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I. Introduction 

BASIC CONCEPTS OF MICROPROCESSORS 

Differences between: Microcomputer, Microprocessor and Microcontroller 

• Microcomputer is a computer with a microprocessor as its CPU. Includes memory, I/O 

etc. 

• Microprocessor is a silicon chip which includes ALU, register circuits & control 

circuits 

• Microcontroller is a silicon chip which includes microprocessor, memory & I/O in a 

single package. 

 

WHAT IS MICRO? 

 

Micro is a new addition. In the late 1960’s, processors were built using discrete elements. These 

devices performed the required operation, but were too large and too slow. It went directly from 

discrete elements to a single chip. However, comparing today’s microprocessors to the ones 

built in the early 1970’s you find an extreme increase in the amount of integration. 

WHAT IS A MICROPROCESSOR? 

 

The word comes from the combination of micro and processor. Processor means a device that 

processes whatever. In this context processor means a device that processes numbers, 

specifically binary numbers, 0’s and 1’s.To process means to manipulate. It is a general term 

that describes all manipulation. Again in this content, it means to perform certain operations 

on the numbers that depend on the microprocessor’s design. It is a programmable device that 

takes in numbers, performs on them arithmetic or logical operations according to the  program 

stored in memory and then produces other numbers 

As a Programmable device: 

 

• The microprocessor can perform different sets of operations on the data it receives 

depending on the sequence of instructions supplied in the given program. 

• By changing the program, the microprocessor manipulates the data in different ways as 

Instructions, Words, Bytes, etc. 

• They processed information 8-bits at a time. That’s why they are called ―8-bit 

processors. They can handle large numbers, but in order to process these numbers, they 
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broke them into 8-bit pieces and processed each group of 8-bits separately. 

 

WHAT IS MEMORY? 

 

Memory is the location where information is kept while not in current use. It is stored in 

memory. Memory is a collection of storage devices. Usually, each storage device holds one 

bit. Also, in most kinds of memory, these storage devices are grouped into groups of 8. These 8 

storage locations can only be accessed together. So, one can only read or write in terms of bytes to and 

from memory. Memory is usually measured by the number of bytes it can hold. It is measured 

in Kilos, Megas and lately Gigas. A Kilo in computer language is 210 =1024. So, a KB 

(KiloByte) is 1024 bytes. Mega is 1024 Kilos and Giga is 1024 Mega. When a program is 

entered into a computer, it is stored in memory. Then as the microprocessor starts to execute 

the instructions, it brings the instructions from memory one at a time. Memory is also used to 

hold the data.The microprocessor reads (brings in) the data from memory when it needs it and 

writes (stores) the results into memory when it is done. 

 

A MICROPROCESSOR-BASED SYSTEM 

 

From the above description, we can draw the following block diagram to represent a 

microprocessor-based system as shown in fig 1. In this system, the microprocessor is the master 

and all other peripherals are slaves. The master controls all peripherals and initiates all 

operations. The buses are group of lines that carry data, address or control signals. The CPU 

interface is provided to demultiplex the multiplexed lines, to generate the chip select signals 

and additional control signals. The system bus has separate lines for each signal. 

All the slaves in the system are connected to the same system bus. At any time instant 

communication takes place between the master and one of the slaves. All the slaves have 

tristate logic and hence normally remain in high impedance state. The processor selects a slave 

by sending an address. When a slave is selected, it comes to the normal logic and communicates 

with the processor. 

The EPROM memory is used to store permanent programs and data. The RAM memory is 

used to store temporary programs and data. The input device is used to enter program, data and 

to operate system. The output device is also used for examining the results. Since the speed of 

IO devices does not match with speed of microprocessor, an interface device is provided 

between system bus and IO device. 
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Fig.1.1 Microprocessor based system (organization of microcomputer) 

 

CENTRAL PROCESSING UNIT 

 

The CPU consists of ALU (Arithmetic and Logic Unit), Register unit and control unit. The 

CPU retrieves stored instructions and data word from memory; it also deposits processed data 

in memory. 

 

ALU (ARITHMETIC AND LOGIC UNIT) 

This section performs computing functions on data. These functions are arithmetic operations 

such as additions subtraction and logical operation such as AND, OR rotate etc. Result are 

stored either in registers or in memory or sent to output devices. 

 

REGISTER UNIT 

It contains various register. The registers are used primarily to store data temporarily during 

the execution of a program. Some of the registers are accessible to the uses through 

instructions. 

 

CONTROL UNIT 

It provides necessary timing & control signals necessary to all the operations in the 

microcomputer. It controls the flow of data between the p and peripherals (input, output & 

memory). The control unit gets a clock which determines the speed of the p. 

 

The CPU basic functions 
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• It fetches an instructions word stored in memory. 

• It determines what the instruction is telling it to do.(decodes the instruction) 

• It executes the instruction. Executing the instruction may include some of the 

following major tasks. 

• Transfer of data from reg. to reg. in the CPU itself. 

• Transfer of data between a CPU reg. & specified memory location. 

• Performing arithmetic and logical operations on data from a specific memory 

location or a designated CPU register. 

• Directing the CPU to change a sequence of fetching instruction, if processing 

the data created a specific condition. 

• Performing housekeeping function within the CPU itself inorder to establish 

desired condition at certain registers. 

• It looks for control signal such as interrupts and provides appropriate 

responses. 

• It provides states, control, and timing signals that the memory and input/output 

section can use. 

 

There are three buses: 

 

ADDRESS BUS: 

 

It is a group of wires or lines that are used to transfer the addresses of Memory or I/O devices. 

It is unidirectional. In Intel 8085 microprocessor, Address bus was of 16 bits. This means that 

Microprocessor 8085 can transfer maximum 16 bit address which means it can address 65,536 

different memory locations. This bus is multiplexed with 8 bit data bus. So the most significant 

bits (MSB) of address goes through Address bus (A7-A0) and LSB goes through multiplexed 

data bus (AD0-AD7). 

 

 

DATA BUS: 

 

Data Bus is used to transfer data within Microprocessor and Memory/Input or Output devices. 

It is bidirectional as Microprocessor requires to send or receive data. The data bus also works 

as address bus when multiplexed with lower order address bus. Data bus is 8 Bits long. The 

word length of a processor depends on data bus, thats why Intel 8085 is called 8 bit 

Microprocessor because it have an 8 bit data bus. 
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CONTROL BUS: 

 

Microprocessor uses control bus to process data that is what to do with the selected memory 

location. Some control signals are Read, Write and Opcode fetch etc. Various operations are 

performed by microprocessor with the help of control bus. This is a dedicated bus, because all 

timing signals are generated according to control signal. The microprocessor is the master, 

which controls all the activities of the system. To perform a specific job or task, the 

microprocessor has to execute a program stored in memory. The program consists of a set of 

instructions stored in consecutive memory location. In order to execute the program the 

microprocessor issues address and control signals, to fetch the instruction and data from 

memory one by one. After fetching each instruction it decodes the instruction and carries out 

the task specified by the instruction. 

8085 MICROPROCESSOR ARCHITECTURE 

 

FEATURES OF 8085 

• 8-bit general purpose µp 

• Capable of addressing 64 k of memory 

• Has 40 pins as shown in fig 2 

• Requires +5 v power supply 

• Can operate with 3 MHz clock 

• 8085 upward compatible 

 

PIN DIAGRAM OF 8085 

 

A8 - A15 (Output 3 State) 

Address Bus:The most significant 8 bits of the memory address or the 8 bits of the I/0   

address,3 stated during Hold and Halt modes. 

AD0 - AD7 (Input/Output 3state) 

 

Multiplexed Address/Data Bus; Lower 8 bits of the memory address (or I/0 address) appear on 

the bus during the first clock cycle of a machine state. It then becomes the data bus during the 

second and third clock cycles. 3 stated during Hold and Halt modes. 
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Fig 1.2 Pin Diagram of 8085 

ALE (OUTPUT) ADDRESS LATCH ENABLE 

 

It occurs during the first clock cycle of a machine state and enables the address to get latched 

into the on chip latch of peripherals. The falling edge of ALE is set to guarantee setup and hold 

times for the address information. ALE can also be used to strobe the status information. ALE 

is never 3stated. 

SO, S1 (OUTPUT) 

 

 

 

 

 

 

 

RD (Output 3state) 

READ: indicates the selected memory or 1/0 device is to be read and that the Data Bus is 

available for the data transfer. 

S0 S1 Encoded status of the bus cycle 

0 0 HALT 

0 1 WRITE 

1 0 READ 

1 1 FETCH 
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WR (Output 3state) 

WRITE: Indicates the data on the Data Bus is to be written into the selected memory or 1/0 

location. Data is set up at the trailing edge of WR. 3 stated during Hold and Halt modes. 

READY (Input) 

If Ready is high during a read or write cycle, it indicates that the memory or peripheral is ready 

to send or receive data. If Ready is low, the CPU will wait for Ready to go high before 

completing the read or write cycle. 

HOLD (Input) 

It indicates that another Master is requesting the use of the Address and Data Buses. The CPU, 

upon receiving the Hold request will relinquish the use of buses as soon as the completion of 

the current machine cycle. Internal processing can continue. 

 

SIGNAL CLASSIFICATION OF 8085 

 

The signal Classification of 8085 is as shown in fig3. 

 

ADDRESS BUS 

• Unidirectional 

• Identifying peripheral or memory location 

 

DATA BUS 

• Bidirectional 

• Transferring data 

 

CONTROL BUS 

• Synchronization signals 

• Timing signals 

• Control signal 
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Fig: 1.3 Signal Classifications of 8085 System Bus 

 

ARCHITECTURE OF INTEL 8085 MICROPROCESSOR 

 

The architecture of INTEL 8085 microprocessor is as shown in fig1.4. 

 

THE ALU 

 

• In addition to the arithmetic & logic circuits, the ALU includes the accumulator, which 

is part of every arithmetic & logic operation. 

• Also, the ALU includes a temporary register used for holding data temporarily during 

the execution of the operation. This temporary register is not accessible by the 

programmer. 
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Fig:1.4 Architecture of intel 8085 microprocessor 

REGISTERS 

GENERAL PURPOSE REGISTERS 

 

• B, C, D, E, H & L (8 bit registers) 

• Can be used singly 

• Or can be used as 16 bit register pairs BC, DE& HL 

• HL used as a data pointer (holds memory address) 

 

ACCUMULATOR (8 BIT REGISTER) 

 

• Store 8 bit data 

• Store the result of an operation 

• Store 8 bit data during I/O transfer Address 
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FLAG REGISTER 

 

8 bit register – shows the status of the microprocessor before/after an operation.S (sign flag), 

Z (zero flag), AC (auxillary carry flag), P (parity flag) & CY (carry flag) 

 

D7 D6 D5 D4 D3 D2 D1 D0 

S Z X AC X P X CY 

 

SIGN FLAG 

• Used for indicating the sign of the data in the accumulator 

• The sign flag is set if negative (1 – negative) 

• The sign flag is reset if positive (0 –positive) 

 

ZERO FLAG 

• Is set if result obtained after an operation is 0 

• Is set following an increment or decrement operation of that register 

 

CARRY FLAG 

• Is set if there is a carry or borrow from arithmetic operation 

 

AUXILLARY CARRY FLAG 

• Is set if there is a carry out of bit 3 

 

PARITY FLAG 

• Is set if parity is even 

• Is cleared if parity is odd 

 

THE PROGRAM COUNTER (PC) 

• This is a register that is used to control the sequencing of the execution of instructions. 

• This register always holds the address of the next instruction. 

• Since it holds an address, it must be 16 bits wide. 

 

THE STACK POINTER 

• The stack pointer is also a 16-bit register that is used to point into memory. 
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• The memory this register points to is a special area called the stack. The stack is an 

area of memory used to hold data that will be retrieved soon. 

• The stack is usually accessed in a Last in First out (LIFO) fashion. 

 

NON PROGRAMMABLE REGISTERS 

Instruction Register & Decoder 

• Instruction is stored in IR after fetched by processor 

• Decoder decodes instruction in IR 

 

INTERNAL CLOCK GENERATOR 

• 3.125 MHz internally 

• 6.25 MHz externally 

 

THE ADDRESS AND DATA BUSSES 

 

• The address bus has 8 signal lines A8 – A15 which are unidirectional. 

• The other 8 address bits are multiplexed (time shared) with the 8 data bits. 

• So, the bits AD0 – AD7 are bi-directional and serve as A0 – A7 and D0 – D7 at the 

same time. 

• During the xecution of the instruction, these lines carry the address bits during the 

early part, then during the late parts of the execution, they carry the 8 data bits. 

• In order to separate the address from the data, we can use a latch to save the value 

before the function of the bits changes. 

DEMULTIPLEXING AD7-AD0 

 

• From the above description, it becomes obvious that the AD7– AD0 lines are serving 

a dual purpose and that they need to be demultiplexed to get all the information. 

• The high order bits of the address remain on the bus for three clock periods. However, 

the low order bits remain for only one clock period and they would be lost if they are 

not saved externally. Also, notice that the low order bits of the address disappear when 

they are needed most. 

• To make sure we have the entire address for the full three clock cycles, we will use an 

external latch to save the value of AD7– AD0 when it is carrying the address bits. We 

use the ALE signal to enable this latch. 

DEMULTIPLEXING AD7-AD0 
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Given that ALE operates as a pulse during T1, we will be able to latch the address. Then when 

ALE goes low, the address is saved and the AD7– AD0 lines can be used for their purpose as 

the bi-directional data lines. 

DEMULTIPLEXING THE BUS AD7 – AD0 

 

• The high order address is placed on the address bus and hold for 3 clk periods. 

• The low order address is lost after the first clk period, this address needs to be hold 

however we need to use latch 

• The address AD7 – AD0 is connected as inputs to the latch 74LS373. 

• The ALE signal is connected to the enable (G) pin of the latch and the OC – Output 

control – of the latch is grounded 

 

ADDRESSING MODES 

 

The microprocessor has different ways of specifying the data for the instruction. These are 

called addressing modes. 

The 8085 has four addressing modes: 

– Implied       CMA 

– Immediate   MVI B, 45 

– Direct          LDA 4000 

– Indirect         LDAX B 

 

Load the accumulator with the contents of the memory location whose address is stored in the 

register pair BC). 

Many instructions require two operands for execution. For example transfer of data between 

two registers. The method of identifying the operands position by the instruction format is 

known as the addressing mode. When two operands are involved in an instruction, the first 

operand is assumed to be in a register Mp itself. 

Types of Addressing Modes 

 

• Register addressing 

• Direct addressing mode 

• Register indirect addressing 

• Immediate Addressing mode 
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• Implied addressing mode  

REGISTER ADDRESSING 

This type of addressing mode specifies register or register pair that contains data.ie (only the 

register need be specified as the address of the operands). 

 

Example MOV B, A (the content of A is copied into the register B) 

 

DIRECT ADDRESSING MODE 

 

Data is directly copied from the given address to the register. 

 

Example LDA 3000H (The content at the location 3000H is copied to the register A). 

REGISTER INDIRECT ADDRESSING 

 

In this mode, the address of operand is specified by a register pair 

 

Example  MOV A, M (Move data from memory location specified by H-L pair to accumulator) 

 

IMMEDIATE ADDRESSING MODE 

 

In this mode, the operand is specified within the instruction itself.  

  

Example   MVI A, 05 H (Move 05 H in accumulator.) 

 

IMPLIED ADDRESSING MODE 

 

This mode doesn't require any operand. The data is specified by opcode itself.  

 

Example    RAL, CMP 

 

INSTRUCTION SET OF 8085 

 

An instruction is a binary pattern designed inside a microprocessor to perform a specific 

function. The entire group of instructions that a microprocessor supports is called Instruction 

Set. Since the 8085 is an 8-bit device it can have up to 28 (256) instructions. However, the 

8085 only uses 246 combinations that represent a total of 74 instructions. Each instruction has 

two parts. The first part is the task or operation to be performed.  This  part  is  called  the  ―opcode  
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(operation  code).  The  second  part  is  the data to be operated on. This part is called the  operand. 

INSTRUCTION SIZE 

 

• Depending on the operand type, the instruction may have different sizes. It will occupy 

a different number of memory bytes. 

• Typically, all instructions occupy one byte only. 

• The exception is any instruction that contains immediate data or a memory address. 

• Instructions that include immediate data use two bytes. 

• One for the opcode and the other for the 8-bit data. 

• Instructions that include a memory address occupy three bytes. 

• One for the opcode, and the other two for the 16-bit address. 

 

CLASSIFICATION OF INSTRUCTION SET 

 

• Data Transfer Instruction 

• Arithmetic Instructions 

• Logical Instructions 

• Branching Instructions 

• Machine Control Instructions 

DATA TRANSFER INSTRUCTIONS 

 

Opcode Operand Description 

 

MOV 

 

Rd, Rs M, Rs Rd, M 

 

Copy from source to 

destination. 

 

This instruction copies the contents of the source register into the destination register. The 

contents of the source register are not altered. If one of the operands is a memory location, its 

location is specified by the contents of the HL registers. Example: MOV B, C or MOV B, M. 

 

 

Opcode Operand Description 
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MVI Rd, Data M, Data  

Move immediate 8-bit 

 

 

The 8-bit data is stored in the destination register or memory. If the operand is a memory 

location, its location is specified by the contents of the H-L registers.  

Example: MVI B, 57H or MVI M, 57H. 

Opcode Operand Description 

LDA 16-bit address Load Accumulator 

 

The contents of a memory location, specified by a 16- bit address in the operand, are copied to 

the accumulator. The contents of the source are not altered. Example: LDA 2034H 

 

Opcode Operand Description 

LDAX B/D Register Pair Load accumulator indirect 

 

 

The contents of the designated register pair point to a memory location. This instruction copies 

the contents of that memory location into the accumulator. The contents of either the register 

pair or the memory location are not altered. Example: LDAX B 

 

Opcode Operand Description 

STA 16-bit address Store accumulator direct 

 

 

 

The contents of accumulator are copied into the memory location specified by the operand. 
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Example: STA 2500 H 

 

Opcode Operand Description 

STAX Reg. pair Store accumulator indirect 

 

The contents of accumulator are copied into the memory location specified by the contents of 

the register pair. Example: STAX B 

 

Opcode Operand Description 

SHLD 16-bit address Store H-L registers direct 

 

 The contents of register L are stored into memory location specified by the 16-bit address. The 

contents of register H are stored into the next  memory  location.  Example: SHLD 2550  H 

 

Opcode Operand Description 

XCHG None Exchange H-L with D-E 

 

The contents of register H are exchanged with the contents of register D. The contents of 

register L are exchanged with the contents of register E. Example: XCHG 

 

Opcode Operand Description 

SPHL None Copy H-L pair to the Stack 

Pointer (SP) 

 

 

This instruction loads the contents of H-L pair into SP. Example: SPHL 
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Opcode Operand Description 

XTHL None Exchange H–L with top of 

stack 

 

The contents of L register are exchanged with the location pointed out by the contents of the 

SP. The contents of H register are exchanged with the next location (SP + 1). Example: XTHL 

 

Opcode Operand Description 

PCHL None Load program counter with 

H-L contents 

 

The contents of registers H and L are copied into the program counter (PC). The contents of 

H are placed as the high-order byte and the contents of L as the low-order byte. Example: 

PCHL 

 

Opcode Operand Description 

PUSH Reg. pair Push 

stack 

register pair onto 

 

The contents of register pair are copied onto stack. SP is decremented and the contents of 

high-order registers (B, D, H, A) are copied into stack. SP is again decremented and the 

contents of low-order registers (C, E, L, Flags) are copied into stack. Example: PUSH B 

 

Opcode Operand Description 

POP Reg. pair Pop stack to register pair 

The contents of top of stack are copied into register pair. The contents of location pointed out 

by SP are copied to the low-order register (C, E, L, Flags). SP is incremented and the contents 

of location are copied to the high-order register (B, D, H, A). Example: POP H 
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Opcode Operand Description 

OUT 8-bit port address Copy data from 

accumulator to a port with 

8- bit address 

 

The contents of accumulator are copied into the I/O port. Example: OUT 78 H 

 

Opcode Operand Description 

IN 8-bit port address Copy data to accumulator 

from a port with 8- bit address 

 

The contents of I/O port are copied into accumulator. Example: IN 8C H 

 

ARITHMETIC INSTRUCTIONS 

 

These instructions perform arithmetic operations such as addition, subtraction, increment, and 

decrement. 

ADDITION 

 

Any 8-bit number, or the contents of register, or the contents of memory location can be added 

to the contents of accumulator. The result (sum) is stored in the accumulator. No two other 8-

bit registers can be added directly. Example: The contents of register B cannot be added directly 

to the contents of register C. 
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Opcode Operand Description 

ADD R M Add register or memory to 

accumulator 

 

The contents of register or memory are added to the contents of accumulator. The result is 

stored in accumulator. If the operand is memory location, its address is specified by H-L pair. 

All flags are modified to reflect the result of the addition. Example: ADD B or ADD M 

 

Opcode Operand Description 

ADC R M Add register or memory to 

accumulator with carry 

 

The contents of register or memory and Carry Flag (CY) are added to the contents of 

accumulator. The result is stored in accumulator. If the operand is memory location, its address 

is specified by H-L pair. All flags are modified to reflect the result of the addition. Example: 

ADC B or ADC M 

 

Opcode Operand Description 

ADI 8-bit data Add immediate to 

accumulator 

 

The 8-bit data is added to the contents of accumulator. The result is stored in accumulator. All 

flags are modified to reflect the result of the addition. Example: ADI 45 H 
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Opcode Operand Description 

ACI 8-bit data Add immediate to 

accumulator with carry 

 

The 8-bit data and the Carry Flag (CY) are added to the contents of accumulator. The result 

is stored in accumulator. All flags are modified to reflect the result of the addition. Example: 

ACI 45 H 

 

Opcode Operand Description 

DAD Reg. pair Add register pair to H-L pair 

 

The 16-bit contents of the register pair are added to the contents of H-L pair. The result is 

stored in H-L pair. If the result is larger than 16 bits, then CY is set.No other flags are changed. 

Example: DAD B 

SUBTRACTION 

 

Any 8-bit number, or the contents of register, or the contents of memory location can be 

subtracted from the contents of accumulator.The result is stored in the accumulator.Subtraction 

is performed in 2’s complement form. If the result is negative, it is stored in 2’s complement 

form. No two other 8-bit registers can be subtracted directly. 

