

SCHOOL OF ELECRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SEC1402-PROGRAMMING IN HDL

UNIT I - INTRODUCTION TO VHDL

INTRODUCTION TO VHDL

Digital system design process – Levels of Abstraction – Language elements of

VHDL- Operators-Data Types – Signal assignments – Inertial delay mechanism –

Transport delay mechanism – Concurrent and Sequential assignments – Delta delay

VHDL

VHDL is an acronym for VHSIC Hardware Description Language (VHSIC is an

acronym for Very High Speed Integrated Circuits). It is a hardware description

language that can be used to model a digital system at many levels of abstraction

ranging from the algorithmic level to the gate level. The complexity of the digital

system being modeled could vary from that of a simple gate to a complete digital

electronic system, or anything in between. The digital system can also be described

hierarchically. Timing can also be explicitly modeled in the same description.

The VHDL language can be regarded as an integrated amalgamation of the

following languages:

sequential language

Concurrent language

net-list language

timing specifications

Waveform generation language.

Therefore, the language has constructs that enable you to express the concurrent or

sequential behavior of a digital system with or without timing. It also allows you to

model the system as an interconnection of components. Test waveforms can also be

generated using the same constructs. All the above constructs may be combined to

provide a comprehensive description of the system in a single model.

The language not only defines the syntax but also defines very clear simulation

semantics for each language construct. Therefore, models written in this language can

be verified using a VHDL simulator. It is a strongly typed language and is often

verbose to write. It inherits many of its features, especially the sequential language

part, from the Ada programming language. Because VHDL provides an extensive

range of modeling capabilities, it is often difficult to understand. Fortunately, it is

possible to quickly assimilate a core subset of the language that is both easy and

simple to understand without learning the more complex features. This subset is

usually sufficient to model most applications. The complete language, however, has

sufficient power to capture the descriptions of the most complex chips to a complete

electronic system.

Digital system design process :-

Digital Systems have conquered the whole world. Every appliances or

equipment’s we see today are digital. This is because of the very small element called

Transistor invented by John Bardeen, Walter Brattain & William Shockley in 1947 at

Bell Labs. This tiny and Powerful transistor changed the future of Electronics.

Therefore it is our responsibility to study the analysis and design of this digital system

as an electronic student. In this chapter we will study the Basic Digital IC Design

Flow and then we will study what are the tools available for digital design and

synthesis. Later we are going to study a special hardware description language

(VHDL) which is used to describe the digital systems.

 Digital Design Flow Process:-

Fig 1.1: Generic IC design flow

Based on the specification given, the design team forms a general idea about

the solution to the problem. System level decisions are made regarding the design and

a general consensus is reached regarding the major functional blocks that go into the

making of the chip. At the end of this stage, a general block diagram solution of the

design is agreed upon. CAD tools are generally not needed at this stage.

Behavioral Design:

Hardware Description Languages (HDLs) are used to model the design idea

(block diagram). Circuit details and electrical components are not specified. Instead,

the behavior of each block at the highest level of abstraction is modeled. Simulations

are then run to see if the blocks do indeed function as expected and the whole system

performs as a whole. Behavioral descriptions are important as they corroborate the

integrity of the design idea. Here we don’t have any architectural or hardware details.

Data Path Design:

The next Phase in the design process is the design of the system data path. In

this phase, the designer specifies the registers and logic units necessary for

implementation of the system. These components may be interconnected using either

bidirectional or unidirectional buses. Based on the intended behavior of the system,

the procedure of controlling the movement of data between registers and logic units

through buses are developed. Data components in the data part of circuit communicate

via system busses and the control procedure controls flow of data between these

components. This phase results in architectural design of the system with specification

of control flow.

Logic Design:

Logic Design is the next phase in the design process and involves the use of

primitive gates and flip-flops for the implementation of data registers, busses, logic

units, and their controlling hardware. The result of this design stage is a net list of

gates and flip-flops. Components used and their interconnections are specified in this

net list.

Physical Design:

This stage transforms the net list into transistor list or layout. This involves the

replacement of gates and flip-flops with their transistor equivalents or library cells.

Manufacturing:

The final step is manufacturing, which uses the transistor list or layout specification to

burn fuses of FPGA or to generate masks for Integrated circuit (IC).

Levels of Abstraction:-

Hardware Abstraction:

VHDL is used to describe a model for a digital hardware device. This model specifies

the external view of the device and one or more internal views. The internal view of

the device specifies the functionality or structure, while the external view specifies the

interface of the device through which it communicates with the other models in its

environment. Fig1.2 shows the hardware device and the corresponding software

model.

The device to device model mapping is strictly a one to many. That is, a

hardware device may have many device models. For example, a device modeled at a

high level of abstraction may not have a clock as one of its inputs, since the clock may

not have been used in the description. Also the data transfer at the interface may be

treated in terms of say, integer values, instead of logical values. In VHDL, each

device model is treated as a distinct representation of a unique device, called an entity

in this text. Fig1.2 shows the VHDL view of a hardware device that has multiple

device models, with each device model representing one entity. Even though entity I

through N represent N different entities from the VHDL point of view, in reality they

represent the same hardware device.

The entity is thus a hardware abstraction of the actual hardware device. Each

entity is described using one model that contains one external view and one or more

internal views. At the same time, a hardware device may be represented by one or

more entities.

Fig 1.2 A VHDL view of a devic

 Basic Terminology

VHDL is a hardware description language that can be used to model a digital system.

The digital system can be as simple as a logic gate or as complex as a complete

electronic system. A hardware abstraction of this digital system is called an entity in

this text. An entity X, when used in another entity Y, becomes a component for the

entity Y. Therefore, a component is also an entity, depending on the level at which

you are trying to model.

To describe an entity, VHDL provides five different types of primary

constructs, called design units.

They are

1.Entity declaration

2.Architecture body

3.Configuration declaration

4.Package declaration

5.Package body

An entity is modeled using an entity declaration and at least one architecture body.

The entity declaration describes the external view of the entity, for example, the input

and output signal names. The architecture body contains the internal description of the

entity, for example, as a set of interconnected components that represents the structure

of the entity, or as a set of concurrent or sequential statements that represents the

behavior of the entity. Each style of representation can be specified in a different

architecture body or mixed within a single architecture body Fig1.3 shows an entity

and its model.

Fig 1.3 An entity and its model.

A configuration declaration is used to create a configuration for an entity. It

specifies the binding of one architecture body from the many architecture bodies that

may be associated with the entity. It may also specify the bindings of components

used in the selected architecture body to other entities. An entity may have any

number of different configurations.

A package declaration encapsulates a set of related declarations such as type

declarations, subtype declarations, and subprogram declarations that can be shared

across two or more design units. A package body contains the definitions of

subprograms declared in a package declaration.

Fig1.4 shows three entities called El, E2, and E3. Entity El has three

architecture bodies, EI_AI, EI_A2, and EI_A3. Architecture body EI _AI is a purely

behavioral model without any hierarchy. Architecture body EI_A2 uses a component

called BX, while architecture body EI_ A3 uses a component called CX. Entity E2 has

two architecture bodies, E2_ AI and E2_A2, and architecture body E2_AI uses a

component called MI. Entity E3 has three architecture bodies, E3_ AI, E3_A2, and

E3_A3. Notice that each entity has a single entity declaration but more than one

architecture body.

The dashed lines represent the binding that may be specified in a configuration

for entity El. There are two types of binding shown: binding of an architecture body to

its entity and the binding of components used in the architecture body with other

entities. For example, architecture body, EI_A3, is bound to entity El, while

architecture body, E2_AI, is bound to entity E2. Component MI in architecture body,

E2_AI, is bound to entity E3. Component CX in the architecture body, EI _A3, is

bound to entity E2. However, one may choose a different configuration for entity El

with the following bindings:

• Architecture EI_A2 is bound to its entity El

• Component BX to entity E3

• Architecture E3_AI is bound to its entity E3

Fig 1.4 A configuration for entity El.

Once an entity has been modeled, it needs to be validated by a VHDL system.

A typical VHDL system consists of an analyzer and a simulator. The analyzer reads in

one or more design units contained in a single file and compiles them into a design

library after validating the syntax and performing some static semantic checks. The

design library is a place in the host environment (that is, the environment that supports

the VHDL system) where compiled design units are stored.

The simulator simulates an entity, represented by an entity-architecture pair or

by a configuration, by reading in its compiled description from the design library and

then performing the following steps:

1.Elaboration

2.Initialization

3.Simulation

A note on the language syntax. The language is case insensitive, that is, lower-

case and upper-case characters are treated alike. For example, CARRY, CarrY, or

CarrY, all refer to the same name. The language is also free -format, very much like in

Ada and Pascal programming languages. Comments are specified in the language by

preceding the text with two consecutive dashes (-). All text between the two dashes

and the end of that line is treated as a comment.

The terms introduced in this section are described in greater detail in the

following sections.

Entity Declaration

The entity' declaration specifies the name of the entity being modeled and lists

the set of interface ports. Ports are signals through which the entity communicates

with the other models in its external environment.

Fig 1.5 A half-adder circuit.

Here is an example of an entity declaration for the half-adder circuit shown in

Fig. 1.5.

entity HALF_ADDER is

port (A, B: in BIT; SUM, CARRY: out BIT);

end HALF_ADDER;

The entity, called HALF_ADDER, has two input ports, A and B (the mode in

specifies input port), and two output ports, SUM and CARRY (the mode out specifies

output port). BIT is a predefined type of the language; it is an enumeration type

containing the character literals '0' and '1'. The port types for this entity have been

specified to be of type BIT, which means that the ports can take the values, '0' or '1'.

The following is another example of an entity declaration for a 2-to-4 decoder

circuit shown in Fig. 1.6.

entity DECODER2x4 is

port(A, B, ENABLE: in SIT: Z: out

BIT_VECTOR(0 to 3)); end DECODER2x4;

Fig 1.6 :A 2-to-4 decoder circuit.

This entity, called DECODER2x4, has three input ports and four output ports.

BIT_VECTOR is a predefined unconstrained array type of BIT. An unconstrained

array type is a type in which the size of the array is not specified. The range "0 to 3"

for port Z specifies the array size.

From the last two examples of entity declarations, we see that the entity

declaration does not specify anything about the internals of the entity. It only specifies

the name of the entity and the interface ports.

Architecture Body

The internal details of an entity are specified by an architecture body using any of the

following modeling styles:

1. As a set of interconnected components (to represent structure),

2. As a set of concurrent assignment statements (to represent dataflow),

3.As a set of sequential assignment statements (to represent be-hav.ior),

4.Any combination of the above three.

Structural Style of Modeling

In the structural style of modeling, an entity is described as a set of interconnected

components. Such a model for the HALF_ADDER entity, shown in Fig. 1.5, is

described in an architecture body as shown below.

architecture HA_STRUCTURE of

HALF_ADDER is component

XOR2

port (X, Y: in BIT; Z:

out BIT); end component;

component AND2

port (L, M: in BIT; N:

out BIT); end component;

begin

X1: XOR2 port map (A, B,

SUM); A1: AND2 port map

(A, B, CARRY);

end HA_STRUCTURE;

The name of the architecture body is HA_STRUCTURE. The entity

declaration for HALF_ADDER (presented in the previous section) specifies the

interface ports for this architecture body. The architecture body is composed of two

parts: the declarative part (before the keyword begin) and the statement part (after the

keyword begin). Two component declarations are present in the declarative part of the

architecture body. These declarations specify the interface of components that are

used in the architecture body. The components XOR2 and AND2 may either be

predefined components in a library, or if they do not exist, they may later be bound to

other components in a library.

The declared components are instantiated in the statement part of the

architecture body using component instantiation statements. XI and A1 are the

component labels for these component instantiations. The first component

instantiation statement, labeled XI, shows that signals A and B (the input ports of the

HALF_ADDER), are connected to the X and Y input ports of a XOR2 component,

while output port Z of this component is connected to output port SUM of the

HALF_ADDER entity.

Similarly, in the second component instantiation statement, signals A and B

are connected to ports L and M of the AND2 component, while port N is connected to

the CARRY port of the HALF_ADDER. Note that in this case, the signals in the port

map of a component instantiation and the port signals in the component declaration

are associated by position (called positional association). The structural representation

for the HALF_ADDER does not say anything about its functionality. Separate entity

models would be described for the components XOR2 and AND2, each having its

own entity declaration and architecture body.

A structural representation for the DECODER2x4 entity, shown in Fig. 1.6, is

shown next.

architecture DEC_STR of

DECODER2x4 is component

INV

begin

port (A: in BIT; Z: out

BIT); end component;

component NAND3

port (A, B, C: in BIT; Z:

out BIT); end component;

signal ABAR, BBAR: BIT;

I0: INV port map

(A,ABAR); I1: INV

port map (B, BBAR);

N0: NAND3 port map (ABAR, BBAR,

ENABLE, Z(0)); N1: NAND3 port map

(ABAR, B, ENABLE, Z(1)); N2: NAND3

port map (A, BBAR, ENABLE, Z(2)); N3:

NAND3 port map (A, B, ENABLE, Z(3));

end DEC_STR;

In this example, the name of the architecture body is DEC_ STR, and it is associated

with the entity declaration with the name DECODER2x4; therefore, it inherits the list

of interface ports from that entity declaration. In addition to the two component

declarations (for INV and NAND3), the architecture body contains a signaldeclaration

that declares two signals, ABAR and BBAR, of type BIT. These signals, that

represent wires, are used to connect the various components that form the decoder.

The scope of these signals is restricted to the architecture body, and therefore, these

signals are not visible outside the architecture body. Contrast these signals with the

ports of an entity declaration that are available for use within any architecture body

associated with the entity declaration.

A component instantiation statement is a concurrent statement, as defined by the

language. Therefore, the order of these statements is not important. The structural

style of modeling describes only an interconnection of components (viewed as black

boxes) without implying any behavior of the components themselves, nor of the entity

that they collectively represent. In the architecture body DEC_STR, the signals A, B,

and ENABLE, used in the component instantiation statements are the input ports

declared in the DECODER2x4 entity declaration. For example, in the component

instantiation labeled N3, port A is connected to input A of component NAND3, port B

is connected to input port B of component NAND3, port ENABLE is connected to

input port C, and the output port Z of component NAND3 is connected to port Z(3) of

the DECODER2x4 entity. Again positional association is used to map signals in a port

map of a component instantiation with the ports of a component specified in its

declaration. The behavior of the components NAND3 and INV are not apparent, nor

is the behavior of the decoder entity that the structural model represents.

Configuration Declaration

A configuration declaration is used to select one of the possibly many architecture

bodies that an entity may have, and to bind components, used to represent structure in

that architecture body, to entities represented by an entity-architecture pair or by a

configuration, that reside in a design library. Consider the following configuration

declaration for the HALF_ADDER entity.

library CMOS_LIB, MY_LIB;

configuration HA_BINDING of

HALF_ADDER is for HA-

STRUCTURE

for X1:XOR2

use entity

CMOS_LIB.XOR_GATE(DATAFLOW);

end for;

for A1:AND2

use configuration MY_LIB.AND_CONFIG;

end for;

end for; end HA_BINDING;

The first statement is a library context clause that makes the library names

CMOS_LIB and MY_LIB visible within the configuration declaration. The name of

the configuration is HA _BINDING, and it specifies a configuration for the

HALF_ADDER entity. The next statement specifies that the architecture body

HA_STRUCTURE (described in Sec. 23.1) is selected for this configuration. Since

this architecture body contains two component instantiations, two component bindings

are required. The first statement (for XI: . . . end for) binds the component

instantiation, with label XI, to an entity represented by the entity-architecture pair,

XOR_GATE.

The architecture body consists of one signal declaration and six concurrent signal

assignment statements. The signal declaration declares signals ABAR and BBAR to

be used locally within the architecture body. In each of the signal assignment

statements, no after clause was used to specify delay. In all such cases, a default delay

of 0ns is assumed. This delay of 0ns is also known as delta delay, and it represents an

infinitesimally small delay. This small delay corresponds to a zero delay with respect

to simulation time and does not correspond to any real simulation time.

To understand the behavior of this architecture body, consider an event happening on

one of the input signals, say input port B at time T. This would cause the concurrent

signal assignment statements 1,3, and 6, to be triggered. Their right -hand-side

expressions would be evaluated and the corresponding values would be scheduled to

be assigned to the target signals at time (T+A). When simulation time advances to

(T+A), new values to signals Z(3), BBAR, and Z(1), are assigned. Since the value of

BBAR changes, this will in turn trigger signal assignment statements, 2 and 4.

Eventually, at time (T+2A), signals Z(0) and Z(2) will be assigned their new values.

The semantics of this concurrent behavior indicate that the simulation, as defined by

the language, is event-triggered and that simulation time advances to the next time

unit when an event is scheduled to occur. Simulation time could also advance a

multiple of delta time units. For example, events may have been scheduled to occur at

times 1,3,4,4+A, 5,6,6+A, 6+2A, 6+3A, 10,10+A, 15, 15+A time units.

Entity declaration and the DATAFLOW architecture body, that resides in the

CMOS_LIB design library. Similarly, component instantiation Al is bound to a

configuration of an entity defined by the configuration declaration, with name

AND_CONFIG, residing in the MY_LIB design library.

There are no behavioral or simulation semantics associated with a

configuration declaration. It merely specifies a binding that is used to build a

configuration for an entity. These bindings are performed during the elaboration phase

of simulation when the entire design to be simulated is being assembled. Having

defined a configuration for the entity, the configuration can then be simulated.

When an architecture body does not contain any component instantiations, for

example, when dataflow style is used, such an architecture body can also be selected

to create a configuration. For example, the DEC_DATAFLOW architecture body can

be selected for the DECODER2x4 entity using the following configuration

declaration.

configuration DEC_CONFIG of

DECODER2x4 is for

DEC_DATAFLOW

end for;

end DEC_CONFIG ;

DEC_CONFIG defines a configuration that selects the DEC_DATAFLOW

architecture body for the DECODER2x4 entity. The configuration DEC_CONFIG,

that represents one possible configuration for theDECODER2x4 entity, can now be

simulated.

Package Declaration

A package declaration is used to store a set of common declarations like components,

types, procedures, and functions. These declarations can then be imported into other

design units using a context clause. Here is an example of a package declaration.

package EXAMPLE_PACK is

type SUMMER is (MAY, JUN, JUL,

AUG, SEP); component

D_FLIP_FLOP

port (D, CK: in BIT; Q, QBAR:

out BIT); end component;

constant PIN2PIN_DELAY: TIME :=

125 ns; function INT2BIT_VEC

(INT_VALUE: INTEGER)

return

BIT_VECTOR;

end EXAMPLE_PACK;

The name of the package declared is EXAMPLE_PACK. It contains type,

component, constant, and function declarations. Notice that the behavior of the

function INT2BIT _VEC does not appear in the package declaration; only the

function interface appears. The definition or body of the function appears in a package

body (see next section).

Assume that this package has been compiled into a design library called

DESIGN_LIB. Consider the following context clauses associated with an entity

declaration.

library DESIGN_LIB;

useDESIGN_LIB.EXAMPLE_P

ACK.all; entity RX is . . .

The library context clause makes the name of the design library DESIGN_LIB visible

within this description, that is, the name DESIGN_LIB can be used within the

description. This is followed by a use context clause that imports all declarations in

package EXAMPLE_PACK into the entity declaration of RX.

It is also possible to selectively import declarations from a package declaration

into other design units. For example,

library DESIGN_LIB;

use

DES[GN_LIB.EXAMPLE_PACK.D_FLIP_

FLOP; use

DESIGN_LIB.EXAMPLE_PACK.PIN2PIN

_DELAY; architecture RX_STRUCTURE of

RX is . . .

The two use context clauses make the component declaration for D_FLIP_FLOP and

the constant declaration for PIN2PIN_DELAY, visible within the architecture body.

