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UNIT – I 

ELEMENTARY TCP SOCKETS         10 hrs.  

Introduction to Socket programming- Overview of TCP/IP protocols- Introduction to Sockets- 

Socket address structures – Byte ordering functions – address conversion functions – 

Elementary TCP Sockets – socket, connect, bind, listen, accept, read, write, close functions- 

Iterative server-concurrent server. 

1. Introduction to Socket programming 

 A socket is an endpoint used by a process for bi-directional communication with a socket 

associated with another process.  

 Sockets, introduced in Berkeley Unix, are a basic mechanism for IPC on a computer 

system, or on different computer systems connected by local or wide area networks.  

2. Overview of TCP/IP Protocols 

The TCP/IP protocol suite maps to a four-layer conceptual model known as the DARPA 

model, which was named after the U.S. government agency that initially developed TCP/IP. The 

four layers of the DARPA model include the following. 

 Application layer 

 Transport layer 

 Internet layer 

 Network Interface layer 

Each layer in the DARPA model corresponds to one or more layers of the seven-layer OSI 

model. Fig 1.1 shows the TCP/IP protocol suite. 

 

 

Fig 1.1 TCP/IP protocol suite 
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2.1 Layers 

2.1.1 Application layer 

The Application layer allows applications to access the services of the other layers, and 

it defines the protocols that applications use to exchange data. The Application layer contains 

many protocols, and more are always being developed. 

The most widely known Application layer protocols help users exchange information: 

 The Hypertext Transfer Protocol (HTTP) transfers files that make up pages on the World 

Wide Web. 

 The File Transfer Protocol (FTP) transfers individual files, typically for an interactive user 

session. 

 The Simple Mail Transfer Protocol (SMTP) transfers mail messages and attachments. 

 The Domain Name System (DNS) protocol resolves a host name, such as 

www.microsoft.com, to an IP address and copies name information between DNS 

servers. 

 The Routing Information Protocol (RIP) is a protocol that routers use to exchange routing 

information on an IP network. 

 The Simple Network Management Protocol (SNMP) collects and exchanges network 

management information between a network management console and network devices 

such as routers, bridges, and servers. 

2.1.2 Transport layer 

 The Transport layer (also known as the Host-to-Host Transport layer) provides the 

Application layer with session and datagram communication services.  

 The Transport layer encompasses the responsibilities of the OSI Transport layer. 

 The core protocols of the Transport layer are TCP and UDP. 

TCP 

 TCP provides a one-to-one, connection-oriented, reliable communications service. 

 TCP establishes connections, sequences and acknowledges packets sent, and recovers 

packets lost during transmission. 

UDP 

 UDP provides a one-to-one or one-to-many, connectionless, unreliable communications 

service.  
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 UDP is used when the amount of data to be transferred is small (such as the data that 

would fit into a single packet), when an application developer does not want the 

overhead associated with TCP connections, or when the applications or upper-layer 

protocols provide reliable delivery.TCP and UDP operate over both IPv4 and IPv6 

Internet layers. 

2.1.3 Network Interface Layer 

 The Network Interface layer (also called the Network Access layer) sends TCP/IP 

packets on the network medium and receives TCP/IP packets off the network medium.  

 TCP/IP was designed to be independent of the network access method, frame format, 

and medium.  

2.1.4 Internet Layer 

The Internet layer responsibilities include addressing, packaging, and routing functions. 

The Internet layer is analogous to the Network layer of the OSI model. There are two versions of 

IP. They include IPv4 and IPv6. 

The core protocols for the IPv4 Internet layer consist of the following: 

 The Address Resolution Protocol (ARP) resolves the Internet layer address to a Network 

Interface layer address such as a hardware address. 

 The Internet Protocol (IP) is a routable protocol that addresses, routes, fragments, and 

reassembles packets. 

 The Internet Control Message Protocol (ICMP) reports errors and other information to 

help you diagnose unsuccessful packet delivery. 

 The Internet Group Management Protocol (IGMP) manages IP multicast groups. 

3. Introduction to sockets 

Sockets are communication points on the same or different computers to exchange data. 

Sockets are supported by Unix, Windows, Mac, and many other operating systems. 

3.1 Socket Types 

There are four types of sockets available to the users. The first two are most commonly used 

and the last two are rarely used. 

3.1.1 Stream Sockets  

 Delivery in a networked environment is guaranteed. 

 These sockets use TCP (Transmission Control Protocol) for data transmission. 

 If delivery is impossible, the sender receives an error indicator.  

 Data records do not have any boundaries.  
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3.1.2 Datagram Sockets  

 Delivery in a networked environment is not guaranteed.  

 They're connectionless but  don't need to have an open connection as in Stream 

Sockets  

3.1.3 Raw Sockets 

 These provide users access to the underlying communication protocols, which 

support socket abstractions.  

 These sockets are normally datagram oriented, though their exact characteristics 

are dependent on the interface provided by the protocol.  

 Raw sockets are not intended for the general user. 

 They have been provided mainly for those interested in developing new 

communication protocols, or for gaining access to some of the more cryptic facilities 

of an existing protocol. 

3.1.4 Sequenced Packet Sockets  

 They are similar to a stream socket, with the exception that record boundaries are 

preserved.  

 This interface is provided only as a part of the Network Systems (NS) socket 

abstraction, and is very important in most serious NS applications.  

 Sequenced-packet sockets allow the user to manipulate the Sequence Packet 

Protocol (SPP) or Internet Datagram Protocol (IDP) headers on a packet or a group 

of packets, either by writing a prototype header along with whatever data is to be 

sent, or by specifying a default header to be used with all outgoing data, and allows 

the user to receive the headers on incoming packets. 

4. Socket address structure 

Most of the socket functions require a pointer to a socket address structure as an argument. 

Each supported protocol suite defines its own socket address structure. The names of this 

structure begin with sockaddr with a unique suffix for each protocol suite. Table 1.1 shows the 

different data types and their descriptions. 
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Table 1.1 Data type and description 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 IPv4 Socket Address Structure 

The 1PV4 address structure, commonly called an “ Internet socket address structure ,” is 

named sockaddr _in and defined by including the <netinet/in.h> header. 

 

 

 

 

 

 

 

 

 

 

 

 

Data Type Description Header 

Int8_t 

uint8_t 

int16_t 

uint16_t 

int32_t 

uint32_t 

Signed 8-bit integer 

Unsigned 8-bit integer 

Signed 16-bit integer 

Unsigned 16-bit integer 

Signed 32-bit integer 

Unsigned 32-bit integer 

<sys/types.h> 

<sys/types.h> 

<sys/types.h> 

<sys/types.h> 

<sys/types.h> 

<sys/types.h> 

sa_family_t 

 

socketlen_t 

Address family of socket address 

stucture 

Length of socket address structure 

<sys/types.h> 

 

<sys/types.h> 

In_addr_t 

In_port_t 

Ipv4 address 

TCP or UDP port 

<netinet/in.h> 

<netinet/in.h> 

Struct in_addr        {  /*32-bit 1PV4 address*/ 

In_addr_t  s_addr; /* network byte ordered*/ 

}; 

Struct sockaddr_in { 

   Uin8_t      sin_len     /* length of structure (16)*/ 

   Sa-family_t sin_family; /* AF_INST*/ 

   In_port_t    sin_port;    /* 16-bit TCP or UDP port number */ 

                                          /* network byte ordered*/ 

   struct in_addr    sin_addr   /* 32-bit IPv4 address*/ 

                                          /*network byte ordered*/ 

char               sin_zero[8]; /*unused*/ }; 
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 Both the IPv4 address and the TCP or UDP port number are always stored in the 

structure in network byte order. We must be cognizant of this when using these 

members. (We say more about the difference between host byte order and network byte 

order in . 

 The 32-bit IPV4 address can be accessed in two different ways. For example, if serv.is 

defined as an Internet socket address structure, then serv. Sin_addr references the 32 

IPV4 address as an in_addr structure while serv. Sin_addr.s.addr references the same 

32 bit IPV4 address as an in_addr_t (typically an unsigned 32-bit integer). We must be 

certain that we are referencing the IPV$ address correctly, especially when it is as an 

argument to a function , because compilers often pass structures differently from 

integers. 

 The sin_zero member is unused, but we always set it to 0 when filling in one of these 

structures. By convention, we always set the entire structure to 0 before filling it in, not 

just the sin_zero member. 

 Socket address structures are used only on a given host, the structure itself is not 

communicated between different hosts although certain fields (e.g., the IP address and 

port ) are used for communication. 

4.2 Generic Socket Address Structure 

Socket address structures are always passed by reference when passed as an argument to 

any o the socket functions. But the socket functions that like one of these pointers as an 

argument must deal with socket address structures from any of the supported protocol families. 

Struct sockaddr    { 

Uint8_t          sa_len; 

Sa_family_t  sa_family  /* address family:AF_xxx value*/ 

Char           sa_data[14]; /*protocol –specific address 

}; 

 The socket functions are then defined as taking a pointer to the generic socket address 

structure, as shown here in the ANSI C function prototype for the bind function. 

int  bind(int, struct sockadd*/ soclen_t}; 

 This requires that any calls to these functions must cast the point to the protocol specific 

socket address structure to be a pointer to a generic socket address structure. 
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 For example, 

Struct sockaddr_in   ser;  /* IPV4 socket address structure */ 

 /* fill in serv{}*/ 

 bind(sockfd, (struct sockaddr  *) & serv, size of (serv) 

4.3 IPV6 Socket Address Structure 

 The IPv6 socket is defined by including the <netinet/in. h>header  

 

 

 

 

 

 

 

 

 

 

 

 

 The SIN6_LEN constant must be deined if the system supports the length member for 

socket address structures. 

 The IPv6 family is AF_INET6, whereas the IPv4 family is AF_INET 

 The members in this structure are ordered so that if the sockaddr_in6 structure is 64-bit 

aligned, so is the 128 bit sin6_addr member. On some 64-bit processor, data access of 

64-bit values is optimized if stored on a 64-bit boundary. 

Struct in6_addr{  

Uint8_t  s6_addr[16];   /* 128-bit IPV6 address*/ 

                                        /* network byteordered*/ 

}; 

#define SIN6_LEN        /* required for compile-time tests*/ 

struct sockaddr_in6{ 

uint8_t             sin6_len;    /*length of this struct [24]*/ 

sa_family_t      sin6_family /*AF_INET6*/ 

in_port_t           sin6_port;   /*transport layer port#*/ 

                                           /*network byte ordered */ 

uint32_t           sin6_flowinfo;  /*priority & flow label*/ 

                                              /*network byte ordered*/ 

Struct in6_addr sin6_adddr;     /*IPV6 address*/ 

                                               /*network byte ordered*/ 

}; 
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 The sin6_flowinfo member is divided into three fields. The low-order 24 bits are the flow 

label. The next 4 bit are the priority. The next 4 bits are reserved. 

4.4 Comparison of Socket Address Structure 

 The socket address structures all contain a 1-byt length field, that the family field also 

occupies 1 byte and that any field that must be at least some number of bit is exactly 

that number of bits.  

 Two of the socket address structures are fixed length, while the Unix domain structure 

and the data link structure are variable length.  

 To handle variable-length structures whenever we pass a pointer to a socket address 

structure as an argument to one of the socket functions, we pass its length as another 

argument. 

 Fig. 1.2 shows the comparison of socket address structures. 

 

Fig. 1.2 Comparison of socket address structure 
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5 Byte ordering functions 

A 16-bit integer that is made up of 2 bytes. There are two ways to store the two bytes in 

memory:  

 with the low-order byte at the starting address, known as little-endian byte order 

 with the high-order byte at the starting address, known as big-endian byte order. 

Fig. 1.3 shows the increasing memory addresses going from right to left in the top, and from 

left to right in the bottom. The terms "little-endian" and "big-endian" indicate which end of the 

multi byte value, the little end or the big end, is stored at the starting address of the value. 

 

Fig. 1.3 Byte Ordering 

 The implementation could store the fields in a socket address structure in host byte 

order and then convert to and from the network byte order when moving the fields to and 

from the protocol headers, saving us from having to worry about this detail.  

 The following four functions used to convert between these two byte orders. 

#include <netinet/in.h> 

uint16_t htons(uint16_t host16bitvalue) ; 

uint32_t htonl(uint32_t host32bitvalue) ; 

Both return: value in network byte order 
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 In the names of these functions, h stands for host, n stands for network, s stands 

for short, and lstands for long.  

 Most Internet standards use the term octet instead of byte to mean an 8-bit quantity.  

6. Address conversion functions 

These functions convert IP address in ASCII dotted decimal format to binary format in 

network byte order and vice versa. The functions include, 

 inet_aton 

 inet_ntoa  

   Syntax 

 

 

 

 

 

 

 

7. Elementary TCP sockets 

This section describes the necessary functions required to write a client server program. 

The Fig. 1.4 below shows the timeline of TCP client server communication. 

uint16_t ntohs(uint16_t net16bitvalue) ; 

uint32_t ntohl(uint32_t net32bitvalue) ; 

Both return: value in host byte order 

int inet_aton(const char *strptr, struct in_addr *addrptr); 

Returns: 1 if string is valid (Successful), 0 on error 

char *inet_ntoa(struct in_addr inaddr); 

Returns: pointer to dotted-decimal string 
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Fig. 1.4 Elementary TCP socket functions 

7.1 Functions 

7.1.1 Socket 

To perform the input output operation in the network, first the process should call the socket 

function and specify the communication protocol as required.  

Syntax 

 

 

 

The family field represents the protocol family and takes any one of the constant as 

shown in Table below. 

# include <sys/socket.h> 

int socket (int family, int type, int protocol); 

   Returns : Non-negative descriptor if OK, -1 on error 
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family Description 

AF_INET IPv4 protocol 

AF_INET6 IPv6 protocol 

AF_LOCAL Unix domain protocols 

AF_ROUTE Routing socket 

AF_KEY Key socket 

The socket type field represents the type of the socket used for communication and it 

takes any one of the constants as shown in Table below. 

type Description 

SOCK_STREAM Stream socket 

SOCK_DGRAM Datagram socket 

SOCK_SEQPACKET Sequenced packet socket 

SOCK_RAW Raw socket 

 The protocol field represents the type of the protocol used and it takes any one of the 

constants as shown in Table below. This field can be set a value 0 for default selection of the 

protocol for the given combination of family and type. 

protocol Description 

IPPROTO_TCP TCP transport protocol 

IPPROTO_UDP UDP transport protocol 

IPPROTO_SCTP SCTP transport protocol 

7.1.2 Connect 

This function is used by a TCP client to establish a connection with the server.  

Syntax 

 

  

 The first argument sockfd is a socket descriptor returned by the socket function. 

# include <sys/socket.h> 

int connect (int sockfd, const struct sockaddr *servaddr, socklen_t addrlen); 

   Returns : 0 if OK, -1 on error 
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 The second argument is a pointer to the socket address structure. The socket 

address structure contains the IP address and the port number for the required 

connection. 

 The third argument represents the size of the socket address structure. 

The connect function initiates TCP’s 3 way handshake. This function returns only when the 

connection is established or an error occurs. The possible error returns include the following. 

 If the client TCP receives no response to its SYN segment, ETIMEDOUT is returned. 

 If the response from the server is reset (RST) for client’s SYN, it indicates that no 

process is waiting for connections on server host at the specified port. This is a hard 

error and the error ECONNREFUSED is returned to the client. 

 If the client’s SYN elicits an ICMP “destination unreachable” from some intermediate 

router, this is considered as soft error. The kernel of the client saves the message 

but keeps sending SYN. If there is no response after some fixed amount of time, the 

saved ICMP error is returned to the process as EHOSTUNREACH or 

ENETUNREACH. 

7.1.3 Bind 

This function assigns a local protocol address to a socket. 

Syntax 

 

 

 

 The first argument sockfd is a socket descriptor returned by the socket function. 

 The second argument is a pointer to the socket address structure. The socket address 

structure contains the IP address and port number of the local host. 

 The third argument represents the size of the socket address structure. 

Server binds the well known port when they start. If a client or server does not call the bind 

function, the kernel chooses an ephemeral port. Normally, a TCP client does not bind an IP 

address to its socket. The kernel chooses the source IP address when the socket is connected 

# include <sys/socket.h> 

int bind (int sockfd, const struct sockaddr *myaddr, socklen_t addrlen); 

   Returns : 0 if OK, -1 on error 
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based on the outgoing interface. If a TCP server does not bind an IP address, the kernel uses 

the destination IP address of the client’s SYN as server source IP address. 

7.1.4 Listen 

The listen function is used only by the TCP server and it performs the following actions. 

 When the socket is created is will be active. The listen function converts the 

unconnected socket into a passive socket, indicating that the kernel should accept 

the incoming connection requests to this socket. 

 The second argument represents the maximum number of connections the kernel 

can queue for this socket. 

Syntax 

 

 

 

 This function should be called after the socket and bind functions and before the accept 

function. The kernel maintains two queues for a listening socket. 

 Incomplete connection queue 

It maintains an entry for each SYN that has arrived from a client for which the 

server is waiting for the completion of Three-way handshake. 

 Completed connection queue 

It maintains an entry for each client which has completed the three-way 

handshake.The Fig. 1.5 depicts the two queues for a listening socket. 

 

Fig. 1.5 Queues for a listening socket 

# include <sys/socket.h> 

int listen (int sockfd, int backlog); 

   Returns : 0 if OK, -1 on error 
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Fig. 1.6 below shows the packet exchange during connection establishment with the two 

queues. 

 

Fig. 1.6 Packet exchange in TCP 

7.1.5 Accept 

This function is called by the TCP server to return the next completed connection from the 

front of completed connection queue. If the queue is empty, the process is put to sleep. 

Syntax 

 

 

 The first argument sockfd is a socket descriptor returned by the socket function. 

 The second argument is a pointer to the socket address structure. The socket 

address structure contains the IP address and port number of the client. 

 The third argument addrlen represents the size of the socket address structure 

pointed to by cliaddr. 

This function returns upto three values. It returns an integer value which is either a new 

socket descriptor or an indication of an error, the address of the client and the size of this 

address. If the protocol address of client is not required, both cliaddr and addrlen are set to null 

pointers. 

7.1.6 Fork 

This function is used to create a new child process to handle each incoming client request. 

This is the only function in unix to create a child process. 

# include <sys/socket.h> 

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen); 

   Returns : non-negative descriptor if OK, -1 on error 
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Syntax 

 

 

 

This function is called once but it returns twice once in the parent process and once in the 

child process. All the descriptors open in parent before calling fork() are shared with the child 

after fork returns. 

The uses of fork function include the following. 

 A process makes a copy of itself so that one copy can handle one operation while the 

other copy can do other tasks. 

 After the creation of new process by using fork function, one of the process calls exec to 

replace itself with the new program. 

7.1.7 Exec 

In Unix, the only way to execute a program on disk is to call an exec function by any existing 

process. There are six exec functions that can be used.  

Syntax 

 

 

 

The Fig. 1.7 below shows the types of exec functions. 

 

Fig. 1.7 Exec functions 

# include <unistd.h> 

pid_t fork(void); 

   Returns : 0 in child, process ID of child in parent, -1 on error 

#include int execl (const char *pathname, const char arg 0, …/ (char *) 0 */);  

int execv (const char *pathname, char *const argv[ ]);  

int execle (const char *pathname, const char *arg 0, ./ * (char *)0,char *const envp[] */);  

int execve (const char *pathname, char *const arg [], char *const envp[]);  

int execlp (const char *filename, const char arg 0, …/ (char *) 0 */);  

int execvp (const char *filename, char *const argv[]); 
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7.1.8 Write 

This function is used to send the data over stream sockets. 

Syntax 

 

 

 

 

 

 The first argument sockfd is a socket descriptor returned by the socket function. 

 The second argument is a pointer to the data to be send. 

 The third argument is the length of the data to be send in terms of bytes. 

 The fourth argument is flags which is set to 0. 

