

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – I – 8085 MICROPROCESSOR UNIT – I – 8085 MICROPROCESSOR

2

I. Introduction

BASIC CONCEPTS OF MICROPROCESSORS

Differences between: Microcomputer, Microprocessor and Microcontroller

• Microcomputer is a computer with a microprocessor as its CPU. Includes memory, I/O

etc.

• Microprocessor is a silicon chip which includes ALU, register circuits & control

circuits

• Microcontroller is a silicon chip which includes microprocessor, memory & I/O in a

single package.

WHAT IS MICRO?

Micro is a new addition. In the late 1960’s, processors were built using discrete elements. These

devices performed the required operation, but were too large and too slow. It went directly from

discrete elements to a single chip. However, comparing today’s microprocessors to the ones

built in the early 1970’s you find an extreme increase in the amount of integration.

WHAT IS A MICROPROCESSOR?

The word comes from the combination of micro and processor. Processor means a device that

processes whatever. In this context processor means a device that processes numbers,

specifically binary numbers, 0’s and 1’s.To process means to manipulate. It is a general term

that describes all manipulation. Again in this content, it means to perform certain operations

on the numbers that depend on the microprocessor’s design. It is a programmable device that

takes in numbers, performs on them arithmetic or logical operations according to the program

stored in memory and then produces other numbers

As a Programmable device:

• The microprocessor can perform different sets of operations on the data it receives

depending on the sequence of instructions supplied in the given program.

• By changing the program, the microprocessor manipulates the data in different ways as

Instructions, Words, Bytes, etc.

• They processed information 8-bits at a time. That’s why they are called ―8-bit

processors. They can handle large numbers, but in order to process these numbers, they

3

broke them into 8-bit pieces and processed each group of 8-bits separately.

WHAT IS MEMORY?

Memory is the location where information is kept while not in current use. It is stored in

memory. Memory is a collection of storage devices. Usually, each storage device holds one

bit. Also, in most kinds of memory, these storage devices are grouped into groups of 8. These 8

storage locations can only be accessed together. So, one can only read or write in terms of bytes to and

from memory. Memory is usually measured by the number of bytes it can hold. It is measured

in Kilos, Megas and lately Gigas. A Kilo in computer language is 210 =1024. So, a KB

(KiloByte) is 1024 bytes. Mega is 1024 Kilos and Giga is 1024 Mega. When a program is

entered into a computer, it is stored in memory. Then as the microprocessor starts to execute

the instructions, it brings the instructions from memory one at a time. Memory is also used to

hold the data.The microprocessor reads (brings in) the data from memory when it needs it and

writes (stores) the results into memory when it is done.

A MICROPROCESSOR-BASED SYSTEM

From the above description, we can draw the following block diagram to represent a

microprocessor-based system as shown in fig 1. In this system, the microprocessor is the master

and all other peripherals are slaves. The master controls all peripherals and initiates all

operations. The buses are group of lines that carry data, address or control signals. The CPU

interface is provided to demultiplex the multiplexed lines, to generate the chip select signals

and additional control signals. The system bus has separate lines for each signal.

All the slaves in the system are connected to the same system bus. At any time instant

communication takes place between the master and one of the slaves. All the slaves have

tristate logic and hence normally remain in high impedance state. The processor selects a slave

by sending an address. When a slave is selected, it comes to the normal logic and communicates

with the processor.

The EPROM memory is used to store permanent programs and data. The RAM memory is

used to store temporary programs and data. The input device is used to enter program, data and

to operate system. The output device is also used for examining the results. Since the speed of

IO devices does not match with speed of microprocessor, an interface device is provided

between system bus and IO device.

4

Fig.1.1 Microprocessor based system (organization of microcomputer)

CENTRAL PROCESSING UNIT

The CPU consists of ALU (Arithmetic and Logic Unit), Register unit and control unit. The

CPU retrieves stored instructions and data word from memory; it also deposits processed data

in memory.

ALU (ARITHMETIC AND LOGIC UNIT)

This section performs computing functions on data. These functions are arithmetic operations

such as additions subtraction and logical operation such as AND, OR rotate etc. Result are

stored either in registers or in memory or sent to output devices.

REGISTER UNIT

It contains various register. The registers are used primarily to store data temporarily during

the execution of a program. Some of the registers are accessible to the uses through

instructions.

CONTROL UNIT

It provides necessary timing & control signals necessary to all the operations in the

microcomputer. It controls the flow of data between the p and peripherals (input, output &

memory). The control unit gets a clock which determines the speed of the p.

The CPU basic functions

5

• It fetches an instructions word stored in memory.

• It determines what the instruction is telling it to do.(decodes the instruction)

• It executes the instruction. Executing the instruction may include some of the

following major tasks.

• Transfer of data from reg. to reg. in the CPU itself.

• Transfer of data between a CPU reg. & specified memory location.

• Performing arithmetic and logical operations on data from a specific memory

location or a designated CPU register.

• Directing the CPU to change a sequence of fetching instruction, if processing

the data created a specific condition.

• Performing housekeeping function within the CPU itself inorder to establish

desired condition at certain registers.

• It looks for control signal such as interrupts and provides appropriate

responses.

• It provides states, control, and timing signals that the memory and input/output

section can use.

There are three buses:

ADDRESS BUS:

It is a group of wires or lines that are used to transfer the addresses of Memory or I/O devices.

It is unidirectional. In Intel 8085 microprocessor, Address bus was of 16 bits. This means that

Microprocessor 8085 can transfer maximum 16 bit address which means it can address 65,536

different memory locations. This bus is multiplexed with 8 bit data bus. So the most significant

bits (MSB) of address goes through Address bus (A7-A0) and LSB goes through multiplexed

data bus (AD0-AD7).

DATA BUS:

Data Bus is used to transfer data within Microprocessor and Memory/Input or Output devices.

It is bidirectional as Microprocessor requires to send or receive data. The data bus also works

as address bus when multiplexed with lower order address bus. Data bus is 8 Bits long. The

word length of a processor depends on data bus, thats why Intel 8085 is called 8 bit

Microprocessor because it have an 8 bit data bus.

6

CONTROL BUS:

Microprocessor uses control bus to process data that is what to do with the selected memory

location. Some control signals are Read, Write and Opcode fetch etc. Various operations are

performed by microprocessor with the help of control bus. This is a dedicated bus, because all

timing signals are generated according to control signal. The microprocessor is the master,

which controls all the activities of the system. To perform a specific job or task, the

microprocessor has to execute a program stored in memory. The program consists of a set of

instructions stored in consecutive memory location. In order to execute the program the

microprocessor issues address and control signals, to fetch the instruction and data from

memory one by one. After fetching each instruction it decodes the instruction and carries out

the task specified by the instruction.

8085 MICROPROCESSOR ARCHITECTURE

FEATURES OF 8085

• 8-bit general purpose µp

• Capable of addressing 64 k of memory

• Has 40 pins as shown in fig 2

• Requires +5 v power supply

• Can operate with 3 MHz clock

• 8085 upward compatible

PIN DIAGRAM OF 8085

A8 - A15 (Output 3 State)

Address Bus:The most significant 8 bits of the memory address or the 8 bits of the I/0

address,3 stated during Hold and Halt modes.

AD0 - AD7 (Input/Output 3state)

Multiplexed Address/Data Bus; Lower 8 bits of the memory address (or I/0 address) appear on

the bus during the first clock cycle of a machine state. It then becomes the data bus during the

second and third clock cycles. 3 stated during Hold and Halt modes.

7

Fig 1.2 Pin Diagram of 8085

ALE (OUTPUT) ADDRESS LATCH ENABLE

It occurs during the first clock cycle of a machine state and enables the address to get latched

into the on chip latch of peripherals. The falling edge of ALE is set to guarantee setup and hold

times for the address information. ALE can also be used to strobe the status information. ALE

is never 3stated.

SO, S1 (OUTPUT)

RD (Output 3state)

READ: indicates the selected memory or 1/0 device is to be read and that the Data Bus is

available for the data transfer.

S0 S1 Encoded status of the bus cycle

0 0 HALT

0 1 WRITE

1 0 READ

1 1 FETCH

8

WR (Output 3state)

WRITE: Indicates the data on the Data Bus is to be written into the selected memory or 1/0

location. Data is set up at the trailing edge of WR. 3 stated during Hold and Halt modes.

READY (Input)

If Ready is high during a read or write cycle, it indicates that the memory or peripheral is ready

to send or receive data. If Ready is low, the CPU will wait for Ready to go high before

completing the read or write cycle.

HOLD (Input)

It indicates that another Master is requesting the use of the Address and Data Buses. The CPU,

upon receiving the Hold request will relinquish the use of buses as soon as the completion of

the current machine cycle. Internal processing can continue.

SIGNAL CLASSIFICATION OF 8085

The signal Classification of 8085 is as shown in fig3.

ADDRESS BUS

• Unidirectional

• Identifying peripheral or memory location

DATA BUS

• Bidirectional

• Transferring data

CONTROL BUS

• Synchronization signals

• Timing signals

• Control signal

9

Fig: 1.3 Signal Classifications of 8085 System Bus

ARCHITECTURE OF INTEL 8085 MICROPROCESSOR

The architecture of INTEL 8085 microprocessor is as shown in fig1.4.

THE ALU

• In addition to the arithmetic & logic circuits, the ALU includes the accumulator, which

is part of every arithmetic & logic operation.

• Also, the ALU includes a temporary register used for holding data temporarily during

the execution of the operation. This temporary register is not accessible by the

programmer.

10

Fig:1.4 Architecture of intel 8085 microprocessor

REGISTERS

GENERAL PURPOSE REGISTERS

• B, C, D, E, H & L (8 bit registers)

• Can be used singly

• Or can be used as 16 bit register pairs BC, DE& HL

• HL used as a data pointer (holds memory address)

ACCUMULATOR (8 BIT REGISTER)

• Store 8 bit data

• Store the result of an operation

• Store 8 bit data during I/O transfer Address

11

FLAG REGISTER

8 bit register – shows the status of the microprocessor before/after an operation.S (sign flag),

Z (zero flag), AC (auxillary carry flag), P (parity flag) & CY (carry flag)

D7 D6 D5 D4 D3 D2 D1 D0

S Z X AC X P X CY

SIGN FLAG

• Used for indicating the sign of the data in the accumulator

• The sign flag is set if negative (1 – negative)

• The sign flag is reset if positive (0 –positive)

ZERO FLAG

• Is set if result obtained after an operation is 0

• Is set following an increment or decrement operation of that register

CARRY FLAG

• Is set if there is a carry or borrow from arithmetic operation

AUXILLARY CARRY FLAG

• Is set if there is a carry out of bit 3

PARITY FLAG

• Is set if parity is even

• Is cleared if parity is odd

THE PROGRAM COUNTER (PC)

• This is a register that is used to control the sequencing of the execution of instructions.

• This register always holds the address of the next instruction.

• Since it holds an address, it must be 16 bits wide.

THE STACK POINTER

• The stack pointer is also a 16-bit register that is used to point into memory.

12

• The memory this register points to is a special area called the stack. The stack is an

area of memory used to hold data that will be retrieved soon.

• The stack is usually accessed in a Last in First out (LIFO) fashion.

NON PROGRAMMABLE REGISTERS

Instruction Register & Decoder

• Instruction is stored in IR after fetched by processor

• Decoder decodes instruction in IR

INTERNAL CLOCK GENERATOR

• 3.125 MHz internally

• 6.25 MHz externally

THE ADDRESS AND DATA BUSSES

• The address bus has 8 signal lines A8 – A15 which are unidirectional.

• The other 8 address bits are multiplexed (time shared) with the 8 data bits.

• So, the bits AD0 – AD7 are bi-directional and serve as A0 – A7 and D0 – D7 at the

same time.

• During the xecution of the instruction, these lines carry the address bits during the

early part, then during the late parts of the execution, they carry the 8 data bits.

• In order to separate the address from the data, we can use a latch to save the value

before the function of the bits changes.

DEMULTIPLEXING AD7-AD0

• From the above description, it becomes obvious that the AD7– AD0 lines are serving

a dual purpose and that they need to be demultiplexed to get all the information.

• The high order bits of the address remain on the bus for three clock periods. However,

the low order bits remain for only one clock period and they would be lost if they are

not saved externally. Also, notice that the low order bits of the address disappear when

they are needed most.

• To make sure we have the entire address for the full three clock cycles, we will use an

external latch to save the value of AD7– AD0 when it is carrying the address bits. We

use the ALE signal to enable this latch.

DEMULTIPLEXING AD7-AD0

13

Given that ALE operates as a pulse during T1, we will be able to latch the address. Then when

ALE goes low, the address is saved and the AD7– AD0 lines can be used for their purpose as

the bi-directional data lines.

DEMULTIPLEXING THE BUS AD7 – AD0

• The high order address is placed on the address bus and hold for 3 clk periods.

• The low order address is lost after the first clk period, this address needs to be hold

however we need to use latch

• The address AD7 – AD0 is connected as inputs to the latch 74LS373.

• The ALE signal is connected to the enable (G) pin of the latch and the OC – Output

control – of the latch is grounded

ADDRESSING MODES

The microprocessor has different ways of specifying the data for the instruction. These are

called addressing modes.

The 8085 has four addressing modes:

– Implied CMA

– Immediate MVI B, 45

– Direct LDA 4000

– Indirect LDAX B

Load the accumulator with the contents of the memory location whose address is stored in the

register pair BC).

Many instructions require two operands for execution. For example transfer of data between

two registers. The method of identifying the operands position by the instruction format is

known as the addressing mode. When two operands are involved in an instruction, the first

operand is assumed to be in a register Mp itself.

Types of Addressing Modes

• Register addressing

• Direct addressing mode

• Register indirect addressing

• Immediate Addressing mode

14

• Implied addressing mode

REGISTER ADDRESSING

This type of addressing mode specifies register or register pair that contains data.ie (only the

register need be specified as the address of the operands).

Example MOV B, A (the content of A is copied into the register B)

DIRECT ADDRESSING MODE

Data is directly copied from the given address to the register.

Example LDA 3000H (The content at the location 3000H is copied to the register A).

REGISTER INDIRECT ADDRESSING

In this mode, the address of operand is specified by a register pair

Example MOV A, M (Move data from memory location specified by H-L pair to accumulator)

IMMEDIATE ADDRESSING MODE

In this mode, the operand is specified within the instruction itself.

Example MVI A, 05 H (Move 05 H in accumulator.)

IMPLIED ADDRESSING MODE

This mode doesn't require any operand. The data is specified by opcode itself.

Example RAL, CMP

INSTRUCTION SET OF 8085

An instruction is a binary pattern designed inside a microprocessor to perform a specific

function. The entire group of instructions that a microprocessor supports is called Instruction

Set. Since the 8085 is an 8-bit device it can have up to 28 (256) instructions. However, the

8085 only uses 246 combinations that represent a total of 74 instructions. Each instruction has

two parts. The first part is the task or operation to be performed. This part is called the ―opcode

15

(operation code). The second part is the data to be operated on. This part is called the operand.

INSTRUCTION SIZE

• Depending on the operand type, the instruction may have different sizes. It will occupy

a different number of memory bytes.

• Typically, all instructions occupy one byte only.

• The exception is any instruction that contains immediate data or a memory address.

• Instructions that include immediate data use two bytes.

• One for the opcode and the other for the 8-bit data.

• Instructions that include a memory address occupy three bytes.

• One for the opcode, and the other two for the 16-bit address.

CLASSIFICATION OF INSTRUCTION SET

• Data Transfer Instruction

• Arithmetic Instructions

• Logical Instructions

• Branching Instructions

• Machine Control Instructions

DATA TRANSFER INSTRUCTIONS

Opcode Operand Description

MOV

Rd, Rs M, Rs Rd, M

Copy from source to

destination.

This instruction copies the contents of the source register into the destination register. The

contents of the source register are not altered. If one of the operands is a memory location, its

location is specified by the contents of the HL registers. Example: MOV B, C or MOV B, M.

Opcode Operand Description

16

MVI Rd, Data M, Data

Move immediate 8-bit

The 8-bit data is stored in the destination register or memory. If the operand is a memory

location, its location is specified by the contents of the H-L registers.

Example: MVI B, 57H or MVI M, 57H.

Opcode Operand Description

LDA 16-bit address Load Accumulator

The contents of a memory location, specified by a 16- bit address in the operand, are copied to

the accumulator. The contents of the source are not altered. Example: LDA 2034H

Opcode Operand Description

LDAX B/D Register Pair Load accumulator indirect

The contents of the designated register pair point to a memory location. This instruction copies

the contents of that memory location into the accumulator. The contents of either the register

pair or the memory location are not altered. Example: LDAX B

Opcode Operand Description

STA 16-bit address Store accumulator direct

The contents of accumulator are copied into the memory location specified by the operand.

17

Example: STA 2500 H

Opcode Operand Description

STAX Reg. pair Store accumulator indirect

The contents of accumulator are copied into the memory location specified by the contents of

the register pair. Example: STAX B

Opcode Operand Description

SHLD 16-bit address Store H-L registers direct

 The contents of register L are stored into memory location specified by the 16-bit address. The

contents of register H are stored into the next memory location. Example: SHLD 2550 H

Opcode Operand Description

XCHG None Exchange H-L with D-E

The contents of register H are exchanged with the contents of register D. The contents of

register L are exchanged with the contents of register E. Example: XCHG

Opcode Operand Description

SPHL None Copy H-L pair to the Stack

Pointer (SP)

This instruction loads the contents of H-L pair into SP. Example: SPHL

18

Opcode Operand Description

XTHL None Exchange H–L with top of

stack

The contents of L register are exchanged with the location pointed out by the contents of the

SP. The contents of H register are exchanged with the next location (SP + 1). Example: XTHL

Opcode Operand Description

PCHL None Load program counter with

H-L contents

The contents of registers H and L are copied into the program counter (PC). The contents of

H are placed as the high-order byte and the contents of L as the low-order byte. Example:

PCHL

Opcode Operand Description

PUSH Reg. pair Push

stack

register pair onto

The contents of register pair are copied onto stack. SP is decremented and the contents of

high-order registers (B, D, H, A) are copied into stack. SP is again decremented and the

contents of low-order registers (C, E, L, Flags) are copied into stack. Example: PUSH B

Opcode Operand Description

POP Reg. pair Pop stack to register pair

The contents of top of stack are copied into register pair. The contents of location pointed out

by SP are copied to the low-order register (C, E, L, Flags). SP is incremented and the contents

of location are copied to the high-order register (B, D, H, A). Example: POP H

19

Opcode Operand Description

OUT 8-bit port address Copy data from

accumulator to a port with

8- bit address

The contents of accumulator are copied into the I/O port. Example: OUT 78 H

Opcode Operand Description

IN 8-bit port address Copy data to accumulator

from a port with 8- bit address

The contents of I/O port are copied into accumulator. Example: IN 8C H

ARITHMETIC INSTRUCTIONS

These instructions perform arithmetic operations such as addition, subtraction, increment, and

decrement.

ADDITION

Any 8-bit number, or the contents of register, or the contents of memory location can be added

to the contents of accumulator. The result (sum) is stored in the accumulator. No two other 8-

bit registers can be added directly. Example: The contents of register B cannot be added directly

to the contents of register C.

20

Opcode Operand Description

ADD R M Add register or memory to

accumulator

The contents of register or memory are added to the contents of accumulator. The result is

stored in accumulator. If the operand is memory location, its address is specified by H-L pair.

All flags are modified to reflect the result of the addition. Example: ADD B or ADD M

Opcode Operand Description

ADC R M Add register or memory to

accumulator with carry

The contents of register or memory and Carry Flag (CY) are added to the contents of

accumulator. The result is stored in accumulator. If the operand is memory location, its address

is specified by H-L pair. All flags are modified to reflect the result of the addition. Example:

ADC B or ADC M

Opcode Operand Description

ADI 8-bit data Add immediate to

accumulator

The 8-bit data is added to the contents of accumulator. The result is stored in accumulator. All

flags are modified to reflect the result of the addition. Example: ADI 45 H

21

Opcode Operand Description

ACI 8-bit data Add immediate to

accumulator with carry

The 8-bit data and the Carry Flag (CY) are added to the contents of accumulator. The result

is stored in accumulator. All flags are modified to reflect the result of the addition. Example:

ACI 45 H

Opcode Operand Description

DAD Reg. pair Add register pair to H-L pair

The 16-bit contents of the register pair are added to the contents of H-L pair. The result is

stored in H-L pair. If the result is larger than 16 bits, then CY is set.No other flags are changed.

Example: DAD B

SUBTRACTION

Any 8-bit number, or the contents of register, or the contents of memory location can be

subtracted from the contents of accumulator.The result is stored in the accumulator.Subtraction

is performed in 2’s complement form. If the result is negative, it is stored in 2’s complement

form. No two other 8-bit registers can be subtracted directly.

Opcode Operand Description

SUB R M Subtract register or

memory from accumulator

22

The contents of the register or memory location are subtracted from the contents of the

accumulator. The result is stored in accumulator. If the operand is memory location, its address

is specified by H-L pair. All flags are modified to reflect the result of subtraction. Example:

SUB B or SUB M

Opcode Operand Description

SBB R M Subtract register or memory

from accumulator with borrow

The contents of the register or memory location and Borrow Flag (i.e. CY) are subtracted from

the contents of the accumulator. The result is stored in accumulator. If the operand is memory

location, its address is specified by H-L pair. All flags are modified to reflect the result of

subtraction. Example: SBB B or SBB M

Opcode Operand Description

SUI 8-bit data Subtract immediate from

accumulator

The 8-bit data is subtracted from the contents of the accumulator.The result is stored in

accumulator. All flags are modified to reflect the result of subtraction. Example: SUI 45 H

Opcode Operand Description

SBI 8-bit data Subtract immediate from

accumulator with borrow

23

The 8-bit data and the Borrow Flag (i.e. CY) is subtracted from the contents of the

accumulator. The result is stored in accumulator.All flags are modified to reflect the result of

subtraction. Example: SBI 45 H

INCREMENT/DECREMENT

The 8-bit contents of a register or a memory location can be incremented or decremented by

1.The 16-bit contents of a register pair can be incremented or decremented by 1. Increment or

decrement can be performed on any register or a memory location.

Opcode Operand Description

INR R M Increment register or

memory by 1

The contents of register or memory location are incremented by 1. The result is stored in the

same place. If the operand is a memory location, its address is specified by the contents of H-

L pair. Example: INR B or INR M

Opcode Operand Description

INX R Increment register pair by 1

The contents of register pair are incremented by 1. The result is stored in the same place.

Example: INX H

Opcode Operand Description

DCR R

M

Decrement register or

memory by 1

24

The contents of register or memory location are decremented by 1. The result is stored in the

same place. If the operand is a memory location, its address is specified by the contents of H-

L pair. Example: DCR B or DCR M

Opcode Operand Description

DCX R Decrement register pair by

1

The contents of register pair are decremented by 1. The result is stored in the same place.

Example: DCX H

LOGICAL INSTRUCTIONS

These instructions perform logical operations on data stored in registers, memory and status

flags. The logical operations are:

• AND

• OR

• XOR

• Rotate

• Compare

• Complement AND, OR, XOR

Any 8-bit data, or the contents of register, or memory location can logically have

• AND operation

• OR operation

• XOR operation

with the contents of accumulator. The result is stored in accumulator.

25

Opcode Operand Description

ANA R M Logical AND register or

memory with accumulator

The contents of the accumulator are logically ANDed with the contents of register or memory.

The result is placed in the accumulator. If the operand is a memory location, its address is

specified by the contents of H-L pair. S, Z, P are modified to reflect the result of the operation.

CY is reset and AC is set. Example: ANA B or ANA M.

Opcode Operand Description

ANI 8-bit data Logical AND immediate

with accumulator

The contents of the accumulator are logically ANDed with the 8-bit data. The result is placed

in the accumulator. S, Z, P are modified to reflect the result.CY is reset, AC is set. Example:

ANI 86H.

Opcode Operand Description

ORA R

M

Logical OR register or

memory with accumulator

The contents of the accumulator are logically ORed with the contents of the register or

memory. The result is placed in the accumulator. If the operand is a memory location, its

address is specified by the contents of H-L pair.S, Z, P are modified to reflect the result. CY

and AC are reset. Example: ORA B or ORA M.

26

Opcode Operand Description

ORI 8-bit data Logical OR immediate with

accumulator

The contents of the accumulator are logically ORed with the 8-bit data. The result is placed in

the accumulator. S, Z, P are modified to reflect the result.CY and AC are reset. Example: ORI

86H.

Opcode Operand Description

XRA R

M

Logical XOR register or

memory with accumulator

The contents of the accumulator are XORed with the contents of the register or memory. The

result is placed in the accumulator. If the operand is a memory location, its address is specified

by the contents of H-L pair. S, Z, P are modified to reflect the result of the operation. CY and

AC are reset. Example: XRA B or XRA M.

Opcode Operand Description

XRI 8-bit data XOR immediate with

accumulator

The contents of the accumulator are XORedwith the 8-bit data. The result is placed in the

accumulator. S, Z, P are modified to reflect the result. CY and AC are reset. Example: XRI

86H.

ROTATE

Each bit in the accumulator can be shifted either left or right to the next position as shown in

fig5.

27

Opcode Operand Description

RLC None Rotate accumulator left

Fig 1.5. : Work flow of RLC

Each binary bit of the accumulator is rotated left by one position. Bit D7 is placed in the

position of D0 as well as in the Carry flag. CY is modified according to bit D7. S, Z, P, AC are

not affected. Example: RLC.

Opcode Operand Description

RRC None Rotate accumulator right

Each binary bit of the accumulator is rotated right by one position. Bit D0 is placed in the

position of D7 as well as in the Carry flag. CY is modified according to bit D0. S, Z, P, AC are

not affected. Example: RRC.

Opcode Operand Description

RAL None Rotate accumulator left

through carry

28

Fig 1.6. : Work flow of RAL

Each binary bit of the accumulator is rotated left by one position through the Carry flag as

shown in fig 6. Bit D7 is placed in the Carry flag, and the Carry flag is placed in the least

significant position D0. CY is modified according to bit D7. S, Z, P, AC are not affected.

Example: RAL.

Opcode Operand Description

RAR None Rotate accumulator right

through carry

Each binary bit of the accumulator is rotated right by one position through the Carry flag. Bit

D0 is placed in the Carry flag, and the Carry flag is placed in the most significant position D7.

CY is modified according to bit D0. S, Z, P, AC are not affected. Example: RAR.

COMPARE

Any 8-bit data, or the contents of register, or memory location can be compares for:

• Equality

• Greater Than

• Less Than

with the contents of accumulator. The result is reflected in status flags.

29

Opcode Operand Description

CMP R M Compare register or

memory with accumulator

The contents of the operand (register or memory) are compared with the contents of the

accumulator. Both contents are preserved .The result of the comparison is shown by setting the

flags of the PSW as follows:

• if (A) < (reg/mem): carry flag is set

• if (A) = (reg/mem): zero flag is set

• if (A) > (reg/mem): carry and zero flags are reset.

Example: CMP B or CMP M

Opcode Operand Description

CPI 8-bit data Compare immediate with

accumulator

The 8-bit data is compared with the contents of accumulator.The values being compared remain

unchanged. The result of the comparison is shown by setting the flags of the PSW as follows:

• if (A) < data: carry flag is set

• if (A) = data: zero flag is set

• if (A) > data: carry and zero flags are reset Example: CPI 89H

30

COMPLEMENT

The contents of accumulator can be complemented. Each 0 is replaced by 1 and each 1 is

replaced by 0.

Opcode Operand Description

CMA None Complement accumulator

The contents of the accumulator are complemented. No flags are affected. Example: CMA.

Opcode Operand Description

CMC None Complement carry

The Carry flag is complemented. No other flags are affected. Example: CMC.

Opcode Operand Description

STC None Set carry

The Carry flag is set to 1. No other flags are affected. Example: STC.

BRANCHING INSTRUCTIONS

The branching instruction alters the normal sequential flow. These instructions alter either

unconditionally or conditionally.

Branch operations are of two types:

Unconditional branch-- Go to a new location no matter what. Conditional branch-- Go to a

new location if the condition is true.

31

Opcode Operand Description

JMP 16-bit address Jump unconditionally

The program sequence is transferred to the memory location specified by the 16-bit address

given in the operand.

Example: JMP 2034 H.

Opcode Operand Description

Jx 16-bit address Jump conditionally

The program sequence is transferred to the memory location specified by the 16-bit address

given in the operand based on the specified flag of the PSW. Replace x with condition

Example: JZ 2034 H. Jump conditionally

Opcode Description Status flag

JC Jump if Carry CY = 1

JNC Jump if no carry CY=0

JP Jump if positive S=0

JM Jump if minus S=1

JZ Jump if Zero Z=1

JNZ Jump if no zero Z=0

JPE Jump if parity even P=1

JPO Jump if parity odd P=0

32

Opcode Operand Description

CALL 16-bit address Call unconditionally

The program sequence is transferred to the memory location specified by the 16-bit address

given in the operand. Before the transfer, the address of the next instruction after CALL (the

contents of the program counter) is pushed onto the stack.

Example: CALL 2034 H.

Opcode Operand Description

Cx 16-bit address Call conditionally

The program sequence is transferred to the memory location specified by the 16- bit address

given in the operand based on the specified flag of the PSW. Before the transfer, the address

of the next instruction after the call (the contents of the program counter) is pushed onto the

stack. Replace x with condition

Example: CZ 2034 H. Call Conditionally

Opcode Description Status flag

CC Call if carry CY=1

CNC Call if no carry CY=0

CP Call if positive S=0

CM Call if minus S=1

CZ Call if Zero Z=1

CNZ Call if no zero Z=0

CPE Call if parity even P=1

CPO Call if parity odd P=0

33

Opcode Operand Description

RET None Return unconditionally

The program sequence is transferred from the subroutine to the calling program. The two bytes

from the top of the stack are copied into the program counter, and program execution begins at

the new address.

Example: RET.

Opcode Operand Description

Rx None Call conditionally

The program sequence is transferred from the subroutine to the calling program based on the

specified flag of the PSW. The two bytes from the top of the stack are copied into the program

counter, and program execution begins at the new address. Example: RZ. Replace x with

condition

RETURN CONDITIONALLY

Opcode Description Status flag

RC Return if carry CY=1

RNC Return if no carry CY=0

RP Return Call if positive S=0

RM Return if minus S=1

RZ Return if Zero Z=1

RNZ Return if no zero Z=0

RPE Return if parity even P=1

RPO Return if parity odd P=0

34

Opcode Operand Description

RST 0-7 Restart (Software

Interrupts)

The RST instruction jumps the control to one of eight memory locations depending upon the

number. These are used as software instructions in a program to transfer program execution to

one of the eight locations. Example: RST 3.

RESTART Address table

Instructions Restart address

RST 0 0000 H

RST 1 0008 H

RST 2 0010 H

RST 3 0018 H

RST 4 0020 H

RST 5 0028 H

RST 6 0030 H

RST 7 0038 H

MACHINE CONTROL INSTRUCTIONS

The control instructions control the operation of microprocessor.

Opcode Operand Description

NOP None No operation

No operation is performed. The instruction is fetched and decoded but no operation is executed.

Usually used for delay or to replace instructions during debugging.

Example: NOP

35

Opcode Operand Description

HLT None Halt

The CPU finishes executing the current instruction and halts any further execution. An

interrupt or reset is necessary to exit from the halt state. Example: HLT

Opcode Operand Description

DI None Disable interrupt

The interrupt enable flip-flop is reset and all the interrupts except the TRAP are disabled.

No flags are affected.

Example: DI

Opcode Operand Description

EI None Enable interrupt

The interrupt enable flip-flop is set and all interrupts are enabled. No flags are affected. This

instruction is necessary to re-enable the interrupts (except TRAP).

Example: EI

Opcode

Operand Description

RIM None Read Interrupt Mask

This is a multipurpose instruction used to read the status of interrupts 7.5, 6.5, 5.5 and read

serial data input bit. The instruction loads eight bits in the accumulator with the following

interpretations.

Example: RIM

36

RIM Instruction

Opcode Operand Description

SIM None Set Interrupt Mask

This is a multipurpose instruction and used to implement the 8085 interrupts 7.5, 6.5, 5.5, and

serial data output. The instruction interprets the accumulator contents as follows.

Example: SIM SIM Instruction

37

TIMING DIAGRAM

Timing diagram is the display of initiation of read/write and transfer of data operations under

the control of 3-status signals IO / M, S1, and S0. All actions in the microprocessor are

controlled by either leading or trailing edge of the clock.

MACHINE CYCLE

It is the time required by the microprocessor to complete the operation of accessing the memory

devices or I/O devices. In machine cycle various operations like opcode fetch, memory read,

memory write, I/O read, I/O write are performed.

T-STATE

Each clock cycle is called as T-states.

Each machine cycle is composed of many clock cycles. Since, the data and instructions, both

are stored in the memory, the µP performs fetch operation to read the instruction or data and

then execute the instruction. The 3-status signals: IO / M, S1, and S0 are generated at the

beginning of each machine cycle. The unique combination of these 3-status signals identify

read or write operation and remain valid for the duration of the cycle.

Table 1 Machine Cycle Status And Control Signals

38

Table1 shows details of the unique combination of these status signals to identify different

machine cycles. Thus, time taken by any µP to execute one instruction is calculated in terms

of the clock period. The execution of instruction always requires read and writes operations to

transfer data to or from the µP and memory or I/O devices. Each read/ write operation

constitutes one machine cycle (MC1) as indicated in Fig.1.7. Each machine cycle consists of

many clock periods/ cycles, called T-states.

Fig.1.7 Machine cycle showing clock periods

PROCESSOR CYCLE:

The functions of the microprocessor are divided into fetch and execute cycle of any instruction

of a program. The program is nothing but number of instructions stored in the memory in

sequence. In the normal process of operation, the microprocessor fetches (receives or reads)

and executes one instruction at a time in the sequence until it executes the halt (HLT)

instruction.

INSTRUCTION CYCLE

An instruction cycle is defined as the time required to fetch and execute an instruction. For

executing any program, basically 2-steps are followed sequentially with the help of clocks

• Fetch

• Execute.

The time taken by the µP in performing the fetch and execute operations are called fetch and

execute cycle. Thus, sum of the fetch and execute cycle is called the instruction cycle as

indicated in Fig. 8. Each read or writes operation constitutes a machine cycle. The instructions

of 8085 require 1–5 machine cycles containing 3–6 states (clocks). The 1st machine cycle of

any instruction is always an Op Code fetch cycle in which the processor decides the nature of

instruction. It is of at least 4-states. It may go up to 6-states.

39

Fig.1.8 Processor cycle

RULES TO IDENTIFY NUMBER OF MACHINE CYCLES IN AN INSTRUCTION:

• If an addressing mode is direct, immediate or implicit then No. of machine cycles =

No. of bytes.

• If the addressing mode is indirect then No. of machine cycles = No. of bytes + 1. Add

+1 to the No. of machine cycles if it is memory read/write operation.

• If the operand is 8-bit or 16-bit address then, No. of machine cycles = No. of bytes

+1.

• These rules are applicable to 80% of the instructions of 8085.

TIMING DIAGRAM OF OPCODE FETCH

The process of Opcode fetch operation requires minimum 4-clock cycles T1, T2, T3, and T4

and is the 1st machine cycle (M1) of every instruction.

Example

Fetch a byte 41H stored at memory location 2105H.

For fetching a byte, the microprocessor must find out the memory location where it is stored.

Then provide condition (control) for data flow from memory to the microprocessor. The

process of data flow and timing diagram of fetch operation are shown in Fig. 9. The

microprocessor fetches Opcode of the instruction from the memory as per the sequence below

• A low IO/M means microprocessor wants to communicate with memory.

• The microprocessor sends a high on status signal S1 and S0 indicating fetch operation.

• The microprocessor sends 16-bit address. AD bus has address in 1st clock of the 1st

machine cycle, T1.

• AD7 to AD0 address is latched in the external latch when ALE = 1.

• AD bus now can carry data.

40

• In T2, the RD control signal becomes low to enable the memory for read operation.

• The memory places opcode on the AD bus

• The data is placed in the data register (DR) and then it is transferred to IR.

• During T3 the RD signal becomes high and memory is disabled.

• During T4 the opcode is sent for decoding and decoded in T4.

• The execution is also completed in T4 if the instruction is single byte.

• More machine cycles are essential for 2- or 3-byte instructions. The 1st machine cycle

M1 is meant for fetching the opcode. The machine cycles M2 and M3 are required

either read/ write data or address from the memory or I/O devices.

Fig. 1.9 Opcode fetch

Example For Opcode Fetch

• Explain the execution of MVI B, 05H stored at locations indicated below

41

Fig. 1.10 Timing diagram for MVI B,05H

The MVI B, 05H instruction requires 2-machine cycles (M1 and M2). M1 requires 4-states

and M2 requires 3-states, total of 7-states as shown in Fig. 10. Status signals IO/M, S1 and S0

specifies the 1st machine cycle as the op-code fetch. In T1-state, the high order address {10H}

is placed on the bus A15 ⇔A8 and low-order address {00H} on the bus AD7 ⇔AD0 and ALE

= 1. In T2 -state, the RD line goes low and the data 06 H from memory location 1000H are

placed on the data bus. The fetch cycle becomes complete in T3-state. The instruction is

decoded in the T4-state. During T4-state, the contents of the bus are unknown. With the change

in the status signal, IO/M = 0, S1 = 1 and S0 = 0, the 2nd machine cycle is identified as the

memory read. The address is 1001H and the data byte [05H] is fetched via the data bus. Both

M1 and M2 perform memory read operation, but the M1 is called op-code fetch i.e., the 1st

machine cycle of each instruction is identified as the opcode fetch cycle.

TIMING DIAGRAM OF MEMORY READ

Operation:

42

• It is used to fetch one byte from the memory.

• It requires 3 T-States.

• It can be used to fetch operand or data from the memory.

• During T1, A8-A15 contains higher byte of address. At the same time ALE is high.

Therefore Lower byte of address A0-A7 is selected from AD0-AD7 as shown in fig

11.

• Since it is memory ready operation, IO/M (bar) goes low.

• During T2 ALE goes low, RD (bar) goes low. Address is removed from AD0-AD7

and data D0-D7 appears on AD0-AD7.

• During T3, Data remains on AD0-AD7 till RD (bar) is at low signal.

Fig 11. Timing Diagram of Memory Read

TIMING DIAGRAM FOR MEMORY WRITE

Operation:

• It is used to send one byte into memory.

• It requires 3 T-States.

43

• During T1, ALE is high and contains lower address A0-A7 from AD0-AD7.

• A8-A15 contains higher byte of address.

• As it is memory operation, IO/M (bar) goes low.

• During T2, ALE goes low, WR (bar) goes low and Address is removed from AD0-

AD7 and then data appears on AD0-AD7 as in fig 12.

• Data remains on AD0-AD7 till WR (bar) is low.

Fig 12.Memory Write timing diagram

TIMING DIAGRAM OF IO READ

Operation:

1. It is used to fetch one byte from an IO port.

2. It requires 3 T-States.

3. During T1, The Lower Byte of IO address is duplicated into higher order address bus

A8-A15 as in fig13.

4. ALE is high and AD0-AD7 contains address of IO device.

5. IO/M (bar) goes high as it is an IO operation.

6. During T2, ALE goes low, RD (bar) goes low and data appears on AD0-AD7 as input

from IO device.

7. During T3 Data remains on AD0-AD7 till RD (bar) is low.

44

Fig 13.IO Read timing diagram

TIMING DIAGRAM OF IO WRITE

Operation:

1. It is used to writ one byte into IO device.

2. It requires 3 T-States.

3. During T1, the lower byte of address is duplicated into higher order address bus A8-

A15 as in fig 14.

4. ALE is high and A0-A7 address is selected from AD0-AD7.

5. As it is an IO operation IO/M (bar) goes low.

6. During T2, ALE goes low, WR (bar) goes low and data appears on AD0-AD7 to write

data into IO device.

7. During T3, Data remains on AD0-AD7 till WR(bar) is low.

45

Fig 14. IO Write timing diagram

INTERRUPT:

An interrupt is a signal initiated by an external device to the microprocessor. Once this signal

is received, the microprocessor completes the execution of the current instruction and responds

to the interrupt

SOFTWARE INTERRUPTS OF 8085

The software interrupts are program instructions. When the instruction is executed, the

processor executes an interrupt service routine stored in the vector address of the software

interrupt instruction. The software interrupts of 8085 are RST 0, RST 1, RST 2, RST 3, RST

4, RST 5, RST 6 and RST 7.

The vector addresses of software interrupts are given in table below

46

The software interrupt instructions are included at the appropriate (or required) place in the

main program. When the processor encounters the software instruction, it pushes the content

of PC (Program Counter) to stack. Then loads the Vector address in PC and starts executing

the Interrupt Service Routine (ISR) stored in this vector address. At the end of ISR, a return

instruction - RET will be placed. When the RET instruction is executed, the processor POP

the content of stack to PC. Hence the processor control returns to the main program after

servicing the interrupt. Execution of ISR is referred to as servicing of interrupt. All software

interrupts of 8085 are vectored interrupts. The software interrupts cannot be masked and they

cannot be disabled. The software interrupts are RST0, RST1, … RST7 (8 Nos).

HARDWARE INTERRUPTS OF 8085

These are the interrupts provided as signals to the microprocessor. There are five interrupt

signals in 8085. They are Trap, RST 7.5, RST 6.5, RST 5.5 and INTR. The priority of the

interrupts is from TRAP to INTR. The program executed for the service of the interrupting

device is called the service routine.

TRAP

1. This interrupt is a Non-Maskable interrupt (NMI). It is unaffected by any mask or

interrupt enable.

2. TRAP is the highest priority and vectored interrupt(as vector address is fixed i.e.

memory location where to transfer control).

3. TRAP interrupt is edge and level triggered. This means hat the TRAP must go high

and remain high until it is acknowledged.

4. In sudden power failure, it executes a ISR and send the data from main memory to

backup memory.

5. The signal, which overrides the TRAP, is HOLD signal. (i.e., If the processor receives

HOLD and TRAP at the same time then HOLD is recognized first and then TRAP is

recognized).

6. There are two ways to clear TRAP interrupt.

• By resetting microprocessor (External signal)

• By giving a high TRAP ACKNOWLEDGE (Internal signal)

RST 7.5

• The RST 7.5 interrupt is a Maskable interrupt.

47

• It has the second highest priority.

• It is edge sensitive. i.e. Input goes to high and no need to maintain high state until

it recognized.

• Maskable interrupt

It is disabled by,

• DI, SIM instruction

• System or processor reset.

• After reorganization of interrupt.

RST 6.5 and 5.5

• The RST 6.5 and RST 5.5 both are level triggered (i.e.) Input goes to high and stay

high until it recognized.

• Maskable interrupt

It is disabled by,

• DI, SIM instruction

• System or processor reset.

• After reorganization of interrupt.

• Enabled by EI instruction.

• The RST 6.5 has the third priority whereas RST 5.5 has the fourth priority.

These interrupts are classified further into two classes based on the destination address and

response. Based on the service routine address, interrupts are classified in to vectored and non-

vectored interrupt.

VECTORED INTERRUPT:

If the address of the service routine is known to the microprocessor, i.e. if the service routine

begins at a predefined address, then the interrupts are called vectored interrupts. The vectored

address is calculated as (nx8)16 where n is the number of RST.

For example:

The vectored address of RST 7.5 is 7.5 x 8=60.0

60 in hexadecimal number system is 003C. Therefore the branching address of RST 7.5 is

003C.

Interrupt Address

48

RST 7.5 003C

RST 6.5 0034

RST 5.5 002C

TRAP (RST 4.5) 0024

NON VECTORED INTERRUPT:

The address of the service routine is not known in prior to the microprocessor. It is sent by the

interrupting device.When the interrupt flipflop is enabled and INTR is high, microprocessor

executes the current instruction and makes INTA low. Based on the flexibility to enable or

disable interrupt, the interrupts are classified as maskable interrupt and non maskable interrupt.

Maskable Interrupt: Even if the interrupt signals are high, microprocessor will respond to

these signals only when interrupt flip flop is enabled. Example RST 7.5, RST 6.5, RST 5.5,

INTR

Non-Maskable Interrupt: Once the signal is enabled, the microprocessor immediately

responds to this interrupt. Example: TRAP

STACK

Stack is the upper part of the memory used for storing temporary information. It is a Last In

First Out Memory (LIFO). In 8085, it is accessed using PUSH and POP instructions. During

pushing, the stack operates in a decrement then store‖ style. The stack pointer is decremented

first, then the information is placed on the stack. During poping, the stack operates in a use

then increment style. The information is retrieved from the top of the the stack and then the

pointer is incremented. The SP pointer always points to the top of the stack‖.

PROGRAM STATUS WORD (PSW)

The 8085 recognizes one additional register pair called the PSW (Program Status Word). This

register pair is made up of the Accumulator and the Flags registers. It is possible to push the

PSW onto the stack, do whatever operations are needed, then POP it off of the stack. The result

is that the contents of the Accumulator and the status of the Flags are returned to what they

were before the operations were executed.

SUBROUTINES

A subroutine is a group of instructions that will be used repeatedly in different locations of the

program. Rather than repeat the same instructions several times, they can be grouped into a

subroutine that is called from the different locations. In Assembly language, a subroutine can

exist anywhere in the code. However, it is customary to place subroutines separately from the

49

main program. The 8085 has two instructions for dealing with subroutines. The CALL

instruction is used to redirect program execution to the subroutine. The RET instruction is used

to return the execution to the calling routine.

CALL

CALL 4000H (3 byte instruction)

When CALL instruction is fetched, the MP knows that the next two Memory location contains

16bit subroutine address in the memory.

Fig 17.Work flow of CALL instruction

MP Reads the subroutine address from the next two memory location and stores the higher

order 8bit of the address in the W register and stores the lower order 8bit of the address in the

Z register. Push the address of the instruction immediately following the CALL onto the stack

[Return address]. Loads the program counter with the 16-bit address supplied with the CALL

instruction from WZ register as shown in fig 17.

RET (1 byte instruction)

Retrieve the return address from the top of the stack. Load the program counter with the return

address as seen in fig 18.

Fig 18.Work flow of RET instruction

The processor can regain the buses only after the Hold is removed. When the Hold is

50

acknowledged, the Address, Data, RD, WR, and IO/M lines are stated.

HLDA (Output)

HOLD ACKNOWLEDGE indicates that the CPU has received the Hold request and that it

will relinquish the buses in the next clock cycle. HLDA goes low after the Hold request is

removed. The CPU takes the buses one half clock cycle after HLDA goes low.

INTR (Input)

INTERRUPT REQUEST is used as a general purpose interrupt. It is sampled only during

the next to the last clock cycle of the instruction. If it is active, the Program Counter (PC) will

be inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or

CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled

and disabled by software. It is disabled by Reset and immediately after an interrupt is accepted.

INTA (Output)

INTERRUPT ACKNOWLEDGE: is used instead of (and has the same timing as) RD during

the Instruction cycle after an INTR is accepted. It can be used to activate the 8259 Interrupt

chip or some other interrupt port.

RESTART INTERRUPTS: These three inputs have the same timing as INTR except they

cause an internal RESTART to be automatically inserted. RST 7.5 ~~ Highest Priority RST

6.5 RST 5.5 Lowest Priority

TRAP (Input)

Trap interrupt is a nonmaskable restart interrupt. It is recognized at the same time as INTR. It

is unaffected by any mask or Interrupt Enable. It has the highest priority of any interrupt.

RESET IN (Input)

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA flipflops.

None of the other flags or registers (except the instruction register) are affected The CPU is

held in the reset condition as long as Reset is applied.

RESET OUT (Output)

Indicates CPU is being reset also used as a system RESET. The signal is synchronized to the

processor clock.

X1, X2 (Input)

51

Crystal or R/C network connections to set the internal clock generator X1 can also be an

external clock input instead of a crystal. The input frequency is divided by 2 to give the internal

operating frequency.

CLK (Output)

Clock Output for use as a system clock when a crystal or R/ C network is used as an input to

the CPU. The period of CLK is twice the X1, X2 input period.

IO/M (Output)

IO/M indicates whether the Read/Write is to memory or l/O Tristated during Hold and Halt

modes.

SID (Input)

Serial input data line The data on this line is loaded into accumulator bit 7 whenever a RIM

instruction is executed.

SOD (output)

Serial output data line. The output SOD is set or reset as specified by the SIM instruction.

Vcc +5 volt supply.

Vss Ground Reference.

8085 PROGRAMS

I. 8-BIT ADDITION.

Program:

MVI C, 00 - Clear one register for carry (Reg C)

LDA 9100 -Load the accumulator with the first data

MOV B, A - Move the accumulator content to one register (Reg B)

LDA 9101 -Load the accumulator with the second data

ADD B - Add Reg B content to accumulator

JNC L1: -Check for carry, if there is no carry, go to step 8

INR C-Increment reg C to indicate carry

L1 : STA 9200 - Store the results

MOV A, C- carry in Reg C

STA 9201- sum in accumulator to memory locations

RST 1 -stop

52

Sample Data:

Input Output

9100 – 04 9200 – 0C

9101 – 08 9201 – 00

9100 – FF 9200 – FE

9101 – FF 9201 – 01

8-BIT SUBTRACTION

Program:

MVIC, 00 - Clear one register for borrow (Reg C)

LDA 9200 -Load the accumulator with the first data

MOV B, A - Move the accumulator content to one register (Reg B)

LDA 9201-Load the accumulator with the second data

SUB B- Subtract Reg B content from accumulator content

JNC L1-Check for carry, if there is no carry, go to step 10

 CMA- Complement accumulator content

INR A-increment accumulator content

INR C- Increment reg C to indicate borrow

L1 :STA 9200 - Store the results

MOV A, C - borrow in Reg C

STA 9201- difference in accumulator to memory locations

RST 1-stop

Sample Data:

Input Output

9200 – FF 9200 – 55

9201 – AA 9201 – 01

9200 – BB 9200 – 44

9201 – FF 9201 – 00

16-BIT ADDITION

Program:

53

MVI C, 00 -Clear one register for carry (Reg C)

LHLD 9100 -Load the first data in HL register pair

XCHG -Swap the contents of HL and DE pairs

LHLD -Load the second data in HL register pair

DAD D -Double add the contents of HL and DE pairs

JNC L1- Check for carry, if there is no carry go to step 8

 INR C- Increment Reg C

L1: SHLD 9104- Store the result which is in HL pair in a memory location

MOV A, C - Move the carry in Reg C to accumulator

 STA 9106 - Store the accumulator content in memory

RST 1 - Stop

Sample Data:

Input Output

9100 – 06 9104 – 09

9101 – 05 9105 – 0B

9102 – 03 9106 – 00

9103 – 06

9100 – 06 9104 – 09

9101 – F0 9105 – E0

9102 – 03 9106 – 01

9103 – F0

REVERSE THE STRING

Program:

MVIB, 06- Initialize one register (Reg B) with the length of the string

LXI H, 9100- Initialize one register pair (HL) with the starting address of the source array

LXI D, 9205 - Initialize one register pair (DE) with the ending address of the destination array

L1: MOV A, M - Move the memory content to accumulator

STAX D - Store the accumulator content in DE pair

INX H - Increment HL pair

DCX D - Decrement DE pair

DCR B - Decrement the counter register – Reg B

JNZ L1 - Check for zero, if not zero, goto step 4

RST1 - Stop

54

Sample Data:

Input Output

9100 – 0E 9200 – 0C

9101 – 0E 9201 – 00

9102 – 0F 9202 – 0F

9103 – 0F 9203 – 0F

9104 – 00 9204 – 0E

9105 – 0C 9205 – 0E

FACTORIAL OF A NUMBER

Program:

LDA 9100-Load the accumulator with the given data

MOV B, A-Move the accumulator content to a register (Reg B)

MOV C, A-Move the accumulator content to another register (Reg C)

 DCR C-Decrement Reg C

L2: MOV D, C -Move the content of Reg C toReg D

MVI A, 00-Clear the accumulator content

L1 : ADD B-Add Reg B content to accumulator

DCR D-Decrement Reg D

JNZ L1-Check for zero, if not zero, goto step 7

MOV B, A-Move accumulator content to Reg B

DCR C-Decrement Reg C

JNZ L2-Check for zero, if not zero, goto step 5

STA 9101-Store the accumulator content in a memory address

RST 1-Stop

Sample Data:

Input Output

9100 – 04 9101 – 18

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – II – 8086 MICROPROCESSOR

INTEL 8086

Features of 8086 Microprocessor:

• Intel 8086 was launched in 1978.

• It was the first 16-bit microprocessor.

• This microprocessor had major improvement over the execution speed of 8085.

• It is available as 40-pin Dual-Inline-Package (DIP).

• It is available in three versions:

a. 8086 (5 MHz)

 b. 8086-2 (8 MHz)

 c. 8086-1 (10 MHz)

• It consists of 29,000 transistors.

• It has a 16 line data bus and 20 line address bus.

• It could address up to 1 MB of memory.

• It has more than 20,000 instructions.

PIN DIAGRAM OF 8086

Figure 2.1 Pin diagram

AD0-AD15

These lines are multiplexed bidirectional address/data bus. During T1, they carry lower

order 16-bit address. In the remaining clock cycles,they carry 16-bit data. AD0-AD7 carry

lower order byte of data. AD8-AD15 carry higher order byte of data.

A19/S6, A18/S5, A17/S4, A16/S3 [Pin 35-38 (Unidirectional)]

These lines are multiplexed unidirectional address and status bus. During T1, they carry

higher order 4-bit address. In the remaining clock cycles, they carry status signals.

BHE / S7 [Pin 34 (Output)]

BHE stands for Bus High Enable. BHE signal is used to indicate the transfer of data over

higher order data bus (D8 – D15). 8-bit I/O devices use this signal. It is multiplexed with

status pin S7.

RD (Read) [Pin 32 (Output)]

It is a read signal used for read operation. It is an output signal. It is an active low signal.

READY [Pin 22 (Input)]

This is an acknowledgement signal from slower I/O devices or memory. It is an active

high signal. When high, it indicates that the device is ready to transfer data. When low,

then microprocessor is in wait state.

RESET[Pin 21 (Input)]

It is a system reset. It is an active high signal. When high, microprocessor enters into reset

state and terminates the current activity. It must be active for atleast four clock cycles to

reset the microprocessor.

INTR [Pin 18 (Input)]

It is an interrupt request signal. It is active high. It is level triggered

NMI[Pin 17 (Input)]

It is a non-maskable interrupt signal. It is an active high. It is an edge

triggered interrupt.

TEST[Pin 23 (Input)]

It is used to test the status of math coprocessor 8087. The BUSY pin of 8087 isconnected

to this pin of 8086. If low, execution continues else microprocessor is in wait state.

CLK[Pin 19 (Input)]

This clock input provides the basic timing for processor operation. It is symmetric square

wave with 33% duty cycle. The range of frequency of different versions is 5 MHz, 8 MHz

and 10 MHz.

VCC and VSS[Pin 40 and Pin 20 (Input)]

VCC is power supply signal. +5V DC is supplied through this pin. VSS is ground signal

MN / MX[Pin 33 (Input)]

8086 works in two modes: Minimum Mode, Maximum Mode. If MN/MX is high, it works

in minimum mode. If MN/MX is low, it works in maximum mode. Pins 24 to 31 issue two

different sets of signals. One set of signals is issued when CPU operates in minimum mode.

Other set of signals is issued when CPU operates in maximum mode.

PIN DESCRIPTION FOR MINIMUM MODE

INTA [Pin 24 (Output)]

This is an interrupt acknowledge signal. When microprocessor receives INTR signal, it

acknowledges the interrupt by generating this signal. It is an active low signal

ALE [Pin 25 (Output)]

This is an Address LatchEnable signal. It indicates that valid address is available on bus

AD0 – AD15. It is an active high signal and remains high during T1 state. It is connected

to enable pin of latch 8282.

DEN[Pin 26 (Output)]

This is a Data Enable signal. This signal is used toenable the transceiver 8286. Transceiver

is used to separate the data from the address/data bus. It is an active low signal

DT / R[Pin 27 (Output)]

This is a DataTransmit/Receive signal. It decides the direction ofdata flow through the

transceiver. When it is high, data is transmitted out. When it is low, data is received in.

M / IO[Pin 28 (Output)]

This signal is issued by the microprocessor to distinguish memory access from I/O access.

When it is high, memory is accessed. When it is low, I/O devices are accessed.

WR [Pin 29 (Output)]

It is a Write signal. It is used to write data inmemory or output device depending on the

status of M/IO signal. It is an active low signal

HLDA[Pin 30 (Output)]

It is a Hold Acknowledge signal. It is issued after receiving the HOLD signal. It is an

active high signal

HOLD[Pin 31 (Input)]

When DMA controller needs to use address/data bus, it sends a request to the CPU through

this pin. It is an active high signal. When microprocessor receives HOLD signal, it issues

HLDA signal to the DMA controller.

PIN DESCRIPTION FOR MAXIMUM MODE

QS1 and QS0 [Pin 24 and 25 (Output)]

These pins provide the status of instruction queue.

QS1 QS0 STATUS

0 0 NO OPERATION

0 1 1st byte of opcode from queue

1 0 Empty queue

1 1 Subsequent byte from queue

S0, S1, S2 [Pin 26, 27, 28 (Output)]

These status signals indicate the operation being done by the microprocessor. This

information is required by the Bus Controller 8288. Bus controller 8288 generates all

memory and I/O control signals.

S0 S1 S2 STATUS

0 0 0 Interrupt Acknowledge

0 0 1 I/O Read

0 1 0 I/O Write

0 1 1 Halt

1 0 0 Opcode Fetch

1 0 1 Memory Read

1 1 0 Memory Write

1 1 1 Passive

LOCK[Pin 29 (Output)]

• This signal indicates that other processors should not ask CPU to relinquish the

system bus. When it goes low, all interrupts are masked and HOLD request is not

granted. This pin is activated by using LOCK prefix on any instruction.

RQ/GT1 and RQ/GT0 [Pin 30 and 31 (Bi-directional)]

• These are Request/Grant pins. Other processors request the CPU through these

lines to release the system bus. After receiving the request, CPU sends

acknowledge signal on the same lines. RQ/GT0 has higher priority than

RQ/GT1.

ARCHITECTURE OF 8086

The microprocessors functions as the CPU in the stored program model of the digital

computer. Its job is to generate all system timing signals and synchronize the transfer of data

between memory, I/O, and itself. The microprocessor also has a S/W function. It must

recognize, decode, and execute program instructions fetched from the memory unit. This

requires an Arithmetic-Logic Unit (ALU) within the CPU to perform arithmetic and logical

(AND, OR, NOT, compare, etc) functions.

The 8086 has pipelined architecture. The 8086 CPU is organized as two separate

processors, called the Bus Interface Unit (BIU) and the Execution Unit (EU).

Fig : 2.2Architecture of 8086

BUS INTERFACE UNIT (BIU)

The function of BIU is to:

• Fetch the instruction or data from memory.

• Write the data to memory.

• Write the data to the port.

• Read data from the port.

 INSTRUCTION QUEUE

• To increase the execution speed, BIU fetches as many as six instruction bytes

ahead to time from memory.

• All six bytes are then held in first in first out 6 byte register called instruction

queue.

• Then all bytes have to be given to EU one by one.

• This pre fetching operation of BIU may be in parallel with execution operation of

EU, which improves the speed execution of the instruction.

EXECUTION UNIT (EU)

The functions of execution unit are:

• To tell BIU where to fetch the instructions or data from.

• To decode the instructions.

• To execute the instructions.

The EU contains the control circuitry to perform various internal operations. A decoder in

EU decodes the instruction fetched memory to generate different internal or external control

signals required to perform the operation. EU has 16-bit ALU, which can perform

arithmetic and logical operations on 8-bit as well as 16-bit.

 GENERAL PURPOSE REGISTERS OF 8086

These registers can be used as 8-bit registers individually or can be used as 16-bit in pair

to have AX, BX, CX, and DX.

• AX Register: AX register is also known as accumulator register that stores

operands for arithmetic operation like divided, rotate.

• BX Register: This register is mainly used as a base register. It holds the starting

base location of a memory region within a data segment.

• CX Register: It is defined as a counter. It is primarily used in loop instruction to

store loop counter.

• DX Register: DX register is used to contain I/O port address for I/O instruction.

SEGMENT REGISTERS :

Additional registers called segment registers generate memory address when combined with

other in the microprocessor. In 8086 microprocessor, memory is divided into 4 segments as

follow:

Fig.2.3 Memory Segments of 8086

• Code Segment (CS): The CS register is used for addressing a memory location in

the Code Segment of the memory, where the executable program is stored.

• Data Segment (DS): The DS contains most data used by program. Data are accessed

in the Data Segment by an offset address or the content of other register that holds

the offset address.

• Stack Segment (SS): SS defined the area of memory used for the stack

• Extra Segment (ES): ES is additional data segment that is used by some of the

string to hold the destination data.

Flag register in EU is of 16-bit , is shown

Fig : Flag Register of 8086

Flag Register determines the current state of the processor. They are modified automatically

by CPU after mathematical operations, this allows to determine the type of the result, and

to determine conditions to transfer control to other parts of the program. 8086 has 9 flags

and they are divided into two categories:

1. Conditional Flags

2. Control Flags

CONDITIONAL FLAGS

Conditional flags represent result of last arithmetic or logical instruction executed.

Conditional flags are as follows:

1. Carry Flag (CF): This flag indicates an overflow condition for unsigned integer

arithmetic. It is also used in multiple-precision arithmetic.

2. Auxiliary Flag (AF): If an operation performed in ALU generates a carry/barrow

from lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7), the AF flag is set

i.e. carry given by D3 bit to D4 is AF flag. This is not a general-purpose flag, it is

used internally by the processor to perform Binary to BCD conversion.

3. Parity Flag (PF): This flag is used to indicate the parity of result. If lower order

8- bits of the result contains even number of 1’s, the Parity Flag is set and for odd

number of 1’s, the Parity Flag is reset.

4. Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else

it is reset.

5. Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB

bit. If the result of operation is negative, sign flag is set.

6. Overflow Flag (OF): It occurs when signed numbers are added or subtracted. An

OF indicates that the result has exceeded the capacity of machine.

CONTROL FLAGS

Control flags are set or reset deliberately to control the operations of the execution unit.

Control flags are as follows:

1. Trap Flag (TP):

a. It is used for single step control.

b. It allows user to execute one instruction of a program at a time for debugging.

c. When trap flag is set, program can be run in single step mode.

2. Interrupt Flag (IF):

a. It is an interrupt enable/disable flag.

b. If it is set, the maskable interrupt of 8086 is enabled and if it is reset, the

interrupt is disabled.

c. It can be set by executing instruction sit and can be cleared by executing

CLI instruction.

3. Direction Flag (DF):

a. It is used in string operation.

b. If it is set, string bytes are accessed from higher memory address to

lower memory address.

c. When it is reset, the string bytes are accessed from lower memory

address to higher memory address.

ADDRESSING MODES OF 8086

ADDRESSING MODES FOR REGISTER AND IMMEDIATE DATA

• Register Addressing mode

• Immediate Addressing mode

Addressing modes for memory data

• Register Indirect Addressing mode

• Direct Addressing mode

• Based Addressing mode

• Indexed Addressing mode

• Base Relative Addressing mode

• Base Indexed Addressing mode

• String Addressing Mode

 Addressing modes for I/O port

• Direct I/O port Addressing

• Indirect I/O port Addressing

 RELATIVE ADDRESSING

• Implied Addressing Mode

 REGISTER ADDRESSING MODE

Data transfer using registers is called register addressing mode. Here operand value is

present in register. For example

MOV

AL,BL

; MOV

AX,B

X;

 IMMEDIATE ADDRESSING MODE

When data is stored in code segment instead of data segment immediate addressing

mode is used. Here operand value is present in the instruction. For example

MOV AX, 0A9FH;

 DIRECT ADDRESSING MODE

When direct memory address is supplied as part of the instruction is called direct

addressing mode. Operand offset value with respect to data segment is given in

instruction. For example

MOV AX,

[089DH];

ADD AX,

[0ADH];

 REGISTER INDIRECT ADDRESSING MODE

Here operand offset is given in a CPU register. Register used are BX, SI (source

index), DI (destination index), or BP(base pointer). BP holds offset w.r.t Stack

segment, but SI, DI and BX refer to data segment. For example-

MOV [BX], AX;

ADD AX, [SI];

BASED ADDRESSING MODE

In this mode EA is obtained by adding a displacement (signed 8 bit or unsigned 16

bit) value to the contents of BX or BP. The segment registers used are DS & SS.

When Memory is accessed, the 20 bit physical address is computed from BX and DS

.On the other hand, when the stack is accessed, the 20 bit physical address is computed

from BP and SS.

eg:- MOV AL,START[BX] or MOV AL,[BX+START]

Where START=02H (8 bit displacement),BX=2000H

Now the 20 bit Physical address is computed from DS and EA

Here the source operand is in based Addressing Mode .EA is obtained by adding the value

of START and [BX].The 20 bit physical address is produced from DS and EA. The 8 bit

content of this memory location is moved to AL register.

INDEXED ADDRESSING MODE

In this mode,the EA is calculated by adding the unsigned 16 bit or signed extended 8 bit

displacement and the contents of SI or DI.

eg:- MOV BH,START[SI]

Moves the contents of the 20 bit address computed from the displacement START, SI and

DS into BH register. The 8 bit displacement is provided by the programmer using the

assembler pseudo instruction such as EQU. For 16 bit displacement, the EU adds this to SI

to determine EA. On the other hand, for 8 bit displacement the EU sign extends it to 16 bits

and then adds to SI for determining EA.

BASE RELATIVE ADDRESSING MODE

Operand offset given by a sum of a value held either in BP, or BX and a constant offset

specified as an operand. For example

MOV

AX,[BP+1];

JMP [BX+1];

BASE INDEXED ADDRESSING MODE

Here operand offset is given by sum of either BX or BP with either SI or DI. For

example

MOV AX,

[BX+S] JMP

[BP+DI]

 STRING ADDRESSING

This mode uses index registers. The string instructions automatically assume SI to point to

the first byte or word of the source operand and DI to point to the first byte or word of the

destination operand.

The segment register for the source is DS and may be overridden. The segment register

for the destination must be ES and cannot be overridden.

The contents of SI and DI are automatically incremented by clearing DF (Direction Flag)

to 0 by CLD instruction or automatically decremented by setting DF to 1 by STD

instruction.

DIRECT ADDRESSING MODES

Here the port number is a 8 bit immediate operand.This allows fixed access to ports

numbered 0 to 255.

eg:- OUT 05H,AL

outputs [AL] to 8 bit port 05H

INDIRECT ADDRESSING MODE

The port number is taken from DX allowing 64K 8 bit ports or 32K 16 bit ports.

eg:- IN AX,DX

If [DX]=5040,Inputs the 8 bit content of port 5040 into AL and 5041 into AH.

RELATIVE ADDRESSING MODE

In this mode, the operand is specified as a signed 8 bit displacement, relative to

PC(Program Counter).

eg:- JNC START

Then, if carry=0,PC is loaded with current PC contents plus the 8 bit signed value of

START, otherwise the next instruction is executed.

IMPLIED ADDRESSING MODE

Instructions using this mode have no operands.

eg:- CLC

This clears the carry flag to zero.

INSTRUCTION SET OF 8086

DATA TRANSFER INSTRUCTIONS

MOV – MOV Destination, Source

The MOV instruction copies a word or byte of data from a specified source to a specified

destination. The destination can be a register or a memory location. The source can be a

register, a memory location or an immediate number. The source and destination cannot

both be memory locations. They must both be of the same type (bytes or words).MOV

instruction does not affect any flag.

MOV CX, 037AH Put immediate number 037AH to CX

MOV BL, [437AH] Copy byte in DS at offset 437AH to BL

MOV AX, BX Copy content of register BX to AX

MOV DL, [BX] Copy byte from memory at [BX] to DL

MOV DS, BX Copy word from BX to DS register

MOV RESULT [BP], AX Copy AX to two memory locations; AL to the first location, AH to

the second; EA of the first memory location is sum of the displacement represented by

RESULTS and content of BP. Physical address = EA + SS.

MOVES: RESULTS [BP], AX Same as the above instruction, but physical address = EA + ES,

because of the segment override prefix ES

XCHG – XCHG Destination, Source

The XCHG instruction exchanges the content of a register with the content of another

register or with the content of memory location(s). It cannot directly exchange the content

of two memory locations. The source and destination must both be of the same type (bytes

or words). The segment registers cannot be used in this instruction. This instruction does not

affect any flag.

XCHG AX, DX Exchange word in AX with word

in DX XCHG BL, CH Exchange byte in BL with byte in

CH

XCHG AL, PRICES [BX] Exchange byte in AL with byte in memory at

EA = PRICE [BX] in DS.

LEA – LEA Register, Source

This instruction determines the offset of the variable or memory location named as the

source and puts this offset in the indicated 16-bit register. LEA does not affect any flag.

LES – LES Register, Memory address of the first word

This instruction loads new values into the specified register and into the ES register

from four successive memory locations. The word from the first two memory locations

is copied into the specified register, and the word from the next two memory locations

is copied into the ES register. LES does not affect any flag.

PUSH BX Decrement SP by 2, copy BX to stack.

PUSH DS Decrement SP by 2, copy DS to stack.

PUSH BL Illegal; must push a word

PUSH TABLE [BX] Decrement SP by 2, and copy word from memory in DS at EA =

TABLE + [BX] to stack

POP – POP Destination

The POP instruction copies a word from the stack location pointed to by the stack pointer

to a destination specified in the instruction. The destination can be a general- purpose

register, a segment register or a memory location. The data in the stack is not changed.

After the word is copied to the specified destination, the stack pointer is automatically

incremented by 2 to point to the next word on the stack. The POP instruction does not

affect any flag.

POP DX Copy a word from top of stack to DX; increment SP by 2

POP DS Copy a word from top of stack to DS; increment SP by 2

POP TABLE [DX] Copy a word from top of stack to memory in DS with EA =

TABLE + [BX]; increment SP by 2.

PUSHF (PUSH FLAG REGISTER TO STACK)

The PUSHF instruction decrements the stack pointer by 2 and copies a word in the flag

register to two memory locations in stack pointed to by the stack pointer. The stack

segment register is not affected. This instruction does to affect any flag.

POPF (POP WORD FROM TOP OF STACK TO FLAG REGISTER)

The POPF instruction copies a word from two memory locations at the top of the stack

to the flag register and increments the stack pointer by 2. The stack segment register

and word on the stack are not affected. This instruction does to affect any flag.

INPUT-OUTPUT INSTRUCTIONS

IN – IN Accumulator, Port

The IN instruction copies data from a port to the AL or AX register. If an 8-bit port is

read, the data will go to AL. If a 16-bit port is read, the data will go to AX.

The IN instruction has two possible formats, fixed port and variable port. For fixed port

type, the 8-bit address of a port is specified directly in the instruction. With this form, any

one of 256 possible ports can be addressed.

IN AL, OC8H Input a byte from port OC8H to AL

IN AX, 34H Input a word from port 34H to AX

For the variable-port form of the IN instruction, the port address is loaded into the DX

register before the IN instruction. Since DX is a 16-bit register, the port address can be any

number between 0000H and FFFFH. Therefore, up to 65,536 ports are addressable in this

mode.

MOV DX, 0FF78H Initialize DX to point to port

 IN AL, DX Input a byte from 8-bit port 0FF78H to AL

 IN AX, DX Input a word from 16-bit port 0FF78H to AX

The variable-port IN instruction has advantage that the port address can be computed or

dynamically determined in the program. Suppose, for example, that an 8086-based

computer needs to input data from 10 terminals, each having its own port address. Instead

of having a separate procedure to input data from each port, you can write one generalized

input procedure and simply pass the address of the desired port to the procedure in DX.

The IN instruction does not change any flag.

OUT – OUT Port, Accumulator

The OUT instruction copies a byte from AL or a word from AX to the specified port. The

OUT instruction has two possible forms, fixed port and variable port.

For the fixed port form, the 8-bit port address is specified directly in the instruction. With

this form, any one of 256 possible ports can be addressed.

OUT 3BH, AL Copy the content of AL to port 3BH

OUT 2CH, AX Copy the content of AX to port 2CH

For variable port form of the OUT instruction, the content of AL or AX will be copied to

the port at an address contained in DX. Therefore, the DX register must be loaded with the

desired port address before this form of the OUT instruction is used.

MOV DX, 0FFF8H Load desired port address in DX

OUT DX, AL Copy content of AL to port FFF8H

OUT DX, AX Copy content of AX to port

FFF8

ARITHMETIC INSTRUCTIONS

ADD – ADD Destination, Source

ADC – ADC Destination, Source

These instructions add a number from some source to a number in some destination and put

the result in the specified destination. The ADC also adds the status of the carry flag to the

result. The source may be an immediate number, a register, or a memory location. The

destination may be a register or a memory location. The source and the destination in an

instruction cannot both be memory locations. The source and the destination must be of the

same type (bytes or words). If you want to add a byte to a word, you must copy the byte to

a word location and fill the upper byte of the word with 0’s before adding. Flags affected:

AF, CF, OF, SF, ZF.

ADD AL, 74H Add immediate number 74H to content of AL. Result in AL

ADC CL, BL Add content of BL plus carry status to content of CL

ADD DX, BX Add content of BX to content of DX

ADD DX, [SI] Add word from memory at offset [SI] in DS to content of DX

ADC AL, PRICES [BX] Add byte from effective address [BX] plus carry status to content

of AL

ADD AL, PRICES [BX] Add content of memory at effective address PRICES

[BX] to AL

SUB – SUB Destination, Source

SBB – SBB Destination, Source

These instructions subtract the number in some source from the number in some destination

and put the result in the destination. The SBB instruction also subtracts the content of carry

flag from the destination. The source may be an immediate number, a register or memory

location. The destination can also be a register or a memory location. However, the source

and the destination cannot both be memory location. The source and the destination must

both be of the same type (bytes or words). If you want to subtract a byte from a word, you

must first move the byte to a word location such as a 16-bit register and fill the upper byte

of the word with 0’s.

Flags affected: AF, CF, OF, PF, SF, ZF.

SUB CX, BX CX – BX; Result in CX

SBB CH, AL Subtract content of AL and content of CF from content

of CH. Result in CH

• SUB AX, 3427H -Subtract immediate number 3427H from AX

• SBB BX, [3427H] -Subtract word at displacement 3427H in DS and content of

CF from BX

• SUB PRICES [BX], 04H -Subtract 04 from byte at effective address PRICES [BX],

if PRICES is declared with DB; Subtract 04 from word at effective address PRICES

[BX], if it is declared with DW.

• SBB CX, TABLE [BX] -Subtract word from effective address TABLE [BX] and

status of CF from CX.

• SBB TABLE [BX], CX -Subtract CX and status of CF from word in memory at

effective address TABLE[BX].

MUL – MUL Source

This instruction multiplies an unsigned byte in some source with an unsigned byte in AL

register or an unsigned word in some source with an unsigned word in AX register. The

source can be a register or a memory location. When a byte is multiplied by the content of

AL, the result (product) is put in AX. When a word is multiplied by the content of AX, the

result is put in DX and AX registers. If the most significant byte of a 16-bit result or the

most significant word of a 32-bit result is 0, CF and OF will both be 0’s. AF, PF, SF and

ZF are undefined after a MUL instruction.

If you want to multiply a byte with a word, you must first move the byte to a word location

such as an extended register and fill the upper byte of the word with all 0’s. You cannot

use the CBW instruction for this, because the CBW instruction fills the upper byte with

copies of the most significant bit of the lower byte.

• MUL BH Multiply AL with BH; result in AX

• MUL CX Multiply AX with CX; result high word in DX, low word

in AX MUL BYTE PTR [BX] Multiply AL with byte in DS pointed to

by [BX]

• MUL FACTOR [BX] Multiply AL with byte at effective address FACTOR

[BX], if it is declared as type byte with DB. Multiply AX with word at effective

address FACTOR [BX], if it is declared as type word with DW.

• MOV AX, MCAND_16 Load 16-bit multiplicand into AX MOV CL,

MPLIER_8 Load 8-bit multiplier into CL MOV CH, 00H Set upper byte of CX to

all 0’s MUL CX AX times CX; 32-bit result in DX and AX

IMUL-IMUL SOURCE

This instruction multiplies a signed byte from source with a signed byte in AL or a signed

word from some source with a signed word in AX. The source can be a register or a memory

location. When a byte from source is multiplied with content of AL, the signed result

(product) will be put in AX. When a word from source is multiplied by AX, the result is put

in DX and AX. If the magnitude of the product does not require all the bits of the destination,

the unused byte / word will be filled with copies of the sign bit. If the upper byte of a 16-bit

result or the upper word of a 32-bit result contains only copies of the sign bit (all 0’s or all

1’s), then CF and the OF will both be 0; If it contains a part of the product, CF and OF will

both be 1. AF, PF, SF and ZF are undefined after IMUL.

If you want to multiply a signed byte with a signed word, you must first move the byte into

a word location and fill the upper byte of the word with copies of the sign bit. If you move

the byte into AL, you can use the CBW instruction to do this.

IMUL BH- Multiply signed byte in AL with signed byte in BH; result in AX.

• IMUL AX -Multiply AX times AX; result in DX and AX

• MOV CX, MULTIPLIER - Load signed word in CX

• MOV AL, MULTIPLICAND-Load signed byte in AL

• CBW-Extend sign of AL into AH

• IMUL CX-Multiply CX with AX; Result in DX and AX

DIV – DIV SOURCE

This instruction is used to divide an unsigned word by a byte or to divide an unsigned double

word (32 bits) by a word. When a word is divided by a byte, the word must be in the AX

register. The divisor can be in a register or a memory location. After the division, AL will

contain the 8-bit quotient, and AH will contain the 8-bit remainder.

When a double word is divided by a word, the most significant word of the double word

must be in DX, and the least significant word of the double word must be in AX. After the

division, AX will contain the 16-bit quotient and DX will contain the 16-bit remainder. If an

attempt is made to divide by 0 or if the quotient is too large to fit in the destination (greater

than FFH / FFFFH), the 8086 will generate a type 0 interrupt. All flags are undefined after

a DIV instruction.

If you want to divide a byte by a byte, you must first put the dividend byte in AL and fill

AH with all 0’s. Likewise, if you want to divide a word by another word, then put the

dividend word in AX and fill DX with all 0’s.

DIV BL -Divide word in AX by byte in BL; Quotient in AL, remainder in AH

DIV CX - Divide down word in DX and AX by word in CX; Quotient in AX, and remainder

in DX.

 DIV SCALE [BX]- AX / (byte at effective address SCALE [BX]) if SCALE [BX]

is of type byte; or (DX and AX) / (word at effective address SCALE[BX] if SCALE[BX]

is of type word

IDIV – IDIV SOURCE

This instruction is used to divide a signed word by a signed byte, or to divide a signed

double word by a signed word.

When dividing a signed word by a signed byte, the word must be in the AX register. The

divisor can be in an 8-bit register or a memory location. After the division, AL will contain

the signed quotient, and AH will contain the signed remainder. The sign of the remainder

will be the same as the sign of the dividend. If an attempt is made to divide by 0, the quotient

is greater than 127 (7FH) or less than –127 (81H), the 8086 will automatically generate a

type 0 interrupt.

When dividing a signed double word by a signed word, the most significant word of the

dividend (numerator) must be in the DX register, and the least significant word of the

dividend must be in the AX register. The divisor can be in any other 16-bit register or

memory location. After the division, AX will contain a signed 16-bit quotient, and DX will

contain a signed 16-bit remainder. The sign of the remainder will be the same as the sign of

the dividend. Again, if an attempt is made to divide by 0, the quotient is greater than +32,767

(7FFFH) or less than –32,767 (8001H), the 8086 will automatically generate a type 0

interrupt.

All flags are undefined after an IDIV.

If you want to divide a signed byte by a signed byte, you must first put the dividend byte in

AL and signextend AL into AH. The CBW instruction can be used for this purpose.

Likewise, if you want to divide a signed word by a signed word, you must put the dividend

word in AX and extend the sign of AX to all the bits of DX. The CWD instruction can be

used for this purpose.

IDIV BL Signed word in AX/signed byte in BL

IDIV BP Signed double word in DX and AX/signed word in

BP IDIV BYTE PTR [BX] AX / byte at offset [BX] in DS

INC – INC Destination

The INC instruction adds 1 to a specified register or to a memory location. AF, OF, PF, SF,

and ZF are updated, but CF is not affected. This means that if an 8-bit destination containing

FFH or a 16-bit destination containing FFFFH is incremented, the result will be all 0’s with

no carry.

INC BL Add 1 to contains of BL register

INC CX Add 1 to contains of CX register

INC BYTE PTR [BX] Increment byte in data segment at offset contained in BX.

INC WORD PTR [BX] Increment the word at offset of [BX] and [BX + 1] in the

data segment.

DEC – DEC DESTINATION

This instruction subtracts 1 from the destination word or byte. The destination can be a

register or a memory location. AF, OF, SF, PF, and ZF are updated, but CF is not affected.

This means that if an 8-bit destination containing 00H or a 16-bit destination containing

0000H is decremented, the result will be FFH or FFFFH with no carry (borrow).

DEC CL Subtract 1 from content of CL register

DEC BP Subtract 1 from content of BP register

DAA (DECIMAL ADJUST AFTER BCD ADDITION)

This instruction is used to make sure the result of adding two packed BCD numbers is

adjusted to be a legal BCD number. The result of the addition must be in AL for DAA to

work correctly. If the lower nibble in AL after an addition is greater than 9 or AF was set by

the addition, then the DAA instruction will add 6 to the lower nibble in AL. If the result in

the upper nibble of AL in now greater than 9 or if the carry flag was set by the addition or

correction, then the DAA instruction will add 60H to AL.

Let AL = 59 BCD, and BL = 35 BCD

ADD AL, BL AL = 8EH; lower nibble > 9, add 06H to AL

DAA AL = 94 BCD, CF = 0

Let AL = 88 BCD, and BL = 49 BCD

ADD AL, BL AL = D1H; AF = 1, add 06H to AL

DAA AL = D7H; upper nibble > 9, add 60H to

AL AL = 37 BCD, CF = 1

The DAA instruction updates AF, CF, SF, PF, and ZF; but OF is undefined.

DAS (DECIMAL ADJUST AFTER BCD SUBTRACTION)

This instruction is used after subtracting one packed BCD number from another packed BCD

number, to make sure the result is correct packed BCD. The result of the subtraction must

be in AL for DAS to work correctly. If the lower nibble in AL after a subtraction is greater

than 9 or the AF was set by the subtraction, then the DAS instruction will subtract 6 from

the lower nibble AL. If the result in the upper nibble is now greater than 9 or if the carry flag

was set, the DAS instruction will subtract 60 from AL.

AAA (ASCII ADJUST FOR ADDITION)

Numerical data coming into a computer from a terminal is usually in ASCII code. In this

code, the numbers 0 to 9 are represented by the ASCII codes 30H to 39H. The 8086 allows

you to add the ASCII codes for two decimal digits without masking off the “3” in the upper

nibble of each. After the addition, the AAA instruction is used to make sure the result is

the correct unpacked BCD.

AAS (ASCII ADJUST FOR SUBTRACTION)

Numerical data coming into a computer from a terminal is usually in an ASCII code. In this

code the numbers 0 to 9 are represented by the ASCII codes 30H to 39H. The 8086 allows

you to subtract the ASCII codes for two decimal digits without masking the “3” in the upper

nibble of each. The AAS instruction is then used to make sure the result is the correct

unpacked BCD.

AAM (BCD ADJUST AFTER MULTIPLY)

Before you can multiply two ASCII digits, you must first mask the upper 4 bit of each. This

leaves unpacked BCD (one BCD digit per byte) in each byte. After the two unpacked BCD

digits are multiplied, the AAM instruction is used to adjust the product to two unpacked

BCD digits in AX. AAM works only after the multiplication of two unpacked BCD bytes,

and it works only the operand in AL. AAM updates PF, SF and ZF but AF; CF and OF are

left undefined.

AAD (BCD-TO-BINARY CONVERT BEFORE DIVISION)

AAD converts two unpacked BCD digits in AH and AL to the equivalent binary number in

AL. This adjustment must be made before dividing the two unpacked BCD digits in AX by

an unpacked BCD byte. After the BCD division, AL will contain the unpacked BCD quotient

and AH will contain the unpacked BCD remainder. AAD updates PF, SF and ZF; AF, CF

and OF are left undefined.

LOGICAL INSTRUCTIONS

AND– AND Destination, Source

This instruction ANDs each bit in a source byte or word with the same numbered bit in a

destination byte or word. The result is put in the specified destination. The content of the

specified source is not changed.

The source can be an immediate number, the content of a register, or the content of a memory

location. The destination can be a register or a memory location.

The source and the destination cannot both be memory locations. CF and OF are both 0 after

AND. PF, SF, and ZF are updated by the AND instruction. AF is undefined. PF has meaning

only for an 8-bit operand.

AND CX, [SI] AND word in DS at offset [SI] with word in CX register;

Result in CX register

AND BH, CL AND byte in CL with byte in BH; Result in BH

AND BX, 00FFH 00FFH Masks upper byte, leaves lower byte unchanged.

OR – OR Destination, Source

This instruction ORs each bit in a source byte or word with the same numbered bit in a

destination byte or word. The result is put in the specified destination. The content of the

specified source is not changed.

The source can be an immediate number, the content of a register, or the content of a memory

location. The destination can be a register or a memory location.

The source and destination cannot both be memory locations. CF and OF are both 0 after

OR. PF, SF, and ZF are updated by the OR instruction. AF is undefined. PF has meaning

only for an 8-bit operand.

OR AH, CL CL ORed with AH, result in AH, CL not changed

OR BP, SI SI ORed with BP, result in BP, SI not changed

OR SI, BP BP ORed with SI, result in SI, BP not changed

OR BL, 80H BL ORed with immediate number 80H; sets MSB of BL to 1

OR CX, TABLE [SI] CX ORed with word from effective address TABLE [SI];

Content of memory is not changed.

XOR – XOR Destination, Source

This instruction Exclusive-ORs each bit in a source byte or word with the same numbered

bit in a destination byte or word. The result is put in the specified destination. The content

of the specified source is not changed.

The source can be an immediate number, the content of a register, or the content of a memory

location. The destination can be a register or a memory location.

The source and destination cannot both be memory locations. CF and OF are both 0 after

XOR. PF, SF, and ZF are updated. PF has meaning only for an 8-bit operand. AF is

undefined.

XOR CL, BH Byte in BH exclusive-ORed with byte in CL. Result in CL. BH not changed.

XOR BP, DI Word in DI exclusive-ORed with word in BP. Result in BP. DI not changed.

XOR WORD PTR [BX], 00FFH Exclusive-OR immediate number 00FFH

 with word at offset [BX] in the data segment. Result in memory location [BX]

NOT – NOT Destination

The NOT instruction inverts each bit (forms the 1’s complement) of a byte or word in the

specified destination. The destination can be a register or a memory location. This instruction

does not affect any flag.

NOT BX Complement content or BX register

NOT BYTE PTR [BX] Complement memory byte at offset

[BX] in data segment.

NEG – NEG Destination

This instruction replaces the number in a destination with its 2’s complement. The

destination can be a register or a memory location. It gives the same result as the invert each

bit and add one algorithm. The NEG instruction updates AF, AF, PF, ZF, and OF.

NEG AL - Replace number in AL with its 2’s complement

NEG BX - Replace number in BX with its 2’s complement

NEG BYTE PTR [BX] -Replace byte at offset BX in DX with its 2’s complement NEG

WORD PTR [BP]- Replace word at offset BP in SS with its 2’s complement

CMP – CMP DESTINATION, SOURCE

This instruction compares a byte / word in the specified source with a byte / word in the

specified destination. The source can be an immediate number, a register, or a memory

location. The destination can be a register or a memory location.However, the source and

the destination cannot both be memory locations. The comparison is actually done by

subtracting the source byte or word from the destination byte or word. The source and the

destination are not changed, but the flags are set to indicate the results of the comparison.

AF, OF, SF, ZF, PF, and CF are updated by the CMP instruction.

TEST – TEST DESTINATION, SOURCE

This instruction ANDs the byte / word in the specified source with the byte / word in the

specified destination. Flags are updated, but neither operand is changed. The test instruction

is often used to set flags before a Conditional jump instruction.

The source can be an immediate number, the content of a register, or the content of a memory

location. The destination can be a register or a memory location.The source and the

destination cannot both be memory locations. CF and OF are both 0’s after TEST. PF, SF

and ZF will be updated to show the results of the destination. AF is be undefined.

ROTATE AND SHIFT INSTRUCTION

RCL – RCL Destination, Count

This instruction rotates all the bits in a specified word or byte some number of bit positions

to the left. The operation circular because the MSB of the operand is rotated into the carry

flag and the bit in the carry flag is rotated around into LSB of the operand.

For multi-bit rotates, CF will contain the bit most recently rotated out of the MSB.

The destination can be a register or a memory location. If you want to rotate the operand

by one bit position, you can specify this by putting a 1 in the count position of the

instruction. To rotate by more than one bit position, load the desired number into the CL

register and put “CL” in the count position of the instruction.

RCL affects only CF and OF. OF will be a 1 after a single bit RCL if the MSB was changed

by the rotate. OF is undefined after the multi-bit rotate.

RCR – RCR Destination, Count

This instruction rotates all the bits in a specified word or byte some number of bit positions

to the right. The operation circular because the LSB of the operand is rotated into the carry

flag and the bit in the carry flag is rotate around into MSB of the operand.

For multi-bit rotate, CF will contain the bit most recently rotated out of the LSB.

The destination can be a register or a memory location. If you want to rotate the operand

by one bit position, you can specify this by putting a 1 in the count position of the

instruction. To rotate more than one bit position, load the desired number into the CL

register and put “CL” in the count position of the instruction.

RCR affects only CF and OF. OF will be a 1 after a single bit RCR if the MSB was

changed by the rotate. OF is undefined after the multi-bit rotate.

ROL – ROL Destination, Count

This instruction rotates all the bits in a specified word or byte to the left some number of

bit positions. The data bit rotated out of MSB is circled back into the LSB. It is also copied

into CF. In the case of multiple-bit rotate, CF will contain a copy of the bit most recently

moved out of the MSB.

The destination can be a register or a memory location. If you to want rotate the operand by

one bit position, you can specify this by putting 1 in the count position in the instruction. To

rotate more than one bit position, load the desired number into the CL register and put “CL”

in the count position of the instruction.

ROL affects only CF and OF. OF will be a 1 after a single bit ROL if the MSB was

changed by the rotate.

• ROL AX, 1 Rotate the word in AX 1 bit position left, MSB to LSB

and CF

• MOV CL, 04H Load number of bits to rotate in

CL ROL BL, CL Rotate BL 4 bit positions

• ROL FACTOR [BX], 1 Rotate the word or byte in DS at EA =

FACTOR [BX] by 1 bit position left into CF

ROR – ROR Destination, Count

This instruction rotates all the bits in a specified word or byte some number of bit positions

to right. The operation is desired as a rotate rather than shift, because the bit moved out of

the LSB is rotated around into the MSB. The data bit moved out of the LSB is also copied

into CF. In the case of multiple bit rotates, CF will contain a copy of the bit most recently

moved out of the LSB.

The destination can be a register or a memory location. If you want to rotate the operand by

one bit position, you can specify this by putting 1 in the count positionin the instruction. To

rotate by more than one bit position, load the desired number into the CL register and put

“CL” in the count position of the instruction.

ROR affects only CF and OF. OF will be a 1 after a single bit ROR if the MSB was changed

by the rotate.

SAL – SAL Destination, Count SHL – SHL Destination, Count

SAL and SHL are two mnemonics for the same instruction. This instruction shifts each bit

in the specified destination some number of bit positions to the left. As a bit is shifted out

of the LSB operation, a 0 is put in the LSB position. The MSB will be shifted into CF. In

the case of multi-bit shift, CF will contain the bit most recently shifted out from the MSB.

Bits shifted into CF previously will be lost.

The destination operand can be a byte or a word. It can be in a register or in a memory

location. If you want to shift the operand by one bit position, you can specify this by putting

a 1 in the count position of the instruction. For shifts of more than 1 bit position, load the

desired number of shifts into the CL register, and put “CL” in the count position of the

instruction.

The flags are affected as follow: CF contains the bit most recently shifted out from MSB.

For a count of one, OF will be 1 if CF and the current MSB are not the same. For multiple-

bit shifts, OF is undefined. SF and ZF will be updated to reflect the condition of the

destination. PF will have meaning only for an operand in AL. AF is undefined.

SAR – SAR Destination, Count

This instruction shifts each bit in the specified destination some number of bit positions

to the right. As a bit is shifted out of the MSB position, a copy of the old MSB is put in

the MSB position. In other words, the sign bit is copied into the MSB. The LSB will be

shifted into CF. In the case of multiple-bit shift, CF will contain the bit most recently

shifted out from the LSB. Bits shifted into CF previously will be lost.

The destination operand can be a byte or a word. It can be in a register or in a memory

location. If you want to shift the operand by one bit position, you can specify this by putting

a 1 in the count position of the instruction. For shifts of more than 1 bit position, load the

desired number of shifts into the CL register, and put “CL” in the count position of the

instruction.

The flags are affected as follow: CF contains the bit most recently shifted in from LSB. For

a count of one, OF will be 1 if the two MSBs are not the same. After a multi-bit SAR, OF

will be 0. SF and ZF will be updated to show the condition of the destination. PF will have

meaning only for an 8- bit destination. AF will be undefined after SAR.

SHR – SHR Destination, Count

This instruction shifts each bit in the specified destination some number of bit positions to

the right. As a bit is shifted out of the MSB position, a 0 is put in its place. The bit shifted

out of the LSB position goes to CF. In the case of multi-bit shifts, CF will contain the bit

most recently shifted out from the LSB. Bits shifted into CF previously will be lost.

The destination operand can be a byte or a word in a register or in a memory location. If you

want to shift the operand by one bit position, you can specify this by putting a 1 in the count

position of the instruction. For shifts of more than 1 bit position, load the desired number of

shifts into the CL register, and put “CL” in the count position of the instruction. The flags

are affected by SHR as follow: CF contains the bit most recently shifted out from LSB. For

a count of one, OF will be 1 if the two MSBs are not both 0’s. For multiple-bit shifts, OF

will be meaningless. SF and ZF will be updated to show the condition of the destination. PF

will have meaning only for an 8-bit destination. AF is undefined.

STRING MANIPULATION INSTRUCTIONS

MOVS – MOVS Destination String Name, Source String

Name

MOVSB – MOVSB Destination String Name, Source String

Name

MOVSW – MOVSW Destination String Name, Source String Name

This instruction copies a byte or a word from location in the data segment to a location in

the extra segment. The offset of the source in the data segment must be in the SI register.

The offset of the destination in the extra segment must be in the DI register. For multiple-

byte or multiple-word moves, the number of elements to be moved is put in the CX register

so that it can function as a counter. After the byte or a word is moved, SI and DI are

automatically adjusted to point to the next source element and the next destination element.

If DF is 0, then SI and DI will incremented by 1 after a byte move and by 2 after a word

move. If DF is 1, then SI and DI will be decremented by 1 after a byte move and by 2 after

a word move. MOVS does not affect any flag.

When using the MOVS instruction, you must in some way tell the assembler whether you

want to move a string as bytes or as word. There are two ways to do this. The first way is to

indicate the name of the source and destination strings in the instruction, as, for example.

MOVS DEST, SRC. The assembler will code the instruction for a byte / word move if they

were declared with a DB.This instruction copies a byte from a string location pointed to by

SI to AL, or a word from a string location pointed to by SI to AX. If DF is 0, SI will be

automatically incremented (by 1 for a byte string, and 2 for a word string) to point to the next

element of the string. If DF is 1, SI will be automatically decremented (by 1 for a byte string,

and 2 for a word string) to point to the previous element of the string. LODS does not affect

any flag.

Note: The assembler uses the name of the string to determine whether the string is of type

bye or type word. Instead of using the string name to do this, you can use the mnemonic

LODSB to tell the assembler that the string is type byte or the mnemonic LODSW to tell the

assembler that the string is of type word.

STOS / STOSB / STOSW (STORE STRING BYTE OR STRING WORD)

This instruction copies a byte from AL or a word from AX to a memory location in the extra

segment pointed to by DI. In effect, it replaces a string element with a byte from AL or a

word from AX. After the copy, DI is automatically incremented or decremented to point to

next or previous element of the string. If DF is cleared, then DI will automatically

incremented by 1 for a byte string and by 2 for a word string. If DI is set, DI will be

automatically decremented by 1 for a byte string and by 2 for a word string. STOS does not

affect any flag.

Note: The assembler uses the string name to determine whether the string is of type byte or

type word. If it is a byte string, then string byte is replaced with content of AL. If it is a word

string, then string word is replaced with content of AX.

 CMPS / CMPSB / CMPSW (COMPARE STRING BYTES OR STRING WORDS)

This instruction can be used to compare a byte / word in one string with a byte / word in

another string. SI is used to hold the offset of the byte or word in the source string, and DI

is used to hold the offset of the byte or word in the destination string.

The AF, CF, OF, PF, SF, and ZF flags are affected by the comparison, but the two operands

are not affected. After the comparison, SI and DI will automatically be incremented or

decremented to point to the next or previous element in the two strings. If DF is set, then SI

and DI will automatically be decremented by 1 for a byte string and by 2 for a word string.

If DF is reset, then SI and DI will automatically be incremented by 1 for byte strings and

by 2 for word strings. The string pointed to by SI must be in the data segment. The string

pointed to by DI must be in the extra segment.

The CMPS instruction can be used with a REPE or REPNE prefix to compare all the

elements of a string.

CONTROL TRANSFER INSTRUCTIONS

JMP (UNCONDITIONAL JUMP TO SPECIFIED DESTINATION)

This instruction will fetch the next instruction from the location specified in the instruction

rather than from the next location after the JMP instruction. If the destination is in the same

code segment as the JMP instruction, then only the instruction pointer will be changed to

get the destination location. This is referred to as a near jump. If the destination for the jump

instruction is in a segment with a name different from that of the segment containing the

JMP instruction, then both the instruction pointer and the code segment registercontent will

be changed to get the destination location. This referred to as a far jump. The JMP

instruction does not affect any flag.

JMP CONTINUE

This instruction fetches the next instruction from address at label CONTINUE. If the label is

in the same segment, an offset coded as part of the instruction will be added to the instruction

pointer to produce the new fetch address. If the label is another segment, then IP and CS will

be replaced with value coded in part of the instruction. This type of jump is referred to as direct

because the displacement of the destination or the destination itself is specified directly in the

instruction.

JMP BX

This instruction replaces the content of IP with the content of BX. BX must first be loaded

with the offset of the destination instruction in CS. This is a near jump. It is also referred to

as an indirect jump because the new value of IP comes from a register rather than from the

instruction itself, as in a direct jump.

JMP WORD PTR [BX] This instruction replaces IP with word from a

memory location pointed to by BX in DX. This is an indirect near jump.

JMP DWORD PTR [SI] This instruction replaces IP with word pointed to by

SI in DS. It replaces CS with a word pointed by SI

+ 2 in DS. This is an indirect far jump.

JAE / JNB / JNC (JUMP IF ABOVE OR EQUAL / JUMP IF NOT BELOW / JUMP

IF NO CARRY)

If, after a compare or some other instructions which affect flags, the carry flag is 0, this

instruction will cause execution to jump to a label given in the instruction. If CF is 1, the

instruction will have no effect on program execution.

CMP AX, 4371H Compare (AX – 4371H)

JAE NEXT Jump to label NEXT if AX above 4371H

CMP AX, 4371H Compare (AX – 4371H)

JNB NEXT Jump to label NEXT if AX not below 4371H

ADD AL, BL Add two bytes

JNC NEXT If the result with in acceptable range, continue

JB / JC / JNAE (JUMP IF BELOW / JUMP IF CARRY / JUMP IF NOT ABOVE OR

EQUAL)

If, after a compare or some other instructions which affect flags, the carry flag is a 1, this

instruction will cause execution to jump to a label given in the instruction. If CF is 0, the

instruction will have no effect on program execution.

CMP AX, 4371H Compare (AX – 4371H)

JB NEXT Jump to label NEXT if AX below 4371H

ADD BX, CX Add two words

JC NEXT Jump to label NEXT if CF = 1

CMP AX, 4371H Compare (AX – 4371H)

JNAE NEXT Jump to label NEXT if AX not above or

equal to 4371H

JBE / JNA (JUMP IF BELOW OR EQUAL / JUMP IF NOT ABOVE)

If, after a compare or some other instructions which affect flags, either the zero flag or the

carry flag is 1, this instruction will cause execution to jump to a label given in the instruction.

If CF and ZF are both 0, the instruction will have no effect on program execution.

▪ CMP AX, 4371H Compare (AX – 4371H)

▪ JBE NEXT Jump to label NEXT if AX is below or

equal to

▪ 4371H

▪ CMP AX, 4371H Compare (AX – 4371H)

▪ JNA NEXT Jump to label NEXT if AX not above 4371H

CALL (CALL A PROCEDURE)

The CALL instruction is used to transfer execution to a subprogram or a procedure. There

two basic type of calls near and far. 1. A near call is a call to a procedure, which is in the

same code segment as the CALL instruction. When the 8086 executes a near CALL

instruction, it decrements the stack pointer by 2 and copies the offset of the next instruction

after the CALL into the stack. This offset saved in the stack is referred to as the return

address, because this is the address that execution will return to after the procedure is

executed. A near CALL instruction will also load the instruction pointer with the offset of

the first instruction in the procedure.

A RET instruction at the end of the procedure will return execution to the offset saved on

the stack which is copied back to IP. 2. A far call is a call to a procedure, which is in a

different segment from the one that contains the CALL instruction.

When the 8086 executes a far call, it decrements the stack pointer by 2 and copies the

content of the CS register to the stack. It then decrements the stack pointer by 2 again and

copies the offset of the instruction after the CALL instruction to the stack. Finally, it loads

CS with the segment base of the segment that contains the procedure, and loads IP with the

offset of the first instruction of the procedure in that segment. A RET instruction at the end

of the procedure will return execution to the next instruction after the CALL by restoring

the saved values of CS and IP from the stack.

 CALL MULT

This is a direct within segment (near or intra segment) call. MULT is the name of the

procedure. The assembler determines the displacement of MULT from the instruction after

the CALL and codes this displacement in as part of the instruction.

 CALL BX

This is an indirect within-segment (near or intra-segment) call. BX contains the offset of the

first instruction of the procedure. It replaces content of IP with content of register BX.

 CALL WORD PTR [BX]

This is an indirect within-segment (near or intra-segment) call. Offset of the first instruction

of the procedure is in two memory addresses in DS. Replaces content of IP with content of

word memory location in DS pointed to by BX.

 CALL DIVIDE

This is a direct call to another segment (far or inter-segment call). DIVIDE is the name of

the procedure. The procedure must be declared far with DIVIDE PROC FAR at its start.

The assembler will determine the code segment base for the segment that contains the

procedure and the offset of the start of the procedure. It will put these values in as part of

the instruction code.

 CALL DWORD PTR [BX]

This is an indirect call to another segment (far or inter-segment call). New values for CS

and IP are fetched from four-memory location in DS. The new value for CS is fetched from

[BX] and [BX + 1]; the new IP is fetched from [BX

+ 2] and [BX +3].

RET (RETURN EXECUTION FROM PROCEDURE TO CALLING PROGRAM)

The RET instruction will return execution from a procedure to the next instruction after the

CALL instruction which was used to call the procedure. If the procedure is near procedure (in

the same code segment as the CALL instruction), then the return will be done by replacing the

IP with a word from the top of the stack. The word from the top of the stack is the offset of the

next instruction after the CALL. This offset was pushed into the stack as part of the operation

of the CALL instruction. The stack pointer will be incremented by 2 after the return address is

popped off the stack.

If the procedure is a far procedure (in a code segment other than the one from which it is

called), then the instruction pointer will be replaced by the word at the top of the stack. This

word is the offset part of the return address put there by the CALL instruction. The stack

pointer will then be incremented by 2. The CS register is then replaced with a word from

the new top of the stack. This word is the segment base part of the return address that was

pushed onto the stack by a far call operation.After this, the stack pointer is again incremented

by 2.A RET instruction can be followed by a number, for example, RET 6. In this case, the

stack pointer will be incremented by an additional six addresses after the IP when the IP

and CS are popped off the stack. This form is used to increment the stack pointer over

parameters passed to the procedure on the stack.The RET instruction does not affect any

flag.

II. PROCESS CONTROL INSTRUCTIONS

STC (SET CARRY FLAG)

• This instruction sets the carry flag to 1. It does not affect any other flag.

CLC (CLEAR CARRY FLAG)

• This instruction resets the carry flag to 0. It does not affect any other flag.

CMC (COMPLEMENT CARRY FLAG)

• This instruction complements the carry flag. It does not affect any other flag.

STD (SET DIRECTION FLAG)

• This instruction sets the direction flag to 1. It does not affect any other flag.

CLD (CLEAR DIRECTION FLAG)

• This instruction resets the direction flag to 0. It does not affect any other flag.

STI (SET INTERRUPT FLAG)

• Setting the interrupt flag to a 1 enables the INTR interrupt input of the 8086. The

instruction will not take affect until the next instruction after STI. When the INTR

input is enabled, an interrupt signal on this input will then cause the 8086 to interrupt

program execution, push the return address and flags on the stack, and execute an

interrupt service procedure. An IRET instruction at the end of the interrupt service

procedure will restore the return address and flags that were pushed onto the stack

and return execution to the interrupted program. STI does not affect any other flag.

CLI (CLEAR INTERRUPT FLAG)

• This instruction resets the interrupt flag to 0. If the interrupt flag is reset, the 8086

will not respond to an interrupt signal on its INTR input. The CLI instructions,

however, has no effect on the non-maskable interrupt input, NMI. It does not affect

any other flag.

HLT (HALT PROCESSING)

• The HLT instruction causes the 8086 to stop fetching and executing instructions.

The 8086 will enter a halt state. The different ways to get the processor out of the

halt state are with an interrupt signal on the INTR pin, an interrupt signal on the

NMI pin, or a reset signal on the RESET input.

NOP (PERFORM NO OPERATION)

• This instruction simply uses up three clock cycles and increments the instruction

pointer to point to the next instruction. The NOP instruction can be used to increase

the delay of a delay loop. When hand coding, a NOP can also be used to hold a place

in a program for an instruction that will be added later. NOP does not affect any

flag.

ESC (ESCAPE)

• This instruction is used to pass instructions to a coprocessor, such as the 8087 Math

coprocessor, which shares the address and data bus with 8086. Instructions for the

coprocessor are represented by a 6-bit code embedded in the ESC instruction. As

the 8086 fetches instruction bytes, the coprocessor also fetches these bytes from the

data bus and puts them in its queue.

• However, the coprocessor treats all the normal 8086 instructions as NOPs. When

8086 fetches an ESC instruction, the coprocessor decodes the instruction and

carries out the action specified by the 6-bit code specified in the instruction. In most

cases, the 8086 treats the ESC instruction as a NOP. In some cases, the 8086 will

access a data item in memory for the coprocessor.

Program for find the ADDITION of two

numbers:

Program for find the SUBTRACTION of

two numbers:

MOV AX,05 MOV AX,05

ADD AX,BX

MOV SI,8000

MOV [SI],AX

INT 03

SUB AX,BX

MOV SI,8000

MOV [SI],AX

INT 03

Program for find the MULTIPLICATION

of two numbers:

Program for find the DIVISION of two

numbers:

MOV AX,05 MOV AX,05

MOV BX,03 MOV BX,03

MUL BX DIV BX

MOV SI,8000 MOV SI,8000

MOV [SI],AX MOV [SI],AX

INT 03 INT 03

Program for find the GREATEST OF 2-

NUMBERS:

Program for find the AVERAGE OF N-

NUMBERS:

MOV AX,04 MOV AX,0000

MOV BX,05 MOV SI,8000

CMP AX,BX MOV DI,8020

JNC LABEL1 MOV CX,5

MOV SI,8001 LABLE1: ADD AX,[SI]

MOV [SI],AX INC SI

LABEL1: MOV [SI],BX INC SI

INT 03 LOOP LABLE1

DIV CX

MOV [DI],AX

INT 03

Program for find the SUM OF N-

NUMBERS:

Program for find the find the factorial of a

number

MOV SI,8000 MOV SI,8000

MOV CX,[SI] MOV BX[SI]

MOV AX,0000 MOV AX,01

MOV BX,ax LABEL1: MUL BX

LABEL1: INC BX DEC BX

ADD AX,BX JNZ LABEL1

CMP BX,CX MOV DI,8050

JNZ LABEL1 MOV [DI],AX

MOV DI,8010 INT 03

MOV [DI],AX

INT 03

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – III – PERIPHERALS INTERFACING USING

8085/8086

2

8255 - PROGRAMMABLE PERIPHERAL INTERFACE (PPI)

The Intel 8255 (or i8255) Programmable Peripheral Interface (PPI) chip is a peripheral chip,

is used to give the CPU access to programmable parallel I/O. It can be programmable to transfer

data under various conditions from simple I/O to interrupt I/O. it is flexible versatile and

economical (when multiple I/O ports are required) but somewhat complex. It is an important

general purpose I/O device that can be used with almost any microprocessor.

Fig 3.1: Pin diagram of 8255

FUNCTIONAL BLOCK OF 8255 – PROGRAMMABLE PERIPHERAL INTERFACE

(PPI)

https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Input/output

3

The 8255A has 24 I/O pins that can be grouped primarily in two 8-bit parallel ports: A and B

with the remaining eight bits as port C. The eight bits of port C can be used as individual bits

or be grouped in to 4-bit ports: CUpper (Cu) and CLower (CL) as in Figure 2. The function of

these ports is defined by writing a control word in the control register as shown in Figure 3

Fig 3.2. Block diagram of 8255

4

Fig 3.3 Control word Register format

DATA BUS BUFFER

This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system data bus.

Data is transmitted or received by the buffer upon execution of input or output instructions by

the CPU. Control words and status information are also transferred through the data bus buffer.

READ/WRITE AND CONTROL LOGIC

The function of this block is to manage all of the internal and external transfers of both Data

and Control or Status words. It accepts inputs from the CPU Address and Control busses and

in turn, issues commands to both of the Control Groups.

(CS) Chip Select. A "low" on this input pin enables the communication between the 8255 and

the CPU.

(RD) Read. A "low" on this input pin enables 8255 to send the data or status information to the

5

CPU on the data bus. In essence, it allows the CPU to "read from" the 8255.

(WR) Write. A "low" on this input pin enables the CPU to write data or control words into the

8255.

(A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the RD

and WR inputs, control the selection of one of the three ports or the control word register. They

are normally connected to the least significant bits of the address bus (A0 and A1).

(RESET) Reset. A "high" on this input initializes the control register to 9Bh and all ports (A,

B, C) are set to the input mode.

A1 A0 SELECTION

0 0 PORT A

0 1 PORT B

1 0 PORT C

1 1 CONTROL

GROUP A AND GROUP B CONTROLS

The functional configuration of each port is programmed by the systems software. In essence,

the CPU "outputs" a control word to the 8255. The control word contains information such as

"mode", "bit set", "bit reset", etc., that initializes the functional configuration of the 8255. Each

of the Control blocks (Group A and Group B) accepts "commands" from the Read/Write

Control logic, receives "control words" from the internal data bus and issues the proper

commands to its associated ports.

PORTS A, B, AND C

The 8255 contains three 8-bit ports (A, B, and C). All can be configured to a wide variety of

functional characteristics by the system software but each has its own special features or

"personality" to further enhance the power and flexibility of the 8255.

Port A One 8-bit data output latch/buffer and one 8-bit data input latch. Both "pull-up" and

"pull-down" bus-hold devices are present on Port A.

Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

6

Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input).

This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains

a 4-bit latch and it can be used for the control signal output and status signal inputs in

conjunction with ports A and B.

OPERATIONAL MODES OF 8255

There are two basic operational modes of 8255:

• Bit set/reset Mode (BSR Mode).

• Input/Output Mode (I/O Mode).

The two modes are selected on the basis of the value present at the D7 bit of the Control Word

Register. When D7 = 1, 8255 operates in I/O mode and when D7 = 0, it operates in the BSR

mode.

1. BIT SET/RESET (BSR) MODE

The Bit Set/Reset (BSR) mode is applicable to port C only. Each line of port C (PC0 - PC7) can

be set/reset by suitably loading the control word register as shown in Figure 4. BSR mode and

I/O mode are independent and selection of BSR mode does not affect the operation of other

ports in I/O mode.

Fig 3.4: 8255 Control register format for BSR mode

7

• D7 bit is always 0 for BSR mode.

• Bits D6, D5 and D4 are don't care bits.

• Bits D3, D2 and D1 are used to select the pin of Port C.

• Bit D0 is used to set/reset the selected pin of Port C.

• Selection of port C pin is determined as follows:

B3 B2 B1 Bit/pin of port C selected

0 0 0 PC0

0 0 1 PC1

0 1 0 PC2

0 1 1 PC3

1 0 0 PC4

1 0 1 PC5

1 1 0 PC6

1 1 1 PC7

As an example, if it is needed that PC5 be set, then in the control word,

1. Since it is BSR mode, D7 = '0'.

2. Since D4, D5, D6 are not used, assume them to be '0'.

3. PC5 has to be selected, hence, D3 = '1', D2 = '0', D1 = '1'.

4. PC5 has to be set, hence, D0 = '1'.

Thus, as per the above values, 0B (Hex) will be loaded into the Control Word Register (CWR).

2. INPUT/OUTPUT MODE

This mode is selected when D7 bit of the Control Word Register is 1. There are three I/O modes:

1. Mode 0 - Simple I/O

2. Mode 1 - Strobed I/O

3. Mode 2 - Strobed Bi-directional I/O

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 1 0 1 1

8

Figure 3. 5: 8255 Control word for I/O mode

• D0, D1, D3, D4 are assigned for lower port C, port B, upper port C and port A

respectively. When these bits are 1, the corresponding port acts as an input port. For

e.g., if D0 = D4 = 1, then lower port C and port A act as input ports. If these bits are 0,

then the corresponding port acts as an output port. For e.g., if D1 = D3

= 0, then port B and upper port C act as output ports as shown in Figure 5.

• D2 is used for mode selection of Group B (port B and lower port C). When D2 = 0,

mode 0 is selected and when D2 = 1, mode 1 is selected.

• D5& D6 are used for mode selection of Group A (port A and upper port C). The

selection is done as follows:

• D

6

• D

5

• M

o

d

e

• 0 • 0 • 0

• 0 • 1 • 1

• 1 • X • 2

• As it is I/O mode, D7 = 1.

9

For example, if port B and upper port C have to be initialized as input ports and lower port C

and port A as output ports (all in mode 0):

1. Since it is an I/O mode, D7 = 1.

2. Mode selection bits, D2, D5, D6 are all 0 for mode 0 operation.

3. Port B and upper port C should operate as Input ports, hence, D1 = D3 = 1.

4. Port A and lower port C should operate as Output ports, hence, D4 = D0 = 0.

Hence, for the desired operation, the control word register will have to be loaded with

"10001010" = 8A (hex).

➢ Mode 0 - simple I/O

In this mode, the ports can be used for simple I/O operations without handshaking signals. Port

A, port B provide simple I/O operation. The two halves of port C can be either used together

as an additional 8-bit port, or they can be used as individual 4-bit ports. Since the two halves

of port C are independent, they may be used such that one- half is initialized as an input port

while the other half is initialized as an output port.

The input/output features in mode 0 are as follows:

1. Output ports are latched.

2. Input ports are buffered, not latched.

3. Ports do not have handshake or interrupt capability.

4. With 4 ports, 16 different combinations of I/O are possible.

➢ Mode 0 – input mode

• In the input mode, the 8255 gets data from the external peripheral ports and the CPU

reads the received data via its data bus.

• The CPU first selects the 8255 chip by making CS low. Then it selects the

desired port using A0 and A1 lines.

• The CPU then issues an RD signal to read the data from the external

peripheral device via the system data bus.

➢ Mode 0 - output mode

10

• In the output mode, the CPU sends data to 8255 via system data bus and then the

external peripheral ports receive this data via 8255 port.

• CPU first selects the 8255 chip by making CS low. It then selects the desired port using

A0 and A1 lines.

CPU then issues a WR signal to write data to the selected port via the system data bus. This

data is then received by the external peripheral device connected to the selected port.

➢ Mode 1

When we wish to use port A or port B for handshake (strobed) input or output operation, we

initialize that port in mode 1 (port A and port B can be initialized to operate in different modes,

i.e., for e.g., port A can operate in mode 0 and port B in mode 1). Some of the pins of port C

function as handshake lines.

For port B in this mode (irrespective of whether is acting as an input port or output port), PC0,

PC1 and PC2 pins function as handshake lines.

If port A is initialized as mode 1 input port, then, PC3, PC4 and PC5 function as handshake

signals. Pins PC6 and PC7 are available for use as input/output lines.

The mode 1 which supports handshaking has following features:

1. T

wo ports i.e. port A and B can be used as 8-bit i/o ports.

2. E

ach port uses three lines of port c as handshake signal and remaining two signals can

be used as i/o ports.

3. I

nterrupt logic is supported.

4. I

nput and Output data are latched.

INPUT HANDSHAKING SIGNALS

1. IBF (Input Buffer Full) - It is an output indicating that the input latch contains

information.

2. STB (Strobed Input) - The strobe input loads data into the port latch, which holds

the information until it is input to the microprocessor via the IN instruction.

11

3. INTR (Interrupt request) - It is an output that requests an interrupt. The INTR pin

becomes a logic 1 when the STB input returns to a logic 1, and is cleared when the

data are input from the port by the microprocessor.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit

programmed via the port PC4(port A) or PC2(port B) bit position.

OUTPUT HANDSHAKING SIGNALS

• OBF (Output Buffer Full) - It is an output that goes low whenever data are

output(OUT) to the port A or port B latch. This signal is set to a logic 1 whenever

the ACK pulse returns from the external device.

• ACK (Acknowledge)-It causes the OBF pin to return to a logic 1 level. The ACK

signal is a response from an external device, indicating that it has received the data

from the 82C55 port.

• INTR (Interrupt request) - It is a signal that often interrupts the microprocessor

when the external device receives the data via the signal. this pin is qualified by

the internal INTE(interrupt enable) bit.

• INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit

programmed to enable or disable the INTR pin. The INTE A bit is programmed

using the PC6 bit and INTE B is programmed using the PC2 bit.

➢ Mode 2

Only group A can be initialized in this mode. Port A can be used for bidirectional handshake

data transfer. This means that data can be input or output on the same eight lines (PA0 - PA7).

Pins PC3 - PC7 are used as handshake lines for port A. The remaining pins of port C (PC0 -

PC2) can be used as input/output lines if group B is initialized in mode 0 or as handshaking for

port B if group B is initialized in mode 1. In this mode, the 8255 may be used to extend the

system bus to a slave microprocessor or to transfer data bytes to and from a floppy disk

controller. Acknowledgement and handshaking signals are provided to maintain proper data

flow and synchronisation between the data transmitter and receiver.

https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Floppy_disk

12

INTERFACING 8255 WITH 8085 PROCESSOR

Fig 3.6. Interfacing 8255 with 8085 processor

• The 8255 can be either memory mapped or I/O mapped in the system. In the schematic

shown in above is I/O mapped in the system.

• Using a 3-to-8 decoder generates the chip select signals for I/O mapped devices.

• The address lines A4, A5 and A6 are decoded to generate eight chip select signals

(IOCS-0 to IOCS-7) and in this, the chip select IOCS- 1 is used to select 8255 as

shown in Figure 6.

• The address line A7 and the control signal IO/M (low) are used as enable for the

decoder.

13

• The address line A0 of 8085 is connected to A0 of 8255 and A1 of 8085 is connected

to A1 of 8255 to provide the internal addresses.

• The data lines D0-D7 are connected to D0-D7 of the processor to achieve parallel data

transfer.

• The I/O addresses allotted to the internal devices of 8255 are listed in table.

8279 - KEYBOARD/DISPLAY CONTROLLER

The Intel 8279 is a Keyboard/Display Controller is specially developed for interfacing

keyboard and display devices for the Intel 8085, 8086 and 8088 microprocessors. Its important

features are:

• Simultaneous keyboard and display operations.

• Scanned keyboard mode.

• Scanned sensor mode.

• 8-character keyboard FIFO.

• Right or left entry 16-byte display RAM.

• Programmable scan timing.

PIN DETAILS OF 8279

https://en.wikipedia.org/wiki/Intel_8085

14

Figure3. 7 : Pin diagram of 8279

• A0: Selects data (0) or control/status (1) for reads and writes between micro and 8279.

• BD: Output that blanks the displays.

• CLK: Used internally for timing. Max is 3 MHz.

• CN/ST: Control/strobe, connected to the control key on the keyboard.

• CS: Chip select that enables programming, reading the keyboard, etc.

• DB7-DB0: Consists of bidirectional pins that connect to data bus on micro.

• IRQ: Interrupt request, becomes 1 when a key is pressed, data is available.

• OUT A3-A0/B3-B0: Outputs that sends data to the most significant/least significant

nibble of display as shown in Figure 7.

• RD(WR): Connects to micro's IORC or RD signal, reads data/status registers.

• RESET: Connects to system RESET.

• RL7-RL0: Return lines are inputs used to sense key depression in the keyboard matrix.

15

• Shift: Shift connects to Shift key on keyboard.

• SL3-SL0: Scan line outputs scan both the keyboard and displays.

BLOCK DIAGRAM OF 8279:

The functional block diagram of 8279 is as shown in Figure 8.

Figure 3,8 :Block diagram of 8279

• The four major sections of 8279 are keyboard, scan, display and CPU

interface.Keyboard Section:

• The keyboard section consists of eight return lines RL0 - RL7 that can be used to form

the columns of a keyboard matrix.

• It has two additional input : shift and control/strobe. The keys are automatically

debounced.

• The two operating modes of keyboard section are 2-key lockout and N-key rollover.

• In the 2-key lockout mode, if two keys are pressed simultaneously, only the first key

is recognized.

• In the N-key rollover mode simultaneous keys are recognized and their codes are

stored in FIFO.

• The keyboard section also have an 8 x 8 FIFO (First In First Out) RAM.

16

• The FIFO can store eight key codes in the scan keyboard mode. The status of the shift

key and control key are also stored along with key code. The 8279 generate an

interrupt signal when there is an entry in FIFO. The format of key code entry in FIFO

for scan keyboard mode is,

• In sensor matrix mode the condition (i.e., open/close status) of 64 switches is stored

in FIFO RAM. If the condition of any of the switches changes then the 8279 asserts

IRQ as high to interrupt the processor.

DISPLAY SECTION:

• The display section has eight output lines divided into two groups A0-A3 and B0- B3.

• The output lines can be used either as a single group of eight lines or as two groups of

four lines, in conjunction with the scan lines for a multiplexed display.

• The output lines are connected to the anodes through driver transistor in case of

common cathode 7-segment LEDs.

• The cathodes are connected to scan lines through driver transistors.

 The display can be blanked by BD (low) line.

• The display section consists of 16 x 8 display RAM. The CPU can read from or write

into any location of the display RAM.

SCAN SECTION:

• The scan section has a scan counter and four scan lines, SL0 to SL3.

• In decoded scan mode, the output of scan lines will be similar to a 2-to-4 decoder.

• In encoded scan mode, the output of scan lines will be binary count, and so an external

decoder should be used to convert the binary count to decoded output.

• The scan lines are common for keyboard and display.

• The scan lines are used to form the rows of a matrix keyboard and also connected to

digit drivers of a multiplexed display, to turn ON/OFF.

17

CPU INTERFACE SECTION:

• The CPU interface section takes care of data transfer between 8279 and the processor.

• This section has eight bidirectional data lines DB0 to DB7 for data transfer between

8279 and CPU.

• It requires two internal address A =0 for selecting data buffer and A = 1 for selecting

control register of8279.

• The control signals WR (low), RD (low), CS (low) and A0 are used for read/write to

8279.

• It has an interrupt request line IRQ, for interrupt driven data transfer with processor.

• The 8279 require an internal clock frequency of 100 kHz. This can be obtained by

dividing the input clock by an internal prescaler.

• The RESET signal sets the 8279 in 16-character display with two -key lockout

keyboard modes.

PROGRAMMING THE 8279:

The 8279 can be programmed to perform various functions through eight command words.

INTERFACING OF 8279 WITH 8085

In a microprocessor b system, when keyboard and 7-segment LED display is interfaced using

ports or latches then the processor has to carry the following task.

• Keyboard scanning

• Key debouncing

• Key code generation

• Sending display code to LED

• Display refreshing

INTERFACING 8279 WITH 8085 PROCESSOR:

18

Fig 3.9: keyboard and display interface with 8085 using 8279

• A typical Hexa keyboard and 7-segment LED display interfacing circuit using

8279 is shown in figure 9.

• The circuit can be used in 8085 microprocessor system and consist of 16 numbers

of hexa-keys and 6 numbers of 7-segment LEDs.

• The 7-segment LEDs can be used to display six digit alphanumeric character.

• The 8279 can be either memory mapped or I/O mapped in the system. In the

circuit shown is the 8279 is I/O mapped.

The address line A0 of the system is used as A0 of 8279.

The clock signal for 8279 is obtained by dividing the output clock signal of 8085 by a clock

driver circuit

• The chip select signal is obtained from the I/O address decoder of the 8085

system.

• Chip select signals for I/O mapped devices are generated by using a 3-to-8

19

decoder.

• The address lines A4, A5 and A6 are used as input to decoder. The address line

A7 and the control signal IO/M (low) are used as enable for decoder

• The chip select signal IOCS-3 is used to select 8279.

• The I/O address of the internal devices of 8279 are shown in table.

• The circuit has 6 numbers of 7-segment LEDs and so the 8279 has to be

programmed in encoded scan. (Because in decoded scan, only 4 numbers of 7-

segment LEDs can be interfaced)

• In encoded scan the output of scan lines will be binary count. Therefore an

external, 3-to-8 decoder is used to decode the scan lines SL0, SL1 and SL2 of

8279 to produce eight scan lines S0 to S7.

• The decoded scan lines S0 and S1 are common for keyboard and display.

• The decoded scan lines S2 to S5 are used only for display and the decoded scan

lines S6 and S7 are not used in the system.

• Anode and Cathode drivers are provided to take care of the current requirement

of LEDs.

• The pnp transistors, BC 158 are used as driver transistors.

• The anode drivers are called segment drivers and cathode drivers are called digit

drivers.

• he 8279 output the display code for one digit through its output lines (OUT A0

to OUT A3 and OUT B0 to OUT B3) and send a scan code through, SL0- SL3.

• The display code is inverted by segment drivers and sent to segment bus.

• The scan code is decoded by the decoder and turns ON the corresponding digit

driver. Now one digit of the display character is displayed. After a small interval

20

(10 millisecond, typical), the display is turned OFF (i.e., display is blanked) and

the above process is repeated for next digit. Thus multiplexed display is

performed by 8279.

• The keyboard matrix is- formed using the return lines, RL0 to RL3 of 8279 as

columns and decoded scan lines S0 and S1 as rows.

• A hexa key is placed at the crossing point of each row and column. A key press

will short the row and column. Normally the column and row line will be high.

• During scanning the 8279 will output binary count on SL0 to SL3, which is

decoded by decoder to make a row as zero. When a row is zero the 8279 reads

the columns. If there is a key press then the corresponding column will be zero.

• If 8279 detects a key press then it wait for debounce time and again read the

columns to generate key code.

• In encoded scan keyboard mode, the 8279 stores an 8-bit code for each valid key

press. The keycode consist of the binary value of the column and row in which

the key is found and the status of shift and control key.

• After a scan time, the next row is made zero and the above process is repeated

and so on. Thus 8279 continuously scan the keyboard.

21

USART 8251 (UNIVERSAL SYNCHRONOUS/ ASYNCHRONOUS RECEIVER

TRANSMITTER)

Figure 3.10 : Architecture of 8251

The 8251 is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial

data communication. As a peripheral device of a microcomputer system, the 8251 receives

parallel data from the CPU and transmits serial data after conversion. This device also receives

serial data from the outside and transmits parallel data to the CPU after conversion as shown

in Figure 3.10.

TRANSMITTER SECTION

The transmitter section consists of three blocks—transmitter buffer register, output register and

the transmitter control logic block. The CPU deposits (when TXRDY = 1, meaning that the

transmitter buffer register is empty) data into the transmitter buffer register, which is

subsequently put into the output register (when TXE = 1, meaning that the output buffer is

empty). In the output register, the eight bit data is converted into serial form and comes out via

TXD pin. The serial data bits are preceded by START bit and succeeded by STOP bit, which

22

are known as framing bits. But this happens only if transmitter is enabled and the CTS is low.

TXC signal is the transmitter clock signal which controls the bit rate on the TXD line (output

line). This clock frequency can be 1, 16 or 64 times the baud.

RECEIVER SECTION

The receiver section consists of three blocks — receiver buffer register, input register and the

receiver control logic block. Serial data from outside world is delivered to the input register via

RXD line, which is subsequently put into parallel form and placed in the receiver buffer

register. When this register is full, the RXRDY (receiver ready) line becomes high. This line

is then used either to interrupt the MPU or to indicate its own status. MPU then accepts the

data from the register. RXC line stands for receiver clock. This clock signal controls the rate

at which bits are received by the input register. The clock can be set to 1, 16 or 64 times the

baud in the asynchronous mode.

Fig 3.11 : Pin Configuration of 8251

Pin Configuration of 8251 is shown in figure 11. D 0 to D 7 (l/O terminal)

This is bidirectional data bus which receive control words and transmits data from the CPU

and sends status words and received data to CPU.

RESET (INPUT TERMINAL)

23

A "High" on this input forces the 8251 into "reset status." The device waits for the writing of

"mode instruction." The min. reset width is six clock inputs during the operating status of CLK.

CLK (INPUT TERMINAL)

CLK signal is used to generate internal device timing. CLK signal is independent of RXC or

TXC. However, the frequency of CLK must be greater than 30 times the RXC and TXC at

Synchronous mode and Asynchronous "x1" mode, and must be greater than 5 times at

Asynchronous "x16" and "x64" mode.

WR (INPUT TERMINAL)

This is the "active low" input terminal which receives a signal for writing transmit data and

control words from the CPU into the 8251.

RD (INPUT TERMINAL)

This is the "active low" input terminal which receives a signal for reading receive data and

status words from the 8251.

C/D (INPUT TERMINAL)

This is an input terminal which receives a signal for selecting data or command words and

status words when the 8251 is accessed by the CPU. If C/D = low, data will be accessed. If

C/D = high, command word or status word will be accessed.

CS (INPUT TERMINAL)

This is the "active low" input terminal which selects the 8251 at low level when the CPU

accesses. Note: The device won’t be in "standby status"; only setting CS = High.

TXD (OUTPUT TERMINAL)

This is an output terminal for transmitting data from which serial-converted data is sent out.

The device is in "mark status" (high level) after resetting or during a status when transmit is

disabled. It is also possible to set the device in "break status" (low level) by a command.

TXRDY (OUTPUT TERMINAL)

24

This is an output terminal which indicates that the 8251is ready to accept a transmitted data

character. But the terminal is always at low level if CTS = high or the device was set in "TX

disable status" by a command. Note: TXRDY status word indicates that transmit data character

is receivable, regardless of CTS or command. If the CPU writes a data character, TXRDY will

be reset by the leading edge or WR signal.

TXEMPTY (OUTPUT TERMINAL)

This is an output terminal which indicates that the 8251 has transmitted all the characters and

had no data character. In "synchronous mode," the terminal is at high level, if transmit data

characters are no longer remaining and sync characters are automatically transmitted. If the

CPU writes a data character, TXEMPTY will be reset by the leading edge of WR signal. Note

: As the transmitter is disabled by setting CTS "High" or command, data written before disable

will be sent out. Then TXD and TXEMPTY will be "High". Even if a data is written after

disable, that data is not sent out and TXE will be "High".After the transmitter is enabled, it sent

out. (Refer to Timing Chart of Transmitter Control and Flag Timing)

TXC (INPUT TERMINAL)

This is a clock input signal which determines the transfer speed of transmitted data. In

"synchronous mode," the baud rate will be the same as the frequency of TXC. In "asynchronous

mode", it is possible to select the baud rate factor by mode instruction. It can be 1, 1/16 or 1/64

the TXC. The falling edge of TXC sifts the serial data out of the 8251.

RXD (INPUT TERMINAL)

This is a terminal which receives serial data. RXRDY (Output terminal)

This is a terminal which indicates that the 8251 contains a character that is ready to READ. If

the CPU reads a data character, RXRDY will be reset by the leading edge of RD signal. Unless

the CPU reads a data character before the next one is received completely, the preceding data

will be lost. In such a case, an overrun error flag status word will be set.

RXC (INPUT TERMINAL)

This is a clock input signal which determines the transfer speed of received data. In

"synchronous mode," the baud rate is the same as the frequency of RXC. In "asynchronous

mode," it is possible to select the baud rate factor by mode instruction. It can be 1, 1/16, 1/64

the RXC.

25

SYNDET/BD (INPUT OR OUTPUT TERMINAL)

This is a terminal whose function changes according to mode. In "internal synchronous mode."

this terminal is at high level, if sync characters are received and synchronized. If a status word

is read, the terminal will be reset. In "external synchronous mode, "this is an input terminal. A

"High" on this input forces the 8251 to start receiving data characters.

In "asynchronous mode," this is an output terminal which generates "high level"output upon

the detection of a "break" character if receiver data contains a "low-level" space between the

stop bits of two continuous characters. The terminal will be reset, if RXD is at high level. After

Reset is active, the terminal will be output at low level.

DSR (INPUT TERMINAL)

This is an input port for MODEM interface. The input status of the terminal can be recognized

by the CPU reading status words.

DTR (OUTPUT TERMINAL)

This is an output port for MODEM interface. It is possible to set the status of DTR by a

command.

CTS (INPUT TERMINAL)

This is an input terminal for MODEM interface which is used for controlling a transmit circuit.

The terminal controls data transmission if the device is set in "TX Enable" status by a

command. Data is transmitable if the terminal is at low level.

RTS (OUTPUT TERMINAL)

This is an output port for MODEM interface. It is possible to set the status RTS by a command.

The 8251 functional configuration is programmed by software. Operation between the 8251

and a CPU is executed by program control. Table 1 shows the operation between a CPU and

the device.

26

SUMMARY OF CONTROL SIGNALS FOR 8251

CONTROL WORDS

There are two types of control word.

1. Mode instruction (setting of function)

2. Command (setting of operation)

MODE INSTRUCTION

Mode instruction is used for setting the function of the 8251. Mode instruction will be in "wait

for write" at either internal reset or external reset. That is, the writing of a control word after

resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:

• Synchronous/asynchronous mode

• Stop bit length (asynchronous mode)

• Character length

• Parity bit

• Baud rate factor (asynchronous mode)

• Internal/external synchronization (synchronous mode)

• Number of synchronous characters (Synchronous mode)

The bit configuration of mode instruction is shown in Figures 12 and 13. In the case of

synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters

27

were written, a function will be set because the writing of sync characters constitutes part of

mode instruction.

Fig 3.12: Bit configuration of mode instruction(asynchronous)

28

Fig 3.13: Bit configuration of mode instruction(synchronous)

COMMAND

Command is used for setting the operation of the 8251. It is possible to write a command

whenever necessary after writing a mode instruction and sync characters as shown in figure

14.

Items to be set by command are as follows:

• Transmit Enable/Disable

29

• Receive Enable/Disable

• DTR, RTS Output of data.

• Resetting of error flag.

• Sending to break characters

• Internal resetting

• Hunt mode (synchronous mode)

Fig 3.14: Bit configuration of command

30

STATUS WORD

It is possible to see the internal status of the 8251 by reading a status word. The bit

configuration of status word is shown in Fig.15.

Fig 3.15: Bit configuration of Status Word

31

8253(8254) PROGRAMMABLE INTERVAL TIMER:

The 8254 programmable Interval timer consists of three independent 16-bit programmable

counters (timers). Each counter is capable of counting in binary or binary coded decimal. The

maximum allowable frequency to any counter is 10MHz. This device is useful whenever the

microprocessor must control real-time events. The timer in a personal computer is an 8253. To

operate a counter a 16-bit count is loaded in its register and on command, it begins to decrement

the count until it reaches 0. At the end of the count it generates a pulse, which interrupts the

processor. The count can count either in binary or BCD Each counter in the block diagram has

3 logical lines connected to it. Two of these lines, clock and gate, are inputs. The third, labeled

OUT is an output.

Fig 3.16 Block Diagram of 8253 programmable interval timer

Data bus buffer- It is a communication path between the timer and the microprocessor. The

buffer is 8-bit and bidirectional. It is connected to the data bus of the microprocessor. Read

/write logic controls the reading and the writing of the counter registers. Control word register,

specifies the counter to be used and either a Read or a write operation. Data is transmitted or

received by the buffer upon execution of INPUT instruction from CPU as shown in figure 16.

The data bus buffer has three basic functions,

• Programming the modes of 8253.

• Loading the count value in times

32

READING THE COUNT VALUE FROM TIMERS.

Pin Diagram of 8253

The data bus buffer is connected to microprocessor using D7 – D0 pins which are also

bidirectional. The data transfer is through these pins. These pins will be in high-impedance (or

this state) condition until the 8253 is selected by a LOW or CS and either the read operation

requested by a LOW RD on the input or a write operation WR

requested by the input going LOW.

READ/ WRITE LOGIC:

It accepts inputs for the system control bus and in turn generation the control signals for overall

device operation. It is enabled or disabled by CS so that no operation can occur to change the

function unless the device has been selected as the system logic.

CS :

The chip select input is used to enable the communicate between 8253 and the microprocessor

by means of data bus. A low an CS enables the data bus buffers, while

a high disables the buffer. The CS input does not have any effect on the operation of three

times once they have been initialized. The normal configuration of a system employs an decode

logic which actives CS line, whenever a specific set of addresses that correspond to 8253 appear

on the address bus.

RD & WR :

The read (RD) and write WR pins central the direction of data transfer on the 8-bit bus. When

the input RD pin is low. Then CPU is inputting data from 8253 in the form of counter value.

33

When WR pins is low, then CPU is sending data to 8253 in the form of mode information or

loading counters. The RD & WR should not both be low simultaneously. When RD & WR pins

are HIGH, the data bus buffer is disabled.

A0 & A1:

These two input lines allow the microprocessor to specify which one of the internal register in

the 8253 is going to be used for the data transfer. Fig shows how these two lines are used to

select either the control word register or one of the 16-bit counters.

CONTROL WORD REGISTER:

It is selected when A0 and A1 . It the accepts information from the data bus buffer and stores

it in a register. The information stored in then register controls the operation mode of each

counter, selection of binary or BCD counting and the loading of each counting and the loading

of each count register. This register can be written into, no read operation of this content is

available.

COUNTERS:

Each of the times has three pins associated with it. These are CLK (CLK) the gate (GATE) and

the output (OUT).

34

CLK:

This clock input pin provides 16-bit times with the signal to causes the times to decrement

maxm clock input is 2.6MHz. Note that the counters operate at the negative edge (H1 to L0) of

this clock input. If the signal on this pin is generated by a fixed oscillator then the user has

implemented a standard timer. If the input signal is a string of randomly occurring pulses, then

it is called implementation of a counter.

GATE:

The gate input pin is used to initiate or enable counting. The exact effect of the gate signal

depends on which of the six modes of operation is chosen.

OUTPUT:

The output pin provides an output from the timer. It actual use depends on the mode of

operation of the timer. The counter can be read ―in the fly‖ without inhibiting gate pulse or clock

input.

CONTROL REGISTER

MODES OF OPERATION

Mode 0 Interrupt on terminal count

Mode 1 Programmable one shot

Mode 2 Rate Generator

Mode 3 Square wave rate Generator

Mode 4 Software triggered strobe

Mode 5 Hardware triggered strobe

Mode 0: The output goes high after the terminal count is reached. The counter stops if the Gate

is low.. The timer count register is loaded with a count (say 6) when the WR line is made low

by the processor. The counter unit starts counting down with each clock pulse. The output goes

high when the register value reaches zero. In the mean time if the GATE is made low the count

is suspended at the value(3) till the GATE is enabled again .

35

CLK

GATE

Mode 0 count when Gate is high (enabled)

CLK

Mode 0 count when Gate is low temporarily (disabled) Mode 1 Programmable mono-shot

The output goes low with the Gate pulse for a predetermined period depending on the counter.

The counter is disabled if the GATE pulse goes momentarily low.The counter register is loaded

with a count value as in the previous case (say 5). The output responds to the GATE input and

goes low for period that equals the count down period of the register (5 clock pulses in this

period). By changing the value of this count the duration of the output pulse can be changed.

If the GATE becomes low before the count down is completed then the counter will be

WR

 2 1
OUT

WR

 2 1
OUT

GATE

36

suspended at that state as long as GATE is low. Thus it works as a mono-shot.

CLK

WR

OUT

Mode 1 The Gate goes high. The output goes low for the period depending on the count

CLK

WR

Mode 1 The Gate pulse is disabled momentarily causing the counter to stop.

Mode 2 Programmable Rate Generator

In this mode it operates as a rate generator. The output goes high for a period that equals the

GATE (trigger)

GATE (trigger)

OUT

5

4

3

2

1

37

time of count down of the count register (3 in this case). The output goes low exactly for one

clock period before it becomes high again. This is a periodic operation.

CLK

OUT

Mode 2 Operation when the GATE is kept high

CLK

Mode 2 operation when the GATE is disabled momentarily.

Mode 3 Programmable Square Wave Rate Generator

It is similar to Mode 2 but the output high and low period is symmetrical. The outputgoes high

after the count is loaded and it remains high for period which equals the count down period of

the counter register. The output subsequently goes low for an equal period and hence generates

a symmetrical square wave unlike Mode 2. The GATE has no role here.

WR

GATE

 2 1

WR

GATE

OUT 2 1

38

CLK

Mode3 Operation: Square Wave generator

Mode 4 Software Triggered Strobe

In this mode after the count is loaded by the processor the count down starts. The output goes

low for one clock period after the count down is complete. The count down can be suspended

by making the GATE low . This is also called a software triggered strobe as the count down is

initiated by a program.

CLK

Mode 4 Software Triggered Strobe when GATE is high

Mode 5 Hardware Triggered Strobe

The count is loaded by the processor but the count down is initiated by the GATE pulse. The

transition from low to high of the GATE pulse enables count down. The output goes low for

one clock period after the count down is complete.

WR

n=

OUT (n=5)

WR

OUT

 2 1

39

CLK

Mode 5 Hardware Triggered Strobe

PROGRAMMABLE INTERRUPT CONTROLLER-8259

FEATURES OF 8259

1. 8086, 8088 Compatible

2. MCS-80, MCS-85 Compatible

3. Eight-Level Priority Controller

4. Expandable to 64 Levels

5. Programmable Interrupt Modes

6. Individual Request Mask Capability

7. Single +5V Supply (No Clocks)

8. Available in 28-Pin DIP and 28-Lead PLCC Package

9. Available in EXPRESS

10. Standard Temperature Range

11. Extended Temperature Range

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority

interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without

additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a

WR

GATE

OUT

5 4 3 2 1

40

single a5V supply. Circuitry is static, requiring no clock input. The 8259A is designed to

minimize the software and real time overhead in handling multi-level priority interrupts. It has

several modes, permitting optimization for a variety of system requirements. The 8259A is

fully upward compatible with the Intel 8259. Software originally written for the 8259 will

operate the 8259A in all 8259 equivalent modes (MCS-80/85, Non-Buffered, Edge Triggered).

Pin Diagram of 8259 is shown in figure 17.

Fig.3.17 Pin Diagram of 8259

PIN DESCRIPTION OF 8259

41

42

Fig.3. 18 Block Diagram of 8259

A more desirable method would be one that would allow the microprocessor to be executing

its main program and only stop to service peripheral devices when it is told to do so by the

device itself. In effect, the method would provide an external asynchronous input that would

inform the processor that it should complete whatever instruction that is currently being

executed and fetch a new routine that will service the requesting device. Once this servicing is

complete, however, the processor would resume exactly where it left off. This method is called

Interrupt. It is easy to see that system throughput would drastically increase, and thus more

tasks could be assumed by the micro-computer to further enhance its cost effectiveness. Block

Diagram of 8259 is shown in figure 3.18.

The Programmable Interrupt Controller (PIC) functions as an overall manager in an Interrupt-

Driven system environment. It accepts requests from the peripheral equipment, determines

which of the in-coming requests is of the highest importance (priori-ty), ascertains whether the

incoming request has a higher priority value than the

43

level currently being serviced, and issues an interrupt to the CPU based on this determination.

The 8259A is a device specifically designed for use in real time, interrupt driven

microcomputer systems. It manages eight levels or requests and has built-in features for

expandability to other 8259A's (up to 64 levels). It is programmed by the system's software as

an I/O peripheral. A selection of priority modes is available to the programmer so that the

manner in which the requests are processed by the 8259A can be configured to match his

system requirements. The priority modes can be changed or reconfigured dynamically at any

time during the main program. This means that the complete interrupt structure can be defined

as required, based on the total system environment.

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)

The interrupts at the IR input lines are handled by two registers in cascade, the Interrupt

Request Register (IRR) and the In-Service (ISR). The IRR is used to store all the interrupt

levels which are requesting service; and the ISR is used to store all the interrupt levels which

are being serviced.

PRIORITY RESOLVER

This logic block determines the priorites of the bits set in the IRR. The highest priority is

selected and strobed into the corresponding bit of the ISR during INTA pulse.

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on the

IRR. Masking of a higher priority input will not affect the interrupt request lines of lower

quality.

INT (INTERRUPT)

This output goes directly to the CPU interrupt input. The VOH level on this line is designed to

be fully compatible with the 8080A, 8085A and 8086 input levels.

44

INTA (INTERRUPT ACKNOWLEDGE)

INTA pulses will cause the 8259A to release vectoring information onto the data bus. The

format of this data depends on the system mode (mPM) of the 8259A.

DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to inter-face the 8259A to the system Data Bus.

Control words and status information are transferred through the Data Bus Buffer.

READ/WRITE CONTROL LOGIC

The function of this block is to accept Output commands from the CPU. It contains the

Initialization Command Word (ICW) registers and Operation Command Word (OCW)

registers which store the various control formats for device operation. This function block also

allows the status of the 8259A to be transferred onto the Data Bus.

CS (CHIP SELECT)

A LOW on this input enables the 8259A. No reading or writing of the chip will occur unless

the device is selected.

WR (WRITE)

A LOW on this input enables the CPU to write con-trol words (ICWs and OCWs) to the 8259A.

RD (READ)

A LOW on this input enables the 8259A to send the status of the Interrupt Request Register

(IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or the Interrupt level onto

the Data Bus.

A0

This input signal is used in conjunction with WR and RD signals to write commands into the

various command registers, as well as reading the various status registers of the chip. This line

can be tied directly to one of the address lines.

INTERRUPT SEQUENCE

45

The powerful features of the 8259A in a microcomputer system are its programmability and

the interrupt routine addressing capability. The latter allows direct or indirect jumping to the

specific interrupt routine requested without any polling of the interrupting devices. The normal

sequence of events during an interrupt depends on the type of CPU being used.

The events occur as follows in an MCS-80/85 sys-tem:

• One or more of the INTERRUPT REQUEST lines (IR7±0) are raised high, setting

the correspond-ing IRR bit(s).

• The 8259A evaluates these requests, and sends an INT to the CPU, if appropriate.

• The CPU acknowledges the INT and responds with an INTA pulse.

• Upon receiving an INTA from the CPU group, the highest priority ISR bit is set,

and the correspond-ing IRR bit is reset. The 8259A will also release a CALL

instruction code (11001101) onto the 8-bit Data Bus through its D7±0 pins.

• This CALL instruction will initiate two more INTA pulses to be sent to the 8259A

from the CPU group.

• These two INTA pulses allow the 8259A to re-lease its preprogrammed

subroutine address onto the Data Bus. The lower 8-bit address is released at the

first INTA pulse and the higher 8-bit address is released at the second INTA pulse.

• This completes the 3-byte CALL instruction re-leased by the 8259A. In the AEOI

mode the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR

bit remains set until an appropriate EOI command is issued at the end of the interrupt

sequence.

• The events occurring in an 8086 system are the same until step 4.

• Upon receiving an INTA from the CPU group, the highest priority ISR bit is set

and the corresponding IRR bit is reset. The 8259A does not drive the Data Bus

during this cycle.

• The 8086 will initiate a second INTA pulse. During this pulse, the 8259A releases

an 8-bit pointer onto the Data Bus where it is read by the CPU.

• This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the

end of the second INTA pulse. Otherwise, the ISR bit remains set until an

appropriate EOI command is issued at the end of the interrupt subroutine.

If no interrupt request is present at step 4 of either sequence (i.e., the request was too short in

duration) the 8259A will issue an interrupt level 7. Both the vectoring bytes and the CAS lines

46

will look like an interrupt level 7 was requested.

When the 8259A PIC receives an interrupt, INT be-comes active and an interrupt acknowledge

cycle is started. If a higher priority interrupt occurs between the two INTA pulses, the INT line

goes inactive immediately after the second INTA pulse. After an un- specified amount of time

the INT line is activated again to signify the higher priority interrupt waiting for service. This

inactive time is not specified and can vary between parts. The designer should be aware of this

consideration when designing a sys-tem which uses the 8259A. It is recommended that proper

asynchronous design techniques be followed.

INITIALIZATION COMMAND WORDS

Whenever a command is issued with A0 e 0 and D4 e 1, this is interpreted as Initialization

Command Word 1 (ICW1). ICW1 starts the initialization sequence during which the following

automatically occur.

• The edge sense circuit is reset, which means that following initialization, an interrupt

request (IR) input must make a low-to-high transition to generate an interrupt.

• The Interrupt Mask Register is cleared.

• IR7 input is assigned priority 7.

• The slave mode address is set to 7.

• Special Mask Mode is cleared and Status Read isset to IRR.

• If IC4 e 0, then all functions selected in ICW4are set to zero. (Non-Buffered mode(,no

Auto-EOI, MCS-80, 85 system).

• Initialization Command Word Format is as shown in figure 3.19.

47

48

Fig 3.19 . Initialization Command Word Format

49

OPERATION COMMAND WORDS

After the Initialization Command Words (ICWs) are programmed into the 8259A, the chip is

ready to accept interrupt requests at its input lines. However, during the 8259A operation, a

selection of algorithms can command the 8259A to operate in various modes through the

Operation Command Words (OCWs). Operation Command Word format is as shown in figure

20

Fig . Operational Control Words

50

Fig 3.20 Operation Command Word Format

DMA CONTROLLER 8257

The Direct Memory Access or DMA mode of data transfer is the fastest amongstall the modes

of data transfer. In this mode, the device may transfer data directly to/from memory without

any interference from the CPU. The device requests the CPU (through aDMA controller) to

hold its data, address and control bus, so that the device may transfer data directly to/from

memory. The DMA data transfer is initiated only after receiving HLDA signal from the CPU.

Intel’s 8257 is a four channel DMA controller designed to be interfaced with their family of

microprocessors. The 8257, on behalf of the devices, requests the CPU for bus access using

local bus request input i.e. HOLD in minimum mode. In maximum mode of the microprocessor

RQ/GT pin is used as bus request input. On receiving the HLDA signal (in minimum mode) or

RQ/GT signal (in maximum mode) from the CPU, the requesting devices gets the access of

the bus, and it completes the required number of DMA cycles for the data transfer and then

hands over the control of the bus back to the CPU.

INTERNAL ARCHITECTURE OF 8257

The internal architecture of 8257 is shown in figure. The chip support four DMA channels, i.e.

four peripheral devices can independently request for DMA data transfer

51

through these channels at a time. The DMA controller has 8-bit internal data buffer, a read/write

unit, a control unit, a priority resolving unit along with a set of registers.

The 8257 performs the DMA operation over four independent DMA channels. Each of four

channels of 8257 has a pair of two 16-bit registers, viz. DMA address register and terminal

count register.

There are two common registers for all the channels, namely, mode set register and status

register. Thus there are a total of ten registers. The CPU selects one of these ten registers using

address lines Ao-A3. Table shows how the Ao-A3 bits may be used for selecting one of these

registers.

DMA ADDRESS REGISTER

Each DMA channel has one DMA address register. The function of this register is to store the

address of the starting memory location, which will be accessed by the DMA channel. Thus

the starting address of the memory block which will be accessed by the device is first loaded

in the DMA address register of the channel. The device that wants to transfer data over a DMA

channel, will access the block of the memory with the starting address stored in the DMA

Address Register.

TERMINAL COUNT REGISTER

Each of the four DMA channels of 8257 has one terminal count register (TC). This 16-bit

register is used for ascertaining that the data transfer through a DMA channel ceases or stops

after the required number of DMA cycles. The low order 14-bits of the terminal count register

are initialized with the binary equivalent of the number of required DMA cycles minus one.

After each DMA cycle, the terminal count register content will be decremented by one and

finally it becomes zero after the required number of DMA cycles are over. The bits14 and 15

of this register indicate the type of the DMA operation (transfer). If the device wants to write

data into the memory, the DMA operation is called DMA write operation. Bit 14 of the register

in this case will be set to one and bit 15 will be set to zero.

52

STATUS REGISTER

The status register of 8257 is shown in figure. The lower order 4-bits of this register contain

the terminal count status for the four individual channels. If any of these bits is set, it indicates

that the specific channel has reached the terminal count condition.

These bits remain set till either the status is read by the CPU or the 8257 is reset. The update

flag is not affected by the read operation. This flag can only be cleared by resetting 8257 or by

resetting the auto load bit of the mode set register. If the update flag is set, the contents of the

channel 3 registers are reloaded to the corresponding registers of channel 2 whenever the

channel 2 reaches a terminal count condition, after transferring one block and the next block is

to be transferred using the autoload feature of 8257.

The update flag is set every time, the channel 2 registers are loaded with contents of the channel

3 registers. It is cleared by the completion of the first DMA cycle of the new block. This register

can only read.

DATA BUS BUFFER, READ/WRITE LOGIC, CONTROL UNIT AND PRIORITY

RESOLVER

The 8-bit. Tristate, bidirectional buffer interfaces the internal bus of 8257 with the external

system bus under the control of various control signals. In the slave mode, the read/write logic

accepts the I/O Read or I/O Write signals, decodes the Ao-A3 lines and either writes the

contents of the data bus to the addressed internal register or reads the

53

contents of the selected register depending upon whether IOW or IOR signal is activated.

In master mode, the read/write logic generates the IOR and IOW signals to control the data

flow to or from the selected peripheral. The control logic controls the sequences of operations

and generates the required control signals like AEN, ADSTB, MEMR, MEMW, TC and

MARK along with the address lines A4-A7, in master mode. The priority resolver resolves the

priority of the four DMA channels depending upon whether normal priority or rotating priority

is programmed.

SIGNAL DESCRIPTION OF 8257

DRQ0-DRQ3

These are the four individual channel DMA request inputs, used by the peripheral devices for

requesting the DMA services. The DRQ0 has the highest priority while DRQ3 has the lowest

one, if the fixed priority mode is selected.

DACK0-DACK3:

These are the active-low DMA acknowledge output lines which inform the requesting

peripheral that the request has been honoured and the bus is relinquished by the CPU. These

 lines may act as strobe lines for the requesting devices

.Pin Description of 8257

54

Architecture of 8257

Do-D7:

These are bidirectional, data lines used to interface the system bus with theinternal data bus of

8257. These lines carry command words to 8257 and status wordfrom 8257, in slave mode, i.e.

under the control of CPU.The data over these lines may be transferred in both the directions.

When the 8257 is thebus master (master mode, i.e. not under

55

CPU control), it uses Do-D7 lines to send higherbyte of the generated address to the latch. This

address is further latched using ADSTBsignal. the address is transferred over Do-D7 during

the first clock cycle of the DMAcycle. During the rest of the period, data is available on the

data bus.

IOR:

This is an active-low bidirectional tristate input line that acts as an input in theslave mode. In

slave mode, this input signal is used by the CPU to read internal registersof 8257.this line acts

output in master mode. In master mode, this signal is used to readdata from a peripheral during

a memory write cycle.

IOW:

This is an active low bidirection tristate line that acts as input in slave mode to load the

contents of the data bus to the 8-bit mode register or upper/lower byte of a 16-bit DMA address

register or terminal count register. In the master mode, it is a control output that loads the data

to a peripheral during DMA memory read cycle (write to peripheral).

CLK:

This is a clock frequency input required to derive basic system timings for theinternal operation

of 8257.

RESET :

This active-high asynchronous input disables all the DMA channels by clearing the mode

register and tristates all the control lines.

Ao-A3:

These are the four least significant address lines. In slave mode, they act as input which select

one of the registers to be read or written. In the master mode, they are the four least significant

memory address output lines generated by 8257.

56

CS:

This is an active-low chip select line that enables the read/write operations from/to 8257, in

slave mode. In the master mode, it is automatically disabled to prevent the chip from getting

selected (by CPU) while performing the DMA operation.

A4-A7:

This is the higher nibble of the lower byte address generated by 8257 during the master mode

of DMA operation.

READY:

This is an active-high asynchronous input used to stretch memory read and writecycles of 8257

by inserting wait states. This is used while interfacing slower peripherals.

HRQ:

The hold request output requests the access of the system bus. In the noncascaded8257 systems,

this is connected with HOLD pin of CPU. In the cascade mode, this pin of a slave is connected

with a DRQ input line of the master 8257, while that of the master is connected with HOLD

input of the CPU.

HLDA :

The CPU drives this input to the DMA controller high, while granting the bus tothe device.

This pin is connected to the HLDA output of the CPU. This input, if high, indicates to the DMA

controller that the bus has been granted to the requesting peripheral by the CPU.

MEMR:

This active –low memory read output is used to read data from the addressed memory locations

during DMA read cycles.

MEMW :

This active-low three state output is used to write data to the addressed memory location during

DMA write operation.

57

ADST :

This output from 8257 strobes the higher byte of the memory address generated by the DMA

controller into the latches.

AEN:

This output is used to disable the system data bus and the control the bus driven by the CPU,

this may be used to disable the system address and data bus by using the enable input of the

bus drivers to inhibit the non-DMA devices from responding during DMA operations. If the

8257 is I/O mapped, this should be used to disable the other I/O devices, when the DMA

controller addresses is on the address bus.

TC:

Terminal count output indicates to the currently selected peripherals that thepresent DMA cycle

is the last for the previously programmed data block. If the TC STOP bit in the mode set register

is set, the selected channel will be disabled at the end of the DMA cycle. The TC pin is activated

when the 14-bit content of the terminal count register of the selected channel becomes equal to

zero. The lower order 14 bits of the terminal count register are to be programmed with a 14-bit

equivalent of (n-1), if n is the desired number of DMA cycles.

MARK:

The modulo 128 mark output indicates to the selected peripheral that the current DMA cycle

is the 128th cycle since the previous MARK output. The mark will be activated after each 128

cycles or integral multiples of it from the beginning if the data block (the first DMA cycle), if

the total number of the required DMA cycles (n) is completely divisible by 128.

Vcc:

This is a +5v supply pin required for operation of the circuit. GND:

This is a return line for the supply (ground pin of the IC).

58

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – IV – INTERFACING CONCEPTS WITH 8085/8086

DAC INTERFACING WITH 8085

Fig.DAC interfacing

The DAC0800 can be interfaced to 8085 system bus by using an 8bit latch and the latch

can be enabled by using one of the chip select signal generated for I/O devices. A simple schematic

for interfacing is DAC0800 with 8085 is shown in the fig. The DAC0800 can be interfaced to

8085 system bus by using an 8bit latch and the latch can be enabled by using one of the chip

select signal generated for I/O devices. A simple schematic for interfacing

Fig: DAC Interface

In this schematic the DAC0800 is interfaced using an 8bit latch 74LS273 to the system

bus. The 3to8 decoder 74LS 138 is used to generate chip select signals for I/O devices. The

address lines A4, A5 and A6 are used as input to decoder.The address line A7 and the control

signal IO/M (low) are usedas enable for decoder. The decoder will generate eight chip select

signals and in thisthe signal IOCS7 is used as enable for latch of DAC.

The I/O address of the DAC is shown in table.

• In order to convert a digital data to analog value, the processor has to load the data to latch.

• The latch will hold the previous data until next data is loaded.

• The DAC will take definite time to convert the data. The software should take care of

loading successive data only after the conversion time. The DAC 0800 produces a current

output, which is converted to voltage output using I to V converter.

• To convert the digital signal to analog signal a Digitalto Analog Converter (DAC) has to

be employed. The DAC will accept a digital (binary) input and convert to analog voltage

or current. Every DAC will have "n" input lines and an analog output.

• The DAC require a reference analog voltage (Vref) or current (Iref) source. The smallest

possible analog value that can be represented by the nbit binary code is called resolution.

The resolution of DAC with nbit binary input is 1/2nof reference analog value. Every

analog output will be a multiple of the resolution,

ADC INTERFACING WITH 8085

• The ADC 0808 is 8channel 8bit ADC chip. It has 8 analog inputs i.e. IN0 IN7.One of

these channels is selected by sending address to a address line of ADC. The logic level and

selected channel is as shown

The analog signal is connected to channel 3.The digital equivalent data D0D7 is connected to

PA0PA7 of Port A. The PC0, PC1 and PC2 lines of Port C are connected to channel select address

lines of 8255. PC3 is connected to SOC (Start of conversion) and ALE signal (Input signal). EOC

(End of conversion) which is an output signal of 8255 connected to PC7 of Port

C. The PB0 of Port B is connected to OE (Output Enable) input signal of ADC.

ADC

INTERFACING

WITH 8085

SEVEN SEGMANT DISPLAY

Interface the 8085 Microprocessor System with seven segment display

through its programmable I/O port 8255. Seven segment displays (as shown in

Figure 1) is often used in the digital electronic equipments to display information

regarding certain process.

Fig.1 Seven Segment Display

There are two types of seven segment display; common anode and common cathode.

The differences between these two displays are shown in Figure 2a and 2b. The

internal structure of the seven segment display consist of a group of Light Emitting

Diode (LED)

Figure 2a Common Cathode Figure 2b Common Anode

For common cathode, the segment will light up when logic ‘1’ (+V) is

supplied and it will light off when logic ‘0’ (OV) is supplied. While for common

anode, logic ‘1’ will light off the segment and logic ‘0’ will light up the segment.

Therefore to display number ‘0’ on the seven segment display, segment a, b, c, d, e

and f must light up. For common cathode, logic ‘1’ should be given to the related

segment whereas in the case of common anode, logic ‘0’ should be given to the

necessary segment.

ALPHANUMERIC LCD DISPLAY:

Liquid Crystal displays are created by sandwiching a thin 1012 µm layer of a

liquidcrystal fluid between two glass plates. A transparent, electrically conductive

film or backplane is put on the rear glass sheet. Transparent sections of conductive

film in the shape of the desired characters are coated on the front glass plate.

When a voltage is applied between a segment and thebackplane, an electric field is

created in the region under the segment. This electric field changes the transmission

of light through the region under the segment film.

There are two commonly available types of LCD:

• Dynamic scattering and

• Fieldeffect.

The Dynamic scattering types of LCD: It scrambles the molecules where the

field is present. This produces an etchedglasslooking light character on a dark

background Fieldeffect types use polarization to absorb light where the electric

field is present. This produces dark characters on a silver gray background.

PIN ASSIGNMENT

The pin assignment shown below is an industry standard for small (80

characters or less) alphanumeric LCD modules.

Pin number Symbol

I/O Function

 1 Vss Power

supply (GND)

2 VDD Power

supply (+5V)

3 Vee Contrast

adjust

4RS I 0 = Command input/output 1 = Data input/output

5R/W I 0 = Write to LCD module 1 = Read from LCD module

 6 E I Enable signal (Data strobe)

7 DB0 I/O Data bus

line 0 (LSB)

8 DB1 I/O Data bus

line 1

9 DB2 I/O

Data bus line 2

10 DB3 I/O

Data bus line 3

11 DB4 I/O

Data bus line 4

12 DB5 I/O

Data bus line 5

13 DB6 I/O

Data bus line 6

14 DB7 I/O Data bus line 7 (MSB)

The LCD module requires 3 control lines and either 4 or 8 I/O lines for the data bus.

The user may select whether the LCD is to operate with a 4bit data bus or an 8bit

data bus. If a 4bit data bus is used, the LCD will require a total of 7 data lines (3

control lines plus the 4 lines for the data bus). If an 8bit data bus is used, the LCD

will require a total of 11 data lines (3 control lines plus the 8 lines for the data bus).

The three control lines are referred to as E, RS, and R/W. The E line is called

"Enable." This control line isused to tell the LCD that you are sending it data. To

send data to the LCD, your program should first set this line high (1) and then set

the other two control lines (RS & RW) and put data on the data bus (DB0 DB8).

When the other lines are completely ready, bring E low (0) again.

The 1 to 0transition tells the LCD to take the data currently found on the other

control lines and on the data bus and to treat it as a command. The RS line is the

"Register Select" line. When RS is low (0), the data is to be treated as a command

or special instruction (such as clear screen, position cursor, etc.). When RS is high

(1), the data being sent is text data which should be displayed on the LCD screen.

For example, to display the letter "T" on the screen you would set RS high. The RW

line is the "Read/Write" control line. When RW is low (0), the information on the

data bus is being written to the LCD. When RW is high (1), the program is

effectively querying (or reading) the LCD. Finally, the data bus consists of 4 or 8

lines (depending on the mode of operation selected by the user). In the case of an

8bit data bus, the lines are referred to as DB0, DB1, DB2, DB3, DB4, DB5, DB6,

and DB7.Most LCD’s require a voltage of 2 or 3 V between the backplane and a

segment to turn on the segment.

• Draw the memory interface diagram to 8085 processor with 2-Nos of 4kB

EPROM and 1 No. of 8kB RAM. Explain the system and allocate binary

addresses to memory IC’s.

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – V – APPLICATIONS USING 8085/8086

STEPPER MOTOR INTERFACING USING 8085:

Stepper motor is an electromechanical device that rotates through fixed angular steps when digital

inputs are applied. It is suitable for precise position, speed and direction control which are required

in automation system.

The angle through which stepper motor rotates with a fixed angle for each digital data is called

step angle.

Different stepper motor has different step angle. The more frequently used stepper motor has

step angle of 0.9 degrees and 1.8 degrees.

Depending on the sequence applied to stepper motor, it can be classified in two category:

4 Step sequence or full step sequence

8 Step sequence or half step sequence

4 Step sequence or full step sequence:

Chips select Logic:

The program in look up table if the 4step sequence for clock wise then stepper motor will

rotate in clockwise direction and if the 4step sequence for anticlock wise then stepper motor will

rotate in anticlockwise direction. Speed control of stepper motor is achieved by writing program

to rotate stepper motor continuously in delay program. We can change the delay between two steps

and thus change the speed of stepper motor.

Program:

In the above program in look up table if the 4step sequence for clock wise then stepper

motor will rotate in clockwise direction and if the 4step sequence for anticlock wise then stepper

motor will rotate in anticlockwise direction. Speed control of stepper motor is achieved by writing

program to rotate stepper motor continuously in delay program. We can change the delay between

two steps and thus change the speed of stepper motor.

Fig. Stepper motor interface using 8085

TEMPERATURE CONTROLLER USING 8085:

Temperature measurement is used in variety of applications like furnace, water bath, oven, etc. with

the help of transducers like thermocouple. The output of thermocouple is proportional to temperature

which is in milliVolts. Therefore to drive further stages of system, this signal is amplified using

instrumentation amplifier. The amplified output is fed to channel 3 of ADC and 8085 provides High

to Low SOC and ALE signal. When ADC completes the conversion, 8085 reads the equivalent

digital data from Port A which is the current value of temperature of object. This value of measured

temperature is then sent to display system.

For measuring temperature of furnace, water bath, etc. 8085 1st measures current temperature (t1)

and compares with the reference temperature (T1) at which the temperature is to be kept constant.

If the measure temperature (t1) is greater than reference temperature (T1) then 8085 sends control

signal to the transistorized relay circuit through Port B and turns OFF the heating process to maintain

temperature at desired level.

If the measure temperature (t1) is less than reference temperature (T1) then 8085 sends control signal

to the transistorized relay circuit through Port B and turns ON the heating process to maintain

temperature at desired level, thus maintaining the temperature of furnace, bath tub, etc.

CHIPS SELECT LOGIC:

Fig: Temperature Control using 8085

TRAFFIC LIGHT CONTROL

MVI A, 80H: Initialize 8255, port A and port B

OUT 83H (CR): in output mode

START: MVI A, 09H

OUT 80H (PA): Send data on PA to glow R1 and R2

MVI A, 24H

OUT 81H (PB): Send data on PB to glow G3 and G4

MVI C, 28H: Load multiplier count (40ıο) for delay

CALL DELAY: Call delay subroutine

MVI A, 12H

OUT (81H) PA: Send data on Port A to glow Y1 and Y2

OUT (81H) PB: Send data on port B to glow Y3 and Y4

MVI C, 0AH: Load multiplier count (10ıο) for delay

CALL: DELAY: Call delay subroutine

MVI A, 24H

OUT (80H) PA: Send data on port A to glow G1 and G2

MVI A, 09H

OUT (81H) PB: Send data on port B to glow R3 and R4

MVI C, 28H: Load multiplier count (40ıο) for delay

CALL DELAY: Call delay subroutine

MVI A, 12H

OUT PA: Send data on port A to glow Y1 and Y2

OUT PB: Send data on port B to glow Y3 and Y4

MVI C, 0AH: Load multiplier count (10ıο) for delay

CALL DELAY: Call delay subroutine

JMP START

Delay Subroutine:

DELAY: LXI D, Count: Load count to give 0.5 sec delay

BACK: DCX D: Decrement counter

MOV A, D

ORA E: Check whether count is 0

JNZ BACK: If not zero, repeat

DCR C: Check if multiplier zero, otherwise repeat

JNZ DELAY

RET: Return to main program

TEXT / REFERENCE BOOKS

1. Ramesh Gaonkar, “Microprocessor Architecture, Programming and applications with

8085”, 5th Edition, Penram International Publishing Pvt Ltd, 2010.

2. D. V. Hall, “Microprocessor Interfacing, Programming and Hardware”, McGraw Hill,

1993.

3. Nagoor Kani A, “Microprocessor (8085) and its Applications”, 2nd Edition, RBA

publications.

 4. Mathur A.P, “Introduction to Microprocessor”, Tata McGraw Hill, 1990