 

Opcode Operand Description 

SUB R M Subtract register or 

memory from accumulator 
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The contents of the register or memory location are subtracted from the contents of the 

accumulator. The result is stored in accumulator. If the operand is memory location, its address 

is specified by H-L pair. All flags are modified to reflect the result of subtraction. Example: 

SUB B or SUB M 

 

Opcode Operand Description 

SBB R M Subtract register or memory 

from accumulator with borrow 

 

The contents of the register or memory location and Borrow Flag (i.e. CY) are subtracted from 

the contents of the accumulator. The result is stored in accumulator. If the operand is memory 

location, its address is specified by H-L pair. All flags are modified to reflect the result of 

subtraction. Example: SBB B or SBB M 

 

Opcode Operand Description 

SUI 8-bit data Subtract immediate from 

accumulator 

 

The 8-bit data is subtracted from the contents of the accumulator.The result is stored in 

accumulator. All flags are modified to reflect the result of subtraction. Example: SUI 45 H 

 

Opcode Operand Description 

SBI 8-bit data Subtract immediate from 

accumulator with borrow 
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The 8-bit data and the Borrow Flag (i.e. CY) is subtracted from the contents of the 

accumulator. The result is stored in accumulator.All flags are modified to reflect the result of 

subtraction. Example: SBI 45 H 

INCREMENT/DECREMENT 

 

The 8-bit contents of a register or a memory location can be incremented or decremented by 

1.The 16-bit contents of a register pair can be incremented or decremented by 1. Increment or 

decrement can be performed on any register or a memory location. 

 

Opcode Operand Description 

INR R M Increment register or 

memory by 1 

 

The contents of register or memory location are incremented by 1. The result is stored in the 

same place. If the operand is a memory location, its address is specified by the contents of H-

L pair. Example: INR B or INR M 

 

Opcode Operand Description 

INX R Increment register pair by 1 

 

The contents of register pair are incremented by 1. The result is stored in the same place. 

Example: INX H 

 

Opcode Operand Description 

DCR R 

M 

Decrement register or 

memory by 1 
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The contents of register or memory location are decremented by 1. The result is stored in the 

same place. If the operand is a memory location, its address is specified by the contents of H-

L pair. Example: DCR B or DCR M 

 

Opcode Operand Description 

DCX R Decrement register pair by 

1 

 

The contents of register pair are decremented by 1. The result is stored in the same place. 

Example: DCX H 

LOGICAL INSTRUCTIONS 

 

These instructions perform logical operations on data stored in registers, memory and status 

flags. The logical operations are: 

• AND 

• OR 

• XOR 

• Rotate 

• Compare 

• Complement AND, OR, XOR 

Any 8-bit data, or the contents of register, or memory location can logically have 

 

• AND operation 

• OR operation 

• XOR operation 

 

with the contents of accumulator. The result is stored in accumulator. 
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Opcode Operand Description 

ANA R M Logical AND register or 

memory with accumulator 

 

The contents of the accumulator are logically ANDed with the contents of register or memory. 

The result is placed in the accumulator. If the operand is a memory location, its address is 

specified by the contents of H-L pair. S, Z, P are modified to reflect the result of the operation. 

CY is reset and AC is set. Example: ANA B or ANA M. 

 

Opcode Operand Description 

ANI 8-bit data Logical AND immediate 

with accumulator 

 

The contents of the accumulator are logically ANDed with the 8-bit data. The result is placed 

in the accumulator. S, Z, P are modified to reflect the result.CY is reset, AC is set. Example: 

ANI 86H. 

 

Opcode Operand Description 

ORA R 

M 

Logical OR register or 

memory with accumulator 

 

The contents of the accumulator are logically ORed with the contents of the register or 

memory. The result is placed in the accumulator. If the operand is a memory location, its 

address is specified by the contents of H-L pair.S, Z, P are modified to reflect the result. CY 

and AC are reset. Example: ORA B or ORA M. 
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Opcode Operand Description 

ORI 8-bit data Logical OR immediate with 

accumulator 

 

The contents of the accumulator are logically ORed with the 8-bit data. The result is placed in 

the accumulator. S, Z, P are modified to reflect the result.CY and AC are reset. Example: ORI 

86H. 

 

Opcode Operand Description 

XRA R 

M 

Logical   XOR   register or 

memory with accumulator 

 

The contents of the accumulator are XORed with the contents of the register or memory. The 

result is placed in the accumulator. If the operand is a memory location, its address is specified 

by the contents of H-L pair. S, Z, P are modified to reflect the result of the operation. CY and 

AC are reset. Example: XRA B or XRA M. 

 

Opcode Operand Description 

XRI 8-bit data XOR immediate with 

accumulator 

 

The contents of the accumulator are XORedwith the 8-bit data. The result is placed in the 

accumulator. S, Z, P are modified to reflect the result. CY and AC are reset. Example: XRI 

86H. 

ROTATE 

 

Each bit in the accumulator can be shifted either left or right to the next position as shown in 

fig5. 
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Opcode Operand Description 

RLC None Rotate accumulator left 

 

 

 

 

Fig 1.5. : Work flow of RLC 

 

Each binary bit of the accumulator is rotated left by one position. Bit D7 is placed in the 

position of D0 as well as in the Carry flag. CY is modified according to bit D7. S, Z, P, AC are 

not affected. Example: RLC. 

 

Opcode Operand Description 

RRC None Rotate accumulator right 

 

Each binary bit of the accumulator is rotated right by one position. Bit D0 is placed in the 

position of D7 as well as in the Carry flag. CY is modified according to bit D0. S, Z, P, AC are 

not affected. Example: RRC. 

 

Opcode Operand Description 

RAL None Rotate accumulator left 

through carry 
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Fig 1.6. : Work flow of RAL 

 

Each binary bit of the accumulator is rotated left by one position through the Carry flag as 

shown in fig 6. Bit D7 is placed in the Carry flag, and the Carry flag is placed in the least 

significant position D0. CY is modified according to bit D7. S, Z, P, AC are not affected. 

Example: RAL. 

 

Opcode Operand Description 

RAR None Rotate accumulator right 

through carry 

 

 

Each binary bit of the accumulator is rotated right by one position through the Carry flag. Bit 

D0 is placed in the Carry flag, and the Carry flag is placed in the most significant position D7. 

CY is modified according to bit D0. S, Z, P, AC are not affected. Example: RAR. 

COMPARE 

 

Any 8-bit data, or the contents of register, or memory location can be compares for: 

 

• Equality 

• Greater Than 

• Less Than 

 

with the contents of accumulator. The result is reflected in status flags. 



   

29 
 

Opcode Operand Description 

CMP R M Compare register or 

memory with accumulator 

 

 

The contents of the operand (register or memory) are compared with the contents of the 

accumulator. Both contents are preserved .The result of the comparison is shown by setting the 

flags of the PSW as follows: 

• if (A) < (reg/mem): carry flag is set 

• if (A) = (reg/mem): zero flag is set 

• if (A) > (reg/mem): carry and zero flags are reset. 

 

Example: CMP B or CMP M 

 

Opcode Operand Description 

CPI 8-bit data Compare immediate with 

accumulator 

 

The 8-bit data is compared with the contents of accumulator.The values being compared remain 

unchanged. The result of the comparison is shown by setting the flags of the PSW as follows: 

• if (A) < data: carry flag is set 

• if (A) = data: zero flag is set 

• if (A) > data: carry and zero flags are reset Example: CPI 89H 
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COMPLEMENT 

 

The contents of accumulator can be complemented. Each 0 is replaced by 1 and each  1 is 

replaced by 0. 

 

Opcode Operand Description 

CMA None Complement accumulator 

 

The contents of the accumulator are complemented. No flags are affected. Example: CMA. 

 

Opcode Operand Description 

CMC None Complement carry 

 

The Carry flag is complemented. No other flags are affected. Example: CMC. 

 

Opcode Operand Description 

STC None Set carry 

 

The Carry flag is set to 1. No other flags are affected. Example: STC. 

 

BRANCHING INSTRUCTIONS 

 

The branching instruction alters the normal sequential flow. These instructions alter either 

unconditionally or conditionally. 

Branch operations are of two types: 

Unconditional branch-- Go to a new location no matter what. Conditional branch-- Go to a   

new location if the condition is true. 
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Opcode Operand Description 

JMP 16-bit address Jump unconditionally 

 

The program sequence is transferred to the memory location specified by the 16-bit address 

given in the operand. 

Example: JMP 2034 H. 

 

Opcode Operand Description 

Jx 16-bit address Jump conditionally 

 

The program sequence is transferred to the memory location specified by the 16-bit address 

given in the operand based on the specified flag of the PSW. Replace x with condition 

Example: JZ 2034 H. Jump conditionally 

 

Opcode Description Status flag 

JC Jump if Carry CY = 1 

JNC Jump if no carry CY=0 

JP Jump if positive S=0 

JM Jump if minus S=1 

JZ Jump if Zero Z=1 

JNZ Jump if no zero Z=0 

JPE Jump if parity even P=1 

JPO Jump if parity odd P=0 
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Opcode Operand Description 

CALL 16-bit address Call unconditionally 

The program sequence is transferred to the memory location specified by the 16-bit address 

given in the operand. Before the transfer, the address of the next instruction after CALL (the 

contents of the program counter) is pushed onto the stack. 

Example: CALL 2034 H. 

 

Opcode Operand Description 

Cx 16-bit address Call conditionally 

 

The program sequence is transferred to the memory location specified by the 16- bit address 

given in the operand based on the specified flag of the PSW. Before the transfer, the address 

of the next instruction after the call (the contents of the program counter) is pushed onto the 

stack. Replace x with condition 

Example: CZ 2034 H. Call Conditionally 

Opcode Description Status flag 

CC Call if carry CY=1 

CNC Call if no carry CY=0 

CP Call if positive S=0 

CM Call if minus S=1 

CZ Call if Zero Z=1 

CNZ Call if no zero Z=0 

CPE Call if parity even P=1 

CPO Call if parity odd P=0 
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Opcode Operand Description 

RET None Return unconditionally 

 

The program sequence is transferred from the subroutine to the calling program. The two bytes 

from the top of the stack are copied into the program counter, and program execution begins at 

the new address. 

Example: RET. 

Opcode Operand Description 

Rx None Call conditionally 

 

The program sequence is transferred from the subroutine to the calling program based on the 

specified flag of the PSW. The two bytes from the top of the stack are copied  into the program 

counter, and program execution begins at the new address. Example: RZ. Replace x with 

condition 

 

RETURN CONDITIONALLY 

 

Opcode Description Status flag 

RC Return if carry CY=1 

RNC Return if no carry CY=0 

RP Return Call if positive S=0 

RM Return if minus S=1 

RZ Return if Zero Z=1 

RNZ Return if no zero Z=0 

RPE Return if parity even P=1 

RPO Return if parity odd P=0 
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Opcode Operand Description 

RST 0-7 Restart (Software 

Interrupts) 

 

The RST instruction jumps the control to one of eight memory locations depending upon the 

number. These are used as software instructions in a program to transfer program execution to 

one of the eight locations. Example: RST 3. 

 

RESTART Address table 

 

Instructions Restart address 

RST 0 0000 H 

RST 1 0008 H 

RST 2 0010 H 

RST 3 0018 H 

RST 4 0020 H 

RST 5 0028 H 

RST 6 0030 H 

RST 7 0038 H 

 

MACHINE CONTROL INSTRUCTIONS 

 

The control instructions control the operation of microprocessor. 

 

Opcode Operand Description 

NOP None No operation 

 

No operation is performed. The instruction is fetched and decoded but no operation is executed. 

Usually used for delay or to replace instructions during debugging. 

Example: NOP 
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Opcode Operand Description 

HLT None Halt 

 

The CPU finishes executing the current instruction and halts any further execution. An 

interrupt or reset is necessary to exit from the halt state. Example: HLT 

 

 

Opcode Operand Description 

DI None Disable interrupt 

 

The interrupt enable flip-flop is reset and all the interrupts except the TRAP are disabled. 

No flags are affected. 

Example: DI 

 

Opcode Operand Description 

EI None Enable interrupt 

 

The interrupt enable flip-flop is set and all interrupts are enabled. No flags are affected. This 

instruction is necessary to re-enable the interrupts (except TRAP). 

 

Example: EI 

 

 

Opcode 

Operand Description 

RIM None Read Interrupt Mask 

 

This is a multipurpose instruction used to read the status of interrupts 7.5, 6.5, 5.5 and read 

serial data input bit. The instruction loads eight bits in the accumulator with the following 

interpretations. 

 

Example: RIM 
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RIM Instruction 

 

 

 

 

Opcode Operand Description 

SIM None Set Interrupt Mask 

 

This is a multipurpose instruction and used to implement the 8085 interrupts 7.5, 6.5, 5.5, and 

serial data output. The instruction interprets the accumulator contents as follows. 

Example: SIM SIM Instruction 
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TIMING DIAGRAM 

 

Timing diagram is the display of initiation of read/write and transfer of data operations under 

the control of 3-status signals IO / M, S1, and S0. All actions in the microprocessor are 

controlled by either leading or trailing edge of the clock. 

 

MACHINE CYCLE 

It is the time required by the microprocessor to complete the operation of accessing the memory 

devices or I/O devices. In machine cycle various operations like opcode fetch, memory read, 

memory write, I/O read, I/O write are performed. 

 

T-STATE 

 

Each clock cycle is called as T-states. 

 

Each machine cycle is composed of many clock cycles. Since, the data and instructions, both 

are stored in the memory, the µP performs fetch operation to read the instruction or data and 

then execute the instruction. The 3-status signals: IO / M, S1, and S0 are generated at the 

beginning of each machine cycle. The unique combination of these 3-status signals identify 

read or write operation and remain valid for the duration of the cycle. 

 

Table 1 Machine Cycle Status And Control Signals 
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Table1 shows details of the unique combination of these status signals to identify different 

machine cycles. Thus, time taken by any µP to execute one instruction is calculated in terms 

of the clock period. The execution of instruction always requires read and writes operations to 

transfer data to or from the µP and memory or I/O devices. Each read/ write operation 

constitutes one machine cycle (MC1) as indicated in Fig.1.7. Each machine cycle consists of 

many clock periods/ cycles, called T-states. 

 

 

Fig.1.7 Machine cycle showing clock periods 

 

PROCESSOR CYCLE: 

 

The functions of the microprocessor are divided into fetch and execute cycle of any instruction 

of a program. The program is nothing but number of instructions stored in the memory in 

sequence. In the normal process of operation, the microprocessor fetches (receives or reads) 

and executes one instruction at a time in the sequence until it executes the halt (HLT) 

instruction. 

INSTRUCTION CYCLE 

 

An instruction cycle is defined as the time required to fetch and execute an instruction. For 

executing any program, basically 2-steps are followed sequentially with the help of clocks 

• Fetch 

• Execute. 

 

The time taken by the µP in performing the fetch and execute operations are called fetch and 

execute cycle. Thus, sum of the fetch and execute cycle is called the instruction cycle as 

indicated in Fig. 8. Each read or writes operation constitutes a machine cycle. The instructions 

of 8085 require 1–5 machine cycles containing 3–6 states (clocks). The 1st machine cycle of 

any instruction is always an Op Code fetch cycle in which the processor decides the nature of 

instruction. It is of at least 4-states. It may go up to 6-states. 
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Fig.1.8 Processor cycle 

 

RULES TO IDENTIFY NUMBER OF MACHINE CYCLES IN AN INSTRUCTION: 

 

• If an addressing mode is direct, immediate or implicit then No. of machine cycles = 

No. of bytes. 

• If the addressing mode is indirect then No. of machine cycles = No. of bytes + 1. Add 

+1 to the No. of machine cycles if it is memory read/write operation. 

• If the operand is 8-bit or 16-bit address then, No. of machine cycles = No. of bytes 

+1. 

 

• These rules are applicable to 80% of the instructions of 8085. 

 

TIMING DIAGRAM OF OPCODE FETCH 

 

The process of Opcode fetch operation requires minimum 4-clock cycles T1, T2, T3, and T4 

and is the 1st machine cycle (M1) of every instruction. 

Example 

Fetch a byte 41H stored at memory location 2105H. 

For fetching a byte, the microprocessor must find out the memory location where it is stored. 

Then provide condition (control) for data flow from memory to the microprocessor. The 

process of data flow and timing diagram of fetch operation are shown in Fig. 9. The 

microprocessor fetches Opcode of the instruction from the memory as per the sequence below 

• A low IO/M means microprocessor wants to communicate with memory. 

• The microprocessor sends a high on status signal S1 and S0 indicating fetch operation. 

• The microprocessor sends 16-bit address. AD bus has address in 1st clock of the 1st 

machine cycle, T1. 

• AD7 to AD0 address is latched in the external latch when ALE = 1. 

• AD bus now can carry data. 
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• In T2, the RD control signal becomes low to enable the memory for read operation. 

• The memory places opcode on the AD bus 

• The data is placed in the data register (DR) and then it is transferred to IR. 

• During T3 the RD signal becomes high and memory is disabled. 

• During T4 the opcode is sent for decoding and decoded in T4. 

• The execution is also completed in T4 if the instruction is single byte. 

• More machine cycles are essential for 2- or 3-byte instructions. The 1st machine cycle 

M1 is meant for fetching the opcode. The machine cycles M2 and M3 are required 

either read/ write data or address from the memory or I/O devices. 

 

Fig. 1.9 Opcode fetch 

 

Example For Opcode Fetch 

 

• Explain the execution of MVI B, 05H stored at locations indicated below 
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Fig. 1.10 Timing diagram for MVI B,05H 

 

The MVI B, 05H instruction requires 2-machine cycles (M1 and M2). M1 requires 4-states 

and M2 requires 3-states, total of 7-states as shown in Fig. 10. Status signals IO/M, S1 and S0 

specifies the 1st machine cycle as the op-code fetch. In T1-state, the high order address {10H} 

is placed on the bus A15 ⇔A8 and low-order address {00H} on the bus AD7 ⇔AD0 and ALE 

= 1. In T2 -state, the RD line goes low and the data 06 H from memory location 1000H are 

placed on the data bus. The fetch cycle becomes complete in T3-state. The instruction is 

decoded in the T4-state. During T4-state, the contents of the bus are unknown. With the change 

in the status signal, IO/M = 0, S1 = 1 and S0 = 0, the 2nd machine cycle is identified as the 

memory read. The address is 1001H and the data byte [05H] is fetched via the data bus. Both 

M1 and M2 perform memory read operation, but the M1 is called op-code fetch i.e., the 1st 

machine cycle of each instruction is identified as the opcode fetch cycle. 

 

 

 

 

 

 

TIMING DIAGRAM OF MEMORY READ 

 

Operation: 
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• It is used to fetch one byte from the memory. 

• It requires 3 T-States. 

• It can be used to fetch operand or data from the memory. 

• During T1, A8-A15 contains higher byte of address. At the same time ALE is high. 

Therefore Lower byte of address A0-A7 is selected from AD0-AD7 as shown in fig 

11. 

• Since it is memory ready operation, IO/M (bar) goes low. 

• During T2 ALE goes low, RD (bar) goes low. Address is removed from AD0-AD7 

and data D0-D7 appears on AD0-AD7. 

• During T3, Data remains on AD0-AD7 till RD (bar) is at low signal. 

 

 

 

Fig 11. Timing Diagram of Memory Read 

 

 

 

 

 

TIMING DIAGRAM FOR MEMORY WRITE 

 

Operation: 

 

• It is used to send one byte into memory. 

• It requires 3 T-States. 
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• During T1, ALE is high and contains lower address A0-A7 from AD0-AD7. 

• A8-A15 contains higher byte of address. 

• As it is memory operation, IO/M (bar) goes low. 

• During T2, ALE goes low, WR (bar) goes low and Address is removed from AD0- 

AD7 and then data appears on AD0-AD7 as in fig 12. 

• Data remains on AD0-AD7 till WR (bar) is low. 

 

 

 

Fig 12.Memory Write timing diagram 

 

TIMING DIAGRAM OF IO READ 

 

Operation: 

 

1. It is used to fetch one byte from an IO port. 

2. It requires 3 T-States. 

3. During T1, The Lower Byte of IO address is duplicated into higher order address bus 

A8-A15 as in fig13. 

4. ALE is high and AD0-AD7 contains address of IO device. 

5. IO/M (bar) goes high as it is an IO operation. 

6. During T2, ALE goes low, RD (bar) goes low and data appears on AD0-AD7 as input 

from IO device. 

7. During T3 Data remains on AD0-AD7 till RD (bar) is low. 
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Fig 13.IO Read timing diagram 

 

TIMING DIAGRAM OF IO WRITE 

 

Operation: 

 

1. It is used to writ one byte into IO device. 

2. It requires 3 T-States. 

3. During T1, the lower byte of address is duplicated into higher order address bus A8-

A15 as in fig 14. 

4. ALE is high and A0-A7 address is selected from AD0-AD7. 

5. As it is an IO operation IO/M (bar) goes low. 

6. During T2, ALE goes low, WR (bar) goes low and data appears on AD0-AD7 to write 

data into IO device. 

7. During T3, Data remains on AD0-AD7 till WR(bar) is low. 

 



   

45 
 

 

 

Fig 14. IO Write timing diagram 

 

INTERRUPT: 

 

An interrupt is a signal initiated by an external device to the microprocessor. Once this signal 

is received, the microprocessor completes the execution of the current instruction and responds 

to the interrupt 

 

SOFTWARE INTERRUPTS OF 8085 

 

The software interrupts are program instructions. When the instruction is executed, the 

processor executes an interrupt service routine stored in the vector address of the software 

interrupt instruction. The software interrupts of 8085 are RST 0, RST 1, RST 2, RST 3, RST 

4, RST 5, RST 6 and RST 7. 

The vector addresses of software interrupts are given in table below 
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The software interrupt instructions are included at the appropriate (or required) place in the 

main program. When the processor encounters the software instruction, it pushes the content 

of PC (Program Counter) to stack. Then loads the Vector address in PC and starts executing 

the Interrupt Service Routine (ISR) stored in this vector address. At the end of ISR, a return 

instruction - RET will be placed. When the RET instruction is executed, the processor POP 

the content of stack to PC. Hence the processor control returns to the main program after 

servicing the interrupt. Execution of ISR is referred to as servicing of interrupt. All software 

interrupts of 8085 are vectored interrupts. The software interrupts cannot be masked and they 

cannot be disabled. The software interrupts are RST0, RST1, … RST7 (8 Nos). 

HARDWARE INTERRUPTS OF 8085 

 

These are the interrupts provided as signals to the microprocessor. There are five interrupt 

signals in 8085. They are Trap, RST 7.5, RST 6.5, RST 5.5 and INTR. The priority of the 

interrupts is from TRAP to INTR. The program executed for the service of the interrupting 

device is called the service routine. 

TRAP 

 

1. This interrupt is a Non-Maskable interrupt (NMI). It is unaffected by any mask or 

interrupt enable. 

2. TRAP is the highest priority and vectored interrupt(as vector address is fixed i.e. 

memory location where to transfer control). 

3. TRAP interrupt is edge and level triggered. This means hat the TRAP must go high 

and remain high until it is acknowledged. 

4. In sudden power failure, it executes a ISR and send the data from main memory to 

backup memory. 

5. The signal, which overrides the TRAP, is HOLD signal. (i.e., If the processor receives 

HOLD and TRAP at the same time then HOLD is recognized first and then TRAP is 

recognized). 

6. There are two ways to clear TRAP interrupt. 

 

• By resetting microprocessor (External signal) 

• By giving a high TRAP ACKNOWLEDGE (Internal signal) 

 

RST 7.5 

 

• The RST 7.5 interrupt is a Maskable interrupt. 
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• It has the second highest priority. 

•     It is edge sensitive. i.e. Input goes to high and no need to maintain high state until 

it recognized. 

• Maskable interrupt  

It is disabled by, 

• DI, SIM instruction 

• System or processor reset. 