Another approach to selectively import items declared in a package is by using

selected names. For example,

library DESIGN_LIB;

package

ANOTHER_PACKAG

E is function

POCKET_MONEY

(MONTH:DESIGN_LIB.EXAMPLE_PAC

K.SUMMER) return INTEGER;

constant TOTAL_ALU: INTEGER; -- A deferred constant.

end ANOTHER_PACKAGE;

The type SUMMER declared in package EXAMPLE_PACK is used in this new

package by specifying a selected name. In this case, a use context clause was not

necessary. Package ANOTHER_PACKAGE also contains a constant declaration with

the value of the constant not specified; such a constant is referred to as a deferred

constant. The value of this constant is supplied in a corresponding package body.

Package Body

A package body is primarily used to store the definitions of functions and procedures

that were declared in the corresponding package declaration, and also the complete

constant declarations for any deferred constants that appear in the package

declaration. Therefore, a package body is always associated with a package

declaration; furthermore, a package declaration can have at most one package body

associated with it. Contrast this with an architecture body and an entity declaration

where multiple architecture bodies may be associated with a single entity declaration.

A package body may contain other declarations as well.

Here is the package body for the package EXAMPLE_PACK declared in the previous

section.

package body EXAMPLE_PACK is

function INT2BIT_VEC (INT_VALUE:

INTEGER) return

BIT_VECTOR is

begin

end INT2BIT_VEC;

end EXAMPLE_PACK;

The name of the package body must be the same as that of the package declaration

with which it is associated. It is important to note that a package body is not necessary

if the corresponding package declaration has no function and procedure declarations

and no deferred constant declarations. Here is the package body that is associated with

the package ANOTHER_PACKAGE that was declared in the previous section.

package body ANOTHER_PACKAGE is

constant TOTAL_ALU: INTEGER := 10;

function POCKET_MONEY

(MONTH:

DESIGN_UB.EXAMPLE_PACK.SUMMER)

return INTEGER is

Data Operators

begin

case MONTH is

when MAY => return 5;

when JUL I SEP => return 6;

when others => return 2;

end case; end POCKET_MONEY;

end ANOTHER_PAC

VHDL will support different types of operations. The following are

the types of operators available in VHDL

1. Assignment operator

2. Logical Operator

3. Relational Operator

4. Shift operator

5. Arithmetic operator

 Addition Operator

 Multiplication Operator

 Miscellaneous operator

Assignment Operator

This operator is used to assign values to signals, variables, and

constants. They are

1. <= Used to assign a value to signal

2. := Used to assign a variable, constant or generic, used for also

establishing initial values.

3. => Used to assign values to individual vector or with others.

Logical Operators

Used to perform to logical operations. The data must be of type Bit,

Std_logic or std_ulogic. The logical operators are:

1. NOT

2. AND

3. OR

4. NAND

5. NOR , XOR & XNOR

Relational Operators

Used for making comparisons. The data can be of any types listed

above. The relational (Comparison) operators listed below:

1. = Equal to

2. /= not equal to

3. < Greater than

4. > Lesser than

5. <= Greater than

6. >= Lesser than

Shift Operators

Used for shifting data.

1. Sll: Shift left logic

2. Sla: shift left arithmetic

3. Srl: Shift right logic

4. Sra: Shift right arithmetic

5. Rol:Rotateleft

6. Ror: Rotate right

Arithmetic Operators

 Used to perform arithmetic operations. The data can be of integer, signed,

Unsigned or a real.

The different types of arithmetic operations are:

1. Addition operator (+)
2. Subtract Operator (-)
3. Multiplication operator (*)

4. Division Operator (/)

5. Modulus (MOD)

6. Remainder (REM)

Miscellaneous Operator

Uses as special cases in VHDL

1. Absolute (ABS):

2. Exponentiation (**)

DATA TYPES
All of the objects that are discussed in previous section—the signal, the

Variable, and the constant—can be declared using a type specification to specify the

characteristics of the object. VHDL contains a wide range of types that can be used to

create simple or complex objects. To define a new type, you must create a type

declaration. A type declaration defines the name of the type and the range of the type.

Type declarations are allowed in package declaration sections, entity declaration

sections, architecture declaration sections, subprogram declaration sections, and

process declaration sections.

Fig 1.7: Data Types in VHDL

Scalar Types

Scalar types describe objects that can hold, at most, one value at a time. The

type itself can contain multiple values, but an object that is declared to be a scalar type

can hold, at most, one of the scalar values at any point in time. Referencing the name

of the object references the entire object. Scalar types encompass these four classes of

types.

1. Integer types

2. Real types

3. Enumerated types

4. Physical types

5. Floating Point

Enumerated Data Types

An enumerated type is a very powerful tool for abstract modeling. A designer

can use an enumerated type to represent exactly the values required for a specific

operation. All of the values of an enumerated type are user-defined. These values can

be identifiers or single-character literals. An identifier is like a name.

These are further classified as the following:

1. Boolean

2. Character

3. Bit

4. Std_logic

5. Severity Level

Boolean

This data type is used when we need to convey some true or false conditions. For

example

Architecture …………………..

Begin

Process

(….)

Variable temp

:boolean Begin

if a < b then

temp <= True;
Else
temp <= False;
end if;

end process;

Character

This daa type is used when we need to use all alpha numeric and special characters.

Bit

This data type is used when we need to represent binary values (‘0’ and ‘1’)

Severity Level

This data type is used in Complex projects where we need to show warnings, errors in
runtime,

Failures in runtime.

Std_ulogic;

This data types are declared in std_logic_1164.all package of IEEE Library

U →Uninitialized

X →Forcing unknown

Z →High Impedence

W →Weak unknown

‘-‘→don’t care

0 →Forcing 0

1 →Forcing 1

L → Weak 0

H →Weak 1

A typical enumerated type for a four-state simulation value system looks like this:

Type fourval is (‘x’, ‘0’, ‘1’, ‘z’);

Character literals are needed for values ‘1’ and ‘0’ to separate these values from the

integer values 1 and 0. It would be an error to use the values 1 and 0 in an enumerated

type, because these are integer values. The characters X and Z do not need quotes around

them because they do not represent any other type, but the quotes were used for

uniformity.

Integer Data type

Integers are exactly like mathematical integers. All of the normal predefined

mathematical functions like add, subtract, multiply, and divide apply to integer types. The

VHDL LRM does not specify a maximum range for integers, but does specify the

minimum range: from -2,147,483,647 to 12,147,483,647. The minimum range is

specified by the Standard package contained in the Standard Library. The Standard

package defines all of the predefined VHDL

types provided with the language. The Standard Library is used to hold any packages

or entities provided as standard with the language.

There are two types of declaration for Integer Data type

1. Type_integer declaration

Ex: type <word lengt> is range 0 to 31;

2. Object_integer declaration

Ex: constant <loop number>: <integer><=345;

Real Data Type

Real types are used to declare objects that emulate mathematical real numbers. They can

be used to represent numbers out of the range of integer values as well as fractional

values. The minimum range of real numbers is also specified by the Standard package in

the Standard library, and is from _1.0E_38 to _1.0E_38.

Following are a few examples of some real numbers:

Architecture test of test is

Signal a: real;

begin

a <= 1.0; --ok 1

a <= 1; --error 2

a <= -1.0e10; --ok 3

a <= 1.5e-20; --ok 4

a <= 5.3 ns; --error 5

End test;

Line 1 shows how to assign a real number to a signal of type REAL. All real

numbers have a decimal point to distinguish them from integer values. Line 2 is an

example of an assignment that does not work. Signal a is of type REAL, and a real value

must be assigned to signal a. The value 1 is of type INTEGER, so a type mismatch is

generated by this line. Line 3 shows a very large negative number. The numeric

characters to the left of the character E represent the mantissa of the real number, while

the numeric value to the right represents the exponent. Line 4 shows how to create a very

small number. In this example, them exponent is negative so the number is very small.

Line 5 shows how a type TIME cannot be assigned to a real signal. Even though the

numeric part of the value looks like a real number, because of the units after the value, the

value is considered to be of type TIME.

Physical Data types

Physical types are used to represent physical quantities such as distance, current,

time, and so on. A physical type provides for a base unit, and successive units are then

defined in terms of this unit. The smallest unit represent able is one base unit; the largest

is determined by the range specified in the physical type declaration. An example of a

physical type for the physical quantity current is shown here:

Type current is range 0 to 1000000000

Units

na; --nano amps

ua = 1000 na; --micro amps

ma = 1000 ua; --milli amps

a = 1000 ma; --amps

end units;

The type definition begins with a statement that declares the name of the type

(current) and the range of the type (0 to 1,000,000,000). The first unit declared in the

UNITS section is the base unit. In the preceding example, the base unit is na. After

the base unit is defined, other units can be defined in terms of the base unit or other

units already defined. In the preceding example, the unit ua is defined in terms of the

base unit as 1000 base units. The next unit declaration is ma. This unit is declared as

1000 ua. The units declaration section is terminated by the END UNITS clause. More

than one unit can be declared in terms of the base unit. In the preceding example, the

ma unit can be declared as 1000 ma or 1,000,000 na. The range constraint limits the

minimum and maximum values that the physical type can represent in base units. The

unit identifiers all must be unique within a single type. It is illegal to have two

identifiers with the same name.

Signal Assignment Statement

Signals are assigned values using a signal assignment statement The simplest form of

a signal assignment statement is

signal-object<= expression [after delay-value];

A signal assignment statement can appear within a process or outside of a

process. If it occurs outside of a process, it is considered to be a concurrent signal

assignment statement. This' is discussed in the next chapter. When a signal

assignment statement appears within a process, it is considered to be a sequential

signal assignment statement and is executed in sequence with respect to the other

sequential statements that appear within that process.

When a signal assignment statement is executed, the value of the expression is

computed and this value isscheduled to be assigned to the signal after the specified

delay. It is important to note that the expression is evaluated at the time the statement

is executed (which is the current simulation time) and not after the specified delay. If

no after clause is specified, the delay is assumed to be a default delta delay.

Some examples of signal assignment statements are

COUNTER <= COUNTER+ "0010"; - Assign after a delta delay.

PAR <= PAR xor DIN after 12 ns;

Z <= (AO and A1) or (BO and B1) or (CO and C1) after 6 ns;

Inertial Delay Model

Inertial delay models the delays often found in switching circuits. It represents the

time for which an input valuemust be stable before the value is allowed to propagate

to the output. In addition, the value appears at the output after the specified delay. If

the input is not stable for the specified time, no output change occurs. When used with

signal assignments, the input value is represented by the value of the expression on

the right-hand-side and the output is represented by the target signal.

Fig1.8 shows a simple example of a noninverting buffer with an inertial delay of 10

ns.

Fig 1.8: Inertial delay example.

Events on signal A that occur at 5 ns and 8 ns are not stable for the inertial delay

duration and hence do not propagate to the output. Event on A at 10ns remains stable

for more than the inertial delay, and therefore, the value is propagated to the target

signal Z after the inertial delay; Z gets the value 1' at 20 ns. Events on signal A at

25ns and 28 ns do not affect the output since they are not stable for the inertial delay

duration. Transition 1' to '0' at time 30 ns on signal A remains stable for at least the

inertial delay duration, and therefore, a '0' is propagated to signal Z with a delay of 10

ns; Z gets the new value at 40 ns. Other events on A do not affect the target signal Z.

Since inertial delay is most commonly found in digital circuits, it is the default delay

model. This delay model is often used to filter out unwanted spikes and transients on

signals.

Transport Delay Model
Transport delay models the delays in hardware that do not exhibit any inertial delay.

This delay represents purepropagation delay, that is, any changes on an input is

transported to the output, no matter how small, after the specified delay. To use a

transport delay model, the keyword transport must be used in a signal assignment

statement. Fig 1.9 shows an example of a non inverting buffer using a transport delay

of 10 ns.

Fig 1.9: Transport delay example.

Ideal delay modeling can be obtained by using this delay model. In this case, spikes

would be propagated through instead of being ignored as in the inertial delay case.

Routing delays can be modeled using transport delay. An example of a routing delay

model is

entity WIRE14 is

port(A: in BIT; Z: out BIT);

endWIRE14;

architedtureWIRE14_TRANSPORT of

WIRE14 is begin

process(

A) begin

Z <= transport A after

0.1 ms; end process;

endWIRE14_TRANSPORT;

Concurrent and Sequential assignments
1. As a set of concurrent assignment statements (to represent dataflow),

2. As a set of sequential assignment statements (to represent be-hav.ior),

Dataflow Style of Modeling(Concurrent assignment)

In this modeling style, the flow of data through the entity is expressed primarily using

concurrent signal assignment statements. The structure of the entity is not explicitly

specified in this modeling style, but it can be implicitly deduced. Consider the

following alternate architecture body for the HALF..ADDER entity that uses this

style.

architectureHA_CONCURRENTofHALF_

ADDER is begin

SUM <= A xor B after 8

ns; CARRY <= A and B

after 4 ns;

endHA_CONCURRENT;

The dataflow model for the HALF_ADDER is described using two concurrent

signal assignment statements (sequential signal assignment statements are described

in the next section). In a signal assignment statement, the symbol <= implies an

assignment of a value to a signal. The value of the expression on the right-hand-side

of the statement is computed and is assigned to the signal on the left-hand-side, called

the target signal. A concurrent signal assignment statement is executed only when any

signal used in the expression on the right-hand-side has an event on it, that is, the

value for the signal changes.

Delay information is included in the signal assignment statements using after

clauses. If either signal A or B, which are input port signals of HALF_ADDER entity,

has an event, say at time T, the right-hand-side expressions of both signal assignment

statements are evaluated. Signal SUM is scheduled to get the new value after 8 ns

while signal CARRY is scheduled to get the new value after 4 ns. When simulation

time advances to (T+4) ns, CARRY will get its new value and when simulation time

advances to (T+8) ns, SUM will get its new value. Thus, both signal assignment

statements execute concurrently.

Concurrent signal assignment statements are concurrent statements, and

therefore, the ordering of these statements in an architecture body is not important.

Note again that this architecture body, with name HA_CONCURRENT, is also

associated with the same HALF_ADDER entity declaration.

Here is a dataflow model for the DECODER2x4 entity.

architscturedec_dataflgw of DECODER2x4

is signal ABAR, BBAR: BIT;

begin

Z(3) <=not (A and B and ENABLE); -- Statement 1

Z(0) <=not (ABAR and BBAR and ENABLE); --- Statement 2

BBAR <= not B; -- Statement 3

Z(2) <= not (A and BBAR and ENABLE); -- Statement 4

ABAR <= not A; -- Statement 5

Z(1) <= not (ABAR and B and ENABLE); -- Statement 6

endDEC_DATAFLOW;

The architecture body consists of one signal declaration and six concurrent

signal assignment statements. The signal declaration declares signals ABAR and

BBAR to be used locally within the architecture body. In each of the signal

assignment statements, no after clause was used to specify delay. In all such cases, a

default delay of 0ns is assumed. This delay of 0ns is also known as delta delay, and it

represents an infinitesimally small delay. This small delay corresponds to a zero delay

with respect to simulation time and does not correspond to any real simulation time.

To understand the behavior of this architecture body, consider an event

happening on one of the input signals, say input port B at time T. This would cause

the concurrent signal assignment statements 1,3, and 6, to be triggered. Their right -

hand-side expressions would be evaluated and the corresponding values would be

scheduled to be assigned to the target signals at time (T+A). When simulation time

advances to (T+A), new values to signals Z(3), BBAR, and Z(1), are assigned. Since

the value of BBAR changes, this will in turn trigger signal assignment statements, 2

and 4. Eventually, at time (T+2A), signals Z(0) and Z(2) will be assigned their new

values.

The semantics of this concurrent behavior indicate that the simulation, as

defined by the language, is event-triggered and that simulation time advances to the

next time unit when an event is scheduled to occur. Simulation time could also

advance a multiple of delta time units. For example, events may have been scheduled

to occur at times 1,3,4,4+A, 5,6,6+A, 6+2A, 6+3A, 10,10+A, 15, 15+A time units.

The after clause may be used to generate a clock signal as shown in the

following concurrent signal assignment statement

CLK <= not CLK after 10 ns;

This statement creates a periodic waveform on the signal CLK with a time

period of 20 ns as shown in Fig. 1.10.

Fig 1.10: A clock waveform with constant on-off period.

Behavioral Style of modeling (Sequential assignment)

In contrast to the styles of modeling described earlier, the behavioral style of

modeling specifies the behavior of an entity as a set of statements that are executed

sequentially in the specified order. This set of sequential statements, that are specified

inside a process statement, do not explicitly specify the structure of the entity but

merely specifies its functionality. A process statement is a concurrent statement that

can appear within an architecture body. For example, consider the following

behavioral model for the DECODER2x4 entity.

architecture DEC_SEQUENTIAL of DECODER2x4 is
begin
process (A, B, ENABLE)

variable ABAR, BBAR: BIT;
begin
ABAR := not A; BBAR := not B; if (ENABLE = '1')
Then Z(3) <= not (A and B): Z(0) <= not (ABAR and BBAR);
Z(2) <= not (A and BBAR); Z(1) <= not (ABAR and B);

Else

Z<="1111"; end if; end process; end;

A process statement, too, has a declarative part (between the keywords process

and begin), and a statement part (between the keywords begin and end process). The

statements appearing within the statement part are sequential statements and are

executed sequentially. The list of signals specified within the parenthesis after the

keyword process constitutes a sensitivity list and the process statement is invoked

whenever there is an event on any signal in this list. In the previous example, when an

event occurs on signals A, B, the statements appearing within the process statement

are executed sequentially.

Signal assignment statements appearing within a process are called sequential

signal assignmentstatements. Sequential signal assignment statements, including

variable assignment statements, are executed sequentially independent of whether an

event occurs on any signals in its right-hand-side expression or not; contrast this with

the execution of concurrent signal assignment statements in the dataflow modeling

style. In the previous architecture body, if an event occurs on any signal. A, B,

statement I which is a variable assignment statement, is executed, then statement 2 is

executed, and so on. Execution of the third statement, an if statement, causes control

to jump to the appropriate branch based on the value of the signal, ENABLE. If the

value of ENABLE is 1', the next four signal assignment statements, 4 through 7, are

executed independent of whether A, B, ABAR, or BBAR changed values, and the

target signals are scheduled to get their respective values after delta delay. If

ENABLE has a value '0', a value of 'V is assigned to each of the elements of the

output array, Z. When execution reaches the end of the process, the process suspends

itself, and waits for another event to occur on a signal in its sensitivity list.

It is possible to use case or loop statements within a process. The semantics and

structure of these statements are very similar to those in other high-level programming

languages like C or Pascal. An explicit wait statement can also be used to suspend a

process. It can be used to wait for a certain amount of time or to wait until a certain

condition becomes true, or to wait until an event occurs on one or more signals. Here

is an example of a process statement that generates a clock with a different on-off

period. Fig1.11 shows the generated waveform.

proces

begin

CLK <= '0'

; wait for 20

ns; CLK <=

'1' ; wait for

12 ns;

end process;

Fig 1.11: A clock waveform with varying on-off period.

This process does not have a sensitivity list since explicit wait statements are

present inside the process. It is important to remember that a process never terminates.

It is always either being executed or in a suspended state. All processes are executed

once during the initialization phase of simulation until they get suspended. Therefore,

a process with no sensitivity list and with no explicit wait statements will never

suspend itself.

