
SATHYABAMA UNIVERSITY
(Established under Section 3, UGC Act 1956)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DATASTRUCTURES LAB MANUAL

SATHYABAMA UNIVERSITY

1

SCSX 1028 DISTRIBUTED COMPUTING

1

SCSX 1028 DISTRIBUTED COMPUTING

UNIT 1 – FUNDAMENTALS

WHAT IS A DISTRIBUTED COMPUTING SYSTEM?

• Advancements in microelectronic technology have resulted in the availability of fast,

inexpensive processors and advancements in communication technology.

• These advancements have resulted in the availability of cost effective and highly efficient

computer networks.

• The net result of these advancements replaced single, high speed processor into interconnected,

multiple processors.

• 2 types of interconnected, multiple processors are

o Tightly coupled systems – single system wide primary memory (address space) that is

shared by all the processors. Communication between the processors usually takes place

through the shared memory.

o Loosely coupled systems – the processors do not share memory and each processor has

its own local memory. All physical communication between the processors are done by

passing messages across the network that interconnects the processors.

• Usually tightly coupled systems are referred to as parallel processing systems and loosely

coupled systems are referred to as distributed computing systems or simply distributed systems.

2

• Distributed systems are more freely expandable and can have an almost unlimited number of

processors.

• Definition: A distributed computing system is basically a collection of processors

interconnected by a communication network in which each processor has its own local memory

and other peripherals and the communication between any two processors of the system takes

place by message passing over the communication network.

• For a particular processor, its own resources are local whereas the other processors and their

resources are remote.

• A processor and its resources are usually referred to as a node or site or machine of the

distributed computing system.

EVOLUTION OF DISTRIBUTED COMPUTING SYSTEMS

• From 1945, when the modem Computer era began, until about 1985, computers were large and

expensive.

• Even minicomputers cost at least tens of thousands of dollars each. As a result, most

organizations had only a handful of computers, and for lack of a way to connect them, these

operated independently from one another.

• Starting around the mid – 1980s, however, two advances in technology began to change that

situation.

• The first was the development of powerful microprocessors. Initially, these were 8-bit

machines, but soon 16, 32, and 64-bit CPUs became common. Many of these had the

computing power of a mainframe (i.e., large) computer, but for a fraction of the price.

• The second development was the invention of high-speed computer networks. Local-area

networks or LANs allow hundreds of machines within a building to be connected in such a way

that small amounts of information can be transferred between machines in a few microseconds

or so.

• Larger amounts of data can be Distributed Computing become popular with the difficulties of

centralized processing in mainframe use.

• With mainframe software architectures, all components are within a central host computer.

Users interact with the host through a terminal that captures keystrokes and sends that

information to the host.

3

• In the last decade, however mainframes have found a new use as a server in distributed

client/server architectures. The original PC networks were based on file sharing architectures,

where the server transfers files from a shared location to a desktop environment.

• File sharing architectures work well if shared usage is low, update contention is low, and the

volume of data to be transferred is low.

• In the 1990s, PC LAN (Local Area Network) computing changed because the capacity of the

file sharing was strained as the number of online users grew and graphical user interfaces

(GUIs) became popular.

• The next major step in distributed computing came with separation of software architecture into

2 or 3 tiers.

• With two tier client-server architectures, the GUI is usually located in the user's desktop

environment and the database management services are usually on a server that is a more

powerful machine that services many clients.

• Processing management is split between the user system interface environment and the

database management server environment. The two tier client/server architecture is a good

solution for locally distributed computing (Dozen to 100 people interacting on a LAN

simultaneously).

• When the number of users exceeds 100, performance begins to deteriorate and the architecture

is also difficult to scale. The three tier architecture (also referred to as the multi-tier

architecture) emerged to overcome the limitations of the two tier architecture.

• In the three tier architecture, a middle tier was added between the user system interface client

environment and the database management server environment.

• There are a variety of ways of implementing this middle tier, such as transaction processing

monitors, messaging middleware, or application servers. The middle tier can perform queuing,

application execution, and database queries.

• Three tier architecture proved successful at separating the logical design of systems, the

complexity of collaborating interfaces was still relatively difficult due to technical

dependencies between interconnecting processes. Standards for Remote Procedure Calls

(RPC) were then used as an attempt to standardize interaction between processes.

• As an interface for software to use it is a set of rules for marshalling and un-marshalling

parameters and results, a set of rules for encoding and decoding information transmitted

between two processes; a few primitive operations to invoke an individual call, to return its

4

results, and to cancel it. RPC requires a communications infrastructure to set up the path

between the processes and provide a framework for naming and addressing.

• There are two models that provide the framework for using the tools. These are known as the

computational model and the interaction model. The computational model describes how a

program executes a procedure call when the procedure resides in a different process. The

interaction model describes the activities that take place as the call progresses.

• A marshalling component and a encoding component are brought together by an Interface

Definition Language (IDL). An IDL program defines the signatures of RPC operations.

DISTRIBUTED COMPUTING SYSTEM MODELS

• Various Models are used to build distributed computing systems. These models can be broadly

classified into five categories.

o Minicomputer Model

o Workstation Model

o Workstation Server Model

o Processor Pool Model

o Hybrid Model

Minicomputer Model:

• The minicomputer model is a simple extension of the centralized time sharing system.

• A distributed computing system based on this model consists of a few minicomputers (they

may be large supercomputers as well) interconnected by a communication network.

• Each minicomputer usually has multiple users simultaneously logged on to it. For this, several

interactive terminals are connected to each minicomputer.

• Each user is logged on to one specific minicomputer, with remote access to other

minicomputers. The network allows a user to access remote resources that are available on

some machine other than the one onto which the user is currently logged.

• The minicomputer model may be used when resource sharing (Such as sharing of information

databases of different types, with each type of database located on a different machine) with

remote users is desired.

• The early ARPAnet is an example of a distributed computing system based on the

minicomputer model.

5

Workstation Model:

• A distributed computing system based on the workstation model consists of several

workstations interconnected by a communication network.

• A company’s office or a university department may have several workstations scattered

throughout a building or campus, each workstation equipped with its own disk and serving as a

single-user computer.

• It has been often found that in such an environment, at any one time (especially at night), a

significant proportion of the workstations are idle (not being used), resulting in the waste of

large amounts of CPU time.

• Therefore, the idea of the workstation model is to interconnect all these workstations by a high

speed LAN so that idle workstations may be used to process jobs of users who are logged on to

other workstations and do not have sufficient processing power at their own workstations to get

their jobs processed efficiently.

6

• In this model, a user logs onto one of the workstations called his or her “home” workstation and

submits jobs for execution. When the system finds that the user’s workstation does not have

sufficient processing power for executing the processes of the submitted jobs efficiently, it

transfers one or more of the process from the user’s workstation to some other workstation that

is currently idle and gets the process executed there, and finally the result of execution is

returned to the user’s workstation.

• This model is not so simple to implement as it might appear at first sight because several issues

must be resolved. These issues are

1. How does the system find an idle workstation?

2. How is a process transferred from one workstation to get it executed on another

workstation?

3. What happens to a remote process if a user logs on to a workstation that was idle until now

and was being used to execute a process of another workstation?

• Three commonly used approaches for handling the third issue are as follows:

1. The first approach is to allow the remote process share the resources of the workstation

along with its own logged-on user’s processes. This method is easy to implement, but it

defeats the main idea of workstations serving as personal computers.

2. The second approach is to kill the remote process. The main drawbacks of this method are

that all processing done in the remote process gets lost and the file system may be left in an

inconsistent state, making this method unattractive.

3. The third approach is to migrate the remote process back to its home workstation, so that its

execution can be continued there. This method is difficult to implement because it requires

the system to support preemptive process migration facility.

• For a number of reasons, such as higher reliability and better scalability, multiple servers are

often used for managing the resources of a particular type in a distributed computing system.

Workstation Server Model:

• For example, there may be multiple file servers, each running on a separate minicomputer and

cooperating via the network, for managing the files of all the users in the system, we need new

model called workstation server model.

• In this model, a user logs on to a workstation called his or her home workstation. Normal

computation activities required by the user’s processes are preformed at the user’s home

workstation, but requests for services provided by special servers (such as a file server or a

7

database server) are sent to a server providing that type of service that performs the user’s

requested activity and returns the result of request processing to the user’s workstation.

• Therefore, in this model, the user’s processes need not be migrated to the server machines for

getting the work done by those machines.

• For better overall system performance, the local disk of a diskful workstation is normally used

for such purposes as storage of temporary files, storage of unshared files, storage of shared files

that are rarely changed, paging activity in the virtual - memory management, and changing of

remotely accessed data.

• As compared to the workstation model, the workstation server model has several advantages:

1. In general, it is much cheaper to use a few minicomputers equipped with large, fast disks

that are accessed over the network than a large number of diskful workstations, with each

workstation having a small, slow disk.

2. Diskless workstations are also preferred to diskful workstations from a system maintenance

point of view. Backup and hardware maintenance are easier to perform with a few larger

disks than with many small disks scattered all over a building or campus. Furthermore,

installing new releases of software is easier when the software is to be installed on a few

file server machines than on every workstation.

3. In the workstation server model, since all files are managed by the file servers, users have

the flexibility to use any workstation and access the files in the same manner irrespective of

which workstation the user is currently logged on.

8

4. In the workstation server model, the request response protocol described above is mainly

used to access the services of the server machines. Therefore, unlike the workstation model,

this model does not need a process migration facility, which is difficult to implement.

� The request response protocol is known as the client-server model of

communication. In this model, a client process sends a request to a server

process for getting some service such as a block of a file. The server executes

the request and sends back a reply to the client that contains the result of request

processing.

� The client-server model provides an effective general – purpose approach to the

sharing of information and resources in distributed computing systems.

5. A user has guaranteed response time because workstations are not used for executing

remote processes. However, the model does not utilize the processing capability of idle

workstations.

Processor Pool Model:

• The processor – pool model is based on the observation that most of the time a user does not

need any computing power, but once in a while he or she may need a very large amount of

computing power for a short time. (E.g., when recompiling a program consisting of a large

number of files after changing a basic shared declaration).

• Therefore, unlike the workstation – server model in which a processor is allocated to each user,

in the processor-pool model the processors are pooled together to be shared by the users as

needed.

• The pool of processors consists of a large number of microcomputers and minicomputers

attached to the network. Each processor in the pool has its own memory to load and run a

system program or an application program of the distributed computing system.

• As shown in the figure, in the pure processor-pool model, the processors in the pool have no

terminals attached directly to them, and users access the system from terminals that are

attached to the network via special devices.

• These terminals are either small diskless workstations or graphic terminals, such as X

terminals. A special server (Called a Run server) manages and allocates the processors in the

pool to different users on a demand basis. When a user submits a job for computation, an

appropriate number of processors are temporarily assigned to his or her job by the run server.

9

• In the processor-pool model, there is no concept of a home machine. That is, a user does not

log onto a particular machine, but the system as a whole.

Hybrid Model:

• Out of the four models described above, the workstation server model, is the most widely used

models for building distributed computing systems.

• This is because a large number of computer users only perform simple interactive tasks such as

editing jobs, sending electronic mails, and executing small programs.

• The workstation, server model is ideal for such simple usage. However, in a working

environment that has groups of users who often perform jobs needing massive computation, the

processor-pool model is more attractive and suitable.

• To continue the advantages of both the workstation server and processor pool models, a hybrid

model may be used to build a distributed computing system.

• The hybrid model is based on the workstation server model, but with the addition of a pool of

processors. The processors in the pool can be allocated dynamically for computations that are

too large for workstations or that requires several computers concurrently for efficient

execution.

• In addition to efficient execution of computation-intensive jobs, the hybrid model gives

guaranteed response to interactive jobs by allowing them to be processed on local workstations

of the users. However, the hybrid model is more expensive to implement than the workstation –

server model or the processor-pool model.

10

WHY ARE DISTRIBUTED COMPUTING SYSTEMS GAINING

POPULARITY?

The following are the reasons for the popularity of Distributed Computing Systems

1. Inherently Distributed Applications

2. Information Sharing among Distributed Users

3. Resource Sharing

4. Better Price Performance Ratio

5. Shorter Response Times and Higher Throughput

6. Higher Reliability

7. Extensibility and Incremental Growth

8. Better Flexibility in Meeting Users’ Needs

WHAT IS A DISTRIBUTED OPERATING SYSTEM?

• An operating system is a program that controls the resources of a computer system and

provides its users with an interface or virtual machine that is more convenient to use than the

bare machine. According to this definition, the two primary tasks of an operating system are as

follows

1. To present users with a virtual machine that is easier to program than the underlying

hardware.

2. To manage the various resources of the system. This involves performing such tasks as

keeping track of who is using which resource, granting resource requests, accounting

for resource usage, and mediating conflicting requests from different programs and

users.

• The operating systems commonly used for distributed computing systems can be broadly

classified into two types-network operating systems and distributed operating systems. The

three most important features commonly used to differentiate between these two types of

operating systems are

o System image

o Autonomy

o Fault Tolerance capability.

System image:

• The most important feature used to differentiate between the two types of operating systems is

the image of the distributed computing system from the point of view of its users.

11

• In case of a network operating system, the users view the distributed computing system as a

collection of distinct machines connected by a communication subsystem.

• A distributed operating system hides the existence of multiple computers and provides a single-

system image to its users. That is, it makes a collection of networked machines act as a virtual

uniprocessor.

Autonomy:

• In the case of a network operating system, each computer of the distributed computing system

has its own local operating system and there is essentially no coordination at all among the

computers except for the rule that when two processes on different computers communicate

with each other, they must use a mutually agreed on communication protocol.

• With a distributed operating system, there is a single system wide operating system and each

computer of the distributed computing system runs a part of this global operating system. The

distributed operating system tightly interweaves all the computers of the distributed computing

system in the sense that they work in close cooperation with each other for the efficient and

effective utilization of the various resources of the system.

Fault tolerance capability:

• A network operating system provides little or no fault tolerance capability in the sense that if

10% of the machines of the entire distributed computing system are down at any moment, at

least 10% of the users are unable to continue with their work.

• On the other hand, with a distributed operating system, most of the users are normally

unaffected by the failed machines and can continue to perform their work normally, with only a

10% loss in performance of the entire distributed computing system. Therefore, the fault

tolerance capability of a distributed operating system is usually very high as compared to that

of a network operating system.

Network Operating System

12

Distributed Operating System

ISSUES IN DESIGNING A DISTRIBUTED OPERATING SYSTEM

• In general, designing a distributed operating system is more difficult than designing a

centralized operating system for several reasons.

• The reasons are

o Transparency

o Reliability

o Flexibility

o Performance

o Scalability

o Heterogeneity

o Security

o Emulation of Existing Operating Systems

Transparency

• The main goals of a distributed operating system are to make the existence of multiple

computers invisible (transparent) and provide a single system image to its users.

• That is, a distributed operating system must be designed in such a way that a collection of

distinct machines connected by a communication subsystem appears to its users as a virtual

uniprocessor.

• Achieving complete transparency is a difficult task and requires that several different aspects of

transparency be supported by the distributed operating system.

13

• The eight forms of transparency identified by the International Standards Organization's

Reference Model for Open Distributed Processing [ISO 1992] are

o Access Transparency

o Location Transparency

o Replication Transparency

o Failure Transparency

o Migration Transparency

o Concurrency Transparency

o Performance Transparency

o Scaling Transparency.

Access Transparency:

• Access transparency means that users should not need or be able to recognize whether a

resource (hardware or software) is remote or local. This implies that the distributed operating

system should allow users to access remote resources in the same way as local resources.

Location Transparency

• The two main aspects of location transparency are as follows:

1. Name transparency. This refers to the fact that the name of a resource (hardware or

software) should not reveal any hint as to the physical location of the resource.

2. User mobility. This refers to the fact that no matter which machine a user is logged onto,

he or she should be able to access a resource with the same name.

Replication Transparency

• For better performance and reliability, almost all distributed operating systems have the

provision to create replicas (additional copies) of files and other resources on different nodes of

the distributed system. In these systems, both the existence of multiple copies of a replicated

resource and the replication activity should be transparent to the users.

Failure Transparency

• Failure transparency deals with masking from the users' partial failures in the system, such as a

communication link failure, a machine failure, or a storage device crash. A distributed

operating system having failure transparency property will continue to function, perhaps in a

degraded form, in the face of partial failures.

14

Migration Transparency

• For better performance, reliability, and security reasons, an object that is capable of being

moved (such as a process or a file) often migrate from one node to another in a distributed

system.

• The aim of migration transparency is to ensure that the movement of the object is handled

automatically by the system in a user transparent manner.

Concurrency Transparency

• Concurrency transparency means that each user has a feeling that he or she is the sole user of

the system and other users do not exist in the system.

• For providing concurrency transparency, the following properties should be ensured

o Event ordering property

o Mutual exclusion property

o No starvation property

o No deadlock property

Performance Transparency

• The aim of performance transparency is to allow the system to be automatically reconfigured to

improve performance, as loads vary dynamically in the system.

Scaling Transparency

• The aim of scaling transparency is to allow the system to expand in scale without disrupting the

activities of the users.

Reliability

• In general, distributed systems are expected to be more reliable than centralized systems due to

the existence of multiple instances of resources.

• However, the existence of multiple instances of the resources alone cannot increase the

system's reliability. Rather, the distributed operating system, which manages these resources,

must be designed properly to increase the system's reliability by taking full advantage of this

characteristic feature of a distributed system.

• A fault is a mechanical or algorithmic defect that may generate an error. A fault in a system

causes system failure. Depending on the manner in which a failed system behaves, system

failures are of two types: fail-stop failure and Byzantine failure.

15

• For higher reliability, the fault-handling mechanisms of a distributed operating system must be

designed properly to avoid faults, to tolerate faults, and to detect and recover from faults.

Commonly used methods for dealing with these issues are fault avoidance and fault tolerance.

• Fault Avoidance: Deals with designing the component of the system in such a way that the

occurrence of faults is minimized.

• Fault Tolerance: Ability of a system to continue functioning in the event of partial system

failure. The following facts are used to improve fault tolerance ability

o Redundancy techniques

o Distributed control

• Fault Detection and Recovery: Deals with the use of hardware and software mechanisms to

determine the occurrence of the failure and then to correct the system to a state acceptable for

continued operation. The commonly used techniques are

o Atomic Transactions

o Stateless Servers

o Acknowledgements and timeout-based retransmissions of messages.

Flexibility

• Another important issue in the design of distributed operating systems is flexibility.

• Flexibility is the most important feature for open distributed systems. The design of a

distributed operating system should be flexible due to the following reasons:

1. Ease of modification.

2. Ease of enhancement

Performance

• If a distributed system is to be used, its performance must be at least as good as a centralized

system.

• That is, when a particular application is run on a distributed system, its overall performance

should be better than or at least equal to that of running the same application on a single-

processor system.

• To achieve this goal, it is important that the various components of the operating system of a

distributed system be designed properly; otherwise, the overall performance of the distributed

system may turn out to be worse than a centralized system. Some design principles considered

useful for better performance are as follows:

1. Batch if possible.

16

2. Cache whenever possible.

3. Minimize copying of data.

4. Minimize network traffic.

5. Take advantage of fine-grain parallelism for multiprocessing.

Scalability

• Scalability refers to the capability of a system to adapt to increased service load.

• It is inevitable that a distributed system will grow with time since it is very common to add new

machines or an entire sub network to the system to take care of increased workload or

organizational changes in a company.

• Therefore, a distributed operating system should be designed to easily cope with the growth of

nodes and users in the system.

• That is, such growth should not cause serious disruption of service or significant loss of

performance to users. Some guiding principles for designing scalable distributed systems are as

follows:

1. Avoid centralized entities.

2. Avoid centralized algorithms.

3. Perform most operations on client workstations.

Heterogeneity

• A heterogeneous distributed system consists of interconnected sets of dissimilar hardware or

software systems.

• Because of the diversity, designing heterogeneous distributed systems is far more difficult than

designing homogeneous distributed systems in which each system is based on the same, or

closely related, hardware and software.

• However, as a consequence of large scale, heterogeneity is often inevitable in distributed

systems. Furthermore, often heterogeneity is preferred by many users because heterogeneous

distributed systems provide the flexibility to their users of different computer platforms for

different applications.

Security

• In order that the users can trust the system and rely on it, the various resources of a computer

system must be protected against destruction and unauthorized access.

• Enforcing security in a distributed system is more difficult than in a centralized system because

of the lack of a single point of control and the use of insecure networks for data

17

communication. Therefore, as compared to a centralized system, enforcement of security in a

distributed system has the following additional requirements:

1. It should be possible for the sender of a message to know that the message was received by

the intended receiver.

2. It should be possible for the receiver of a message to know that the message was sent by the

genuine sender.

3. It should be possible for both the sender and receiver of a message to be guaranteed that the

contents of the message were not changed while it was in transfer.

• Cryptography is the only known practical method for dealing with these security aspects of a

distributed system.

Emulation of Existing Operating System

• For commercial success, it is important that a newly designed distributed operating system be

able to emulate existing popular operating systems such as UNIX.

• With this property, new software can be written using the system call interface of the new

operating system to take full advantage of its special features of distribution, but a vast amount

of already existing old software can also be run on the same system without the need to rewrite

them.

• Therefore, moving to the new distributed operating system will allow both types of software to

be run side by side.

MESSAGE PASSING

• A process is a program in execution.

• If two computers of a distributed system are communicating with each other, the two process

running on each computer are in communication with each other.

• In distributed systems, to achieve some common goal, processes executing on different

computers often need to communicate with each other.

• Therefore a distributed operating system needs to provide Inter Process Communication (IPC)

mechanisms to facilitate such communication activities.

• Inter Process Communication requires information sharing among two or more processes.

