledge is to form 

it into natural language expressions of the type IF premise (antecedent), THEN conclusion 

(consequent). The form is commonly referred to as the IF–THEN rule-based form; this form is 

generally referred to as the deductive form. 

It typically expresses an inference such that if we know a fact (premise, hypothesis, 

antecedent), then we can infer, or derive, another fact called a conclusion (consequent).This 

form of knowledge representation, characterized as shallow knowledge, is quite appropriate in 

the context of linguistics because it expresses human empirical and heuristic knowledge in our 

own language of communication. 

It does not, however, capture the deeper forms of knowledge usually associated with 

intuition, structure, function, and behavior of the objects around us simply because these latter 

forms of knowledge are not readily reduced to linguistic phrases or representations; this deeper 

form, is referred to as inductive. 

The fuzzy rule-based system is most useful in modeling some complex systems that can 

be observed by humans because they make use of linguistic variables as their antecedents and 

consequents; as described here these linguistic variables can be naturally represented by fuzzy 

sets and logical connectives of these sets. 
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4.9 DEFUZZIFICATION 

Defuzzification is the process of producing a quantifiable value. Fuzzy values can’t be 

given to machines since they understand only two valued logic. Hence these linguistic values 

have to be converted into machine understandable two valued logic. Those techniques used to 

convert fuzzy into classical values are known as Defuzzification methods. It is the process of 

conversion of a fuzzy quantity into crisp quantity. Various Defuzzification methods are listed 

as: 

 Centroid method 

 Weighted average method 

 Mean-max membership method 

 Centre of sums method 

 Centre of largest area method 

 First (or last) of maxima method etc 

Any of the above method can be used based on the level of intelligent control required. 
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UNIT 5 FLCS, CLASSIFICATION & APPLICATIONS 

Fuzzy decision making -Types, Fuzzy Rule Based System, Knowledge Based System, Non-

linear Fuzzy Control system - Fuzzy Classification - Hard C Means - Fuzzy C Means. 

Applications of fuzzy - Water level controller, Fuzzy image Classification, Speed control 

of motor. 

5.1 KNOWLEDGE BASE 

Place in which different information related to the problem are stored here. It’s the 

collection of expert knowledge about the problem. Advantages of fuzzy knowledge base. 

• Comprehensibility 

• Parsimony 

• Modularity 

• Uncertainty 

• Parallelism 

• Robust 

5.2 RULE BASE SYSTEM 

Collection of rules representing different environment is called Rule base system. Rules 

are framed by assigning relationship to fuzzy linguistic variables. In a FLS, a rule base is 

constructed to control the output variable. A fuzzy rule-based system consists of simple IF-

THEN with a condition and a conclusion. Sample fuzzy rule for an air conditioner system is 

given below. 

IF Temp = Too Cold THEN Command is HEAT 

These IF-THEN rules are the base for fuzzy reasoning. If-THEN rules are of different 

types:  They are as follows. 

(1) Single rule with single antecedent  

(2) Single rule with multiple antecedent 

(3) Multiple with multiple antecedent 

Table 1 shows the matrix representation of the fuzzy rules for the above said FLS. Rows 

contains the values that current room temperature can take, columns are the values for target 

temperature, and each cell is the resulting command. For instance, if temperature is cold and 

target is warm then command is heat. 
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Table 1: Fuzzy rule matrix example for Temperature control problem 

5.3 DECISION MAKING SYSTEM 

This block responsible for fuzzy control outcomes. Making decisions under uncertainty 

is tough since, we have to handle bulk information’s. Different classifications in this category 

are, 

 Single person single objective decision making 

 Multi person single objective decision making 

 Multi person single objective decision making 

  Multi person Multi objective decision making 

  Decision making in FLCS is based on: 

 Synthetic Evaluation - Individual evaluation based on the expert’s knowledge. 

 Rank ordering - Based on ranks of the rules. Rules are prioritized. 

 Preferences and consensus- when multi persons are involved in DM, rules are 

selected based on individual preferences and degree of consensus. 

 Fuzzy multi objective based on BAYESIAN Method – this method is based on 

Bayesian technique in which we calculate utility function for every option of 

selection. 