7.1.9 Read 

This function is used to receive the data from a stream socket. 

 Syntax 

 

 

 

 

 The first argument sockfd is a socket descriptor returned by the socket function. 

 The second argument is a pointer to the buffer to read the data. 

 The third argument is the maximum length of the buffer. 

 The fourth argument is flags which is set to 0. 

7.1.10 Close 

This function is used to terminate a TCP connection. 

Syntax 

 

 

 

 

 The default operation of close function is to mark the socket as closed and return to 

the process immediately. 

# include <unistd.h> 

int close(int sockfd); 

   Returns : 0 if ok, -1 on error 

# include <sys/socket.h> 

int write (int sockfd, const void *msg, int len, int flags); 

   Returns : No. of bytes send if OK, -1 on error 

# include <sys/socket.h> 

int read (int sockfd, void *buf, int len, int flags); 

   Returns : No. of bytes send if OK, -1 on error 
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8. Concurrent Server 

 A concurrent server handles multiple requests from the clients at the same time. This is 

done by creating a child process for each client request using a function called fork().This The 

following program is a typical concurrent server. 

pid_t pid;  

int listenfd, connfd;  

listfd = socket ( , , , ); /*fill in sockaddr_in with server’s well known port*/  

bind (listenfd, …);  

listen (listenfd, LISTENQ);  

for ( ; ; ) {  

connfd = accept (listenfd, …);  

if ( (pid = fork())== 0) {  

close (listenfd); /* child closed listening socket */  

doit (connfd); /* process the request */  

close ( connfd); /* done with the client*/  

exit (0); /* child terminates*/ }  

close (connfd); /* parent closes connected socket*/ } 

 When a connection is established, accept returns, the server calls the fork() function and 

child process services the client and the parent process waits for further connection. The parent 

closes the connected socket since the child handles this new client. Fig. 1.8 shows the 

communication between client and the concurrent server. 
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Fig. 1.8 Concurrent server communication 
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9. Iterative server 

 An iterative server handles a single request from the client at a time. This service can be 

used when the requests are guaranteed to be serviced within a small amount of time.  

Problems: 

 Server is locked while dealing with the request. 

 If the request takes longer time, no other clients are serviced. 

The program below shows example of an iterative day time server. 

#include     "unp.h". 
#include     <time.h> 

 
int 
main(int argc, char **argv) 
{ 
     int     listenfd, connfd; 
     struct sockaddr_in servaddr; 
     char    buff[MAXLINE]; 
     time_t ticks; 

 
     listenfd = Socket(AF_INET, SOCK_STREAM, 0); 

 
     bzeros(&servaddr, sizeof(servaddr)); 
     servaddr.sin_family = AF_INET; 
     servaddr.sin_addr.s_addr = htonl(INADDR_ANY); 
     servaddr.sin_port = htons(13); /* daytime server */ 

 
     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr)); 

 
     Listen(listenfd, LISTENQ); 

 
     for ( ; ; ) { 
         connfd = Accept(listenfd, (SA *) NULL, NULL); 

 
         ticks = time(NULL); 
         snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks)); 
         Write(connfd, buff, strlen(buff)); 

 
         Close(connfd); 
     } 

 } 
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Questions 

PART – A 

1. Define sockets and list out its types. 

2. What is the use of bind() system call? 

3. Write the Internet Socket address structure. 

4. List out the address transformation functions. 

5. What is the use of connect() system call? 

6. Name the functions that is used alone by the TCP server and give the syntax for the 

same. 

7. List out the functions used by UDP to send and receive messages. 

8. Define the byte order used by the TCP/IP protocol suite. 

9. Differentiate iterative and concurrent server. 

10. What is physical address and Internet address. 

 

PART - B 

1. Explain the TCP/IP layering in detail with a neat sketch 

2. Explain the following system calls 

(a) Socket 

(b) Bind 

(c) Read 

(d) Write 

(e) Close 

3. With a neat diagram explain the connectionless iterative server. 

4. Briefly explain the connection oriented concurrent server with a neat diagram 

5. Compare and contrast the concurrent server and iterative server 

6. Give a brief note on the following: 

(a) Byte manipulation functions     (6) 

(b) Byte order transformation functions    (6) 
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APPLICATION DEVELOPMENT 10 hrs.

TCP Echo Server – TCP Echo Client – Posix Signal handling – Server with multiple clients –
boundary conditions:Server process Crashes, Server host Crashes, Server Crashes and 
reboots, Server Shutdown – I/O multiplexing – I/O Models – select function – shutdown function 
– TCP echo Server (with multiplexing) – poll function – TCP echo Client (with Multiplexing)

1. TCP Echo client server

A TCP client server communication involves the following steps.

1. The client reads the input data from the standard input and writes the line to the server.

2. The server reads the data from the network input and echoes the line back to client.

3. The client reads the echoed line and prints it on the standard output.

Fig 2.1 shows the typical echo client server.

Fig. 2.1 TCP echo client server

1.1 TCP echo server

The role of the TCP echo server is written in two functions. One is the main() function 

and the other is str_echo() function.

TCP echo server main() function includes the following steps namely,

∑ Create socket

∑ Bind server’s well known port

∑ Wait for client connection to complete

∑ Concurrent server

TCP echo server str_echo() function includes the following steps namely,

∑ Read a buffer

TCP client TCP serverStdin

Stdout

fgets

fputs

write read

read write
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∑ Echo the buffer

Fig. 2.2 shows the TCP echo server main() function and Fig. 2.3 shows the TCP echo 

server str_echo() function.

Fig 2.2 TCP echo server main() function

Line 1: It is the header created by the WRS which encapsulates a large number of header that 

are required for the functions that are referred. 

Line 2 – 3: This the definition of the main() with command line arguments. 

Line 5-8 : These are variable declarations of types that are used. 
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Line 9 : It is the system call to the socket function that returns a descriptor of type int.- in this 

case it is named as listenfd. The arguments are family type, stream type and protocol argument 

– normally 0) 

Line 10: the function bzero() sets the address space to zero. 

Line 11-12: Sets the internet socket address to wild card address and the server port to the 

number defined in SERV_PORT which is 9877 (specified by WRS). It is an intimation that the 

server is ready to accept a connection destined for any local interface in case the system is 

multi homed. 

Line 14 :bind () function binds the address specified by the address structure to the socket. 

Line 15: The socket is converted into listening socket by the call to the listen()function 

Line 17-18: The server blocks in the call to accept, waiting for a client connection to complete. 

Line 19 – 24: For each client, fork() spawns a child and the child handles the new client. The 

child closes the listening socket and the parent closes the connected socket The child then calls 

str_echo () to handle the client.

Fig 2.3 TCP echo server str_echo function

1.2 TCP echo client

The role of the TCP echo client is written in two functions. One is the main() function and 

the other is str_cli() function.

The TCP echo client main() function includes the following steps namely,

∑ Create socket

∑ Fill in the socket address structure
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∑ Connect to server

The TCP echo client str_cli() function includes the following steps namely,

∑ Read a line, write to server

∑ Read echoed line from server, write to standard output

∑ Return to main

Fig. 2.4 shows the TCP echo client main() function and Fig. 2.5 shows the TCP echo client 

str_cli() function.

Fig. 2.4 TCP echo client main() function

MAXLINE is specified as constant of 4096 characters. 

Line 7-11: readlinereads the next line from the socket and the line is echoed back to the client 

by writenIf the client closes the connection, the recept of client‘s FIN causes the child‘s readline 

to return 0. This causes the str_echo function to return which terminates the child. 

Line 9 – 13: A TCP socket is created and an Internal socket address structure is filled in with the 

server‘s IP address and port number. We take the server‘s IP address from the command line 

argument and the server‘s well known port (SERV_PORT) from the header. 
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Line 13: The function inet_pton () converts the argument received at the command line from 

presentation to numeric value and stores the same at the address specified as the third 

arguments. 

Line 14 –1 5: Connection function establishes the connection with the server. The function 

str_cli () than handles the client processing.

Fig. 2.5 TCP echo client str_cli() function

Line 6-7 :fgetsreads a line of text and writensends the line to the server. 

Line 8 – 10: readline reads the line echoed back from the server and fputs writes it to the 

standard output.

2. POSIX signal handling

2.1 Signal – Definition

A signal is a notification to a process or within a process about the occurrence of an 

event.The receiving process can ignore a signal or can call a routine (handled by signal 

handler). After returning from signal handler, the receiving process will resume its execution at 

the point where it is interrupted.

Conditions for occurrence of a signal

1. Hardware exceptions 

2. Process can send signals to themselves.
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3. Kernel can generate and send signal to process when something happens. (eg) 

SIGPIPE will be generated when a process writes to a pipe which has been closed by 

the reader.

2.2 POSIX signal handling – Portable Operating System Interface for UNIX

• Every signal has a disposition, which is called the action associated with the signal. The 

disposition is set by calling the sigactionfunction. 

2.2.1 Choices for disposition

There are three choices for the disposition. These include the following.

a) Whenever a specific signal occurs, a specific function can be provided. This function is called 

signal handler and the action is called catching the signal. 

• The two signal SIGKILL and SIGSTOP cannot be caught – this is an exception. 

• The function is called with a single integer argument that is the signal number and the function 

returns nothing as shown below: 

conststructsigaction act;

sigaction (SIGCHLD, &act, NULL)

• Calling sigactionand specifying a function to be called when the signal occurs is all that is 

required to catch the signal. 

ÿ For few signal like SIGIO, SIGPOLL, and SIGURG etc additional actions on the part of 

the process is required to catch the signal. 

b) A signal a can be ignored by setting its disposition to SIG_IGN. Again the two signals 

SIGKILL and SIGSTOP are exceptions. 

c) We can set the default disposition for a signal by setting its disposition to SIG_DFL. The 

default is normally to terminate a process on the receipt of a signal, with certain signal also 

generating a core image of the process in its current working directory. The signals whose 

default disposition is to be ignored are : SIGCHLD AND SIGURG(sent on arrival of out of band 

data.)

With appropriate settings in the sigaction structure you can control the current process's 

response to receiving a SIGCHLD signal. As well as setting a signal handler, other behavior can 

be set.

• act.sa_handler is SIG_DFL then the default behaviour will be restored 
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• act.sa_handler is SIG_IGN then the signal will be ignored if possible (SIGSTOP and SIGKILL 

can't be ignored) 

• act.sa_flags is SA_NOCLDSTOP - SIGCHLD won't be generated when children stop. 

• act.sa_flags is SA_NOCLDWAIT - child processes of the calling process will not be 

transformed into zombie processes when they terminate.

Fig. 2.6 shows the signal function that calls the POSIX sigaction function. Follwing is the 

description of each line.

line 2-3 call to the function when a signal occurs. It has pointer to signal handling function as the 

second argument 

Line 6: Set Handler : The sa_handler member of the sigaction structure is set to the func 

argument 

Line 7: Set signal mask to handler: POSIX allows us to specify a set of signals that will be 

blocked when our signal handler is called. Any signal that is blocked cannot be delivered to the 

process. We set the sa_mask member to the empty set, which means that no additional signals 

are blocked while our signal handler is running Posix guarantees that he signal being caught is 

always blocked while its handler is executing 

Line 8 – 17: An optional flag SA_RESTART, if it is set, a system call interrupted by this signal 

will automatically restarted by the kernal. 

Line 18 – 20: The function sigaction is called and then return the old action for the signal as the 

return value of the signal function.

Fig. 2.6 signal function that calls the POSIX sigaction function
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3. Server with multiple clients

Multiple clients are quite often connected to a single server at the same time. Typically, a server 

runs constantly on a server computer, and clients from all over the Internet may want to connect 

to it. You can use threads to handle the server's multiple clients simultaneously. Simply create a 

thread for each connection. Fig 2.7 shows a server that serves multiple clients.

Fig. 2.7 A server that serves multiple clients

Zombies

∑ Zombie = a process that has terminated, but whose parent has not yet waited for it

∑ One way to see zombies is to press Ctrl-Z (suspend) in the midst of execution and then 

enter a ps command. Zombies appear as <defunct> processes.

Wait / Waitpid

Either of wait or waitpid can be used to remove zombies.

wait (and waitpid in it's blocking form) temporarily suspends the execution of a parent process 

while a child process is running. Once the child has finished, the waiting parent is restarted.

Declarations:

#include <sys/types.h>

#include <sys/wait.h>

Server

Client n. . .Client 1

A serve socket 
on a  port

A socket for a 
client

A socket for a 
client
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pid_t wait(int *statloc);

/* returns process ID if OK, or -1 on error */

pid_t waitpid(pid_t pid, int *statloc, int options);

/* returns process ID : if OK,

*          0         : if non-blocking option && no zombies around

*          -1        : on error

*/

The statloc argument can be one of two values:

∑ NULL pointer: the argument is simply ignored

∑ pointer to an integer: when wait returns, the integer this describes will contain status 

information of the terminated process (see Stevens p.198 for macros that examine the 

termination status)

wait() waitpid()

wait blocks the caller until a child process 

terminates

waitpid can be either blocking or non-blocking:

∑ If options is 0, then it is blocking

∑ If options is WNOHANG, then is it non-

blocking

if more than one child is running 

then wait() returns the first time one of the 

parent's offspring exits

waitpid is more flexible:

∑ If pid == -1, it waits for any child 

process. In this respect, waitpid is 

equivalent to wait
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∑ If pid > 0, it waits for the child whose 

process ID equals pid

∑ If pid == 0, it waits for any child whose 

process group ID equals that of the 

calling process

∑ If pid < -1, it waits for any child whose 

process group ID equals that absolute 

value of pid

4. Boundary conditions

4.1 Connection abort before accept returns

After the three way handshake, the connection is established and then the client TCP sends 

an RST(reset). ON the server side the connection is queued by its TCP waiting for the server 

process to call acceptwhen the RST arrives. Sometime later the server process calls 

accept.Depending on the type of implementation the aborted connection differs. 

v The Berkley derivedimplementation handles the aborted connection completely within 

the kernel and the server process neversees it. 

v Most of the SVR4 (System V release 4) implementation returns an error to the 

process as the returnfrom accept and the type of error depends on the 

implementation. 

v Most implementation returns anerronoEPROTO (protocol error) but posix.1g 

specifies that the return must be ECONNABORTED. The reason for this is that 

EPROTO is also returned when some fatalprotocol related event occurs on the 

bytestream. Receiving the same error EPROTO by the server makes itdifficult to 

decide whether to call accept again or not. IN case of ECONNABORTED error, 

theserverignores the error and just calls accept again.



DEPARTMENT OF CSE/IT
SCSX1024 NETWORK PROGRAMMING AND MANAGEMENT UNIT- II

III YEAR / VI SEM

4.2 Termination of Server Process

After starting client and server, the child process is killed at the server (kill the child process 

basedon its ID). This simulates the crashing of the server process, then what happens to client: 

Thefollowing steps take place.

1. We start the server and client on different hosts and type one line to the client to verify 

that all isOK. That line is echoed normally by the server child.

2. Identify the process ID of the server child and kill it. As part of the process termination, all 

opendescriptors in the child are closed. This causes the FIN to bysent to the client and the client 

TCPresponds with an ACK. This is the first half of the TCP connection termination.

3. The SIGCHLD signal is sent to the server parent and handled correctly.

4. Nothing happens at the client. The client receives the FIN from the sever TCP and 

responds withan ACK. But the problem is that the client process is blocked in the call to the 

fgetswaiting for aline form the terminal.

5. When we type another line, str_cli calls written and the client TCP sends the data to the 

sever.This is allowed by TCP because the receipt of the FIN by the client TCP only indicates 

that theserver process has closed its end of the connection and will not send any more data. 

The receipt ofFIN does not tell the client that the server process has terminated (which in this 

case it has).

6. When the server TCP receives the data from the client, it responds with an RST since the 

processthat had that socket open has terminated. We can verify that the RST is sent by 

watching thepackets with tcpdump.

7. But the client process will not see the RST because it calls readlineimmediately after the 

call towrite and readlinereturns 0. Our client is not expecting to receive an end of line at 

thispoint so it quits with an error message server terminated prematurely.

8. So when the client terminates (by calling err_quit), all its open descriptors are closed.

The problem in this example is that the client blocked in the call to fgets when the FIN 

arrives on thesocket. The client is really working with the two descriptors - the socket and the 

user input – andinstead of blocking on input from any one of the two sources, it should block on 

input from eithersource. This is the function of select and poll function.

SIGPIPE signal
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When the client has more than one to write, what happens to it? That is when the FIN is 

received,the readline returns RST, but the second one is also written. The rule applied here is, 

when a process writes to a socket that has received an RST, the SIGPIPE signal is sent to the 

process. The default action ofthis signal is to terminate the process so the process must catch 

the signal to avoid involuntarilyterminated.If the process catches the signal and returns from the 

signal handler, or ignores the signal, the writeoperation returns EPIPE (error pipe)

#include <unp.h>

voidstr_cli (FILE *fp, intsockfd)

{

charsendline[MAXLINE], recvline[MAXLINE];

while (fgets(sendline, MAXLINE, fp)!=null)

{

writen(sockfd, sendline, 1);

sleep(1);

writeln (sockfd, sendline +1, strlen (sendline)-1);

if (readline()sockfd, recvline, MAXLINE==0)

err_quit (―str_cli: server terminated prematurelyǁ);

fputs (recvline, stdout);

}

}

In the above str_cli(), the writeln is called two times: the first time the first byte of data is 

writeln tothe socket, followed by a pause of 1 sec, followed by the remainder of the line. The 

intention is for the firstwriteln to elicit the RST and then for the second writeln to generate 

SIGPIPE.We start with the client, type in one line, see that line is echoed correctly, and then 

terminates theserver child on the server host, we then type another line, but nothing is echoed 

and we just get a shellprompt. Since the default action of the SIGPIPE is to terminate the 

process without generating a core file,nothing is printed by the Kornshell.The recommended 

way to handle SIGPIPE depends on what the application what to do when thisoccurs. IF there is 

nothing special to do, then setting the signal disposition to SIG_IGN is easy, assumingthat 

subsequent output operations will catch the error of EPIPE and terminate.IF special actions are 
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needed when the signal occurs, then the signal should be caught and anydesired actions can 

be performed in the signal handler.If multiple sockets are in use, the delivery of the signal does 

not tell us which socket encountered theerror. IF we need to know which write caused the error, 

then we must either ignore the signal or return fromthe signal handler and handle EPIPE from 

write.

4.3 Crashing of Server Host

This scenario lets us know what happens when the server host crashes. To simulate this we 

must run theclient and server on different hosts. We then start server, start the client, type in a 

line to the client toverify that the connection is up, disconnect the server host from the network, 

andtype in another line at the client. This also covers the scenario of the server host being 

unreachablewhen the client sends data (some immediate router is down after the connection 

has been established).

The following steps take place.

1. When the server host crashes, nothing is sent out on the existing network connections. That 

iswe are assuming the host crashes, and is not shut down by the operator.

2. We type a line of input to the client, it is written by writen and is sent by the client TCP as a

data segment. The client then blocks in the call to readline waiting for the echoed reply.

3. If we watch the network with tcpdump, we will see the client TCP continually retransmit 

thedata segment, trying to receive ACK from the server. Berkley derived implementations 

transmitthe date segments 12 times, waiting around 9 minutes before giving up. When the client 

finallygives up, an error is returned to the client process. Since the client is blocked in the call to 

readline, it returns an error. Assuming the server host had crashed and there were no 

responsesat all to the client‘s data segments, the error is ETIMEDOUT. But if some intermediate 

routerdetermine that the server was unreachable and responded with ICMP destination 

unreachablemessage, then error is either EHOSTUNREACH or ENETUNREACH.

∑ To detect that the server is unreachable even before 9 minutes, place a time out call to 

readline.

