
1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – I – MICROPROCESSORS AND MICROCONTROLLERS– SEC1201

2

UNIT 1 INTRODUCTION TO MICROPROCESSORS

Introduction, 8085 Architecture, Pin Diagram and signals, Addressing Modes, Timing

Diagram, Memory read, Memory write, I/O cycle, Interrupts and its types, Introduction

to 8086 microprocessors and its operation.

History of microprocessor:-

The invention of the transistor in 1947 was a significant development in the world of technology. It could

perform the function of a large component used in a computer in the early years. Shockley, Brattain and

Bardeen are credited with this invention and were awarded the Nobel prize for the same. Soon it was found

that the function this large component was easily performed by a group of transistors arranged on a single

platform. This platform, known as the integrated chip (IC), turned out to be a very crucial achievement and

brought along a revolution in the use of computers. A person named Jack Kilby of Texas Instruments was

honored with the Nobel Prize for the invention of IC, which laid the foundation on which microprocessors

were developed. At the same time, Robert Noyce of Fairchild made a parallel development in IC technology

for which he was awarded the patent.

ICs proved beyond doubt that complex functions could be integrated on a single chip with a highly

developed speed and storage capacity. Both Fairchild and Texas Instruments began the manufacture of

commercial ICs in 1961. Later, complex developments in the IC led to the addition of more complex

functions on a single chip. The stage was set for a single controlling circuit for all the computer functions.

Finally, Intel corporation's Ted Hoff and Frederico Fagin were credited with the design of the first

microprocessor.

The work on this project began with an order from a Japanese calculator company Busicom to Intel, for

building some chips for it. Hoff felt that the design could integrate a number of functions on a single chip

making it feasible for providing the required functionality. This led to the design of Intel 4004, the world's

first microprocessor. The next in line was the 8 bit 8008 microprocessor. It was developed by Intel in 1972

to perform complex functions in harmony with the 4004.

This was the beginning of a new era in computer applications. The use of mainframes and huge computers

was scaled down to a much smaller device that was affordable to many. Earlier, their use was limited to

large organizations and universities. With the advent of microprocessors, the use of computers trickled

down to the common man. The next processor in line was Intel's 8080 with an 8 bit data bus and a 16 bit

address bus. This was amongst the most popular microprocessors of all time.

Very soon, the Motorola corporation developed its own 6800 in competition with the Intel's 8080. Fagin left

Intel and formed his own firm Zilog. It launched a new microprocessor Z80 in 1980 that was far superior

to the previous two versions. Similarly, a break off from Motorola prompted the design of 6502, a derivative

of the 6800. Such attempts continued with some modifications in the base structure.

The use of microprocessors was limited to task-based operations specifically required for company projects

such as the automobile sector. The concept of a 'personal computer' was still a distant dream for the world

and microprocessors were yet to come into personal use. The 16 bit microprocessors started becoming a

commercial sell-out in the 1980s with the first popular one being the TMS9900 of Texas Instruments.

Intel developed the 8086 which still serves as the base model for all latest advancements in the

microprocessor family. It was largely a complete processor integrating all the required features in it. 68000

by Motorola was one of the first microprocessors to develop the concept of microcoding in its instruction

set. They were further developed to 32 bit architectures. Similarly, many players like Zilog, IBM and Apple

were successful in getting their own products in the market. However, Intel had a commanding position in

the market right through the microprocessorers.

The 1990s saw a large scale application of microprocessors in the personal computer applications developed

by the newly formed Apple, IBM and Microsoft corporation. It witnessed a revolution in the use of

3

computers, which by then was a household entity.

This growth was complemented by a highly sophisticated development in the commercial use of

microprocessors. In 1993, Intel brought out its 'Pentium Processor' which is one of the most popular

processors in use till date. It was followed by a series of excellent processors of the Pentium family, leading

into the 21st century. The latest one in commercial use is the Pentium Dual Core technology and the Xeon

processor. They have opened up a whole new world of diverse applications. Supercomputers have become

common, owing to this amazing development in microprocessors.

1.2 INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

A microprocessor is a programmable electronics chip that has computing and decision making capabilities

similar to central processing unit of a computer. Any microprocessor-based systems having limited number

of resources are called microcomputers. Nowadays, microprocessor can be seen in almost all types of

electronics devices like mobile phones, printers, washing machines etc. Microprocessors are also used in

advanced applications like radars, satellites and flights. Due to the rapid advancements in electronic

industry and large scale integration of devices results in a significant cost reduction and increase application

of microprocessors and their derivatives.

Fig.1.1 Microprocessor-based system

Bit: A bit is a single binary digit.

Word: A word refers to the basic data size or bit size that can be processed by the arithmetic and logic unit

of the processor. A 16-bit binary number is called a word in a 16-bit processor.

Bus: A bus is a group of wires/lines that carry similar information.

System Bus: The system bus is a group of wires/lines used for communication between the microprocessor

and peripherals.

Memory Word: The number of bits that can be stored in a register or memory element is called a memory

word.

4

Address Bus: It carries the address, which is a unique binary pattern used to identify a memory location or

an I/O port. For example, an eight bit address bus has eight lines and thus it can address 28 = 256 different

locations. The locations in hexadecimal format can be written as 00H – FFH.

Data Bus: The data bus is used to transfer data between memory and processor or between I/O device and

processor. For example, an 8-bit processor will generally have an 8-bit data bus and a 16-bit processor will

have 16-bit data bus.

Control Bus: The control bus carry control signals, which consists of signals for selection of memory or I/O

device from the given address, direction of data transfer and synchronization of data transfer in case of

slow devices.

A typical microprocessor consists of arithmetic and logic unit (ALU) in association with control unit to

process the instruction execution. Almost all the microprocessors are based on the principle of store-

program concept. In store-program concept, programs or instructions are sequentially stored in the

memory locations that are to be executed. To do any task using a microprocessor, it is to be programmed

by the user. So the programmer must have idea about its internal resources, features and supported

instructions. Each microprocessor has a set of instructions, a list which is provided by the microprocessor

manufacturer. The instruction set of a microprocessor is provided in two forms: binary machine code and

mnemonics.

Microprocessor communicates and operates in binary numbers 0 and 1. The set of instructions in the form

of binary patterns is called a machine language and it is difficult for us to understand. Therefore, the binary

patterns are given abbreviated names, called mnemonics, which forms the assembly language. The

conversion of assembly-level language into binary machine-level language is done by using an application

called assembler.

Technology Used:

The semiconductor manufacturing technologies used for chips are:

 • Transistor-Transistor Logic (TTL)

 • Emitter Coupled Logic (ECL)

 • Complementary Metal-Oxide Semiconductor (CMOS)

Classification of Microprocessors:

Based on their specification, application and architecture microprocessors are classified.

Based on size of data bus:

 • 4-bit microprocessor

 • 8-bit microprocessor

 • 16-bit microprocessor

 • 32-bit microprocessor

Based on application:

• General-purpose microprocessor- used in general computer system and can be used by programmer for

any

application. Examples, 8085 to Intel Pentium.

• Microcontroller- microprocessor with built-in memory and ports and can be programmed for any generic

5

control

application. Example, 8051.

• Special-purpose processors- designed to handle special functions required for an application. Examples,

digital signal processors and application-specific integrated circuit (ASIC) chips.

Based on architecture:

 • Reduced Instruction Set Computer (RISC) processors

 • Complex Instruction Set Computer (CISC) processors

2. 8085 MICROPROCESSOR ARCHITECTURE

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and uses +5 V for power. It

can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit and address bus width is 16-bit, thus

it can address 216 = 64 KB of memory. The internal architecture of 8085 is shown is Fig. 1.2.

Fig 1.2: 8085 Architecture

Arithmetic and Logic Unit

The ALU performs the actual numerical and logical operations such as Addition (ADD), Subtraction

(SUB), AND, OR etc. It uses data from memory and from Accumulator to perform operations. The results

of the arithmetic and logical operations are stored in the accumulator.

Registers

The 8085 includes six registers, one accumulator and one flag register, as shown in Fig. 1.3. In addition, it

has two 16-bit registers: stack pointer and program counter. They are briefly described as follows.

6

The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C, D, E, H and L.

they can be combined as register pairs - BC, DE and HL to perform some 16-bit operations. The programmer

can use these registers to store or copy data into the register by using data copy instructions.

Fig 1.3: Register Organization

Accumulator

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit data and to perform

arithmetic and logical operations. The result of an operation is stored in the accumulator. The accumulator is also

identified as register A.

Flag register

The ALU includes five flip-flops, which are set or reset after an operation according to data condition of the result in

the accumulator and other registers. They are called Zero (Z), Carry (CY), Sign (S), Parity (P) and Auxiliary Carry

(AC) flags. Their bit positions in the flag register are shown in Fig. 4. The microprocessor uses these flags to test data

conditions.

Fig 1.5: PSW

For example, after an addition of two numbers, if the result in the accumulator is larger than 8-bit, the flip-flop uses to

indicate a carry by setting CY flag to 1. When an arithmetic operation results in zero, Z flag is set to 1. The S flag is just

a copy of the bit D7 of the accumulator. A negative number has a 1 in bit D7 and a positive number has a 0 in 2’s

complement representation. The AC flag is set to 1, when a carry result from bit D3 and passes to bit D4. The P flag is

set to 1, when the result in accumulator contains even number of 1s.

Program Counter (PC)

7

This 16-bit register deals with sequencing the execution of instructions. This register is a memory pointer. The

microprocessor uses this register to sequence the execution of the instructions. The function of the program counter is

to point to the memory address from which the next byte is to be fetched. When a byte is being fetched, the program

counter is automatically incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory location in R/W memory,

called stack. The beginning of the stack is defined by loading 16-bit address in the stack pointer.

Instruction Register/Decoder

It is an 8-bit register that temporarily stores the current instruction of a program. Latest instruction sent here from

memory prior to execution. Decoder then takes instruction and decodes or interprets the instruction. Decoded

instruction then passed to next stage.

Control Unit

Generates signals on data bus, address bus and control bus within microprocessor to carry out the instruction, which

has been decoded. Typical buses and their timing are described as follows:

• Data Bus: Data bus carries data in binary form between microprocessor and other external units such as

memory.

It is used to transmit data i.e. information, results of

arithmetic etc between memory and the microprocessor. Data bus is bidirectional in nature. The data bus width of 8085

microprocessor is 8-bit i.e. 28 combination of binary digits and are typically identified as D0 – D7. Thus

size of the data bus determines what arithmetic can be done. If only 8-bit wide then largest number is 11111111 (255 in

decimal). Therefore, larger numbers have to be broken down into chunks of 255. This slows

microprocessor.

• Address Bus: The address bus carries addresses and is one way bus from microprocessor to the memory or

other devices. 8085 microprocessor contain 16-bit address bus and are generally identified as A0 - A15. The higher

order address lines (A8 – A15) are unidirectional and the lower order lines (A0 – A7) are multiplexed (time-

shared) with the eight data bits (D0 – D7) and hence, they are bidirectional.

• Control Bus: Control bus are various lines which have specific functions for coordinating and controlling

microprocessor operations. The control bus carries control signals partly unidirectional and partly bidirectional.

The following control and status signals are used by 8085 processor:

I. ALE (output): Address Latch Enable is a pulse that is provided when an address appears on the

AD0 – AD7 lines, after which it becomes 0.

II. RD (active low output): The Read signal indicates that data are being read from the selected I/O or

memory device and that they are available on the data bus.

III. WR (active low output): The Write signal indicates that data on the data bus are to be written into

a selected memory or I/O location.

IV. IO/M (output): It is a signal that distinguished between a memory operation and an I/O operation.

When IO/M = 0 it is a memory operation and IO/M = 1 it is an I/O operation.

V. S1 and S0 (output): These are status signals used to specify the type of operation being performed;

they are listed in Table 1.1

8

Table 1.1: Status signals and associated operations

The schematic representation of the 8085 bus structure is as shown in Fig. 1.5. The microprocessor

performs primarily four operations:

1. Memory Read: Reads data (or instruction) from memory.

2. Memory Write: Writes data (or instruction) into memory.

3. I/O Read: Accepts data from input device.

4. I/O Write: Sends data to output device.

The 8085 processor performs these functions using address bus, data bus and control bus as shown in Fig.

1.5.

Fig 1.5: 8085 Bus structure

3. 8085 PIN DESCRIPTION

Properties:

• It is a 8-bit microprocessor

• Manufactured with N-MOS technology

• 40 pin IC package

• It has 16-bit address bus and thus has 216 = 64 KB addressing capability.

• Operate with 3 MHz single-phase clock

• +5 V single power supply

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 1.6. All the signals

9

are classified into six groups:

 • Address bus

 • Data bus

 • Control & status signals

 • Power supply and frequency signals

 • Externally initiated signals

 • Serial I/O signals

Fig 1.6: 8085-Pin Diagram

Address and Data Buses:

 • A8 – A15 (output, 3-state): Most significant eight bits of memory addresses and the eight

bits of the I/O

 addresses. These lines enter into tri-state high impedance state during HOLD and HALT

modes.

• AD0 – AD7 (input/output, 3-state): Lower significant bits of memory addresses and the

eight bits of the I/O addresses during first clock cycle. Behaves as data bus during third

and fourth clock cycle. These lines enter into tri-state high impedance state during

HOLD and HALT modes.

Control & Status Signals:

 • ALE: Address latch enable

 • RD : Read control signal.

10

 • WR :Write control signal

 :

 • IO/M , S1 and S0 : Status signals. Power

Supply & Clock Frequency:

 • Vcc: +5 V power supply

 • Vss: Ground reference

 • X1, X2: A crystal having frequency of 6 MHz is connected at these two pins

 • CLK: Clock output

Externally Initiated and Interrupt Signals:

• RESET IN : When the signal on this pin is low, the PC is set to 0, the buses are tri-stated

and the processor is reset.

• RESET OUT: This signal indicates that the processor is being reset. The signal can be

used to reset other

devices.

• READY: When this signal is low, the processor waits for an integral number of clock

cycles until it goes high.

• HOLD: This signal indicates that a peripheral like DMA (direct memory access)

controller is requesting the use of address and data bus.

• HLDA: This signal acknowledges the HOLD request.

• INTR: Interrupt request is a general-purpose interrupt.

• INTA : This is used to acknowledge an interrupt.

• RST 7.5, RST 6.5, RST 5,5 – restart interrupt: These are vectored interrupts and have

highest priority than INTR interrupt.

• TRAP: This is a non-maskable interrupt and has the highest priority.

Serial I/O Signals:

 • SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM

instruction.

 • SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

4. INSTRUCTION SET AND EXECUTION IN 8085

Based on the design of the ALU provides and decoding unit, the microprocessor manufacturer

11

microprocessor. The instruction set for every machine code and instruction set consists

of both

mnemonics.

An instruction is a binary pattern designed inside a microprocessor to perform a specific

function. The entire group of instructions that a microprocessor supports is called

instruction set. Microprocessor instructions can be classified based on the parameters

such functionality, length and operand addressing.

Classification based on functionality:

I. Data transfer operations: This group of instructions copies data from source to

destination. The content of the source is not altered.

II. Arithmetic operations: Instructions of this group perform operations like addition,

subtraction, increment & decrement. One of the data used in arithmetic operation is

stored in accumulator and the result is also stored in accumulator.

III. Logical operations: Logical operations include AND, OR, EXOR, NOT. The operations

like AND, OR and EXOR uses two operands, one is stored in accumulator and other can

be any register or memory location. The result is stored in accumulator. NOT operation

requires single operand, which is stored in accumulator.

 IV. Branching operations: Instructions in this group can be used to transfer program

sequence from one memory location to another either conditionally or unconditionally.

 V. Machine control operations: Instruction in this group control execution of other

instructions and control operations like interrupt, halt etc.

Classification based on length:

I. One-byte instructions: Instruction having one byte in machine code. Examples are

depicted in Table 1.2.

I. Two-byte instructions: Instruction having two byte in machine code. Examples are

depicted in Table 1.3

II. Three-byte instructions: Instruction having three byte in machine code. Examples are

depicted in Table 1.4.

Table 1.2: Example of one byte instruction

Opcode Operand Machine code/Hex code

MOV A, B 78

ADD M 86

Table 1.3 Examples of two byte instructions

 Opcode Operand Machine code/Hex code Byte description

 MVI A, 7FH 3E First byte

 7F Second byte

 ADI 0FH C6 First byte

 0F Second byte

12

Table 1.4 Examples of three byte

instructions

 Opcode Operand Machine code/Hex code Byte description

 JMP 9050H C3 First byte

 50 Second byte

 90 Third byte

 LDA 8850H 3A First byte

 50 Second byte

 88 Third byte

Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called addressing. The

various formats for specifying operands are called addressing modes. The 8085 has the following

five types of addressing:

1. Immediate addressing

2. Memory direct addressing

3. Register direct addressing

4. Indirect addressing

5. Implicit addressing

Immediate Addressing:

In this mode, the operand given in the instruction - a byte or word – transfers to the destination

register or memory location.

Ex: MVI A, 9AH

• The operand is a part of the instruction.

• The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and register. The

memory location address is given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the accumulator.

Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to destination

register.

Ex: MOV B, C

It copies the content of register C to register B.

13

Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory location.

Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The data is moved

to the accumulator.

Implicit Addressing

In this addressing mode the data itself specifies the data to be operated upon.

Ex: CMA

The instruction complements the content of the accumulator. No specific data or operand is

mentioned in the instruction

INSTRUCTION EXECUTION AND TIMING DIAGRAM
Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and

operand. The opcode is a command such as ADD and the operand is an object to be operated on,

such as a byte or the content of a register.

Instruction Cycle: The time taken by the processor to complete the execution of an instruction.

An instruction cycle consists of one to six machine cycles.

Machine Cycle: The time required to complete one operation; accessing either the memory or I/O

device. A machine cycle consists of three to six T-states.

T-State: Time corresponding to one clock period. It is the basic unit to calculate execution of

instructions or programs in a processor.

To execute a program, 8085 performs various operations as:

 • Opcode fetch

 • Operand fetch

 • Memory read/write

 • I/O read/write

External communication functions are:

 • Memory read/write

 • I/O read/write

 • Interrupt request acknowledge

Opcode Fetch Machine Cycle:

14

It is the first step in the execution of any instruction. The timing diagram of this cycle is given in

Fig. 1.7.

The following points explain the various operations that take place and the signals that are

changed during the execution of opcode fetch machine cycle:

T1 clock cycle

i. The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit address and

A8 – A15 contains higher bit address.

ii. IO/M signal is low indicating that a memory location is being accessed. S1 and S0 also

changed to the levels as indicated in Table 1.

iii. ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus.

T2 clock cycle

i. Multiplexed address bus is now changed to data bus.

ii. The RD signal is made low by the processor. This signal makes the memory device load

the data bus with the contents of the location addressed by the processor.

T3 clock cycle

i. The opcode available on the data bus is read by the processor and moved to the instruction

register.

ii.The RD signal is deactivated by making it logic 1.

T4 clock cycle

i. The processor decode the instruction in the instruction register and generate the necessary

control signals to execute the instruction. Based on the instruction further operations such as

fetching, writing into memory etc takes place.

Fig. 1.7 Timing diagram for opcode fetch cycle

Memory Read Machine Cycle:

The memory read cycle is executed by the processor to read a data byte from memory. The machine cycle is exactly

same to opcode fetch except: a) It has three T-states b) The S0 signal is set to 0. The timing diagram of this cycle is given

in Fig. 1.8.

15

Fig. 1.8 Timing diagram for memory write machine cycle

Memory Write Machine Cycle:

The memory write cycle is executed by the processor to write a data byte in a memory location.

The processor takes three T-states and WR signal is made low. The timing diagram of this cycle

is given in Fig.1.8.

Fig. 1.9 Timing diagram for memory read machine cycle

I/O Read Cycle:

The I/O read cycle is executed by the processor to read a data byte from I/O port or from

peripheral, which is I/O mapped in the system. The 8-bit port address is placed both in the lower

and higher order address bus. The processor takes three T-states to execute this machine cycle.

The timing diagram of this cycle is given in Fig. 1.10.

16

Fig.1. 10 Timing diagram I/O read machine cycle

I/O Write Cycle:

The I/O write cycle is executed by the processor to write a data byte to I/O port or to a peripheral, which is I/O mapped

in the system. The processor takes three T-states to execute this machine cycle. The timing diagram of this cycle is given

in Fig. 1.11.

Fig.1. 11 Timing diagram I/O write machine cycle

17

Ex: Timing diagram for IN 80H.

The instruction and the corresponding codes and memory locations are given in Table 5.

Table 5 IN instruction

Address Mnemonics Opcode

800F IN 80H DB

8010 80

i. During the first machine cycle, the opcode DB is fetched from the memory, placed in the

instruction register and decoded.

ii. During second machine cycle, the port address 80H is read from the next memory

location.

iii. During the third machine cycle, the address 80H is placed in the address bus and the

data read from that port address is placed in the accumulator.

The timing diagram is shown in Fig. 1.12.

Timing diagram for INR M

Algorithm –

The instruction INR M is of 1 byte; therefore the complete instruction will be stored in a single

memory address.

For example:

2000: INR M

The opcode fetch will be same as for other instructions in first 4 T states.

Only the Memory read and Memory Write need to be added in the successive T states.

For the opcode fetch the IO/M (low active) = 0, S1 = 1 and S0 = 1.

For the memory read the IO/M (low active) = 0, S1 = 1 and S0 = 0. Also, only 3 T states will be

required.

For the memory write the IO/M (low active) = 0, S1 = 0 and S0 = 1 and 3 T states will be required.

Fig 1.12 Timing diagram for INR M

18

In Opcode fetch (t1-t4 T states) –

• 00: lower bit of address where opcode is stored, i.e., 00

• 20: higher bit of address where opcode is stored, i.e., 20.

• ALE: provides signal for multiplexed address and data bus. Only in t1 it used as address bus to

fetch lower bit of address otherwise it will be used as data bus.

• RD (low active): signal is 1 in t1 & t4 as no data is read by microprocessor. Signal is 0 in t2 & t3

because here the data is read by microprocessor.

• WR (low active): Signal is 1 throughout, no data is written by microprocessor.

• IO/M (low active): Signal is 0 in throughout because the operation is performing on memory.

• S0 and S1: both are 1 in case of opcode fetching.

In Memory read (t5-t7 T states) –

• 00: lower bit of address where opcode is stored, i.e, 00

• 50: higher bit of address where opcode is stored, i.e, 50.

• ALE: provides signal for multiplexed address and data bus. Only in t5 it used as address bus to

fetch lower bit of address otherwise it will be used as data bus.

• RD (low active): signal is 1 in t5, no data is read by microprocessor. Signal is 0 in t6 & t7, data

is read by microprocessor.

• WR (low active): signal is 1 throughout, no data is written by microprocessor.

• IO/M (low active): signal is 0 in throughout, operation is performing on memory.

• S0 and S1 – S1=1 and S0=0 for Read operation.

In Memory write (t8-t10 T states) –

• 00: lower bit of address where opcode is stored, i.e, 00

• 50: higher bit of address where opcode is stored, i.e, 50.

• ALE: provides signal for multiplexed address and data bus. Only in t8 it used as address bus to

fetch lower bit of address otherwise it will be used as data bus.

• RD (low active): signal is 1 throughout, no data is read by microprocessor.

• WR (low active): signal is 1 in t8, no data is written by microprocessor. Signal is 0 in t9 & t10,

data is written by microprocessor.

• IO/M (low active): signal is 0 in throughout, operation is performing on memory.

• S0 and S1 – S1=0 and S0=1 for write operation.

Timing diagram of MVI instruction

Problem – Draw the timing diagram of the following code,

MVI B, 45

Explanation of the command – It stores the immediate 8 bit data to a register or memory location.

Example: MVI B, 45

Opcode: MVI

Operand: B is the destination register and 45 is the source data which needs to be transferred to

the register.

’45’ data is stored in the B register.

Algorithm –

• Decide what is the opcode and what is the data. Here, opcode is ‘MVI B’ and data is 45.

• Assume the memory address of the opcode and the data. For example:

MVI B, 45

2000: Opcode

2001: 45

• The opcode fetch will be same in all the instructions.

• Only the read instruction of the opcode needs to be added in the successive T states.

• For the opcode read the IO/M (low active) = 0, S1 = 1 and S0 = 0. Also, only 3 T states will be

required.

19

Fig 1.13: timing diagram for MVI B,45

Timing diagram of MOV Instruction in Microprocessor

Problem – Draw the timing diagram of the given instruction in 8085,

MOV B, C

Given instruction copies the contents of the source register into the destination register and the

contents of the source register are not altered

OV B, C

Opcode: MOV

Operand: B and C

Bis the destination register and C is the source register whose contents need to be transferred to

the destination register.

Algorithm –

The instruction MOV B, C is of 1 byte; therefore the complete instruction will be stored in a single

memory address. For example:

2000: MOV B, C

Only opcode fetching is required for this instruction and thus we need 4 T states for the timing

diagram. For the opcode fetch the IO/M (low active) = 0, S1 = 1 and S0 = 1.

The timing diagram of MOV instruction is shown below:

20

Fig 1.14:Timing diagram for MOV B,C

Timing diagram for STA 526AH

STA means Store Accumulator -The contents of the accumulator is stored in the specified

address(526A).

The opcode of the STA instruction is said to be 32H. It is fetched from the memory 41FFH(see

fig). - OF machine cycle Then the lower order memory address is read(6A). - Memory Read

Machine Cycle Read the higher order memory address (52).- Memory Read Machine Cycle The

combination of both the addresses are considered and the content from accumulator is written in

526A. - Memory Write Machine Cycle Assume the memory address for the instruction and let the

content of accumulator is C7H. So, C7H from accumulator is now stored in 526A

21

Fig 1.15:Timing diagram for STA 526A

Timing Diagram for Call instruction

Fig 1.16:Timing diagram for CALL instruction

Note : The instruction, which involves stack mostly will take 6T states in opcode fetch.

8085 INTERRUPTS

Interrupt Structure:

22

Interrupt is the mechanism by which the processor is made to transfer control from its current program execution to

another program having higher priority. The interrupt signal may be given to the processor by any external peripheral

device.

The program or the routine that is executed upon interrupt is called interrupt service routine (ISR). After execution of

ISR, the processor must return to the interrupted program. Key features in the interrupt structure of any

microprocessor are as follows:

i. Number and types of interrupt signals available.

ii. The address of the memory where the ISR is located for a particular interrupt signal. This address is called

interrupt vector address (IVA).
iii. Masking and unmasking feature of the interrupt signals.
iv. Priority among the interrupts.
v. Timing of the interrupt signals.

vi. Handling and storing of information about the interrupt program (status information).

Types of Interrupts:

Interrupts are classified based on their maskability, IVA and source. They are classified as:

i. Vectored and Non-Vectored Interrupts

Vectored interrupts require the IVA to be supplied by the external device that gives the interrupt signal. This

technique is vectoring, is implemented in number of ways.

Non-vectored interrupts have fixed IVA for ISRs of different interrupt signals.

ii. Maskable and Non-Maskable Interrupts

Maskable interrupts are interrupts that can be blocked. Masking can be done by software or hardware means.

Non-maskable interrupts are interrupts that are always recognized; the corresponding ISRs are executed.

iii. Software and Hardware Interrupts

Software interrupts are special instructions, after execution transfer the control to predefined ISR.

Hardware interrupts are signals given to the processor, for recognition as an interrupt and execution of the

corresponding ISR.

Interrupt Handling Procedure:

The following sequence of operations takes place when an interrupt signal is recognized:

i. Save the PC content and information about current state (flags, registers etc) in the stack.

ii. Load PC with the beginning address of an ISR and start to execute it.

iii. Finish ISR when the return instruction is executed.

iv. Return to the point in the interrupted program where execution was interrupted.