• After reorganization of interrupt. 

 

RST 6.5 and 5.5 

• The RST 6.5 and RST 5.5 both are level triggered (i.e.) Input goes to high and stay 

high until it recognized. 

• Maskable interrupt  

It is disabled by, 

• DI, SIM instruction 

• System or processor reset. 

• After reorganization of interrupt. 

•     Enabled by EI instruction. 

•     The RST 6.5 has the third priority whereas RST 5.5 has the fourth priority. 

 

These interrupts are classified further into two classes based on the destination address and 

response. Based on the service routine address, interrupts are classified in to vectored and non-

vectored interrupt. 

VECTORED INTERRUPT: 

 

If the address of the service routine is known to the microprocessor, i.e. if the service routine 

begins at a predefined address, then the interrupts are called vectored interrupts. The vectored 

address is calculated as (nx8)16 where n is the number of RST. 

For example: 

 

The vectored address of RST 7.5 is 7.5 x 8=60.0 

 

60 in hexadecimal number system is 003C. Therefore the branching address of RST 7.5 is 

003C. 

 

Interrupt Address 
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RST 7.5 003C 

RST 6.5 0034 

RST 5.5 002C 

TRAP (RST 4.5) 0024 

 

NON VECTORED INTERRUPT: 

 

The address of the service routine is not known in prior to the microprocessor. It is sent by the 

interrupting device.When the interrupt flipflop is enabled and INTR is high, microprocessor 

executes the current instruction and makes INTA low. Based on the flexibility to enable or 

disable interrupt, the interrupts are classified as maskable interrupt and non maskable interrupt. 

Maskable Interrupt: Even if the interrupt signals are high, microprocessor will respond to 

these signals only when interrupt flip flop is enabled. Example RST 7.5, RST 6.5, RST 5.5, 

INTR 

Non-Maskable Interrupt: Once the signal is enabled, the microprocessor immediately 

responds to this interrupt. Example: TRAP 

 

STACK 

 

Stack is the upper part of the memory used for storing temporary information. It is a Last In 

First Out Memory (LIFO). In 8085, it is accessed using PUSH and POP instructions. During 

pushing, the stack operates in a decrement then store‖ style. The stack pointer is decremented 

first, then the information is placed on the stack. During poping, the stack operates in a use 

then increment style. The information is retrieved from the top of the the stack and then the 

pointer is incremented. The SP pointer always points to the top of the stack‖. 

PROGRAM STATUS WORD (PSW) 

 

The 8085 recognizes one additional register pair called the PSW (Program Status Word). This 

register pair is made up of the Accumulator and the Flags registers. It is possible to push the 

PSW onto the stack, do whatever operations are needed, then POP it off of the stack. The result 

is that the contents of the Accumulator and the status of the Flags are returned to what they 

were before the operations were executed. 

SUBROUTINES 

A subroutine is a group of instructions that will be used repeatedly in different locations of the 

program. Rather than repeat the same instructions several times, they can be grouped into a 

subroutine that is called from the different locations. In Assembly language, a subroutine can 

exist anywhere in the code. However, it is customary to place subroutines separately from the 
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main program. The 8085 has two instructions for dealing with subroutines. The CALL 

instruction is used to redirect program execution to the subroutine. The RET instruction is used 

to return the execution to the calling routine. 

 

CALL 

CALL 4000H (3 byte instruction) 

When CALL instruction is fetched, the MP knows that the next two Memory location contains 

16bit subroutine address in the memory. 

 

 

 

Fig 17.Work flow of CALL instruction 

 

MP Reads the subroutine address from the next two memory location and stores the higher 

order 8bit of the address in the W register and stores the lower order 8bit of the address in the 

Z register. Push the address of the instruction immediately following the CALL onto the stack 

[Return address]. Loads the program counter with the 16-bit address supplied with the CALL 

instruction from WZ register as shown in fig 17. 

 

RET (1 byte instruction) 

Retrieve the return address from the top of the stack. Load the program counter with the return 

address as seen in fig 18. 

 

Fig 18.Work flow of RET instruction 

The processor can regain the buses only after the Hold is removed. When the Hold is 
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acknowledged, the Address, Data, RD, WR, and IO/M lines are stated. 

HLDA (Output) 

 

HOLD ACKNOWLEDGE  indicates that the CPU has received the Hold request and that it 

will relinquish the buses in the next clock cycle. HLDA goes low after the Hold request is 

removed. The CPU takes the buses one half clock cycle after HLDA goes low. 

INTR (Input) 

 

INTERRUPT REQUEST is used as a general purpose interrupt. It is sampled only during 

the next to the last clock cycle of the instruction. If it is active, the Program Counter (PC) will 

be inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or 

CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled 

and disabled by software. It is disabled by Reset and immediately after an interrupt is accepted. 

INTA (Output) 

 

INTERRUPT ACKNOWLEDGE: is used instead of (and has the same timing as) RD during 

the Instruction cycle after an INTR is accepted. It can be used to activate the 8259 Interrupt 

chip or some other interrupt port. 

RESTART INTERRUPTS: These three inputs have the same timing as INTR except they 

cause an internal RESTART to be automatically inserted. RST 7.5 ~~ Highest Priority RST 

6.5 RST 5.5 Lowest Priority 

TRAP (Input) 

 

Trap interrupt is a nonmaskable restart interrupt. It is recognized at the same time as INTR. It 

is unaffected by any mask or Interrupt Enable. It has the highest priority of any interrupt. 

 

RESET IN (Input) 

 

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA flipflops. 

None of the other flags or registers (except the instruction register) are affected The CPU is 

held in the reset condition as long as Reset is applied. 

RESET OUT (Output) 

 

Indicates CPU is being reset also used as a system RESET. The signal is synchronized to the 

processor clock. 

X1, X2 (Input) 

 



   

51 
 

Crystal or R/C network connections to set the internal clock generator X1 can also be an 

external clock input instead of a crystal. The input frequency is divided by 2 to give the internal 

operating frequency. 

CLK (Output) 

 

Clock Output for use as a system clock when a crystal or R/ C network is used as an input to 

the CPU. The period of CLK is twice the X1, X2 input period. 

IO/M (Output) 

 

IO/M indicates whether the Read/Write is to memory or l/O Tristated during Hold and Halt 

modes. 

SID (Input) 

 

Serial input data line The data on this line is loaded into accumulator bit 7 whenever a RIM 

instruction is executed. 

SOD (output) 

 

Serial output data line. The output SOD is set or reset as specified by the SIM instruction. 

Vcc +5 volt supply. 

Vss Ground Reference. 

 

8085 PROGRAMS 

I. 8-BIT ADDITION. 

 

Program:  

 

MVI C, 00 - Clear one register for carry (Reg C) 

LDA 9100 -Load the accumulator with the first data 

MOV B, A - Move the accumulator content to one register (Reg B)  

LDA 9101 -Load the accumulator with the second data  

ADD B  - Add Reg B content to accumulator 

JNC L1: -Check for carry, if there is no carry, go to step 8 

INR C-Increment reg C to indicate carry 

L1 : STA 9200 - Store the results 

MOV A, C- carry in Reg C 

STA 9201- sum in accumulator to memory locations  

RST 1 -stop 
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Sample Data: 

 

Input                                                                          Output 

9100 – 04 9200 – 0C 

9101 – 08 9201 – 00 

9100 – FF 9200 – FE 

9101 – FF 9201 – 01 

 

8-BIT SUBTRACTION 

 

Program:  

 

MVIC, 00 - Clear one register for borrow (Reg C) 

LDA 9200 -Load the accumulator with the first data 

MOV B, A - Move the accumulator content to one register (Reg B) 

LDA 9201-Load the accumulator with the second data 

SUB B- Subtract Reg B content from accumulator content 

JNC  L1-Check for carry, if there is no carry, go to step 10 

 CMA-  Complement accumulator content 

INR A-increment accumulator content  

INR C- Increment reg C to indicate borrow 

L1 :STA 9200 - Store the results 

MOV A, C  - borrow  in Reg C 

STA 9201- difference in accumulator to memory locations  

RST 1-stop 

Sample Data: 

 

Input Output 

9200 – FF 9200 – 55 

9201 – AA                                                                  9201 – 01 

9200 – BB 9200 – 44 

9201 – FF 9201 – 00 

 

 

16-BIT ADDITION 

 

Program:  
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MVI C, 00 -Clear one register for carry (Reg C) 

LHLD 9100 -Load the first data in HL register pair  

XCHG -Swap the contents of HL and DE pairs 

LHLD -Load the second data in HL register pair  

DAD D -Double add the contents of HL and DE pairs 

JNC L1- Check for carry, if there is no carry go to step 8 

 INR C- Increment Reg C 

L1: SHLD 9104- Store the result which is in HL pair in a memory location  

MOV A, C - Move the carry in Reg C to accumulator 

 STA 9106 - Store the accumulator content in memory 

RST  1 - Stop 

 

Sample Data: 

 

Input Output 

9100 – 06 9104 – 09 

9101 – 05 9105 – 0B 

 

9102 – 03 9106 – 00 

9103 – 06 

9100 – 06 9104 – 09 

9101 – F0 9105 – E0 

9102 – 03 9106 – 01 

9103 – F0 

 

REVERSE THE STRING 

 

Program:  

 

MVIB, 06- Initialize one register (Reg B) with the length of the string 

LXI H, 9100- Initialize one register pair (HL) with the starting address of the source array 

LXI D, 9205 - Initialize one register pair (DE) with the ending address of the destination array 

L1: MOV A, M - Move the memory content to accumulator     

STAX D - Store the accumulator content in DE pair 

INX   H - Increment HL pair 

DCX D - Decrement DE pair 

DCR B - Decrement the counter register – Reg B  

JNZ L1 - Check for zero, if not zero, goto step 4  

RST1 - Stop 
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Sample Data: 

 

Input Output 

9100 – 0E 9200 – 0C 

9101 – 0E 9201 – 00 

9102 – 0F 9202 – 0F 

9103 – 0F 9203 – 0F 

9104 – 00 9204 – 0E 

9105 – 0C 9205 – 0E 

 

FACTORIAL OF A NUMBER 

 

Program:  

LDA 9100-Load the accumulator with the given data 

MOV B, A-Move the accumulator content to a register (Reg B) 

MOV C, A-Move the accumulator content to another register (Reg C) 

  DCR C-Decrement Reg C 

L2: MOV D, C -Move the content of Reg C toReg D  

MVI  A, 00-Clear the accumulator content 

L1 : ADD B-Add Reg B content to accumulator  

DCR D-Decrement Reg D  

JNZ  L1-Check for zero, if not zero, goto step 7 

MOV B, A-Move accumulator content to Reg B  

DCR C-Decrement Reg C 

JNZ  L2-Check for zero, if not zero, goto step 5 

STA 9101-Store the accumulator content in a memory address  

RST 1-Stop 

 

Sample Data: 

 

Input Output 

9100 – 04 9101 – 18 
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UNIT – II – 8086 MICROPROCESSOR 

 



 

INTEL 8086 

Features of 8086 Microprocessor: 

• Intel 8086 was launched in 1978. 

• It was the first 16-bit microprocessor. 

• This microprocessor had major improvement over the execution speed of 8085. 

• It is available as 40-pin Dual-Inline-Package (DIP). 

• It is available in three versions:  

a. 8086 (5 MHz) 

 b. 8086-2 (8 MHz) 

 c. 8086-1 (10 MHz) 

• It consists of 29,000 transistors. 

• It has a 16 line data bus and 20 line address bus. 

• It could address up to 1 MB of memory. 

• It has more than 20,000 instructions. 

 

PIN DIAGRAM OF 8086 

 

 

Figure 2.1 Pin diagram 

 

 

 



AD0-AD15 

These lines are multiplexed bidirectional address/data bus. During T1, they carry lower 

order 16-bit address. In the remaining clock cycles,they carry 16-bit data. AD0-AD7 carry 

lower order byte of data. AD8-AD15 carry higher order byte of data. 

 

A19/S6, A18/S5, A17/S4, A16/S3 [Pin 35-38 (Unidirectional)] 

These lines are multiplexed unidirectional address and status bus. During T1, they carry 

higher order 4-bit address. In the remaining clock cycles, they carry status signals. 

 

BHE / S7 [Pin 34 (Output)] 

BHE stands for Bus High Enable. BHE signal is used to indicate the transfer of data over 

higher order data bus (D8 – D15). 8-bit I/O devices use this signal. It is multiplexed with 

status pin S7. 

 

RD (Read) [Pin 32 (Output)] 

It is a read signal used for read operation. It is an output signal. It is an active low signal. 

 

READY [ Pin 22 (Input)] 

This is an acknowledgement signal from slower I/O devices or memory. It is an active 

high signal. When high, it indicates that the device is ready to transfer data. When low, 

then microprocessor is in wait state. 

 

RESET[Pin 21 (Input)] 

It is a system reset. It is an active high signal. When high, microprocessor enters into reset 

state and terminates the current activity. It must be active for atleast four clock cycles to 

reset the microprocessor. 

 

INTR [Pin 18 (Input)] 

It is an interrupt request signal. It is active high. It is level triggered 

 

NMI[Pin 17 (Input)] 

It is a non-maskable interrupt signal. It is an active high. It is an edge 

triggered interrupt. 

 

 

 

 



TEST[Pin 23 (Input)] 

It is used to test the status of math coprocessor 8087. The BUSY pin of 8087 isconnected 

to this pin of 8086. If low, execution continues else microprocessor is in wait state. 

 

CLK[Pin 19 (Input)] 

This clock input provides the basic timing for processor operation. It is symmetric square 

wave with 33% duty cycle. The range of frequency of different versions is 5 MHz, 8 MHz 

and 10 MHz. 

 

VCC and VSS[Pin 40 and Pin 20 (Input)] 

VCC is power supply signal. +5V DC is supplied through this pin. VSS is ground signal 

 

MN / MX[Pin 33 (Input)] 

8086 works in two modes: Minimum Mode, Maximum Mode. If MN/MX is high, it works 

in minimum mode. If MN/MX is low, it works in maximum mode. Pins 24 to 31 issue two 

different sets of signals. One set of signals is issued when CPU operates in minimum mode. 

Other set of signals is issued when CPU operates in maximum mode. 

 

PIN DESCRIPTION FOR MINIMUM MODE 

 

INTA [Pin 24 (Output)] 

This is an interrupt acknowledge signal. When microprocessor receives INTR signal, it 

acknowledges the interrupt by generating this signal. It is an active low signal 

 

ALE [Pin 25 (Output)] 

This is an Address LatchEnable signal. It indicates that valid address is available on bus 

AD0 – AD15. It is an active high signal and remains high during T1 state. It is connected 

to enable pin of latch 8282. 

 

DEN[Pin 26 (Output)] 

This is a Data Enable signal. This signal is used toenable the transceiver 8286. Transceiver 

is used to separate the data from the address/data bus. It is an active low signal 

 

 

DT / R[Pin 27 (Output)] 

This is a DataTransmit/Receive signal. It decides the direction ofdata flow through the 

transceiver. When it is high, data is transmitted out. When it is low, data is received in. 



 

M / IO[Pin 28 (Output)] 

This signal is issued by the microprocessor to distinguish memory access from I/O access. 

When it is high, memory is accessed. When it is low, I/O devices are accessed. 

 

WR [Pin 29 (Output)] 

It is a Write signal. It is used to write data inmemory or output device depending on the 

status of M/IO signal. It is an active low signal 

 

HLDA[Pin 30 (Output)] 

It is a Hold Acknowledge signal. It is issued after receiving the HOLD signal. It is an 

active high signal 

 

HOLD[Pin 31 (Input)] 

When DMA controller needs to use address/data bus, it sends a request to the CPU through 

this pin. It is an active high signal. When microprocessor receives HOLD signal, it issues 

HLDA signal to the DMA controller. 

 

PIN DESCRIPTION FOR MAXIMUM MODE 

 

QS1 and QS0 [Pin 24 and 25 (Output)] 

These pins provide the status of instruction queue. 

 

QS1 QS0 STATUS 

0 0 NO OPERATION 

0 1 1st byte of opcode from queue 

1 0 Empty queue 

1 1 Subsequent byte from queue 

 

S0, S1, S2 [Pin 26, 27, 28 (Output)] 

These status signals indicate the operation being done by the microprocessor. This 

information is required by the Bus Controller 8288. Bus controller 8288 generates all 

memory and I/O control signals. 

 

S0 S1 S2 STATUS 

0 0 0 Interrupt Acknowledge 

0 0 1 I/O Read 

0 1 0 I/O Write 



0 1 1 Halt 

1 0 0 Opcode Fetch 

1 0 1 Memory Read 

1 1 0 Memory Write 

1 1 1 Passive 

 

LOCK[Pin 29 (Output)] 

• This signal indicates that other processors should not ask CPU to relinquish the 

system bus. When it goes low, all interrupts are masked and HOLD request is not 

granted. This pin is activated by using LOCK prefix on any instruction. 

 

RQ/GT1 and RQ/GT0 [Pin 30 and 31 (Bi-directional)] 

• These are Request/Grant pins. Other processors request the CPU through these 

lines to release the system bus. After receiving the request, CPU sends 

acknowledge signal on the same lines. RQ/GT0 has higher priority than 

RQ/GT1. 

 

ARCHITECTURE OF 8086 

 

The microprocessors functions as the CPU in the stored program model of the digital 

computer. Its job is to generate all system timing signals and synchronize the transfer of data 

between memory, I/O, and itself. The microprocessor also has a S/W function. It must 

recognize, decode, and execute program instructions fetched from the memory unit. This 

requires an Arithmetic-Logic Unit (ALU) within the CPU to perform arithmetic and logical 

(AND, OR, NOT, compare, etc) functions. 

 

The 8086 has pipelined architecture. The 8086 CPU is organized as two separate 

processors, called the Bus Interface Unit (BIU) and the Execution Unit (EU). 

 



 

 

Fig : 2.2Architecture of 8086 

 

BUS INTERFACE UNIT (BIU) 

The function of BIU is to: 

• Fetch the instruction or data from memory. 

• Write the data to memory. 

• Write the data to the port. 

• Read data from the port. 

 

 



 INSTRUCTION QUEUE 

 

• To increase the execution speed, BIU fetches as many as six instruction bytes 

ahead to time from memory. 

• All six bytes are then held in first in first out 6 byte register called instruction 

queue. 

• Then all bytes have to be given to EU one by one. 

 

• This pre fetching operation of BIU may be in parallel with execution operation of 

EU, which improves the speed execution of the instruction. 

 

EXECUTION UNIT (EU) 

The functions of execution unit are: 

 

• To tell BIU where to fetch the instructions or data from. 

• To decode the instructions. 

• To execute the instructions. 

The EU contains the control circuitry to perform various internal operations. A decoder in 

EU decodes the instruction fetched memory to generate different internal or external control 

signals required to perform the operation. EU has 16-bit ALU, which can perform 

arithmetic and logical operations on 8-bit as well as 16-bit. 

 

 GENERAL PURPOSE REGISTERS OF 8086 

 

These registers can be used as 8-bit registers individually or can be used as 16-bit in pair 

to have AX, BX, CX, and DX. 

• AX Register: AX register is also known as accumulator register that stores 

operands for arithmetic operation like divided, rotate. 

• BX Register: This register is mainly used as a base register. It holds the starting 

base location of a memory region within a data segment. 

• CX Register: It is defined as a counter. It is primarily used in loop instruction to 

store loop counter. 

• DX Register: DX register is used to contain I/O port address for I/O instruction. 



 

SEGMENT REGISTERS : 

Additional registers called segment registers generate memory address when combined with 

other in the microprocessor. In 8086 microprocessor, memory is divided into 4 segments as 

follow: 

 

Fig.2.3 Memory Segments of 8086 

 

• Code Segment (CS): The CS register is used for addressing a memory location in 

the Code Segment of the memory, where the executable program is stored. 

• Data Segment (DS): The DS contains most data used by program. Data are accessed 

in the Data Segment by an offset address or the content of other register that holds 

the offset address. 

• Stack Segment (SS): SS defined the area of memory used for the stack 

• Extra Segment (ES): ES is additional data segment that is used by some of the 

string to hold the destination data. 

          

Flag register in EU is of 16-bit , is shown 

Fig : Flag Register of 8086 

Flag Register determines the current state of the processor. They are modified automatically 

by CPU after mathematical operations, this allows to determine the type of the result, and 



to determine conditions to transfer control to other parts of the program. 8086 has 9 flags 

and they are divided into two categories: 

1. Conditional Flags 

 

2. Control Flags 

 

CONDITIONAL FLAGS 

 

Conditional flags represent result of last arithmetic or logical instruction executed. 

Conditional flags are as follows: 

1. Carry Flag (CF): This flag indicates an overflow condition for unsigned integer 

arithmetic. It is also used in multiple-precision arithmetic. 

2. Auxiliary Flag (AF): If an operation performed in ALU generates a carry/barrow 

from lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7), the AF flag is set 

i.e. carry given by D3 bit to D4 is AF flag. This is not a general-purpose flag, it is 

used internally by the processor to perform Binary to BCD conversion. 

3. Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 

8- bits of the result contains even number of 1’s, the Parity Flag is set and for odd 

number of 1’s, the Parity Flag is reset. 

4. Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else 

it is reset. 

5. Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB 

bit. If the result of operation is negative, sign flag is set. 

6. Overflow Flag (OF): It occurs when signed numbers are added or subtracted. An 

OF indicates that the result has exceeded the capacity of machine. 

CONTROL FLAGS 

Control flags are set or reset deliberately to control the operations of the execution unit. 

Control flags are as follows: 

1. Trap Flag (TP): 

 

a. It is used for single step control. 

b. It allows user to execute one instruction of a program at a time for debugging. 

 

c. When trap flag is set, program can be run in single step mode. 

 



2. Interrupt Flag (IF): 

 

a. It is an interrupt enable/disable flag. 

b. If it is set, the maskable interrupt of 8086 is enabled and if it is reset, the 

interrupt is disabled. 

c. It can be set by executing instruction sit and can be cleared by executing 

CLI instruction. 

3. Direction Flag (DF): 

 

a. It is used in string operation. 

b. If it is set, string bytes are accessed from higher memory address to 

lower memory address. 

c. When it is reset, the string bytes are accessed from lower memory 

address to higher memory address. 

 

ADDRESSING MODES OF 8086 

 

ADDRESSING MODES FOR REGISTER AND IMMEDIATE DATA 

• Register Addressing mode 

• Immediate Addressing mode 

 

Addressing modes for memory data 

• Register Indirect Addressing mode 

• Direct Addressing mode 

• Based Addressing mode 

• Indexed Addressing mode 

• Base Relative Addressing mode 

• Base Indexed Addressing mode 

• String Addressing Mode 

 

       Addressing modes for I/O port 

• Direct I/O port Addressing   

• Indirect I/O port Addressing 

 

 

      RELATIVE ADDRESSING 

• Implied Addressing Mode 



 

     REGISTER ADDRESSING MODE 

 

Data transfer using registers is called register addressing mode. Here operand value is 

present in register. For example 

MOV 

AL,BL

; MOV 

AX,B

X; 

 

        IMMEDIATE ADDRESSING MODE 

 

When data is stored in code segment instead of data segment immediate addressing 

mode is used. Here operand value is present in the instruction. For example 

MOV AX, 0A9FH; 

 

        DIRECT ADDRESSING MODE 

 

When direct memory address is supplied as part of the instruction is called direct 

addressing mode. Operand offset value with respect to data segment is given in 

instruction. For example 

MOV AX, 

[089DH]; 

ADD AX, 

[0ADH]; 

 

        REGISTER INDIRECT ADDRESSING MODE 

 

Here operand offset is given in a CPU register. Register used are BX, SI (source 

index), DI (destination index), or BP(base pointer). BP holds offset w.r.t Stack 

segment, but SI, DI and BX refer to data segment. For example- 

MOV [BX], AX; 

ADD AX, [SI]; 

 

BASED ADDRESSING MODE 

In this mode EA is obtained by adding a displacement (signed 8 bit or unsigned 16 

bit) value to the contents of BX or BP. The segment registers used are DS & SS. 

 

When Memory is accessed, the 20 bit physical address is computed from BX and DS 

.On the other hand, when the stack is accessed, the 20 bit physical address is computed 



from BP and SS. 

 

eg:- MOV AL,START[BX] or MOV AL,[BX+START] 

 

Where START=02H (8 bit displacement),BX=2000H 

 

Now the 20 bit Physical address is computed from DS and EA 

Here the source operand is in based Addressing Mode .EA is obtained by adding the value 

of START and [BX].The 20 bit physical address is produced from DS and EA. The 8 bit 

content of this memory location is moved to AL register. 

 

INDEXED ADDRESSING MODE 

 

In this mode,the EA is calculated by adding the unsigned 16 bit or signed extended 8 bit 

displacement and the contents of SI or DI. 

 

eg:- MOV BH,START[SI] 

 

Moves the contents of the 20 bit address computed from the displacement START, SI and 

DS into BH register. The 8 bit displacement is provided by the programmer using the 

assembler pseudo instruction such as EQU. For 16 bit displacement, the EU adds this to SI 

to determine EA. On the other hand, for 8 bit displacement the EU sign extends it to 16 bits 

and then adds to SI for determining EA. 

 

BASE RELATIVE ADDRESSING MODE 

 

Operand offset given by a sum of a value held either in BP, or BX and a constant offset 

specified as an operand. For example 

MOV 

AX,[BP+1]; 

JMP [BX+1]; 

 

BASE INDEXED ADDRESSING MODE 

 

Here operand offset is given by sum of either BX or BP with either SI or DI. For 

example 

MOV AX, 

[BX+S] JMP 

[BP+DI] 

 STRING ADDRESSING 

 



This mode uses index registers. The string instructions automatically assume SI to point to 

the first byte or word of the source operand and DI to point to the first byte or word of the 

destination operand. 

The segment register for the source is DS and may be overridden. The segment register 

for the destination must be ES and cannot be overridden. 

 

The contents of SI and DI are automatically incremented by clearing DF (Direction Flag) 

to 0 by CLD instruction or automatically decremented by setting DF to 1 by STD 

instruction. 

 

DIRECT ADDRESSING MODES 

 

Here the port number is a 8 bit immediate operand.This allows fixed access to ports 

numbered 0 to 255. 

 

eg:- OUT 05H,AL 

 

outputs [AL] to 8 bit port 05H 

 

INDIRECT ADDRESSING MODE 

 

The port number is taken from DX allowing 64K 8 bit ports or 32K 16 bit ports. 

eg:- IN AX,DX 

If [DX]=5040,Inputs the 8 bit content of port 5040 into AL and 5041 into AH. 

 

RELATIVE ADDRESSING MODE 

 

In this mode, the operand is specified as a signed 8 bit displacement, relative to 

PC(Program Counter). 

 

eg:- JNC START 

 

Then, if carry=0,PC is loaded with current PC contents plus the 8 bit signed value of 

START, otherwise the next instruction is executed. 

 

IMPLIED ADDRESSING MODE 

 

Instructions using this mode have no operands.  

eg:- CLC 

This clears the carry flag to zero. 

 



INSTRUCTION SET OF 8086 

 

DATA TRANSFER INSTRUCTIONS 

MOV – MOV Destination, Source 

The MOV instruction copies a word or byte of data from a specified source to a specified 

destination. The destination can be a register or a memory location. The source can be a 

register, a memory location or an immediate number. The source and destination cannot 

both be memory locations. They must both be of the same type (bytes or words).MOV 

instruction does not affect any flag. 

MOV CX, 037AH Put immediate number 037AH to CX 

 

MOV BL, [437AH] Copy byte in DS at offset 437AH to BL 

MOV AX, BX Copy content of register BX to AX  

MOV DL, [BX] Copy byte from memory at [BX] to DL 

MOV DS, BX                                  Copy word from BX to DS register 

 

MOV RESULT [BP], AX Copy AX to two memory locations; AL to the first location, AH to 

the second; EA of the first memory location is sum of the displacement represented by 

RESULTS and content of BP. Physical address = EA + SS. 

MOVES: RESULTS [BP], AX Same as the above instruction, but physical address = EA + ES, 

because of the segment override prefix ES 

XCHG – XCHG Destination, Source 

The XCHG instruction exchanges the content of a register with the content of another 

register or with the content of memory location(s). It cannot directly exchange the content 

of two memory locations. The source and destination must both be of the same type (bytes 

or words). The segment registers cannot be used in this instruction. This instruction does not 

affect any flag. 

XCHG AX, DX Exchange word in AX with word 

in DX XCHG BL, CH Exchange byte in BL with byte in 

CH 

XCHG AL, PRICES [BX]                   Exchange byte in AL with byte in memory at 

EA = PRICE [BX] in DS. 

LEA – LEA Register, Source 

This instruction determines the offset of the variable or memory location named as the 

source and puts this offset in the indicated 16-bit register. LEA does not affect any flag. 

LES – LES Register, Memory address of the first word 



This instruction loads new values into the specified register and into the ES register 

from four successive memory locations. The word from the first two memory locations 

is copied into the specified register, and the word from the next two memory locations 

is copied into the ES register. LES does not affect any flag. 

PUSH BX Decrement SP by 2, copy BX to stack. 

PUSH DS Decrement SP by 2, copy DS to stack. 

PUSH BL Illegal; must push a word 

PUSH TABLE [BX] Decrement SP by 2, and copy word from memory in DS at EA = 

TABLE + [BX] to stack 

POP – POP Destination 

The POP instruction copies a word from the stack location pointed to by the stack pointer 

to a destination specified in the instruction. The destination can be a general- purpose 

register, a segment register or a memory location. The data in the stack is not changed. 

After the word is copied to the specified destination, the stack pointer is automatically 

incremented by 2 to point to the next word on the stack. The POP instruction does not 

affect any flag. 

POP DX Copy a word from top of stack to DX; increment SP by 2 

POP DS Copy a word from top of stack to DS; increment SP by 2 

POP TABLE [DX] Copy a word from top of stack to memory in DS with EA = 

TABLE + [BX]; increment SP by 2. 

 

PUSHF (PUSH FLAG REGISTER TO STACK) 

The PUSHF instruction decrements the stack pointer by 2 and copies a word in the flag 

register to two memory locations in stack pointed to by the stack pointer. The stack 

segment register is not affected. This instruction does to affect any flag. 

POPF (POP WORD FROM TOP OF STACK TO FLAG REGISTER) 

The POPF instruction copies a word from two memory locations at the top of the stack 

to the flag register and increments the stack pointer by 2. The stack segment register 

and word on the stack are not affected. This instruction does to affect any flag. 

 

INPUT-OUTPUT INSTRUCTIONS 

 

IN – IN Accumulator, Port 



The IN instruction copies data from a port to the AL or AX register. If an 8-bit port is 

read, the data will go to AL. If a 16-bit port is read, the data will go to AX. 

The IN instruction has two possible formats, fixed port and variable port. For fixed port 

type, the 8-bit address of a port is specified directly in the instruction. With this form, any 

one of 256 possible ports can be addressed. 

IN AL, OC8H                               Input a byte from port OC8H to AL 

IN AX, 34H Input a word from port 34H to AX 

For the variable-port form of the IN instruction, the port address is loaded into the DX 

register before the IN instruction. Since DX is a 16-bit register, the port address can be any 

number between 0000H and FFFFH. Therefore, up to 65,536 ports are addressable in this 

mode. 

MOV DX, 0FF78H                      Initialize DX to point to port 

               IN AL, DX                                   Input a byte from 8-bit port 0FF78H to AL 

               IN AX, DX Input a word from 16-bit port 0FF78H to AX 

 

The variable-port IN instruction has advantage that the port address can be computed or 

dynamically determined in the program. Suppose, for example, that an 8086-based 

computer needs to input data from 10 terminals, each having its own port address. Instead 

of having a separate procedure to input data from each port, you can write one generalized 

input procedure and simply pass the address of the desired port to the procedure in DX. 

The IN instruction does not change any flag. 

 

OUT – OUT Port, Accumulator 

The OUT instruction copies a byte from AL or a word from AX to the specified port. The 

OUT instruction has two possible forms, fixed port and variable port. 

For the fixed port form, the 8-bit port address is specified directly in the instruction. With 

this form, any one of 256 possible ports can be addressed. 

OUT 3BH, AL Copy the content of AL to port 3BH 

OUT 2CH, AX Copy the content of AX to port 2CH 

For variable port form of the OUT instruction, the content of AL or AX will be copied to 

the port at an address contained in DX. Therefore, the DX register must be loaded with the 

desired port address before this form of the OUT instruction is used. 

MOV DX, 0FFF8H Load desired port address in DX 

OUT DX, AL Copy content of AL to port FFF8H 

OUT DX, AX Copy content of AX to port 



FFF8 

 

ARITHMETIC INSTRUCTIONS 

 

ADD – ADD Destination, Source 

ADC – ADC Destination, Source 

These instructions add a number from some source to a number in some destination and put 

the result in the specified destination. The ADC also adds the status of the carry flag to the 

result. The source may be an immediate number, a register, or a memory location. The 

destination may be a register or a memory location. The source and the destination in an 

instruction cannot both be memory locations. The source and the destination must be of the 

same type (bytes or words). If you want to add a byte to a word, you must copy the byte to 

a word location and fill the upper byte of the word with 0’s before adding. Flags affected:  

 

AF, CF, OF, SF, ZF. 

ADD AL, 74H                   Add immediate number 74H to content of AL. Result in AL 

ADC CL, BL                     Add content of BL plus carry status to content of CL  

ADD DX, BX                   Add content of BX to content of DX 

ADD DX, [SI]                  Add word from memory at offset [SI] in DS to content of DX 

ADC AL, PRICES [BX]    Add byte from effective address [BX] plus carry status to content                  

of AL 

ADD AL, PRICES [BX] Add content of memory at effective address PRICES 

[BX] to AL 

 

SUB – SUB Destination, Source  

SBB – SBB Destination, Source 

These instructions subtract the number in some source from the number in some destination 

and put the result in the destination. The SBB instruction also subtracts the content of carry 

flag from the destination. The source may be an immediate number, a register or memory 

location. The destination can also be a register or a memory location. However, the source 

and the destination cannot both be memory location. The source and the destination must 

both be of the same type (bytes or words). If you want to subtract a byte from a word, you 

must first move the byte to a word location such as a 16-bit register and fill the upper byte 

of the word with 0’s. 

Flags affected: AF, CF, OF, PF, SF, ZF. 

 

SUB CX, BX CX – BX; Result in CX 

 

SBB CH, AL Subtract content of AL and content of CF from content 

of CH.    Result in CH 

• SUB AX, 3427H -Subtract immediate number 3427H from AX 



 

• SBB BX, [3427H] -Subtract word at displacement 3427H in DS and content of 

CF from BX 

• SUB PRICES [BX], 04H -Subtract 04 from byte at effective address PRICES [BX], 

if PRICES is declared with DB; Subtract 04 from word at effective address PRICES 

[BX], if it is declared with DW. 

• SBB CX, TABLE [BX] -Subtract word from effective address TABLE [BX] and 

status of CF from CX. 

• SBB TABLE [BX], CX -Subtract CX and status of CF from word in memory at 

effective address TABLE[BX]. 

MUL – MUL Source 

 

This instruction multiplies an unsigned byte in some source with an unsigned byte in AL 

register or an unsigned word in some source with an unsigned word in AX register. The 

source can be a register or a memory location. When a byte is multiplied by the content of 

AL, the result (product) is put in AX. When a word is multiplied by the content of AX, the 

result is put in DX and AX registers. If the most significant byte of a 16-bit result or the 

most significant word of a 32-bit result is 0, CF and OF will both be 0’s. AF, PF, SF and 

ZF are undefined after a MUL instruction. 

If you want to multiply a byte with a word, you must first move the byte to a word location 

such as an extended register and fill the upper byte of the word with all 0’s. You cannot 

use the CBW instruction for this, because the CBW instruction fills the upper byte with 

copies of the most significant bit of the lower byte. 

• MUL BH Multiply AL with BH; result in AX 

 

• MUL CX Multiply AX with CX; result high word in DX, low word 

in AX MUL BYTE PTR [BX] Multiply AL with byte in DS pointed to 

by [BX] 

 

• MUL FACTOR [BX]  Multiply AL with byte at effective address FACTOR 

[BX], if it is declared as type byte with DB. Multiply AX with word at effective 

address FACTOR [BX], if it is declared as type word with DW. 

• MOV AX, MCAND_16 Load 16-bit multiplicand into AX MOV CL, 

MPLIER_8 Load 8-bit multiplier into CL MOV CH, 00H Set upper byte of CX to 

all 0’s MUL CX AX times CX; 32-bit result in DX and AX 

 

IMUL-IMUL SOURCE 



This instruction multiplies a signed byte from source with a signed byte in AL or a signed 

word from some source with a signed word in AX. The source can be a register or a memory 

location. When a byte from source is multiplied with content of AL, the signed result 

(product) will be put in AX. When a word from source is multiplied by AX, the result is put 

in DX and AX. If the magnitude of the product does not require all the bits of the destination, 

the unused byte / word will be filled with copies of the sign bit. If the upper byte of a 16-bit 

result or the upper word of a 32-bit result contains only copies of the sign bit (all 0’s or all 

1’s), then CF and the OF will both be 0; If it contains a part of the product, CF and OF will 

both be 1. AF, PF, SF and ZF are undefined after IMUL. 

If you want to multiply a signed byte with a signed word, you must first move the byte into 

a word location and fill the upper byte of the word with copies of the sign bit. If you move 

the byte into AL, you can use the CBW instruction to do this. 

IMUL BH- Multiply signed byte in AL with signed byte in BH; result in AX. 

• IMUL AX -Multiply AX times AX; result in DX and AX  

• MOV CX, MULTIPLIER - Load signed word in CX 

• MOV AL, MULTIPLICAND-Load signed byte in AL 

 

• CBW-Extend sign of AL into AH 

 

• IMUL CX-Multiply CX with AX; Result in DX and AX 

 

DIV – DIV SOURCE 

 

This instruction is used to divide an unsigned word by a byte or to divide an unsigned double 

word (32 bits) by a word. When a word is divided by a byte, the word must be in the AX 

register. The divisor can be in a register or a memory location. After the division, AL will 

contain the 8-bit quotient, and AH will contain the 8-bit remainder. 

When a double word is divided by a word, the most significant word of the double word 

must be in DX, and the least significant word of the double word must be in AX. After the 

division, AX will contain the 16-bit quotient and DX will contain the 16-bit remainder. If an 

attempt is made to divide by 0 or if the quotient is too large to fit in the destination (greater 

than FFH / FFFFH), the 8086 will generate a type 0 interrupt. All flags are undefined after 

a DIV instruction. 

If you want to divide a byte by a byte, you must first put the dividend byte in AL and fill 

AH with all 0’s. Likewise, if you want to divide a word by another word, then put the 

dividend word in AX and fill DX with all 0’s. 

DIV BL  -Divide word in AX by byte in BL; Quotient in AL, remainder in AH 

DIV CX - Divide down word in DX and AX by word in CX; Quotient in AX, and remainder 



in DX. 

 DIV SCALE [BX]- AX / (byte at effective address SCALE [BX]) if SCALE [BX] 

is of type byte; or (DX and AX) / (word at effective address SCALE[BX] if SCALE[BX] 

is of type word 

 

IDIV – IDIV SOURCE 

 

This instruction is used to divide a signed word by a signed byte, or to divide a signed 

double word by a signed word. 

When dividing a signed word by a signed byte, the word must be in the AX register. The 

divisor can be in an 8-bit register or a memory location. After the division, AL will contain 

the signed quotient, and AH will contain the signed remainder. The sign of the remainder 

will be the same as the sign of the dividend. If an attempt is made to divide by 0, the quotient 

is greater than 127 (7FH) or less than –127 (81H), the 8086 will automatically generate a 

type 0 interrupt. 

When dividing a signed double word by a signed word, the most significant word of the 

dividend (numerator) must be in the DX register, and the least significant word of the 

dividend must be in the AX register. The divisor can be in any other 16-bit register or 

memory location. After the division, AX will contain a signed 16-bit quotient, and DX will 

contain a signed 16-bit remainder. The sign of the remainder will be the same as the sign of 

the dividend. Again, if an attempt is made to divide by 0, the quotient is greater than +32,767 

(7FFFH) or less than –32,767 (8001H), the 8086 will automatically generate a type 0 

interrupt. 

All flags are undefined after an IDIV. 

 

If you want to divide a signed byte by a signed byte, you must first put the dividend byte in 

AL and signextend AL into AH. The CBW instruction can be used for this purpose. 

Likewise, if you want to divide a signed word by a signed word, you must put the dividend 

word in AX and extend the sign of AX to all the bits of DX. The CWD instruction can be 

used for this purpose. 

IDIV BL Signed word in AX/signed byte in BL 

 

IDIV BP Signed double word in DX and AX/signed word in 

BP IDIV BYTE PTR [BX] AX / byte at offset [BX] in DS 

INC – INC Destination 

 

The INC instruction adds 1 to a specified register or to a memory location. AF, OF, PF, SF, 

and ZF are updated, but CF is not affected. This means that if an 8-bit destination containing 

FFH or a 16-bit destination containing FFFFH is incremented, the result will be all 0’s with 



no carry. 

INC BL Add 1 to contains of BL register 

 

INC CX Add 1 to contains of CX register 

 

INC BYTE PTR [BX] Increment byte in data segment at offset contained in BX. 

INC WORD PTR [BX] Increment the word at offset of [BX] and [BX + 1] in the 

data segment. 

 

DEC – DEC DESTINATION 

 

This instruction subtracts 1 from the destination word or byte. The destination can be a 

register or a memory location. AF, OF, SF, PF, and ZF are updated, but CF is not affected. 

This means that if an 8-bit destination containing 00H or a 16-bit destination containing 

0000H is decremented, the result will be FFH or FFFFH with no carry (borrow). 

DEC CL Subtract 1 from content of CL register 

 

DEC BP Subtract 1 from content of BP register 

 

DAA (DECIMAL ADJUST AFTER BCD ADDITION) 

 

This instruction is used to make sure the result of adding two packed BCD numbers is 

adjusted to be a legal BCD number. The result of the addition must be in AL for DAA to 

work correctly. If the lower nibble in AL after an addition is greater than 9 or AF was set by 

the addition, then the DAA instruction will add 6 to the lower nibble in AL. If the result in 

the upper nibble of AL in now greater than 9 or if the carry flag was set by the addition or 

correction, then the DAA instruction will add 60H to AL. 

Let AL = 59 BCD, and BL = 35 BCD 

ADD AL, BL AL = 8EH; lower nibble > 9, add 06H to AL 

 

DAA AL = 94 BCD, CF = 0 

 

Let AL = 88 BCD, and BL = 49 BCD 

 

ADD AL, BL AL = D1H; AF = 1, add 06H to AL 

 

DAA  AL = D7H; upper nibble > 9, add 60H to 

AL AL = 37 BCD, CF = 1 



The DAA instruction updates AF, CF, SF, PF, and ZF; but OF is undefined. 

 

DAS (DECIMAL ADJUST AFTER BCD SUBTRACTION) 

 

This instruction is used after subtracting one packed BCD number from another packed BCD 

number, to make sure the result is correct packed BCD. The result of the subtraction must 

be in AL for DAS to work correctly. If the lower nibble in AL after a subtraction is greater 

than 9 or the AF was set by the subtraction, then the DAS instruction will subtract 6 from 

the lower nibble AL. If the result in the upper nibble is now greater than 9 or if the carry flag 

was set, the DAS instruction will subtract 60 from AL. 

AAA (ASCII ADJUST FOR ADDITION) 

 

Numerical data coming into a computer from a terminal is usually in ASCII code. In this 

code, the numbers 0 to 9 are represented by the ASCII codes 30H to 39H. The 8086 allows 

you to add the ASCII codes for two decimal digits without masking off the “3” in the upper 

nibble of each. After the addition, the AAA instruction is used to make sure the result is 

the correct unpacked BCD. 

AAS (ASCII ADJUST FOR SUBTRACTION) 

 

Numerical data coming into a computer from a terminal is usually in an ASCII code. In this 

code the numbers 0 to 9 are represented by the ASCII codes 30H to 39H. The 8086 allows 

you to subtract the ASCII codes for two decimal digits without masking the “3” in the upper 

nibble of each. The AAS instruction is then used to make sure the result is the correct 

unpacked BCD. 

AAM (BCD ADJUST AFTER MULTIPLY) 

 

Before you can multiply two ASCII digits, you must first mask the upper 4 bit of each. This 

leaves unpacked BCD (one BCD digit per byte) in each byte. After the two unpacked BCD 

digits are multiplied, the AAM instruction is used to adjust the product to two unpacked 

BCD digits in AX. AAM works only after the multiplication of two unpacked BCD bytes, 

and it works only the operand in AL. AAM updates PF, SF and ZF but AF; CF and OF are 

left undefined. 

AAD (BCD-TO-BINARY CONVERT BEFORE DIVISION) 

 

AAD converts two unpacked BCD digits in AH and AL to the equivalent binary number in 

AL. This adjustment must be made before dividing the two unpacked BCD digits in AX by 

an unpacked BCD byte. After the BCD division, AL will contain the unpacked BCD quotient 

and AH will contain the unpacked BCD remainder. AAD updates PF, SF and ZF; AF, CF 

and OF are left undefined. 

 



 

LOGICAL INSTRUCTIONS  

 

AND– AND Destination, Source 

 

This instruction ANDs each bit in a source byte or word with the same numbered bit in a 

destination byte or word. The result is put in the specified destination. The content of the 

specified source is not changed. 

The source can be an immediate number, the content of a register, or the content of a memory 

location. The destination can be a register or a memory location. 

The source and the destination cannot both be memory locations. CF and OF are both 0 after 

AND. PF, SF, and ZF are updated by the AND instruction. AF is undefined. PF has meaning 

only for an 8-bit operand. 

AND CX, [SI] AND word in DS at offset [SI] with word in CX register; 

Result in CX register 

 

AND BH, CL AND byte in CL with byte in BH; Result in BH 

 

AND BX, 00FFH 00FFH Masks upper byte, leaves lower byte unchanged. 

 

OR – OR Destination, Source 

 

This instruction ORs each bit in a source byte or word with the same numbered bit in a 

destination byte or word. The result is put in the specified destination. The content of the 

specified source is not changed. 

The source can be an immediate number, the content of a register, or the content of a memory 

location. The destination can be a register or a memory location. 

The source and destination cannot both be memory locations. CF and OF are both 0 after 

OR. PF, SF, and ZF are updated by the OR instruction. AF is undefined. PF has meaning 

only for an 8-bit operand. 

OR AH, CL                   CL ORed with AH, result in AH, CL not changed 

 

OR BP, SI                      SI ORed with BP, result in BP, SI not changed 

 

OR SI, BP                  BP ORed with SI, result in SI, BP not changed 

 

OR BL, 80H                 BL ORed with immediate number 80H; sets MSB of BL to 1 

OR CX, TABLE [SI]      CX ORed with word from effective address TABLE [SI]; 

Content of memory is not changed. 



 

XOR – XOR Destination, Source 

 

This instruction Exclusive-ORs each bit in a source byte or word with the same numbered 

bit in a destination byte or word. The result is put in the specified destination. The content 

of the specified source is not changed. 

The source can be an immediate number, the content of a register, or the content of a memory 

location. The destination can be a register or a memory location. 

The source and destination cannot both be memory locations. CF and OF are both 0 after 

XOR. PF, SF, and ZF are updated. PF has meaning only for an 8-bit operand. AF is 

undefined. 

XOR CL, BH Byte in BH exclusive-ORed with byte in CL. Result in CL. BH not changed. 

XOR BP, DI                                Word in DI exclusive-ORed with word in BP. Result in BP. DI not changed. 

XOR WORD PTR [BX], 00FFH  Exclusive-OR immediate number 00FFH 

 with word at offset [BX] in the data segment.      Result in memory location [BX] 

 

NOT – NOT Destination 

 

The NOT instruction inverts each bit (forms the 1’s complement) of a byte or word in the 

specified destination. The destination can be a register or a memory location. This instruction 

does not affect any flag. 

NOT BX Complement content or BX register 

 

NOT BYTE PTR [BX] Complement memory byte at offset 

[BX] in data segment. 

NEG – NEG Destination 

 

This instruction replaces the number in a destination with its 2’s complement. The 

destination can be a register or a memory location. It gives the same result as the invert each 

bit and add one algorithm. The NEG instruction updates AF, AF, PF, ZF, and OF. 

NEG AL - Replace number in AL with its 2’s complement 

NEG BX   -      Replace number in BX with its 2’s complement 

NEG BYTE PTR [BX] -Replace byte at offset BX in DX with its 2’s complement  NEG 

WORD PTR [BP ]- Replace word at offset BP in SS with its 2’s complement 

CMP – CMP DESTINATION, SOURCE 

 



This instruction compares a byte / word in the specified source with a byte / word in the 

specified destination. The source can be an immediate number, a register, or a memory 

location. The destination can be a register or a memory location.However, the source and 

the destination cannot both be memory locations. The comparison is actually done by 

subtracting the source byte or word from the destination byte or word. The source and the 

destination are not changed, but the flags are set to indicate the results of the comparison. 

AF, OF, SF, ZF, PF, and CF are updated by the CMP instruction.  

TEST – TEST DESTINATION, SOURCE 

 

This instruction ANDs the byte / word in the specified source with the byte / word in the 

specified destination. Flags are updated, but neither operand is changed. The test instruction 

is often used to set flags before a Conditional jump instruction. 

The source can be an immediate number, the content of a register, or the content of a memory 

location. The destination can be a register or a memory location.The source and the 

destination cannot both be memory locations. CF and OF are both 0’s after TEST. PF, SF 

and ZF will be updated to show the results of the destination. AF is be undefined. 

 

ROTATE AND SHIFT INSTRUCTION 

 

RCL – RCL Destination, Count 

 

This instruction rotates all the bits in a specified word or byte some number of bit positions 

to the left. The operation circular because the MSB of the operand is rotated into the carry 

flag and the bit in the carry flag is rotated around into LSB of the operand. 

 

 

For multi-bit rotates, CF will contain the bit most recently rotated out of the MSB. 

 

The destination can be a register or a memory location. If you want to rotate the operand 

by one bit position, you can specify this by putting a 1 in the count position of the 

instruction. To rotate by more than one bit position, load the desired number into the CL 

register and put “CL” in the count position of the instruction. 

RCL affects only CF and OF. OF will be a 1 after a single bit RCL if the MSB was changed 

by the rotate. OF is undefined after the multi-bit rotate. 

RCR – RCR Destination, Count 

 



This instruction rotates all the bits in a specified word or byte some number of bit positions 

to the right. The operation circular because the LSB of the operand is rotated into the carry 

flag and the bit in the carry flag is rotate around into MSB of the operand. 

 

 

 

For multi-bit rotate, CF will contain the bit most recently rotated out of the LSB. 

 

The destination can be a register or a memory location. If you want to rotate the operand 

by one bit position, you can specify this by putting a 1 in the count position of the 

instruction. To rotate more than one bit position, load the desired number into the CL 

register and put “CL” in the count position of the instruction. 

RCR affects only CF and OF. OF will be a 1 after a single bit RCR if the MSB was 

changed by the rotate. OF is undefined after the multi-bit rotate. 

 

ROL – ROL Destination, Count 

 

This instruction rotates all the bits in a specified word or byte to the left some number of 

bit positions. The data bit rotated out of MSB is circled back into the LSB. It is also copied 

into CF. In the case of multiple-bit rotate, CF will contain a copy of the bit most recently 

moved out of the MSB. 

 

 

 

The destination can be a register or a memory location. If you to want rotate the operand by 

one bit position, you can specify this by putting 1 in the count position in the instruction. To 

rotate more than one bit position, load the desired number into the CL register and put “CL” 

in the count position of the instruction. 

ROL affects only CF and OF. OF will be a 1 after a single bit ROL if the MSB was 

changed by the rotate. 

• ROL AX, 1 Rotate the word in AX 1 bit position left, MSB to LSB 

and CF 

• MOV CL, 04H Load number of bits to rotate in 



CL ROL BL, CL Rotate BL 4 bit positions 

• ROL FACTOR [BX], 1 Rotate the word or byte in DS at EA = 

FACTOR [BX] by 1 bit position left into CF 

ROR – ROR Destination, Count 

 

This instruction rotates all the bits in a specified word or byte some number of bit positions 

to right. The operation is desired as a rotate rather than shift, because the bit moved out of 

the LSB is rotated around into the MSB. The data bit moved out of the LSB is also copied 

into CF. In the case of multiple bit rotates, CF will contain a copy of the bit most recently 

moved out of the LSB. 

 

 

The destination can be a register or a memory location. If you want to rotate the operand by 

one bit position, you can specify this by putting 1 in the count positionin the instruction. To 

rotate by more than one bit position, load the desired number into the CL register and put 

“CL” in the count position of the instruction. 

ROR affects only CF and OF. OF will be a 1 after a single bit ROR if the MSB was changed 

by the rotate. 

SAL – SAL Destination, Count SHL – SHL Destination, Count 

 

SAL and SHL are two mnemonics for the same instruction. This instruction shifts each bit 

in the specified destination some number of bit positions to the left. As a bit is shifted out 

of the LSB operation, a 0 is put in the LSB position. The MSB will be shifted into CF. In 

the case of multi-bit shift, CF will contain the bit most recently shifted out from the MSB. 

Bits shifted into CF previously will be lost. 

 

 

 

The destination operand can be a byte or a word. It can be in a register or in a memory 

location. If you want to shift the operand by one bit position, you can specify this by putting 

a 1 in the count position of the instruction. For shifts of more than 1 bit position, load the 

desired number of shifts into the CL register, and put “CL” in the count position of the 

instruction. 

The flags are affected as follow: CF contains the bit most recently shifted out from MSB. 

For a count of one, OF will be 1 if CF and the current MSB are not the same. For multiple-



bit shifts, OF is undefined. SF and ZF will be updated to reflect the condition of the 

destination. PF will have meaning only for an operand in AL. AF is undefined. 

SAR – SAR Destination, Count 

 

This instruction shifts each bit in the specified destination some number of bit positions 

to the right. As a bit is shifted out of the MSB position, a copy of the old MSB is put in 

the MSB position. In other words, the sign bit is copied into the MSB. The LSB will be 

shifted into CF. In the case of multiple-bit shift, CF will contain the bit most recently 

shifted out from the LSB. Bits shifted into CF previously will be lost. 

 

 

 

The destination operand can be a byte or a word. It can be in a register or in a memory 

location. If you want to shift the operand by one bit position, you can specify this by putting 

a 1 in the count position of the instruction. For shifts of more than 1 bit position, load the 

desired number of shifts into the CL register, and put “CL” in the count position of the 

instruction. 

The flags are affected as follow: CF contains the bit most recently shifted in from LSB. For 

a count of one, OF will be 1 if the two MSBs are not the same. After a multi-bit SAR, OF 

will be 0. SF and ZF will be updated to show the condition of the destination. PF will have 

meaning only for an 8- bit destination. AF will be undefined after SAR. 

 

SHR – SHR Destination, Count 

 

This instruction shifts each bit in the specified destination some number of bit positions to 

the right. As a bit is shifted out of the MSB position, a 0 is put in its place. The bit shifted 

out of the LSB position goes to CF. In the case of multi-bit shifts, CF will contain the bit 

most recently shifted out from the LSB. Bits shifted into CF previously will be lost. 

 

The destination operand can be a byte or a word in a register or in a memory location. If you 

want to shift the operand by one bit position, you can specify this by putting a 1 in the count 

position of the instruction. For shifts of more than 1 bit position, load the desired number of 

shifts into the CL register, and put “CL” in the count position of the instruction. The flags 

are affected by SHR as follow: CF contains the bit most recently shifted out from LSB. For 

a count of one, OF will be 1 if the two MSBs are not both 0’s. For multiple-bit shifts, OF 

will be meaningless. SF and ZF will be updated to show the condition of the destination. PF 

will have meaning only for an 8-bit destination. AF is undefined. 

 



 

 

 

STRING MANIPULATION INSTRUCTIONS 

 

MOVS – MOVS Destination String Name, Source String 

Name 

MOVSB – MOVSB Destination String Name, Source String 

Name 

MOVSW             – MOVSW Destination String Name, Source String Name 

This instruction copies a byte or a word from location in the data segment to a location in 

the extra segment. The offset of the source in the data segment must be in the SI register. 

The offset of the destination in the extra segment must be in the DI register. For multiple-

byte or multiple-word moves, the number of elements to be moved is put in the CX register 

so that it can function as a counter. After the byte or a word is moved, SI and DI are 

automatically adjusted to point to the next source element and the next destination element. 

If DF is 0, then SI and DI will incremented by 1 after a byte move and by 2 after a word 

move. If DF is 1, then SI and DI will be decremented by 1 after a byte move and by 2 after 

a word move. MOVS does not affect any flag. 

 

When using the MOVS instruction, you must in some way tell the assembler whether you 

want to move a string as bytes or as word. There are two ways to do this. The first way is to 

indicate the name of the source and destination strings in the instruction, as, for example. 

MOVS DEST, SRC. The assembler will code the instruction for a byte / word move if they 

were declared with a DB.This instruction copies a byte from a string location pointed to by 

SI to AL, or a word from a string location pointed to by SI to AX. If DF is 0, SI will be 

automatically incremented (by 1 for a byte string, and 2 for a word string) to point to the next 

element of the string. If DF is 1, SI will be automatically decremented (by 1 for a byte string, 

and 2 for a word string) to point to the previous element of the string. LODS does not affect 

any flag. 

Note: The assembler uses the name of the string to determine whether the string is of type 

bye or type word. Instead of using the string name to do this, you can use the mnemonic 

LODSB to tell the assembler that the string is type byte or the mnemonic LODSW to tell the 

assembler that the string is of type word. 

STOS / STOSB / STOSW (STORE STRING BYTE OR STRING WORD) 

 

This instruction copies a byte from AL or a word from AX to a memory location in the extra 

segment pointed to by DI. In effect, it replaces a string element with a byte from AL or a 

word from AX. After the copy, DI is automatically incremented or decremented to point to 



next or previous element of the string. If DF is cleared, then DI will automatically 

incremented by 1 for a byte string and by 2 for a word string. If DI is set, DI will be 

automatically decremented by 1 for a byte string and by 2 for a word string. STOS does not 

affect any flag. 

Note: The assembler uses the string name to determine whether the string is of type byte or 

type word. If it is a byte string, then string byte is replaced with content of AL. If it is a word 

string, then string word is replaced with content of AX. 

 CMPS / CMPSB / CMPSW (COMPARE STRING BYTES OR STRING WORDS) 

This instruction can be used to compare a byte / word in one string with a byte / word in 

another string. SI is used to hold the offset of the byte or word in the source string, and DI 

is used to hold the offset of the byte or word in the destination string. 

The AF, CF, OF, PF, SF, and ZF flags are affected by the comparison, but the two operands 

are not affected. After the comparison, SI and DI will automatically be incremented or 

decremented to point to the next or previous element in the two strings. If DF is set, then SI 

and DI will automatically be decremented by 1 for a byte string and by 2 for a word string. 

If DF is reset, then SI and DI will automatically be incremented by 1 for byte strings and 

by 2 for word strings. The string pointed to by SI must be in the data segment. The string 

pointed to by DI must be in the extra segment. 

The CMPS instruction can be used with a REPE or REPNE prefix to compare all the 

elements of a string. 

 

CONTROL TRANSFER INSTRUCTIONS 

 

JMP (UNCONDITIONAL JUMP TO SPECIFIED DESTINATION) 

This instruction will fetch the next instruction from the location specified in the instruction 

rather than from the next location after the JMP instruction. If the destination is in the same 

code segment as the JMP instruction, then only the instruction pointer will be changed to 

get the destination location. This is referred to as a near jump. If the destination for the jump 

instruction is in a segment with a name different from that of the segment containing the 

JMP instruction, then both the instruction pointer and the code segment registercontent will 

be changed to get the destination location. This referred to as a far jump. The JMP 

instruction does not affect any flag. 

 

JMP CONTINUE  

This instruction fetches the next instruction from address at label CONTINUE. If the label is 

in the same segment, an offset coded as part of the instruction will be added to the instruction 

pointer to produce the new fetch address. If the label is another segment, then IP and CS will 



be replaced with value coded in part of the instruction. This type of jump is referred to as direct 

because the displacement of the destination or the destination itself is specified directly in the 

instruction. 

JMP BX  

This instruction replaces the content of IP with the content of BX. BX must first be loaded 

with the offset of the destination instruction in CS. This is a near jump. It is also referred to 

as an indirect jump because the new value of IP comes from a register rather than from the 

instruction itself, as in a direct jump. 

JMP WORD PTR [BX] This instruction replaces IP with word from a 

memory location pointed to by BX in DX. This is an indirect near jump. 

JMP DWORD PTR [SI] This instruction replaces IP with word pointed to by 

SI in DS. It replaces CS with a word pointed by SI 

+ 2 in DS. This is an indirect far jump. 

 

JAE / JNB / JNC (JUMP IF ABOVE OR EQUAL / JUMP IF NOT BELOW / JUMP 

IF NO CARRY) 

If, after a compare or some other instructions which affect flags, the carry flag is 0, this 

instruction will cause execution to jump to a label given in the instruction. If CF is 1, the 

instruction will have no effect on program execution. 

 

CMP AX, 4371H Compare (AX – 4371H) 

JAE NEXT Jump to label NEXT if AX above 4371H 

CMP AX, 4371H Compare (AX – 4371H) 

JNB NEXT Jump to label NEXT if AX not below 4371H 

ADD AL, BL Add two bytes 

JNC NEXT If the result with in acceptable range, continue 

JB / JC / JNAE (JUMP IF BELOW / JUMP IF CARRY / JUMP IF NOT ABOVE OR 

EQUAL) 

If, after a compare or some other instructions which affect flags, the carry flag is a 1, this 

instruction will cause execution to jump to a label given in the instruction. If CF is 0, the 

instruction will have no effect on program execution. 

 

CMP AX, 4371H Compare (AX – 4371H) 

JB NEXT Jump to label NEXT if AX below 4371H 

ADD BX, CX Add two words 

JC NEXT Jump to label NEXT if CF = 1 



CMP AX, 4371H Compare (AX – 4371H) 

JNAE NEXT Jump to label NEXT if AX not above or 

equal to 4371H 

 

JBE / JNA (JUMP IF BELOW OR EQUAL / JUMP IF NOT ABOVE) 

 

If, after a compare or some other instructions which affect flags, either the zero flag or the 

carry flag is 1, this instruction will cause execution to jump to a label given in the instruction. 

If CF and ZF are both 0, the instruction will have no effect on program execution. 

 

▪ CMP AX, 4371H Compare (AX – 4371H) 

▪ JBE NEXT Jump to label NEXT if AX is below or 

equal to  

▪ 4371H 

▪ CMP AX, 4371H Compare (AX – 4371H) 

▪ JNA NEXT Jump to label NEXT if AX not above 4371H 

CALL (CALL A PROCEDURE) 

 

The CALL instruction is used to transfer execution to a subprogram or a procedure. There 

two basic type of calls near and far. 1. A near call is a call to a procedure, which is in the 

same code segment as the CALL instruction. When the 8086 executes a near CALL 

instruction, it decrements the stack pointer by 2 and copies the offset of the next instruction 

after the CALL into the stack. This offset saved in the stack is referred to as the return 

address, because this is the address that execution will return to after the procedure is 

executed. A near CALL instruction will also load the instruction pointer with the offset of 

the first instruction in the procedure. 

A RET instruction at the end of the procedure will return execution to the offset saved on 

the stack which is copied back to IP. 2. A far call is a call to a procedure, which is in a 

different segment from the one that contains the CALL instruction. 

When the 8086 executes a far call, it decrements the stack pointer by 2 and copies the 

content of the CS register to the stack. It then decrements the stack pointer by 2 again and 

copies the offset of the instruction after the CALL instruction to the stack. Finally, it loads 

CS with the segment base of the segment that contains the procedure, and loads IP with the 

offset of the first instruction of the procedure in that segment. A RET instruction at the end 

of the procedure will return execution to the next instruction after the CALL by restoring 

the saved values of CS and IP from the stack. 

 CALL MULT 

This is a direct within segment (near or intra segment) call. MULT is the name of the 

procedure. The assembler determines the displacement of MULT from the instruction after 



the CALL and codes this displacement in as part of the instruction. 

 

 CALL BX 

This is an indirect within-segment (near or intra-segment) call. BX contains the offset of the 

first instruction of the procedure. It replaces content of IP with content of register BX. 

 

 CALL WORD PTR [BX] 

This is an indirect within-segment (near or intra-segment) call. Offset of the first instruction 

of the procedure is in two memory addresses in DS. Replaces content of IP with content of 

word memory location in DS pointed to by BX. 

 

 CALL DIVIDE 

This is a direct call to another segment (far or inter-segment call). DIVIDE is the name of 

the procedure. The procedure must be declared far with DIVIDE PROC FAR at its start. 

The assembler will determine the code segment base for the segment that contains the 

procedure and the offset of the start of the procedure. It will put these values in as part of 

the instruction code. 

 

 CALL DWORD PTR [BX] 

This is an indirect call to another segment (far or inter-segment call). New values for CS 

and IP are fetched from four-memory location in DS. The new value for CS is fetched from 

[BX] and [BX + 1]; the new IP is fetched from [BX 

+ 2] and [BX +3]. 

 

RET (RETURN EXECUTION FROM PROCEDURE TO CALLING PROGRAM) 

 

The RET instruction will return execution from a procedure to the next instruction after the 

CALL instruction which was used to call the procedure. If the procedure is near procedure (in 

the same code segment as the CALL instruction), then the return will be done by replacing the 

IP with a word from the top of the stack. The word from the top of the stack is the offset of the 

next instruction after the CALL. This offset was pushed into the stack as part of the operation 

of the CALL instruction. The stack pointer will be incremented by 2 after the return address is 

popped off the stack. 

If the procedure is a far procedure (in a code segment other than the one from which it is 

called), then the instruction pointer will be replaced by the word at the top of the stack. This 

word is the offset part of the return address put there by the CALL instruction. The stack 

pointer will then be incremented by 2. The CS register is then replaced with a word from 

the new top of the stack. This word is the segment base part of the return address that was 

pushed onto the stack by a far call operation.After this, the stack pointer is again incremented 

by 2.A RET instruction can be followed by a number, for example, RET 6. In this case, the 



stack pointer will be incremented by an additional six addresses after the IP when the IP 

and CS are popped off the stack. This form is used to increment the stack pointer over 

parameters passed to the procedure on the stack.The RET instruction does not affect any 

flag. 

 

II. PROCESS CONTROL INSTRUCTIONS 

 

STC (SET CARRY FLAG) 

• This instruction sets the carry flag to 1. It does not affect any other flag. 

 

CLC (CLEAR CARRY FLAG) 

• This instruction resets the carry flag to 0. It does not affect any other flag. 

 

CMC (COMPLEMENT CARRY FLAG) 

• This instruction complements the carry flag. It does not affect any other flag. 

 

STD (SET DIRECTION FLAG) 

• This instruction sets the direction flag to 1. It does not affect any other flag. 

 

CLD (CLEAR DIRECTION FLAG) 

• This instruction resets the direction flag to 0. It does not affect any other flag. 

 

STI (SET INTERRUPT FLAG) 

• Setting the interrupt flag to a 1 enables the INTR interrupt input of the 8086. The 

instruction will not take affect until the next instruction after STI. When the INTR 

input is enabled, an interrupt signal on this input will then cause the 8086 to interrupt 

program execution, push the return address and flags on the stack, and execute an 

interrupt service procedure. An IRET instruction at the end of the interrupt service 

procedure will restore the return address and flags that were pushed onto the stack 

and return execution to the interrupted program. STI does not affect any other flag. 

 

CLI (CLEAR INTERRUPT FLAG) 

• This instruction resets the interrupt flag to 0. If the interrupt flag is reset, the 8086 

will not respond to an interrupt signal on its INTR input. The CLI instructions, 

however, has no effect on the non-maskable interrupt input, NMI. It does not affect 

any other flag. 

 

HLT (HALT PROCESSING) 

• The HLT instruction causes the 8086 to stop fetching and executing instructions. 



The 8086 will enter a halt state. The different ways to get the processor out of the 

halt state are with an interrupt signal on the INTR pin, an interrupt signal on the 

NMI pin, or a reset signal on the RESET input. 

 

NOP (PERFORM NO OPERATION) 

• This instruction simply uses up three clock cycles and increments the instruction 

pointer to point to the next instruction. The NOP instruction can be used to increase 

the delay of a delay loop. When hand coding, a NOP can also be used to hold a place 

in a program for an instruction that will be added later. NOP does not affect any 

flag. 

 

ESC (ESCAPE) 

• This instruction is used to pass instructions to a coprocessor, such as the 8087 Math 

coprocessor, which shares the address and data bus with 8086. Instructions for the 

coprocessor are represented by a 6-bit code embedded in the ESC instruction. As 

the 8086 fetches instruction bytes, the coprocessor also fetches these bytes from the 

data bus and puts them in its queue. 

• However, the coprocessor treats all the normal 8086 instructions as NOPs. When 

8086 fetches an ESC instruction, the coprocessor decodes the instruction and 

carries out the action specified by the 6-bit code specified in the instruction. In most 

cases, the 8086 treats the ESC instruction as a NOP. In some cases, the 8086 will 

access a data item in memory for the coprocessor. 

 

 

Program for find the ADDITION of two 

numbers: 

Program for find the SUBTRACTION of 

two numbers: 

MOV AX,05 MOV AX,05 

ADD AX,BX 

MOV SI,8000 

MOV [SI],AX 

INT 03 

SUB AX,BX 

MOV SI,8000 

MOV [SI],AX 

INT 03 

  

Program for find the MULTIPLICATION 

of two numbers: 

Program for find the DIVISION of two 

numbers: 

MOV AX,05 MOV AX,05 

MOV BX,03 MOV BX,03 

MUL BX DIV BX 

MOV SI,8000 MOV SI,8000 



MOV [SI],AX MOV [SI],AX 

INT 03 INT 03 

Program for find the GREATEST OF 2- 

NUMBERS: 

Program for find the AVERAGE OF N- 

NUMBERS: 

MOV AX,04 MOV AX,0000 

MOV BX,05 MOV SI,8000 

CMP AX,BX MOV DI,8020 

JNC LABEL1 MOV CX,5 

MOV SI,8001 LABLE1: ADD AX,[SI] 

MOV [SI],AX INC SI 

LABEL1: MOV [SI],BX INC SI 

INT 03 LOOP LABLE1 

 
DIV CX 

 
MOV [DI],AX 

 
 

 
INT 03 

Program for find the SUM OF N- 

NUMBERS: 

Program for find the find the factorial of a 

number 

MOV SI,8000 MOV SI,8000 

MOV CX,[SI] MOV BX[SI] 

MOV AX,0000 MOV AX,01 

MOV BX,ax LABEL1: MUL BX 

LABEL1: INC BX DEC BX 

ADD AX,BX JNZ LABEL1 

CMP BX,CX MOV DI,8050 

JNZ LABEL1 MOV [DI],AX 

MOV DI,8010 INT 03 

MOV [DI],AX 
 

INT 03 
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8255 - PROGRAMMABLE PERIPHERAL INTERFACE (PPI ) 

 

The Intel 8255 (or i8255) Programmable Peripheral Interface (PPI) chip is a peripheral chip, 

is used to give the CPU access to programmable parallel I/O. It can be programmable to transfer 

data under various conditions from simple I/O to interrupt I/O. it is flexible versatile and 

economical (when multiple I/O ports are required) but somewhat complex. It is an important 

general purpose I/O device that can be used with almost any microprocessor. 

 

 

 

 

Fig 3.1: Pin diagram of 8255 

 

 

FUNCTIONAL BLOCK OF 8255 – PROGRAMMABLE PERIPHERAL INTERFACE 

(PPI) 

https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Input/output
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The 8255A has 24 I/O pins that can be grouped primarily in two 8-bit parallel ports: A and B 

with the remaining eight bits as port C. The eight bits of port C can be used as individual bits 

or be grouped in to 4-bit ports: CUpper (Cu) and CLower (CL) as in Figure 2. The function of 

these ports is defined by writing a control word in the control register as shown in Figure 3 

 

 

 

 

Fig 3.2. Block diagram of 8255 
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Fig 3.3 Control word Register format 

 

DATA BUS BUFFER 

This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system data bus. 

Data is transmitted or received by the buffer upon execution of input or output instructions by 

the CPU. Control words and status information are also transferred through the data bus buffer. 

 

READ/WRITE AND CONTROL LOGIC 

 

The function of this block is to manage all of the internal and external transfers of both Data 

and Control or Status words. It accepts inputs from the CPU Address and Control busses and 

in turn, issues commands to both of the Control Groups. 

 

(CS) Chip Select. A "low" on this input pin enables the communication between the 8255 and 

the CPU. 

 

(RD) Read. A "low" on this input pin enables 8255 to send the data or status information to the 
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CPU on the data bus. In essence, it allows the CPU to "read from" the 8255. 

(WR) Write. A "low" on this input pin enables the CPU to write data or control words into the 

8255. 

 

(A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the RD 

and WR inputs, control the selection of one of the three ports or the control word register. They 

are normally connected to the least significant bits of the address bus (A0 and A1). 

 

(RESET) Reset. A "high" on this input initializes the control register to 9Bh and all ports (A, 

B, C) are set to the input mode. 

 

A1 A0 SELECTION 

0 0 PORT A 

0 1 PORT B 

1 0 PORT C 

1 1 CONTROL 

 

GROUP A AND GROUP B CONTROLS 

 

The functional configuration of each port is programmed by the systems software. In essence, 

the CPU "outputs" a control word to the 8255. The control word contains information such as 

"mode", "bit set", "bit reset", etc., that initializes the functional configuration of the 8255. Each 

of the Control blocks (Group A and Group B) accepts "commands" from the Read/Write 

Control logic, receives "control words" from the internal data bus and issues the proper 

commands to its associated ports. 

 

PORTS A, B, AND C 

 

The 8255 contains three 8-bit ports (A, B, and C). All can be configured to a wide variety of 

functional characteristics by the system software but each has its own special features or 

"personality" to further enhance the power and flexibility of the 8255. 

 

Port A One 8-bit data output latch/buffer and one 8-bit data input latch. Both "pull-up" and 

"pull-down" bus-hold devices are present on Port A. 

 

Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer. 
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Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input). 

This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains 

a 4-bit latch and it can be used for the control signal output and status signal inputs in 

conjunction with ports A and B. 

 

OPERATIONAL MODES OF 8255 

 

There are two basic operational modes of 8255: 

 

• Bit set/reset Mode (BSR Mode). 

• Input/Output Mode (I/O Mode). 

 

The two modes are selected on the basis of the value present at the D7 bit of the Control Word 

Register. When D7 = 1, 8255 operates in I/O mode and when D7 = 0, it operates in the BSR 

mode. 

 

1. BIT SET/RESET (BSR) MODE 

 

The Bit Set/Reset (BSR) mode is applicable to port C only. Each line of port C (PC0 - PC7) can 

be set/reset by suitably loading the control word register as shown in Figure 4. BSR mode and 

I/O mode are independent and selection of BSR mode does not affect the operation of other 

ports in I/O mode. 

 

 

 

 

Fig 3.4: 8255 Control register format for BSR mode 
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• D7 bit is always 0 for BSR mode. 

• Bits D6, D5 and D4 are don't care bits. 

• Bits D3, D2 and D1 are used to select the pin of Port C. 

• Bit D0 is used to set/reset the selected pin of Port C. 

• Selection of port C pin is determined as follows: 

 

 

B3 B2 B1 Bit/pin of port C selected 

0 0 0 PC0 

0 0 1 PC1 

0 1 0 PC2 

0 1 1 PC3 

1 0 0 PC4 

1 0 1 PC5 

1 1 0 PC6 

1 1 1 PC7 

 

As an example, if it is needed that PC5 be set, then in the control word, 

 

1. Since it is BSR mode, D7 = '0'. 

2. Since D4, D5, D6 are not used, assume them to be '0'. 

3. PC5 has to be selected, hence, D3 = '1', D2 = '0', D1 = '1'. 

4. PC5 has to be set, hence, D0 = '1'. 

 

Thus, as per the above values, 0B (Hex) will be loaded into the Control Word Register (CWR). 

 

2. INPUT/OUTPUT MODE 

 

This mode is selected when D7 bit of the Control Word Register is 1. There are three I/O modes: 

 

1. Mode 0 - Simple I/O 

2. Mode 1 - Strobed I/O 

3. Mode 2 - Strobed Bi-directional I/O 

D7 D6 D5 D4 D3 D2 D1 D0 

0 0 0 0 1 0 1 1 
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Figure 3. 5: 8255 Control word for I/O mode 

 

• D0, D1, D3, D4 are assigned for lower port C, port B, upper port C and port A 

respectively. When these bits are 1, the corresponding port acts as an input port. For 

e.g., if D0 = D4 = 1, then lower port C and port A act as input ports. If these bits are 0, 

then the corresponding port acts as an output port. For e.g., if D1 = D3 

= 0, then port B and upper port C act as output ports as shown in Figure 5. 

• D2 is used for mode selection of Group B (port B and lower port C). When D2 = 0, 

mode 0 is selected and when D2 = 1, mode 1 is selected. 

• D5& D6 are used for mode selection of Group A ( port A and upper port C). The 

selection is done as follows: 

 

• D

6 

• D

5 

• M

o

d

e 

• 0 • 0 • 0 

• 0 • 1 • 1 

• 1 • X • 2 

 

• As it is I/O mode, D7 = 1. 
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For example, if port B and upper port C have to be initialized as input ports and lower port C 

and port A as output ports (all in mode 0): 

 

1. Since it is an I/O mode, D7 = 1. 

2. Mode selection bits, D2, D5, D6 are all 0 for mode 0 operation. 

3. Port B and upper port C should operate as Input ports, hence, D1 = D3 = 1. 

4. Port A and lower port C should operate as Output ports, hence, D4 = D0 = 0. 

 

Hence, for the desired operation, the control word register will have to be loaded with 

"10001010" = 8A (hex). 

 

➢ Mode 0 - simple I/O 

 

In this mode, the ports can be used for simple I/O operations without handshaking signals. Port 

A, port B provide simple I/O operation. The two halves of port C can be either used together 

as an additional 8-bit port, or they can be used as individual 4-bit ports. Since the two halves 

of port C are independent, they may be used such that one- half is initialized as an input port 

while the other half is initialized as an output port. 

 

The input/output features in mode 0 are as follows: 

 

1. Output ports are latched. 

2. Input ports are buffered, not latched. 

3. Ports do not have handshake or interrupt capability. 

4. With 4 ports, 16 different combinations of I/O are possible. 

 

➢ Mode 0 – input mode 

 

• In the input mode, the 8255 gets data from the external peripheral ports and the CPU 

reads the received data via its data bus. 

• The  CPU first  selects the  8255  chip by making CS low. Then it selects the 

desired port using A0 and A1 lines. 

• The  CPU  then  issues  an RD signal to read the data from the external 

peripheral device via the system data bus. 

 

 

➢ Mode 0 - output mode 

 



10  

• In the output mode, the CPU sends data to 8255 via system data bus and then the 

external peripheral ports receive this data via 8255 port. 

• CPU first selects the 8255 chip by making CS low. It then selects the desired  port using 

A0 and A1 lines. 

CPU then issues a WR signal to write data to the selected port via the system data bus. This 

data is then received by the external peripheral device connected to the selected port. 

➢ Mode 1 

 

When we wish to use port A or port B for handshake (strobed) input or output operation, we 

initialize that port in mode 1 (port A and port B can be initialized to operate in different modes, 

i.e., for e.g., port A can operate in mode 0 and port B in mode 1). Some of the pins of port C 

function as handshake lines. 

 

For port B in this mode (irrespective of whether is acting as an input port or output port), PC0, 

PC1 and PC2 pins function as handshake lines. 

 

If port A is initialized as mode 1 input port, then, PC3, PC4 and PC5 function as handshake 

signals. Pins PC6 and PC7 are available for use as input/output lines. 

 

The mode 1 which supports handshaking has following features: 

 

1. T

wo ports i.e. port A and B can be used as 8-bit i/o ports. 

2. E

ach port uses three lines of port c as handshake signal and remaining two signals can 

be used as i/o ports. 

3. I

nterrupt logic is supported. 

4. I

nput and Output data are latched. 

 

INPUT HANDSHAKING SIGNALS 

 

1. IBF (Input Buffer Full) - It is an output indicating that the input latch contains 

information. 

2. STB (Strobed Input) - The strobe input loads data into the port latch, which holds 

the information until it is input to the microprocessor via the IN instruction. 
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3. INTR (Interrupt request) - It is an output that requests an interrupt. The INTR pin 

becomes a logic 1 when the STB input returns to a logic 1, and is cleared when the 

data are input from the port by the microprocessor. 

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit 

programmed via the port PC4(port A) or PC2(port B) bit position. 

 

OUTPUT HANDSHAKING SIGNALS 

 

• OBF (Output Buffer Full) - It is an output that goes low whenever data are 

output(OUT) to the port A or port B latch. This signal is set to a logic 1 whenever 

the ACK pulse returns from the external device. 

• ACK (Acknowledge)-It causes the OBF pin to return to a logic 1 level. The ACK 

signal is a response from an external device, indicating that it has received the data 

from the 82C55 port. 

• INTR (Interrupt request) - It is a signal that often interrupts the microprocessor 

when the external device receives the data via the signal. this pin is qualified by 

the internal INTE(interrupt enable) bit. 

• INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit 

programmed to enable or disable the INTR pin. The INTE A bit is programmed 

using the PC6 bit and INTE B is programmed using the PC2 bit. 

➢ Mode 2 

 

Only group A can be initialized in this mode. Port A can be used for bidirectional handshake 

data transfer. This means that data can be input or output on the same eight lines (PA0 - PA7). 

Pins PC3 - PC7 are used as handshake lines for port A. The remaining pins of port C (PC0 - 

PC2) can be used as input/output lines if group B is initialized in mode 0 or as handshaking for 

port B if group B is initialized in mode 1. In this mode, the 8255 may be used to extend the 

system bus to a slave microprocessor  or to transfer data bytes to and from a floppy disk 

controller. Acknowledgement and handshaking signals are provided to maintain proper data 

flow and synchronisation between the data transmitter and receiver. 

https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Floppy_disk
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INTERFACING 8255 WITH 8085 PROCESSOR 

 

 

Fig 3.6. Interfacing 8255 with 8085 processor 

 

• The 8255 can be either memory mapped or I/O mapped in the system. In the schematic 

shown in above is I/O mapped in the system. 

 

• Using a 3-to-8 decoder generates the chip select signals for I/O mapped devices. 

 

• The address lines A4, A5 and A6 are decoded to generate eight chip select signals 

(IOCS-0 to IOCS-7) and in this, the chip select IOCS- 1 is used to select 8255 as 

shown in Figure 6. 

 

• The address line A7 and the control signal IO/M (low) are used as enable for the 

decoder. 
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• The address line A0 of 8085 is connected to A0 of 8255 and A1 of 8085 is connected 

to A1 of 8255 to provide the internal addresses. 

 

• The data lines D0-D7 are connected to D0-D7 of the processor to achieve parallel data 

transfer. 

 

• The I/O addresses allotted to the internal devices of 8255 are listed in table. 

 

8279 - KEYBOARD/DISPLAY CONTROLLER 

 

The Intel 8279 is a Keyboard/Display Controller is specially developed for interfacing 

keyboard and display devices for the Intel 8085, 8086 and 8088 microprocessors. Its important 

features are: 

 

• Simultaneous keyboard and display operations. 

• Scanned keyboard mode. 

• Scanned sensor mode. 

• 8-character keyboard FIFO. 

• Right or left entry 16-byte display RAM. 

• Programmable scan timing. 

 

 

 

 

 

PIN DETAILS OF 8279 

https://en.wikipedia.org/wiki/Intel_8085
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Figure3. 7 : Pin diagram of 8279 

 

•  A0: Selects data (0) or control/status (1) for reads and writes between micro and 8279. 

• BD: Output that blanks the displays. 

• CLK: Used internally for timing. Max is 3 MHz. 

• CN/ST: Control/strobe, connected to the control key on the keyboard. 

• CS: Chip select that enables programming, reading the keyboard, etc. 

• DB7-DB0: Consists of bidirectional pins that connect to data bus on micro. 

• IRQ: Interrupt request, becomes 1 when a key is pressed, data is available. 

• OUT A3-A0/B3-B0: Outputs that sends data to the most significant/least significant 

nibble of display as shown in Figure 7. 

• RD(WR): Connects to micro's IORC or RD signal, reads data/status registers. 

• RESET: Connects to system RESET. 

• RL7-RL0: Return lines are inputs used to sense key depression in the  keyboard matrix. 
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• Shift: Shift connects to Shift key on keyboard. 

• SL3-SL0: Scan line outputs scan both the keyboard and displays. 

 

BLOCK DIAGRAM OF 8279: 

 

The functional block diagram of 8279 is as shown in Figure 8. 

 

Figure 3,8 :Block diagram of 8279 

 

• The four major sections of 8279 are keyboard, scan, display and CPU 

interface.Keyboard Section: 

 

• The keyboard section consists of eight return lines RL0 - RL7 that can be used to form 

the columns of a keyboard matrix. 

• It has two additional input : shift and control/strobe. The keys are automatically 

debounced. 

• The two operating modes of keyboard section are 2-key lockout and N-key rollover. 

• In the 2-key lockout mode, if two keys are pressed simultaneously, only the first key 

is recognized. 

• In the N-key rollover mode simultaneous keys are recognized and their codes are 

stored in FIFO. 

• The keyboard section also have an 8 x 8 FIFO (First In First Out) RAM. 
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• The FIFO can store eight key codes in the scan keyboard mode. The status of the shift 

key and control key are also stored along with key code. The 8279 generate an 

interrupt signal when there is an entry in FIFO. The format of key code entry in FIFO 

for scan keyboard mode is, 

 

• In sensor matrix mode the condition (i.e., open/close status) of 64 switches is stored 

in FIFO RAM. If the condition of any of the switches changes then the 8279 asserts 

IRQ as high to interrupt the processor. 

 

DISPLAY SECTION: 

 

• The display section has eight output lines divided into two groups A0-A3 and B0- B3. 

• The output lines can be used either as a single group of eight lines or as two groups of 

four lines, in conjunction with the scan lines for a multiplexed display. 

• The output lines are connected to the anodes through driver transistor in case of 

common cathode 7-segment LEDs. 

• The cathodes are connected to scan lines through driver transistors. 

     The display can be blanked by BD (low) line. 

• The display section consists of 16 x 8 display RAM. The CPU can read from or write 

into any location of the display RAM. 

 

SCAN SECTION: 

 

• The scan section has a scan counter and four scan lines, SL0 to SL3. 

• In decoded scan mode, the output of scan lines will be similar to a 2-to-4 decoder. 

• In encoded scan mode, the output of scan lines will be binary count, and so an external 

decoder should be used to convert the binary count to decoded output. 

• The scan lines are common for keyboard and display. 

• The scan lines are used to form the rows of a matrix keyboard and also connected to 

digit drivers of a multiplexed display, to turn ON/OFF. 
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CPU INTERFACE SECTION: 

 

• The CPU interface section takes care of data transfer between 8279 and the processor. 

• This section has eight bidirectional data lines DB0 to DB7 for data transfer between 

8279 and CPU. 

• It requires two internal address A =0 for selecting data buffer and A = 1 for selecting 

control register of8279. 

• The control signals WR (low), RD (low), CS (low) and A0 are used for read/write to 

8279. 

• It has an interrupt request line IRQ, for interrupt driven data transfer with processor. 

• The 8279 require an internal clock frequency of 100 kHz. This can be obtained by 

dividing the input clock by an internal prescaler. 

• The RESET signal sets the 8279 in 16-character display with two -key lockout 

keyboard modes. 

 

PROGRAMMING THE 8279: 

 

The 8279 can be programmed to perform various functions through eight command words. 

INTERFACING OF 8279 WITH 8085 

 

In a microprocessor b system, when keyboard and 7-segment LED display is interfaced using 

ports or latches then the processor has to carry the following task. 

 

• Keyboard scanning 

• Key debouncing 

• Key code generation 

• Sending display code to LED 

• Display refreshing 

 

 

 

 

INTERFACING 8279 WITH 8085 PROCESSOR: 
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Fig 3.9: keyboard and display interface with 8085 using 8279 

 

• A typical Hexa keyboard and 7-segment LED display interfacing circuit using 

8279 is shown in figure 9. 

 

• The circuit can be used in 8085 microprocessor system and consist of 16 numbers 

of hexa-keys and 6 numbers of 7-segment LEDs. 

 

• The 7-segment LEDs can be used to display six digit alphanumeric character. 

 

• The 8279 can be either memory mapped or I/O mapped in the system. In the 

circuit shown is the 8279 is I/O mapped. 

 

The address line A0 of the system is used as A0 of 8279. 

The clock signal for 8279 is obtained by dividing the output clock signal of 8085 by a clock 

driver circuit 

• The chip select signal is obtained from the I/O address decoder of the 8085 

system. 

• Chip select signals for I/O mapped devices are generated by using a 3-to-8 
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decoder. 

• The address lines A4, A5 and A6 are used as input to decoder. The address line 

A7 and the control signal IO/M (low) are used as enable for decoder 

• The chip select signal IOCS-3 is used to select 8279. 

• The I/O address of the internal devices of 8279 are shown in table. 

 

• The circuit has 6 numbers of 7-segment LEDs and so the 8279 has to be 

programmed in encoded scan. (Because in decoded scan, only 4 numbers of 7- 

segment LEDs can be interfaced) 

 

• In encoded scan the output of scan lines will be binary count. Therefore an 

external, 3-to-8 decoder is used to decode the scan lines SL0, SL1 and SL2 of 

8279 to produce eight scan lines S0 to S7. 

 

• The decoded scan lines S0 and S1 are common for keyboard and display. 

 

• The decoded scan lines S2 to S5 are used only for display and the decoded scan 

lines S6 and S7 are not used in the system. 

 

• Anode and Cathode drivers are provided to take care of the current requirement 

of LEDs. 

 

• The pnp transistors, BC 158 are used as driver transistors. 

 

• The anode drivers are called segment drivers and cathode drivers are called digit 

drivers. 

• he 8279 output the display code for one digit through its output lines (OUT A0 

to OUT A3 and OUT B0 to OUT B3) and send a scan code through, SL0- SL3. 

 

• The display code is inverted by segment drivers and sent to segment bus. 

 

• The scan code is decoded by the decoder and turns ON the corresponding digit 

driver. Now one digit of the display character is displayed. After a small interval 
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(10 millisecond, typical), the display is turned OFF (i.e., display is blanked) and 

the above process is repeated for next digit. Thus multiplexed display is 

performed by 8279. 

 

• The keyboard matrix is- formed using the return lines, RL0 to RL3 of 8279 as 

columns and decoded scan lines S0 and S1 as rows. 

 

• A hexa key is placed at the crossing point of each row and column. A key press 

will short the row and column. Normally the column and row line will be high. 

 

• During scanning the 8279 will output binary count on SL0 to SL3, which is 

decoded by decoder to make a row as zero. When a row is zero the 8279 reads 

the columns. If there is a key press then the corresponding column will be zero. 

 

• If 8279 detects a key press then it wait for debounce time and again read the 

columns to generate key code. 

 

• In encoded scan keyboard mode, the 8279 stores an 8-bit code for each valid key 

press. The keycode consist of the binary value of the column and row in which 

the key is found and the status of shift and control key. 

 

• After a scan time, the next row is made zero and the above process is repeated 

and so on. Thus 8279 continuously scan the keyboard. 
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USART 8251 (UNIVERSAL SYNCHRONOUS/ ASYNCHRONOUS RECEIVER 

TRANSMITTER) 

 

Figure 3.10 : Architecture of 8251 

 

The 8251 is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial 

data communication. As a peripheral device of a microcomputer system, the 8251 receives 

parallel data from the CPU and transmits serial data after conversion. This device also receives 

serial data from the outside and transmits parallel data to the CPU after conversion as shown 

in Figure 3.10. 

 

TRANSMITTER SECTION 

 

The transmitter section consists of three blocks—transmitter buffer register, output register and 

the transmitter control logic block. The CPU deposits (when TXRDY = 1, meaning that the 

transmitter buffer register is empty) data into the transmitter buffer register, which is 

subsequently put into the output register (when TXE = 1, meaning that the output buffer is 

empty). In the output register, the eight bit data is converted into serial form and comes out via 

TXD pin. The serial data bits are preceded by START bit and succeeded by STOP bit, which 
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are known as framing bits. But this happens only if transmitter is enabled and the CTS is low. 

TXC signal is the transmitter clock signal which controls the bit rate on the TXD line (output 

line). This clock frequency can be 1, 16 or 64 times the baud. 

 

RECEIVER SECTION 

 

The receiver section consists of three blocks — receiver buffer register, input register and the 

receiver control logic block. Serial data from outside world is delivered to the input register via 

RXD line, which is subsequently put into parallel form and placed in the receiver buffer 

register. When this register is full, the RXRDY (receiver ready) line becomes high. This line 

is then used either to interrupt the MPU or to indicate its own status. MPU then accepts the 

data from the register. RXC line stands for receiver clock. This clock signal controls the rate 

at which bits are received by the input register. The clock can be set to 1, 16 or 64 times the 

baud in the asynchronous mode. 

 

 

Fig 3.11 : Pin Configuration of 8251 

 

Pin Configuration of 8251 is shown in figure 11. D 0 to D 7 (l/O terminal) 

This is bidirectional data bus which receive control words and transmits data from the CPU  

and sends status words and received data to CPU. 

 

RESET (INPUT TERMINAL) 
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A "High" on this input forces the 8251 into "reset status." The device waits for the writing of 

"mode instruction." The min. reset width is six clock inputs during the operating status of CLK. 

 

CLK (INPUT TERMINAL) 

 

CLK signal is used to generate internal device timing. CLK signal is independent of RXC or 

TXC. However, the frequency of CLK must be greater than 30 times the RXC and TXC at 

Synchronous mode and Asynchronous "x1" mode, and must be greater than 5 times at 

Asynchronous "x16" and "x64" mode. 

 

WR (INPUT TERMINAL) 

 

This is the "active low" input terminal which receives a signal for writing transmit data and 

control words from the CPU into the 8251. 

 

RD (INPUT TERMINAL) 

 

This is the "active low" input terminal which receives a signal for reading receive data and 

status words from the 8251. 

 

C/D (INPUT TERMINAL) 

 

This is an input terminal which receives a signal for selecting data or command words and 

status words when the 8251 is accessed by the CPU. If C/D = low, data will be accessed. If 

C/D = high, command word or status word will be accessed. 

 

CS (INPUT TERMINAL) 

 

This is the "active low" input terminal which selects the 8251 at low level when the CPU 

accesses. Note: The device won’t be in "standby status"; only setting CS = High. 

 

TXD (OUTPUT TERMINAL) 

 

This is an output terminal for transmitting data from which serial-converted data is sent out. 

The device is in "mark status" (high level) after resetting or during a status when transmit is 

disabled. It is also possible to set the device in "break status" (low level) by a command. 

 

TXRDY (OUTPUT TERMINAL) 
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This is an output terminal which indicates that the 8251is ready to accept a transmitted data 

character. But the terminal is always at low level if CTS = high or the device was set in "TX 

disable status" by a command. Note: TXRDY status word indicates that transmit data character 

is receivable, regardless of CTS or command. If the CPU writes a data character, TXRDY will 

be reset by the leading edge or WR signal. 

 

TXEMPTY (OUTPUT TERMINAL) 

 

This is an output terminal which indicates that the 8251 has transmitted all the characters and 

had no data character. In "synchronous mode," the terminal is at high level, if transmit data 

characters are no longer remaining and sync characters are automatically transmitted. If the 

CPU writes a data character, TXEMPTY will be reset by the leading edge of WR signal. Note 

: As the transmitter is disabled by setting CTS "High" or command, data written before disable 

will be sent out. Then TXD and TXEMPTY will be "High". Even if a data is written after 

disable, that data is not sent out and TXE will be "High".After the transmitter is enabled, it sent 

out. (Refer to Timing Chart of Transmitter Control and Flag Timing) 

 

TXC (INPUT TERMINAL) 

 

This is a clock input signal which determines the transfer speed of transmitted data. In 

"synchronous mode," the baud rate will be the same as the frequency of TXC. In "asynchronous 

mode", it is possible to select the baud rate factor by mode instruction. It can be 1, 1/16 or 1/64 

the TXC. The falling edge of TXC sifts the serial data out of the 8251. 

 

RXD (INPUT TERMINAL) 

 

This is a terminal which receives serial data. RXRDY (Output terminal) 

This is a terminal which indicates that the 8251 contains a character that is ready to READ. If 

the CPU reads a data character, RXRDY will be reset by the leading edge of RD signal. Unless 

the CPU reads a data character before the next one is received completely, the preceding data 

will be lost. In such a case, an overrun error flag status word will be set. 

 

RXC (INPUT TERMINAL) 

 

This is a clock input signal which determines the transfer speed of received data. In 

"synchronous mode," the baud rate is the same as the frequency of RXC. In "asynchronous 

mode," it is possible to select the baud rate factor by mode instruction. It can be 1, 1/16, 1/64 

the RXC. 
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SYNDET/BD (INPUT OR OUTPUT TERMINAL) 

 

This is a terminal whose function changes according to mode. In "internal synchronous mode." 

this terminal is at high level, if sync characters are received and synchronized. If a status word 

is read, the terminal will be reset. In "external synchronous mode, "this is an input terminal. A 

"High" on this input forces the 8251 to start receiving data characters. 

 

In "asynchronous mode," this is an output terminal which generates "high level"output upon 

the detection of a "break" character if receiver data contains a "low-level" space between the 

stop bits of two continuous characters. The terminal will be reset, if RXD is at high level. After 

Reset is active, the terminal will be output at low level. 

 

DSR (INPUT TERMINAL) 

 

This is an input port for MODEM interface. The input status of the terminal can be recognized 

by the CPU reading status words. 

 

DTR (OUTPUT TERMINAL) 

 

This is an output port for MODEM interface. It is possible to set the status of DTR by a 

command. 

 

CTS (INPUT TERMINAL) 

 

This is an input terminal for MODEM interface which is used for controlling a transmit circuit. 

The terminal controls data transmission if the device is set in "TX Enable" status by a 

command. Data is transmitable if the terminal is at low level. 

 

RTS (OUTPUT TERMINAL) 

 

This is an output port for MODEM interface. It is possible to set the status RTS by a command. 

 

 

 

The 8251 functional configuration is programmed by software. Operation between the 8251 

and a CPU is executed by program control. Table 1 shows the operation between a CPU and 

the device. 
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SUMMARY OF CONTROL SIGNALS FOR 8251 

 

 

CONTROL WORDS 

 

There are two types of control word. 

 

1. Mode instruction (setting of function) 

 

2. Command (setting of operation) 

 

MODE INSTRUCTION 

 

Mode instruction is used for setting the function of the 8251. Mode instruction will be in "wait 

for write" at either internal reset or external reset. That is, the writing of a control word after 

resetting will be recognized as a "mode instruction." 

 

Items set by mode instruction are as follows: 

 

• Synchronous/asynchronous mode 

• Stop bit length (asynchronous mode) 

• Character length 

• Parity bit 

• Baud rate factor (asynchronous mode) 

• Internal/external synchronization (synchronous mode) 

 

• Number of synchronous characters (Synchronous mode) 

 

The bit configuration of mode instruction is shown in Figures 12 and 13. In the case of 

synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters 
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were written, a function will be set because the writing of sync characters constitutes part of 

mode instruction. 

 

 

Fig 3.12: Bit configuration of mode instruction(asynchronous) 
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Fig 3.13: Bit configuration of mode instruction(synchronous) 

 

COMMAND 

 

Command is used for setting the operation of the 8251. It is possible to write a command 

whenever necessary after writing a mode instruction and sync characters as shown in figure 

14. 

 

Items to be set by command are as follows: 

• Transmit Enable/Disable 
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• Receive Enable/Disable 

• DTR, RTS Output of data. 

• Resetting of error flag. 

• Sending to break characters 

• Internal resetting 

• Hunt mode (synchronous mode) 

 

 

Fig 3.14: Bit configuration of command 
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STATUS WORD 

 

It is possible to see the internal status of the 8251 by reading a status word. The bit 

configuration of status word is shown in Fig.15. 

 

Fig 3.15: Bit configuration of Status Word 
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8253(8254) PROGRAMMABLE INTERVAL TIMER: 

 

The 8254 programmable Interval timer consists of three independent 16-bit programmable 

counters (timers). Each counter is capable of counting in binary or binary coded decimal. The 

maximum allowable frequency to any counter is 10MHz. This device is useful whenever the 

microprocessor must control real-time events. The timer in a personal computer is an 8253. To 

operate a counter a 16-bit count is loaded in its register and on command, it begins to decrement 

the count until it reaches 0. At the end of the count it generates a pulse, which interrupts the 

processor. The count can count either in binary or BCD Each counter in the block diagram has 

3 logical lines connected to it. Two of these lines, clock and gate, are inputs. The third, labeled 

OUT is an output. 

 

 

 

Fig 3.16 Block Diagram of 8253 programmable interval timer 

 

Data bus buffer- It is a communication path between the timer and the microprocessor. The 

buffer is 8-bit and bidirectional. It is connected to the data bus of the microprocessor. Read 

/write logic controls the reading and the writing of the counter registers. Control word register, 

specifies the counter to be used and either a Read or a write operation. Data is transmitted or 

received by the buffer upon execution of INPUT instruction from CPU as shown in figure 16. 

The data bus buffer has three basic functions, 

• Programming the modes of 8253.  

• Loading the count value in times 
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READING THE COUNT VALUE FROM TIMERS. 

 

 

 

Pin Diagram of 8253 

 

The data bus buffer is connected to microprocessor using D7 – D0 pins which are also 

bidirectional. The data transfer is through these pins. These pins will be in high-impedance (or 

this state) condition until the 8253 is selected by a LOW or CS and either the read operation 

requested by a LOW RD on the input or a write operation WR 

requested by the input going LOW. 

 

READ/ WRITE LOGIC: 

It accepts inputs for the system control bus and in turn generation the control  signals for overall 

device operation. It is enabled or disabled by CS so that no operation can occur to change the 

function unless the device has been selected as the system logic. 

 

CS : 

The chip select input is used to enable the communicate between 8253 and the microprocessor 

by means of data bus. A low an CS enables the data bus buffers, while 

a high disables the buffer.  The   CS input does not have any effect on the operation of three 

times once they have been initialized.  The normal configuration of a system employs an decode 

logic which actives CS line, whenever a specific set of addresses that correspond to 8253 appear 

on the address bus. 

 

RD & WR : 

The read ( RD ) and write WR pins central the direction of data transfer on the 8-bit bus. When 

the input RD pin is low. Then CPU is inputting data from 8253 in the form of  counter value. 
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When WR pins is low, then CPU is sending data to 8253 in the form of mode information or 

loading counters. The RD & WR should not both be low simultaneously. When RD & WR pins 

are HIGH, the data bus buffer is disabled. 

A0 & A1: 

These two input lines allow the microprocessor to specify which one of the internal register in 

the 8253 is going to be used for the data transfer. Fig shows how these two lines are used to 

select either the control word register or one of the 16-bit counters. 

 

CONTROL WORD REGISTER: 

 

It is selected when A0 and A1 . It the accepts information from the data bus buffer and stores 

it in a register. The information stored in then register controls the operation mode of each 

counter, selection of binary or BCD counting and the loading of each counting and the loading 

of each count register. This register can be written into, no read operation of this content is 

available. 

COUNTERS: 

 

Each of the times has three pins associated with it. These are CLK (CLK) the gate (GATE) and 

the output (OUT). 
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CLK: 

 

This clock input pin provides 16-bit times with the signal to causes the times to decrement 

maxm clock input is 2.6MHz. Note that the counters operate at the negative edge (H1 to L0) of 

this clock input. If the signal on this pin is generated by a fixed oscillator then the user has 

implemented a standard timer. If the input signal is a string of randomly occurring pulses, then 

it is called implementation of a counter. 

GATE: 

 

The gate input pin is used to initiate or enable counting. The exact effect of the gate signal 

depends on which of the six modes of operation is chosen. 

 

OUTPUT: 

 

The output pin provides an output from the timer. It actual use depends on the mode of 

operation of the timer. The counter can be read ―in the fly‖ without inhibiting gate pulse or clock 

input. 

 

CONTROL REGISTER 

 

MODES OF OPERATION 

Mode 0 Interrupt on terminal count  

Mode 1 Programmable one shot  

Mode 2 Rate Generator 

Mode 3 Square wave rate Generator 

Mode 4 Software triggered strobe 

Mode 5 Hardware triggered strobe 

 

Mode 0: The output goes high after the terminal count is reached. The counter stops if the Gate 

is low.. The timer count register is loaded with a count (say 6) when the WR line is made low 

by the processor. The counter unit starts counting down with each clock pulse. The output goes 

high when the register value reaches zero. In the mean time if the GATE is made low the count 

is suspended at the value(3) till the GATE is enabled again . 
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CLK 

 

 

 

GATE 

Mode 0 count when Gate is high (enabled) 

 

 

CLK 

 

 

 

 

Mode 0 count when Gate is low temporarily (disabled) Mode 1 Programmable mono-shot 

The output goes low with the Gate pulse for a predetermined period depending on the counter. 

The counter is disabled if the GATE pulse goes momentarily low.The counter register is loaded 

with a count value as in the previous case (say 5). The output responds to the GATE input and 

goes low for period that equals the count down period of the register (5 clock pulses in this 

period). By changing the value of this count the duration of the output pulse can be changed. 

If the GATE becomes low before the count down is completed then the counter will be 

WR 

    2 1 
OUT 

WR 

      2 1 
OUT 

GATE 
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suspended at that state as long as GATE is low. Thus it works as a mono-shot. 

 

CLK 

 

WR

 

OUT 

 

Mode 1 The Gate goes high. The output goes low for the period depending on the count 

 

CLK 

WR 

 

 

 

Mode 1 The Gate pulse is disabled momentarily causing the counter to stop. 

Mode 2 Programmable Rate Generator 

 

In this mode it operates as a rate generator. The output goes high for a period that equals the 

GATE (trigger) 

GATE (trigger) 

OUT        

 
5 

 
4 

 
3 

 
2 

 
1 
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time of count down of the count register (3 in this case). The output goes low exactly for one 

clock period before it becomes high again. This is a periodic operation. 

 

CLK 

OUT 

Mode 2 Operation when the GATE is kept high 

 

CLK 

 

Mode 2 operation when the GATE is disabled momentarily. 

Mode 3 Programmable Square Wave Rate Generator 

 

It is similar to Mode 2 but the output high and low period is symmetrical. The outputgoes high 

after the count is loaded and it remains high for period which equals the count down period of 

the counter register. The output subsequently goes low for an equal period and hence generates 

a symmetrical square wave unlike Mode 2. The GATE has no role here. 

 

WR 

GATE 

    2 1 

WR 

GATE 

OUT      2 1 
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CLK 

 

Mode3 Operation: Square Wave generator 

 

Mode 4 Software Triggered Strobe 

 

In this mode after the count is loaded by the processor the count down starts. The output goes 

low for one clock period after the count down is complete. The count down can be suspended 

by making the GATE low . This is also called a software triggered strobe as the count down is 

initiated by a program. 

CLK 

 

Mode 4 Software Triggered Strobe when GATE is high 

Mode 5 Hardware Triggered Strobe 

 

The count is loaded by the processor but the count down is initiated by the GATE pulse. The 

transition from low to high of the GATE pulse enables count down. The output goes low for 

one clock period after the count down is complete. 

WR 

n= 

 

OUT (n=5) 

WR 

OUT 

  2 1 
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CLK 

 

Mode 5 Hardware Triggered Strobe 

 

PROGRAMMABLE INTERRUPT CONTROLLER-8259 

FEATURES OF 8259 

 

1. 8086, 8088 Compatible 

2. MCS-80, MCS-85 Compatible 

3. Eight-Level Priority Controller 

4. Expandable to 64 Levels 

5. Programmable Interrupt Modes 

6. Individual Request Mask Capability 

7. Single +5V Supply (No Clocks) 

8. Available in 28-Pin DIP and 28-Lead PLCC Package 

9. Available in EXPRESS 

10. Standard Temperature Range 

11. Extended Temperature Range 

 

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority 

interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without 

additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a 

WR 

GATE 

OUT 

5 4 3 2 1 
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single a5V supply. Circuitry is static, requiring no clock input. The 8259A is designed to 

minimize the software and real time overhead in handling multi-level priority interrupts. It has 

several modes, permitting optimization for a variety of system requirements. The 8259A is 

fully upward compatible with the Intel 8259. Software originally written for the 8259 will 

operate the 8259A in all 8259 equivalent modes (MCS-80/85, Non-Buffered, Edge Triggered). 

Pin Diagram of 8259 is shown in figure 17. 

 

 

Fig.3.17 Pin Diagram of 8259 

PIN DESCRIPTION OF 8259 
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Fig.3. 18 Block Diagram of 8259 

 

A more desirable method would be one that would allow the microprocessor to be executing 

its main program and only stop to service peripheral devices when it is told to do so by the 

device itself. In effect, the method would provide an external asynchronous input that would 

inform the processor that it should complete whatever instruction that is currently being 

executed and fetch a new routine that will service the requesting device. Once this servicing is 

complete, however, the processor would resume exactly where it left off. This method is called 

Interrupt. It is easy to see that system throughput would drastically increase, and thus more 

tasks could be assumed by the micro-computer to further enhance its cost effectiveness. Block 

Diagram of 8259 is shown in figure 3.18. 

The Programmable Interrupt Controller (PIC) functions as an overall manager in an Interrupt-

Driven system environment. It accepts requests from the peripheral equipment, determines 

which of the in-coming requests is of the highest importance (priori-ty), ascertains whether the 

incoming request has a higher priority value than the 
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level currently being serviced, and issues an interrupt to the CPU based on this determination. 

The 8259A is a device specifically designed for use in real time, interrupt driven 

microcomputer systems. It manages eight levels or requests and has built-in features  for 

expandability to other 8259A's (up to 64 levels). It is programmed by the system's software as 

an I/O peripheral. A selection of priority modes is available to the programmer so that the 

manner in which the requests are processed by the 8259A can be configured to match his 

system requirements. The priority modes can be changed or reconfigured dynamically at any 

time during the main program. This means that the complete interrupt structure can be defined 

as required, based on the total system environment. 

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR) 

 

The interrupts at the IR input lines are handled by two registers in cascade, the Interrupt 

Request Register (IRR) and the In-Service (ISR). The IRR is used to store all the interrupt 

levels which are requesting service; and the ISR is used to store all the interrupt levels which 

are being serviced. 

PRIORITY RESOLVER 

 

This logic block determines the priorites of the bits set in the IRR. The highest priority is 

selected and strobed into the corresponding bit of the ISR during INTA pulse. 

INTERRUPT MASK REGISTER (IMR) 

 

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on the 

IRR. Masking of a higher priority input will not affect the interrupt request lines of lower 

quality. 

INT (INTERRUPT) 

 

This output goes directly to the CPU interrupt input. The VOH level on this line is designed to 

be fully compatible with the 8080A, 8085A and 8086 input levels. 
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INTA (INTERRUPT ACKNOWLEDGE) 

 

INTA pulses will cause the 8259A to release vectoring information onto the data bus. The 

format of this data depends on the system mode (mPM) of the 8259A. 

DATA BUS BUFFER 

 

This 3-state, bidirectional 8-bit buffer is used to inter-face the 8259A to the system Data Bus. 

Control words and status information are transferred through the Data Bus Buffer. 

READ/WRITE CONTROL LOGIC 

 

The function of this block is to accept Output commands from the CPU. It contains the 

Initialization Command Word (ICW) registers and Operation Command Word (OCW) 

registers which store the various control formats for device operation. This function block also 

allows the status of the 8259A to be transferred onto the Data Bus. 

CS (CHIP SELECT) 

 

A LOW on this input enables the 8259A. No reading or writing of the chip will occur unless 

the device is selected. 

WR (WRITE) 

 

A LOW on this input enables the CPU to write con-trol words (ICWs and OCWs) to the 8259A. 

RD (READ) 

 

A LOW on this input enables the 8259A to send the status of the Interrupt Request Register 

(IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or the Interrupt level onto 

the Data Bus. 

A0 

 

This input signal is used in conjunction with WR and RD signals to write commands into the 

various command registers, as well as reading the various status registers of the chip. This line 

can be tied directly to one of the address lines. 

 

 

INTERRUPT SEQUENCE 
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The powerful features of the 8259A in a microcomputer system are its programmability and 

the interrupt routine addressing capability. The latter allows direct or indirect jumping to the 

specific interrupt routine requested without any polling of the interrupting devices. The normal 

sequence of events during an interrupt depends on the type of CPU being used. 

The events occur as follows in an MCS-80/85 sys-tem: 

 

• One or more of the INTERRUPT REQUEST lines (IR7±0) are raised high, setting 

the correspond-ing IRR bit(s). 

• The 8259A evaluates these requests, and sends an INT to the CPU, if appropriate. 

• The CPU acknowledges the INT and responds with an INTA pulse. 

• Upon receiving an INTA from the CPU group, the highest priority ISR bit is set, 

and the correspond-ing IRR bit is reset. The 8259A will also release a CALL 

instruction code (11001101) onto the 8-bit Data Bus through its D7±0 pins. 

• This CALL instruction will initiate two more INTA pulses to be sent to the 8259A 

from the CPU group. 

• These two INTA pulses allow the 8259A to re-lease its preprogrammed 

subroutine address onto the Data Bus. The lower 8-bit address is released at the 

first INTA pulse and the higher 8-bit address is released at the second INTA pulse. 

• This completes the 3-byte CALL instruction re-leased by the 8259A. In the AEOI 

mode the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR 

bit remains set until an appropriate EOI command is issued at the end of the interrupt 

sequence. 

• The events occurring in an 8086 system are the same until step 4. 

• Upon receiving an INTA from the CPU group, the highest priority ISR bit is set 

and the corresponding IRR bit is reset. The 8259A does not drive the Data Bus 

during this cycle. 

• The 8086 will initiate a second INTA pulse. During this pulse, the 8259A releases 

an 8-bit pointer onto the Data Bus where it is read by the CPU. 

• This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the 

end of the second INTA pulse. Otherwise, the ISR bit remains set until an 

appropriate EOI command is issued at the end of the interrupt subroutine. 