∑ To find the crash of server even if client is not sending data actively, another technique 

is usedwhich used SO_KEEPALIVE socket option
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4.4 Crashing and Rebooting of Server Host

In the following example, we will establish a connection between the client and server and then 

assume the server host crashes and reboots. The easiest way to simulate this is to establish the 

connection, disconnect the server from the network, shut down the server host and then reboot 

it, and then reconnect the server host to the network. We do not want the client to see the 

server host shut down.

As stated in the previous section, if the client is not actively sending data to the server when the 

server host crashes, the client is not aware that the server host has crashed. The following 

steps take place:

1. We start the server and then the client. We type a line to verify that the connection is 

established.

2. The server host crashes and reboots.

3. We type a line of input to the client, which is sent as a TCP data segment to the server 

host.

4. When the server host reboots after crashing, its TCP loses all information about 

connections that existed before the crash. Therefore, the server TCP responds to the 

received data segment from the client with an RST.

5. Our client is blocked in the call to readline when the RST is received, causing readline to 

return the error ECONNRESET.

If it is important for our client to detect the crashing of the server host, even if the client is not 

actively sending data, then some other technique, such as the SO_KEEPALIVE socket option or 

some client/server heartbeat function, is required.

4.5 Shutdown of Server

When a Unix system is shutdown, the init process normally sends the SIGTERM signal to all

processes ( this signal can be caught), waits some fixed amount of time (often between 5 and 

20seconds), and then sends SIGKILL signal (which we cannot catch) to any process still 

running.This gives all running processes a short amount of time to clean up and terminate.If we 

do not catch SIGTERM and terminate, our server will be terminated bySIGKILL signal.When the 

process terminates, all the open descriptors are closed, and we then follow thesame sequence 
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of steps discussed under termination of server processWe need to select the select or poll 

function in the client to have the client detect thetermination of the server process as soon it 

occurs.

5. I/O Multiplexing

• TCP echo client is handling two inputs at the same time: standard input and a TCP 

socket

ÿ when the client was blocked in a call to read, the server process was killed

ÿ server TCP sends FIN to the client TCP, but the client never sees FIN since the 

client is blocked reading from standard input

¸ We need the capability to tell the kernel that we want to be notified if one 

or more I/O conditions are ready.

¸ I/O multiplexing (select, poll, or newer pselect functions)

• Scenarios for I/O Multiplexing

ÿ client is handling multiple descriptors (interactive input and a network socket).

ÿ Client to handle multiple sockets (rare)

ÿ TCP server handles both a listening socket and its connected socket.

ÿ Server handle both TCP and UDP.

ÿ Server handles multiple services and multiple protocols

6. I/O Models

The five I/O models available under UNIX:

∑ blocking I/O

∑ nonblocking I/O

∑ I/O multiplexing (select and poll)

∑ signal driven I/O (SIGIO)

∑ asynchronous I/O (the POSIX aio_functions)
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Two distinct phases for an input operation

∑ Waiting for the data to be ready (for a socket, wait for the data to arrive 

on the network, then copy into a buffer  within the kernel)

∑ Copying the data from the kernel to the process (from kernel buffer into 

application buffer)

Categories

• Synchronous I/O

ÿ causes the requesting process to be blocked until that I/O operation (recvfrom) 
completes. (blocking, nonblocking, I/O multiplexing, signal-driven I/O)

• Asynchronous I/O

ÿ does not cause the requesting process to be blocked

5.1 Blocking I/O model

The most prevalent model for I/O is the blocking I/O model. By default, all sockets are 
blocking. Fig. 2.8 shows the blocking I/O model.

Fig. 2.8 Blocking I/O Model

UDP is used in this example instead of TCP because with UDP, the concept of data 

being "ready" to read is simple: either an entire datagram has been received or it has not. With 

TCP it gets more complicated, as additional variables such as the socket's low-water mark 

come into play.



DEPARTMENT OF CSE/IT
SCSX1024 NETWORK PROGRAMMING AND MANAGEMENT UNIT- II

III YEAR / VI SEM

In fig. 2.8, the process calls recvfrom and the system call does not return until the 

datagram arrives and is copied into our application buffer, or an error occurs. The most common 

error is the system call being interrupted by a signal, The process is blocked the entire time from 

when it calls recvfrom until it returns. When recvfrom returns successfully, the application 

processes the datagram.

5.2 Nonblocking I/O model

When a socket is set to be nonblocking, when an I/O operation requested cannot be 

completed without putting the process to sleep, do not put the process to sleep, but return an 

error instead. Fig. 2.9 shows the non-blocking I/O model.

Fig. 2.9 Non-blocking I/O model

∑ For the first three recvfrom, there is no data to return and the kernel immediately returns 

an error of EWOULDBLOCK.

∑ For the fourth time we call recvfrom, a datagram is ready, it is copied into our application 

buffer, and recvfrom returns successfully. The data is further processed.

When an application sits in a loop calling recvfrom on a nonblocking descriptor like this, it is 

called polling. The application is continually polling the kernel to see if some operation is ready. 

This is often a waste of CPU time, but this model is occasionally encountered, normally on 

systems dedicated to one function.
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5.3 I/O Multiplexing

With I/O multiplexing, we call select or poll and block in one of these two system calls, 

instead of blocking in the actual I/O system call. Fig. 2.10 is a summary of the I/O multiplexing 

model.

Fig. 2.10 I/O Multiplexing

We block in a call to select, waiting for the datagram socket to be readable. When select returns 

that the socket is readable, we then call recvfrom to copy the datagram into our application 

buffer.

Comparing to the blocking I/O model

∑ Disadvantage: using select requires two system calls (select and recvfrom) instead of 

one

∑ Advantage: we can wait for more than one descriptor to be ready.

Multithreading with blocking I/O

Another closely related I/O model is to use multithreading with blocking I/O. That model 

very closely resembles the model described above, except that instead of using select to block 

on multiple file descriptors, the program uses multiple threads (one per file descriptor), and each 

thread is then free to call blocking system calls like recvfrom.
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5.4 Signal-driven I/O

The signal-driven I/O model uses signals, telling the kernel to notify us with 

the SIGIO signal when the descriptor is ready. Fig. 2.11 shows the signal driven I/O model.

Fig. 2.11 Signal driven I/O model

∑ We first enable the socket for signal-driven I/O and install a signal handler using 

the sigaction system call. The return from this system call is immediate and our process 

continues; it is not blocked.

∑ When the datagram is ready to be read, the SIGIO signal is generated for our process. 

We can either:

o read the datagram from the signal handler by calling recvfrom and then notify the 

main loop that the data is ready to be processed.

o notify the main loop and let it read the datagram.

The advantage to this model is that we are not blocked while waiting for the datagram to 

arrive. The main loop can continue executing and just wait to be notified by the signal handler 

that either the data is ready to process or the datagram is ready to be read.



DEPARTMENT OF CSE/IT
SCSX1024 NETWORK PROGRAMMING AND MANAGEMENT UNIT- II

III YEAR / VI SEM

5.5 Asynchronous I/O model

Asynchronous I/O is defined by the POSIX specification, and various differences in 

the real-time functions that appeared in the various standards which came together to form the 

current POSIX specification have been reconciled.

These functions work by telling the kernel to start the operation and to notify us when the 

entire operation (including the copy of the data from the kernel to our buffer) is complete. The 

main difference between this model and the signal-driven I/O model is that with signal-driven 

I/O, the kernel tells us when an I/O operation can be initiated, but with asynchronous I/O, the 

kernel tells us when an I/O operation is complete. Fig. 2.12 shows the asynchronous I/O model.

Fig. 2.12 Asynchronous I/O model

∑ We call aio_read (the POSIX asynchronous I/O functions begin with aio_ or lio_) and 

pass the kernel the following:

o descriptor, buffer pointer, buffer size (the same three arguments for read),

o file offset (similar to lseek),

o and how to notify us when the entire operation is complete.

This system call returns immediately and our process is not blocked while waiting for the 

I/O to complete.
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Comparison of I/O Models

Fig. 2.13 shows the comparison of I/O models.

Fig. 2.13 Comparison of I/O models

The main difference between the first four models is the first phase, as the second 

phase in the first four models is the same: the process is blocked in a call to recvfrom while the 

data is copied from the kernel to the caller's buffer. Asynchronous I/O, however, handles both 

phases and is different from the first four.

6. SELECT FUNCTION

• Allows the process to instruct the kernel to wait for any one of multiple events to occur

and to wake up the process only when one or more of these events occurs or when a 

specified amount of time has passed.

• What descriptors we are interested in (readable ,writable , or exception condition) and 

how long to wait?
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6.1 Possibilities for select function

• Wait forever : return only when descriptor (s) is ready (specify timeout argument as 

NULL)

• wait up to a fixed amount of time

• Do not wait at all : return immediately after checking the descriptors. Polling (specify 

timeout argument as pointing to a timeval structure where the timer value is 0)

• The wait is normally interrupted if the process catches a signal and returns from the 

signal handler

ÿ select might return an error of EINTR

ÿ Actual return value from function = -1

6.2 Syntax

#include <sys/select.h>
#include <sys/time.h>

int select (int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset, const 
struct timeval *);
//Returns: +ve count of ready descriptors, 0 on timeout, -1 on error

struct timeval{
long  tv_sec;  /* seconds */
long  tv_usec; /* microseconds */ } 

select function Descriptor Arguments

• readset ‡ descriptors for checking readable

• writeset ‡ descriptors for checking writable

• exceptset ‡ descriptors for checking exception conditions  (2 exception conditions)

¸ arrival of out of band data for a socket
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¸ the presence of control status information to be read from the master side 

of a pseudo terminal (Ignore)

• If you pass the 3 arguments as NULL, you have a high precision timer than the sleep 

function

Descriptor Sets

• Array of integers : each bit in each integer correspond to a descriptor (fd_set)

• 4 macros

ÿ void  FD_ZERO(fd_set *fdset);         /* clear all bits in fdset */

ÿ void  FD_SET(int fd, fd_set *fdset); /* turn on the bit for fd in fdset */

ÿ void  FD_CLR(int fd, fd_set *fdset); /* turn off the bit for fd in fdset*/

ÿ int    FD_ISSET(int fd, fd_set *fdset);/* is the bit for fd on in fdset ? */

Example of Descriptor sets Macros

fd_set  rset;

FD_ZERO(&rset); /*all bits off : initiate*/

FD_SET(1, &rset); /*turn on bit fd 1*/

FD_SET(4, &rset); /*turn on bit fd 4*/

FD_SET(5, &rset); /*turn on bit fd 5*/

The maxfdp1 argument

• The maxfdp1 argument specifies the number of descriptors to be tested. Its value is the 

maximum descriptor to be tested plus one. The descriptors 0, 1, 2, up through and 

including maxfdp1–1 are tested.
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• The constant FD_SETSIZE, defined by including <sys/select.h>, is the number of 

descriptors in the fd_set datatype. Its value is often 1024, but few programs use that 

many descriptors.

• The reason the maxfdp1 argument exists, along with the burden of calculating its value, 

is for efficiency. Although each fd_set has room for many descriptors, typically 1,024, 

this is much more than the number used by a typical process. The kernel gains 

efficiency by not copying unneeded portions of the descriptor set between the process 

and the kernel, and by not testing bits that are always 0.

readset, writeset, and exceptset as value-result arguments

• select modifies the descriptor sets pointed to by the readset, writeset, 

and exceptset pointers. These three arguments are value-result arguments. When we 

call the function, we specify the values of the descriptors that we are interested in, and 

on return, the result indicates which descriptors are ready. 

• We use the FD_ISSET macro on return to test a specific descriptor in an fd_setstructure. 

Any descriptor that is not ready on return will have its corresponding bit cleared in the 

descriptor set. To handle this, we turn on all the bits in which we are interested in all the 

descriptor sets each time we call select.

Return value of select

The return value from this function indicates the total number of bits that are ready across all the 

descriptor sets. If the timer value expires before any of the descriptors are ready, a value of 0 is 

returned. A return value of –1 indicates an error (which can happen, for example, if the function 

is interrupted by a caught signal).

Conditions for a Ready Descriptor

The following are specific about the conditions that cause select to return "ready" for sockets

1. A socket is ready for reading if any of the following four conditions is true:

o The number of bytes of data in the socket receive buffer is greater than or equal 

to the current size of the low-water mark for the socket receive buffer. A read 

operation on the socket will not block and will return a value greater than 0 (i.e., 
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the data that is ready to be read). We can set this low-water mark using 

the SO_RCVLOWAT socket option. It defaults to 1 for TCP and UDP sockets.

o The read half of the connection is closed (i.e., a TCP connection that has 

received a FIN). A read operation on the socket will not block and will return 0 

(i.e., EOF).

o The socket is a listening socket and the number of completed connections is 

nonzero.

o A socket error is pending. A read operation on the socket will not block and will 

return an error (–1) with errno set to the specific error condition. These pending 

errors can also be fetched and cleared by calling getsockopt and specifying 

the SO_ERROR socket option.

2. A socket is ready for writing if any of the following four conditions is true:

o The number of bytes of available space in the socket send buffer is greater than 

or equal to the current size of the low-water mark for the socket send buffer and 

either: (i) the socket is connected, or (ii) the socket does not require a connection 

(e.g., UDP). This means that if we set the socket to nonblocking (Chapter 16), a 

write operation will not block and will return a positive value (e.g., the number of 

bytes accepted by the transport layer). We can set this low-water mark using 

the SO_SNDLOWAT socket option. This low-water mark normally defaults to 

2048 for TCP and UDP sockets.

o The write half of the connection is closed. A write operation on the socket will 

generate SIGPIPE (Section 5.12).

o A socket using a non-blocking connect has completed the connection, or the 

connect has failed.

o A socket error is pending. A write operation on the socket will not block and will 

return an error (–1) with errno set to the specific error condition. These pending 

errors can also be fetched and cleared by calling getsockopt with 

theSO_ERROR socket option.

3. A socket has an exception condition pending if there is out-of-band data for the socket or 

the socket is still at the out-of-band mark.

https://notes.shichao.io/unp/ch6/ch16.md
https://notes.shichao.io/unp/ch5/#sigpipe-signal
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pselect Function

The pselect function was invented by POSIX and is now supported by many of the Unix 

variants.

#include <sys/select.h>

#include <signal.h>

#include <time.h>

int pselect (int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,

const struct timespec *timeout, const sigset_t *sigmask);

/* Returns: count of ready descriptors, 0 on timeout, –1 on error */

pselect contains two changes from the normal select function:

pselect uses the timespec structure (another POSIX invention) instead of the timeval structure. 

The tv_nsec member of the newer structure specifies nanoseconds, whereas 

the tv_usec member of the older structure specifies microseconds.

struct timespec {

time_t tv_sec;       /* seconds */

long   tv_nsec;      /* nanoseconds */

};

pselect adds a sixth argument: a pointer to a signal mask. This allows the program to disable 

the delivery of certain signals, test some global variables that are set by the handlers for these 

now-disabled signals, and then call pselect, telling it to reset the signal mask.
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With regard to the second point, consider the following example (discussed on APUE). Our 

program's signal handler for SIGINT just sets the global intr_flag and returns. If our process is 

blocked in a call to select, the return from the signal handler causes the function to return 

with errno set to EINTR. But when select is called, the code looks like the following:

if (intr_flag)

handle_intr();       /* handle the signal */

/* signals occurring in here are lost */

if ( (nready = select( ... )) < 0) {

if (errno == EINTR) {

if (intr_flag)

handle_intr();

}

...

}

The problem is that between the test of intr_flag and the call to select, if the signal occurs, it will 

be lost if select blocks forever.

With pselect, we can now code this example reliably as:

sigset_t newmask, oldmask, zeromask;

https://notes.shichao.io/apue/ch10/#example-of-signals-that-synchronize-a-parent-and-child


DEPARTMENT OF CSE/IT
SCSX1024 NETWORK PROGRAMMING AND MANAGEMENT UNIT- II

III YEAR / VI SEM

sigemptyset(&zeromask);

sigemptyset(&newmask);

sigaddset(&newmask, SIGINT);

sigprocmask(SIG_BLOCK, &newmask, &oldmask); /* block SIGINT */

if (intr_flag)

handle_intr();     /* handle the signal */

if ( (nready = pselect ( ... , &zeromask)) < 0) {

if (errno == EINTR)  {

if (intr_flag)

handle_intr ();

}

...

}

Before testing the intr_flag variable, we block SIGINT. When pselect is called, it replaces the 

signal mask of the process with an empty set (i.e., zeromask) and then checks the descriptors, 

possibly going to sleep. But when pselect returns, the signal mask of the process is reset to its 

value before pselect was called (i.e., SIGINT is blocked).

7. SHUTDOWN function

• Close one half of the TCP connection

ÿ send FIN to server, but leave the socket descriptor open for reading
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• Limitations with close function

ÿ decrements the descriptor’s reference count and closes the socket only if the 

count reaches 0

¸ With shutdown, can initiate TCP normal connection termination 

regardless of the reference count

ÿ terminates both directions (reading and writing)

¸ With shutdown, we can tell other end that we are done sending, although 

that end might have more data to send us.

Figure 2.14 shows the process of shutdown function.

Fig. 2.14 Shutdown function

7.1 Syntax

#include<sys/socket.h>

int shutdown ( int sockfd, int howto );

/* return : 0 if OK, -1 on error */

• howto argument
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ÿ SHUT_RD

¸ read-half of the connection closed

¸ Any data in receive buffer is discarded

¸ Any data received after this call is ACKed and then discarded

ÿ SHUT_WR

¸ write-half of the connection closed (half-close)

¸ Data in socket send buffer sent, followed by connection termination

ÿ SHUT_RDWR

¸ both closed

8. TCP Echo Server (with multiplexing)

The TCP echo server as a single process that uses select to handle any number of 

clients, instead of forking one child per client.

Before first client has established a connection 

Before the first client has established a connection, the server has a single listening descriptor 

as shown in fig. 2.15.

∑ The server maintains only a read descriptor set (rset), shown in the following figure. 

Assuming the server is started in the foreground, descriptors 0, 1, and 2 are set to 

standard input, output, and error, so the first available descriptor for the listening socket 

is 3.

∑ We also show an array of integers named client that contains the connected socket 

descriptor for each client. All elements in this array are initialized to –1.
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Fig. 2.15 First client establishing the connection

The only nonzero entry in the descriptor set is the entry for the listening sockets and the first 

argument to select will be 4.

After first client establishes connection 

When the first client establishes a connection with our server, the listening descriptor 

becomes readable and our server calls accept. The new connected descriptor returned by 

accept will be 4. Fig. 2.16 shows this connection:

Fig. 2.16 After client establishment of connection

The server must remember the new connected socket in its client array, and the 

connected socket must be added to the descriptor set. The updated data structures are shown 

in the fig. 2.17.

https://notes.shichao.io/unp/figure_6.15.png
https://notes.shichao.io/unp/figure_6.16.png
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Fig. 2.17 Updated data structure

After second client connection is established 

Sometime later a second client establishes a connection and we have the scenario 

shown below as in fig. 2.18.

Fig. 2.18 After second client establishment

The new connected socket (which we assume is 5) must be remembered, giving the data 

structures shown below as in fig. 2.19.

Fig. 2.19 Updated data structure

https://notes.shichao.io/unp/figure_6.17.png
https://notes.shichao.io/unp/figure_6.18.png
https://notes.shichao.io/unp/figure_6.19.png
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After first client terminates its connection

The first client terminates its connection. The client TCP sends a FIN, which makes descriptor 4 

in the server readable. When our server reads this connected socket, read returns 0. We then 

close this socket and update our data structures accordingly. The value of client[0] is set to –1 

and descriptor 4 in the descriptor set is set to 0. This is shown in the figure below. Notice that 

the value of maxfd does not change.

Fig. 2.20 First client terminating the connection

Summary of TCP echo server (revisited) 

∑ As clients arrive, we record their connected socket descriptor in the first available entry 

in the client array (the first entry with a value of –1) and also add the connected socket to 

the read descriptor set.