Interrupt Sources and Vector Addresses in 8085:

23

Software Interrupts:

8085 instruction set includes eight software interrupt instructions called Restart (RST) instructions. These are one

byte instructions that make the processor execute a subroutine at predefined locations. Instructions and their vector

addresses are given in Table 1.6

Table 1.6 Vector address

Instruction Machine hex code Interrupt Vector Address

RST 0 C7 0000H

RST 1 CF 0008H

RST 2 D7 0010H

RST 3 DF 0018H

RST 4 E7 0020H

RST 5 EF 0028H

RST 6 F7 0030H

RST 7 FF 0032H

The software interrupts can be treated as CALL instructions with default call locations.

The concept of priority does not apply to software interrupts as they are inserted into the

program as instructions by the programmer and executed by the processor when the

respective program lines are read.

Hardware Interrupts and Priorities:

8085 have five hardware interrupts – INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP. Their

IVA and priorities are given in Table 1.7.

Table 1.7 Hardware interrupts of 8085

Interrupt Interrupt vector Maskable or non- Edge or level priority

 address maskable Triggered

TRAP 0024H Non-makable Level 1

RST 7.5 003CH Maskable Rising edge 2

RST 6.5 0034H Maskable Level 3

RST 5.5 002CH Maskable Level 4

INTR Decided by hardware Maskable Level 5

Masking of Interrupts:

Masking can be done for four hardware interrupts INTR, RST 5.5, RST 6.5, and RST 7.5. The

masking of 8085 interrupts is done at different levels. Fig. 13 shows the organization of hardware

interrupts in the 8085.

24

Fig 1.17: Interrupt diagram
The Fig. 1.17 is explained by the following five points:

i. The maskable interrupts are by default masked by the Reset signal. So no interrupt is recognized

by the hardware reset.

ii. The interrupts can be enabled by the EI instruction.

iii. The three RST interrupts can be selectively masked by loading the appropriate word in

the accumulator and executing SIM instruction. This is called software masking.

iv. All maskable interrupts are disabled whenever an interrupt is recognized.

v. All maskable interrupts can be disabled by executing the DI instruction.

RST 7.5 alone has a flip-flop to recognize edge transition. The DI instruction reset interrupt enable

flip-flop in the processor and the interrupts are disabled. To enable interrupts, EI instruction has

to be executed.

SIM Instruction:

The SIM instruction is used to mask or unmask RST hardware interrupts. When executed, the

SIM instruction reads the content of accumulator and accordingly mask or unmask the interrupts.

The format of control word to be stored in the accumulator before executing SIM instruction is

as shown in Fig. 1.18.

Fig 1.18:SIM instruction

25

Fig. 1.18 Accumulator bit pattern for SIM instruction

In addition to masking interrupts, SIM instruction can be used to send serial data on the SOD line

of the processor. The data to be send is placed in the MSB bit of the accumulator and the serial

data output is enabled by making D6 bit to 1.

RIM Instruction:

RIM instruction is used to read the status of the interrupt mask bits. When RIM instruction is

executed, the accumulator is loaded with the current status of the interrupt masks and the pending

interrupts. The format and the meaning of the data stored in the accumulator after execution of

RIM instruction is shown in Fig. 15.

In addition RIM instruction is also used to read the serial data on the SID pin of the processor.

The data on the SID pin is stored in the MSB of the accumulator after the execution of the RIM

instruction.

Fig. 1.19 Accumulator bit pattern after execution of RIM instruction

Ex: Write an assembly language program to enables all the interrupts in 8085 after reset.

 EI : Enable interrupts

 MVI A, 08H : Unmask the interrupts

 SIM : Set the mask and unmask using SIM instruction

Timing of Interrupts:

The interrupts are sensed by the processor one cycle before the end of execution of each

instruction. An interrupts signal must be applied long enough for it to be recognized. The longest

instruction of the 8085 takes 18 clock periods. So, the interrupt signal must be applied for at least

17.5 clock periods. This decides the minimum pulse width for the interrupt signal.

The maximum pulse width for the interrupt signal is decided by the condition that the interrupt

signal must not be recognized once again. This is under the control of the programmer.

8086 Microprocessor Architecture and Operation:

It is a 16 bit µp. 8086 has a 20 bit address bus can access upto 220 memory locations (1 MB) . It

can support upto 64K I/O ports. It provides 14, 16-bit registers. It has multiplexed address and

data bus AD0- AD15 and A16 – A19. It requires single phase clock with 33% duty cycle to provide

internal timing. 8086 is designed to operate in two modes, Minimum and Maximum. It can

prefetches upto 6 instruction bytes from memory and queues them in order to speed up instruction

execution. It requires +5V power supply. A 40 pin dual in line package.

The minimum mode is selected by applying logic 1 to the MN / MX# input pin. This is a

26

single microprocessor configuration. The maximum mode is selected by applying logic

0 to the MN / MX# input pin. This is a multi micro processors configuration.

Block diagram of 8086

Fig 1.20 Block diagram of 8086 microprocessor

Software model of 8086

Fig 1.21 Software model-8086

27

Fig 1.22: General purpose registers

Internal Architecture of 8086

8086 has two blocks BIU and EU. The BIU performs all bus operations such as

instruction fetching, reading and writing operands for memory and calculating the

addresses of the memory operands. The instruction bytes are transferred to the

instruction queue. EU executes instructions from the instruction system byte queue.

Both units operate asynchronously to give the 8086 an overlapping instruction fetch and

execution mechanism which is called as Pipelining. This results in efficient use of the

system bus and system performance. BIU contains Instruction queue, Segment registers,

Instruction pointer, Address adder. EU contains Control circuitry, Instruction decoder,

ALU, Pointer and Index register, Flag register.

Bus Interfacr Unit:

It provides a full 16 bit bidirectional data bus and 20 bit address bus. The bus interface

unit is responsible for performing all external bus operations.

Specifically it has the following functions:

Instruction fetch, Instruction queuing, Operand fetch and storage, Address relocation

and Bus control. The BIU uses a mechanism known as an instruction stream queue to

implement a pipeline architecture.

28

This queue permits prefetch of up to six bytes of instruction code. When ever the queue

of the BIU is not full, it has room for at least two more bytes and at the same time the

EU is not requesting it to read or write operands from memory, the BIU is free to

look ahead in the program by prefetching the next sequential instruction. These

prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU

fetches two instruction bytes in a single memory cycle. After a byte is loaded at the input

end of the queue, it automatically shifts up through the FIFO to the empty location

nearest the output.

The EU accesses the queue from the output end. It reads one instruction byte after the

other from the output of the queue. If the queue is full and the EU is not requesting

access to operand in memory. These intervals of no bus activity, which may occur

between bus cycles are known as Idle state. If the BIU is already in the process of fetching

an instruction when the EU request it to read or write operands from memory or I/O,

the BIU first completes the instruction fetch bus cycle before initiating the operand read

/ write cycle. The BIU also contains a dedicated adder which is used to generate the 20

bit physical address that is output on the address bus. This address is formed by adding

an appended 16 bit segment address and a 16 bit offset address. For example, the

physical address of the next instruction to be fetched is formed by combining the current

contents of the code segment CS register and the current contents of the instruction

pointer IP register. The BIU is also responsible for generating bus control signals such

as those for memory read or write and I/O read or write.

EXECUTION UNIT : The Execution unit is responsible for decoding and executing all

instructions. The EU extracts instructions from the top of the queue in the BIU, decodes

them, generates operands if necessary, passes them to the BIU and requests it to perform

the read or write bys cycles to memory or I/O and perform the operation specified by

the instruction on the operands. During the execution of the instruction, the EU tests the

status and control flags and updates them based on the results of executing the

instruction. If the queue is empty, the EU waits for the next instruction byte to be fetched

and shifted to top of the queue. When the EU executes a branch or jump instruction, it

transfers control to a location corresponding to another set of sequential instructions.

Whenever this happens, the BIU automatically resets the queue and then begins to fetch

instructions from this new location to refill the queue.

29

Internal Registers of 8086

The 8086 has four groups of the user accessible internal registers. They are the

instruction pointer, four data registers, four pointer and index register, four segment

registers.

The 8086 has a total of fourteen 16-bit registers including a 16 bit register called the

status register, with 9 of bits implemented for status and control flags. Most of the

registers contain data/instruction offsets within 64 KB memory segment. There are four

different 64 KB segments for instructions, stack, data and extra data. To specify where

in 1 MB of processor memory these 4 segments are located the processor uses four

segment registers:

Code segment (CS) is a 16-bit register containing address of 64 KB segment with

processor instructions. The processor uses CS segment for all accesses to instructions

referenced by instruction pointer (IP) register. CS register cannot be changed directly.

The CS register is automatically updated during far jump, far call and far return

instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program

stack. By default, the processor assumes that all data referenced by the stack pointer

(SP) and base pointer (BP) registers is located in the stack segment. SS register can be

changed directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program

data. By default, the processor assumes that all data referenced by general registers

(AX, BX, CX, DX) and index register (SI, DI) is located in the data segment. DS register

can be changed directly using POP and LDS instructions.

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with

program data. By default, the processor assumes that the DI register references the ES

30

segment in string manipulation instructions. ES register can be changed directly using

POP and LES instructions. It is possible to change default segments used by general and

index registers by prefixing instructions with a CS, SS, DS or ES prefix.

All general registers of the 8086 microprocessor can be used for arithmetic and logic

operations. The general registers are:

Accumulator register consists of two 8-bit registers AL and AH, which can be combined

together and used as a 16-bit register AX. AL in this case contains the low-order byte of

the word, and AH contains the high-order byte. Accumulator can be used for I/O

operations and string manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together

and used as a 16-bit register BX. BL in this case contains the low-order byte of the word,

and BH contains the high-order byte. BX register usually contains a data pointer used

for based, based indexed or register indirect addressing.

Count register consists of two 8-bit registers CL and CH, which can be combined

together and used as a 16-bit register CX. When combined, CL register contains the

low-order byte of the word, and CH contains the high-order byte. Count register can be

used in Loop, shift/rotate instructions and as a counter in string manipulation,.

Data register consists of two 8-bit registers DL and DH, which can be combined together

and used as a 16-bit register DX. When combined, DL register contains the low-order

byte of the word, and DH contains the high- order byte. Data register can be used as a

port number in I/O operations. In integer 32-bit multiply and divide instruction the DX

register contains high-order word of the initial or resulting number.

The following registers are both general and index registers:

Stack Pointer (SP) is a 16-bit register pointing to program stack.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is

usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register

indirect addressing, as well as a source data address in string manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and

register indirect addressing, as well as a destination data address in string manipulation

instructions.

Other registers:

Instruction Pointer (IP) is a 16-bit register.Flags is a 16-bit register containing 9 one bit flags.

31

Overflow Flag (OF) - set if the result is too large positive number, or is too small

negative number to fit into destination operand.

Direction Flag (DF) - if set then string manipulation instructions will auto-decrement

index registers. If cleared then the index registers will be auto-incremented.

Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.

Single-step Flag (TF) - if set then single-step interrupt will occur after the next instruction.

Sign Flag (SF) - set if the most significant bit of the result is set.

Zero Flag (ZF) - set if the result is zero

Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the AL

register.

Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the

result is even.

Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit

during last result calculation.

Addressing Modes

Implied - the data value/data address is implicitly associated with the instruction.

Register - references the data in a register or in a register pair.

Immediate - the data is provided in the instruction.

Direct - the instruction operand specifies the memory address where data is located.

Register indirect - instruction specifies a register containing an address, where data is

located. This addressing mode works with SI, DI, BX and BP registers.

Based :- 8-bit or 16-bit instruction operand is added to the contents of a base register

(BX or BP), the resulting value is a pointer to location where data resides.

Indexed :- 8-bit or 16-bit instruction operand is added to the contents of an index

register (SI or DI), the resulting value is a pointer to location where data resides.

Based Indexed :- the contents of a base register (BX or BP) is added to the contents of

an index register (SI or DI), the resulting value is a pointer to location where data

resides.

32

Based Indexed with displacement :- 8-bit or 16-bit instruction operand is added to the

contents of a base register (BX or BP) and index register (SI or DI), the resulting value

is a pointer to location where data resides.

Interrupts

The processor has the following interrupts:

INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using

STI/CLI instructions or using more complicated method of updating the FLAGS

register with the help of the POPF instruction.

When an interrupt occurs, the processor stores FLAGS register into stack, disables

further interrupts, fetches from the bus one byte representing interrupt type, and jumps

to interrupt processing routine address of which is stored in location 4 * <interrupt

type>. Interrupt processing routine should return with the IRET instruction.

NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR

interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing routine

is stored in location 0008h. This interrupt has higher priority then the maskable

interrupt.

Software interrupts can be caused by:

INT instruction - breakpoint interrupt. This is a type 3 interrupt.

INT <interrupt number> instruction - any one interrupt from available 256

interrupts. INTO instruction - interrupt on overflow

Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When

the CPU processes this interrupt it clears TF flag before calling the interrupt

processing routine.

Processor exceptions: Divide Error (Type 0), Unused

Opcode (type 6) and Escape opcode (type 7).

Software interrupt processing is the same as for the hardware interrupts.

The figure below shows the 256 interrupt vectors arranged in the interrupt vector

table in the memory.

33

Fig 1.23 Interrupt Vector Table in the 8086

Minimum Mode Interface

When the Minimum mode operation is selected, the 8086 provides all control signals

needed to implement the memory and I/O interface. The minimum mode signal can be

divided into the following basic groups : address/data bus, status, control, interrupt and

DMA.

Address/Data Bus : these lines serve two functions. As an address bus is 20 bits long and

consists of signal lines A0 through A19. A19 represents the MSB and A0 LSB. A 20bit

address gives the 8086 a 1Mbyte memory address space. More over it has an

independent I/O address space which is 64K bytes in length.

The 16 data bus lines D0 through D15 are actually multiplexed with address lines A0

34

through A15 respectively. By multiplexed we mean that the bus work as an address bus

during first machine cycle and as a data bus during next machine cycles. D15 is the MSB

and D0 LSB. When acting as a data bus, they carry read/write data for memory,

input/output data for I/O devices, and interrupt type codes from an interrupt controller.

Fig 1.24: Block diagram of Minimum mode

Status signal : The four most significant address lines A19 through A16 are also

multiplexed but in this case with status signals S6 through S3. These status bits are

output on the bus at the same time that data are transferred over the other bus lines. Bit

S4 and S3 together from a 2 bit binary code that identifies which of the 8086 internal

segment registers are used to generate the physical address that was output on the

address bus during the current bus cycle. Code S4S3 = 00 identifies a register known as

extra segment register as the source of the segment address.

Fig 1.25:Memory segment status code

35

Status line S5 reflects the status of another internal characteristic of the 8086. It is the logic

level of the internal enable flag. The last status bit S6 is always at the logic 0 level.

Control Signals : The control signals are provided to support the 8086 memory I/O

interfaces. They control functions such as when the bus is to carry a valid address in which

direction data are to be transferred over the bus, when valid write data are on the bus and

when to put read data on the system bus.

ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on the

bus. This address must be latched in external circuitry on the 1-to-0 edge of the pulse at

ALE.

Another control signal that is produced during the bus cycle is BHE bank high enable.

Logic 0 on this used as a memory enable signal for the most significant byte half of the data

bus D8 through D1. These lines also serves a second function, which is as the S7 status line.

Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress

and in which direction data are to be transferred over the bus.

The logic level of M/IO tells external circuitry whether a memory or I/O transfer is taking

place over the bus. Logic 1 at this output signals a memory operation and logic 0 an

I/O operation.

The direction of data transfer over the bus is 74ignallin by the logic level output at DT/R.

When this line is logic 1 during the data transfer part of a bus cycle, the bus is in the

transmit mode. Therefore, data are either written into memory or output to an I/O device.

On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This

corresponds to reading data from memory or input of data from an input port.

The signal read RD and write WR indicates that a read bus cycle or a write bus cycle is in

progress. The 8086 switches WR to logic 0 to signal external device that valid write or

output data are on the bus.

On the other hand, RD indicates that the 8086 is performing a read of data of the

bus. During read operations, one other control signal is also supplied. This is DEN

 (data

enable) and it signals external devices when they should put data on the bus.

There is one other control signal that is involved with the memory and I/O interface.

This is the READY signal.

READY signal is used to insert wait states into the bus cycle such that it is extended by a

number of clock periods. This signal is provided by an external clock generator device and

can be supplied by the memory or I/O sub- system to signal the 8086 when they are ready

to permit the data transfer to be completed.

36

Fig 1.26: Maximum mode

Maximum Mode Interface

When the 8086 is set for the maximum-mode configuration, it provides signals for

implementing a multiprocessor / coprocessor system environment. By multiprocessor

environment we mean that one microprocessor exists in the system and that each processor

is executing its own program. Usually in this type of system environment, there are some

system resources that are common to all processors. They are called as global resources.

There are also other resources that are assigned to specific processors. These are known as

local or private resources. Coprocessor also means that there is a second processor in the

system. In this two processor does not access the bus at the same time. One passes the

control of the system bus to the other and then may suspend its operation. In the maximum-

mode 8086 system, facilities are provided for implementing allocation of global resources

and passing bus control to other microprocessor or coprocessor.

8288 Bus Controller – Bus Command and Control Signals: 8086 does not directly provide all

the signals that are required to control the memory, I/O and interrupt interfaces. Specially

the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer produced by the 8086.

Instead it outputs three status signals S0, S1, S2 prior to the initiation of each bus cycle.

This 3- bit bus status code identifies which type of bus cycle is to follow. S2S1S0 are input

to the external bus controller device, the bus controller generates the appropriately timed

command and control signals. The 8288 produces one or two of these eight command

signals for each b us cycles. For instance, when the 8086 outputs the code S2S1S0 equals

001, it indicates that an I/O read cycle is to be performed. In the code 111 is output by the

8086, it is 7 signalling that no bus

activity is to take place.

The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3 signals

provide the same functions as those described for the minimum system mode. This set of

bus commands and control signals is compatible with the Multibus and industry standard

for interfacing microprocessor systems.

37

8289 Bus Arbiter – Bus Arbitration and Lock Signals:

This device permits processors to reside on the system bus. It does this by implementing

the Multibus arbitration protocol in an 8086-based system. Addition of the 8288 bus

controller and 8289 bus arbiter frees a number of the 8086 pins for use to produce control

signals that are needed to support multiple processors. Bus priority lock (LOCK) is one of

these signals. It is input to the bus arbiter together with status signals S0 through S2.

Queue Status Signals: Two new signals that are produced by the 8086 in the maximum-

mode system are queue status outputs QS0 and QS1. Together they form a 2-bit queue

status code, QS1QS0. Following table shows the four different queue status.

Table 1.8: Queue status code

AX - the Accumulator BX - the Base Register CX - the Count Register DX - the Data Register

Normally used for storing temporary results. Each of the registers is 16 bits wide (AX, BX, CX,
DX). Can be accessed as either 16 or 8 bits AX, AH, AL

AX-Accumulator Register. Preferred register to use in arithmetic, logic and data transfer

instructions because it generates the shortest Machine Language Code. Must be used in

multiplication and division operations.Must also be used in I/O operations.

BX-Base Register.Also serves as an address register

CX- Count register. Used as a loop counter. Used in shift and rotate operations

DX- Data register. Used in multiplication and division. Also used in I/O operations

Pointer and Index Registers

38

Fig 1.27 Pointers and index registers

• All 16 bits wide, L/H bytes are not accessible. Used as memory pointers

• Example: MOV AH, [SI]

• Move the byte stored in memory location whose address is contained in register SI to register AH.

IP is not under direct control of the programmer

The Stack

The stack is used for temporary storage of information such as data or addresses. When a CALL is

executed, the 8086 automatically PUSH es the current value of CS and IP onto the stack. Other

registers can also be pushed. Before return from the subroutine, POP instructions can be used to

pop values back from the stack into the corresponding registers.

Fig 1.28 stack operation

39

Test signals in 8086

TEST is an input pin and is only used by the wait instruction .the 8086 enter a wait state after
execution of the wait instruction until a low is Seen on the test pin. Used in conjunction with the
WAIT instruction in multiprocessing environments. This is input from the 8087 coprocessor.
During execution of a wait instruction, the CPU checks this signal. If it is low, execution of the
signal will continue; if not, it will stop executing.
Coprocessor Execution

Fig 1.29. Coprocessor execution

Multiprocessor configuration Advantages

High system throughput can be achieved by having more than one CPU. The system can be
expanded in modular form. Each bus master module is an independent unit and normally
resides on a separate PC board. One can be added or removed without affecting the others
in the system. A failure in one module normally does not affect the breakdown of the entire
system and the faulty module can be easily detected and replaced. Each bus master has its
own local bus to access dedicated memory or IO devices. So a greater degree of parallel
processing can be achieved.

Question Bank

Part A
1. Define microprocessor

2. In how many groups can the signals of 8085 be classified?
3. What is the technology used in the manufacture of 8085?
4. Draw the block diagram of the built-in clock generator of 8085
5. What is the purpose of CLK signal of 8085?

6. What are the widths of data bus (DB) and address bus (AB) of 8085?

7. The address capability of 8085 is 64 KB. Explain.
8. Does 8085 have serial I/O control

9. What jobs ALU of 8085 can perform?
10. How many hardware interrupts 8085 supports?

11. How many I/O ports can 8085 access?

12. Why the lower byte address bus (A0 – A7) and data bus (D0 – D7) are multiplexed?

40

13. Why the lower byte address bus (A0 – A7) and data bus (D0 – D7) are multiplexed?
14. List the interrupts of 8085
15. List the flag bits of 8086

PART B

1. Explain the architecture of 8085
2. Discuss the addressing modes of 8085
3. Draw the timing diagram for the given instructions

 a. STA
 b. CALL
 c. LDA
 d. MOV A,M

 4. Explain the 8086 architecture with neat diagram
 5. Explain the interrupts of 8085

TEXT / REFERENCE BOOKS

1. Ramesh Gaonkar, “Microprocessor Architecture, Programming and applications with 8085”,

5th Edition,

Penram International Publishing Pvt Ltd, 2010.

2. Kenneth J Ayala, “The 8051 Microcontroller”, 2nd Edition, Thomson, 2005.

3. Nagoor Kani A, “Microprocessor and Microcontroller”, 2nd Edition, Tata McGraw Hill, 2012.

4. Mathur A.P. ” Introduction to microprocessor .“

5. Muhammad Ali Mazidi.”The 8051 Microcontroller and Embedded Systems.”

41

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – II– MICROPROCESSORS AND MICROCONTROLLERS– SEC1201

42

UNIT 2 PROGRAMMING 8085 MICROPROCESSOR

8085 assembly language programming, addressing modes, 8085 instruction set, Instruction formats,

Instruction Classification: data transfer, arithmetic operations, logical operations, branching

operations, machine control —Stack and subroutines, Example Programs

Instruction Set of 8085

• An instruction is a binary pattern designed inside a microprocessor to perform a specific

function.

• The entire group of instructions that a microprocessor supports is called Instruction Set.

• 8085 has 246 instructions.

• Each instruction is represented by an 8-bit binary value.

• These 8-bits of binary value is called Op-Code or Instruction Byte.

Classification of Instruction Set

• Data Transfer Instruction

• Arithmetic Instructions

• Logical Instructions

• Branching Instructions

• Control Instructions

Data Transfer Instructions • These instructions move data between registers, or between memory and

registers. • These instructions copy data from source to destination. • While copying, the contents of

source are not modified.

Arithmetic Instructions • These instructions perform the operations like: • Addition • Subtract •

Increment • Decrement

Logical Instructions • These instructions perform logical operations on data stored in registers,

memory and status flags. • The logical operations are: • AND • OR • XOR • Rotate • Compare •

Complement

Branching Instructions • The branching instruction alter the normal sequential flow. • These

instructions alter either unconditionally or conditionally

Control Instructions • The control instructions control the operation of microprocessor.

DATA TRANSFER INSTRUCTIONS

Copy of data

• MOV Moves data from register to register / memory

• MVI Moves immediate data to register / memory

Load Instructions

• LDA Load accumulator direct

• LDAX Load accumulator indirect

• LHLD Load H&L registers direct

• LXI Load register pair immediate

Store Instructions

• STA Store accumulator direct

• SPHL Copy H&L registers to stack pointer.

• STAX Store accumulator indirect

43

Opcode Operand Meaning Explanation

MOV

Rd, Sc

M, Sc

Dt, M

Copy from the source (Sc)
to the destination(Dt)

This instruction copies the
contents of the source register
into the destination register
without any alteration.

Example − MOV A, L

MVI
Rd, data

M, data
Move immediate 8-bit

The 8-bit data is stored in the
destination register or memory.

Example − MVI H, 55H

LDA 16-bit address Load the accumulator

The contents of a memory
location, specified by a 16-bit
address in the operand, are
copied to the accumulator.

Example − LDA 2034H

LDAX B/D Reg. pair
Load the accumulator
indirect

The contents of the designated
register pair point to a memory
location. This instruction copies
the contents of that memory
location into the accumulator.

Example − LDAX B

LXI
Reg. pair, 16-

bit data
Load the register pair
immediate

The instruction loads 16-bit
data in the register pair
designated in the register or the
memory.

Example − LXI H, 3225H

LHLD 16-bit address
Load H and L registers
direct

The instruction copies the
contents of the memory
location pointed out by the
address into register L and
copies the contents of the next
memory location into register
H.

44

Example − LHLD 3225H

STA 16-bit address 16-bit address

The contents of the
accumulator are copied into the
memory location specified by
the operand.

This is a 3-byte instruction, the
second byte specifies the low-
order address and the third
byte specifies the high-order
address.

Example − STA 3257H

STAX 16-bit address
Store the accumulator
indirect

The contents of the
accumulator are copied into the
memory location specified by
the contents of the operand.

Example − STAX D

SHLD 16-bit address
Store H and L registers
direct

The contents of register L are
stored in the memory location
specified by the 16-bit address
in the operand and the contents
of H register are stored into the
next memory location by
incrementing the operand.

This is a 3-byte instruction, the
second byte specifies the low-
order address and the third
byte specifies the high-order
address.

Example − SHLD 3225H

XCHG None
Exchange H and L with D
and E

The contents of register H are
exchanged with the contents of
register D, and the contents of
register L are exchanged with
the contents of register E.

Example − XCHG

45

SPHL None
Copy H and L registers to
the stack pointer

The instruction loads the
contents of the H and L
registers into the stack pointer
register. The contents of the H
register provide the high-order
address and the contents of the
L register provide the low-order
address.

Example − SPHL

XTHL None
Exchange H and L with top
of stack

The contents of the L register
are exchanged with the stack
location pointed out by the
contents of the stack pointer
register.

The contents of the H register
are exchanged with the next
stack location (SP+1).

Example − XTHL

PUSH Reg. pair
Push the register pair onto
the stack

The contents of the register
pair designated in the operand
are copied onto the stack in the
following sequence.

The stack pointer register is
decremented and the contents
of the high order register (B, D,
H, A) are copied into that
location.

The stack pointer register is
decremented again and the
contents of the low-order
register (C, E, L, flags) are
copied to that location.

Example − PUSH PSW

POP Reg. pair
Pop off stack to the
register pair

The contents of the memory
location pointed out by the
stack pointer register are
copied to the low-order register
(C, E, L, status flags) of the
operand.

46

The stack pointer is
incremented by 1 and the
contents of that memory
location are copied to the high-
order register (B, D, H, A) of the
operand.

The stack pointer register is
again incremented by 1.