• Two basic methods for information sharing are

o Original Sharing or shared data approach

o Copy Sharing or message passing approach

18

• In the shared-data approach, the information to be shared is placed in a common memory area

that is accessible to all processes involved in an IPC.

• In the message-passing approach, the information to be shared is physically copied from the

sender process’s space to the address space of all the receiver processes, and this is done by

transmitting the data to be copied in the form of messages (message is a block of information).

• A message-passing system is a subsystem of distributed operating system that provides a set of

message-based IPC protocols.

• It enables processes to communicate by exchanging messages and allows programs to be

written by using simple communication primitives, such as send and receive.

• It serves as a suitable infrastructure for building other higher level IPC systems such as Remote

Procedure Call (RPC)

DESIRABLE FEATURES OF A GOOD MESSAGE-PASSING SYSTEM

Simplicity

• A message passing system should be simple and easy to use. It should be possible to

communicate with old and new applications, with different modules without the need to worry

about the system and network aspects.

Uniform Semantics

• In a distributed system, a message-passing system may be used for the following two types of

Inter Process Communication:

o Local Communication, in which the communicating processes are on the same node;

o Remote Communication, in which the communicating processes are on different nodes.

19

• Semantics of remote communication should be as close as possible to those of local

communications. This is an important requirement for ensuring that the message passing is easy

to use.

Efficiency

• An IPC protocol of a message-passing system can be made efficient by reducing the number of

message exchanges, as far as practicable, during the communication process. Some

optimizations normally adopted for efficiency include the following:

o Avoiding the costs of establishing and terminating connections between the same pair

of processes for each and every message exchange between them;

o Minimizing the costs of maintaining the connections;

o Piggybacking of acknowledgement of previous messages with the next message during

a connection between a sender and a receiver that involves several message exchanges.

Correctness

• Correctness is a feature related to IPC protocols for group communication. Issues related to

correctness are as follows:

o Atomicity;

o Ordered delivery;

o Survivability.

• Atomicity ensures that every message sent to a group of receivers will be delivered to either all

of them or none of them.

• Ordered delivery ensures that messages arrive to all receivers in an order acceptable to the

application.

• Survivability guarantees that messages will be correctly delivered despite partial failures of

processes, machines, or communication links.

Reliability

• A reliable IPC protocol can cope with failure problems and guarantees the delivery of a

message.

• A good message passing system must have IPC protocols for the support the following

reliability features:

o Lost message handling – involves acknowledgments and retransmission on the basis of

timeouts.

20

o Duplicate message handling – involves generating and assigning appropriate sequence

numbers to messages

Flexibility

• IPC protocols of a message passing system must be flexible enough to cater to the various

needs of different applications.

• The users have the flexibility to choose and specify the types and levels of reliability and

correctness requirements of their applications.

• IPC primitives must also have the flexibility to permit any kind of control flow between the

cooperating processes, including synchronous and asynchronous send / receive.

Security

• A good message passing system must also be capable of providing a secure end-to-end

communication.

• The steps necessary for secure communication include the following:

o Authentication of the receivers of the message by the sender.

o Authentication of the sender of a message by its receivers.

o The encryption of a message before sending it over the network.

Portability

• There are two different aspects of portability in a message passing system:

o The Message passing system should itself be portable

o The application written by using primitives of the IPC protocol should be portable.

ISSUES IN IPC BY MESSAGE PASSING

• A message is a block of information formatted by a sending process in such a manner that it is

meaningful to the receiving process.

• It consists of a fixed-length header and a variable-size collection of typed data objects. The

header usually consists of the following elements:

o Address: It contains characters that uniquely identify the sending and receiving

processes in the network.

o Sequence number: This is the message identifier (ID), which is very useful for

identifying lost messages and duplicate messages, in case of system failures.

o Structural information: This element also has two parts. The type part specifies

whether the data to be passed on to the receiver is included within the message or the

message only contains a pointer to the data, which is stored somewhere outside the

21

contiguous portion of the message. The second part of this element specifies the length

of the variable-size message data.

A Typical Message Structure

• In a message oriented IPC protocol, the sending process determines the actual contents of a

message and the receiving process is aware of how to interpret the contents.

• Special primitives are explicitly used for sending and receiving the messages. Therefore the

users are fully aware of the message formats used in the communication process and the

mechanisms used to send and receive messages.

• The following are the issues need to be considered in the design of an IPC protocol for a a

message passing system:

o Who is the sender?

o Who is the receiver?

o Is there one receiver or many receivers?

o Is the message guaranteed to have been accepted by its receivers?

o Does the sender need to wait for a reply?

o What should be done if a catastrophic event such as a node crash or a communication

link failure occurs during the course of communication?

o What should be done if the receiver is not ready to accept the message: Will the

message be discarded or stored in the buffer? In the case of buffering, what should be

done if the buffer is full?

o If there are several outstanding messages for a receiver, can it choose the order in which

to service the outstanding messages?

SYNCHRONIZATION

• A central issue in the communication structure is the synchronization imposed on the

communicating processes by the communication primitives.

• The semantics used for synchronization may be broadly classified as blocking and

nonblocking types.

22

• A primitive is said to have nonblocking semantics if its invocation does not block the execution

of its invoker (the control returns almost immediately to the invoker); otherwise a primitive is

said to be of the blocking type.

• In case of a blocking send primitive, after execution of the send statement, the sending

process is blocked until it receives an acknowledgement from the receiver that the message has

been received. On the other hand, for nonblocking send primitive, after execution of the send

statement, the sending process is allowed to proceed with its execution as soon as the message

has been copied to a buffer.

• In the case of blocking receive primitive, after execution of the receive statement, the

receiving process is blocked until it receives a message. On the other hand, for a nonblocking

receive primitive, the receiving process proceeds with its execution after execution of the

receive statement, which returns control almost immediately just after telling the kernel where

the message buffer is.

• An important issue in a nonblocking receives primitive is how the receiving process knows that

the message has arrived in the message buffer. One of the following two methods is commonly

used for this purpose:

o Polling: In this method, a test primitive is provided to allow the receiver to check the

buffer status. The receiver uses this primitive to periodically poll the kernel to check if

the message is already available in the buffer.

o Interrupt: In this method, when the message has been filled in the buffer and is ready

for use by the receiver, a software interrupt is used to notify the receiving process.

• A variant of the nonblocking receives primitive is the conditional receive primitive, which

also returns control to the invoking process almost immediately, either with a message or with

an indicator that no message is available.

• When both the send and receive primitives of a communication between two processes use

blocking semantics, the communication is said to be synchronous, otherwise it is asynchronous.

• The main drawback of synchronous communication is that it limits concurrency and

communication, is subject to deadlocks.

23

BUFFERING

• In the standard message passing model, messages can be copied many times: from the user

buffer to the kernel buffer (the output buffer of a channel), from the kernel buffer of the

sending computer (process) to the kernel buffer in the receiving computer (the input buffer of a

channel), and finally from the kernel buffer of the receiving computer (process) to a user

buffer.

Null Buffer (No Buffering)

• In this case, there is no place to temporarily store the message. Hence, one of the following

implementation strategies may be used:

o The message remains in the sender process’s address space and the execution of the

send is delayed until the receiver executes the corresponding receive.

o The message is simply discarded and the time-out mechanism is used to resend the

message after a timeout period. The sender may have to try several times before

succeeding.

• The three types of buffering strategies used in interprocess communication are explained below

with its diagram

Single-Message Buffer

• In single-message buffer strategy, a buffer having a capacity to store a single message is used

on the receiver’s node. This strategy is usually used for synchronous communication, an

application module may have at most one message outstanding at a time.

24

Unbounded-Capacity Buffer

• In the asynchronous mode of communication, since a sender does not wait for the receiver to be

ready, there may be several pending messages that have not yet been accepted by the receiver.

Therefore, an unbounded-capacity message-buffer that can store all unreceived messages is

needed to support asynchronous communication with the assurance that all the messages sent to

the receiver will be delivered.

Finite-Bound Buffer

• The unbounded capacity of a buffer is practically impossible. Therefore, in practice, systems

using asynchronous mode of communication use finite-bound buffers, also known as multiple-

message buffers. In this case message is first copied from the sending process’s memory into

the receiving process’s mailbox and then copied from the mailbox to the receiver’s memory

when the receiver calls for the message.

• When the buffer has finite bounds, a strategy is also needed for handling the problem of a

possible buffer overflow. The buffer overflow problem can be dealt with in one of the

following two ways:

o Unsuccessful communication: In this method, message transfers, simply fail,

whenever there is no more buffer space and an error is returned.

25

o Flow-controlled communication: The second method is to use flow control, which

means that the sender is blocked until the receiver accepts some messages, thus creating

space in the buffer for new messages. This method introduces a synchronization

between the sender and the receiver and may result in unexpected deadlocks. Moreover,

due to the synchronization imposed, the asynchronous send does not operate in the truly

asynchronous mode for all send commands.

MULTIDATAGRAM MESSAGES

• Almost all networks have an upper bound of data that can be transmitted at a time. This size is

known as Maximum Transfer Unit (MTU). A message whose size is greater than MTU has to

be fragmented into multiples of the MTU, and then each fragment has to be sent separately.

Each packet is known as a datagram. Messages larger than the MTU are sent in miltipackets,

and are known as multidatagram messages. Messages smaller than the MTU are known as

single datagram messages.

ENCODING AND DECODING OF MESSAGES

• A message data should be meaningful to the receiving process. This implies that, ideally, the

structure of program objects should be preserved while they are being transmitted from the

address space of the sending process to the address space of the receiving process. However,

even in homogeneous systems, it is very difficult to achieve this goal mainly because of two

reasons:

o An absolute pointer value loses its meaning when transferred from one process address

space to another.

o Different program objects occupy varying amount of storage space. To be meaningful, a

message must normally contain several types of program objects, such as long integers,

short integers, variable-length character strings, and so on.

• In transferring program objects in their original form, they are first converted to a stream form

that is suitable for transmission and placed into a message buffer. This conversion process takes

place on the sender side and is known as encoding of message data.

• The encoded message, when received by the receiver, must be converted back from the stream

form to the original form before it can be used. The process of reconstruction of program object

from the message data on the receiver side is known as decoding of message data.

• One of the following two representations may by used for the encoding and decoding of a

message data:

26

o In tagged representation the type of each program object along with its value is encoded

in the message.

o In untagged representation the message data only contain program object. No

information is included in the message data to specify the type of each program object.

PROCESS ADDRESSING

• Another important issue in message-based communication is addressing (or naming) of the

parties involved in an interaction. For greater flexibility a message-passing system usually

supports two types of process addressing:

o Explicit addressing: The process with which communication is desired is explicitly

named as a parameter in the communication primitive used.

o Implicit addressing: The process willing to communicate does not explicitly name a

process for communication (the sender names a server instead of a process). This type

of process addressing is also known as functional addressing.

Methods to Identify a Process (naming)

• A simple method to identify a process is by a combination of machine_id and local_id. The

local_id part is a process identifier, or a port identifier of a receiving process, or something else

that can be used to uniquely identify a process on a machine. The machine_id part of the

address is used by the sending machine’s kernel to send the message to the receiving process’s

machine, and the local_id part of the address is then used by the kernel of the receiving

process’s machine to forward the message to the process for which it is intended.

• A drawback of this method is that it does not allow a process to migrate from one machine to

another if such a need arises.

27

• To overcome the limitation of the above method, process can be identified by a combination of

the following three fields: machine_id, local_id and machine_id.

o The first field identifies the node on which the process was created.

o The second field is the local identifier generated by the node on which the process was

created.

o The third field identifies the last known location (node) of the process.

• Another method to achieve the goal of location transparency in the process addressing is to use

a two-level naming scheme for processes. In this method each process has two identifiers: a

high-level name that is machine independent (an ASCII string) and the low-level name that is

machine dependent (such as pair (machine_id, local_id). A name server is used to maintain a

mapping table that maps high-level names of processes to their low-level names.

FAILURE HANDLING

• During interprocess communication, partial failures such as a node crash or communication

link failure may lead to the following problems:

o Loss of request message: This may happen either due to the failure of communication

link between the sender and receiver or because the receiver’s node is down at the time

the request message reaches there.

o Loss of response message: This may happen either due to the failure of communication

link between the sender and receiver or because the sender’s node is down at the time

the response message reaches there.

o Unsuccessful execution of the request: This may happen due to the receiver’s node

crashing while the request is being processed.

Possible problems in IPC due to different types of system failures

• Four-message reliable IPC protocol for client-server communication between two processes

works as follows:

28

o The client sends a request message to the server.

o When the request message is received at the server’s machine, the kernel of that

machine returns an acknowledgment message to the kernel of the client machine. If the

acknowledgment is not received within the timeout period, the kernel of the client

machine retransmits the request message.

o When the server finishes processing the client’s request, it returns a reply message

(containing the result of processing) to the client.

o When the reply is received at the client machine, the kernel of that machine returns an

acknowledgment message to the kernel of the server machine. If the acknowledgment

message is not received within the timeout period, the kernel of the server machine

retransmits the reply message.

The four message reliable IPC

• In client-server communication, the result of the processed request is sufficient

acknowledgment that the request message was received by the server. Based on this idea, a

three-message reliable IPC protocol for client-server communication between two processes

works as follows:

o The client sends a request message to the server.

o When the server finishes processing the client’s request, it returns a reply message

(containing the result of processing) to the client. The client remains blocked until the

reply is received. If the reply is not received within the timeout period, the kernel of the

client machine retransmits the request message.

29

o When the reply message is received at the client’s machine, the kernel of that machine

returns an acknowledgment message to the kernel of the server machine. If the

acknowledgment message is not received within the timeout period, the kernel of the

server machine retransmits the reply message.

The three message reliable IPC

• A problem occurs if a request processing takes a long time. If the request message is lost, it will

be retransmitted only after the timeout period, which has been set to a large value to avoid

unnecessary retransmission of the request message. On the other hand, if the timeout value is

not set to properly take into consideration the long time needed for request processing,

unnecessary retransmissions of the request message will take place.

• The following protocol may be used to handle this problem:

o The client sends a request message to the server.

o When the request message is received at the server’s machine, the kernel of that

machine starts a timer. If the server finishes processing the client’s requests and returns

the reply message to the client before the timer expires, the reply serves as the

acknowledgment of the request message. Otherwise, a separate acknowledgment is sent

by the kernel of the server machine to acknowledge the request message. If an

acknowledgement is not received within the timeout period, the kernel of the client

machine retransmits the request message.

o When the reply message is received, at the client’s machine, the kernel of that machine

returns an acknowledgment message to the kernel of the server machine. If the

acknowledgment message is not received within the timeout period, the kernel of the

server retransmits the reply message.

• A message-passing system may be designed to use the following two-message IPC protocol for

client-server communication between two processes:

30

The two message reliable IPC

o The client sends a request message to the server and remains blocked until a reply is

received from the server.

o When the server finishes processing the client’s request, it returns a reply message

(containing the result of processing) to the client. If the reply is not received within the

timeout period, the kernel of the client machine retransmits the request message.

An example of fault tolerant communication between a client and a server.

31

Idempotency

• Idempotency basically means “repeatability”. That is, an idempotent operation produces the

same results without any side effects, no matter how many times it is performed with the same

arguments.

32

A Nonidempotent Routine

An example of exactly-once semantics using request identifiers and reply cache

Keeping track of Lost and Out-of-Sequence Packet in Multidatagram Messages

• A message transmission can be considered to be complete only when all the packets of the

message have been received by the process to which it is sent. For successful completion of a

multidatagram message transfer, reliable delivery of every packet is important. A simple way to

ensure this is to acknowledge each packet, separately (called stop-and-wait protocol). To

improve communication performance, a better approach is to use a single acknowledgment

packet for all the packets of a multidatagram message (called blasts protocol). However, when

this approach is used, a node crash or a communication link failure may lead to the following

problems:

o One or more packets of the multidatagram message are lost in communication.

o The packets are received out of sequence by the receiver.

33

• An efficient mechanism to cope with these problems is to use a bitmap to identify the packets

of a message.

GROUP COMMUNICATION

• The most elementary form of message-based interaction is one-to-one communication (also

known as point-to-point, or unicast communication) in which a single-sender process sends a

message to a single-receiver process. For performance and ease of programming, several highly

parallel distributed applications require that a message-passing system should also provide the

group communication facility. Depending on a single or multiple senders and receivers, the

following three types of group communication are possible:

o One to many (single sender and multiple receivers).

o Many to one (multiple senders and single receivers).

o Many to many (multiple senders and multiple receivers).

One-to-Many Communication

• In this scheme, there are multiple receivers for a message sent by a single sender. One-to-many

scheme is also known as multicast communication. A special case of multicast communication

34

is broadcast communication, in which the message is sent to all processors connected to a

network.

• Group Management

o In case of one-to-many communication, receiver processes of a message form a group.

Such groups are of two types – closed and open. A closed group is one in which only

the members of the group can send a message to the group. An outside process cannot

send a message to the group as a whole, although it may send a message to an

individual member of the group. On the other hand, an open group is one in which any

process in the system can send a message to the group as a whole.

• Group Addressing

o A two-level naming scheme is normally used for group addressing. The high-level

group name is an ASCII string that is independent of the location of the processes in the

group. On the other hand, the low-level group name depends to a large extent on the

underlying hardware.

o On some networks it is possible to create a special network address to which multiple

machines can listen. Such a network address is called a multicast address. Therefore, in

such systems a multicast is used as a low-level name for a group.

o Some networks that do not have the facility to create multicast address may have

broadcast facility. A packet sent to a broadcast address is automatically delivered to all

machines in the network. In this case, the software of each machine must check to see if

the packet is intended for it.

o If a network does not support either the facility to create multicast address or the

broadcasting facility, a one-to-one communication mechanism has to be used to

implement the group communication facility. That is, the kernel of the sending machine

sends the message packet, separately to each machine that has a process belonging to

the group. Therefore, in this case, the low-level name of a group contains a list of

machine identifiers of all machines that have a process belonging to the group.

• Buffered and Unbuffered Multicast

o Multicasting is an asynchronous communication mechanism. This is because multicast

sends cannot be synchronous due to the following reasons:

o It is unrealistic to expect a sending process to wait until all the receiving processes that

belong to the multicast group are ready to receive the multicast message.

35

o The sending process may not be aware of all the receiving processes that belong to the

multicast group.

o For an unbuffered multicast, the message is not buffered for the receiving process and is

lost if the receiving process is not in a state ready to receive it. Therefore, the message

is received only by those processes of the multicast group that are ready to receive it.

On the other hand, for a buffered multicast, the message is buffered for the receiving

process, so each process of the multicast group will eventually receive the message.

• Send-to-All and Bulletin-Board Semantics

o Ahamad and Berstain [1985] described the following two types of semantics for one-to-

many communications:

o Send-to-all semantics: A copy of the message is sent to each process of the multicast

group and message is buffered until it is accepted by the process.

o Bulletin-board semantics: A message to be multicast is addressed to a channel instead

of being sent to every individual process of the multicast group. From a logical point of

view, the channel plays the role of a bulletin board. A receive process copies the

message from the channel instead of removing it when it makes a receive request on the

channel.

o Bulletin-board semantics is more flexible than send-to-all semantics because it takes

care of the following two factors that are ignored by send-to-all semantics:

� The relevance of a message to a particular receiver may depend on the receiver’s

state.

� Messages not accepted within a certain time after transmission may no longer be

useful; their value may depend on the sender’s state.

• Flexible Reliability in Multicast Communication

o Different applications require different degrees of reliability. The sender of a multicast

message can specify the number of receivers from which a response message is

expected. In one-to-many communication, the degree of reliability is normally

expressed in the following forms:

� The 0-reliability. No response is expected by the sender from any of the

receivers.

� The 1-reliability. The sender expects a response from any of the receivers.

36

� The m-out-of-n-reliable. The multicast group consists of n receivers and the

sender expect a response from m (1<m<n) of the receivers.

� All-reliable. The sender expects a response message from all the receivers of the

multicast group.

• Atomic Multicast

o Atomic multicast (reliable multicast) has an all-or-nothing property. That is, when a

message is sent to a group by atomic multicast, it is either received by all the surviving

(correct) processes that are members of the group or else it is not received by any of

them.

o When a sender is reliable and network partition is excluded, a simple way to implement

atomic multicast is to multicast a message, with the degree of reliability requirement

being all-reliable. In this case, the kernel of the sending machine sends the message to

all members of the group and waits for an acknowledgment from each member.

o The above approach is not sufficient when considering possible failures of the sender’s

machine or a receiver’s machine.

o One method to implement atomic (reliable) multicast is the following.

o Each message has a message identifier field to distinguish it from all other messages

and a field to indicate that it is an atomic multicast message. The sender sends the

message to a multicast group. The kernel of the sending machine sends the message to

all members of the group and uses timeout-based retransmissions as in the previous

method. A process that receives the message checks its message identifier field to see if

it is a new message. If not, it is simply discarded. Otherwise, the receiver checks to see

if it is an atomic multicast message. If so, the receiver also performs an atomic multicast

of the same message, sending it to the same multicast group. The kernel of this machine

treats this message as an ordinary atomic multicast message and uses timeout-based

retransmission when needed. In this way, each receiver of an atomic multicast message

will perform an atomic multicast of the message to the same multicast group.

o The method ensures that eventually all the surviving processes of the multicast group

will receive the message even if the sender machine fails after sending the message or a

receiver machine fails after receiving the message.

37

Many-to-One Communication

• In this scheme, multiple senders send messages to a single receiver. The single receiver may be

selective or nonselective.

• A selective receiver specifies a unique sender; a message exchange takes place only if that

sender sends a message. On the other hand, a nonselective receiver specifies a set of senders,

and if any one sender in the set sends a message to this receiver, a message exchange takes

place.

• An important issue related to the many-to-one communication scheme is nondeterminism. It is

not known in advance which member (or members) of the group will have its information

available first.