A signal can represent not only a wire but also a place holder for a value, that

is, it can be used to model a flip-flop. Here is such an example. Port signal Q models a

level-sensitive flip-flop.

entityLS_DFF is

port(Q: out BIT; D, CLK:

in BIT): end LS_DFF;

architectureLS_DFF_BEH of

LS_DFF is begin

process(D,

CLK) begin

if(CLK = '1')

then Q

<= D;

end

if; end

process;

endLS_DFF_BEH;

Delta Delay

A delta delay is a very small delay (infinitesimally small). It does not correspond to

any real delay and actual simulation time does not advance. This delay models

hardware where a minimal amount of time is needed for a change to occur, for

example, in performing zero delay simulation. Delta delay allows for ordering of

events that occur at the same simulation time during a simulation. Each unit of

simulation time can be considered to be composed of an infinite number of delta

delays. Therefore, an event always occurs at a real simulation time plus an integral

multiple of delta delays. For example, events can occur at 15 ns, 15 ns+IA, 15 ns+2A,

15 ns+3A, 22 ns, 22 ns+A, 27 ns, 27 ns+A, and so on.

Consider the AOI_SEQUENTIAL architecture body. Let us assume that an

event occurs on input signal D (i.e., there is a change of value on signal D) at

simulation time T. Statement I is executed first and TEMPI is assigned a value

immediately since it is a variable. Statement 2 is executed next and TEMP2 is

assigned a value immediately. Statement 3 is executed next which uses the values of

TEMPI and TEMP2 computed in statements I and 2, respectively, to determine the

new value for TEMPI. And finally, statement 4 is executed that causes signal Z to get

the value of its right -hand-side expression after a delta delay, that is, signal Z gets its

value only at time T+A; this is shown in Fig. 1.12

Fig 1.12: Delta delay.

Consider the process PZ described in the previous section. If an event occurs

on signal A at time T, execution of statement I causes VI to get a value, signal Z is

then scheduled to get a value at time T+A, and finally statement 3 is executed in

which the old value of signal Z is used, that is, its value at time T, not the value that

was scheduled to be assigned in statement 2. The reason for this is because simulation

time is still at time T and has not advanced to time T+A. Later when simulation time

advances to T+A, signal Z will get its new value. This example shows the important

distinction between a variable assignment and a signal assignment statement. Variable

assignments cause variables to get their values instantaneously while signal

assignments cause signals to get their values at a later time (at least a delta delay

later).

So far we have seen two examples of sequential statements, the variable

assignment statement and the signal assignment statement. Other kinds of sequential

statements are described next.

TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog Design",3rd edition,

Tata McGraw Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited. 3rd edition

2004

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and Synthesis”, Star

Galaxy Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL, 2nd Edition,

PHI, 2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.

QUESTION BANK

PART-A

1. Distinguish VHDL and Verilog HDL.

2. Data objects are significant in VHDL Justify.

3. List the language elements of VHDL

4. Formulate the syntax of process statement in VHDL.

5. Classify the programming models in VHDL.

6. Wait statement is important in VHDL. Support this statement.

7. Justify how signal declaration is done in VHDL

8. Distinguish concurrent signal assignment and sequential signal assignment.

9. Justify the importance and objects in VHDL

10. List the data types in VHDL

PART-B

1. In VHDL, data types and operators are the most significant concept, Explain it.

2. Illustrate the different delay types in VHDL programming.

3. Illustrate the different language elements in VHDL.

4. Discuss concurrent and sequential assignment statements.

5. Identify and illustrate digital system design process and hardware abstraction.

SCHOOL OF ELECRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SEC1402-PROGRAMMING IN HDL

UNIT II - STYLES OF MODELING

STYLES OF MODELING

Process statement – Wait statement – If statement - Loop statement - Assertion

statement – Data flow modeling– Concurrent Signal Assignment statement -

Structural modeling – Examples – Component declaration – Component Instantiation

– Generate statement – Guarded signals.

Behavioral Modeling

This chapter presents the behavioral style of modeling. In this modeling style, the
behavior of the entity is expressed using sequentially executed, procedural type code,

A process statement is the primary mechanism used to model the procedural type

behavior of an entity. This chapter describes the process statement and the various
kinds of sequential statements that can be used within a process statement to model

such behavior.

Irrespective of the modeling style used, every entity is represented using an

entity declaration and at least one architecture body. The first two sections describe

these in detail.

An architecture body describes the internal view of an entity. It describes the

functionality or the structure of the entity. The syntax of an architecture body is

An architecture body describes the internal view of an entity. It describes the

functionality or the structure of the entity. The syntax of an architecture body is

architecture architecture-name of

entity-name is [architecture-

item-declarations]

begin

statements;

end architecture-name ;

 Statements are —>

process-statement

block-statement

concurrent-procedure call concurrent

assertionstatement

concurrent-signal-assignmentstatement

component-instantiation-statement generate-statement

Process Statement
A process statement contains sequential statements that describe the functionality of a

portion of an entity in sequential terms. The syntax of a process statement is

[process-label:] process [(

sensitivity-list)] [process-

item-declarations]

begin

sequential-statements;

these are ->

 variable- assignment-

statement signal-

assignment statement

wait-statement if-

statement

case-

statement

loop-

statement

null-

statement

exit-

statement

next-statement

assertion-statement

procedure-call-

statement return-

statement.

end process [process-label];

A set of signals that the process is sensitive to is defined by the sensitivity list. In

other words, each time an event occurs on any of the signals in the sensitivity list, the

sequential statements within the process are executed in a sequential order, that is, in

the order in which they appear (similar to statements in a high-level programming

language like C or Pascal). The process then suspends after executing the last

sequential statement and waits for another event to occur on a signal in the sensitivity

list. Items declared in the item declarations part are available for use only within the

process.

The architecture body, AOI _SEQUENTIAL, presented earlier, contains one process

statement. This process statement has four signals in its sensitivity list and has one

variable declaration. If an event occurs on any of the signals, A, B, C, or D, the

process is executed. This is accomplished by executing statement I first, then

statement 2, followed by statement 3, and then statement 4. After this, the process

suspends (simulation does not stop, however) and waits for another event to occur on

a signal in the sensitivity list.

Variable Assignment Statement

Variables can be declared and used inside a process statement. A variable is assigned

a value using the variable assignment statement that typically has the form

variable-object := expression;

The expression is evaluated when the statement is executed and the computed value is

assigned to the variable object instantaneously, that is, at the current simulation time.

Variables are created at the time of elaboration and retain their values throughout the

entire simulation run (like static variables in C high- level programming language).

This is because a process is never exited; it is either in an active state, that is, being

executed, or in a suspended state, that is, waiting for a certain event to occur. A

process is first entered at the start of simulation (actually, during the initialization

phase of simulation) at which time it is executed until it suspends because of a wait

statement (wait statements are described later in this chapter) or a sensitivity list.

Consider the following process statement.

process (A)

variable EVENTS_ON_A: INTEGER := 0;

begin

EVENTS_ON_A :=

EVENTS_ON_A+1; end process;

At start of simulation, the process is executed once. The variable EVENTS_ON_A

gets initialized to 0 and then incremented by 1. After that, any time an event occurs on

signal A, the process is activated and the single variable assignment statement is

executed. This causes the variable EVENTS_ON_A to be incremented. At the end of

simulation, variable EVENTS_ON_A contains the total number of events that

occurred on signal A plus one.

Here is another example of a process statement.

signal A, Z: INTEGER;

. . .

PZ: process (A) --PZ is a label for the

process.

variable V1, V2: INTEGER;

begin

V1 := A - V2; --statement 1

Z <= - V1; --statement 2

V2 := Z+V1 * 2; -- statement 3

end process PZ;

If an event occurred on signal A at time T1 and variable V2 was assigned a value, say

10, in statement 3, then when the next time an event occurs on signal A, say at time

T2, the value of V2 used in statement 1 would still be 10.

Signal Assignment Statement

Signals are assigned values using a signal assignment statement The simplest form of

a signal assignment statement is

signal-object <= expression [after delay-value];

A signal assignment statement can appear within a process or outside of a

process. If it occurs outside of a process, it is considered to be a concurrent signal

assignment statement. This' is discussed in the next chapter. When a signal

assignment statement appears within a process, it is considered to be a sequential

signal assignment statement and is executed in sequence with respect to the other

sequential statements that appear within that process.

When a signal assignment statement is executed, the value of the expression is

computed and this value is scheduled to be assigned to the signal after the specified

delay. It is important to note that the expression is evaluated at the time the statement

is executed (which is the current simulation time) and not after the specified delay. If

no after clause is specified, the delay is assumed to be a default delta delay.

Some examples of signal assignment statements are

COUNTER <= COUNTER+ "0010"; - Assign after a delta delay.

PAR <= PAR xor DIN after 12 ns;

Z <= (AO and A1) or (BO and B1) or (CO and C1) after 6 ns;

 Wait Statement

As we saw earlier, a process may be suspended by means of a sensitivity list. That is,

when a process has a sensitivity list, it always suspends after executing the last

sequential statement in the process. The wait statement provides an alternate way to

suspend the execution of a process. There are three basic forms of the wait statement.

wait on sensitivity-list;

wait until boolean-

expression; wait for

time-expression;

They may also be combined in a single wait statement. For example

wait on sensitivity-list until boolean-expression for time-expression-,

Some examples of wait statements are

wait on A, B, C; -- statement 1

wait until (A = B); -- statement 2

wait for 10ns; -- statement 3

wait on CLOCK for 20ns; -- statement 4

wait until (SUM > 100) for 50 ms; -- statement 5

In statement 1, the execution of the wait statement causes the process to suspend and

then it waits for an event to occur on signals A, B, or C. Once that happens, the

process resumes execution from the next statement onwards. In statement 2, the

process is suspended until the specified condition becomes true. When an event

occurs on signal A or B, the condition is evaluated and if it is true, the process

resumes execution from the next statement onwards, otherwise, it suspends again.

When the wait statement in statement 3 is executed, say at time T, the process

suspends for 10 ns and when simulation time advances to T+10 ns, the process

resumes execution from the statement following the wait statement.

The execution of statement 4 causes the process to suspend and then it waits for an

event to occur on the signal CLOCK for 20 ns. If no event occurs within 20 ns, the

process resumes execution with the statement following the wait. In the last statement,

the process suspends for a maximum of 50 ms until the value of signal SUM is greater

than 100. The boolean condition is evaluated every time there is an event on signal

SUM. If the boolean condition is not satisfied for 50 ms, the process resumes from the

statement following the wait statement.

It is possible for a process not to have an explicit sensitivity list. In such a case, the

process may have one or more wait statements. It must have at least one wait

statement, otherwise, the process will never get suspended and would remain in an

infinite loop during the initialization phase of simulation. It is an error if both the

sensitivity list and a wait statement are present within a process. The presence of a

sensitivity list in a process implies the presence of an implicit "wait on sensitivity-

list" statement as the last statement in the process. An equivalent process statement for

the process statement in the AOLSEQUENTIAL architecture body is

process -- No sensitivity list.

variable TEMP1 ,TEMP2: BIT;

begin

TEMP1 :=A and B:

TEMP2 := C and D;

TEMP1 := TEMP1 or TEMP2;

Z<= not TEMP1;

wait on A, B, C, D; -- Replaces the sensitivity list.

end process;

Therefore, a process with a sensitivity list always suspends at the end of the process

and when reactivated due to an event, resumes execution from the first statement in

the process.

If Statement

An if statement selects a sequence of statements for execution based on the value of a

condition. The condition can be any expression that evaluates to a boolean value. The

general form of an if statement is

if boolean-expressionthen

sequential-statements

[elsifboolean-expressionthen -- elsif clause; if stmt can have 0

or

sequential-statements] -- more elsif clauses.

[else -- else clause.

sequential-statements]

end if;

The if statement is executed by checking each condition sequentially until the first

true condition is found; then, the set of sequential statements associated with this

condition is executed. The if statement can have zero or more elsif clauses and an

optional else clause. An if statement is also a sequential statement, and therefore, the

previous syntax allows for arbitrary nesting of if statements. Here are some examples.

if SUM<=100 then

-- This is a less-than-or-equal-to
operator.

SUM := SUM+10;
end if;

if NICKEL_IN then

DEPOSITED
<=TOTAL_10;

--This"<=" is a signal
assignment

elsif DIME_IN then -- operator.

DEPOSITED <=

TOTAL_15; elsif

QUARTERJN then

DEPOSITED <= TOTAL_30;

else

end if;

DEPOSITED <= TOTAL_ERROR;

if CTRLI='1' then

if CTRL2 = '0' then

MUX_OUT<= "0010";

else

else

end if;

MUX_OUT<= "0001";

if CTRL2 ='0' then

MUX_OUT <= "1000";

else

end if;

MUX_OUT <= "0100";

end if;

A complete example of a 2-input nor gate entity using an if statement is shown next.

entity NOR2 is

port (A, B: in BIT; Z:

out BIT); end NOR2;

architecture NOR2 of NOR2 is -- Architecture body

can have-- same name

as entity.

begin

PI: process (A, B)

constant RISE_TIME: TIME

:= 10 ns; constant

FALL_TIME: TIME := 5 ns:

variable TEMP: BIT;

begin

TEMP := A nor

B; if (TEMP =

'1') then

Z <= TEMP after RISE_TIME;

else

end

if; end

process PI;

end NOR2;

Case Statement

The format of a case statement is

case expression is

Z <= TEMP after FALLJIME;

when choices=>sequential-statements -- branch #1

when choices=>sequential-statements -- branch #2

-- Can have any number of branches.

[when others =>sequential-statements] -- last branch

end case;

The case statement selects one of the branches for execution based on the value of the

expression. The expression value must be of a discrete type or of a one-dimensional

array type. Choices may be expressed as single values, as a range of values, by using I

(vertical bar: represents an "or"), or by using the others clause. All possible values of

the expression must be covered in the case statement. "The others clause can be used

as a choice to cover the "catch-all" values and, if present, must be the last branch in

the case statement. An example of a case statement is

type WEEK_DAY is (MON, TUE, WED, THU,

FRI, SAT, SUN); type DOLLARS is range 0 to 10;

variable DAY: WEEK_DAY;

variable POCKET_MONEY: DOLLARS;

case DAY is

when TUE => POCKET_MONEY := 6; -- branch 1

when MON I WED =>POCKET_MONEY := 2; -- branch 2

when FRI to SUN=>POCKET_MONEY := 7; -- branch 3

when others =>POCKET_MONEY := 0; -- branch 4

end case;

Branch 2 is chosen if DAY has the value of either MON or WED. Branch 3 covers the

values FRI, SAT, and SUN, while branch 4 covers the remaining value, THU. The

case statement is also a sequential statement and it is, therefore, possible to have

nested case statements. A model for a 4*1 multiplexer using a case statement is shown

next.

entity MUX is

port (A, B, C, D: in BIT; CTRL: in BIT_VECTOR(0 to 1);

Z: out BIT);

end MUX;

architecture MUX_BEHAVIOR of

MUX is constant

MUX_DELAY: TIME := 10 ns;

begin

PMUX: process (A, B, C, D,

CTRL) variable

TEMP: BIT;

begin

case CTRL is

when "00" => TEMP

:= A: when "01" =>

TEMP := B; when

"10" => TEMP := C;

when "11" => TEMP

:= D;

end case;

Z <= TEMP after

MUX_DELAY; end process

PMUX;

end MUX_BEHAVIOR;

Null Statement

The statement

null;

is a sequential statement that does not cause any action to take place and execution

continues with the next statement. One example of this statement's use is in an if

statement or in a case statement where for certain conditions, it may be useful or

necessary to explicitly specify that no action needs to be performed.

Loop Statement

A loopstatement is used to iterate through a set of sequential statements.Thesyntax of

a loop statement is

[loop-label :] iteration-

schemeloopsequential

-statements

end loop [loop-label] ;

There are three types of iteration schemes. The first is the for iteration scheme that has

the form

for identifier in range

An example of this iteration scheme is

FACTORIAL := 1;

for NUMBER in 2 to N loop

FACTORIAL := FACTORIAL *

NUMBER; end loop;

The body of the for loop is executed (N-1) times, with the loop identifier, NUMBER,

being incremented by I at the end of each iteration. The object NUMBER is implicitly

declared within the for loop to belong to the integer type whose values are in the range

2 to N. No explicit declaration for the loop identifier is, therefore, necessary. The loop

identifier, also, cannot be assigned any value inside the for loop. If another variable

with the same name exists outside the for loop, these two variables are treated

separately and the variable used inside the for loop refers to the loop identifier.

The range in a for loop can also be a range of an enumeration type such as

type HEXA is ('0', '1', '2', '3', '4', ' 5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E',

'F'):

. . .

for NUM in HEXA'('9') downto HEXA'('0') loop

-- NUM will take values in type HEXA from '9' through '0'.

. . .

end loop;

for CHAR in HEXA loop

-- CHAR will take all values in type HEXA from '0' through 'F'.

. . .

end loop;

Notice that it is necessary to qualify the values being used for NUM [e.g., HEXA'('9')]

since the literals '0' through '9' are overloaded, once being defined in type HEXA and

the second time being defined in the predefined type CHARACTER. Qualified

expressions are described in Chap. 10.

The second form of the iteration scheme is the while scheme that has the form

while boolean-expression

An example of the while iteration scheme is

J:=0;SUM:=10;

WH-LOOP: while J < 20 loop - This loop has a label,

WH_LOOP. SUM := SUM * 2;

J:=J+

3; end loop;

The statements within the body of the loop are executed sequentially and repeatedly

as long as the loop condition, J < 20, is true. At this point, execution continues with

the statement following the loop statement.

The third and final form of the iteration scheme is one where no iteration

scheme is specified. In this form of loop statement, all statements in the loop body are

repeatedly executed until some other action causes it to exit the loop. These actions

can be caused by an exit statement, a next statement, or a return statement. Here is an

example.

SUM:=1;J:=0;

L2: loop -- This loop also has a label.

J:=J+21;

SUM := SUM* 10;

exit when SUM > 100;

end loop L2; -- This loop label, if present, must be the same

-- as the initial loop label.

In this example, the exit statement causes the execution to jump out of loop L2 when

SUM becomes greater than 100. If the exit statement were not present, the loop would

execute indefinitely.

Exit Statement

The exit statement is a sequential statement that can be used only inside a loop. It

causes execution to jump out of the innermost loop or the loop whose label is

specified. The syntax for an exit statement is

exit [loop-label][when condition]:

If no loop label is specified, the innermost loop is exited. If the when clause is used,

the specified loop is exited only if the given condition is true, otherwise, execution

continues with the next statement. An alternate form for loop L2 described in the

previous section is

SUM := 1; J

:= 0; L3: loop

J:=J+21;

SUM := SUM*

10; if (SUM >
100) then

exit L3; -- "exit;" also would have been sufficient.

end

if; end loop

L3;

Next Statement

The next statement is also a sequential statement that can be used only inside a loop.

The syntax is the same as that for the exit statement except that the keyword next

replaces the keyword exit. Its syntax is

next [loop-label][when condition];

The next statement results in skipping the remaining statements in the current

iteration of the specified loop and execution resumes with the first statement in the

next iteration of this loop. If no loop label is specified, the innermost loop is assumed.

In contrast to the exit statement that causes the loop to be terminated (i.e., exits the

specified loop), the next statement causes the current loop iteration of the specified

loop to be prematurely terminated and execution resumes with the next iteration. Here

is an example.

for J in 10 downto 5 loop

if (SUM <

TOTAL_SUM)

then SUM :=

SUM +2;

elsif (SUM =

TOTAL_SUM)

then next;

else

end if;

null;

K:=K

+1; end loop;

When the next statement is executed, execution jumps to the end of the loop (the last

statement, K := K+1, is not executed), decrements the value of the loop identifier, J,

and resumes loop execution with this new value of J.

The next statement can also cause an inner loop to be exited. Here is such an

example.

L4: for K in 10 downto 1 loop

--statements

section 1 L5: loop

-- statements section 2

next L4 when WR_DONE = '1';

--statements

section 3end loop L5;

--statements section 4

end loop L4;

When WR_DONE = 1' becomes true, statements sections 3 and 4 are skipped and

execution jumps to the beginning of the next iteration of loop L4. Notice that the loop

L5 was terminated because of the result of next statement.

Assertion Statement

Assertion statements are useful in modeling constraints of an entity. For example, you

may want to check if a signal value lies within a specified range, or check the setup

and hold times for signals arriving at the inputs of an entity. If the check fails, an error

is reported. The syntax of an assertion statement is

assert boolean-

expression[

reportstring-

expression] [

severityexpression]:

If the value of the boolean expression is false, the report message is printed along with

the severity level. The expression in the severity clause must generate a value of type

SEVERTTY_ LEVEL (a predefined enumerated type in the language with values

NOTE, WARNING, ERROR, and FAILURE). The severity level is typically used by

a simulator to initiate appropriate actions depending on its value. For example, if the

severity level is ERROR, the simulator may abort the simulation process and provide

relevant diagnostic information. At the very least, the severity level is displayed.

Here is a model of a D-type rising-edge-triggered flip-flop that uses assertion

statements to check for setup and hold times.

entity DFF is

port (D, CK: in BIT: Q, NOTQ:

out BIT); end DFF;

architecture CHECK_TIMES of DFF

is constant HOLD_TIME:

TIME := 5 ns; constant

SETUP_TIME: TIME := 3 ns;

begin

process (D, CK)

variable LastEventOnD, LastEventOnCk: TIME;

begin

--Check for hold

time: if D'

EVENT then

assert (NOW = 0ns) or

((NOW - LastEventOnCk) >=

HOLD_TIME) report "Hold time too

short!"

severity

FAILURE;LastEventO

nD := NOW;

end if;

-- Check for setup time:

if (CK = '1') and

CK'EVENT then

assert (NOW =

0ns) or

end if;

((NOW - LastEventOnD) >=

SETUP_TIME) report "Setup time too

short!"

severity

FAILURE;LastEventO

nCk := NOW;

-- Behavior of FF:

if (CK = '1') and

CK'EVENT then

Q<=D;
NOTQ <= not D;

end

if; end

process;

end CHECK_TIMES;

EVENT is a predefined attribute of a signal and is true if an event (a change of

value) occurred on that signal at the time the value of the attribute is determined.

Attributes are described in greater detail in Chap. 10. NOW is a predefined function

that returns the current simulation time. In the previous example, the process is

sensitive to signals D and CK. When an event occurs on either of these signals, the

first if statement is executed. This checks to see if an event occurred on D. If so, the

assertion is checked to make sure that the difference between the current simulation

time and the last time an event occurred on signal CK is greater than a constant

HOLD_TIME delay. If not, a report message is printed and the severity level is

returned to the simulator. Similarly, the next if statement checks for the setup time.

The last if statement describes the latch behavior of the D-type flip-flop. The setup

and hold times have been modeled as constants in this example. These could also be

modeled as generic parameters of the flip-flop. Generics are discussed in Chap. 7.

Here is another example that uses an assertion statement to check for spikes at

the input of an inverter.

package PACK1 is

constant MIN_PULSE: TIME := 5

ns; constant PROPAGATE_DLY:

TIME := 10 ns;

end PACK1;

use

WORK.PACK1.a

ll; entity INV is

port (A: in BIT; NOT_A:

out BIT): end INV;

architecture CHECK_INV

of INV is begin

process (A)

variable LastEventOnA: TIME := 0 ns;

begin

assert (NOW = 0ns) or

((NOW - LastEventOnA) >=

MIN_PULSE) report "Spike detected on

input of inverter" severity WARNING;

LastEventOnA := NOW:

NOT_A <= not A after

PROPAGATE_DLY; end process;

end CHECK_INV;

Some other examples of assertion statements are

assert (DATA <= 255)

report "Data out of range.';

assert (CLK = '0') or (CLK = '1'); --CLK is of type ('X', '0', 'I ', 'Z').

In the last assertion statement example, the default report message "Assertion

violation" is printed. The default severity level is ERROR if the severity clause is not

specified as in the previous two examples.

Dataflow Modeling
This chapter presents techniques for modeling the dataflow of an entity. A dataflow

model specifies the functionality of the entity without explicitly specifying its

structure. This functionality shows the flow of information through the entity, which

is expressed primarily using concurrent signal assignment statements and block

statements. This is in contrast to the behavioral style of modeling described in the

previous chapter, in which the functionality of the entity is expressed using procedural

type statements that are executed sequentially. This chapter also describes resolution

functions and their usage.

Concurrent Signal Assignment Statement
One of the primary mechanisms for modeling the dataflow behavior of an entity is by

using the concurrent signal assignment statement. An example of a dataflow model

for a 2-input or gate, shown in Fig.2.1, follows.

Fig 2.1 An or gate

entity OR2 is

port (signal A, B: in BIT; signal Z:

out BIT); end OR2;

architecture OR2 of

OR2 is begin

Z <= A or B after

9 ns; end OR2;

The architecture body contains a single concurrent signal assignment statement that

represents the dataflow of the or gate. The semantic interpretation of this statement is

that whenever there is an event (a change of value) on either signal A or B (A and B

are signals in the expression for Z), the expression on the right is evaluated and its

value is scheduled to appear on signal Z after a delay of 9 ns. The signals in the

expression, A and B, form the "sensitivity list" for the signal assignment statement.

There are two other points to mention about this example. First, the input and output

ports have their object class "signal" explicitly specified in the entity declaration. If it

were not so, the ports would still have been signals, since this is the default and the

only object class that is allowed for ports. The second point to note is that the

architecture name and the entity name are the same. This is not a problem since

architecture bodies are considered to be secondary units while entity declarations are

primary units and the language allows secondary units to have the same names as the

primary units.

An architecture body can contain any number of concurrent signal assignment

statements. Since they are concurrent statements, the ordering of the statements is not

important. Concurrent signal assignment statements are executed whenever events

occur on signals that are used in their expressions. An example of a dataflow model

for a 1-bit full-adder, whose external view is shown in Fig. 5.2, is presented next.

entity FULL_ADDER is

port (A, B, CIN: in BIT; SUM,

COUT: out BIT); end FULL_ADDER;

architecture FULL_ADDER of

FULL_ADDER is begin SUM<=(A

xor B) xor CIN after 15 ns;

COUT <= (A and B) or (B and CIN) or (CIN and

A) after 10 ns; end FULL_ADDER;

Concurrent versus Sequential Signal Assignment

In the previous chapter, we saw that signal assignment statements can also appear

within the body of a process statement. Such statements are called sequential signal

assignment statements, while signal assignment statements that appear outside of a

process are called concurrent signal assignment statements. Concurrent signal

assignment statements are event triggered, that is, they are executed whenever there is

an event on a signal that appears in its expression, while sequential signal assignment

statements are not event triggered and are executed in sequence in relation to the other

sequential statements that appear within the process. To further understand the

difference between these two kinds of signal assignment statements, consider the

following two architecture bodies.

architecture SEQ_SIG_ASG of

FRAGMENT1 is - A, B and Z

are signals.

begin

end;

process (B)

begin -- Following are sequential signal assignment

statements:A<=B;

Z<=

A; end

process;

architecture CON_SIG_ASG of FRAGMENT2 is

begin -- Following are concurrent signal assignment

statements:A<=B;

Z<=A;

end;

In architecture SEQ_SIG_ASG, the two signal assignments are sequential signal

assignments. Therefore, whenever signal B has an event, say at time T, the first signal

assignment statement is executed and then the second signal assignment statement is

executed, both in zero time. However, signal A is scheduled to get its new value of B

only at time T+∆ (the delta delay is implicit), and Z is scheduled to be assigned the

old value of A (not the value of B) at time T+∆ also.

In architecture CON_SIG_ASG, the two statements are concurrent signal assignment

statements. When an event occurs on signal B, say at time T, signal A gets the value

of B after delta delay, that is, at time T+∆. When simulation time advances to T+∆,

signal A will get its new value and this event on A (assuming there is a change of

value on signal A) will trigger the second signal assignment statement that will cause

the new value of A to be assigned to Z after another delta delay, that is, at time T+2∆.

The delta delay model is explored in more detail in the next section.

Aside from the previous difference, the concurrent signal assignment statement is

identical to the sequential signal assignment statement.

For every concurrent signal assignment statement, there is an equivalent process

statement with the same semantic meaning. The concurrent signal assignment

statement:

CLEAR <= RESET or PRESET

after 15 ns; -- RESET and PRESET

are signals.

is equivalent to the following process statement:.

proces

begin

CLEAR <= RESET or PRESET

after 15 ns; wait on RESET,

PRESET;

end process;

An identical signal assignment statement (this is now a sequential signal assignment)

appears in the body of the process statement along with a wait statement whose

sensitivity list comprises of signals used in the expression of the concurrent signal

assignment statement.

Conditional Signal Assignment Statement

The conditional signal assignment statement selects different values for the target

signal based on the specified, possibly different, conditions (it is like an if statement).

A typical syntax for this statement is

Target - signal <=[waveform-elements when

condition else][waveform-

elementswhenconditionelse]

. . .

waveform-elements;

The semantics of this concurrent statement are as follows. Whenever an event occurs

on a signal used either in any of the waveform expressions (recall that a waveform

expression is the value expression in a waveform element) or in any of the conditions,

the conditional signal assignment statement is executed by evaluating the conditions

one at a time. For the first true condition found, the corresponding value (or values) of

the waveform is scheduled to be assigned to the target signal. For example,

Z <= IN0 after 10ns when S0 = '0' and S1 = '0' else

IN1 after 10ns when S0 = '1' and S1 = '0' else

IN2 after 10ns when S0 = '0' and S1 = '1' else

IN3 after 10 ns;

In this example, the statement is executed any time an event occurs on signals

IN0, IN1, IN2, IN3, S0, or S1. The first condition (S0='0' and S1='0') is checked; if

false, the second condition (S0='1' and S1='0') is checked; if false, the third condition

is checked; and so on. Assuming S0='0' and S1='1', then the value of IN2 is scheduled

to be assigned to signal Z after 10 ns.

For a given conditional signal assignment statement, there is an equivalent

process statement that has the same semantic meaning. Such a process statement has

exactly one if statement and one wait statement within it. The signals in the sensitivity

list for the wait statement is the union of signals in all the waveform expressions and

the signals referenced in all the conditions. The equivalent process statement for these

conditional signal assignment statement example is

proces

begin

if S0 = '0' and S1 = '0'

then Z<= IN0

after 10 ns;

elsif S0='1'and S1='0' then

Z<= IN1 after 10ns;

elsif S0='0' and S1 = '1' then Z<= IN2 after 10 ns;

else

end if;

Z<= INS after 10 ns;

wait on IN0, IN1, IN2, IN3,

S0, S1; end process;

Selected Signal Assignment Statement

The selected signal assignment statement selects different values for a target signal

based on the value of a select expression (it is like a case statement). A typical syntax

for this statement is

with expression select —This is the select

expression.target-signal <= waveform-

elements when choices,

waveform-elements when choices,

…

waveform-elements when choices ;

The semantics of a selected signal assignment statement are very similar to

that of the conditional signal assignment statement. Whenever an event occurs on a

signal in the select expression or on any signal used in any of the waveform

expressions, the statement is executed. Based on the value of the select expression that

matches the choice value specified, the value (or values) of the corresponding

waveform is scheduled to be assigned to the target signal. Note that the choices are

not evaluated in sequence. All possible values of the select expression must be

covered by the choices that are specified not more than once. Values not covered

explicitly may be covered by an "others" choice, which covers all such values. The

choices may be a logical "or" of several values or may be specified as a range of

values.

Here is an example of a selected signal assignment statement.

type OP is (ADD, SUB,

MUL, DIV); signal

OP_CODE: OP;

. . .

with OP_CODE select

Z <= A+B after ADD_PROP_DLY

when ADD, A - B after

SUB_PROP_DLY when SUB,

A * B after MUL_PROP_DLY

when MUL, A / B after

DIV_PROP_DLY when DIV;

In this example, whenever an event occurs on signals, OP_CODE, A, or B, the

statement is executed. Assuming the value of the select expression, OP_CODE, is

SUB, the expression "A - B" is computed and its value is scheduled to be assigned to

signal Z after SUB_PROP_DLY time.

For every selected signal assignment statement, there is also an equivalent process

statement with the same semantics. In the equivalent process statement, there is one

case statement that uses the select expression to branch. The list of signals in the

sensitivity list of the wait statement comprises of all signals in the select expression

and in the waveform expressions. The equivalent process statement for the previous

example is

proces

begin

case OP_CODE is

when ADD => Z<= A +B after

ADD_PROP_DLY; when SUB =>Z <=

A-B after SUB_PROP_DLY; when

MUL =>Z<= A * B after

MUL_PROP_DLY; when DIV => Z <=

A /B after DIV_PROP_DLY;

end case;

wait on OP_CODE,

A, B; end process;

Structural Modeling
This chapter describes the structural style of modeling. An entity is modeled as a set

of components connected by signals, that is, as a netlist. The behavior of the entity is

not explicitly apparent from its model. The component instantiation statement is the

primary mechanism used for describing such a model of an entity.

An Example

Consider the circuit shown in Fig. 2.2 and its VHDL structural model.

entity GATING is

port (A, CK, MR, DIN: in BIT; RDY,

CTRLA: out BIT); end GATING;

architecture STRUCTURE_VIEW of

GATING is component AND2

port (X, Y: in BIT; Z:

out BIT); end component;

\

begin

component DFF

port (D, CLOCK: in BIT; Q,

QBAR: out BIT); end component;

component NOR2

port (A, B: in BIT; Z:

out BIT); end component;

signal SI, S2: BIT;

D1: DFF port map (A, CK, SI, S2);

A1: AND2 port map (S2, DIN,

CTRLA); N1: NOR2 port map

(SI, MR, RDY);

end STRUCTURE_VIEW

Fig 2.2: A circuit generating control signals

Three components, AND2, DFF, and NOR2, are declared. These components are

instantiated in the architecture body via three component instantiation statements, and

the instantiated components are connected to each other via signals SI and S2. The

component instantiation statements are concurrent statements, and therefore, their

order of appearance in the architecture body is not important. A component can, in

general, be instantiated any number of times. However, each instantiation must have a

unique component label; as an example, A1 is the component label for the AND2

component instantiation.

Component Declaration

A component instantiated in a structural description must first be declared using a

component declaration. A component declaration declares the name and the interface

of a component. The interface specifies the mode and the type of ports. The syntax of

a simple form of component declaration is

component component-name

port (list-of-interface-

ports) ; end component;

The component-name may or may not refer to the name of an already ex-isfing entity

in a library. If it does not, it must be explicitly bound to an entity; otherwise, the

model cannot be simulated. This is done using a configuration. Configurations are

discussed in the next chapter.

The list-of-interface-ports specifies the name, mode, and type for each port of the

component in a manner similar to that specified in an entity declaration. "The names

of the ports may also be different from the names of the ports in the entity to which it

may be bound (different port names can be mapped in a configuration). In this

chapter, we will assume that an entity of the same name as that of the component

already exists and that the name, mode, and type of each port matches the

corresponding ones in the component. Some examples of component declarations are

component NAND2

port (A, B: in MVL; Z:

out MVL); end component;

component MP

port (CK, RESET, RON, WRN: in BIT;

DATA_BUS: inout INTEGER range

0 to 255; ADDR_BUS: in

BIT_VECTOR(15 downto 0));

end component;

component RX

port (CK, RESET, ENABLE, DATAIN, RD:

in BIT;DATA_OUT: out INTEGER

range 0 to (2**8 - 1);

PARITY_ERROR, FRAME_ERROR,

OVERRUN_ERROR: out BOOLEAN);

end component;

Component Instantiation

A component instantiation statement defines a subcomponent of the entity in which it

appears. It associates the signals in the entity with the ports of that subcomponent. A

format of a component instantiation statement is

component-label: component-name port map(association-list) ',

The component-label can be any legal identifier and can be considered as the name of

the instance. The component-name must be the name of a component declared earlier

using a component declaration. The association-list associates signals in the entity,

called actuals, with the ports of a component, called locals. An actual must be an

object of class signal. Expressions or objects of class variable or constant are not

allowed. An

actual may also be the keyword open to indicate a port

that is not connected. There are two ways to perform the

association of locals with actuals:

1. positional association,

2. named association.

In positional association, an association-list is of the form

actuali, actualg, actual3, . . ., actual

Each actual in the component instantiation is mapped by position with each port in the

component declaration. That is, the first port in the component declaration

corresponds to the first actual in the component instantiation, the second with the

second, and so on. Consider an instance of a NAND2 component.

--Component

declaration:

component NAND2

port (A, B: in BIT; Z:

out BIT); end component;

--Component instantiation:

N1: NAND2 port map (S1, S2, S3);

N1 is the component label for the current instantiation of the NAND2 component.

Signal S1 (which is an actual) is associated with port A (which is a local) of the

NAND2 component, S2 is associated with port B of the NAND2 component, and S3

is associated with port Z. Signals S1 and S2 thus provide the two input values to the

NAND2 component and signal S3 receives the output value from the component. The

ordering of the actuals is, therefore, important.

If a port in a component instantiation is not connected to any signal, the

keyword open can be used to signify that the port is not connected. For example,

N3: NAND2 port map (S1, open, S3);

The second input port of the NAND2 component is not connected to any signal. An

input port may be left open only if its declaration specifies an initial value. For the

previous component instantiation statement to be legal, a component declaration for

NAND2 may appear like

component NAND2

port (A, B: in BIT := '0'; Z: out BIT);

1 Both A and B have an initial value of '0'; however, only

2 the initial value of B is necessary in this case.

end component;

A port of any other mode may be left unconnected as long as it is not

an unconstrained array. In named association, an association-

list is of the form

locale => actual1, local2 => actual2, ..., localn => actualn

For example, consider the component NOR2 in the entity GATING described in the

first section. The instantiation using named association may be written as

N1: NOR2 port map (B=>MR, Z=>RDY, A=>S1);

In this case, the signal MR (an actual), that is declared in the entity port list, is

associated with the second port (port B, a local) of the NOR2 gate, signal RDY is

associated with the third port (port Z) and signal S1 is associated with the first port

(port A) of the NOR2 gate. In named association, the ordering of the associations is

not important since the mapping between the actuals and locals are explicitly

specified. An important point to note is that the scope of the locals is restricted to be

within the port map part of the instantiation for that component; for example, the

locals A, B, and Z of component NOR2 are relevant only within the port map of

instantiation of component NOR2.

For either type of association, there are certain rules imposed by the language. First,

the types of the local and the actual being associated must be the same. Second, the

modes of the ports must conform to the rule that if the local is readable, so must the

actual and if the local is writable, so must the actual. Since a signal locally declared is

considered to be both readable and writable, such a signal may be associated with a

local of any mode. If an actual is a port of mode in, it may not be associated with a

local of mode out or inout; if the actual is a port of mode out, it may not be associated

with a local of mode in or inout; if the actual is a port of mode inout, it may be

associated with a local of mode in, out, or inout.

Generate Statements

Concurrent statements can be conditionally selected or replicated during the

elaboration phase using the generate statement. There are two forms of the generate

statement.

1. Using the for-generaHon scheme, concurrent statements can be

replicated a predetermined number of times.

2. With the if-generation scheme, concurrent statements can be

conditionally selected for execution.

The generate statement is interpreted during elaboration, and therefore, has no

simulation semantics associated with it. It resembles a macro expansion. The generate

statement provides for a compact description of regular structures such as memories,

registers, and counters.

The format of a generate statement using the for-generation scheme is

generate-label: for generale-identifierin discrete-

range generate concurrent-statements end

generate[generate-label];

The values in the discrete range must be globally static, that is, they must be

computable at elaboration time. During elaboration, the set of concurrent statements

are replicated once for each value in the discrete range. These statements can also use

the generate identifier in their expressions and its value would be substituted during

elaboration for each replication. There is an implicit declaration for the generate

identifier within the generate statement, and therefore, no declaration for this

identifier is required. The type of the identifier is defined by the discrete range.

Consider the following representation of a 4-bit full-adder, shown in Fig. 2.3, using

the generate statement.

entity FULL_ADD4 is

port (A, B: in BIT_VECTOR(3 downto 0); CIN: in BIT;

SUM: out BIT_VECTOR(3 downto 0); COUT: out

BIT);

end FULL_ADD4:

architecture FOR_GENERATE of

FULL_ADD4 is component

FULL_ADDER

port (A, B, C: in BIT; COUT,

SUM: out BIT); end component;

signal CAR: BIT_VECTOR(4 downto 0);

begin

CAR(0) <= CIN;

GK: for K in 3 downto 0 generate

FA: FULL_ADDER port map (CAR(K),

A(K), B(K),

CAR(K+1),SUM(

K));

end generate

GK;COUT <=

CAR(4);

end FOR_GENERATE

Fig.2.3: A 4-bit full-adder.

After elaboration, the generate statement is expanded to

FA(3): FULL_ADDER port map (CAR(3), A(3), B(3), CAR(4),

SUM(3));

FA(2): FULL_ADDER port map (CAR(2), A(2), B(2), CAR(3),

SUM(2));

FA(1): FULL_ADDER port map (CAR(1), A(1), B(1), CAR(2),

SUM(1));

FA(0): FULL_ADDER port map (CAR(0), A(0), B(0), CAR(1),

SUM(0));

Components in a generate statement can be bound to entities using a generate block

configuration. A block configuration is defined for each range of generate labels. Here

is an example of such a binding using a configuration declaration.

configuration GENERATE_BIND of FULL_ADD4 is

use WORK.all; -- Example of a declaration in the

-- configuration declarative part.

for FOR_GENERATE -- An architecture body block

configuration.

forGK(1) --A generate block configuration.

for FA: FULL_ADDER

use configuration

WORK.FA_HA_CON;

end for;

end for;

for GK(2 to 3)

for FA: FULL_ADDER - No explicit binding.

-- Use defaults, i.e., use entity

FULL_ADDER -- in working

library.

end for;

end

for; for

GK(0)

for FA: FULL_ADDER

use entity

WORK.FULL_ADDER(FA_DA

TAFLOW); end for;

end for;

end for;

end GENERATE_BIND;

There are three generate block configurations, one each for GK(1), GK(2 to 3), and

for GK(0). Each of these block configurations define the bindings for the components

valid for that generate index.

The body of the generate statement can also have other concurrent statements.

For example, in the previous architecture body, the component instantiation statement

could be replaced by signal assignment statements like this

G2: for M in 3 downto 0 generate

SUM(M) <= (A(M) xor B(M)) xor

CAR(M); CAR(M+1) <= (A(M) and

B(M)) and CAR(M);

end generate G2;

The second form of the generate statement uses the if-generation scheme. The

format for this type of generate statement is

genarate-label: H expression

generate concurrent-

statements

end generate [generete-label] ;

The if-generate statement allows for conditional selection of concurrent

statements based on the value of an expression. This expression must be a globally

static expression, that is, the value must be computable at elaboration time.

Here is an example of a 4-bit counter, that is modeled using the if-generate

statement.

entity COUNTER4 is

port (COUNT, CLOCK: in BIT; Q: buffer

BIT_VECTOR(0 to 3)); end COUNTER4;

architecture IF_GENERATE of

COUNTER4 is component

D_FLIP_FLOP

port (D, CLK: in BIT; Q:

out BIT); end component;

begin

GK: for K in 0 to 3

generate GKO: if K

= 0 generate

DFF: D_FLIP_FLOP port map (COUNT,

CLOCK, Q(K)); end generate GK0;

GK1_3: if K > 0 generate

DFF: D_FLIP_FLOP port map (Q(K-1),

CLOCK, Q(K)); end generate GK1_3;

end generate

GK; end

IF_GENERATE;

Guarded Signals

A guarded signal is a special type of a signal that is declared to be of a register or a

bus kind in its declaration. A general form of a signal declaration is

signal list-of-signals: resolution-function

signal-typesignal-kind [

:= expression];

A guarded signal must be a resolved signal, that is, it must have a resolution

function associated with it. Also, the signal can only be assigned values under the

control of a guard expression, for example, using a guarded assignment (guarded

option used in a concurrent signal assignment statement). This implies that guarded

signals can only be assigned values within block statements.

A guarded signal behaves differently from other signals in that when the guard

expression is false, the driver to the guarded signal becomes disconnected after a

specific time, called the disconnect time. On the other hand, in an unguarded signal, if

the guard expression is false, any new events on the signals appearing in the

expression do not influence the value of the target signal; the driver continues to drive

the target signal with the old value. To understand this difference better, consider the

following guarded block BL

architecture GUARDED_EX of EXAMPLE is

signal GUARD_SIG: WIRED_OR

BIT register; signal

UNGUARD_SIG: WIRED_AND BIT;

begin

B1: block (guard-

expression)begin

GUARD_SIG <=

guardedexpression1 ;

UNGUARD_SIG <=

guardedexpression2;

end block

B1; end

GUARDED_EX;

Transforming the guarded signal assignment statement into its equivalent process

statement, the block B1 now looks like this

B1: block (guard-

expression)begin

proces

s

begin

if GUARD then

GUARD_SIG <=expression1;

else

GUARD_SIG<=null;

end if;
wait on signals-in-

expressioni1,GUARD; end process;

proces

s

begin

If GUARD then

UNGUARD_SIG <= expression2;

end if;

wait on signals-in-

expressionS,GUARD; end process;

end block B1;

The process statement for the guarded signal, GUARD_ SIG, has an explicit signal

assignment statement that disconnects its driver, while there is no such statement for

the unguarded signal, UNGUARD_SIG. As this example shows, a driver of a guarded

signal can be explicitly disconnected by assigning a null value to the signal. Such a

statement is called a disconnection statement.

Let us now explore the differences between a register and a bus signal. A bus

signal represents a hardware bus in that when all drivers to the signal become

disconnected (as might be the case on a real hardware bus), the value of the signal is

determined by calling the resolution function with all the drivers off. A register signal,

on the other hand, models a storage component (that is multiply driven) in which if all

drivers to the signal become disconnected, the resolution function is not called and the

value of the last active driver is retained. With a bus signal, the previous value is lost.

Also, bus signals may either be ports of an entity or locally declared signals, whereas

register signals can only be locally declared signals.

The disconnect time for a guarded signal can be specified using a

disconnection specification. The syntax of a disconnection specification is

disconnect guarded-signal-name: signal-type after time-expression;

This is an example of a disconnection specification.

disconnect GUARD_SIG: BIT after 8 ns;

This implies that the driver of signal GUARD_SIG will get disconnected 8 ns after the

corresponding GUARD goes false.

The disconnection specification is useful in modeling decay times, for

example, capacitance delay on buses. An alternate way of specifying disconnect time

is by assigning a value null to the signal in a disconnection statement as shown.

S1 <= null after 10 ns;

This statement specifies that the driver of SI will be disconnected after 10 ns.

Thereafter, this driver does not contribute to the resolved value of the signal.

However, such a statement can appear only as a sequential statement and the target

signal must be a guarded signal.

Here is a more comprehensive example.

use WORK.RF.PACK.all;

-- Package RF_PACK contains functions WIRED_AND

and WIRED_OR. entity GUARDED_SIGNALS is

port (CLOCK: in BIT; N: in INTEGER);

end;

architecture EXAMPLE of GUARDED_SIGNALS is

signal REG_SIG: WIRED_AND

INTEGER register; signal BUS_SIG:

WIRED_OR INTEGER bus; disconnect

REG_SIG: INTEGER after 50 ns;

disconnect BUS_SIG: INTEGER after 20

ns;

begin

BX: block (CLOCK='1' and (not

CLOCK'STABLE)) begin

REG_SIG <= guarded N

after 15 ns; BUS_SIG <=

guarded N after 10 ns;

end block

BX; end

EXAMPLE;

TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd

edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog

Design",3rd edition, Tata McGraw Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited.

3rd edition 2004

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and

Synthesis”, Star Galaxy Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL,

2nd Edition, PHI, 2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw

Hill, 2005.

QUESTION BANK

PART-A

1. Justify how arrays are declared in VHDL

2. Classify the types of delays in VHDL.

3. List the styles of description in VHDL.

4. Develop a VHDL program for 2*1 multiplexer.

5. List the operators in VHDL.

6. Develop a VHDL program for 1*2 decoder.

7. Define Data objects in VHDL

8. Develop VHDL code for 2 bit adder.

PART-B

1. Distinguish between dataflow modeling and behavioral modeling of VHDL

2. Develop a VHDL code for full adder circuit in different styles of description.

3. Discuss with example behavioral modeling of VHDL

4. Develop a VHDL code for encoder and decoder circuit

5. Develop a VHDL code for Flip flop circuits

6. Distinguish between structural modeling and dataflow modeling of VHDL

7. Discuss with example structural modeling of VHDL

SCHOOL OF ELECRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SEC1402-PROGRAMMING IN HDL

UNIT-III - INTRODUCTION TO VERILOG HDL

INTRODUCTION TO VERILOG HDL

Verilog HDL is a hardware description language that can be used to model a digital system at many

levels of abstraction ranging from the algorithmic level to the gate level to the switch level. The

complexity of the digital system being modeled could vary from that of a simple gate to a complete

electronic digital system, or anything in between. The digital system can be described hierarchically

and timing can be explicitly modeled within the same description.

Typical Design Flow

A typical design flow for designing VLSI IC circuits is shown in Figure 2.1. Un shaded blocks show

the level of design representation; shaded blocks show processes in the design flow.

The design flow shown in Figure 2.1 is typically used by designers who use HDLs. In any design,

specifications are written first. Specifications describe abstractly the functionality, interface, and

overall architecture of the digital circuit to be designed. At this point, the architects do not need to

think about how they will implement this circuit. A behavioral description is then created to analyze

the design in terms of functionality, performance, compliance to standards, and other high-level

issues.

Behavioral descriptions are often written with HDLs

The behavioral description is manually converted to an RTL description in an HDL. The designer

has to describe the data flow that will implement the desired digital circuit. From this point onward,

the design process is done with the assistance of EDA tools.

Logic synthesis tools convert the RTL description to a gate-level netlist. A gatelevel netlist is a

description of the circuit in terms of gates and connections between them. Logic synthesis tools

ensure that the gate-level netlist meets timing, area, and power specifications. The gate-level netlist

is input to an Automatic Place and Route tool, which creates a layout. The layout is verified and then

fabricated on a chip.

Figure 3.1: Typical Design Flow

Design Methodologies

There are two basic types of digital design methodologies: a top-down design methodology and a

bottom-up design methodology. In a top-down design methodology, we define the top-level block

and identify the sub-blocks necessary to build the top-level block. We further subdivide the sub-

blocks until we come to leaf cells, which are the cells that cannot further be divided. Figure 2.2

shows the top-down design process.

Figure 3.2: Top-down Design Methodology

In a bottom-up design methodology, we first identify the building blocks that are available to us. We

build bigger cells, using these building blocks. These cells are then used for higher-level blocks until

we build the top-level block in the design. Figure 2.3 shows the bottom-up design process

Figure 3.3: Bottom-up Design Methodology

Levels for design description

Verilog supports designing at many different levels of abstraction. Three of them are very important:

• Behavioral level

• Register-Transfer Level

• Gate Level

Behavioral Level

This level describes a system by concurrent algorithms (Behavioral). Each algorithm itself is

sequential, that means it consists of a set of instructions that are executed one after the other.

Functions, Tasks and Always blocks are the main elements. There is no regard to the structural

realization of the design.

Register-Transfer Level

Designs using the Register-Transfer Level specify the characteristics of a circuit by operations and

the transfer of data between the registers.An explicit clock is used. RTL design contains exact timing

bounds: operations are scheduled to occur at certain times. Modern RTL code definition is "Any

code that is synthesizable is called RTL code".

Gate Level

Within the logic level the characteristics of a system are described by logical links and their timing

properties. All signals are discrete signals. They can only have definite logical values (`0', `1', `X',

`Z`). The usable operations are predefined logic primitives (AND, OR, NOT etc gates). Using gate

level modeling might not be a good idea for any level of logic design. Gate level code is generated

by tools like synthesis tools and this netlist is used for gate level simulation and for backend.

Language Elements

Identifiers

Identifiers are names given to objects so that they can be referenced in the design. Identifiers are

made up of alphanumeric characters, the underscore (_), or the dollar sign ($). Identifiers are case

sensitive. Identifiers start with an alphabetic character or an underscore.

They cannot start with a digit or a $ sign

reg value; // reg is a keyword; value is an

identifier input clk; // input is a keyword, clk is an identifier

Comments

Comments can be inserted in the code for readability and documentation. There are two ways to

write comments. A one-line comment starts with "//". Verilog skips from that point to the end of

line. A multiple-line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be

nested. However, one-line comments can be embedded in multiple-line comments.

a = b && c; // This is a one-line comment

/* This is a multiple line comment */

/* This is /* an illegal */ comment */

/* This is //a legal comment */

Format

Verilog HDl is case sensitive. Identifiers differing only in their case are distinct. Verilog HDL, is

free format, constructs may be written across multiple lines , or on one line. White space (newline,

tab, and space characters) have no special significance.

System Tasks and Functions

Verilog provides standard system tasks for certain routine operations. All system tasks appear in the

form $<keyword>. Operations such as displaying on the screen, monitoring values of nets, stopping,

and finishing are done by system tasks.

Compiler Directives

Compiler directives are provided in Verilog. All compiler directives are defined by using the

‘<keyword> construct. We deal with the two most useful compiler directives.

‘define

The ‘define directive is used to define text macros in Verilog.

The Verilog compiler substitutes the text of the macro wherever it encounters a ‘<macro_name>.

This is similar to the #define construct in C. The defined constants or text macros are used in the

Verilog code by preceding them with a ‘ (back tick).

//define a text macro that defines default word

size //Used as ’WORD_SIZE in the code ’define

WORD_SIZE 32

‘include

The ‘include directive allows you to include entire contents of a Verilog source file in another

Verilog file during compilation. This works similarly to the #include in the C programming

language. This directive is typically used to include header files, which typically contain global or

commonly used definitions.

Example ‘include Directive

// Include the file header.v, which contains declarations in the

// main verilog file design.v.

’include header.v

...

...

<Verilog code in file design.v>

...

...

Two other directives, ‘ifdef and ‘timescale, are used frequently.

Value set

Verilog supports four values and eight strengths to model the functionality of real hardware.

Strength levels

Data types

Verilog HDL has two groups of data types

(i) Net type

A net type represents a physical connection between structural elements. Its value is determined

from the value of its drivers such as a continuous assignment or a gate output. If no driver is

connected to a net, the net defaults to a value of z.

(ii) Variable type

A variable type represents an abstract data storage element. It is assigned values only within an

always statement or an initial statement, and its value is saved from one assignment to the next. A

variable type has a default value of x.

Net types

Here are the different kinds of nets that belong to the net data type wire

tri wor

trior

wand

triand

trireg

tri1

tri0

supply0

supply1

Variable types

There are five different kinds of variable types

reg

integer

time

real

realti

me

Register

Registers represent data storage elements. Registers retain value until another value is placed onto

them. Register data types are commonly declared by the keyword reg. The default value for a reg

data type is x.

Example of Register

reg reset; // declare a variable reset that can hold its value

begin

reset = 1’b1; //initialize reset to 1 to reset the digital circuit.

#100 reset = 1’b0; // after 100 time units reset is de asserted.

end

Integer

An integer is a general purpose register data type used for manipulating quantities. Integers are

declared by the keyword integer. Although it is possible to use reg as a general-purpose variable, it

is more convenient to declare an integer variable for purposes such as counting. The default width

for an integer is the host-machine word size, which is implementation- specific but is at least 32 bits.

Registers declared as data type reg store values as unsigned quantities, whereas integers store values

as signed quantities.

integer counter; // general purpose variable used as a counter.

initial counter = -1; // A negative one is stored in the counter

Real

Real number constants and real register data types are declared with the keyword real. They can be

specified in decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, which is 3 x 106). Real

numbers cannot have a range declaration, and their default value is 0. When a real value is assigned

to an integer, the real number is rounded off to the nearest integer.

real delta; // Define a real variable called delta

initial

begin

delta = 4e10; // delta is assigned in scientific notation delta = 2.13;

// delta is assigned a value 2.13

end

integer i; // Define an integer i initial

i = delta; // i gets the value 2 (rounded value of 2.13)

Time

Verilog simulation is done with respect to simulation time. A special time register data type is used

in Verilog to store simulation time. A time variable is declared with the keyword time. The width for

time register data types is implementation specific but is at least 64 bits. The system function $time

is invoked to get the current simulation time.

time save_sim_time; // Define a time variable save_sim_time initial

save_sim_time = $time; // Save the current simulation time

Arrays

Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data types.

Multi-dimensional arrays can also be declared with any number of dimensions. Arrays of nets can

also be used to connect ports of generated instances. Each element of the array can be used in the

same fashion as a scalar or vector net. Arrays are accessed by

<array_name>[<subscript>]. For multi-dimensional arrays, indexes need to be provided for each

dimension.

integer count[0:7]; // An array of 8 count variables

reg bool[31:0]; // Array of 32 one-bit boolean register variables time

chk_point[1:100]; // Array of 100 time checkpoint variables

reg [4:0] port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits wide

Parameters

Verilog allows constants to be defined in a module by the keyword parameter. Parameters cannot be

used as variables. Parameter values for each module instance can be overridden individually at

compile time. This allows the module instances to be customized. This aspect is discussed later.

Parameter types and sizes can also be defined.

parameter port_id = 5; // Defines a constant port_id

parameter cache_line_width = 256; // Constant defines width of cache line parameter

signed [15:0] WIDTH; // Fixed sign and range for parameter WIDTH

Expressions

An expression is formed using operands and operators. An expression can be used wherever a value

is expected.

Operands

Operands can be constants, integers, real numbers, nets, registers, times, bitselect (one bit of vector

net or a vector register), part-select (selected bits of the vector net or register vector), and memories

or function calls.

integer count, final_count;

final_count = count + 1;//count is an integer operand

real a, b, c;

c = a - b; //a and b are real operands

reg [15:0] reg1,

reg2; reg [3:0]

reg_out;

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are //part-select register operands reg

ret_value;

ret_value = calculate_parity(A, B);//calculate_parity is a //function type operand

Operator Types

Verilog provides many different operator types. Operators can be arithmetic, logical, relational,

equality, bitwise, reduction, shift, concatenation, or conditional. Some of these

operators are similar to the operators used in the C programming language. Each operator type is

denoted by a symbol. The table 2.1 shows the complete listing of operator symbols classified by

category.

Table 3.1 Operators

Module

The basic unit of description in Verilog is the module. A module describes the functionality or

structure of a design and also describes the ports through which it communicates externally with

other modules. The structure of a design is described using switch-level primitives, gate- level

primitives and user-defined primitives; data flow behavior of a design is described using continuous

assignments; sequential behavior is described using procedural constructs. A module can also be

instantiated inside another module.

module module_name (port_list);

Declarations:

reg, wire,

parameter, input, output, inout, function ,

task, …. Statements :

Initial

statement

Always

statement

Module

instantiation

Gate

instantiation

UDP

instantiation

Continuous

assignment

Generate

statement

end module

 TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog Design",3rd edition, Tata McGraw

Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and Synthesis”, Star Galaxy

Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL, 2nd Edition, PHI, 2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.

QUESTION BANK

PART-A
1. Justify how arrays are declared in Verilog HDL.

2. Classify the types of delays in Verilog HDL.

3. List the parameters in Verilog HDL.

4. Formulate the value set of Verilog HDL.

5. List the language elements of Verilog HDL.

6. Develop a Verilog HDL program for 2*4 decoder.

7. Define operands in Verilog HDL

8. Distinguish between inter assignment delay and intra assignment delay.

9. Justify the importance of module in Verilog HDL

10 . Develop Verilog HDL code for 2 bit subtraction.

PART-B
1. Compare procedural constructs and assignments

2. Illustrate the different language elements in Verilog HDL.

3. Operators in verilog are of different types. Support the statement.

4. Develop a Verilog HDL code for encoder and decoder circuit

5. Illustrate the different delay types in Verilog HDL programming.

SCHOOL OF ELECRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SEC1402-PROGRAMMING IN HDL

UNIT IV - STYLES OF MODELING

STYLES OF MODELING

Gate Level Modeling:

The Built-in Primitive Gates:

The following built-in primitive gates are available in Verilog HDL.

i. Multiple-input gates: and, nand, or,nor,xor,xnor

ii. Multiple-output gates: buf, not

iii. Tristate gates: buflfO, bufifl, notifO, notifl

iv. Pull gates: pullup, pulldown 70 Multiple-input

v. MOS switches: cmos, nmos, pmos, rcmos, rnmos, rpmos

vi. Bidirectional switches: tran, tranifO, tranifl, rtran, rtranifO,rtranifl

A gate can be used in a design using a gate instantiation. Here is a simple format of a gate

instantiation.

gate_type[instance_name] (terml , term2 , . . . , termN);

Note that the instance_name is optional; gate type is one the gates listed earlier. The terms specify

the nets and registers connected to the terminals of the gate. Multiple instances of the same gate type

can be specified in one construct. The syntax for this is the following.

gate_type

[instance_namel] (termll , terml2 , . . . , termlN),

[instance_name2] (term.21 , term22,. . . , term2N),

………

[instance_nameM] (termMl , termM2 , . . . , terwMN);

Multiple-input Gates:

The multiple-input built-in gates are: and nand nor or xorxnor. These logic gates have only one

output and one or more inputs. Here is the syntax of a multiple-input gate instantiation.

multiple_input_gate_type I instance_name] (OutputA , Input 1 , Input2,..., InputN);

The first terminal is the output and all others are the inputs. Here are some examples. The logic

diagrams are shown in figure 3.1.

Figure 4.1: Multiple Input Gates

and A1 (Outl, Inl, In2);

and RBX (Sty, Rib, Bro, Qit, Fix) ;

xor (Bar, Bud[0],Bud[l],Bud[2]),

(Car, Cut[0], Cut[l]),

(Sar, Sut[2], Sut[l], Sut[0], Sut[3]);

Figure 4.2: Multiple Input Gate examples

The first gate instantiation is a 2-input and gate with instance name Al, output Outl and with two

inputs, Inl and Inl. The second gate instantiation is a 4-input and gate with instance name RBX,

output Sty and four inputs, Rib, Bro, Qit and Fix. The third gate instantiation is an example of anxor

gate with no instance name. Its output is Bar and it has three inputs, Bud[0],Bud[1] and Bud[2].

Also, this instantiation has two additional instances of the same type.

The truth tables for these gates are shown next. Notice that a value z at an input is handled like an x;

additionally, the output of a multiple-input gate can never be a z.

Figure 4.3: Truth table Multiple input gates

Multiple-output Gates:

The multiple-output gates are: buf & not

These gates have only one input and one or more outputs. The basic syntax for this gate instantiation

is:

multiple_output_gate_type

[instance_name] (Outl, 0ut2 , . . . , OutN, InputA);

The last terminal is the input; all remaining terminals are the outputs.

Figure 4.4: Multiple Output Gates

Here are some examples.

bufBl [Fan[0], Fan[l], Fan[2],Fan[3],Clk);

notNl {PhA, PhB, Ready);

In the first gate instance, Clk is the input to the buf gate; this gate instance has four outputs, Fan[0]

through Fan[3]. In the second gate instance, Ready is the only input to the not gate. This instance

has two outputs, PhA and PhB. The truth table for these gates are shown next.

Figure 4.5: Truth table of Multiple output Gates

Tristate Gates:

The tristate gates are: bufifO, bufifl, notifO, notifl

These gates model three-state drivers. These gates have one output, one data input and one control

input. Here is the basic syntax of a tristate gate instantiation.

tristate_gate[instance_name] (OutputA, InputB, ControlC);

The first terminal OutputA is the output, the second terminal InputB is the data input, and the

control input is ControlC. Depending on the control input, the output can be driven to the high-

impedance state, that is, to value z. For a bufifO gate, the output is z if control is 1,else data is

transferred to output. For a bufifl gate, output is a z if control is 0.Fora notifOgate, output is at z if

control is at 1 else output is the invert of the input data value. For notifl gate, output is at z if control

is at 0.

Figure 4.6: Tristate Gates

Here are some examples.

bufifl BF1 [Dbus, MemData, Strobe);

notifO NT2 {Addr, Abus, Probe);The bufifl gate BF1 drivesthe output Dbus to high- impedance

state when Strobe is 0, elseMemData is transferred to Dbus. In the second instantiation, when Probe

is 1,Addr is in high-impedance state, else Addr gets the inverted value of Abus. The truth tables for

these gates are shown next.Someentriesin the table indicate alternate entries. For

example,0/zindicates that the output can either be a 0 or a z depending on the strengths of the data

and control values.

Figure 4.7: Truth table for Tristate Gates

Pull Gates:

The pull gates are: pullup & pulldown

These gates have only one output with no inputs. A pull up gate places a 1 on its output. A pull

down gate places a 0 on its output. A gate instantiation is of the form:

pull_gate I instance_name] (Outputs);

The terminal list of this gate instantiation contains only one output. Here is an example.

pullup PUP (Pwr);

This pullup gate has instance name PUP with output Pwr tied to 1.

MOS Switch:

The MOS switches are: cmos, pmos, nmos, rcmos, rpmos, rnmos.

These gates model unidirectional switches, that is, data flows from input to output and the data flow

can be turned off by appropriately setting the control input(s).

The pmos(p-type MOS transistor), nmos (n-type MOS transistor), rnmos ('r' stands for resistive) and

rpmos switches have one output, one input and one control input. The basicsyntax for an

instantiation is:

gate_type[instance_name] (Outputs , InputB , ControlC);

The first terminal is the output, the second terminal is the input and the last terminal is the control. If

controlis 0 for nmos and rnmos switches and 1 for pmos and rpmos switches, the switch is turned

off, that is, output has value z; if control is 1, data at input passes to output; see Figure 5-5. The

resistive switches (rnmos and rpmos) have a higher impedance(resistance) between the input and

output terminals as compared to the non-resistive switches (nmos and pmos). Thus when data passes

from input to output, a reduction in strength occurs for resistive switches.

Figure 4.8: nMOS and pMOS switches

Here are some examples.

pmos P1 {BigBus, SmallBus, GateControl);

rnmos RN1 [ControlBit, ReadyBit, Hold);

The first instance instantiates a pmos switch with instance name P1. The input to the switch is

SmallBus and the output is BigBus and the control signal is Gate Control. The truth tables for these

switches are shown next. Some entries in the table indicate alternate entries. For example, 1/z

indicates that the output can be either 1 or z depending on the input and control.

Figure 4.9: Truth table of MOS switches

The CMOS (Complimentary MOS) and rcmos (resistive version of cmos) switches have one data

output, one data input and two control inputs. The syntax for instantiating these two switches is of

the form:

(r)cmos [instance_name] (OutputA , InputB , NControl , PControl);

The first terminal is the output, the second is the input, the third is the n channel control input and

the fourth terminal is the p-channel control input. A cmos (rcmos) switch behaves exactly like a

combination of a pmos (rpmos) and an nmos (rnmos) switch with common outputs and common

inputs.

Figure 4.10: (r)cmos switch

Bidirectional Switch:

The bidirectional switches are: tran, rtran, tranifO, rtranifO, tranifl, rtranifl

These switches are bidirectional, that is, data flows both ways and there is no delay when data

propagates through the switches. The last four switches can be turned off by setting a control signal

appropriately. The tran and rtran switches cannot be turned off. The syntax for instantiating a tran or

a rtran (resistive version of tran) switch is:

(r)tran [instance_name] (SignalA , SignalB);

The terminal list has only two terminals and data flows unconditionally both ways, that is, from

SignalA to SignalB and vice versa. The syntax for instantiating the other bidirectional switches is:

gate type[instance_name] (SignalA , SignalB , ControlC);

The first two terminals are the bidirectional terminals, that is, data flows from SignalA to SignalB

and vice versa. The third terminal is the control signal. If ControlC is 1for tranifO and rtranifO, and

0 for tranifl and rtranifl, the bidirectional data flow is disabled. For the resistive switches(rtran,

rtranifO and rtranifl), the strength of the signal reduces when it passes through the switch.

Examples:

4 X 1 Multiplexer:

Figure 4.11: 4 X 1 Multiplexer

moduleMUX4x1 (Z, DO, Dl, D2, D3, SO, Si);

output Z;

input DO, Dl, D2, D3, SO, SI;

and (TO, DO, SObar, Slbar),

(Tl, Dl, SObar, S1),

(T2, D2, SO, Slbar),

(T3, D3, SO, S1);

not (SObar,SO),

(Slbar, S1);

or (Z, TO, Tl, T2, T3);

endmodule

2 to 4 Decoder:

Figure 4.12: 2 to 4 Decoder

module DEC2x4 {A, B, Enable, Z) ;

input A, B, Enable;

output [0:3] Z;

wireAbar, Bbar;

not

V0 (Abar, A) ,

V1 (Bbar, B);

nand

NO (Z[0], Enable, Abar, Bbar),

N1 (Z[l], Enable, Abar, B),

N2 (Z[2], Enable, A, Bbar),

N3 (Z[3] , Enable, A, B);

endmodule

Master Slave Flip-flop:

Figure 4.13: Master Slave Flip-flop

module MSDFF (D, C, Q, Qbar) ;

input D, C; output Q, Qbar;

not

nand

NT1 (NotD, D),

NT2 (NotC, C),

NT3 (NotY, Y);

ND1 (Dl, D, C),

ND2 (D2, C, NotD),

ND3 (Y, Dl, Ybar),

ND4 (Ybar, Y, D2),

ND5 (Yl, Y, NotC),

ND6 (Y2, NotY, NotC),

ND7 (Q, Qbar, Yl), ND8 (Qbar, Y2, Q);

endmodule

Parity Generator:

Figure 4.14: Parity Generator

module Parity_9_Bit (D, Even, Odd);

input [0:8] D;

output Even, Odd;

xor

not

XEO (E0, D[0] , D[l]),

XE1 (El, D[2], D[3]) ,

XE2 (E2,D[4], D[5]) ,

XE3 (E3, D[6], D[7]),

XFO (F0, E0, El),

XF1 {Fl, E2, E3), XHO {HO, FO, Fl),

XEVEN {Even, D[8], HO) ;

XODD {Odd, Even);

endmodule

USER-DEFINED PRIMITIVES (UDP):

The primitives available in Verilog are the entire gate or switch types. Verilog has the provision for

the user to define primitives –called “user defined primitive (UDP)” and use them. The designers

occasionally like to use their own custom-built primitives when developing a design. Verilog

provides the ability to define User- Defined Primitives (UDP). These primitives are self contained

and do not instantiate other modules or primitives. UDPs are instantiated exactly like gate level

primitives. UDPs are basically of two types – combinational and sequential. A combinational UDP

is used to define a combinational scalar

function and a sequential UDP for a sequential function.

Combinational UDPs:

A combinational UDP accepts a set of scalar inputs and gives a scalar output. An inout declaration is

not supported by a UDP. The UDP definition is on par with that of a module; that is, it is defined

independently like a module and can be used in any other module.

primitiveudp_and(out, a, b);

output out;

input a, b;

table

// a b: Out;

0 0: 0;

0 1: 0;

1 0: 0

1 1: 1;

endtable

endprimitive

Sequential UDPs:

Any sequential circuit has a set of possible states. When it is in one of the specified states, the next

state to be taken is described as a function of the input logic variables and the present state. A

sequential UDP can accommodate all these.

primitive latch(q, d, clock, clear); // d-latch

output q; reg q; //q declared as reg to create internal storage input

d, clock, clear;

initial q = 0; //initialize output to value 0

table

//state table

//d clock clear: q : q+ ;

? ? 1 : ? : 0 ; //clear condition;

1 1 0 : ? : 1; //latchq =data=1

0 1 0 : ? : 0; //latchq =data=0

? 0 0 : ? : - ; //retain original state if clock = 0

endtable

endprimitive

Dataflow Modeling:

For small circuits, the gate-level modeling approach works very well because the numbers of gates

is limited and the designer can instantiate and connect every gate individually. Also, gate-level

modeling is very intuitive to a designer with a basic knowledge of digital logic design. However, in

complex designs the number of gates is very large. Thus, designers can design more effectively if

they concentrate on implementing the function at a level of abstraction higher than gate level.

Dataflow modeling provides a powerful way to implement a design. Verilog allows a circuit to be

designed in terms of the data flow between registers and how a design processes data rather than

instantiation of individual gates. Later in this chapter, the benefits of dataflow modeling will become

more apparent.

With gate densities on chips increasing rapidly, dataflow modeling has assumed great importance.

No longer can companies devote engineering resources to handcrafting entire designs with gates.

Currently, automated tools are used to create a gate-level circuit from a dataflow design description.

This process is called logic synthesis. Dataflow modeling has become a popular design approach as

logic synthesis tools have become sophisticated. This approach allows the designer to concentrate on

optimizing the circuit in terms of data flow. For maximum flexibility in the design process,

designers typically use a Verilog description style that combines the concepts of gate-level, data

flow, and behavioral design. In the digital design community, the term RTL (Register Transfer

Level) design is commonly used for a combination of dataflow modeling and behavioral modeling.

Continuous Assignments:

A continuous assignment is the most basic statement in dataflow modeling, used to drive a value

onto a net. This assignment replaces gates in the description of the circuit and describes the circuit at

a higher level of abstraction. The assignment statement starts with the keyword assign. The syntax

of an assign statement is as follows.

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;

list_of_net_assignments ::= net_assignment { , net_assignment }

net_assignment ::= net_lvalue = expression

Notice that drive strength is optional and can be specified in terms of strength levels. The

default value for drive strength is strong1 and strong0. The delay value is also optional and can be

used to specify delay on the assign statement. This is like specifying delays for gates. Delay

specification is discussed in this chapter. Continuous assignments have the following characteristics:

1. The left hand side of an assignment must always be a scalar or vector net or a concatenation of

scalar and vector nets. It cannot be a scalar or vector register.

2. Continuous assignments are always active. The assignment expression is evaluated as soon as one

of the right-hand-side operands changes and the value is assigned to the left-hand-side net.

3. The operands on the right-hand side can be registers or nets or function calls. Registers or nets

can be scalars or vectors.

4. Delay values can be specified for assignments in terms of time units. Delay values are used to

control the time when a net is assigned the evaluated value. This feature is similar to specifying

delays for gates. It is very useful in modeling timing behavior in real circuits.

Examples of Continuous Assignment:

Continuous assign - Out is a net. i1 and i2 are nets.

assign out = i1 & i2;

Continuous assign for vector nets - addr is a 16-bit vector net addr1 and addr2 are 16-bit vector

registers.

assignaddr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0];

Concatenation - Left-hand side is a concatenation of a scalar net and a vector net.

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in;

Implicit Continuous Assignment:

Instead of declaring a net and then writing a continuous assignment on the net, Verilog provides a

shortcut by which a continuous assignment can be placed on a net when it is declared. There can be

only one implicit declaration assignment per net because a net is declared only once.

In the example below, an implicit continuous assignment is contrasted with a regular continuous

assignment.

//Regular continuous assignment

wire out;

assign out = in1 & in2;

//Same effect is achieved by an implicit continuous assignment

wire out = in1 & in2;

Implicit Net Declaration

If a signal name is used to the left of the continuous assignment, an implicit net declaration will be

inferred for that signal name. If the net is connected to a module port, the width of the inferred net is

equal to the width of the module port.

wire i1, i2;

assign out = i1 & i2; //Note that out was not declared as a wire

//but an implicit wire declaration for out //is done by the simulator

Delays

Delay values control the time between the change in a right-hand-side operand and when the new

value is assigned to the left-hand side. Three ways of specifying delays in continuous assignment

statements are regular assignment delay, implicit continuous assignment delay, and net declaration

delay.

Regular Assignment Delay

The first method is to assign a delay value in a continuous assignment statement. The delay value is

specified after the keyword assign. Any change in values of in1 or in2 will result in a delay of 10

time units before recomputation of the expression in1 & in2, and the result will be assigned to out. If

in1 or in2 changes value again before 10 time units when the result propagates to out, the values of

in1 and in2 at the time of recomputation are considered. This property is called inertial delay. An

input pulse that is shorter than the delay of the assignment statement does not propagate to the

output.

assign #10 out = in1 & in2; // Delay in a continuous assign

Figure 4.15: Delays

The above waveform is generated by simulating the above assign statement. It shows the delay on

signal out. Note the following change:

When signals in1 and in2 go high at time 20, out goes to a high 10 time units later (time = 30).

When in1 goes low at 60, out changes to low at 70.

However, in1 changes to high at 80, but it goes down to low before 10 time units have elapsed.

Hence, at the time of recomputation, 10 units after time 80, in1 is 0. Thus, out gets the value 0. A

pulse of width less than the specified assignment delay is not propagated to the output.

Implicit Continuous Assignment Delay

An equivalent method is to use an implicit continuous assignment to specify both a delay and an

assignment on the net.

//implicit continuous assignment delay

wire #10 out = in1 & in2;

//same as wire out;

assign #10 out = in1 & in2;

The declaration above has the same effect as defining a wire out and declaring a continuous

assignment on out.

Net Declaration Delay:

A delay can be specified on a net when it is declared without putting a continuous assignment on

the net. If a delay is specified on a net out, then any value change applied to the net out is delayed

accordingly. Net declaration delays can also be used in gate-level modeling.

//Net Delays

wire # 10 out;

assign out = in1 & in2;

//The above statement has the same effect as the following. wire

out;

assign #10 out = in1 & in2;

Examples

Master Slave Flip-flop:

module MSDFF_DF (D, C, Q, Qbar) ;

input D, C; output Q, Qbar;

wireNotC, NotD, NotY, Y, Dl, D2, Ybar, Yl, Y2;

assignNotD = ~ D;

assign Note = ~ C;

assignNotY = ~ Y;

assign D1= - (D & C) ;

assign D2 = ~ (C &NotD);

assign Y = ~ (Dl St Ybar);

assignYbar = ~ (Y & D2);

assignYl = ~ (y & Note);

assign Y2 = - (NotY&NotC);

assign Q = ~ (Qbar&Yl);

assignQbar = ~ (Y2 & Q);

endmodule

8 bit Magnitude Comparator: moduleMagnitudeComparator

(A, B, AgtB, AeqB, AltB) ; parameter BUS= 8;

parameter EQ_DELAY = 5, LT_DELAY = 8, GT_DELAY = 8;

input [1 : BUS]A, B;

outputAgtB, AeqB, AltB;

assign %EQ_DELAY AeqB = A == B;

assign $GT_DELAY AgtB = A > B;

assign $LT_DELAY AltB = A < B;

endmodule

Behavioral Modeling:

Behavioral modeling is the highest level of abstraction in the Verilog HDL. The other modeling

techniques are relatively detailed. They require some knowledge of how hardware or hardware

signals work. The abstraction in this modeling is as simple as writing the logic in C language. This is

a very powerful abstraction technique. All that a designer need is the algorithm of the design, which

is the basic information for any design.