Example – POP D

OUT
8-bit port
address

Output the data from the
accumulator to a port with
8bit address

The contents of the
accumulator are copied into the
I/O port specified by the
operand.

Example − OUT 12H

IN
8-bit port
address

Input data to accumulator
from a port with 8-bit
address

The contents of the input port
designated in the operand are
read and loaded into the
accumulator.

Example – IN 55H

47

48

ARITHMETIC INSTRUCTIONS:

49

50

51

52

53

54

55

56

8085 Assembly Language Programs & Explanations

1. Statement: Store the data byte 32H into memory location 4000H.

Program 1:

MVI A, 32H
STA 4000H
HLT

: Store 32H in the accumulator

: Copy accumulator contents at address 4000H
: Terminate program execution

Program 2:

LXI H
MVI M

: Load HL with 4000H
: Store 32H in memory location pointed by HL register pair

(4000H)
HLT : Terminate program execution

2. Statement: Exchange the contents of memory locations 2000H and 4000H

Program 1:

LDA 2000H

: Get the contents of memory location 2000H into

accumulator

MOV B, A
LDA 4000H

: Save the contents into B register

: Get the contents of memory location 4000Hinto

accumulator
STA 2000H
MOV A, B
STA 4000H

: Store the contents of accumulator at address 2000H

: Get the saved contents back into A register
: Store the contents of accumulator at address 4000H

Program 2:

LXI H 2000H

: Initialize HL register pair as a pointer to

memory location 2000H.

LXI D 4000H

: Initialize DE register pair as a pointer to

memory location 4000H.

MOV B, M

: Get the contents of memory location 2000H into B

register.

LDAX D

: Get the contents of memory location 4000H into A

register.

MOV M, A

: Store the contents of A register into memory

location 2000H.

MOV A, B
STAX D

: Copy the contents of B register into accumulator.

: Store the contents of A register into memory location

4000H.

57

HLT

: Terminate program execution.

3.Sample problem

(4000H) = 14H
(4001H) = 89H
Result = 14H + 89H = 9DH Source program

LXI H 4000H : HL points 4000H
MOV A, M : Get first operand

INX H : HL points 4001H

ADD M : Add second operand
INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

4.Statement: Subtract the contents of memory location 4001H from the memory location 2000H and place
the result in memory location 4002H.

Program - 4: Subtract two 8-bit numbers

Sample problem:

(4000H)
(4001H)
Result

= 51H
= 19H
= 51H - 19H = 38H

Source program:

LXI H, 4000H
MOV A, M
INX H
SUB M
INX H
MOV M, A
HLT

: HL points 4000H

: Get first operand
: HL points 4001H
: Subtract second operand
: HL points 4002H

: Store result at 4002H.
: Terminate program execution

5.Statement: Add the 16-bit number in memory locations 4000H and 4001H to the 16-bit number in

memory locations 4002H and 4003H. The most significant eight bits of the two numbers to be added are in

memory locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H with the

most significant byte in memory location 4005H.

58

Program - 5.a: Add two 16-bit numbers - Source Program 1

Sample problem:

(4000H) = 15H
(4001H) = 1CH
(4002H) = B7H
(4003H) = 5AH
Result = 1C15 + 5AB7H = 76CCH (4004H) =
CCH
(4005H) = 76H

Source Program 1:
LHLD 4000H
XCHG
LHLD 4002H
MOV A, E
ADD L
MOV L, A
MOV A, D
ADC H

MOV H, A
SHLD 4004H

: Get first I6-bit number in HL

: Save first I6-bit number in DE
: Get second I6-bit number in HL

: Get lower byte of the first number
: Add lower byte of the second number

: Store result in L register
: Get higher byte of the first number

: Add higher byte of the second number with CARRY

: Store result in H register
: Store I6-bit result in memory locations 4004H and

4005H.
HLT : Terminate program execution

6.Statement: Add the contents of memory locations 40001H and 4001H and place the result in the memory
locations 4002Hand 4003H.

Sample problem:

(4000H) = 7FH

(400lH) = 89H
Result = 7FH + 89H = lO8H (4002H) =

08H (4003H) = 0lH

Source program:

LXI H, 4000H
MOV A, M
INX H
ADD M
INX H
MOV M, A
MVIA, 00

:HL Points 4000H

:Get first operand
:HL Points 4001H
:Add second operand

:HL Points 4002H
:Store the lower byte of result at 4002H
:Initialize higher byte result with 00H

59

ADC A
INX H
MOV M, A
HLT

:Add carry in the high byte result
:HL Points 4003H

:Store the higher byte of result at 4003H
:Terminate program execution

7.Statement: Subtract the 16-bit number in memory locations 4002H and 4003H from the 16-bit number in

memory locations 4000H and 4001H. The most significant eight bits of the two numbers are in memory

locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H with the most

significant byte in memory location 4005H.

Sample problem

(4000H) = 19H

(400IH) = 6AH

(4004H) = I5H (4003H) = 5CH Result = 6A19H -

5C15H = OE04H (4004H) = 04H
(4005H) = OEH

Source program:

LHLD 4000H
XCHG
LHLD 4002H

MOV A, E
SUB L
MOV L, A

MOV A, D
SBB H
MOV H, A

: Get first 16-bit number in HL

: Save first 16-bit number in DE
: Get second 16-bit number in HL

: Get lower byte of the first number
: Subtract lower byte of the second number

: Store the result in L register

: Get higher byte of the first number
: Subtract higher byte of second number with borrow

: Store l6-bit result in memory locations 4004H and

4005H.
SHLD 4004H

: Store l6-bit result in memory locations 4004H and

4005H.
HLT

: Terminate program execution

8.Statement: Find the l's complement of the number stored at memory location 4400H and store
the complemented number at memory location 4300H.

Sample problem:

(4400H) = 55H

60

Result = (4300B) = AAB
Source program:

LDA 4400B : Get the number

CMA : Complement number
STA 4300H : Store the result

HLT : Terminate program execution

9.Statement: Find the 2's complement of the number stored at memory location 4200H and store
the complemented number at memory location 4300H.

Sample problem:

(4200H) = 55H

Result = (4300H) = AAH + 1 = ABH

Source program:

LDA 4200H
CMA
ADI, 01 H
STA 4300H
HLT

: Get the number

: Complement the number
: Add one in the number

: Store the result
: Terminate program execution

10.Statement: Pack the two unpacked BCD numbers stored in memory locations 4200H and 4201H and store
result in memory location 4300H. Assume the least significant digit is stored at 4200H.

Sample problem: (4200H)
= 04 (4201H) = 09

Result = (4300H) = 94

Source program

LDA 4201H

: Get the Most significant BCD digit

RLC

RLC
RLC
RLC

: Adjust the position of the second digit (09 is changed to

90)

61

ANI FOH
MOV C, A

LDA 4200H
ADD C
STA 4300H
HLT

: Make least significant BCD digit zero
: store the partial result

: Get the lower BCD digit
: Add lower BCD digit
: Store the result

: Terminate program execution

11.Statement: Two digit BCD number is stored in memory location 4200H. Unpack the BCD number and

store the two digits in memory locations 4300H and 4301H such that memory location 4300H will have

lower BCD digit.

Sample problem

(4200H) = 58

Result = (4300H) = 08 and (4301H) = 05
Source program

LDA 4200H
ANI FOH

: Get the packed BCD number

: Mask lower nibble

RRC
RRC
RRC

RRC
STA 4301H
LDA 4200H

ANI OFH
STA 4201H
HLT

: Adjust higher BCD digit as a lower digit
: Store the partial result
: .Get the original BCD number

: Mask higher nibble
: Store the result

: Terminate program execution

12.Statement:Read the program given below and state the contents of all registers after
the execution of each instruction in sequence.

Main program:

4000H LXI SP, 27FFH

4003H LXI H, 2000H

4006H LXI B, 1020H

4009H CALL SUB

400CH HLT

62

Subroutine program:

4100H SUB: PUSH B

4101H PUSH H

4102H LXI B, 4080H

4105H LXI H, 4090H

4108H SHLD 2200H

4109H DAD B

410CH POP H

410DH POP B

410EH RET

13.Statement:Write a program to shift an eight bit data four bits right. Assume that data is in register C.

Source program:

MOV A, C
RAR
RAR
RAR
RAR
MOV C, A
HLT

14.Statement: Program to shift a 16-bit data 1 bit left. Assume data is in the HL register pair

Source program:

DAD H : Adds HL data with HL data

15.Statement: Write a set of instructions to alter the contents of flag register in 8085.

PUSH PSW
POP H

MOV A, L
CMA
MOV L, A

: Save flags on stack
: Retrieve flags in 'L'

: Flags in accumulator
: Complement accumulator
: Accumulator in 'L'

63

PUSH H
POP PSW

HLT

: Save on stack
: Back to flag register

:Terminate program execution

16.Statement: Calculate the sum of series of numbers. The length of the series is in memory location 4200H
and the series begins from memory location 4201H.

1. Consider the sum to be 8 bit number. So, ignore carries. Store the sum at memory location 4300H.

2. Consider the sum to be 16 bit number. Store the sum at memory locations 4300H and 4301H

a. Sample problem

4200H = 04H
4201H = 10H

4202H = 45H

4203H = 33H

4204H = 22H

Result = 10 +41 + 30 + 12 = H

4300H = H

Source program:

LDA 4200H
MOV C, A : Initialize counter

SUB A : sum = 0

LXI H, 420lH : Initialize pointer

BACK: ADD M : SUM = SUM + data

INX H : increment pointer

DCR C : Decrement counter

JNZ BACK : if counter 0 repeat

STA 4300H : Store sum

HLT : Terminate program execution

b. Sample problem

4200H = 04H 420lH
= 9AH 4202H = 52H

4203H = 89H 4204H
= 3EH
Result = 9AH + 52H + 89H + 3EH = H 4300H = B3H

Lower byte

4301H = 0lH Higher byte

Source program:

64

LDA 4200H
MOV C, A
LXI H, 4201H
SUB A
MOV B, A

BACK: ADD M

: Initialize counter

: Initialize pointer
:Sum low = 0

: Sum high = 0
: Sum = sum + data

JNC SKIP

INR B
SKIP: INX H

DCR C
JNZ BACK
STA 4300H

: Add carry to MSB of SUM
: Increment pointer

: Decrement counter
: Check if counter 0 repeat

: Store lower byte

MOV A, B
STA 4301H
HLT

: Store higher byte

:Terminate program execution

17.Statement: Multiply two 8-bit numbers stored in memory locations 2200H and 2201H by repetitive

addition and store the result in memory locations 2300H and 2301H.

Sample problem:

(2200H) = 03H
(2201H) = B2H

Result = B2H + B2H + B2H = 216H = 216H
(2300H) = 16H
(2301H) = 02H

Source program

LDA 2200H
MOV E, A
MVI D, 00
LDA 2201H
MOV C, A
LX I H, 0000 H

BACK: DAD D
DCR C
JNZ BACK
SHLD 2300H
HLT

: Get the first number in DE register pair

: Initialize counter
: Result = 0

: Result = result + first number
: Decrement count

: If count 0 repeat
: Store result

: Terminate program execution

65

18.Statement:Divide 16 bit number stored in memory locations 2200H and 2201H by the 8 bit number stored at

memory location 2202H. Store the quotient in memory locations 2300H and 2301H and remainder in memory

locations 2302H and 2303H.

Sample problem (2200H) =

60H (2201H) = A0H

(2202H) = l2H
Result = A060H/12H = 8E8H Quotient and 10H remainder (2300H) =

E8H (2301H) = 08H
(2302H= 10H (2303H)
00H

Source program

LHLD 2200H
LDA 2202H

: Get the dividend

: Get the divisor

MOV C, A
LXI D, 0000H

: Quotient = 0

BACK: MOV A, L

SUB C
MOV L, A
JNC SKIP
DCR H

SKIP: INX D

: Subtract divisor
: Save partial result
: if CY 1 jump

: Subtract borrow of previous subtraction
: Increment quotient

MOV A, H
CPI, 00
JNZ BACK

: Check if dividend < divisor

: if no repeat

MOV A, L
CMP C
JNC BACK
SHLD 2302H

: Store the remainder

XCHG
SHLD 2300H

HLT

: Store the quotient

: Terminate program execution

19.Statement:Find the number of negative elements (most significant bit 1) in a block of data. The length of

the block is in memory location 2200H and the block itself begins in memory location 2201H. Store the number
of negative elements in memory location 2300H

Sample problem

(2200H) = 04H

66

(2201H) = 56H
(2202H) = A9H

(2203H) = 73H
(2204H) = 82H

Result = 02 since 2202H and 2204H contain numbers with a MSB of 1.

Source program

LDA 2200H
MOV C, A
MVI B, 00
LXI H, 2201H

BACK: MOV A, M
ANI 80H
JZ SKIP
INR B

SKIP: INX H

DCR C
JNZ BACK

: Initialize count
: Negative number = 0

: Initialize pointer
: Get the number

: Check for MSB
: If MSB = 1

: Increment negative number count
: Increment pointer

: Decrement count
: If count 0 repeat

MOV A, B
STA 2300H
HLT

: Store the result

: Terminate program execution

20.Statement:Find the largest number in a block of data. The length of the block is in memory location

2200H and the block itself starts from memory location 2201H.
Store the maximum number in memory location 2300H. Assume that the numbers in the block are all 8

bit unsigned binary numbers.

Sample problem

(2200H) = 04
(2201H) = 34H

(2202H) = A9H
(2203H) = 78H

(2204H) =56H
Result = (2202H) = A9H

Source program

LDA 2200H
MOV C, A

XRA A
LXI H, 2201H

BACK: CMP M
JNC SKIP

: Initialize counter

: Maximum = Minimum possible value = 0
: Initialize pointer

: Is number> maximum

: Yes, replace maximum

67

MOV A, M

SKIP: INX H
DCR C
JNZ BACK
STA 2300H
HLT

: Store maximum number

: Terminate program execution
21.Statement:Write a program to count number of l's in the contents of D register and store the count
in the B register.

Source program:

MVI B, 00H
MVI C, 08H
MOV A, D

BACK: RAR
JNC SKIP
INR B

SKIP: DCR C
JNZ BACK
HLT

22.Statement:Write a program to sort given 10 numbers from memory location 2200H in the
ascending order.

Source program:

MVI B, 09
START
MVI C, 09H

BACK: MOV A, M
INX H
CMP M
JC SKIP
JZ SKIP

: Initialize counter

: LXI H, 2200H: Initialize memory pointer
: Initialize counter 2
: Get the number

: Increment memory pointer
: Compare number with next number

: If less, don't interchange
: If equal, don't interchange

MOV D, M
MOV M, A
DCX H
MOV M, D
INX H

SKIP:DCR C
JNZ BACK

DCR B

: Interchange two numbers

: Decrement counter 2
: If not zero, repeat

: Decrement counter 1
JNZ START
HLT

: Terminate program execution

68

23.Statement:Calculate the sum of series of even numbers from the list of numbers. The length of the list is in
memory location 2200H and the series itself begins from memory location 2201H. Assume the sum to be 8 bit

number so you can ignore carries and store the sum at memory location 2Sample problem:

2200H= 4H

2201H= 20H

2202H= l5H

2203H= l3H

2204H= 22H
Result 22l0H= 20 + 22 = 42H = 42H

Source program:

LDA 2200H
MOV C, A
MVI B, 00H
LXI H, 2201H

BACK: MOV A, M
ANI

0lH

JNZ SKIP
MOV A, B
ADD

M

MOV B, A

SKIP: INX H
DCR
JNZ
STA

C

BACK
2210H

HLT

24.Statement:Calculate the sum of series of odd numbers from the list of numbers. The length of the list is in

memory location 2200H and the series itself begins from memory location 2201H. Assume the sum to be 16-bit.

Store the sum at memory locations 2300H and 2301H.

Sample problem:

2200H = 4H
2201H= 9AH
2202H= 52H
2203H= 89H
2204H= 3FH

Result = 89H + 3FH = C8H 2300H= H

Lower byte 2301H = H Higher byte

69

Source program

LDA 2200H
MOV C, A : Initialize counter

LXI H, 2201H : Initialize pointer

MVI E, 00 : Sum low = 0

MOV D, E : Sum high = 0

BACK: MOV A, M : Get the number

ANI 0lH : Mask Bit 1 to Bit7

JZ SKIP : Don't add if number is even

MOV A, E : Get the lower byte of sum

ADD M : Sum = sum + data

MOV E, A : Store result in E register

JNC SKIP

INR D : Add carry to MSB of SUM

SKIP: INX H : Increment pointer

DCR C : Decrement

25.Statement:Find the square of the given numbers from memory location 6100H and store the result from
memory location 7000H

Source Program:

LXI H, 6200H
LXI D, 6100H
LXI B, 7000H

BACK: LDAX D
MOV L, A
MOV A, M
STAX B
INX D
INX B

: Initialize lookup table pointer

: Initialize source memory pointer
: Initialize destination memory pointer

: Get the number
: A point to the square
: Get the square

: Store the result at destination memory location
: Increment source memory pointer

: Increment destination memory pointer

MOV A, C
CPI 05H
JNZ BACK

HLT

: Check for last number

: If not repeat
: Terminate program execution

26.Statement: Search the given byte in the list of 50 numbers stored in the consecutive memory locations

and store the address of memory location in the memory locations 2200H and 2201H. Assume byte is in the

C register and starting address of the list is 2000H. If byte is not found store 00 at 2200H and 2201H.

Source program:

70

LX I H, 2000H : Initialize memory pointer 52H

MVI B, 52H : Initialize counter
BACK: MOV A, M : Get the number

CMP C : Compare with the given byte
JZ LAST : Go last if match occurs

INX H : Increment memory pointer

DCR B : Decrement counter
JNZ B : I f not zero, repeat

LXI H, 0000H

SHLD 2200H
JMP END : Store 00 at 2200H and 2201H

LAST: SHLD 2200H : Store memory address

END: HLT : Stop

27.Statement: Two decimal numbers six digits each, are stored in BCD package form. Each number occupies

a sequence of byte in the memory. The starting address of first number is 6000H Write an assembly language

program that adds these two numbers and stores the sum in the same format starting from memory location

6200H

Source Program:

LXI H, 6000H : Initialize pointer l to first number

LXI D, 6l00H : Initialize pointer2 to second number
LXI B, 6200H : Initialize pointer3 to result

STC

CMC : Carry = 0
BACK: LDAX D : Get the digit

ADD M : Add two digits

DAA : Adjust for decimal
STAX.B : Store the result

INX H : Increment pointer 1

INX D : Increment pointer2

INX B : Increment result pointer

MOV A, L

CPI 06H : Check for last digit

JNZ BACK : If not last digit repeat

HLT : Terminate program execution

28.Statement: Add 2 arrays having ten 8-bit numbers each and generate a third array of result. It is

necessary to add the first element of array 1 with the first

71

element of array-2 and so on. The starting addresses of array l, array2 and array3 are 2200H, 2300H

and 2400H, respectively.

Source Program:

LXI H, 2200H
LXI B, 2300H
LXI D, 2400H

BACK: LDAX B
ADD M

STAX D
INX H
INX B

INX D

: Initialize memory pointer 1

: Initialize memory pointer 2

: Initialize result pointer
: Get the number from array 2

: Add it with number in array 1
: Store the addition in array 3

: Increment pointer 1
: Increment pointer2

: Increment result pointer

MOV A, L
CPI 0AH
JNZ BACK
HLT

: Check pointer 1 for last number

: If not, repeat
: Stop

29.Statement: Write an assembly language program to separate even numbers from the given list of 50

numbers and store them in the another list starting from 2300H. Assume starting address of 50 number list is

2200H

Source Program:

LXI H, 2200H
LXI D, 2300H
MVI C, 32H

BACK:MOV A, M
ANI 0lH
JNZ SKIP
MOV A, M
STAX
INX D

SKIP: INX H
DCR C
JNZ BACK
HLT

D

: Initialize memory pointer l
: Initialize memory pointer2

: Initialize counter
: Get the number

: Check for even number
: If ODD, don't store
: Get the number

: Store the number in result list
: Increment pointer 2

: Increment pointer l
: Decrement counter

: If not zero, repeat
: Stop

30.Statement: Write assembly language program with proper comments for the following:

72

A block of data consisting of 256 bytes is stored in memory starting at 3000H. This block is to be shifted

(relocated) in memory from 3050H onwards. Do not shift the block or part of the block anywhere else in the

memory.

Source Program:

Two blocks (3000 - 30FF and 3050 - 314F) are overlapping. Therefore it is necessary to transfer last byte

first and first byte last.

MVI C, FFH

LX I H, 30FFH
LXI D, 314FH

BACK: MOV A, M

STAX D
DCX H
DCX
DCR C
JNZ BACK
HLT

: Initialize counter

: Initialize source memory pointer 3l4FH
: Initialize destination memory pointer

: Get byte from source memory block

: Store byte in the destination memory block
: Decrement source memory pointer

: Decrement destination memory pointer
: Decrement counter

: If counter 0 repeat
: Stop execution

31.Statement: Add even parity to a string of 7-bit ASCII characters. The length of the string is in

memory location 2040H and the string itself begins in memory location 2041H. Place even parity in the

most significant bit of each character.

Source Program:

LXI H, 2040H
MOV C ,M

REPEAT:INX H
MOV A,M
ORA A
JPO PAREVEN
ORI 80H

PAREVEN:MOV M , A
DCR C

JNZ REPEAT
HLT

: Counter for character
: Memory pointer to character

: Character in accumulator
: ORing with itself to check parity.

: If odd parity place
even parity in D7 (80).

: Store converted even parity character.
: Decrement counter.

: If not zero go for next character.

32.Statement: A list of 50 numbers is stored in memory, starting at 6000H. Find number of negative, zero and
positive numbers from this list and store these results in memory locations 7000H, 7001H, and 7002H

respectively

73

Source Program:

LXI H, 6000H : Initialize memory pointer

MVI C, 00H : Initialize number counter

MVI B, 00H : Initialize negative number counter

MVI E, 00H : Initialize zero number counter

BEGIN:MOV A, M : Get the number

CPI 00H : If number = 0

JZ ZERONUM : Goto zeronum

ANI 80H : If MSB of number = 1i.e. if

JNZ NEGNUM number is negative goto NEGNUM

INR D : otherwise increment positive number counter

JMP LAST

ZERONUM:INR E : Increment zero number counter

JMP LAST

NEGNUM:INR B : Increment negative number counter

LAST:INX H : Increment memory pointer

INR C : Increment number counter

MOV A, C

CPI 32H : If number counter = 5010 then

JNZ BEGIN : Store otherwise check next number

LXI H, 7000 : Initialize memory pointer.

MOV M, B : Store negative number.

INX H

MOV M, E : Store zero number.

INX H

MOV M, D : Store positive number.

HLT : Terminate execution

33.Statement:Write an 8085 assembly language program to insert a string of four characters from the

tenth location in the given array of 50 characters

Solution:
Step 1: Move bytes from location 10 till the end of array by four bytes downwards.

Step 2: Insert four bytes at locations 10, 11, 12 and 13.

Source Program:

LXI H, 2l31H

LXI D, 2l35H

: Initialize pointer at the last location of array.

: Initialize another pointer to point the last

location of array after insertion.
AGAIN: MOV A, M

: Get the character

74

STAX D
DCX D
DCX H
MOV A, L
CPI 05H
JNZ AGAIN
INX H
LXI D, 2200H

: Store at the new location
: Decrement destination pointer
: Decrement source pointer

: [check whether desired
bytes are shifted or not]

: if not repeat the process
: adjust the memory pointer

: Initialize the memory pointer to point the string to

be inserted
REPE: LDAX D

MOV M, A
INX D
INX H

MOV A, E
CPI 04
JNZ REPE

HLT

: Get the character
: Store it in the array

: Increment source pointer
: Increment destination pointer

: [Check whether the 4 bytes
are inserted]

: if not repeat the process
: stop

34.Statement:Write an 8085 assembly language program to delete a string of 4 characters from the tenth
location in the given array of 50 characters.

Solution: Shift bytes from location 14 till the end of array upwards by 4 characters i.e. from location
10 onwards.

Source Program:

LXI H, 2l0DH

:Initialize source memory pointer at the 14thlocation

of the array.
LXI D, 2l09H

: Initialize destn memory pointer at the 10th location

of the array.
MOV A, M
STAX D
INX D

INX H
MOV A, L
CPI 32H
JNZ REPE
HLT

: Get the character
: Store character at new location

: Increment destination pointer
: Increment source pointer

: [check whether desired
bytes are shifted or not]

: if not repeat the process
: stop

35.Statement:Multiply the 8-bit unsigned number in memory location 2200H by the 8-bit unsigned number

in memory location 2201H. Store the 8 least significant bits of the result in memory location 2300H and the 8

most significant bits in memory location 2301H.

75

Sample problem:

(2200)

= 1100 (0CH)

(2201)

= 0101 (05H)

Multiplicand

= 1100 (1210)

Multiplier

= 0101 (510)

Result

= 12 x 5 = (6010)

Source program

LXI H, 2200
MOV E, M
MVI D, 00H
INX H
MOV A, M
LXI H, 0000
MVI B, 08H

MULT: DAD H

: Initialize the memory pointer

: Get multiplicand
: Extend to 16-bits

: Increment memory pointer
: Get multiplier

: Product = 0
: Initialize counter with count 8

: Product = product x 2

RAL
JNC SKIP
DAD D

SKIP: DCR B
JNZ MULT
SHLD 2300H
HLT

: Is carry from multiplier 1 ?

: Yes, Product =Product + Multiplicand
: Is counter = zero

: no, repeat
: Store the result

: End of program

36.Statement:Divide the 16-bit unsigned number in memory locations 2200H and 2201H (most significant

bits in 2201H) by the B-bit unsigned number in memory location 2300H store the quotient in memory

location 2400H and remainder in 2401H

Assumption: The most significant bits of both the divisor and dividend are zero.

Source program

MVI E, 00 : Quotient = 0
LHLD 2200H : Get dividend

LDA 2300 : Get divisor

MOV B, A : Store divisor

MVI C, 08 : Count = 8

NEXT: DAD H : Dividend = Dividend x 2

MOV A, E

RLC

MOV E, A : Quotient = Quotient x 2

76

MOV A, H
SUB B

JC SKIP
MOV H, A
INR E

SKIP:DCR C
JNZ NEXT

: Is most significant byte of Dividend > divisor

: No, go to Next step
: Yes, subtract divisor

: and Quotient = Quotient + 1

: Count = Count - 1
: Is count =0 repeat

MOV A, E
STA 2401H

: Store Quotient

Mov A, H
STA 2410H
HLT

: Store remainder

: End of program

37.DAA instruction is not present. Write a sub routine which will perform the same task as DAA.

Sample Problem:

Execution of DAA instruction:

If the value of the low order four bits (03-00) in the accumulator is greater than 9 or if auxiliary carry flag

is set, the instruction adds 6 '(06) to the low-order four bits.
If the value of the high-order four bits (07-04) in the accumulator is greater than 9 or if carry flag is set,

the instruction adds 6(06) to the high-order four bits.