Many-to-Many Communication

• In this scheme, multiple senders send messages to multiple receivers.

• An important issue related to many-to-many communication scheme is that of ordered message

delivery. Ordered message delivery ensures, that all messages are delivered to all receivers in

an order acceptable to the application.

No ordering constraints for message delivery

• Absolute Ordering

o The absolute ordering semantics ensures that all messages are delivered to all receiver

processes in the exact order in which they were sent.

o One method to implement these semantics is to use global timestamps as message

identifiers.

o That is, the system is assumed to have a clock at each machine and all clocks are

synchronized with each other, and when a sender sends a message, the clock value

(timestamp) is taken as the identifier of that message and the timestamp is embedded in

the message.

38

o To implement absolute ordering semantics, the kernel of each receiver’s machine saves

all incoming messages meant for a receiver in a separate queue.

Absolute ordering of messages

o A sliding-window mechanism is used to periodically deliver the message from the

queue to the receiver. That is, a fixed time interval is selected as the window size, and

periodically all messages whose timestamp values fall within the current window are

delivered to the receiver. Messages whose timestamp values fall outside the window are

left in the queue because of the possibility that a tardy message having a timestamp

value lower than that of any of the messages in the queue might still arrive.

o The window size must be properly chosen taking into consideration the maximum

possible time that may be required by a message to go from one machine to any other

machine in the network.

• Consistent Ordering (Total Ordering)

o Absolute-ordering semantics requires globally synchronized clocks, which are not easy

to implement. Moreover, absolute ordering is not really what many applications need to

function correctly.

Consistent ordering of messages

39

o Therefore, instead of supporting absolute ordering semantics, most systems support

consistent-ordering semantics (total order semantics). This semantics ensures that all

messages are delivered to all receiver processes in the same order. However, this order

may be different from the order in which messages were sent.

o One method to implement consistent-ordering semantics is to make the many-to-many

scheme appear as a combination of many-to-one and one-to-many schemes. That is, the

kernels of the sending machines send messages to a single receiver (known as

sequencer) that assigns a sequence number to each message and then multicasts it. The

kernel of each receiver’s machine saves all incoming messages meant for a receiver in a

separate queue.

o The sequencer-based method for implementing consistent-ordering semantics are

subject to asingle point of failure and hence has poor reliability. A distributed algorithm

for implementing consistent-ordering semantics that does not suffer from this problem

is the ABCAST protocol of the ISIS system. It assigns a sequence number to a message

by distributed agreement among the group members and the sender, and works as

follows:

1. The sender assigns a temporary sequence number (integer) to the message and sends it

to all members of the multicast group. The sequence number assigned by the sender

must be larger than any previous sequence number used by the sender. Therefore, a

simple counter can be used by the sender to assign sequence numbers to its messages.

2. On receiving the message, each member of the group returns a proposed sequence

number to the sender. A member (i) calculates its proposed sequence number by using

the function: Max (Fmax, Pmax) + 1 + i/N, where integer Fmax is truncated the largest

final sequence number agreed upon so far for a message received by the group (each

member makes a record of this when a final sequence number is agreed upon), integer

Pmax is truncated the largest proposed sequence number by this member, and N is the

total number of members in the multicast group.

3. When the sender receives the proposed sequence number from all the members, it

selects the largest one as the final sequence number for the message and sends it to all

members in a commit message. The chosen final sequence number is guaranteed to be

unique because of the term i/N in the function used for the calculation of a proposed

sequence number.

40

4. On receiving the commit message, each member attaches the final sequence number to

the message.

5. Committed messages with final sequence numbers are delivered to the application

programs in order of their final sequence numbers.

• Causal Ordering

o For some applications consistent-ordering semantics is not necessary and even weaker

semantics is acceptable. Therefore, an application can have better performance if the

message-passing system used supports a weaker ordering semantics that is acceptable to

the application. One such weaker ordering semantics that is acceptable to many

applications is the causal ordering semantics. This semantics ensures that if the event of

sending one message is causally related to the event of sending another message, the

two messages are delivered to all receivers in the correct order. However, if two

message-sending events are not causally related, the two messages may be delivered to

the receivers in any order. Two message-sending events are said to be causally related if

they are correlated by the happened-before relation.

o One method for implementing causal-ordering semantics are the CBCAST protocol of

the ISIS system. It assumes broadcasting of all messages to group members and works

as follows:

1. Each member process of a group maintains a vector of n components, where n is the

total number of members in the group. Each member is assigned a sequence number

from 0 to n-1, and the ith component of the vectors corresponds to the member with

sequence number i. In particular, the value of ith component of a member’s vector is

equal to the number of the last message received in sequence by this member from

member i.

2. To send a message, a process increments the value of its own component in its own

vector and sends the vector as part of the message.

3. When the message arrives at a receiver process’s site, it is buffered by the runtime

system. The runtime system tests the two conditions given below to decide whether the

message can be delivered to the user process or its delivery must be delayed to ensure

causal-ordering semantics. Let S be the vector of the sender process that is attached to

the message and R be the vector of the receiver process. Also, let i be the sequence

number of the sender process. Then the two conditions to be tested are:

41

a. S [i] = R [i] +1

b. S [j] <= R [j] for all j not equal i

o The first condition ensures that the receiver has not missed any message from the

sender. This test is needed because two messages from the same sender are always

causally related. The second condition ensures that the sender has not received any

messages that the receiver has not yet received. This test is needed to make sure that the

sender’s message is not causally related to a message missed by the receiver.

o If the message passes these two tests, the runtime system delivers it to the user process.

Otherwise, the message is left in the buffer and the test is carried out again for it when a

new message arrives.

Causal ordering of messages

An example to illustrate the CBCAST protocol for implementing causal ordering semantics

1

SCSX 1028 DISTRIBUTED COMPUTING

UNIT II – REMOTE PROCEDURE CALLS

INTRODUCTION TO RPC

• A Remote Procedure Call (RPC) is an inter-process communication that allows a computer

program to cause a procedure to execute in another address space (commonly on another

computer on a shared network) without the programmer explicitly coding the details for this

remote interaction.

• It further aims at hiding most of the intricacies of message passing and is idle for client-server

application.

• RPC allows programs to call procedures located on other machines. But the procedures ‘send’

and ‘receive’ do not conceal the communication which leads to achieving access transparence

in distributed systems.

• Example: when process A calls a procedure on B, the calling process on A is suspended and the

execution of the called procedure takes place. (PS: function, method, procedure differs, stub, 5

state process model definition)

• Information can be transported in the form of parameters and can come back with procedure

result. No message passing is visible to the programmer. As calling and called procedures exist

on different machines, they execute in different address spaces, the parameters and result

should be identical and if machines crash during communication, it causes problems.

THE RPC MODEL

• The RPC model is similar to the well known and well understood procedure call model used for

the transfer of control and data within a program in the following manner:

o For making a procedure call, the caller places arguments to the procedure in some well

specified location

o Control is then transferred to the sequence of instructions that constitutes the body of

the procedure.

o The procedure body is executed in a newly created execution environment that includes

copies of the arguments given in the calling instruction.

o After the procedure’s execution is over, control returns to the calling point, possibly

returning a result.

2

• The RPC mechanism is an extension of the procedure call mechanism in the sense that it

enables a call to be made to a procedure that does not reside in the address space of the calling

process.

• The called procedure (Remote Procedure) may be on the same computer or on a different

computer.

• Since the caller and the callee processes have disjoint address spaces, the remote procedure has

no access to data and variables of the caller’s environment.

• Therefore the RPC facility uses a message passing scheme for information exchange between

the caller and the callee processes.

• When a remote procedure call is made, the caller and the callee processes interact in the

following manner:

o The caller (Client Process) sends a call (request) message to the callee (server process)

and waits (blocks) for a reply message. The request message contains the remote

procedure’s parameters.

o The server process executes the procedure and then returns the result of procedure

execution in a reply message to the client process.

o Once the reply message is received, the result of procedure execution is extracted and

the caller’s execution is resumed.

• In this RPC model, only one of the two processes is active at any given time. However, in

general, the RPC protocol makes no restrictions on the concurrency model implemented.

3

4

TRANSPARENCY OF RPC

• A major issue in the design of an RPC facility is its transparency property. A transparent RPC

mechanism is one in which local procedures and remote procedures are (effective)

indistinguishable to programmers. This requires the following two types of transparencies:

1. Syntactic transparency means that a remote procedure call should have exactly the same

syntax as a local procedure call.

2. Semantic transparency means that the semantics of a remote procedure call are identical

to those of a local procedure call.

• It is not very difficult to achieve syntactic transparency of an RPC mechanism, and we have

seen that the semantics of remote procedure calls are also analogous to that of local procedure

calls for most parts:

o The calling process is suspended until the called procedure returns.

o The caller can pass arguments to the called procedure (remote procedure).

o The called procedure (remote procedure) can return results to the caller.

• Unfortunately, achieving exactly the same semantics for remote procedure calls as for local

procedure calls is close to impossible. This is mainly because of the following differences

between remote procedure calls and local procedure calls.

1. Unlike local procedure calls, with remote procedure calls, the called procedure is executed

in an address space that is disjoint from the calling program’s address space. Due to this

reason, the called (remote) procedure cannot have access to any variables or data values in

the calling program’s environment.

2. Remote procedure calls are more vulnerable to failure than local procedure calls, since they

involve two different processes and possibly a network and two different computers.

Therefore, programs that make use of remote procedure calls must have the capability of

handling even those errors that cannot occur in local procedure calls.

3. Remote procedure calls consume much more time (100 – 1000 times more) than local

procedure calls. This is mainly due to the involvement of a communication network in

RPCs. Therefore, applications using RPCs must also have the capability to handle the long

delays that may possibly occur due to network congestion.

5

IMPLEMENTING RPC MECHANISM

• To achieve the goal of semantic transparency, the implementation of an RPC mechanism is

based on the concept of stubs, which provide a perfectly normal (local) procedure call

abstraction by concealing from programs the interface to the underlying RPC system.

• We saw that an RPC involves a client process and a server process. Therefore, to conceal the

interface of the underlying RPC system from both the client and server processes, a separate

stub procedure is associated with each of the two processes.

• Moreover, to hide the existence and functional details of the underlying network, an RPC

communication package (known as RPCRuntime) is used on both the client and server sides.

• Thus, implementation of an RPC mechanism usually involves the following five elements of

program [Birrell and Nelson 1984].

o The client

o The client stub

o The RPCRuntime

o The server stub

o The server

• The interaction between them is shown in Figure.

• The client, the client stub, and one instance of RPCRuntime execute on the client machine,

while the server, the server stub, and another instance of RPCRuntime execute on the server

machine. The job of each of these elements is described below.

Client:

• The client is a user process that intitiates a remote procedure call.

• To make a remote procedure call, the client makes a perfectly normal local call that invokes a

corresponding procedure in the client stub.

Client Stub:

• The client stub is responsible for carrying out the following two tasks :

o On receipt of a call request from the client, it packs a specification of the target

procedure and the arguments into a message and then asks the local RPCRuntime to

send it to the server stub.

o On receipt of the result of procedure execution, it unpacks the result and passes it to the

client.

6

RPCRuntime:

• The RPCRuntime handles transmission of messages across the network between client and

server machines.

• It is responsible for retransmissions, acknowledgements, packet routing, and encryption.

• The RPCRuntime on the client machine receives the call request message from the client stub

and sends it to the server machine. It also receives the message containing the result of

procedure execution from the server machine and passes it to the client stub.

• On the other hand, the RPCRuntime on the server machine receives the message containing the

result of procedure execution from the server stub and sends it to the client machine. It also

receives the call request message from the client machine and passes it to the server stub.

Server Stub:

• The job of the server stub is very similar to that of the client stub. It performs the following two

tasks :

7

o On the receipt of the call request message from the local RPCRuntime, the server stub

unpacks it and makes a perfectly normal call to invoke the appropriate procedure in the

server.

o On receipt of the result of procedure execution from the server, the server stub packs the

result into a message and then asks the local RPCRuntime to send it to the client stub.

Server:

• On receiving a call request from the server stub, the server executes the appropriate procedure

and returns the result of procedure execution to the server stub.

• Note here that the beauty of the whole scheme is the total ignorance on the part of the client

that the work was done remotely instead of by the local kernel.

• When the client gets control following the procedure call that it made, all it knows is that the

results of the procedure execution are available to it. Therefore, as far as the client is concerned,

remote services are accessed by making ordinary (local) procedure calls, not by using the send

and receive primitives.

• All the details of the message passing are hidden in the client and server stubs, making the steps

involved in message passing invisible to both the client and the server.

STUB GENERATION

• Stubs can be generated in one of the following two ways :

Manually: In this method, the RPC implementor provides a set of translation functions from

which a user can construct his or her own stubs. This method is simple to implement and can

handle very complex parameter types.

Automatically: This is the more commonly used method for stub generation. It uses Interface

Definition Language (IDL) that is used to define the interface between a client and a server.

• An interface definition is mainly a list of procedure names supported by the interface, together

with the types of their arguments and results. This is sufficient information for the client and

server to independently perform compile-time type checking and to generate appropriate

calling sequences.

• However, an interface definition also contains other information that helps RPC to reduce data

storage and the amount of data transferred over the network.

• For example, an interface definition has information to indicate whether each argument is

input, output, or both – only input arguments need be copied from client to server and only

output arguments need be copied from server to client.

8

• Similarly, an interface definition also has information about type definitions, enumerated types,

and defined constants that each side uses to manipulate data from RPC calls making it

unnecessary for both the client and the server to store this information separately.

• A server program that implements procedures in an interface is said to export the interface and

a client program that calls procedures from an interface is said to import the interface. When

writing a distributed application, a programmer first writes an interface definition using the

IDL.

• He or she can then write the client program that imports the interface and the server program

that exports the interface.

• The interface definition is processed using an IDL computer to generate components that can

be combined with client and server programs, without making any changes to the existing

compliers.

RPC MESSAGES

• Any remote procedure call involves a client process and a server process that are possibly

located on different computers. The mode of interaction between the client and server is that

the client asks the server to execute a remote procedure and the server returns the result of

execution of the concerned procedure to the client.

• Based on this mode of interaction, the two types of messages involved in the implementation of

an RPC system are as follows :

1. Call messages that are sent by the client to the server for requesting execution of a

particular remote procedure.

2. Reply messages that are sent by the server to the client for returning the result of

remote procedure execution.

• The protocol of the concerned RPC system defines the format of these two types of message.

Normally, an RPC protocol is independent of transport protocols.

• That is, RPC does not care how a message is passed from one process to another. Therefore an

RPC protocol deals only with the specification and interpretation of these two types of

messages.

Call Messages:

• Since a call message is used to request execution of a particular remote procedure the two basic

components necessary in a call message are as follows :

1. The identification information of the remote procedure to be executed.

9

2. The arguments necessary for the execution of the procedure. In addition to these two fields,

a call message normally has the following fields.

3. A message identification field that consists of a sequence number. This field is useful of

two ways – for identifying lost messages and duplicate messages in case of system failures

and for properly matching reply messages to outstanding call messages, especially in those

cases when the replies of several outstanding call messages arrive out of order.

4. A message type field that is used to distinguish call messages from reply messages. For

example, in an RPC system, this field may be set to 0 for all call messages and set to 1 for

all reply messages.

5. A client identification field that may be used for two purposes – to allow the server of the

RPC to identify the client to whom the reply message has to be returned and to allow the

server to check the authentication of the client process for executing the concerned

procedure.

• Thus, a typical RPC all message format may be of the form shown in Figure.

Reply Messages:

• When the server of an RPC receives a call message from a client, it could be faced with one of

the following conditions. In the list below, it is assumed for a particular condition that no

problem was detected by the server for any of the previously listed conditions :

A typical RPC reply message format : (a) a successful reply message format; (b) an

unsuccessful reply message format

10

MARSHALING ARGUMENTS AND RESULTS

• Implementation of remote procedure calls involves the transfer of arguments from the client

process to the server process and the transfer of results from the server process to the client

process.

• These arguments and results are basically language-level data structures (program objects),

which are transferred in the form of message data between the two computers involved in the

call.

• The transfer of message data between two computers requires encoding and decoding of the

message data. For RPC this operation is known as marshaling and basically involves the

following actions.

1. Taking the arguments (of a client process) or the result (of a server process) that will form

the message data to be set to the remote process.

2. Encoding the message data of step 1 above on the sender’s computer. This encoding

process involves the conversion of program objects into a stream form that is suitable for

transmission and placing them into a message buffer.

3. Decoding of the message data on the receiver’s computer. This decoding process involves

the reconstruction of program objects from the message data that was received in stream

form.

• In order that encoding and decoding of an RPC message can be performed successfully, the

order and the representation method (tagged or untagged) used to marshal arguments and

results must be known to both the client and the server of the RPC.

• This provides a degree of type safety between a client a server because the server will not

accept a call from a client until the client uses the same interface definition as the server. Type

safety is of particular importance to servers since it allows them to survive against corrupt call

requests.

• The marshaling process must reflect the structure of all types of program objects used in the

concerned language. These include primitive types, structured types, and user defined types.

• Marshaling procedures may be classified into two groups :

1. Those provided as a part of the RPC software. Normally marshaling procedures for scalar

data types, together with procedures to marshal compound types built from the scalar ones,

fall in this group.

11

2. Those that are defined by the users of the RPC system. This group contains marshaling

procedures for user – defined data types and data types that include pointers. For example,

in Concurrent CLU, developed for use in the Cambridge Distributed Computer System, for

user-defined types, the type definition must contain procedures for marshaling.

• A good RPC system should always generate in-line marshaling code for every remote call so

that the users are relieved of the burden of writing their own marshaling procedures.

• However, practically it is difficult to achieve this goal because of the unacceptable large

amounts of code that may have to be generated for handling all possible data types.

SERVER MANAGEMENT

• In RPC based applications, two important issues that need to be considered for every

management are server implementation and server creation.

Server Implementation:

• Based on the style of implementation used, servers may be of two types : stateful and stateless.

Stateful Servers:

• A stateful server maintains clients’ state information from one remote procedure call to the

next. That is, in case of two subsequent calls by a client to a stateful server, some state

information pertaining to the service performed for the client as a result of the first call

execution is stored by the server process.

• These clients’ state information is subsequently used at the time of executing the second call.

• For example, let us consider a server for byte-stream files that allows the following operations

on files :

• Open (filename, mode): This operation is used to open a file identified by filename in the

specified mode. When the server executes this operation, it creates an entry for this file in a

file-table that it uses for maintaining the file state information of all the open files. The file state

information normally consists of the identifier of the file, the open mode, and the current

position of a nonnegative integer pointer, called the read write pointer. When a file is opened,

its read-write pointer is set to zero and the server returns to the client a file identifier (fid),

which is used by the client for subsequent accesses to that file.

• Read (fid, n, buffer): This operation is used to get n bytes of data from the file identified by

fid into the buffer named buffer. When the server executes this operation, it returns to the client

n bytes of file data starting from the byte currently addressed by the read – write pointer and

then increments the read – write pointer by n.

12

• Write (fid, n, buffer): On execution of this operation, the server takes n bytes of data from the

specified buffer, writes it into the file identified by fid at the byte position currently addressed

by the read – write pointer, and then increments the read – write pointer by n.

• Seek (fid, position): This operation causes the server to change the value of the read write

pointer of the file identified by fid to the new value specified as position.

• Close (fid): This statement causes the server to delete from its file table the file state

information of the file identified by fid.

• The file server mentioned above is stateful because it maintains the current state information

for a file that has been opened for use by a client. Therefore, as shown in Fig. 3.3, after opening

a file, if a client makes two subsequent Read (fig, 100, buf), calls, the first call will return the

first 100 bytes (bytes 0 – 99) and the second call will return the next 100 bytes (bytes 100 –

199).

An example of a stateful file server

Stateless Server:

• To design an idempotent interface for reading the next record from the file, it is important that

each client keeps track of its own current record position and the server is made stateless, that

is, no client state should be maintained on the server side.

• Based on this idea, an idempotent procedure for reading the next record from a sequential file is

ReadRecordN (Filename, N) which returns the Nth record from the specified file. In this case,

the client has to correctly specify the value of n to get desired record from the file.

• However, not all non idempotent interfaces can be so easily transformed to an idempotent form.

13

• A stateless server does not maintain any client state information. Therefore every request from

a client must be accompanied with all the necessary parameters to carry out the desired

operation successfully.

• Stateless file operations are given below

• Read (filename, position, n, buf): On execution of this operation, the server returns n bytes of

data to the client of the file identified by filename. The returned data is placed in the buffer

named buf.

• Write (filename, position, n, buf): When the server executes the operation, it takes n bytes of

data from the specified buffer and writes it into the file identified by filename. The position

parameter specifies the byte position within the file from where to start writing.

• Example

o Read (filename, 0, 100,buf)

o Read (filename, 100, 100, buf)

• Refer Book Page No. 180: Example diagram for stateless file server

Server Creation Semantics:

• A remote procedure call made by a client process lies in a server process that is totally

independent of the client process.

• Independent means that the client and server processes have separate life time.

• Based on the time duration for which RPC servers survive, they may be classified as

o Instance-per-call Servers

o Instance-per-session/transaction Servers

o Persistent Servers

Instance-per-call Servers:

• Servers belonging to this category exist for the duration of a single call.

• RPCRuntime creates this type of server on the server machine only when a call message

arrives. The server is deleted after the call has been executed.

Instance-per-session/transaction Servers:

• Servers belonging to this category exist for the entire session for which a client and a server

interact.

• Since a server of this type exists for the entire session, it can maintain intercall state

information.

14

• Overhead involved in server creation and destruction is also minimized.

• Normally there is a server manager for each type of service.

Persistent Servers:

• A persistent server generally remains in existence indefinitely.

• A persistent server is usually shared by many clients.

• Servers of this type are usually created and installed before the clients use them.