 

 

If no interrupt request is present at step 4 of either sequence (i.e., the request was too short in 

duration) the 8259A will issue an interrupt level 7. Both the vectoring bytes and the CAS lines 
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will look like an interrupt level 7 was requested. 

When the 8259A PIC receives an interrupt, INT be-comes active and an interrupt acknowledge 

cycle is started. If a higher priority interrupt occurs between the two INTA pulses, the INT line 

goes inactive immediately after the second INTA pulse. After an un- specified amount of time 

the INT line is activated again to signify the higher priority interrupt waiting for service. This 

inactive time is not specified and can vary between parts. The designer should be aware of this 

consideration when designing a sys-tem which uses the 8259A. It is recommended that proper 

asynchronous design techniques be followed. 

 

INITIALIZATION COMMAND WORDS 

 

Whenever a command is issued with A0 e 0 and D4 e 1, this is interpreted as Initialization 

Command Word 1 (ICW1). ICW1 starts the initialization sequence during which the following 

automatically occur. 

• The edge sense circuit is reset, which means that following initialization, an interrupt 

request (IR) input must make a low-to-high transition to generate an interrupt. 

• The Interrupt Mask Register is cleared. 

• IR7 input is assigned priority 7. 

• The slave mode address is set to 7. 

• Special Mask Mode is cleared and Status Read isset to IRR. 

• If IC4 e 0, then all functions selected in ICW4are set to zero. (Non-Buffered mode(,no 

Auto-EOI, MCS-80, 85 system). 

• Initialization Command Word Format is as shown in figure 3.19. 
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Fig 3.19 . Initialization Command Word Format 
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OPERATION COMMAND WORDS 

 

After the Initialization Command Words (ICWs) are programmed into the 8259A, the chip is 

ready to accept interrupt requests at its input lines. However, during the 8259A operation, a 

selection of algorithms can command the 8259A to operate in various modes through the 

Operation Command Words (OCWs). Operation Command Word format is as shown in figure 

20 

 

 

Fig . Operational Control Words 
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Fig 3.20 Operation Command Word Format 

 

DMA CONTROLLER 8257 

 

The Direct Memory Access or DMA mode of data transfer is the fastest amongstall the modes 

of data transfer. In this mode, the device may transfer data directly to/from memory without 

any interference from the CPU. The device requests the CPU (through aDMA controller) to 

hold its data, address and control bus, so that the device may transfer data directly to/from 

memory. The DMA data transfer is initiated only after receiving HLDA signal from the CPU. 

Intel’s 8257 is a four channel DMA controller designed to be interfaced with their family of 

microprocessors. The 8257, on behalf of the devices, requests the CPU for bus access using 

local bus request input i.e. HOLD in minimum mode. In maximum mode of the microprocessor 

RQ/GT pin is used as bus request input. On receiving the HLDA signal (in minimum mode) or 

RQ/GT  signal (in maximum mode) from the CPU, the requesting devices gets the access of 

the bus, and it completes the required number of DMA cycles for the data transfer and then 

hands over the control of the bus back to the CPU. 

INTERNAL ARCHITECTURE OF 8257 

 

The internal architecture of 8257 is shown in figure. The chip support four DMA channels, i.e. 

four peripheral devices can independently request for DMA data transfer 
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through these channels at a time. The DMA controller has 8-bit internal data buffer, a read/write 

unit, a control unit, a priority resolving unit along with a set of registers. 

The 8257 performs the DMA operation over four independent DMA channels. Each of four 

channels of 8257 has a pair of two 16-bit registers, viz. DMA address register and terminal 

count register. 

There are two common registers for all the channels, namely, mode set register and status 

register. Thus there are a total of ten registers. The CPU selects one of these ten registers using 

address lines Ao-A3. Table shows how the Ao-A3 bits may be used for selecting one of these 

registers. 

DMA ADDRESS REGISTER 

 

Each DMA channel has one DMA address register. The function of this register is to store the 

address of the starting memory location, which will be accessed by the DMA channel. Thus 

the starting address of the memory block which will be accessed by the device is first loaded 

in the DMA address register of the channel. The device that wants to transfer data over a DMA 

channel, will access the block of the memory with the starting address stored in the DMA 

Address Register. 

TERMINAL COUNT REGISTER 

 

Each of the four DMA channels of 8257 has one terminal count register (TC). This 16-bit 

register is used for ascertaining that the data transfer through a DMA channel ceases or stops 

after the required number of DMA cycles. The low order 14-bits of the terminal count register 

are initialized with the binary equivalent of the number of required DMA cycles minus one. 

After each DMA cycle, the terminal count register content will be decremented by one and 

finally it becomes zero after the required number of DMA cycles are over. The bits14 and 15 

of this register indicate the type of the DMA operation (transfer). If the device wants to write 

data into the memory, the DMA operation is called DMA write operation. Bit 14 of the register 

in this case will be set to one and bit 15 will be set to zero. 
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STATUS REGISTER 

 

The status register of 8257 is shown in figure. The lower order 4-bits of this register contain 

the terminal count status for the four individual channels. If any of these bits is set, it indicates 

that the specific channel has reached the terminal count  condition. 

These bits remain set till either the status is read by the CPU or the 8257 is reset. The update 

flag is not affected by the read operation. This flag can only be cleared by resetting 8257 or by 

resetting the auto load bit of the mode set register. If the update flag is set, the contents of the 

channel 3 registers are reloaded to the corresponding registers of channel 2 whenever the 

channel 2 reaches a terminal count condition, after transferring one block and the next block is 

to be transferred using the autoload feature of 8257. 

 

 

The update flag is set every time, the channel 2 registers are loaded with contents of the channel 

3 registers. It is cleared by the completion of the first DMA cycle of the new block. This register 

can only read. 

DATA BUS BUFFER, READ/WRITE LOGIC, CONTROL UNIT AND PRIORITY 

RESOLVER 

The 8-bit. Tristate, bidirectional buffer interfaces the internal bus of 8257 with the external 

system bus under the control of various control signals. In the slave mode, the read/write logic 

accepts the I/O Read or I/O Write signals, decodes the Ao-A3 lines and either writes the 

contents of the data bus to the addressed internal register or reads the 
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contents of the selected register depending upon whether IOW or IOR signal is activated. 

In master mode, the read/write logic generates the IOR and IOW signals to control the data 

flow to or from the selected peripheral. The control logic controls the sequences of operations 

and generates the required control signals like AEN, ADSTB, MEMR, MEMW, TC and 

MARK along with the address lines A4-A7, in master mode. The priority resolver resolves the 

priority of the four DMA channels depending upon whether normal priority or rotating priority 

is programmed. 

SIGNAL DESCRIPTION OF 8257 

 

DRQ0-DRQ3 

 

These are the four individual channel DMA request inputs, used by the peripheral devices for 

requesting the DMA services. The DRQ0 has the highest priority while DRQ3 has the lowest 

one, if the fixed priority mode is selected. 

 

DACK0-DACK3: 

 

These are the active-low DMA acknowledge output lines which inform the requesting 

peripheral that the request has been honoured and the bus is relinquished by the CPU. These 

 lines may act as strobe lines for the requesting devices     

 

 

.Pin Description of 8257 
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Architecture of 8257 

Do-D7: 

 

These are bidirectional, data lines used to interface the system bus with theinternal data bus of 

8257. These lines carry command words to 8257 and status wordfrom 8257, in slave mode, i.e. 

under the control of CPU.The data over these lines may be transferred in both the directions. 

When the 8257 is thebus master (master mode, i.e. not under 
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CPU control), it uses Do-D7 lines to send higherbyte of the generated address to the latch. This 

address is further latched using ADSTBsignal. the address is transferred over Do-D7 during 

the first clock cycle of the DMAcycle. During the rest of the period, data is available on the 

data bus. 

IOR: 

 

This is an active-low bidirectional tristate input line that acts as an input in theslave mode. In 

slave mode, this input signal is used by the CPU to read internal registersof 8257.this line acts 

output in master mode. In master mode, this signal is used to readdata from a peripheral during 

a memory write cycle. 

IOW: 

 

This is an active low bidirection tristate line that acts as input in slave mode to load the 

contents of the data bus to the 8-bit mode register or upper/lower byte of a 16-bit DMA address 

register or terminal count register. In the master mode, it is a control output that loads the data 

to a peripheral during DMA memory read cycle (write to peripheral). 

CLK: 

 

This is a clock frequency input required to derive basic system timings for theinternal operation 

of 8257. 

RESET : 

 

This active-high asynchronous input disables all the DMA channels by clearing the mode 

register and tristates all the control lines. 

Ao-A3: 

 

These are the four least significant address lines. In slave mode, they act as input which select 

one of the registers to be read or written. In the master mode, they are the four least significant 

memory address output lines generated by 8257. 
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CS: 

 

This is an active-low chip select line that enables the read/write operations from/to 8257, in 

slave mode. In the master mode, it is automatically disabled to prevent the chip from getting 

selected (by CPU) while performing the DMA operation. 

A4-A7: 

 

This is the higher nibble of the lower byte address generated by 8257 during the master mode 

of DMA operation. 

READY: 

 

This is an active-high asynchronous input used to stretch memory read and writecycles of 8257 

by inserting wait states. This is used while interfacing slower peripherals. 

HRQ: 

 

The hold request output requests the access of the system bus. In the noncascaded8257 systems, 

this is connected with HOLD pin of CPU. In the cascade mode, this pin of a slave is connected 

with a DRQ input line of the master 8257, while that of the master is connected with HOLD 

input of the CPU. 

HLDA : 

 

The CPU drives this input to the DMA controller high, while granting the bus tothe device. 

This pin is connected to the HLDA output of the CPU. This input, if high, indicates to the DMA 

controller that the bus has been granted to the requesting peripheral by the CPU. 

MEMR: 

 

This active –low memory read output is used to read data from the addressed memory locations 

during DMA read cycles. 

MEMW : 

This active-low three state output is used to write data to the addressed memory location during 

DMA write operation. 
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ADST : 

 

This output from 8257 strobes the higher byte of the memory address generated by the DMA 

controller into the latches. 

AEN: 

 

This output is used to disable the system data bus and the control the bus driven by the CPU, 

this may be used to disable the system address and data bus by using the enable input of the 

bus drivers to inhibit the non-DMA devices from responding during DMA operations. If the 

8257 is I/O mapped, this should be used to disable the other I/O devices, when the DMA 

controller addresses is on the address bus. 

TC: 

 

Terminal count output indicates to the currently selected peripherals that thepresent DMA cycle 

is the last for the previously programmed data block. If the TC STOP bit in the mode set register 

is set, the selected channel will be disabled at the end of the DMA cycle. The TC pin is activated 

when the 14-bit content of the terminal count register of the selected channel becomes equal to 

zero. The lower order 14 bits of the terminal count register are to be programmed with a 14-bit 

equivalent of (n-1), if n is the desired number of DMA cycles. 

MARK: 

 

The modulo 128 mark output indicates to the selected peripheral that the current DMA cycle 

is the 128th cycle since the previous MARK output. The mark will be activated after each 128 

cycles or integral multiples of it from the beginning if the data block (the first DMA cycle), if 

the total number of the required DMA cycles (n) is completely divisible by 128. 

 

Vcc: 

 

This is a +5v supply pin required for operation of the circuit. GND: 

This is a return line for the supply (ground pin of the IC). 
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UNIT – IV – INTERFACING CONCEPTS WITH 8085/8086 

 



 

 

 

 

 

DAC INTERFACING WITH 8085 

 

 

Fig.DAC interfacing 

The DAC0800 can be interfaced to 8085 system bus by using an 8bit latch and the latch 

can be enabled by using one of the chip select signal generated for I/O devices. A simple schematic 

for interfacing is DAC0800 with 8085 is shown in the fig. The DAC0800 can be interfaced to 

8085 system bus by using an 8bit latch and the latch can be enabled by using one of the chip 

select signal generated for I/O devices. A simple schematic for interfacing 

 

 

Fig: DAC Interface 

 



 

 

In this schematic the DAC0800 is interfaced using an 8bit latch 74LS273 to the system 

bus. The 3to8 decoder 74LS 138 is used to generate chip select signals for I/O devices. The 

address lines A4, A5 and A6 are used as input to decoder.The address line A7 and the control 

signal IO/M (low) are usedas enable for decoder. The decoder will generate eight chip select 

signals and in thisthe signal IOCS7 is used as enable for latch of DAC. 

The I/O address of the DAC is shown in table. 

 

• In order to convert a digital data to analog value, the processor has to load the data to latch. 

• The latch will hold the previous data until next data is loaded. 

• The DAC will take definite time to convert the data. The software should take care of 

loading successive data only after the conversion time. The DAC 0800 produces a current 

output, which is converted to voltage output using I to V converter. 

• To convert the digital signal to analog signal a Digitalto Analog Converter (DAC) has to 

be employed. The DAC will accept a digital (binary) input and convert to analog voltage 

or current. Every DAC will have "n" input lines and an analog output. 

• The DAC require a reference analog voltage (Vref) or current (Iref) source. The smallest 

possible analog value that can be represented by the nbit binary code is called resolution. 

The resolution of DAC with nbit binary input is 1/2nof reference analog value. Every 

analog output will be a multiple of the resolution, 

 

ADC INTERFACING WITH 8085 

 

• The ADC 0808 is 8channel 8bit ADC chip. It has 8 analog inputs i.e. IN0 IN7.One of 

these channels is selected by sending address to a address line of ADC. The logic level and 

selected channel is as shown 



 

 

The analog signal is connected to channel 3.The digital equivalent data D0D7 is connected to 

PA0PA7 of Port A. The PC0, PC1 and PC2 lines of Port C are connected to channel select address 

lines of 8255. PC3 is connected to SOC (Start of conversion) and ALE signal (Input signal). EOC 

(End of conversion) which is an output signal of 8255 connected to PC7 of Port 

 

C. The PB0 of Port B is connected to OE (Output Enable) input signal of ADC. 



 

 

 

ADC 

INTERFACING 

WITH 8085 

 

SEVEN SEGMANT DISPLAY 

Interface the 8085 Microprocessor System with seven segment display 

through its programmable I/O port 8255. Seven segment displays (as shown in 

Figure 1) is often used in the digital electronic equipments to display information 

regarding certain process. 

 

Fig.1 Seven Segment Display 



 

 

 

There are two types of seven segment display; common anode and common cathode. 

The differences between these two displays are shown in Figure 2a and 2b. The 

internal structure of the seven segment display consist of a group of Light Emitting 

Diode (LED) 

 

Figure 2a  Common Cathode Figure 2b  Common Anode 

For common cathode, the segment will light up when logic ‘1’ (+V) is 

supplied and it will light off when logic ‘0’ (OV) is supplied. While for common 

anode, logic ‘1’ will light off the segment and logic ‘0’ will light up the segment. 

Therefore to display number ‘0’ on the seven segment display, segment a, b, c, d, e 

and f must light up. For common cathode, logic ‘1’ should be given to the related 

segment whereas in the case of common anode, logic ‘0’ should be given to the 

necessary segment. 

 

 

 

ALPHANUMERIC LCD DISPLAY: 

 

Liquid Crystal displays are created by sandwiching a thin 1012 µm layer of a 

liquidcrystal fluid between two glass plates. A transparent, electrically conductive 

film or backplane is put on the rear glass sheet. Transparent sections of conductive 

film in the shape of the desired characters are coated on the front glass plate. 



 

 

When a voltage is applied between a segment and thebackplane, an electric field is 

created in the region under the segment. This electric field changes the transmission 

of light through the region under the segment film. 

There are two commonly available types of LCD: 

 

• Dynamic scattering and 

• Fieldeffect. 

 

The Dynamic scattering types of LCD: It scrambles the molecules where the 

field is present. This produces an etchedglasslooking light character on a dark 

background Fieldeffect types use polarization to absorb light where the electric 

field is present. This produces dark characters on a silver gray background. 

 

 

PIN ASSIGNMENT 

The pin assignment shown below is an industry standard for small (80 

characters or less) alphanumeric LCD  modules. 

Pin number Symbol 

I/O Function  

    1 Vss  Power 

supply (GND) 

2 VDD  Power 

supply (+5V) 

3 Vee  Contrast 

adjust 

4RS I 0 = Command input/output 1 = Data input/output 

5R/W I 0 = Write to LCD module 1 = Read from LCD module 

 6  E I Enable signal (Data strobe) 

7 DB0 I/O Data bus 

line 0 (LSB) 

8 DB1 I/O Data bus 

line 1 

9 DB2 I/O 

Data bus line 2 



 

 

10 DB3 I/O 

Data bus line 3 

11 DB4 I/O 

Data bus line 4 

12 DB5 I/O 

Data bus line 5 

13 DB6 I/O 

Data bus line 6 

14 DB7 I/O Data bus line 7 (MSB) 

 

The LCD module requires 3 control lines and either 4 or 8 I/O lines for the data bus. 

The user may select whether the LCD is to operate with a 4bit data bus or an 8bit 

data bus. If a 4bit data bus is used, the LCD will require a total of 7 data lines (3 

control lines plus the 4 lines for the data bus). If an 8bit data bus is used, the LCD 

will require a total of 11 data lines (3 control lines plus the 8 lines for the data bus). 

The three control lines are referred to as E, RS, and R/W. The E line is called 

"Enable." This control line isused to tell the LCD that you are sending it data. To 

send data to the LCD, your program should first set this line high (1) and then set 

the other two control lines (RS & RW) and put data on the data bus (DB0 DB8). 

When the other lines are completely ready, bring E low (0) again. 

The 1 to 0transition tells the LCD to take the data currently found on the other 

control lines and on the data bus and to treat it as a command. The RS line is the 

"Register Select" line. When RS is low (0), the data is to be treated as a command 

or special instruction (such as clear screen, position cursor, etc.). When RS is high 

(1), the data being sent is text data which should be displayed on the LCD screen. 

For example, to display the letter "T" on the screen you would set RS high. The RW 

line is the "Read/Write" control line. When RW is low (0), the information on the 

data bus is being written to the LCD. When RW is high (1), the program is 

effectively querying (or reading) the LCD. Finally, the data bus consists of 4 or 8 

lines (depending on the mode of operation selected by the user). In the case of an 

8bit data bus, the lines are referred to as DB0, DB1, DB2, DB3, DB4, DB5, DB6, 

and DB7.Most LCD’s require a voltage of 2 or 3 V between the backplane and a 

segment to turn on the segment. 

• Draw the memory interface diagram to 8085 processor with 2-Nos of 4kB 

EPROM and 1 No. of 8kB RAM. Explain the system and allocate binary 

addresses to memory IC’s. 
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UNIT – V – APPLICATIONS USING 8085/8086 

 



 

 

STEPPER MOTOR INTERFACING USING 8085: 

 

Stepper motor is an electromechanical device that rotates through fixed angular steps when digital 

inputs are applied. It is suitable for precise position, speed and direction control which are required 

in automation system. 

The angle through which stepper motor rotates with a fixed angle for each digital data is called 

step angle. 

Different stepper motor has different step angle. The more frequently used stepper motor has 

step angle of 0.9 degrees and 1.8 degrees. 

Depending on the sequence applied to stepper motor, it can be classified in two category: 

4 Step sequence or full step sequence 

8 Step sequence or half step sequence 

 

4 Step sequence or full step sequence: 

 

 

 

 

 

 

 

Chips select Logic: 



 

 

 

The program in look up table if the 4step sequence for clock wise then stepper motor will 

rotate in clockwise direction and if the 4step sequence for anticlock wise then stepper motor will 

rotate in anticlockwise direction. Speed control of stepper motor is achieved by writing program 

to rotate stepper motor continuously in delay program. We can change the delay between two steps 

and thus change the speed of stepper motor. 



 

 

Program: 

 

 



 

 

In the above program in look up table if the 4step sequence for clock wise then stepper 

motor will rotate in clockwise direction and if the 4step sequence for anticlock wise then stepper 

motor will rotate in anticlockwise direction. Speed control of stepper motor is achieved by writing 

program to rotate stepper motor continuously in delay program. We can change the delay between 

two steps and thus change the speed of stepper motor. 

 

 

 

 

Fig. Stepper motor interface using 8085 

TEMPERATURE CONTROLLER USING 8085: 

 

Temperature measurement is used in variety of applications like furnace, water bath, oven, etc. with 

the help of transducers like thermocouple. The output of thermocouple is proportional to temperature 

which is in milliVolts. Therefore to drive further stages of system, this signal is amplified using 



 

 

instrumentation amplifier. The amplified output is fed to channel 3 of ADC and 8085 provides High 

to Low SOC and ALE signal. When ADC completes the conversion, 8085 reads the equivalent 

digital data from Port A which is the current value of temperature of object. This value of measured 

temperature is then sent to display system. 

For measuring temperature of furnace, water bath, etc. 8085 1st measures current temperature (t1) 

and compares with the reference temperature (T1) at which the temperature is to be kept constant. 

If the measure temperature (t1) is greater than reference temperature (T1) then 8085 sends control 

signal to the transistorized relay circuit through Port B and turns OFF the heating process to maintain 

temperature at desired level. 

If the measure temperature (t1) is less than reference temperature (T1) then 8085 sends control signal 

to the transistorized relay circuit through Port B and turns ON the heating process to maintain 

temperature at desired level, thus maintaining the temperature of furnace, bath tub, etc. 

 

CHIPS SELECT LOGIC: 

 

 



 

 

 

 

Fig: Temperature Control using 8085 

 

 

 

 

 

 

 

 

 

TRAFFIC LIGHT CONTROL 



 

 



 

 

 

 

 

MVI A, 80H: Initialize 8255, port A and port B 

OUT 83H (CR): in output mode 

START: MVI A, 09H 

OUT 80H (PA): Send data on PA to glow R1 and R2 

MVI A, 24H 

OUT 81H (PB): Send data on PB to glow G3 and G4 

MVI C, 28H: Load multiplier count (40ıο) for delay 

CALL DELAY: Call delay subroutine 

MVI A, 12H 

OUT (81H) PA: Send data on Port A to glow Y1 and Y2 

OUT (81H) PB: Send data on port B to glow Y3 and Y4 

MVI C, 0AH: Load multiplier count (10ıο) for delay 



 

 

CALL: DELAY: Call delay subroutine 

MVI A, 24H 

OUT (80H) PA: Send data on port A to glow G1 and G2 

MVI A, 09H 

OUT (81H) PB: Send data on port B to glow R3 and R4 

MVI C, 28H: Load multiplier count (40ıο) for delay 

CALL DELAY: Call delay subroutine 

MVI A, 12H 

OUT PA: Send data on port A to glow Y1 and Y2 

OUT PB: Send data on port B to glow Y3 and Y4 

MVI C, 0AH: Load multiplier count (10ıο) for delay 

CALL DELAY: Call delay subroutine 

JMP START 

Delay Subroutine: 

 

DELAY: LXI D, Count: Load count to give 0.5 sec delay 

BACK: DCX D: Decrement counter 

MOV A, D 

ORA E: Check whether count is 0 

JNZ BACK: If not zero, repeat 

DCR C: Check if multiplier zero, otherwise repeat 

JNZ DELAY 

RET: Return to main program 
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