Source Program:

LXI SP, 27FFH
MOV E, A
ANI 0FH
CPI 0A H
JC SKIP
MOV A, E
ADI 06H
JMP SECOND

SKIP: PUSH PSW
POP B

: Initialize stack pointer
: Store the contents of accumulator

: Mask upper nibble
: Check if number is greater than 9

: if no go to skip
: Get the number

: Add 6 in the number
: Go for second check
: Store accumulator and flag contents in stack

: Get the contents of accumulator in B register and

flag register contents in

MOV A, C
ANI 10H
JZ SECOND
MOV A, E
ADI 06

SECOND: MOV E, A
ANI FOH

C register

: Get flag register contents in accumulator
: Check for bit 4

: if zero, go for second check
: Get the number

: Add 6 in the number
: Store the contents of accumulator

: Mask lower nibble

RRC
RRC
RRC

77

RRC
CPI 0AH

JC SKIPl
MOV A, E
ADI 60 H
JMP LAST

SKIP1: JNC LAST

MOV A, E
ADI 60 H

LAST: HLT

: Rotate number 4 bit right
: Check if number is greater than 9

: if no go to skip 1
: Get the number
: Add 60 H in the number
: Go to last

: if carry flag = 0 go to last

: Get the number
: Add 60 H in the number

38.Statement:To test RAM by writing '1' and reading it back and later writing '0' (zero) and reading it

back. RAM addresses to be checked are 40FFH to 40FFH. In case of any error, it is indicated by writing
01H at port 10H

Source Program:

LXI H, 4000H : Initialize memory pointer

BACK: MVI M, FFH : Writing '1' into RAM

MOV A, M : Reading data from RAM

CPI FFH : Check for ERROR

JNZ ERROR : If yes go to ERROR

INX H : Increment memory pointer

MOV A, H

CPI SOH : Check for last check

JNZ BACK : If not last, repeat

LXI H, 4000H : Initialize memory pointer

BACKl: MVI M, OOH : Writing '0' into RAM

MOV A, M : Reading data from RAM

CPI OOH : Check for ERROR

INX H : Increment memory pointer

MOV A, H

CPI SOH : Check for last check

JNZ BACKl : If not last, repeat

HLT : Stop Execution

39.Statement:Write an assembly language program to generate fibonacci number

Source Program:

MVI D, COUNT MVI

B, 00 MVI C, 01

Initialize counter

Initialize variable to store previous number
Initialize variable to store current number

78

MOV A, B :[Add two numbers]
BACK: ADD C :[Add two numbers]

MOV B, C : Current number is now previous number
MOV C, A : Save result as a new current number
DCR D : Decrement count

JNZ BACK : if count 0 go to BACK
HLT : Stop

40.Statement:Write a program to generate a delay of 0.4 sec if the crystal frequency is 5 MHz

Calculation: In 8085, the operating frequency is half of the

crystal frequency,
ie.Operating frequency Time

for one T -state

= 5/2 = 2.5 MHz

=

Number of T-states required =
= 1 x 106

Source Program:
LXI B, count
BACK: DCX B
MOV A, C

: 16 - bit count

: Decrement count

ORA B
JNZ BACK

: Logically OR Band C

: If result is not zero repeat

41.Statement: Arrange an array of 8 bit unsigned no in descending order

Source Program:

START:MVI B, 00

LXI H, 4150

; Flag = 0
; Count = length of array

MOV C, M
DCR C

INX H
LOOP:MOV A, M

; No. of pair = count -1

; Point to start of array
; Get kth element

INX H
CMP M
JNC LOOP 1
MOV D, M
MOV M, A

; Compare to (K+1) th element
; No interchange if kth >= (k+1) th

; Interchange if out of order
;

DCR H
MOV M, D

INX H
MVI B, 01H

LOOP 1:DCR C

JNZ LOOP

; Flag=1

; count down
;

DCR B

; is flag = 1?

79

JZ START
HLT

; do another sort, if yes
; If flag = 0, step execution

42.Statement: Transfer ten bytes of data from one memory to another memory block. Source memory block
starts from memory location 2200H where as destination memory block starts from memory location 2300H

Source Program:

LXI H, 4150
MVI B, 08

: Initialize memory pointer

: count for 8-bit

MVI A, 54

LOOP : RRC
JC LOOP1
MVI M, 00

: store zero it no carry

JMP COMMON
LOOP2: MVI M, 01

: store one if there is a carry

COMMON: INX H

DCR B

: check for carry

JNZ LOOP
HLT

: Terminate the program

43.Statement: Program to calculate the factorial of a number between 0 to 8

Source program

LXI SP, 27FFH ; Initialize stack pointer

LDA 2200H ; Get the number

CPI 02H ; Check if number is greater than 1

JC LAST

MVI D, 00H ; Load number as a result

MOV E, A

DCR A

MOV C,A ; Load counter one less than number

CALL FACTO ; Call subroutine FACTO

XCHG ; Get the result in HL

SHLD 2201H ; Store result in the memory

JMP END

LAST: LXI H, 000lH ; Store result = 01

END: SHLD 2201H

HLT

80

44.Statement:Write a program to find the Square Root of an 8 bit binary number. The binary number is
stored in memory location 4200H and store the square root in 4201H.

Source Program:

LDA 4200H

MOV B,A
MVI C,02H
CALL DIV

: Get the given data(Y) in A register

: Save the data in B register
: Call the divisor(02H) in C register

: Call division subroutine to get initial value(X)

in D-reg
REP: MOV E,D

MOV A,B
MOV C,D
CALL DIV

: Save the initial value in E-reg
: Get the dividend(Y) in A-reg
: Get the divisor(X) in C-reg
: Call division subroutine to get initial

value(Y/X) in D-reg
MOV A, D
ADD E
MVI C, 02H
CALL DIV

: Move Y/X in A-reg
: Get the((Y/X) + X) in A-reg
: Get the divisor(02H) in C-reg

: Call division subroutine to get ((Y/X) + X)/2

in D-reg.This is XNEW

MOV A, E
CMP D
JNZ REP

STA 4201H
HLT

: Get Xin A-reg
: Compare X and XNEW

: If XNEW is not equal to X, then repeat
: Save the square root in memory

: Terminate program execution

45.Statement:Write a simple program to Split a HEX data into two nibbles and store it in memory

Source Program:

LXI H, 4200H
MOV B,M
MOV A,B
ANI OFH
INX H
MOV M,A
MOV A,B
ANI FOH

: Set pointer data for array

: Get the data in B-reg
: Copy the data to A-reg
: Mask the upper nibble

: Increment address as 4201
: Store the lower nibble in memory
: Get the data in A-reg
: Bring the upper nibble to lower nibble position

RRC
RRC
RRC
RRC
INX H
MOV M,A
HLT

: Store the upper nibble in memory
: Terminate program execution

81

46.Statement: Add two 4 digit BCD numbers in HL and DE register pairs and store result in memory locations,

2300H and 2301H. Ignore carry after 16 bit.

Sample Problem:

(HL) =3629 (DE)

=4738
Step 1 : 29 + 38 = 61 and auxiliary carry flag = 1
:.add 06
61 + 06 = 67
Step 2 : 36 + 47 + 0 (carry of LSB) = 7D

Lower nibble of addition is greater than 9, so add 6. 7D + 06 = 83

Result = 8367

Source program

MOV A, L
ADD E
DAA
STA 2300H
MOV A, H

ADC D
DAA
STA 2301H
HLT

: Get lower 2 digits of no. 1

: Add two lower digits
: Adjust result to valid BCD

: Store partial result
: Get most significant 2 digits of number

: Add two most significant digits
: Adjust result to valid BCD

: Store partial result
: Terminate program execution

47.Subtract the BCD number stored in E register from the number stored in the D register.

Source Program:

MVI A,99H
SUB E
INR A
ADD D
DAA
HLT

: Find the 99's complement of subtrahend
: Find 100's complement of subtrahend

: Add minuend to 100's complement of subtrahend
: Adjust for BCD
: Terminate program execution

48.Statement: Write an assembly language program to multiply 2 BCD numbers

Source Program:

82

MVI C, Multiplier
MVI B, 00
LXI H, 0000H
MVI E, multiplicand
MVI D, 00H

BACK: DAD D
MOV A, L

: Load BCD multiplier

: Initialize counter
: Result = 0000

: Load multiplicand
: Extend to 16-bits

: Result Result + Multiplicand
: Get the lower byte of the result

ADI, 00H

DAA
MOV L, A
MOV A, H
ACI, 00H
DAA
MOV H, A
MOV A, B
ADI 01H
DAA
MOV B,A
CMP C
JNZ BACK
HLT

: Adjust the lower byte of result to BCD.
: Store the lower byte of result
: Get the higher byte of the result

83

QUESTION BANK -UNIT II

PART A

1. Identify the addressing modes of LDA and LDAXB instruction

2. Identify the no of bytes of XTHL and LXI H,16bit

3. Define addressing modes

4. Classify the instruction sets of 8085

5. Explain SPHL instruction with example

6. What is the difference between CMP and SUB instruction

7. When the parity flag will set

8. What determines the number of bytes to be fetched from memory to execute an instruction?

9. What are the different instruction word sizes in 8085?

10. Give one example each of 1-byte, 2-byte and 3-byte instructions.

11. Mention the different types of operations possible with arithmetic, logical, branch and

machine control operations

12. What is an instruction?

13. What are the different types of data transfer operations possible?

14. What is the output in 9100 after executing the following instructions

MVI A, 09
MVI B, 04

ADD B

DAA

STA 9100

HLT
15. What is the content in DE register?

MVI A,09

ADI 77

PUSH PSW

POP D

HLT

PART B

1. Classify the instruction set based on the operations performed and explain with examples

2. Classify the instruction set based on the size of the instructions and explain with examples

3. Explain a. XTHL b.SPHL c.PCHL d.RAR e.SIM

4. Explain with example a.LDAX B b.PUSH PSW c.RLC d.JNC 16bit e.XRA A

5. Write an ALP to sort a given array in ascending order

6. Write an ALP to find a factorial of a number

7. Write an ALP to add two multibyte data

8. Write an ALP to generate fibonocci series

Note: Study all the programs

TEXT / REFERENCE BOOKS

2. Ramesh Gaonkar, “Microprocessor Architecture, Programming and applications with 8085”, 5th Edition,

Penram International Publishing Pvt Ltd, 2010.

2. Kenneth J Ayala, “The 8051 Microcontroller”, 2nd Edition, Thomson, 2005.

3. Nagoor Kani A, “Microprocessor and Microcontroller”, 2nd Edition, Tata McGraw Hill, 2012.

4. Mathur A.P. ” Introduction to microprocessor .“

5. Muhammad Ali Mazidi.”The 8051 Microcontroller and Embedded Systems.”

84

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – III– MICROPROCESSORS AND MICROCONTROLLERS– SEC1201

85

UNIT 3 PERIPHERALS AND INTERFACING

Introduction, memory and I/O interfacing, data transfer schemes, Interface ICs’- USART (8251), programmable

peripheral interface (8255), programmable interrupt controller (8259), programmable counter/interval timer

(8254), Analog to Digital Converter (ADC), and Digital to Analog Converter (DAC).

8255 - PROGRAMMABLE PERIPHERAL INTERFACE (PPI)

The Intel 8255 (or i8255) Programmable Peripheral Interface (PPI) chip is a

peripheral chip, is used to give the CPU access to programmable parallel I/O. It can be

programmable to transfer data under various conditions from simple I/O to interrupt I/O.

it is flexible versatile

and economical (when multiple I/O ports are required) but some what complex. It

is an important general purpose I/O device that can be used with almost any

microprocessor. Functional block of 8255 – Programmable Peripheral Interface (PPI)

The 8255A has 24 I/O pins that can be grouped primarily in two 8-bit parallel ports:

A and B with the remaining eight bits as port C. The eight bits of port C can be used as

individual bits or be grouped in to 4-bit ports: CUpper (Cu) and CLower (CL) as in Figure

2. The function of these ports is defined by writing a control word in the control register as

shown in Figure 3.3

Fig 3.1: Pin diagram
diagram

86

Fig 3.2 : Block diagram of 8255

Fig 3.3. Control word Register format

87

Data Bus Buffer

This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system data

bus. Data is transmitted or received by the buffer upon execution of input or output

instructions by the CPU. Control words and status information are also transferred through

the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data

and Control or Status words. It accepts inputs from the CPU Address and Control busses

and in turn, issues commands to both of the Control Groups.

(CS) Chip Select. A "low" on this input pin enables the communication between the 8255

and the CPU.

(RD) Read. A "low" on this input pin enables 8255 to send the data or status information to

the CPU on the data bus. In essence, it allows the CPU to "read from" the 8255.

 (WR) Write. A "low" on this input pin enables the CPU to write data or control words into

the 8255.

(A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the RD

and WR inputs, control the selection of one of the three ports or the control word register.

They are normally connected to the least significant bits of the address bus (A0 and A1).

88

Fig 3.4 selection of Ports and Control reg

 (RESET) Reset. A "high" on this input initializes the control register to 9Bh and all ports

(A, B, C) are set to the input mode.

Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In essence,

the CPU "outputs" a control word to the 8255. The control word contains information such

as "mode", "bit set", "bit reset", etc., that initializes the functional configuration of the

8255. Each of the Control blocks (Group A and Group B) accepts "commands" from the

Read/Write Control logic, receives "control words" from the internal data bus and issues

the proper commands to its associated ports.

Ports A, B, and C

The 8255 contains three 8-bit ports (A, B, and C). All can be configured to a wide variety of

functional characteristics by the system software but each has its own special features or

"personality" to further enhance the power and flexibility of the 8255.

Port A One 8-bit data output latch/buffer and one 8-bit data input latch. Both "pull-up" and

"pull- down" bus-hold devices are present on Port A.

Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input).

This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains

a 4-bit latch and it can be used for the control signal output and status signal inputs in

conjunction with ports A and B.

I. Operational modes of 8255

There are two basic operational modes of 8255:

1. Bit set/reset Mode (BSR Mode).

2. Input/Output Mode (I/O Mode).

The two modes are selected on the basis of the value present at the D7 bit of the Control Word

89

Register. When D7 = 1, 8255 operates in I/O mode and when D7 = 0, it operates in the BSR

mode.

1. Bit set/reset (BSR) mode

The Bit Set/Reset (BSR) mode is applicable to port C only. Each line of port C (PC0 - PC7)

can be set/reset by suitably loading the control word register as shown in Figure 4. BSR

mode and I/O mode are independent and selection of BSR mode does not affect the operation

of other ports in I/O mode.

Fig 3.5: 8255 Control register format for BSR mode

D7 bit is always 0 for BSR mode.

Bits D6, D5 and D4 are don't care

bits.

Bits D3, D2 and D1 are used to select the pin of Port

C. Bit D0 is used to set/reset the selected pin of Port C.

Selection of port C pin is determined as follows:

90

As an example, if it is needed that PC5 be set, then in the control word,

1. Since it is BSR mode, D7 = '0'.

2. Since D4, D5, D6 are not used, assume them to be '0'.

3. PC5 has to be selected, hence, D3 = '1', D2 = '0', D1 = '1'.

4. PC5 has to be set, hence, D0 = '1'.

Thus, as per the above values, 0B (Hex) will be loaded into the Control Word Register (CWR).

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 1 0 1 1

2. Input/Output mode

91

This mode is selected when D7 bit of the Control Word Register is 1. There are three I/O modes:

1. Mode 0 - Simple I/O

2. Mode 1 - Strobed I/O

3. Mode 2 - Strobed Bi-directional I/O

Figure 3.6: 8255 Control word for I/O mode

D0, D1, D3, D4 are assigned for lower port C, port B, upper port C and port A

respectively. When these bits are 1, the corresponding port acts as an input port. For

e.g., if D0 = D4 = 1, then lower port C and port A act as input ports. If these bits are 0,

then the corresponding port acts as an output port. For e.g., if D1 = D3 = 0, then port

B and upper port C act as output ports as shown in Figure 5.

D2 is used for mode selection of Group B (port B and lower port C). When D2 = 0,

mode 0 is selected and when D2 = 1, mode 1 is selected.

D5& D6 are used for mode selection of Group A (port A and upper port C). The

selection is done as follows:

92

D6

D5

Mode

0

0

0

0

1

1

1 X 2

As it is I/O mode, D7 = 1.

For example, if port B and upper port C have to be initialized as input ports and lower

port C and port A as output ports (all in mode 0):

1. Since it is an I/O mode, D7 = 1.

2. Mode selection bits, D2, D5, D6 are all 0 for mode 0 operation.

3. Port B and upper port C should operate as Input ports, hence, D1 = D3 = 1.

4. Port A and lower port C should operate as Output ports, hence, D4 = D0 = 0.

Hence, for the desired operation, the control word register will have to be loaded with

"10001010" = 8A (hex).

Mode 0 - simple I/O

In this mode, the ports can be used for simple I/O operations without handshaking

signals. Port A, port B provide simple I/O operation. The two halves of port C can be

either used together as an additional 8-bit port, or they can be used as individual 4-bit

ports. Since the two halves of port C are independent, they may be used such that one-

half is initialized as an input port while the other half is initialized as an output port.

The input/output features in mode 0 are as follows:

1. Output ports are latched.

93

2. Input ports are buffered, not latched.

3. Ports do not have handshake or interrupt capability.

4. With 4 ports, 16 different combinations of I/O are possible.

Mode 0 – input mode

In the input mode, the 8255 gets data from the external peripheral ports and the

CPU reads the received data via its data bus.

The CPU first selects the 8255 chip by making CS low. Then it selects the

desired port using A0 and A1 lines.

The CPU then issues an RD signal to read the data from the external

peripheral device via the system data bus.

Mode 0 - output mode

In the output mode, the CPU sends data to 8255 via system data bus and then the

external peripheral ports receive this data via 8255 port.

CPU first selects the 8255 chip by making CS low. It then selects the desired port

using A0 and A1 lines.

CPU then issues a WR signal to write data to the selected port via the system

data bus. This data is then received by the external peripheral device connected to

the selected port.

Mode 1

When we wish to use port A or port B for handshake (strobed) input or output operation,

we initialise that port in mode 1 (port A and port B can be initilalised to operate in

different modes, i.e., for e.g., port A can operate in mode 0 and port B in mode 1). Some

of the pins of port C function as handshake lines.

For port B in this mode (irrespective of whether is acting as an input port or output port),

PC0, PC1 and PC2 pins function as handshake lines.

94

If port A is initialised as mode 1 input port, then, PC3, PC4 and PC5 function as

handshake signals. Pins PC6 and PC7 are available for use as input/output lines.

The mode 1 which supports handshaking has following features:

1. Two ports i.e. port A and B can be used as 8-bit i/o ports.

2. Each port uses three lines of port c as handshake signal and remaining two signals can

be used as i/o ports.

3. Interrupt logic is supported.

4. Input and Output data are latched.

Input Handshaking signals

1. IBF (Input Buffer Full) - It is an output indicating that the input latch contains

information.

2. STB (Strobed Input) - The strobe input loads data into the port latch, which holds

the information until it is input to the microprocessor via the IN instruction.

3. INTR (Interrupt request) - It is an output that requests an interrupt. The INTR pin

becomes a logic 1 when the STB input returns to a logic 1, and is cleared when the data

are input from the port by the microprocessor.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit

programmed via the port PC4(port A) or PC2(port B) bit position.

Output Handshaking signals

1. OBF (Output Buffer Full) - It is an output that goes low whenever data are

output(OUT) to the port A or port B latch. This signal is set to a logic 1 whenever the

ACK pulse returns from the external device.

95

2. ACK (Acknowledge)-It causes the OBF pin to return to a logic 1 level. The ACK

signal is a response from an external device, indicating that it has received the data

from the 82C55 port.

3. INTR (Interrupt request) - It is a signal that often interrupts the microprocessor when

the external device receives the data via the signal. this pin is qualified by the internal

INTE(interrupt enable) bit.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit

programmed to enable or disable the INTR pin. The INTE A bit is programmed using

the PC6 bit and INTE B is programmed using the PC2 bit.

Mode 2

Only group A can be initialized in this mode. Port A can be used for bidirectional

handshake data transfer. This means that data can be input or output on the same eight

lines (PA0 - PA7). Pins PC3 - PC7 are used as handshake lines for port A. The remaining

pins of port C (PC0 - PC2) can be used as input/output lines if group B is initialized in

mode 0 or as handshaking for port B if group B is initialized in mode 1. In this mode, the

8255 may be used to extend the system bus to a slave microprocessor or to transfer data

bytes to and from a floppy disk controller. Acknowledgement and handshaking signals

are provided to maintain proper data flow and synchronisation between the data

transmitter and receiver.

II. Interfacing 8255 with 8085 processor

https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Floppy_disk

96

8

Fig 3.7. Interfacing 8255 with 8085 processor

The 8255 can be either memory mapped or I/O mapped in the system. In the

schematic shown in above is I/O mapped in the system.

Using a 3-to- decoder generates the chip select signals for I/O mapped devices.

The address lines A4, A5 and A6 are decoded to generate eight chip select signals

(IOCS-0 to IOCS-7) and in this, the chip select IOCS- 1 is used to select 8255 as

shown in Figure 3.7.

The address line A7 and the control signal IO/M (low) are used as enable for

the decoder.

The address line A0 of 8085 is connected to A0 of 8255 and A1 of 8085 is connected

to A1 of 8255 to provide the internal addresses.

The data lines D0-D7 are connected to D0-D7 of the processor to achieve parallel

data transfer.

The I/O addresses allotted to the internal devices of 8255 are listed in table.

97

USART 8251 (Universal Synchronous/ Asynchronous Receiver Transmitter)

The 8251 is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for

serial data communication. As a peripheral device of a microcomputer system, the 8251

receives parallel data from the CPU and transmits serial data after conversion. This device

also receives serial data from the outside and transmits parallel data to the CPU after

conversion as shown in Figure 3.8.

98

Figure 3.8 : Architecture of 8251

Transmitter Section

The transmitter section consists of three blocks—transmitter buffer register, output register

and the transmitter control logic block. The CPU deposits (when TXRDY = 1, meaning that

the transmitter buffer register is empty) data into the transmitter buffer register, which is

subsequently put into the output register (when TXE = 1, meaning that the output buffer is

empty). In the output register, the eight bit data is converted into serial form and comes out

99

via TXD pin. The serial data bits are preceded by START bit and succeeded by STOP bit,

which are known as framing bits. But this happens only if transmitter is enabled and the

CTS is low. TXC signal is the transmitter clock signal which controls the bit rate on the TXD

line (output line). This clock frequency can be 1, 16 or 64 times the baud.

Receiver Section

The receiver section consists of three blocks — receiver buffer register, input register and

the receiver control logic block. Serial data from outside world is delivered to the input

register via RXD line, which is subsequently put into parallel form and placed in the receiver

buffer register. When this register is full, the RXRDY (receiver ready) line becomes high.

This line is then used either to interrupt the MPU or to indicate its own status. MPU then

accepts the data from the register. RXC line stands for receiver clock. This clock signal

controls the rate at which bits are received by the input register. The clock can be set to 1,

16 or 64 times the baud in the asynchronous mode.

Fig 3.9 : Pin Configuration of 8251

100

Pin Configuration of 8251 is shown in figure

11. D 0 to D 7 (l/O terminal)

This is bidirectional data bus which receive control words and transmits data from the

CPU and sends status words and received data to CPU.

RESET (Input terminal)

A "High" on this input forces the 8251 into "reset status." The device waits for the

writing of "mode instruction." The min. reset width is six clock inputs during the operating

status of CLK.

CLK (Input terminal)

CLK signal is used to generate internal device timing. CLK signal is independent of RXC or

TXC. However, the frequency of CLK must be greater than 30 times the RXC and TXC at

Synchronous mode and Asynchronous "x1" mode, and must be greater than 5 times at

Asynchronous "x16" and "x64" mode.

WR (Input terminal)

This is the "active low" input terminal which receives a signal for writing transmit

data and control words from the CPU into the 8251.

RD (Input terminal)

This is the "active low" input terminal which receives a signal for reading receive data and

status words from the 8251.

C/D (Input terminal)

This is an input terminal which receives a signal for selecting data or command words and

status words when the 8251 is accessed by the CPU. If C/D = low, data will be accessed. If

C/D

= high, command word or status word will be

accessed. CS (Input terminal)

This is the "active low" input terminal which selects the 8251 at low level when the CPU

101

accesses. Note: The device won’t be in "standby status"; only setting CS = High.

TXD (output terminal)

This is an output terminal for transmitting data from which serial-converted data is sent out.

The device is in "mark status" (high level) after resetting or during a status when transmit

is disabled. It is also possible to set the device in "break status" (low level) by a command.

TXRDY (output terminal)

This is an output terminal which indicates that the 8251is ready to accept a transmitted data

character. But the terminal is always at low level if CTS = high or the device was set in "TX

disable status" by a command. Note: TXRDY status word indicates that transmit data

character is receivable, regardless of CTS or command. If the CPU writes a data character,

TXRDY will be reset by the leading edge or WR signal.

TXEMPTY (Output terminal)

This is an output terminal which indicates that the 8251 has transmitted all the characters

and had no data character. In "synchronous mode," the terminal is at high level, if transmit

data characters are no longer remaining and sync characters are automatically transmitted.

If the CPU writes a data character, TXEMPTY will be reset by the leading edge of WR

signal. Note : As the transmitter is disabled by setting CTS "High" or command, data written

before disable will be sent out. Then TXD and TXEMPTY will be "High". Even if a data is

written after disable, that data is not sent out and TXE will be "High". After the transmitter

is enabled, it sent out. (Refer to Timing Chart of Transmitter Control and Flag Timing)

TXC (Input terminal)

This is a clock input signal which determines the transfer speed of transmitted data. In

"synchronous mode," the baud rate will be the same as the frequency of TXC. In

"asynchronous mode", it is possible to select the baud rate factor by mode instruction. It can

be 1, 1/16 or 1/64 the TXC. The falling edge of TXC sifts the serial data out of the 8251.

RXD (input terminal)

This is a terminal which receives serial

data. RXRDY (Output terminal)

This is a terminal which indicates that the 8251 contains a character that is ready to READ.

If the CPU reads a data character, RXRDY will be reset by the leading edge of RD signal.

102

Unless the CPU reads a data character before the next one is received completely, the

preceding data will be lost. In such a case, an overrun error flag status word will be set.

RXC (Input terminal)

This is a clock input signal which determines the transfer speed of received data. In

"synchronous mode," the baud rate is the same as the frequency of RXC. In "asynchronous

mode," it is possible to select the baud rate factor by mode instruction. It can be 1, 1/16, 1/64

the RXC.

SYNDET/BD (Input or output terminal)

This is a terminal whose function changes according to mode. In "internal synchronous

mode." this terminal is at high level, if sync characters are received and synchronized. If a

status word is read, the terminal will be reset. In "external synchronous mode, "this is an

input terminal. A "High" on this input forces the 8251 to start receiving data characters.

In "asynchronous mode," this is an output terminal which generates "high level"output

upon the detection of a "break" character if receiver data contains a "low-level" space

between the stop bits of two continuous characters. The terminal will be reset, if RXD is at

high level. After Reset is active, the terminal will be output at low level.

DSR (Input terminal)

This is an input port for MODEM interface. The input status of the terminal can be

recognized by the CPU reading status words.

DTR (Output terminal)

This is an output port for MODEM interface. It is possible to set the status of DTR by a

command.

CTS (Input terminal)

This is an input terminal for MODEM interface which is used for controlling a transmit

circuit. The terminal controls data transmission if the device is set in "TX Enable" status by

a command.

Data is transmitable if the terminal is at low

level.

103

RTS (Output terminal)

This is an output port for MODEM interface. It is possible to set the status RTS by a

command. The 8251 functional configuration is programmed by software. Operation

between the 8251 and a CPU is executed by program control. Table 1 shows the

operation between a CPU and the device.

Summary of Control Signals for 8251

Control Words

There are two types of control word.