• Persistent servers may also be used to improve the overall performance and reliability of the

system.

PARAMETER PASSING SEMANTICS

• When a procedure is called, parameters are passed to the procedure as the arguments. There are

three methods to pass the parameters.

o call-by-value

o call-by-reference

o call-by-copy/restore

Call By Value:

• The values of the arguments are copied to the stack and passed to the procedure.

• The called procedure may modify these, but the modifications do not affect

Call By Reference:

• The memory addresses of the variables corresponding to the arguments are put into the stack

and passed to the procedure.

• Since these are memory addresses, the original values at the calling side are changed if

modified by the called procedure.

15

Call By Copy / Restore:

• The values of the arguments are copied to the stack and passed to the procedure.

• When the processing of the procedure completes, the values are copied back to the original

values at the calling side.

• If parameter values are changed in the subprogram, the values in the calling program are also

affected.

CALL SEMANTICS

• In RPC, the caller and the callee processea are possibly located on different nodes. Thus it is

possible to have failure either for the caller or for the callee.

• Therefore the normal functioning of an RPC may get distrupted due to one or more of the

following reasons:

o The call message gets lost.

o The response message gets lost.

o The callee node crashes and is restarted.

o The caller node crashes and is restarted.

• Failure handling code is generally a part of RPCRuntime.

• The call semantics of an RPC system determines, how ofter the remote procedure may be

executed under fault conditions.

• The following are the different types of call semantics used in RPC system.

o Possibly or May be call semantics: This is the weakest semantics, not appropriate to

RPC. In this method, to prevent the caller from waiting indefinitely for a response from

the callee, a timeout mechanism is used. That is, the caller waits until a predetermined

timeout period and then continues with its execution.

o Last one call semantics: This method uses the idea of retransmitting the call message

based on timeouts until a response is received by the caller. That is, the calling of the

remote procedure by the caller, the execution of the procedure by the callee, and the

16

return of the result to the caller will be repeated until the result of the procedure

execution is received by the caller.

o Last of many call semantics: This is similar to the last one call semantics except that

the orphan calls are neglected. A simple way to neglect orphan calls is to used call

identifiers to uniquely identify each call. When a call is repeated, it is assigned a new

call identifier. Each response message has the corresponding call identifier. A caller

accepts the response only if the call identifier is associated with the identifier of the

most recently repeated call, otherwise it ignores the response message.

o Atleast once call semantics: It just guarantees that the call is executed one or more

times but does not specify which results are returned to the caller. It can be

implemented simply by using timeout based retransmission.

o Exactly once call semantics: This is the strongest and the most desireable call

semantics because it eliminated the possibility of a procedure being executed more than

once, no matter how many times a call is retransmitted.

COMMUNICATION PROTOCOLS FOR RPCS

• Different systems, developed on the basis of remote procedure calls, have different IPC

requirements.

• Based on the needs of different systems, several communication protocols have been proposed

for use in RPCs. A brief description of these protocols is given below.

• The Request Protocol:

o This protocol is also known as the R (request) protocol. It is used in RPCs in which the

called procedure has nothing to return as the result of procedure execution and the client

requires no confirmation that the procedure has been executed.

o Since no acknowledgement or reply message is involved in this protocol, only one

message per call is transmitted.

o The client proceeds immediately after sending the request message as there is no need

to wait for the reply message.

o Diagram Refer Book Page No. 188.

o An RPC that used the R Protocol is called asynchronous RPC.

• The Requst / Reply Protocol:

o This protocol is also known as RR (Request / Reply) protocol. It is useful for the design

of systems involving simple RPCs.

17

o A simple RPC is one in which all the arguments as well as all the results fit in a single

packet buffer and the duration of a call and the interval between calls are both short.

o This protocol is based on the idea of using implicit acknowledgement to eliminate

explicit acknowledgement messages.

o It does not possess failure handling capabilities.

o Diagram Refer Book Page No. 190.

• The Request / Reply / Acknowledge-Reply Protocol:

The request / reply / acknowledge reply (RRA) protocol

o This protocol is also known as the RRA (Request / Reply / Acknowledgement-reply)

protocol.

o RRA protocol involves the transmission of three messages per call.

o In the RRA protocol, there is a possibility that the acknowledgement message may itself

get lost.

o Therefore implementation of the RRA protocol requires that the unique message

identifiers associated with request messages must be ordered.

o Each reply message contains the message identifier of the corresponding request

message, and each acknowledgement message also contains the same message

identifier.

o This helps in matching a reply with its corresponding request and an acknowledgement

with its corresponding reply.

o A client acknowledges a reply message only if it has received the replies to all the

requests previous to the request corresponding to this reply.

18

o Thus an acknowledgement message is interpreted as acknowledging the receipt of all

reply messages corresponding to the request messages with lower message identifiers.

Therefore, the loss of an acknowledgement message is harmless.

COMPLICATED RPCs

• The following are the two types of RPCs as complicated :

1. RPCs involving long-duration calls or large gaps between calls.

2. RPCs involving arguments and / or results that are too large to fit in a signle datagram

packet.

• Different protocols are used for handling these two types of complicated RPCs.

CLIENT – SERVER BINDING

• It is necessary for a client to know the location of the server, before a remote procedure call can

take place between them.

• The process by which a client becomes associated with a server, so that calls can take place is

known as binding.

• The client server binding process involves the following issues

o How does a client specify a server to which it wants to get bound?

o How does the binding process locate the specified server?

o When is it proper to bind a client to a server?

o Is it possible for a client to change binding during execution?

o Can a client be simultaneously bound to multiple servers that provide the same service?

Server Naming:

• The specification by a client of a server with which it wants to communicate is primarily a

naming issue.

• RPC uses interface names for this purpose.

• An interface name has two parts – a type and an instance.

• Type specifies the interface itself and instance specifies a server providing the services within

that interface.

• Type part of an interface usually has a version number field to distinguish between old and new

versions of the interface.

• The interface name semantics are based on an arrangement between the exporter and the

importer. Therefore interface names are created by the users, they are not dictated by the RPC

packages.

19

Server Locating:

• The interface name of a server is its unique identifier.

• Thus when a client specifies the interface name of a server for making remote procedure call,

the server must be located before the client’s request message can be send to it.

• The two most commonly used methods are as follows.

o Broadcasting: In this method, a message to locate the desired server is broadcast to all

the nodes from the client node. The nodes on which the desired server is located return

a response message. The desired server may be replicated on several nodes, so the client

node will receive a response from all these nodes. Normally the first response received

at the client node is given to the client process and all subsequent responses are

discarded.

o Binding Agent: A binding agent is basically a name server used to bind a client to a

server by providing the client with the location information of the desired server. In this

method, binding agent maintains a binding table, which is a mapping of a server’s

interface name to its location. Refer Book Page No. 195 for diagram of binding

mechanism for locating a server.

o A binding agent interface usually has three primitives:

� Register is used by a server to register itself with the binding agent.

� Deregister is used by a server to deregister itself with the binding agent.

� Lookup is used by a client to locate a server.

Binding Time:

• A client may be bound to a server at compile time, at link time or at call time.

• Binding at Compile Time:

o In this method, the client and server modules are programmed as if they were intended

to be linked together.

o For example, the server’s network address can be compiled into the client code by the

programmer and then it can be found by looking up the server’s name in a file.

• Binding at Link Time:

o In this method, a server process exports its service by registering itself with the binding

agent as part of its initialization process.

o A client then makes an import request to the binding agent for the service before

making a call.

20

o The binding agent binds the client and the server by returning to the client the server’s

handle (details that are necessary to make a call to the server)

• Binding at Call Time:

o In this method, a client is bound to a server at the time when it calls the server for the

first time during its execution.

o A commonly used approach for binding at call time is the indirect call method. Refer

Book Page No. 197 for diagram of binding at call time.

Changing Bindings:

• The flexibility provided by a system to change bindings dynamically is very useful from a

reliability point of view.

• Binding is a connection establishment between a client and a server.

• The client or server of connection may wish to change the binding at some instance of time

dute to some change in the system state.

• For example, a client willing to get a request serviced by any one of the multiple servers for

that service may be programmed to change a binding to another server of the same type when a

call to the already connected server fails.

Multiple simultaneous Bindings:

• In a system, a service may be provided by multiple servers.

• A client is bound to a single server of the several servers of the same type.

• There may be situations when it is advantageous for a client to be bound simultaneously to all

or multiple servers of the same type.

• A binding of this type gives rise to multicast communication because when a call is made, all

the servers bound to the client for that service will receive and process the call.

• For example, a client a wish to update multiple copies of a file that is replicated at several

nodes. For this, the client can be bound simultaneously to file servers of all those nodes where a

replica of the file is located.

SECURITY

• Some implementations of RPC include facilities for client and server authentication as well as

for providing encryption – based security for calls.

• For example, callers are given a guarantee of the identity of the callee, and vice versa, by using

the authentication service of Grapevine.

21

• For full end-to-end encryption of calls and results, the federal data encryption standard is used

in. The encryption techniques provide protection from eavesdropping (and conceal pattern of

data) and detect attempts at modification, replay, or creation of calls.

• In other implementations of RPC that do not include security facilities, the arguments and

results of RPC are readable by anyone monitoring communications between the caller and the

callee.

• Therefore, in this case, if security is desired, the user must implement his or her own

authentication and data encryption mechanisms.

• When designing an application, the user should consider the following security issues related

with the communication of messages :

o Is the authentication of the server by the client required?

o Is the authentication of the client by the server required when the result is returned?

o Is it all right if the arguments and results of the RPC are accessible to users other than

the caller and the callee?

SOME SPECIAL TYPES OF RPCs

Callback RPC:

• In the usual RPC protocol, the caller and callee processes have a client – server relationship.

Unlike this, the callback RPC facilitates a peer-to-peer paradigm among the participating

processes. It allows a process to be both a client and a server.

• Callback RPC facility is very useful in certain distributed applications.

• For example, remotely processed interactive applications that need user input from time to time

or under special conditions for further processing require this type of facility.

• In such applications, the client process makes an RPC to the concerned server process, and

during procedure execution for the client, the server process makes a callback RPC to the client

process.

• The client process takes necessary action based on the server’s request and returns a reply for

the call back RPC to the server process.

• On receiving this reply, the server resumes the execution of the procedure and finally returns

the result of the initial call to the client.

• Note that the server may make several callbacks to the client before returning the result of the

initial call to the client process.

22

• The ability for a server to call its client back is very important, and care is needed in the design

of RPC protocols to ensure that it is possible. In particular, to provide callback RPC facility, the

following are necessary :

o Providing the server with the client’s handle

o Making the client process wait for the callback RPC

o Handling callback deadlocks

• Refer Book Page No. 200 for diagram of the call back RPC

Broadcast RPC:

• In broadcast RPC, a client’s request is broadcast on the network and is processed by all the

servers that have the concerned procedure for processing that request. The client waits for and

receives numerous replies.

• A broadcase RPC mechanism may use on of the following two methods.

o The client has to use a special broadcast primitive to indicate that the request message

has to be broadcasted. The request is sent to the binding agent, which forwards the

request to all the servers registered with it.

o The second method is to declare broadcast ports. A network port of each node is

connected to a broadcast port. A network port of a node is a queuing point on that node

for broadcast messages. The client of the broadcast RPC first obtains a binding for a

broadcast port and then broadcasts the RPC messages by sending the message to this

port.

Batch Mode RPC:

• Batch mode RPC is used to queue separate RPC requests in a transmission buffer on the client

side and then send them over the network in one batch to the server.

• This helps in the following two ways

o It reduces the overhead involved in sending each RPC request independently to the

server and waiting for a response for each request.

o Application requiring higher call rates may not be feasible with most RPC

implementations. Such applications can be accommodated with the use of batch mode

RPC.

RPC IN HETEROGENEOUS ENVIRONMENTS

• Heterogeneity is an important issue in the design of any distributed application.

23

• When designing an RPC system for a heterogeneous environment, the three common types of

heterogeneity need to be considered.

• Data Representation: Machines having different architectures may use different data

representations. Integer may be represented in 1’s complement notation in one machine

architecture and in 2’s complement notation in another machine architecture. Floating-point

representations may also vary between two different machine architectures. Therefore, an RPC

system for a heterogeneous environment must be designed to take care of such differences in

data representations between the architectures of client and server machines of a procedure call.

• Transport protocol: For better portability of applications, an RPC system must be

independent of the underlying network transport protocol. This will allow distributed

applications using the RPC system to be run on different networks that use different transport

protocols.

• Control protocol: For better portability of applications, an RPC system must also be

independent of the underlying network control protocol that defines control information in each

transport packet to track the state of a call.

• The most commonly used approach to deal with these types of heterogeneity while designing

an RPC system for a heterogeneous environment is to delay the choices of data representation,

transport protocol, and control protocol until bind time.

• In conventional RPC systems, all these decisions are made when the RPC system is designed.

That is, the binding mechanism of an RPC system for a heterogeneous environment is

considerably richer in information than the binding mechanism used by a conventional RPC

system.

• It includes mechanisms for determining which data conversion software (if any conversion is

needed), which transport protocol, and which control protocol should be used between a

specific client and server and returns the correct procedures to the stubs as result parameters of

the binding call.

• These binding mechanism details are transparent to the users.

LIGHTWEIGHT RPC

• The Lightweight Remote Procedure Call (LRPC) was introduced by Berhsad and integrated

into the Taos operating system of the DEC SRC Firefly microprocessor workstation.

• Based on the size of the kernel, operating systems may be broadly classified into two cateogies

o Monolithic kernel operating systems

24

o Microkernel operating systems.

• Monolithic kernel operating systems have a large kennel, monolithic kernel is insulated from

user programs by simple hardware boundaries.

• On the other hand, in microkernel operating systems, a small kernel provides only primitive

operations and most of the services are provided by user-level servers.

• The servers are usually implemented as processes and can be programmed separately. Each

server forms a component of the operating system and usually has its own address space.

• As compared to the monolithic kernel approach, in this approach services are provided less

efficient because the various components of the operating system have to use some form of IPC

to communicate with each other.

• The advantages of this approach include simplicity and flexibility. Due to modular structure,

microkernel operating systems are simple and easy to design, implement, and maintain.

• In the microkernel approach, when different components of the operating system have their

own address spaces, the address space of each component is said to form a domain, and

messages are used for all interdomain communication.

• In this case, the communication traffic in operating systems are of two types:

o Cross-domain, which involves communication between domains on the same machine.

o Cross-machine, which involves communication between domains located on separate

machines.

• The LRPC is a communication facility designed and optimized for cross-domain

communications.

• Although conventional RPC systems can be used for both cross-domain and cross machine

communications, it is observed that the use of conventional RPC systems of crossdomain

communications, which dominate cross-machine communications, incurs an unnecessarily high

cost.

• Based on these observations, Bershad et al. Designed the LRPC facility for crossdomain

communications, which has better performance than conventional RPC systems.

• LPRC is safe and transparent and represents a viable communication alternative for

microkernel operating systems.

• To achieve better performance than conventional RPC systems, the four techniques described

below are used by LRPC.

25

Simple Control Transfer :

• Whenever possible, LRPC uses a control transfer mechanism that is simpler than the used in

conventional RPC systems.

• For example, it uses a special threads scheduling mechanism, called handoff scheduling for

direct context switch from the client thread to the server thread of an LRPC.

• In this mechanism, when a client calls a server’s procedure, it provides the server with an

argument stack and its own thread of execution.

• The call causes a trap to the kernel. The kernel validates the caller, creates a call linkage, and

dispatches the client’s thread directly to the server domain, causing the server to start executing

immediately.

• When the called procedure completes, control and results return through the kernel back to the

point of the client’s call.

• In contrast to this, in conventional RPC implementations, context switching between the client

and server threads of an RPC is slow because the client thread and the server thread are fixed in

their own domains, signaling one another and the scheduler must manipulate system data

structure to block the client’s thread and then select on of the server’s thread for execution.

Simple Data Transfer:

• As compared to traditional RPC systems, LRPC reduces the cost of data transfer by performing

fewer copies of the data during its transfer from one domain to another.

• Refer Book Page No. 206 for diagram of data transfer.

• In traditional cross domain RPC, an argument normally has to be copied four times

o From the client’s stack to the RPC message.

o From the message in the client domain to the message in the kernel domain.

o From the message in the kernel domain to the message in the server domain.

o From the message in the server domain to the server’s stack.

• To simplify this data transfer operation, LRPC uses a shared argument stack that is accessible

both by the client and the server. Therefore the same argument in LRPC can be copied only

once – from the client’s stack to the shared argument stack. The server uses the argument from

the argument stack.

Simple Stubs:

• Cross domain and cross machine calls are usually made transparent to the stubs.

26

• The use of simple models of control and data transfer in the LRPC facilitates the generation of

highly optimized stubs.

• A three layered communication protocol is defined for each procedure in and LRPC interface

o End to end, described by the calling conventions of the programming language and

architectures.

o Stub to stub, implemented by the stubs themselves.

o Domain to domain, implemented by the kernel.

• With this arrangement, a simple LRPC needs only one formal procedure call and two returns.

Design for Concurrency:

• When the node of the client and server processes of an LRPC has multiple processors with a

shared memory, special mechanisms are used to achieve higher call throughput and lower call

latency.

• LRPC achieves a factor-of-three performance improvement over more traditional approaches.

• Thus LRPC reduces the cost of cross domain communication to nearly the lower bound

imposed by conventional hardware.

1

SCSX 1028 DISTRIBUTED COMPUTING

UNIT III

DISTRIBUTED SHARED MEMORY

INTRODUCTION

Two basic paradigms for inter process communication are

• Shared memory paradigm

• Message passing paradigm

Message passing paradigm has two basic primitives for interprocess communication

• Send(recipient, data)

• Receive(data)

Shared memory paradigm has two basic primitives for interprocess communication

• Data=Read(address)

• Write(address, data)

Shared memory exists only virtually. Similar concept to virtual memory.DSM also known as DSVM.

DSM provides a virtual address space shared among processes on loosely coupled processors. DSM is

basically an abstraction that integrates the local memory of different machine into a single logical

entity shared by cooperating processes

ARCHITECTURE OF DSM

2

• Each node of the system consist of one or more CPUs and memory unit.

• Nodes are connected by high speed communication network

• Simple message passing system for nodes to exchange information

• In contrast to the shared memory in tightly coupled parallel architectures, the shared memory of

DSM exist only virtually

• A software Memory mapping manager routine maps local memory to shared virtual memory

• To facilitate the Shared memory space is partitioned into blocks

• Data caching is used in DSM system to reduce network latency

• The basic unit of caching is a memory block

• When a process on a node accesses some data from a memory block of the shared memory

space, the local memory mapping manager take charge for its request

• If a memory block containing the accessed data is resident in the local memory the request is

satisfied by supplying the accessed data from the local memory.

• Otherwise , a network block fault is generated and the control is passed to the OS.

• The OS then sends a message to the node on which the desired memory block is located to get

the block

• The missing block is migrated from the remote node to the client process’s node and operating

system maps into the application’s address space.

• Data block keep migrating from one node to another on demand but no communication is

visible to the user processes

• Copies of data cached in local memory eliminate network traffic for a memory access

DESIGN AND IMPLEMENTATION ISSUES

• Granularity

• Structure of Shared memory

• Memory coherence and access synchronization

• Data location and access

• Replacement strategy

• Thrashing

• Heterogeneity

GRANULARITY

Granularity refers to the block size of DSM. The unit of sharing and the unit of data transfer across the

network when a network block fault occur. Possible unit are a few word , a page or a few pages.

Selecting proper block size is an important part of the design of a DSM system

STRUCTURE OF SHARED MEMORY

Structure refers to the layout of the shared data in memory.

3

Dependent on the type of applications that the DSM system is intended to support.

DATA LOCATION AND ACCESS

To share data in a DSM, should be possible to locate and retrieve the data accessed by a user process.

DSM system must implement some form of data block locating mechanism inorder to service network

data block fault

MEMORY COHERENCE AND ACCESS SYNCHRONIZATION

In a DSM system that allows replication of shared data item, copies of shared data item may

simultaneously be available in the main memories of a number of nodes

To solve the memory coherence problem that deal with the consistency of a piece of shared data lying

in the main memories` of two or more nodes .

Different memory coherence protocol makes different assumptions, the choice is usually dependent on

the pattern of memory access.

Memory coherence protocol alone is not sufficient therefore in addition synchronization primitives,

such as semaphores, event count and locks are needed to synchronize concurrent accesses to shared

data

REPLACEMENT STRATEGY:

If the local memory of a node is full, a cache miss at that node implies not only a fetch of accessed data

block from a remote node but also a replacement

Data block must be replaced by the new data block

THRASHING

Data block migrate between nodes on demand. Therefore if two nodes compete for write access to a

single data item the corresponding data block may be transferred back and forth at such a high rate that

no real work can get done.

A DSM system must use a policy to avoid this situation.

HETEROGENEITY

The DSM system built for homogeneous system need not address the heterogeneity issue

If the system is heterogeneous, must be designed to take care of heterogeneity so that it functions

properly with machines having different architectures.

GRANULARITY

 Most visible parameter in the design of DSM system is block size

4

Factors influencing block size selection:

 Sending large packet of data is not much more expensive than sending small ones

 Paging overhead: A process is likely to access a large region of its shared address space in a

small amount of time

 Therefore the paging overhead is less for large block size as compared to the paging overhead

for small block size

 Directory size: The larger the block size, the smaller the directory

 Ultimately result in reduced directory management overhead for larger block size

 Thrashing: The problem of thrashing may occur when data item in the same data block are

being updated by multiple node at the same time

 Problem may occur with any block size, it is more likely with larger block size, is

different regions in the same block may be updated by processors on different nodes, causing data

block transfers that are not necessary with smaller block sizes.

False sharing:

Occur when two different processes access two unrelated variable that reside in the same data block .

