
SATHYABAMA UNIVERSITY
(Established under Section 3, UGC Act 1956)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

SATHYABAMA UNIVERSITY

1

SCSX1038 SOFTWARE QUALITY ASSURANCE AND TESTING

Faculty of Computing Department of Computer Science and Engineering

UNIT I INTRODUCTION

Software Quality

Conformance to explicitly stated functional and performance requirements, explicitly
documented development standards and implicit characteristics that are expected of all
professionally develop software
Three (3) important points to remember on software quality

1. Software requirements are the foundation from which quality is measured. Lack
of conformance to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the manner in
which software is engineered. If the criteria are not followed, lack of quality will
almost surely result.

3. There is a set of implicit requirements that often goes unmentioned (e.g., the

desire for good maintainability). If software conforms to its explicit requirements,

but fails to meet implicit requirements.

 Quality Characteristics

Is any property or element that can be used to define the nature of a product.

Each characteristic can be physical or chemical properties such as size, weight,

volume, color or composition.

Software Quality

1. Is achieved through a disciplined approach - called software engineering SE
2. Can be defined, described, and measured
3. Can be assessed before any code has been written
4 Cannot be tested into a product

Software quality challenges
1. Defining it
2. Describing it (qualitatively)
3. Measuring it (quantitatively)
4. Achieving it (technically)

Faculty of Computing Department of Computer Science and Engineering

Designing software is a creative task, and like most such tasks, success is more

likely if the designer follows what might be termed a set of rules of form.The rules of

form also provide some way of assessing the quality of the eventual product, and

possibly of the processes that led to it.

REALISING QUALITY

A set of abstract quality factors (‘the ilities’) has been defined. These cannot be

measured directly but do relate to the ultimate goal.

Software Quality Factors (by McCall)

1) Product Revision (changing it)

� Flexibility (can I change it?)
 The effort required to modify an operational program. Change and

enhancement of the system should be easily implementable.

� Maintainability (can I fix it?)
The effort required to locate and fix an error in a program. The system should

be easy to keep up for its intended use. Changes for improving operational

efficiency should be easy to implement. Failed operations should be easy to

restore to satisfactory condition.

� Testability (can I test it?)
The effort required to test a program to ensure that it performs its intended

function . The ability of the system to produce quality product units should be

easily testable. Useful messages should be generated for testing and

debugging purposes.

 2) Product Transition (modifying it to work in a different environment)

 Interoperability (Will I be able to interface it with another system?)

The effort required to couple one system to another.

� Portability (Will I be able to use it on another machine?)
The effort required to transfer the program from one hardware and/or

software system environment to another. The system should be portable

qualit

y

measurable
quantity

quality
factors

counts from

mapped

on to

realised

through

measured

by

Faculty of Computing Department of Computer Science and Engineering

among people and among machines. Attainment of theother quality

characteristics greatly facilitates portability.

� Reusability (Will I be able to reuse some of the software?)
The extent to which a program (or part of a program) can be reused in

other applications-related to the packaging and scope of the functions that

the program performs.

 3) Product Operations (using it)

� Correctness (Does it do what I want?)
The extent to which a program satisfies its specification and fulfills the

customer’s mission objectives. The extent to which software is free from

design defects and from coding defects.; that is fault-free.

� Reliability (Does it do it accurately all of the time?)
The extent to which a program can be expected to perform its intended

function with required precisions under stated conditions for a stated period

of time.

� Efficiency (Will it run on my hardware as well as it can?)
The extent to which a software performs its function.with a minimum

consumption of computing resources. It should not use any hardware

components or peripheral equipment unnecessarily.

� Integrity (Is it secure?)
The extent to which access to software or data by unauthorized persons can

be controlled.

� Usability (Is it designed for the use?)
The effort required to learn, operate, prepare input, and interpret output of a

program.

Quality Metrics

 Provides an indication of how closely software conforms to implicit (essential) and

explicit (specific) requirements.

� Auditability
The ease with which conformance to standards can be checked.

� Accuracy
The precision of computations and control.A qualitative assessment of

freedom from error.A quantitative measure of the magnitude of error. The

correct data values are recorded.

Faculty of Computing Department of Computer Science and Engineering

� Communication commonality
The degree to which standards interfaces, protocols, and bandwidths are

used.

� Completeness
The degree to which full implementation of required function has been

achieved. All data items are captured and stored for use. Data items are

properly identified with time periods.

� Conciseness
The compactness of the program in terms of lines code.

� Consistency
The use of uniform design and documentation techniques throughout the

software development project.

� Data commonality
The use of standard data structures and types throughout the program.

� Error tolerance
The damage that occurs when the programs encounters an error. Suitable

error prevention and detection procedures are in place. There are procedures

for reporting and correcting errors. Various audit procedures are applied.

� Execution efficiency
The run-time performance of a program.

� Expandability
The degree to which architectural, data, or procedural design can be

extended.

� Generality
The breadth of potential application of program components.

• Hardware independence

The degree to which the software is decoupled from the hardware on which it

operates.

� Instrumentality
The degree to which the program monitors its own operation and identifies

errors that do occur.

� Modularity
The functional independence of program components.

� Operability

Faculty of Computing Department of Computer Science and Engineering

The ease of operation of a program.

� Robustness
The extent to which software can continue to operate correctly despite the

introduction of invalid inputs

� Security
The availability of mechanism that control or protect programs and data. The

system and its operations are protected from various environmental and

operation risks. There are provisions for recovery in the event of failure or

destruction of part or all system

� Self-documentation
The degree to which the source code provides meaningful documentation.

� Simplicity
The degree to which a program can be understood without difficulty.

� Software system independence
The degree to which the program is independent of nonstandard

programming language features, operating system characteristics, and other

environmental constraints.

� Traceability
The ability to trace a design representation or actual program component

back to requirements.

� Training
The degree to which the software in enabling new users to apply the system.

Role of Software Testing

The Role of Software Testing is often mis-understood across the different stake holders

of the application development & this list includes testers too.

Testing is considered to be part of Quality Assurance activity since the initial days of

Software Development and the same trend is happening as of now too. Even most of

the titles like QA Engineer / QA Lead are associated with Testers even though they are

not performing the role of QA.

It’s good to capture the mission of Testing & align your test teams in that direction.

Every one in the team must be clear on his / her role and see how the same is helping

to achieve the mission of the team.

Faculty of Computing Department of Computer Science and Engineering

 It’s good to note that

• Testing is not about assuring quality into the systems because theTester is not a

Quality Police.

• Testing is not about targeting for Bug Free Product. It’s just impossible since you

can’t build human brain into systems (Of course humans do commit mistakes).

• Testing is not about fighting with the Development Teams. Don’t act like the

enemy of developers.

• Testing is not about just looking at the documents (so called BRS, SRS, FRS)

and writing the test cases.

• Don’t fight with Developers on the issues need to be fixed for the release instead

write good report that reduce the time to reproduce and debug.

Testing is a process followed to make things better. It helps to take informed decision by

providing the relevant information based on the context.

Testers need to identify the critical issues with the system as soon as possible and

make sure that the information supplied is sufficient to reproduce the issue. We need to

supply the information on the presence of bugs in the system to the stake holders. The

information should help the stake holders to take informed decisions.

The following list helps

• Identify the different end users of the system and their interaction with the same.

• Capture the important scenarios for each end user. It’s good to note that we need

to capture the story around the scenario and not just steps.

• Talk to different stake holders including the customers (incase if you have

access) on how the feature might be used & capture the scenarios.

• Plan towards uncovering the critical issues of the system as early as possible.

Software Testing Fundamentals

Software Testing Fundamentals is a platform to gain (or refresh) basic knowledge in the

field of Software Testing. If we are to ‘cliche’ it, the site is of the testers, by the testers,

and for the testers. Our goal is to build a resourceful repository of Quality

content on Quality.

VERIFICATION vs VALIDATION

The terms ‘Verification‘ and ‘Validation‘ are frequently used in the software testing world

but the meaning of these terms are mostly vague and debatable. You will encounter (or

have encountered) all kinds of usage and interpretations of those terms, and it is our

humble attempt here to distinguish between them as clearly as possible.

Faculty of Computing Department of Computer Science and Engineering

Criteria Verification Validation

Definition The process of evaluating work-

products (not the actual final product)

of a development phase to determine

whether they meet the specified

requirements for that phase.

The process of evaluating software

during or at the end of the

development process to determine

whether it satisfies specified business

requirements.

Objective To ensure that the product is being

built according to the requirements

and design specifications. In other

words, to ensure that work products

meet their specified requirements.

To ensure that the product actually

meets the user’s needs, and that the

specifications were correct in the first

place. In other words, to demonstrate

that the product fulfills its intended use

when placed in its intended

environment.

Question Are we building the product right? Are we building the right product?

Evaluation

Items

Plans, Requirement Specs, Design

Specs, Code, Test Cases

The actual product/software.

Activities Reviews

Walkthroughs

Inspections

Testing

Testing principles

1.Testing shows presence of errors

In general, testing proves the presence of errors. Sufficient testing reduces the

likelihood of existing, not discovered error conditions within the test object. It does not

verify that no more bugs exist, even if no more errors can be found. Testing is not a

prove that the system is free of errors.

Faculty of Computing Department of Computer Science and Engineering

2.Exhaustive testing is not possible

An exhaustive test which considers all possible input parameters, their

combinations and different pre-conditions can not be accomplished (except for trivial

test objects). Test are always spot tests. Therefore, the effort must be managed by risk,

priorities and thoughtful selection.

3.Test early and regularly

Testing activities should begin as early as possible within the software life cycle.

They should be repeated regularly and have its’ own agenda. Early testing helps

detecting errors at an early stage of the development process which simplifies error

correction (and reduces the costs for this work).

4.Accumulation of errors

There is no equal distribution of errors within one test object. The place where

one error occurs, it’s likely to find some more. The testing process must be flexible and

respond to this behavior.

Faculty of Computing Department of Computer Science and Engineering

5.Fading effectiveness

The effectiveness of tests fades over time. If test-cases are only repeated, they

do not expose new errors. Errors, remaining within untested functions may not be

discovered. In order to prevent this effect, test-cases must be altered and reworked time

by time.

6.Testing depends on context

No two systems are the same and therefore can not be tested the same way.

Testing intensity, the definition of end criteria etc. must be defined individually for each

system depending on its testing context. E-commerce websites require a different

approach than online-banking applications.

7.False conclusion: no errors equals usable system

Error detection and error fixing does not guarantee a usable system matching the

users expectations. Early integration of users and rapid prototyping prevents unhappy

clients and discussions.

Objectives and issues of testing

Software Testing has different goals and objectives.

The major objectives of Software testing are as follows:

� Finding defects which may get created by the programmer while developing the

software.

� Gaining confidence in and providing information about the level of quality.

� To prevent defects.

� To make sure that the end result meets the business and user requirements.

� To ensure that it satisfies the BRS that is Business Requirement Specification

and SRS that is System Requirement Specifications.

� To gain the confidence of the customers by providing them a quality product.

Faculty of Computing Department of Computer Science and Engineering

Issues in Software Testing

1 The organization doesn’t know why it’s testing.
2. The organization hasn’t agreed on what kind of problems you’re looking for.
3. Ttesting the wrong things.
4. Test team doesn’t know how to test.
5. Test team needs more training
6. Development doesn’t understand or can’t reproduce your problem reports
7. Tested system isn’t testable enough.

Testing lifecycle.

SOFTWARE TESTING LIFE CYCLE (STLC)

The different stages in Software Test Life Cycle -

Software Testing Life Cycle (STLC) defines the steps/ stages/ phases in testing of

software.

Phase Activity Deliverables Necessity

Requirements/

Design Review

You review the software

requirements/ design (Well, if they

exist.)

Review Defect’

Reports
Curiosity

Test Planning

Once you have gathered a general

idea of what needs to be tested, you

‘plan’ for the tests.

Test Plan

Test Estimation

Test Schedule

Farsightedness

Faculty of Computing Department of Computer Science and Engineering

Test Designing

You design/ detail your tests on the

basis of detailed requirements/design

of the software (sometimes, on the

basis of your imagination).

Test

Cases / Test

Scripts/Test Data

Requirements

Traceability

Matrix

Creativity

Test

Environment

Setup

You setup the test environment

(server/ client/ network, etc) with the

goal of replicating the end-users’

environment.

Test

Environment
Rich company

Test Execution

You execute your Test Cases/ Scripts

in the Test Environment to see

whether they pass.

 Test Results

(Incremental)

Defect Reports

Patience

Test Reporting
You prepare various reports for

various stakeholders.

Test Results

(Final)

Test/ Defect

Metrics

Test Closure

Report

Diplomacy

Test process

Testing is a process rather than a single activity. This process starts from test planning

then designing test cases, preparing for execution and evaluating status till the test

closure. So, we can divide the activities within the fundamental test process into the

following basic steps:

1) Planning and Control

2) Analysis and Design

Faculty of Computing Department of Computer Science and Engineering

3) Implementation and Execution

4) Evaluating exit criteria and Reporting

5) Test Closure activities

Faculty of Computing Department of Computer Science and Engineering

Test Information Flow

Two classes of input are provided to the test process:

- a software configuration:

 Software Requirements Specification,

 Design Specification,

 and Source code

- a test configuration:

 Test Plan,

 Test Procedure and

 Testing tools

Test Cases

DEFINITION

A test case is a set of conditions or variables under which a tester will determine

whether a system under test satisfies requirements or works correctly.

The process of developing test cases can also help find problems in the requirements or

design of an application.

TEST CASE TEMPLATE

A test case can have the following elements. Note, however, that normally a test

management tool is used by companies and the format is determined by the tool used.

Test Suite ID The ID of the test suite to which this test case belongs.

Test Case ID The ID of the test case.

Test Case

Summary
The summary / objective of the test case.

Related

Requirement
The ID of the requirement this test case relates/traces to.

Prerequisites
Any prerequisites or preconditions that must be fulfilled prior to

executing the test.

Test Procedure Step-by-step procedure to execute the test.

Test Data The test data, or links to the test data, that are to be used while

Faculty of Computing Department of Computer Science and Engineering

conducting the test.

Expected Result The expected result of the test.

Actual Result The actual result of the test; to be filled after executing the test.

Status
Pass or Fail. Other statuses can be ‘Not Executed’ if testing is not

performed and ‘Blocked’ if testing is blocked.

Remarks Any comments on the test case or test execution.

Created By The name of the author of the test case.

Date of Creation The date of creation of the test case.

Executed By The name of the person who executed the test.

Date of

Execution
The date of execution of the test.

Test

Environment

The environment (Hardware/Software/Network) in which the test was

executed.

TEST CASE EXAMPLE / TEST CASE SAMPLE

Test Suite ID TS001

Test Case ID TC001

Test Case

Summary
To verify that clicking the Generate Coin button generates coins.

Related

Requirement
RS001

Prerequisites

1. User is authorized.

2. Coin balance is available.

Test Procedure

1. Select the coin denomination in the Denomination field.

2. Enter the number of coins in the Quantity field.

3. Click Generate Coin.

Test Data

1. Denominations: 0.05, 0.10, 0.25, 0.50, 1, 2, 5

2. Quantities: 0, 1, 5, 10, 20

Expected Result

1. Coin of the specified denomination should be produced if the

specified Quantity is valid (1, 5)

2. A message ‘Please enter a valid quantity between 1 and 10’

should be displayed if the specified quantity is invalid.

Faculty of Computing Department of Computer Science and Engineering

Actual Result

1. If the specified quantity is valid, the result is as expected.

2. If the specified quantity is invalid, nothing happens; the

expected message is not displayed

Status Fail

Remarks This is a sample test case.

Created By Sam

Date of Creation 01/14/2020

Executed By Sam

Date of

Execution
02/16/2020

Test

Environment
 OS: Windows YBrowser: Chrome N

TEST PLAN DEFINITION

A Software Test Plan is a document describing the testing scope and activities. It is the

basis for formally testing any software/product in a project.

Definition

Test plan: A document describing the scope, approach, resources and schedule of

intended test activities. It identifies amongst others test items, the features to be tested,

the testing tasks, who will do each task, degree of tester independence, the test

environment, the test design techniques and entry and exit criteria to be used, and the

rationale for their choice,and any risks requiring contingency planning. It is a record of

the test planning process.

Master Test Plan: A test plan that typically addresses multiple test levels.

Phase Test Plan: A test plan that typically addresses one test phase.

Monitoring and measuring test execution

Test monitoring can serve various purposes during the project, including the following:

1.Give the test team and the test manager feedback on how the testing work is going,

allowing opportunities to guide and improve the testing and the project.

Faculty of Computing Department of Computer Science and Engineering

2..Provide the project team with visibility about the test results.

3. Measure the status of the testing, test coverage and test items against the exit criteria

to determine whether the test work is done.

4. Gather data for use in estimating future test efforts.

For small projects, the test leader or a delegated person can gather test progress

monitoring information manually using documents, spreadsheets and simple databases.

But, when working with large teams, distributed projects and long-term test efforts, we

find that the efficiency and consistency of data collection is done by the use of

automated tools.

Tools for Software Test Automation

These tools provide automated functional and performance testing for environments
including Java, SOAP, CORBA, HTML, WAP, client/server, UNIX, and Windows.

• SilkCentral - Test Management
• SilkTest - Automated functional and regression testing
• SilkPerformer - Automated load and performance testing
• SilkMonitor - 24x7 monitoring and reporting of Web, application and database

servers
• SilkPilot - Unit testing of CORBA objects
• SilkObserver - End-to-end transaction management and monitoring for CORBA

applications
• SilkMeter - Access control and usage metering

• SilkRealizer - Scenario testing and system monitoring
• SilkRadar - Automated defect tracking

HP / Mercury Quality Center

Hewlett Packard offers a suite of solutions that automate testing and quality assurance
for client/server software and systems, e-business applications, and enterprise resource

planning applications.

• Quality Center - management for tests and defect tracking

• QuickTest Professional™ - E-business functional testing

• LoadRunner® - Enterprise load testing
• WinRunner® - Test automation for the enterprise

____________________End of Unit 1_______________________________________

Faculty of Computing Department of Computer Science and Engineering

UNIT - 2 Levels and Types of Testing

Unit testing

DEFINITION

Unit Testing is a level of software testing where individual units/ components of a

software are tested. The purpose is to validate that each unit of the software performs

as designed.

A unit is the smallest testable part of software. It usually has one or a few inputs and

usually a single output. In procedural programming a unit may be an individual program,

function, procedure, etc. In object-oriented programming, the smallest unit is a method,

which may belong to a base/ super class, abstract class or derived/ child class.Unit

testing frameworks, drivers, stubs, and mock/ fake objects are used to assist in unit

testing.

METHOD

Unit Testing is performed by using the White Box Testing method.

When is it performed?

Unit Testing is the first level of testing and is performed prior to Integration Testing.

Who performs it?

http://softwaretestingfundamentals.com/software-testing-levels/
http://softwaretestingfundamentals.com/white-box-testing/
http://softwaretestingfundamentals.com/integration-testing/

Faculty of Computing Department of Computer Science and Engineering

Unit Testing is normally performed by software developers themselves or their peers. In

rare cases it may also be performed by independent software testers.

TASKS

 Unit Test Plan

o Prepare

o Review

o Rework

o Baseline

 Unit Test Cases/Scripts

o Prepare

o Review

o Rework

o Baseline

 Unit Test

o Perform

BENEFITS

 Unit testing increases confidence in changing/ maintaining code. If good unit

tests are written and if they are run every time any code is changed, we will be

able to promptly catch any defects introduced due to the change. Also, if codes

are already made less interdependent to make unit testing possible, the

unintended impact of changes to any code is less.

 Codes are more reusable. In order to make unit testing possible, codes need to

be modular. This means that codes are easier to reuse.

 Development is faster. How? If you do not have unit testing in place, you write

your code and perform that fuzzy ‘developer test’ (You set some breakpoints, fire

up the GUI, provide a few inputs that hopefully hit your code and hope that you

are all set.) If you have unit testing in place, you write the test, write the code and

run the test. Writing tests takes time but the time is compensated by the less

amount of time it takes to run the tests; You need not fire up the GUI and provide

all those inputs. And, of course, unit tests are more reliable than ‘developer

tests’. Development is faster in the long run too. How? The effort required to find

and fix defects found during unit testing is very less in comparison to the effort

required to fix defects found during system testing or acceptance testing.

Faculty of Computing Department of Computer Science and Engineering

 The cost of fixing a defect detected during unit testing is lesser in comparison to

that of defects detected at higher levels. Compare the cost (time, effort,

destruction, humiliation) of a defect detected during acceptance testing or when

the software is live.

 Debugging is easy. When a test fails, only the latest changes need to be

debugged. With testing at higher levels, changes made over the span of several

days/ weeks/ months need to be scanned.

 Codes are more reliable. Why? I think there is no need to explain this to a sane

person.

Integration Testing

 integration testing: Testing performed to expose defects in the interfaces and in

the

interactions between integrated components or systems. See also component

integration

testing, system integration testing.

 component integration testing: Testing performed to expose defects in the

interfaces and

interaction between integrated components.

 system integration testing: Testing the integration of systems and packages;

testing

interfaces to external organizations (e.g. Electronic Data Interchange, Internet).

ANALOGY

During the process of manufacturing a ballpoint pen, the cap, the body, the tail and clip,

the ink cartridge and the ballpoint are produced separately and unit tested separately.

When two or more units are ready, they are assembled and Integration Testing is

performed. For example, whether the cap fits into the body or not.

METHOD

Any of Black Box Testing, White Box Testing, and Gray Box Testing methods can be

used. Normally, the method depends on your definition of ‘unit’.

http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/white-box-testing/
http://softwaretestingfundamentals.com/gray-box-testing/

Faculty of Computing Department of Computer Science and Engineering

TASKS

 Integration Test Plan

o Prepare

o Review

o Rework

o Baseline

 Integration Test Cases/Scripts

o Prepare

o Review

o Rework

o Baseline

 Integration Test

o Perform

When is Integration Testing performed?

Integration Testing is performed after Unit Testing and before System Testing.

Who performs Integration Testing?

Either Developers themselves or independent Testers perform Integration Testing.

APPROACHES

 Big Bang is an approach to Integration Testing where all or most of the units are

combined together and tested at one go. This approach is taken when the testing

team receives the entire software in a bundle. So what is the difference between

Big Bang Integration Testing and System Testing? Well, the former tests only the

interactions between the units while the latter tests the entire system.

 Top Down is an approach to Integration Testing where top level units are tested

first and lower level units are tested step by step after that. This approach is

taken when top down development approach is followed. Test Stubs are needed

to simulate lower level units which may not be available during the initial phases.

 Bottom Up is an approach to Integration Testing where bottom level units are

tested first and upper level units step by step after that. This approach is taken

when bottom up development approach is followed. Test Drivers are needed to

simulate higher level units which may not be available during the initial phases.

http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/system-testing/

Faculty of Computing Department of Computer Science and Engineering

 Sandwich/Hybrid is an approach to Integration Testing which is a combination of

Top Down and Bottom Up approaches.

System Testing

DEFINITION

System Testing is a level of the software testing where a complete and integrated

software is tested.

The purpose of this test is to evaluate the system’s compliance with the specified

requirements.

 system testing: The process of testing an integrated system to verify that it meets

specified

requirements.

ANALOGY

During the process of manufacturing a ballpoint pen, the cap, the body, the tail, the ink

cartridge and the ballpoint are produced separately and unit tested separately. When

two or more units are ready, they are assembled and Integration Testing is performed.

When the complete pen is integrated, System Testing is performed.

METHOD

Usually, Black Box Testing method is used.

http://softwaretestingfundamentals.com/software-testing-levels/
http://softwaretestingfundamentals.com/black-box-testing/

Faculty of Computing Department of Computer Science and Engineering

TASKS

 System Test Plan

o Prepare

o Review

o Rework

o Baseline

 System Test Cases

o Prepare

o Review

o Rework

o Baseline

o System Test

o Perform

When is it performed?

System Testing is performed after Integration Testing and before Acceptance Testing.

Who performs it?

Normally, independent Testers perform System Testing.

Acceptance testing

DEFINITION

Acceptance Testing is a level of the software testing where a system is tested for

acceptability.

The purpose of this test is to evaluate the system’s compliance with the business

requirements and assess whether it is acceptable for delivery.

http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/acceptance-testing/
http://softwaretestingfundamentals.com/software-testing-levels/

Faculty of Computing Department of Computer Science and Engineering

 Acceptance Testing: Formal testing with respect to user needs, requirements,

and business processes conducted to determine whether or not a system

satisfies the acceptance criteria and to enable the user, customers or other

authorized entity to determine whether or not to accept the system.

ANALOGY

During the process of manufacturing a ballpoint pen, the cap, the body, the tail and clip,

the ink cartridge and the ballpoint are produced separately and unit tested separately.

When two or more units are ready, they are assembled and Integration Testing is

performed. When the complete pen is integrated, System Testing is performed. Once

System Testing is complete, Acceptance Testing is performed so as to confirm that the

ballpoint pen is ready to be made available to the end-users.

METHOD

Usually, Black Box Testing method is used in Acceptance Testing. Testing does not

normally follow a strict procedure and is not scripted but is rather ad-hoc.

TASKS

 Acceptance Test Plan

o Prepare

o Review

o Rework

o Baseline

http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/ad-hoc-testing/

Faculty of Computing Department of Computer Science and Engineering

 Acceptance Test Cases/Checklist

o Prepare

o Review

o Rework

o Baseline

 Acceptance Test

o Perform

When is it performed?

Acceptance Testing is performed after System Testing and before making the system

available for actual use.

Who performs it?

 Internal Acceptance Testing (Also known as Alpha Testing) is performed by

members of the organization that developed the software but who are not directly

involved in the project (Development or Testing). Usually, it is the members of

Product Management, Sales and/or Customer Support.

 External Acceptance Testing is performed by people who are not employees of

the organization that developed the software.

o Customer Acceptance Testing is performed by the customers of the

organization that developed the software. They are the ones who asked

the organization to develop the software. [This is in the case of the

software not being owned by the organization that developed it.]

o User Acceptance Testing (Also known as Beta Testing) is performed by

the end users of the software. They can be the customers themselves or

the customers’ customers

Alpha Testing

Alpha testing is one of the most common software testing strategyused in software

development. Its specially used by product development organizations.

This test takes place at the developer’s site. Developers observe the users and note

problems.Alpha testing is testing of an application when development is about to

complete. Minor design changes can still be made as a result of alpha testing.

http://softwaretestingfundamentals.com/system-testing/
http://istqbexamcertification.com/what-is-a-software-testing/
http://istqbexamcertification.com/what-are-the-test-approaches-or-strategies-in-software-testing/

Faculty of Computing Department of Computer Science and Engineering

Alpha testing is typically performed by a group that is independent of the design team,

but still within the company, e.g. in-house software test engineers, or software QA

engineers. Alpha testing is final testing before the software is released to the general

public. It has two phases:

In the first phase of alpha testing, the software is tested by in-house developers.

They use either debugger software, or hardware-assisted debuggers. The goal is to

catch bugs quickly.

In the second phase of alpha testing, the software is handed over to the software

QA staff, for additional testing in an environment that is similar to the intended use.

Alpha testing is simulated or actual operational testing by potential users/customers or

an independent test team at the developers’ site. Alpha testing is often employed for off-

the-shelf software as a form of internal acceptance testing, before the software goes to

beta testing.

Beta Testing

It is also known as field testing. It takes place at customer’s site. It sends the system to

users who install it and use it under real-world working conditions.A beta test is the

second phase of software testing in which a sampling of the intended audience tries the

product out. (Beta is the second letter of the Greek alphabet.) Originally, the termalpha

test meant the first phase of testing in a software development process. The first phase

includes unit testing, component testing, and system testing. Beta testing can be

considered “pre-release testing. The goal of beta testing is to place your application in

the hands of real users outside of your own engineering team to discover any flaws or

issues from the user’s perspective that you would not want to have in your

final,released version of the application .Open and closed beta

developers release either a closed beta or an open beta. Closed beta versions are

released to a select group of individuals for a user test and are invitation only, while

Open betas are from a larger group to the general public and anyone interested. The

testers report any bugs that they find, and sometimes suggest additional features they

think should be available in the final version.

Faculty of Computing Department of Computer Science and Engineering

Advantages of beta testing:

 You have the opportunity to get your application into the hands of users prior to

releasing it to the general public.

 Users can install, test your application, and send feedback to you during this beta

testing period.

 Your beta testers can discover issues with your application that you may have

not noticed, such as confusing application flow, and even crashes.

 Using the feedback you get from these users, you can fix problems before it is

released to the general public.

 The more issues you fix that solve real user problems, the higher the quality of

your application when you release it to the general public.

 Having a higher-quality application when you release to the general public will

increase customer satisfaction.

 These users, who are early adopters of your application, will generate excitement

about your application.

Difference between manual testing and automation testing.

Manual Testing Automation Testing

1. Time consuming and tedious: Since

test cases are executed by human

resources so it is very slow and tedious.

1. Fast Automation runs test cases

significantly faster than human resources.

2. Huge investment in human

resources: As test cases need to be

executed manually so more testers are

required in manual testing.

2. Less investment in human resources:Test

cases are executed by using automation tool

so less tester are required in automation

testing.

3. Less reliable: Manual testing is less

reliable as tests may not be performed

with precision each time because of

human errors.

3. More reliable: Automation tests perform

precisely same operation each time they are

run.

4. Non-programmable: No programming

can be done to write sophisticated tests

which fetch hidden information.

4. Programmable: Testers can program

sophisticated tests to bring out hidden

information.

Faculty of Computing Department of Computer Science and Engineering

Types of Testing

1. Smoke Testing

2. REGRESSION TESTING Fundamentals

3. Functional Testing

4. Usability Testing

5. Security Testing

6. Performance Testing

Smoke Testing

DEFINITION

Smoke Testing, also known as “Build Verification Testing”, is a type of software testing

that comprises of a non-exhaustive set of tests that aim at ensuring that the most

important functions work. The results of this testing is used to decide if a build is stable

enough to proceed with further testing.

The term ‘smoke testing’, it is said, came to software testing from a similar type of

hardware testing, in which the device passed the test if it did not catch fire (or smoked)

the first time it was turned on.

ELABORATION

Smoke testing covers most of the major functions of the software but none of them in

depth. The result of this test is used to decide whether to proceed with further testing. If

the smoke test passes, go ahead with further testing. If it fails, halt further tests and ask

for a new build with the required fixes. If an application is badly broken, detailed testing

might be a waste of time and effort.

Smoke test helps in exposing integration and major problems early in the cycle. It can

be conducted on both newly created software and enhanced software. Smoke test is

performed manually or with the help of automation tools/scripts. If builds are prepared

frequently, it is best to automate smoke testing.

Faculty of Computing Department of Computer Science and Engineering

As and when an application becomes mature, with addition of more functionalities etc,

the smoke test needs to be made more expansive. Sometimes, it takes just one

incorrect character in the code to render an entire application useless.

ADVANTAGES

 It exposes integration issues.

 It uncovers problems early.

 It provides some level of confidence that changes to the software have not

adversely affected major

LEVELS APPLICABLE TO

Smoke testing is normally used in Integration Testing, System Testing and Acceptance

Testing levels.

REGRESSION TESTING

DEFINITION

Regression testing is a type of software testing that intends to ensure that changes

(enhancements or defect fixes) to the software have not adversely affected it.

ELABORATION

The likelihood of any code change impacting functionalities that are not directly

associated with the code is always there and it is essential that regression testing is

conducted to make sure that fixing one thing has not broken another thing.

During regression testing, new test cases are not created but previously created test

cases are re-executed.

LEVELS APPLICABLE TO

Regression testing can be performed during any level of testing (Unit, Integration,

System, or Acceptance) but it is mostly relevant during System Testing.

EXTENT

In an ideal case, a full regression test is desirable but oftentimes there are

time/resource constraints. In such cases, it is essential to do an impact analysis of the

changes to identify areas of the software that have the highest probability of being

http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/acceptance-testing/
http://softwaretestingfundamentals.com/acceptance-testing/

Faculty of Computing Department of Computer Science and Engineering

affected by the change and that have the highest impact to users in case of malfunction

and focus testing around those areas.

Due to the scale and importance of regression testing, more and more companies and

projects are adopting regression test automation tools.

LITERAL MEANING OF REGRESSION

Regression [noun]: the act of going back to a previous place or state; return or

reversion.

Functional Testing:

DEFINITION

Functional Testing is a type of software testing whereby the system is tested against the

functional requirements/specifications.

ELABORATION

Functions (or features) are tested by feeding them input and examining the output.

Functional testing ensures that the requirements are properly satisfied by the

application. This type of testing is not concerned with how processing occurs, but rather,

with the results of processing.

During functional testing, Black Box Testing technique is used in which the internal logic

of the system being tested is not known to the tester.

Functional testing is normally performed during the levels of System

Testing and Acceptance Testing.

Typically, functional testing involves the following steps:

 Identify functions that the software is expected to perform.

 Create input data based on the function’s specifications.

 Determine the output based on the function’s specifications.

 Execute the test case.

http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/acceptance-testing/
http://softwaretestingfundamentals.com/test-case/

Faculty of Computing Department of Computer Science and Engineering

 Compare the actual and expected outputs.

ADVANTAGES

 It simulates actual system usage.

 It does not make any system structure assumptions.

DISADVANTAGES

 It has a potential of missing logical errors in software.

 It has a high possibility of redundant testing.

NOTE

Functional testing is more effective when the test conditions are created directly from

user/business requirements. When test conditions are created from the system

documentation (system requirements/ design documents), the defects in that

documentation will not be detected through testing and this may be the cause of end-

users’ wrath when they finally use the software.

USABILITY TESTING

DEFINITION

Usability Testing is a type of testing done from an end-user’s perspective to determine if

the system is easily usable.

Faculty of Computing Department of Computer Science and Engineering

usability testing: Testing to determine the extent to which the software product is

understood, easy to learn, easy to operate and attractive to the users under specified

conditions.

Usability Test: The purpose of this event is to review the application user interface and

other human factors of the application with the people who will be using the application.

This is to ensure that the design (layout and sequence, etc.) enables the business

functions to be executed as easily and intuitively as possible.

ELABORATION

Systems may be built 100% in accordance with the specifications. Yet, they may be

‘unusable’ when it lands in the hands of the end-users. For instance, let’s say a user

needs to print a Financial Update Report, every 30 minutes, and he/she has to go

through the following steps:

1. Login to the system

2. Click Reports

3. From the groups of reports, select Financial Reports

4. From the list of financial reports, select Financial Update Report

5. Specify the following parameters

1. Date Range

2. Time Zone

3. Departments

4. Units

6. Click Generate Report

7. Click Print

8. Select an option

1. Print as PDF

2. Print for Real

If that’s the case, the system is probably practically unusable (though it functions

perfectly fine). If the report is to be printed frequently, wouldn’t it be convenient if the

user could get the job done in a couple of clicks, rather than having to go through

numerous steps like listed above? What if there was a feature to save frequently

generated reports as a template and if the saved reports were readily available for

printing from the homepage?

LEVELS APPLICABLE TO

Faculty of Computing Department of Computer Science and Engineering

Usability Testing is normally performed during System Testing and Acceptance

Testing levels.

USABILITY TESTING TIPS

 Understand who the users of the system are.

 Understand what their business needs are.

 Try to mimic their behavior.

 Are you good at role-playing? If not, practice. Hodor!

Usability Testing is NOT to be confused with User Acceptance Testing or User Interface

/ Look and Feel Testing.

Security Testing

DEFINITION

Security Testing is a type of software testing that intends to uncover vulnerabilities of

the system and determine that its data and resources are protected from possible

intruders.

FOCUS AREAS

There are four main focus areas to be considered in security testing (Especially for web

sites/applications):

 Network security: This involves looking for vulnerabilities in the network

infrastructure (resources and policies).

http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/acceptance-testing/
http://softwaretestingfundamentals.com/acceptance-testing/

Faculty of Computing Department of Computer Science and Engineering

 System software security: This involves assessing weaknesses in the various

software (operating system, database system, and other software) the

application depends on.

 Client-side application security: This deals with ensuring that the client (browser

or any such tool) cannot be manipulated.

 Server-side application security: This involves making sure that the server code

and its technologies are robust enough to fend off any intrusion.

EXAMPLE OF A BASIC SECURITY TEST

This is an example of a very basic security test which anyone can perform on a web

site/application:

 Log into the web application.

 Log out of the web application.

 Click the BACK button of the browser (Check if you are asked to log in again or if

you are provided the logged-in application.)

Most types of security testing involve complex steps and out-of-the-box thinking but,

sometimes, it is simple tests like the one above that help expose the most severe

security risks.

OWASP

The Open Web Application Security Project (OWASP) is a great resource for software

security professionals. Be sure to check out the Testing

Guide:https://www.owasp.org/index.php/Category:OWASP_Testing_Project

OWASP Top 10 security threats for 2013 are:

 Injection

 Broken Authentication and Session Management

 Cross-Site Scripting (XSS)

 Insecure Direct Object References

 Security Misconfiguration

 Sensitive Data Exposure

 Missing Function Level Access Control

 Cross-Site Request Forgery (CSRF)

 Using Known Vulnerable Components

https://www.owasp.org/index.php/Category:OWASP_Testing_Project

Faculty of Computing Department of Computer Science and Engineering

 Unvalidated Redirects and Forwards

BUILDING TRUST

There is an infinite number of ways to break an application. And, security testing, by

itself, is not the only (or the best) measure of how secure an application is. But, it is

highly recommended that security testing is included as part of the standard software

development process. After all, the world is teeming with hackers/pranksters and

everyone wishes to be able to trust the system/software one produces or uses.

Performance Testing

DEFINITION

Performance Testing is a type of software testing that intends to determine how a

system performs in terms of responsiveness and stability under a certain load.

There are basically four kinds of performance testing:

TYPES

 Load Testing is a type of performance testing conducted to evaluate the behavior

of a system at increasing workload.

 Stress Testing a type of performance testing conducted to evaluate the behavior

of a system at or beyond the limits of its anticipated workload.

 Endurance Testing is a type of performance testing conducted to evaluate the

behavior of a system when a significant workload is given continuously.

 Spike Testing is a type of performance testing conducted to evaluate the

behavior of a system when the load is suddenly and substantially increased.

Faculty of Computing Department of Computer Science and Engineering

TIPS

 Establish a test environment as close to the production environment as possible.

 Isolate the test environment even from the QA or UAT environment.

 Though there’s no perfect tool for performance testing, research and decide on

the tool that best fits your purpose.

 Do not rely on the results of one test. Conduct multiple tests to arrive at an

average number. Be wary of any changes to the test environment from one test

to the other.

Testing object oriented software

 The process of testing object-oriented systems begins with a review of the object-
oriented analysis and design models. Once the code is written object-oriented
testing (OOT) begins by testing "in the small" with class testing (class operations
and collaborations). As classes are integrated to become subsystems class
collaboration problems are investigated. Finally, use-cases from the OOA model are
used to uncover software validation errors.

 OOT similar to testing conventional software in that test cases are developed to
exercise the classes, their collaborations, and behavior.

 OOT differs from conventional software testing in that more emphasis is placed
assessing the completeness and consistency of the OOA and OOD models as they
are built.

 OOT tends to focus more on integration problems than on unit testing.

Object-Oriented Testing Activities

 Review OOA and OOD models
 Class testing after code is written
 Integration testing within subsystems
 Integration testing as subsystems are added to the system
 Validation testing based on OOA use-cases

 Testing OOA and OOD Models

 OOA and OOD cannot be tested but can review the correctness and consistency.
 Correctness of OOA and OOD models

Semantic Syntactic

Faculty of Computing Department of Computer Science and Engineering

 Consistency of OOA and OOD Models

 Assess the class-responsibility-collaborator (CRC) model and object-relationship
diagram

 Review system design (examine the object-behavior model to check mapping of
system behavior to subsystems, review concurrency and task allocation, use
use-case scenarios to exercise user interface design)

 Test object model against the object relationship network to ensure that all
design object contain necessary attributes and operations needed to implement
the collaborations defined for each CRC card

 Review detailed specifications of algorithms used to implement operations using
conventional inspection techniques

 Object-Oriented Testing Strategies

 Unit testing in the OO context

 Smallest testable unit is the encapsulated class or object
 Similar to system testing of conventional software
 Do not test operations in isolation from one another
 Driven by class operations and state behavior, not algorithmic detail and data

flow across module interface
 Complete test coverage of a class involves

- Testing all operations associated with an object
- Setting and interrogating all object attributes
- Exercising the object in all possible states

 Design of test for a class uses a verity of methods:

- fault-based testing
- random testing
- partition testing

 each of these methods exercises the operations encapsulated by the class
 test sequences are designed to ensure that relevant operations are exercised
 state of the class (the values of its attributes) is examined to determine if errors

exist

 Integration testing in the OO context

 focuses on groups of classes that collaborate or communicate in some manner
 integration of operations one at a time into classes is often meaningless
 thread-based testing (testing all classes required to respond to one system input

or event)

Faculty of Computing Department of Computer Science and Engineering

 use-based testing (begins by testing independent classes first and the dependent
classes that make use of them)

 cluster testing (groups of collaborating classes are tested for interaction errors)
 regression testing is important as each thread, cluster, or subsystem is added to

the system
 Levels of integration are less distinct in object-oriented systems

 Validation testing in the OO context

 focuses on visible user actions and user recognizable outputs from the system
 validation tests are based on the use-case scenarios, the object-behavior model,

and the event flow diagram created in the OOA model
 conventional black-box testing methods can be used to drive the validation tests

 Test Case Design for OO Software

 Each test case should be uniquely identified and be explicitly associated with a
class to be tested

 State the purpose of each test
 List the testing steps for each test including:

 list of states to test for each object involved in the test
 list of messages and operations to exercised as a consequence of the test
 list of exceptions that may occur as the object is tested
 list of external conditions needed to be changed for the test
 supplementary information required to understand or implement the test

 Testing Surface Structure and Deep Structure

 Testing surface structure (exercising the structure observable by end-user,
this often involves observing and interviewing users as they manipulate
system objects)

 Testing deep structure (exercising internal program structure - the
dependencies, behaviors, and communications mechanisms established as
part of the system and object design)

 Testing Methods Applicable at The Class Level

 Random testing - requires large numbers data permutations and combinations, and
can be inefficient

o Identify operations applicable to a class
o Define constraints on their use
o Identify a minimum test sequence
o Generate a variety of random test sequences.

Faculty of Computing Department of Computer Science and Engineering

 Partition testing - reduces the number of test cases required to test a class

o state-based partitioning - tests designed in way so that operations that cause
state changes are tested separately from those that do not.

o attribute-based partitioning - for each class attribute, operations are classified
according to those that use the attribute, those that modify the attribute, and
those that do not use or modify the attribute

o category-based partitioning - operations are categorized according to the
function they perform: initialization, computation, query, termination

 Fault-based testing

 best reserved for operations and the class level
 uses the inheritance structure
 tester examines the OOA model and hypothesizes a set of plausible defects

that may be encountered in operation calls and message connections and
builds appropriate test cases

 misses incorrect specification and errors in subsystem interactions

 Inter-Class Test Case Design

 Test case design becomes more complicated as integration of the OO system
begins – testing of collaboration between classes

 Multiple class testing

o for each client class use the list of class operators to generate random test
sequences that send messages to other server classes

o for each message generated determine the collaborator class and the
corresponding server object operator

o for each server class operator (invoked by a client object message) determine
the message it transmits

o for each message, determine the next level of operators that are invoked and
incorporate them into the test sequence

 Tests derived from behavior models

o Use the state transition diagram (STD) as a model that represent the dynamic
behavior of a class.

o test cases must cover all states in the STD
o breadth first traversal of the state model can be used (test one transition at a

time and only make use of previously tested transitions when testing a new
transition)

o test cases can also be derived to ensure that all behaviors for the class have
been adequately exercised

 Testing Methods Applicable at Inter-Class Level

Faculty of Computing Department of Computer Science and Engineering

 Cluster Testing

 Is concerned with integrating and testing clusters of cooperating objects
 Identify clusters using knowledge of the operation of objects and the system

features that are implemented by these clusters

 Approaches to Cluster Testing
o Use-case or scenario testing

 Testing is based on a user interactions with the system
 Has the advantage that it tests system features as experienced by users

o Thread testing – tests the systems response to events as processing threads
through the system

o Object interaction testing – tests sequences of object interactions that stop
when an object operation does not call on services from another object

 Use Case/Scenario-based Testing

 Based on
o use cases
o corresponding sequence diagrams

 Identify scenarios from use-cases and supplement these with interaction
diagrams that show the objects involved in the scenario

 Concentrates on (functional) requirements
o Every use case
o Every fully expanded extension (<<extend>>) combination
o Every fully expanded uses (<<uses>>) combination
o Tests normal as well as exceptional behavior

 A scenario is a path through sequence diagram
 Many different scenarios may be associated with a sequence diagram
 using the user tasks described in the use-cases and building the test cases from

the tasks and their variants
 uncovers errors that occur when any actor interacts with the OO software
 concentrates on what the use does, not what the product does
 you can get a higher return on your effort by spending more time on reviewing

the use-cases as they are created, than spending more time on use-case testing

OO Test Design Issues

White-box testing methods can be applied to testing the code used to implement
class operations, but not much else

Black-box testing methods are appropriate for testing OO systems

Object-oriented programming brings additional testing concerns

 classes may contain operations that are inherited from super classes
 subclasses may contain operations that were redefined rather than inherited

Faculty of Computing Department of Computer Science and Engineering

 all classes derived from an previously tested base class need to be thoroughly

tested.

SCSX1038 Software Quality Assurance and Testing

UNIT-3

Difference between Static and Dynamic Testing

 Static Testing Dynamic Testing

1 In this type of testing we do not
execute the code

In this type of Testing we always
execute the code.

2 It means examining and
reviewing the software.

It means testing, running, and using
the software.

3 In this form of Testing methods
like code review, inspection,
walkthrough, reviews are used.

In this Testing methods like testing
and validations are used.

4 It is done in the phase of
verification.

It is done in the phase of validation.

5 This testing means “How we
prevent” means it always talks
about prevention.

This testing means “How we cure”
means it always talks about cure.

6 It is not a time consuming job
because its purpose is to examine
the software or code.

It is always a time consuming job
because its purpose is to execute the
software or code and it may also
involve running more test cases.

7 As it can always start early in the
life cycle it definitely reduces the
cost of product or you can say
project.

As it not starting early in the life cycle
hence it definitely increases the cost
of product/project.

8 It is always considered as less
cost effective job/task.

It is always considered as more cost
effective job/task.

9 It can find errors that dynamic
testing cannot find and it is a low
level exercise.

It can find errors that static testing
cannot find and it is a high level
exercise.

10 It is not considered as a time
consuming job or task.

It is always considered as a time
consuming job or task because it
requires several test cases to execute.

11 Techniques/methods of static
testing are inspections, reviews,
and walkthroughs etc.

Technique/method of dynamic testing
is always software testing means
testing.

12 Static testing is also known by the
name Dry Run Testing.

Dynamic Testing is not known by any
other name.

13 It definitely comes before It definitely follows after static

dynamic testing. testing.

What is Static Testing?

Static Testing, a software testing technique in which the software is tested

without executing the code. It has two parts as listed below:

• Review - Typically used to find and eliminate errors or ambiguities in

documents such as requirements, design, test cases, etc.

• Static analysis - The code written by developers are analysed (usually by

tools) for structural defects that may lead to defects.

Types of Reviews:

The types of reviews can be given by a simple diagram:

Static Analysis - By Tools:

Following are the types of defects found by the tools during static analysis:

• A variable with an undefined value

• Inconsistent interface between modules and components

• Variables that are declared but never used

• Unreachable code (or) Dead Code

• Programming standards violations

• Security vulnerabilities

• Syntax violations

•

1. Informal reviews:

Informal reviews are applied many times during the early stages of the life cycle

of the document. A two person team can conduct an informal review. In later

stages these reviews often involve more people and a meeting. The goal is to

keep the author and to improve the quality of the document. The most important

thing to keep in mind about the informal reviews is that they are not

documented.

The main review types that come under the static testing are mentioned below:

 2. Walkthrough:

• It is not a formal process

• It is led by the authors

• Author guide the participants through the document according to his or

her thought process to achieve a common understanding and to gather

feedback.

• Useful for the people if they are not from the software discipline, who are

not used to or cannot easily understand software development process.

• Is especially useful for higher level documents like requirement

specification, etc.

The goals of a walkthrough:

• To present the documents both within and outside the software discipline

in order to gather the information regarding the topic under

documentation.

• To explain or do the knowledge transfer and evaluate the contents of the

document

• To achieve a common understanding and to gather feedback.

• To examine and discuss the validity of the proposed solutions

3. Inspection:

• It is the most formal review type

• It is led by the trained moderators

• During inspection the documents are prepared and checked thoroughly by

the reviewers before the meeting

• It involves peers to examine the product

• A separate preparation is carried out during which the product is

examined and the defects are found

• The defects found are documented in a logging list or issue log

• A formal follow-up is carried out by the moderator applying exit criteria

The goals of inspection are:

• It helps the author to improve the quality of the document under

inspection

• It removes defects efficiently and as early as possible

• It improve product quality

• It create common understanding by exchanging information

• It learn from defects found and prevent the occurrence of similar defects

static analysis (static code analysis)

Static analysis, also called static code analysis, is a method of computer

program debugging that is done by examining the code without executing the

program. The process provides an understanding of the code structure, and can

help to ensure that the code adheres to industry standards. Automated tools can

assist programmers and developers in carrying out static analysis. The process

of scrutinizing code by visual inspection alone (by looking at a printout, for

example), without the assistance of automated tools, is sometimes called

program understanding or program comprehension.

The principal advantage of static analysis is the fact that it can reveal errors that

do not manifest themselves until a disaster occurs weeks, months or years after

release. Nevertheless, static analysis is only a first step in a comprehensive

software quality-control regime. After static analysis has been done, dynamic

analysis is often performed in an effort to uncover subtle defects or

vulnerabilities. In computer terminology, static means fixed, while dynamic

means capable of action and/or change. Dynamic analysis involves the testing

and evaluation of a program based on execution. Static and dynamic analysis,

considered together, are sometimes referred to as glass-box testing.

What is Dynamic Testing?

Dynamic Testing is a kind of software testing technique using which the

dynamic behaviour of the code is analysed.

For Performing dynamic, testing the software should be compiled and executed

and parameters such as memory usage, CPU usage, response time and overall

performance of the software are analyzed.

Dynamic testing involves testing the software for the input values and output

values are analyzed. Dynamic testing is the Validation part of Verification and

Validation.

Dynamic Testing Techniques

The Dynamic Testing Techniques are broadly classified into two categories.

They are:

• Functional Testing

• Non-Functional Testing

Levels of Dynamic Testing

There are various levels of Dynamic Testing Techniques. They are:

• Unit Testing

• Integration Testing

• System Testing

• Acceptance Testing

What is Dynamic testing technique?

• This testing technique needs computer for testing.

• It is done during Validation process.

• The software is tested by executing it on computer.

• Example of this Dynamic Testing Technique: Unit testing,integration

testing, system testing.

What is White Box Testing?

White box testing is a testing technique, that examines the program structure

and derives test data from the program logic/code. The other names of glass

box testing are clear box testing, open box testing, logic driven testing or path

driven testing or structural testing.

White Box Testing Techniques:

• Statement Coverage - This technique is aimed at exercising all

programming statements with minimal tests.

• Branch Coverage - This technique is running a series of tests to ensure

that all branches are tested at least once.

• Path Coverage - This technique corresponds to testing all possible paths

which means that each statement and branch is covered.

Advantages of White Box Testing:

• Forces test developer to reason carefully about implementation.

• Reveals errors in "hidden" code.

• Spots the Dead Code or other issues with respect to best programming

practices.

Disadvantages of White Box Testing:

• Expensive as one has to spend both time and money to perform white

box testing.

• Every possibility that few lines of code are missed accidentally.

• In-depth knowledge about the programming language is necessary to

perform white box testing.

Cyclomatic complexity and its Applications

To understand CyclomaticComplexity , lets first understand -

What is Software Metric?

Measurement is nothing but quantitative indication of size / dimension /

capacity of an attribute of a product / process.

Software metric is defined as a quantitative measure of an attribute a software

system possesses with respect to Cost, Quality, Size and Schedule.

Example-

Measure - No. of Errors

Metrics - No. of Errors found per person

What is Cyclomatic Complexity?

Cyclomatic complexity is a software metric used to measure the complexity of a

program. These metric, measures independent paths through program source

code.

Independent path is defined as a path that has atleast one edge which has not

been traversed before in any other paths.

Cyclomatic complexity can be calculated with respect to functions, modules,

methods or classes within a program.

This metric was developed by Thomas J. McCabe in 1976 and it is based on a

control flow representation of the program. Control flow depicts a program as a

graph which consists of Nodes and Edges.

In the graph, Nodes represent processing tasks while edges represent control

flow between the nodes.

Flow graph notation for a program:

Flow Graph notation for a program is defines .several nodes connected through

the edges. Below are Flow diagrams for statements like if-else, While, until and

normal sequence of flow.

Mathematical representation:

Mathematically, it is set of independent paths through the graph diagram. The

complexity of the program can be defined as -

V(G) = E - N + 2

Where,

E - Number of edges

N - Number of Nodes

V (G) = P + 1

Where P = Number of predicate nodes (node that contains condition)

Example -

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

i = 0;

n=4; //N-Number of nodes present in the graph

while (i<n-1) do

j = i + 1;

while (j<n) do

if A[i]<A[j] then

swap(A[i], A[j]);

end do;

i=i+1;

end do;

Flow graph for this program will be

Computing mathematically,

• V(G) = 9 - 7 + 2 = 4

• V(G) = 3 + 1 = 4 (Condition nodes are 1,2 and 3 nodes)

• Basis Set - A set of possible execution path of a program

• 1, 7

• 1, 2, 6, 1, 7

• 1, 2, 3, 4, 5, 2, 6, 1, 7

• 1, 2, 3, 5, 2, 6, 1, 7

Properties of Cyclomatic complexity:

Following are the properties of Cyclomatic complexity:

1. V (G) is the maximum number of independent paths in the graph

2. V (G) >=1

3. G will have one path if V (G) = 1

4. Minimize complexity to 10

How this metric is useful for software testing?

Basis Path testing is one of White box technique and it guarantees to execute

atleast one statement during testing. It checks each linearly independent path

through the program, which means number test cases, will be equivalent to

the cyclomatic complexity of the program.

This metric is useful because of properties of Cyclomatic complexity (M) -

1. M can be number of test cases to achieve branch coverage(Upper Bound)

2. M can be number of paths through the graphs.(Lower Bound)

Consider this example -

1
2
3
4
5
6
7
8
9
10
11
12

If (Condition 1)

Statement 1

Else

Statement 2

If (Condition 2)

Statement 3

13
14
15

Else

Statement 4

Cyclomatic Complexity for this program will be 9-7+2=4.

As complexity has calculated as 4, four test cases are necessary to the complete

path coverage for the above example.

Steps to be followed:

The following steps should be followed for computing Cyclomatic complexity

and test cases design.

Step 1 - Construction of graph with nodes and edges from the code

Step 2 - Identification of independent paths

Step 3 - Cyclomatic Complexity Calculation

Step 4 - Design of Test Cases

Once the basic set is formed, TEST CASES should be written to execute all the

paths.

More on V (G):

Cyclomatic complexity can be calculated manually if the program is small.

Automated tools need to be used if the program is very complex as this involves

more flow graphs. Based on complexity number, team can conclude on the

actions that need to be taken for measure.

Following table gives overview on the complexity number and corresponding

meaning of v (G):

Complexity Number Meaning

1-10 Structured and well written code

High Testability

Cost and Effort is less

10-20 Complex Code

Medium Testability

Cost and effort is Medium

20-40 Very complex Code

Low Testability

Cost and Effort are high

>40 Not at all testable

Very high Cost and Effort

Tools for Cyclomatic Complexity calculation:

Many tools are available for determining the complexity of the application.

Some complexity calculation tools are used for specific technologies.

Complexity can be found by the number of decision points in a program. The

decision points are if, for, for-each, while, do, catch, case statements in a source

code.

Examples of tools are

• OCLint - Static code analyzer for C and Related Languages

• devMetrics - Analyzing metrics for C# projects

• Reflector Add In - Code metrics for .NET assemblies

• GMetrics - Find metrics in Java related applications

• NDepends - Metrics in Java applications

Uses of Cyclomatic Complexity:

Cyclomatic Complexity can prove to be very helpful in

• Helps developers and testers to determine independent path executions

• Developers can assure that all the paths have been tested atleast once

• Helps us to focus more on the uncovered paths

• Improve code coverage

• Evaluate the risk associated with the application or program

• Using these metrics early in the cycle reduces more risk of the program

Conclusion:

Cyclomatic Complexity is software metric useful for structured or white box

testing .It is mainly used to evaluate complexity of a program. If the decision

points are more, then complexity of the program is more. If program has high

complexity number, then probability of error is high with increased time for

maintenance and trouble shoot.

Control Structure testing.

Control structure testing is a group of white-box testing methods.

• 1.0 Branch Testing
• 1.1 Condition Testing
• 1.2 Data Flow Testing
• 1.3 Loop Testing

1.0 Branch Testing

• also called Decision Testing
• definition: "For every decision, each branch needs to be executed at least

once."
• shortcoming - ignores implicit paths that result from compound

conditionals.
• Treats a compound conditional as a single statement. (We count each

branch taken out of the decision, regardless which condition lead to the
branch.)

• This example has two branches to be executed:
IF (a equals b) THEN

 statement 1
ELSE
 statement 2
END IF

• This examples also has just two branches to be executed, despite the
compound conditional:
IF (a equals b AND c less than d) THEN
 statement 1
ELSE
 statement 2
END IF

• This example has four branches to be executed:
IF (a equals b) THEN
 statement 1
ELSE
 IF (c equals d) THEN
 statement 2
 ELSE
 statement 3
 END IF
END IF

• Obvious decision statements are if, for, while, switch.
• Subtle decisions are return boolean expression, ternary expressions, try-

catch.
• For this course you don't need to write test cases for IOException and

OutOfMemory exception.

• See this problem and solution.

1.1 Condition Testing

Condition testing is a test construction method that focuses on exercising the

logical conditions in a program module.

Errors in conditions can be due to:

• Boolean operator error
• Boolean variable error
• Boolean parenthesis error
• Relational operator error
• Arithmetic expression error

definition: "For a compound condition C, the true and false branches of C and

every simple condition in C need to be executed at least once."

Multiple-condition testing requires that all true-false combinations of simple

conditions be exercised at least once. Therefore, all statements, branches, and

conditions are necessarily covered.

1.2 Data Flow Testing

Selects test paths according to the location of definitions and use of variables.

This is a somewhat sophisticated technique and is not practical for extensive

use. Its use should be targeted to modules with nested if and loop statements.

1.3 Loop Testing

Loops are fundamental to many algorithms and need thorough testing.

There are four different classes of loops: simple, concatenated, nested, and
unstructured.

Examples:

Create a set of tests that force the following situations:

• Simple Loops, where n is the maximum number of allowable passes
through the loop.

o Skip loop entirely
o Only one pass through loop
o Two passes through loop
o m passes through loop where m<n.
o (n-1), n, and (n+1) passes through the loop.

• Nested Loops
o Start with inner loop. Set all other loops to minimum values.
o Conduct simple loop testing on inner loop.
o Work outwards
o Continue until all loops tested.

• Concatenated Loops
o If independent loops, use simple loop testing.
o If dependent, treat as nested loops.

• Unstructured loops
o Don't test - redesign.

public class loopdemo
{
 private int[] numbers = {5,-3,8,-12,4,1,-20,6,2,10};

 /** Compute total of numItems positive numbers in the array
*@paramnumItems how many items to total, maximum of10.
*/
 public intfindTotal(intnumItems)
 {
int total = 0;
 if (numItems<= 10)
 {
 for (int count=0; count <numItems; count = count + 1)
 {
 if (numbers[count] > 0)
 {
 total = total + numbers[count];
 }
 }
 }
 return total;
 }
}

 public void testOne()

 {

 loopdemo app = new loopdemo();

 assertEquals(0, app.findTotal(0));

 assertEquals(5, app.findTotal(1));

 assertEquals(5, app.findTotal(2));

 assertEquals(17, app.findTotal(5));

 assertEquals(26, app.findTotal(9));

 assertEquals(36, app.findTotal(10));

 assertEquals(0, app.findTotal(11));

 }

What is Black box Testing?

Black-box testing is a method of software testing that examines the

functionality of an application based on the specifications. It is also known as

Specifications based testing. Independent Testing Team usually performs this

type of testing during the software testing life cycle.

This method of test can be applied to each and every level of software testing

such as unit, integration, system and acceptance testing.

Behavioural Testing Techniques:

There are different techniques involved in Black Box testing.

• Equivalence Class

• Boundary Value Analysis

• Domain Tests

• Orthogonal Arrays

• Decision Tables

• State Models

• Exploratory Testing

• All-pairs testing

Equivalence Partitioning

Equivalence partitioning (EP) is a blackbox testing technique. This technique is
very common and mostly used by all the testers informally. Equivalence
partitions are also known as equivalence classes.

As the name suggests Equivalence partitioning is to divide or to partition a set
of test conditions into sets or groups that can be considered same by the
software system.

As you all know that exhaustive testing of the software is not feasible task for
complex software’s so by using equivalence partitioning technique we need to
test only one condition from each partition because it is assumed that all the
conditions in one partition will be treated in the same way by the software. If
one condition works fine then all the conditions within that partition will work
the same way and tester does not need to test other conditions or in other way if
one condition fails in that partition then all other conditions will fail in that
partition.

These conditions may not always be true however testers can use better
partitions and also test some more conditions within those partitions to confirm
that the selection of that partition is fine.

Lets take some examples:
A store in city offers different discounts depending on the purchases made by
the individual. In order to test the software that calculates the discounts, we can
identify the ranges of purchase values that earn the different discounts. For
example, if a purchase is in the range of $1 up to $50 has no discounts, a
purchase over $50 and up to $200 has a 5% discount, and purchases of $201 and
up to $500 have a 10% discounts, and purchases of $501 and above have a 15%
discounts.

Now we can identify 4 valid equivalence partitions and 1 invalid partition as
shown below.

Invalid

Partition

Valid

Partition(No

Discounts)

Valid

Partition(5%)

Valid

Partition(10%)

Valid

Partition(15%)

$0.01 $1-$50 $51-$200 $201-$500 $501-Above

Boundary Value Analysis

What is a Boundary Value

A boundary value is any input or output value on the edge of an equivalence
partition.

Let us take an example to explain this:
Suppose you have a software which accepts values between 1-1000, so the valid
partition will be (1-1000), equivalence partitions will be like:

Invalid Partition Valid Partition Invalid Partition

0 1-1000 1001 and above

And the boundary values will be 1, 1000 from valid partition and 0,1001 from
invalid partitions.

Boundary Value Analysis is a black box test design technique where test case
are designed by using boundary values, BVA is used in range checking.
Example:2
A store in city offers different discounts depending on the purchases made by
the individual. In order to test the software that calculates the discounts, we can
identify the ranges of purchase values that earn the different discounts. For
example, if a purchase is in the range of $1 up to $50 has no discounts, a
purchase over $50 and up to $200 has a 5% discount, and purchases of $201 and
up to $500 have a 10% discounts, and purchases of $501 and above have a 15%
discounts.

We can identify 4 valid equivalence partitions and 1 invalid partition as shown
below.

Invalid

Partition

Valid

Partition(No

Discounts)

Valid

Partition(5%)

Valid

Partition(10%)

Valid

Partition(15%)

$0.01 $1-$50 $51-$200 $201-$500 $501-Above

From this table we can identify the boundary values of each partition. We
assume that two decimal digits are allowed.

Boundary values for Invalid partition :0.00
Boundary values for valid partition(No Discounts): 1, 50
Boundary values for valid partition(5% Discount): 51, 200
Boundary values for valid partition(10% Discount): 201,500
Boundary values for valid partition(15% Discount): 501, Max allowed number
in the software application

What is Cause-Effect Graph?

Cause Effect Graph is a black box testing technique that graphically illustrates

the relationship between a given outcome and all the factors that influence the

outcome.

It is also known as Ishikawa diagram as it was invented by Kaoru Ishikawa or

fish bone diagram because of the way it looks.

Cause Effect - Flow Diagram

Circumstances - under which Cause-Effect Diagram used

• To Identify the possible root causes, the reasons for a specific effect,

problem, or outcome.

• To Relate the interactions of the system among the factors affecting a

particular process or effect.

• To Analyze the existing problems so that corrective action can be taken

at the earliest.

Benefits :

• It Helps us to determine the root causes of a problem or quality using a

structured approach.

• It Uses an orderly, easy-to-read format to diagram cause-and-effect

relationships.

• It Indicates possible causes of variation in a process.

• It Identifies areas, where data should be collected for further study.

• It Encourages team participation and utilizes the team knowledge of the

process.

• It Increases knowledge of the process by helping everyone to learn more

about the factors at work and how they relate.

Steps for drawing cause-Effect Diagram:

• Step 1 : Identify and Define the Effect

• Step 2 : Fill in the Effect Box and Draw the Spine

• Step 3: Identify the main causes contributing to the effect being studied.

• Step 4 : For each major branch, identify other specific factors which may

be the causes of the EFFECT.

• Step 5 : Categorize relative causes and provide detailed levels of causes.

What is Syntax Testing?

Syntax Testing, a black box testing technique, involves testing the System

inputs and it is usually automated because syntax testing produces a large

number of tests. Internal and external inputs have to conform the below

formats:

• Format of the input data from users.

• File formats.

• Database schemas.

Syntax Testing - Steps:

• Identify the target language or format.

• Define the syntax of the language.

• Validate and Debug the syntax.

Syntax Testing - Limitations:

• Sometimes it is easy to forget the normal cases.

• Syntax testing needs driver program to be built that automatically

sequences through a set of test cases usually stored as data.

SCSX1038 Software Quality Assurance and Testing

Unit - IV

Quality Assurance is process oriented and focuses on defect prevention,

while Quality control is product oriented and focuses on

defect identification.

Quality Assurance versus Quality Control comparison

Quality Assurance Quality Control

Definition QA is a set of activities for ensuring

quality in the processes by which

products are developed.

QC is a set of activities for

ensuring quality in products. The

activities focus on identifying

defects in the actual products

produced.

Focus on QA aims to prevent defects with a

focus on the process used to make

the product. It is a proactive

quality process.

QC aims to identify (and correct)

defects in the finished product.

Quality control, therefore, is a

reactive process.

Goal The goal of QA is to improve

development and test processes so

that defects do not arise when the

product is being developed.

The goal of QC is to identify

defects after a product is

developed and before it's

released.

How Establish a good quality

management system and the

assessment of its adequacy.

Periodic conformance audits of the

operations of the system.

Finding & eliminating sources of

quality problems through tools

& equipment so that customer's

requirements are continually

met.

What Prevention of quality problems

through planned and systematic

activities including documentation.

The activities or techniques used

to achieve and maintain the

product quality, process and

service.

Responsibility Everyone on the team involved in

developing the product is

Quality control is usually

theresponsibility of a specific

Quality Assurance versus Quality Control comparison

Quality Assurance Quality Control

responsible for quality assurance. team that tests the product for

defects.

Example Verification is an example of QA Validation/Software Testing is an

example of QC

Statistical

Techniques

Statistical Tools & Techniques can

be applied in both QA & QC. When

they are applied to processes

(process inputs & operational

parameters), they are called

Statistical Process Control (SPC); &

it becomes the part of QA.

When statistical tools &

techniques are applied to

finished products (process

outputs), they are called as

Statistical Quality Control (SQC)

& comes under QC.

As a tool QA is a managerial tool QC is a corrective tool

Orientation QA is process oriented QC is product oriented

Software Quality Factors

A software quality factor is a non-functional requirement for a

software program which is not called up by the customer's contract, but

nevertheless is a desirable requirement which enhances the quality of the

software program.

Some software quality factors are listed here:

1. Understandability is possessed by a software product if the purpose of

the product is clear. This goes further than just a statement of purpose -

all of the design and user documentation must be clearly written so that

it is easily understandable. This is obviously subjective in that the user

context must be taken into account, i.e. if the software product is to be

used by software engineers it is not required to be understandable to

the layman.

2. A software product possesses the characteristic completeness to the

extent that all of its parts are present and each of its parts is fully

developed. This means that if the code calls a sub-routine from an

external library, the software package must provide reference to that

library and all required parameters must be passed. All

required inputdata must be available.

3. A software product possesses the characteristic conciseness to the

extent that no excessive information is present. This is important where

memory capacity is limited, and it is important to reduce lines of code to

a minimum. It can be improved by replacing repeated functionality by

one sub-routine or function which achieves that functionality. It also

applies to documents.

4. A software product possesses the characteristic portability to the extent

that it can be operated easily and well on computer configurations other

than its current one. This is particularly important with

PC applications where, for example, a product is expected to work on all

80486 processors.

5. A software product possesses the characteristic maintainability to the

extent that it facilitates updating to satisfy new requirements. Thus the

software product which is maintainable should be well-

documented, not complex, and should have spare capacity for memory

usage and processor speed.

6. A software product possesses the characteristic testability to the extent

that it facilitates the establishment of acceptance criteria and supports

evaluation of its performance. Such a characteristic must be built-in

during the design phase if the product is to be easily testable - a complex

design leads to poor testability.

7. A software product possesses the characteristic usability to the extent

that it isconvenient and practicable to use. This is affected by such

things as the human-computer interface. The component of the

software which has most impact on this is the graphical user interface

(GUI).

8. A software product possesses the characteristic reliability to the extent

that it can be expected to perform its intended functions satisfactorily.

This implies a time factor in that a reliable product is expected to

perform correctly over a period of time. It also encompasses

environmental considerations in that the product is required to perform

correctly in whichever conditions it finds itself - this is sometimes

termed robustness.

McCall’s Quality Factors

McCall’s quality factors were proposed in the early 1970s. They are as valid
today as they were in that time. It’s likely that software built to conform to
these factors will exhibit high quality well into the 21st century, even if there
are dramatic changes in technology.

McCall’s Triangle of Quality

MaintainabilityMaintainability

FlexibilityFlexibility

TestabilityTestability

PortabilityPortability

ReusabilityReusability

InteroperabilityInteroperability

CorrectnessCorrectness

ReliabilityReliability

EfficiencyEfficiency

IntegrityIntegrity

UsabilityUsability

PRODUCT TRANSITIONPRODUCT TRANSITIONPRODUCT REVISIONPRODUCT REVISION

PRODUCT OPERATIONPRODUCT OPERATION

The factors that affect S/W quality can be categorized in two broad groups:

1. factors that can be directly measured (defects uncovered during testing)
2. factors that can be measured only indirectly (Usability and

maintainability)

The S/W quality factors shown above focus on three important aspects of a
S/W product:

• Its operational characteristics
• Its ability to undergo change
• Its adaptability to new environments

Referring to these factors, McCall and his colleagues provide the following
descriptions:

Correctness: The extent to which a program satisfies its specs and fulfills the
customer’s mission objectives.

Reliability: The extent to which a program can be expected to perform its
intended function with required precision.

Efficiency: The amount of computing resources and code required to perform
is function.

Integrity: The extent to which access to S/W or data by unauthorized persons
can be controlled.

Usability: The effort required to learn, operate, prepare input for, and interpret
output of a program.

Maintainability: The effort required to locate and fix errors in a program.

Flexibility: The effort required to modify an operational program.

Testability: The effort required to test a program to ensure that it performs its

intended function.

Portability: The effort required to transfer the program from one hardware
and/or software system environment to another.

Reusability: The extent to which a program can be reused in other applications-
related to the packaging and scope f the functions that the program performs.

Interoperability: The effort required to couple one system to another.

FURPS:

FURPS is an acronym representing a model for classifying software quality

attributes (functional and non-functional requirements):

• Functionality - Capability (Size & Generality of Feature Set), Reusability

(Compatibility, Interoperability, Portability), Security (Safety &

Exploitability)

• Usability (UX) - Human Factors, Aesthetics, Consistency, Documentation,

Responsiveness

• Reliability - Availability (Failure Frequency

(Robustness/Durability/Resilience), Failure Extent & Time-Length

(Recoverability/Survivability)), Predictability (Stability), Accuracy

(Frequency/Severity of Error)

• Performance - Speed, Efficiency, Resource Consumption (power, ram,

cache, etc.), Throughput, Capacity, Scalability

• Supportability (Serviceability, Maintainability, Sustainability, Repair Speed) -

Testability, Flexibility (Modifiability, Configurability, Adaptability,

Extensibility, Modularity), Installability, Localizability

The model, developed at Hewlett-Packard was first publicly elaborated by

Grady and Caswell. FURPS+ is now widely used in the software industry.

The + was later added to the model after various campaigns at HP to extend

the acronym to emphasize various attributes.

9126 Quality Factors

ISO 9126 is an international standard for the evaluation of softwarequality.

• Functionality - A set of attributes that bear on the existence of a set of

functions and their specified properties. The functions are those that satisfy

stated or implied needs.

o Suitability

o Accuracy

o Interoperability

o Compliance

o Security

• Reliability - A set of attributes that bear on the capability of software to

maintain its level of performance under stated conditions for a stated

period of time.

o Maturity

o Recoverability

• Usability- A set of attributes that bear on the effort needed for use, and on

the individual assessment of such use, by a stated or implied set of users.

o Learnability

o Understandability

o Operability

• Efficiency- A set of attributes that bear on the relationship between the

level of performance of the software and the amount of resources used,

under stated conditions.

o Time Behavior

o Resource Behavior

• Maintainability- A set of attributes that bear on the effort needed to make

specified modifications.

o Stability

o Analyzability

o Changeability

o Testability

• Portability- A set of attributes that bear on the ability of software to be

transferred from one environment to another.

o Installability

o Replaceability

o Adaptability

Software Quality Metrics:

Software metrics can be classified into three categories: product metrics,

process metrics, and project metrics. Product metrics describe the

characteristics of the product such as size, complexity, design features,

performance, and quality level. Process metrics can be used to improve

software development and maintenance. Examples include the effectiveness

of defect removal during development, the pattern of testing defect arrival,

and the response time of the fix process. Project metrics describe the project

characteristics and execution. Examples include the number of software

developers, the staffing pattern over the life cycle of the software, cost,

schedule, and productivity. Some metrics belong to multiple categories. For

example, the inprocess quality metrics of a project are both process metrics

and project metrics. Software quality metrics are a subset of software metrics

that focus on the quality aspects of the product, process, and project. In

general, software quality metrics are more closely associated with process and

product metrics than with project metrics. Nonetheless, the project

parameters such as the number of developers and their skill levels, the

schedule, the size, and the organization structure certainly affect the quality of

the product. Software quality metrics can be divided further into end-product

quality metrics and in-process quality metrics. The essence of software quality

engineering is to investigate the relationships among in-process metrics,

project characteristics, and end-product quality, and, based on the findings, to

engineer improvements in both process and product quality. Moreover, we

should view quality from the entire software life-cycle perspective and, in this

regard, we should include metrics that measure the quality level of the

maintenance process as another category of software quality metrics. In this

chapter we discuss several metrics in each of three groups of software quality

metrics: product quality, in-process quality, and maintenance quality. In the

last sections we also describe the key metrics used by several major software

developers and discuss software metrics data collection.

Product Quality Metrics:

The de facto definition of software quality consists of two levels: intrinsic

product quality and customer satisfaction.

The metrics we discuss here cover both levels:

* Mean time to failure

* Defect density

* Customer problems

* Customer satisfaction.

Intrinsic product quality is usually measured by the number of “bugs”

(functional defects) in the software or by how long the software can run before

encountering a “crash.” In operational definitions, the two metrics are defect

density (rate) and mean time to failure (MTTF). The MTTF metric is most often

used with safetycritical systems such as the airline traffic control systems,

avionics, and weapons. For instance, the U.S. government mandates that its air

traffic control system cannot be unavailable for more than three seconds per

year. In civilian airliners, the probability of certain catastrophic failures must be

no worse than 10−9 per hour (LiKlewood and Strigini, 1992). The defect

density metric, in contrast, is used in many commercial software systems. The

two metrics are correlated but are different enough to merit close attention.

First, one measures the time between failures, the other measures the defects

relative to the software size (lines of code, function points, etc.). Second,

although it is difficult to separate defects and failures in actual measurements

and data tracking, failures and defects (or faults) have different meanings.

According to the IEEE/ American National Standards Institute (ANSI) standard

(982.2):

* An error is a human mistake that results in incorrect software.

* The resulting fault is an accidental condition that causes a unit of the system

to fail to function as required.

* A defect is an anomaly in a product.

* A failure occurs when a functional unit of a software-related system can no

longer perform its required function or cannot perform it within specified

limits.

From these definitions, the difference between a fault and a defect is unclear.

For practical purposes, there is no difference between the two terms. Indeed,

in many development organizations the two terms are used synonymously. In

this book we also use the two terms interchangeably. Simply put, when an

error occurs during the development process, a fault or a defect is injected in

the software. In operational mode, failures are caused by faults or defects, or

failures are materializations of faults. Sometimes a fault causes more than one

failure situation and, on the other hand, some faults do not materialize until

the software has been executed for a long time with some particular scenarios.

Therefore, defect and failure do not have a one-to-one correspondence. Third,

the defects that cause higher failure rates are usually discovered and removed

early. The probability of failure associated with a latent defect is called its size,

or “bug size.” For special-purpose software systems such as the air traffic

control systems or the space shuttle control systems, the operations profile

and scenarios are better defined and, therefore, the time to failure metric is

appropriate. For general-purpose computer systems or commercial-use

software, for which there is no typical user profile of the software, the MTTF

metric is more difficult to implement and may not be representative of all

customers. Fourth, gathering data about time between failures is very

expensive. It requires recording the occurrence time of each software failure. It

is sometimes quite difficult to record the time for all the failures observed

during testing or operation. To be useful, time between failures data also

requires a high degree of accuracy. This is perhaps the reason the MTTF metric

is not widely used by commercial developers. Finally, the defect rate metric (or

the volume of defects) has another appeal to commercial software

development organizations. The defect rate of a product or the expected

number of defects over a certain time period is important for cost and

resource estimates of the maintenance phase of the software life cycle.

Regardless of their differences and similarities, MTTF and defect density are

the two key metrics for intrinsic product quality. Accordingly, there are two

main types of software reliability growth models—the time between failures

models and the defect count (defect rate) models. We discuss the two types of

models and provide several examples of each type.

The Defect Density Metric:

Although seemingly straightforward, comparing the defect rates of software

products involves many issues. In this section we try to articulate the major

points. To define a rate, we first have to operationalize the numerator and the

denominator, and specify the time frame. As discussed in Chapter 3, the

general concept of defect rate is the number of defects over the opportunities

for error (OFE) during a specific time frame. We have just discussed the

definitions of software defect and failure. Because failures are defects

materialized, we can use the number of unique causes of observed failures to

approximate the number of defects in the software. The denominator is the

size of the software, usually expressed in thousand lines of code (KLOC) or in

the number of function points. In terms of time frames, various operational

definitions are used for the life of product (LOP), ranging from one year to

many years after the software product’s release to the general market. In our

experience with operating systems, usually more than 95% of the defects are

found within four years of the software’s release. For application software,

most defects are normally found within two years of its release.

Lines of Code:

The lines of code (LOC) metric is anything but simple. The major problem

comes from the ambiguity of the operational definition, the actual counting. In

the early days of Assembler programming, in which one physical line was the

same as one instruction, the LOC definition was clear. With the availability of

high-level languages the one-to-one correspondence broke down. Differences

between physical lines and instruction statements (or logical lines of code) and

differences among languages contribute to the huge variations in counting

LOCs. Even within the same language, the methods and algorithms used by

different counting tools can cause significant differences in the final counts.

Jones (1986) describes several variations:

* Count only executable lines.

* Count executable lines plus data definitions.

* Count executable lines, data definitions, and comments.

* Count executable lines, data definitions, comments, and job control

language.

* Count lines as physical lines on an input screen.

* Count lines as terminated by logical delimiters.

To illustrate the variations in LOC count practices, let us look at a few examples

by authors of software metrics. In Boehm’s well-known book Software

Engineering Economics (1981), the LOC counting method counts lines as

physical lines and includes executable lines, data definitions, and comments. In

Software Engineering Metrics and Models by Conte et al. (1986), LOC is

defined as follows: A line of code is any line of program text that is not a

comment or blank line, regardless of the number of statements or fragments

of statements on the line. This specifically includes all lines containing program

headers, declarations, and executable and non-executable statements. (p. 35)

Thus their method is to count physical lines including prologues and data

definitions (declarations) but not comments. In Programming Productivity by

Jones(1986), the source instruction (or logical lines of code) method is used.

The method used by IBM Rochester is also to count source instructions

including executable lines and data definitions but excluding comments and

program prologues.

The resultant differences in program size between counting physical

lines and counting instruction statements are difficult to assess. It is not even

known which method will result in a larger number. In some languages such as

BASIC, PASCAL, and C, several instruction statements can be entered on one

physical line. On the other hand, instruction statements and data declarations

might span several physical lines, especially when the programming style aims

for easy maintenance, which is not necessarily done by the original code

owner. Languages that have a fixed column format such as FORTRAN may have

the physical-lines-to-source-instructions ratio closest to one. According to

Jones (1992), the difference between counts of physical lines and counts

including instruction statements can be as large as 500%; and the average

difference is about 200%, with logical statements outnumbering physical lines.

In contrast, for COBOL the difference is about 200% in the opposite direction,

with physical lines outnumbering instruction statements.

There are strengths and weaknesses of physical LOC and logical LOC

(Jones, 2000). In general, logical statements are a somewhat more rational

choice for quality data. When any data on size of program products and their

quality are presented, the method for LOC counting should be described. At

the minimum, in any publication of quality when LOC data is involved, the

author should state whether the LOC counting method is based on physical

LOC or logical LOC.

Furthermore, as discussed in Chapter 3, some companies may use the

straight LOC count (whatever LOC counting method is used) as the

denominator for calculating defect rate, whereas others may use the

normalized count (normalized to Assembler-equivalent LOC based on some

conversion ratios) for the denominator. Therefore, industrywide standards

should include the conversion ratios from highlevel language to Assembler. So

far, very little research on this topic has been published. The conversion ratios

published by Jones (1986) are the most well known in the industry. As more

and more high-level languages become available for software development,

more research will be needed in this area.

When straight LOC count data is used, size and defect rate comparisons

across languages are often invalid. Extreme caution should be exercised when

comparing the defect rates of two products if the operational definitions

(counting) of LOC, defects, and time frame are not identical. Indeed, we do not

recommend such comparisons. We recommend comparison against one’s own

history for the sake of measuring improvement over time.

Note: The LOC discussions in this section are in the context of defect rate

calculation. For productivity studies, the problems with using LOC are more

severe. A basic problem is that the amount of LOC in a softare program is

negatively correlated with design efficiency. The purpose of software is to

provide certain functionality for solving some specific problems or to perform

certain tasks. Efficient design provides the functionality with lower

implementation effort and fewer LOCs. Therefore, using LOC data to measure

software productivity is like using the weight of an airplane to measure its

speed and capability. In addition to the level of languages issue, LOC data do

not reflect noncoding work such as the creation of requirements,

specifications, and user manuals. The LOC results are so misleading in

productivity studies that Jones states “using lines of code for productivity

studies involving multiple languages and full life cycle activities should be

viewed as professional malpractice” (2000, p. 72). For detailed discussions of

LOC and function point metrics, see Jones’s work (1986, 1992, 1994, 1997,

2000).

When a software product is released to the market for the first time,

and when a certain LOC count method is specified, it is relatively easy to state

its quality level (projected or actual). For example, statements such as the

following can be made: “This product has a total of 50 KLOC; the latent defect

rate for this product during the next four years is 2.0 defects per KLOC.”

However, when enhancements are made and subsequent versions of the

product are released, the situation becomes more complicated. One needs to

measure the quality of the entire product as well as the portion of the product

that is new. The latter is the measurement of true development quality—the

defect rate of the new and changed code. Although the defect rate for the

entire product will improve from release to release due to aging, the defect

rate of the new and changed code will not improve unless there is real

improvement in the development process. To calculate defect rate for the new

and changed code, the following must be available:

* LOC count: The entire software product as well as the new and

changed code of the release must be available.

* Defect tracking: Defects must be tracked to the release origin—the

portion of the code that contains the defects and at what release the portion

was added, changed, or enhanced. When calculating the defect rate of the

entire product, all defects are used; when calculating the defect rate for the

new and changed code, only defects of the release origin of the new and

changed code are included.

These tasks are enabled by the practice of change flagging. Specifically, when a

new function is added or an enhancement is made to an existing function, the

new and changed lines of code are flagged with a specific identification (ID)

number through the use of comments. The ID is linked to the requirements

number, which is usually described briefly in the module’s prologue. Therefore,

any changes in the program modules can be linked to a certain requirement.

This linkage procedure is part of the software configuration management

mechanism and is usually practiced by organizations that have an established

process. If the change-flagging IDs and requirements IDs are further linked to

the release number of the product, the LOC counting tools can use the linkages

to count the new and changed code in new releases. The changeflagging

practice is also important to the developers who deal with problem

determination and maintenance. When a defect is reported and the fault zone

determined, the developer can determine in which function or enhancement

pertaining to what requirements at what release origin the defect was

injected.

The new and changed LOC counts can also be obtained via the delta-

library method. By comparing program modules in the original library with the

new versions in the current release library, the LOC count tools can determine

the amount of new and changed code for the new release. This method does

not involve the change-flagging method. However, change flagging remains

very important for maintenance. In many software development

environments, tools for automatic change flagging are also available.

Example: Lines of Code Defect Rates

At IBM Rochester, lines of code data is based on instruction statements

(logical LOC) and includes executable code and data definitions but excludes

comments. LOC counts are obtained for the total product and for the new and

changed code of the new release. Because the LOC count is based on source

instructions, the two size metrics are called shipped source instructions (SSI)

and new and changed source instructions (CSI), respectively. The relationship

between the SSI count and the CSI count can be expressed with the following

formula:

SSI (current release) = SSI (previous release) + CSI (new and changed

code instructions for current release) − deleted code (usually very small) −

changed code (to avoid double count in both SSI and CSI)

Defects after the release of the product are tracked. Defects can be field

defects, which are found by customers, or internal defects, which are found

internally. The several postrelease defect rate metrics per thousand SSI (KSSI)

or per thousand CSI (KCSI) are:

(1) Total defects per KSSI (a measure of code quality of the total product)

(2) Field defects per KSSI (a measure of defect rate in the field)

(3) Release-origin defects (field and internal) per KCSI (a measure of

development quality) (4) Release-origin field defects per KCSI (a measure

of development quality per defects found by customers)

Metric (1) measures the total release code quality, and metric (3)

measures the quality of the new and changed code. For the initial release

where the entire product is new, the two metrics are the same. Thereafter,

metric (1) is affected by aging and the improvement (or deterioration) of

metric (3). Metrics (1) and (3) are process measures; their field counterparts,

metrics (2) and (4) represent the customer’s perspective. Given an estimated

defect rate (KCSI or KSSI), software developers can minimize the impact to

customers by finding and fixing the defects before customers encounter them.

Customer’s Perspective:

The defect rate metrics measure code quality per unit. It is useful to drive

quality improvement from the development team’s point of view. Good

practice in software quality engineering, however, also needs to consider the

customer’s perspective. Assume that we are to set the defect rate goal for

release-to-release improvement of one product. From the customer’s point of

view, the defect rate is not as relevant as the total number of defects that

might affect their business. Therefore, a good defect rate target should lead to

a release-to-release reduction in the total number of defects, regardless of

size. If a new release is larger than its predecessors, it means the defect rate

goal for the new and changed code has to be significantly better than that of

the previous release in order to reduce the total number of defects.

Consider the following hypothetical example:

Initial Release of Product Y

KCSI = KSSI = 50 KLOC

Defects/KCSI = 2.0

Total number of defects = 2.0 × 50 = 100

Second Release

KCSI = 20

KSSI = 50 + 20 (new and changed lines of code) − 4 (assuming 20% are changed

lines of code) = 66 Defect/KCSI = 1.8 (assuming 10% improvement over the

first release)

Total number of additional defects = 1.8 × 20 = 36

Third Release

KCSI = 30

KSSI = 66 + 30 (new and changed lines of code) − 6 (assuming the same %

(20%) of changed lines of code) = 90

Targeted number of additional defects (no more than previous release) = 36

Defect rate target for the new and changed lines of code: 36/30 = 1.2

defects/KCSI or lower

From the initial release to the second release the defect rate improved by 10%.

However, customers experienced a 64% reduction [(100 − 36)/100] in the

number of defects because the second release is smaller. The size factor works

against the third release because it is much larger than the second release. Its

defect rate has to be onethird (1.2/1.8) better than that of the second release

for the number of new defects not to exceed that of the second release. Of

course, sometimes the difference between the two defect rate targets is very

large and the new defect rate target is deemed not achievable. In those

situations, other actions should be planned to improve the quality of the base

code or to reduce the volume of postrelease field defects (i.e., by finding them

internally).

Function Points:

Counting lines of code is but one way to measure size. Another one is the

function point. Both are surrogate indicators of the opportunities for error

(OFE) in the defect density metrics. In recent years the function point has been

gaining acceptance in application development in terms of both productivity

(e.g., function points per person-year) and quality (e.g., defects per function

point). In this section we provide a concise summary of the subject.

A function can be defined as a collection of executable statements that

performs a certain task, together with declarations of the formal parameters

and local variables manipulated by those statements (Conte et al., 1986). The

ultimate measure of software productivity is the number of functions a

development team can produce given a certain amount of resource, regardless

of the size of the software in lines of code. The defect rate metric, ideally, is

indexed to the number of functions a software provides. If defects per unit of

functions is low, then the software should have better quality even though the

defects per KLOC value could be higher—when the functions were

implemented by fewer lines of code. However, measuring functions is

theoretically promising but realistically very difficult.

The function point metric, originated by Albrecht and his colleagues at IBM in

the mid-1970s, however, is something of a misnomer because the technique

does not measure functions explicitly (Albrecht, 1979). It does address some of

the problems associated with LOC counts in size and productivity measures,

especially the differences in LOC counts that result because different levels of

languages are used. It is a weighted total of five major components that

comprise an application:

* Number of external inputs (e.g., transaction types) × 4

* Number of external outputs (e.g., report types) × 5

* Number of logical internal files (files as the user might conceive them, not

physical files) × 10

* Number of external interface files (files accessed by the application but not

maintained by it) × 7

* Number of external inquiries (types of online inquiries supported) × 4

These are the average weighting factors. There are also low and high weighting

factors, depending on the complexity assessment of the application in terms of

the five components (Kemerer and Porter, 1992; Sprouls, 1990):

* External input: low complexity, 3; high complexity, 6

* External output: low complexity, 4; high complexity, 7

* Logical internal file: low complexity, 7; high complexity, 15

* External interface file: low complexity, 5; high complexity, 10

* External inquiry: low complexity, 3; high complexity, 6

The complexity classification of each component is based on a set of standards

that define complexity in terms of objective guidelines. For instance, for the

external output component, if the number of data element types is 20 or more

and the number of file types referenced is 2 or more, then complexity is high. If

the number of data element types is 5 or fewer and the number of file types

referenced is 2 or 3, then complexity is low.

With the weighting factors, the first step is to calculate the function

counts (FCs) based on the following formula:

wherewij are the weighting factors of the five components by complexity

level (low, average, high) and xij are the numbers of each component in the

application. The second step involves a scale from 0 to 5 to assess the impact

of 14 general system characteristics in terms of their likely effect on the

application. The 14 characteristics are:

1. Data communications

2. Distributed functions

3. Performance

4. Heavily used configuration

5. Transaction rate

6. Online data entry

7. End-user efficiency

8. Online update

9. Complex processing

10. Reusability

11. Installation ease

12. Operational ease

13. Multiple sites

14. Facilitation of change

The scores (ranging from 0 to 5) for these characteristics are then

summed, based on

the following formula, to arrive at the value adjustment factor (VAF)

Where Ci is the score for general system characteristic i. Finally, the

number of

function points is obtained by multiplying function counts and the value

adjustment

factor:

This equation is a simplified description of the calculation of function

points. One should consult the fully documented methods, such as the

International Function Point User’s Group Standard (IFPUG, 1999), for a

complete treatment.

Over the years the function point metric has gained acceptance as a key

productivity measure in the application world. In 1986 the IFPUG was

established. The IFPUG counting practices committee is the de facto standards

organization for function point counting methods (Jones, 1992, 2000). Classes

and seminars on function points counting and applications are offered

frequently by consulting firms and at software conferences. In application

contract work, the function point is often used

to measure the amount of work, and quality is expressed as defects per

function point. In systems and real-time software, however, the function point

has been slow to gain acceptance. This is perhaps due to the incorrect

impression that function points work only for information systems (Jones,

2000), the inertia of the LOC related practices, and the effort required for

function points counting. Intriguingly, similar observations can be made about

function point use in academic research.

There are also issues related to the function point metric.

Fundamentally, the meaning of function point and the derivation algorithm

and its rationale may need more research and more theoretical groundwork.

There are also many variations in counting function points in the industry and

several major methods other than the IFPUG standard. In 1983, Symons

presented a function point variant that he termed the Mark II function point

(Symons, 1991). According to Jones (2000), the Mark II function point is now

widely used in the United Kingdom and to a lesser degree in

Hong Kong and Canada. Some of the minor function point variants include

feature points, 3D function points, and full function points. In all, based on the

comprehensive software benchmark work by Jones (2000), the set of function

point variants now include at least 25 functional metrics. Function point

counting can be timeconsuming and expensive, and accurate counting requires

certified function point specialists. Nonetheless, function point metrics are

apparently more robust than LOC-based data with regard to comparisons

across organizations, especially studies involving multiple languages and those

for productivity evaluation.

Example: Function Point Defect Rates

In 2000, based on a large body of empirical studies, Jones published the book

Software Assessments, Benchmarks, and Best Practices. All metrics used

throughout

the book are based on function points. According to his study (1997), the

average

number of software defects in the U.S. is approximately 5 per function point

during

the entire software life cycle. This number represents the total number of

defects

found and measured from early software requirements throughout the life

cycle of

the software, including the defects reported by users in the field. Jones also

estimates

the defect removal efficiency of software organizations by level of the

capability

maturity model (CMM) developed by the Software Engineering Institute (SEI).

By

applying the defect removal efficiency to the overall defect rate per function

point,

the following defect rates for the delivered software were estimated. The time

frames

for these defect rates were not specified, but it appears that these defect rates

are for

the maintenance life of the software. The estimated defect rates per function

point are

as follows:

SEI CMM Level 1: 0.75

 SEI CMM Level 2: 0.44

 SEI CMM Level 3: 0.27

 SEI CMM Level 4: 0.14

 SEI CMM Level 5: 0.05

PROCESS ASSESSMENT AND IMPROVEMENT

The existence of a software process is no guarantee that software will be

delivered on time, that it will meet the customer’s needs, or that it will exhibit

the technical characteristics that will lead to long-term quality characteristics

(Chapters 14 and 16). Process patterns must be coupled with solid software

engineering practice (Part 2 of this book). In addition, the process itself can be

assessed to ensure that it meets a set of basic process criteria that have been

shown to be essential for a successful software engineering. A number of

different approaches to software process assessment and improvement have

been proposed over the past few decades:

Standard CMMI Assessment Method for Process Improvement(SCAMPI)—

provides a five-step process assessment model that incorporates five phases:

initiating, diagnosing, establishing, acting, and learning. The SCAMPI method

uses the SEI CMMI as the basis for assessment.

CMM-Based Appraisal for Internal Process Improvement (CBA IPI) — provides

a diagnostic technique for assessing the relative maturity of a software

organization; uses the SEI CMM as the basis for the assessment.

SPICE (ISO/IEC15504) — a standard that defines a set of requirements for

software process assessment. The intent of the standard is to assist

organizations in developing an objective evaluation of the efficacy of any

defined software process.

ISO 9001:2000 for Software — a generic standard that applies to any

organization that wants to improve the overall quality of the products,

systems, or services that it provides. Therefore, the standard is directly

applicable to software organizations and companies.

What is Capability Maturity Model?

The Software Engineering Institute (SEI) Capability Maturity Model (CMM)

specifies an increasing series of levels of a software development organization.

The higher the level, the better the software development process, hence

reaching each level is an expensive and time-consuming process.

Levels of CMM

• Level One :Initial - The software process is characterized as inconsistent,

and occasionally even chaotic. Defined processes and standard

practices that exist are abandoned during a crisis. Success of the

organization majorly depends on an individual effort, talent, and

heroics. The heroes eventually move on to other organizations taking

their wealth of knowledge or lessons learnt with them.

• Level Two: Repeatable - This level of Software Development

Organization has a basic and consistent project management processes

to track cost, schedule, and functionality. The process is in place to

repeat the earlier successes on projects with similar applications.

Program management is a key characteristic of a level two organization.

• Level Three: Defined - The software process for both management and

engineering activities are documented, standardized, and integrated

into a standard software process for the entire organization and all

projects across the organization use an approved, tailored version of

the organization's standard software process for developing, testing

and maintaining the application.

• Level Four: Managed - Management can effectively control the

software development effort using precise measurements. At this level,

organization set a quantitative quality goal for both software process

and software maintenance. At this maturity level, the performance of

processes is controlled using statistical and other quantitative

techniques, and is quantitatively predictable.

• Level Five: Optimizing - The Key characteristic of this level is focusing on

continually improving process performance through both incremental

and innovative technological improvements. At this level, changes to

the process are to improve the process performance and at the same

time maintaining statistical probability to achieve the established

quantitative process-improvement objectives.

Why should we assess the testing maturity?

There is no consistency within their organization as to the health and

professionalism of the testing process.

An assessment of the testing process using a testing maturity model will

• document the current level.

• highlight the variances between the imagined level and the actual level.

• Provide a road map for making the necessary process improvements.

Testing maturity models:

• Most of the testing maturity models were developed around 1996.

o Testability Maturity Model.

o Software Testing Maturity Model.

o Test Process Improvement.

o Test Organization Maturity.

o Testing Assessment Program.

o Proposed Evaluation and Test SW-CMM Key Process Area.

• None has found much acceptance because of

o little documentation on the model.

o theoretical style.

What is the Software Testing Maturity Model?

• SW-TMM is a testing process improvement tool that can be used.

o either in conjunction with the SW-CMM.

o or as a stand-alone tool.

• Developed by Dr.Ilene Burnstein of the Illinois Institute of Technology

and her associates.

o publish several articles in professional magazines.

o institute plan: to release a book on the SW-TMM in 2002.

The five levels of SW-TMM:

Level 1: Initial.

Level 2: Phase Definition.

Level 3: Integration.

Level 4: Management and Measurement.

Level 5: Optimization/Defect Prevention and Quality Control.

Software Testing Maturity Model Level 1

• A chaotic process.

• Not distinguished from debugging and ill defined.

• The tests are developed ad hoc after coding is complete.

• Usually lack a trained professional testing staff and testing tools.

• The objective of testing is to show that the system and software work.

Software Testing Maturity Model Level 2

• Identify testing as a separate function from debugging.

• Testing becomes a defined phase following coding.

• Standardize their process to the point where basic testing techniques

and methods are in place.

• The objective of testing is to show that the system and software meets

specifications.

Software Testing Maturity Model Level 3

• Integrate testing into the entire life cycle.

• Establish a formal testing organization.

o establishes formal testing technical trainings.

o controls and monitors the testing process.

o begins to consider using automated test tools.

• The objective of testing is based on system requirements.

• Major milestone reached at this level: management recognizes testing

as a professional activity.

Software Testing Maturity Model Level 4

• Testing is a measured and quantified process.

• Development products are now tested for quality attributes such as

Reliability, Usability, and Maintainability.

• Test cases are collected and recorded in a test database for reuse and

regression testing.

• Defects found during testing are now logged, given a severity level, and

assigned a priority for correction.

Software Testing Maturity Model Level 5

• Testing is institutionalized within the organization.

• Testing process is well defined and managed.

• Testing costs and effectiveness are monitored.

• Automated tools are a primary part of the testing process.

• There is an established procedure for selecting and evaluating testing

tools.

Why do we need to use SW-TMM?

• easy to understand and use.

• provide a methodology to baseline the current test process maturity.

• designed to guide organization.

o selecting process improvement strategies.

o identifying critical issues to test process maturity.

• provide a road map for continuous test process improvement.

• provide a method for measuring progress.

• allow organizations to perform their own assessment.

• Organizations that are using SW-CMM.

o SW-TMM fulfills the design objective of being an excellent

companion to SW-CMM.

o SW-TMM is just another assessment tool and easily incorporated

into the software process assessment.

• Organizations that are not using SW-CMM.

o provide an unbiased assessment of the current testing process.

o provide a road map for incremental improvements.

o save testing cost as the testing process moves up the maturity

levels.

How do we perform the SW-TMM assessment?

• Prepare for the assessment.

• Conduct the assessment.

• Document the findings.

• Analyze the findings.

• Develop the action plan.

• Write the final report.

• Implement the improvements.

• Prepare for the assessment.

o choose team leader and members.

o choose evaluation tools (e.g. questionnaire).

o training and briefing.

• Conduct the assessment.

o organization being evaluated gives a presentation.

� what is important from their perspective.

� the organization is an integral part of the assessment.

o conduct interviews with individual.

o review all testing documentation and procedures to determine

the actual testing process currently being used.

• Document the findings.

o document the organization’s current testing process.

o compile and summarize the questionnaire data.

o document the interview information.

• Analyze the findings.

o document the current maturity level.

o document any areas of disagreement highlighted during the

evaluation.

o identify areas for improvement.

o prioritize a list of recommended improvement goals.

o include anticipated benefits resulting from implementation.

• Develop the action plan.

o Specific actions.

o Required resources.

o Schedule for implementation.

o Cost/Benefit analysis.

• Write the final report.

o a support documentation for the management briefing.

• Implement the improvements.

o best to implement the improvements either in a pilot project or in

phases.

� track progress and achievements prior to expanding

organization wide.

o also good in a limited application.

� easier to fine-tune the new process prior to expanded

implementation.

SCSX1038_Software Quality Assurance and Testing
Unit V

 INTRODUCTION

Competition to provide specialized products and services results in

breakthroughs as well as long-term growth and change. Quality assurance verifies that
any customer offering, regardless if it is new or evolved, is produced and offered with
the best possible materials, in the most comprehensive way, with the highest
standards. The goal to exceed customer expectations in a measurable and
accountable process is provided by quality assurance.

DEFINITION OF QUALITY, QA, SQA

Quality:

The term 'quality' is often used in a vague, blurred way. If someone talks about
'working on quality', they may simply mean activities designed to improve the
organisation and its services. Quality is essentially about learning what you are doing
well and doing it better. It also means finding out what you may need to change to
make sure you meet the needs of your service users. Quality is about:

knowing what you want to do and how you want to do it

learning from what you do

using what you learn to develop your organisation and its services

seeking to achieve continuous improvement

Satisfying your stakeholders - those different people and groups with an interest

in your organisation.
Quality assurance is the process of verifying or determining whether products or

services meet or exceed customer expectations. Quality assurance is a process-driven

approach with specific steps to help define and attain goals. This process considers

design, development, production, and service.
The four quality assurance steps within the PDCA model stand for -

Plan: Establish objectives and processes required to deliver the desired results.

Do: Implement the process developed.
Check: Monitor and evaluate the implemented process by testing the results against

the predetermined objectives
Act: Apply actions necessary for improvement if the results require changes.

PDCA is an effective method for monitoring quality assurance because it
analyzes existing conditions and methods used to provide the product or service
customers. The goal is to ensure that excellence is inherent in every component of the
process. Quality assurance also helps determine whether the steps used to provide
the product or service are appropriate for the time and conditions. In addition, if the
PDCA cycle is repeated throughout the lifetime of the product or service, it helps
improve internal company efficiency.

Quality assurance demands a degree of detail in order to be fully implemented at
every step. Planning, for example, could include investigation into the quality of the raw
materials used in manufacturing, the actual assembly, or the inspection processes
used. The Checking step could include customer feedback, surveys, or other
marketing vehicles to determine if customer needs are being exceeded and why they
are or are not. Acting could mean a total revision in the manufacturing process in order
to correct a technical or cosmetic flaw.
Quality Control : The terms “quality assurance” and “quality control” are often

usedinterchangeably to refer to ways of ensuring the quality of a service or product.

The terms, however, have different meanings.

Assurance: The act of giving confidence, the state of being certain or the act

ofmaking certain.

Quality assurance: The planned and systematic activities implemented in

aquality system so that quality requirements for a product or service will be

fulfilled.

Control: An evaluation to indicate needed corrective responses; the act

ofguiding a process in which variability is attributable to a constant system of

chance causes. Quality control:

Software Quality Assurance

Business software is never built overnight. It takes a lot of planning, consultation

and testing to be able to come up with an initial version of the application. If a business

hurries up the development of a certain application, they would end up spending more

in addressing the problem the application brought than they have earned.
This could even be more frustrating when the software being developed is set to

be sold to customers or for public use. But a bug free program is not the only goal of a
company. If they follow that concept they would end up developing a very simple
program without any special features and would frustrate their users and hinder their
productivity.

That is where the concept of software quality assurance comes in. For most
developers software quality assurance offers a comprehensive solution in ensuring
that the application they are working on is functioning and lives up to expectations.
Quality assurance could be found everywhere. Products in the market also undergo
quality assurance to make sure the goods are made according to expectations.
However, once the products are sent out to the market, they are already done and it is
up to the customers on how to be satisfied with the product. On the other hand
software quality assurance takes on a different side. Aside from delivering good
products, software quality assurance or simply known as SQA follows a set protocols
that are universally recognized. By using these protocols users are assured the
application they are using are built according to standards and every stage of software
development follows the same standards.
Software Quality Assurance was created with the following objectives:
Small to Zero Defects After Installation – One of the biggest goals of SQA is to prevent
any possible defects when the output is made. Developers and engineers have to use
universally approved steps to ensure that the program was built up to expectations but
also to prevent errors in the system. Although some standards allow as much as .04
errors in the system, zero-error is still the system’s target. When there’s zero-error, the
program is more likely to have zero crash scenarios. The ability to handle stress of a
program is different from the errors it has but crashes usually comes from defects so
prevention of defects will most likely yield a continuously working application.

Customer Satisfaction – Everything else will be just nothing if the customers don’tlike

what they see. Part of SQA is to ensure that software development was made

according to their needs, wants and exceeding their expectations. Even if the bugs and

errors are minimized by the system, customer satisfaction is more important and

should be emphasized.

Well Structured – SQA takes care of the stages of application construction.

Anyonecould be easily build an application and launch it in their environment without

any glitches. However, not everyone could easily build an application that could be

understood well. SQA ensures that each application are build in an understandable

manner. Their applications could easily be transferred from one developer to another.
QUALITY FACTORS

The various factors, which influence the software, are termed as software

factors. They can be broadly divided into two categories. The classification is done on
the basis of measurability. The first category of the factors is of those that can be
measured directly such as number of logical errors and the second category clubs
those factors which can be measured only indirectly for example maintainability but the
each of the factors are to be measured to check for the content and the quality control.
Few factors of quality are available and they are mentioned below.

Correctness - extent to which a program satisfies its specification and fulfills the
client's objective.
Reliability - extent to which a program is supposed to perform its function with
the required precision.
Efficiency - amount of computing and code required by a program to perform its
function.
Integrity - extent to which access to software and data is denied to unauthorized
users.
Usability- labor required to understand, operate, prepare input and interpret
output of a program
Maintainability- effort required to locate and fix an error in a

program.

Flexibility :effort needed to modify an operational program.
Testability- effort required to test the programs for their functionality.

Portability- effort required to run the program from one platform to other or to
different hardware.
Reusability- extent to which the program or it’s parts can be used as building
blocks or as prototypes for other programs.

Interoperability- effort required to couple one system to another.
Now as you consider the above-mentioned factors it becomes very obvious that
the measurements of all of them to some discrete value are quite an impossible
task. Therefore, another method was evolved to measure out the quality. A set
of matrices is defined and is used to develop expressions for each of the factors
as per the following expression

Auditability- ease with which the conformance to standards can be

verified.

Accuracy- precision of computations and control
Completeness- degree to which full implementation of functionality required has

been achieved.
Conciseness- program’s compactness in terms of lines of code.

Consistency- use of uniform design and documentation techniques throughout
the software development.
Data commonality- use of standard data structures and types throughout the
program.
Error tolerance – damage done when program encounters an

error. Execution efficiency- run-time performance of a program.
Expandability- degree to which one can extend architectural, data and procedural
design.
Hardware independence- degree to which the software is de-coupled from its
operating hardware.
Instrumentation- degree to which the program monitors its own operation and

identifies errors that do occur.
Modularity- functional independence of program

components. Operability- eases of programs operation.
Security- control and protection of programs and database from the unauthorized
users.
Self-documentation- degree to which the source code provides meaningful
documentation.
Simplicity- degree to which a program is understandable without much difficulty.

Software system independence- degree to which program is independent of
nonstandard programming language features, operating system characteristics
and other environment constraints.
Traceability- ability to trace a design representation or actual program component
back to initial objectives.

Training- degree to which the software is user-friendly to new users.

There are various ‘checklists’ for software quality. One of them was given by
Hewlett-Packard that has been given the acronym FURPS – for Functionality,

Usability, Reliability, Performance and Supportability. Functionality is measured via the

evaluation of the feature set and the program capabilities, the generality of the

functions that are derived and the overall security of the system.
Considering human factors, overall aesthetics, consistency and documentation

assesses usability. Reliability is figured out by evaluating the frequency and severity of

failure, the accuracy of output results, the mean time between failure (MTBF), the

ability to recover from failure and the predictability of the program.
Performance is measured by measuring processing speed, response time, resource
consumption, throughput and efficiency. Supportability combines the ability to extend

the program, adaptability, serviceability or in other terms maintainability and also

testability, compatibility, configurability and the ease with which a system can be

installed.
SOFTWARE QUALITY MATRICS

We best manage what we can measure. Measurement enables the

Organization to improve the software process; assist in planning, tracking and
controlling the software project and assess the quality of the software thus produced. It
is the measure of such specific attributes of the process, project and product that are
used to compute the software metrics. Metrics are analyzed and they provide a
dashboard to the management on the overall health of the process, project and

product. The kind of metrics employed generally account for whether the quality
requirements have been achieved or are likely to be achieved during the software
development process. As a quality assurance process, a metric is needed to be
revalidated every time it is used. Two leading firms namely, IBM and Hewlett-Packard
have placed a great deal of importance on software quality. The IBM measures the
user satisfaction and software acceptability in eight dimensions which are capability or
functionality, usability, performance, reliability, ability to be installed, maintainability,
documentation, and availability. For the Software Quality Metrics the Hewlett-Packard
normally follows the five Juran quality parameters namely the functionality, the
usability, the reliability, the performance and the serviceability. In general, for most
software quality assurance systems the common software metrics that are checked for
improvement are the Source lines of code, cyclical complexity of the code, Function
point analysis, bugs per line of code, code coverage, number of
cohesion and coupling between the modules etc.

Metrics

There are many forms of metrics in SQA but they can easily be divided into

three categories: product evaluation, product quality, and process auditing.
Product Evaluation Metrics – Basically, this type of metric is actually the number
ofhours the SQA member would spend to evaluate the application. Developers who
might have a good application would solicit lesser product evaluation while it could
take more when tackling an application that is rigged with errors. The numbers
extracted from this metric will give the SQA team a good estimate on the timeframe for

the product evaluation.
Product Quality Metrics – These metrics tabulates all the possible errors in
theapplication. These numbers will show how many errors there are and where do they
come from. The main purpose of this metric is to show the trend in error. When the
trend is identified the common source of error is located. This way, developers can
easily take care of the problem compared to answering smaller divisions of the
problem. There are also metrics that shows the actual time of correcting the errors of
the application. This way, the management team who are not entirely familiar with the

application.
Process Audit Metrics – These metrics will show how the application works.

Thesemetrics are not looking for errors but performance. One classic example of this
type of metric is the actual response time compared to the stress placed on the
application. Businesses will always look for this metric since they want to make sure

the application will work well even when there are thousands of users of the application
at the same time.

There are lots of options on what standard to be used in developing the plan

for Software Quality Assurance. But on metrics, the numbers are always constant and

will be the gauge whether the application works as planned.
Common software metrics include:

� Bugs per line of code

� Code coverage

� Cohesion

� Coupling

� Cyclomatic complexity

� Function point analysis

� Number of classes and interfaces

� Number of lines of customer requirements

� Order of growth

� Source lines of code

� Robert Cecil Martin’s software package metrics

Software Quality Metrics focus on the process, project and product. By analyzing

the metrics the organization the organization can take corrective action to fix those

areas in the process, project or product which are the cause of the software defects.
The de-facto definition of software quality consists of the two major attributes based on
intrinsic product quality and the user acceptability. The software quality metric
encapsulates the above two attributes, addressing the mean time to failure and defect
density within the software components. Finally it assesses user requirements and
acceptability of the software. The intrinsic quality of a software product is generally
measured by the number of functional defects in the software, often referred to as

bugs, or by testing the software in run time mode for inherent vulnerability to determine
the software "crash" scenarios.

Maintainability :Maintainability is the ease with which a program can be

correctif an error occurs. Since there is no direct way of measuring this an indirect way

has been used to measure this. MTTC (Mean time to change) is one such measure. It

measures when a error is found, how much time it takes to analyze the change, design

the modification, implement it and test it.
Integrity : This measure the system’s ability to with stand attacks to its security.

Inorder to measure integrity two additional parameters are threat and security need to

be defined. Threat – probability that an attack of certain type will happen over a period

of time. Security – probability that an attack of certain type will be removed over a

period of time. Integrity = Summation [(1 - threat) X (1 - security)]
Usability :How usable is your software application ? This important characteristic

ofyour application is measured in terms of the following characteristics:
� Physical / Intellectual skill required to learn the system

� time required to become moderately efficient in the system.

� the net increase in productivity by use of the new system.

� subjective assessment(usually in the form of questionnaire on the new system).

Standard for the Software Evaluation

In context of the Software Quality Metrics, one of the popular standards that

addresses the quality model, external metrics, internal metrics and the quality in use

metrics for the software development process is ISO 9126.
Defect Removal Efficiency

Defect Removal Efficiency (DRE) is a measure of the efficacy of your SQA

activities.. For eg. If the DRE is low during analysis and design, it means you should

spend time improving the way you conduct formal technical reviews.
DRE = E / (E + D)

Where E = No. of Errors found before delivery of the software and D = No.

of Errors found after delivery of the software.

Ideal value of DRE should be 1 which means no defects found. If you score
low on DRE it means to say you need to re-look at your existing process. In essence
DRE is a indicator of the filtering ability of quality control and quality assurance activity.

It encourages the team to find as many defects before they are passed to the next
activity stage. Some of the Metrics are listed out here:

Test Coverage = Number of units (KLOC/FP) tested / total size of the system
Number of tests per unit size = Number of test cases per KLOC/FP Defects per size =
Defects detected / system size Cost to locate defect = Cost of testing / the number of
defects located Defects detected in testing = Defects detected in testing / total system
defects Defects detected in production = Defects detected in production/system size
Quality of Testing = No. of defects found during Testing/(No. of defects found during
testing + No of acceptance defects found after delivery) *100 System complaints =
Number of third party complaints / number of transactions processed Effort Productivity
= Test Planning Productivity = No of Test cases designed / Actual Effort for Design and
Documentation Test Execution Productivity = No of Test cycles executed / Actual Effort
for testing Test efficiency= (number of tests required / the number of system errors).

 SOFTWARE PROCESS IMPROVEMENT

Process Areas in Capability Maturity Model (CMM)

The Capability Maturity Model Integration (CMMI), based process improvement

can result in better project performance and higher quality products. A Process Area is

a cluster of related practices in an area that, when implemented collectively, satisfy a

set of goals considered important for making significant improvement in that area.
In CMMI, Process Areas (PAs) can be grouped into the following four categories

to understand their interactions and links with one another regardless of their defined

level:
Process Management : It contains the cross-project activities related to defining,

planning, resourcing, deploying, implementing, monitoring, controlling, appraising,

measuring, and improving processes. Process areas are :
- Organisational Process Focus.

- Organisational Process Definition.

- Organisational Training.

- Organisational Process Performance.

- Organisational Innovation and Deployment.

Project Management : The process areas cover the project management

activitiesrelated to planning, monitoring, and controlling the project. Process areas are

:

� Project Planning.

� Project Monitoring and Control.

� Supplier Agreement Management.

� Integrated Project Management for IPPD (or Integrated Project Management).

� Risk Management.

� Integrated Teaming.

� Integrated Supplier Management.

� Quantitative Project Management.

Engineering : Engineering process areas cover the development and

maintenanceactivities that are shared across engineering disciplines. Process areas

are :

� Requirements Development.

� Requirements Management.

� Technical Solution.

� Product Integration.

� Verification.

� Validation.

Support : Support process areas cover the activities that support productdevelopment

and maintenance. Process areas are :

� Process and Product Quality Assurance.

� Configuration Management.

� Measurement and Analysis.

� Organisational Environment for Integration.

� Decision Analysis and Resolution.

� Causal Analysis and Resolution.

PROCESS AND PRODUCT QUALITY ASSURANCE (PPQA)

 PROCESS AREA IN CMMI

The purpose of Process and Product Quality Assurance (PPQA) is to provide staff

and management with objective insight into processes and associated work products.

A Support Process Area at Maturity Level 2.

The Process and Product Quality Assurance process area involves the

following activities:

� Objectively evaluating performed processes, work products, and services

against applicable process descriptions, standards, and procedures.

� Identifying and documenting noncompliance issues.

� Providing feedback to project staff and managers on the results of quality

assurance activities.

� Ensuring that noncompliance issues are addressed.

The Process and Product Quality Assurance process area supports the

delivery of high-quality products and services by providing project staff and managers

at all levels with appropriate visibility into, and feedback on, processes and associated

work products throughout the life of the project.

Specific Goals and Practices

SG 1 Objectively Evaluate Processes and Work Products

Adherence of the performed process and associated work products and services to

applicable process descriptions, standards, and procedures is objectively evaluated.

SP 1.1 Objectively Evaluate Processes.

Objectively evaluate the designated performed processes against the applicable

process descriptions, standards, and procedures. Objectivity in quality assurance

evaluations is critical to the success of the project. A description of the quality

assurance reporting chain and how it ensures objectivity should be defined.

SP 1.2 Objectively Evaluate Work Products and Services.

Objectively evaluate the designated work products and services against the applicable

process descriptions, standards, and procedures. The intent of this subpractice is to

provide criteria, based on business needs, such as the following:

� What will be evaluated during the evaluation of a work product?

� When or how often a work product will be evaluated?

� How the evaluation will be conducted?

� Who must be involved in the evaluation?

SG 2 Provide Objective Insight

Noncompliance issues are objectively tracked and communicated, and resolution is

ensured.

- SP 2.1 Communicate and Ensure Resolution of Noncompliance Issues.

Communicate quality issues and ensure resolution of noncompliance issues with

the staff and managers. Noncompliance issues are problems identified in evaluations

that reflect a lack of adherence to applicable standards, process descriptions, or

procedures. The status of noncompliance issues provides an indication of quality

trends. Quality issues include noncompliance issues and results of trend analysis.

When local resolution of noncompliance issues cannot be obtained, use

established escalation mechanisms to ensure that the appropriate level of

management can resolve the issue. Track noncompliance issues to resolution.

THE SEI PROCESS CAPABILITY MATURITY MODEL, ISO, SIX-SIGMA

SEI = 'Software Engineering Institute' at Carnegie-Mellon University; initiated by the

U.S. Defense Department to help improve software development processes.

CMM = 'Capability Maturity Model', now called the CMMI ('Capability Maturity Model

Integration'), developed by the SEI. It's a model of 5 levels of process 'maturity' that

determine effectiveness in delivering quality software. It is geared to large

organizations such as large U.S. Defense Department contractors. However, many of

the QA processes involved are appropriate to any organization, and if reasonably

applied can be helpful. Organizations can receive CMMI ratings by undergoing

assessments by qualified auditors.

Level 1 - characterized by chaos, periodic panics, and heroic efforts required

byindividuals to successfully complete projects. Few if any processes in place;

successes may not be repeatable.

Level 2 - software project tracking, requirements management, realistic planning,

andconfiguration management processes are in place; successful practices can be

repeated.

Level 3 - standard software development and maintenance processes are

integratedthroughout an organization; a Software Engineering Process Group is is in

place to oversee software processes, and training programs are used to ensure

understanding and compliance.

Level 4 - metrics are used to track productivity, processes, and products.

Projectperformance is predictable, and quality is consistently high.

Level 5 - the focus is on continouous process improvement. The impact of

newprocesses and technologies can be predicted and effectively implemented when

required.

Perspective on CMM ratings: During 1997-2001, 1018 organizations were assessed.

Of those, 27% were rated at Level 1, 39% at 2, 23% at 3, 6% at 4, and 5% at 5. (For

ratings during the period 1992-96, 62% were at Level 1, 23% at 2, 13% at 3, 2% at 4,

and 0.4% at 5.) The median size of organizations was 100 software engineering /

maintenance personnel; 32% of organizations were U.S. federal contractors or

agencies. For those rated at Level 1, the most problematical key process area was in

Software Quality Assurance.

ISO = 'International Organisation for Standardization' - The ISO 9001:2008 standard

(which provides some clarifications of the previous standard 9001:2000) concerns

quality systems that are assessed by outside auditors, and it applies to many kinds of

production and manufacturing organizations, not just software. It covers

documentation, design, development, production, testing, installation, servicing, and

other processes. The full set of standards consists of: (a)Q9001-2008 - Quality

Management Systems: Requirements; (b)Q9000-2005 - Quality Management

Systems: Fundamentals and Vocabulary; (c)Q9004-2009 –

Quality Management Systems: Guidelines for Performance Improvements. To beISO

9001 certified, a third-party auditor assesses an organization, and certification is

typically good for about 3 years, after which a complete reassessment is required.

Note that ISO certification does not necessarily indicate quality products - it indicates

only that documented processes are followed.

ISO 9126 is a standard for the evaluation of software quality and defines six high level

quality characteristics that can be used in software evaluation. It includes functionality,

reliability, usability, efficiency, maintainability, and portability.

IEEE = 'Institute of Electrical and Electronics Engineers' - among other things, creates

standards such as 'IEEE Standard for Software Test Documentation' (IEEE/ANSI

Standard 829), 'IEEE Standard of Software Unit Testing (IEEE/ANSI Standard 1008),

'IEEE Standard for Software Quality Assurance Plans' (IEEE/ANSI Standard 730), and

others.

ANSI = 'American National Standards Institute', the primary industrial standards body

in the U.S.; publishes some software-related standards in conjunction with the IEEE

and ASQ (American Society for Quality).

Six Sigma is a methodology of quality management that gives a company tools for

business processes improvement. This approach allows to manage quality assurance

and business processes more effectively, and reduce costs and increase company

profits. The fundamental principle of Six Sigma approach is the customer satisfaction

through implementing defects-free business processes and products (3.4 or fewer

defective parts per million).Six Sigma approach determines factors that are important

for product and service quality. This approach contributes to reduction of the business

process deviation, improvement of opportunities and increase of production stability.

There are five stages in Six Sigma Project:

1. Defining

The first stage of Six Sigma project is to define the problem and deadlines to
solve this problem. The team of specialists considers a business process (e.g.,
production process) in details and identifies defects that should be erased. Then
the team generates a list of tasks to improve the business process, project
boundaries, customers, their product and service requirements and
expectations.

2. Measuring

On the second stage the business process is to be measured and current

performance is to be defined. The team collects all data and compares it to

customer requirements and expectations. Then the team prepares measures for

future large-scale analysis.

3. Analyzing

As soon as the data is put together and the whole process is documented, the
team starts analysis of the business process. The data collected on stage two
“Measuring” are determine root reasons of defects/problems and identify gaps
between current performance and new goal performance. Usually the team
specialists begin with defining the fields in which employees make mistakes and
cannot take effective control of the process.

4. Improving

On this stage the team analyzes the business process and works up some

recommendations, solutions and improvements to erase defects/problem or

achieve desired performance level.

5. Controlling

On the final stage of Six Sigma Project the team creates means of control of the

business process. It allows the company to hold and extend scale of

transformations.

Other software development/IT management process assessment methods

besides CMMI and ISO 9000 include SPICE, Trillium, TickIT, Bootstrap, ITIL,

MOF, and CobiT.

PROCESS CLASSIFICATION
The processes can be classified to structure service level agreements. The

process classes shown in table have been identified so far in past and current

projects. Depending on the concrete service there may be some of the classes

missing but the complexes the service the more of them are necessary.
Services must satisfy some quality criteria to reach a service level acceptable

to the customer. For example, in the presented scenario the response time must be

small enough to query information during the sales conversation. Management

processes must reach reasonable service levels, too, e.g. the problem resolution
process must fix an error in a certain amount of time.

 Table: Process Classes

 Class Description

 provisioning installation of the service

 usage normal usage of the service

 operation service management of the provider

 maintenance plan able activities needed for service sustainment

 accounting collection and processing of accounting data

 change management extension, cancellation and change of service elements

 problem management notification, identification and resolution of service malfunction

 SLA management management of SLA contents

 customer care service reviews and user support

 termination De-installation of the service

Before the service can be used it must be installed. The provisioning class

includes installation, test, acceptance and if necessary migration processes.

Timeliness is an important quality parameter for processes in this class. Usage is the

most common interaction. Service levels define for example the response time of the

service.
Operation processes are invisible to the customer most of the time, but quality

parameters are needed for them anyway, for example, the amount of time to detect a

malfunction of a POP for ISDN calls is a quality criteria of service operation. As the
service is usually at least limited during maintenance activities the customer wants to
limit e.g. the time slot for maintenance. The method used for accounting purposes is
an important fact because it influences the price of the service.

Minor changes of the service are not uncommon in long-term relationships. This
could be the extension of resources or addition of further dealers in the presented

scenario. Thus a change management is necessary. A well working

problemmanagement is a very important factor in outsourcing. Problems can be

solved faster ifboth partners are working together smoothly using well defined

processes.
Often the requirements of the customer change during lifetime of the SLA. If

these changes are known but not the point in time it is useful to specify a
SLAmanagement with processes for announcing the need, negotiating and changing
theSLA. Communication on strengths and weaknesses of the service, its quality or
future optimizations should be some of the subjects of regular customer care
contacts. Besides, a help desk or other support offers are usually necessary for
complex services.

Termination of processes for a relationship usually need to be specified

ifequipment of the provider is installed at customer locations or if support of the

provider is needed for migration to the following service.
Additionally, it is useful to define some basic processes which are needed in

many classes. Such processes are for example documentation, feedback and

escalation mechanisms.

 Summary

Quality is the activities designed to improve the organization and its services.

Quality is essentially about learning what you are doing well and doing it better. Quality

assurance is the process of verifying or determining whether products or services meet

or exceed customer expectations. Quality assurance is a process-driven approach with

specific steps to help define and attain goals. This process considers design,

development, production, and service. Quality control is the observation techniques

and activities used to fulfill requirements for quality. The various factors, which

influence the software, are termed as software factors. They can be broadly divided

into two categories. The classification is done on the basis of measurability. The first

category of the factors is of those that can be measured directly such as number of

logical errors and the second category clubs those factors which can be measured

only indirectly for example maintainability but the each of the factors are to be

measured to check for the content and the quality control. Two leading firms namely,

IBM and Hewlett-Packard have placed a great deal of importance on software quality.

Software Quality Metrics focus on the process, project and product. In operational

terms, the two metrics are often described by terms namely the defect density (rate)

and mean time to failure (MTTF).Although there are many measures of software

quality, correctness, maintainability, integrity and usability provide useful insight.

Defect Removal Efficiency (DRE) is a measure of the efficacy of your SQA

activities.DRE is a indicator of the filtering ability of quality control and quality

assurance activity. Process Areas in Capability Maturity Model (CMM). The Capability

Maturity Model Integration (CMMI), based process improvement can result in better

project performance and higher quality products. SEI = 'Software Engineering Institute',

ISO = 'International Organization for Standardization', IEEE = 'Institute of Electrical and

Electronics Engineers', ANSI = 'American National Standards Institute' and Six Sigma

are few standards for Software Engineering and Software Quality Assurance.

Software Quality Assurance

INTRODUCTION

SQA should be utilized to the full extend with traceability of errors, cost effiecient

. There are the principles behind a highly efficient SQA procedure. Every business
should use SQA and use it to the best as they can. They can easily guide the
application to be the best procedure. Everything should be “spick and span” when SQA
has been executed. Since it is internationally recognized, the application should not only
have a local impact but global acceptance at the same time. Businesses that develop
and application and setting it for global standard will have a high reputation and the
salability is even better. SQA definitely has benefits that will launch the company
towards the global standard it needs.

 NEED OF SQA

There are so many reasons why a company should consider SQA. It is all about
business survival and SQA is just one of the many tools the company should effectively

use. And just like a tool, it has to be effectively used to its maximum. If the tool is not

used to its full extent, the tool will just be a financial burden to the company. SQA

should also be utilized at the same way – to its full extent.
One of the reasons why businesses and companies opt out in using SQA is their

inability to realize who effective an SQA when properly used. The following are the

reasons why SQA should be used by any company before releasing their application to

their intended users:
Traceability of Errors

Without using SQA, developers can still locate the errors of the application. Since

their familiarity with the application is impeccable, they will have the ability to find a

remedy to the problem. SQA on the other hand does not just look for answers to their

problems.
SQA looks for the reason why the error occurred. Looking for errors is really

easy but tracing the roots of the problem is another thing. The SQA team should be

able to tell which practice has started the problem. Most of the time, the errors is not

rooted on the execution of the coding but it could be found in the philosophy in

developing the application.

Cost Efficient

This idea is saving money is very debatable in SQA. Using SQA means you will

have to hire another set of people to work with you. Most of the SQA today are 3rd
party companies that are only there to work on the specific project. Manpower will
always cost money. Manpower does not even cover the cost of the tools the SQA team
might use. Unfortunately most of the SQA tools are expensive especially the most
efficient tools.

On the other hand, consider the idea of locating the bugs and errors in the

application before they are released. Every application that are used in a business

setting or sold to the consumers should have an ideal of 0% error. Even though this is

rarely attained, SQA should be able to reduce errors to less than 1%.
Considering the effect on productivity together with customer satisfaction, you

can always tell that preventing the problem is always better compared to answering
them. SQA could practically save your business and boost it to success. Without them,
there is a higher possibility that the application will have errors which will discourage
your customers from purchasing the application. In a business setting, an erroneous
application will lead to slower productivity since instead of helping their customers;
they might end up troubleshooting their application most of the time.

Flexible Solutions

SQA could easily provide solutions to the problem since they look for the root of

the problem instead of just answering them. By providing the root of the problem, they

have the ability to provide solutions to these problems fast. But instead of one solution

only, the SQA team should be able to provide more than one solution.
Finding the root of the problem means they can easily provide more than one

solution. Most of the SQA companies offer web-based solutions to their concerns and

aside from that, on-site solutions are also provided by most companies to ensure that

the company could have as much options for solutions.
Better Customer Service

One of the ultimate goals of any businesses is to provide the best customer

service possible. SQA could help these companies realize that goal. Most of the
transactions in today’s business world today are IT related so an efficient application
should be employed in the first place. In order to do that, the application should go
under rigorous test. Testers could do that but again, that is only looking for the answer
of the problem.

SQA goes more than simple solution to the problem. The SQA team takes note

at every step of the application development process. Through this, they will know

what are the practices that might go out against the industry standards.
Aside from monitoring, SQA also has a good reputation in looking after the

development of the application. There are universal standards that guide every SQA

team on how to monitor and guide the application for its success. Every step of the

way has been standardized.
Even the recommended documents are carefully planned out to ensure that that

feed back is working as planned. The end result is a globally recognized product

developed with certain standards. The SQA methodologies are ISO certified which

means, the practice of monitoring the development of a software or application is
recognized by some of the world’s biggest companies.

Innovation and Creativity

Since the SQA team is here to standardize how their work is done, it still fosters

innovation and creativity for developing the product. Everyone is given a free hand in

developing the application and the SQA team is there to help them standardize the

ideas.

Most of the time, developers would feel constricted in building applications

because of the metrics proposed by the developers. On the other hand, developers

should have the ability to be more creative as long as the SQA team is there. The SQA
team on the other hand has the ability to foster drive as everything will be under the

guidance of the team.
Software Principles

The SQA team also has to follow certain principles. As a provider of quality
assurance for procedures and application, they need to have a strong foundation on
what to believe in and what to stand for. These principles will ensure that the
application will live up to the expectations of the client and the users. Like the
application, the SQA principles run on the background but eventually dictate how the
system will be tackled. The following are some of the most powerful principles that can
be used for proper execution of software quality assurance:

Feedback – In gist, the faster the feedback the faster the application will move
forward. An SQA principle that uses rapid feedback is assured of success. Time will
always be the best friend and the most notorious enemy of any developer and it’s up to
the SQA team to give the feedback as soon as possible. If they have the ability to get
the feedback of their applications as soon as possible, then the chance of developing a
better application faster is possible.

Focus on Critical Factor – This principle has so many meanings; first it just

means that some of the factors of the software being developed are not as critical

compared to other. That means SQA should be focused on the more important

matters.
Secondly, SQA’s measurement should never be universal in the sense that

every factor in the application should not have the same treatment. One great example

of this is the treatment of the specific functions compared to the skin or color of the
interface. Clearly, the function should have more focus compared to a simple skin

color.
Multiple Objectives – This is partly a challenge as well as risk for the SQA team.

Atthe start of the SQA planning, the team should have more than one objective. If you
think about it, it could be very dangerous however it is already a common practice. But
what is emphasized here is that each objective should be focused on. As much as

possible a matrix should be built by the SQA so that it could track the actual actions
that relates to the objective.
Evolution – Reaching the objective is really easy but every time something

newhappens, it should be always noted. Evolution is setting the benchmark in each

development. Since the SQA team is able to mark every time something new is done,

evolution is monitored.
The good thing about this principle is for future use. Whenever a benchmark is not

reached, the SQA team should be able to study their previous projects. Evolution

should be able to inform and educate the SQA team while working on the project.
Quality Control – By the name itself, Quality Control is the pillar for Software

QualityAssurance. Everything needs to have quality control – from the start to the

finish. With this principle there has to be an emphases on where to start. The biggest

and the tightest quality control should be executed as early as possible.
For example, when the SQA team receives the SR (software requirements document)
the intensity of quality control should be at the start. Of course quality control will still

be executed until the end but developers should take into account that anything that

starts out real bad could never take off. It’s better to know what’s wrong at first than to

find that out later.
Motivation – There is not substitute than to have the right people who has the will todo
their job at all times. When they have the right mindset the willingness to do it,
everything will just go through. Work will definitely be lighter, expertise will be seen and
creativity is almost assured when everyone has the drive and passion in their line of
work. Quality assurance is a very tedious task and will get the most out of the person if
they are not dedicated to their line of work.
Process Improvement – Every project of the SQA team should be a

learningexperience. Of course each project will give us the chance to increase our

experience of SQA but there’s more to that. Process improvement fosters the

development of the

actual treatment of the project. Every project has a unique situation that will give the SQA team a

chance to experience something new. This “new” will never be translated to something good if

they are not documented for future references. Learning should not only be based on individual

experience but also on company’s ability to adapt to the new situation and use it for future
references.
Persistence – There is no perfect application. The bigger they get, the more errorthere could be.

The SQA team should be very tenacious in looking for concerns in every aspect of the software

development process. Even with all the obstacles everyone would just have to live with the fact

that every part should be scrutinized without hesitation.
Different Effects of SQA – SQA should go beyond software development. A regularSQA will just
report for work, look for errors and leave. The SQA team should be role models in business

protocols at all times. This way, the SQA does not only foster perfection in the application but also
in their way of life. That seemed to be quite off topic but believe me; when people dress and move

to success, their work will definitely reflect with it.
Result-focused – SQA should not only look at the process but ultimately its effect to the clients

and users. The SQA process should always look for results whenever a phase is set.
These are the principles that every SQA plan and team should foster. These principles tell

encourages dedication towards work and patience not necessarily for perfection but for maximum

efficiency.

 SQA ACTIVITIES

SQA is composed of a variety of tasks linked with 2 dissimilar constituencies:

SQA group that has responsibility for quality assurance planning, record keeping,

oversight, analysis and reporting and the other are software engineers, who do
technical work. The character of a SQA group is to help the software team in attaining

a high-class product.
The SQA group prepares a SQA plan that identifies:
• Assessments to be carried out,
• Reviews and audits to be executed,
• Standards those are relevant to the project,
• Measures for error reporting and tracking,
• Credentials to be produced by the SQL group, and
• Amount of feedback provided to the software project team.

BUILDING BLOCKS OF SQA

SQA Project Metrics

The application is only as good as its numbers. It is a harsh reality but everything
has to come down to the numbers. Although we can enumerate tens or hundreds of
features in a single application, it will all be for nothing if the metrics do not live up
according to expectation. The SQA team should ensure that the expected metrics will
be posted. At the same time, the SQA team should also select the right tool to gauge
the application.

There are hundreds of applications that can measure the application but it is

quite rare to find the right application to provide the right information.

To fully gauge the software’s ability, a number of metrics should be attained. A
regular testing application will just show errors of the software as well its ability to
withstand constant and heavy traffic. However when you take a closer look at the
application, you will realize these are not the only numbers that you need to know if the

application actually works. The SQA team should know the numbers that needs to be
shown to the developers and to the management.
Metrics

In the previous chapter, the metrics provided were referred to the SQA’s ability

to influence the application. This time, the metrics will only refer to the application

alone. To gauge the actual application, the metrics are divided into four categories.

Each category has attributes with specific metrics ensuring that the attribute is

achieved.
Quality of Requirements – These set of metrics will show how well the

application is planned. Among the requirements of quality first and foremost is

completeness. Remember that requirements are geared to answer all the problems

and concerns of the users. Therefore, its main aim is to answer all the concerns.

One of metrics found in this category is the completeness of the requirements.

As this is in the planning stage, the ability to be understood is also important. The SQA

team should gauge if the document are well written and useful.
Lastly, the requirements that were written by the developers and the intended

users should be traceable. No one can just place a requirement out of whim since

each of the requirements should have a logical root or explanation.
Product Quality – These set of metrics will gauge the ability of the developersto

formulate codes and functions. The SQA team will first gauge how simple the

application has been written. The software has to be written in a simple manner. It

might sound contradicting that even a highly complex application could come in as

simple.
What the SQA team is looking for from the application is the logical formulation

of the codes. When the application is logically coded, it has two repercussions which

are also gauged by SQA.

First is the maintainability. If the application could be easily understood,

troubleshooting is very easy. Reusability of the application is also emphasized. Since

the codes could easily be distinguished, developers can use parts of the application to

be implemented to another program.

SQA Software and Tools

In quality assurance, it is always important to get all the help we could get. In
other industries, developers could easily check the products manually and discard
those that do not meet the standard. The length and the width of the product are
checked to maintain standardization of the product. Others use special machines to
check the product. With tools and machines, they can easily set a standard with their
products.

That also goes the same with software and applications. Although it does not
use physical machines, applications go through rigorous testing before they are

released to the public even for beta testing. The tools used in SQA are generally

testing tools wherein an application is run through a series of tests to gauge the

performance of the application.
The tools used in SQA vary in purpose and performance. These applications

range from testing the code or running the application under great stress. These tools
are employed to test the application and produce numbers and statistics regarding the
actual application. Through these numbers, the SQA team and their developers will
know if the application has lived up according to the targeted performance.

Like most developers each SQA team has their preferred tools for application

testing. Based on their belief and expertise, the SQA team will usually give the owners

or business managers a free hand on what type of testing tool to use.
Notable SQA Tools

The following are some of the renowned SQA tools and applications. There are

still hundreds out there but the following tools have been around for years and have

been used by thousands or probably millions of testers.

WinRunner – Developed by HP, WinRunner is a user friendly application

thatcan test the applications reaction from the user. But other than measuring the

response time, WinRunner can also replay and verify every transaction and interaction
the application had with the user. The application works like a simple user and

captures and records every response the application does.
LoadRunner – Developed by HP, LoadRunner is one of the simple

applicationsthat can test the actual performance of the application. If you are looking

for a program to test your application’s tolerance to stress, LoadRunner is your tool. It

has the ability to work like thousands of users at the same time – testing the stress of

the application.
QuickTest Professional – If you have worked with WinRunner you surely have

bumped in with this tool. Built by HP, QuickTest emulates the actions of users and
exploits the application depending on the procedure set by testers. It can be used in

GUI and non-GUI websites and applications. The testing tool could be customized

through different plug-ins.
Mercury Test Director – An all-in-one package, this web-based interface

couldbe used from start to end in testing an application or a website. Every defect will

be managed according to their effect to the application. Users will also have the option

to use this exclusively for their application or use it together with wide array of testers.
Silktest – Although available in limited operating system, Silktest is a very

smarttesting tool. Silktest lists all the possible functions and tries to identify the function

one by one. It can be implemented in smaller iterations as it translate the available

codes into actual objects.
Bugzilla – Developed by Mozilla, this open source testing tool works as

thename suggests. Bugzilla specializes in detecting bugs found in the application or

website. Since the application is open-source it can be used freely and it is availability

in different OS makes it even a viable alternative for error tracking. The only downside

is it has a long list of requirements before it could run.
Application Center Test – Also known as ACT, this testing tool was

developedby Microsoft using ASP.NET. This application is primarily used for

determining the capacity of the servers that handle the application. Testers can test the

server by asking constant requests. A customized script either from VB or JS could be

used to test the server’s capacity.
OpenSTA – Another open source tool, testers can easily launch the

applicationand use it for testing the application’s stress capacity. The testing process

could be recorded and testing times could be scheduled. Great for websites that needs

daily maintenance.
QARun – Instead of an application, QARun is actually a platform where you

canbuild your own testing application. QARun could be easily integrated with the

application so that it could easily sync with the releases and checks the application or

website every time something new is introduced.
The documentation that supports the application is also gauged and the

comment within the coding is also gauged. It is not important if there lots of comments

but what is important is that the comments are clear and could be found in every

function.
Implementation Capability –

The general coding behavior of the developers is also gauged by the SQA team.

The metrics used in this classification is based on the SDLC used by the developers.

The SQA team will rate the developer’s ability to finish each action in the stage of the

SDLC on time.
The staff hours are rated according to the need of the stage. Each phase of the

SDLC will have their time requirement – some will just need a day or two while others

will require a month to finish. The time required in every stage is set by the project

manager.
Aside from the time required for completion, the developers are also rated if they

ever finish a task at all. There are tasks that are necessary for the application to run

while there are tasks that could be offset by another task. Although that’s a
convenience, it will actually trigger a domino effect so the whole operation could be

placed in jeopardy.

Software Efficiency – Last but maybe the most important is to ensure that the
application do not have any errors at all. This is basically a major pillar to any
application. Without errors, the software will never give any hackers a chance to
infiltrate the system. Usually, the SQA team will develop test cases wherein the error is
highlighted. The developers are then rated how fast they could locate the root of the
problem and how fast they could built a fix to the problem.

These are the metrics that every software developer will have to go through. The

better the rating, the better the application would work.
Selecting the Right Quality Model

There are so many quality models to choose from. Each of them has their own

advantage and disadvantages. It is up to the SQA team to select which application that

will give the clients a good idea how the application works.
In order to select a good Quality Model is no trick actually. Every application

developed has a “core” or a feature that differentiates the application from other

software.
The SQA team should just focus on that feature and look for the quality model

that can fully gauge the feature. It is a very simple idea but will do wonders especially

when the SQA team is trying to prove the validity of the application against the feature

needed by the clients.
The only disadvantage of this technique is that the developers might be focusing

too much in the feature. However, all of the Quality Models could easily gauge every
aspect of the application. That means every SQA team can easily gauge the software
without any problem. Finding errors in the application is a great challenge to the SQA
team. But with the right tools the software could be easily gauged and the application
will work as expected.
Selecting Right SQA Tool

The tools that are listed above are only a very small chunk of the hundreds of

testing tools available as a free or licensed application. Among the dilemmas of the

SQA team is to select the proper testing tool for the particular website or application.
In selecting the right tool, testers and SQA managers should always start with

their objective. Although usually the testers’ objective is to know every bug and error
related to the application, testers and developers should also consider writing
benchmarks. Through this benchmark, they can assure the application works as
expected. Every tester should understand that each application might require a
completely different testing tool. Experience will always tell the testers that a simple
automation tool will never work in complex applications.

Aside from this consideration, testers also have the choice to use more than one
testing tool. But before getting all the possible testing tools, the SQA team should
consider what metrics they are looking for. By determining the numbers they need and
the benchmark they are looking for they can easily select the testing tools they can
use.

The success of SQA can be determined based on the applications they use. In

fact, it can be safely said that the SQA team is only as good as the software they use.

Although they can check the application manually, it will take time and it will always be

prone to human error. With the right testing tool, the application is tested faster with

better accuracy.

2.4.5 SQA Planning and Requirements

The scope of Software Quality Assurance or SQA starts from the planning of the
application until it is being distributed for the actual operations. To successfully monitor
the application build up process, the SQA team also has their written plan. In a regular
SQA plan, the team will have enumerated all the possible functions, tools and metrics
that will be expected from the application. SQA planning will be the basis of everything
once the actual SQA starts.

Without SQA planning, the team will never know what the scope of their function

is. Through planning, the client’s expectations are detailed and from that point, the

SQA team will know how to build metrics and the development team could start

working on the application.
When the SQA team starts working, one of the first things they will have to tackle

is to determine the developer team’s initial output. The intended users or at least part

of them will be forwarding information which tells of their expectations of the new

software called UR (User Requirements), this document will be the bases.
What is left is to determine the software requirements in the intended

application. In business or in any intended application, software requirements are very
important since these requirements will tell how an application would work. This will
also be the ground work for developers. From these requirements they will know what
language, SDLC program and other protocols that will be used to build the
applications.

While the developers work on determining the requirements, the SQA team will

be monitoring their work to ensure the requirements are according to the expectations.
Technical Activities

One of the responsibilities of the SQA team from the developers is the required
user requirements document. The UR document is produced by the intended users
who are tapped for this project. This document will inform the developers what the
users are expecting from the application. The SQA team will ensure that the document
exists before they actually work on the software requirements. The UR document will
be the bases for the SR document so it will never make sense if the SR document is
produced without consulting the user requirements document first. The SQA team
should also ensure that the UR document should be of quality. To develop an efficient
software requirement document, the developers should use a known method to
determine this type requirement for software development. There are lots of software
requirements analysis methods that could be used but developers do not just pick one
they prefer. The SQA team should ensure that the analysis method should be
reputable or recognized. As much as possible the analysis method should have been
published.

Aside from a published analysis method for software requirements, it is also
ideal that the analysis method will be supported by different Computer-Aided Software
Engineering (CASE) tools. CASE tools are used to develop models for software
development and software requirements could easily be determined by with this
application. Although it is not required for financial and time frame reasons, CASE
tools should be highly considered by developers. The intended metrics for
performance is also detailed in software requirements. Above all, metrics should be
emphasized since it will tell how fast or how efficient the application should perform.
Based on this metrics, the SQA team should be able to determine their testing tools.
These documents should reflect the principles and the metrics of the clients and the
intended users are looking for.
SQA Management Plans

In the planning and requirements phase, there will be four plans that will be
created. These plans will be used in the next stage of software development which is
the architectural phase. The Software Quality Assurance Plan (SQAP) for architectural
design (AD) is basically the following list of activities to ensure that the preparation of
the architectural plan is a success. If any tool or application will be used, the SQA team
should point this out in this phase.
• Software Project Management Plans (SPMP) for Architecture Design.

The SQA team should ensure that this management plan will have the specific

budget for developing the software. Aside from being specific, the SQA team

should also ensure that the estimate should be obtained using scientific methods.

• Software Configuration Management Plans (SCMP) for Architectural Design.

SCMP is the plan on how the software will be eventually configured. In this

phase, the SQA team should ensure that the configuration should have been

established at the start.

• Software Verification Management Plan (SVMP) for Architectural Design.

Like most of the management plans, this one has already been established. But

extra information should be sought after by the SQA team. Since this document

will be used in the architectural design phase more detailed information is

needed. A test plan should be made to ensure that the Architectural Design

phase is a success. Also, the SQA team should ensure a general testing system

should be established.
Output and Principles

At the end of the planning phase, developers should be able to produce a

document that has the details needed for the Architectural Design phase. The SQA

team should check if the document has the following characteristics:
• Consistency – This is especially applicable if the output does not use anyCASE

tools. Case tools should easily figure out inconsistencies and it is up to the SQA

team to determine this consistency if no CASE tools was used in this phase.

• Verifiable – Each specific requirement in this phase should be tested either by

apopular tool or verifiable facts from the past.

• Complete – The SR or software requirements is the end of the

requirementphase. To declare that this phase is complete, the SQA team should

check with the UR (user requirements) and see to it that all the things needed by

the user are answered. If possible, a matrix should be created to track each

answer of the SR to the UR built by the users.
In the end, the SQA team, the developers and representatives of the users will

come together for a formal review of the documents. By sitting together, everyone will

know if the things needed in the software are covered or will come together with the

application.
SQA PLANNING AND STANDARDS

Planning is one of the most important aspects of Software Quality Assurance.

The entire operation of the SQA team depends on how well their planning is done. In
smaller businesses, planning might not really dictate the flow of SQA but in larger

businesses, SQA Planning takes on center stage. Without it, each component or

department that works on the application will be affected and will never function.
In gist, SQA Planning tackles almost every aspect of SQA’s operation. Through

planning, each member and even non-member of the SQA team is clearly defined. The

reason for this is very simple: when everyone knows their role and boundaries, there is

no overlapping of responsibilities and everyone could concentrate on their roles.
But SQA Planning is not only a document that tells who gets to do the specific

task. The stages in are also detailed. The whole SQA team will be very busy once the
actual testing starts but with SQA, everyone’s work is clearly laid out. Through
planning, the actual state of the application testing is known. Again in smaller
businesses, the planning maybe limited to the phase of the application testing but
when outlined for corporations, the scenario changes and only through planning that
everyone will know where they are and where they are going in terms of SQA.

SQA Planning is not just a simple document where objectives are written and

stages are clearly stated. Because of the need to standardize software development

ensuring the limitation of error, a scientific approach is recommended in developing an

SQA plan. Certain standards such as IEEE Std 730 or 983.
SQA Plan Content

An SQA Plan is detailed description of the project and its approach for testing.

Going with the standards, an SQA Plan is divided into four sections:
• Software Quality Assurance Plan for Software Requirements;

• Software Quality Assurance Plan for Architectural Design;

• Software Quality Assurance Plan for Detailed Design and Production and;

• Software Quality Assurance Plan for Transfer

In the first phase, the SQA team should write in detail the activities related for

software requirements. In this stage, the team will be creating steps and stages on

how they will analyze the software requirements. They could refer to additional

documents to ensure the plan works out.
The second stage of SQA Plan or the SQAP for AD (Architectural Design) the

team should analyze in detail the preparation of the development team for detailed

build-up. This stage is a rough representation of the program but it still has to go

through rigorous scrutiny before it reaches the next stage.
The third phase which tackles the quality assurance plan for detailed design and

actual product is probably the longest among phases. The SQA team should write in
detail the tools and approach they will be using to ensure that the produced application
is written according to plan. The team should also start planning on the transfer phase
as well.

The last stage is the QA plan for transfer of technology to the operations. The

SQA team should write their plan on how they will monitor the transfer of technology

such as training and support.

SQA LIFECYCLE STANDARDS

Software Quality Assurance procedures have finally been standardized and

have been virtually perfected after years of planning on how to perfect the application
standardization. Through experience, the company was able to place in writing how to
develop a plan for software development. Because it has been standardized, the
application that was developed using SQA could be recognized worldwide because it
has been made according to the standards. Along with the standards, the metrics are
also standardized. More than anything else written in the report, the clients who are
looking for an efficient application looks for the numbers more than anything else.
Metrics will tell whether the application has been developed according to plan and
could perform when released or sold to their intended users.

SQA Standards

IEEE (Institute of Electric and Electronic Engineers) – This standard was
established by the organization with the same name. This organization was
established in 1963 and the IEEE standards for software development starting in 1986.
There are two types of IEEE standards for Software Quality Application: the Standard
730-1989 which was developed in 1989 and the ANSI/IEEE Standard 983 – 1986
which was the original version developed in 1986. IEEE is very popular especially for
SQA Planning and development.

ISO (International Standards Organization) – One of the oldest standardization

organizations in the world, ISO were established in 1947 and have established itself to

be the standardized company not only in software development but also in business

plans. Because it was internationally recognized it has become a powerful standard for

different business uses.
DOD (US Department of Defense) – The government has also developed

theirown standardization scheme especially for developing technology. They have
evolved from ISO 9000 and developed a specialized standard on their own. There are
currently two DOD standards: the MIL-STD-961E which refers to the program specific

standards and the MIL-STD-962D which stands for general standardization. Both of
these formats were used applied by the DOD starting August 1, 2003.

ANSI (American National Standards Institute) – Working with US-based
companies, ANSI has become the bridge of small US based companies to

international standards so that they could achieve international recognition. ANSI
covers almost anything in the country, products technology and application. ANSI
ensures that the products developed in the US could be used in other countries as
well.

IEC (International Electro technical Commission) – Stated June of 1906, the
commission has dedicated itself to the standardization of electrical materials and its
development. Today it is usually associated with ISO since it has become a part of
technical industries. IEC is known for standardizing electronics through the
International Electro technical Vocabulary which is used by all electronic industries
until today.

EIA (Electronic Industries Alliance) - EIA is a coming together of different

electronic manufacturers in US. This organization set the standards for electronic

products for the country and has been accepted by thousands of companies

worldwide.

SQA Management Standards

Aside from internationally recognized SQA standards, there are specific standards

that were developed to cater specifically for the management of software

development:
ISO 9001 and ISO 9000-3 – These certifying organizations was

establishedspecifically for software development. This standard encourages

leadership and could be integrated continuously even when the product has been
developed and released to its users. Good supplier relations are also emphasized as

technology is not only developed in-house.
SW-CMM (Software Capability Maturity Model) – Developed in 1980, SW-CMM has
become the standards for large scale software development companies. It has drawn
support because this development model was established by the developers for the
developers. It believes in quantitative methods to develop and maintain productivity.
SW-CMM has a five-level model to gauge the applications maturity and establish a
detailed plan to further enhance them. The best draw so far of SW-CMM is that it does
not care about SDLC model, tool and documentation standard, promoting creativity for
software development.
ISO/IEC 15504 Process Assessment Model and SPICE (Simulation Program with
Integrated Circuit Emphasis) – Aiming for international acceptance, this type of SQA
supports a specific type of testing standard for a better application. Called SPICE, this
application could test each part of the application. SPICE is also used to asses the
performance of circuits in electronic products.

SUMMARY

SQA has benefits that will launch the company towards the global standard it

needs.SQA should also be utilized at the same way to its full extent.SQA is needed to

trace the errors, find the cost affiant, to give flexible solutions and better customer

service. SQA team has to follow certain principles like Feedback, Focus on Critical

Factor, Multiple Objectives, Evolution, and Quality Control. Motivation, Process

Improvement, Persistence, Different Effects of SQA and Result focused.SQA is

composed of a variety of tasks linked with 2 dissimilar constituencies: SQA group that

has responsibility for quality assurance planning, record keeping, oversight, analysis

and reporting and the other are software engineers, who do technical work. The SQA

team should ensure that the expected metrics will be posted. At the same time, the

SQA team should also select the right tool to gauge the application. Notable SQA

tools are WinRunner, LoadRunner, QuickTest Professional, Mercury TestDirector,

Silktest and Bugzilla, Application Center Test, OpenSTA, QARun. Selecting the Right

Quality Model and Right SQA tool is responsibility of SQA team. SQA management

plans involve SQAP, SPMP, SCMP, SVMP. SQA standards are IEEE, ISO,

DOD,ANSI, ICE, EIA. SQA Management Standards are ISO, SW-CMM, ISO/IEC.

Software Reliability

INTRODUCTION

According to ANSI, Software Reliability is defined as: the probability of failure-

free software operation for a specified period of time in a specified environment.
Although Software Reliability is defined as a probabilistic function, and comes with the
notion of time, we must note that, different from traditional Hardware Reliability,
Software Reliability is not a direct function of time. Electronic and mechanical parts
may become "old" and wear out with time and usage, but software will not rust or
wear-out during its life cycle. Software will not change over time unless intentionally
changed or upgraded.

 RELIABILITY MEASURES

Software Reliability is an important to attribute of software quality, together
with functionality, usability, performance, serviceability, capability, install ability,
maintainability, and documentation. Software Reliability is hard to achieve, because
the complexity of software tends to be high. While any system with a high degree of
complexity, including software, will be hard to reach a certain level of reliability, system
developers tend to push complexity into the software layer, with the rapid growth of
system size and ease of doing so by upgrading the software. For example, large next-
generation aircraft will have over one million source lines of software on-board; next-
generation air traffic control systems will contain between one and two million lines;
the upcoming international Space Station will have over two million lines on-board and
over ten million lines of ground support software; several major life-critical defence
systems will have over five million source lines of software. While the complexity of
software is inversely related to software reliability, it is directly related to other
important factors in software quality, especially functionality, capability, etc.
Emphasizing these features will tend to add more complexity to software.
Software failure mechanisms

Software failures may be due to errors, ambiguities, oversights or
misinterpretation of the specification that the software is supposed to satisfy,
carelessness or incompetence in writing code, inadequate testing, incorrect or
unexpected usage of the software or other unforeseen problems. While it is tempting
to draw an analogy between Software Reliability and Hardware Reliability, software
and hardware have basic differences that make them different in failure mechanisms.
Hardware faults are mostly physical faults, while software faults are design faults,
which are harder to visualize, classify, detect, and correct. Design faults are closely
related to fuzzy human factors and the design process, which we don't have a solid
understanding. In hardware, design faults may also exist, but physical faults usually
dominate. In software, we can hardly find a strict corresponding counterpart for
"manufacturing" as hardware manufacturing process, if the simple action of uploading
software modules into place does not count. Therefore, the quality of software will not
change once it is uploaded into the storage and start running. Trying to achieve higher
reliability by simply duplicating the same software modules will not work, because
design faults cannot be masked off by voting.
A partial list of the distinct characteristics of software compared to hardware is listed

below:

Failure cause: Software defects are mainly design defects.

Wear-out: Software does not have energy related wear-out phase. Errors can

occur without warning.

Repairable system concept: Periodic restarts can help fix software problems.

Time dependency and life cycle: Software reliability is not a function of

operational time.

Environmental factors: Do not affect Software reliability, except it might affect

program inputs.

Reliability prediction: Software reliability cannot be predicted from any physical

basis, since it depends completely on human factors in design.

Redundancy: Cannot improve Software reliability if identical software components

are used.

Interfaces: Software interfaces are purely conceptual other than visual.

Failure rate motivators: Usually not predictable from analyses of separate

statements.

Built with standard components: Well-understood and extensively-tested standard

parts will help improve maintainability and reliability. But in software industry, we
have not observed this trend. Code reuse has been around for some time, but to
a very limited extent. Strictly speaking there are no standard parts for software,

except some standardized logic structures.

The bathtub curve for Software Reliability
Over time, hardware exhibits the failure characteristics shown in Figure 1, known as
the bathtub curve. Period A, B and C stands for burn-in phase, useful life phase and
end-of-life phase. A detailed discussion about the curve can be found in the topic
Traditional Reliability.

Figure 1. Bath tub curve for hardware reliability

Software reliability, however, does not show the same characteristics similar
as hardware. A possible curve is shown in Figure 2 if we projected software reliability
on the same axes. There are two major differences between hardware and software
curves. One difference is that in the last phase, software does not have an increasing
failure rate as hardware does. In this phase, software is approaching obsolescence;
there is no motivation for any upgrades or changes to the software. Therefore, the
failure rate will not change. The second difference is that in the useful-life phase,
software will experience a drastic increase in failure rate each time an upgrade is
made. The failure rate levels off gradually, partly because of the defects found and
fixed after the upgrades.

Software Testing / 30

Figure 2. Revised bathtub curve for software reliab

The upgrades in Figure 2 imply feature upgrades, not upgrades for reliability.

For feature upgrades, the complexity of software is likely to be increased, since the

functionality of software is enhanced. Even bug fixes may be a reason for more

software failures, if the bug fix induces other defects into software. For reliability

upgrades, it is possible to incur a drop in software failure rate, if the goal of the

upgrade is enhancing software reliability, such as a redesign or reimplementation of

some modules using better engineering approaches, such as clean

A proof can be found in the result from Ballista project, robustness testing of

off-the-shelf software Components. Figure 3 shows the testing results of fifteen POSIX

compliant operating systems. From the graph we see that for QNX and HP

robustness failure rate increases after the upgrade. But for SunOS, IRIX and Digital

UNIX, robustness failure rate drops when the version numbers go up. Since software

robustness is one aspect of software reliability, this result indicates that the upgrade of

those systems shown in Figure 3 should have incorporated reliability upgrades.

Available tools, techniques, and metrics

Since Software Reliability is one of the most important aspects of software

quality, Reliability Engineering approaches are practiced in software field as well.

Software Reliability Engineering

operationalbehavior of software-based systems with respect to user requirements

concerning reliability.

SOFTWARE RELIABILITY MODELS

A proliferation of software reliability models have emerged as people try to

understand the characteristics of how and why software fails, and

software reliability. Over 200 models have been developed since the early 1970s, but

how to quantify software reliability still remains largely unsolved. Interested readers

may refer to as many models as there are and many more emerging, n

models can capture a satisfying amount of the complexity of software; constraints and

assumptions have to be made for the quantifying process. Therefore, there is no single

model that can be used in all situations. No model is complete or even r

One model may work well for a set of certain software, but may be completely off track

for other kinds of problems.

Most software models contain the following parts: assumptions, factors, and a

mathematical function that relates the

function is usually higher order exponential or logarithmic.

Software modelling techniques can be divided into two subcategories: prediction

modelling and estimation modelling. Both kinds of modelling techniq

observing and accumulating failure data and analyzing with statistical inference. The

major difference of the two models is shown in Table 1.

Figure 2. Revised bathtub curve for software reliability

The upgrades in Figure 2 imply feature upgrades, not upgrades for reliability.

For feature upgrades, the complexity of software is likely to be increased, since the

functionality of software is enhanced. Even bug fixes may be a reason for more

are failures, if the bug fix induces other defects into software. For reliability

upgrades, it is possible to incur a drop in software failure rate, if the goal of the

upgrade is enhancing software reliability, such as a redesign or reimplementation of

e modules using better engineering approaches, such as clean-room method.

A proof can be found in the result from Ballista project, robustness testing of

shelf software Components. Figure 3 shows the testing results of fifteen POSIX

operating systems. From the graph we see that for QNX and HP-UX,

robustness failure rate increases after the upgrade. But for SunOS, IRIX and Digital

UNIX, robustness failure rate drops when the version numbers go up. Since software

t of software reliability, this result indicates that the upgrade of

those systems shown in Figure 3 should have incorporated reliability upgrades.

Available tools, techniques, and metrics
Since Software Reliability is one of the most important aspects of software

quality, Reliability Engineering approaches are practiced in software field as well.

Software Reliability Engineering (SRE) is the quantitative study of the

based systems with respect to user requirements

SOFTWARE RELIABILITY MODELS

A proliferation of software reliability models have emerged as people try to

understand the characteristics of how and why software fails, and try to quantify

software reliability. Over 200 models have been developed since the early 1970s, but

how to quantify software reliability still remains largely unsolved. Interested readers

may refer to as many models as there are and many more emerging, none of the

models can capture a satisfying amount of the complexity of software; constraints and

assumptions have to be made for the quantifying process. Therefore, there is no single

model that can be used in all situations. No model is complete or even representative.

One model may work well for a set of certain software, but may be completely off track

Most software models contain the following parts: assumptions, factors, and a

mathematical function that relates the reliability with the factors. The mathematical

function is usually higher order exponential or logarithmic.

Software modelling techniques can be divided into two subcategories: prediction

modelling and estimation modelling. Both kinds of modelling techniques are based on

observing and accumulating failure data and analyzing with statistical inference. The

major difference of the two models is shown in Table 1.

The upgrades in Figure 2 imply feature upgrades, not upgrades for reliability.

For feature upgrades, the complexity of software is likely to be increased, since the

functionality of software is enhanced. Even bug fixes may be a reason for more

are failures, if the bug fix induces other defects into software. For reliability

upgrades, it is possible to incur a drop in software failure rate, if the goal of the

upgrade is enhancing software reliability, such as a redesign or reimplementation of

A proof can be found in the result from Ballista project, robustness testing of

shelf software Components. Figure 3 shows the testing results of fifteen POSIX

UX,

robustness failure rate increases after the upgrade. But for SunOS, IRIX and Digital

UNIX, robustness failure rate drops when the version numbers go up. Since software

t of software reliability, this result indicates that the upgrade of

Since Software Reliability is one of the most important aspects of software

quality, Reliability Engineering approaches are practiced in software field as well.

(SRE) is the quantitative study of the

based systems with respect to user requirements

A proliferation of software reliability models have emerged as people try to

try to quantify

software reliability. Over 200 models have been developed since the early 1970s, but

how to quantify software reliability still remains largely unsolved. Interested readers

one of the

models can capture a satisfying amount of the complexity of software; constraints and

assumptions have to be made for the quantifying process. Therefore, there is no single

epresentative.

One model may work well for a set of certain software, but may be completely off track

Most software models contain the following parts: assumptions, factors, and a

reliability with the factors. The mathematical

Software modelling techniques can be divided into two subcategories: prediction

ues are based on

observing and accumulating failure data and analyzing with statistical inference. The

ISSUES PREDICTION MODELS ESTIMATION
 MODELS

DATA REFERENCE Uses historical data Uses data
 from the
 current
 software
 development

 effort

WHEN USED IN Usually made prior to development or Usually made
DEVELOPMENT test phases; can be used as early as later in life
CYCLE concept phase cycle(after

 some data
 have been
 collected); not
 typically used
 in concept or
 development

 phases

TIME FRAME Predict reliability at some future time Estimate
 reliability at
 either present
 or some future

 time

Table 1. Difference between software reliability prediction models and software

reliability estimation models
Software Reliability Metrics

Measurement is commonplace in other engineering field, but not in software

engineering. Though frustrating, the quest of quantifying software reliability has never

ceased. Until now, we still have no good way of measuring software reliability.
Measuring software reliability remains a difficult problem because we don't have

a good understanding of the nature of software. There is no clear definition to what
aspects are related to software reliability. We cannot find a suitable way to measure

software reliability, and most of the aspects related to software reliability. Even the
most obvious product metrics such as software size have not uniform definition.

It is tempting to measure something related to reliability to reflect the

characteristics, if we cannot measure reliability directly. The current practices of

software reliability measurement can be divided into four categories:

Product metrics

Software size is thought to be reflective of complexity, development effort and
reliability. Lines Of Code (LOC), or LOC in thousands (KLOC), is an intuitive initial
approach to measuring software size. But there is not a standard way of counting.

Typically, source code is used(SLOC, KSLOC) and comments and other non-
executable statements are not counted. This method cannot faithfully compare
software not written in the same language. The advent of new technologies of code
reuses and code generation technique also cast doubt on this simple method.

Function point metric is a method of measuring the functionality of a proposed
software development based upon a count of inputs, outputs, master files, inquires,
and interfaces. The method can be used to estimate the size of a software system as
soon as these functions can be identified. It is a measure of the functional complexity
of the program. It measures the functionality delivered to the user and is independent
of the programming language. It is used primarily for business systems; it is not proven
in scientific or real-time applications.

Complexity is directly related to software reliability, so representing complexity is

important. Complexity-oriented metrics is a method of determining the complexity of a

program’s control structure, by simplifies the code into a graphical representation.

Representative metric is McCabe's Complexity Metric.

Test coverage metrics are a way of estimating fault and reliability by performing

tests on software products, based on the assumption that software reliability is a
function of the portion of software that has been successfully verified or tested.

Detailed discussion about various software testing methods can be found in topic

Software Testing.

Project management metrics

Researchers have realized that good management can result in better products.

Research has demonstrated that a relationship exists between the development
process and the ability to complete projects on time and within the desired
quality objectives. Costs increase when developers use inadequate processes.
Higher reliability can be achieved by using better development process, risk
management process, configuration management process, etc.

Process metrics

Based on the assumption that the quality of the product is a direct function of the
process, process metrics can be used to estimate, monitor and improve the

reliability and quality of software. ISO-9000 certification, or "quality management

standards", is the generic reference for a family of standards developed by the

International Standards Organization (ISO).

Measure

1. Customer

satisfaction

index

Metrics

Number of system enhancement requests per year Number of
maintenance fix requests per year User friendliness: call volume to
customer service hotline User friendliness: training time per new user
Number of product recalls or fix releases (software vendors) Number of
production re-runs (in-house information systems groups)
Normalized per function point (or per LOC) At product delivery (first 3

2. Delivered defect months or first year of operation) Ongoing (per year of operation) By level of severity By category or
cause, e.g.: requirements defect,

quantities
design defect, code defect, documentation/on-line help defect, defect
introduced by fixes, etc.

3. Responsiveness

(turnaround time)

to users
7. Complexity of

delivered

product

8. Test coverage

9. Cost of defects

10. Costs of quality

activities

11. Re-work

Turnaround time for defect fixes, by level of severity Time for minor vs.

major enhancements; actual vs. planned elapsed time (by customers)

in the first year after product delivery
McCabe's cyclomatic complexity counts across the system Halstead’s

measure Card's design complexity measures Predicted defects and

maintenance costs, based on complexity measures
Breadth of functional coverage Percentage of paths, branches or

conditions that were actually tested Percentage by criticality level:

perceived level of risk of paths The ratio of the number of detected

faults to the number of predicted faults.
Business losses per defect that occurs during operation Business
interruption costs; costs of work-around Lost sales and lost goodwill
Litigation costs resulting from defects Annual maintenance cost (per
function point) Annual operating cost (per function point) Measurable
damage to your boss's career
Costs of reviews, inspections and preventive measures Costs of test
planning and preparation Costs of test execution, defect tracking,
version and change control Costs of diagnostics, debugging and fixing
Costs of tools and tool support Costs of tools and tool support Costs of
test case library maintenance Costs of testing & QA education
associated with the product Costs of monitoring and oversight by the
QA organization (if separate from the development and test
organizations)
Re-work effort (hours, as a percentage of the original coding hours)

Re-worked LOC (source lines of code, as a percentage of the total

delivered LOC) Re-worked software components (as a percentage

of the total delivered components)

12. Reliability

Availability (percentage of time a system is available, versus the time

the system is needed to be available) Mean time between failure

(MTBF) Mean time to repair (MTTR) Reliability ratio (MTBF / MTTR)

Number of product recalls or fix releases Number of production re-runs

as a ratio of production runs

Fault and failure metrics

The goal of collecting fault and failure metrics is to be able to determine when the
software is approaching failure-free execution. Minimally, both the number of faults
found during testing (i.e., before delivery) and the failures (or other problems) reported
by users after delivery are collected, summarized and analyzed to achieve this goal.
Test strategy is highly relative to the effectiveness of fault metrics, because if the
testing scenario does not cover the full functionality of the software, the software may
pass all tests and yet be prone to failure once delivered. Usually, failure metrics are
based upon customer information regarding failures found after release of the
software. The failure data collected is therefore used to calculate failure density, Mean
Time Between Failures (MTBF) or other parameters to measure or predict software
reliability.

Software Reliability Improvement Techniques

Good engineering methods can largely improve software reliability. Before the
deployment of software products, testing, verification and validation are necessary
steps. Software testing is heavily used to trigger, locate and remove software defects.
Software testing is still in its infant stage; testing is crafted to suit specific needs in
various software development projects in an ad-hoc manner. Various analysis tools
such as trend analysis, fault-tree analysis, Orthogonal Defect classification and formal
methods, etc, can also be used to minimize the possibility of defect occurrence after
release and therefore improve software reliability.
After deployment of the software product, field data can be gathered and analyzed to

study the behavior of software defects. Fault tolerance or fault/failure forecasting

techniques will be helpful techniques and guide rules to minimize fault occurrence or

impact of the fault on the system.