1. Mode instruction (setting of function)

2. Command (setting of operation)

1) Mode Instruction

Mode instruction is used for setting the function of the 8251. Mode instruction will be in

"wait for write" at either internal reset or external reset. That is, the writing of a control

word after resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:

104

Fig 3.10: Bit configuration of Mode instruction (Asynchronous)

• Synchronous/asynchronous mode

• Stop bit length (asynchronous mode)

• Character length

• Parity bit

• Baud rate factor (asynchronous mode)

• Internal/external synchronization (synchronous mode)

• Number of synchronous characters (Synchronous mode)

The bit configuration of mode instruction is shown in Figures 12 and 13. In the case of

synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters

were written, a function will be set because the writing of sync characters constitutes part of

mode instruction.

105

Fig 3.11: Bit configuration of mode instruction(synchronous)

2) Command

Command is used for setting the operation of the 8251. It is possible to write a

command whenever necessary after writing a mode instruction and sync characters as

shown in figure 14.

Items to be set by command are as follows:

106

• Transmit Enable/Disable

• Receive Enable/Disable

• DTR, RTS Output of data.

• Resetting of error flag.

• Sending to break characters

• Internal resetting

• Hunt mode (synchronous mode)

Fig 3.12: Bit configuration of command

107

Status Word

It is possible to see the internal status of the 8251 by reading a status word. The bit

configuration of status word is shown in Fig.15.

Fig 3.13: Bit configuration of Status Word

108

8253(8254) PROGRAMMABLE INTERVAL TIMER:

The 8254 programmable Interval timer consists of three independent 16-bit programmable

counters (timers). Each counter is capable of counting in binary or binary coded decimal.

The maximum allowable frequency to any counter is 10MHz. This device is useful whenever

the microprocessor must control real-time events. The timer in a personal computer is an

8253. To operate a counter a 16-bit count is loaded in its register and on command, it begins

to decrement the count until it reaches 0. At the end of the count it generates a pulse, which

interrupts the processor. The count can count either in binary or BCD Each counter in the

block diagram has 3 logical lines connected to it. Two of these lines, clock and gate, are

inputs. The third, labeled OUT is an output.

Fig : 3.14 Block Diagram of 8253 programmable interval timer

109

Data bus buffer- It is a communication path between the timer and the microprocessor. The

buffer is 8-bit and bidirectional. It is connected to the data bus of the microprocessor. Read

/write logic controls the reading and the writing of the counter registers. Control word register,

specifies the counter to be used and either a Read or a write operation. Data is transmitted

or received by the buffer upon execution of INPUT instruction from CPU as shown in figure

16. The data bus buffer has three basic functions,

(i). Programming the modes of 8253.

(ii). Loading the count value in times

(iii).Reading the count value from timers.

Fig 3.15:Pin Diagram of 8253

The data bus buffer is connected to microprocessor using D7 – D0 pins which are also

bidirectional. The data transfer is through these pins. These pins will be in high- impedance (or this

state) condition until the 8253 is selected by a LOW or CS and either the read operation requested by a

LOW RD on the input or a write operation WR requested by the input going LOW.

 Read/ Write Logic:

It accepts inputs for the system control bus and in turn generation the control signals for overall

device operation. It is enabled or disabled by CS so that no operation can occur to change the

function unless the device has been selected as the system logic.

CS : The chip select input is used to enable the communicate between 8253 and the microprocessor by means

of data bus. A low an CS enables the data bus buffers, while a high disable the buffer. The CS input does not

110

have any affect on the operation of three times once they have been initialized. The normal configuration of a

system employs an decode logic which actives CS line, whenever a specific set of addresses that correspond to

8253 appear on the address bus.

RD & WR :

The read (RD) and write WR pins central the direction of data transfer on the 8-bit bus.

When the input RD pin is low. Then CPU is inputting data from 8253 in the form of counter

value. When WR pins is low, then CPU is sending data to 8253 in the form of mode

information or loading counters. The RD &WR should not both be low

simultaneously. When RD & WR pins are HIGH, the data bus buffer is disabled.

A0 & A1:

These two input lines allow the microprocessor to specify which one of the internal register

in the 8253 is going to be used for the data transfer. Fig shows how these two lines are used

to select either the control word register or one of the 16-bit counters.

111

Control word register:

It is selected when A0 and A1 . It the accepts information from the data bus buffer and

stores it in a register. The information stored in then register controls the operation mode of

each counter, selection of binary or BCD counting and the loading of each counting and the

loading of each count register. This register can be written into, no read operation of this

content is available.

Counters:

Each of the times has three pins associated with it. These are CLK (CLK) the gate (GATE)

and the output (OUT).

CLK:

This clock input pin provides 16-bit times with the signal to causes the times to decrement maxm

clock input is 2.6MHz. Note that the counters operate at the negative edge (H1 to L0) of this

clock input. If the signal on this pin is generated by a fixed oscillator then the user has

implemented a standard timer. If the input signal is a string of randomly occurring pulses,

then it is called implementation of a counter.

GATE:

The gate input pin is used to initiate or enable counting. The exact effect of the gate signal

depends on which of the six modes of operation is chosen.

OUTPUT:

The output pin provides an output from the timer. It actual use depends on the mode of

operation of the timer. The counter can be read ―in the fly‖ without inhibiting gate pulse or

clock input.

112

CONTROL WORD OF 8253

Fig 3.16: Control word format-8253

Control Register

MODES OF OPERATION

Mode 0 Interrupt on terminal count Mode 1 Programmable one shot Mode 2 Rate

Generator Mode 3 Square wave rate Generator Mode 4 Software triggered strobe Mode

5 Hardware triggered strobe

Mode 0: The output goes high after the terminal count is reached. The counter stops if the

Gate is low.. The timer count register is loaded with a count (say 6) when the WR line is made

low by the processor. The counter unit starts counting down with each clock pulse. The

output goes high when the register value reaches zero. In the mean time if the GATE is made

low the count is suspended at the value(3) till the GATE is enabled again .

113

CLK

WR

6 5 4 3 2 1

OUT

GATE

Mode 0 count when Gate is high (enabled)

CLK

6

5

4

3

3

3

2

1

OUT

Mode 0 count when Gate is low temporarily (disabled) Mode 1

Programmable mono-shot

The output goes low with the Gate pulse for a predetermined period depending on the

WR

GATE

114

GATE (trigger)

5 4 3 2 1
OUT

counter. The counter is disabled if the GATE pulse goes momentarily low.The counter

register is loaded with a count value as in the previous case (say 5). The output responds to

the GATE input and goes low for period that equals the count down period of the register (5

clock pulses in this period). By changing the value of this count the duration of the output

pulse can be changed. If the GATE becomes low before the count down is completed then

the counter will be suspended at that state as long as GATE is low. Thus it works as a mono-

shot.

CLK

WR

Mode 1 The Gate goes high. The output goes low for the period

depending on the count

CLK

WR

GATE (trigger)

115

OUT

4

3

3

4

3

2

1

Mode 1 The Gate pulse is disabled momentarily causing the counter to stop.

Mode 2 Programmable Rate Generator

In this mode it operates as a rate generator. The output goes high for a period that equals

the time of count down of the count register (3 in this case). The output goes low exactly for

one clock period before it becomes high again. This is a periodic operation.

CLK

3

2

1

3

2

1

OUT

Mode 2 Operation when the GATE is kept high

WR

GATE

116

CLK

momentarily.

Mode 3 Programmable Square Wave Rate Generator

It is similar to Mode 2 but the output high and low period is symmetrical. The output

goes high after the count is loaded and it remains high for period which equals the count

down period of the counter register. The output subsequently goes low for an equal period

and hence generates a symmetrical square wave unlike Mode 2. The GATE has no role here.

WR

n=

4 OUT (n=4)

OUT (n=5)

WR

GATE

OUT 3 2 1 3 3 2 1 Mode 2 operation when the GATE is disabled

117

CLK

Mode3 Operation: Square Wave generator

Mode 4 Software Triggered Strobe

In this mode after the count is loaded by the processor the count down starts. The output

goes low for one clock period after the count down is complete. The count down can be

suspended by making the GATE low . This is also called a software triggered strobe as the

count down is initiated by a program.

CLK

Mode 4 Software Triggered Strobe when GATE is high

WR

GATE

OUT

4 3 3 2 1

WR

OUT

4 3 2 1

118

LK

Mode 4 Software Triggered Strobe when GATE is momentarily low

Mode 5 Hardware Triggered Strobe

The count is loaded by the processor but the count down is initiated by the GATE pulse. The

transition from low to high of the GATE pulse enables count down. The output goes low for

one clock period after the count down is complete.

CLK

Mode 5 Hardware Triggered Strobe

PROGRAMMABLE INTERRUPT CONTROLLER-8259

WR

GATE

OUT

5 4 3 2 1

119

FEAUTURES OF 8259

▪ Eight-Level Priority Controller Expandable to 64 Levels Programmable

Interrupt Modes

• 8086, 8088 Compatible

• MCS-80, MCS-85 Compatible

▪ Individual Request Mask

Capability Single +5V

Supply (No Clocks)

▪ Available in 28-Pin DIP and 28-Lead

PLCC Package Available in EXPRESS

1. Standard Temperature Range

2. Extended Temperature Range

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority

interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without

additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a

single a5V supply. Circuitry is static, requiring no clock input. The 8259A is designed to

minimize the software and real time overhead in handling multi-level priority interrupts. It

has several modes, permitting optimization for a variety of system requirements. The 8259A

is fully upward compatible with the Intel 8259. Software originally written for the 8259 will

operate the 8259A in all 8259 equivalent modes (MCS-80/85, Non-Buffered, Edge Triggered).

Pin Diagram of 8259 is shown in figure 3.17.

Fig.3.17 Pin Diagram of 8259

120

Pin Description of 8259

121

Fig. 3.18 Block Diagram of 8259

A more desirable method would be one that would allow the microprocessor to be

executing its main program and only stop to service peripheral devices when it is told to do

so by the device itself. In effect, the method would provide an external asynchronous input

that would inform the processor that it should complete whatever instruction that is

currently being executed and fetch a new routine that will service the requesting device. Once

this servicing is complete, however, the processor would resume exactly where it left off. This

method is called Interrupt. It is easy to see that system throughput would drastically increase,

and thus more tasks could be assumed by the micro-computer to further enhance its cost

effectiveness. Block Diagram of 8259 is shown in figure 18.

The Programmable Interrupt Controller (PIC) functions as an overall manager in an

Interrupt-Driven system environment. It accepts requests from the peripheral equipment,

determines which of the in-coming requests is of the highest importance (priori-ty),

122

ascertains whether the incoming request has a higher priority value than the level currently

being serviced, and issues an interrupt to the CPU based on this determination.

The 8259A is a device specifically designed for use in real time, interrupt driven

microcomputer systems. It manages eight levels or requests and has built-in features for

expandability to other 8259A's (up to 64 levels). It is programmed by the system's software

as an I/O peripheral. A selection of priority modes is available to the programmer so that the

manner in which the requests are processed by the 8259A can be configured to match his

system requirements. The priority modes can be changed or reconfigured dynamically at

any time during the main program. This means that the complete interrupt structure can

be defined as required, based on the total system environment.

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)

The interrupts at the IR input lines are handled by two registers in cascade, the

Interrupt Request Register (IRR) and the In-Service (ISR). The IRR is used to store all the

interrupt levels which are requesting service; and the ISR is used to store all the interrupt

levels which are being serviced.

PRIORITY RESOLVER

This logic block determines the priorites of the bits set in the IRR. The highest priority is

selected and strobed into the corresponding bit of the ISR during INTA pulse.

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on

the IRR. Masking of a higher priority input will not affect the interrupt request lines of lower

quality.

INT (INTERRUPT)

This output goes directly to the CPU interrupt input. The VOH level on this line is designed

to be fully compatible with the 8080A, 8085A and 8086 input levels.

123

INTA (INTERRUPT ACKNOWLEDGE)

INTA pulses will cause the 8259A to release vectoring information onto the data bus. The

format of this data depends on the system mode (mPM) of the 8259A.

DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to inter-face the 8259A to the system Data Bus.

Control words and status information are transferred through the Data Bus Buffer.

READ/WRITE CONTROL LOGIC

The function of this block is to accept Output commands from the CPU. It contains the

Initialization Command Word (ICW) registers and Operation Command Word (OCW)

registers which store the various control formats for device operation. This function block

also allows the status of the 8259A to be transferred onto the Data Bus.

CS (CHIP SELECT)

A LOW on this input enables the 8259A. No reading or writing of the chip will occur

unless the device is selected.

WR (WRITE)

A LOW on this input enables the CPU to write con-trol words (ICWs and OCWs)

to the 8259A. RD (READ)

A LOW on this input enables the 8259A to send the status of the Interrupt Request

Register (IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or the

Interrupt level onto the Data Bus.

124

A0

This input signal is used in conjunction with WR and RD signals to write commands

into the various command registers, as well as reading the various status registers of the chip.

This line can be tied directly to one of the address lines.

INTERRUPT SEQUENCE

The powerful features of the 8259A in a microcomputer system are its programmability and

the interrupt routine addressing capability. The latter allows direct or indirect jumping to

the specific interrupt routine requested without any polling of the interrupting devices. The

normal sequence of events during an interrupt depends on the type of CPU being used.

The events occur as follows in an MCS-80/85 sys-tem:

1. One or more of the INTERRUPT REQUEST lines (IR7±0) are raised high, setting the

correspond-ing IRR bit(s).

2. The 8259A evaluates these requests, and sends an INT to the CPU, if appropriate.

3. The CPU acknowledges the INT and responds with an INTA pulse.

4. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set, and the

correspond-ing IRR bit is reset. The 8259A will also release a CALL instruction code

(11001101) onto the 8-bit Data Bus through its D7±0 pins.

5. This CALL instruction will initiate two more INTA pulses to be sent to the 8259A from

the CPU group.

6. These two INTA pulses allow the 8259A to re-lease its preprogrammed subroutine address

onto the Data Bus. The lower 8-bit address is released at the first INTA pulse and the higher

8-bit address is released at the second INTA pulse.

7. This completes the 3-byte CALL instruction re-leased by the 8259A. In the AEOI mode

the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR

125

bit remains set until an appropriate EOI command is issued at the end of the

interrupt sequence.

8. The events occurring in an 8086 system are the same until step 4.

9. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set and the

corresponding IRR bit is reset. The 8259A does not drive the Data Bus during thiscycle.

10. The 8086 will initiate a second INTA pulse. During this pulse, the 8259A releases an 8- bit

pointer onto the Data Bus where it is read by the CPU.

11. This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the end of the

second INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI command

is issued at the end of the interrupt subroutine.

If no interrupt request is present at step 4 of either sequence (i.e., the request was too

short in duration) the 8259A will issue an interrupt level 7. Both the vectoring bytes and the

CAS lines will look like an interrupt level 7 was requested.

When the 8259A PIC receives an interrupt, INT be-comes active and an interrupt

acknowledge cycle is started. If a higher priority interrupt occurs between the two INTA

pulses, the INT line goes inactive immediately after the second INTA pulse. After an un-

specified amount of time the INT line is activated again to signify the higher priority

interrupt waiting for service. This inactive time is not specified and can vary between parts.

The designer should be aware of this consideration when designing a sys-tem which uses the

8259A. It is recommended that proper asynchronous design techniques be followed.

INITIALIZATION COMMAND WORDS

Whenever a command is issued with A0 e 0 and D4 e 1, this is interpreted as Initialization

Command Word 1 (ICW1). ICW1 starts the initialization sequence during which the

following automatically occur.

a. The edge sense circuit is reset, which means that following initialization, an interrupt

request (IR) input must make a low-to-high transition to generate an interrupt.

b. The Interrupt Mask Register is cleared.

c. IR7 input is assigned priority 7.

126

d. The slave mode address is set to 7.

e. Special Mask Mode is cleared and Status Read isset to IRR.

f. If IC4 e 0, then all functions selected in ICW4are set to zero. (Non-Buffered mode*, no

Auto-EOI, MCS-80, 85 system).

Initialization Command Word Format is as shown in figure

127

Fig 3.19 . Initialization Command Word Format

128

OPERATION COMMAND WORDS

After the Initialization Command Words (ICWs) are programmed into the 8259A, the chip

is ready to accept interrupt requests at its input lines. However, during the 8259A operation,

a selection of algorithms can command the 8259A to operate in various modes through the

Operation Command Words (OCWs). Operation Command Word format is as shown in

figure

Fig 3.20 a. Operational Control Words

129

Fig 3.20 b. Operation Command Word Format

INTERFACING MEMORY CHIPS WITH 8085

8085 has 16 address lines (A0 - A15), hence a maximum of 64 KB (= 216 bytes) of memory

locations can be interfaced with it. The memory address space of the 8085 takes values

from 0000H to FFFFH.

The 8085 initiates set of signals such as IO/M , RD and WR when it wants to read from

and write into memory. Similarly, each memory chip has signals such as CE or CS (chip

enable or chip select), OE or RD (output enable or read) and WE or WR (write enable

or write) associated with it.

Generation of Control Signals for Memory:

When the 8085 wants to read from and write into memory, it activates IO/M , RD

and WR signals as shown in Table .

130

Table 8 Status of IO/M , RD and WR signals during memory read and write operations

RD

WR

Operation IO/M

0 0 1 8085 reads data from memory

0 1 0 8085 writes data into memory

Using IO/M , RD and WR signals, two control signals MEMR (memory read) and

MEMW (memory write) are generated. Fig. 16 shows the circuit used to generate

these signals.

Fig. 3.21 Circuit used to generate MEMR and MEMW signals

When is IO/M high, both memory control signals are deactivated irrespective of the

status of RD and WR signals.

Ex: Interface an IC 2764 with 8085 using NAND gate address decoder such that

the address range allocated to the chip is 0000H – 1FFFH.

Specification of IC 2764:

8 KB (8 x 210 byte) EPROM chip

13 address lines (213 bytes = 8 KB)

Interfacing:

131

13 address lines of IC are connected to the corresponding address lines of 8085.

Remaining address lines of 8085 are connected to address decoder formed

using logic gates, the output of which is connected to the CE pin of IC.

Address range allocated to the chip is shown in Table 9.

Chip is enabled whenever the 8085 places an address allocated to EPROM chip in

the address bus. This is shown in Fig. 17.

Fig. 3.22 Interfacing IC 2764 with the 8085 Table 9 Address allocated to IC 2764

Ex: Interface a 6264 IC (8K x 8 RAM) with the 8085 using NAND gate decoder

such that the starting address assigned to the chip is 4000H.

Specification of IC 6264:

8K x 8 RAM

132

 8 KB = 213 bytes

13 address lines

The ending address of the chip is 5FFFH (since 4000H + 1FFFH = 5FFFH). When the

address 4000H to 5FFFH are written in binary form, the values in the lines A15, A14,

A13 are 0, 1 and 0 respectively. The NAND gate is designed such that when the lines

A15 and A13 carry 0 and A14 carries 1, the output of the NAND gate is 0. The NAND

gate output is in turn connected to the CE1 pin of the RAM chip. A NAND output of 0

selects the RAM chip for read or write operation, since CE2 is already 1 because of its

connection to +5V. Fig. 18 shows the interfacing of IC 6264 with the 8085.

Fig. 3.23 Interfacing 6264 IC with the 8085

Ex: Interface two 6116 ICs with the 8085 using 74LS138 decoder such that the starting

addresses assigned to them are 8000H and 9000H, respectively.

Specification of IC 6116:

2 K x 8 RAM

 2 KB = 211 bytes

11 address lines

133

6116 has 11 address lines and since 2 KB, therefore ending addresses of 6116 chip 1 is

and chip 2 are 87FFH and 97FFH, respectively. Table 10 shows the address range of the

two chips.

Table 3.1 Address range for IC 6116

Interfacing:

• Fig. 19 shows the interfacing.

• A0 – A10 lines of 8085 are connected to 11 address lines of the RAM chips.

• Three address lines of 8085 having specific value for a particular RAM are connected

to the three select inputs (C, B and A) of 74LS138 decoder.

• Table 10 shows that A13=A12=A11=0 for the address assigned to RAM 1 and

A13=0, A12=1 and A11=0 for the address assigned to RAM 2.

• Remaining lines of 8085 which are constant for the address range assigned to the two

RAM are connected to the enable inputs of decoder.

• When 8085 places any address between 8000H and 87FFH in the address bus, the

select inputs C, B and A of the decoder are all 0. The Y0 output of the decoder is also

0, selecting RAM 1.

134

• When 8085 places any address between 9000H and 97FFH in the address bus, the

select inputs C, B and A of the decoder are 0, 1 and 0. The Y2 output of the decoder

is also 0, selecting RAM 2.

Fig. 3.24 Interfacing two 6116 RAM chips using 74LS138 decoder

3. PERIPHERAL MAPPED I/O INTERFACING

In this method, the I/O devices are treated differently from memory chips. The

control signals I/O read (IOR) and I/O write (IOW), which are derived from the

IO/M , RD and

WR signals of the 8085, are used to activate input and output devices,

respectively.

Generation of these control signals is shown in Fig. 20. Table 11 shows the status of

IO/M , RD and WR signals during I/O read and I/O write operation.

135

Fig. 3.25 Generation of IOR and IOW signals

IN instruction is used to access input device and OUT instruction is used to access output

device. Each I/O device is identified by a unique 8-bit address assigned to it. Since the

control signals used to access input and output devices are different, and all I/O device

use 8-bit address, a maximum of 256 (28) input devices and 256 output devices can be

interfaced with 8085.

Table 3.2 Status of IOR and IOW signals in 8085.

IO/

M

RD

WR

IOR

IOW

Operation

1 0 1 0 1 I/O read operation

1 1 0 1 0 I/O write operation

0 X X 1 1 Memory read or write operation

Ex: Interface an 8-bit DIP switch with the 8085 such that the address assigned to the

DIP switch if F0H.

IN instruction is used to get data from DIP switch and store it in accumulator.

Steps involved in the execution of this instruction are:

• Address F0H is placed in the lines A0 – A7 and a copy of it in lines A8 – A15.

ii.

 The IOR signal is activated (IOR = 0), which makes the selected input device to

 place its data in the data bus.

iii. The data in the data bus is read and store in the accumulator.

136

Fig. 3.26 shows the interfacing of DIP switch.

A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 0 0 0 0 = F0H

A0 – A7 lines are connected to a NAND gate decoder such that the output of NAND gate is

0. The output of NAND gate is ORed with the IOR signal and the output of OR gate is

connected to 1G and 2G of the 74LS244. When 74LS244 is enabled, data from the DIP

switch is placed on the data bus of the 8085. The 8085 read data and store in the

accumulator. Thus data from DIP switch is transferred to the accumulator.

Fig. 3.26 interfacing of 8-bit DIP switch with 8085

137

4. MEMORY MAPPED I/O INTERFACING

In memory-mapped I/O, each input or output device is treated as if it is a memory location.

The MEMR and MEMW control signals are used to activate the devices. Each input or

output device is identified by unique 16-bit address, similar to 16-bit address assigned

to memory location. All memory related instruction like LDA 2000H, LDAX B, MOV

A, M can be used.Since the I/O devices use some of the memory address space of 8085,

the maximum memory capacity is lesser than 64 KB in this method. Ex: Interface an 8-

bit DIP switch with the 8085 using logic gates such that the address assigned to it is

F0F0H. Since a 16-bit address has to be assigned to a DIP switch, the memory- mapped

I/O technique must be used. Using LDA F0F0H instruction, the data from the 8-bit DIP

switch can be transferred to the accumulator. The steps involved are:

The address F0F0H is placed in the address bus A0 –

A15. The MEMR signal is made low for some time.

The data in the data bus is read and stored in the accumulator.

Fig. 3.27 shows the interfacing diagram.

Fig. 3.27 Interfacing 8-bit DIP switch with 8085

138

When 8085 executes the instruction LDA F0F0H, it places the address

F0F0H in the address lines A0 – A15 as:

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0= F0F0H

The address lines are connected to AND gates. The output of these gates along with

MEMR signal are connected to a NAND gate, so that when the address F0F0H is

placed in the address bus and MEMR = 0 its output becomes 0, thereby enabling the

buffer 74LS244. The data from the DIP switch is placed in the 8085 data bus. The 8085

reads the data from the data bus and stores it in the accumulator.

nterfacing ADC with 8085 Microprocessor

To interface the ADC with 8085, we need 8255 Programmable Peripheral Interface

chip with it. Let us see the circuit diagram of connecting 8085, 8255 and the ADC

converter.

Fig 3.28: ADC interfacing

139

The PortA of 8255 chip is used as the input port. The PC7 pin of Port Cupper is

connected to the End of Conversion (EOC) Pin of the analog to digital converter. This

port is also used as input port. The Clower port is used as output port. The PC2-0 lines

are connected to three address pins of this chip to select input channels. The PC3 pin is

connected to the Start of Conversion (SOC) pin and ALE pin of ADC 0808/0809.

Now let us see a program to generate digital signal from analog data. We are using IN0

as input pin, so the pin selection value will be 00H.

Program

 MVI A, 98H ; Set Port A and Cupper as input, CLower as output

 OUT 03H ; Write control word 8255-I to control Word register

 XRA A ; Clear the accumulator

 OUT 02H ; Send the content of Acc to Port Clower to select

 IN0

 MVI A, 08H ; Load the accumulator with 08H

 OUT 02H ; ALE and SOC will be 0

 XRA A ; Clear the accumulator

 OUT 02H ; ALE and SOC will be low.

 READ: IN 02H ; Read from EOC (PC7)

 RAL ; Rotate left to check C7 is 1.

 JNC READ ; If C7 is not 1, go to READ

 IN 00H ; Read digital output of ADC

 STA 8000H ; Save result at 8000H

 HLT ; Stop the program

140

Fig 3.29: Flow chart-ADC

Either of the method can write the program.

Fig 3.30: control word format

141

DAC

Fig 3.31: DAC Interfacing

• The processor sends an address, which is decoded by decoder in the microprocessor system to produce

chip select signal.

• Then the processor sends a digital data to latch. The buffer and inverter will produce sufficient delay

for CS signal so that, the latch is clocked only after the data is arrived at the input lines of the latch.

• When the latch is clocked the digital data is send to DAC. The DAC will produce a corresponding

current signal, which is converted to voltage signal by the op-amp 741.

• The typical settling time of DAC0800 is 150nsec. Therefore the processor need not wait for loading

next data

PROGRAMS FOR VARIOUS WAVEFORM GENERATION USING DAC

•

142

QUESTION BANK

PART A

1. What is interfacing

2. Distinguish memory mapped I/O and I/O mapped I/O

3. Draw the control word for 8255

4. Configure 8255 as PORT A-I/P, PORT B-O/P & PORT C LOWER-I/P , PORTC UPPER-O/P

5. Set PCO using bit set reset mode

6. Write the control word to generate square wave using 8253

7. What is the need of Priority resolver in 8259

8. How many interrupts maximum a 8259 can support

9. What is USART

10. Define resolution in DAC and ADC

11. What is EOC and SOC in ADC

12. Write an ALP to generate sawtooth using DAC

13. What are the two command words used in 8259

14. Explain mode 5 of 8253

15. Explain the transmitter section of 8251 USART

PART B

1. Explain with neat diagram 8255 PPI

2. With neat diagram explain how serial communication is done using 8251

3. With neat diagram explain the 8253 timer

4. Explain the various modes of 8253 timer

5. Discuss about 8259 PIC

6. Interface ADC to 8085 and explain

7. Interface DAC with 8085 and generate various waveforms

TEXT / REFERENCE BOOKS

3. Ramesh Gaonkar, “Microprocessor Architecture, Programming and applications with 8085”, 5th Edition,

Penram International Publishing Pvt Ltd, 2010.