The larger is the block size the higher is the probability of false sharing. False sharing of a block may

lead to a thrashing problem

Using page size as block size:

 Relative advantage and disadvantages of small and large block size make it difficult for

DSM designer to decide on a proper block size

 Following advantage:

It allows the use of existing page fault schemes to trigger a DSM page fault

5

It allows the access right control

AS long as page can fit into a packet, Page size do not impose undue communication overhead at the

time of network page fault

Page size is a suitable data entity unit with respect to memory contention

Structure of shared-memory space

Structure defines the abstract view of the shared memory space

The structure and granularity of a DSM system are closely related

 Three approach:

1. No structuring

2. Structuring by data type

3. Structuring as a database

NO STRUCTURING

The shared memory space is simply a linear array of words

Advantage:

Choose any suitable page size as the unit of sharing and a fixed grain size may be used for all

application

Simple and easy to design such a DSM system

STRUCTURING BY DATA TYPE

The shared memory space is structured either as a collection of variables or as collection of objects in

the source language

The granularity in such DSM system is an object or a variable

Since the size of the variables and objects varies greatly, DSM system use variable grain size to match

the size of the object/variable being accessed by the application.

 The use of variable grain size complicates the design and implementation of this DSM system

STRUCTURING AS A DATABASE

Structure the shared memory like a database

Shared memory space is ordered as an associative memory called tuple space which is a collection of

immutable tuples with typed data items in their fields

To perform update old data item in the DSM are replaced by new data item

6

Processes select tuples by specifying the number of their fields and their values or type

Access to shared data is nontransparent. Most system they are transparent

CONSISTENCY MODELS

Consistency requirement vary from application to application

A consistency model basically refers to the degree of consistency that has to be maintained for the

shared memory data

Defined as a set of rules that application must obey if they want the DSM system to provide the degree

of consistency guaranteed by the consistency model

Applications that depends on a strong consistency model may not perform correctly if executed in a

system that support only a weak consistency model.

If a system support the stronger consistency model then the weaker consistency model is automatically

supported but the converse is not true

TYPES OF CONSISTENCY MODELS

• Strict Consistency model

• Sequential Consistency model

• Causal consistency model

• Pipelined Random Access Memory consistency model(PRAM)

• Processor Consistency model

• Weak consistency model

• Release consistency model

STRICT CONSISTENCY MODEL

This is the strongest form of memory coherence having the most stringent consistency requirement

Value returned by a read operation on a memory address is always same as the value written by the

most recent write operation to that address

All writes instantaneously become visible to all processes

Implementation of the strict consistency model requires the existence of an absolute global time

Absolute synchronization of clock of all the nodes of a distributed system is not possible

7

Implementation of strict consistency model for a DSM system is practically impossible

SEQUENTIAL CONSISTENCY MODEL

A shared memory system is said to support the sequential consistency model if all processes see the

same order

Exact order of access operations are interleaved does not matter

If the three operations read(r1), write(w1), read(r2) are performed on a memory location in that order

Any of the orderings (r1, w1, r2), (r1, r2, w1), (w1, r1, r2), (w1, r2, r1), (r2, r1, w1), (r2, w1, r1) is

acceptable provided all processes see the same ordering

The consistency requirement of the sequential consistency model is weaker than that of the strict

consistency model

The sequential consistency model does not guarantee that a read operation on a particular memory

address always returns the same value as return by the most recent write operation to that address.

 A sequentially consistency memory provide one-copy /single-copy semantics

 Sequentially consistency is acceptable by most applications

CAUSAL CONSISTENCY MODEL

All processes see only those memory reference operations in the correct order that are potentially

causally related

Memory reference operations not related may be seen by different processes in different order

Memory reference operation is said to be related to another memory reference operation if one might

have been influenced by the other

A shared memory is said to support the causal consistency model

 Write operations that are potentially causally related must be seen in the “same order”

Write operations that are not potentially causally related may be seen in different orders

(w1, w2) is acceptable ; (w2,w1) is not an acceptable order

There is a necessity to keep track of the memory reference operations

This is done by Maintaining dependency graphs for memory access operations

PIPELINED RANDOM ACCESS MEMORY CONSISTENCY MODEL

Provides a weaker consistency semantics than the consistency model described so far

8

Ensures that all write operations performed by a single process are seen by all other processes in the

order in which they were performed

All write operations performed by a single process are in a pipeline

Write operations performed by different processes can be seen by different processes in different order

If w11 and w12 are two write operations performed by a process P1 in that order, and w21 and w22 are

two write operations performed by a process P2 in that order

A process P3 may see them in the order [(w11,w12), (w21,w22)] and another process P4 may see them

in the order [(w21,w22), (w11,w12)]

Simple and easy to implement and also has good performance

It can be implemented by simply sequencing the write operations performed at each node

PRAM consistency all processes do not agree on the same order of memory reference operations

[(w11,w12), (w21,w22)] and [(w21,w22), (w11,w12)] are acceptable by Sequential consistency

model.

[(w11,w12), (w21,w22)] PRAM accepts only this order

Processor consistency model

Very similar to PRAM model with additional restriction of memory coherence

Memory coherence means that for any memory location all processes agree on the same order of all

write operations performed on the same memory location (no matter by which process they are

performed) are seen by all processes in the same order

If w12 and w22 are write operations for writing the same memory location x, all processes must see

them in the same order- w12 before w22 or w22 before w12

Processes P3 and P4 must see in the same order, which may be either [(w11,w12), (w21,w22)] or

[(w21,w22), (w11,w12)]

WEAK CONSISTENCY MODEL

Common characteristics to many application:

1 It is not necessary to show the change in memory done by every write operation to other processes.

Several write operation results can be combined and sent to other only when they need it.eg. when a

process executes in a critical section the changes need not be visible until it exits the critical section

2 Isolated accesses to shared variable are rare. A process makes several access to the set of shared

variables and no access at all for a long time.

9

Better performance can be achieved if consistency is enforced on a group of memory reference

operations rather than on individual memory reference operations

The main problem is determining how the system can know that it is time to show changes to other

processors.

DSM system that support the weak consistency model uses a special variable called a synchronization

variable

When a synchronized variable is accessed by a process the entire shared memory is synchronized by

making all changes to the memory

Requirements:

All accesses to synchronization variables must obey sequential consistency semantics

All previous write operations must be completed everywhere before an access to a synchronization

variable is allowed

All previous accesses to synchronization variables must be completed before access to a non

synchronization variable is allowed

RELEASE CONSISTENCY MODEL

Enhancement of weak consistency model

Two operation in memory synchronization

1. All changes made by the other nodes is propagating from other nodes to process's node

2. All changes made by process propagating from the process to other nodes

The first operation is performed when process enters the critical section.

The second operation is performed when process exits the critical section

Use of two synchronization variables

1. Acquire (used to tell the system it is entering CR)

2. Release (used to tell the system it has just exited CR)

Barrier defines the end of a phase of execution of a group of concurrently executing processes

All processes in the group must complete their execution up to the barrier before any process is

allowed to proceed.

 It waits until all process in the group attains the barrier.

10

 Once the last process completes the execution all the shared variables are synchronized

Barrier can be implemented by using a centralized barrier server

Before a barrier is created it must be given the count of number of processes that must be waiting on it.

Each process in the group concurrently gets executed and send the message to the server when it

arrives the barrier

The barrier server sends a reply after all the sever has sent the message of reaching the barrier

Requirements:

All accesses to acquire and release synchronization variable obey processor consistency semantics

All previous acquires perform by a process must be completed successfully before the process is

allowed to perform a data access operation on the memory

All previous data access operations performed by a process must be completed successfully before a

release access done by the process is allowed

IMPLEMENTING SEQUENTIAL CONSISTENCY MODEL

Most commonly used model

Protocols for implementing the sequential consistency model in the DSM system depend to a great

extent on whether the DSM system allows replication and/or migration of shared memory data blocks

Strategies:

• Nonreplicated, Nonmigrating blocks (NRNMB)

• Nonreplicated, migrating blocks (NRMB)

• Replicated, migrating blocks (RMB)

• Replicated, Nonmigrating blocks (RNMB)

Nonreplicated, Nonmigrating blocks (NRNMB)

Simplest strategy for implementing a sequentially consistency DSM system

Each block of the shared memory has a single copy whose location is always fixed.

All access request to a block from any node are send to the owner node of the block.

On receiving a request from a client, the memory management unit and OS s/w of the owner node

perform the access request on the block and return a response to the client

11

Enforcing sequential consistency is simple in this case

Method is simple and easy to implement and suffers following drawback:

Serializing data access creates a bottleneck Parallelism, which is a major advantage of DSM is not

possible with this method

 Data locating in the NRNMB strategy:

There is a single copy of each block in the entire system

The location of a block never changes

Hence use Mapping Function to map a block to a node

Nonreplicated, migrating blocks (NRMB)

Each block of the shared memory has a single copy in the entire system

Each access to a block causes the block to migrate from its current node to the node from where it is

accessed .

Owner of a block changes as soon as the block is migrate to a new node.

When a block migrate, it is removed from any local address space it has been mapped into.

In this strategy only the processes executing on one node can read or write a given data item at any one

time and ensures sequential consistency

Advantage :

• No communications cost are incurred when a process accesses data currently held locally

• It allows the applications to take advantage of data access locality

Drawbacks:

• It is prone to thrashing problem

The advantage of parallelism can not be availed in this method also

12

Data locating in the NRMB strategy

There is a single copy of each block, the location of a block keeps changing dynamically

Following method used:

1. Broadcasting

2. Centralized server algorithm

3. Fixed distributed server algorithm

4. Dynamic distributed

Broadcasting

Each node maintains an owned blocks table that contains an entry for each block for which the node is

the current owner

13

When a fault occurs, the fault handler of the faulting node broadcasts a read/write request on the

network

The node currently having the request block then responds to the broadcast request by sending the

block to the requesting node.

Disadvantage:

• It does not scale well.

• When a request is broadcast, all nodes must process the request. This makes the system

bottleneck

Centralized server algorithm

A centralized server maintains a block table that contains the location information for all block in the

shared memory space

The location and identity of the centralized server is well known to all nodes

When fault occurs, the fault handler of the faulting node send a request for the accessed block to the

centralized server.

The centralized server extract the location information of the requested block from the block table,

forwards the request to that node and changes the location information in the block table.

14

On receiving the request , the current owner transfers the block to node N, which becomes the new

owner of the block.

Drawback:

• A centralized server serializes location queries, reducing parallelism

• The failure of the centralized server will cause the DSM system to stop functioning

Fixed distributed server algorithm

15

Scheme is a direct extension of the centralized server scheme

It overcomes the problems of the centralized server scheme by distributing the role of the centralized

server

In this , there is a block manager on several nodes, each block manager is given a pre determined data

blocks to manage .

The mapping from data blocks to block manager and their corresponding node is by mapping function.

Whenever a fault occurs, the mapping functions is used by the fault handler of the faulting node to find

out the node whose block manager is mapping the currently accessed block

Dynamic distributed-server algorithm

16

Does not use any block manager and attempts to keep track of the ownership information of all block

in each node

Each node has a block table that contains the ownership information for all block in the shared

memory space.

The information in ownership field is not correct at all times, it at least provides the beginning of a

sequence of node to be traversed to reach the true owner node of a block

A field gives the node a hint on the location of the owner of a block and hence is called the probable

owner

When fault occurs, the faulting node extracts from its block table the node information stored in the

probable owner field .

It then send a request for the block to that node.

If that node is the true owner of the block, it transfers the block to node N and updates the location

information of the block in its local block table of node N.

Otherwise, it looks up its local block table, forward the request to the node indicating in the probable

owner field of the entry for the block, and updates the value of this field to node N.

When node N receives the block , it become the new owner of the block.

Replicated, migrating blocks (RMB)

17

A major disadvantage of the non replication strategies is lack of parallelism

To increase parallelism, virtually all DSM system replicate blocks

With replicated blocks, read operation can be carried out in parallel at multiple nodes by accessing the

local copy of the data.

Replication tends to increase the cost of write operation because for a write to a block all its replica

must be invalidated or updated to maintain consistency

If the read/write ratio is large, the extra expense for the write operation may be more than offset by the

lower average cost of the read operation

Two basic protocols that may be used for ensuring sequential consistency in this case are:

write-invalidate:

All copies of a piece of data except one are invalidated before a write can be performed on it.

When a write fault occurs fault handler copies the accessed block from one of the current node to its

own node.

Invalidates all other copies of the block by sending an invalidate message containing the block address

to the node having a copy of the block.

The node “owns” that block and can proceed with the write operation and other read/write operations

until the block ownership is relinquished to some other node.

After invalidation of a block, only the node that performs the write operation on the block holds the

modified version of the block

18

If one of the nodes that had a copy of the block before invalidation tries to perform a memory access

operation (read/write) on the block after invalidation, a cache miss will occur and the fault handler of

that node will have to fetch the block again from a node having a valid copy of the block, therefore the

scheme achieves sequential consistency

Write-update

A write operation is carried out by updating all copies of the data on which the write is performed.

When write fault occurs the fault handler copies the accessed block from one of the block’s current

node to its own node, updates all copies of the block by performing a write operation on the local copy

of the block and sending the address of the modified memory location and its value

The write operation completes only after all the copies of the block have been successfully updated

Sequentially consistency can be achieved by using a mechanism to totally order the write operations of

all the node

19

The intended modification of each write operation is first sent to the global sequencer

The intended modification of all the write is first sent to the sequencer

Sequence number to the modification and multicasts the modification with this sequence number to all

the nodes where a replica of the data block to be modified is located

The write operations are processed at each node in sequence number order

If the verification fails, node request the sequencer for a retransmission of the missing modification

Write-update approach is very expensive

In write-invalidate approach, updates are only propagated when data are read and several updates can

take place before communication is necessary

There is a status tag with each block while write invalidate is implemented

Status tag indicates whether block is valid or shared or read only or writable. With this information the

read and write request are carried out

Read Request

If there is a local block containing the data and if it is valid, the request is satisfied by accessing the

local copy of data

Otherwise, the fault handler of the requesting node generates a read fault and obtains the copy of the

block from a node having valid copy of the block. If the block is writable in some other block then the

retrieved block is made read only.

Write request:

20

If there is a local block containing the data and if it is valid and writable, the request is immediately

satisfied by accessing the local copy of the data

Otherwise, the fault handler of the requesting node generates a write fault and obtain a valid copy of

the block and changes its state to writable. A write fault for a block causes the invalidation of all the

other copies of the block

DATA LOCATING IN THE RMB STRATEGY

Data-locating issues are involved in the write-invalidate protocol used with the RMB strategy:

1. Locating the owner of a block, the most recent node to have write access to it

2. Keeping track of the node that are currently have a valid copy of the block

Following algorithms may be used:

1. Broadcasting

2. Centralized-server algorithm

3. Fixed distributed-server algorithm

4. Dynamic distributed-server algorithm

Broadcasting

21

Each node has an owned block table. This table of a node has an entry for each block for which the

node is the owner. Each entry of this table has a copy-set field, contains a valid copy of the

corresponding block

When the read fault occurs, the faulting node sends a broadcast read request on the network. When a

write fault occurs the node send a broadcast write request on the network . On receiving this request,

the owner of the block relinquishes its ownership to node n and sends the block and its copy set to

node N. When node N receives the block and the copy set, it sends an invalidation message to all

nodes in the copy set. Node N becomes the new owner of the block, an entry is made for the block in

its local owned block table. The copy-set field of the entry is initialized to indicate that there are no

other copies of the block. Method suffers from disadvantage mentioned during the description of the

data-locating mechanism for the NRMB strategy

Centralized-server algorithm

22

This is similar to the centralized-server algorithm of the NRMB strategy

Each entry of the block table, managed the centralized server, has an owner-node field

Copy-set field that contains a list of nodes having a valid copy of the block

When read/write fault occurs, the node sends a read/write fault request for the accessed block to the

centralized server

For read fault, the centralized server adds node N to the blocks copy set and returns the owner node

information to node N

For write fault, it returns both the copy set and owner node information to node N and then initializes

the copy set field to contain only node N.

Node N send the request for the block to the owner node. The owner node return a copy of the block to

node N

Node N also sends an invalidate message to all nodes in the copy set.

Node N can then perform the read/write operation

Fixed distributed-server algorithm

23

This scheme is a direct extension of the centralized-server scheme

Role of the centralized server is distributed to several distributed servers

There is a block manager on several node

Each block manager manages a predetermined subset of block,

Mapping function is used to map a block to a particular block manager.

When fault occurs, the mapping function is used to find the location of the block manager that is

managing the currently requested block.

Then the request for the accessed block is send to the block manager of that node.

Advantage is same as the data locating mechanism for the NRMB strategy

Dynamic distributed-server algorithm

24

Similar manner as the dynamic distributed server algorithm of the NRMB strategy

Each node has a block table that contains an entry for all block in the shared memory space

Each entry of the table has a probable owner field that gives the node a hint on the location of the

owner of the corresponding block.

If the node is the true owner of a block, the entry for the block in the block table of the node also

contains a copy set field that provides a list of nodes having a valid copy of the block

When a fault occurs, the fault handler of the faulting node extracts the probable owner node

information, send a request for the block to that node

 On receiving the block and copy set information, node and sends an in validation request to all nodes

in the copy-set.

REPLICATED, NONMIGRATING BLOCK

A shared memory block may be replicated at multiple node of the system but the location of each

replica is fixed.

 All replicas of a block are kept consistent by updating them all in case of a write excess.

 Sequential consistency is ensured by using a global sequencer to sequence the write operation of all

nodes.

DATA LOCATING IN THE RNMB STRATEGY

Following characteristics:

25

 The replica location of a block never change

All replicas of a data block are kept consistent

 Only a read request can be directly send to one of the node having a replica.

The block table of a node has an entry for each block in the shared memory.

Each entry maps to one of the block to its replica locations

The sequence table also has an entry for each block in the shared memory space.

It contains three field

• block address

• Replica set field(list of nodes having replica)

• Sequence No. (incremented by 1 for every modification)

Read operation directly done between the nodes by referring to the block table

A write operation on a block is sent to sequencer

26

 The sequencer assign the next sequence number to the requested modification

It then multicast the modification with this sequence number to all the nodes listed in the replica set

field.

Munin: A RELEASE CONSISTENT DSM SYSTEM

Structure of Shared-Memory Space

The shared memory space of Munin is structured as a collection of shared variables.

 The shared variables are declared with the keywords shared so the compiler can recognized them.

The programmer can annotate the shared variable with any of the annotation type.

Each shared variable, by default, is placed by the compiler on a separate page.

Unit of data transfer across the network by MMU hardware.

Multiple shared variables having the same annotation types can be placed in the same page

Different annotation types cannot be placed in the same page

Variables of size larger than the size of the page occupies multiple pages

Implementation of Release Consistency

Release consistency application must be modeled around critical sections.

 Munin provides two such synchronization mechanism.

 A locking mechanism

A barrier mechanism.

The locking mechanism uses lock synchronization variables with acquirelock and releasedlock

primitives for accessing these variables.

The acquire lock primitive with a lock variable as its parameter is executed by a process to enter a

critical section .

Release lock primitive with the same lock variable parameter is executed by the process to exit from

the critical section.

When a process makes an acquire lock request the system first checks if the lock variable on the local

node.

27

 If not, the probable owner mechanism is used to find the location owner of the lock variable and

request is sent to that node.

If the lock is free it is granted to the requesting process

Otherwise the requesting process is added to the end of the queue waiting to acquire the lock variable.

When the lock variable is released it is given to the next process waiting in the queue.

The barrier mechanism uses barrier synchronization variables with a waitAtBarrier primitive for

accessing these variables.

Barriers are implemented by using the centralized barrier server mechanism.

 In a network fault occur, the probable owner based dynamic distributed server algorithm is used in

Munin to locate a page containing the accessed shared variables.

It is similar to the copy set mechanism used to keep track of all the replicas location

Annotation for shared variables

The release consistency of Munin allow applications to have better performance than sequentially

consistent DSM system.

 For further performance improvements, Munin defines several standard annotation for shared

variables.

The standard annotations and consistency protocol for variables for variable for each type are as

follows:

1. Read-only

2. Migratory

3. Write-shared

4. Producer-consumer

5. Result

6. Reduction

7. Conventional

Read-only

Shared-data variables annotated as read-only are immutable data items

These variable are read but never written after initialization.

28

No consistency problem.

They can be freely replicated in all nodes

Read-only variables are protected by the MMU hardware

An attempt to write on a read only data will create a fatal error

Migratory

Shared variable that are accessed in phases, where each phase correspondence to a series of accesses

by a single process, may be annotated as migratory variables

The locking mechanism is used to keep migratory variable consistent

To access a migratory variable first acquires a lock for the variable uses for some time and then release

the lock after finishing

Page migrate from one node to another on a demand basis, but page are not replicated

Only one copy of a page containing a migrating variable exists in the system

The lock and the message are sent together as a single message to the location of the next process that

is given the lock for accessing it

Write-shared

A programmer may use this annotation with a shared variable to indicate to the system that the variable

is updated concurrently by multiple processes

For example in a matrix the values of the rows and columns can be updated by different process

Munin avoid the false sharing problem of write shared variable

It allows to update them concurrently

Write shared variable is replicated on all node

When access to the write shared variables causes a network page fault to occur.

The page having the variables copies it to the faulting node

If the access is a write access the system first make a copy of the page(called the twin page)

The process may perform several write to the page before releasing it

When page is released, the system perform a word by word comparison of the original page with the

twin page and sends the differences to all the nodes having the replica of the page.

29

When a node receives the differences of a modified page, the system check if the local copy of the

page was modified

Producer-consumer

Shared variable that written (producer) by only one process and read(consumed) by fixed set of other

processes may be annotated to be of producer-consumer type

Munin uses an “ eager object movement” mechanism

In this mechanism a variable is moved to the from the producers node to the consumer node in

advance avoiding the network page fault

Write update protocol is used when ever the producer updates the variable.