Most of the behavioral modeling is done using two important constructs: initial and always. All the

other behavioral statements appear only inside these two structured procedure constructs.

Procedural Constructs:

Initial Construct:

The statements which come under the initial construct constitute the initial block. The initial block is

executed only once in the simulation, at time 0. If there is more than one initial block, then all the

initial blocks are executed concurrently. The initial construct is used as follows:

initial begin

reset=1'b0;

clk=1'b1;

end

or

initial

clk = 1'b1;

In the first initial block there is more than one statement hence they are written between begin and

end. If there is only one statement then there is no needs to put begin and end.

Always Construct:

The statements which come under the always construct constitute the always block. The always

block starts at time 0, and keeps on executing all the simulation time. It works like a infinite loop. It

is generally used to model a functionality that is continuously repeated.

always

#5 clk=~clk;

initial

clk = 1'b0;

The above code generates a clock signal clk, with a time period of 10 units. The initial blocks

initiates the clk value to 0 at time 0. Then after every 5 units of time it toggled, hence we get a time

period of 10 units. This is the way in general used to generate a clock signal for use in test benches.

always@(posedgeclk, negedge reset)

begin

a = b + c;

d = 1'b1;

end

In the above example, the always block will be executed whenever there is a positive edge in the clk

signal, or there is negative edge in the reset signal. This type of always is generally used in

implement a FSM, which has a reset signal.

always @(b, c, d)

begin

a = (b + c)*d;

e = b | c;

end

In the above example, whenever there is a change in b, c, or d the always block will be executed.

Here the list b, c, and d is called the sensitivity list.

In the Verilog 2000, we can replace always @(b,c,d) with always @(*), it is equivalent to include all

input signals, used in the always block. This is very useful when always blocks are used for

implementing the combination logic.

Operations & Assignments

The design description at the behavioral level is done through a sequence of assignments. These are

called ‘procedural assignments’ – in contrast to the continuous assignments at the data flow level.

Though it appears similar to the assignments at the data flow level discussed in the last chapter, the

two are different. The procedure assignment is characterized by the following:

• The assignment is done through the “=” symbol (or the “<=” symbol) as was the case with the

continuous assignment earlier.

• An operation is carried out and the result assigned through the “=” operator to an operand

specified on the left side of the “=” sign – for example, N = ~N;

• Here the content of reg N is complemented and assigned to the reg N itself. The assignment is

essentially an updating activity.

• The operation on the right can involve operands and operators. The operands can be of different

types – logical variables, numbers – real or integer and so on.

Procedural Assignments

Procedural assignments are used for updating reg, integer, time, real, realtime, and memory data

types. The variables will retain their values until updated by another procedural assignment. There is

a significant difference between procedural assignments and continuous assignments. Continuous

assignments drive nets and are evaluated and updated whenever an input operand changes value.

Whereas procedural assignments update the value of variables under the control of the procedural

flow constructs that surround them.

The LHS of a procedural assignment could be:

• reg, integer, real, realtime, or time data type.

• Bit-select of a reg, integer, or time data type, rest of the bits are untouched.

• Part-select of a reg, integer, or time data type, rest of the bits are untouched.

• Memory word.

Concatenation of any of the previous four forms can be specified. When the RHS evaluates to fewer

bits than the LHS, then if the right-hand side is signed, it will be sign-extended to the size of the left-

hand side. There are two types of procedural assignments: blocking and non- blocking assignments.

Blocking assignments:

Blocking assignment statements are executed in the order they are specified in a sequential block.

The execution of next statement begins only after the completion of the present blocking

assignments. A blocking assignment will not block the execution of the next statement in a parallel

block. The blocking assignments are made using the operator =.

initial

begin

a = 1; b = #5 2; c = #2 3;

end

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is

assigned value 3 at time 7.

Non-blocking assignments:

The non-blocking assignment allows assignment scheduling without blocking the procedural flow.

The non-blocking assignment statement can be used whenever several variable assignments within

the same time step can be made without regard to order or dependence upon each other. Non-

blocking assignments are made using the operator <=.

Note: <= is same for less than or equal to operator, so whenever it appears in expression it is

considered to be comparison operator and not as non-blocking assignment.

Initial

begin a

<= 1;

b <= #5 2;

c <= #2 3;

end

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is

assigned value 3 at time 2 (because all the statements execution starts at time 0, as they are non-

blocking assignments).

Conditional (if-else) Statement:

The condition (if-else) statement is used to make a decision whether a statement is executed or not.

The keywords if and else are used to make conditional statement. The conditional statement can

appear in the following forms.

if (conditional_1)

procedural_statement 1

{else if (condition_2)

procedural_statement_2}

{else

procedural_statement_3 }

Conditional (if-else) statement usage is similar to that if-else statements of C programming

language, except that parenthesis is replaced by begin and end.

If conditional evaluates to a non-zero known value, then the procedural_statement_1 is executed. If

conditional evaluates to a value 0, x or z, the procedural_statement_1 is not executed, and an else

branch, if it exists, is executed. Here is an example.

if (Sum < 60)

begin

Grade = C; Total_C = Total_C + 1;

end

else if [Sum < 75)

begin

Grade = B; Total_B = Total_B + 1 ;

end

else

begin

Grade = A; Total A = Total_A + 1;

end

Loop Statements

There are four kinds of loop statements. These are:

i. Forever-loop

ii. Repeat-loop

iii. While-loop

iv. For-loop

i. Forever loop

The syntax for this form of loop statement is:

forever

procedural_statement

This loop statement continuously executes the procedural statement. Thus to get out of such a loop,

a disable statement may be used with the procedural statement. Also, some form of timing controls

must be used in the procedural statement, otherwise the forever-loop will loop forever in zero delay.

Here is an example of this form of loop statement.

initial

begin

Clock = 0;

#5 forever

10 Clock = ~ Clock;

end

This example generates a clock waveform; Clock first gets initialized to 0 and stays at 0 until 5 time

units. After that Clock toggles every 10 time units.

Repeat loop

This form of loop statement has the form:

repeat (loop_count)

procedural_statement

It executes the procedural statement the specified number of times. If loop count expression is an x

or a z, then the loop count is treated as a 0. Here are some examples.

repeat (Count)

Sum = Sum + 10;

repeat(ShiftBy)

P_Reg = P_Reg<<1;

The repeat-loop statement differs from repeat event control. Consider, repeat

(Count) // Repeat-loop statement.

@ (posedgeClk) Sum = Sum + 1;

which means for Count times, wait for positive edge of Clk and when this occurs, increment Sum.

Whereas,

Sum = repeat (Count) @ (posedgeClk) Sum + 1; // Repeat event control

means to compute Sum + 1 first, then wait for Count positive edges on Clk, then assign to left- hand

side.

While Loop:

The syntax of this form of loop statement is:

while (condition)

procedural_statement

This loop executes the procedural statement until the specified condition becomes false. If the

expression is false to begin with, then the procedural statement is never executed. If the condition is

an x or a z, it is treated as a 0 (false). Here are some example

while (By> 0)

begin

Acc = Acc<< 1;

By = By - 1;

end

For-loop Statement:

This loop statement is of the form:

for (initial_assignment; condition;step_assignment)

procedural_statement

A for-loop statement repeats the execution of the procedural statement a certain number of times.

The initial_assignment specifies the initial value of the loop index. The condition specifies the

condition when loop execution must stop. As long as the condition is true, the statements in the loop

are executed. The step_assignment specifiesthe assignment to modify, typically to increment or

decrement, the step count.

integer K;

for (K = 0; K < MAX_RANGE; K = K + 1)

begin

if {Abus[K] == 0)

Abus[K) = 1;

else if (Abus[K] == 1)

Abus[K] = 0;

else

$display (\"Abus[K] is an x or a z\");

end

Examples:

4x1 Multiplexer

module mux4(input a, b, c, d

input [1:0] sel,

output out);

always @(a or b or c or d or sel)

begin

if(sel==0)

out = a;

else if (sel==1)

out = b;

else if (sel == 2)

out = c ;

else if (sel == 3)

out = d;

end

endmodule

D flip-flop

module RisingEdge_DFlipFlop(D,clk,Q);

input D; // Data input

input clk; // clock input

output Q; // output Q

always @(posedgeclk)

begin

end

Q <= D;

endmodule

Shift Register (Serial In Serial Out)

module shift (C, SI, SO);

input C,SI;

output SO; reg

[7:0] tmp;

always @(posedge C)

begin

tmp = tmp<< 1;

tmp[0] = SI;

end

assign SO = tmp[7];

endmodule

Structural Modelling:

The structural model of Verilog HDL is described using:

• Gate instantiation

• UDP instantiation

• Module instantiation

Module

A module defines a basic unit in Verilog HDL. It is of the form:

modulemodule_name (port_list);

Declarations_and_Statements

endmodule

The port list gives the list of ports through which the module communicates with the external

modules.

Ports

A port can be declared as input, output or inout. A port by default is a net. However, it can be

explicitly declared as a net. An output or an inout port can optionally be redeclared as a regregister.

In either the net declaration or the register declaration the net or register must have the same size as

the one specified in the port declaration. Here are some examples of declarations.

module Micro {PC, Instr, NextAddr);

// Port declarations:

input [3:1] PC;

output [1:8] Instr; inout

[16:1]NextAddr;

// Redeclarations:

wire [16:1] NextAddr;

//Optional; but if specified must have same range as in its port declaration. reg

[1:8] Instr;

/* Instr has been redeclared as a reg so that it can be assigned a value within an always statement or

an initial statement. */

endmodule

Module Instantiation

A module can be instantiated in another module, thus creating hierarchy. A module instantiation

statement is of the form:

module_name instance_name(port_associations);

Port associations can be by position or by name; however, associations cannot be mixed. A port

association is of the form:

port_expr // By position.

.PortName (port_expr)// By name.

Where port_expr can be any of the following:

i. an identifier (a register or a net)

ii. a bit-select

iii. a part-select

iv. a concatenation of the above

v. an expression (only for input ports)

In positional association, the port expressions connect to the ports of the module in the specified

order. In association by name, the connection between the module port and the port expression is

explicitly specified and thus the order of port associations is not important. Here is an example of a

full-adder built using two half-adder modules.

Half Adder:

module HA (A, B, S, C);

input A, B;

output S, C;

parameter AND_DELAY = 1, XOR_DELAY = 2;

assign #XOR_DELAY s=A ^ B;

assign #AND_ DELAY C= A & B;

endmodule

Full Adder:

module FA (P, Q, Cin, Sum, Cout);

input P, Q, Cin;

output Sum, Cout; parameter

OR_DELAY = 1; wire SI, CI,

C2;

//Two module instantiations:

HA h1 (P, Q, S1, C1);

// Associatingby position.

HA h2 (.A(Cin), .S(Sum), .B(S1), .C(C2)); //Associating by name.

// Gate instantiation:

or #OR_DELAY 01 (Cout, CI, C2) ;

endmodule

Figure 4.16: Full Adder using Two Half Adders

In the first module instantiation, HA is the name of the module, h1 is the instance name and ports

are associated by position, that is, P is connected to module (HA) port A, Q is connected to module

port B, S1 to S and C1 to module port C. In the second instantiation, the port association is by name,

that is, the connections between the module (HA) ports and the port expressions are specified

explicitly.

Different port length:

When a port and the local port expression are of different lengths, port matching is performed by

(unsigned) right justification or truncation. Here is an example of port matching.

moduleChild (Pba, Ppy) ;

input [5:0] Pba;

output [2:0] Ppy;

endmodule

module Top;

wire [1:2] Bdl;

wire [2:6] Mpr-, Child

C1 {Bdl, Mpr);

endmodule

In the module instantiation for Child, Bdl[2] is connected to Pba[0] and Bdl[1]is connected to

Pba[1]. Remaining input ports, Pba[5], Pba[4], Pba[3] are not connected and therefore have

the value z. Similarly,Mpr[6] is connected to Ppy[0], Mpr[5] is connected to Ppy[l] and Mpr[4] is

connected to Ppy[2].

Examples:

Decade counter:

Figure 4.17: Decade counter

module Decade_Ctr(Clock, Z);

input Clock;

output [0:3] Z;

wire SI, S2;

and A1 {SI, Z[2], Z[l]);// Primitive gate instantiation.

// Four module instantiations:

JK_FF JK1 (.J(1’b1), .K(1’b1), .ck(Clock),

.Q(z[0]), .NQ ()),

JK2 (.J(1’b1), .K(1’b1), .ck(Z[0]),

.Q(z[1]), .NQ ()),

JK3 (.J(1’b1), .K(1’b1), .ck(Z[1]),

.Q(z[2]), .NQ ()),

JK4 (.J(1’b1), .K(1’b1), .ck(Z[0]),

.Q(z[1]), .NQ (S2));

endmodule

3 bit UP-DOWN counter

Figure 4.18: 3 bit UP-DOWN counter

moduleUp_Down {Clk, Cnt_Up, Cnt_Down, Q);

inputClk, Cnt Up, Cnt_Down;

output [0:2] Q;

wire S1, S2, S3, S4, S5,S6, S7, S8;

JK_FF JK1 (l'bl, l'bl, Clk, Q[Q], S1),

JK2 (l'bl, l'bl, S4, Q[l], S5),

JK3 (l'bl, l'bl, S8, Q[2],);

and A1 (S2, Cnt_Up, Q[Q]),

A2 (S3, SI, Cnt_Down),

A3 (S7, Q[l] ,Cnt_Up),

A4 (S6, S5, Cnt_Down);

or 01 (S4, S2, S3),

02 (S8,S7, S6);

endmodule

 TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog Design",3rd edition, Tata McGraw

Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and Synthesis”, Star Galaxy

Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL, 2nd Edition, PHI, 2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.

 PART-A

 1. Justify the importance of gate primitives in Verilog HDL.

 2. List the user defined primitives in Verilog HDL.

 3. Distinguish gate level modeling and dataflow modeling.

 4. Develop a Verilog HDL program for Full Adder using gate level modeling.

 5. List the conditional statements in Verilog HDL.

 6. Develop a Verilog HDL program for 2*4 decoder using dataflow modeling.

 7. Develop a verilog HDL program for XOR gate using switch level modeling.

 8. Formulate any one loop statement in Verilog HDL.

 9. Classify the types of delays in verilog HDL.

 10. Develop Verilog HDL code for 1 bit comparator.

 PART-B

 1. Develop a program in Verilog HDL to design a multiplexer using if and case statement.

 2. Discuss with example structural modeling of Verilog HDL.

 3. Develop a Verilog HDL program for SISO and SIPO shift registers

 4. Distinguish between dataflow modeling and behavioral modeling of Verilog HDL

SCHOOL OF ELECRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SEC1402-PROGRAMMING IN HDL

UNIT V - FEATURES IN VERILOG HDL

FEATURES IN VERILOG HDL

Tasks and Functions

Tasks and functions provide the ability to execute common procedures from several different places

in a description. They also provide a means of breaking up large procedures into smaller ones to

make it easier to read and debug the source descriptions. Input, output, and inout argument values

can be passed into both tasks and functions.

Differences between Functions and Tasks

The following rules distinguish tasks from functions:

• A function must execute in one simulation time unit; a task can contain time-controlling

statements.

• A function cannot enable a task; a task can enable other tasks and functions.

• A function must have at least one input argument; a task can have zero or more arguments of any

type.

• A function returns a single value; a task does not return a value. The purpose of a function is to

respond to an input value by returning a single value. A task can support multiple goals and can

calculate multiple result values. However, only the output or inout argumentspass result values back

from the invocation of a task. A Verilog model uses a function as an operand in an expression; the

value of that operand is the value returned by the function.

Task and function declarations specify the following:

• local variables

• I/O ports

• registers

• times

• integers

• real

• events

These declarations all have the same syntax as for the corresponding declarations in a module

definition. If there is more than one output, input, and inout port declared in a task these must be

enclosed within a block.

Task

• A task begins with keyword task and ends with keyword endtask

• Inputs and outputs are declared after the keyword task.

• Local variables are declared after input and output declaration.

Task declaration and invocation

• Task Declaration syntax

task <task_name>; <I/O declarations> <variable and event declarations>

begin

<statement(s)>

end

endtask

• Task invocation syntax

<task_name>; <task_name>(<arguments>);

Function Rules

Functions are more limited than tasks. The following five rules govern their usage:

• A function definition cannot contain any time controlled statements—that is, any statements

introduced with #, @, or wait.

• Functions cannot enable tasks.

• A function definition must contain at least one input argument.

• A function definition must include an assignment of the function result value to the internal

variable that has the same name as the function.

begin

temp_out = (9/5) *(temp_in+ 32)

end

endtask

endmadule

Function

A Verilog HDL function is the same as a task, with very little differences, like function cannot drive

more than one output, can not contain delays.

• functions are defined in the module in which they are used. It is possible to define functions

in separate files and use compile directive 'include to include the function in the file which

instantiates the task.

• functions can not include timing delays, like posedge, negedge, # delay, which means that

functions should be executed in "zero" time delay.

• functions can have any number of inputs but only one output. The variables declared within

the function are local to that function. The order of declaration within the function defines

how the variables passed to the function by the caller are used.

• functions can take, drive, and source global variables, when no local variables are used.

When local variables are used, basically output is assigned only at the end of function

execution.

• functions can be used for modeling combinational logic.

• functions can call other functions, but cannot call tasks.

Syntax

• A function begins with keyword function and ends with keyword endfunction.

• inputs are declared after the keyword function.

Verilog contains the pre-defined system tasks and functions, including tasks for creating output from

a simulation. All system tasks appear in the form $.Operations such as displaying the screen,

monitoring values of nets, stopping and finishing are done by system tasks.

DISPLAY TASKS

$display

$display displays information to standard output and adds a newline character to the end of its

output.

SYSTEM TASKS AND FUNCTIONS

• A function definition can’t contain an inout declaration or an output declaration

Function Declaration and Invocation

Declaration syntax:

function <range_or_type> <func_name>;

<input declaration(s)>

<variable_declaration(s)>

begin

<statements>

end

endfunction

Invocation syntax:

<func_name> (<argument(s)>);

Example

module simple_function();

function myfunction; input

a, b, c, d;

begin

myfunction = ((a+b) + (c-d));

end

endfunction

endmodule

$monitor

$monitor continuously monitors and displays the values of any variables or expressions specified as

parameters to the task. Parameters are specified in the same format as for $display.

$monitoron -$monitoron controls a flag to re-enable a previously disabled $monitor.

Syntax: $monitoron;

$monitoroff-$monitoroff controls a flag to disable monitoring.

Syntax: $monitoroff;

$write

$write displays information to standard output without adding a newline character to the end of its

output.

Syntax: $write (list_of_arguments);

The default format of an expression argument that has no format specification is decimal. The

companion $writeb, $writeo, and $writeh tasks specify binary, octal and hex formats, respectively.

FILE I/O TASKS

$fclose

$fclose closes the channels and prevents further writing to the closed channels.

Syntax: file_closed_task ::= $fclose ;

$fdisplay

$fdisplay is the counterpart of $display; it is used to direct simulation data to a file.

Syntax: $fdisplay ([multi_channel_descriptor], list_of_arguments);

$fopen

$fopen opens the file specified by a parameter and returns a 32-bit unsigned MCD (integer multi-

channel-descriptor) uniquely associated the file. $fopen rturns 0 if the file could not be opened.

Syntax: file_open_function ::= integer multi_channel_descriptor = $fopen(“[name_of_file]”);

$readmemb

$readmemb reads binary numbers from a text file and loads them into a Verilog memory, or sub-

blocks of a memory, specified by an identifier.

Syntax: $readmemb (“filename”, memory_name [, start_addr [, finish_addr]]);

Modeling a Test bench

Whenever we design a circuit or a system, one step that is most important is “testing”. Testing is

necessary to verify whether the designed system works as expected or not.

If we find some error in an IC after fabrication, we are looking at a great loss because now we have

to re-do the entire chip manufacturing process from scratch right from designing the circuit to

fabrication.

Test benches are used to test the RTL (Register-transfer logic) that we implement using HDL

languages like Verilog and VHDL.

Verifying complex digital systems after implementing the hardware is not a wise choice. It is

ineffective in terms of time, money, and resources. Hence, it is essential to verify any design before

finalizing it. Luckily, in the case of FPGA and Verilog, we can use test benches for testing Verilog

source code.

Now we are going to learn how we can use Verilog to implement a test bench to check for errors or

inefficiencies. We’ll first understand all the code elements necessary to implement a test bench in

Verilog. Then we will implement these elements in a stepwise to truly understand the method of

writing a test bench.

Design Under Test (DUT)

A design under test, abbreviated as DUT, is a synthesizable module of the functionality we want to

test. In other words, it is the circuit design that we would like to test. We can describe our DUT

using one of the three modeling styles in Verilog, Gate level, Dataflow level and Behavioral level.

For example,

SIMULATION CONTROL TASKS

$finish

$finish terminates simulation, and returns control to the host operating system.

Syntax: $finish;

$stop

$stop suspends simulation, issues an interactive prompt, and passes control to the user.

$stop(n) suspends simulation, issues and interactive prompt, and takes the following action,

depending on the diagnostic control parameter, n:

n = 0 Prints nothing.n = 1 Prints the simulation time and location

n = 2 Prints simulation time and location

reg A, B;

wire C;

We have described an AND gate using Dataflow modeling. It has two inputs (a,b) and an output (c).

We have used continuous assignment to describe the functionality using the logic equation. This

AND gate can be our DUT.

So, to test our DUT, we have to write the test bench code. Why

do we have to take the trouble to write another code?

With a test bench, we can view all the signals associated with the DUT. No need for physical

hardware.

Writing a test bench is a bit trickier than RTL coding. Verifying a system can take up around 60-

70% of the design process.

Implementation of test bench

Let’s learn how we can write a test bench. Consider the AND module as the design we want to test.

Like any Verilog code, start with the module declaration.

 module and_gate_test_bench;

Reg and wire declarations

Usually, we declare the input and output ports. But, in a test bench, we will use two signal types for

driving and monitoring signals during the simulation.

The reg datatype will hold the value until a new value is assigned to it. This data type can be

assigned a value only in the always or initial block. This is used to apply a stimulus to the inputs of

DUT.

The wire datatype is similar to that of a physical connection. It will hold the value that is driven by

a port, assign statement, or reg. This data type cannot be used in initial or always

blocks. This is used to check the output signals from the DUT.

We can declare these data types for the test bench of the AND module.

module and_gate(c,a,b);

input a,b;

output c;

assign c = a & b;

endmodule

reg A,B;

wire C;

initial

begin

#5 A =0; B=0;

#5 A =0; B=1;

#5 A =1; B=0;

#5 A =1; B=1;

end

DUT Instantiation

The purpose of a test bench is to verify whether our DUT module is functioning as we wish. Hence,

we have to instantiate our design module to the test module. The format of the instantiation is:

<dut_module> <instance name>(.<dut_signal>(test_module_signal),…)

 and_gate dut(.a(A), .b(B), .c(C));

We have instantiated the DUT module and_gate to the test module. The signals with a dot in front

of them are the names for the signals inside the and_gate module, while the wire or

reg they connect to in the test bench is next to the signal in parenthesis.

Test bench for AND Gate

We have already written the Verilog file for an AND gate. Let’s see how to write a test bench for

that DUT.

Start with declaring the module as for any Verilog file. We can name the module as and_tb

 module and_tb;

Then, let’s have the reg and wire declarations on the way. The input from the DUT is declared as reg

and wire for the output of the DUT. It is through these data types we can apply the stimulus to the

DUT. Using upper case letters for signals in the test bench avoids confusion.

Then comes the part of performing instantiation.

 and_gate dut(.a(A), .b(B), .c(C));

We have linked our test bench to the DUT.

Let’s get to applying the stimulus.

module and_tb;

reg A,B;

wire C;

and_gate dut(.a(A), .b(B), .c(C));

initial

begin

#5 A =0; B=0;

#5 A =0; B=1;

#5 A =1; B=0;

#5 A =1; B=1;

end

end module

So our final testbench code will be:

Testbench for D-flip flop

For sequential circuits, the clock and reset signals are essential for its functioning.

Let’s test the Verilog code for D-flip flop. Here’s the DUT:

module dff_behave(clk,rst,d,q,qbar); input

clk,rst,d;

 output reg q,qbar;

 always@(posedgeclk) begin

 if(rst == 1) begin

 q <= 0;

 qbar <= 1; end

 else begin q <= d;

 qbar <= ~d;

always

#10 CLK = ~CLK;

Let’s start writing a testbench for the above :

As usual start with the module declaration. Naming the module as dff_tb

 module dff_tb

Moving on with the reg and wire declaration:

Time for DUT instantiation:

 dff_behave dut(.clk(CLK), .rst(RST), .d(D), .q(Q), .qbar(QBAR));

As we said, a clock signal is essential for working of the flip flop. So, here’s how we create a clock

stimulus for our testbench.

The above clock will have a 20 ns pulse width. Therefore, we have generated a 50 MHz clock. Let’s

apply the stimulus for our DUT:

Finally, our testbench code is:

initial

begin

RST = 1;

#10 RST = 0;

#10 D = 0;

#10 D = 1

end

reg D,CLK,RST;

wire Q, QBAR;

end

end

endmodule

module dff_tb;

reg CLK = 0;

reg D,RST;

wire Q,QBAR;

dff_behave dut(.clk(CLK), .rst(RST), .d(D), .q(Q), .qbar(QBAR));

always

#10 CLK = ~CLK;

initial begin RST =1;

#10 RST = 0;

#10 D = 0;

#20 D = 1

end endmodule

Test Bench for Half Adder

module half_adder_verilog_tb;

reg a, b;

wire s, c;

halfadder8 dut (.a(a), .b(b), .s(s), .c(c));

initial

begin

a = 0;

b = 0;

#50;

a = 0;

b = 1;

#50;

a = 1;

b = 0;

#50;

a = 1;

b = 1;

end

endmodule

Concepts of Timing and Delays in Verilog

The concepts of timing and delays within circuit simulations are very important because they allow

a degree of realism to be incorporated into the modeling process. In Verilog, without explicit

specification of such constraints, the outputs of pre-defined primitives and user- defined modules are

all assumed to resolve instantaneously. Some designs, such as high speed microprocessors, may

have very tight requirements that must be met. Failure to meet these constraints may result in the

design failing to work at all, or possibly even producing invalid outputs. Thus, the aim of the

designer may be to produce a circuit that functions correctly, and it is equally important that the

circuit also conforms to any timing constraints required of it.

Delays

Delays can be modelled in a variety of ways, depending on the overall design approach that has been

adopted, namely gate-level modelling, dataflow modelling and behavioural modelling.

Gate level modeling

In real circuits, logic gates have delays associated with them. Gate delays allow the Verilog user to

specify delays through the logic circuits. Pin-to-pin delays can also be specified in Verilog.

Rise, Fall, and Turn-off Delays

There are three types of delays from the inputs to the output of a primitive gate

Rise delay

The rise delay is associated with a gate output transition to a 1 from another value.

Fall delay

0, 1, x and z take their usual meanings of logic low, logic high, unknown and high impedance. Any

or all of these delays can be specified for each gate by use of the delay token #. If only one value is

specified, it is used for all these delays. If two are given, they are used for the rise and fall delays

respectively. The turn-off delay (the time taken for the output to go to a high impedance state) is

taken to be the minimum of these values. Alternatively, all three values can be explicitly set. The

use of delays is illustrated for the 2-input multiplexer.

module multiplexor_2_to_1(out, cnt, a, b);

/*

* A 2-1 1-bit multiplexor

*/ output

out;

input cnt, a, b;

wire not_cnt, a0_out, a1_out;

not # 2 n0(not_cnt, cnt); /* Rise=2, Fall=2, Turn-Off=2 */ and

#(2,3) a0(a0_out, a, not_cnt); /* Rise=2, Fall=3, Turn-Off=2 */ and

#(2,3) a1(a1_out, b, cnt);

or #(3,2) o0(out, a0_out, a1_out); /* Rise=3, Fall=2, Turn-Off=2 */

endmodule /* multiplexor_2_to_1 */

The fall delay is associated with a gate output transition to a 0 from another value.

Turn-off delay

The turn-off delay is associated with a gate output transition to the high impedance value

(z) from another value.

If the value changes to X, the minimum of the three delays is considered.

Dataflow modeling

Net Declaration Delay

The delay to be attributed to a net can be associated when the net is declared. Thereafter any

changes of the signals being assigned to the net will only be propagated after the specified delay.

e.g. wire #10 out;

assign out = in1 & in2;

If either of the values of in1 or in2 should happen to change before the assigment to out has taken

place, then the assignment will not be carried out, as input pulses shorter than the specified delay are

filtered out. This is known as inertial delay.

Regular Assignment Delay

This is used to introduce a delay onto a net that has already been declared.

e.g. wire out; assign #10 out = in1 & in2;

This has a similar effect to the code above, computing the value of in1 & in2 at the time that the

assign statement is executed, and then storing that value for the specified delay (in this case 10 time

units), before assigning it to the net out.

Implicit Continuous Assignment

Since a net can be implicitly assigned a value at its declaration, it is possible to introduce a delay

then, before that assignment takes place.

e.g. wire #10 out = in1 & in2;

It should be easy to see that this is effectively a combination of the above two types of delay, rolled

into one.

Behavioural modelling

Regular Delay or Inter-assignment delay

This is the most common delay used - sometimes also referred to as inter-assignment delay control.

e.g. #10 q = x + y;

It simply waits for the appropriate number of timesteps before executing the command.

module clk_gen;

reg clk, reset;

clk = 0;

reset = 0;

#2 reset = 1;

#5 reset = 0;

Intra-Assignment Delay Control

With this kind of delay, the value of x + y is stored at the time that the assignment is executed, but

this value is not assigned to q until after the delay period, regardless of whether or not x or y

have changed during that time.

e.g. q = #10 x + y;

This is similar to the delays used in dataflow modeling.

Timing controls

Timing controls provide a way to specify the simulation time at which procedural statements will

execute.

There are three methods of timing control

• Delay based timing control

• Event based timing control

• Level-sensitive timing control

Delay based timing control

Delay-based timing control in an expression specifies the time duration between the statement is

encountered and when it is executed. Delays are specified by the symbol #.

There are three types of delay control for procedural assignments

• Regular delay control

• Intra-assignment delay control

• Zero delay control

Regular delay control

Regular delay control is used when a non-zero delay is specified to the left of a procedural

assignment. Usage of regular delay control is shown below example,

module intra_assign;

reg a, b;

a = 1;

b = 0;

a = #10 0;

b = a;

endmodule

initial

begin

x=0;

y=0;

end

initial

Intra-assignment delay control

Instead of specifying delay control to the left of the assignment, it is possible to assign a delay to the

right of the assignment operator. Usage of intra-assignment delay control is shown in below

example,

Difference between the intra-assignment delay and regular delay

Regular delays defer the execution of the entire assignment. Intra-assignment delays compute the

right-hand-side expression at the current time and defer the assignment of the computed value to the

left-hand-side variable. Intra-assignment delays are like using regular delays with a temporary

variable to store the current value of a right-hand-side expression.

Zero delay control

Zero delay control is a method to ensure that a statement is executed last, after all other statements

in that simulation in that simulation time are executed. This is used to eliminate race conditions.

However, if there are multiple zero delay statements, the order between them is nondeterministic.

Usage of zero delay control is shown in below example,

#10 $finish;

endmodule

module edge_wait_example();

reg enable, clk, trigger;

always @ (posedge enable)

begin

trigger = 0;

// Wait for 5 clock cycles

repeat (5) begin

@ (posedge clk) ;

end

trigger = 1;

Above four statements x=0,y=0,x=1,y=1 are to be executed at simulation time 0. However since x=1

and y=1 have #0, they will be executed last. Thus, at the end of time 0,x will have value 1 and y will

have value 1.

Event based timing control

An event is the change in the value on a register or a net. Events can be utilized to trigger execution

of a statement or a block of statements. There are four types of event-based timing control.

• Regular event control

• Named event control

• Event OR control

• Level-sensitive timing control

Regular event control

The @ symbol is used to specify an event control. Statements can be executed on changes in signal

value or at a positive or negative transition of the signal value. The keyword posedge is used for a

negative transition as shown in below example,

begin

#0 x=1;

#0 y=1;

end

Example

event received_data;

always @(posedge clock)

begin

if (last_data_packet)

received_data;

end

always @(received_data)

always @(reset or clock or d)

begin

if(reset)

q=1’b0;

else if (clock)

q=d;

end

 end

Named event control

Verilog provides the capability to declare an event and then trigger and recognize the occurrence of

that event. The event does not hold any data. A named event is declared by the keyword event. An

event is triggered by the symbol . The triggering of the event is recognized by the symbol @.

data_buf={data_pkt[0],data_pkt[1]};

Event OR control

Sometimes a transition on any one of multiple signals or events can trigger the execution of a

statement or a block of statements. This is expressed as an OR of events or signals. The list of events

or signals expressed as an OR is also known as a sensitivity list. The keyword or is used to specify

multiple triggers as shown in below example,

Example

always

wait (count_enable) #20 count=count+1;

Level-Sensitive Timing control

Verilog allows a level-sensitive timing control, that is, the ability to wait for a certain condition to be

true before a statement or a block of statements is executed. The keyword wait is used for level-

sensitive constructs.

From the above example, the value of count_enable is monitored continuously. If count_enable is 0,

the statement is not entered. If it is logical 1, the statement count=count+1 is executed after 20 time

units. If count_enable stays at 1, count will be incremented every 20 time units.

SWITCH LEVEL MODELING

Usually, transistor level modeling is referred to model in hardware structures using transistor

models with analog input and output signal values. On the other hand, gate level modeling

refers to modeling hard-ware structures with digital input and output signal values between these

two modeling schemes is referred to as switch level modeling. At this level, a hardware

component is described at the transistor level, but transistors only exhibit digital behavior and their

input, and output signal values are only limited to digital values. At the switch level, transistors

behave as on-off switches- Verilog uses a 4 value logic value system, so Verilog switch input

and output signals can take any of the four 0, 1, Z, and X logic values.

Switch level primitives

Switches are unidirectional or bidirectional and resistive or nonresistive. For each group those

primitives that switch on with a positive gate {like an NMOS transistor} and those that switch on

with a negative gate {like a PMOS transistor}. Switching on means that logic values flow from

input transistor to its input. Switching off means that the output of a transistor is at Z level

regardless of its input value. A unidirectional transistor passes its input value to

its output when it is switched on.

A bidirectional transistor conducts both ways. A resistive structure reduces the strength of its input

logic when passing it to its output. In addition to switch level primitives, pull-primitives that are

used as pull-up and pull-down resistors for tri-state outputs.

nmos n1(out, data, control); // instantiate a nmos switch

pmos p1(out, data, control); // instantiate a pmos switch

MOS Switches

Two types of MOS switches can be defined with the keywords nmos and pmos. Keyword

nmos is used to model NMOS transistors, Keyword pmos is used to model PMOS

transistors. The symbols for nmos and pmos switches are shown in figure.

Figure 5.1 : MOS switches

PMOS and NMOS Switches

In Verilog nmos and pmos switches are instantiated as shown in below

Since switches are Verilog primitives, like logic gates, the name of the instance is optional.

Therefore, it is acceptable to instantiate a switch without assigning an instance name

Value of the out signal is determined from the values of data and control signals. Logic tables for

out are shown in table. Some combinations of data and control signals cause the gates to output to

either a 1 or 0 or to an z value without a preference for either value. The symbol L stands for 0 or Z;

H stands for 1 or z.

nmos (out, data , control); // instantiate nmos switch ; no instance name

pmos (out, data, control); // instantiate pmos switch; no instance name

cmos cl(out, data, ncontrol, pcontrol);//instantiate cmos gate

or

cmos (out, data, ncontrol, pcontrol); //no instance name given

Logic Tables of NMOS and PMOS

Thus, the nmos switch conducts when its control signal is 1. If control signal is 0, the output

assumes a high impedance value. Similarly a pmos switch conducts if the control signal is 0.

CMOS Switches

CMOS switches are declared with the keyword cmos. A cmos device can be modeled with a nmos

and a pmos device. The symbol for a cmos switch is shown in figure.

Figure 5.2 : CMOS switch

CMOS switch

A CMOS switch is instantiated as shown in below,

The ncontrol and pcontrol are normally complements of each other. When the ncontrol signal is 1

and pcontrol signal is 0, the switch conducts.

Since a cmos switch is derived from nmos and pmos switches, it is possible derive the output value

from Table, given values of data, ncontrol, and pcontrol signals.

nmos (out, data, ncontrol); //instantiate a nmos switch

pmos (out, data, pcontrol); //instantiate a pmos switch

tran tl(inoutl, inout2); //instance name tl is optional

tranifO (inoutl, inout2, control); //instance name is not specified

Bidirectional switches

NMOS, PMOS and CMOS gates conduct from drain to source. It is important to have devices that

conduct in both directions. In such cases, signals on either side of the device can be the driver signal.

Bidirectional switches are provided for this purpose. Three keywords are used to define

bidirectional switches: tran, tranif0, and tranif1.

Symbols for these switches are shown in figure below.

Figure 5.3 : Bidirectional switches

The tran switch acts as a buffer between the two signals inoutl and inout2. Either inoutl or

inout2 can be the driver signal. The tranif0 switch connects the two signals inoutl

and inout2 only if the control signal is logical 0. If the control signal is a logical 1, the

nondriver signal gets a high impedance value z. The driver signal retains value from its driver.

The tranifl switch conducts if the control signal is a logical 1.

These switches are instantiated as shown in below.

Resistive switches reduce signal strengths when signals pass through them. The changes are shown

below. Regular switches retain strength levels of signals from input to output. The exception is that

if the input is of supply, the output is of strength strong. Below table shows the strength reduction

due to resistive switches.

Input strength

supply pull

strong pull

pull weak

weak medium

large medium

medium small

 small small

 high high

Example-CMOS NAND

Figure 5.4 : CMOS NAND

 module my_nand (Out,A,B); input A,B;

 ouput Out;

 wire C;

 supply1 Vdd;

 supply0 Vss;

 pmos (Out,A,Vdd)

 pmos (Out,B,Vdd);

 nmos (Out,A,C);

 nmos(C,Vss,B);

 endmodule

 TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog Design",3rd edition, Tata McGraw

Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and Synthesis”, Star Galaxy

Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL, 2nd Edition, PHI, 2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.

QUESTION BANK

 PART-A

 1. Define system task

 2. List the tristate gates

 3. Distinguish between system task and system function.

 4. Distinguish between unary operators and ternary operators.

 5. Formulate the syntax of event construct

 6. Define functional register

 7. Define path delay

 8. Define net delay

 9. Formulate the syntax of repeat construct.

 10. List the key words in Verilog HDL

 PART-B

 1. Write a model for a 4-Bit shift register with serial in data, serial out data using a for loop with an always

 Statement.

 2. Design a moore FSM with an example, Mention the state transition diagram for it.

 3. Design a mealy FSM with an example. Mention the state transition diagram for it.

 4. Develop a verilog code for 4-Bit ALU also obtain its test bench and simulation results.

 5. Design Verilog module for an edge triggered D Flip flop in the data flow model.