2. Kenneth J Ayala, “The 8051 Microcontroller”, 2nd Edition, Thomson, 2005.

3. Nagoor Kani A, “Microprocessor and Microcontroller”, 2nd Edition, Tata McGraw Hill, 2012.

4. Mathur A.P. ” Introduction to microprocessor .“

5. Muhammad Ali Mazidi.”The 8051 Microcontroller and Embedded Systems.”

143

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

144

UNIT 4 8051 MICROCONTROLLER

8051 Architecture: Microcontroller Hardware – I/O Pins, Ports – Internal and External memory

– Counters and Timers – Serial data I/O – Interrupts – 8051 Assembly Language Programming:

Addressing modes, Instruction set of 8051, Data transfer instructions, Arithmetic and Logical

Instructions, Jump and Call Instructions interrupts and return interrupts and return interrupt

handling.

ARCHITECTURE OF 8051 MICROCONTROLLER

An 8051 microcontroller has the following 11 major components:
1. ALU (Arithmetic and Logic Unit)

2. PC (Program Counter)

3. Registers

4. Timers and counters

5. Internal RAM and ROM

6. Four general purpose parallel input/output ports

7. Interrupt control logic with five sources of interrupt

8. Serial date communication

9. PSW (Program Status Word)

10. Data Pointer (DPTR)

11. Stack Pointer (SP)

145

Fig 4.1: 8051- Architecture

The unique features are

Internal ROM and RAM, I/O ports with programmable pins, Timers and counters, Serial

Data communication

146

PROGRAMMING MODEL OF 8051

Fig 4.2: Programming Model

147

The above diagram shows the programming model of 8051.

The 8051 architecture consists of these specific features:

➢ 8 bit CPU with registers A and B

➢ 16 bit PC and DPTR

➢ 8 bit Program status word (PSW)

➢ 8 bit Stack pointer(SP)

➢ Internal ROM (4K)

➢ Internal RAM of 128 bytes

• 4 register banks, each containing 8 registers

• 16 bytes, which may be addressed at the bit level

• 80 bytes of general purpose data memory

➢ 32 input/output pins arranged as four 8 bit ports: P0-P3

➢ Two 16 bit Timers/Counters: T0 and T1

➢ Full duplex serial data receiver/transmitter: SBUF

➢ Control Register: TCON,TMOD,SCON,PCON,IP and IE

➢ Two external and three internal interrupt sources

➢ Oscillator and clock circuits

Special Function Registers (SFRs)

Special Function Registers (SFRs) are a sort of control table used for running and monitoring
the operation of the microcontroller. Each of these registers as well as each bit they include,

has its name, address in the scope of RAM and precisely defined purpose such as timer

control, interrupt control, serial communication control etc. Even though there are 128

memory locations intended to be occupied by them, the basic core, shared by all types of 8051

microcontrollers, has only 21 such registers. Rest of locations are intensionally left

unoccupied in order to enable the manufacturers to further develop microcontrollers

keeping them compatible with the previous versions. It also enables programs written a long

time ago for microcontrollers which are out of production now to be used today.

148

Fig 4.3 : SFR

A Register (Accumulator)

Fig 4.4: Accumulator

A register is a general-purpose register used for storing intermediate results obtained during

operation. Prior to executing an instruction upon any number or operand it is necessary to

store it in the accumulator first. All results obtained from arithmetical operations performed

by the ALU are stored in the accumulator. Data to be moved from one register to another

must go through the accumulator. In other words, the A register is the most commonly used

register and it is impossible to imagine a microcontroller without it. More than half

instructions used by the 8051 microcontroller use somehow the accumulator.

B Register

Multiplication and division can be performed only upon numbers stored in the A and B

registers. All other instructions in the program can use this register as a spare accumulator

149

(A).

Fig 4.5: B Register

R Registers (R0-R7)

Fig 4.6: Register Banks

This is a common name for 8 general-purpose registers (R0, R1, R2 ...R7). Even though they

are not true SFRs, they deserve to be discussed here because of their purpose. They occupy

4 banks within RAM. Similar to the accumulator, they are used for temporary storing

variables and intermediate results during operation. Which one of these banks is to be active

depends on two bits of the PSW Register. Active bank is a bank the registers of which are

currently used.

The following example best illustrates the purpose of these registers. Suppose it is necessary

to perform some arithmetical operations upon numbers previously stored in the R registers:

(R1+R2) - (R3+R4). Obviously, a register for temporary storing results of addition is needed.

This is how it looks in the program:

MOV A,R3; Means: move number from R3 into accumulator
ADD A,R4; Means: add number from R4 to accumulator (result remains in accumulator)
MOV R5,A; Means: temporarily move the result from accumulator into R5
MOV A,R1; Means: move number from R1 to accumulator
ADD A,R2; Means: add number from R2 to accumulator

SUBB A,R5; Means: subtract number from R5 (there are R3+R4)

150

Program Status Word (PSW) Register

Fig 4.7: PSW

PSW register is one of the most important SFRs. It contains several status bits that reflect

the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two

register bank select bits, Overflow flag, parity bit and user-definable status flag.

P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically

set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via

serial communication.

- Bit 1. This bit is intended to be used in the future versions of microcontrollers.

OV Overflow occurs when the result of an arithmetical operation is larger than 255 and

cannot be stored in one register. Overflow condition causes the OV bit to be set (1).

Otherwise, it will be cleared (0).

RS0, RS1 - Register bank select bits. These two bits are used to select one of four register

banks of RAM. By setting and clearing these bits, registers R0-R7 are stored in one of four

banks of RAM.

RS1 RS2 Space in RAM

0 0 Bank0 00h-07h

0 1 Bank1 08h-0Fh

1 0 Bank2 10h-17h

1 1 Bank3 18h-1Fh

F0 - Flag 0. This is a general-purpose bit available for use.

AC - Auxiliary Carry Flag is used for BCD operations only.

CY - Carry Flag is the (ninth) auxiliary bit used for all arithmetical operations and shift

instructions.

Data Pointer Register (DPTR)

DPTR register is not a true one because it doesn't physically exist. It consists of two separate

registers: DPH (Data Pointer High) and (Data Pointer Low). For this reason it may be treated

as a 16-bit register or as two independent 8-bit registers. Their 16 bits are primarly used for

external memory addressing. Besides, the DPTR Register is usually used for storing data and

intermediate results.

151

Fig 4.8: DPTR

Stack Pointer (SP) Register

Fig 4.9: Stack Pointer

A value stored in the Stack Pointer points to the first free stack address and permits stack

availability. Stack pushes increment the value in the Stack Pointer by 1. Likewise, stack pops

decrement its value by 1. Upon any reset and power-on, the value 7 is stored in the Stack

Pointer, which means that the space of RAM reserved for the stack starts at this location. If

another value is written to this register, the entire Stack is moved to the new memory

location.

P0, P1, P2, P3 - Input/Output Registers

Fig 4.10: P0

If neither external memory nor serial communication system are used then 4 ports with in

total of 32 input/output pins are available for connection to peripheral environment. Each bit

within these ports affects the state and performance of appropriate pin of the microcontroller.

152

Pin 18, 19: X2, X1

Pin 9: RS

Thus, bit logic state is reflected on appropriate pin as a voltage (0 or 5 V) and vice versa,

voltage on a pin reflects the state of appropriate port bit.

As mentioned, port bit state affects performance of port pins, i.e. whether they will be

configured as inputs or outputs. If a bit is cleared (0), the appropriate pin will be configured

as an output, while if it is set (1), the appropriate pin will be configured as an input. Upon

reset and power-on, all port bits are set (1), which means that all appropriate pins will be

configured as inputs.

Pinout Description

Each of these pins can be configured as an input or an output.

A logic one on this pin disables the microcontroller and clears the contents of most

registers. In other words, the positive voltage on this pin resets the microcontroller. By

applying logic zero to this pin, the program starts execution from the beginning.

Similar to port 1, each of these pins can serve as general input or output.

Besides, all of them have alternative functions:

Serial asynchronous communication input or Serial synchronous communication

output.

Serial asynchronous communication output or Serial synchronous communication

clock output.

Interrupt 0 input.

Interrupt 1 input.

Counter 0 clock

input. Counter 1

clock input.

Write to external (additional)

RAM. Read from external RAM.

Internal oscillator input and output. A quartz crystal which specifies

Pin 17: RD

Pin 16: WR

Pin 15: T1

Pin 14: T0

Pin 13: INT1

Pin 12: INT0

Pin 11: TXD

Pin 10: RXD

Pins10-17: Port 3

Pins 1-8: Port 1

153

Pin 31: EA

Pin 30: ALE

Pin 29: PSEN

Pin 21-28: Port 2

Operating frequency is usually connected to these pins. Instead of it, miniature ceramics

resonators can also be used for frequency stability. Later versions of microcontrollers
operate at a frequency of 0 Hz up to over 50 Hz.

Ground.

If there is no intention to use external memory then these port pins

are configured as general inputs/outputs. In case external memory is used, the higher

address byte,
i.e. addresses A8-A15 will appear on this port. Even though memory with capacity of 64Kb is

not used, which means that not all eight port bits are used for its addressing, the rest of

them are not available as inputs/outputs.

If external ROM is used for storing program then a logic zero (0) appears

on it every time the microcontroller reads a byte from memory.

Prior to reading from external memory, the microcontroller puts the lower

address byte (A0-A7) on P0 and activates the ALE output. After receiving signal from the

ALE pin, the external register (usually 74HCT373 or 74HCT375 add-on chip) memorizes the

state of P0 and uses it as a memory chip address. Immediately after that, the ALU pin is

returned its previous logic state and P0 is now used as a Data Bus. As seen, port data

multiplexing is performed by means of only one additional (and cheap) integrated circuit. In

other words, this port is used for both data and address transmission.

By applying logic zero to this pin, P2 and P3 are used for data and address

transmission with no

 PIN DIAGRAM OF 8051

Fig 4.11: Pin Diagram-8051

Pin 20: GND

154

Memory Organization

The 8051 has two types of memory and these are Program Memory and Data Memory.

Program Memory (ROM) is used to permanently save the program being executed, while

Data Memory (RAM) is used for temporarily storing data and intermediate results created

and used during the operation of the microcontroller. Depending on the model in use (we are

still talking about the 8051 microcontroller family in general) at most a few Kb of ROM and

128 or 256 bytes of RAM is used. However All 8051 microcontrollers have a 16-bit addressing

bus and are capable of addressing 64 kb memory. It is neither a mistake nor a big ambition

of engineers who were working on basic core development. It is a matter of smart memory

organization which makes these microcontrollers a real “programmers’ goody“.Program

Memory. The first models of the 8051 microcontroller family did not have internal program

memory. It was added as an external separate chip. These models are recognizable by their

label beginning with 803 (for example 8031 or 8032). All later models have a few Kbyte ROM

embedded. Even though such an amount of memory is sufficient for writing most of the

programs, there are situations when it is necessary to use additional memory as well. A typical

example is so called lookup tables. They are used in cases when equations describing some

processes are too complicated or when there is no time for solving them. In such cases all

necessary estimates and approximates are executed in advance and the final results are put

in the tables (similar to logarithmic tables).

How does the microcontroller handle external memory depends on the EA pin logic state:

Fig 4.12: External memory EA pin

EA=0 In this case, the microcontroller completely ignores internal program memory

and executes only the program stored in external memory.

EA=1 In this case, the microcontroller executes first the program from built-in ROM,

155

then the program stored in external memory.

In both cases, P0 and P2 are not available for use since being used for data and

address transmission. Besides, the ALE and PSEN pins are also used.

Data Memory

As already mentioned, Data Memory is used for temporarily storing data and intermediate

results created and used during the operation of the microcontroller. Besides, RAM memory

built in the 8051 family includes many registers such as hardware counters and timers,

input/output ports, serial data buffers etc. The previous models had 256 RAM locations,

while for the later models this number was incremented by additional 128 registers.

However, the first 256 memory locations (addresses 0-FFh) are the heart of memory common

to all the models belonging to the 8051 family. Locations available to the user occupy memory

space with addresses 0-7Fh, i.e. first 128 registers. This part of RAM is divided in several

blocks.

The first block consists of 4 banks each including 8 registers denoted by R0-R7. Prior to

accessing any of these registers, it is necessary to select the bank containing it. The next

memory block (address 20h-2Fh) is bit- addressable, which means that each bit has its own

address (0- 7Fh). Since there are 16 such registers, this block contains in total of 128 bits with

separate addresses (address of bit 0 of the 20h byte is 0, while address of bit 7 of the 2Fh

byte is 7Fh). The third group of registers occupy addresses 2Fh-7Fh, i.e. 80 locations, and

does not have any special functions or features.
Additional RAM

In order to satisfy the programmers’ constant hunger for Data Memory, the manufacturers

decided to embed an additional memory block of 128 locations into the latest versions of the

8051 microcontrollers. However, it’s not as simple as it seems to be… The problem is that

electronics performing addressing has 1 byte (8 bits) on disposal and is capable of reaching

only the first 256 locations, therefore. In order to keep already existing 8-bit architecture

and compatibility with other existing models a small trick was done.

What does it mean? It means that additional memory block shares the same addresses with

locations intended for the SFRs (80h- FFh). In order to differentiate between these two

physically separated memory spaces, different ways of addressing are used. The SFRs

memory locations are accessed by direct addressing, while additional RAM memory

locations are accessed by indirect addressing.

156

Fig 4.13 : Internal RAM

157

Memory expansion

In case memory (RAM or ROM) built in the microcontroller is not sufficient, it is possible to

add two external memory chips with capacity of 64Kb each. P2 and P3 I/O ports are used for

their addressing and data transmission.

Fig 4.14: External Memory Interfacing

From the user’s point of view, everything works quite simply when properly connected

because most operations are performed by the microcontroller itself. The 8051

microcontroller has two pins for data read RD#(P3.7) and PSEN#. The first one is used for

reading data from external data memory (RAM), while the other is used for reading data

from external program memory (ROM). Both pins are active low. A typical example of

memory expansion by adding RAM and ROM chips (Hardward architecture), is shown in

figure above.

158

Even though additional memory is rarely used with the latest versions of the

microcontrollers, we will describe in short what happens when memory chips are connected

according to the previous schematic. The whole process described below is performed

automatically.

• When the program during execution encounters an instruction which resides in external

memory (ROM), the microcontroller will activate its control output ALE and set the first

8 bits of address (A0-A7) on P0. IC circuit 74HCT573 passes the first 8 bits to memory

address pins.

• A signal on the ALE pin latches the IC circuit 74HCT573 and immediately afterwards 8

higher bits of address (A8-A15) appear on the port. In this way, a desired location of

additional program memory is addressed. It is left over to read its content.

• Port P0 pins are configured as inputs, the PSEN pin is activated and the microcontroller

reads from memory chip.

Similar occurs when it is necessary to read location from external RAM. Addressing is

performed in the same way, while read and write are performed via signals appearing on the

control outputs RD (is short for read) or WR (is short for write).

ADDRESSING MODES

An "addressing mode" refers to how you are addressing a given memory location. In

summary, the addressing modes are as follows, with an example of each:

Immediate Addressing MOV A,#20h

Direct Addressing MOV A,30h

Indirect Addressing MOV A,@R0

External Direct MOVX

A,@DPTR

Code Indirect MOVC A,@A+DPTR

Each of these addressing modes provides important flexibility.

Immediate Addressing

Immediate addressing is so-named because the value to be stored in memory immediately

follows the operation code in memory. That is to say, the instruction itself dictates what value

will be stored in memory.

For example, the instruction:

MOV A,#6Ah

This instruction uses Immediate Addressing because the Accumulator will be loaded with

the value that immediately follows; in this case 6A (hexidecimal).

Immediate addressing is very fast since the value to be loaded is included in the instruction.

However, since the value to be loaded is fixed at compile-time it is not very flexible.

159

Direct Addressing

Direct addressing is so-named because the value to be stored in memory is obtained by

directly retrieving it from another memory location. For example:

MOV A,30h

This instruction will read the data out of Internal RAM address 30 (hexidecimal) and store

it in the Accumulator.

Direct addressing is generally fast since, although the value to be loaded isnt included in the

instruction, it is quickly accessable since it is stored in the 8051s Internal RAM. It is also

much more flexible than Immediate Addressing since the value to be loaded is whatever is

found at the given address--which may be variable.

Also, it is important to note that when using direct addressing any instruction which refers

to an address between 00h and 7Fh is referring to Internal Memory. Any instruction which

refers to an address between 80h and FFh is referring to the SFR control registers that

control the 8051 microcontroller itself.

Indirect Addressing

Indirect addressing is a very powerful addressing mode which in many cases provides an

exceptional level of flexibility. Indirect addressing is also the only way to access the extra 128

bytes of Internal RAM found on an 8052.

Indirect addressing appears as follows:

MOV A,@R0

This instruction causes the 8051 to analyze the value of the R0 register. The 8051 will then

load the accumulator with the value from Internal RAM which is found at the address

indicated by R0.

For example, lets say R0 holds the value 40h and Internal RAM address 40h holds the value

67h. When the above instruction is executed the 8051 will check the value of R0. Since R0

holds 40h the 8051 will get the value out of Internal RAM address 40h (which holds 67h) and

store it in the Accumulator. Thus, the Accumulator ends up holding 67h.

Indirect addressing always refers to Internal RAM; it never refers to an SFR. Thus, in a

prior example we mentioned that SFR 99h can be used to write a value to the serial port.

Thus one may think that the following would be a valid solution to write the value 1 to the

serial port:

MOV R0,#99h ;Load the address of the serial port

MOV @R0,#01h ;Send 01 to the serial port -- WRONG!!

This is not valid. Since indirect addressing always refers to Internal RAM these two

instructions would write the value 01h to Internal RAM address 99h on an 8052. On an 8051

these two instructions would produce an undefined result since the 8051 only has 128 bytes

160

of Internal RAM.

External Direct

External Memory is accessed using a suite of instructions which use what I call "External

Direct" addressing. I call it this because it appears to be direct addressing, but it is used to

access external memory rather than internal memory.

There are only two commands that use External Direct addressing mode:

MOVXA,@DPT R
 MOVX
@DPTR,A

Both commands utilize DPTR. In these instructions, DPTR must first be loaded with the

address of external memory that you wish to read or write. Once DPTR holds the correct

external memory address, the first command will move the contents of that external memory

address into the Accumulator. The second command will do the opposite: it will allow you to

write the value of the Accumulator to the external memory address pointed to by DPTR.

External Indirect

External memory can also be accessed using a form of indirect addressing which I call

External Indirect addressing. This form of addressing is usually only used in relatively small

projects that have a very small amount of external RAM. An example of this addressing mode

is:

MOVX @R0,A

Once again, the value of R0 is first read and the value of the Accumulator is written to that

address in External RAM. Since the value of @R0 can only be 00h through FFh the project

would effectively be limited to 256 bytes of External RAM. There are relatively simple

hardware/software tricks that can be implemented to access more than 256 bytes of memory

using External Indirect addressing.

INSTRUCTION SET:

The process of writing program for the microcontroller mainly consists of giving instructions

(commands) in the specific order in which they should be executed in order to carry out a

specific task. As electronics cannot “understand” what for example an instruction “if the

push button is pressed- turn the light on” means, then a certain number of simpler and

precisely defined orders that decoder can recognise must be used. All commands are known

as INSTRUCTION SET. All microcontrollers compatibile with the 8051 have in total of 255

instructions, i.e. 255 different words available for program writing.

At first sight, it is imposing number of odd signs that must be known by heart. However, It

is not so complicated as it looks like. Many instructions are considered to be “different”, even

though they perform the same operation, so there are only 111 truly different commands.

For example: ADD A,R0, ADD A,R1, ... ADD A,R7 are instructions that perform the same

161

operation (additon of the accumulator and register). Since there are 8 such registers, each

instruction is counted separately. Taking into account that all instructions perform only 53

operations (addition, subtraction, copy etc.) and most of them are rarely used in practice,

there are actually 20-30 abbreviations to be learned, which is acceptable.

Types of instructions

Depending on operation they perform, all instructions are divided in several groups:

• Arithmetic Instructions
• Branch Instructions
• Data Transfer Instructions
• Logic Instructions
• Bit-oriented Instructions

The first part of each instruction, called MNEMONIC refers to the operation an instruction

performs (copy, addition, logic operation etc.). Mnemonics are abbreviations of the name of

operation being executed. For example:

• INC R1 - Means: Increment register R1 (increment register R1);
• LJMP LAB5 - Means: Long Jump LAB5 (long jump to the address marked as LAB5);

• JNZ LOOP - Means: Jump if Not Zero LOOP (if the number in the accumulator is not 0,
jump to the address marked as LOOP);

The other part of instruction, called OPERAND is separated from mnemonic by at least one

whitespace and defines data being processed by instructions. Some of the instructions have

no operand, while some of them have one, two or three. If there is more than one operand in

an instruction, they are separated by a comma. For example:

• RET - return from a subroutine;

• JZ TEMP - if the number in the accumulator is not 0, jump to the address marked as

TEMP;
• ADD A,R3 - add R3 and accumulator;

• CJNE A,#20,LOOP - compare accumulator with 20. If they are not equal, jump to the

address marked as LOOP;

Arithmetic instructions

Arithmetic instructions perform several basic operations such as addition, subtraction,

division, multiplication etc. After execution, the result is stored in the first operand. For

example:

ADD A,R1 - The result of addition (A+R1) will be stored in the accumulator.

Arithmetic Instructions

Mnemonic Description Byte Cycle

ADD A,Rn Adds the register to the accumulator 1 1

ADD A,direct Adds the direct byte to the accumulator 2 2

ADD A,@Ri Adds the indirect RAM to the accumulator 1 2

ADD A,#data Adds the immediate data to the accumulator 2 2

162

ADDC A,Rn Adds the register to the accumulator with a carry flag 1 1

ADDC
A,direct

Adds the direct byte to the accumulator with a carry flag 2 2

ADDC A,@Ri Adds the indirect RAM to the accumulator with a carry flag 1 2

ADDC
A,#data

Adds the immediate data to the accumulator with a carry flag 2 2

SUBB A,Rn Subtracts the register from the accumulator with a borrow 1 1

SUBB A,direct Subtracts the direct byte from the accumulator with a borrow 2 2

SUBB A,@Ri Subtracts the indirect RAM from the accumulator with a borrow 1 2

SUBB A,#data Subtracts the immediate data from the accumulator with a borrow 2 2

INC A Increments the accumulator by 1 1 1

INC Rn Increments the register by 1 1 2

INC Rx Increments the direct byte by 1 2 3

INC @Ri Increments the indirect RAM by 1 1 3

DEC A Decrements the accumulator by 1 1 1

DEC Rn Decrements the register by 1 1 1

DEC Rx Decrements the direct byte by 1 1 2

DEC @Ri Decrements the indirect RAM by 1 2 3

INC DPTR Increments the Data Pointer by 1 1 3

MUL AB Multiplies A and B 1 5

DIV AB Divides A by B 1 5

DA A Decimal adjustment of the accumulator according to BCD code 1 1

Branch Instructions

There are two kinds of branch instructions:

Unconditional jump instructions: upon their execution a jump to a new location from

where the program continues execution is executed.

Conditional jump instructions: a jump to a new program location is executed only if a

specified condition is met. Otherwise, the program normally proceeds with the next

instruction.

163

Fig 4.15: Jump Address Range

Branch Instructions

Mnemonic Description Byte Cycle

ACALL addr11 Absolute subroutine call 2 6

LCALL addr16 Long subroutine call 3 6

RET Returns from subroutine 1 4

RETI Returns from interrupt subroutine 1 4

AJMP addr11 Absolute jump 2 3

LJMP addr16 Long jump 3 4

SJMP rel
Short jump (from –128 to +127 locations relative to the following

2 3
instruction)

JC rel Jump if carry flag is set. Short jump. 2 3

JNC rel Jump if carry flag is not set. Short jump. 2 3

JB bit,rel Jump if direct bit is set. Short jump. 3 4

JBC bit,rel Jump if direct bit is set and clears bit. Short jump. 3 4
JMP @A+DPTR Jump indirect relative to the DPTR 1 2

JZ rel Jump if the accumulator is zero. Short jump. 2 3

JNZ rel Jump if the accumulator is not zero. Short jump. 2 3

CJNE A,direct,rel
Compares direct byte to the accumulator and jumps if not equal.

34

Short jump.

CJNE A,#data,rel
Compares immediate data to the accumulator and jumps if not

34

equal. Short jump.

CJNE Rn,#data,rel

164

CJNE
DJNZ Rn,rel Decrements register and jumps if not 0. Short jump. 2 3

DJNZ Rx,rel Decrements direct byte and jump if not 0. Short jump. 3 4

NOP No operation 1 1

Data Transfer Instructions

Data transfer instructions move the content of one register to another. The register the

content of which is moved remains unchanged. If they have the suffix “X” (MOVX), the data

is exchanged with external memory.

Data Transfer Instructions

Mnemonic Description Byte Cycle

MOV A,Rn Moves the register to the accumulator 1 1

MOV A,direct Moves the direct byte to the accumulator 2 2

MOV A,@Ri Moves the indirect RAM to the accumulator 1 2

MOV A,#data Moves the immediate data to the accumulator 2 2

MOV Rn,A Moves the accumulator to the register 1 2

MOV Rn,direct Moves the direct byte to the register 2 4

MOV Rn,#data Moves the immediate data to the register 2 2

MOV direct,A Moves the accumulator to the direct byte 2 3

MOV direct,Rn Moves the register to the direct byte 2 3

MOV direct,direct Moves the direct byte to the direct byte 3 4

MOV direct,@Ri Moves the indirect RAM to the direct byte 2 4

MOV direct,#data Moves the immediate data to the direct byte 3 3

MOV @Ri,A Moves the accumulator to the indirect RAM 1 3

MOV @Ri,direct Moves the direct byte to the indirect RAM 2 5

MOV @Ri,#data Moves the immediate data to the indirect RAM 2 3

MOV DPTR,#data Moves a 16-bit data to the data pointer 3 3

MOVC Moves the code byte relative to the DPTR to the accumulator
1 3

A,@A+DPTR (address=A+DPTR)

MOVC A,@A+PC
Moves the code byte relative to the PC to the accumulator

1 3
(address=A+PC)

MOVX A,@Ri Moves the external RAM (8-bit address) to the accumulator 1 3-10

OVX A,@DPTR Moves the external RAM (16-bit address) to the accumulator 1 3-10

MOVX @Ri,A Moves the accumulator to the external RAM (8-bit address) 1 4-11

MOVX

@DPTR,A

Moves the accumulator to the external RAM (16-bit address) 1 4-11

PUSH direct Pushes the direct byte onto the stack 2 4

POP direct Pops the direct byte from the stack/td> 2 3

XCH A,Rn Exchanges the register with the accumulator 1 2

XCH A,direct Exchanges the direct byte with the accumulator 2 3

XCH A,@Ri Exchanges the indirect RAM with the accumulator 1 3

165

XCHD A,@Ri Exchanges the low-order nibble indirect RAM with the 1 3
accumulator

Logic Instructions

Logic instructions perform logic operations upon corresponding bits of

execution, the result is stored in the first operand.

two registers. After

Logic Instructions

Mnemonic Description Byte Cycle

ANL A,Rn AND register to accumulator 1 1

ANL A,direct AND direct byte to accumulator 2 2

ANL A,@Ri AND indirect RAM to accumulator 1 2

ANL A,#data AND immediate data to accumulator 2 2

ANL direct,A AND accumulator to direct byte 2 3

ANL direct,#data AND immediae data to direct register 3 4

ORL A,Rn OR register to accumulator 1 1

ORL A,direct OR direct byte to accumulator 2 2

ORL A,@Ri OR indirect RAM to accumulator 1 2

ORL direct,A OR accumulator to direct byte 2 3

ORL direct,#data OR immediate data to direct byte 3 4

XRL A,Rn Exclusive OR register to accumulator 1 1

XRL A,direct Exclusive OR direct byte to accumulator 2 2

XRL A,@Ri Exclusive OR indirect RAM to accumulator 1 2

XRL A,#data Exclusive OR immediate data to accumulator 2 2

XRL direct,A Exclusive OR accumulator to direct byte 2 3

XORL direct,#data Exclusive OR immediate data to direct byte 3 4

CLR A Clears the accumulator 1 1

CPL A Complements the accumulator (1=0, 0=1) 1 1

SWAP A Swaps nibbles within the accumulator 1 1

RL A Rotates bits in the accumulator left 1 1

RLC A Rotates bits in the accumulator left through carry 1 1

RR A Rotates bits in the accumulator right 1 1

RRC A Rotates bits in the accumulator right through carry 1 1

166

Bit-oriented Instructions

Similar to logic instructions, bit-oriented instructions perform logic operations. The

difference is that these are performed upon single bits.

Bit-oriented Instructions

Mnemonic Description Byte Cycle

CLR C Clears the carry flag 1 1

CLR bit Clears the direct bit 2 3

SETB C Sets the carry flag 1 1

SETB bit Sets the direct bit 2 3

CPL C Complements the carry flag 1 1

CPL bit Complements the direct bit 2 3

ANL C,bit AND direct bit to the carry flag 2 2

ANL C,/bit AND complements of direct bit to the carry flag 2 2

ORL C,bit OR direct bit to the carry flag 2 2

ORL C,/bit OR complements of direct bit to the carry flag 2 2

MOV C,bit Moves the direct bit to the carry flag 2 2

MOV bit,C Moves the carry flag to the direct bit 2 3

8051 Microcontroller Interrupts

There are five interrupt sources for the 8051, which means that they can recognize 5

different events that can interrupt regular program execution. Each interrupt can be

enabled or disabled by setting bits of the IE register. Likewise, the whole interrupt system

can be disabled by clearing the EA bit of the same register. Refer to figure below.

Now, it is necessary to explain a few details referring to external interrupts- INT0 and

INT1. If the IT0 and IT1 bits of the TCON register are set, an interrupt will be generated

on high to low transition, i.e. on the falling pulse edge (only in that moment). If these bits

are cleared, an interrupt will be continuously executed as far as the pins are held low.

167

Fig 4.16:TCON

IE Register (Interrupt Enable)

Fig 4.17: IE

• EA - global interrupt enable/disable:

o 0 - disables all interrupt requests.

o 1 - enables all individual interrupt requests.
• ES - enables or disables serial interrupt:

o 0 - UART system cannot generate an interrupt.

o 1 - UART system enables an interrupt.
• ET1 - bit enables or disables Timer 1 interrupt:

o 0 - Timer 1 cannot generate an interrupt.

o 1 - Timer 1 enables an interrupt.

• EX1 - bit enables or disables external 1 interrupt:

o 0 - change of the pin INT0 logic state cannot generate an interrupt.

o 1 - enables an external interrupt on the pin INT0 state change.
• ET0 - bit enables or disables timer 0 interrupt:

o 0 - Timer 0 cannot generate an interrupt.

o 1 - enables timer 0 interrupt.
• EX0 - bit enables or disables external 0 interrupt:

o 0 - change of the INT1 pin logic state cannot generate an interrupt.

o 1 - enables an external interrupt on the pin INT1 state change.

Interrupt Priorities

It is not possible to forseen when an interrupt request will arrive. If several

interrupts are enabled, it may happen that while one of them is in progress, another one is

requested. In order

168

that the microcontroller knows whether to continue operation or meet a new interrupt

request, there is a priority list instructing it what to do.

The priority list offers 3 levels of interrupt priority:

1. Reset! The apsolute master. When a reset request arrives, everything is stopped and the

microcontroller restarts.
2. Interrupt priority 1 can be disabled by Reset only.

3. Interrupt priority 0 can be disabled by both Reset and interrupt priority 1.

The IP Register (Interrupt Priority Register) specifies which one of existing interrupt

sources have higher and which one has lower priority. Interrupt priority is usually

specified at the beginning of the program. According to that, there are several

possibilities:

• If an interrupt of higher priority arrives while an interrupt is in progress, it will be

immediately stopped and the higher priority interrupt will be executed first.

• If two interrupt requests, at different priority levels, arrive at the same time then the

higher priority interrupt is serviced first.

• If the both interrupt requests, at the same priority level, occur one after another, the one

which came later has to wait until routine being in progress ends.
• If two interrupt requests of equal priority arrive at the same time then the interrupt to be

serviced is selected according to the following priority list:

1. External interrupt INT0

2. Timer 0 interrupt

3. External Interrupt INT1

4. Timer 1 interrupt

5. Serial Communication Interrupt

IP Register (Interrupt Priority)

The IP register bits specify the priority level of each interrupt (high or low priority).

Fig 4.18: IP

• PS - Serial Port Interrupt priority bit

o Priority 0

o Priority 1
• PT1 - Timer 1 interrupt priority

o Priority 0

o Priority 1
• PX1 - External Interrupt INT1 priority

169

o Priority 0

o Priority 1
• PT0 - Timer 0 Interrupt Priority

o Priority 0

o Priority 1
• PX0 - External Interrupt INT0 Priority

o Priority 0

o Priority 1

Handling Interrupt

When an interrupt request arrives the following occurs:

1. Instruction in progress is ended.

2. The address of the next instruction to execute is pushed on the stack.

3. Depending on which interrupt is requested, one of 5 vectors (addresses) is written to the
program counter in accordance to the table below:

4.

Interrupt Source Vector (address)

IE0 3 h

TF0 B h

TF1 1B h

RI, TI 23 h

All addresses are in hexadecimal format

5. These addresses store appropriate subroutines processing interrupts. Instead of them,

there are usually jump instructions specifying locations on which these subroutines

reside.

6. When an interrupt routine is executed, the address of the next instruction to execute is

poped from the stack to the program counter and interrupted program resumes operation

from where it left off.

Reset

Reset occurs when the RS pin is supplied with a positive pulse in duration of at least 2

machine cycles (24 clock cycles of crystal oscillator). After that, the microcontroller

generates an internal reset signal which clears all SFRs, except SBUF registers, Stack Pointer

and ports (the state of the first two ports is not defined, while FF value is written to the ports

configuring all their pins as inputs). Depending on surrounding and purpose of device, the

RS pin is usually connected to a power-on reset push button or circuit or to both of them.

Figure below illustrates one of the simplest circuit providing safe power-on reset.

170

Fig 4.19:Reset

Basically, everything is very simple: after turning the power on, electrical capacitor is being

charged for several milliseconds throgh a resistor connected to the ground. The pin is driven

high during this process. When the capacitor is charged, power supply voltage is already

stable and the pin remains connected to the ground, thus providing normal operation of the

microcontroller. Pressing the reset button causes the capacitor to be temporarily discharged

and the microcontroller is reset. When released, the whole process is repeated…

Through the program- step by step...

Microcontrollers normally operate at very high speed. The use of 12 Mhz quartz crystal enables

1.00.00 instructions to be executed per second. Basically, there is no need for higher operating

rate. In case it is needed, it is easy to built in a crystal for high frequency. The problem arises

when it is necessary to slow down the operation of the microcontroller. For example during testing

in real environment when it is necessary to execute several instructions step by step in order to

check I/O pins' logic state.

Interrupt system of the 8051 microcontroller practically stops operation of the

microcontroller and enables instructions to be executed one after another by pressing the

button. Two interrupt features enable that:

• Interrupt request is ignored if an interrupt of the same priority level is in progress.

• Upon interrupt routine execution, a new interrupt is not executed until at least one

instruction from the main program is executed.

In order to use this in practice, the following steps should be done:

171

1. External interrupt sensitive to the signal level should be enabled (for example INT0).

2. Three following instructions should be inserted into the program (at the 03hex. address):

What is going on? As soon as the P3.2 pin is cleared (for example, by pressing the button),

the microcontroller will stop program execution and jump to the 03hex address will be

executed. This address stores a short interrupt routine consisting of 3 instructions.

The first instruction is executed until the push button is realised (logic one (1) on the P3.2

pin). The second instruction is executed until the push button is pressed again. Immediately

after that, the RETI instruction is executed and the processor resumes operation of the main

program. Upon execution of any program instruction, the interrupt INT0 is generated and

the whole procedure is repeated (push button is still pressed). In other words, one button

press - one instruction

INPUT/OUTPUT PORTS

All 8051 microcontrollers have 4 I/O ports each comprising 8 bits which can be configured

as inputs or outputs. Accordingly, in total of 32 input/output pins enabling the

microcontroller to be connected to peripheral devices are available for use.

Pin configuration, i.e. whether it is to be configured as an input (1) or an output (0), depends

on its logic state. In order to configure a microcontroller pin as an output, it is necessary to

apply a logic zero (0) to appropriate I/O port bit. In this case, voltage level on appropriate

pin will be 0.

Similarly, in order to configure a microcontroller pin as an input, it is necessary to apply a

logic one (1) to appropriate port. In this case, voltage level on appropriate pin will be 5V (as

is the case with any TTL input). This may seem confusing but don't loose your patience. It

all becomes clear after studying simple electronic circuits connected to an I/O pin.

172

Fig 4.20: Input / Output

Fig 4.21: Output

Input/Output (I/O) pin

Figure above illustrates a simplified schematic of all circuits within the microcontroller

connected to one of its pins. It refers to all the pins except those of the P0 port which do not

have pull-up resistors built-in.

173

 Fig 4.22: Input / output

Output pin

A logic zero (0) is applied to a bit of the P register. The output FE transistor is turned on,

thus connecting the appropriate pin to ground.

Fig 4.23 output

Hardware interrupts of 8085

Input pin

A logic one (1) is applied to a bit of the P register. The output FE transistor is turned off

and the appropriate pin remains connected to the power supply voltage over a pull-up

resistor of high resistance.

Logic state (voltage) of any pin can be changed or read at any moment. A logic zero (0) and

logic one (1) are not equal. A logic one (0) represents a short circuit to ground. Such a pin

acts as an output.

A logic one (1) is “loosely” connected to the power supply voltage over a resistor of high

resistance. Since this voltage can be easily “reduced” by an external signal, such a pin acts

as an input.

174

Port 0

The P0 port is characterized by two functions. If external memory is used then the lower

address byte (addresses A0-A7) is applied on it. Otherwise, all bits of this port are configured

as inputs/outputs.

The other function is expressed when it is configured as an output. Unlike other ports

consisting of pins with built-in pull-up resistor connected by its end to 5 V power supply,

pins of this port have this resistor left out. This apparently small difference has its

consequences:

Fig 4.24: Port 0 configuration-input

If any pin of this port is configured as an input then it acts as if it “floats”. Such an input has

unlimited input resistance and indetermined potential.

Fig 4.25: Port 0 configuration-output

When the pin is configured as an output, it acts as an “open drain”. By applying logic 0 to a

port bit, the appropriate pin will be connected to ground (0V). By applying logic 1, the

external output will keep on “floating”. In order to apply logic 1 (5V) on this output pin, it is

necessary to built in an external pull-up resistor.

Only in case P0 is used for addressing external memory, the microcontroller will provide

internal power supply source in order to supply its pins with logic one. There is no need to

add external pull-up resistors.

175

Port 1

P1 is a true I/O port, because it doesn't have any alternative functions as is the case with P0,

but can be cofigured as general I/O only. It has a pull-up resistor built-in and is completely

compatible with TTL circuits.

Port 2

P2 acts similarly to P0 when external memory is used. Pins of this port occupy addresses

intended for external memory chip. This time it is about the higher address byte with

addresses A8-A15. When no memory is added, this port can be used as a general input/output

port showing features similar to P1.

Port 3

All port pins can be used as general I/O, but they also have an alternative function. In order

to use these alternative functions, a logic one (1) must be applied to appropriate bit of the P3

register. In tems of hardware, this port is similar to P0, with the difference that its pins have

a pull-up resistor built-in.

Pin's Current limitations

When configured as outputs (logic zero (0)), single port pins can receive a current of 10mA.

If all 8 bits of a port are active, a total current must be limited to 15mA (port P0: 26mA). If

all ports (32 bits) are active, total maximum current must be limited to 71mA. When these

pins are configured as inputs (logic 1), built-in pull-up resistors provide very weak current,

but strong enough to activate up to 4 TTL inputs of LS series.

As seen from description of some ports, even though all of them have more or less similar

architecture, it is necessary to pay attention to which of them is to be used for what and how.

For example, if they shall be used as outputs with high voltage level (5V), then P0 should be

avoided because its pins do not have pull-up resistors, thus giving low logic level only. When

using other ports, one should have in mind that pull-up resistors have a relatively high

resistance, so that their pins can give a current of several hundreds microamperes only.

Counters and Timers

As you already know, the microcontroller oscillator uses quartz crystal for its operation. As

the frequency of this oscillator is precisely defined and very stable, pulses it generates are

always of the same width, which makes them ideal for time measurement. Such crystals are

also used in quartz watches. In order to measure time between two events it is sufficient to

count up pulses coming from this oscillator. That is exactly what the timer does. If the timer

is properly programmed, the value stored in its register will be incremented (or

decremented) with each coming pulse, i.e. once per each machine cycle. A single machine-

cycle instruction lasts for 12 quartz oscillator periods, which means that by embedding

176

quartz with oscillator frequency of 12MHz, a number stored in the timer register will be

changed million times per second, i.e. each microsecond.

The 8051 microcontroller has 2 timers/counters called T0 and T1. As their names suggest,

their main purpose is to measure time and count external events. Besides, they can be used

for generating clock pulses to be used in serial communication, so called Baud Rate.

Timer T0

As seen in figure below, the timer T0 consists of two registers – TH0 and TL0 representing a

low and a high byte of one 16-digit binary number.

Fig 4.26: Timer 0

Accordingly, if the content of the timer T0 is equal to 0 (T0=0) then both registers it consists

of will contain 0. If the timer contains for example number 1000 (decimal), then the TH0

register (high byte) will contain the number 3, while the TL0 register (low byte) will contain

decimal number 232.

Fig 4.27: Timer 0-TLO& TL1

Formula used to calculate values in these two registers is very

simple: TH0 × 256 + TL0 = T

Matching the previous example it would be as

follows: 3 × 256 + 232 = 1000

177

Fig 4.28: Timer 0

Since the timer T0 is virtually 16-bit register, the largest value it can store is 65 535. In

case of exceeding this value, the timer will be automatically cleared and counting starts

from 0. This condition is called an overflow. Two registers TMOD and TCON are closely

connected to this timer and control its operation.

TMOD Register (Timer Mode)

The TMOD register selects the operational mode of the timers T0 and T1. As seen in

figure below, the low 4 bits (bit0 - bit3) refer to the timer 0, while the high 4 bits (bit4 -

bit7) refer to the timer 1. There are 4 operational modes and each of them is described

herein.

Fig 4.29: TMOD

Bits of this register have the following function:

• GATE1 enables and disables Timer 1 by means of a signal brought to the INT1 pin

(P3.3):

o 1 - Timer 1 operates only if the INT1 bit is set.

o 0 - Timer 1 operates regardless of the logic state of the INT1 bit.
• C/T1 selects pulses to be counted up by the timer/counter 1:

o 1 - Timer counts pulses brought to the T1 pin (P3.5).

o 0 - Timer counts pulses from internal oscillator.

• T1M1,T1M0 These two bits select the operational mode of the Timer 1.

T1M1 T1M0 Mode Description

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

178

1 1 3 Split mode

• GATE0 enables and disables Timer 1 using a signal brought to the INT0 pin (P3.2):

o 1 - Timer 0 operates only if the INT0 bit is set.

o 0 - Timer 0 operates regardless of the logic state of the INT0 bit.
• C/T0 selects pulses to be counted up by the timer/counter 0:

o 1 - Timer counts pulses brought to the T0 pin (P3.4).

o 0 - Timer counts pulses from internal oscillator.

• T0M1,T0M0 These two bits select the oprtaional mode of the Timer 0.

T0M1 T0M0 Mode Description

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

1 1 3 Split mode

Timer 0 in mode 0 (13-bit timer)

This is one of the rarities being kept only for the purpose of compatibility with the previuos

versions of microcontrollers. This mode configures timer 0 as a 13-bit timer which consists

of all 8 bits of TH0 and the lower 5 bits of TL0. As a result, the Timer 0 uses only 13 of 16

bits. How does it operate? Each coming pulse causes the lower register bits to change their

states. After receiving 32 pulses, this register is loaded and automatically cleared, while the

higher byte (TH0) is incremented by 1. This process is repeated until registers count up 8192

pulses. After that, both registers are cleared and counting starts from 0.

Fig 4.30: Timer Mode 0

179

Timer 0 in mode 1 (16-bit timer)

Mode 1 configures timer 0 as a 16-bit timer comprising all the bits of both registers TH0

and TL0. That's why this is one of the most commonly used modes. Timer operates in the

same way as in mode 0, with difference that the registers count up to 65 536 as allowable by

the 16 bits.

Fig 4.31: Timer Mode 1

Timer 0 in mode 2 (Auto-Reload Timer)

Mode 2 configures timer 0 as an 8-bit timer. Actually, timer 0 uses only one 8-bit register

for counting and never counts from 0, but from an arbitrary value (0-255) stored in

another (TH0) register.

The following example shows the advantages of this mode. Suppose it is necessary to

constantly count up 55 pulses generated by the clock.

If mode 1 or mode 0 is used, It is necessary to write the number 200 to the timer registers

and constantly check whether an overflow has occured, i.e. whether they reached the value

255. When it happens, it is necessary to rewrite the number 200 and repeat the whole

procedure. The same procedure is automatically performed by the microcontroller if set in

mode 2. In fact, only the TL0 register operates as a timer, while another (TH0) register stores

the value from which the counting starts. When the TL0 register is loaded, instead of being

cleared, the contents of TH0 will be reloaded to it. Referring to the previous example, in

180

order to register each 55th pulse, the best solution is to write the number 200 to the TH0

register and configure the timer to operate in mode 2.

Fig 4.32: Timer Mode 2

Timer 0 in Mode 3 (Split Timer)

Mode 3 configures timer 0 so that registers TL0 and TH0 operate as separate 8-bit timers.

In other words, the 16-bit timer consisting of two registers TH0 and TL0 is split into two

independent 8-bit timers. This mode is provided for applications requiring an additional 8-

bit timer or counter. The TL0 timer turns into timer 0, while the TH0 timer turns into timer

1. In addition, all the control bits of 16-bit Timer 1 (consisting of the TH1 and TL1 register),

now control the 8-bit Timer 1. Even though the 16-bit Timer 1 can still be configured to

operate in any of modes (mode 1, 2 or 3), it is no longer possible to disable it as there is no

control bit to do it. Thus, its operation is restricted when timer 0 is in mode 3.

181

Fig 4.33: Timer Mode 3

The only application of this mode is when two timers are used and the 16-bit Timer 1 the
operation of which is out of control is used as a baud rate generator.

Timer Control (TCON) Register

TCON register is also one of the registers whose bits are directly in control of timer

operation. Only 4 bits of this register are used for this purpose, while rest of them is used for

interrupt control to be discussed later.

Fig 4.34: TCON

• TF1 bit is automatically set on the Timer 1 overflow.

• TR1 bit enables the Timer 1.

o 1 - Timer 1 is enabled.

182

o 0 - Timer 1 is disabled.
• TF0 bit is automatically set on the Timer 0 overflow.
• TR0 bit enables the timer 0.

o 1 - Timer 0 is enabled.

o 0 - Timer 0 is disabled.

How to use the Timer 0 ?

In order to use timer 0, it is first necessary to select it and configure the mode of its

operation. Bits of the TMOD register are in control of it:

Fig 4.35: Timer 0 configuration

Referring to figure above, the timer 0 operates in mode 1 and counts pulses generated by

internal clock the frequency of which is equal to 1/12 the quartz frequency.

Turn on the timer:

183

Fig 4.36: TCON control bits

The TR0 bit is set and the timer starts operation. If the quartz crystal with frequency of

12MHz is embedded then its contents will be incremented every microsecond. After 65.536

microseconds, the both registers the timer consists of will be loaded. The microcontroller

automatically clears them and the timer keeps on repeating procedure from the beginning

until the TR0 bit value is logic zero (0).

How to 'read' a timer?

Depending on application, it is necessary either to read a number stored in the timer

registers or to register the moment they have been cleared.

- It is extremely simple to read a timer by using only one register configured in mode 2 or 3. It is

sufficient to read its state at any moment. That's all!

- It is somehow complicated to read a timer configured to operate in mode 2. Suppose the lower

byte is read first (TL0), then the higher byte (TH0). The result is:

TH0 = 15 TL0 = 255

Everything seems to be ok, but the current state of the register at the moment of reading

was: TH0 = 14 TL0 = 255

In case of negligence, such an error in counting (255 pulses) may occur for not so obvious

but quite logical reason. The lower byte is correctly read (255), but at the moment the

program counter was about to read the higher byte TH0, an overflow occurred and the

contents of both registers have been changed (TH0: 14→15, TL0: 255→0). This problem

has a simple solution. The higher byte should be read first, then the lower byte and once

again the higher byte. If the number stored in the higher byte is different then this sequence

184

should be repeated. It's about a short loop consisting of only 3 instructions in the program.

There is another solution as well. It is sufficient to simply turn the timer off while reading is

going on (the TR0 bit of the TCON register should be cleared), and turn it on again after

reading is finished.

Timer 0 Overflow Detection

Usually, there is no need to constantly read timer registers. It is sufficient to register the

moment they are cleared, i.e. when counting starts from 0. This condition is called an

overflow. When it occurrs, the TF0 bit of the TCON register will be automatically set. The

state of this bit can be constantly checked from within the program or by enabling an

interrupt which will stop the main program execution when this bit is set. Suppose it is

necessary to provide a program delay of

0.05 seconds (50 000 machine cycles), i.e. time when the program seems to be

stopped: First a number to be written to the timer registers should be calculated:

Then it should be written to the timer registers TH0 and TL0:

Fig 4.37: Timer 0 -TLO & THO count write

When enabled, the timer will resume counting from this number. The state of the TF0 bit,

i.e. whether it is set, is checked from within the program. It happens at the moment of

overflow, i.e. after exactly 50.000 machine cycles or 0.05 seconds.

185

How to measure pulse duration?

Fig 4.38: Measure Pulse duration

Suppose it is necessary to measure the duration of an operation, for example how long a

device has been turned on? Look again at the figure illustrating the timer and pay attention

to the function of the GATE0 bit of the TMOD register. If it is cleared then the state of the

P3.2 pin doesn't affect timer operation. If GATE0 = 1 the timer will operate until the pin

P3.2 is cleared. Accordingly, if this pin is supplied with 5V through some external switch at

the moment the device is being turned on, the timer will measure duration of its operation,

which actually was the objective.

How to count up pulses?

Similarly to the previous example, the answer to this question again lies in the TCON

register. This time it's about the C/T0 bit. If the bit is cleared the timer counts pulses

generated by the internal oscillator, i.e. measures the time passed. If the bit is set, the timer

input is provided with pulses from the P3.4 pin (T0). Since these pulses are not always of the

same width, the timer cannot be used for time measurement and is turned into a counter,

therefore. The highest frequency that could be measured by such a counter is 1/24 frequency

of used quartz-crystal.

Timer 1

Timer 1 is identical to timer 0, except for mode 3 which is a hold-count mode. It means that

they have the same function, their operation is controlled by the same registers TMOD and

TCON and both of them can operate in one out of 4 different modes.

186

Fig 4.39: timer 1

SERIAL COMMUNICATION

One of the microcontroller features making it so powerful is an integrated UART, better

known as a serial port. It is a full-duplex port, thus being able to transmit and receive data

simultaneously and at different baud rates. Without it, serial data send and receive would be

an enormously complicated part of the program in which the pin state is constantly changed

and checked at regular intervals. When using UART, all the programmer has to do is to

simply select serial port mode and baud rate. When it's done, serial data transmit is nothing

but writing to the SBUF register, while data receive represents reading the same register.

The microcontroller takes care of not making any error during data transmission.

Fig 4.40: SBUF

Serial port must be configured prior to being used. In other words, it is necessary to

determine how many bits is contained in one serial “word”, baud rate and synchronization

clock source. The whole process is in control of the bits of the SCON register (Serial

Control).

187

Serial Port Control (SCON) Register

Fig 4.41: SCON

• SM0 - Serial port mode bit 0 is used for serial port mode selection.
• SM1 - Serial port mode bit 1.

• SM2 - Serial port mode 2 bit, also known as multiprocessor communication enable bit.

When set, it enables multiprocessor communication in mode 2 and 3, and eventually

mode 1. It should be cleared in mode 0.

• REN - Reception Enable bit enables serial reception when set. When cleared, serial

reception is disabled.

• TB8 - Transmitter bit 8. Since all registers are 8-bit wide, this bit solves the problem of

transmiting the 9th bit in modes 2 and 3. It is set to transmit a logic 1 in the 9th bit.

• RB8 - Receiver bit 8 or the 9th bit received in modes 2 and 3. Cleared by hardware if 9th

bit received is a logic 0. Set by hardware if 9th bit received is a logic 1.

• TI - Transmit Interrupt flag is automatically set at the moment the last bit of one byte is

sent. It's a signal to the processor that the line is available for a new byte transmite. It

must be cleared from within the software.

• RI - Receive Interrupt flag is automatically set upon one byte receive. It signals that byte

is received and should be read quickly prior to being replaced by a new data. This bit is

also cleared from within the software.

As seen, serial port mode is selected by combining the SM0 and SM2 bits:

SM0 SM1 Mode Description Baud Rate

0 0 0 8-bit Shift Register 1/12 the quartz frequency

0 1 1 8-bit UART Determined by the timer 1

1 0 2 9-bit UART 1/32 the quartz frequency (1/64 the quartz frequency)

1 1 3 9-bit UART Determined by the timer 1

188

Fig 4.42: TXD , RXD

In mode 0, serial data are transmitted and received through the RXD pin, while the TXD pin

output clocks. The bout rate is fixed at 1/12 the oscillator frequency. On transmit, the least

significant bit (LSB bit) is sent/received first.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. In fact, this

process starts after any instruction being performed upon this register. When all 8 bits have

been sent, the TI bit of the SCON register is automatically set.

Fig 4.43: TXD , RXD status- TI-mode 0

189

RECEIVE - Data receive through the RXD pin starts upon the two following conditions are

met: bit REN=1 and RI=0 (both of them are stored in the SCON register). When all 8 bits

have been received, the RI bit of the SCON register is automatically set indicating that one

byte receive is complete.

Fig 4.44: TXD , RXD-RI-mode 0

Since there are no START and STOP bits or any other bit except data sent from the SBUF

register in the pulse sequence, this mode is mainly used when the distance between devices is

short, noise is minimized and operating speed is of importance. A typical example is I/O port

expansion by adding a cheap IC (shift registers 74HC595, 74HC597 and similar).

Mode 1

Fig 4.45: TXD , RXD, SBUF,SCON-mode 1

190

In mode 1, 10 bits are transmitted through the TXD pin or received through the RXD pin

in the following manner: a START bit (always 0), 8 data bits (LSB first) and a STOP bit

(always 1).

The START bit is only used to initiate data receive, while the STOP bit is automatically

written to the RB8 bit of the SCON register.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End of

data transmission is indicated by setting the TI bit of the SCON register.

Fig 4.46: TXD , TI-mode 1

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The

following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored

in the SCON register. The RI bit is automatically set upon data reception is complete.