Producer may send several update together by using locking mechanism

In this case procedure acquires a synchronization lock, make several update on the variable and then

releases the lock

Result

Result variable are just the opposite of producer- consumer variable

They are written by multiple processes but read by only one process

Different process write to different parts of the variables that do not conflict

The variable is read only when all its parts have been written

Example in matrix worker process would generate and fill the elements of each row and column

Once matrix is complete it is used by the master process

Munin uses a special write-update protocol for result variable in which updates are sent to the nodes

having master process and not all replica location

Reduction

Shared variable that must be atomically modified may be annotated to be of reduction type

Example: parallel computation application, a global minimum must be atomically fetched and

modified

For better performance a reduction variable is stored at a fixed owner that receives updates to the

variable from other process synchronize the updates , performs the updates on its variable and

propagates the updated variable to all the replica location

30

Conventional

Shared variable that are not annotated as one of the above types are conventional variables

Page containing a conventional variable is dynamically moved to the location of a process that want to

perform a write operation on the variable

Uses Write Invalidate

 Read only, migratory and write shared annotation types are useful and frequently used

 Producer consumer, result and reduction annotation types are less frequently used

REPLACEMENT STRATEGY

 In DSM system that allow shared memory block to be dynamically migrated/replicated

Following issue:

1. Which block should be replaced to make space for a newly required block?

2. Where should the replaced block be placed?

Which block to replace

 Classification of replacement algorithms:

1. Usage based verses non-usage based

2. Fixed space verses variable space

Usage based verses non-usage based

Uses based algorithms keep track of the history of usage of a cache line and use this information to

make replacement decisions eg. LRU algorithm

Non-usage-based algorithms do not take the record of use of cache lines into account when doing

replacement. First in first out and Random (random or pseudorandom) belong to this class

Fixed space versus variable space

Fixed-space algorithms assume that the cache size is fixed while variable space algorithm are based on

the assumption that the cache size can be changed dynamically depending on the need

In a variable space algorithm, a fetch does not imply a replacement, and a swap-out can take place

without a corresponding fetch

31

Variable space algorithms are not suitable for a DSM system

• Usage based and non-usage based algorithm are suitable for DSM system

In DSM system of IVY, each memory block of a node is classified into one of the following five types:

Unused: a free memory block that is not currently being used

Nil: a block that has been invalidated

Read-only: a block for which the node has only read access right

Read-owned: a block for which the node has only read access right but is also the owner of the block

Writable: a block for which the node has write access permission

Based on this classification of block, priority is used:

1. Both unused and nil block have the highest replacement priority

2. The read-only block have the next replacement priority because a copy of the data will

be present with owner node

3. Read-owned and writable block for which replica(s) exist on some other node(s) have

the next replacement priority

4. Read-owned and writable block for which only this node has a copy have the lowest

replacement priority

 An LRU policy is used to select a block for replacement when all the blocks in the local cache

have the same priority

Where to place a replaced block

Once a memory block has been selected for replacement, it should be ensured that if there is some

useful information in the block , it should not be lost.

 The two commonly used approaches for storing a useful block as follow:

1. Using secondary store:

The block is simply transferred on to a local disc.

Advantages: it does not waste any memory space

1. Using the memory space of other nodes:

It may be faster to transfer a block over the network than to transfer it to a local disc.

32

 Methods require each node to maintain a table of free memory space in all other nodes.

Thrashing

Thrashing is said to occur when the system spends a large amount of time transferring shared data

blocks from one node to another

Thrashing may occur in following situation:

1. When interleaved data accesses made by processes on two or more nodes

2. When blocks with read only permissions are repeatedly invalidated soon after they are

replicated

Thrashing degrades system performance considerably

Methods for solving Thrashing problems:

1. Providing application controlled locks. Locking data to prevent other node from accessing that

data for a short period of time can reduce Thrashing.

2. Nailing a block to a node for a minimum amount of time

Disallow a block to a be taken away from a node until a minimum amount of time t elapses after its

allocation to that node.

The time t can be either fixed statically or be tuned dynamically on the basis of access patterns.

It is also decided by the length of the queue waiting for it to access

Drawback:

It is very difficult to choose the appropriate value for the time.

Time t may elapse before all the write operation gets completed.

3. Tailoring the coherence algorithm to the shared data usage patterns

Thrashing can be minimized by using different coherence protocol for shared data having different

characteristics.

�����������	�
����������������������
������������
����������

��������
�����������������������������

��������������

�� �� ���������	�� �
��	�� �������� �� �� ���	����� �� ��������� ���	��	�� ����� ��	�

��������
��	�����	����������������	���
��

�� ����
��	�������������	����������	����	��	�����������	���	����	����	���

�� ��	�	��	� �������
� �� �	� ���	��� ����� ��	� �	����	� ����� �����	��	� ��	� ��	��

���	����

�� ���	�����	����	����	���������	���	����������	���
��
��������	����	��	�����

���	���������������	�������������������	��	������	�����������

�� ��� ���	����	����	������ ��	� ���	������	��� ���� ��	� ���	� �	��	�����	��� ����� ��

�	���	��

�� ��	� ���	�� 	����	�� ��� ���	��� ���	������� ��	� ����	�	��	�� ��� ��	� ���� ��

�
�������������	���������

�� �
������������ �	��������� ����� ��	� �������	� ��� ���������	�� �
��	���� ���

��������������	����������
������������

�	���	������	����	��	�����	� �

!�� "��#��
������������
$�� %�	�����	�����
&�� '������	��������
(��)	����#��
*�� %�	��������������

�

�	�����������������

�� %�	�
������	���		��������	���	������������	���������	�����#�

�� ��#		������#�������	������	����������������������������������	����������

��������������	����	���	����
������	������"+,����������������#��-.������������

�������	����	����������	�������	������	�����	��
���

�� ��������������	���
��	�������������������
����	����	��	�������������	���
�����

���������	���	������	��
��	���

�� �������	��� �	��������	�	������������������	�������������� �	/���	��������	����#��

����	���	����	��
�������	�������	������	����

�� ��� �� ���������	�� �
��	��� �
�������	�� ���#�� ���� 	����	� �	� �� �	����	� ��	�

�������������������	����������	����������������	���	������	������	�������	��

��	�

�� ��� �������	���������������	����	���#	����������������	����	������	���	���

����	�������
���������
����	��

�� ��� ������������� ���	�� ��	����	��� �	����� ��� ��	����	� ��� ��	����#���� ��	��	��	������

�	�	��	����	����	�����
�������	���

�� ��� ��� ��	� 0�� �� �� ������������ 	
������� ������� �������� �� �	���	� ���� ��	�

�������	�����������������	��
��
�������������	����#���������������	���
��	����

������������	�����������	��������

�������	�����#�������
��������������		�����	����

!�� ��/��������
�����������������	��������	���1��	���	����	/�	��
�

$�� ������	�� �	����	�2� ��	�����	� ��� ��	�����	�� �	����	�� ����	��	�	��	���
�!�

���	������������������	�/��������
�����

&�� �����������	����	��2������	���������������	����������	���	�����	������	�

��	/�	��
�����������������	�/��������
�����

�� 3�	����	�����	�����	�����	���	����	���	��	���	�������������
������	�	���	��

������������	�����	���������	������	�����	������	���������	����	����

�� %�������	�������������	����	���������

�� �����	�� ����#	� ��	� �����	�� ���#� �������� ��� �� ������
� ���#� ��	� ��������

���������	���	�

�� ��	�����	������	���������	����	��������	��������������45����#����#������������

�	�����

�� ��	������	�����#������
�������	��������	������	�6	��	��������#7��

������������	����

�� �����#�����
�� ���������������������	��	����	�����/��������
������������	�������

�	��2�	���	����	/�	��
�

��)�	�������	�	��	���� ��	���
��������	����	�����������������#��������	�������
�

����	�	�������	������	����

�� ��	�����	�	��	� ��� ��	������������	�����	��		�� ������#���������	�	���	�	�
�

������ ���� ��	� ����	�	��	� ���������	�� �	�� ���
� ����������� �	���� �� ���

��	�����	�����	�	��	������	����	������	�������#��

�� ���	����������	�����������!5
24��

������	�	��	���!��	���%�	�
�!��55�555��	���

�� �� �����	�� ���#� ������	��	��������
� �	� �
�������	�� ����� �	��� ���	����#� ��

#		�������������
�

�� �����#� ��������	�	����� �����
� ��� ��	�	� ������������ ��	��������������� ����

�	������	������
����	�������	����	����	������

�� 8	����������	��������	����	��	������	����������	����	�����	���������#������"�6�7��

�� ����������#������	�������	�	��	��	���
��
�������	���"�6�79������������������

�� ���"��	��	����	����	�����	��������#���"-����������	�!��

�� '����������������	��������	�����������#������������	���2�����
������	���������

������������������� !2�:9���"-��:9�!;��

�� ���	�� �
������������ ����� �	��	��� ���#�� ���� ���� ����� ���#�� ������ ��� �����	�

���	������������	��	��	������#��

�

�� �����������	���
��	�������������	�	������	���	����������������#�����������������

�����		���

�� <	����	�����	����	�����������	�����������#�����	��	�������#���������������	��

�
��	�� �� ��� �	����� �	��� �
�������	�� ������� ��	� �	������

�	�
�������������

��)��������	���
��	��������	��������
� �	�
�������	���	��� ��������#�� �����������

�����������	����	���������	�	����	��
��	���

�� �����������	���
��	����	/���	����	����������
�	�������#��
�������������

�������������� �� ���� �������� �	���� ����� ���	� �������

�������	 ��	�����

�� ������
�	����
��������������������
�����	������	��������������

�� %��	��������#��
��������������������	��
��	����	������	����������������

��	����������	�	�����������	���
��	���������	����

�� "������	������	��������	�6,�"7����������	�������������������

�� �����	��	��������	�����	���	������
����������������	�����#��������	������	��

�� '��
�������������	������	�����	�,�"����������
�������	�	���	��������	����	��

�� "����	��� 	/����	�� ����� ���	� �����	�� �	���	�� ���� �
�������	� ��	��� ���#��

���������������������

�

�����	� ��� �������	 � ������������� �� ���� �	���� ��� ����������

���������������

�� ����� �
�	� �� �
������������ ��� �����
� �	/���	�� ��� ���	� ������������ �����

�	/���	���

�� ��������	�����	�������	�������������	���������������	���
��	���

�� �����	��	����	�	�������	�������������	����������	����������	��������	������	���

����	�����	�	���������	��	�����������	
��������

�

�	�������������������������

�� =�������#�������	��	��	���
��
�������	���

�� ��� ���#�� ��	� ����� �� �	� �
�������	�� ��� ����������� �������� �� ���	� ��� ��	�

����	�	��	������	����	�����	�����	�������#�����	�����	���	����	����������>��

�� ��	�����	�	��	�������	�����	���������#���������	�����#��#	���

�� ��	��	�������#����	���������	��
�������	�������	����#��#	������
�������#��

���������	������	���������	����>��

�� "��#��
�������������	/���	��	������	����	�����	����	�����#�����	���

�� ���	��	����������	���
�����	����	�����	�����#������	�������	������������

����	���

�� ����	�����������	���
�����������?�	���� �������#��#	��������	��	�������	��

��	�����#�������	��
��	���

�� %���� ������ �����
� �	����	� �� ����	�������	� ������������ ������� �	����	�

�������� ��	�� �� �	���	�� �� ���#� ������� �� �� ���#� �	����	� ���� �	� ��	� ��

����	��

�� ��������������	�����	�����	�������	��������������	��
���	��		�������	��

�����	������	���
��������� ��	����	��		�	������	���	����������������	�	��	�

���	���
��	����	���� ��	����	��	���������������	�����������
���	���
��	��

�����

�� ���� ��� ��������	� �� ��������	� ��	����	��������� ����� ����	��	����	� ����	�	����

����������������� ��	��

�����������	�� �����	��
��	����� ��	����������
���	� ������������	��������������	�

�	����	�����	����������	���	�	�������	���

������

�� ��� ���#� �
������������ ��	� ���	� ����� �	�	�� ��� ���#����� �	����	� ����� �����

����	��	���������	����������� ��	� �	�	���������	�������	������ �������
��	�

�������������	���������	���

��)������ �
������������ ��	� ����� ���#����� �� �	� ���	������ ��� ��	� ���	� �� ��	�

��������#�����	���0���	������	�����������	����������	������
��	����� �������� ��	�

���	����#����������������#��

�� ��	�	��	� ���#� �
������������ ���������� ��	� ������
� �	����	�� �� ��������
�

�������	�������������	������	�����������������#�����	������	��0���������� ����	�

���	������	����������	��

�� .�	���
�����������������#	���	����	�����������	���	����	����	����

�� 3�	�� ��� ���	����	��� ���	������ �����	� ��� ��������	�� �
� ��	� ���#� �
������������

������������������� �������#�� ����	��0����� ��	����������	����	����	������	�

���#����	����	�������	��������

�

�

�

�

�	�����������������	���������

<����
���������	�����

�!"#$%&'(!)��

�� +�����	����	��	��	���	�������	�����������

�� �����	����	��	��	���	�������	�����������

�'*#$'+,#!)�

�� @�������	����������������	�����������

�� 8�����	����	����������������	������������

��������	�
����������

�� .�	���	��������	������	��	�	��	������	��������	��	��	����	��

�� "��#����	����������	������	�������	��	�	�	��	����	��

�� ��	����#����������	����	���
�������	���������	����#����	�����	����	��	��	��

��	�

����������������������������������	������

�� %������	��	��������
��	������	����	������������	����	��	��	��

�� 3�	����	����	��	��	���	�	��	����	��	����	�����/���#�
��	������������	��	����	�

���������	�	��������	�����	������	������	��	��	���

�� �� ��� ���	� ��	�� �������'	����	� ��� �	�	���	��� �!� ��� ��	� ���	� ��	�� ������� ���

�	�	��	���

�� ��	��������������	����	�������	����	���	��	����	�����	����	�����	����6��2

�!�7-$�

�� ��	����#�����	��0���	������;6��2�!�7-$��

�� 6��2�!�7-$������������	������	�

����	������������	������	������	������	��

����	����

�� ����������	���#	���
���	����	��	��	���������	���	����	�����������#	��������

�� ��	��������������	����	�������	����	�����	��	����	�����	����	�����	����6��

2�!�2�7-$�

�� ��	����#�����	��0���	������;6��2�!�2�7-$��

����	����

�� �	�	�����	����	�	��������2�!�

�� "����	����������	��������	�����	���2�!�	��		�����������	���������������	���

�� ��	���	���	�����	��	���������	����	�	������	������

�� A���������������	������	�������	�����	����	����	�������

�

�

���������������������������������	������

�� ��	������	����	��	��	���	��������
������������������#����	����	9����������	���

�� �%���� ��	� ���� ��	� ����� #���	��	� �� ��	� ������� ���	� ��� �	/���	�� ��� ��	�

�������������	����	��

�� ��	���	�����#��	����	��0���	������	����	��;������

���������

!�� �����	�����������	����	��	���	�������	���	���	��	����	��0���	��

�����������	�������	��

$�� <���������������
��������	�������	���
���	��	���#�

�����	��������������������������������

�� ��	����	��	��	���	��������
��	����	����	����	9B���������	���

�� %������	��	������#��������#�����	��

�� ��	����	��	��	������#���	��	�����������������������	��

�� <��	���������#���	��	�����	��0������	����#�����	������	��	��
��	����	��

���������������������	�
����������

!�� �����	������������	�

$�� ����������
�

���������
����������

C� ���	�����
��
�������	���
C� %������	��������	������	��	�	��	��������	������	�	��	���
��
�������	��

������	������	��
C� '������	��	������	����#��

�����������������
���������
����������

�� %������	�������������������#����	������	��������������	����	�

�� 8�������	9������

�� ����	����������

�� �����������������������
�����������
	����������	�����

�� ��� ����
��������� ����� ��
����� 	�� ����	���� �	���� �	�� ��� �	����� �����

���	������������������������

�� �������	����	� ��� ����� ����� ����	���� ��	���� ��	��	���������� 	�	�
� ���	��

�	������	�
���������������	������

�� "��#�� ���� ����	�	���
� ��� ����	�	��� ��	�� ��	�	��	� ��������� �	�� ��� ����	��

��������	���
��

�

�����	����	�����

�� ��	�	���	��	�	�����	����	��������
��	����������������	���	����������	���
��
�

�������	����	��	�������������	������������	����	����

�� ���	����������	���������	���
������	���
��������	����	��	�����������
����	���

����� �	���� �	����	����� ����� ��� ���	� ����	�� �� �����	��� ����� �	� �	������	�� �� ��

�����	����	�����������	��

�� ��	�	��	�� 	�������	� ���	��� �� ����� �� ����	�� �	����	� �
� �� ���	��� ����� �	�

	����	��� ����� 	�������	�	��� �� ���	��� ��� ����	�� ������� 	�������� �	��		��

���	��	���

�� ��	��	�����������������������		��	�������	����	��� ������	���	����	����	�

�	�	��	�����������������	��������

�������������������	�	�������������	�������������������
���	����������	/���	�	�����

�,#,%&��-.&,*'/"
�����	���	����	����	��	���
��������	�������	������	��	�������
�

���	���
��	����	������������	�����	��	����	��

�����	�������������		�������	����	��	����	�������	�	��	�����	��	���������	������	��

������	�����	����

�/�*#%$0%#'/"
���	�	�
����	����������������	����	��	����	�	�	������
��	�	��	������	�	�
�

�	/�	���������	�	�	������
������	��

�����������������	�	�������������	��������

������	������������
�

�� .�	�����	����	��	�������	��
��	�����	�	��	�������	���������������������	��

��	�	���
�����	�����������	������

�� %�������	����������������	��	�����	�������	���	��	��������������		#��	��������

������	�����������

�� ��� �� ��	�� ���	��� ��� ����	���
� ��� ����� �	�������	�� �	��	�� ��	� ��������� ����

���	����	�
��������	������������	��	/�	���������	����

�� ��� $� �� ��	� ���	��	�� ������	���
� ��#� ��� �	�������� �� 	��	�� ��	� ���	�

�	�������	�� �	��	��� ��	� ��������� ������� �	�������� �� ��
� �	� ���	��� ��� ��

���	������������	��������	����	����������������

�� ���	�� 	�	������� �� �	�������	�� �	��	��� ��	�� �� ���	��� 	���� �	�������	�� �	��	��� ���

����� ����
� ��	� ��������� �� ����� ��	� ��������� ���� ������ �	�������� ��

����	�����	����

�

�� ��������������	����	��������	�����������������	���	������������������
��	�

���	�����	��	���	�������	���	��	���

�� �������������	����	�����������������������������	����	�����	���	����"���

���	�����������
�

�� �����	�������	�	��������	/���	����
�&��	����	��	���	�������	���	��	��	���
�

�$%1+%.2
�

�� �����	�����������������0	��	���������	������������	��

�'*#$'+,#!)��33$/%.4��

�� ��	��	��������#��������������	��������������������	����������	�	����	��
��	���

�� �������	��	��������������	��	����	����	��	�������	���	��	����	���	������	����

��	�� �	��	� �	������� �� �	������ �� ������ ���	��� ����� 	��	�� ��	� �	�������	��

�	��	���	����

�� 3�	�������	�����������	��	�����	�������	���	��	�������	�������	/�	����	����	�

��������	�����	��	���

��	��	����	����������	�������������������

!�� ��	����	�����	�����	������	����	���

$�� ��	����	�����	��	�������	���	��	���������	����	�����������	��	��

&�� �����/�	����	�������	�	���	���
���	����	��������	��	/�	����	����	���

�� .�� �	�	������ �� �	/�	��� �	����	�� �� ���	��� 	���	�� ���	����	�
� �	���� ���#� ��

�	��
��	����	�����	��	��	�����	�	����	���������	��
����	������	����������

�� ��� ��	� �	�	��	�� ���	��� ��� ���	��� ����	���
� 	�	������� ��� ��	� �	�������	�� �	��	��� ���

�����
�/�	�	����	��	/�	����	����	������	�	����	���������	��
��

�� ��� ��	��	�	��	�����	����������	���
����	�	������������	��	�������	���	��	������� ���

������������ ������������������	����	����	�����������	��	�	��	���	/�	����	����	�

�������	����	�����������������	/�	����	����	����������	�������	�����	�����

�� ��� ��	� ���	������ �� ��	� �	�	��	�� �	/�	��� �	����	� ��� ��	��� ��� �	���� ����� ��	�

�	��	�� ���	��� ���	� �� �	/�	��� �	��	� ��	� �	�	��	�� ���	��� �� 	��	�� ��	�

�	�������	���	��	�����	��	�	��	�����	������	����	�
��	�������	��
��	����	���

��	��	��	��������	��	�	��	�����	�������	/�	����	����	���������	�����	�������

��	� �	�	��	�� /�	�	�� ��	� �	�	��	�� �	/�	��� �	����	� ���� �	�	��� �	�������� �	��
�

�	����	��

�� �����	��	�	��	�����	����	���	���������	�������	���	��	������������������������������

	��	����	��	�������	���	��	���������	����	�
��	�������#����	��
��	����	��

�� �� ���	��� ����� �	���� ����� �	/�	����	����	�#		����������� ��� �	��
� �	����	�

������	�����	��	���

�� ���	��	�����	��	�������	���	��	�������������������	�	��	���	��
��	����	���������

���	��	���

�� ���	�����������	��	�	������������	��	�������	���	��	�������	�����	��
��	����	��������

���	��	���������/�	�	������	�	�	����	����������/�	�	��

�$%1+%.2*��

�� ����	����	����������	����	����	�	�������	����	����	���	�����	�����	�����������

�	��
� �� ��	� �	/�	��� �	����	�� �������� ���� ��	� �	/�	������ ���	��	�� �� �����

���	�����	�
��

�� �	/���	��	�������	���#�����	���	����
������� ��	����	��	���������������������	�

�������	������������������%�������	�������������		������
��������
�#		��

����#�����	����	��	��	��	��������	��������	�������

�� +��	���	��	������	�������	���	��	����������
����	��������������������������	��

���	��	�������	�������	��������������	����

�� �#	�������������������

�� '������%���������������	�	���
��������������	��#	������������������	���������	�

���	��	���

�� ���	�����������	������
�	����	����	������	�����	���������	����	��	��������

�� ��	����	��	�� �����	��
��	����	� �������
�������	��������������������	������ ��	�

�#	�� ��� ��������	�� ���� �	� ���	��� �� ����	�� ������ ��	� ����� ��� ��	� ���	�

���	�������

������	���������������������������	������������

!�� ��	��������������

�� �����	���������	������	��
��	������	����	�����������������	�#��

�� ���	��������������������	�	��������	����	����	���	�������	�����������������	�

�#	���������	�����	��	��

��)	�	����� �� �� ����	�� ���	��� ���� �	� 	����
� ��	� �
� ��#���� ��� �� ���	� ����� ��

���	��� �	�	������ ��	� �#	�� ���� ���� �	������ �	���� ��� ��#�� '	����	� �� ����

�	������������������	�����	����	�����

��)
�������	����������������	������������������	���	��

�� 3�	�������	����	�	��������������	��������������	�������	��	���	�����	�����	���

�
��#������������������������	��#	������	����	������	������

�� 3�	�������	����	��	�����	����	���	��	�
���������������	��	��������	�������

��������	����������	����	��#	������	��������������

$�� �	����	�����

�� �����	��#	�������������	���#	��������	��	�	���	���

�� .�	�����	����	�������	������������	���	�����	����

�� ��	��	���	���	��������
���������	���D���������	��#	�E��	����	�����	�������

�� �������	��	�������������	����	� �� ��	����	�������	��	��� ��	����	��� ���������

��	��#	���

�� ��������	�������	�� ���� ��� �����	����� ��	����� ��	��	����	��	��	������������ �� ����

�	�������

�� 3�	�� ��	� �	����	� �	����� �� ��	� ������� ��� ��	�#�� ��	� ��	����� ��	��� �� ��	�

�	����	��

�� �����	�	������	���
�����������	���������	��#	��������	�	���	�����	���#	����

+���	�� �

!�� '��������	������	��������

$�� D3��������	��#	�BE��	����	����	����	�������

�� ���	���
���������	�������	����������	��	���

�� %�������������	�����	�#����	������������
����#	������	�������

�� 3�	�������������	����	�	���� ����� ��	� �#	�� ��� ����� �����������	�	����������

��	�� ������ ���	��	�� �� �	���	� ������ ������ ���	��� ����� �	�	���	� ����

��������	���	���#	���

�� ���	�	�������	�	�����	��	�	���������������	��#	�����

�

�	��������	�������

��������������%�	����������������	��	�������	�	��������������������	��������������	�

����	���
� �����������	��	�� ��� ����� �� ����	�� ����� �����
� �������	� �� ���	� ��	�	� ��� ��

�����	��������������������	��	�������	��
��	���

!�� %�������	��������	��
��	�����������/�	�������
����

$�� 3�	�	�	�����	�	����� ����	���� ��	����	���������� ��	�����	���������
���

�������	�����	���
������	����	��	�����	�	��	�������	�����������

&�� .���	��	�
��������	�����	���������#	����������	�����������	0�����	��	��

�������	����	��	����

�,&&5��&6/$'#47��

3�	����
����	�������	���������	������������������	���	������������	��	/�	�����

�����#�������	�	�	������

%�����	 ������	���+���������	�	��������������

!7�+��	�������%8%"��.=��	����	���������	����	��	�����������	������	����

$7�������	��	�������+��������	�	�	����������	��	����	�����������

&7�����	�����	�����	�������	��F������#	���	����	�0������+G��0�������	��

��� ��
� ��	��� ��� D	�	����E� �	����	� ���������	� �� ���	��� ���� �	� �� ���� ��	�	��

����	�	�����	���	����	��	�	���������	����	���	����������.H�����
����������������	�����

������#	��	�����������������=�� ����� �	�	��	����������	�	������������ ��	�	�������

��	����	��	�����	�	��	����	�����������	������	��	������������

��	��	�����������������	�������	�������
��	���������� ��	����	��	�����	����	�

����� ��� ��� ��������� ���	����	�
� ���� ��� ��	� �	�� ��������� �� ��	� �
��	��� ��� ��	� ���

����������������������������	�����������F���������������	�	�������������#�������	�

���	��	����	�� �������� ��	�����	�������	�	�����	�������
������������	��	� ��	�

���	�D����
E������	��������������������

�

�

�

�'"6��&6/$'#47
�

�� ��� ������	���� ��	���	����� �������� ��	����	�����	�����<��� ������	������	���

�#	��+��	��	����	���
������
���	�	��������������
������	�	�
����	���#����

��������	�����

�� 3�	����
����	�������	�� �������	������������������	�������������� ����������

������%8%"��.=��	����	����������������������	����������	������������	���

��������	����������	�����	��������������	���	��	���#����������	��	���������	�

���������	��	�����#�������	����

�� ���	������	�����	��	��	�����������������	�������	������	�����������	��	����	�

	��	����	�
���#���� ���	�������������	����	�	�	��	���� ��	�������������� ��	�	����

��	��	����	��	������#�����	����	�������������	������

�� ����� ���	��� ��	�����	�� ����� 	�	��� ��	�� ��� �	�	��	�� ��� �������� �	����	�

���������� ���� ��� ���	��� ����	��� ��	�� ��	� ���	� �	����	� ��� �����	�� ���

������������������������	����	��������

�� %�����	 � ��� ���	���� =���	�� $� ���� =���	�� *� �����	�� ��	��	�� ����� ��	�

��	�������������F�=���	��I����������	���=���	��$�����=���	��*������	����

������ ��� 	�	����� �	���	� ���� ������ ������������ ��� ����� ��	� ������ <��� ��	�

�	����	�������	�	������������=���	��$�����=���	��*�������	
���������	�����	�

�	����	�������	���������������	�����
���	����	�����	�����	��	����������

��	����	���	���3�	������������	����	�����	���	���������	���������	
�����

������	��������	��������	����	�����	�	�����������	2�������

�
�&!.#'/"�%&6/$'#47�,*'"6��'"6�

�

�

�

�

����	����
�

�� ����������������������
��	������	��	���	/�	����	����	����

�� ��� ���	��	����	����	��	������	���
���	�����	��	����	����	����	���	��	�����
������������	���

�� �����	�����	��	����	����������������������	���	����	��	����#��
�
�!8'"'#'/"
� �� �	�� �� ���	��	�� ��� ��� �� �	����#� ����	� ��� 	�	�
� ���	��� ��� ��	� �	�� ���
�������� ������	�	��� 6�	�	��	7� ����� ������
� �	�����	���
���	���	�� ���	��� ��� ��	�
���	��	���
�

�-%73&!��
+��	��2!��	/�	������	������	����	������
+��	��2$��	/�	������	����	��������	������+��	��2!�����
+��	��2!��	/�	������	����	�������������+��	��2$���	�
+��	��2$��	/�	������	������	����������	����#	�J�
�
3	�����
�	��	����#���������	������������������� �
�

�� �����	���������	/�	������	����	��	��	����������� ���������	�	��	���	��	����	�
���	������������6�	/�	�������	�������	�	��	7�

�� �� ���	��� ������ �	/�	��� �� ����	�� ��	� ����� ��	� ����� ����	�� �� �	����	��
��������	������	��
��	���

�� ��� ��	� �	����	�� �� ��	� �
��	��� �� �	����	� ����	� ������ �	� #	���� ������ �����
��	��	��	�������	��������		�����������	����
����������	��������������	����

�� ��� 	�	�
� �	����	�� /�	�	�� ������ �	� #	���� ����������� ��	� ���	�� �� ���	��	��
�����������������	����	���

�� �� �	����#� ������ ��� ������
� ��� ��	� �������� ���� ������������� ��� �� �
��	��
��������	���
 �

�
�9��,#,%&��-.&,*'/"
��

�� ��� �	���� �	� �� ��	� �	����	�� ��� ��2�������	� ����� ��� ��
� �� �����	�� ����	�� ��
���	��	��������	������������	���������������	/�	��	���
������	�������	��������	����
��	�� �
� ����	�� �	�� ��	� �	/�	������ ���	��� ���� �� ����� ������ ��	� �	����	� ���
�	�	��	���

�
�9��/&)�%")��%'#
��

�� ��	�	� ����� �	� ��� �	���� �	� ���	��� ����� ��� ������� ��� �	���� �	� �	����	� ����

�������������	���	����	���������	��	���������
���	�����	��	���

�9��/��$!!73#'/"
��

�� =� �	����	� ���� �	� ��		���	�� �	��	� ��	� ������� ���	��� ����	�	�� ���� ���#�

�����������	����	��

�

�

�

�9��'$.,&%$��%'#
��

��	�	�	���������	�������	��	� �K+!��+$�������+�L�����������
+!������������������	����	��	����
�+$�
+$������������������	����	��	����
�+&�
����
+�2!������������������	����	��	����
�+��
+�������������������	����	��	����
�+!�
�

�!#4/)*�8/$�4%")&'"6�)!%)&/.2*�%$!
�
�
C�)	����#���	�	�����
C�)	����#��������	�
C�)	����#��	�	����������	��	�
��
�
�!%)&/.2��$!0!"#'/"�

�� ����	�	�����	��
��	�������	����#����	�����	������������	����������������

��
���	��	����	����#��������	��������	����

��	��	�����������	������������	��������� �

�,#,%&��-.&,*'/"
�

�� 3	���������	��
��	�������������	����	���	�����������	����	��	����	����#	�

�����	�������	��������������	���2�������	���

�� �����������������	�����	�	����	����#���
��	�
�����������	���������

�/&)�%")��%'#
�

�� .�	� ������ �� 	����	� ����� ���2���2����� �������� �	�	�� ������ ��
�� 	����

���	���������	/�	��������	�������������	����	���	��	�����	�����	�	��������

�� ����	�������� ��� D%�������	��������	/�	����	����	����
���	������	�����
�����	����
��	����	��E�

�� ��	��	��������������	��	����

�� <��������������	�����	����	����������������������������

�� '��
��	����	����	�������	��������������	����	�����	�� ����� �����	������
���	���

�� �����	���������	/�	�����	�	���������
���	���	����	������	�����
���	���
����������	�����	�
��

�
�/��$!!73#'/"
�

�� .�	� ������ ��� D��� �� ���	��� ����� ��� ������� ��	� �	����	�� �	/�	���� ����	��
�	����	� ���� ����� �	����	� ������ �	� ������	�� �� ���� ��	�� ��� ����� �	�	��	� ����
�	����	���������	�����	���
�������	�������E�

�� ����	�� ������ ��� D3�	�� �� ���	��� �	/�	���� ��	� �	����	��� ��� ��	
� ��	�
��������	��������	���	����

�� ������	����	�����	/�	��	����������������	����	���	���	�#���	��	���������	������	��
��������������	������	���	�����	����������������	���	����	����

�� ��� ����� �	����	� ��� ��� �	���� ��	��� ��	�� ��	� .�� ��		����� ��� ���� ��	� ��������
���	�������������	��������	��	/�	���������	�����

�� ���������	����	������	�����	��	/�	���������	�������������E��

�� ����������������	������	�����	����	�����	�����	������	����
��	����	������
�	���	��6�	����	�����	��
�����	7���

�� ����������	������	�����	����	����#	������	����
�
�'$.,&%$��%'#
�

�� .�	������� ��	����	� ����� ��	��������������� ���������	�	����������D����	���
���	�����	������������	����	��
�	��E��

�� %�������	���������
��	/�	����	����	������������	��������	����������
���
�
�!%)&/.2�%0/')%".!�

�� @��	����	��������������������������	�������	���������	/�	����	����	������
���������	��	����#�����	����

�� ��	� ��������� ����� �
��������
� 	�����	� ��	� �	����	� ��������� �	������� ��
	����	��������	�	���M���	��������������������	����	����

�� 3�	�������	����	/�	������ �	����	������ ������	��
���������	�� ��	��
��	�������
�	���	���	��	��������	����	��������	����	�
��	�������	���������

�� ��	��	����	�������	����	�
�������	����
��������	��	����	��
��	��������������������

�� �� ����	� ��� ���	� ��� ��	� �
��	�� ���� ������	� �	����	�� �� 	���� ���	��� ��� ��	�
��	�������������	����#���

�� ���	����#�����	������������	�����	��
�
�!%)&/.2��!#!.#'/"�

�� ��� �� �
��	�� ���� �� �	����#� ��	�	����� ���� �� �	����#� �������	� ���	�	��
��	�� ��� �		��� �� �	����#� �	�	����� ���	�	� ����� �	��	�
� ���� �	����#�
���������
���

�� ��������� �����������������	�#	�������	�������������	����	�������	��	���
���������������������������	/�	������

�� ��	��� ��� ��������� ��� �		�	�� ������ ����� �	�	����	� ��	��	�� ��	� �
��	�� ����
	��	�	�����	����#�����	���

�� ��������������������	����#	���	��������
��
�
������������������������
�
�4!��%*'.��)!%
�

�� ��� �������������������	��� ��������	�	�� ���	�����	����������	� ���#������
��	� ���� ��� �� ����� ��� ������� �������	��� ����
��� ��	� ���#�� �� ��� �����������
���	�����

�
�
���������������������������#��������	�����#���	���������� �
�

�� �����	����������	��
��		��������������	�	������	�����#���

�� �������������������������������������	����������	�������#��������	����	����
����
���	������������������	����������	����#�������	��������	���

�� ��	� ������ �� ���������� �	/���	�� �
� 	���� ���#� ���� ��	��		�� �� 	����
���	������	�#�����

�� ��	����������	������	�������#���	�	�
���	�����	�
��	�����#������

�� ����� ���� ��� ������
� �	���	�� ���	�� �� ��	���������� ����� ��	� ��		�� �� 	����
���	����������	�������������������	/���	���
�	�������#��

�� ��	� ���	����	��	�� "����������� 6�+"7� ����� �	��		�	�	�
� ����� �� ���#�� ���
#������

�� ��	��+"������������	�	��	��6�	�������	7�������#��������	������	����	���	���

�� ��	
��	�������
�	������	���
��������
��������	���������������������	�����

�� ��� 	�����	� ������� ��	� 	�	������ �� ��	� ���	������ ��� ���#�� ���������	� ��
���	�� ���� ��	���	� ���	� ��� 	������	����#� ������������ ��� ��� ��	� ���	����#�
��������������������	�������#���������

�� .��	�������������� �������� �	����	� �	/���	�	������ ��	���#������ ��	���������	�
�	����	�����	������	����	�	�	��	�	���������������� ��	� ���#������������
��	�����#�����

�� �	�������	�������	����#������	�	����
����������	��

�� 3������	�	���������������	����#��������	�������������		#������������	����#��
�������	��� �� ��	� ��	���� ��	����������	��
��	�� ��� ������� ����	�� �� ��� ��
����	�	����������������	���������

�
!�� '��������������+"������
$�� N���#��������������	������	�����	�	����	���
&�� ��������	��		���������	�����
(�� %�����	�����������������
��	���	����	������	�	����

�

	�����	���������������
�

�� ��	� ���	������� ���������� ������ ����� �������� ��	� #���� ������ ����������

�����������������	�	�����������������

�� ��	�	������������	����	������	��������������������	��	���	����	�������������

�� �������	������	������	�������������������	���
��	�����	������	��	�	��
���

�� ������ �� ���� ���������� ��������� ���	�� �� ������	��	� ����� �
��	�� ���� �
�

��������	���
�������	��������	���#��������	����
����	����	����������
���	��

���������	������	����	����	������	�������	��	�����	�����	���	�������	�����

���
��	��	�������	���

�� 3�	�������	������	�������	�������	���	����������	�����	��	����������	�����

��	����	��	����	����	�����	���	��	����

�� A�	�	�����	���	�������	���������	�	�� ������	�	����	�����������	��� ��	�

�	����������	�������	�������
��	��������������

�� ����������� �� �	����	� ���	�� ���������� ��� ���	��	������ �		���� ��������� ��	���

��	���	��	�������
����������������	���#�������	�����

�� ��	��	����	���	����������������	����	����������������������	��������	��	���	�

���������	��
��	��������������

�� �������	�������������������������	������������������������������������	���	�

������
��	�������������

�

	�������������������

�� �	�	���� �	�	����	����	��	�	������ ������������������� �������������������	�������
�� 	/�����	� ��#���� �� ���� ��	� ��	�� �� ��	� �
��	��� ��� ��� ��� ���������	�
�0	����	���

�� ����� ����	����	� ��	�	��	��� �����	�� �������	����� ����	� ���������� ������	�	�
�����0	����	� ��� ������
� �	�
� ����	�� 	��	�����
� ��� ���������	�� �
��	��������� ��
����	�����	������	����

�� '�	�	��� �������������� ��� ��	�	��	� ����������	����	��	����	� ��	�����	����
���	��	�� ��� ���	� ��� ����
�� ������������ ���� ��	� �	������ ��������	� �����
��	��	�� 	������ ��� 	�	�
� ��	���� 	�	�� ��� ��	� ������� 6��	���	7� ���� ���	��	���
�
������	�������	����	���������������	� �	����	��������������	���
��	��� ��� ������
�	/���	����������	���	�������������	��	����

�� ��� ��� �	�	����
� ���� �������	��� �� ��	�	��� ��	� ��	����� �	���� ���	� ����	� ��	�
��	����	�����	���	�����������	��	����

�� ��	�	��	�������	����������������	������	���
���������������������	������
������
���������������

�
�**,!*�'"��!*'6"'"6�	/%)��4%$'"6��&6/$'#47*�
�

�� �������� �� ��	� ������������������������� ��	��	��������� ����������� ���������
���� �	/���	�� ����� ���	�� �	������� �	� ���	�	�������� ���� 	��������� ����
��
���	���������	������
������	����������	������	�����
�������������
��������
�
�������	������
�� �������� ���	���� �������
�� �� ���	��� ������� �� �����	� ���	���
���	������������	�������������������	��������
��	����

�� ���	������	���	��	�	��	�� ����� ������	��������	��	��������������������	��	��
��	�	�	��	��������	��
�	��������	��	���

�
�
�/#'0%#'/"*�8/$��*'"6��4$!%)*�
�
��	� ����� ���������� ��� ������ �� ��������	��	�� ���	������	��� �� �������	� �����	�
���	��	�����	��	������	����������	������������������	����	��������� �
�

!�� ��	� �	��	���� �����	�� ��� ��	������ �� �	�� ���	��� ��	� ���	�	���� �����	����
�
��	��	����������	�����	���������	����	���������������	����

$�� ���������� �	��		�� ���	���� �������� ��	� ���	� ����	��� ����	� �������	����
�
��	��	������������������	��		�����	��	���������	���	����������	�������	��

&�� ���	���������������	��������	������	��������	/�	�����	�	�������������#����
�
��	���������+�����	����� �����	��	�������	��������#�����
��	����������#	�
����������	���	����#	������������	���	���

(�� �	����	��������������	�����	�	����	�	�����	���
�������������
�	��		�����	����
�������	���������	��		�����	��	���	����	�������	�����������	�������	���	�
���	�����	�������	��

�
��	�	���������	����	 �

�� ��	� �	��	���� �����	�� ��� ��	� ��	����� �� �� �	�� ���	��� ������������ ����
	�	������	������	�����	� �����	� ���	��������	��	��������	���������	�� ���	���
����������	�����������	�����

�� ����� �������
��	����	���	�����	�����	��� �����	��	�� ��������	�������	���� ��
�	� ��	��	�� ���� ��������� �������� �� ����� �� ��� ������ �	���	���	�� ���� ��	�
���	��G�����	������	�����

�� A�	�	�����	�����	����	��������	��	��������	����	�����	�������	����������	���
������		�����	���	��	����������������

�� ��� �������	�� ��� ���	� �� �� #	��	�������	�� �������� �	��
� �
��	��� �� �	��
�
��	��	�����	����������������	��������������	�������������������	��	�	�	��	�����
��	���������	���

�� '�	�	��� �������	� ����	�� ����� ��������
� ������� �� ��������	�� ��� ��	� �	��
���	������������	�	����	�������	����	��G������������	���	��	�������	����	���
	�	���	����

�� ��	�	��	��	�����
����������������	�����	������������	
���	������	����	��	����

�� ����� ��� �	����	� ��	�� ��	� �	��
� ��	��	�� ���	��� ���	��	�� ��	� �������� �����
���	��	�	���
��		�����	��	���
���	�����	�������������	���	������������������
�
��#	����������	�����
��������	��������	��
��������������������#	������	��

�� ���	���� ���� �������	� ���	��� ���������� ���	�� �������� ��	"+,� �� ������� ����
�	� ����� �� ���������� �� ����	�� ����� ����������� ����� �������� �	��	����
)�	� �� ��	� �������� �� ����	������	� ���� ��	�� �	������� �
��	�� �	����	��
�������	����	����������	������	��	��	��������	�����"+,����������������
�		����	���� ��� �	�
� ������ ��� �����	�� �� "+,� ���������� �������	��	��
���������	����������	�������	����

�� ����������	��	�����
����	������	�����	��������	��������	��	���
�
�$,!�8'&!�*!$0'.!
��

�� ��� ��� ���	��	�� ����� ��	� �	������ �� �������������	��� ����� �	������� ���
���	��������������
������	������������	����������	�����������	�	�������

�� ���	����� ��	�	���������	� ���	�	����������	���
�����	�����	���
�� �
�������	�����
����	�� �� �� ���	���	� �	����	� ����	��� ������	� ���	� ���	������ �	���������
���	�������� �	��������� ���	� �������� �	��������� ���	� �	���������	���������
������	��
� ������ �	��������� ����� ������	��
� ����������	� ��
� �����	�
��������������	����������	���������

�� =�	��������	��	������������	������	��	����	�������	����	����	�	����	���#	�����
	��
� �� �����	� ����	�	��� �	����� �� �����	� �������	�	��� �����	� �	���� ��� ��
�����	����	��
��	���

�
�%7!�*!$0'.!�
�

�� ��������	�������������	��		���	������	��������	������	�	�	��	�������	������������
���	� �)��� �	������	����	� �	/���	��	����	�� ���	� �)����	���#������������������� ���
������ ��	��� ��	�	��	�� ���� ��	�� '��� ���	� �
��	��� ��	� ���	����	�� ��
�	������������������

�� ��	�	��	����	����	��	����	��������#�����������	���
��	����	���

�� ��	����	���
��	����	�����	�������	����	�����������	���
��	���	����������	�������
�����	����������	�	��������	����	�������������	�����	��������	���
��	�	�������
���	���������	���
�������������	����	��������	�������������	������	���	���
�
������	������������

�� ��	��	�������������	�	�����������	������	��	����	�������������	�����	��
��	��
����������������������	������	��	����	�����	�������	�����	��
��	����

�� �	��	��� ���	�	��	�� ��� ��	� �	������ �� ��	�����	� �	����	� ��
� �	�	�� �� ��
� ���
�#����	��������
��	����

�� ��	�	��	������������	������������
��	����������	��	������������	�	�����������	��
����	����	����	��	����	�����	�������������	�����	��
��	����
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
����������������
+��	��� ��������� ��� ��	� �	������� �� �� ���	��� ���� �������	��� ������� 6��	� ����	�
��	7� �� ����	�� ��	� 6��	� �	����������	7�� ��	� ���� �� 	�	������ �� �� ����������
���	���������������	�����
�����	�

�
�'6��
��&/1�/8�!-!.,#'/"�/8�%�7'6$%#'"6�3$/.!**�

�� �����	�����
��	�������	��	���	���	��	�����������	�	����������������	���	���
���������	�����	�������	�	��������

�� ��	���	�����#�����������		�����	����	�������������������	�����	����#����
�����		�����	����	��������������

�� +�		�����	� ���	����������� ��� �����	�� �������2��		�����	� ���	��� ���������
����	��	����	���	������	�������������������
���	����	���������	����	�
���������	��
�	�	����������	����

�
+��	�����������������	����	�����������0����	��� �
!���	�	������������	���������������	�������	���
$���	�	���������	��	�����������	�����������	��	�	��	�����	���������	�������	��
&���������������	������	��	�	��	�����	�������	��	�����������	��
�

�� ��	������������	�����	���#	�����	����
���	����	���������������
�������	�������
��	�������#	�����	����
���	����	������������	���������

�� ��	� �����	�� ��� ��	� �	�	����� �� �� ����	��	�� �� �	��������� ��	�� ���� ��	�
���	������	�������	����	����	������	�	����
�

�4$!%)*�
�

�
��	� ����� ���������� ��� ������ �� ��������	��	�� ���	��� ����	��� �� �������	� �����	�
���	��	�����	��	������	����������	������������������	����	��������� �

!�� ��	� �	��	���� �����	�� ��� ��	������ �� �	�� ���	��� ��	� ���	�	���� �����	����
�
��	��	����������	�����	���������	����	���������������	����

$�� ���������� �	��		�� ���	���� �������� ��	� ���	� ����	��� ����	� �������	����
�
��	��	�� ����� ���������� �	��		�� ���	��	�� �������	� ��	��� ��� ����	���
����	��	����	� ��#	�� ��� 	��
� �� �����	� ����	�	��� �	����� �� �����	�
�������	�	��������	��	��������������	����	��
��	���

�
�
�
�
�%7!�*!$0'.!�
�

�� ��������	�������������	��		���	������	��������	������	�	�	��	�������	������������
���	��)����

�� �	��� ���	����	� �	/���	��	����	�� ���	� �)����	� ��#����� ���� ���������� ���������
��	�����	�	��	��������	���

�� '������	��
��	�����	����	����	�����	�������������������

�� ��	�	��	����	����	��	����	��������#�����������	���
��	����	���

�� ��	����	���
��	����	�����	�������	����	�����������	���
��	���	����������	�������
�����	����������	�	��������	����	�������������	�����	��������	���
��	�	�������
���	���������	���
�������������	����	��������	�������������	������	���	���
�
������	������������

�� ��	��	�������������	�	�����������	������	��	����	�������������	�����	��
��	��
����������������������	������	��	����	�����	�������	�����	��
��	����

�� �	��	��� ���	�	��	�� ��� ��	� �	������ �� ��	�����	� �	����	� ��
� �	�	�� �� ��
� ���
�#����	��������
��	����

�� ��	�	��	������������	������������
��	����������	��	������������	�	�����������	��
����	����	����	��	����	�����	��������������	�����	��
��	���
�

�

�����������	�
�����������������������

������������
����������

�������

��������������	����������

�

�������	��������������������������������	���������

�������������	
������������������
���������������
����������	���	�����

�

�������� ��!�"#�
��������������
������������������������������������	����

�

�$�%"$%�!�$���� ��!�"#�
�

�� ����
��� ���� ����������� ���� ������������� ����	����� ���� ����	����� ��������� ��

������	
����������������������
�����
�������������������

�� ����������������������������
���

��������	�� ���� ���������� �� ���� ��� ���������� �������� ������� �
���� ���� ����

����������������������������������
�����

�� ����
�����������������������
���������������������������
��	���������������������

������������������	
�����������������

�� ���������
��������������
����������� �����
�	������ ������������ ���� ������������

��������������������������

�� ���������������	
������������������
�� ������� ����������� ������������������ ����

���������������	����������� ��������!��������������������������

��	�����	��

�� "���������������������
��������������������
������������������

�� ���� ���� ����� ��������
���� ��������� ���� ���� �������� ������
��
��� ����
�������	������
�

#���������	��������������������������������	���	�����
�
���$�%"$%�!&���&��$�%"$%�!&��'(!��
�

�� ���
����
��
�����$
����������������������
������ ������ ��� ��� �
	���
��
��� ������ ������ ��� ����� ���� ��� ���� ���� �������
�������������������������������
�������
�������$
��������	�������

�� ��������������������� ��� �������������� ��� ���� ������������������� ��� ���� ������ ����
��������������� ������ �������� ���� ���
��
��� ��� ���� ����� ������� ��� ���� ����� ����
�������
�������������������������������

�� %&�'�����()!"*)�
�����������������

�� �������������������������������
����������������������
��
����������������������
���$
������������������

�� +���	����������������� ����

�� ����������� ����� ������ ������� �,���� ��� �� ���� �������� ����� ������� ����������
�������������

�� ��� ����������� ������� ��� �����������
���� ��� ��������� ����� ����	���������������
���
�����������������������

��)��
��
���� ������������������ ���� ������-� �����������������,�������������� �����
���������,�������������

�� ��� ���� ������������ �� ���� ������� ��� ��������� 	�� ����������� ���� ��������� �������
�������� �����,������ ���� ������ ������� ����� ����	������������ ���� ������� ����������
�������������������������������� ���
��������������	������������	������������������
����������������������

�� ����������������������������,������������������������������������.!��������������
�
���	���������
��
��������������	�����
���������������������$
������

�� (�����������������������������
�������
����
��
��������������

�� ��������������	���
��������������������	��

����
��
����������������������������������
��
���������������

��)���������������������
��
���������
����
��
������������������������������������
���

�� ���	
�����

�� �����/�������	
��������������������������	���������������

�� ����������	
���������������������
����

�� #����,������ ������������	
��������� ������� �������� �������������
�������������
�� �� ������������������������������
������������

�� %����� ���� ����� ����
������ ����� ��� ���� �����	
��� ��
���
����� ��������������
���������	�������������������

�� &���������������� ��������
�����
��������
������������
��������������	
��������
������	
��������
�����������	����

�� #����,��������
��������
�����������
��������������������������������	
����	
��
�����������������������������
����������� ���������������������������	
������

�� ������������������	
�������������	������������������������������������,���	������
�������������

�� 0�������� �� ���� �����������	������������� �������� ���� ��,�	����� ��� �����������
�����
����
���� ������������	
���� ��� ��������� ��� ������ �
�������� 	�� ���� ����
��������

�� #��������	
������������������������������
����	�����������������������	���
���
����������
	1���	����

�� &������ ����� ����
��� ��������	
���� ���� ����������� ����
���� 	�� ���� ����������
��
����������������

�� ����� ��������� 	���
�������� ���������� ����������� ����� ��� 	�� ����������� 	��
��������������������

�
�%$�)(!���&��**%$�)(!��'(!��
�

�� ���������� ��� ���� �������	����� ���������� ����� ���� ��� ���� ������ -�
��	�� ����
���
��	���

�� (�����,�������������������������
�������
��	�������������

�� ��� ����� ������ ���
������ ���������� ��� �� �������������� ��� ���� ��� ��������� ���
����
����������������������

�� ����� ����� ���� ��� ����������������������� ���������$
����� ����� ����������	������

�����������������

�� *�� ���� ������ ������ ����� ����� ������� ���� ��������� �
��� ������ 2����� #���
)�������2#)���
����������
��	�������������

�� ��� ���������� �� ���� ������� 	�� ��������� ����� ��� ���� 	���� �������� �,����� ��	��
���������

�� ��������������������������������������
�������������������
�����������������
�������������������	�����������������
��	�������������

�� ����� ���� ������� �����
�������� ���� ����� ����� ����� �������� ��� ���� ���� ��� ��������
����� �������������� �������� ��� �������������������� ��������������� ��� ���������

�����������

�� ����������������
������������������������	�����
����	�������������������������
����������������	�������������������������������������� ������������� �����������
����������������

�� 3������� ��� ��� ������� ��� ����� �������� ���� ���
��	�� ���������� ��� ����� ���
�
���������������������������

�� "
�� ��� ����� ����
���� ����� �
��� ������� ��� �
������ ���� �������� ���� ����������� ���
�������	
���� ������� ����� ���� ���
��	�� ���� ����� 	���
��� ������������ �� ����
���	�����������������������������
���������������������������������

�� 0���������
�� ��� ��������� ��� ������
������������������ ����� ���� ���
��	�� ����
������ �
������ ����� ������������ ���	���� -� ����������
��� ��� ����� ������ ����
����������������������������������

��)���� ���������� ��� �������
���� ���������� ���� ����� ������ ����� ������
�����������
����
�

��	���������������	��

�� ���������������������������/����$
��
�������������������
����	������������������

�� ���� ���� ���������� ����� ��� �� ������	
���� ���� ������������ �������� ��� ����
��������-������������
�������������������������������������
��������������������

�
�#$!�(!+!(�$����,!��*-&!(�
�

�� ���	����������������������������
�������������
�������	�������

�� ���������������������,��
����,�	�����	���
����������������������������������
�����	���������$
�������
	�������������������������	��������������������������������
��������

�� ������������	������������������������������
������������������������
��������
�����	������������������������������������$
�������

�� ���2��	������ #���)������ 4"���� 5678�� (������ ���� "���� 5679�&������� ����
0��	����5679:�
���������������

�
�!"-�&�(!+!(�$����,!��*-&!�
�

�� ���� ������ ���� ����� ��������� �����������	��� �	���� ���� ��������
���� �����

����
��
���������������

�� ���������������������������������
���	������
��������������������������������
��������������������
��
����������������������������

�� ��	���������������������������
�������������
������������������

�� ���� +�������)�������)������ �+))�� 43���� 56;7� 3���� ��� ��� 5675:��
������
������������,����������������������
��
������������,��������
��������
��������������������������

�
��	���.����������������

�� �����������������	�����
�����
������������	���
����
�������

�� ��� �
��� �� ���
������� ��� ���������� ������� ���
�� ���� ���� ���������� ��� ��� ������
������������������������������ ��������������	���
���������	�����	��	��������

�������

�� ����������������	���	���������������
�

�
��� ������!*��$'"��
��

�� ����� ���������� ��������� ��� �	��
��� ������������� ��� �� ����������� ����
���
��
��
��'/�0���

�� ��������
��������������������������	����
��������������	����������	�����
������
���

�

�

��1� �2�* (!� -,������ ,'(!� �3��'�/� �!*��$'"�� �)1� ��� !2�* (!� !2 (�'�'�/�43#� '$� '��
&',,'"%($� $-� �"3'!+!� �����!*��$'"�� '�� �� &'�$�')%$!&� ,'(!� �#�$!*� !+!�� 43�$� $3!�
�3��!&�,'(!'��3��&(!&�)#����'�/(!��!�+!��
�

�� ���� %&�'� ���������� ��� �������� ����������� ��� ����������� ���� ������
������������������	���
������ �����������������	��������������������	���
���
�������������������� ��������<��������$
�������

�� 0��������������������%&�'���������������������	
������������������������������
�������

�� *��� ���� ������ ��������� ���������� ���� 	�� ��������� ��� �� ������	
���� �������
	����������� ����� ���	������������ ����������������������������������� ���	��
�������	��$
�������������
��

�� 0�������� ����� ����� ����� ���������� ������ ��� �� �����	����� ������
�� ��� ��������
���������������$
��� ����
���
�����������������������$
����������
������

�� #
����������� ������� �� ���� ������� ��$
����� ���������� 	�� �� ������������ ����
���������� �������� ��� �� ������ ������ ��� ���� ������	�� ����������� �
�� ��� �����
����������������������	������������������	������������������	
�����������������

�� �����������������	
���������������������� �������������������,�������������
����������������

�� ������������ ����� ����� ��� �
�������� %&�'� ���������� ����������� �
����������
���
��
�������������������������������������
�������������
�����������������

��������������������������������������	������������������
�

��	�����.������.����

�� #��� �������� ���� 	���� ����������� ��� ������� ���� ���������� ������� ��� �����
��������������������������������<*��������������

�� ��
��	���������
�����
����������������������������

�� .���
��� ��� ������� ��� ���� ������� ������������� �������� ���
���� ����� ����������
�
	�������������
��������	��

�� ���� ��������� ��� ������� ������ ������� ��������� ���� ��� ��� 	�� �,������� ���
������	
�����������	���������������
���	�����������������������

�� ��� ��������� ��� 	������������������ �� ���� �������� ������� ���� �� ������	
���� ����
��������������������	
��������������	�������������	�����	���
�������������	�����
���

�� �����������������������	
���� ���� ������� ��������
��
��� ������
�������� ��������
��������������

�� ����� ��� =� �/�� +������ #���)������+#)�� ������ �������� �������� �������� ���
��
����%&�'���������������
��������

�� ��� ������������ �� ���� �������� ������� ���� �� ������� ��� ���������� ���� ���� ���
����������������������������
�������������
�������������������������������
��
������ ������ �� �� ���������
�� ����� ��,��� ����
�� ���������� ��������� ����

��������������������� ������� �
������ ��� ������������� ���
��� ������������ ���
4)�����5>79:���

�� ��� ��������� ��� ������ ���
���� �� ����������� ������� ���� �� ������	
���� ���� �������
���
��

5��2�������������
9��(������������������������
?��2���������������

����������������������
�������������	���	�����
�
��"3!�	-"�$'-��
�

�� 2���

�� ���
���������������������� ����������������� ����������������/�����������������������
�����	����������������������������	
���������������

�� �������������������������$
��
������������������������ �������������������������
$
��
������������������������������

��)�� ������������<������
$
��
��$
��
����

�� ����
�	��������������������$
��
�����	��������������
�	�����������������������
��������������������������������������

�� *����������������������
�	��������������������$
��
�����	��������������
�	���
���

�� ����������� ����
�������� ����� ������ ��������!�
� ������������	������������� �����
$
��
������������������$
��
���������
�������������������������
����������>���
��������������������������
�	��������������������������������>��>����0������� �������
�
��

�
�-&','"�$'-����- �/�$'-�
�

�� ��/����@������/�����������
���
�����
���	�������������
������������

�� ����
��������
��,�������������������
��

�� ��� ��� �����	�� ���� ���� ������ ��� 	������ ��������������������� ���� ���� ����� ���
���������	������ ��� ���� ������/� ���� �������������������������������� ����������
�����������������������������������

�� A���������������������������
��
���
�����������������	
��������������������
�������������������

�� ��������������������������������������
������	������������������������������

�� ��������������������������������������
���� ���� ���� ���������������������
����������	
���������������
5��B���
��������
9��0���

�
��"3!���('&�$'-���"3!*!
�

�� ������������������
�����
��������������������������
�������������

�� ����������������������������� ���������� �������������� ����������� ����� ����� ������� ��
���������������
�������
����������������������������������

�� ��� ��������� ��� ����������	�
������� ���� ��������� ��������� ���������������������������
����
��������

�� ���������������������������
�����������������/������	�������
�����������������

�� ��
�� ���������������� ��� ����������/���������� ��� 	�� �������������
���	�������������
���������������������������������
�

C������������������������������

5���('!�$�'�'$'�$!&�� �-�"3
�

�� 0�������������������������
�������	��

���
����������������
��� ���������

����������

�� 0��������
���D
�����
��������

9���!�+!��'�'$'�$!&�� �-�"3
�

�� 0��������������������������	�����������������������
������������������������

�� ����D
��� �������� ���
���� ������ ���� �������
����� ���� ����
������� ��� �� ����

��������

�

���	���	�������

�� #�
������������������������������
��������������������������	
�����������������

�� C����
�� ������ ��� ��
��� ��
�� ����� ������������� ��� ���� ����� ������� 	�� �
��� ��

���������

�� #��� ��������������������� ����� ��������������� ���������������� ��� �������������

���������

��)
��� �� ���
��� ��
�� ���
�� ��� ������� �������� 	
���������� ���������� ����

���	��������������������������������

��)�������� �
����� �� ��$
��������������� ���� ������� ��� ������������������ �������

���
���	����������������

�� ����������������
���

�� ����������� ������������������������������ �
������ ���������� ��
��� ���
����

	�����������������
��
���
���������

�����������
���������������������	�����������������

�� ���	��E�����/�����������������������������

�������������������������	���

�� ���
������	���������������	
���������������

�������������
�����������������

�

����+�'(�)'('$#�
�

�� �����	��������������������� ��� ���������������� ����� ��������� ���� ���� ��������	�� ����

�����

�� &���� ����� ���� �����	������������� �������� ��� ���� �������� ��� ���� ���� ���� ����

�����������������������
��������

�� #����,������ �����������������������������
����������
����������������
����������

����	�������	����� �������������������������	
����� ��������� ������ �����������

	������	���������������������������������

�� +���	���������������

�

����-)%�$�!���
�

�� +�	
������������ ���� ������� ��� ���������� ����
���������������� �������������������

�����������������������������
�������������������������)������������������������

�����������	��
��������
�������������$
�����
���������	���������������������

������
���������������	
����������

�� &���� ��������	
��� ������������	�������	��
���� ���� ��
����������������	����

������������

�� #
�����������
����������	��������	
��

�������������������������������������

�� *��������������������������
������
����������
������
	����������������	����	������

���������������������������������
�����������
������������������������������������

�� ���� ������� �������� ������� ��� ������
�� ����������� ���� ���� ��� �������� ����

����
�������������������������������������	������������

�� ����������� ����	���� ��� �� �
	������������ ���� ���� ����������� ��
��� ����

�������������	������

�� 0����������������
�����
�������������������������������	���������
����������������

��	��
��������

�� ��
�� ���
���������������� ������� ��� ������� ������������ ������ ���� �����

���������
��������������������������������������

�� *��
�����������������������������

�

�&+��$�/!��-,��!�$!&�������"$'-���
�

�� &������ ������������� �������� ��� ����������� ��� 	�� ��� ����������,�������� ��� ����

���	
�������������
�����������������

�����������������

�

5�� ��� ����� ����
������� ������� �� ������������� ����� ��� �� ��������������� ���������

��������
	�������������������
�����������������������������������&�������������

�������� ����� ������������������ ������������� ��� ��� ����� ���� ������� ������������

����,��	���������� �	������

�

9�� ��� ������������������������������������ ���
����� ��� ����� ������������������� ���	��

����	��������������� ������������������ ��	���
��������
	�������������������������

������������ ���������������� ��� ���� ������� ������������ ���� ��� ����

���������������������������
	�������������	������������������������������
������

���������������������
	���������������������������������
	������������������������

������������������

�

������������������
�

�� ��������������������������1
����������������������������������
���������������������

����������������������� ����� ������������������	�� ������������������� ���
�������

����
����������
����������

�� ����� ���� ������� �� ��� �������������� ���� ���������� �
������
�� ��� ����� ��� ������

���������������������������������,��
���������
������������������������	������

�������������������������������
��������

�� ������������� ���� ��� ��������� ���� ������������ ��� �� ���� ��� ����������� �	1�����

������������������������������
������������
��������������

�� ���������� ������ ��������� �
��� �������� 	���
��������������� ���� ���� ���� ���

��������������

�� ���

���������������������������������

�� .������ �� ������������ ������������ ���� ������� �
	��$
����� ��������� ���� �����

�	1��������������
���

�� &���������� ��� �� ������� ����� ���� �
������ �� ������������ ����������
��,�������

���
��� ��� �� �������� �
����� ���� ����������� ��� ������������ ���� ����� ���� �����

�	1���������������
���

�� ����������� �����
������������� ��������� ��� ���� 	�� ������
�� ��� ����� �������	�� ���

���������� ������	���� ���������� ����������	1����� ������������
������������������

��������������������������������

�

