
1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

UNIT - I

SEC1319 - Digital Signal Processing

2

I. DISCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER

TRANSFORM (FFT)

Review of Signals and Systems

Continuous Time signal – If the signal is defined over continuous-time, then the signal is a

continuous-time signal.

Ex: Sinusoidal signal, Voice signal, Rectangular pulse function

Fig 1 Continuous Time signal

Discrete Signal and Discrete Time Signal:

 The discrete signal is a function of a discrete independent variable. The independent variable

is divided into uniform intervals and each interval is represented by an integer. The letter "n"

is used to denote the independent variable. The discrete or digital signal is denoted by x(n).

Fig 2: Discrete Time Signal

3

Digital Signal: The signals that are discrete in time and quantized in amplitude are called

digital signal. The term "digital signal" applies to the transmission of a sequence of values of a

discrete-time signal in the form of some digits in the encoded form.

Representation of Discrete Time Signals

1. Functional representation

 In functional representation, the signal is represented as a mathematical equation, as shown

in the following example.

2. Graphical representation

 In graphical representation, the signal is represented in a two-dimensional plane. The

independent variable is represented in the horizontal axis and the value of the signal is

represented in the vertical axis as shown below

Fig 3: Discrete Time Signal

3. Tabular representation

 In tabular representation, two rows of a table are used to represent a discrete time signal. In

the first row, the independent variable "n" is tabulated and in the second row the value of the

signal for each value of "n" are tabulated as shown in the following table I.

Table 1. Tabular representation

4

4. Sequence representation

 In sequence representation, the discrete time signal is represented as a one-dimensional

array as shown in the following examples.

An infinite duration discrete time signal with the time origin, n = 0, indicated by the symbol - is

represented as, x(n) = { – 0.5, 1.0, –1.0, 0.6, 1.2, 1.5, }

 An infinite duration discrete time signal that satisfies the condition x(n) = 0 for n < 0 is

represented as,

x(n) = { –1.0, 0.6, 1.2, 1.5, ... } or x(n) = {–1.0, 0.6, 1.2, 1.5, ... }

A finite duration discrete time signal with the time origin, n = 0, indicated by the symbol - is

represented as, x(n) = { – 0.5, 1.0, –1.0, 0.6, 1.2, 1.5 }

A finite duration discrete time signal that satisfies the condition x(n) = 0 for n < 0 is

represented as,

x(n) = { –1.0, –0.6, 1.2, 1.5 } or x(n) = { –1.0, 0.6, 1.2, 1.5}

Standard Discrete Time Signals

Fig 4: Standard Discrete Time Signals

5

Classification of Discrete Time Signals

The discrete time signals are classified depending on their characteristics. Some
ways of classifying discrete time signals are,

 1. Deterministic and nondeterministic signals

 2. Periodic and aperiodic signals

3. Symmetric and antisymmetric signals

4. Energy and power signals

 5. Causal and noncausal signals

Deterministic and Nondeterministic Signals

The signals that can be completely specified by mathematical equations are called
deterministic signals. The step, ramp, exponential and sinusoidal signals are examples of
deterministic signals. The signals whose characteristics are random in nature are called
nondeterministic signals. The noise signals from various sources are best examples of
nondeterministic signals.

Periodic and Aperiodic Signals

When a discrete time signal x(n), satisfies the condition x(n + N) = x(n) for integer values of N,
then the discrete time signal x(n) is called periodic signal. Here N is the number of samples of
a period.

i.e, if, x(n + N) = x(n), for all n, then x(n) is periodic

The smallest value of N for which the above equation is true is called fundamental period. If
there is no value of N that satisfies the above equation, then x(n) is called aperiodic or
nonperiodic signal. When N is the fundamental period, the periodic signals will also satisfy the
condition x(n + kN) = x(n), where k is an integer. The periodic signals are power signals. The
discrete time sinusoidal and complex exponential signals are periodic signals when their
fundamental frequency, f0 is a rational number.

Fig 5. Periodic Discrete Time Signals

Symmetric (Even) and Antisymmetric (Odd) Signals

The discrete time signals may exhibit symmetry or antisymmetry with respect to n = 0.
When a discrete time signal exhibits symmetry with respect to n = 0 then it is called an even
signal. Therefore, the even signal satisfies the condition,

x(-n) = x(n)

6

When a discrete time signal exhibits antisymmetry with respect to n = 0, then it is called an
odd signal. Therefore the odd signal satisfies the condition,

x(-n) = -x(n)

Fig 6. Symmetric and antisymmetric Discrete Time Signals

Energy and Power Signals

The energy E of a discrete time signal x(n) is defined as,

The energy of a signal may be finite or infinite, and can be applied to complex valued and real
valued signals. If energy E of a discrete time signal is finite and nonzero, then the discrete time
signal is called an energy signal. The exponential signals are examples of energy signals. The
average power of a discrete time signal x(n) is defined as,

If power P of a discrete time signal is finite and nonzero, then the discrete time signal is called
a power signal. The periodic signals are examples of power signals. For energy signals, the
energy will be finite and average power will be zero. For power signals the average power is
finite and energy will be infinite.

Causal, Noncausal and Anticausal signals

A discrete time signal is said to be causal, if it is defined for n ³ 0. Therefore if x(n) is
causal, then x(n) = 0 for n < 0. A discrete time signal is said to be noncausal, if it is defined for
either n ≤ 0, or for both n ≤ 0 and n > 0. Therefore if x(n) is noncausal, then x(n) ≠ 0 for n < 0. A
noncausal signal can be converted to causal signal by multiplying the noncausal signal by a

7

unit step signal, u(n). When a noncausal discrete time signal is defined only for n ≤ 0, it is
called an anticausal signal.

Discrete-time Fourier transform (DTFT)

The Discrete Time Fourier Transform (DTFT) is the member of the Fourier transform

family that operates on aperiodic, discrete signals. The best way to understand the DTFT is

how it relates to the DFT. To start, imagine that you acquire an N sample signal, and want to

find its frequency spectrum. By using the DFT, the signal can be decomposed into sine and

cosine waves, with frequencies equally spaced between zero and one-half of the sampling

rate. As discussed in the last chapter, padding the time domain signal with zeros makes the

period of the time domain longer, as well as making the spacing between samples in the

frequency domain narrower. As N approaches infinity, the time domain becomes aperiodic,

and the frequency domain becomes a continuous signal. This is the DTFT, the Fourier

transform that relates an aperiodic, discrete signal, with a periodic, continuous frequency

spectrum.

The mathematics of the DTFT can be understood by starting with the synthesis and analysis

equations

The spectrum of the DTFT is continuous, so either f or ω can be used. The common choice is ω,

because it makes the equations shorter by eliminating the always present factor of 2π.

Remember, when ω is used, the frequency spectrum extends from 0 to π, which corresponds

to DC to one-half of the sampling rate. To make things even more complicated, many authors

use Ω (an upper case omega) to represent this frequency in the DTFT, rather than ω (a lower

case omega.

8

PROPERTIES OF THE FOURIER TRANSFORM

9

Discrete Fourier Transform (DFT):

Inverse Discrete Fourier Transform (IDFT):

The inverse discrete Fourier transform of X(k) is defined as

For notation purpose discrete Fourier transform and inverse Fourier transform can be

represented by

Formula:

Where K and n are in the range of 0 ,1,2……N-1 For example, if N=4, K= 0,1,2,3: N=0,1,2,3

Alternative Formula:

10

N

N

N

Properties of DFT:

Periodicity property:

If X(k) is the N-point DFT of x(n), then

X(k+N)=X(k)

Linearity property:

If X1(k)=DFT[x1(n)] & X2(k)=DFT[x2(n)], then

DFT[a1x1(n)+a2x2(n)]=a1X1(k)+a2X2(k)

Convolution property:

If X1(k) = DFT[x1(n)] & X2(k) = DFT[x2(n)], then

 DFT[x(n) x2(n)] = X1(k)X2(k)

Where indicates N-point circular convolution.

Multiplication property:

If X1(k) = DFT[x1(n)] & X2(k) = DFT[x2(n)], then

DFT[x1(n)x2(n)] = (1/N)[X1(k) N X2(k)]

Where Indicates N-point circular convolution.

Time reversal property:

If X(k) is the N-point DFT of x(n), then DFT[x(Nn)] = X(Nk)

Time shift property:

If X(k) is the N-point DFT of x(n), then

11

Symmetry properties:

If x(n)=xR(n)+jxI(n) is N-point complex sequence and X(k)=XR(k)+jXI(k) is the

N- point DFT of x(n) where xR(n) & xI(n) are the real & imaginary parts of x(n) and

XR(k) & XI(k) are the those of X(k), then

(i) DFT[x
*
(n)]=X

*
(Nk)

(ii) DFT[x
*
(Nn)]=X

*
(k)

(iii) DFT[xR(n)]=(1/2)[X(k)+X
*
(Nk)]

(iv) DFT[xI(n)]=(1/2j)[X(k)X
*
(Nk)]

(v) DFT[xce(n)]=XR(k) where xce(n)=(1/2)[x(n)+x
*

(Nn)]

(vi) DFT[xco(n)]=jXI(k) where xco(n)=(1/2)[x(n)x
*

(Nn)]

If x(n) is real, then

(i) If x(n) is real, then

a. X(k)=X
*
(Nk)

b. XR(k)=XR(Nk)

(ii) If x(n) is real, then

a) X(k)=X
*
(Nk)

b) XR(k)=XR(Nk)

c) XI(k)= XI(Nk)

d) |X(k)|=|X(Nk)|

e) |X(k)|=|X(Nk)|

f) X(k)= X(Nk)

(i) DFT[xce(n)]=XR(k) where xce(n)=(1/2)[x(n)+x(Nn)]

(ii) DFT[xco(n)]=jXI(k) where xco(n)=(1/2)[x(n)x(Nn)]

12

Problem

Compute 4-point DFT and 8-point DFT of causal three sample sequence given by

13

14

Fig 7. Magnitude and phasor representation of N=4,8 pont DFT Time Signals

[courtesy: DSP by Nagoorkani]

Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is a method (or algorithm) for computing the discrete

Fourier transform (DFT) with reduced number of calculations. The computational

efficiency is achieved if we adopt a divide and conquer approach. This approach is based on

the decomposition of an N-point DFT into successively smaller DFTs. This basic approach

leads to a family of an efficient computational algorithms known collectively as FFT

algorithms. Radix-r FFT In an N-point sequence, if N can be expressed as N = rm, then the

sequence can be decimated into r-point sequences. For each r-point sequence, r-point DFT

can be computed. From the results of r-point DFT, the r2 -point DFTs are computed. From

the results of r2 -point DFTs, the r3 -point DFTs are computed and so on, until we get rm

point DFT. This FFT algorithm is called radix-r FFT. In computing N-point DFT by this

method the number of stages of computation will be m times.

 Radix-2 FFT For radix-2 FFT, the value of N should be such that, N = 2m, so that the N-

point sequence is decimated into 2-point sequences and the 2-point DFT for each decimated

sequence is computed. From the results of 2-point DFTs, the 4-point DFTs can be

15

computed. From the results of 4-point DFTs, the 8-point DFTs can be computed and so on,

until we get N-point DFT.

Number of Calculations in N-point DFT

N2 number of complex multiplications and N(N – 1) number of complex additions

Number of Calculations in Radix-2 FFT

N/2log2N complex multiplications and N log2N complex additions.

Radix-2 FFT algorithms:

Decimation-In-Time (DIT) FFT algorithm:

The algorithm in which the decimation is based on splitting the sequence x(n) into

successively smaller sequences is called the decimation-in-time algorithm.

The N-point DFT of a sequence x(n) is given by

 N1

X(k)=x(n)WN
nk

, 0kN1 (1)

 n=0
j(2/N)

where WN= e . X(k) is periodic with period N i.e., X(k+N)=X(k).

Splitting Equ(1) into two, one for even-indexed samples of x(n) and the other for

odd- indexed samples of x(n), we have

X(k) = x(n)WN
nk

+ x(n)WN
nk

 (2)

n even n odd

Substituting n=2n for n even and n=2n+1 for n odd, we have

 N/2 1 N/21

X(k) = x(2n)WN
2nk

+x(2n+1)WN
(2n+1)k

 n=0 n=0

8-Point DFT Using Radix-2 DIT FFT

 The input sequence is 8-point sequence. Therefore, N = 8 = 23 = rm. Here, r = 2 and m

= 3. Therefore, the computation of 8-point DFT using radix-2 FFT, involves three stages of

computation. The given 8-point sequence is decimated to 2-point sequences. For each 2-

point sequence, the 2-point DFT is computed. From the results of 2-point DFT, the 4-point

DFT can be computed. From the results of 4-point DFT, the 8-point DFT can be computed.

16

Let the given sequence be x(0), x(1), x(2), x(3), x(4),x(5), x(6), x(7), which consists of 8

samples. The 8-samples should be decimated into sequences of 2-samples. Before decimation

they are arranged in bit reversed order, as shown in table

Fig 8. Bit reversal order of 2 point DFT

 Using the decimated sequences as input the 8-point DFT is computed. The fig shows the

three stages of computation of an 8-point DFT.

Fig 9.Block diagram representation of 8 pt DFT

Flow Graph for 8-Point DFT using Radix-2 DIT FFT

Fig 10.Basic butterfly or flow graph of DIT rad ix-2 FFT.

17

The signal flow graph is also called butterfly diagram since it resembles a butterfly

Fig 11.

8-point DFT Using Radix-2 DIF FFT

The DIF computation for an eight sequence is discussed in detail in this section. Let

x(n) be an 8-point sequence. Therefore N = 8 = 23 = rm. Here, r = 2 and m = 3. Therefore,

the computation of 8-point DFT using radix-2 FFT involves three stages of computation.

The samples of x(n) are,

x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7).

Flow Graph For 8-point DFT using Radix-2 DIF FFT

The above basic computation can be expressed by a signal flow graph shown in Fig

18

Fig 12.

Problem:

An 8-point sequence is given by x(n) = {2, 1, 2, 1, 1, 2, 1, 2}. Compute 8-point DFT of x(n) by

a) radix-2 DIT-FFT and b) radix-2 DIF-FFT. Also sketch the magnitude and phase

spectrum.

a) 8-point DFT by Radix-2 DIT-FFT

The given sequence is first arranged in the bit reversed order

The 8-point DFT by radix-2 FFT involve 3 stages of computation with 4-butterfly

computations in each stage. The sequence rearranged in the bit reversed order forms the

input to the first stage. For other stages of computation the output of previous stage will be

the input for current stage.

Second stage computation

The input sequence to second stage computation = { 3, 1, 3, 1, 3, 1, 3, 1 }

The phase factors involved in second stage computation are W4
0 and W4

1

19

Third stage computation The input sequence to third stage computation = {6, 1j, 0,

1+j, 6, 1+j, 0, 1j} The phase factors involved in third stage computation are W8
0 , W8

1

, W8
2 and W8

3

Fig 13. Butterfly diagram for third stage of radix-2 DIT FFT

b) 8-point DFT by Radix-2 DIF-FFT

For 8-point DFT by radix-2 FFT we require 3-stages of computation with 4-butterfly

computation in each stage. The given sequence is the input to first stage. For other stages of

computations, the output of previous stage will be the input for current stage.

20

First stage computation

The input sequence for first stage of computation = { 2, 1, 2, 1, 1, 2, 1, 2 }

The phase factors involved in first stage computation are W8
0 , W8

1 , W8
2 and W8

3

Fig 14. Butterfly diagram for first stage of radix-2 DIT FFT

Second stage computation

The input sequence for second stage of computation =

21

Fig 15. Butterfly diagram for second stage of radix-2 DIT FFT

The output sequence of second stage of computation

Third stage computation

Fig 16. Butterfly diagram for third stage of radix-2 DIT FFT

Correlation

Correlation is a measure of similarity between two signals. The general formula for

correlation is

There are two types of correlation:

22

1. Auto correlation

2. Cross correlation

Auto Correlation Function

It is defined as correlation of a signal with itself. Auto correlation function is a

measure of similarity between a signal & its time delayed version. It is represented with

R(τ). Consider a signals x(t). The auto correlation function of x(t) with its time delayed

version is given by

Where τ = searching or scanning or delay parameter.

Properties

Auto correlation of power signal exhibits conjugate symmetry i.e. R(-r) = (-Ʈ)

Auto correlation function of power signal at r = 0 (at origin)is equal to total power of that

signal. i.e. R(0) = ƥ

Auto correlation function of power signal R(0)∞1/Ʈ. Auto correlation function of power

signal is maximum at r = 0 i.e., |𝑹(𝝉)| ≤ 𝑹(𝟎)∀𝝉

Auto correlation function and power spectral densities are Fourier transform pairs. i.e.,

F.T[R(Ʈ)]=S(ω)

 Cross Correlation Function

Cross correlation is the measure of similarity between two different signals.

Consider two signals x1(t) and x2(t). The cross correlation of these two signals R12(τ) is

given by

Properties of Cross Correlation Function

Auto correlation exhibits conjugate symmetry i.e. R12(τ)=R∗
21(−τ).

Cross correlation is not commutative like convolution i.e. R12(τ)≠R21(−τ)

23

If R12(0) = 0 means, if , then the two signals are said to be orthogonal.

For power signal then two signals are said to be orthogonal. Cross

correlation function corresponds to the multiplication of spectrums of one signal to the

complex conjugate of spectrum of another signal. i.e.

This also called as correlation theorem.

Realization of Discrete Time System:

Discrete Time IIR System

Let, H(z) = Transfer function of discrete time IIR system.

The general form of transfer function of IIR system is,

Basic Elements of Block Diagram

The different types of structures for realizing the IIR systems are,

1. Direct form-I structure

2. Direct form-II structure

24

3. Cascade form structure

4. Parallel form structure

Direct Form-I Structure of IIR System

Fig.17.Direct form I structure of IIR system

From the direct form-I structure it is observed that the realization of an Nth order discrete

time system with M number of zeros and N number of poles, involves M+N+1 number of

multiplications and M+N number of additions. Also this structure involves M+N delays

and so M+N memory locations are required to store the delayed signals.

When the number of delays in a structure is equal to the order of the system, the structure

is called canonic structure. In direct form-I structure the number of delays is not equal to

order of the system and so direct form-I structure is noncanonic structure.

Direct Form-II Structure of IIR System

An alternative structure called direct form-II structure can be realized which uses less

number of delay elements than the direct form-I structure.

25

Fig.18.Direct form II structure of IIR system

Cascade Form Realization of IIR System The transfer function H(z) can be expressed as a product
of a number of second-order or first-order sections

Fig.19.cascade form realization structure of IIR system

Parallel Form Realization of IIR System The transfer function H(z) of a discrete time system can
be expressed as a sum of first and second-order sections, using partial fraction expansion
technique

26

Fig.19.cascade form realization structure of IIR system

 Fig.20.Parallel form realization structure of IIR system

TEXT / REFERENCE BOOKS:

1. John G. Proakis & Dimitris G.Manolakis, “Digital Signal Processing - Principles,

Algorithms & Applications”, Fourth Edition, Pearson education / Prentice Hall,

2009

2. Sanjit K. Mitra , Digital Signal Processing: A Computer - Based Approach,

McGrawHill Education, 4th Edition,2013

3. B.P.Lathi, “Signal Processing & Linear systems”, Oxford University Press, 2nd

edition, 2009

4. Lyons, “Understanding Digital Signal Processing”, Prentice Hall, 3rd edition, 2010

5. Johny R. Johnson, “Introduction to Digital Signal Processing”, PHI, 2006

6. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, Pearson,

3rd Edition,2010

7. Salivahanan, “Digital Signal Processing, 2nd Edition, TMH, 2010.
8. A.Nagoor Kani, “Digital Signal Processing”, Tata McGrawHill Education, 4th

Edition, 2012

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

UNIT - II

Digital Signal Processing SEC1319

II. FINITE IMPULSE RESPONSE DIGITAL FILTERS

2.1 Symmetric and Antisymmetric FIR filters

FIR filters are digital filters with finite impulse response. They are also known as non-

recursive digital filters as they do not have the feedback (a recursive part of a filter), even

though recursive algorithms can be used for FIR filter realization. FIR filters can be

designed using different methods, but most of them are based on ideal filter approximation.

The objective is not to achieve ideal characteristics, as it is impossible anyway, but to achieve

sufficiently good characteristics of a filter. The transfer function of FIR filter approaches

the ideal as the filter order increases, thus increasing the complexity and amount of time

needed for processing input samples of a signal being filtered. The resulting frequency

response can be a monotone function or an oscillatory function within a certain frequency

range. The waveform of frequency response depends on the method used in design process

as well as on its parameters.

This book describes the most popular method for FIR filter design that uses window

functions. The characteristics of the transfer function as well as its deviation from the ideal

frequency response depend on the filter order and window function in use.

Each filter category has both advantages and disadvantages. This is the reason why it is so

important to carefully choose category and type of a filter during design process.

FIR filters can have linear phase characteristic, which is not like IIR filters that will be

discussed in Chapter 3. Obviously, in such cases when it is necessary to have a linear phase

characteristic, FIR filters are the only option available. If the linear phase characteristic is

not necessary, as is the case with processing speech signals, FIR filters are not good solution

at all.

Fig.2.1. Illustration of input and output signals of non-linear phase systems.

The system introduces a phase shift of 0 radians at the frequency of ω, and π radians at

three times that frequency. Input signal consists of natural frequency ω and one harmonic

with the same amplitude at three times that frequency. Figure 2-1. shows the block diagram

of input signal (left) and output signal (right). It is obvious that these two signals have

different waveforms. The power of signals is not changed, nor the amplitudes of harmonics,

only the phase of the second harmonic is changed.

If we assume that the input is a speech signal whose phase characteristic is not of the

essence, such distortion in the phase of the signal would be unimportant. In this case, the

system satisfies all necessary requirements. However, if the phase characteristic is of

importance, such a great distortion mustn’t be allowed.

In order that the phase characteristic of a FIR filter is linear, the impulse response must be

symmetric or anti-symmetric, which is expressed in the following way:

h[n] = h[N-n-1] ; symmetric impulse response (about its middle element)

h[n] = -h[N-n-1] ; anti-symmetric impulse response (about its middle element)

One of the drawbacks of FIR filters is a high order of designed filter. The order of FIR filter

is remarkably higher compared to an IIR filter with the same frequency response. This is

the reason why it is so important to use FIR filters only when the linear phase characteristic

is very important.

A number of delay lines contained in a filter, i.e. a number of input samples that should be

saved for the purpose of computing the output sample, determines the order of a filter. For

example, if the filter is assumed to be of order 10, it means that it is necessary to save 10

input samples preceeding the current sample. All eleven samples will affect the output

sample of FIR filter.

The transform function of a typical FIR filter can be expressed as a polynomial of a complex

variable z-¹. All the poles of the transfer function are located at the origin. For this reason,

FIR filters are guaranteed to be stable, whereas IIR filters have potential to become

unstable.

 Finite impulse response (FIR) filter design methods

Most FIR filter design methods are based on ideal filter approximation. The resulting filter

approximates the ideal characteristic as the filter order increases, thus making the filter and

its implementation more complex.

The filter design process starts with specifications and requirements of the desirable FIR

filter. Which method is to be used in the filter design process depends on the filter

specifications and implementation. This chapter discusses the FIR filter design method using

window functions.

Each of the given methods has its advantages and disadvantages. Thus, it is very important

to carefully choose the right method for FIR filter design. Due to its simplicity and

efficiency, the window method is most commonly used method for designing filters. The

sampling frequency method is easy to use, but filters designed this way have small

attenuation in the stopband.

As we have mentioned above, the design process starts with the specification of desirable

FIR filter.

 Basic concepts and FIR filter specification

First of all, it is necessay to learn the basic concepts that will be used further in this book.

You should be aware that without being familiar with these concepts, it is not possible to

understand analyses and synthesis of digital filters.

Figure 2.2 illustrates a low-pass digital filter specification. The word specification actually

refers to the frequency response specification.

Fig.2.2. A low-pass digital filter specification

 ωp – normalized cut-off frequency in the passband;

 ωs – normalized cut-off frequency in the stopband;

 δ1 – maximum ripples in the passband;

 δ2 – minimum attenuation in the stopband [dB];

 ap – maximum ripples in the passband; and

 as – minimum attenuation in the stopband [dB].

Frequency normalization can be expressed as follows:

where:

fs is a sampling frequency;

f is a frequency to normalize; and

ω is normalized frequency.

Table.3.1.Filters

The value of variable n ranges between 0 and N, where N is the filter order. A constant M

can be expressed as M = N / 2. Equivalently, N can be expressed as N = 2M.

The constant M is an integer if the filter order N is even, which is not the case with odd

order filters. If M is an integer (even filter order), the ideal filter frequency response is

symmetric about its Mth sample which is found via expression shown in the table 2-2-1

above. If M is not an integer, the ideal filter frequency response is still symmetric, but not

about some frequency response sample.

Since the variable n ranges between 0 and N, the ideal filter frequency response has N+1

sample.

If it is needed to find frequency response of a non-standard ideal filter, the expression for

inverse Fourier transform must be used:

Non-standard filters are rarely used. However, if there is a need to use some of them, the

integral above must be computed via various numerical methodes.

2.3 FIR filter design using window functions

The FIR filter design process via window functions can be split into several steps:

1. Defining filter specifications;

2. Specifying a window function according to the filter specifications;

3. Computing the filter order required for a given set of specifications;

4. Computing the window function coefficients;

5. Computing the ideal filter coefficients according to the filter order;

6. Computing FIR filter coefficients according to the obtained window function and

ideal filter coefficients;

7. If the resulting filter has too wide or too narrow transition region, it is necessary to

change the filter order by increasing or decreasing it according to needs, and after that

steps 4, 5 and 6 are iterated as many times as needed.

The final objective of defining filter specifications is to find the desired normalized

frequencies (ωc, ωc1, ωc2), transition width and stopband attenuation. The window

function and filter order are both specified according to these parameters.

Accordingly, the selected window function must satisfy the given specifications. After this

step, that is, when the window function is known, we can compute the filter order required

for a given set of specifications. When both the window function and filter order are known,

it is possible to calculate the window function coefficients w[n] using the formula for the

specified window function.

1. Rectangular WindowThe rectangular window is what you would obtain if you were to

simply segment a finite portion of the impulse response without any shaping in the time

domain:

2. Bartlett (or triangular) window

The Bartlett window is triangularly shaped:

=

3. Hanning window

The Hanningwindow(or more properly, the von Hann window) is nothing more than a raised

cosine:

=

4. Hamming window

=

5. Blackmam window

The Hanning and Hamming have a constant and a cosine term; the Blackman window adds a

cosine at twice the frequency

=

After estimating the window function coefficients, it is necessary to find the ideal filter

frequency samples. The expressions used for computing these samples are discussed in

section 2.2.3 under Ideal filter approximation. The final objective of this step is to obtain the

coefficients hd[n]. Two sequencies w[n] and hd[n] have the same number of elements.

The next step is to compute the frequency response of designed filter h[n] using the

following expression:

Lastly, the transfer function of designed filter will be found by transforming impulse

response via Fourier transform:

or via Z-transform:

If the transition region of designed filter is wider than needed, it is necessary to increase the

filter order, reestimate the window function coefficients and ideal filter frequency samples,

multiply them in order to obtain the frequency response of designed filter and reestimate

the transfer function as well. If the transition region is narrower than needed, the filter

order can be decreased for the purpose of optimizing hardware and/or software resources.

It is also necessary to reestimate the filter frequency coefficients after that.

PROBLEMS

Use the window design method to design a linear phase FIR filter of order N = 24 to

approximate the following ideal frequency response magnitude

The ideal filter that we would like to approximate is a low-pass filter with a cutoff frequency

= 0.2. With N = 24, the frequency response of the filter that is to be designed has the form

Therefore, the delay of h(n) is = N/2 = 12, and the ideal unit sample response that is to be

windowed is

All that is left to do in the design is to select a window. With the length of the window fixed,

there is a trade-off between the width of the transition band and the amplitude of the

passband and stopband ripple. With a rectangular window, which provides the smallest

transition band,

and the filter is

However, the stopband attenuation is only 21 dB, which is equivalent to a ripple of

0.089. With a Hamming window, on the other hand,

and the stopband attenuation is 53 dB, or ? s = 0.0022. However, the width of the transition

band increases to

which, for most designs, would be too wide.

2.4 .Frequency sampling method:

The frequency sampling method allows us to design recursive and nonrecursive FIR filters

for both standard frequency selective and filters with arbitrary frequency response. A. No

recursive frequency sampling filters : The problem of FIR filter design is to find a finite–

length impulse response h (n) that corresponds to desired frequency response. In this

method h (n) can be determined by uniformly sampling, the desired frequency response HD

(ω) at the N points and finding its inverse DFT of the frequency samples.

Problem

2.5 Design of Optimum Equiripple Linear-Phase FIR

The window method and the frequency-sampling method are relatively simple

techniques for designing linear-phase FIR filters. However, they also possess someminor

disadvantages, , which may render them undesirablefor some applications. A major problem

is the lack of precise control of thecritical frequencies such ws.The filter design method

described in this section is formulated as a Chebyshevapproximation problem . It is viewed

as an optimum design criterion in thesense that the weighted approximation error between

the desired frequency responseand the actual frequency response is spread evenly across the

passband and evenly across the stopband of the filter minimizing the maximum error.

Theresulting

filter designs have ripples in both the passband and the stopband.To describe the design

procedure, let us consider the design of a lowpassfilter with passband edge frequency a>p

and stopband edge frequency .

2.6 Structure realization of FIR Filters

In signal processing, a digital filter is a system that performs mathematical operations on a

sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in

contrast to the other major type of electronic filter, the analog filter, which is anelectronic

circuit operating on continuous-time analog signals.

A digital filter system usually consists of an analog-to-digital converter to sample the input

signal, followed by a microprocessor and some peripheral components such as memory to

store data and filter coefficients etc. Finally a digital-to-analog converter to complete the

output stage. Program Instructions (software) running on the microprocessor implement the

digital filter by performing the necessary mathematical operations on the numbers received

from the ADC. In some high performance applications, an FPGA orASIC is used instead of

a general purpose microprocessor, or a specialized DSP with specific paralleled architecture

for expediting operations such as filtering.

Digital filters may be more expensive than an equivalent analog filter due to their increased

complexity, but they make practical many designs that are impractical or impossible as

analog filters. When used in the context of real-time analog systems, digital filters sometimes

have problematic latency (the difference in time between the input and the response) due

to the associated analog-to-digital and digital-to- analog conversions and anti-aliasing

filters, or due to other delays in their implementation.

Digital filters are commonplace and an essential element of everyday electronics such as

radios, cellphones, and AV receivers.

2.6.1. Characterization

A digital filter is characterized by its transfer function, or equivalently, its difference

equation. Mathematical analysis of the transfer function can describe how it will respond to

any input. As such, designing a filter consists of developing specifications appropriate to the

problem (for example, a second-order low pass filter with a specific cut-off frequency), and

then producing a transfer function which meets the specifications.

The transfer function for a linear, time-invariant, digital filter can be expressed as a transfer

function in the Z-domain; if it is causal, then it has the form:

where the order of the filter is the greater of N or M. See Z-transform's LCCD equation

for further discussion of this transfer function.

This is the form for a recursive filter with both the inputs (Numerator) and outputs

(Denominator), which typically leads to an IIR infinite impulse response behaviour, but if

thedenominator is made equal to unity i.e. no feedback, then this becomes an FIR or

finite impulse response filter.

The impulse response, often denoted or hk, is a measurement of how a filter will

respond to the Kronecker delta function. Digital filters are typically considered in two

categories: infinite impulse response (IIR) and finite impulse response (FIR). In the case of

linear time-invariant FIR filters, the impulse response is exactly equal to the sequence of

filter coefficients:

IIR filters on the other hand are recursive, with the output depending on both current and

previous inputs as well as previous outputs. The general form of an IIR filter is thus:

Plotting the impulse response will reveal how a filter will respond to a sudden, momentary

disturbance.

1.Difference equation

In discrete-time systems, the digital filter is often implemented by converting the transfer

function to a linear constant-coefficient difference equation (LCCD) via the Z-transform.

The discrete frequency-domain transfer function is written as the ratio of two polynomials.

For example:

This is expanded:

and to make the corresponding filter causal, the numerator and denominator are divided by

the highest order of :

The coefficients of the denominator, , are the 'feed-backward' coefficients and the

coefficients of the numerator are the 'feed-forward' coefficients, . The resultant linear

difference equation is:

or, for the example above:

rearranging terms:

then by taking the inverse z-transform:

and finally, by solving for :

This equation shows how to compute the next output sample, , in terms of the past outputs,

, the present input, , and the past inputs. Applying the filter to an input in

this form is equivalent to a Direct Form I or II realization, depending on the exact order of

evaluationAfter a filter is designed, it must be realized by developing a signal flow diagram

that describes the filter in terms of operations on sample sequences.

A given transfer function may be realized in many ways. Consider how a simple expression

such as could be evaluated – one could also compute the

equivalent . In the same way, all realizations may be seen as

"factorizations" of the same transfer function, but different realizations will have different

numerical properties. Specifically, some realizations are more efficient in terms of the

number of operations or storage elements required for their implementation, and others

provide advantages such as improved numerical stability and reduced round-off error.

Some structures are better for fixed-point arithmetic and others may be better for

floating-point arithmetic.

1.Direct Form I

A straightforward approach for IIR filter realization is Direct Form I, where the difference

equation is evaluated directly. This form is practical for small filters, but may be inefficient

and impractical (numerically unstable) for complex designs.[3] In general, this form requires

2N delay elements (for both input and output signals) for a filter of order N.

Fig.2.3. Direct form I

2. Direct Form II

The alternate Direct Form II only needs N delay units, where N is the order of the filter –

potentially half as much as Direct Form I. This structure is obtained by reversing the order

of the numerator and denominator sections of Direct Form I, since they are in fact two

linear systems, and the commutativity property applies. Then, one will notice that there are

two columns of delays () that tap off the center net, and these can be combined since

they are redundant, yielding the implementation as shown below.

The disadvantage is that Direct Form II increases the possibility of arithmetic overflow for

filters of high Q or resonance.[4] It has been shown that as Q increases, the round-off noise of

both direct form topologies increases without bounds.[5] This is because, conceptually, the

signal is first passed through an all-pole filter (which normally boosts gain at the resonant

frequencies) before the result of that is saturated, then passed through an all-zero filter

(which often attenuates much of what the all-pole half amplifies).

Fig.2.4. Direct form II

3.Cascaded second-order sections

A common strategy is to realize a higher-order (greater than 2) digital filter as a cascaded

series of second-order "biquadratric" (or "biquad") sections[6] (see digital biquad filter).

The advantage of this strategy is that the coefficient range is limited.

Cascading direct form II sections results in N delay elements for filters of order N.

Cascading direct form I sections results in N+2 delay elements since the delay elements of

the input of any section (except the first section) are redundant with the delay elements of

the output of the preceding section.

4.Linear-Phase FIR Structures Phase FIR Structures

The symmetry (or antisymmetry) property of a linear-phase FIR filter can be exploited to

reduce the number of multipliers into almost half of that in the direct form implementations

•

Consider a length-7 Type 1 FIR transfer function with a symmetric impulse response:

.Rearranging, we get

Fig.2.5. Linear phase FIRI

5.PolyphasePolyphase FIR Structures FIR Structures

The polyphase decomposition of H(z) leads to a parallel form structure.

To illustrate this approach, consider a causal FIR transfer function H(z) with N = 8:

H(z) can be expressed as a sum of two terms, with one term containing the even indexed

coefficients and the other containing the odd-indexed coefficients:

Putting .

The subfilters in the polyphase realization of an FIR transfer function are also FIR filters

and can be realized using any methods. However, to obtain a canonic realization of the

overall structure, the delays in all subfilters must be shared.

The filters designed by considering all the infinite samples of impulse response are called

IIR (Infinite Impulse Response) filters. In digital domain, the processing of infinite samples

of impulse response is practically not possible. Hence direct design of IIR filter is not

possible. Therefore, the IIR filters are designed via analog filters. In design of IIR filter, the

specification of an IIR filter is transformed to specification of an analog filter and an analog

filter with transfer function, H(s) is designed to satisfy the specification. Then the analog

filter is transformed to digital filter with transfer function, H(z). We know that the analog

filter with transfer function H(s) is stable if all its poles lie in the left half of the s-plane.

Consequently, if the conversion technique is to be effective, it should possess the following

desirable properties. 1. The imaginary axis in the s-plane should map into the unit circle in

the z-plane. Thus there will be a direct relationship between the two frequency variables in

the two domains. 2. The left-half of the s-plane should map into the interior of the unit circle

in the z-plane. Thus a stable analog filter will be converted to a stable digital filter. The

analog filter is designed by approximating the ideal frequency response using an error

function. A number of solutions to the approximation problem of analog filter design are

well developed. The popular among them are Butterworth and Chebyshev approximation.

The popular transformation techniques used for transforming analog filter transfer

function H(s) to digital filter transfer function H(z) are bilinear and impulse invariant

transformation. The digital transfer function H(z) can be realized in a software that runs on

a digital hardware (or it can be implemented in firmware). The frequency response H(ejw)

by letting z = ejw in the transfer function H(z) of the filter.

6. Design of IIR filters

The ideal magnitude response, |Hd (jW)| of the four basic types of analog filters are shown

in fig (a), (b), (c) and (d). The ideal magnitude response has sudden transition from

passband to stopband which is practically not realizable. Hence the ideal response is

approximated using a filter approximation function. The approximation problem is solved

to meet a specified tolerance in the passband and stopband. The shaded areas in the fig 7.1

shows the tolerance regions of the ideal frequency response. In the passband the magnitude

is approximated to unity within an error of dp . In the stopband the magnitude is

approximated to zero within an error of ds . Here the dp and ds are the limits of the

tolerance in the passband and stopband. The dp and ds are also called ripples. The

magnitude response of practical or approximated analog filters, |H(jW)| are shown in fig

7.1 (e), (f), (g) and (h). The frequency repsonse of practical analog filter shows edges for

passband and stopband so that the tolerances are within specified limits. Now, the

specification of practical analog filter will be the following. W p = Passband edge frequency

in rad/second. W s = Stopband edge frequency in rad/second. Ap = Gain at passband edge

frequency As = Gain at stopband edge frequency.

Frequency selective filters: Ideal filter characteristics

Fig.2.6. Ideal filter characteristics

6.1 Impulse Invariant Transformation

The objective of impulse invariant transformation is to develop an IIR filter transfer

function whose impulse response is the sampled version of the impulse response of the

analog filter. The main idea behind this technique is to preserve the frequency response

characteristics of the analog filter. It can be stated that the frequency response of digital

filter will be identical with the frequency response of the corresponding analog filter if the

sampling time period T is selected sufficiently small (or the sampling frequency should

be high) to minimize (or avoid completely) the effects of aliasing.

Relation Between Analog and Digital Frequency in Impulse Invariant Transformation

Let, W = Analog frequency in rad/second.

 w = Digital frequency in rad/sample

Thus the mapping from the analog frequency W to the digital frequency w is many-to-

one. This reflects the effects of aliasing due to sampling.

Useful Impulse Invariant Transformation

6.2 Bilinear Transformation

 The bilinear transformation is a conformal mapping that transforms the

imaginary axis of s-plane into the unit circle in the z-plane only once, thus avoiding

aliasing of frequency components. In this mapping all points in the left half of s-plane

are mapped inside the unit circle in the z-plane and all points in the right half of s-

plane are mapped outside the unit circle in the z-plane. The bilinear transformation

can be linked to the trapezoidal formula for numerical integration. Any analog

system is governed by a differential equation in time domain.

In the s-domain transfer function, if "s" is substituted by the term the

resulting transfer function will be z-domain transfer function.

6.3 Relation Between Analog and Digital Filter Poles in Bilinear Transformation

The mapping of s-domain function to z-domain function by bilinear transformation is

a one to one mapping, that is, for every point in z-plane, there is exactly one

corresponding point in s-plane and vice versa. The transformation is accomplished

when,

6.3.1 Specifications of Digital IIR Lowpass Filter

Let, H(ejw) = Frequency response of IIR filter.

 |H(ejw)| = Magnitude response of IIR filter.

The magnitude response, |H(ejw)| of IIR filter will have a passband, transition band

and stop band.

The specification of the IIR filter can be expressed in any one of the following three

different ways.

Case i : Gain at passband and stopband edge frequency

 Case ii : Attenuation at passband and stopband edge frequency

Case iii : Ripple at passband and stopband edge frequency

The gain can be expressed either in normal values or in decibels (dB). The

maximum value of normalized gain is unity and so the gain at band edge frequencies

will be less than 1. Therefore, the dB-gain will be negative.

Let, wp = Passband edge digital frequency in rad/sample.

ws = Stopband edge digital frequency in rad/sample.

Ap = |H(ejw)|w = wp = Gain (or magnitude) at passband edge frequency.

As = |H(ejw)|w = ws = Gain (or magnitude) at stopband edge frequency.

 Ap,dB = 20 log [|H(ejw)|w = wp] = dB-Gain (or dB-magnitude) at passband edge

frequency.

As,dB = 20 log [|H(ejw)|w = ws] = dB-Gain (or dB-magnitude) at stopband edge

frequency. The gain in normal values can be converted to dB-gain or vice versa as

shown below.

Ap,dB = 20 log Ap

Ap = 10(Ap,dB/20)

As,dB = 20 log As

As = 10(As,dB/20)

The attenuation is usually expressed in decibels (dB). Since the gain at edge

frequencies are less than 1, the attenuation in normal values will be greater than1,

and the dB-attenuation is positive.

Ripple at passband and stopband edge frequency:

7.Transfer function of Analog Butterworth Lowpass Filter:

The analog filter transfer function of normalized and unnormalized butterworth

lowpass filters are given below.Let, N be the order of the filter. Let, H(sn) be the

normalized Butterworth lowpass filter transfer function. When N is even

When N is odd,

Table. Summary of Butterworth Lowpass Filter Normalized Transfer

Function

8.Order of the Lowpass Butterworth Filter

 In Butterworth filters the frequency response of the filter depends on the order, N.

Hence the order N has to be estimated to satisfy the given specifications. Usually the

specifications of the filter are given in terms of gain at a passband and stopband

frequency. Let, Ap = Gain or Magnitude at a passband frequency W p .

 As = Gain or Magnitude at a stopband frequency W s .

9.Design Procedure for Lowpass Digital Butterworth IIR Filter

 The process of filter design begins with filter specifications which include the

filter characteristics (Lowpass, high-pass, band-pass, band-stop filter), filter

type, passband frequency, stopband frequency, transistion width frequency,

sampling frequency and filter length.)

 The second step is obtain filter response, H(ω)

 Third step is to find the filter coefficient and acceptable filter.

 The last step is to implement filter coefficient and choose ω appropriate filter

structure for filter implementation.

 There are 2 commons IIR filter design

 1. Butterworth (As the Filter Order, N increases, the transition band becomes

 narrower).

 2. Chebyshev Type

 The analog filter will be mapped to digital filter using transformation of s-domain to

 z-domain. 2 methods to convert the analog filter to digital filter and vice versa;

 1. Impulse Invariance method

2. Bilinear Transformation method

6. Determine the transfer function of digital filter, H(z). Using the chosen

transformation in step-1, transform H(s) to H(z). When impulse invariant

transformation is employed, if T < 1, then multiply H(z) by T to normalize the

magnitude.

7. Realize the digital filter transfer function H(z) by a suitable structure. 8. Verify the

design by sketching the frequency response H(ejw).

10. Design of Lowpass Digital Chebyshev Filter

The analog Chebyshev filter is designed by approximating the ideal frequency

response using an error function. The approximation function is selected such that

the error is minimized over a prescribed band of frequencies.

TEXT / REFERENCE BOOKS:

1. John G. Proakis & Dimitris G.Manolakis, “Digital Signal Processing - Principles,

Algorithms & Applications”, Fourth Edition, Pearson education / Prentice Hall, 2009

2. Sanjit K. Mitra , Digital Signal Processing: A Computer - Based Approach,

McGrawHill Education, 4th Edition,2013

3. B.P.Lathi, “Signal Processing & Linear systems”, Oxford University Press, 2nd

edition, 2009

4. Lyons, “Understanding Digital Signal Processing”, Prentice Hall, 3rd edition, 2010

5. Johny R. Johnson, “Introduction to Digital Signal Processing”, PHI, 2006

6. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, Pearson,

3rd Edition,2010

7. Salivahanan, “Digital Signal Processing, 2nd Edition, TMH, 2010.
8. A.Nagoor Kani, “Digital Signal Processing”, Tata McGrawHill Education, 4th

Edition, 2012

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

UNIT - III

SEC1319 - Digital Signal Processing

2

UNIT III Finite Word Length Effects

In digital representation the signals are represented as an array of binary

numbers, and the digital system employ a fixed size of binary called “word size or

word length” for number representation. This finite word size for number

representation leads to errors in input signals, intermediate signals in

computations and in the final output signals. In general, the various effects due to

finite precision representation of numbers in digital systems are called finite word

length effects.

Some of the finite word length effects in digital systems are given below.

· Errors due to quantization of input data.

· Errors due to quantization of filter coefficients.

· Errors due to rounding the product in multiplication.

· Errors due to overflow in addition.

· Limit cycles in recursive computations.

The two major methods of representing binary numbers are fixed point

representation and floating point representation.

Fixed point representation the digits allotted for integer part and fraction part are

fixed, and so the position of binary point is fixed. Since the number of digits is

fixed it is impossible to represent too large and too small numbers by fixed point

representation. Therefore the range of numbers that can be represented in fixed

point representation for a given binary word size is less when compared to floating

point representation.

In fixed point representation there are three different formats for representing

negative binary fraction numbers. They are,

1. Sign-magnitude format

2. One’s complement format

3. Two’s complement format

In sign magnitude format the negative value of a given number differ only in sign

bit (i.e., digit d0). The sign digit d0 is zero for positive number and one for

negative number.

In one’s complement format the negative of the given number is obtained by bit

by bit complement of its positive representation.

In two’s complement format the negative of the given number is obtained by

3

taking one’s

complement of its positive representation and then adding one to the least

significant bit.

 Floating point representation the binary point can be shifted to desired position so

that number of digits in the integer part and fraction part of a number can be

varied. This leads to larger range of number that can be represented in floating

point representation.

Floating point number, Nf = M X2E

In various digital systems or computers, a variety of formats are employed for

floating point representation. The IEEE (Institute of Electrical and Electronic

Engineers) has proposed a standard format for floating point representation,

which is widely followed in digital computers. The IEEE-754 standard format for

32-bit single precision floating point number is shown in fig

Fig 3.1 IEEE-754 format for 32 bit-floating point number

Comparison of Fixed Point and Floating Point Representation

Fixed point representation Floating point representation

1. In a b-bit binary the range of

numbers represented is less when

compared floating point representation.

1. In a b-bit binary the range of

numbers represented is large when

compared to fixed point

representation.

2. The position of binary point

is fixed

2. The position of binary point

is variable.

3. The resolution is uniform

throughout

3. The resolution is variable

Truncation and Rounding error

In fixed point or floating point arithmetic the size of the result of an operation (sum

or product) may be exceeding the size of binary used in the number system. In such cases

the low order bits has to be eliminated in order to store the result. The two methods of

eliminating these low order bits are truncation and rounding. This process is also referred

to as quantization via truncation and rounding. The effect of rounding and truncation is to

4

introduce an error whose value depends on the number of bits eliminated. The

characteristics of the errors introduced through either truncation or rounding depend on

the type of number representation. The truncation is the process of reducing the size of

binary number (or reducing the number of bits in a binary number) by discarding all bits

less significant than the least significant bit that is retained. In the truncation of a binary

number to b bits, all the less significant bits beyond bth bit are discarded. Rounding is the

process of reducing the size of a binary number to finite word size of b-bits such that the

rounded b-bit number is closest to the original unquantized number. The rounding process

consists of truncation and addition. In rounding of a number to b-bits, first the

unquantized number is truncated to b-bits by retaining the most significant b-bits. Then a

zero or one is added to the least significant bit of the truncated number depending on the

bit that is next to the least significant bit that is retained.

Fig 3.2 Probability density function for (a) rounding (b) Truncation

Quantization Steps

The decimal numbers that are encountered as filter coefficients, sum,

product, etc., in DSP applications will usually lie in the range of –1 to +1. When

“B” bit binary is selected to represent the decimal numbers, then 2B binary codes

are possible. Hence the range of decimal numbers has to be divided into 2B steps

and each step is represented by a binary code. Each step of decimal number is also

called quantization step.

5

b = B – 1 = Size of binary excluding sign bit

Steady State Output Noise Variance (Power) Due to the Quantization Error Signal

The quantized input signal of a digital system can be represented as a sum

of unquantized signal x(n) and error signal e(n) as shown in fig

Fig 3.3 Representation of input quantization noise in an LTI system.

In fig h(n) is the impulse response of the system and y(n) is the response or output

of the system due to input and error signal. The response of the system is given by

convolution of input and impulse response. For linear systems using distributive

property of convolution the response y¢(n) can be written as shown in equation

y¢(n) = xq(n) * h(n)

= [x(n) + e(n)] * h(n)

= [x(n) * h(n)] + [e(n) * h(n)]

Let, y¢(n) = y(n) + e(n)

where, y(n) = x(n) * h(n) = Output due to input signal x(n).

e(n) = e(n) * h(n) = Output due to error signal e(n).

The variance of the signal e(n) is called output noise power or steady state output

noise power (or variance) due to the quantization error signal. Using

autocorrelation function and the definition for variance of a discrete time signal,

the expression for output noise power is

where, pi are poles of H(z) H(z –1) z–1 only the poles that lie inside the

unit circle in z-plane are considered.

Product Quantization Error

In realization structures of IIR system, multipliers are used to multiply the signal

by constants. The output of the multipliers i.e, the products are quantized to finite

word length in order to store them in registers and to be used in subsequent

6

calculations. The error due to the quantization of the output of multiplier is

referred to as product quantization error.

The Noise Transfer Function (NTF) is defined as transfer function from the noise

source to the filter output (i.e., NTF is the transfer function obtained by treating

the noise source as actual input).

Quantized product = Q[a x(n)] = a x(n) + e(n)

where, a x(n) = Unquantized product

e(n) = Product quantization error signal

Fig 3.4 Product quantization noise models of IIR systems for direct form

realization

The total steady state noise variance at the output of the system due to product

quantization errors is given by the sum of the output noise variances due to all the

noise sources.

Output Noise Power (Roundoff Noise Power) Due to Product Quantization

Limit Cycles

During periodic oscillations, the output y(n) of a system will oscillate between a

finite positive and negative value for increasing n or the output will become

constant for increasing n. Such oscillations are called limit cycles. These

oscillations are due to round-off errors in multiplication and overflow in addition.

 Limit cycle oscillations are clearly unwanted (e.g. may be audible in speech/audio

applications)

7

 Limit cycle oscillations can only appear if the filter has feedback. Hence FIR

filters cannot have limit cycle oscillations.

Types

1. zero input limit cycles

2. Overflow limit cycles

In recursive systems, if the system output enters a limit cycle, it will continue to

remain in limit cycle even when the input is made zero. Hence these limit cycles are

also called zero input limit cycles. In fixed point addition of two binary numbers

the overflow occurs when the sum exceeds the finite word length of the register

used to store the sum. The overflow in addition may lead to oscillations in the

output which is referred to as overflow limit cycles

In a limit cycle the amplitudes of the output are confined to a range of values,

which is called the dead band of the filter. For a first-order system described by

the equation, y(n) = a y(n–1) + x(n), the dead band is given by,

where, B = Number of binary bits (including sign bit) used to represent the

product. For a second-order system described by the equation, y(n) = a1 y(n – 1) +

a2 y(n – 2) + x(n), the dead band of the filter is given by,

Scaling to Prevent Overflow

The two methods of preventing overflow are saturation arithmetic and scaling the

input signal to the adder. In saturation arithmetic, undesirable signal distortion is

introduced. In order to limit the signal distortion due to frequent overflows, the

input signal to the adder can be scaled such that the overflow becomes a rare

event.

TEXT / REFERENCE BOOKS:

1. John G. Proakis & Dimitris G.Manolakis, “Digital Signal Processing - Principles,

Algorithms & Applications”, Fourth Edition, Pearson education / Prentice Hall,

2009

2. Sanjit K. Mitra , Digital Signal Processing: A Computer - Based Approach,

McGrawHill Education, 4th Edition,2013

3. B.P.Lathi, “Signal Processing & Linear systems”, Oxford University Press, 2nd

edition, 2009

4. Lyons, “Understanding Digital Signal Processing”, Prentice Hall, 3rd edition, 2010

8

5. Johny R. Johnson, “Introduction to Digital Signal Processing”, PHI, 2006

6. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, Pearson,

3rd Edition,2010

7. Salivahanan, “Digital Signal Processing, 2nd Edition, TMH, 2010.
8. A.Nagoor Kani, “Digital Signal Processing”, Tata McGrawHill Education, 4th

Edition, 2012

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

UNIT - IV

SEC1319 - Digital Signal Processing

2

IV MULTIRATE SIGNAL PROCESSING

Introduction to Multirate signal processing

Single-rate systems: Sampling rates at the input and at the output and all internal

nodes are the same.

Multirate systems: DSP systems with unequal sampling rates at various parts of

the system.

The process of converting a signal from one sampling rate to another sampling

rate is called sampling rate conversion.

There are two ways for sampling rate conversion in the digital domain. They are,

1. Up-sampler / Up- Converter/ Interpolator

2. Down-sampler/ Decimator / Sub-sample

Downsampling (or Decimation)

Down sampling or decimation is the process of reducing the sampling rate by an integer

factor D.

Fig.4.1 Decimator.

x(n) = Discrete time signal

D = Sampling rate reduction factor (and D is an integer)

Now, x(Dn) = Downsampled version of x(n)

Fig 4.2 Time domain representation of decimation

3

Spectrum of Down sampler

The spectrum of Down sampler is given by

Anti-aliasing Filter

When the input signal to the decimator is not bandlimited then the spectrum of decimated

signal has aliasing. In order to avoid aliasing the input signal should be bandlimited to p/D

for decimation by a factor D. Hence the input signal is passed through a lowpass filter with

a bandwidth of p/D before decimation. Since this lowpass filter is designed to avoid aliasing

in the output spectrum of decimator, it is called anti-aliasing filter.

Fig 4.3 decimator with anti-aliasing filter.

Problem

sketch the spectrum of a down sampled signal for sampling rate reduction factor D = 2, 3

and 4.

4

Fig. 4.4 spectrum of a down sampled signal for sampling rate reduction factor D = 2

Problem

Consider the discrete time signal shown in fig 1. Sketch the down sampled version of the

signals for the sampling rate reduction factors, a) D = 2 b) D = 3.

Sampling rate reduction factor, D = 2.

Sampling rate reduction factor, D = 3.

Fig 4.5 Down sampled version of the signals for the sampling rate reduction factors D = 2

Upsampling (or Interpolation)

The upsampling (or interpolation) is the process of increasing the samples of the discrete

5

time signal.

Let, x(n) = Discrete time signal

I = Sampling rate multiplication factor (and I is an integer).

The device which perform the process of upsampling is called upsampler (or interpolator).

Symbolically, the upsampler can be represented as shown in fig

Fig 4.6 interpolator

Up sampling or interpolation is the process of increasing the sampling rate by an integer

factor I.

Fig 4.7 Time domain representation of interpolator

Fig 4.8 Spectrum of a upsampled signal for sampling rate reduction factor L = 2

Anti-imaging Filter

The output spectrum of interpolator is compressed version of the input spectrum,

therefore, the spectrum of upsampled signal has multiple images in a period of 2p. When

6

upsampled by a factor of I, the output spectrum will have I images in a period of 2p, with

each image band limited to p/I. Since the frequency spectrum in the range 0 to π/I. are

unique, we have to filter the other images. Hence the output of upsampler is passed

through a lowpass filter with a bandwidth of π/I. Since this lowpass filter is designed to

avoid multiple images in the output spectrum, it is called anti-imaging filter.

Fig 4.9. Interpolator with anti-imaging filter.

Poly phase implementation of FIR filters for interpolator and decimator

Potential computational savings can be made within the process of decimation,

interpolation, and sampling-rate conversion. Polyphase filters is the name given to certain

realisations of multirate filtering operations, which facilitate computational savings in both

hardware and software.

Polyphase Structure of Decimator

In decimator, a lowpass filter called anti-aliasing filter is employed at the input in order to

bandlimit the input signal, so that aliasing is avoided in the output spectrum of decimator.

In order to reduce the computations in FIR filter, polyphase decomposition can be applied

to FIR filter to decompose into L sub-filters.

Fig 4.10 decimator with antialiasing filter

7

Fig 4.11 Decimator with antialiasing filter further deduction of fig 4.10 using identity.

Polyphase Structure of Interpolator

In interpolator, a lowpass filter called anti-imaging filter is employed at the output in order to
eliminate the multiple images in the output spectrum of interpolator.

Fig 4.12 Interpolator with antialiasing filter

Fig 4.11 Interpolator with antialiasing filter further deduction of fig 4.12 using identity

8

Sampling rate conversion

A common use of multirate signal processing is for sampling-rate conversion. Suppose a

digital signal x[n] is sampled at an interval T1, and we wish to obtain a signal y[n] sampled

at an interval T2. Then the techniques of decimation and interpolation enable this

operation, providing the ratio T1/T2 is a rational number i.e. L/M.

Sampling-rate conversion can be accomplished by L-fold expansion, followed by low-pass

filtering and then M-fold

Decimation, It is important to emphasis that the interpolation should be performed first

and decimation second, to preserve the desired spectral characteristics of x[n].

Furthermore by cascading the two in this manner, both of the filters can be combined into

one single low-pass filter.

Fig 4.12.Sampling-rate conversion by expansion, filtering, and decimation

An example of sampling-rate conversion would take place when data from a CD is

transferred onto a DAT. Here the sampling-rate is increased from 44.1 kHz to 48 kHz. To

enable this process the non-integer factor has to be approximated by a rational number:

Design of narrow band filters

A common need in electronics and DSP is to isolate a narrow band of frequencies from a

wider bandwidth signal. For example, you may want to eliminate 60 hertz interference in

an instrumentation system, or isolate the signaling tones in a telephone network. Two types

of frequency responses are available: the band-pass and the band-reject (also called a notch

filter). Figure 4.13 shows the frequency response of these filters,

9

Figure 4.13 shows the frequency response of narrow band filters

Applications of Multirate signal processing

Applications of Multirate DSP Systems

Multirate signal processing is employed in the following systems.

1. Sub-band coding of speech signals and image compression

2. QMF (Quadrature Mirror Filters) for realizing alias-free LTI multirate systems

3. Narrowband FIR and IIR filters for various applications

4. Digital transmultiplexers for converting TDM (Time Division Multiplexed) signals to

FDM (Frequency Division Multiplexed) signals and vice versa

5. Oversampling A/D (Analog-to-Digital) and D/A (Digital-to-Analog) converters for high

quality digital audio systems and data loggers (or digital storage systems)

6. In digital audio systems the sampling rates of broadcasted signal, CD (Compact Disc),

MPEG (Motion Picture Expert Group) standard CD, etc., are different. Hence to

access signals from all these devices, sampling rate converters are needed in digital

audio systems.

7. In video broadcasting the American standard NTSC (National Television System

Committee) and European standard PAL (Phase Alternating Line) employ different

sampling rates. Hence to receive both the signals sampling rate converters are needed

in video receivers.

Advantages of Multirate Processing

The advantages of multirate processing of discrete time signals are given below.

1. The reduction in number of computations

10

2. The reduction in memory requirement (or storage) for filter coefficients and

intermediate results.

3. The reduction in the order of the system

4. The finite word length effects are reduced

Digital Filter Banks

A digital filter bank is a set of bandpass filters. The digital filter banks can be classified

into two types. They are,

i) Analysis filter banks

ii) Synthesis filter banks

Analysis Filter Banks

 An analysis filter bank is a set of bandpass filters with common input. The analysis

filter bank is used for spectrum analysis in which a signal is divided into a set of sub-band

signals. The analysis filter bank consists of M numbers of sub-band filters so that the input

signal x(n) is divided into M-numbers of sub-band signals.

Figure 4.14 Analysis filter banks

Synthesis Filter Bank

A synthesis filter bank is a set of bandpass filters used to combine or synthesis a number of

sub-band Signals into a single composite signal as shown in fig 9.31. The synthesis filter

accepts M-numbers of sub-band signals w0(n), w1(n), w2(n),......wM–1(n), combined to give

a signal, y(n). In fact the synthesis filter bank perform the reverse process of analysis filter

bank.

11

Figure 4.15 Synthesis Filter Bank

Applications of Multirate signal processing

 In the digital audio industry, it is a common requirement to change the sampling rates

of band-limited sequences. This arises for example when an analog music waveform x,(t) is

to be digitized. Assuming that the significant information is in the band 22 kHz a

minimum sampling rate of 44 kHz is suggested. It is, however, necessary to perform analog

filtering before sampling to eliminate aliasing of out-of-band noise. Now the requirements

on the analog filter it should have a fairly flat passband and a narrow transition band (so

that only a small amount of unwanted energy is let in). Optimal filters for this purpose

(such as elliptic filters, which are optimal in the minimax sense) have a very nonlinear

phase response around the bandedge (i.e., around 22 kHz). In highquality music this is

considered to be objectionable. A common strategy to solve this problem is to oversample

x,(t) by a factor of two (and often four). Further applications of muItirate fiIter banks in

digital audio are Subband Coding of Speech and Image Signals.

Sub-band Coding of Speech Signals

 In sub-band coding of speech signals, the speech signal is divided into sub-bands,

decimated, encoded and transmitted to the receiver system. On the receiver side the

subband signals are decoded, interpolated and synthesized into the original speech signal.

The figure below shows the subband coding of speech signal.

 In the transmission side, the input signal is split into M-numbers of non-overlapping

frequency bands using an analysis filter bank consisting of M-numbers of bandpass filters.

The output of each bandpass filter is decimated by a factor of D. The output of decimators

12

are encoded and transmitted. On the reception side, the received sub-band signals are

decoded and then interpolated to recover the missing samples. The output of interpolators

are applied to a synthesis filter bank consisting of M-numbers of bandpass filters to recover

the original signal.

 Figure 4.16 Sub-bands Coding of Speech Signals.

Speech compression

 The processing of speech involves the analysis, coding, decoding, and synthesis of

speech sounds. The speech analyzer consists of normalizers, syllable, segmenters, sound

recognizers, sequencers, adapters, and memories which convert the speech elements into a

code. The speech synthesizer converts the code to speech by reproducing prerecorded

speech elements. There are many applications for the speech analyzer and synthesizer

ranging from limited vocabulary to complete communication systems. The most important

systems for the communication of speech information are the telephone, phonograph,

radio, sound motion picture, and television.

 The main objective in the analysis of speech as applied to communication systems is to

provide a savings in the channel capacity required for transmission.• There are several

considerations involved in the use of the different speech elements in communication

systems as follows: the bit rate for the transmission of speech, the segmentation of speech,

13

the analysis of speech, the synthesis of speech. In order to analyze the different types of

speech, there must be some means for the segmentation of the flow of speech. The

segmentation involves sentences, word , syllables and phonemes.

Segmentation of speech into syllables reduces the number of speech segments and

Reduction of bandwidth. In conventional speech processing applications, speech signal is

encoded using fixed number of bits over the entire speech signal band. During the process,

the bandwidth requirement for speech transmission is relatively high which is of concern.

The QMF (Quadrature Mirror Filter) banks are the fundamental building blocks for

spectral splitting. The aim is to design a QMF filter and then pass a speech signal through

it. In speech signals most of the energy is present in the lower frequency bands. Signal

coding is the act of transforming the signal at hand to a more compact form, which can

then be transmitted with considerably smaller memory. The motivation behind this is the

fact that access to the unlimited amount of bandwidth, which is not possible.

Therefore there is a need to code and compress speech signals. By taking advantage of the

fact that most of the energy is present in a particular frequency band we can split the signal

into various bands depending on the information content and then code the subband

signals separately. The basic theory of multirate digital signal processing is introduced in

this section along with the two Sampling rate alteration devices namely up-sampler and

down-sampler.

Elimination of interference:

 Multirate digital signal processing has a very important role in sub band coding of

speech, audio ,video and multiple carrier data transmission because of the high

computational efficiency of the multirate algorithms. The performance of a filter bank

based interference detection and suppression method to extract the original speech from

the interference contaminated speech using the perfect reconstruction (PR) property of the

Cosine Modulated filter bank.

14

Figure 4.17 Segmentation of speech into syllables

Figure 4.18 QMF filter

15

Figure 4.19 Sampled output of speech signal.

Figure 4.20 Cosine modulated filter bank.

Figure 4.21 Signal with added interference

16

Figure 4.22 Simulated response of speech process.

The interference suppressor is a critically sampled filter bank system. Modulated filter

banks are used to form analysis-synthesis filter banks that divide the received signal into

several channels (analysis part), and reconstruct the original signal from the sub-channels

(synthesis part). When a signal with added interference is applied to the analysis filter

banks, the signal interference appears at the output of one of the filter banks. The

spectrum of each sub band signal is estimated to identify the interference bands. For

interference suppression, the sub channels affected by the interference are not included in

the synthesis filter bank, resulting in notch filtering

Adaptive filter

The goal of adaptive filters are to maintain or derive desired output signal characteristics

from a FIR or IIR filter. This goal is obtained via a feedback loop structure that feeds

measure of undesired signal characteristics (error) to the filter under consideration and

subsequently the filter updates its filter kernel with the fed coefficients to generate or

maintain the desired output signal characteristics. The calculation of new coefficients based

on the error signal feedback which is to be minimized is powered by some adapting

17

algorithms. The error is defined as the deviation of output signal from the desired signal

characteristics, such that, where d(n) is the desired signal, y(n) is the output signal and e(n)

is the error signal, then the following formulas holds.

 To derive the desired signal from the system, we first have to measure the error signal

through finding out mathematical correlation between samples of output signal and desired

signal. In short, from a higher point of view, this error signal is measured by subtracting

the first signal from the latter signal. Then, this error signal is optimally minimized via

updating operating filter’s coefficients through a live feedback loop.

 The use of adaptive filters can be divided majorly into two groups. Firstly, to

continuously maintain the output signal unchanged from a running filter. Secondly, to

approximate a desired signal from the output signal of a filter. These both approach use the

same fundamental structure of the adaptive filter but they varies in terms of orientation

and applications.

 Adaptive filters can be mainly structurally realized into two ways, namely, spatially

and functionally. Spatial structure discusses about the organization of filter components

without restricting corresponding filters desired functional output. On the other hand,

functional structure discusses about the functional role of the sub-systems of each adaptive

filter.

Spatial Structure or Block Diagram

 The most common used structure are direct form, cascade form, parallel form and

lattice. Transversal layout of adaptive filters are most commonly used, however, lattice

layout is also used when its advantages overrides the advantages of transversal layout.

18

Figure 4.23. Spatial Structure or Block Diagram

 Error signal is the difference between output signal and desired signal. That is to say

that, error signal is the amount of signal component that adaptive filter optimally removes

when it converges and thus arriving at the desired condition.

 Adaptive control algorithm is the algorithm that adaptive filter uses to iteratively

calculate the new coefficients that optimally reduces the power of error signal. The choice

of adaptive control algorithm depends on the data class, memory resources, computational

time, energy requirements and overall cost. The L-MSE and LSE are two commonly used

algorithm to calculate the updated coefficients.

Musical sound processing:

 The musical sound generated by a musical instrument is due to mechanical vibrations

produced by a primary oscillator and then making other parts of the instrument to vibrate.

For example, in a violin the primary oscillator is a stretched piece of string and it is

vibrated by drawing a bow across it, which in turn vibrates the wooden body of the violin,

and these vibrations make the surrounding air to vibrate, which produces the musical

sound.

19

Figure 4.24. High quality Analog to Digital conversion for digital audio

Figure 4.25. Multirate systems are used in a CD player when the music signal is converted

from digital into analog

Digital Music Synthesis: Music synthesis plays an important role in multimedia

applications, modern entertainment, and professional music systems. The various music

synthesis techniques used in the commercial systems are wavetable synthesis, spectral

modeling synthesis, nonlinear synthesis (or FM synthesis) and physical modeling

synthesis. In wavetable synthesis method, the digital data of one period of the desired

musical tone is stored in a table called wavetable. Then, using an IIR filter with no input

and the stored data as initial condition, the musical signal is constructed whenever needed.

In spectral modeling synthesis, the mathematical equation representing the sound signal is

used to generate the required music. The musical sound can be represented by an equation

consisting of summation of sinusoidal signals. A musical tone consists of a fundamental

tone frequency and its harmonics. Using suitable signal generation algorithm, the desired

20

musical tone can be generated. In nonlinear synthesis, the musical sound signal is

represented as a nonlinear frequency modulated sinusoidal signal containing a

fundamental frequency and harmonics of modulating signal. Using signal generation

algorithm, various musical tones can be generated for various fundamental frequency. This

method cannot be used to generate musics of natural instruments. In physical modeling

synthesis, a model of musical instrument like transfer function is constructed and the

system model is implemented in a digital hardware, that can be used to generate the musics

of an instrument.

The recording of musical programs are generally made in an acoustically inert studio. The

sound of each instrument is separately recorded using microphones placed closed to it and

then they are mixed using mixing system by a sound engineer. During mixing phase,

various audio effects are artificially generated using signal processing circuits and devices.

The modern trend is to use digital signal processing for these applications. Some of the

special effects that can be implemented during mixing process are echo generation,

reverberation, and chorus generation. Also, the musical sound signals can be passed

through equalizers to provide amplification or attenuation of some of the tone frequencies

Image enhancement.

 The Mach band phenomenon is a good example of this property of the HVS. In an

Image 21 consisting of adjacent rectangular bands of different gray levels (called Mach

band), the perceived gray level near the edges is different than in the middle of the

rectangles. The edge near the darker band appears lighter and the one near the lighter

band appears darker than the middle of the rectangle.

 For 2-D signals (images) only, however the concepts can be extended to M-D signals. A

2-D analog signal x a(t) is a function of the variable t which can be defined as a column

vector

21

 D is the sampling matrix made up of sampling vectors T1 and T2

 The matrix D that generates LAT(D) is not unique and the lattice may or may not be

separable. A separable lattice is a lattice that can be represented by a diagonal matrix. For

example, the rectangular lattice has a sampling matrix form of Dr and matrix Dh can

generate a hexagonal sampling lattice.

Figure 4.26 Hexagonal resampling and decimation by 2 of a rectangular grid

22

Figure 4.27 Frequency domain support for hexagonal decimation filters: (a) Hex

decimation by 2 (b) Hex decimation by 4

Figure 4.28 Two-dimensional separable QMF bank system.

23

Figure 4.29. Two-dimensional non-separable filter bank system

L stands for lowpass branch and H stands for highpass branch

Figure 4.30. 1-D Subband decomposition structures.

TEXT / REFERENCE BOOKS:

1. John G. Proakis & Dimitris G.Manolakis, “Digital Signal Processing - Principles,

Algorithms & Applications”, Fourth Edition, Pearson education / Prentice Hall,

2009

2. Sanjit K. Mitra , Digital Signal Processing: A Computer - Based Approach,

McGrawHill Education, 4th Edition,2013

3. B.P.Lathi, “Signal Processing & Linear systems”, Oxford University Press, 2nd

edition, 2009

4. Lyons, “Understanding Digital Signal Processing”, Prentice Hall, 3rd edition, 2010

5. Johny R. Johnson, “Introduction to Digital Signal Processing”, PHI, 2006

6. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, Pearson,

3rd Edition,2010

7. Salivahanan, “Digital Signal Processing, 2nd Edition, TMH, 2010.
8. A.Nagoor Kani, “Digital Signal Processing”, Tata McGrawHill Education, 4th

Edition, 2012

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

2

UNIT - V

DIGITAL SIGNAL PROCESSING – SEC1319

3

v.REALTIME DIGITAL SIGNAL PROCESSING

1 Introduction

Digital Signal Processors (DSPs) are microprocessors with the following

characteristics:

a) Real-time digital signal processing capabilities. DSPs typically have to

process data in real time, i.e., the correctness of the operation depends

heavily on the time when the data processing is completed.

b) High throughput. DSPs can sustain processing of high-speed streaming

data, such as audio and multimedia data processing.

c) Deterministic operation. The execution time of DSP programs can be

foreseen accurately, thus guaranteeing a repeatable, desired performance.

d) Re-programmability by software. Different system behavior might be

obtained by re-coding the algorithm executed by the DSP instead of by

hardware modifications.

DSPs appeared on the market in the early 1980s. Over the last 15 years they

have been the key enabling technology for many electronics products in fields

such as communication systems, multimedia, automotive, instrumentation and

military. Table 1 gives an overview of some of these fields and of the

corresponding typical DSP applications.

Figure 5.1 shows a real-life DSP application, namely the use of a Texas

Instruments (TI) DSP in a MP3 voice recorder–player. The DSP implements the

audio and encode functions. Additional tasks carried out are file management, user

interface control, and post-processing algorithms such as equalization and bass

management.

4

Table 1: A short selection of DSP fields of use and specific applications

Field Application

Communication

Broadband

Video conferencing / phone

Voice / multimedia over IP

Digital media gateways (VOD)

Wireless
Satellite phone

Base station

Consumer

Security
Biometrics

Video surveillance

Entertainment

Digital still /video camera

Digital radio

Portable media player / entertainment

console

Toys
Interactive toys

Video game console

Industrial and

entertainment

Medical

MRI

Ultrasound

X-ray

Point of sale
Scanner

Vending machine

Industrial

Factory automation

Industrial / machine / motor control

Vision system

Military and aerospace

Guidance (radar, sonar)

Avionics

Digital radio

Smart munitions, target detection

5

Fig. 5.1: Use of Texas Instruments DSP in a MP3 player/recorder

system. Picture courtesy of Texas Instruments from www.ti.com.

 Use in accelerators

DSPs have been used in accelerators since the mid-1980s. Typical uses include

diagnostics, machine protection and feedforward/feedback control. In diagnostics,

DSPs implement beam tune, intensity, emittance and position measurement systems.

For machine protection, DSPs are used in beam current and beam loss monitors.

For control, DSPs often implement beam controls, a complex task where beam

dynamics plays an important factor for the control requirements and

implementations. Other types of control include motor control, such as collimation

or power converter control and regulation.

DSPs are located in the system front-end. Figure 5.2 shows CERN’s

hierarchical controls infrastructure, a three-tier distributed model providing a clear

separation between Graphical User Interface (GUI), server, and device (front-end)

tiers.

DSPs are typically hosted on VME boards which can include one or more

programmable devices such as Complex Programmable Logic Devices (CPLDs) or

Field Programmable Gate Arrays (FPGAs). Daughtercards, indicated in Fig.5.2 as

dashed boxes, are often used; their aim is to construct a system from building blocks

and to customize it by different FPGA/DSP codes and by the daughtercards type.

DSPs and FPGAs are often connected to other parts of the system via low-latency

data links. Digital input/output, timing, and reference signals are also typically

available. Data are exchanged between the front-end computer and the DSP over

the VME bus via a driver.

6

Fig.5.2: Typical controls infrastructure used at CERN and DSP

characteristics location

2 DSP evolution and current scenery

DSPs appeared on the market in the early 1980s. Since then, they have undergone

an intense evolution in terms of hardware features, integration, and software

development tools. DSPs are now a mature technology. This section gives an

overview of the evolution of the DSP over their 25-year life span; specialized terms

such as ‘Harvard architecture’, ‘pipelining’, ‘instruction set’ or ‘JTAG’ are used.

 DSP evolution: hardware features

In the late 1970s there were many chips aimed at digital signal processing; however,

they are not considered to be digital signal processing owing to either their limited

programmability or their lack of hardware features such as hardware multipliers.

The first marketed chip to qualify as a programmable DSP was NEC’s MPD7720, in

1981: it had a hardware multiplier and adopted the Harvard architecture. Another

early DSP was the TMS320C10, marketed by TI in 1982. Figure 5.3 shows a

selective chronological list of DSPs that have been marketed from the early 1980s

until now.

7

From a market evolution viewpoint, we can divide the two and a half decades

of DSP life span into two phases: a development phase, which lasted until the early

1990s, and a consolidation phase, lasting until now. Figure5.3 gives an overview of

the evolution of DSP features together with the first year of marketing for some DSP

families.

Fig.5.3: Evolution of DSP features from their early days until now.

The first year of marketing is indicated at the top for some DSP

families.

During the market development phase, DSPs were typically based upon the

Harvard architecture. The first generation of DSPs included multiply, add, and

accumulator units. Examples are TI’s TMS320C10 and Analog Devices’ (ADI)

ADSP-2101. The second generation of DSPs retained the architectural structure of

the first generation but added features such as pipelining, multiple arithmetic units,

special address generator units, and Direct Memory Access (DMA). Examples

include TI’s TMS320C20 and Motorola’s DSP56002. While the first DSPs were

capable of fixed- point operations only, towards the end of the 1980s DSPs with

floating point capabilities started to appear. Examples are Motorola’s DSP96001

and TI’s TMS320C30. It should be noted that the floating-point format was not

always IEEE-compatible. For instance, the TMS320C30 internal calculations were

carried out in a proprietary format; a hardware chip converter. was available to

convert to the standard IEEE format. DSPs belonging to the development phase

were characterized by fixed-width instruction sets, where one of each instruction

was executed per clock cycle. These instructions could be complex, and

encompassing several operations. The width of the instruction was typically quite

short and did not overcome the DSP native word width. As for DSP producers, the

market was nearly equally shared between many manufacturers such as AT&T,

Fujitsu, Hitachi, IBM, NEC, Toshiba, Texas Instruments and, towards the end of

the 1980s, Motorola, Analog Devices and Zoran.

8

During the market consolidation phase, enhanced DSP architectures such as

Very Long Instruction Word (VLIW) and Single Instruction Multiple Data (SIMD)

emerged. These architectures increase the DSP performance through parallelism.

Examples of DSPs with enhanced architectures are TI’s TMS320C6xxx DSPs, which

was the first DSP to implement the VLIW architecture, and ADI’s TigerSHARC,

that includes both VLIW and SIMD features. The number of on-chip peripherals

increased greatly during this phase, as well as the hardware features that allow

many processors to work together. Technologies that allow real-time data exchange

between host processor and DSP started to appear towards the end of the 1990s.

This constituted a real sea change in DSP system debugging and helped the

developers enormously. Another phenomenon observed during this phase was the

reduction of the number of DSP manufacturers. The number of DSP families was

also greatly reduced, in favour of wider families that granted increased code

compatibility between DSPs of different generations belonging to the same family.

Additionally, many DSP families are not ‘general- purpose’ but are focused on

specific digital signal processing applications, such as audio equipment or control

loops.

 DSP evolution: device integration

Table 2 shows the evolution over the last 25 years of some key device characteristics

and their expected values after the year 2010.

Table 2: Overview of DSP device characteristics as a function of time.

The last column refers to expected values.

Characteristic

Year

198

0

1990

2000

> 2010

Wafer size [inches] 3 6 12 18

Die size [mm] 50 50 50 5

Feature [µm] 3 0.8 0.1 0.02

RAM [Bytes] 256 2000 3200

0

1

million

Clock

frequency

[MHz] 20 80 1000 10000

Power [mW/MIPS] 250 12.5 0.1 0.001

Price [USD] 150 15 5 0.15

Wafer, die, and feature sizes are the basic key factors that define a chip

technology. The wafer size is the diameter of the wafer used in the semiconductor

manufacturing process. The die size is the size of the actual chips carved up in a

wafer. The feature size is the size of the smallest circuit component (typically a

transistor) that can be etched on a wafer; this is used as an overall indicator of the

density of an Integrated Circuit (IC) fabrication process. The trend in industry is to

9

go towards larger wafers and chip dies, so as to increase the number of working

chips that can be obtained from the same wafer; also called yield. For instance, the

current typical wafer size is 12 inches (300 mm), and some leading chip maker

companies plan to move to 18 inches (450 mm) within the first half of the next

decade. (It should be added that the issue is somewhat controversial, as many

equipment manufacturers fear that the 18 inches wafer size will lead to scale

problems even worse than for the 12 inches.) Feature size is decreasing, allowing

one to either have more functionality on a die or to reduce the die size while keeping

the same functionality. Transistors with smaller sizes require less voltage to drive

them; this results in a decrease of the core voltage from 5 V to 1.5 V. The I/O voltage

has been lowered as well, with the caveat that it remains compatible with the

external devices used and their standard. A lower core voltage has been one of the

key factors enabling higher clock frequencies: in fact, the gap between high and low

state thresholds is tightened thus allowing a faster logic level transition.

Additionally, the reduced die size and lowered core voltage allow lower power

consumption, an important factor for portable or mobile system. Finally, the global

cost of a chip has decreased by at least a factor 30 over the last 25 years.

The trend towards a faster switching hardware (including chip over-clocking)

and smaller feature size carries the benefit of increased processing power and

throughput. There is a downside to it, however, represented by the electromigration

phenomenon. Electromigration occurs when some of the momentum of a moving

electron is transferred to a nearby activated ion, hence causing the ion to move from

its original position. Gaps or, on the contrary, unintended electrical connections can

develop with time in the conducting material if a significant number of atoms are

moved far from their original position. The consequence is the electrical failure of

the electronic interconnects and the consequent shortened chip lifetime.

 DSP evolution: software tools

 The improvement of DSP software tools from the early days until now

 has been spectacular.

Code compilers have evolved greatly to be able to deal with the underlying

hardware complexity and the enhanced DSP architectures. At the same time, they

allow the developer to program more and more efficiently in high-level languages as

opposed to assembly coding. This speeds up considerably the code development time

and makes the code itself more portable across different platforms.

Advanced tools now allow the programming of DSPs graphically, i.e., by

interconnecting pre-defined blocks that are then converted to DSP code. Examples

of these tools are MATLAB Code Generation and embedded target products and

National Instruments' LabVIEW DSP Module.

High-performance simulators, emulator and debugging facilities allow the

developer to have a high visibility into the DSP with little or no interference on the

program execution. Additionally, multiple DSPs can be accessed in the same JTAG

chain for both code development and debugging.

10

 DSP current scenery

The number of DSP vendors is currently somewhat limited: Analog Devices (ADI),

Freescale (formerly Motorola), Texas Instruments (TI), Renesas, Microchip and

VeriSilicon are the basic players. Amongst them, the biggest share of the market is

taken by only three vendors, namely ADI, TI and Freescale. In the accelerator

sector one can find mostly ADI and TI DSPs, hence most of the examples in this

document will be focused on them. Table 3 lists the main DSP families for ADI and

TI DSPs, together with their typical use and performance.

Table 3: Main ADI and TI DSP families, together with their typical use and

performance

Manufacturer

Family

Typical use and performance

TI

TMS320C2x Digital signal controllers

TMS320C5x Power efficient

TMS320C6x High performance

ADI

SHARC Medium performance. First ADI family (now three

generations)

TigerSHARC High performance for multi-processor systems

Blackfin High performance and low power

3 DSP core architecture

DSP architecture has been shaped by the requirements of predictable and accurate

real-time digital signal processing. An example is the Finite Impulse Response (FIR)

filter, with the corresponding mathematical equation, where y is the filter output, x

is the input data and a is a vector of filter coefficients. Depending on the application,

there might be just a few filter coefficients or many hundreds or more.

------------------------------------>(1)

As shown in above Equation, the main component of a filter algorithm is the

‘multiply and accumulate’ operation, typically referred to as MAC. Coefficients

data have to be retrieved from the memory and the whole operation must be

executed in a predictable and fast way, so as to sustain a high throughput rate.

Finally, high accuracy should typically be guaranteed. These requirements are

common to many other algorithms performed in digital signal processing, such as

Infinite Impulse Response (IIR) filters and Fourier Transforms. Table 4 shows a

selection of processing requirements together with the main DSP hardware features

satisfying them.

11

Table 4: Main requirements and corresponding DSP hardware

implementations for predictable and accurate real-time digital signal

processing. The numbers in the first column refer to the section treating

the topic.

Processing

requirements

Hardware implementations satisfying the

requirement

3.2 Fast data access

 High-bandwidth memory architectures

 Specialized addressing modes

 Direct Memory Access (DMA)

3.3 Fast computation

 MAC-centred

 Pipelining

 Parallel architectures (VLIW, SIMD)

3.4 Numerical fidelity Wide accumulator registers, guard bits, etc.

3.5 Fast execution

control

 Hardware-assisted, zero-overhead loops, shadow

registers, etc.

 Fast data access

Fast data access refers to the need of transferring data to / from memory or DSP

peripherals, as well as retrieving instructions from memory. The hardware

implementations considered for this are three, namely a) high-bandwidth memory

architectures,

 High-bandwidth memory architectures

Traditional general-purpose microprocessors are based upon the Von Neumann

architecture, shown in Fig.5.4(a). This consists of a single block of memory,

containing both data and program instructions, and of a single bus (called data bus)

to transfer data and instructions from/to the CPU. The disadvantage of this

architecture is that only one memory access per instruction cycle is possible, thus

constituting a bottleneck in the algorithm execution.

DSPs are typically based upon the Harvard architecture, shown in Fig.5.4(b),

or upon modified versions of it, such as the Super-Harvard architecture shown in

Fig.5.4(c). In the Harvard architecture there are separate memories for data and

program instructions, and two separate buses connect them to the DSP core. This

allows fetching program instructions and data at the same time, thus providing

better performance at the price of an increased hardware complexity and cost. The

Harvard architecture can be improved by adding to the DSP core a small bank of

fast memory, called ‘instruction cache’, and allowing data to be stored in the

12

program memory. The last-executed program instructions are relocated at run time

in the instruction cache. This is advantageous for instance if the DSP is executing a

loop small enough so that all its instructions can fit inside the instruction cache: in

this case, the instructions are copied to the instruction cache the first time the DSP

executes the loop. Further loop iterations are executed directly from the instruction

cache, thus allowing data retrieval from program and data memories at the same

time.

Fig.5.4: (a) Von Neumann architecture, typical of traditional general-purpose

microprocessors.

(b) Harvard and (c) Super-Harvard architectures, typical of DSPs.

Another more recent improvement of the Harvard architecture is the presence

of a ‘data cache’, namely a fast memory located close to the DSP core which is

dynamically loaded with data. Of course, the fact of having the cache memory very

close to the DSP allows clocking it at high speed, as routing wire delays are short.

Figure 5.5. shows the cache architecture for TI TMS320C67xx DSP, including both

program and data cache. There are two levels of cache, called Level 1 (L1) and Level

2 (L2). The L1 cache comprises 8 kbyte of memory divided into 4 kbyte of program

cache and 4 kbyte of data cache. The L2 cache comprises 256 kbyte of memory

divided into 192 kbyte mapped-SRAM memory and 64 kbyte dual cache memory.

The latter can be configured as mapped memory, cache or a combination of the two.

Fig. 5.5: TI DSP TMS320C67xx family two-level cache architecture

13

Figure 6 shows the hierarchical memory architecture to be found in a modern

DSP. Typical levels of memory and corresponding access time, hardware

implementation, and size are also shown. As remarked above, a hierarchical

memory allows one to take advantage of both the speed and the capacity of different

memory types. Registers are banks of very fast internal memory, typically with

single-cycle access time. They are a precious DSP resource used for temporary

storage of coefficients and intermediate processing values. The L1 cache is typically

high-speed static RAM made of five or six transistors. The amount of L1 cache

available thus depends directly on the available chip space. A L2 cache needs

typically a smaller number of transistors hence can be present in higher quantities

inside the DSPs. Recent years have also seen the integration of DRAM memory

blocks into the DSP chip, thus guaranteeing larger internal memories with relatively

short access times. The Level 3 (L3) memory shown in Fig.5.6 is rarely present in

DSPs while the external memory is typically available. This is often a large memory

with long access times.

Fig.5.6: DSP hierarchical memory architecture and typical number of access

clock cycles, hardware implementation, and size for different memory types

As shown above, cache memories improve the average system performance.

However, there are drawbacks to the presence of a cache in DSP-based systems,

owing to the lack of full predictability for cache hits. A missing cache hit happens

when the data or the instructions needed by the DSP are not stored in cache

memory, hence they have to be fetched from a slower memory with an execution

speed penalty. A situation causing a missing cache hit is, for instance, the flow

change due to branch instructions. The consequence is a difficult worst-case-

scenario prediction, which is particularly negative for DSP-based systems where it is

important to be able to calculate and predict the system time response. There may,

however, be methods used to limit these effects, such as the possibility for the user to

lock the cache so as to execute time-critical sections in a deterministic way.

Advanced cache organizations characterized by a uniform memory addressing are

also under study .

 Specialized addressing modes

DSPs include specialized addressing modes and corresponding hardware support to

allow a rapid access to instruction operands through rapid generation of their

14

location in memory. DSPs typically support a wide range of specialized addressing

modes, tailored for an efficient implementation of digital signal processing

algorithms.

Figure 5.7 adds the address generator units to the basic DSP architecture

shown in Fig. 5.4(c). As in general-purpose processors, DSPs include a Program

Sequencer block, which manages program structure and program flow by supplying

addresses to memory for instruction fetches. Unlike general- purpose processors,

DSPs include address generator blocks, which control the address generation for

specialized addressing modes such as indexing addressing, circular buffers, and bit-

reversal addressing. The two last addressing modes are discussed below.

Fig. 5.7: Program sequencer and address generator units location within

a generic DSP core architecture

Circular buffers are limited memory regions where data are stored in a First-

In First-Out (FIFO) way; these memory regions are managed in a ‘wrap-around’

way, i.e., the last memory location is followed by the first memory location. Two sets

of pointers are used, one for reading and one for writing; the length of the step at

which successive memory locations are accessed is called ‘stride’. Address generator

units allow striding through the circular buffers without requiring dedicated

instructions to determine where to access the following memory location, error

detection and so on. Circular buffers allow storing bursts or continuous streams of

data and processing them in the order in which they have arrived. Circular buffers

are used for instance in the implementation of digital filters; strides higher than one

are useful in case of multi-rate signal processing. Figure5.8 shows the order in which

data are accessed for a read operation in case of an eleven-element circular buffer

and with a stride equal to four.

15

Fig. 5.8: Example of read data access order in a circular buffer

composed of 11 elements and with stride equal to 4 elements

Bit-reversal addressing, shown in Fig.5.9, is an essential step in the discrete

Fourier transforms calculation. In fact, many implementations of the Fourier

transforms require a re-ordering of either the input or the output data that

corresponds to reversing the order of the bits in the array index. Figure 5.9 gives an

example of the bit-reversal mechanism. Carrying it out by software is very

demanding andwould result in using many CPU cycles, which are saved thanks to

the hardware bit-reversal functionality.

Fig.5.9: Bit-reversal mechanism

16

 Direct Memory Access (DMA) controller

The DMA controller is a second processor working in parallel with the DSP core

and dedicated to transferring information between two memory areas or between

peripherals and memory. In doing so the DMA controller frees the DSP core for

Fig.5.10: An example of DMA controller location within a generic

DSP core

 other processing tasks. Figure 5.10 shows an example of the DMA location within a

general DSP core architecture.

A DMA coprocessor can transfer data as well as program instructions, the

latter transfer corresponding typically to the case of code overlay, i.e., of code stored

in an external memory and moved to an internal memory (for instance L1) when

needed. Multiple and independent DMA channels are also available for greater

flexibility. Bus arbitration between the DMA and the DSP core is needed to avoid

colliding memory accesses when the DMA and the DSP core share the same bus to

access peripherals and/or memories. To prevent bottlenecks, recent DSPs typically

fit DMA controllers with dedicated buses.

Figure 5.11 shows the advantages of DMA for the DSP core efficient use: the

DSP core must set up the DMA but still there is a net gain in the DSP core

availability for other processing activities. Nowadays there are two classes of DMA

transfer configurations: register-based and RAM-based, the latter one also called

descriptor-based. In register-based DMA controllers the transfer set-up is done by

the DSP core via the registers set-up. This method is very efficient but allows mainly

simple DMA operations. In RAM-based DMA controllers the set-up parameters are

stored in memory. This method is preferred by powerful and recent DSPs as it

Fig. 5.11: (a) Read–process–write data when the DSP core only is

17

present; (b) same activity when the DMA takes care of data transfers

allows great DMA transfer flexibility.

Figure 5.12 provides two examples of transfer configurations. Plot (a) shows a

chained DMA transfer, where the completion of a data transfer triggers a new

transfer. This type of data transfer is particularly suited to applications that require

a continuous data stream in input. Plot (b) shows a multi-dimensional data transfer,

obtained by changing the stride of the DMA transfer. This type of data transfer is

particularly useful for video applications.

Fig. 5.12: Examples of DMA transfer configurations. (a): chained DMA

transfer; (b): Multi- dimensional data transfer.

DSP external events and interrupts can be used to trigger a DMA data

transfer. DMA controllers can also generate interrupts to communicate with the

DSP core, for instance to inform it that a data transfer has been completed. An

example of a powerful and highly flexible DMA controller is that implemented for

TI’s TMS320C6000 family.

 MAC-centred

The basic DSP arithmetic processing blocks are a) many registers; b) one or more

multipliers; c) one or more Arithmetic Logic Units (ALUs); d) one or more shifters.

These blocks work in parallel during the same clock cycle thus optimizing MAC as

well as other arithmetic operations. The blocks are shown in Fig.5.13 and are briefly

described below.

a) Registers: these are banks of very fast memory used to store intermediate

data processing. Very often they are wider than the DSP normal word

width, so as to provide a higher resolution during the processing.

b) Multiplier: it can carry out single-cycle multiplications and very often it

includes very wide accumulator registers to reduce round-off or truncation

errors. As a consequence, truncation and round-off errors will happen only

at the end of the data processing, when the data is stored onto memory.

Sometimes an adder is integrated in the multiplier unit.

18

c) ALU: it carries out arithmetic and logical operations.

d) Shifters: it shifts the input value by one or more bits, left or right. In the

latter case, the shifter is called a barrel shifter and is especially useful in the

implementation of floating point add and subtract operations.

Fig. 5.13: Basic DSP arithmetic processing blocks. The structure shown is that

of ADI SHARC.

Instruction pipelining

Instruction pipelining has become an important element to achieve high DSP

performance. It consists of dividing the execution of instructions into different stages

and executing the different instructions in parallel stages. The net result is an

increased throughput of the instruction execution. The whole process can be

compared to a factory assembly line, which produces cars for instance: more than

one car is in the assembly line at the same moment, at different stages of assembly.

This provides a production higher than the case where only one car at a time is

produced, where many specialized crews are idle waiting for the next car to require

their work.

Table 5 shows the basic pipelining stage into which each instruction is divided:

1. Fetch. The DSP calculates the address of the next instruction to execute and

retrieve the op- code, i.e., the binary word containing the operands and the

operation to be carried out on them.

2. Decode. The op-code is interpreted and sent to the corresponding functional

unit. The instruction is interpreted and the operands are retrieved.

3. Execute. The instruction is executed and the results are written onto the

registers.

19

Table 5: The three basic pipelining stages and corresponding

actions

Basic pipelining

stages

Action

Fetch

 Generate program fetch

address

 Read op-code

Decode

 Route op-code to functional

unit

 Decode instruction

 Read operands

Execute

 Execute instruction

 Write results back to registers

Figure 5.14 shows the advantage of a pipelined CPU with respect to a non-

pipelined CPU, in terms of processing time gain. In a non-pipelined CPU the

different instructions are executed serially, while in a pipelined CPU only the same

type of stages (e.g. Fetch, Decode and Execute) are serialized and different

instructions are executed in parallel. A pipeline is called fully-loaded if all stages are

executed at the same time; this corresponds to the maximum possible instruction

throughput. The depth of the pipeline, i.e., the number of stages into which an

instruction is divided, can vary from one processor to another. Generally speaking a

deeper pipeline allows the processor to execute faster, hence many processors sub-

divide pipeline stages into smaller steps, each one executed at each clock cycle. The

smaller the step, the faster the processor clock speed can be. An example of deep

pipeline is the TI TMS320C6713 DSP, which includes four fetch stages, two decode

stages, and up to ten execution stages.

There are drawbacks and limitations to the pipelining technique. One

drawback is the hardware and programming complexity required by it, for instance

in terms of capabilities needed in the compiler and the scheduler. This is especially

true in the case of deep pipelines. A limitation in the effective instruction execution

throughput is given by situations that prevent the pipeline from being fully-loaded.

These situations include pipeline flushes due to changes in the program flow, such as

code branches or interrupts. In this case, the DSP does not know which instructions

it should execute next until the branch instruction is executed. Other situations are

data hazards, namely when one instruction needs the result of a previous instruction

to be executed. Apart from a reduced throughput,

20

Fig. 5.14: Instruction execution and processing time gain of a pipelined

CPU (plot b) with respect to a non-pipelined one (plot a)

these pipeline limitations cause a more difficult prediction of the worst-case

scenario. Techniques not described here are available to provide the DSP

programmer with a pipeline control; they include time-stationary pipeline control,

data-stationary control, and interlocked pipeline.

 Parallel architectures

The DSP performance can be increased by an increased parallelism in the

instructions execution. Parallel-enhanced DSP architectures started to appear on the

market in the mid 1990s and were based on instruction-level parallelism, data-level

parallelism, or a combination of both. These two approaches are called Very Long

Instruction Word (VLIW) and Single-Input Multiple-Data (SIMD), respectively and

are discussed below.

VLIW architectures are based upon instruction level parallelism, i.e., many

instructions are issued at the same time and are executed in parallel by multiple

execution units. As a consequence, DSPs based on this architecture are also called

‘multi-issue’ DSP. This is an innovative architecture that was first used in the TI

TMS320C62xx DSP family. Figure 5.15 shows an example of the VLIW

architecture: eight, 32-bit instructions are packed together in a 256-bit wide

instruction which is fed to eight separate execution units. Characteristics of VLIW

architectures include simple and regular instruction sets. Instruction scheduling is

done at compile-time and not at run-time so as to guarantee a deterministic

behaviour. This means that the decision on which instructions have to be executed in

parallel is done when the program is compiled, hence the order does not change

during the program execution. A run-time scheduling would instead make the

scheduling dependent on data and resources availability, which could change for

different program executions. An important advantage of the VLIW architecture is

that it can increase the DSP performance for a wide range of algorithms.

Additionally, the architecture is potentially scalable, i.e., more execution units could

be added to allow a higher number of instructions to be executed in parallel. There

are disadvantages as well, such as the high memory use and power consumption

21

required by this architecture. From a programmer’s viewpoint, writing assembly

code for VLIW architecture is very complex and the optimization is often better left

to the compiler.

Fig.5.15: TI TMS320C6xxx family VLIW architecture

SIMD architectures are based on data-level parallelism, i.e., only one

instruction is issued at a time but the same operation specified by the instruction is

performed on multiple data sets. Figure 5.16 shows the example of a DSP based

upon the SIMD architecture: two 32-bit input registers provide four, 16-bit each,

data inputs. They are processed in parallel by two separate execution units that

carry out the same operation. The two, 16-bit data outputs are packed into a 32-bit

register. Typical SIMD architecture can support multiple data width and is most

effective on algorithms that require the processing of large data chunks. The SIMD

operation mode can be switched ON or OFF, for instance in the ADI SHARC DSP.

An advantage of the SIMD architecture is that it is applicable to other architectures;

an example is the ADI TigerSHARC DSP that comprises both VLIW and SIMD

characteristics. SIMD drawbacks include the fact that SIMD architectures are not

useful for algorithms that process data serially or that contain tight feedback loops.

It is sometimes possible to convert serial algorithms to parallel ones; however, the

cost is in reorganization penalties and in a higher program- memory usage, owing to

the need to re-arrange the instructions.

Fig. 5.16: Simplified schematics for ADI SHARC DSP as an

example of SIMD architecture

22

 Numerical fidelity

Arithmetic operations such as additions and multiplications are the heart of DSP

systems. It is thus essential that the numerical fidelity be maximized, i.e., that errors

due to the finite number of bits used in the number representation and in the

arithmetic operations be minimized. DSPs have many ways to obtain this, ranging

from the numeric representation to dedicated hardware features.

As far as the number representation is concerned, DSPs can be divided into

two categories: fixed point and floating point.

Fixed-point DSPs perform integer as well as fractional arithmetic, and can

support data widths of 16, 24 or 32 bits. A fixed-point format can represent both

signed and unsigned integers and fractions. Fractional numbers can take values in

the [-1.0, 1.0] range and are often indicated as Qx.y, where ‘x’ indicates the number

of bits located before the binary point and ‘y’ the number of bits after it. Figure

5.17(a) shows how 16-bit signed fractional point numbers are coded. Signed

fractional numbers with 24-bit and 32-bit data width are coded in an equivalent way

as Q1.23 and Q1.31, respectively. They can take values in the same [-1.0, 1.0] range,

however, their resolution is higher than the 16-bit implementation.

Floating-point DSPs represent numbers with a mantissa and an exponent,

nowadays following the IEEE 754 standard shown in Fig.5.17(b) for a 32-bit

number. The mantissa dictates the number precision and the exponent controls its

dynamic range. Numbers are scaled so as to use the full word- length available,

hence maximizing the attainable precision.

Fig.5. 17: (a): 16-bit signed fractional point, often indicated as Q1.15.

(b): IEEE 754 normalized representation of a single precision floating

point number.

Floating-point numbers provide a higher dynamic range, which can be

essential when dealing with large data sets and with data sets whose range cannot be

easily predicted. The dynamic range for a 32-bit number represented as fixed-point

and as floating-point is shown in Fig.5.18.

Fig.5.18: Dynamic range for 32-bit data, represented as 32-bit signed fractional

point and IEEE 754 normalized number

23

In addition to the different number formats available, DSPs provide hardware

ways to improve numerical fidelity. One example is represented by the large

accumulator registers, used to hold intermediate and final results of arithmetic

operations. These registers are several bits (at least four) wider than the normal

registers in order to prevent overflow as much as possible during accumulation

operations. The extra bits are called guard bits and allow one to retain a higher

precision in intermediate computation steps. Flags to indicate that an

overflow/underflow has happened are also available. These flags are often connected

to interrupts, thus allowing exception-handling routines to be called. Another means

DSPs have to improve numerical fidelity is saturated arithmetic. This means that a

number is saturated to the maximum value that can be represented, so as to avoid

wrap-around phenomena.

 Fast-execution control

Here we show two important examples of how DSP can fast-execute control

instructions. The first example is the zero-overhead hardware loop and refers to the

program flow control in loops. The second example refers to how DSPs react to

interrupts.

Looping is a critical feature in many digital signal processing algorithms. An

important DSP feature is the implementation by hardware of looping constructs,

referred to as ‘zero-overhead hardware loop’. This allows DSP programmers to

initialize loops by setting a counter and defining the loop bounds, without spending

any software overhead to update and test loop counters or branching back to the

beginning of the loop.

The capability to service interrupts very quickly and in a deterministic way is

an important DSP characteristic. Interrupts are internal (for instance generated by

internal timers) or external (brought to the DSP code via pins) events that change

the DSP execution flow when they are serviced. The latency is the time elapsed from

when the interrupt event is triggered and when the DSP starts to execute the first

instruction of the corresponding Interrupt Service Routine (ISR). When an

interrupt is received and if the interrupt has a sufficiently-high priority, the DSP

must carry out the following actions:

a) stop its current activity;

b) save the information related to the interrupted activity (called context) into the

DSP stack;

c) start servicing the interrupt.

The context corresponding to the interrupted activity can be restored when the

ISR has been executed and the previous activity is continued.

24

Table 6: Interrupt dispatchers available on the ADI ADSP21160M DSP. The

instruction cycle is 12.5 µs, hence the number of cycles can easily be converted to

time.

Interrupt dispatcher Cycles before

ISR

Cycles after

ISR

Normal 183 109

Fast 40 26

Super-fast (with alternate registers

set)

34 10

Final 24 15

More than one interrupt dispatcher is typically available in a DSP; this means

that the user can select the amount of context to be saved, knowing that a higher

number of saved registers implies a longer context switching time. An interesting

feature available in some DSPs, such as the ADI SHARC AD21160, is the presence

of two register sets, called ‘primary’ and ‘alternate’ for all the CPU’s key registers.

When an interrupt occurs, the alternate register set can be used, thus allowing a

very fast context switch. Table 6 shows the four interrupt dispatchers available on

the ADSP21160M DSP and their corresponding latency (‘Cycles before ISR’) and

context restore time (‘Cycles after ISR’. The ‘Final’ dispatcher is intended for use

with user-written assembly functions or C functions that have been compiled using

‘#pragma interrupt’. In particular, this dispatcher relies on the compiler (or

assembly routine) to save and restore all appropriate registers.

 DSP core example: TI TMS320C67x

Figure 5.19 shows TI’s TMS320C6713 DSP core architecture, as an example of

modern VLIW architecture implementing many of the characteristics described in

Section 3. This DSP is that used in the laboratory companion of the lectures upon

which this paper is based.

Boxes inside the yellow square belong to the DSP core architecture, which here

is considered to include the cache memory as well as the DMA controller. The white

boxes are components common to all C6000 devices; grey boxes are additional

features on the TMS320C6713 DSP.

25

Fig. 5.19: TI TMS320C6713 DSP core architecture. Picture courtesy

of TI .

The TMS320C6713 DSP is a floating point DSP with VLIW architecture. The

internal program memory is structured so that a total of eight instructions can be

fetched at every cycle. To give a numerical example, with a clock rate of 225 MHz

the C6713 DSP can fetch eight, 32-bit instructions every 4.4 ns. Features of the

C6713 include 264 kBytes of internal memory: 8 kB as L1 cache and 256 kB as L2

memory shared between program and data space. The processing of instructions

occurs in each of the two data paths (A and B), each of which contains four

functional units (.L, .S, .M, .D). An Enhanced DMA (EDMA) controller supports up

to 16 EDMA channels. Four of the sixteen channels (channels 8−11) are reserved for

EDMA chaining, leaving twelve EDMA channels available to service peripheral

devices.

4 DSP peripherals

The available peripherals are an important factor for the DSP choice. Peripherals

are here considered as belonging to two categories:

a) interconnect, discussed in Section 4.2;

b) services, such as timers, PLL and power management, discussed in Section

4.3.

DSP developers must in fact carefully evaluate the needs of their system in

terms of interconnect and services required, to avoid bottlenecks and reduced

system performance.

Modern DSPs often have several peripherals integrated on-chip, such as

UARTs, serial, USB and video ports. There are benefits in using embedded

peripherals, such as fast performance and reduced power consumption. There are,

however, drawbacks, in that embedded peripherals can be less flexible across

applications and their unit cost might be higher.

The evolution of DSP-supported peripherals has been terrific over the last 20

26

years. From the original few parallel and serial ports, DSP can now support a wide

peripherals range, including those needed by audio/video streaming applications.

Often the DSP chip does not have pins to allow using all supported peripherals at

the same time. To overcome this limitation, the pins are multiplexed, i.e., the DSP

developer must select at boot time which peripherals he/she needs to have available.

An example of pin multiplexing referred to TI’s TMS320C6713 DSP is given in

Section 4.4.

An overview of interconnect and DSP services is given in Sections 4.2 and 4.3,

respectively. Hints on different interfacing possibilities to external memories and

data converter memories are provided in Sections 4.5 and 4.6, respectively. Finally,

a brief outline of the DSP booting process is given in Section 4.7.

 Interconnect

The amount of supported interconnect and data I/O is huge, so only a few examples

are given below, divided per interconnect type.

Serial interfaces

a) Serial Peripheral Interface (SPI): this is an industry-standard synchronous

serial link that supports communication with multiple SPI compatible

devices. The SPI peripheral is a synchronous, four-wire interface consisting

of two data pins, one device select pin, and a gated clock pin. With the two

data pins, it allows for full-duplex operation to other SPI compatible

devices. An example of DSP fitted with a SPI port is ADI’s Blackfin ADSP-

BF533 .

b) Multichannel Buffered Serial Ports (McBSP) on TI’s DSPs: this serial

interface is based upon the standard serial port found in TMS320C2x and

TMS320C5x DSPs.

c) Multichannel Audio Serial Port (McASP) on TI’s DSPs: this is a serial port

optimized for the needs of multichannel audio applications. Each McASP

includes transmit and receive sections that can operate synchronized as well

as completely independent, i.e., with separate master clocks, bit clocks, and

data stream formats.

Parallel interfaces

a) ADI’s linkports are parallel interfaces that allow DSP–DSP as well as

DSP–peripheral connection. An example of their use for inter-DSP

communication to build multi-DSP systems is given in Sub-section 9.3.1.

b) Parallel Peripheral Interface (PPI) on ADI’s Blackfin DSP: this is a

multifunction parallel interface, configurable between 8 and 16 bits in

width. It supports bidirectional data flow and it includes three

synchronization lines and a clock pin for connection to an externally-

supplied clock. The PPI can receive data at clock speeds of up to 65 MHz,

while transmit rates can approach 60 MHz.

Other interfaces commonly found, for instance in TI DSPs, are Peripheral

Component Interconnect (PCI) [29], Inter-Integrated Circuit (I2C) , Host-Port

27

Interface (HPI) and General-Purpose Input/Output (GPIO) .

 Services

System services provide functionality that is common to embedded systems; the on-

chip hardware is generally accompanied by an API that allows one to easily

interface to them. A few examples of services are given below.

a) Timers: DSPs are typically fitted with one or more general-purpose timers

that are used to time or count events, generate interrupts to the CPU, or

send synchronization events to a DMA/EDMA controller.

b) PLL controller: it generates clock pulses for the DSP code and the

peripherals from internal or external clock signals.

c) Power Management: the power-down logic allows the reduction of clocking

so as to reduce power consumption. In fact, most of the operating power of

CMOS logic dissipates during circuit switching from one logic state to the

other. Significant power can be saved by preventing some of these level

switches.

d) Boot configuration: a variety of boot configurations are often available in

DSPs. They are user-programmable and determine what actions the DSP

performs after it has been reset to prepare for the initialization. These

actions include loading the DSP code load from external memory or from an

external host. Some boot modes are outlined in Section 4.7

e) JTAG: this interface implements the IEEE standard 1149.1 and allows

emulation and debugging. A detailed description of its use can be found in

Section 7.2. Figure 5.20 shows a typical JTAG connector and corresponding

signals .

Fig.5.20: Fourteen-pin JTAG header and corresponding signals.

Picture courtesy of TI.

28

 TI C6713 DSP example

The peripherals available on TI’s TMS320C6713 DSP are shown in Fig. 21 as boxes

encircled by a yellow shape. The white boxes are components common to all C6000

devices, while grey boxes are additional features on the TMS320C6713 DSP.

Many peripherals are available on this DSP; however, there are pins that are

shared by more than one peripheral and are internally multiplexed. Most of these

pins are configured by software via a configuration register, hence they can be

programmed to switch functionality at any time. Others (such as the HPI pins) are

configured by external pullup/pulldown resistors at DSP chip reset; as a

consequence, only one peripheral has primary control of the function of these pins

after reset.

Fig.5.21: TI TMS320C6713 DSP available peripherals. Picture

courtesy of TI.

 Memory interfacing

DSPs often have to interface with external memory, typically shared with host

processors or with other DSPs. The two main mechanisms available to implement

the memory interfacing are to use hardware interfaces already existing on the DSP

chip or to provide external hardware that carries out the memory interfacing. These

two methods are briefly mentioned below.

Hardware interfaces are often available on TI as well as on ADI DSPs. An

example is TI External Memory Interface (EMIF), which is a glueless interface to

memories such as SRAM, EPROM, Flash, Synchronous Burst SRAM (SBSRAM)

and Synchronous DRAM (SDRAM). On the TMS320C6713 DSP, for instance, the

EMIF provides 512 Mbytes of addressable external memory space. Additionally, the

EMIF supports memory width of 8 bits, 12 bits and 32 bits, including read/write of

both big- and little-endian devices.

29

When no dedicated on-chip hardware is available, the most common solution

for interfacing a DSP to an external memory is to add external hardware between

memory and DSP, as shown in Fig.5.22. Typically this is done by using a CPLD

or an FPGA which implements address decoding and access arbitration. Care must

be taken when programming the access priority and/or interleaved memory access

in the CPLD/FPGA. This is essential to preserve the data integrity. Synchronous

mechanisms should be preferred over asynchronous ones to carry out the data

interfacing.

Fig. 5.22: Generic DSP–external memory interfacing scheme. Very often

the h/w interface consists of a CPLD or an FPGA.

 Data converter interfacing

DSPs provide a variety of methods to interface with data converters such as ADCs.

On-chip peripherals are a very convenient data transfer mechanism, since data

converters are typically much slower than the DSPs they are interfaced with, hence

asking the DSP core to directly retrieve data from the converters is a waste of

valuable processing time.

Serial interfaces are often available in TI’s DSPs: peripherals such as McBSP

and McASP plus the powerful DMA allow an easy interface to many data converter

types. Another possible solution for TI DSPs is to use the EMIF in asynchronous

mode together with the DMA.

In addition to serial interfaces, ADI Blackfin DSP provides a parallel interface,

namely the PPI interface mentioned in Section 4.2, as a convenient way to interact

with many converters. This interface typically allows higher sampling rates than the

serial interfaces.

A general solution for implementing the DSP–data converter interface is to use

an FPGA between DSP and converter, so as to re-buffer the data. Additional pre-

processing, such as filtering or down-conversion, can also be carried out in the

FPGA. This is the case for instance in CERN’s LEIR LLRF system, where

converters such as ADCs and DACs are hosted on daughtercards. Powerful FPGAs

located on the same daughtercards carry out pre-processing and diagnostics actions

under full DSP control.

Finally, mixed-signal DSPs, i.e., DSPs with embedded ADCs and/or DACs, are

also available. An example of mixed-signal DSP is ADI’s ADSP-21990, containing a

pipeline flash converter with eight independent analog inputs and sampling

frequency of up to 20 MHz.

 DSP booting

The actions executed by the DSP immediately after a power-down or a reset are

30

called DSP boot and are defined by a certain number of configurable input pins.

This paragraph will focus on how the executable file(s) is uploaded to the DSP after

a power-down or reset. Two methods are available, which typically correspond to

differently built executables. More information on the code building process and on

the many file extensions can be found in Section 6.4.

The first method is to use the JTAG connector to directly upload to the

executable in the DSP. Upon a DSP power-down the code will typically not be

retained in the DSP and another code upload will be necessary. This method is used

during the system debugging phase, when additional useful information can be

gathered via the JTAG.

On operational systems the DSP loads the executable code without a JTAG

cable. Many methods are available for doing this, depending on the DSP family and

manufacturer; some general ways are described below.

a) No-boot. The DSP fetches instructions directly from a pre-determined

memory address, corresponding to EPROM or Flash memory and executes

them. On SHARC DSPs, for instance, the pre-defined start address is

typically 0x80 0004.

b) Host-boot. The DSP is stalled until the host configures the DSP memory.

For TI TMS320C6xxx DSPs, for instance, this is done via the HPI interface.

When all necessary memory is initialized, the host processor takes the DSP

out of the reset state by writing in a HPI register.

c) ROM-boot. A boot kernel is uploaded from ROM to DSP at boot time and

starts executing itself. The kernel copies data from an external ROM to the

DSP by using the DMA controller and overwrites itself with the last DMA

transfer. After the transfer is completed the DSP begins its program

execution. Figure 5.23 visualizes the TI DSP process of booting from ROM

memory: the program (shown in green) has been moved from ROM to L2

and L1 Program (L1P) cache via EMIF and DMA.

Fig. 5.23: Example of TI TMS320C6x DSP booting from ROM memory.

The picture is courtesy of TI.

31

5 Real-time design flow: introduction

Figure 5.24 shows a time-ordered view of the various activities or phases that a real-

time system developer may be required to carry out during a new system

development. These activities will be treated in this document in a didactic rather

than in a time-related order, to allow even the un- experienced reader to build up

the knowledge needed at each step. It should be underlined that the real-time design

flow may be not totally forward-directed, and at each step the developer may have

to go back to a previous phase to make modifications or carry out additional tests.

Fig.5.24: Activities typically required to develop a new, DSP-based

system

The ‘system design’ phase may include both hardware and software design.

For hardware design, the developer must make choices such as the DSP type to use,

the hardware architecture/interfaces, and so on. For software design, choices such as

the code structure, the data flow and data exchange interfaces must be made. This

phase is treated in Section 9.

The ‘software development’ phase includes creating the DSP project and

writing the actual DSP code. Basic and essential information for this phase is given

in Section 6.

The ‘debug’ phase is a very critical one, where the developer must verify that

the code executes what it was meant to. Some debugging techniques as well as

different methodologies available (such as simulation and emulation) are described

in Section 7.

The ‘analysis and optimization’ phase allows the developer to optimize the

system for different goals, such as speed, memory, input/output bandwidth, or

power consumption. Analysis and optimization tools are described in Section 8,

together with some optimization guidelines.

Finally, the ‘system integration’ is the essential phase where the system is

integrated within the existing infrastructure and is therefore made fully operational.

It is not possible to give precise details on this phase owing to the many existing

control infrastructures. However, general guidelines and good practices are

discussed in Section 10.

32

6 Real-time design flow: software development

DSPs are programmed by software via a cross-compilation. This means that the

executable is created in a platform (such as a Windows- or a SUN-based machine)

different from the one that it runs on, i.e., the DSP itself. One reason for this is that

DSPs have limited and dedicated resources, hence it would not be convenient or

even possible to run a file system with a user-friendly development environment.

The choice of programming languages is vast, including native assembly

language as well as high-level languages such as C, C++, C extensions and dialects,

Ada and so on. High-level software tools such as MATLAB and National

Instruments allow one to automatically generate code files from graphical

interfaces, thus providing rapid prototyping methods.

The code-building tools are very often provided by the DSP manufacturers

themselves. Compilers and Integrated Development Environments (IDEs) are also

available from other sources, such as Green Hills Software. The trend is now

towards more powerful and user-friendly tools, capable of taming and using in the

best possible way the underlying hardware and software complexity.

 Development set-up and environment

DSP executables are developed by using Integrated Development Environments

(IDEs) provided by DSP manufacturers; they integrate many functions, such as

editing, debugging, project files management, and profiling. Very often the licences

are bought on a ‘per-project’ basis, even if ADI provides also floating (i.e.,

networked) licences. The development environment for TI and ADI DSPs are called

‘Code Composer Studio’ and ‘VisualDSP++’, respectively; they provide very similar

functionalities. It should be underlined that TI has recently made available free of

charge the compiler, assembler, optimizer and linker to non-commercial users.

However, neither the IDE nor a debugger were included, thus the developer must

still use the proprietary tools.

Figure 25 gives an example of a typical Code Composer screen. On the left-

hand side there is the list of all files included in the software project. At the centre of

the screen two windows show the code, as a C file (process.c) and as assembly code

(Dis-assembly window). A breakpoint has been set and the execution is stopped

there. Below the code windows, two memory windows are also visible, detailing the

data present at addresses 0x80000000 and following, and at addresses 0x40000030

and following. Data at address 0x80000002 is of a different colour because its value

changed recently. At the bottom of the IDE screen the following item are displayed:

a) the Compile/Link window, which details the results from the last code

compilation; b) the Watch window, which displays the value assumed by two C-

language variables and c) the Register window, which details the contents of all DSP

registers. On the right-hand side there are three graphs: the yellow ones show

memory regions, while the green one shows the Fast Fourier Transform of data

stored in memory as calculated by the

IDE.

33

Fig. 5.25: Screenshot from Code Composer, i.e., the TI DSP IDE. The

picture was taken in 1998 from the development of CERN’s AD

Schottky system.

Figure 5.26 shows a typical DSP-based system set-up. On the left-hand side the

DSP IDE runs on a PC, which is connected to the DSP via a JTAG emulator and

pod. This allows one to edit the code, compile it, download it to the hardware and

retrieve debug information. On the right-hand side the system exploitation is shown

whereby the DSP runs its program and a PowerPC board, running LynxOS and

acting as master VME, controls the DSP actions, downloads the control parameters,

and retrieves the resulting data.

Fig. 5.26: Typical system exploitation (on the left-hand side) and code

development (on the right- hand side) set-ups.

34

 Languages: assembly, C, C++, graphical

The choice of the language(s) to be used for the DSP development is very important

and depends mainly on the selected DSP, as different DSPs may support different

languages. Often a DSP system will include both assembly and high-level languages;

the language choice or the chosen balance between the languages depends also on

the required processor workload, i.e., on how much the code should be optimized to

satisfy the requirements. The language choice is nowadays much larger than in the

past, mainly thanks to the improvements of compilers. Additionally, the increased

complexity of DSP hardware (see Section 3), such as deep pipelining, makes the

hand-optimization much more difficult. The main language choices include: a)

assembly language; b) high-level languages such as C, C dialects/extensions and

C++; c) graphical languages such as Matlab. These three choices are discussed

below.

 Assembly language

The assembly language is very close to the hardware, as it explicitly works with

registers and it requires a detailed knowledge of the inner DSP architecture. To

write assembly code typically takes longer than to write high-level languages;

additionally, it is often more difficult to understand other people’s assembly

programs than to understand programs written in high-level languages. The

assembly grammar/style and the available instruction set/peripherals depend not

only on the DSP manufacture, but also on the DSP family and on the targeted DSP.

As a consequence, it might be difficult or even impossible to port assembly programs

from one DSP to another. For instance, for DSPs belonging to the TI C6xxx family

there is about an 85% assembly code compatibility, i.e., when going from a C62x to

a C64x DSP there are no issues but if moving from a C64x to a C62x one might have

to introduce some changes in the code owing to the different instruction set.

DSP applications have typically very demanding processing requirements. The

need to obtain the maximum processing performance has often led DSP

programmers to use assembly programming extensively. Nowadays the

improvements in code compilers and the increasing difficulty in hand- optimizing

assembly code have prompted DSP developers to use high-level languages more

often. However, in some DSPs there are still features available only in assembly,

such as the super-fast interrupt dispatcher for ADI’s ADSP21160M DSP shown in

Table 6. Very often, the bulk of the DSP code is written in high-level languages and

the parts needing a better performance may be written in assembly.

35

Figure 5.27 gives an example of how one line of C code is converted to the

corresponding assembly code for the TI C6317 DSP. The upper window shows part

of the ‘SIN_to_output_RTDX.c’ file, which was included in the DSP laboratory

companion of the lectures described in this document; the lower ‘Disassembly’

window shows the resulting assembly code.

Fig.5. 27: C and assembly language examples for the TI C6713 DSP.

Window (a): C source code. Window (b): assembly code resulting from

the first C-code line in window (a).

 High-level languages: C

The C language was developed in the early 1970s; three main standards exist,

referred to as ANSI, ISO, and C99 respectively. There are many reasons why it is

convenient to use the C language in DSP- based systems. The C language is very

popular and known by engineers and software developers alike; it is typically easier

to understand and faster to develop than assembly code. It supports features useful

for embedded systems such as control structures and low-level bit manipulations.

All DSPs are provided with a C compiler, hence it may be possible to port the C code

from one DSP to another.

There are, however, drawbacks to the use of standard C languages in DSP-

based systems. First, the executable resulting from a C-language source code is

typically slower than that derived from optimized assembly code and has a larger

size. The ANSI/ISO C language does not have support for typical DSP hardware

features such as circular buffers or non-flat memory spaces. Additionally, the

address at which data must be aligned can vary between different DSP

architectures: on some DSPs a 4-byte integer can start at any address, but on other

DSPs it could start for instance at even addresses only. As a consequence, the data

alignment obtained with ANSI/ISO C compilers may be incompatible with the data

36

alignment required by the DSP, thus leading to deadly bus errors. In the standard C

language there is no native support for fixed-point fractional variables, a serious

drawback for many DSPs and signal processing algorithms. Finally, the standard C

compiler data-type sizes are not standardized and may not fit the DSP native data

size, leading for instance to the replacement of fast hardware implementations with

slower software emulations. For instance, 64-bit double operations are available in

ADI’s TigerSHARC as software emulations only; hence the declaration of variables

as double and not as float will result in slower execution. Table 8 shows how data-

type sizes can vary for different DSPs.

Table 8: Examples of data-type size for different DSPs

Table 9 shows the data-type sizes and number format for the TI C6713 DSP.

The 2’s complement and binary formats are used for signed and unsigned numbers,

respectively.

Table 9: Data-type sizes and number format for the TI C6713 DSP

There are two main approaches to adapting the C language to specific DSPs

hardware and to the needs of signal processing applications. The first approach is

the definition of ‘intrinsic’ functions, i.e., of functions that map directly to optimized

DSP instructions. Table 10 shows some examples of intrinsic functions available in

TI C6713 DSPs. The second approach is to ‘extend’ the C-language so as to include

specialized data types and constructs. Of course, the drawback of the latter

approach is a reduced portability of the resulting C language.

37

Table 10: TI C6713 intrinsic functions – some examples.

 High-level languages: C++

The C++ programming language supports object-oriented programming and is the

language of choice for many business computer applications. C++ compilers are

often available for DSPs; some advantages of using it are the ability to provide a

higher abstraction layer and the upwards compatibility with the C language. There

are, however, several disadvantages, for instance the increased memory

requirements due to the more general constructs. Additionally, many application

programs and libraries rely on functions such as malloc() and free(), which need a

heap.

While the way to adapt the C-language to DSPs is to add features, the C++

language is adapted by trimming its features. C++ characteristics typically removed

are multiple inheritance and exception handling; the resulting code is more efficient

and the executable is smaller.

 Graphical languages

A trend which has developed over the last five to ten years is to use graphical

programming to generate DSP code. Examples of programs and tools aimed at this

are the MATLAB, Hypersignal RIDE (now acquired by National Instruments) and

the LabVIEW DSP Module. These methodologies generate DSP executables that

often are not highly optimized, therefore not suitable for the implementation of

demanding DSP-based systems. However, they allow one to quickly move from the

design to the implementation phase, thus providing a rapid prototyping

methodology.

38

Fig. 5.28: MATLAB graphical programming used in the DSP laboratory

companion in these notes. The digital filter block can easily be set up by

using a user-friendly set-up GUI.

As an example, MATLAB provides tools such as Simulink, Real-Time

Workshop, Real-Time Workshop Embedded Coder, Embedded Target for TI

C6xxx DSPs and Link for Code Composer that allow generating embedded code for

TI DSPs and downloading it directly into a DSP evaluation board. These tools

provide interfaces for the DSP peripherals, too. The DSP laboratory companion on

these notes was based upon TI C6713 DSK and MATLAB tools. Figure 5.28 shows

the MATLAB graphical program that constituted one of the laboratory exercises.

MATLAB allows not only to interface immediately with the on-board CODEC by

using the ADC and DAC blocks, but also to set up through a user-friendly GUI the

digital filter to be implemented.

 Real-time operating system

A Real-Time Operating System (RTOS) is a program that has real-time capabilities,

is downloaded to the DSP at boot time, and manages all DSP programs, typically

referred to as tasks. The RTOS interfaces tasks with peripherals such as DMA, I/O

and memory, via an Application Program Interface (API), as shown in Fig.5.29.

39

Fig.5.29: Embedded DSP software components

A RTOS is typically task-based and supports multiple tasks (often referred to

as threads) by time-sharing, i.e., by multiplexing the processor time over the active

tasks set. Each task has a priority associated to it and the RTOS schedules which

task should run depending on the priority. Very often this is done in a pre-emptive

way, meaning that when a high-priority task becomes ready for execution, it pre-

empts the execution of a lower-priority task, without having to wait for its turn in

the regular re-scheduling. Finally, RTOS have a small memory footprint, so as not

to have too negative an impact on the DSP executable size.

There are many advantages when using a RTOS to develop a DSP-based

system. For instance, the API and library shown in Fig.5.29 provide a device

abstraction level between DSP hardware features and task implementation, thus

allowing a DSP developer to focus on the task rather than the hardware interface’s

design and coding. The DSP developer may have to just call different interfacing

functions in case the code should be ported to a different DSP, hence easing code

portability. A RTOS manages the task’s execution hence the developer can cleanly

structure the code, define appropriate priority levels for each task, and insure that

their execution meets critical real-time deadlines. System debug and optimization

can be improved, and memory protection can often be provided. There are,

however, drawbacks to the use of RTOS. As an example, a RTOS uses DSP

resources, such as processing time and DSP timers, for its own functioning.

Additionally, the RTOS turnover is typically quite high and royalties are often

required from developers.

Many RTOS are available at any time, typically targeted to a precise DSP

family or processor. Examples are TALON RTOS from Blackhawk, targeted at TI

DSPs, and INTEGRITY RTOS from Green Hills Software or NUCLEUS RTOS

from Accelerated Technology, targeted at ADI Blackfin DSPs. It is worth

mentioning Linux-based OS, such as RT-Linux, RTAI and uLinux. Both RT-Linux

and RTAI use a small real-time kernel that runs Linux as a real-time task with

lower priority. The last RTOS listed above, uLinux, is a soft-time OS adapted to

ADI Blackfin DSPs. uLinux cannot always guarantee RTOS capabilities such as a

deterministic interrupt latency; however, it can typically satisfy the needs of

commercial products, where time constraints are often on the millisecond order as

dictated by the ability of the user to recognise glitches in audio and video signals.

40

Other RTOS worth mentioning are those provided and maintained by DSP

manufacturers. Both TI and ADI provide royalties-free RTOS with similar

characteristics, such as a small memory footprint, multi-tasks and multi-priority

levels support. They are called DSP/BIOS for TI and VisualDSP++ Kernel (VDK)

for ADI, and can optionally be included in the DSP code. In particular, TI

DSP/BIOS provides thirty priority levels and four classes of execution threads. The

thread classes, listed in order of decreasing priority, are Hardware Interrupts

(HWI), Software Interrupts (SWI), Tasks (TSK) and Background (IDL). Figure 5.30

shows how the processing time is shared between different threads in TI DSP/BIOS.

In the vertical scale the different threads are ordered by priority, the higher up

having more priority; in the horizontal scale the time is shown. Software interrupts

can be pre- empted by a higher-priority software interrupt or by a hardware

interrupt. Same-level interrupts are executed in a first-come, first-served way. Tasks

are capable of suspension (see Task TSK2 in Fig.5.30) as well as of pre-emption.

Fig. 5.30: DSP/BIOS prioritized thread execution example. Image courtesy of Texas

Instruments.

 Code-building process

The DSP code-building process relies on a set of software development tools,

typically provided by DSP manufacturers. extensions for ADI and TI DSPs are

shown at the bottom of the picture

Fig.5. 31: Main elements of the code building process. Typical file.

41

Figure 5.31 shows the main elements and tools needed for the code-building

process. Source files are converted to object files by the compiler and the assembler.

Archiver tools allow the creation of libraries from object files; these libraries can

then be linked to object files to create an executable. The executable can be directly

downloaded from the IDE to the target DSP via a JTAG interface; as an alternative,

the executable can be converted to a special form and loaded to a memory external

to the DSP, from which the DSP itself will boot. The first approach is typically used

during the DSP development phase, while the second approach is more convenient

during system exploitation. Finally, the file extensions used at the different code-

building process steps for ADI and TI DSPs are shown at the bottom of Fig.5.31.

Three tools, namely compiler, assembler, and linker, are used to generate

executable code from C/C++ or assembly source code. Figure 5.32 shows their use in

the code-building process on TI DSPs. The tools’ main characteristics are

summarized in Sub-sections 6.4.1 to 6.4.3.

Fig.5.32: Generic code-building processing: (a) compiler; (b) assembler;

(c) linker. The picture is courtesy of TI.

 C / C++ compiler for TI C6xxx DSPs

The C/C++ compiler generates C6xxx assembler code (.asm extension) from C, C++

or linear assembly source files. The compiler can perform various levels of

optimization: high-level optimization is carried out by the optimizer, while low-

level, target-specific optimization occurs in the code generator. Finally, the compiler

includes a real-time library which is non-target-specific.

42

 Assembler for TI‘C6xxx DSPs

The assembler generates machine language object files from assembly files; the

object files format is the Common Object File Format (COFF). The assembler

supports macros both as inline functions and taken from a library; it also allows

segmenting the code into sections, a section being the smaller unit of an object file.

The COFF basic sections are

a) text for the executable code;

b) data for the initialized data;

c) bss for the un-initialized variables.

 Linker for TI C6xxx DSPs

The linker generates executable modules from COFF files as input. It resolves

undefined external references and assigns the final addresses to symbols and to the

various sections. A DSP system typically includes many types of memory and it is

often up to the programmer to place the most critical program code and data into

the on-chip memory. The linker allows allocating sections separately in different

memory regions, so as to guarantee an efficient memory access. An example of this

is shown in Fig.5.33.

Fig.5.33: Example of sections allocation into different types of

target memory

The linker also allows one to clearly implement a memory map shared between

DSP and host processor; this is essential for instance to exchange data between

them.

7 Real-time design flow: debugging

The debugging phase is the most critical and least predictable phase in the real-time

design flow, especially for large systems. The debugging capabilities of the

development environment tools can make the difference between creating a

successful system and spiralling into an endless search for elusive bugs.

The starting point of this phase is an executable code, i.e., a code without

43

compilation and linker errors; the goal is to ascertain that the code behaves as

expected. The debugging tools and techniques have a strong impact on the amount

of time and effort needed to validate a DSP code.

There are many types of bugs: they can be repeatable or intermittent, the latter

being much tougher to track down than the first ones. Bugs can be due to the code

implementation, such as logical errors in the source code, or can derive from

external problems, i.e., hardware misbehaviours. The approaches and the tools to

debug a DSP code include simulation, emulation, and real-time debugging

techniques. Simulation tools allow running the DSP code on a software simulator

fitted with full visibility into DSP internal registers. Emulation tools embed debug

components into the target to allow an information flow between target and host

computer. Real-time debugging techniques allow a real- time data exchange between

host and target without stopping the DSP. These techniques are described in detail

in Sections 7.1. to 7.3.

Fig.5.34: Debug steps and their suggested sequencing. The debug tools suited to

different steps are also shown.

The developer should not attempt to debug the DSP code as a whole, unless the

code itself is relatively short and simple. He is instead recommended to debug the

code in several steps: Fig.5.34 shows an example of steps and of their sequencing,

together with the appropriate debug tools and techniques. First, single tasks such as

functions and routines should be validated; this step can be carried out via

simulation only. Second, the behaviour of sub-systems or specific parts of the code

can be tested with respect to external events, such as ISR triggering. This part can

be carried out with the help of traditional emulation techniques. Third, the

behaviour of many tasks can be validated with respect to real-time constraints, such

as the proper frequency of ISR triggering. Once all system components have been

validated, the whole system can be tested. These last two steps profit particularly

from real-time debugging techniques.

 Simulation

DSP software simulators have been available for more than fifteen years. They can

44

simulate CPU instruction sets as well as peripherals and interrupts, thus allowing

DSP code validation at a reduced cost and even before the hardware the code should

run on is available. Simulators provide a high visibility into the simulated target, in

that the user can execute the code step by step and look at the intermediate values

taken by internal DSP registers. Large amount of data can be collected and

analysed; resource usage can be evaluated and used for an optimized hardware

design.

Simulators are highly repeatable, since the same algorithm can be run in

exactly the same way over and over. The reader should note that this kind of

repeatability is difficult to obtain with other techniques, such as emulation, as

external events (for instance interrupts) are almost impossible to be precisely

repeated with hardware. Simulators may also allow measurement of the code

execution time, with limitations due to the type of simulator chosen. A useful feature

available with the TI C5x and C6x simulators is the ‘rewind’, which allows viewing

the past history of the application being executed on the simulator.

The main limitation common to DSP simulators is their execution speed,

several orders of magnitude slower than the target they simulate; in particular, the

more accurate the modelling of the DSP chip and corresponding peripherals, the

slower the simulation. DSP tool vendors have overcome this problem by providing

different simulators for the same DSP, providing a different level of chip and

peripherals modelling. Figure 5.35 shows some simulators available for TI DSPs.

The reader should notice that TI provides up to three simulators for each DSP,

namely:

a) CPU Cycle Accurate Simulator: This simulator models the instruction set,

timers, and external interrupts, allowing the debugging and optimization of

the program for code size and CPU cycles.

b) Device Functional Simulator: This simulator not only models instruction

set, timers, and external interrupts, but also allows features such as DMA,

Interrupt Selector, caches and McBSP to be programmed and used.

However, the true cycles of a DMA data transfer are not simulated.

c) Device Cycle Accurate Simulator: This simulator models all peripherals

and caches in a cycle-accurate manner, thus allowing the user to measure

the total device and stall cycles used by the application.

45

Fig. 5.35: Example of DSP simulators available with TI’s Code

Composer Studio development environment

 Emulation

The integration of processor, memory, and peripherals in a single silicon chip is

commonly referred to as System-On-a-Chip (SOC). This approach allows reducing

the physical distance between components, hence devices become smaller in size, run

faster, cost less to manufacture, and are typically more reliable. From a DSP code

developer’s viewpoint, the main disadvantage of this approach is the lack of access

to embedded signals, often referred to as vanishing visibility. In fact, many chip

packages (e.g., ball grid array) do not allow probing the chip pins; additionally,

internal chip busses are often not even available at the chip pins. Emulation

techniques restore the visibility needed for code debugging by embedding debug

components into the chip itself.

There are three main kinds of emulation, namely:

a) Monitor-based emulation: A supervisor program (called monitor) runs on

the DSP and uses one of the processor’s input–output interfaces to

communicate with the debugger program running on the host. The

debugging capabilities of this approach are more limited than those

provided by the two other approaches; additionally, the monitor presence

changes the state of the processor, for instance regarding the instruction

46

pipeline. The advantage is that it does not require emulation hardware,

hence its cost is lower.

b) Pod-based In Circuit Emulation (ICE): The target processor is replaced by

a device that acts like the original device, but is provided with additional

pins to make accessible and visible internal structures such as internal

busses. This emulation approach has the advantage of providing real-time

traces of the program execution. However, replacing the target processor

with a different and more complex device may create electrical loading

problems. Additionally, this solution is quite costly, the hardware is

different from the commercialized product and becomes quite difficult to

implement at high processor speed.

c) Scan-based emulation: Dedicated interfaces and debugging logic are

incorporated into commercially-available DSP chips. This on-chip logic is

responsible for monitoring the chip’s real-time operations, for stopping the

processor when for instance a breakpoint is reached, and for passing

debugging information to the host computer. An emulation controller

controls the flow of information to /from the target and can be located

either on the DSP board or on an external pod. Many types of target–host

interface exist. On the DSP board one can typically find a JTAG (IEEE

standard 1149.1) connector. On the host computer, parallel or USB ports

are often available.

The scan-based emulation technique has been widely preferred over the other

two since the late 1980s and is nowadays available on the vast majority of DSPs.

Figure 5.36 shows the TI XDS560 emulator, composed of a PC card, a cable with

JTAG interface to the target, and an emulation controller pod. Many emulators are

available on the market, with different interfaces and characteristics. As an

example, it is worth mentioning Spectrum Digital’s XDS510 USB galvanic JTAG

emulator, which provides voltage isolation.

Fig.5. 36: TI XDS560 emulator, composed of a card to install on the host

computer (PCI interface), a JTAG cable and an emulation controller

pod

47

Capabilities of scan-based emulators include source-level debugging, i.e., the

possibility to see the assembly instructions being executed and to access variables

and memory locations either by name or by address.

Capabilities such as writing to the standard output are available. As an

example, the printf() function allows printing DSP information on the debugger

GUI; the reader should, however, be aware that this operation can be extremely

time-consuming, and optimized functions (such as LOG_printf() for TI DSPs) should

be preferred.

Another common capability supported by emulation technology is the

breakpoint. A breakpoint freezes the DSP and allows the developer to examine DSP

registers, to plot the content of memory regions, and to dump data to files. Two

main forms of breakpoint exist, namely software and hardware. A software

breakpoint replaces the instruction at the breakpoint location with one creating an

exception condition that transfers the DSP control to the emulation controller. An

hardware breakpoint is implemented by using custom hardware on the target

device. The hardware logic can for instance monitor a set of addresses on the DSP

and stop the DSP code execution when a code fetch is performed at a specific

location. Breakpoints can be triggered also by a combination of addresses, data, and

system status. This allows DSP developers to analyse the system when for instance it

hangs, i.e., when the DSP program counter branches into an invalid memory

address. Intermittent bugs can also be tracked down.

It is important to underline that the debugging capabilities provided by

emulators allow mostly ‘stop-mode debugging’, in that the DSP is halted and

information is sent to the host computer at that moment. This debugging technique

is invasive and allows the developer to get isolated, although very useful, snapshots

of the halted application. To improve the situation, DSP tool vendors have developed

a more advanced debugging technology that allows real-time data exchange between

target and host. This technique is described next.

 Real-time techniques

Over the last ten years, DSP vendors have developed techniques for a real-time data

exchange between target and host without stopping the DSP and with minimal

interference on the DSP run. This provides a continuous visibility into the way the

target operates. Additionally, it allows the simulation of data input to the target.

ADI’s real-time communication technology is called Background Telemetry

Channel (BTC) . This is based upon a shared group of registers accessible by the

DSP and by the host for reading and writing. It is currently supported on Blackfin

and ADSP-219s DSPs only.

TI’s real-time communication technology is called Real Time Data eXchange

(RTDX). Its main software and hardware components are shown in Fig. 37. A

collection of channels, through which data is exchanged, are created between target

and host. These channels are unidirectional and data can be sent across them

asynchronously. TI provides two libraries, the RTDX target library and the RTDX

host library, that have to be linked to target and host applications, respectively. As

an example, the target application sends data to the host by calling functions in the

48

RTDX target library. These functions buffer the data to be sent and then give the

program flow control back to the calling program; after this, the RTDX target

library transmits the buffered data to the host without interfering in the target

application. RTDX is also supported when running inside a DSP simulator; to that

end, the DSP developer should link the target application with the RTDX simulator

target library corresponding to the chosen target. On the host side, data can be

visualized and treated from applications interfacing with the RTDX host library. On

Windows platforms a Microsoft Component Object Module (COM) interface is

available, allowing clients such as VisualBasic, VisualC++, Excel, LabView,

MATLAB and others.

Fig.5. 37: TI’s RTDX main components. The picture is courtesy of

TI

In 1998 TI implemented the original RTDX technology, which runs on

XDS510-class emulators. A high-speed RTDX version was developed later that

relies on additional DSP chip hardware features and on improved emulators,

namely the XDS560 class. These emulators make use of two non-JTAG pins in the

standard TI JTAG connector to increase RTDX bandwidth. They are also

backwards compatible and can support standard RTDX, thus allowing higher data

transfer speed. The high-speed RTDX is supported in TI’s highest performance

DSPs, such as the TMS320C55x, TMS320C621x, TMS320C671x and TMS320C64x

families. Table 11 shows the data transfer speeds available with different

combinations of RTDX and emulators. RTDX offers a bandwidth of 10 to 20

kbytes/s, thus enabling real-time debugging of applications such as CD audio and

audio telephony. The high-speed RTDX with XDS560-class emulators provides a

data transfer speed higher than 2 Mbytes/s, thus allowing real-time visibility into

applications such as ADSL, hard-disk drives and videoconferencing .

49

Table 11: Data transfer speed as a function of the emulator type for

TI’s RTDX

Emulation type Speed

RTDX + XDS510 10–20

kbytes/s

RTDX + USB (ex: ‘C6713 DSK

board)

10–20

kbytes/s

RTDX + XDS560 ≤ 130

kbytes/s

High speed RTDX + XDS560 > 2 Mbytes/s

8 Code analysis and optimization

Most DSP applications are subject to real-time constraints and stress the available

CPU and memory resources. As a consequence, code optimization might be required

to satisfy the application requirements.

DSP code can be optimized according to one or more parameters such as

execution speed, memory usage, input/output bandwidth, or power consumption.

Different parts of the code can be optimized according to different parameters. A

trade-off between code size and higher performance exists, hence some functions can

be optimized for execution speed and others for code size.

Code development environments typically allow defining several code

configuration releases, each characterized by different optimization levels. Figure 38

shows the project configurations available in TI Code Composer Studio. The

‘Release’ configuration comprises the higher optimization level, while the ‘Debug’

configuration enables debug features, which typically increase code size. Finally, the

user can specify a ‘Custom’ configuration where user-selectable debug and

optimization features are enabled.

50

Fig. 5.38: Choice of the DSP code project configurations in TI Code

Composer

It is important to underline that debug and optimization phases are different

and often conflicting. In fact, an optimized code does not include any debug

information; additionally, the optimizer can re-arrange the code so that the

assembly code is not an immediate transposition of the original source code. The

reader is strongly encouraged to avoid using the debug and the optimize options

together; it is recommended instead to first debug the code and only then to enable

the optimization.

 Switching the code optimizer ON

Compilers are nowadays very efficient at code optimization, allowing DSP

developers to write higher level code instead of assembly. To do this, compiles must

be highly customized, i.e., tightly targeted to the hardware architecture the code will

be running upon. However, current trends in software engineering include

retargeting compilers to DSP specialized architectures .

As previously mentioned, many kinds of optimization can be required. An

example is execution speed vs. executable size. Figure 5.39 shows how the user can

select one or the other in the Code Composer Studio development environment.

51

Fig. 5.39: Choice of optimization levels in TI Code Composer. The plot

highlights execution speed vs. executable code size.

The reader should be aware that the optimizer can rearrange the code, hence

the code must be written in a proper way. Failing this, the actions generated by the

optimized code might be different from those desired and implemented by a non-

optimized code. Figure 5.40 shows two code snippets where the value assumed by

the memory location pointed to by ctrl determines the while() loop behaviour. In

particular, the DSP exits the while() loop if the ctrl content takes the value 0xFF; the

ctrl content can be modified by another processor or execution thread. Both code

snippets will perform equally in case of non-optimization. However, in case of

optimization the left-hand side code will not evaluate the ctrl content at every while()

iteration, hence the DSP will remain forever in the loop. On the right-hand side

snippet, the volatile keyword disables memory optimization locally, thus forcing the

DSP to re-evaluate the ctrl content value at every while() loop iteration. This

guarantees the desired behaviour even when the code is optimized. The number of

volatile variables should be restricted to situations where they are strictly needed, as

they limit the compiler’s optimization.

Fig.5.40: Example of good and bad programming techniques. The left-

hand side code would likely result in a programming misbehaviour.

52

The recommended code development flow is to first write high-level code, such

as C or C++. This code can then be debugged and optimized, to comply with the

specified performance. In case the code runs still slower than desired, the time-

critical areas can be re-coded in linear assembly. If the code is still too slow, then the

DSP developer should turn to hand-optimized assembly code. Figure 5.41 shows a

comparison of the different programming techniques, with corresponding execution

efficiency and development effort.

Fig. 5.41: Comparison of programming techniques with corresponding

execution efficiency and estimated development effort. The picture is

courtesy of TI.

 Analysis tools

DSP code often follows the 20/80 rule, which states that 20% of the software in an

application uses 80% of the processing time. As a consequence, the DSP developer

should first concentrate efforts on determining where to optimize, i.e., on

understanding where the execution cycles are mostly spent.

The best way to determine the parts of the code to optimize is to profile the

application. Over the last ten years DSP development environments have

considerably enlarged their offer of analysis tools. Some examples of TI’s CCS

analysis and tuning tools are:

a) Compiler consultant. It analyses the DSP code and provides

recommendations on how to optimize its performance. This includes

compiler optimization switches and programs, thus allowing a quick

improvement in performance. Figure 42 shows how to enable the compiler

consultant in CCS.

b) Cache tune. It provides a graphical visualization of memory reference

patterns and memory accesses, thus allowing the identification of problem

areas related for instance to memory access conflicts.

c) Code size tune. It profiles the application, collects data on individual

functions and determines the best combinations of compiler options to

optimize the trade-off between code size and execution speed.

53

d) Analysis ToolKit (ATK). It runs with DSP simulators only and allows one

to analyse the DSP code robustness and efficiency. The DSP developer should not

only know when to optimize, as described previously: he/she should also know when

to stop. In fact, there is a law of diminishing returns in the code analysis and

optimization process. It is thus important to take advantage of the improvements

that come with relatively little effort, and leave as a last resort those that are

difficult to implement and provide low- yield.

Finally, it is strongly recommended to make only one optimization change at

the same time; this will allow the developer to exactly map the optimization to its

result.

Fig.5. 42: How the ‘Compiler Consultant Advice’ can be enabled in TI’s

CCS Development Environment

 Programming optimization guidelines

This Section includes some general programming guidelines for writing efficient

code; these guidelines are applicable to the vast majority of DSP compilers. DSP

developers should, however, refer to the manuals of the development tools they are

using for more precise information on how to write efficient code.

Finally, it is strongly recommended to make only one optimization change at

the same time; this will allow the developer to exactly map the optimization to its

result.

– Guideline 1: Use the DMA when possible and allocate data in memory wisely

DMA controllers (see Sub-section 3.2.3) must be used whenever possible so as

to free the DSP core for other tasks. The linker (see Sub-section 6.4.3) should be

used for allocating data in memory so as to guarantee an efficient memory access.

Additionally, DSP developers should avoid placing arrays at the beginning or at the

very end of memory blocks, as this creates problems for software pipelining.

Software pipelining is a technique that optimizes tight loops by fetching a data set

while the DSP is processing the previous one. However, the last iteration of a loop

54

would attempt to fetch data outside the memory space, in case an array is placed on

the memory edge. Compilers must then execute the last iteration in a slower way

(‘loop epilogue’) to prevent this address error from happening. Some compilers,

such as the ADI Blackfin one, make available compiler options to specify that it is

safe to load additional elements at the end of the array.

– Guideline 2: Choose variable data types carefully

DSP developers should know the internal architecture of the DSP they are

working on, so as to be able to use native data type DSPs as opposed to emulated

ones, whenever possible. In fact, operations on native data types are implemented by

hardware, hence are typically very fast. On the contrary, operations on emulated

data types are carried out by software functions, hence are slower and use more

resources. An example of emulated data type is the double floating point format on

ADI’s TigerSHARC floating point DSPs. Another example is the floating point

format on ADI’s Blackfin family of fixed-point processors. In these DSPs the

floating point format is implemented by software functions that use fixed-point

multiply and ALU logic. In this last case a faster version of the same functions is

available with non-IEEE-compliant data formats, i.e., formats implementing a

‘relaxed’ IEEE version so as to reduce the computational complexity. Table 12

shows a, execution times comparison of IEEE-compliant and non-IEEE-compliant

functions in ADI’s Blackfin BF533.

Table 12: Execution time of IEEE-compliant vs. non-IEEE-

compliant library functions for ADI’s Blackfin BF533

– Guideline 3: Functions and function calls

Functions such as max(), min() and abs()are often single-cycle instruction and

should be used whenever possible instead of manually coding them. Figure 43 shows

on the right-hand side the max() function and on the left-hand side a manual

implementation of the same function. The advantage in terms of code efficiency of

using a single-cycle max() function is evident. Often more complex functions such as

FFT, IIR, or FIR filters are available in vendor-provided libraries. The reader is

strongly encouraged to use them, as their optimization is carried out at algorithm

level.

55

Fig. 5.43: Example of good and bad programming techniques

As few parameters as possible should be passed to a function. In fact,

parameters are typically passed to functions by using registers. However, the stack

is used when no more registers are available, thus slowing down the code execution

considerably.

– Guideline 4: Avoid data aliasing

Aliasing occurs when multiple variables point to the same data. For example,

two buffers overlap, two pointers point to the same software object or global

variables used in a loop. This situation can disrupt optimization, as the compiler will

analyse the code to determine when aliasing could occur. If it cannot work out if two

or more pointers point to independent addresses or not, the compiler will typically

behave conservatively, hence avoid optimization so as to preserve the program

correctness.

– Guideline 5: Write loops code carefully

Loops are found very often in DSP algorithms, hence their coding can strongly

influence the program execution performance. Function calls and control statements

should be avoided inside a loop, so as to prevent pipeline flushes (see Sub-section

3.3.2). Figure 5.44 shows an example of good and bad programming techniques

referred to control statements inside a for() loop: by moving the conditional

expression if…else outside the loop, as shown in the right-hand side code snippet,

one can reduce the number of times the conditional expression is executed.

Fig. 5.44: Example of good and bad programming techniques

Loop code should be kept small, so as to fit entirely into the DSP cache memory

and to allow a local repeat optimization. In case of many nested loops, the reader

should be aware that compilers typically focus their optimization efforts on the

inner loop. As a consequence, pulling operations from the outer to the inner loop can

56

improve performance. Finally, it is recommended to use int or unsigned int data

types for loop counters instead of the larger-sized data type long.

– Guideline 6: Be aware of time-consuming operations

There are operations, such as the division, that do not have hardware support

for a single-cycle implementation. They are instead implemented by functions

implementing iterative approximations algorithms, such as the Newton–Raphson.

The DSP developer should be aware of that and try to avoid them when possible.

For example, the division by a power-of-two operation can be converted to the easier

right shift on unsigned variables. DSP manufacturers often provide indications on

techniques to implement the division instruction more efficiently .

Other operations are available from library functions. Examples are sine,

cosine and atan functions, very often needed in the accelerator sector for the

implementation of rotation matrixes and for rectangular to polar coordinates

conversion. If needed, custom implementations can be developed to obtain a

favourable ratio between precision and execution time. Table 13 shows the

comparison of different implementations of the same functions; in particular, the

second column shows a custom implementation used in CERN’s LEIR accelerator.

In this implementation, the sine, cosine and atan calculation algorithm has been

implemented by a polynomial expansion of the seventh order instead of the usual

Taylor series expansion.

Table 13: Execution times vs. different implementations of the same

functions

Execution time

[µs]

Functio

n

CERN single-

precision

implementation

VisualDSP++ single-

precision

implementation

VisualDSP++ double-

precision

implementation

cosine 0.25

(for a sine/cosine

couple)

0.59 5.5

sine 0.59 5.3

atan 0.4125 1.4 5.6

Guideline 7: Be aware that DSP software heavily influences power optimization

DSP software can have a significant impact on power consumption: a software-

efficient in terms of the required processor cycles to carry out a task is often also

energy efficient. Software should be written so as to minimize the number of

accesses to off-chip memory; in fact, the power required to access off-chip memory

is usually much higher than that used for accessing on-chip memory. Power

consumption can be further optimized in DSPs that support selective disabling of

unused functional blocks (e.g., on-chip memories, peripherals, clocks, etc.). These

57

‘power down modes’ are available in ADI DSPs (such as Blackfin) as well as in TI

DSPs (such as the TMS320C6xxx family). Making a good use of these modes and

features can be difficult; however, APIs and specific software modules are available

to help. An example is TI’s DSP/BIOS Power Manager (PWRM) module, providing

a kernel-level API that interfaces directly to the DSP hardware by writing and

reading configuration registers. Figure 5.45 shows how this module is integrated in a

generic application architecture for DSPs belonging to TI’s TMS320C55x family.

Fig. 5.45: TI’s DSP/BIOS Power Manager (PWRM) module in a general

system architecture. Picture courtesy of Texas Instruments.

9 Real-time design flow: system design

This section deals with some aspects of digital systems design, particularly with

software and hardware architectures. Here the assumption is that the system to be

designed is based upon one or more DSPs. The reader should, however, be aware

that in the accelerator sector there are currently three main real-time digital signal

processing actors: DSPs, FPGAs and front-end computers. The front-end computers

are typically implemented by embedded General Purpose Processors (GPPs)

running a RTOS. Nowadays, the increase in clock speed allows GPPs to carry out

real-time data processing and slow control actions; in addition, there is a tendency

to integrate DSP hardware features and specialized instructions into GPPs, yielding

GPP hybrids. One example of such processors is given in Fig.5.46, showing the

PowerPC with Motorola’s Altivec extension. The Altivec 128-bit SIMD unit adds up

to 16 operations per clock cycle, in parallel to the Integer and Floating Point units,

and 162 instructions to the existing RISC architecture.

Fundamental choices to make when designing a new digital system are which

digital signal processing actors should be used and how tasks should be shared

between them. This choice requires detailed and up-to-date knowledge of the

different possibilities.

58

Fig. 5.46: Altivec technology: SIMD expansion to Motorola

PowerPC (G4 family)

In industry the choice of the DSP to use is often based on the ‘4P’ law:

Performance, Power consumption, Price and Peripherals. In the accelerator sector,

the power consumption factor is typically negligible. Other factors are instead

decisive, such as standardization in the laboratory, synergies with existing systems,

and possibilities of evolution to cover different machines. Last but not least, one

should consider the existing know-how in terms of tools and of hardware, which can

be directly translated to a shorter development time.

In this section three design aspects are considered and briefly discussed, namely:

a) DSP choice in Sections 9.1 and 9.2.

b) System architecture in Sections 9.3 to 9.6.

c) DSP code design in Sections 9.7 and 9.8.

 DSP choice: fixed vs. floating-point DSPs

The reader can find a basic description of fixed- and floating-point number formats in

Section 3.4.

Fixed-point formats can typically be implemented in hardware in a cheaper

way, with better energy efficiency and less silicon than floating-point formats. Very

often fixed-point DSPs support a clock faster than floating-point DSPs; as an

example, TI fixed-point DSPs can currently be clocked up to 1.2 GHz, while TI

floating-point DSPs are clocked up to 300 MHz.

Floating-point formats are easier to use since the DSP programmer can mostly

avoid carrying out number scaling prior to each arithmetic operation. In addition,

floating-point numbers provide a higher dynamic range, which can be essential

when dealing with large data sets and with data sets whose range cannot be easily

predicted. The reader should be aware that floating-point numbers are not

equispaced, i.e., the gap between adjacent numbers depends on their magnitude:

large numbers have large gaps between them, and small numbers have small gaps.

As an example, the gap between adjacent numbers is higher than 10 for numbers of

the order of 2 · 108. Additionally, the error due to truncation and rounding during

the floating-point number scaling inside the DSP depends on the number magnitude,

59

too. This introduces a noise floor modulation that can be detrimental for high-

quality audio signal processing. For this reason, high-quality audio has been

traditionally implemented by using fixed-point numbers. However, a migration of

high-fidelity audio from fixed- to floating- point implementation is currently taking

place, so as to benefit from the greater accuracy provided by floating point numbers.

The choice between fixed- and floating-point DSP is not always easy and

depends on factors such as power consumption, price, and application type. As an

example, military radars need floating- point implementations as they rely in finding

the maximal absolute value of the cross-correlation between the sent signal and the

received echo. This is expressed as the integral of a function against an exponential;

the integral can be calculated by using FFT techniques that benefit from the floating

point dynamic range and resolution. For radar systems, the power consumption is

not a major issue. The floating-point DSP additional cost is not an issue either, as the

processor represents only a fraction of the global system cost. Another example is

the mobile TV. The core of this application is the decoder, which can be MPEG-2,

MPEG-4 or JPEG-2000. The decoding algorithms are designed to be performed in

fixed-point; the greater precision of floating-point numbers is not useful as the

algorithms are in general bit-exact.

It should be underlined that many digital signal processing algorithms are

often specified and designed with floating-point numbers, but are subsequently

implemented in fixed-point architectures so as to satisfy cost and power efficiency

requirements.

Finally, as mentioned in Section 8.3, some fixed-point DSPs make available

floating-point numbers and operations by emulating them in software (hence they

are slower than in a native floating-point DSP).

The fact that floating-point numbers are not equispaced has already been

mentioned. The reader might be interested in looking at some consequences of this

with an example from the LHC beam control implementation. Figure 47 shows a

zoom onto the beam loops part of the LHC beam control. The ‘Low-level Loops

Processor’ is a board including a TigerSHARC DSP and an FPGA. The FPGA

carries out some simple pre-processing and data interfacing, while the DSP

implements the low-level loops. In particular, the DSP calculates the frequency to be

sent to the cavities from the beam phase, radial position, synchrotron frequency, and

programmed frequency; these calculations are carried out in floating-point format.

The frequency to be sent to the cavities, referred to as F_out in Fig.5.47, must be

expressed as an unsigned, 16-bit integer. The desired frequency range to represent is

10 kHz, hence the needed resolution is 0.15 Hz. The LHC cavities work at a

frequency of about 400.78 MHz but the spacing of a single-precision, floating-point

number with magnitude of approximately 400 · 106 is higher than one. To avoid the

use of slower, double-precision, floating-point format, the beam loop calculations are

carried out as offset from 400.7819 MHz.

60

Fig. 5.47: LHC beam control – zoom onto the beam loops part

 DSP choice: benchmarking

Benchmarking a DSP means evaluating it on a number of different metrics. Table

14 gives an example of some common metrics and corresponding units.

Table 14: Examples of DSP performance metric sets and

corresponding units

Good benchmarks are important for comparing DSPs and allow critical

business or technical decisions to be made. It should be underlined that benchmarks

can be misleading, thus should be considered in a critical way. As an example, the

maximum clock frequency of a DSP can be different from the instruction rates;

hence this parameter might not be indicative of the real DSP processing power.

Another example is the execution speed measured in MIPS: this metric is easy to

61

measure but it is often too simple to provide useful information about how a

processor would perform in a real application. VLIW architectures issue and

execute multiple instructions per instruction cycle. These processors usually use

simpler instructions that perform less work than the instructions typical of

conventional DSPs. As a consequence, MIPS comparison between VLIW-based DSP

and conventional ones is misleading.

More complex benchmarks are available; examples are the execution of

application tasks (typically called kernel functions) such as IIR filters, FIR filters, or

FFTs. Kernel function benchmarking is typically more reliable and is available from

DSP manufactures as well as from independent companies.

It is difficult to provide general guidelines to measure the efficacy of DSP

benchmarks for DSP selection. Two general rules should be followed: first, the

benchmark should perform the type of work the DSP will be expected to carry out

in the targeted application. Second, the benchmark should implement the work in a

way similar to what will be used in the targeted application.

 System architecture: multiprocessor architectures

Multiprocessor architectures are those where two or more processors interact in

real-time to carry out a task. Right from their early days, many DSP families have

been designed to be compatible with multiprocessing operation; an example is the TI

TMS320C40 family. Multiprocessing architectures are particularly suited for

applications with a high degree of parallelism, such as voice processing. In fact,

processing ten voice channels can be carried out by implementing a one-voice

channel, then repeating the process ten times in parallel. Applications requiring

multiprocessing computing to support processing of greater data flow include high-

end audio treatment, 3D graphics acceleration, and wireless communication

infrastructure, just to mention a few of.

There is another reason to move to multiprocessing systems. For many years

developers have been taking advantage of the steady progress in DSP performance.

New and faster processors would be available, allowing more powerful applications

to be implemented sometimes only for the price of porting existing code to the new

DSP. This favourable situation was driven by the steady progress of the

semiconductor industry that managed to pack more transistors into smaller

packages and at higher clock frequencies. The increased performance was enabled

by architectural innovations, such as VLIW, as well as added resources, such as on-

chip memories. In recent years, however, progress in single-chip performance has

been slowing down. The semiconductor industry has turned to parallelism to

increase performance. This is true not only for the DSP sector, but in general for

business computing. One example is the Intel Core Duo processors, including two

execution cores in a single processor, now the established platform for personal

computers and laptops.

Finally, the reader should be aware that development environments have

evolved to provide support for debugging multiple processor cores connected in the

same JTAG path . An example is TI’s Parallel Debug Manager [68], which is

integrated within the Code Composer Studio IDE.

62

Of the many possible multiprocessing forms, the multi-DSP and multi-core

approaches are considered and discussed in Sub-sections 9.3.1 and 9.3.2,

respectively.

 Multi-DSP architecture

Many separate DSP chips can co-operate to carry out a task providing an increased

system performance. One advantage of this approach is the scalability, i.e., the

ability to tune the system performance and cost to the required functionality and

processing performance by varying the number of DSP chips used.

The reader should, however, be aware that multi-DSP designs involve different

constraints than single-processing systems. Three key aspects must be taken into

account.

a) Tasks must be partitioned between processors. As an example, a single

processor can handle a task from start to end; as an alternative, a processor

can perform only a portion of the task, then pass the intermediate results to

another processor.

b) Resources such as memory and bus access must be shared between

processors so as to avoid bottlenecks. As an example, additional memory

may be added to store intermediate results. Organizing memory into

segments or banks allows simultaneous memory accesses without

contentions if different banks are accessed.

c) A robust and fast inter-DSP communication means must be established. If

the communication is too complex or takes too much time, the advantage of

a multiprocessing can be lost.

Two examples of multi-DSP architectures based on ADI DSPs are shown in

Fig.5.48.

On the left-hand side (plot a) the point-to-point architecture is depicted, based

upon ADI linkport interconnect cable standard. Point-to-point interconnect

provides a direct connection between processor elements. This is particularly useful

when large blocks of intermediate results must be passed between two DSPs without

involving the others. Read/write transactions to external memory are saved by

passing data directly between two DSPs, thus allowing the use of slower memory

devices. Additionally, the point-to-point interconnect can be used to scale a design:

additional links can be added to have more DSPs interacting. This can be done

either directly or by bridging across several links.

63

Fig. 5.48: Examples of multi-DSP configurations. (a) point-to-point,

linkport-based and (b) cluster bus

On the right-hand side (plot b) the cluster bus architecture is depicted. A

cluster bus maps internal memory resources, such as registers and processor

memory addresses, directly onto the bus. This allows DSP code developers to

exchange data between DSPs using addresses as if each processor possessed the

memory for storing the data. Memory arbitration is managed by the bus master;

this avoids the need for complex memory or data sharing schemes managed by

software or by RTOS. The map includes also a common broadcast space for

messages that need to reach all DSPs. As an example, Fig. 49 shows the

TigerSHARC global memory map. The multiprocessing space maps the internal

memory space of each TigerSHARC processor in the cluster into any other

TigerSHARC processor. Each TigerSHARC processor in the cluster is identified by

its ID; valid processor ID values are 0 to 7.

Fig.5.49: ADI TigerSHARC TS101 global memory map. Picture courtesy of

Analog Devices

64

The reader should be aware that the two above-mentioned architectures,

namely point-to-point and cluster bus, are not mutually exclusive; on the contrary,

they can both be used in the same application as complementary solutions.

 Multi-core architecture

In a multi-core architecture, multiple cores are integrated into the same chip. This

provides a considerable increase of the performance per chip, even if the

performance per core only increases slowly. Additionally, the power efficiency of

multi-core implementations is much better than in traditional single-core

implementations. This approach is a convenient alternative to DSP farms.

As the performance required by DSP systems keeps increasing, it is nowadays

essential for DSP developers to devise a processing extension strategy. Multi-core

architectures can provide it, in that the DSP performance is boosted without

switching to a different core architecture. This has the advantage that applications

can be based upon multiple instances of an already-proven core, rather than be

adapted to new architectures.

DSP multi-core architectures have been commercialized only recently;

however, the DSP market has relied for many years on co-processor technology

(also called on-chip accelerators) to boost performance. Figure5.50 shows the

evolution of DSP architecture. From the initial single-core architecture (a), the

single-core plus co-processor architecture soon emerged. The co-processor often

runs at the same frequency as the DSP, therefore ‘doubling’ the performance for the

targeted application. Co-processor examples are Turbo and Viterbi decoders for

communication applications. Finally, over the last few years the multi-core

architecture shown in plot (c) has emerged, which still includes co-processors.

Fig.5. 50: Multi-core and co-processor DSP architectures evolution.

Single-core DSP (a), single- core DSP plus coprocessor (b) and multi-

core DSP plus coprocessor (c).

Multi-core architectures are available in two different flavours, namely

Symmetric Multi- Processing (SMP) and Asymmetric Multi-Processing (AMP).

SMP architectures include two or more processors which are similar (or identical),

connected thorough a high-speed path and sharing some peripherals as well as

memory space. AMP architectures combine two different processors, typically a

microcontroller and a DSP, into a hybrid architecture.

It is possible to use a multi-core device in different ways. The different cores

can operate independently or they can cooperate for task completion. An efficient

inter-core communication may be needed in both cases, but it is particularly

65

important when two or more cores work together to complete a task. As for the

multi-DSP case discussed in Sub-section 9.3.1, it is important to decide how to share

resources to avoid bottlenecks and deadlocks, and to ensure that one core does not

corrupt the operation of another core. The resources must be partitioned not only at

board level, like in the single-core case, but at device level, too, thus adding increase

complexity. Figure5.51 shows an example of multi-core bus and memory hierarchy

architecture. L1 memories are typically dedicated to their own core as non-

partitioned between cores, as it may be inefficient to access them from other cores.

The L2 memory is an internal memory shared between the different cores, as

opposed to the single-core case where the L2 memory can be either internal or

external. The multi-core architecture must make sure that each core can access the

L2 memory and the arbitration must be such that cores are not locked out from

accessing this resource.

Fig. 5.51: Multi-core bus and memory hierarchy example

Figure 5.52 shows the TMS320C5421 DSP as an example of a multi-core, SMP

DSP. The TMS320C5421 DSP is composed of two C54x DSP cores and is targeted at

carrier-class voice and video end equipment. The cores are 16-bit fixed-point and

the chip is provided with an integrated VITERBI accelerator. Four internal buses

and dual address generators enable multiple program and data fetches and reduce

memory bottlenecks.

66

Fig. 5.52 TMS320C5421 multi-core DSP as an SMP example. Picture

courtesy of Texas Instruments, DSP selection guide 2007, p. 48.

The programming of multi-core system is generally more complex than in the

single-core case. In particular, the reader should be aware that multi-core code must

follow the re-entrance rules, to make sure that one core’s processing does not

corrupt the data used by another core’s processing. This approach is followed by

single-core processors, too, when implementing multi-tasking operations.

 System architecture: radiation effects

Single-Event Upset (SEU) events are alterations in the behaviour of electronic

circuits induced by radiation. These alterations can be transient disruptions, such

as changes of logic states, or permanent IC alterations.

Techniques to mitigate these effects in ICs can be carried out at different levels,

namely:

a) At device level, for instance by adding extra-doping layers to limit the

substrate charge collection.

b) At circuit level, for instance by adding decoupling resistors, diodes, or

transistors in the SRAM hardening.

c) At system level, with Error Detection And Correction (EDAC) circuitry or

with algorithm- based fault tolerance. An example of the latter approach is

the Triple Module Redundancy (TMR) algorithm or the newer Weighted

67

Checksum Code (WCC). The reader should, however, be aware that there

are limitations to what these algorithms can achieve. For instance, the

WCC method applied to floating-point systems may fail, as round off errors

may not be distinguished from functional errors caused by radiation.

Neither ADI nor TI currently provide any radiation-hard DSP. Third-party

companies have developed and marketed radiation-hard versions of ADI and TI

DSPs. An example is Space Micro Inc., based in San Diego, California. This

company devised the Proton 200k single-board computer based upon a TI C67xx

DSP, fitted with EDAC circuitry and with a total dose tolerance higher than 100

krad.

The LHC power supply controllers are examples of mitigation techniques

applied to DSP. They are based upon non-radiation-hard TI C32 DSPs and micro

controllers. The memory is protected with EDAC circuitry and by avoiding the use

of DSP internal memory, which cannot be protected. A watchdog system restarts the

power supply controller in the event of a crash. Radiation tests have been carried

out to check that the devised protection strategy is sufficient for normal operation.

 System architecture: interfaces

An essential step in the digital system design is to clearly define the interfaces

between the different parts of the system. Figure 53 shows some typical building

blocks that can be found in a digital system, namely DSP(s), FPGA(s),

daughtercards, Master VME, machine timings, and signals.

The DSP system designer must define the interfaces between DSP(s) and the

other building blocks. It is strongly recommended to avoid hard-coding in the DSP

code the address of memory regions shared with other processing elements. On the

contrary, the linker should be used to allocate appropriately the software structures

in the DSP memory, as mentioned in Sub-section 6.4.3. Additionally, the DSP

developer should created data access libraries, so as to obtain a modular hence more

easily upgradeable approach.

Fig. 5.53: Typical digital system building blocks and corresponding interfaces

68

 System architecture: general recommendations

Basically all DSP chips present some anomalies on their expected behaviour. This is

especially true for the first release of DSP chips, as discovered anomalies are

typically solved on later releases. A list of all anomalies for a certain DSP release,

which includes also workarounds when possible, is normally available on the

manufacturer’s website. The reader is strongly encouraged to look at those lists, so

as to avoid being delayed by already-known problems.

Fig.5. 54: TI C6713 DSK evaluation board – picture (a) and board

layout (b)

A DSP system designer can gain useful software and hardware experience by

using evaluation boards in the early stages of system design. Evaluation boards are

typically provided by manufacturers for the most representative DSPs. They are

relatively inexpensive and are typically fitted with ADCs and DACs; they come with

the standard development environment and JTAG interface, too. The DSP designer

can use them to solve technical uncertainties and sometimes can even modify them

to quickly build a system prototype. Figure 5.54 shows TI’s C6713 DSK evaluation

board (a) and corresponding board layout (b); this evaluation board was that used

in the DSP laboratory companion of the lectures summarized in this paper.

 DSP code design: interrupt-driven vs. RTOS-based systems.

A fundamental choice that the DSP code developer must make is how to trigger the

different DSP actions. The two main possibilities are via a RTOS or via interrupts.

An overview of RTOS is given in Section 6.3. RTOS can define different

threads, each one performing a specific action, as well as the corresponding threads’

priorities and triggers. RTOS-based systems have typically a clean design and many

built-in checks. The disadvantage of using RTOS is a potentially slower response to

external events (interrupts) and the use of DSP resources (such as some hardware

timings and interrupts) for the internal RTOS functioning.

Interrupt-driven systems associate actions directly to interrupts. The resource

use is therefore optimized. An example of interrupt-driven system is CERN’s LEIR

LLRF . Figure 5.55 shows some of its software components: a background task

triggered every millisecond carries out housekeeping actions, while a control task

triggered every 12.5 µs implements the beam control actions. Driving a system

through interrupts is very efficient with a limited number of interrupts. For a high

69

number of interrupts, the system can become very complex and its behaviour not

easily predictable.

Fig. 5.55: Example of an interrupt-driven system. Control and

background tasks are triggered by interrupts and are shown in red and

green, respectively.

 DSP code design: good practice

A vast amount of literature is available on code design good practice. Here just a few

points are underlined, which are particularly relevant to embedded systems.

First, digital systems must not turn into tightly sealed black boxes. It is

essential that designers embed many diagnostics buffers in the DSP code, so as to

prevent this from happening. The diagnostics buffers could take many forms, such

as post-mortem, circular or linear buffers. They might be user-configurable and

must be visible from the application program.

Second, every new DSP code release should be characterized by a version

number, visible from the application level. The functionality and interface map

corresponding to a certain version number should be clearly documented, so as to

avoid painful misunderstandings between the many system layers. Source code

control is essential for managing complex software development projects, as large

projects require more than one DSP code developer working on many source files.

Source code control tools make it possible to keep track of the changes made to

individual source files and prevent files from being accessed by more than one

person at a time. DSP software development environments can often support many

source control providers. Code Composer Studio, for example, supports any source

control provider that implements the Microsoft SCC Interface.

Finally, DSP developers should also add checks on the execution duration, to

make sure the code does not overrun. This is particularly important for interrupt-

driven systems (mentioned in Section 9.7), where one or more interrupts may be

missed if the actions corresponding to an interrupt are not finished by the time the

next interrupt occurs. As an example, the minimum and maximum

70

number of clock cycles needed for executing a piece of code can be constantly

measured and monitored by the user at high level. All DSPs provide means to measure

the number of clock cycles required to execute a certain amount of code; the number

of clock cycles can then be easily converted into absolute time. Figure 56 shows a

possible implementation on ADI SHARC DSPS of the execution duration of a code

called ‘critical action’. SHARC processors have a set of registers called emuclk and

emuclk2 which make up a 64-bit counter. This counter is unconditionally incremented

during every instruction cycle on the DSP and is not affected by factors such as cache-

misses or wait-states. Every time emuclk wraps to zero, emuclk2 is incremented by one.

By determining the difference in the emuclk value between before and after the critical

action, the DSP developer can determine the number of clock cycles — hence the time

— to execute the code.

Fig.5. 56: Execution duration measurement with emuclk registers in

the ADI SHARC DSP

The system integration is one of the final parts in the system development process. This

phase is extremely important as it can determine the success or the failure of a whole

system. In fact, a system which is well integrated can become operational, while a

system only partially integrated will often remain a ‘machine development’ tool, easily

forgotten.

During the system integration phase, the system is commissioned with respect to

data exchange with the control infrastructure and the application program(s). Two or

more groups, such as Instrumentation, Controls and Operation, can be involved in this

effort, depending on the laboratory’s organization. As a consequence, a coordination

and specification work is required.

Good system integration practices will depend on the laboratory’s organization

as well as on the system architecture. There are, however, some guidelines that can be

applied to most cases.

– Guideline 1: Work in parallel

71

All software layers needed in a system should be planned in parallel. Waiting

until the low-level part is completed before starting with the specification and/or with

the development of the other layers may result in unacceptable delays.

– Guideline 2: About interfaces

Section 9.5 summarized the many interfaces that can exist in a system. For a

successful system integration it is essential that the interfaces are specified clearly, are

agreed upon with all different parties and are fully documented. Recipes on how to set

up different software components of the system or on how to interact with them can be

really useful and speed up considerably system development as well as debugging. It is

recommended that all documents be kept updated and stored on servers accessible by

all parties involved. Remember: good fences make good neighbours.

– Guideline 3: Always include checks on the DSP inputs validity

The validity of all control inputs to the DSP should be checked. Alarms or

warnings should be raised if a control value falls outside the allowed range. This

mechanism will help the system integration part and could even prevent serious

malfunctioning from happening.

– Guideline 4: Add spare parameters

It is strongly recommended to map spare parameters between the DSP and

application program; they should have different formats for maximum flexibility.

These spare parameters allow adding debugging features or making some small

update without modifications to the intermediate software layers.

– Guideline 5: Code release and validation

The source code (and if possible the corresponding executable, too) should be

saved together with a description of its features and implemented interfaces. This will

allow going back to previous working releases in case of problems. Procedure and data

sets should also be defined for code validation.

Existing chip examples were often given and referenced to technical manuals or

application notes. Examples of DSP use in existing accelerator systems were also given

whenever possible.

The DSP field is of course very large and more information, as well as hands-on

practice, is required to become proficient in it. However, the author hopes that this

document and the references herein can be useful starting points for anyone wishing to

work with DSPs.

FPGA and Digital Signal Processing

 Spartan-3 FPGA family overview

72

 The Spartan-3 family architecture consists of five fundamental programmable

functional elements:

 Configurable Logic Blocks (CLBs) containing RAM-based Look-Up Tables (LUTs) to

 implement logic and storage elements that can be used as flip-flops or latches. CLBs can

 be programmed to perform a wide variety of logical functions as well as to

 store data.

 Input/Output Blocks (IOBs) controlling the flow of data between the I/O pins and the

internal logic of the device.

 18-Kbit dual-port RAM blocks providing data storage.

 Multiplier blocks which accept two 18-bit binary numbers as inputs and calculate the

product.

 Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for

distributing, delaying, multiplying, dividing, and phase shifting clock signals.

 These elements are organized as shown in Figure 5.57. A ring of IOBs surrounds a

regular array of CLBs. The XC3S400 device contains 896 CLBs, 288kbit embedded

RAM, 16 dedicated multipliers and 4 DCMs.

Fig.5.57 Spartan-3 family architecture

The main logic resource for implementing synchronous as well as combinatorial circuits is the

Configurable Logic Block (CLB). Each CLB comprises four interconnected slices, as shown in

Figure 5.58. These slices are grouped in pairs. Each pair is organized as a column with an

independent fast carry chain. The carry chain supports implementing arithmetic functions such

as addition.

All four slices have the following elements in common: two logic function generators (known as

Look-Up Tables), two flip-flops, wide-function multiplexers, carry logic, and auxiliary

arithmetic gates. The RAM-based Look-Up Table (LUT) is the main resource for implementing

logic functions.

Each of the two LUTs in a slice have four logic inputs and a single output.

This permits any four-variable Boolean logic operation to be programmed into them. Wide-

function multiplexers can be used to effectively combine

73

Fig. 5.58. Configurable logic block

LUTs within the same CLB or across different CLBs, making logic functions with many more

input variables possible. Switch matrix (see Figure 2) allows programmable access into local

and global routing resources. Clock signals are distributed by dedicated low- capacitance, low

skew network well suited to carrying high-frequency signals.

Spartan-3 FPGAs are programmed by loading configuration data into static memory cells that

control all functional elements and routing resources. Before powering on the FPGA,

configuration data is stored externally in a PROM or some other nonvolatile medium either on

or off the board. After applying power, the configuration data is written to the FPGA using one

of the available modes, e.g. JTAG mode.

Memec Spartan-3 LC Development Board and P160 Analog Module

Memec Spartan-3 LC Development Board

The Spartan-3 LC Development Kit provides an easy-to-use evaluation platform for developing

designs and applications based on the Xilinx Spartan-3 FPGA family. The development board

utilizes the 400K-gate Xilinx Spartan- 3 device (XC3S400-4PQ208CES). The board includes a

50 MHz clock, a user clock socket, 29 user I/O header pins, an RS-232 port, a USB 2.0 slave

port, LEDs, switches, and additional user support circuits. The P160 Analog Module containing

A/D and D/A converters is connected to the main board by dedicated 160 pin socket.

Fig.5.60. Spartan-3 LC block diagram

74

A simplified block diagram of the Spartan-3 LC development board is shown in Figure 3.

Instructions for interfacing all included components are available in Memec Spartan-3 LC

User's Guide. In digital signal processing purposes, the most emphasis shall be put on using

ADC and DAC components.

Fig.5.61. Spartan-3 LC Development board

A JTAG connector (J2, see Figure 4) provides interface to the board's JTAG chain. This chain

can be used to program the on-board ISP PROM and configure the Spartan-3 FPGA. The

JTAG chain consists of an XCF02S Platform Flash PROM followed by an XC3S400 FPGA. The

XCF02S Plat form Flash In System Programmable (ISP) PROM allows designers to store an

FPGA configuration in nonvolatile memory. The JTAG port on the Plat form Flash device is

used to program the PROM with an .mcs file created by iMPACT in the Xilinx ISE software

environment. Once the Flash has been programmed, the user can configure the Spartan-3

device by setting the Configuration Mode to Master Serial Mode (Jumper J1, see Figures 4 and

5). The Spartan-3 device configuration is initiated during power-up or by asserting the

PROGAMn signal (by pressing the SW2 switch). The FPGA can be also configured directly

through JTAG chain, without using of PROM. JTAG chain is connected into PC computer

through dedicated Parallel cable.

P160 Analog Module

supporting analog outputs. Both channels are identical. The Texas Instruments ADS807 12-bit,

53Msps A/D converters are used to convert incoming analog signals into 12-bit data for the

FPGA located on the baseboard. Analog outputs can be generated using the two DAC902 12-

bit, 165Msps D/A converters from Texas Instruments. Gain and filtering is provided on the D/A

outputs. Control of the ADCs and DACs is handled by the FPGA through the P160 digital

interface.

75

D/A Converters

The FPGA interfaces to the DACs through 12-bit registers, which add a clock cycle delay

between data out from the FPGA and the DAC analog outputs. Two independent data channels,

one channel for each DAC, are driven from the FPGA. The DACs interface signals are:

 bits of input data. Output voltage values corresponding to input

 binary values are shown below.

As can be easily seen, the DAC output is normally DC coupled for a 2 V peak-to-peak (Vp-p)

signal centered at 2.5 V.

 Two clock signals: DAC Clock (CLK) and Register Clock (CLK2), rising edge active.

The CLK2 signal latches the digital DAC data from the FPGA into the register. The

CLK signal latches the output data from the register into the DAC. On the falling edge

of the CLK signal, the DAC output changes to the newly latched value.

 Reference Select (RefSel) control signal, which makes possible to disable internal

reference voltage source and to use external reference input (Low = Internal, High =

External Reference).

 Power Down (PD) control signal (Low = Normal, High = Power Down Mode).

A/D converters

Texas Instruments ADS807 converters provide 12-bit resolution at up to 53 Msps. The digital

data out of the A/Ds is latched into external bu_ers and then passed to the FPGA through the

P160 interface. The range of the input voltage is dependent on the Full Scale Select control

signal to the

A/D. Before conversion the input signal is AC coupled, biased to 2.5 volts for unipolar

operation, and bu_ered through the op amp.The ADCs interface signals are:

 bits of output data (binary range "000000000000" to "111111111111").

 Full Scale Select control signal (FsSel). Setting this signal to a logic high allows a 1.5 Vp-

p input to the board. Setting the Full Scale Select to low, selects a 1 Vp-p input range to

the board (i.e. -0:5V voltage corresponds to "000000000000" value and +0:5V

corresponds to "111111111111" value).

 Reference Select (RefSel) control signal (Low = Internal Reference, High = External

Reference).

 Output Enable (OE) control signal (Low = Output Enabled, High = Tri-Stated outputs).

 Convert clock (CLK) signal. The ADS807 samples the input signal on the rising edge of

the CLK input. Output data values are valid at the outputs 6 clock cycles later, after the

rising edge of the clock.

76

Audio Signal Processing

Our sense of hearing provides us rich information about our environment with respect

to the locations and characteristics of sound producing objects. For example, we can

effortlessly assimilate the sounds of birds twittering outside the window and traffic

moving in the distance while following the lyrics of a song over the radio sung with

multi-instrument accompaniment. The human auditory system is able to process the

complex sound mixture reaching our ears and form high-level abstractions of the

environment by the analysis and grouping of measured sensory inputs. The process of

achieving the segregation and identification of sources from the received composite

acoustic signal is known as auditory scene analysis. It is easy to imagine that the machine

realization of this functionality (sound source separation and classification) would be

very useful in applications such as speech recognition in noise, automatic music

transcription and multimedia data search and retrieval. In all cases the audio signal

must be processed based on signal models, which may be drawn from sound production

as well as sound perception and cognition. While production models are an integral part

of speech processing systems, general audio processing is still limited to rather basic

signal models due to the diverse and wide-ranging nature of audio signals. Important

technological applications of digital audio signal processing are audio data compression,

synthesis of audio effects and audio classification. While audio compression has been the

most prominent application of digital audio processing in the recent past, the burgeoning

importance of multimedia content management is seeing growing applications of signal

processing in audio segmentation and classification. Audio classification is a part of the

larger problem of audiovisual data handling with important applications in digital

libraries, professional media production, education, entertainment and surveillance.

Speech and speaker recognition can be considered classic problems in audio retrieval

and have received decades of research attention. On the other hand, the rapidly growing

archives of digital music on the internet are now drawing attention to wider problems of

nonlinear browsing and retrieval using more natural ways of interacting with

multimedia data including, most prominently, music. Since audio records (unlike

images) can be listened to only sequentially, good indexing is valuable for effective

retrieval. Listening to audio clips can actually help to navigate audiovisual material

more easily than the viewing of video scenes. Audio classification is also useful as a front

end to audio compression systems where the efficiency of coding and transmission is

facilitated by matching the compression method to the audio type, as for example, speech

or music.

77

Audio Signal Characteristics

Audible sound arises from pressure variations in the air falling on the ear drum. The

human auditory system is responsive to sounds in the frequency range of 20 Hz to 20

kHz as long as the intensity lies above the frequency dependent “threshold of hearing”.

The audible intensity range is approximately 120 dB which represents the range between

the rustle of leaves and boom of an aircraft take-off. Figure 1 displays the human

auditory field in the frequencyintensity plane. The sound captured by a microphone is a

time waveform of the air pressure variation at the location of the microphone in the

sound field. A digital audio signal is obtained by the suitable sampling and quantization

of the electrical output of the microphone. Although any sampling frequency above 40

kHz would be adequate to capture the full range of audible frequencies, a widely used

sampling rate is 44,100 Hz, which arose from the historical need to synchronize audio

with video data. “CD quality” refers to 44.1 kHz sampled audio digitized to 16-bit word

length. Sound signals can be very broadly categorized into environmental sounds,

artificial sounds, speech and music. A large class of interesting sounds is timevarying in

nature with information coded in the form of temporal sequences of atomic sound

events. For example, speech can be viewed as a sequence of phones, and music as the

evolving pattern of notes. An atomic sound event, or a single gestalt, can be a complex

acoustical signal described by a specific set of temporal and spectral properties.

Examples of atomic sound events include short sounds such as a door slam, and longer

uniform texture sounds such as the constant patter of rain. The temporal properties of

an audio event refer to the duration of the sound and any amplitude modulations

including the rise and fall of the waveform amplitude envelope. The spectral properties

of the sound relate to its frequency components and their relative strengths

Fig.5.62. The auditory field in the frequency-intensity plane. The sound pressure level is

measured in dB with respect to the standard reference pressure level of 20 micropascals.

78

Audio waveforms can be periodic or aperiodic. Except for the simple sinusoid, periodic

audio waveforms are complex tones comprising of a fundamental frequency and a series

of overtones or multiples of the fundamental frequency. The relative amplitudes and

phases of the frequency components influence the sound “colour” or timbre. Aperiodic

waveforms, on the other hand, can be made up of non-harmonically related sine tones or

frequency shaped noise. In general, a sound can exhibit both tone-like and noise-like

spectral properties and these influence its perceived quality. Speech is characterized by

alternations of tonal and noisy regions with tone durations corresponding to vowel

segments occurring at a more regular syllabic rate. Music, on the other hand, being a

melodic sequence of notes is highly tonal for the most part with both fundamental

frequency and duration varying over a wide range. Sound signals are basically physical

stimuli that are processed by the auditory system to evoke psychological sensations in the

brain. It is appropriate that the salient acoustical properties of a sound be the ones that

are important to the human perception and recognition of the sound. Hearing perception

has been studied since 1870, the time of Helmholtz. Sounds are described in terms of the

perceptual attributes of pitch, loudness, subjective duration and timbre. The human

auditory system is known to carry out the frequency analysis of sounds to feed the

higher level cognitive functions. Each of the subjective sensations is correlated with more

than one spectral property (e.g. tonal content) or temporal property (e.g. attack of a note

struck on an instrument) of the sound. Since both spectral and temporal properties are

relevant to the perception and cognition of sound, it is only appropriate to consider the

representation of audio signals in terms of a joint description in time and frequency.

While audio signals are non stationary by nature, audio signal analysis usually assumes

that the signal properties change relatively slowly with time. Signal parameters, or

features, are estimated from the analysis of short windowed segments of the signal, and

the analysis is repeated at uniformly spaced intervals of time. The parameters so

estimated generally represent the signal characteristics corresponding to the time center

of the windowed segment. This method of estimating the parameters of a time-varying

signal is known as “short-time analysis” and the parameters so obtained are referred to

as the “short-time” parameters. Signal parameters may relate to an underlying signal

model. Speech signals, for example, are approximated by the well-known source-filter

model of speech production. The source-filter model is also applicable to the sound

production mechanism of certain musical instruments where the source refers to a

vibrating object, such as a string, and the filter to the resonating body of the instrument.

Music due to its wide definition, however, is more generally modelled based on observed

signal characteristics as the sum of elementary components such as continuous

sinusoidal tracks, transients and noise.

79

Audio Signal Representations

 The acoustic properties of sound events can be visualized in a time-frequency “image”

of the acoustic signal so much so that the contributing sources can often be separated by

applying gestalt grouping rules in the visual domain. Human auditory perception starts

with the frequency analysis of the sound in the cochlea.The time-frequency

representation of sound is therefore a natural starting point for machine-based

segmentation and classification. In this section we review two important audio signal

representations that help to visualize the spectro-temporal properties of sound, the

spectrogram and an auditory representation. While the former is based on adapting the

Fourier transform to time-varying signal analysis, the latter incorporates the knowledge

of hearing perception to emphasize perceptually salient characteristics of the signal.

Spectrogram

The spectral analysis of an acoustical signal is obtained by its Fourier transform which

produces a pair of real-valued functions of frequency, called the amplitude (or

magnitude) spectrum and the phase spectrum. To track the time-varying characteristics

of the signal, Fourier transform spectra of overlapping windowed segments are

computed at short successive intervals. Time domain waveforms of real world signals

perceived as similar sounding actually show a lot of variability due to the variable phase

relations between frequency components. The short-time phase spectrum is not

considered as perceptually significant as the corresponding magnitude or power

spectrum and is omitted in the signal representation. From the running magnitude

spectra, a graphic display of the time-frequency content of the signal, or spectrogram, is

produced. Figure 1 shows the waveform of a typical music signal comprised of several

distinct acoustical events as listed in Table 1. We note that some of the events overlap in

time. The waveform gives an indication of the onset and the rate of decay of the

amplitude envelope of the non-overlapping events. The spectrogram (computed with a

40 ms analysis window at intervals of 10 ms) provides a far more informative view of the

signal. We observe uniformly spaced horizontal dark stripes indicative of the steady

harmonic components of the piano notes. The frequency spacing of the harmonics is

consistent with the relative pitches of the three piano notes. The piano notes’ higher

harmonics are seen to decay fast while the low harmonics are more persistent even as the

overall amplitude envelope decays. The percussive (low tom and cymbal crash) sounds

are marked by a grainy and scattered spectral structure with a few weak inharmonic

tones. The initial duration of the first piano strike is dominated by high frequency

spectral content from the preceding cymbal crash as it decays. In the final portion of the

spectrogram, we can now clearly detect the simultaneous presence of piano note and

percussion sequence.

80

Table 2. A Description of the audio events corresponding to figure 5.62.

The spectrogram by means of its time-frequency analysis displays the spectro-temporal

properties of acoustic events that may overlap in time and frequency. The choice of the

analysis window duration dictates the trade-off between the frequency resolution of

steady-state content versus the time resolution of rapidly time-varying events or

transients.

Audio Features for Classification

While the spectrogram and auditory signal representations discussed in the previous

section are good for visualization of audio content, they have a high dimensionality

which makes them unsuitable for direct application to classification. Ideally, we would

like to extract low-dimensional features from these representations (or even directly

from the acoustical signal) which retain only the important distinctive characteristics of

the intended audio classes. Reduced-dimension, decorrelated spectral vectors obtained

using a linear transformation of a spectrogram have been proposed in MPEG-7, the

audiovisual content description standard.

Fig 5.63. (a) Waveform, and (b) spectrogram of the audio segment described in table 2

81

The vertical dotted lines indicate the starting instants of new events. The spectrogram

relative intensity scale appears at lower right.

A more popular approach to feature design is to use explicit knowledge about the salient

signal characteristics either in terms of signal production or perception. The goal is to

find features that are invariant to irrelevant transformations and have good

discriminative power across the classes. Feature extraction, an important signal

processing task, is the process of computing the numerical representation from the

acoustical signal that can be used to characterize the audio segment. Classification

algorithms typically use labeled training examples to partition the feature space into

regions so that feature vectors falling in the same region come from the same class. A

well-designed set of features for a given audio categorization task would make for robust

classification with reasonable amounts of training data. Audio signal classification is a

subset of the larger problem of auditory scene analysis. When the audio stream contains

many different, but non-simultaneous, events from different classes, segmentation of the

stream to separate class-specific events can be achieved by observing the transitions in

feature values as expected at segment boundaries. However when signals from the

different classes (sources) overlap in time, stream segregation is a considerably more

difficult task . Research on audio classification over the years has given rise to a rich

library of computational features which may be broadly categorized into physical

features and perceptual features. Physical features are directly related to the measurable

properties of the acoustical signal and are not linked with human perception. Perceptual

features, on the other hand, relate to the subjective perception of the sound, and

therefore must be computed using auditory models. Features may further be classified as

static or dynamic features. Static features provide a snapshot of the characteristics of the

audio signal at an instant in time as obtained from a short-time analysis of a data

segment. The longer-term temporal variation of the static features is represented by the

dynamic features and provides for improved classification. Figure 3 shows the structure

of such a feature extraction framework. At the lowest level are the analysis frames, each

representing windowed data of typical duration 10 ms to 40 ms. The windows overlap so

that frame durations can be significantly smaller, usually corresponding to a frame rate

of 100 frames per second. Each audio frame is processed to obtain one or more static

features. The features may be a homogenous set, like spectral components, or a more

heterogenous set. That is, the frame-level feature vector corresponds to a set of features

extracted from a single windowed audio segment centered at the frame instant. Next the

temporal evolution of frame-level features is observed across a larger segment known as

a texture window to extract suitable dynamic features or feature summaries. It has been

shown that the grouping of frames to form a texture window improves classification due

to the availability of important statistical variation information. However increasing the

texture window length beyond 1 sec does not improve classification any further. Texture

82

window durations typically range from 500 ms to 1 sec. This implies a latency or delay of

up to 1 sec in the audio classification task.

Fig.5.64. Audio feature extraction procedure Short-Time Energy

It is the mean squared value of the waveform values in the data frame and represents the

temporal envelope of the signal. More than its actual magnitude, its variation over time

can be a strong indicator of underlying signal content. It is computed as

--------------->(2)

Band-Level Energy

It refers to the energy within a specified frequency region of the signal spectrum. It can

be computed by the appropriately weighted summation of the power spectrum as given

by

----------->(3)

W[k] is a weighting function with non-zero values over only a finite range of bin indices

“k” corresponding to the frequency band of interest. Sudden transitions in the band-

level energy indicate a change in the spectral energy distribution, or timbre, of the

signal, and aid in audio segmentation. Generally log transformations of energy are used

to improve the spread and represent (the perceptually more relevant) relative

differences.

83

Spectral Centroid

It is the center of gravity of the magnitude spectrum. It is a gross indicator of spectral

shape. The spectral centroid frequency location is high when the high frequency content

is greater

----------------->(4)

Since moving the major energy concentration of a signal towards higher frequencies

makes it sound brighter, the spectral centroid has a strong correlation to the subjective

sensation of brightness of a sound.

Spectral Roll-off

 It is another common descriptor of gross spectral shape. The roll-off is given by

Rr = f[k]------------------->(5)

where K is the largest bin that fulfills

--------------> (6)

That is, the roll-off is the frequency below which 85% of accumulated spectral

magnitude is concentrated. Like the centroid, it takes on higher values for right-skewed

spectra.

Spectral Flux

It is given by the frame-to-frame squared difference of the spectral magnitude vector

summed across frequency as

------------> (7)

It provides a measure of the local spectral rate of change. A high value of spectral flux

indicates a sudden change in spectral magnitudes and therefore a possible segment

boundary at the r th frame.

Audio Classification Systems

We review a few prominent examples of audio classification systems. Speech and music

dominate multimedia applications and form the major classes of interest. As mentioned

84

earlier, the proper design of the feature set considering the intended audio categories is

crucial to the classification task. Features are chosen based on the knowledge of the

salient signal characteristics either in terms of production or perception. It is also

possible to select features from a large set of possible features based on exhaustive

comparative evaluations in classification experiments. Once the features are extracted,

standard machine learning techniques to design the classifier. Widely used classifiers

include statistical pattern recognition algorithms such as the k nearest neighbours,

Gaussian classifier, Gaussian Mixture Model (GMM) classifiers and neural networks

[14]. Much of the effort in designing a classifier is spent collecting and preparing the

training data. The range of sounds in the training set should reflect the scope of the

sound category. For example, car horn sounds would include a variety of car horns held

continuously and also as short hits in quick succession. The model extraction algorithm

adapts to the scope of the data and thus a narrower range of examples produces a more

specialized classifier.

Speech-Music Discrimination

Speech-music discrimination is considered a particularly important task for intelligent

multimedia information processing. Mixed speech/music audio streams, typical of

entertainment audio, are partitioned into homogenous segments from which non-speech

segments are separated. The separation would be useful for purposes such as automatic

speech recognition and text alignment in soundtracks, or even simply to automatically

search for specific content such as news reports among radio broadcast channels.

Several studies have addressed the problem of robustly distinguishing speech from

music based on features computed from the acoustic signals in a pattern recognition

framework. Some of the efforts have applied well-known features from statistical speech

recognition such as LSFs and MFCC based on the expectation that their potential for the

accurate characterization of speech sounds would help distinguish speech from music.

Taking the speech recognition approach further, Williams and Ellis use a hybrid

connectionist-HMM speech recogniser to obtain the posterior probabilities of 50 phone

classes from a temporal window of 100 ms of feature vectors. Viewing the recogniser as a

system of highly tuned detectors for speech-like signal events, we see that the phone

posterior probabilities will behave differently for speech and music signals. Various

features summarizing the posterior phone probability array are shown to be suitable for

the speech-music discrimination task.

A knowledge-based approach to feature selection was adopted by Scheirer and Slaney ,

who evaluated a set of 13 features in various trained-classifier paradigms. The training

data, with about 20 minutes of audio corresponding to each category, was designed to

represent as broad a class of signals as possible. Thus the speech data consisted of

several male and female speakers in various background noise and channel conditions,

and the music data contained various styles (pop, jazz, classical, country, etc.) including

vocal music. Scheirer and Slaney evaluated several of the physical features, gether with

85

the corresponding feature variances over a one-second texture window. Prominent

among the features used were the spectral shape measures and the 4 Hz modulation

energy. Also included were the cepstral residual energy and, a new feature, the pulse

metric. Feature variances were found to be particularly important in distinguishing

music from speech. Speech is marked by strongly contrasting acoustic properties arising

from the voiced and unvoiced phone classes. In contrast to unvoiced segments and

speech pauses, voiced frames are of high energy and have predominantly low frequency

content. This leads to large variations in ZCR, as well as in spectral shape measures such

as centroid and roll-off, as voiced and unvoiced regions alternate within speech

segments. The cepstral residual energy too takes on relatively high values for voiced

regions due to the presence of pitch pulses. Further the spectral flux varies between

near-zero values during steady vowel regions to high values during phone transitions

while that for music is more steady. Speech segments also have a number of quiet or low

energy frames which makes the short-time energy distribution across the segment more

left-skewed for speech as compared to that for music. The pulse metric (or

“rhythmicness”) feature is designed to detect music marked by strong beats (e.g. techno,

rock). A strong beat leads to broadband rhythmic modulation in the signal as a whole.

Rhythmicness is computed by observing the onsets in different frequency channels of the

signal spectrum through bandpass filtered envelopes. There were no perceptual features

in the evaluated feature set. The system performed well (with about 4% error rate), but

not nearly as well as a human listener. Classifiers such as k-nearest neighbours and

GMM were tested and performed similarly on the same set of features suggesting that

the type of classifier and corresponding parameter settings was not crucial for the given

topology of the feature space. Later work [18] noted that music dominated by vocals

posed a problem to conventional speech-music discrimination due to its strong speech-

like characteristics. For instance, MFCC and ZCR show no significant differences

between speech and singing. Dynamic features prove more useful. The 4 Hz modulation

rate, being related to the syllabic rate of normal speaking, does well but is not sufficient

by itself. The coefficient of harmonicity together with its 4 Hz modulation energy better

captures the strong voiced-unvoiced temporal variations of speech and helps to

distinguish it from singing. Zhang and Kuo use the shape of the harmonic trajectories

(“spectral peak tracks”) to distinguish singing from speech. Singing is marked by

relatively long durations of continuous harmonic tracks with prominent ripples in the

higher harmonics due to pitch modulations by the singer. In speech, harmonic tracks are

steady or slowly sloping during the course of voiced segments, interrupted by unvoiced

consonants and by silence. Speech utterances have language-specific basic intonation

patterns or pitch movements for sentence clauses.

86

Audio Segmentation and Classification

Audiovisual data, such as movies or television broadcasts, are more easily navigated

using the accompanying audio rather than by observing visual clips. Audio clips provide

easily interpretable information on the nature of the associated scene such as for

instance, explosions and shots during scenes of violence where the associated video itself

may be fairly varied. Spoken dialogues can help to demarcate semantically similar

material in the video while a continuous background music would help hold a group of

seemingly disparate visual scenes together. Zhang and Kuo proposed a method for the

automatic segmentation and annotation of audiovisual data based on audio content

analysis. The audio record is assumed to comprise of the following nonsimultaneously

occurring sound classes: silence, sounds with and without music background including

the sub-categories of harmonic and inharmonic environmental sounds (e.g. touch tones,

doorbell, footsteps, explosions). Abrupt changes in the short-time physical features of

energy, zero-crossing rate and fundamental frequency are used to locate segment

boundaries between the distinct sound classes. The same short-time features, combined

with their temporal trajectories over longer texture windows, are subsequently used to

identify the class of each segment. To improve the speech-music distinction, spectral

peaks detected in each frame are linked to obtain continuous spectral peak tracks. While

both speech and music are characterized by continuous harmonic tracks, those of speech

correspond to lower fundamental frequencies and are shorter in duration due to the

interruptions from the occurrence of unvoiced phones and silences. Wold et al in a

pioneering work addressed the task of finding similar sounds in a database with a large

variety of sounds coarsely categorized as musical instruments, machines, animals, speech

and sounds in nature. The individual sounds ranged in duration from 1 to 15 seconds.

Temporal trajectories of short-time perceptual features such as loudness, pitch and

brightness were examined for sudden transitions to detect class boundaries and achieve

the temporal segmentation of the audio into distinct classes. The classification itself was

based on the salient perceptual features of each class. For instance, tones from the same

instrument share the same quality of sound, or timbre. Therefore the similarity of such

sounds must be judged by descriptors of temporal and spectral envelope while ignoring

pitch, duration and loudness level. The overall system uses the short-time features of

pitch, amplitude, brightness and bandwidth, and their statistics (mean, variance and

autocorrelation coefficients) over the whole duration of the sound.

Audio Coding Techniques and Comparison Analysis
Portable electronic devices such as smart mobile phones, digital cameras and digital

audio devices with audio players and recorders have been attractive now a days

particularly due to prevalence of MP3 audio files. MP3 is the popular name of MPEG-1

layer-3 audio. Moreover, the so-called MP3’s successor, MPEG-2 Advanced Audio

Coding (AAC), finalized as an international standard in 1997 which was developed to

87

achieve a higher quality than that of previous coder that is MP3. AAC reaches the same

sound quality as MP3 at about 70% of the bit rate. This way more compression is done

in AAC as compare with MP3. High quality audio compression has found its way in

many applications. Early research on audio has translated into standardization efforts of

ISO/IEC and ITU-R 10 years ago. In the last couple of years, Internet audio

broadcasting has come in powerful category of this type of high quality applications.

These techniques become more and more popular in many parts of the world because of

the business for the music industry.

Audio signal is the signal with frequency range of 20 Hz to 20 KHz. Human speeches and

other musical component’s sounds are merged together and it is called as audio signal.

Broadcast of audio used 16-bit PCM encoding at 44.1 kHz, such an application would

require a 1.4 Mbps channel for a stereo signal (44.1KHz*16bit=705.6 Kbps for Mono

audio signal). Since the beginning of the twentieth century, the art of sound coding,

transmission of audio signal, recording of audio signal, and also the mixing and

reproduction of it has been constantly evolving. Starting from the mono-phonic

technology, technologies on multichannel audio have been extended to include

stereophonic, quadraphonic, 5.1 channels, 7.1 channels etc. Compared with the

traditional mono or stereo audio signal the multichannel audio provides end users with a

better experience and becomes more and more appealing to music producers. So, an

efficient coding scheme is needed for the storage and transmission of multichannel audio

and this subject has attracted a lot of attention now a days.

There are several multichannel audio compression algorithms. Dolby AC-3 and MPEG

Advanced Audio Coding (AAC) are the two most prevalent perceptual digital audio

coding systems. Dolby AC-3 is the 3rd generation of digital audio compression systems

from Dolby Laboratories and has been used as the audio standard for High Definition

Television systems. It is capable of providing transparent audio quality at 384 kb/sec for

5.1 channels. This 5.1 channel technology is come in the categories of multichannel

audio. In MPEG family there are lots of different algorithms which can be used for

compression of audio file. MP3 is most popular technique used for audio compression

which supports to only up to two channels (stereo coding). There are also multichannel

audio compression algorithms. Among that AAC is currently the most powerful

multichannel audio coding algorithm of the MPEG family. It can support up to 96 audio

channels. These low bit rate multichannel audio compression algorithms are utilized

transform coding techniques to remove statistical redundancy within each channel of

multichannel audio file. The audio compression is possible with different audio coding

techniques. The audio file must be compressed without reducing the quality. Table 1

summarized brief history of MPEG family.

88

Table 3. Brief history of MPEG audio standards

Different audio techniques

1) Sum-Difference Stereo Transform Coding: The coder architecture for this technique

was explained by Johnston and Ferreira [2] and it is shown in Fig. 1. There are four

basic blocks for all perceptual coders. In the case of Perceptual Audio Coder (PAC), the

filter bank block is implemented by an MDCT (Modified Discrete Cosine Transform)

with the optional window switching abilities. The psychoacoustic analysis provides a

noise threshold for the L (left), R (Right), M (Sum), and S (Difference) channels, as may

be appropriate, for both the normal MDCT window and the optional shorter windows.

The thresholds for the left and right channels THRL and THRR are calculated. This two

thresholds are compared where the thresholds vary between left and right by less than

2dB, then the coder is switched into M/S mode, i.e. the left signal for that given band of

frequencies is replaced by M = (L+R)/2 and the right signal replaced by S = (L-R)/2.

Fig.5.65. Block diagram of perceptual Audio coder

The method gives a substantial improvement over the dual monophonic case. The use of stereo

redundancy in a time and frequency varying way results in a substantial increase in encoded

signal quality.

2) Improving Joint Stereo Audio Coding by Adaptive Inter-channel Prediction: The above MS-

stereo coding does not achieve any improvement for the class of most critical test sequences. In

MS-stereo coding only the statistical dependencies between two samples of the left and right

channels of signals are considered. A stereophonic sound signal is characterized by level

differences as well as phase or time delay between the left and right channel signals. So, an

appropriate and efficient stereo redundancy reduction technique has to be taken into account.

So, for the improvement of it adaptive inter-channel predictor (AICP) is used, which

compensates a possible phase or time delay and exploits more than one value of the cross-

correlation function between the left and right channels of a sound signal [3]. From successive

samples of input signal x(n) in one channel the estimate of the actual sample of signal y(n) in the

other channel is calculated,

89

------------->(8)

Where, k is the predictor order ak is the predictor coefficients and d is a delay for

compensation of phase or time delay between the two signals. The prediction error is then,

-----------> (9)

Compared to the variance of y(n), the variance of the prediction error e(n) is reduced.

Therefore, a bit rate reduction is achieved by coding and transmitting e(n) instead of y(n). And

the prediction gain is given by the ratio of the variances.

-------------> (10)

Fig.5.66(a) and Fig.5.67 (b) show the encoder and decoder block diagram of AICP with

quantization. Where, x(n) and y(n) represent the samples of the left and right channel of a

stereophonic sound signal respectively and Q is the Quantizer, D is the Delay and P is the

Predictor. The Sum difference method does not achieve any improvement of some critical audio

file as told earlier, this improvement is done by AICP.

3. Scalable Audio Coder Based on Quantizer Units of MDCT Coefficients: A scalable codec has

been constructed by using transform coding and the basic modules of scalable coder (encoder

and decoder). The basic module is a quantizer that can quantize MDCT (Modified DCT)

coefficients transformed from a variety of frequency regions. This module works at bitrates of

more than 8 kb/s. Also the scalable structure can be changed according to the input signals. In

the scalable codec described here, the input-output signals are monaural and the sampling

frequency is 24 kHz. The total bit rate of this scalable codec is more than 8 kb/s [4]. The basic

module is mainly constructed from a Twin VQ (Transform-domain Weighted Interleave Vector

90

Quantization) codec. It is type of transform coding. Transform coder is used in audio coding.

This module is a quantizer for the MDCT coefficients. Here, 4-layer scalable codec as shown in

Fig. 3. This codec uses four basic modules with input sampling frequency of 24 kHz . This is a 4-

layered scalable codec, but it is possible to make any number of layers using these basic

modules. The basic module for first layer (#1) has a fixed range of input or output frequency

and other basic modules (#2, #3, #4) have a variable range of input or output frequency with

each frequency band width fixed. The frequency point information of each basic module is

added to the coded bit stream.

In Fig. 5.68, for example, the input 4-kHz signal is quantized in #1 module first and then its

quantization error is again quantized in #2 and #3 modules. Here also one can change the width

(frequency band width), height (number of bits for each frequency), and position (target

frequency) of the each module.

91

Fig. 45.69 and 5.60 shows the Structure of Scalable Encoder. It has parts for MDCT,

hierarchical quantization and bit stream generation. In the MDCT, the input time-series signals

are transformed to MDCT coefficients according to its nature by particular transform points.

And the scalable decoder has 3 parts for analyzing the bit stream, hierarchical requantization

and Inverse MDCT. The Decoder is totally reversing then Encoder. The Decoder is shown in

Fig. 5. Subjective quality evaluation tests, for musical sound sources, showed that its sound

quality is better than MPEG-layer3 codec at 8, 16 and 24 kb/s when scalable codec is

constructed of 8-kb/s basic modules.

4. A Study of Why Cross Channel Prediction is not Applicable to Perceptual Audio Coding:

There has been a question that whether the compression rate of a multichannel perceptual

audio coder can be increased by applying the cross channel linear prediction (LP) in the time

domain or not. There exists correlation between two channels which can be removed by using

cross channel linear prediction. Hence, theoretically, by coding the prediction residual instead

of the original signal, the coder should achieve a higher compression ratio, at least without

considering the requirements of human perception. There is considerable correlation between

the channel pairs C-L, C-R, L-R, Ls-Rs, L-Ls, and R-Rs. The M/S stereo coding and intensity

stereo coding in the MPEG AAC can highly remove the correlation between the pairs L-R and

LsRs. But the rest of the channel pairs, it seems that one can take good advantage of the

correlation between C and L channel and between C and R channel. Means one can get some

coding gain by using C to predict L and R.

92

the signal energy and coding bits in low frequency bands is also reducing, but increase the

coding bits in high frequency bands. So, the increase in high frequency bits exceeds the bit

reduction at low frequencies, which results in a net increase of coding bits required. So, overall

improvement is not done and this is the reason why cross channel prediction is not applicable to

perceptual audio coding.

5. MPEG-1 Layer-III (MP3): MP3 is a lossy compression technique it means some audio

information is certainly lost by using this compression technique. This loss can be noticed

because the compression technique tries to control it. MPEG-1 audio describes three layers of

audio coding with the following properties: - Mono or stereo audio channels. - Sample rate 32

kHz, 44.1 kHz or 48 kHz. - Bit rates from 32 kbps to 448 kbps .

Fig.5.62 shows the block diagram of MP3 encoder. There are two filter banks in a MPEG audio

algorithm, namely a filter bank and a hybrid polyphase/MDCT filter bank. The input PCM

samples are simultaneously given to a filter bank and a psychoacoustic model. This Filter bank

splits the signal into 32 equal sub bands in frequency domain and psychoacoustic model takes

the signal spectrum as input and it determines the ratio of signal energy to masking threshold

for each sub band. For better frequency resolution the 32 sub bands are further divided into

576 frequency lines by the MDCT. Here MDCT used is 12 point (short) or 36 point (long) with

50 % overlap and the type of MDCT (long or short window) is determined by the window

switching algorithm [6]. In Layer-3, these coder partitions are roughly equivalent to the critical

bands of human hearing system. If the quantization noise can be below the masking threshold

for each coder partition, then the compression result should be indistinguishable from the

original signal. The signal to masking ratio (SMR) which is calculated by the psychoacoustic

model is used by the quantizer to determine the number of bits that should be allocated for the

quantization of the sub band coefficients. Here the quantization is done by the power-law

93

quantizer. The quantized values are coded by Huffman coding. Then Finally the Huffman

coded values are formed into a bit stream. A bit stream formatter is used to assemble the whole

bit stream. The encoded bit stream consists of quantized and coded spectral coefficients with

some side information like bit allocation information and quantizer step size information.

Reference

1. P. Rao, , Chapter in Speech, Audio, Image and Biomedical Signal Processing using Neural

Networks, (Eds.) Bhanu Prasad and S. R. Mahadeva Prasanna, Springer-Verlag, 2007.

2. Digital Signal processor fundamentals and system design.

M.E.Angolette, CERN, Geneva,Switzerland.