5.4 APPLICATIONS OF FUZZY LOGIC CONTROL SYSTEM 

Most control situations are more complex than we can deal with mathematically. In this 

situation, fuzzy control can be developed, provided a body of knowledge about the control 

process exists, and formed into a number of fuzzy rules. A simple FLCS is shown in figure 

1.For example, suppose an industrial process output is given in terms of the pressure. We can 

calculate the difference between the desired pressure and the output pressure, called the 

pressure error (e), and we can calculate the difference between the desired rate of change of the 

pressure, dp/dt, and the actual pressure rate, called the pressure error rate, (˙e). Also, assume 

that knowledge can be expressed in the form of IF–THEN rules such as: 
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IF pressure error (e) is “positive big (PB)” or “positive medium (PM)” and 

            IF pressure error rate (˙e) is “negative small (NS),” THEN heat input change is 

“negative     medium (NM).” 

                

Figure (1) :Fuzzy Controller Block Diagram 

The linguistic variables defining the pressure error, “PB” and “PM,” and the pressure 

error rate, “NS” and “NM,” are fuzzy, but the measurements of both the pressure and pressure 

rate as well as the control value for the heat (the control variable) ultimately applied to the 

system are precise (crisp). An input to the industrial process (physical system) comes from the 

controller. The physical system responds with an output, which is sampled and measured by 

some device. If the measured output is a crisp quantity, it can be fuzzified into a fuzzy set .This 

fuzzy output is then considered as the fuzzy input into a fuzzy controller, which consists of 

linguistic rules. 

The output of the fuzzy controller is then another series of fuzzy sets. Since most 

physical systems cannot interpret fuzzy commands (fuzzy sets), the fuzzy controller output 

must be converted into crisp quantities using defuzzification methods. These crisp (de-

fuzzified) control-output values then become the input values to the physical system and the 

entire closed-loop cycle is repeated device. If the measured output is a crisp quantity, it can be 

fuzzified into a fuzzy set. 

This fuzzy output is then considered as the fuzzy input into a fuzzy controller, which 

consists of linguistic rules. The output of the fuzzy controller is then another series of fuzzy 

sets. Since most physical systems cannot interpret fuzzy commands (fuzzy sets), the fuzzy 

controller output must be converted into crisp quantities using defuzzification methods These 

crisp (De- fuzzified) control-output values then become the input values to the physical system 

and the entire closed-loop cycle is repeated. 



5 

5.4.1 Fuzzy Logic Based Water Level Controller 

Step 1: Identify the i/p and o/p variables. Here in this case minimum and maximum level are 

inputs and valve position is output variables. 

Step 2: Assign an appropriate membership function and perform Fuzzification process. i/p1 is 

water level, i/p2 is error rate. Valve position is the output being controlled. 

The membership graphs for i/p and o/p variables are given in Figure (2) a, b and c. 

For water level three functions and for error rate again three membership functions are used. 

  

Fig(2a) I/p membership function for 

water level 

Fig(2b)I/p membership function for error 

rate 
 

For output variable Valve position, we consider open slow, open fast, close slow, close 

fast and no change as linguistic variables, which is shown in Figure c. 

 

Fig(2c) I/p membership function for output variable valve position 

* These responses are generated using MATLAB software. 

Step 3: Framing of rules are done as follows 

Rule 1: IF water level is min AND error rate is negative THEN valve position open fast 

Rule 2: IF water level is max AND error rate is positive THEN valve position close fast 

Similarly, rules are framed for remaining conditions and these rule outcomes are aggregated. 

Final outcome is the defuzzied value of this aggregated value. Based on this value only the 

value opens or closes. 
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5.4.2 Fuzzy Logic Based Image Classification 

Fuzzy logic addresses the vagueness and ambiguity which is present in an image. Fuzzy 

Logic is a powerful tool that denotes and analyses human knowledge in form of fuzzy rules. 

The following Figure 3 represents a general Fuzzy based Image analysis procedure. In this 

block diagram the input image is first converted into a fuzzy image. Here the image intensities 

are fuzzified and converted into fuzzy values by assigning membership values for the 

intensities present in the image. Figure represent a general procedure of Fuzzy based image 

analysis procedure. Then based on an expert knowledge rules are created as given below. 

 

Figure 3: Fuzzy Image Processing System Block Diagram 

 

Figure 4: Image Fuzzification and Defuzzification procedures 
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Figure 3 &4 are adopted from: http://imageprocessingplace.com /downloads_V3/root 

downloads /tutorials/ fuzzy_image_processing.pdf 

Figure 4 shows how the original image pixels are converted into fuzzy values. After 

obtaining a resultant image (fuzzified intensities) the other image processing procedure like 

Enhancement, Segmentation, Object recognition, Clustering or Classification process are 

implemented. The general image analysis procedures can be implemented to get the Region Of 

Interest (ROI). 

5.4.3 Fuzzy Logic Based Motor Speed Control 

As the basic rule for designing any fuzzy based application we have to identify the input 

and output variables. In this example let us consider Voltage and Error Rate as inputs and Speed 

as output variable. The various components present in a DC motor is shown in Figure 5. DC 

motors are used in various applications like Electric trains, Cranes, Trolly’s, Rolling mills, 

Robotic Manipulators etc. 

           

 

 

 

 

 

 

 

 

                                           Figure : 5 Components of DC Motor 

Consider the input variable Voltage. By applying Triangular Membership functions the 

crisp voltage values are converted into fuzzy as shown in Figure 6.Similarly Figure 7 shows 

the variable Error rate with three Triangular membership functions.For output variable Speed 

,three membership functions namely Less, Average speed and Large speed is considered as 

shown in Figure 8. All these function values are normalised between the range ‘o’ to ‘1’. Figure 
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9 shows the Rule based system generated for this application. Figure 9 shows the rule based 

system ( generated using MATLAB Software). Around 8 Rules have been formed as an 

example. Figure 10 shows the rule sfiring and deffuzified output. 

 

Figure 6 : Membership Graph for the input Voltage 

             

Figure : 7 Membership Graph for the input “Error Rate” 
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Figure : 8 Membership Graph for the Output “Speed” 

 

Figure : 9 Sample Rules for the Speed control application 
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Figure : 10 Rule Viewer 

The last graph on the right side is the defuzzified output.This is the value which is given 

to the final device. 

5.5 CLUSTERING 

Clustering is a process in which large sets of data is grouped into clusters / groups of 

smaller sets of similar data. Fuzzy c-means (FCM) is a method of clustering which allows one 

piece of data to be associated with two or more clusters. This method was developed by Dunn 

in 1973 and improved by Bezdek in 1981 and it is frequently used in pattern recognition 

applications. Fuzzy C means algorithm is an extended version of Hard C means technique. 

Fuzzy C means is more adaptable procedure where Hard c means is not a flexible process. 

FCM assigns membership values to each input data point with respect to the cluster centre or 

cluster head. The distance between the cluster head and the current input data point position 

which are present in each cluster is measured. For this purpose, Euclidean Distance measure is 

used. FCM is similar to that of K Means algorithm. 
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5.5.1 Fuzzy C-Means Algorithm 

(1) Initialize U=[Uij] matrix, U (0) 

(2) At k-step: calculate the Ck=[cj] with U(k) 

     

(3) Update   

                        

(4)  if    || U(k+1) - U(k)|| < threshold, then stop iterating; otherwise return to step 2 

5.6 HARD C-MEANS 

Hard C-Means clustering is also known as K-Means. _ The k-means algorithm 

partitions a collection of N vector into c groups. The aim of the algorithm is to find the cluster 

canter (centroids) for each group. The algorithm minimizes a dissimilarity function. 

5.6.1 Hard C-Means Algorithm: 

Step 1. Initialize the centroids ci,i=1,..c. This is typically achieved by randomly selecting c 

points from among all of the data points. 

Step 2 Determine the membership matrix U by Equation 

Step 3. Compute the dissimilarity function by using Equation below. Stop if its improvement 

over previous iteration is below a threshold. 

Step 4. Compute new centroids using ci=1\Gi(Xi) 

The performance of the algorithm depends on the initial positions of centroids. So the 

algorithm gives no guarantee for an optimum solution. _ Hard k-means algorithm executes a 

sharp classification, in which each object is either assigned to a class or not. 

5.6.2 Advantages 

1)  Achieves best result for overlapped data  

2)  Best when compared with K means Algorithm. 

2)  Unlike k-means algorithm, in FCM a data point can be present in more than one 

cluster. 
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5.6.3 Disadvantages 

1)  Number of clusters should be known before the starting of iteration 

2)  If β parameter is less than good results is achieved, but more number of iterations are 

required. 
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