Fig 4.47: RXD-RI-mode 1

The Baud rate in this mode is determined by the timer 1 overflow.

191

Mode 2

Fig 4.48: TXD , RXD-mode 2

In mode 2, 11 bits are transmitted through the TXD pin or received through the RXD pin:

a START bit (always 0), 8 data bits (LSB first), a programmable 9th data bit and a STOP

bit (always 1). On transmit, the 9th data bit is actually the TB8 bit of the SCON register.

This bit usually has a function of parity bit. On receive, the 9th data bit goes into the RB8

bit of the same register (SCON).The baud rate is either 1/32 or 1/64 the oscillator frequency.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End of

data transmission is indicated by setting the TI bit of the SCON register.

Fig 4.49: mode 2

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The

following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored

in the SCON register. The RI bit is automatically set upon data reception is complete.

192

Fig 4.50: mode 2

Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3

is variable.

Baud Rate

Baud Rate is a number of sent/received bits per second. In case the UART is used, baud

rate depends on: selected mode, oscillator frequency and in some cases on the state of the

SMOD bit of the SCON register. All the necessary formulas are specified in the table:

Timer 1 as a clock generator

Baud Rate
Fosc. (MHz)

Bit SMOD

11.0592 12 14.7456 16 20

150 40 h 30 h 00 h 0

300 A0 h 98 h 80 h 75 h 52 h 0

600 D0 h CC h C0 h BB h A9 h 0

1200 E8 h E6 h E0 h DE h D5 h 0

2400 F4 h F3 h F0 h EF h EA h 0

193

4800 F3 h EF h EF h 1

4800 FA h F8 h F5 h 0

9600 FD h FC h 0

9600 F5 h 1

19200 FD h FC h 1

38400 FE h 1

76800 FF h 1

Multiprocessor Communication

As you may know, additional 9th data bit is a part of message in mode 2 and 3. It can be used

for checking data via parity bit. Another useful application of this bit is in communication

between two or more microcontrollers, i.e. multiprocessor communication. This feature is

enabled by setting the SM2 bit of the SCON register. As a result, after receiving the STOP

bit, indicating end of the message, the serial port interrupt will be generated only if the bit

RB8 = 1 (the 9th bit).

This is how it looks like in practice:

Suppose there are several microcontrollers sharing the same interface. Each of them has its

own address. An address byte differs from a data byte because it has the 9th bit set (1),

while this bit is cleared (0) in a data byte. When the microcontroller A (master) wants to

transmit a block of data to one of several slaves, it first sends out an address byte which

identifies the target slave. An address byte will generate an interrupt in all slaves so that they

can examine the received byte and check whether it matches their address.

Fig 4.51: multiprocessor communication

Of course, only one of them will match the address and immediately clear the SM2 bit of the

SCON register and prepare to receive the data byte to come. Other slaves not being

addressed leave their SM2 bit set ignoring the coming data bytes.

194

Fig 4.52: multiprocessor communication

PROGRAMS USING 8051

Addition

mov

r0,#50 mov

a,@ro

inc r0

add

a,@ro

mov 60,a

lcall 00bb

Input: 50-55, 51-66

0utput: 60-bb

Subtraction
clr c

mov

r0,#50 mov

a,@ro

 inc r0

subb

a,@ro mov

60,a

lcall 00bb

Input: 50-66, 51-55

Output: 60-11

195

Multiplication

mov r0,#50

mov a,@r0

inc r0

mov f0,@r0

mul ab

mov 60,a

mov 61,0f0

lcall 00bb

Input: 50-ff, 51-ff

Output: 60-01(LSB),

61-FE

(MSB)

Division

mov r0,#50

mov a,@r0

 inc r0

mov f0,@r0

div ab

mov 60,a

mov 61,0f0

lcall 00bb
Input: 50-ff, 51-fd

Output: 60-01(Q) , 61-02 (R)

Smallest of an array

mov r0,#50h

mov r1,#05

mov 60,#ff

back:mov a,@r0

cjne a,60,loop

jnc loop

mov 60,a

 loop:inc ro

djnz r1,back

 lcall 00bb

Input:
50-99, 51-80, 52-70,

53-66, 54-77

196

Output: 60-66 Largest of an

array

mov r0,#50h

mov r1,#05

mov 60,#00

 back:mov a,@r0

cjne a,60,loop

 jc loop

mov 60,a

loop:inc ro

 djnz r1,back

 lcall 00bb

Input: 50-99, 51-80, 52-70, 53-66, 54-77
Output: 60-99

Factorial

mov

ro,#50 mov

a,@r0 mov

r1,a dec r1

l1:mov f0,r1

 mul ab

djnz r1,l1:

mov 60,a

lcall 00bb

i/p 50-05
o/p 60-78

sum of an array

mov r1,#05

 mov r0,#50

mov a,@r0

dec r1

l1:inc r0

add a,@r0

djnz r1,l1

mov 60,a

lcall 00bb

i/p 50-01,51-02,52-03,54-04,55-05
0/p-60-0f

197

Ascending order

mov r7,#05

b2:mov r6,#04

mov r0,#50

b1:mov a,@r0

inc r0

mov 0f0,@ro

cjne a,0f0,next

sjmp back

next jc back (descending order change jc to jnc)

mov @r0,a

dec r0

mov @ro,0f0

 inc r0

back: djnz r6,b1

djnz r7, b2

lcall 00bb

i/p
50-05, 51-04,52-03,53-04,54-05

o/p
50-01,51-02,52-03,53-04,54-05

QUESTION BANK

PART A

1. What are the addressing modes of 8051.

2. Differentiate microcontroller and microprocessor.

3. Write short notes on interrupts.

4. Write briefly about the timer of 8051.

5. What is an SFR.

6. List the SFR in 8051.

7. Write an assembly language program to transfer

8. a.10 data from internal to external

 b.10 data from external to internal

9. Explain how to interface I/O devices to 8051.

10. Write a program to find a square of a number using look up table. 10.Write a program to find the

given number is odd or even.

11. Write a program to generate a square wave of 1ms using timer.

12. List the bits of PSW.

13. What are the different ranges of jump.

14. Classify jump instruction

15. Write about stack

16. On reset the value of SP is , I/O ports are configured as .

17. Write about EA pin of 8051.

18. Draw one machine cycle of 8051.

198

19. What is ALE?

20. The internal RAM size is and the internal ROM size is .

PART B

1. With neat diagram explain the architecture of 8051.

2. Classify the instruction set of 8051 and explain the instruction with suitable

examples.

3. Write in detail how serial communication is carried out in 8051.

4. Explain in detail about timers in 8051 microcontroller

5. Explain the interrupts of 8051 microcontroller

6. Write the following programs

a. programs using arithmetic and logical instruction

b. Programs to convert hexa to ascii and ascii to hexa

c. Programs using program transfer instructions.

d.Programs using I/O ports

7. Explain the following instructions with example

a. movc a,@a+dptr b. movx @r0,a c. JBC b,radd

d. XCHD A,@Rp e. Swap A

TEXT / REFERENCE BOOKS

1. Ramesh Gaonkar, “Microprocessor Architecture, Programming and applications with 8085”, 5th Edition,

Penram International Publishing Pvt Ltd, 2010.

2. Kenneth J Ayala, “The 8051 Microcontroller”, 2nd Edition, Thomson, 2005.

3. Nagoor Kani A, “Microprocessor and Microcontroller”, 2nd Edition, Tata McGraw Hill, 2012.

4. Mathur A.P. ” Introduction to microprocessor .“

5. Muhammad Ali Mazidi.”The 8051 Microcontroller and Embedded Systems.”

199

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – I – MICROPROCESSORS AND MICROCONTROLLERS– SEC1201

200

UNIT 5 APPLICATIONS BASED ON 8085 AND 8051

Interfacing Basic concepts, interfacing LED, 7 segment LED, Stepper motor control system,

Temperature control system, Traffic light control system, Motor speed control system, Waveform

generation, Interfacing LCD.

7-SEGMENT LED

Fig 5.1: 7-sement LED types

• Fig shows two different type of 7-segment display; common cathode and common anode.

• 7-segment display consists of a few LEDs and are arranged physically as shown in figure a.

• It has seven segments from A to G that normally connected to data bus D0 to D6 respectively.

• If decimal point is used, D7 will be connected to DP; and left unconnected if it is unused.

201

Fig 5.2: 7-sement LED interfacing

• Fig. shows the example to interface seven segment display and address decoder with an address of

FDH.

• The common anode display is used therefore 0 logic is needed to activate the segment.

• Suppose to display number 4 at seven segment display, therefore the segment F, G, B and C have to be

activated.

• Follows are the instructions to execute it:

– MVI A, 66H

 OUT FDH

Fig 5.3: 7-sement LED code for 4

PROGRAM (FLASH 4)

MVI A,80 DELAY

OUT CR LXI D,FFFF

L1:MVI A,00 L2:DCX D

OUT PA MOV A,E

CALL DELAY ORA D

202

MVI A,66 JNZ L2:

OUT PA RET

CALL DELAY

JMP L1:

Traffic light control system using 8085

The traffic lights placed at the road crossings can be automatically switched ON/OFF

in the desired sequence using the microprocessor system. The system can also have a manual

control option, so that during heavy traffic (or during4raffic jam) the duration of ON/OFF

time can be varied by the operator.

A typical traffic light control system (demonstration type) is shown in fig 1. The

systems have been developed using 8085 as CPU. The system has EPROM memory for

system program storage and RAM memory for stack operation. For manual control a

keyboard have been provided. It will be helpful for the operator if the direction 6ftraffic flow

is displayed during manual control. Hence 7-segment LEDs are interfaced to display the

direction of traffic flow both during manual and automatic mode.

The primary function of the microprocessor in the system is to switch ON/OFF the

Red/Yellow/Green lights is the specified sequence. In the demonstration system of fig,

Red/Yellow/Green LEDs are provided instead of lights (lamps). The LEDs are interfaced to

the system through buffer (74LS245) and ports of 8255.

In the practical implementation scheme the lights can be turned ON/OFF using driver

transistors and relays. In practical implementation the output of buffer (74LS245) can be

connected to the driver transistor. A reverse biased diode is connected across relay coil to

prevent relay chattering (for free-wheeling action).

The microprocessor send High through a port line to switch ON the light and LOW

to switch OFF the light. A switching schedule (or sequence) can be developed as shown in

Table. In this switching sequence it is assumed that the traffic is allowed only in one

direction at time.

In table, "1" represents ON condition and "0" represents OFF condition. These 1's and O's

203

Can be directly output to 8255 ports to switch ON/OFF the light. A flowchart for traffic

light control program is shown in fig .

Fig.5.4: 8085 Microprocessor based Traffic light control system.

Fig. 5.5: Switching schedule for Traffic light

204

The processor can output the codes for switching the lights for schedulel and then

waits. After a specified time delay the processor output the codes for schedule-II and so on.

For each schedule the processor can wait for a specified time. After schedule-XII, the

processor can again return to schedule-I. On observing the schedules we can conclude that

three different delay routines are sufficient for implementing the twelve switching schedules.

Fig.5.6: Flow chart for Traffic light control system.

205

Temperature controller using 8085

The microprocessor based temperature control system can be used for automatic

control of the temperature of a body. A simplified block diagram of 8085 microprocessor

based temperature control system is shown in fig 4 . The system consist of 8085

microprocessor as CPU, ERROM&RAM memory for program & data storage, INTEL 8279

for keyboard and display Interface, ADC, DAC, INTEL 8255 for I/O' ports, Amplifiers,

Signal conditioning circuit, Temperature sensor and Supply control circuit. In this system

the temperature is controlled by controlling the power input to the heating element.

The temperature of the body is measured using a temperature sensor. The different

types of temperature sensor that can be used for temperature measurement are Thermo-

couple, Thermistors , PN-junctions, IC sensors. This sensor will convert the input

temperature to Proportional analog voltage or current. The output signal of the sensor will

be a weak signal and so has to be amplified by using high input impedance op-amp. Then the

analog signal is scaled to suitable level by the signal conditioning circuit.

The microprocessor can process only digital signals and so the analog signal from signal

conditioning circuit cannot be read by the processor directly. The system has an analog-to-

digital converter (ADC) to convert the analog signal to proportional digital data. In this

system the ADC is interfaced to 8085 processor through port-A of 8255. The 8085 processor

send signal to ADC to start conversion and at the end of conversion it read the digital data

from the port-A of 8255.

206

Fig.5.7 : 8085 Microprocessor based Temperature control system.

The 8085 processor calculate the actual temperature using the input data and display it on

the 7- segment LED. Also, the processor compare the desired temperature with actual

temperature (The operator can enter the desired temperature through keyboard) and

calculate the error (the difference between actual temperature and desired temperature).

Fig.5.8: Flow chart for Temperature control system.

The error is used to compute a digital control signal, which is converted to analog control

signal by DAC. The DAC is interfaced to the system through port-B of 8255. The analog

control signal produced by DAC is used to control the power supply of the heating element

of the body.

The digital control signal can be computed by the 8085 processor using different

digital control algorithms (PIPI/PID/FUZZY logic control algorithms).

The control circuit for power supply can be either thyristor based circuit or relay. In case of

thyristor control circuits the firing angle can be varied by the control signal to control the

power input to the heater.

Stepper motor controller system using 8085

The stepper motors are popularly used in computer peripherals, plotters, robots and

machine tools for 'precise incremental rotation. In stepper motor, the stator windings are

excited by electrical pulses and for each pulse the motor shaft advances by one angular step.

(Single the stepper motor can be driven by digital pulses; it is also called digital motor). The

step size in the motor is determined by the number of poles in the rotor and the number 'of

pairs of stator windings (one pair of stator winding is called one 'phase). The stator windings

are also called control windings.

The motor is controlled by switching ON/OFF the control winding. The popular

stepper motor used for demonstration in laboratories has a step size of 1.8° (i.e, 200 steps

per revolution). This motor consist of four stator winding and require four switching

sequence as shown in table 1. The basic step size of the motor is called full-step. By altering

the switching sequence, the motor can be made to run with incremental motion of half the

full-step value.

A typical stepper motor control system is shown in fig 6. a two-phase or four winding stepper

motor is show in fig 6. The system consists of 8085 microprocessor as CPU, EPROM and

RAM memory for program &data storage and for stack. Using INTEL 8279, a keyboard

and six number of 7-segment LED display has been interfaced in the system. Through the

keyboard the operator can issue commands to control the system. The LED display has been

provided to display messages to the operator. The windings of stepper motor connected to

the collector of Darlington pair transistors. The transistors are switched ON/OFF by the

microprocessor through the ports of 8255 and buffer (74LS245). A free wheeling diode is

connected across each winding for fast switching. The flowchart for the operational flow of

the stepper motor control system is shown in fig 7. The processor has to output a switching

sequence and wait for l to 5 msec before Sending next switching sequence. (The delay is

necessary to allow be motor transients to die-out).

Fig.5.9: 8085 Microprocessor based StepperMotor control system.

 TABLE 1: Switching sequence for Full Step Rotation

210

Fig.5.10: Flow chart for Stepper motor control system.

INTERFACING STEPPER MOTOR with 8051

The Stepper Motor to microcontroller. As you can see the stepper motor is connected with

Microcontroller output port pins through a ULN2803A array. So when the microcontroller

is giving pulses with particular frequency to ls293A, the motor is rotated in clockwise or

anticlockwise. Fig. Interfacing Stepper Motor to Microcontroller

211

To control a stepper motor in 8051 trainer kit. It works by turning ON & OFF. A four I/O port lines

generating at a particular frequency. The 8051 trainer kit has three numbers of I/O port connectors,

connected with I/O Port lines (P1.0 – P1.7),(p3.0 – p3.7) to rotate the stepper motor. Ls293d is used as a

driver for port I/O lines, drivers output connected to stepper motor, connector provided for external power

supply if needed.

Fig 5.11: stepper motor interfacing- proteus

DC motor interfacing

212

Fig 5.12: DC motor interfacing

 Varying the armature voltage varies the speed of the dc motor and e field voltage is kept

constant. A controlled rectifier using SCR develops the required armature voltage and the

uncontrolled rectifier generates the required field voltage.

• The microprocessor controls the speed of the motor by varying the firing angle of SCRs in the

controlled rectifier.

• The system has EPROM for system program storage, and RAM for temporary data storage and

stack.

• A keyboard has been provided to input the desired speed and other commands to operate the system.

• In order to display the speed of the motor, 7-segment LED display has been provided. The keyboard

and 7-segment LED display has been interfaced to 8085 based system using Keyboard display

controller INTEL 8279.

213

Fig 5.13: DC motor interfacing-flow chart

The speed of the dc motor is measured using a tachogenerator. It produces an analog voltage proportional

to the speed of the motor.

• Then the analog signal is scaled to desired level by the signal conditioning circuit and digitized

using ADC. (The processor cannot process the analog signal directly, hence the analog signal is

digitized using ADC).

• The ADC is interlaced to 8085 processor through the port-B and port-C of 8255. The

processor can send a start of conversion to ADC through port-C pin and at the end of conversion

it can read the digital data from port-B of 8255. This digital data is proportional to actual speed.

• The processor calculates the actual speed and displays it on LEDs.

• Also, the processor compares the actual speed with desired speed entered by the operator

through the keyboard. If there is a difference then the error is estimated. The error can be modified

by a digital control algorithm, (P/PI/PID/FUZZY logic control algorithm) to produce a digital

control signal.

214

• The digital control signal is converted to analog signal by the DAC. The analog signal is used

to alter the firing angle of SCRS in the controlled rectifiers. The operational the speed control system is

shown in the flowchart.

WAVE FORM GENERATION

L1:SETB 90

LCALL DELAY

CLR 90

LCALL DELAY

SJMP L1:

DELAY

MOV R0,#33

L2:DJNZ R0,L2

RET

Connect the positive of the CRO to P1.0

Gnd to gnd

Set the bit, call delay so that the on time also depends on the delay

Clear the bit, call delay so that the off time also depends on the delay

Steps to generate a square wave using 8051

1. Set the output of any port on the 8051 to logic high.

2. Wait for some time.

3. Set the output of the same port to logic low.

4. Again wait for the same amount of time as done earlier.

5. Loop around the same.

Subsequently, for obtaining the desired frequency on the square wave. We have to manipulate with the

delay. We know that the machine cycle frequency is 1/12 of the crystal oscillator frequency. So, with the

crystal oscillator’s frequency as 11.0592 Mhz the machine cycle frequency is 921.6 Khz. To sum up, thats

equivalent to 1.085 μsecond.

To generate a square wave of 1 KHz, in other words, a wave of time period 1 millisecond, we have to use

the delay in such a way that it causes a delay of 1 millisecond. We will have to loop around doing nothing

for about 461 machine cycles to generate a square wave of 50% duty cycle. That is to say, an on time and

an off time of 0.5 millisecond.

215

Fig 5.14: Square wave-CRO output

Interfacing 16×2 LCD with 8051

We use LCD display for the messages for more interactive way to operate the system or

displaying error messages etc. interfacing LCD to microcontroller is very easy if you

understanding the working of LCD, in this session I will not only give the information of LCD

and also provide the code in C language which is working fine without any errors.

216

Fig 5.14: LCD interfacing using proteus

LCD: 16×2 Liquid Crystal Display which will display the 32 characters at a time in two rows

(16 characters in one row). Each character in the display of size 5×7 pixel matrix, Although this

matrix differs for different 16×2 LCD modules if you take JHD162A this matrix goes to 5×8.

This matrix will not be same for all the 16×2 LCD modules. There are 16 pins in the LCD

module, the pin configuration us given below

LCD UNIT

Pin Number Symbol Pin Function

1 VSS Ground

2 VCC +5v

217

Let us look at a pin diagram of a commercially available LCD like JHD162 which uses a HD44780 controller and

then describe its operation.

3 VEE Contrast adjustment (VO)

4 RS Register Select. 0:Command, 1: Data

5 R/W Read/Write, R/W=0: Write & R/W=1: Read

6 EN Enable. Falling edge triggered

7 D0 Data Bit 0

8 D1 Data Bit 1

9 D2 Data Bit 2

10 D3 Data Bit 3

11 D4 Data Bit 4

12 D5 Data Bit 5

13 D6 Data Bit 6

14 D7 Data Bit 7/Busy Flag

15 A/LED+ Back-light Anode(+)

16 K/LED- Back-Light Cathode(-)

218

Fig 5.15: LCD

Apart from the voltage supply connections the important pins from the programming perspective are the data

lines(8-bit Data bus), Register select, Read/Write and Enable pin.

Data Bus: As shown in the above figure and table, an alpha numeric lcd has a 8-bit data bus referenced as D0-

D7. As it is a 8-bit data bus, we can send the data/cmd to LCD in bytes. It also provides the provision to send the

the data/cmd in chunks of 4-bit, which is used when there are limited number of GPIO lines on the microcontroller.

Register Select(RS): The LCD has two register namely a Data register and Command register. Any data that

needs to be displayed on the LCD has to be written to the data register of LCD. Command can be issued to LCD

by writing it to Command register of LCD. This signal is used to differentiate the data/cmd received by the LCD.

If the RS signal is LOW then the LCD interprets the 8-bit info as Command and writes it Command register and

performs the action as per the command.

If the RS signal is HIGH then the LCD interprets the 8-bit info as data and copies it to data register. After that

the LCD decodes the data for generating the 5x7 pattern and finally displays on the LCD.

Read/Write(RW): This signal is used to write the data/cmd to LCD and reads the busy flag of LCD. For write

operation the RW should be LOW and for read operation the R/W should be HIGH.

Enable(EN): This pin is used to send the enable trigger to LCD. After sending the data/cmd, Selecting the

data/cmd register, Selecting the Write operation. A HIGH-to-LOW pulse has to be send on this enable pin which

will latch the info into the LCD register and triggers the LCD to act accordingly.

Follow these simple steps for displaying a character or data

To send a command to the LCD just follows these steps:

https://exploreembedded.com/wiki/File:Pic16f877aLcdInterface.png

219

The crystal oscillator is connected to XTAL1 and XTAL2 which will provide the system clock

to the microcontroller the data pins and remaining pins are connected to the microcontroller

as shown in the circuit. The potentiometer is used to adjust the contrast of the LCD. You can

connect data pins to any port. If you are connecting to port0 then you have to use pull up

registers. The enable, R/W and RS pins are should be connected to the 10, 11 and 16 (P3.3,

P3.4 and P3.5).

Steps for Sending Command:

• step1: Send the I/P command to LCD.

• step2: Select the Control Register by making RS low.

• step3: Select Write operation making RW low.

• step4: Send a High-to-Low pulse on Enable PIN with some delay_us.

/* Function to send the command to LCD */

void LCD_CmdWrite(char cmd)

{

 LcdDataBus=cmd; // Send the command to LCD

 LCD_RS=0; // Select the Command Register by pulling RS LOW

 LCD_RW=0; // Select the Write Operation by pulling RW LOW

 LCD_EN=1; // Send a High-to-Low Pusle at Enable Pin

 delay_us(10);

 LCD_EN=0;

 delay_us(1000);

}

Steps for Sending Data:

• step1: Send the character to LCD.

• step2: Select the Data Register by making RS high.

• step3: Select Write operation making RW low.

• step4: Send a High-to-Low pulse on Enable PIN with some delay_us.

The timings are similar as above only change is that RS is made high for selecting Data register.

/* Function to send the Data to LCD */

void LCD_DataWrite(char dat)

220

{

 LcdDataBus=dat; // Send the data to LCD

 LCD_RS=1; // Select the Data Register by pulling RS HIGH

 LCD_RW=0; // Select the Write Operation by pulling RW LOW

 LCD_EN=1; // Send a High-to-Low Pusle at Enable Pin

 delay_us(10);

 LCD_EN=0;

 delay_us(1000);

}

HARDWARE CONNECTION

Fig 5.16: LCD interfacing-hardware

Code Examples

code for displaying the data on 2x16 LCD in 8-bit mode.

#include<reg51.h>

/* Configure the data bus and Control pins as per the hardware connection

 Databus is connected to P2_0:P2_7 and control bus P0_0:P0_2*/

#define LcdDataBus P2

sbit LCD_RS = P0^0;

221

sbit LCD_RW = P0^1;

sbit LCD_EN = P0^2;

/* local function to generate delay */

void delay_us(int cnt)

{

 int i;

 for(i=0;i<cnt;i++);

}

/* Function to send the command to LCD */

void LCD_CmdWrite(char cmd)

{

 LcdDataBus=cmd; // Send the command to LCD

 LCD_RS=0; // Select the Command Register by pulling RS LOW

 LCD_RW=0; // Select the Write Operation by pulling RW LOW

 LCD_EN=1; // Send a High-to-Low Pusle at Enable Pin

 delay_us(10);

 LCD_EN=0;

 delay_us(1000);

}

/* Function to send the Data to LCD */

void LCD_DataWrite(char dat)

{

 LcdDataBus=dat; // Send the data to LCD

 LCD_RS=1; // Select the Data Register by pulling RS HIGH

 LCD_RW=0; // Select the Write Operation by pulling RW LOW

 LCD_EN=1; // Send a High-to-Low Pusle at Enable Pin

 delay_us(10);

 LCD_EN=0;

 delay_us(1000);

}

int main()

{

 char i,a[]={"Good morning!"};

 Lcd_CmdWrite(0x38); // enable 5x7 mode for chars

 Lcd_CmdWrite(0x0E); // Display OFF, Cursor ON

 Lcd_CmdWrite(0x01); // Clear Display

 Lcd_CmdWrite(0x80); // Move the cursor to beginning of first line

222

 Lcd_DataWrite('H');

 Lcd_DataWrite('e');

 Lcd_DataWrite('l');

 Lcd_DataWrite('l');

 Lcd_DataWrite('o');

 Lcd_DataWrite(' ');

 Lcd_DataWrite('w');

 Lcd_DataWrite('o');

 Lcd_DataWrite('r');

 Lcd_DataWrite('l');

 Lcd_DataWrite('d');

 Lcd_CmdWrite(0xc0); //Go to Next line and display Good Morning

 for(i=0;a[i]!=0;i++)

 {

 Lcd_DataWrite(a[i]);

 }

 while(1);

}

QUESTION BANK

PART A

1. What are the two types of seven segment LED

2. Draw the schematic of 7 segment LED

3. Stepper motor interfaced to 8085. How?

4. Write 7 segment common cathode and anode code for displaying ‘E’

5. Write the traffic light schedule for N-G, S-R, E-R, W-R and NFL & NFR-

ON

6. Write the stepping sequence for stepper motor

7. What is the drawback of LCD

8. Write a program to generate square wave using 8051

9. Compare 7-segment LED and LCD

223

10. How the speed of the motor can be varied

11. List the applications of Stepper motor

PART B

1. Explain how the 7-segment LED is interfaced to 8085/8051

2. With neat diagram explain the stepper motor interfacing

3. Discuss in detail about temperature control system

4. Explain motor speed control system with necessary diagram

5. Discuss in detail about LCD interfacing with 8051

6. Interface traffic light controller to 8085/8051 and control the traffic.

TEXT / REFERENCE BOOKS

1. Ramesh Gaonkar, “Microprocessor Architecture, Programming and applications with 8085”, 5th Edition,

Penram International Publishing Pvt Ltd, 2010.

2. Kenneth J Ayala, “The 8051 Microcontroller”, 2nd Edition, Thomson, 2005.

3. Nagoor Kani A, “Microprocessor and Microcontroller”, 2nd Edition, Tata McGraw Hill, 2012.

4. Mathur A.P. ” Introduction to microprocessor .“

5. Muhammad Ali Mazidi.”The 8051 Microcontroller and Embedded Systems.”