∑ The variable maxi is the highest index in the client array that is currently in use and the 

variable maxfd (plus one) is the current value of the first argument to select.

∑ The only limit on the number of clients that this server can handle is the minimum of the 

two values FD_SETSIZE and the maximum number of descriptors allowed for this 

process by the kernel 

/* include fig01 */

#include    "unp.h"

int

main(int argc, char **argv)

https://notes.shichao.io/unp/figure_6.20.png
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{

int i, maxi, maxfd, listenfd, connfd, sockfd;

int nready, client[FD_SETSIZE];

ssize_t n;

fd_set rset, allset;

char buf[MAXLINE];

socklen_t clilen;

struct sockaddr_in cliaddr, servaddr;

listenfd = Socket(AF_INET, SOCK_STREAM, 0);

bzero(&servaddr, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

servaddr.sin_port = htons(SERV_PORT);

Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

Listen(listenfd, LISTENQ);

maxfd = listenfd; /* initialize */

maxi = -1; /* index into client[] array */

for (i = 0; i < FD_SETSIZE; i++)

client[i] = -1; /* -1 indicates available entry */

FD_ZERO(&allset);

FD_SET(listenfd, &allset);

/* end fig01 */

/* include fig02 */

for ( ; ; ) {

rset = allset; /* structure assignment */
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nready = Select(maxfd+1, &rset, NULL, NULL, NULL);

if (FD_ISSET(listenfd, &rset)) { /* new client connection */

clilen = sizeof(cliaddr);

connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

#ifdef  NOTDEF

printf("new client: %s, port %d\n",

Inet_ntop(AF_INET, &cliaddr.sin_addr, 4, NULL),

ntohs(cliaddr.sin_port));

#endif

for (i = 0; i < FD_SETSIZE; i++)

if (client[i] < 0) {

client[i] = connfd; /* save descriptor */

break;

}

if (i == FD_SETSIZE)

err_quit("too many clients");

FD_SET(connfd, &allset); /* add new descriptor to set */

if (connfd > maxfd)

maxfd = connfd; /* for select */

if (i > maxi)

maxi = i; /* max index in client[] array */

if (--nready <= 0)

continue; /* no more readable descriptors */

}

for (i = 0; i <= maxi; i++) { /* check all clients for data */

if ( (sockfd = client[i]) < 0)
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continue;

if (FD_ISSET(sockfd, &rset)) {

if ( (n = Read(sockfd, buf, MAXLINE)) == 0) {

/* connection closed by client */

Close(sockfd);

FD_CLR(sockfd, &allset);

client[i] = -1;

} else

Writen(sockfd, buf, n);

if (--nready <= 0)

break; /* no more readable descriptors */

}

}

}

}

The code does the following:

∑ Create listening socket and initialize for select. We create the listening socket using 

socket, bind, and listen and initialize our data structures assuming that the only descriptor 

that we will select on initially is the listening socket.

∑ Block in select. select waits for something to happen, which is one of the following:

o The establishment of a new client connection.

o The arrival of data on the existing connection.

o A FIN on the existing connection.

o A RST on the existing connection.

∑ accept new connections.

o If the listening socket is readable, a new connection has been established.

o We call accept and update our data structures accordingly. We use the first 

unused entry in the client array to record the connected socket.
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o The number of ready descriptors is decremented, and if it is 0, we can avoid the 

next for loop. This lets us use the return value from select to avoid checking 

descriptors that are not ready.

∑ Check existing connections.

o In the second nested for loop, a test is made for each existing client connection 

as to whether or not its descriptor is in the descriptor set returned by select, and a 

line is read from the client and echoed back to the client. Otherwsie, if the client 

closes the connection, read returns 0 and we update our data structures 

accordingly.

o We never decrement the value of maxi, but we could check for this possibility 

each time a client closes its connection.

This server is more complicated than the earlier version, but it avoids all the overhead of 

creating a new process for each client and it is a nice example of select. Nevertheless, in, we 

will describe a problem with this server that is easily fixed by making the listening socket 

nonblocking and then checking for, and ignoring, a few errors from accept.

Denial-of-Service Attacks

There is a problem with the server in the above example. If a malicious client connects 

to the server, sends one byte of data (other than a newline), and then goes to sleep. The server 

will call read, which will read the single byte of data from the client and then block in the next 

call to read, waiting for more data from this client. The server is then blocked ("hung") by this 

one client and will not service any other clients, until the malicious client either sends a newline 

or terminates.

The basic concept here is that when a server is handling multiple clients, the server can 

never block in a function call related to a single client. Doing so can hang the server and deny 

service to all other clients. This is called a denial-of-service attack, which prevents the server 

from servicing other legitimate clients.

Possible solutions are:
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∑ Use nonblocking I/O 

∑ Have each client serviced by a separate thread of control (either spawn a process or a 

thread to service each client)

∑ Place a timeout on the I/O operations

9. Poll Function

Poll provides functionality that is similar to select, but poll provides additional information 

when dealing with STREAMS devices.

#include <poll.h>

int poll (struct pollfd *fdarray, unsigned long nfds, int timeout);

/* Returns: count of ready descriptors, 0 on timeout, –1 on error */

Arguments:

The first argument (fdarray) is a pointer to the first element of an array of structures. Each 

element is a pollfd structure that specifies the conditions to be tested for a given descriptor, fd.

struct pollfd {

int     fd;       /* descriptor to check */

short   events;   /* events of interest on fd */

short   revents;  /* events that occurred on fd */

};

The conditions to be tested are specified by the events member, and the function returns the 

status for that descriptor in the corresponding revents member. This data structure (having two 

variables per descriptor, one a value and one a result) avoids value-result arguments (the 

middle three arguments for select are value-result). Each of these two members is composed of 

one or more bits that specify a certain condition. The following figure shows the constants used 

to specify the events flag and to test the revents flag against.
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The first four constants deal with input, the next three deal with output, and the final three deal 

with errors. The final three cannot be set in events, but are always returned in revents when the 

corresponding condition exists.

With regard to TCP and UDP sockets, the following conditions cause poll to return the specified 

revent. Unfortunately, POSIX leaves many holes (optional ways to return the same condition) in 

its definition of poll.

∑ All regular TCP data and all UDP data is considered normal.

∑ TCP's out-of-band data is considered priority band.

∑ When the read half of a TCP connection is closed (e.g., a FIN is received), this is also 

considered normal data and a subsequent read operation will return 0.

∑ The presence of an error for a TCP connection can be considered either normal data or 

an error (POLLERR). In either case, a subsequent read will return –1 with errno set to 

the appropriate value. This handles conditions such as the receipt of an RST or a 

timeout.

∑ The availability of a new connection on a listening socket can be considered either 

normal data or priority data. Most implementations consider this normal data.

∑ The completion of a nonblocking connect is considered to make a socket writable.

The number of elements in the array of structures is specified by the nfds argument.
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The timeout argument specifies how long the function is to wait before returning. A 

positive value specifies the number of milliseconds to wait. The constant INFTIM (wait forever) 

is defined to be a negative value.

Return values from poll:

∑ –1 if an error occurred

∑ 0 if no descriptors are ready before the timer expires

∑ Otherwise, it is the number of descriptors that have a nonzero revents member.

If we are no longer interested in a particular descriptor, we just set the fd member of the pollfd 

structure to a negative value. Then the events member is ignored and the revents member is 

set to 0 on return.

10. TCP Echo Server (Revisited Again)

In the select version we allocate a client array along with a descriptor set named rset). 

With poll, we must allocate an array of pollfd structures to maintain the client information instead 

of allocating another array. We handle the fd member of this array the same way we handled 

the client array in the selection version: a value of –1 means the entry is not in use; otherwise, it 

is the descriptor value. Any entry in the array of pollfd structures passed to poll with a negative 

value for the fd member is just ignored.

/* include fig01 */

#include    "unp.h"

#include    <limits.h>      /* for OPEN_MAX */

int

main(int argc, char **argv)

{

int i, maxi, listenfd, connfd, sockfd;

int nready;

ssize_t n;
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char buf[MAXLINE];

socklen_t clilen;

struct pollfd client[OPEN_MAX];

struct sockaddr_in cliaddr, servaddr;

listenfd = Socket(AF_INET, SOCK_STREAM, 0);

bzero(&servaddr, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

servaddr.sin_port = htons(SERV_PORT);

Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

Listen(listenfd, LISTENQ);

client[0].fd = listenfd;

client[0].events = POLLRDNORM;

for (i = 1; i < OPEN_MAX; i++)

client[i].fd = -1; /* -1 indicates available entry */

maxi = 0; /* max index into client[] array */

/* end fig01 */

/* include fig02 */

for ( ; ; ) {

nready = Poll(client, maxi+1, INFTIM);

if (client[0].revents & POLLRDNORM) { /* new client connection */

clilen = sizeof(cliaddr);

connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

#ifdef  NOTDEF
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printf("new client: %s\n", Sock_ntop((SA *) &cliaddr, clilen));

#endif

for (i = 1; i < OPEN_MAX; i++)

if (client[i].fd < 0) {

client[i].fd = connfd; /* save descriptor */

break;

}

if (i == OPEN_MAX)

err_quit("too many clients");

client[i].events = POLLRDNORM;

if (i > maxi)

maxi = i; /* max index in client[] array */

if (--nready <= 0)

continue; /* no more readable descriptors */

}

for (i = 1; i <= maxi; i++) { /* check all clients for data */

if ( (sockfd = client[i].fd) < 0)

continue;

if (client[i].revents & (POLLRDNORM | POLLERR)) {

if ( (n = read(sockfd, buf, MAXLINE)) < 0) {

if (errno == ECONNRESET) {

/* connection reset by client */

#ifdef  NOTDEF

printf("client[%d] aborted connection\n", i);

#endif

Close(sockfd);

client[i].fd = -1;



DEPARTMENT OF CSE/IT
SCSX1024 NETWORK PROGRAMMING AND MANAGEMENT UNIT- II

III YEAR / VI SEM

} else

err_sys("read error");

} else if (n == 0) {

/* connection closed by client */

#ifdef  NOTDEF

printf("client[%d] closed connection\n", i);

#endif

Close(sockfd);

client[i].fd = -1;

} else

Writen(sockfd, buf, n);

if (--nready <= 0)

break; /* no more readable descriptors */

}

}

}

}

This code does the following:

∑ Allocate array of pollfd structures. We declare OPEN_MAX elements in our array of 

pollfd structures. Determining the maximum number of descriptors that a process can 

have open at any one time is difficult. One way is to call the POSIX sysconf function with 

an argument of _SC_OPEN_MAX (as described in APUE) and then dynamically allocate 

an array of the appropriate size.

∑ Initialize. We use the first entry in the client array for the listening socket and set the 

descriptor for the remaining entries to –1. We also set the POLLRDNORM event for this 

descriptor, to be notified by poll when a new connection is ready to be accepted. The 

variable maxi contains the largest index of the client array currently in use.
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∑ Call poll, check for new connection. We call poll to wait for either a new connection or 

data on existing connection.

o When a new connection is accepted, we find the first available entry in the client 

array by looking for the first one with a negative descriptor.

o We start the search with the index of 1, since client[0] is used for the listening 

socket.

o When an available entry is found, we save the descriptor and set the 

POLLRDNORM event.

∑ Check for data on an existing connection. The two return events that we check for 

are POLLRDNORM and POLLERR. We did not set POLLERR in the events member 

because it is always returned when the condition is true. The reason we check for 

POLLERR is because some implementations return this event when an RST is received 

for a connection, while others just return POLLRDNORM. In either case, we call read 

and if an error has occurred, it will return an error. When an existing connection is 

terminated by the client, we just set the fd member to –1.

11. TCP echo client (with multiplexing)

str_cli Function (Revisited Again)

The following code is our revised and correct version of the str_cli function that 

uses select and shutdown. In the function,select notifies us as soon as the server closes its end 

of the connection and shutdown lets us handle batch input correctly.

#include "unp.h"

void

str_cli(FILE *fp, int sockfd)

{

int maxfdp1, stdineof;

fd_set rset;

char buf[MAXLINE];

int n;
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stdineof = 0;

FD_ZERO(&rset);

for ( ; ; ) {

if (stdineof == 0)

FD_SET(fileno(fp), &rset);

FD_SET(sockfd, &rset);

maxfdp1 = max(fileno(fp), sockfd) + 1;

Select(maxfdp1, &rset, NULL, NULL, NULL);

if (FD_ISSET(sockfd, &rset)) { /* socket is readable */

if ( (n = Read(sockfd, buf, MAXLINE)) == 0) {

if (stdineof == 1)

return; /* normal termination */

else

err_quit("str_cli: server terminated prematurely");

}

Write(fileno(stdout), buf, n);

}

if (FD_ISSET(fileno(fp), &rset)) { /* input is readable */

if ( (n = Read(fileno(fp), buf, MAXLINE)) == 0) {

stdineof = 1;

Shutdown(sockfd, SHUT_WR); /* send FIN */

FD_CLR(fileno(fp), &rset);

continue;

}

Writen(sockfd, buf, n);

}

}
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}

∑ stdineof is a new flag that is initialized to 0. As long as this flag is 0, each time around 

the main loop, we select on standard input for readability.

∑ Normal and premature termination. When we read the EOF on the socket, and:

o If we have already encountered an EOF on standard input, this is normal 

termination and the function returns.

o If we have not yet encountered an EOF on standard input, the server process 

has prematurely terminated. We now callread and write to operate on buffers 

instead of lines and allow select to work for us as expected.

∑ shutdown. When we encounter the EOF on standard input, our new flag, stdineof, is set 

and we call shutdown with a second argument of SHUT_WR to send the FIN. Here 

buffers are used instead of lines, using read and writen.
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UNIT – III 

SOCKET OPTIONS, ELEMENTRY UDP SOCKETS  

Socket options – getsocket and setsocket functions – generic socket options – IP socket options – 

ICMP socket options – TCP socket options – Elementary UDP sockets – UDP echo Server – UDP 

echo Client – Multiplexing –TCP and UDP sockets – Domain name system – gethostbyname 

function – IPv6 support in DNS – gethostbyaddr function – getservbyname and getservbyport 

functions. 

3.1 Socket Options 

 Various types of options are available in a socket. There are various ways to get and set 

the options that affect a socket. They include, 

 getsockopt and setsockopt functions 

 fcntl function 

 ioctl function 

(a) getsockopt and setsockopt 

Syntax 

 

 

 

 

 

sockfd – refer to an open socket descriptor 

level –specifies the code in the system that interprets the option. (i.e) general socket code 

or protocol specific code (IPv4, IPv6,TCP) 

optname – name of the option 

optval – It is a pointer to a variable from which the new value of the option is fetched by 

setsockopt or into which the current value of the option is stored by getsockopt. 

Optlen – specifies the size of this variable. 

(b) fcntl 

fcntl stands for “file control”. This function performs various descriptor control operations. 

Syntax 

 

int getsockopt (int sockfd, int level, int optname, void *optval, socklen_t *optlen); 

int setsockopt (int sockfd, int level, int optname, const void *optval, socklen_t optlen); 

Return Value : Both return 0 on OK, -1 on error. 

 

int fcntl (int fd, int cmd, ….int arg); 

Return value: 0 if OK, -1 on error 
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(c) ioctl 

ioctl stands for “IO control”. 

Syntax 

 

 

 

 

 

3.2 Generic Socket Options 

 

These options are protocol independent options. These options are as follows. 

(1) SO_BROADCAST  

 This option enables or disables the ability of the process to send broadcast 

messages. 

 Broadcasting is supported only for datagram sockets and only on networks that 

support the concept of broadcast message. 

 An application must set this socket option before sending any broadcast 

message. 

 If the destination address is a broadcast address and this socket option is not 

set, EACCESS is returned. 

(2)  SO_DEBUG 

 This option is supported only by TCP.  

 When this option is enabled for a TCP socket, the kernel keeps track of the 

detailed information about all the packets send and received by the TCP for the 

socket. 

 These are kept in a circular buffer and can be examined with the trpt program. 

(3) SO_DONTROUTE 

 This option specifies that the outgoing packets are to bypass the normal routing 

mechanisms of the underlying protocol. 

 According to the destination address given, the packets will be routed. 

 So, a local interface will be identified and then the packet is routed. 

 If the local interface cannot be identified, ENETUNREACH is returned. 

int ioctl (int fd, int request, ….void *arg); 

Return value: 0 if OK, -1 on error 
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 This option can also be applied to individual datagrams using 

MSG_DONTROUTE flag. 

 This option is often used by the routing daemons to bypass the routing table and 

force a packet to be sent out a particular interface. 

(4) SO_ERROR 

 When an error occurs on a socket, the protocol module sets a variable named 

so_error for that socket to one of the standard unix Exxx values. This is called 

the pending error for the socket. 

 This option can be fetched but cannot be set. 

 The process can be notified about the error in one of the two ways. 

o If the process is blocked in a call to select on the socket, for either 

readability or writability. 

o If the process is using signal driven I/O, the SIGIO signal is generated for 

either the process or the process group. 

(5) SO_KEEPALIVE 

 The purpose of this option is to detect if the peer host crashes or become 

unreachable. 

 When the keepalive option is set for a TCP socket and no data has been 

exchanged across the socket in either direction for 2 hours, TCP automatically 

sends a keep-alive probe to the peer. 

 This probe is a TCP segment to which the peer must respond. One of the three 

scenarios result. 

o The peer responds with the expected ACK (If the peer is active) 

o The peer responds with an RST, which tells the local TCP that the peer 

host has been crashed and rebooted. So, the sockets pending error is 

set to ECONNRESET and the socket is closed. 

o There is no response from the peer to the keep-alive probe. TCP sends 

8 additional probes, 75 seconds apart, trying to get a response from the 

peer. It will give up if there is no response within 11 minutes and 15 

seconds from the time of sending the first probe. If there is no response, 

the sockets pending error is set to ETIMEDOUT and the socket are 

closed. If the peer host is unreachable, the pending error is set to 

EHOSTUNREACH. 

 This option is normally used by servers, although clients can also use this option. 
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 Servers use this option because after establishment of connection, there may be a 

situation where the server may wait for the client request. 

 But, if the client hosts crashes, powered off or connection drops, the server never 

knows about it and waits for the input that can never arrive. This is called a half 

open connection. The keep-alive option will detect these half open connections and 

terminate them. 

(6) SO_LINGER 

 This option specifies how the close function operates for a connection oriented 

protocol. 

 By default, close returns immediately. But, if there is any data still remaining in 

the socket send buffer, the system will try to deliver the data to the peer. 

 But, the SO_LINGER changes this default case. 

 It requires the following structure to be passed between the user process and 

the kernel. 

Struct linger 

{ 

  int l_onoff;   /* 0 = off, non-zero = on */ 

  int l_linger /* linger time */ 

} 

 When this socket option is set, any one of the following three scenarios takes 

place, depending on the values of the two structure members. 

o If l_onoff=0, the option is turned off. So, the value of l_linger is ignored 

and the TCP default applies (i.e) close returns immediately. 

o If l_onoff=nonzero and l_linger = 0, TCP aborts the connection when it is 

closed. (ie) TCP discards any data still remaining in the socket send 

buffer and sends a RST to its peer. 

o If l_onoff=nonzero and l_linger = nonzero, then the kernel will linger 

when the socket is closed. (i.e) If there is any data still remaining in the 

socket send buffer, the process is put to sleep until either, 

 All data is send and acknowledged by the peer TCP. 

 The linger time expires. 

 Assume that the client writes data to the socket and then calls close. The 

following diagrams depict the various scenarios. 

(a) Default situation 
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 By default, close returns immediately. 

 

 

Fig 3.1 Default operation of close 

We now need to look at exactly when close on a socket returns and what the actions 

and consequences are. In these cases, we assume that the client writes data to the socket and 

then calls close. 

Fig. 3.1 shows the default scenario.  Assume that when the client’s data arrives, the 

server is temporarily busy, so the data is added to the socket receive buffer by its TCP.  

Similarly, the next segment, the client’s FIN is also added.  

But by default, the client’s close returns immediately.  As we see here, the client’s close 

can return before the server reads the remaining data in its socket receive buffer.  Therefore it is 

possible for the server host to crash before the server application reads this remaining data, and 

the client application will never know. 

(b) SO_LINGER socket option is set and l_linger set to a positive value 

 

Fig 3.2 l_linger set to a positive value 
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In this scenario, the client sets the SO_LINGER option, specifying some positive linger 

time.  When this occurs, the client’s close does not return until all the client’s data and its FIN 

have been acknowledged by the server TCP as shown in Fig 3.2. 

The server host can crash before the server application reads its remaining data, and the 

client application will never know.   

(c) SO_LINGER socket option set with l_linger set to small positive value 

 

Fig 3.3 l_linger set to small positive value 

Fig. 3.3 shows what can happen if the SO_LINGER option is set to a value that is too 

low. The basic principle here is that a successful return from close, with the SO_LINGER option 

set, only tells us that the data we sent (and our FIN) have been acknowledge by the peer TCP.  

It does not tell us whether the peer application has read the data.  If we do not set the 

SO_LINGER option, we do not know whether the peer TCP has acknowledged the data. 

(d) Using shutdown to show the peer has received the data 

 

 

Fig. 3.4 Using shutdown 
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One way for the client to know that the server has read its data is to call shutdown (with 

SHUT_WR) instead of close and wait for the peer to close its end of the connection as shown in 

Fig. 3.4. 

(e) Application ACK 

 

 

Fig. 3.5 Application ACK 

Another way to know that the peer application has read our data is to use an application-

level acknowledgment which requires coding in the server and client.  In this case, the client 

waits for a 1 byte acknowledgment for each packet sent. Fig 3.5 shows the possible packet 

exchange. 

(7) SO_OOBINLINE 

 When this option is enabled, the out of band data will be placed in the normal 

input queue. 

 When this occurs, the MSG_OOB flag to the receive functions cannot be used 

to read the out of band data. 

(8) SO_RCVBUF and SO_SNDBUF 

 Every socket has a send buffer and a receive buffer. 

 Receive buffer  - It is used to hold the received data until it is read by the 

application. 

 Send buffer – It is used to hold the data to be send. 
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 The socket receive buffer has a limit in its window size. And, the peer can send 

data only upto the window size limit. The window size will be advertised to its 

peer while sending the SYN segment during connection establishment. This is 

TCPs flow control. 

 If the peer ignores the advertised window and if it sends data beyond the 

window, the receiving TCP discards it. 

 The default size of TCP send and receive buffers is 4096 bytes. But, newer 

systems use larger values from 8192 to 61440 bytes. 

 The default size of UDP send buffer is 9000 bytes. 

 The default size of UDP receive buffer is 40000 bytes. 

 The main goal of this option is that these two options let us change the default 

sizes. 

(9) SO_RCVLOWAT and SO_SNDLOWAT 

 Every socket has a receive low water mark and send low water mark. 

 These are used by the select function. 

 Receive low water mark – It is the amount of data that must be in the socket 

receive buffer for the select to return readable. 

 Send low water mark – It is the amount of available space that must exist in the 

socket send buffer for select to return writable. 

 Default receive low water mark is 1. 

 Default send low water mark is 2048. 

 These two socket options, let us change these two low water marks. 

(10) SO_RCVTIMEO and SO_SNDTIMEO 

 These two socket options allow us to place a timeout on socket receive and 

send. 

 This let us specify the timeout in seconds and microseconds. 

 The timeout can be disabled by setting its value to 0 seconds and 0 

microseconds. 

 Both timeouts are disabled by default. 

 The receive timeout affects the five input functions namely read, readv, recv, 

recvfrom and recvmsg. 

 The send timeout affects the five output functions namely write, writev, send, 

sendto and sendmsg. 



DEPARTMENT OF CSE/IT 
SCSX1024 NETWORK PROGRAMMING AND MANAGEMENT UNIT - III 

III YEAR / VI SEM 
(11) S0_REUSEADDR and SO_REUSEPORT 

 SO_REUSEADDR serves four different purposes. 

o It allows a listening server to start and bind its well known port even if 

previously established connections exist that use this port as their local 

port. This condition is typically encountered as follows. 

 A listening server is started. 

 A connection request arrives and a child process is spawned to 

handle that client. 

 The listening server terminates, but the child continues to service 

the client on the existing connection. 

 The listening server is restarted. 

o It allows a new server to be started on the same port as an existing 

server that is bound to the wildcard address as long as each instance 

binds a different local IP address. 

o It allows a single process to bind the same port to multiple sockets, as 

long as each bind specifies a different local IP address. 

o It allows completely duplicate bindings : A bind of an IP address and 

port, when the same IP address and port are already bound to another 

socket, if the transport protocol supports it. 

 This feature is supported only for UDP sockets. 

 This feature is used with multicasting to allow the same application to be run 

multiple times on the same host. 

 SO_REUSEADDR does the following. 

o It allows completely duplicate bindings, but only if each socket that wants 

to bind the same IP address and port specify this socket option. 

o It is considered equivalent to SO_REUSEPORT if the IP address being 

bound is a multicast address. 

 Limitation : It is not supported by all systems. 

(12) SO_TYPE 

 This option returns the socket type. 

 The integer value returned is a value SOCK_STREAM or SOCK_DGRAM or 

SOCK_RAW. 

(13) SO_USELOOPBACK 

 This option applies only to sockets in the routing domain. 
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 By default, this set to ON. 

 When this option is enabled, the socket receives a copy of everything sent on 

the socket. 

3.3 IPv4 Socket Options 

 These socket options are processed by IPv4. These options include the following. 

(1) IP_HDRINCL 

o If this option is set for a raw IP socket, we must build our own IP header for all 

the datagrams we send on the raw socket. 

o Normally kernel builds the IP header for all datagrams, but some applications 

require to build their own IP header. 

o When this option is set, we build a complete IP header, with the following 

exceptions. 

 IP always calculates and stores the IP header checksum. 

 If we set the IP identification field to 0, the kernel will set the field. 

 If the source IP address is INADDR_ANY, IP sets it to the primary IP 

address of the outgoing interface. 

 Setting IP options is implementation dependent. 

 Some fields must be in host byte order and some in network byte order. 

This is implementation dependent. 

(2) IP_OPTIONS 

o Setting this option allows us to set IP options in the IPv4 header. 

o This requires intimate knowledge of the format of IP options in the IP header. 

(3) IP_RECVDSTADDR 

o This option causes the destination IP address of a received UDP datagram to be 

returned as ancillary data by recvmsg. 

(4) IP_RECVIF 

o This option causes the index of the interface on which a UDP datagram is 

received to be returned as ancillary data by recvmsg. 

(5) IP_TOS 

o This option let us set the type of service in the IP header for a TCP, UDP socket. 

o TOS can be, 

 T – Throughput 

 R – Reliability 
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 D – Delay 

 C - Cost 

(6) IP_TTL 

o TTL stands for Time to Live 

o This option let us set and fetch the default TTL. 

3.4 ICMPv6 Socket Option 

 This socket option is processed by ICMPv6. 

(1) ICMP_FILTER 

o This option let us fetch and set an icmp6_filter structure that specifies which of 

the 256 possible ICMPv6 message types will be passed to the process on a raw 

socket. 

3.5 IPv6 Socket Option 

 These socket options are processed by IPv6. These options include the following. 

(1) IPv6_CHECKSUM 

o This option specifies the byte offset into the user data where the checksum field 

is located. 

o If this value is non-negative, the kernel will, 

 Compute and store a checksum for all outgoing packets. 

 Verify the received checksum on input, discarding packets with an invalid 

checksum. 

o If the value is -1 (default), the kernel will not calculate and store the checksum for 

outgoing packets on this raw socket and will not verify the checksum for received 

packets. 

(2) IPv6_DONTFRAG 

o Setting this option disables the automatic insertion of a fragment header for UDP 

and raw sockets. 

o When this option is set, output packets larger than Maximum Transfer Unit (MTU) 

of the outgoing interface will be dropped. 

(3) IPv6_NEXTHOP 

o This option specifies the next hop address for a datagram as a socket address 

structure and is a privileged operation. 

(4) IPv6_PATHMTU 
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o This option cannot be set, only retrieved. 

o When this option is retrieved, the current MTU as determined by PATH_MTU 

discovery is returned. 

(5) IPv6_RECVDSTOPTS 

o Setting this option specifies that any received IPv6 destination options are to be 

returned as ancillary data by recvmsg. 

(6) IPv6_RECVHOPLIMIT 

o Setting this option specifies that the received hop limit field is to be returned as 

ancillary data by recvmsg. 

(7) IPv6_RECVHOPOPTS 

o Setting this option specifies that any received IPv6 hop-by-hop options are to be 

returned as ancillary data by recvmsg. 

(8) IPv6_RECVPATHMTU 

o Setting this option specifies that the path MTU of a path is to be returned as 

ancillary data by recvmsg. 

(9) IPv6_RECVPKTINFO 

o Setting this option specifies that the following two pieces of information about a 

received IPv6 datagram are to be returned as ancillary data by recvmsg. 

 The destination IPv6 address 

 Arriving interface index 

(10) IPv6_RECVRTHDR 

o Setting this option specifies that a received IPv6 routing header is to be returned 

as an ancillary date by recvmsg. 

(11) IPv6_RECVTCLASS 

o Setting this option specifies that the received traffic class is to be returned as 

ancillary data by recvmsg. 

(12) IPv6_UNICAST_HOPS 

o Setting this option specifies the default hop limit for outgoing datagrams sent on 

the socket, while fetching the socket option returns the value of the hop limit that 

the kernel will use for the socket. 

(13) IPv6_USE_MIN_MTU 

o Setting this option avoids fragmentation. 

 When this option is set to 1, path MTU discovery is not performed and 

packets are sent using minimum MTU. 



DEPARTMENT OF CSE/IT 
SCSX1024 NETWORK PROGRAMMING AND MANAGEMENT UNIT - III 

III YEAR / VI SEM 
 When this option is set to 0, causes path MTU discovery to occur for all 

destinations. 

 When this option is set to -1, path MTU discovery is performed. 

(14) IPv6_V6ONLY 

o Setting this option restricts it to IPv6 communication only. 

(15) IPv6_XXX 

o UDP socket uses, recvmsg and sendmsg 

o TCP socket uses, getsockopt and setsockopt 

3.6 TCP Socket Options 

(1) TCP_MAXSEG 

o This socket option allows us to fetch or set the Maximum Segment Size (MSS) for a TCP 

connection. 

o The value returned is the maximum amount of data that the TCP will send to the other 

end. 

o The MSS is set while sending the SYN segment to the peer during connection 

establishment. 

o The maximum amount of data that our TCP will send per segment can also change 

during the life of the connection if TCP supports path MTU discovery. 

o If the route of the peer changes, this value will go up or down. 

(2) TCP_NODELAY 

o If this option is set, it disables TCP’s Nagle algorithm. 

o By default, this algorithm is enabled. 

o Nagles algorithm avoids the syndrome caused in the sender side (i.e) if the sending side 

sends data too slowly, by sending each byte as a packet and waiting for the 

acknowledgment. 

Nagle’s Algorithm 

(1) It sends the first byte as it is as a packet and waits for an acknowledgment. 

(2) When it receives the ACK, it does not send the further byte as it is, provided it 

waits until a certain number of bytes gets accumulated or till the ACK for the 

previous is arrived. 
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o The purpose of Nagle’s algorithm is to reduce the number of small packets in WAN. 

o Small packet is any packet smaller than MSS. 

o The two common generators of small packets are the Rlogin and Telnet clients, since 

they send each keystroke as a separate packet. 

o In a fast LAN, we normally donot notice a Nagle’s algorithm because the time required 

for a small packet to be acknowledged is typically a few milliseconds, far less than the 

time between two successive characters that we type. 

o But in a WAN, it takes nearly a second to acknowledge a small packet, so we can notice 

a delay in the character echoing and this delay is often exaggerated by the Nagle’s 

algorithm. 

o Consider the following example, 

 We type the six character string “hello!” with exactly 250 ms between each 

character. 

 The Round Trip Time (RTT) to the server is 600 ms and the server immediately 

sends back the echo of each character. 

 Assuming the Nagle’s algorithm is disabled, we have the 12 packets as shown 

below. 

 

Fig 3.6 Nagle’s algorithm (disabled) 
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Fig. 3.7 Nagle’s Algorithm (Enabled) 

 

 The purpose of the Nagle algorithm is to reduce the number of small packets on a WAN.   

 The algorithm states that if a given connection has outstanding data then no small 

packets will be sent on the connection in response to a user write operation until the 

existing data is acknowledged.   

 Two common generators of small packets are the rlogin and telnet clients, since they 

normally send each keystroke as a separate packet.   

 Fig. 3.6 shows the algorithm disabled. Fig. 3.7 shows the algorithm enabled. 

 The characters are typed with 250 milliseconds between each. 

 Round Trip Time (RTT) is 600 milliseconds.   

3.7 Elementary UDP Sockets 

Typical UDP client 

• Client does not establish a connection with the server 

• Client sends a datagram to the server using sendto function 

Typical UDP server 

• Does not accept a connection from a client 
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• Server calls recvfrom function which waits until data arrives from some client 

 

Fig. 3.8 Socket functions for UDP client server 

 

Syntax 

 

 

 

  

 

 

 

 

 

UDP Server 

socket( ) 

bind( ) 

recvfrom( ) 

sendto( ) 

socket( ) 

sendto( ) 

recvfrom( ) 

close( ) 

Process request 

block until datagram 
received from a client 

UDP Client  

data(request) 

data(reply) 

#include<sys/socket.h> 

ssize_t recvfrom(int sockfd, void *buff, size_t nbytes, int flags, 

                            struct sockaddr *from, socklen_t *addrlen); 

ssize_t sendto(int sockfd, const void *buff, size_t nbytes, int flags, 

                         const struct sockaddr *to, socklen_t addrlen); 

//Both return: number of bytes read or written if OK,-1 on error 

• Both return the amount of user data in the datagram received 
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3.8 Program 

UDP Echo Server : main 

#include “unp.h” 

int main(int argc, char **argv) 

{ 

     int sockfd; 

     struck sockaddr_in servaddr,cliaddr; 

     sockfd=Socket(AF_INET,SOCK_DGRAM,0); 

     bzero(&servaddr,sizeof(servaddr)); 

     servaddr.sin_fammily=AF_INET; 

     servaddr.sin_addr.s_addr=htonl(INADDR_ANY); 

     servaddr.sin_port=htons(SERV_PORT); 

     bind(sockfd, (SA *) &servaddr,sizeof(servaddr)); 

     dg_echo(sockfd, (SA *) &cliaddr,sizeof(cliaddr)); 

} 

UDP Echo server :dg_echo function 

#include “unp.h” 

void dg_echo(int sockfd, SA *pcliaddr, socklen_t clilen) 

{ 

    int n; 

    socklen_t len; 

    char mesg[MAXLINE]; 
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    for( ; ; ) { 

         len=clilen; 

         n=Recvfrom(sockfd, mseg, MAXLINE, 0, pcliaddr, &len); 

         sendto(sockfd, mesg, n, 0, pcliaddr, len); 

    } }  

 

Fig. 3.9 Summary of TCP client-server with two clients 

 

Fig. 3.9 Summary of UDP client-server with two clients 
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UDP Echo client : main 

#include “unp.h” 

int main(int argc, char **argv) 

{ 

    int sockfd; 

   struct sockaddr_in servaddr; 

   if (argc != 2) 

     err_quit( “usage : udpcli <Ipaddress>”); 

   bzero(&servaddr, sizeof(servaddr); 

   servaddr.sin_family = AF_INET; 

   servaddr.sin_port = htons(SERV_PORT); 

   Inet_pton(AF_INET, argv[1], &servaddr.sin_addr); 

   sockfd = Socket(AF_INET, SOCK_DGRAM, 0); 

   dg_cli(stdin, sockfd, (SA *) &servaddr, sizeof(servaddr); 

   exit(0); 

} 

UDP Echo client : dg_cli function 

#include “unp.h” 

void  dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen) 

{ 

      int n; 

      char sendline[MAXLINE], recvline[MAXLINE+1]; 
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      while(Fgets(sendline, MAXLINE, fp) != NULL)  { 

           sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen); 

           n = Recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL); 

           recvline[n] = 0;    /* null terminate */ 

           Fputs(recvline,stdout); 

      } 

}  

3.9. TCP and UDP Echo Server using Select () 

Following example combines the concurrent TCP echo server with iterative UDP echo server 

into a single server using select function to multiplex the TCP and UDP socket. 

/* include udpservselect01 */ 

#include "unp.h" 

int 

main(int argc, char **argv) 

{ int listenfd, connfd, udpfd, nready, maxfdp1; 

char mesg[MAXLINE]; 

pid_t childpid; 

fd_set rset; 

ssize_t n; 

socklen_t len; 

const int on = 1; 

struct sockaddr_in cliaddr, servaddr; 

void sig_chld(int); 

/* create listening TCP socket */ 

listenfd = Socket(AF_INET, SOCK_STREAM, 0); 

bzero(&servaddr, sizeof(servaddr)); 

servaddr.sin_family = AF_INET; 

servaddr.sin_addr.s_addr = htonl(INADDR_ANY); 

servaddr.sin_port = htons(SERV_PORT); 

Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)); 
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Bind(listenfd, (SA *) &servaddr, sizeof(servaddr)); 

Listen(listenfd, LISTENQ); 

/* create UDP socket */ 

udpfd = Socket(AF_INET, SOCK_DGRAM, 0); 

bzero(&servaddr, sizeof(servaddr)); 

servaddr.sin_family = AF_INET; 

servaddr.sin_addr.s_addr = htonl(INADDR_ANY); 

servaddr.sin_port = htons(SERV_PORT); 

Bind(udpfd, (SA *) &servaddr, sizeof(servaddr)); 

/* end udpservselect01 */ 

/* include udpservselect02 */ 

Signal(SIGCHLD, sig_chld); /* must call waitpid() */ 

FD_ZERO(&rset); 

maxfdp1 = max(listenfd, udpfd) + 1; 

for ( ; ; ) { 

FD_SET(listenfd, &rset); 

FD_SET(udpfd, &rset); 

if ( (nready = select(maxfdp1, &rset, NULL, NULL, NULL)) < 0) { 

if (errno == EINTR) 

continue; /* back to for() */ 

else 

err_sys("select error"); 

} 

if (FD_ISSET(listenfd, &rset)) { 

len = sizeof(cliaddr); 

connfd = Accept(listenfd, (SA *) &cliaddr, &len); 

if ( (childpid = Fork()) == 0) { /* child process */ 

Close(listenfd); /* close listening socket */ 

str_echo(connfd); /* process the request */ 

exit(0); 

 

} 
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Close(connfd); /* parent closes connected socket */ 

} 

if (FD_ISSET(udpfd, &rset)) { 

len = sizeof(cliaddr); 

n = Recvfrom(udpfd, mesg, MAXLINE, 0, (SA *) &cliaddr, &len); 

Sendto(udpfd, mesg, n, 0, (SA *) &cliaddr, len); 

} }} 

/* end udpservselect02 */ 

Create listening TCP socket 

A listening TCP socket is created that is bound to the server‘s well known port. We set the 

SO_REUSEADDR socket option in case of connections exist on this port. 

Create a UDP socket 

A UDP socket is also created and bound to the same port. Even though the same port is used 

for 

the TCP and UDP sockets, there is no need to set the SO_REUSEADDR socket option before 

this call to 

bind because TCP ports are independent of UDP ports. 

Establish a signal handler for SIGCHLD: 

Establised the signal handler SIGCHLD because TCP connections will be handled by a child 

process. 

Prepare for Select: 

A descriptor set is initialized for select and maximum of two descriptors for which the select 

waits. 

Call select: 

We call select waiting only for readability on the listening TCP socket or readability on the UDP 

socket. Since our sig_chld handler can interrupt our call to select, we handle an error of EINTR 

Hane the new client: 

We accept a new client connection when the listening TCP socket is readable, fork a child and 

call our str_echo in the child. 

Handle arrival of datagram. 

If the UDP socket is readable, a datagram has arrived. We read it with recvfrom and send it 

back to the client with sendto(). 

Summary: 

Converting echo-client server to use UDP instead of TCP was simple. But the features provided 
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by TCP are missing: detecting lost packet and retransmitting, verifying responses and so on. 

UDP socket can generate asynchronous errors that is errors that are reported some time after 

the packet was sent. IN TCP, these error are always reported to application but not in UDP 

UDP has no flow control. But this is not a big restriction as the UDP requirement are built for 

request – response application. 

3.10 Domain Name System (DNS) 

Every machine, a host (or) a server is identified using the numeric address known as IP 

address and using the numeric port numbers. Remembering the numeric address for all servers 

is very difficult. So, inorder to remember the servers, names are assigned to them. 

            So, a mapping should be done to match the host names to their corresponding IP 

addresses. The system that is used for this mapping is known as DNS. 

Functions used 

1) gethostbyname – Converts names to their IP address 

2) gethostbyaddr   - Converts IP address to their corresponding host name 

3) getservbyname – converts the service names to port no’s 

4) getservbyport    - converts the port no to their corresponding service names 

Resource Records 

Entries in the DNS are known as resource records 

Few types 

1) A – An A record maps a host name into a 32-bit IPV4 address 

2) AAAA – Called ‘quad A’ maps a host name into a 128-bit IPV6 address 

3) PTR  -  ‘Pointer Records’ maps IP addresses into host names 

 For an IPV4 address,the conversion of IP address to decimal ASCII value is 

done first and then in_addr.arpa is appended.The resulting string obtained is the 

host name 

 For an IPV6 address,the conversion of IP address to hexadecimal ASCII value is 

done first and then ip6.arpa is appended.The resulting string obtained is the host 

name 
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4) MX – called ‘Mail Exchanger’ specifies a host to act as a mail exchanger for the 

specified host 

5) CNAME – called ‘canonical name.If people use these service names instead of host 

names,it is transparent when a service is moved to another host. 

Typical arrangement of clients,servers and resolvers  

Organizations run one or more name servers,often the program known as BIND(Barkeley 

Internet Name Domain) 

 

 

 

 

 

 

   

 

  

 

 

Fig. 3.10 Typical arrangement of clients, servers and resolvers 

 Applications such as clients and servers contact a DNS server by calling functions in a 

library known as resolver. The common resolver functions are gethostbyname and 

gethostbyaddr. 

 The resolver code can be inbuilt in the system library or it may be centralized where the 

applications can share it. 

 Multiple name servers are often required for readability and redundancy. 
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Functions 

1) gethostbyname Function 

          Host computers are often known by their human readable names.This function 

converts the hostname to their corresponding IP addresses 

If successful,it returns a pointer to a hostnet structure that contains all the IPV4 

addresses for the host 

    

 

 

Returns : Non-null pointer if OK  

                 Null on error 

2) gethostbyaddr Function 

        This function takes a binary IPV4 address and tries to find the hostname 

corresponding to that address 

 

 

 

Returns : Non-null pointer if OK  

                 Null on error 

 

3) getservbyname Function 

          This function converts the service name to their corresponding port numbers  

 

 

 

 

Returns : Non-null pointer if OK  

                 Null on error 

4) getservbyport Function 

          This function converts the port numbers to their corresponding service names  

 

Struct hostent * gethostbyname(const char * 

hostname); 

 

Struct hostent * gethostbyaddr(const char * addr, socklen-t len, int family); 

Struct servent * getservbyname(const char * servname, const char * 

protoname); 

Struct servent * getservbynport(int port, const char * protoname); 
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Returns : Non-null pointer if OK  

                 Null on error 

3.11 IPv6 Support in DNS 

The above four functions are protocol dependent. POSIX includes protocol independent 

functions namely getaddrinfo() getnameinfo(). 

• These functions provide name/address conversions as part of the sockets library. 

• In the future it will be important to write code that can run on many protocols (IPV4, 

IPV6), but for now these functions are not widely available. 

– It's worth seeing how they work even though we probably can't use them yet! 

(1) getaddrinfo 

Syntax 

int getaddrinfo( const char *hostname, const char *service, const struct addrinfo* hints, struct 

addrinfo **result); 

 getaddrinfo() replaces both gethostbyname() and getservbyname() 

 hostname is a hostname or an address string (dotted decimal string for IP). 

 service is a service name or a decimal port number string. 

Struct addrinfo 

struct addrinfo { 

int ai_flags; 

int ai_family; 

int ai_socktype; 

int ai_protocol; 

size_t ai_addrlen; 
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char *canonname; 

struct sockaddr *ai_addr; 

struct addrinfo *ai_next; 

}; 

hints is an addrinfo * (can be NULL) that can contain: 

– ai_flags     (AI_PASSIVE , AI_CANONNAME )  

– ai_family (AF_XXX ) 

– ai_socktype (SOCK_XXX ) 

– ai_protocol  (IPPROTO_TCP, etc.) 

result is  returned with the address of a pointer to an  addrinfo  structure that is the head of a 

linked list. 

It is possible to get multiple structures: 

– multiple addresses associated with the hostname. 

– The service is provided for multiple socket types. 

(2) getnameinfo() 

Syntax 

int getnameinfo(const struct sockaddr *sockaddr, socklen_t addrlen  char *host,  

size_t hostlen, char *serv, size_t servlen, int flags); 

 getnameinfo() looks up a hostname and a service name given a sockaddr 
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QUESTIONS 

PART - A 

1. What are various ways to get and set the options that affect a socket?  
2. Explain Elementary UDP sockets.  
3. Explain UDP server and UDP client.  
4. What are the two functions used in Elementary UDP?  
5. Difference between main function and dg_echo function.  
6. What are the four steps used in client processing loop?  
7. Difference between server function dg_echo and client function dg_cli.  
8. Define DNS.  
9. Define Resource Records.  
10. What are the types which affect the RRS?  
11. Define Resolvers and Name servers.  
12. Explain Gethostbyname function  
13. Explain gethostbyaddr function.  
14. Explain gethostname function.  
15. Explain getservbyname and getservbyport functions.  
  

PART – B 
 

1. Assume both a client and server set the SO_KEEPALIVE socket option and the connectivity 
is maintained between the peers but them is no exchange of data. When the keepalive timer 
expires every 2 hours, how many TCP segments are exchanged across the connection? Justify 
your answer with an illustration.  
2. Discuss any six generic socket options in detail.   
3. Discuss about IPv4 socket option and ICMP socket options in detail with Suitable example.  
4. Explain the purpose and usage of UDP sockets and their different functions. 
5. Discuss about IPv6 socket option in detail 
6. Briefly discuss about DNS. 
7. Briefly discuss about UDP Echo server and client.  
8. Explain in detail the TCP socket options. 
9. Give a brief note on IPv6 support in DNS 
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UNIT – IV 

ADVANCED SOCKETS  

IPv4 and IPv6 interoperability – Threaded servers – Thread creation and termination – TCP echo 

server using threads – Mutexes – condition variables – raw sockets – raw socket creation – raw 

socket output – raw socket input – ping program – trace route program 

4.1 IPv4 and IPv6 Interoperability 

Over the coming years, there will probably be a gradual transition of the internet from IPv4 

to IPv6. During this transition phase, it is important that existing Ipv4 applications continue to 

work with newer IPv6 applications. To handle this scenario, the hosts are running dual stacks 

(i.e) both an IPv4 protocol stack and IPv6 protocol stack. 

There are four possible combinations of communication which include the following. 

• IPv4 client, IPv6 server over dual-stack server host 

• IPv6 client over dual-stack client host, IPv4 server 

• IPv6 address macro, function and option 

• Source code portability 

4.1.1 IPv4 Client, IPv6 Server: 

 A general propoerty of a dual stack host is that Ipv6 servers can handle both Ipv4 and 

Ipv6 clients. This is done using IPv4 mapped IPv6 addresses. 

 Figure 4.1 shows an IPv4 client and an Ipv6 client on the left and IPv6 server on the 

right. Both clients send SYN segments to establish a connection with a server.  

 The Ipv4 client host will send SYN in an IPv4 datagram and the IPv6 client host send the 

SYN in an IPv6 datagram. IPv6 dual stack server can handle both IPv4 and IPv6 clients. 

This is done using IPv4-mapped IPv6 address. The server create an IPv6 listening 

socket that is bound to the IPv6 wildcard address. 
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Fig 4.1 IPv6 server on dual stack host serving IPv4 and IPv6 clients 

 The TCP segment from the Ipv4 client appears on the wires as an ethernet header 

followed by an Ipv4 header, a TCP header, and the TCP data.The ethernet header 

contains a type field of 0x0800 which identifies the frame as an Ipv4 frame.The TCP 

header contains an destination port which identifies the frame as an Ipv4 frame.  

 The TCP segment from the Ipv6 client appears on the wire as an ethernet header 

folowed by an IPv6 header,an IPv6 header,a TCP header and the TCP data. The 

ehernet header contains a type field of 0x86dd which identifies the frame as an IPv6 

frame.  

 The steps that allow an IPv4 TCP client to communicate with an IPv6 server as follows: 

1. The IPv6 server starts,creates an IPv6 listening socket and it binds the wildcard 

address to the socket. 
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2. The IPv4 client calls gethostbyname and finds an A record for the server. 

3. The clint calls connect and the client’s host sends an IPv4 SYN to the server. 

4. The server host receives the Ipv4 SYN directed to the Ipv6 listening socket and 

responds with an Ipv4 SYN/ACK. 

5. When the server host sends to the Ipv4 mapped Ipv6 address ,its IP stack generates 

the Ipv4 datagrams to the Ipv4 address. 

6. Unless the server explicitly checks whether this IPv6 address is an IPv4 mapped 

IPv6 address, the server never knows that it is communicationg with an IPv4 client. 

Similarly, the IPv4 client has no idea that it is communicating with an IPv6 server. 

 The scenario is similar for an IPv6 UDP server. But, the address format can change for 

each datagram. 

Summary 

 If an IPv4 datagram is received for an IPv4 socket, nothing is done. 

 If an IPv6 datagram is received for an IPv6 socket, nothing is done. 

 When an IPv4 datagram is received for an IPv6 socket, the kernel returns the 

corresponding IPv4 mapped IPv6 address as the address returned by accept (TCP) or 

recvfrom (UDP). 

 The converse is false (i.e) An IPv6 address cannot be represented as an IPv4 address. 

Figure 4.2 summarizes how a received IPv4 or IPv6 datagram is processed, depending on 

the type of the receiving socket, for TCP and UDP, assuming a dual stack host. 

Rules 

 Most dual stack hosts should use the following rules in dealing with listening sockets. 

 A listening IPv4 socket can accept incoming connections from only IPv4 clients. 
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 If a server has a listening IPv6 socket that has bound the wild card address and the 

IPv6_v6 ONLY socket option is not set, that socket can accept incoming connections 

from either IPv4 clients or IPv6 clients. 

 If a server has a listening IPv6 socket that has bound an IPv6 address or the wild card 

address but has set the IPv6_v6ONLY socket option, that socket can accept incoming 

connections from IPv6 clients only. 
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Fig. 4.2 Processing of received IPv4 or IPv6 datagrams, depending on type of receiving 

socket 

4.1.2 IPv6 Client, IPv4 Server 

Consider an IPv6 TCP client running on a dual stack host. 

 An IPv4 server starts on an IPv4 only host and creates an IPv4 listening socket. 

 The IPv6 client starts and calls getaddrinfo asking for only IPv6 addresses.IPv4 

server host has only A records. 

 The IPv6 client calls connect with the IPv mapped IPv6 address in the IPv6 

socket address structure.The kernel detects the mapped address and 

automatically sends an IPv4 SYN to the server. 
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 The server responds with an IPv4 SYN/ACK, and the connection is established 

using IPv4 datagrams.  
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Fig. 4.3 Processing of client requests, depending on address type and socket type 

Figure 4.3 summarizes this scenario as follows. 

 If an IPv4 TCP client calls connect specifying an IPv4 address or if an IPv6 UDP client 

calls sendto specifying an IPv4 address, nothing special is done. 

 If an IPv6 TCP client calls connect specifying an IPv6 address or if an IPv6 UDP client 

calls sendto specifying an IPv6 address, nothing special is done. 

 If an IPv6 TCP client specifies an IPv4_mapped IPv6 address to connect (or) if an IPv6 

UDP client specifies an IPv4_mapped IPv6 address to sendto, the kernel detects the 

mapped address and causes an IPv4 datagram to be sent instead of an IPv6 datagram. 

 An IPv4 client cannot specify an IPv6 address to either connect or sendto because a 16 

byte IPv6 address doesnot fit in the 4 byte in_addr structure. 
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4.2 Threads 

 In the traditional UNIX model, when a process need something performed by another 

entity, it forks a child process and lets the child perform the processing. This is similar to the 

example of a concurrent server. 

 

Problems with Fork 

(1) Fork is expensive 

 Memory is copied from the parent to the child and all the descriptors are 

duplicated in the child. 

 This makes fork more expensive. 

(2) Interprocess communication (IPC) 

 IPC is required to pass information between the parent and the child after the 

fork. 

 Passing the information before the fork is easy. But, returning information from 

the child to the parent takes more work. 

These problems can be overcome using threads. 

 Threads are light weight processes. 

 Thread creation can be 10 to 100 times faster than a process creation. 

 All threads within a process share the same global memory. So, sharing of information 

becomes easy between threads. 

 The problem with threads is synchronization. 

All the threads within a process shares the following. 

 Process instructions 

 Data, 

 Open files 

 Signal handlers and signal dispositions 

 Current working directory 

 User Groups Ids. 

Each thread has a unique, 

 Thread ID  

 set of registers, stack pointer  
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 stack for local variables, return addresses  

 signal mask  

 priority  

 Return value: errno 

Thread operations include thread creation, termination, synchronization (joins,blocking), 

scheduling, data management and process interaction.  

 

4.2.1 Basic thread functions (creation and termination) 

There are five basic thread functions. They are as follows. 

(1)  pthread_create()  

 The pthread_create() function creates a thread. 

 When a program is started, a single thread is created, called the initial thread. 

 Additional threads are created by pthread_create. 

Syntax 

 

 

 

 

Parameters 

thread->(Output) Pthread handle to the created thread 

attr->(Input) The thread attributes object containing the attributes to be associated with the 

newly created thread. If NULL, the default thread attributes are used. 

func->(Input) The function to be run as the new threads start routine 

arg->(Input) An address for the argument for the threads start routine 

Return Value 

0->pthread_create() was successful. 

Value->pthread_create() was not successful.  value is set to indicate the error condition. 

#include <pthread.h> 

 int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*func)(void *), 

void *arg); 
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(2) pthread_join() 

 The pthread_join() function waits for a thread to terminate, detaches the thread, then 

returns the threads exit status. (similar to waitpid) 

 If the status parameter is NULL, the threads exit status is not returned. 

 The meaning of the threads exit status (value returned to the status memory location) is 

determined by the application, except for the following conditions: 

1. When the thread has been canceled using pthread_cancel(), the exit status of 

PTHREAD_CANCELED is made available. 

2. When the thread has been terminated as a result of an unhandled OS/400 exception, 

operator intervention or other proprietary OS/400 mechanism, the exit status of 

PTHREAD_EXCEPTION_NP is made available. 

Syntax 

 

 

 

Parameters 

thread->(Input) Pthread handle to the target thread 

status->(Output) Address of the variable to receive the thread's exit status 

Return Value 

0->pthread_join() was successful. 

Value->pthread_join() was not successful.  value is set to indicate the error condition. 

(3) pthread_detach() 

 The pthread_detach() function indicates that system resources for the specified thread 

should be reclaimed when the thread ends. If the thread is already ended, resources are 

reclaimed immediately. This routine does not cause the thread to end. After 

pthread_detach() has been issued, it is not valid to try to pthread_join() with the target 

thread. 

#include <pthread.h> 

 int pthread_join(pthread_t thread, void **status);  
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 A thread is either joinable or detached. When a joinable thread terminates, its thread ID 

and exit status are retained until another thread calls pthread_join. 

 A detached thread is like a daemon process. When it terminates, all its resources are 

released and we cannot wait it to terminate.   

Syntax 

 

 

 

Parameters 

thread->(Input) Pthread handle to the target thread 

Return Value 

0->pthread_detach() was successful. 

Value->pthread_detach() was not successful.  value is set to indicate the error condition. 

(4) pthread_self() 

 The pthread_self() function returns the Pthread handle of the calling thread.  

 The pthread_self() function does NOT return the integral thread of the calling thread. 

You must use pthread_getthreadid_np() to return an integral identifier for the thread. 

Syntax 

 

 

 

Return Value 

pthread_t->pthread_self() returns the Pthread handle of the calling thread. 

(5) pthread_exit() 

 The pthread_exit() function terminates the calling thread and makes the value value_ptr 

available to any successful join with the terminating thread.  

#include <pthread.h> 

 int pthread_detach(pthread_t thread); 

 

#include <pthread.h> 

 pthread_t pthread_self(void); 
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 An implicit call to pthread_exit() is made when a thread other than the thread in which 

main() was first invoked returns from the start routine that was used to create it. The 

function's return value serves as the thread's exit status.  

 The process exits with an exit status of 0 after the last thread has been terminated. The 

behaviour is as if the implementation called exit() with a zero argument at thread 

termination time.  

Syntax 

 

 

 

Return value 

The pthread_exit() function cannot return to its caller.  

4.3 TCP echo server using threads 

1. In TCP echo server ,use one thread per client instead of one child process per 

client. When accep returns,call the pthread_create instead of fork. 

2. The thread can execute the doit function. The thread share all descriptors with 

the main thread. The pointer to the connfd is the final argument of 

pthread_create. 

3. A thread is created and doit function is scheduled to start executing. 

4. Another connection is ready and the main thread runs again.Accept 

returns,connfd is stored and main thread calls pthread_create. 

#include”unpthread.h” 

Static void *doit(void *) 

int main(int argc,char ** argv) 

{ 

#include <pthread.h> 

void pthread_exit(void *value_ptr); 

http://pubs.opengroup.org/onlinepubs/7908799/xsh/exit.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html
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Int listenfd,connfd; 

Pthread_t tid; 

Socklen_t addrlen,len; 

Struct sockaddr *cliaddr; 

If(argc==2) 

Listenfd=Tcp_listen(NULL,argv[1],&addrlen; 

Else if If(argc==3) 

Listenfd=Tcp_listen(argv[1],argv[2],&addrlen); 

Else   

Err_quit(“usage service or port”); 

Cliaddr=malloc(addrlen); 

for(;;) 

{ 

len=addrlen; 

connfd=Accept(listenfd,cliaddr,&len); 

pthread_create(&tid,NULL,&doit,(void*) connfd); 

} 

} 

Static void* doit(void *arg) 

{ 

Pthread_detach(pthread_self()); 
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Str_echo(int) arg); 

Close((int)arg); 

 Return(NULL); 

} 

If two threads are created,both will operate on the final value stored in connfd.It 

will create a problem. it can be solved by passing the value of connfto 

pthread_create instead of pointer to value. 

4.4 Mutex 

Mutual exclusion (often abbreviated to mutex) algorithms are used in concurrent 

programming to avoid the simultaneous use of a common resource, such as a global variable, 

by pieces of computer code called critical sections. A critical section is a piece of code in which 

a process or thread accesses a common resource. The critical section by itself is not a 

mechanism or algorithm for mutual exclusion. A program, process, or thread can have the 

critical section in it without any mechanism or algorithm which implements mutual exclusion. 

Examples of such resources are fine-grained flags, counters or queues, used to 

communicate between code that runs concurrently, such as an application and its interrupt 

handlers. The synchronization of access to those resources is an acute problem because a 

thread can be stopped or started at any time. 

To illustrate: suppose a section of code is altering a piece of data over several program 

steps, when another thread, perhaps triggered by some unpredictable event, starts executing. If 

this second thread reads from the same piece of data, the data, which is in the process of being 

overwritten, is in an inconsistent and unpredictable state. If the second thread tries overwriting 

that data, the ensuing state will probably be unrecoverable. These shared data being accessed 

by critical sections of code, must therefore be protected, so that other processes which read 

from or write to the chunk of data are excluded from running. 

A mutex is also a common name for a program object that negotiates mutual exclusion 

among threads, also called a lock. 
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Syntax 

 

 

 

Return Value 

0 - If Ok 

+ve value  - On Error 

4.5 Condition Variables 

Condition variables are synchronization primitives that enable threads to wait until a 

particular condition occurs. Condition variables are user-mode objects that cannot be shared 

across processes. 

Condition variables enable threads to atomically release a lock and enter the sleeping 

state. They can be used with critical sections or slim reader/writer (SRW) locks. Condition 

variables support operations that "wake one" or "wake all" waiting threads. After a thread is 

woken, it re-acquires the lock it released when the thread entered the sleeping state. 

 Condition Variable provides a signaling mechanism. 

Syntax 

 

 

 

 

Return Value 

0 - If Ok 

# include <pthread.h> 

int pthread_mutex_lock (pthread_mutex_t *mptr); 

int pthread_mutex_unlock (pthread_mutex_t *mptr); 

 

# include <pthread.h> 

int pthread_cond_wait(pthread_cond_t *cptr, pthread_mutex_t *mptr); 

int pthread_cond_signal (pthread_cond_t *cptr); 
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+ve value  - On Error 

 Pthread_cond_signal awakens one thread that is waiting on the condition variable. 

There are instances where multiple threads should be awakened, in which case, 

pthread_cond_broadcast will wake up all the threads that are blocked on the condition 

variable. Pthread_cond_timedwait lets a thread place a limit on how long it will block. 

 

Syntax 

 

 

 

 

Return Value 

0 - If Ok 

+ve value  - On Error 

4.6 Raw Sockets 

 It is a socket that takes packets, bypasses the normal TCP/IP processing and sends 

them to the application that wants them. 

Features 

a) These sockets let us read and write ICMPv4,IGMPv4 and ICMPv6 packets. It processes 

two ICMP messages (Router advertisement and Router solicitation) that the kernel 

knows nothing about. 

b) With a raw socket, a process can read and write Ipv4 datagrams with an Ipv4 protocol 

field that is not processed by the kernel. This capability carries over to Ipv6 also. 

# include <pthread.h> 

int pthread_cond_broadcast (pthread_cond_t *cptr); 

int pthread_cond_timedwait (pthread_cond_t *cptr, pthread_mutex_t *mptr, 

const struct timespec *abstime); 
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c) With a raw socket, a process can build its own Ipv4 header using the IP_HDRINCL 

socket option. 

Typical Uses 

• ICMP messages 

– ping generates ICMP echo requests and received ICMP echo replies. 

• Routing protocols 

– gated implements OSPF routing protocol. 

– Uses IP packets with protocol ID 89 – not supported by kernel. 

• Hacking  

– Generating your own TCP/UDP packets with spoofed headers 

4.6.1 Raw Socket Creation 

1. To create raw sockets, the second argument in socket function SOCK_RAW. And the 

third argument is nonzero (normally) as shown below: 

 

Int sockfd; 

Sockfd = socket (AF_INET, SOCK_RAW, protocol); 

In this the protocol is th one of the constants defined by  IPPROTO_XXX which is done  by 

including <netinet/in.h> header. For example IPPROO_ICMP. Only super user can create  

raw socket. 

2. The IP-HDRINCL socket option can be set to: 

const int ON =1; 

if (setsocketopt(sockfd, IPPROTO_IP, IP_HDRINCL, &ON, soze0f(ON)) <0) error 

3. Bind  may not  be called on raw sockets. If called, it sets the  local IP address and not  the 

port number as there is no concept of port number with raw sockets. With regard to output, 

calling bind sets the IP address that will be used for datagrams sent on the raw socket (only 

if IP_HDRINCL socket option is not set). If  bind is not called,  the kernel  sets the source IP 

address of the outgoing interface. 
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4. connect can be call on the raw socket but this is also rare. This function sets only the 

foreign address and again there is no concept of port number. With regard to output, calling 

connect lets us call write or send instead of sendto, since the  destination  IP address is 

already specified. 

4.6.2 Raw Socket Output 

The output of raw socket is governed by the following rules: 

• Normal output is performed by calling sendto or sendmsg and specifying the 

destination IP address. IN case the socket has been connected, write and send 

functions can be used. 

• If the IP_HDRINCL option is not set, the IP header will be built by the kernal and it 

will be prepend it to the data. 

• If IP_HDRINCL is set, the header format will remain the same and the process 

builds the entire IP header except the IPv4 identification field which is set to 0 by the 

kernel 

• The kernel fragments the raw packets that exceed the outgoing interface. 

IPv6 Differences: 

• All fields in the protocol headers sent or received on a raw IPv6 sockets are in 

network byte order. 

• There ae no option fields in IPv6 format. Almost all fields in an IPv6 header and all 

extension headers (Optional header that follow have their own length field. There is 

a separate fragmentation header.) are available to the application through socket 

options. 

• Checksum are handled differently. 

4.6.3 Raw Socket Input 

The question to be answered in this is which received IP datagrams does the kernel pass 

to raw sockets. 

• Received TCP and UDP packets are  never passed to a raw socket. 

• Most ICMP packets are passed to a raw socket after the kernel has finished 

processing the ICMP message. BSD derived implementations pass all received 

ICMP raw sockets other than echo requests, timestamp request and address mask 
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request.  These three ICMP messages are processed entirely by the kernel. 

• All IGMP packets are passed to a raw sockets, after the kernel has finished 

processing the  IGMP message. 

• All IP datagram with a protocol field that kernel does not understand are passed to a 

raw socket. The only kernel processing done on these packets is the minimal 

verification of some IP header field: IP version, IPv4 Header checksum, header 

length and the destination IP address. 

• If the datagram arrives in fragments, nothing is passed to a raw sockets until all 

fragments have arrived and have been reassembled. 

 

 The following tests are performed for each raw socket and only if all three tests 

are true is the datagram delivered to the socket. 

• If a nonzero protocol is specified when the raw socket is created (third argument to 

socket), then the received datagram‘s protocol field must match this value or the 

datagram is not delivered. 

• IF a local IP address is bound to the raw socket by bind, then the destination IP 

address of the received datagram must match this bound address or the 

datagram is not delivered. 

• IF foreign IP address was specified for the raw socket by connect, then the source 

IP address of the received datagram must match this connected address or 

datagram is not delivered. 

4.7 Ping  

 The operation of ping  

• Ping program that works with both IPv4 IPv6. 

• Very simple program that uses ICMP to send a ping to another machine over the 

Internet.   

• Provides the option to send a defined number of packets  

• It is used to understand the network programming concepts and techniques without 

being distracted by all these options. 
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Table 4.1 Format of ICMP messages 

0                                          7  8                                     15   16                             31                           

Type Code Check sum 

Identifier Sequence number 

Optional data 

 

Ping.h header is shown below. 

 

#include <netinet/in_systm.h> 
#include <netinet/ip.h> 
#include <netinet/ip_icmp.h> 
#define BUFSIZE  1500 
   /* globals */ 
char  sendbuf[BUFSIZE]; 
int   datalen;   /* # bytes of data following ICMP header */ 
char *host; 
int   nsent;    /* add 1 for each sendto() */ 
pid_t  pid;    /* our PID */ 
int   sockfd; 
int   verbose; 
   /* function prototypes */ 
void  init_v6(void); 
void  proc_v4(char *, ssize_t, struct msghdr *, struct timeval *); 
void  proc_v6(char *, ssize_t, struct msghdr *, struct timeval *); 
void  send_v4(void); 
void  send_v6(void); 
void  readloop(void); 
void  sig_alrm(int); 
void  tv_sub(struct timeval *, struct timeval *); 
struct proto { 
  void  (*fproc)(char *, ssize_t, struct msghdr *, struct timeval *); 
  void  (*fsend)(void); 
  void  (*finit)(void); 
  struct sockaddr  *sasend; /* sockaddr{} for send, from getaddrinfo */ 
  struct sockaddr  *sarecv; /* sockaddr{} for receiving */ 
  socklen_t     salen;  /* length of sockaddr{}s */ 
  int         icmpproto; /* IPPROTO_xxx value for ICMP */ 
} *pr; 
#ifdef IPV6 
#include <netinet/ip6.h> 
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#include <netinet/icmp6.h> 
#endif 
 

The main function is given below 

struct proto proto_v4 = { proc_v4, send_v4, NULL, NULL, NULL, 0, IPPROTO_ICMP }; 
#ifdef IPV6 
struct proto proto_v6 = { proc_v6, send_v6, init_v6, NULL, NULL, 0, IPPROTO_ICMPV6 }; 
#endif 
int datalen = 56;  /* data that goes with ICMP echo request */ 
int 
main(int argc, char **argv) 
{ 
 int    c; 
 struct addrinfo *ai; 
 char *h; 
 opterr = 0;  /* don't want getopt() writing to stderr */ 
 while ( (c = getopt(argc, argv, "v")) != -1) { 
  switch (c) { 
  case 'v': 
   verbose++; 
   break; 
  case '?': 
   err_quit("unrecognized option: %c", c); 
  } 
 } 
 if (optind != argc-1) 
  err_quit("usage: ping [ -v ] <hostname>"); 
 host = argv[optind]; 
 pid = getpid() & 0xffff; /* ICMP ID field is 16 bits */ 
 Signal(SIGALRM, sig_alrm); 
 ai = Host_serv(host, NULL, 0, 0); 
 h = Sock_ntop_host(ai->ai_addr, ai->ai_addrlen); 
 printf("PING %s (%s): %d data bytes\n", 
   ai->ai_canonname ? ai->ai_canonname : h, 
   h, datalen); 
  /* 4initialize according to protocol */ 
 if (ai->ai_family == AF_INET) { 
  pr = &proto_v4; 
#ifdef IPV6 
 } else if (ai->ai_family == AF_INET6) { 
  pr = &proto_v6; 
  if (IN6_IS_ADDR_V4MAPPED(&(((struct sockaddr_in6 *) 
         ai->ai_addr)->sin6_addr))) 
   err_quit("cannot ping IPv4-mapped IPv6 address"); 
#endif 
 } else 
  err_quit("unknown address family %d", ai->ai_family); 
 pr->sasend = ai->ai_addr; 
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 pr->sarecv = Calloc(1, ai->ai_addrlen); 
 pr->salen = ai->ai_addrlen; 
 readloop(); 
 exit(0); 
} 
 

4.8 Trace route Program 

Traceroute lets us determine the path that IP datagrams follow from our host to 

some other destination 

This datagram causes the first-hop router to return an ICMP "time exceeded in 

transit" error. The TTL is then increased by one and another UDP datagram is sent, 

which locates the next router in the path. When the UDP datagram reaches the final 

destination, the goal is to have that host return an ICMP "port unreachable" error. This 

is done by sending the UDP datagram to a random port that is (hopefully) not in use on 

that host. 

traceroute/trace.h 

   #include "unp.h" 

   #include <netinet/in_systm.h> 

    #include <netinet/ip.h> 

    #include <netinet/ip_icmp.h> 

     #include <netinet/udp.h> 

   #define BUFSIZE 1500 

  struct rec { /* of outgoing UDP data */ 

u_short rec_seq; /* sequence number */ 

u_short rec_ttl; /* TTL packet left with */ 

struct timeval rec_tv; /* time packet left */ 11 }; 

/* globals */ 

char recvbuf   [BUFSIZE];  

charsendbuf [BUFSIZE]; 

 int datalen; /* # bytes of data following ICMP header */ 16 char  *host; 

u_short sport, dport; 

int nsent; /* add 1 for each sendto () */ 

pid_t   pid; /* our PID */  
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int probe, nprobes; 

int sendfd, recvfd; /* send on UDP sock, read on raw ICMP sock */ 22 int ttl, 

max_ttl; 

int verbose; 

/* function prototypes */  

 const char *icmpcode_v4 (int); 

 const char     *icmpcode_v6 (int); 

 int recv_v4 (int, struct timeval *);  

 int recv_v6 (int, struct timeval *);  

 void    sig_alrm (int); 

void traceloop (void); 

void tv_sub (struct timeval *, struct timeval *); 

struct proto { 

const char *(*icmpcode) (int); 

int(*recv) (int, struct timeval *); 

struct sockaddr *sasend; /* sockaddr{} for send, from getaddrinfo */ 

struct sockaddr *sarecv; /* sockaddr{} for receiving */ 

struct sockaddr *salast; /* last sockaddr{} for receiving */ 

struct sockaddr *sabind; /* sockaddr{} for binding source port */ 

socklen_t salen; /* length of sockaddr{}s */ 

int icmpproto; /* IPPROTO_xxx value for ICMP */ 

 int ttllevel; /* setsockopt () level to set TTL */ 

 int ttloptname; /* setsockopt () name to set TTL */ 

} *pr; 

 

#ifdef IPV6 

#include <netinet/ip6.h> 

#include <netinet/icmp6.h> 

#endif 

 

The main function is given below 

struct proto proto_v4 = { icmpcode_v4, recv_v4, NULL, NULL, NULL, NULL, 0, 
        IPPROTO_ICMP, IPPROTO_IP, IP_TTL }; 
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#ifdef IPV6 
struct proto proto_v6 = { icmpcode_v6, recv_v6, NULL, NULL, NULL, NULL, 0, 
        IPPROTO_ICMPV6, IPPROTO_IPV6, 
IPV6_UNICAST_HOPS }; 
#endif 
int  datalen = sizeof(struct rec); /* defaults */ 
int  max_ttl = 30; 
int  nprobes = 3; 
u_short dport = 32768 + 666; 
int 
main(int argc, char **argv) 
{ 
 int    c; 
 struct addrinfo *ai; 
 char *h; 
 opterr = 0;  /* don't want getopt() writing to stderr */ 
 while ( (c = getopt(argc, argv, "m:v")) != -1) { 
  switch (c) { 
  case 'm': 
   if ( (max_ttl = atoi(optarg)) <= 1) 
    err_quit("invalid -m value"); 
   break; 
  case 'v': 
   verbose++; 
   break; 
  case '?': 
   err_quit("unrecognized option: %c", c); 
  } 
 } 
 if (optind != argc-1) 
  err_quit("usage: traceroute [ -m <maxttl> -v ] <hostname>"); 
 host = argv[optind]; 
 pid = getpid(); 
 Signal(SIGALRM, sig_alrm); 
 ai = Host_serv(host, NULL, 0, 0); 
 h = Sock_ntop_host(ai->ai_addr, ai->ai_addrlen); 
 printf("traceroute to %s (%s): %d hops max, %d data bytes\n", 
     ai->ai_canonname ? ai->ai_canonname : h, 
     h, max_ttl, datalen); 
  /* initialize according to protocol */ 
 if (ai->ai_family == AF_INET) { 
  pr = &proto_v4; 
#ifdef IPV6 
 } else if (ai->ai_family == AF_INET6) { 
  pr = &proto_v6; 
  if (IN6_IS_ADDR_V4MAPPED(&(((struct sockaddr_in6 *)ai->ai_addr)-
>sin6_addr))) 
   err_quit("cannot traceroute IPv4-mapped IPv6 address"); 
#endif 
 } else 



DEPARTMENT OF CSE/IT 
SCSX1024 NETWORK PROGRAMMING AND MANAGEMENT UNIT - IV 

III YEAR/VI SEM 

  err_quit("unknown address family %d", ai->ai_family); 
 pr->sasend = ai->ai_addr;  /* contains destination address */ 
 pr->sarecv = Calloc(1, ai->ai_addrlen); 
 pr->salast = Calloc(1, ai->ai_addrlen); 
 pr->sabind = Calloc(1, ai->ai_addrlen); 
 pr->salen = ai->ai_addrlen; 
 traceloop(); 
 exit(0); 
} 
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UNIT – V SNMP 

The History of SNMP Management- Internet Organizations and Standards- The SNMP Model- The 

Organization Model- System Overview- The Information Model. SNMPv1 Network Management: 

Communication Model and Functional Models. Introduction to RMON, SNMP Management: Major 

Changes in SNMPv2- SNMPv2 System Architecture- SNMPv2 Structure of Management Information- 

The SNMPv2 Management Information Base- SNMPv2 Protocol- Compatibility with SNMPv1- SNMPv3 

Architecture- SNMPv3 Applications- SNMPv3 Management Information Base. 

 

5.1 Network Management System (NMS) 

Goal 

 To ensure that the users of network are provided services with a quality of service that they 

expect. 

 It can be defined as Operations, Administration, Maintenance and Provisioning (OAMP) of 

network and services. 

5.1.1 Network Management Dumbbell architecture 

 The network management is concerned with network resources such as hubs, switches, 

bridges, routers and gateways and the connectivity between them via gateways. 

 It is also concerned with the end to end connectivity between any two processors in the 

network. 

 A network consists of network components and their interconnection. 

 Each vendor who manufactures the network components is qualified to develop an NMS to 

manage the product or set of products. 

 If a network uses products developed by different vendors then different NMS should be 

installed for each product. So, an NMS should be installed such that it can manage different 

vendor components of a network. 

 Thus, common management system and interoperability between different vendor NMS plays a 

major role. 

 Out of several standards, the two most prominent standards include, the Internet (SNMP) 

developed by IETF (Internet Engineering Task Force) and OSI developed by ISO. 

 Network management Dumbbell architecture for interoperability is shown below, where two 

vendor systems A and B exchange common management messages. 

 

Fig 5.1 Dumbbell architecture for interoperability 

Vendor A Vendor B 

Common 

management 

messages 
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 The message consists of , 

o Management information data (Type ID, status of managed objects etc.) 

o Management controls (Setting and changing configuration of an object) 

 Application services are the management related applications such as fault management and 

configuration management. 

 Management protocols are CMIP for the OSI model and SNMP for the Internet model. 

 Transport protocols are the first four OSI layers for the OSI model and TCP/IP over any of the 

first two layers for the Internet model. 

 SNMP management is also known as internet management. 

 Any network that uses TCP/IP protocol suite is an ideal candidate for SNMP management. 

 SNMP is the most widely used NMS. 

 If a new component like router or bridge that has an SNMP agent built in is added to the 

managed network, the NMS can automatically start monitoring the added component. 

5.2 History of SNMP Management 

 It began in 1970’s. 

 To remotely monitor and configure gateways, SGMP (Simple Gateway Monitoring Protocol) was 

developed. 

 SGMP was enhanced and named as SNMP. 

5.3 Internet Organizations and Standards 

 IAB (Internet Advisory Board) – Recommended the development of SNMP. It was developed 

informally by researchers on TCP/IP networks in 1983. 

 In 1989, IAB was renamed as Internet Architecture Board. 

 It took the responsibility to manage two task forces. 

o IETF (Internet Engineering Task Force) – concerned with the development and 

standardization for IAB. 

o IRTF (Internet Research Task Force) – handles long term problems. 

 InterNIC (Internet Network Information Center) – It is an organization that maintains several 

archives that contain documents related to the internet and the IETF activities. It includes, 

o RFC (Request for Comment) 

o STD (Standard RFC) 

o RFC (FYI) – For Your Information RFC 

 IANA (Internet Assigned Numbers Authority) – central coordinator for assigning unique 

parameter values for internet protocols. 
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5.4 SNMP v1 

5.4.1 SNMP Model 

 An NMS acquires a new network element through a management agent or monitors the 

ones it has acquired. 

 There is a relationship between the manager and agent. 

 Since one manager is responsible for managing the designated functions of many agents, it 

is hierarchical in nature. 

 Information is transmitted and received by both manager and the agent. 

5.4.2 Organization Model 

 The initial organization model of SNMP management is a simple two-tier model. 

 It consists of a network agent process, which resides in the managed object, and a network 

manager process which resides in the NMS and manages the managed object. 

 Both manager and agent are software modules. 

 

 

Fig. 5.2 One – Manager – One Agent Model  Multiple- Managers – One Agent Model 

 

 In two-tier model, the network receives raw data from the agents and processes them. In certain 

situations, it is beneficial for the network manager to obtain preprocessed data. 

 This introduces a three-tier architecture. 

Network

Element

SNMPAgent

SNMP

Manager

Network

Element

Network Agent

SNMP

Manager

SNMP

Manager

(a) One Manager - One Agent Model (b) Multiple Managers - One Agent Model
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Fig. 5.3 Three-tier organization model 

 

 An SNMP Manager can also manage a network element which does not have an SNMP agent. 

To do this a proxy server at the central location converts data into a set that is SNMP 

compatible and communicates with the SNMP manager. 

 

Fig. 5.4 Proxy server organization model 
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SNMP v1 System Architecture 

 

Fig. 5.5 SNMP v1 System Architecture 

SNMP Messages 

 Get Request: 

 Retrieve the values of objects in the MIB of an agent. 

 Get-Next Request: 

 Retrieve the values of  the next objects in the MIB of an agent.  

 Get-Response: 

 Retrieve the response from the manager. 

 Set Request: 

 Update the values of objects in the MIB of an agent. 

 Trap Request 

 

5.4.3 Information Model 

 The information model deals with SMI (Structure of Management Information) and MIB 

(Management Information Base). 

 This model deals with the structure and storage of information. 

 For information to be exchanged intelligently between manager and agent process, there has to 

be a common understanding on both the syntax and semantics. 

 The syntax used to describe management information is ASN.1 (Abstract Syntax Notation-

version 1). 

 ASN.1 syntax is based on Backus Naur Form (BNF) which looks like, 

<name>:=<definition> 

(eg) <digit> := 0|1|2|3|4|5|6|7|8|9 
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 The specification and organizational aspects of managed objects is called the Structure of 

Management Information (SMI) and is defined in RFC 1155. 

 Specifications of managed objects and the grouping of and relationship between managed 

objects are addressed in the Management Information Base (MIB). 

SMI (Structure of Management Information) 

 A managed object can be considered to be composed of an object type and an object 

instance. 

 

 

 

 

 

 

 

 

 

 

 SMI is concerned only with the object type and not the object instance. 

 

  

 

 

 

 

 

 

 

 

Fig.5.6 Managed Object – multiple instances 

• Object is uniquely defined by 

•  DESCRIPTOR 

•  OBJECT IDENTIFIER 

 

 

 

internet OBJECT IDENTIFIER ::= {iso(1) standard(3) dod(6) internet(1)} 
internet OBJECT IDENTIFIER ::= {1 3 6 1} 

internet OBJECT IDENTIFIER ::= {iso standard dod internet } 

Object

Object

Instance

Object

Type

Encoding:

BER

Syntax:

ASN.1

Name:

OBJECT

IDENTIFIER

Figure 4.10 Managed Object : Type and Instance
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Figure 4.11 Managed Object : Type with Multiple Instances

Object

Instance 2

Object

Instance 1

internet OBJECT IDENTIFIER ::=  
                                 {iso org(3) dod(6) 1 }. 
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internet OBJECT IDENTIFIER ::= { iso standard dod(6) internet(1) } 

internet OBJECT IDENTIFIER ::= { iso(1) standard(3) 6 1 } 

 

 

 

 

 

 

 

 

 

Fig.5.7  Internet Sub nodes 

directory   OBJECT IDENTIFIER ::= {internet 1} 

  mgmt    OBJECT IDENTIFIER ::= {internet 2} 

  experimental OBJECT IDENTIFIER ::= {internet 3} 

  private    OBJECT IDENTIFIER ::= {internet 4} 

 The figure below shows the example of four commercial vendors CISCO, HP, 3COM and 

Cabletron who registered as nodes 9,11,43 & 52 respectively. 

 

 

 

 

 

 

 

 

 

Fig. 5.8 Private MIB 

 

5.4.3 SNMP Communication Model 

 This model defines specification of four aspects of SNMP communication. 

o Architecture 

o Administrative model that defines data access policy. 

o SNMP protocol 

o SNMP MIB 

1. Architecture 

SNMP Messages 

• Get-Request 

mgmt

(2)

directory

(1)

experimental

(3)

private

(4)

Internet

{1 3 6 1}

Figure 4.13 Subnodes under Internet Node in SNMPv1

enterprises

(1)

private

(4)

hp

(11)

cisco

(9)
3Com

(43)

Cabletron

(52)

Figure 4.14 Private Subtree for Commercial Vendors

Internet

{1 3 6 1}
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• Get-Next-Request 

• Set-Request 

• Get-Response 

• Trap 

•  Generic trap 

•  Specific trap 

2. Administrative Model 

 Based on community profile and policy 

SNMP Entities:  

a.  SNMP application entities 

   - Reside in management stations and network  

     elements 

   - Manager and agent 

b.  SNMP protocol entities 

   - Communication processes (PDU handlers) 

   - Peer processes that support application entities 

 The application entity residing in the management station is known as SNMP Manager. 

 The application entity in the network element is known as SNMP agent. 

 The pairing of the two entities is called as an SNMP community. 

 Multiple pairs can belong to same community. 

 

 

 

 

 

 

 

 

 

Fig. 5.9 SNMP Community 

 

 A network element consists of many managed objects – both standard and private. However, a 

management agent will be permitted to view only a subset of network elements managed 

objects. This is called community MIB view. 

 

 

 

 

SNMP Manager

Authentication Scheme

SNMP Manager

Authentication Scheme

SNMP Manager

Authentication Scheme

SNMP Agent

Authentication Scheme

Authentic Messages

Figure 5.1 SNMP Community
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Fig. 5.10 Community Profile 

 A pairing of SNMP MIB view with an SNMP access code is called a community profile. 

 The pairing of an SNMP community with an SNMP community profile is defined as an SNMP 

access policy. This defines the administrative model of SNMP management. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 Access policy 

3. SNMP Protocol 

 Communication among protocol entities is done using messages encapsulated in UDP 

datagram. 

 SNMP message consists of, 

o Version identifier 

o SNMP community name 

o PDU (Protocol Data Unit) 
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Figure 5.2 SNMP Community Profile
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Fig. 5.12 Protocol entities 

 

4. SNMP MIB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13 SNMP Group 

 

5.5 SNMP v2 

 The basic components of network management in SNMPv2 are the same as in version 1. They 

are agent, manager both performing the same functions. 

Improvements in SNMPv2 when compared to SNMPv1 

1. Bulk data transfer message 

Application

Header

IP

Header

UDP

Header

Version     Community     SNMP PDU

Application PDU

DLC

Header

Transport PDU

Network PDU

Application

PDU

Transport

PDU

Network

PDU

Data Link

PDU

Figure 5.5 Encapsulated SNMP Message

DataSNMP

PDU

snmp

(mib-2 11)

snmpInPkts(1)

snmpOutPkts  (2)

snmpInBadVersions (3)

snmpInCommunityNames (4)

snmpInBadCommunityUses (5)

snmpInASNParseErrors (6)

-- not used (7)

snmpInTooBigs (8)

snmpInNoSuchNames (9)

snmpInBadValues (10)

snmpInReadOnlys (11)

snmpEnableAuthenTraps (30)

snmpOutTraps  (29)

snmpOutGetResponses (28)

snmpOutSetRequests (27)

snmpOutGetNexts (26)

snmpOutGetRequests (25)

snmpOutGenErrs (24)

-- not used (23)

snmpOutBadValues (22)

snmpOutNoSuchNames (21)

snmpOutTooBigs (20)

snmpInGenErrs (12)

snmpInTotalReqVars (13)

snmpInTotalSetVars (14)

snmpInGetRequests (15)

snmpInTraps (19)
snmpInGetResponses

(18)
snmpInSetRequests (17)

snmpInGetNexts (16)

Figure 5.21 SNMP Group
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 Ability to request and receive bulk data using the get bulk message. 

2. Manager to Manager message 

 Deals with interoperability of two network management systems. 

3. SMI (Structure of Management Information) 

 SMI in version 2 is divide into three parts. 

o Module definitions 

o Object definitions 

o Trap definitions 

4. Textual conventions 

 These are designed to help define new data types. 

5. Conformance statements 

 These help the customer compare the feature of various products. 

6. MIB enhancements 

7. Table enhancements 

8. Transport mappings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14 SNMP v2 System Architecture 

Additional Messages 

 inform-request 

 manager-to-manager message 

 The receiving manager responds with a response message 
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 Enhances interoperability 

 get-bulk-request 

  transfer of large data, e.g. retrieval of table data 

 SNMPv2-trap  

Similar to trap messages in SNMPv1 

SMIv2 – Module Definitions 

 Defines and describe semantics of an information module (info. related to network 

management) 

 added to provide administrative information regarding the informational module and the 

revision history 

  MODULE-IDENTITY macro defines the module definitions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMI v2 – Object Definitions 

 OBJECT IDENTIFIER, OBJECT-IDENTITY, OBJECT-TYPE  

o OBJECT IDENTIFIER defines the administrative identification of a node in the 

MIB  

o OBJECT-IDENTITY macro (defines info. about OID) assigns an object identifier 

to a class of managed objects in the MIB (e.g., defining a class of routers!) 

 The object itself is not managed 

o OBJECT-TYPE macro defines the type of a managed object (e.g., a specific 

router type) 

 Focuses on the details of implementation 

o NOTE: 

 OBJECT-IDENTITY is high level description 

MODULE-IDENTITY    MACRO ::= 
BEGIN 
 TYPE NOTATION ::= 
    "LAST-UPDATED" value (Update UTCTime) 
    "ORGANIZATION" Text 
    "CONTACT-INFO" Text 
    "DESCRIPTION" Text 
    RevisionPart 
 VALUE NOTATION ::= 
    value (VALUE OBJECT IDENTIFIER) 
 RevisionPart ::= Revisions | empty 
 Revisions ::= Revision | Revisions Revision 
 Revision ::= 
  "REVISION" value (UTCTime) 
  "DESCRIPTION" Text 
 -- uses the NVT ASCII character set 
 Text ::= """" string """" 
END 

MODULE-IDENTITY Macro 
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 OBJECT-TYPE details description needed for implementation 

 

Differences when compared to version 1 

1. There are seven messages instead of five. 

2. Two manager applications can communicate with each other at peer level. 

5.6 SNMPv3  

Features 

 Modularization of documentation and architecture. 

 Improved security 

 The access policy used in SNMP v1 and SNMP v2 is enhanced and formalized in the 

View based Access Control Model (VACM) in SNMPv3. 

 Architecture Overview 

 An SNMP management network consists of several nodes each with an SNMP entity. 

 They interact with each other in monitoring the network and its resources. 

 The architecture of an SNMP entity is defined as the elements of that entity and the names 

associated with them. 

 Conceptually SNMPv3 is nothing more than an extension of SNMP to address two major areas, 

administration and security. A major goal for SNMPv3, though, is to support a module 

architecture that can be easily extended. This way, for example, if new security protocols are 

advanced they can be supported by SNMPv3 by defining them as separate modules. Hopefully 

this will allow us to avoid having to buy books on SNMPv4 in the future. 

 

Fig.5.15 SNMPv3 Architecture 

SNMP Engine 

As you can see from the above diagram, an SNMP engine is made up of the following components: 

• Dispatcher 
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• Message Processing Subsystem 

• Security Subsystem 

• Access Control Subsystem 

Dispatcher 

The Dispatcher is responsible for sending and receiving messages. When a message is received, the 

Dispatcher tries to determine the version number of the message and then passes the message to the 

appropriate Message Processing Model. If the message cannot be parsed so that the version can be 

determined, then the snmpInASNParseErrs counter is incremented and the message is discarded. If 

the version is not supported by the Message Processing Subsystem, then the snmpInBadVersions 

counter is incremented and the message is discarded. The dispatcher is also responsible for 

dispatching PDUs to applications, and for selecting the appropriate transports for sending messages. 

Message Processing Subsystem 

 The Message Processing Subsystem is made up of one or more Message Processing Models. 

The following diagram shows a Message Processing Subsystem that supports models for SNMPv3, 

SNMPv1, SNMPv2c, and something that we will call “Other.” 

 

 

Fig. 5.16 Message Processing Sub system 

The Message Processing Subsystem is responsible for 

1. Preparing messages to be sent. 

2. Extracting data from received messages. 

Let’s walk through a simple case where the Dispatcher receives a valid SNMPv3 message from the 

line. The Dispatcher determines the version of the message and forwards it to the SNMPv3 Message 

Processing Model. The SNMPv3 Message Processing Model then processes the message by 

extracting information from it. It then calls the Security Subsystem to decrypt the data portion of the 

message (if needed) and make sure the message is properly authenticated. 
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At that point the Dispatcher will forward the PDU portion of the message to the appropriate SNMP 

application (more about that later). 

This architecture allows additional models (like “Other”) to be added. These additional models may be 

enterprise specific or future standards. In any case, the Dispatcher will need to be able to parse the 

messages to determine the version (and then map the version number to a Message Processing Model). 

• An unauthorized user trying to masquerade as an authorized user. For example, someone might try to 

perform management operations (such as change the operational state of a port) that they don’t have 

authorization for by pretending to be an authorized user. 

• Modifying the message stream. SNMP is typically based on UDP, which is a connectionless transport 

service. Messages could potentially be captured and reordered, delayed, or possibly replayed at a later 

time. For example, if a Set operation were captured and 

replayed in the future, it could conceivably change the desired configuration. By checking the timeliness 

of messages, this threat can be minimized. 

• Eavesdropping. By allowing messages to be encrypted, someone eavesdropping on the line won’t be 

able to make sense of what they see. This feature is essential for carriers that 

need to protect against sensitive data, such as billing information, from being eavesdropped on. 

The User-Based Security model currently defines the use of HMAC-MD5-96 and HMACSHA- 96 as the 

possible authentication protocols and CBC-DES as the privacy protocol. Future authentication and 

privacy protocols may be added. 

SNMPv1 and SNMPv2c Security Models provide only weak authentication (community names) and no 

privacy. 

This architecture allows additional Security Models (like “Other”) to be added. These 

additional models may be enterprise specific or future standards. Authentication and privacy protocols 

supported by Security Models are uniquely identified using Object Identifiers. Any IETF standard 

protocols for authentication should have an identifier defined within the snmpAuthProtocols subtree. 

Any IETF standard protocols for privacy should have an identifier defined within the snmpPrivProtocols 

subtree. Enterprise specific protocols should have their identifiers defined within the enterprise subtree. 

 

Applications 

For SNMPv3, when we refer to applications, we are referring to internal applications within an SNMP 

entity as opposed to what you might normally think of, such as a network management application to 

do trending or configuration. These internal applications do things like 

generate SNMP messages, respond to received SNMP messages, generate notifications, receive 

notifications, and forward messages between SNMP entitites. Currently there are five types of 

applications defined: 

1. Command Generators — generate SNMP commands to collect or set management data. 

2. Command Responders — provide access to management data. For example, processing Get, Get-

Next, Get-Bulk and Set PDUs are done by a Command Responder application. 
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3. Notification Originators — initiate Trap or Inform messages. 

4. Notification Receivers — receive and process Trap or Inform messages. 

5. Proxy Forwarders — forward messages between SNMP entities. 

The SNMPv3 Framework allows other applications to be defined over time. From this list, 

you can see that Command Generators and Notification Receivers are what we used to think of as part 

of an SNMP Manager, while Command Responders and Notification Originators are what we used to 

think of as part of an SNMP Agent. 

 

4.2.3 Snmp Message Processing Model 

This type is used to identify the message processing model used to process an SNMP message. 

It resolves to an INTEGER and can have one of the following values: 

- 0, SNMPv1. 

- 1, SNMPv2c. 

- 2, SNMPv2u and SNMPv2*. 

- 3, SNMPv3. 

- 4 - 255, reserved for standards-track message processing models. These values will be managed by 

the Internet Assigned Numbers Authority (IANA). 

- Values greater than 255 are handled exactly the same way as with the SnmpSecurityModel type to 

allow enterprise-specific message processing models. An enterprise- specific message processing 

model can be defined as enterpriseNumber * 256 + messageProcessingModel 

Again, as with the security model example, since Cisco’s enterprise number is 9, Cisco could define 

enterprise-specific message processing models with identifiers in the range of 2304 through 2559. And 

as with the security model, this scheme allows enterprises to define up to 255 

enterprise-specific message processing models. 

SNMPv3 Message Format 

A new format has been defined for SNMPv3 messages. An SNMPv3 message contains among other 

things an SNMPv2 PDU either encrypted or in plain text, security information, and the context the 

message should be processed in. The format for the message is 

 



DEPARTMENT OF CSE/IT 
SCSX1024 NETWORK PROGRAMMING AND MANAGEMENT UNIT - V 

III YEAR / VI SEM 
 

 

 

The header is made up of the following: 

- msgVersion, a value of 3 identifies the version of the message as an SNMPv3 message. 

- msgID (message identifier), this is an integer value that is used to coordinate request and response 

messages between two SNMP entities. The use of this is similar to the 

use of the request identifier within a PDU. The request identifier is used by SNMP applications to 

identify the PDU. The msgID is used by the engine to identify the message which carries a PDU. 

 

Note: One of the security threats that SNMPv3 tries to protect against is where a valid message is 

captured and replayed later. By guaranteeing that msgID values are not reused and that each message 

is identified by a unique value, this threat can be eliminated. One possible implementation to generate 

unique msgID values is to use the low-order bits of snmpEngineBoots as the high-order portion of the 

msgID value and a counter value for the low-order portion of msgID. This will protect against an SNMP 

entity generating the same msgID value after a device reboots. It will also guarantee that msgID values 

won’t repeat until after 65,535 messages (216-1) have been generated. 

- msgMaxSize (maximum message size), an integer value which indicates the maximum message size 

that the sender can support. This value is used to determine how big a response to a request message 

can be. This can have values ranging from 484 

through 231-1. 

- msgFlags (message flags), a 1-byte value that contains flags that indicate whether the message can 

cause a Report to be generated and the security level the sender had applied to the message before it 

was sent on the wire. The 3 bits defined are reportableFlag, authFlag, and the privFlag. 

If the reportableFlag is set, then a Report PDU can be sent back to the original sender (more on Report 

PDUs later). All messages that can be responded to (such as 

a Get PDU or an Inform PDU) are automatically treated as if reportableFlag is set to 
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1. All messages that are unacknowledged (such as a Report PDU, a Response PDU, or an SNMPv2-

trap PDU) are automatically treated as if reportableFlag is set to 0. 

The reportableFlag is only used if the PDU portion of a message cannot be decoded, for example, if a 

PDU cannot be decrypted because of an invalid encryption key. 

The authFlag and privFlag are used to indicate the security level. This can indicate the message was 

sent with no authentication and no privacy, authentication and no privacy, or authentication and 

privacy. The receiver of the message must apply this same security level when the contents are 

processed. 

- msgSecurityModel (message security model), an integer value which identifies the message security 

model that the sender used to generate this message. The receiver, obviously, must use the same 

security model to perform security processing for the message. The possible values for this are defined 

by the SnmpSecurityModel type. 

Since enterprise-specific security models may be implemented, the mapping of this value to the desired 

security model within an SNMP engine may need to be done in an implementation-dependent way. 

SNMPv3 MIB Views 

The SNMPv3 protocol allows you to configure MIB views for users and groups. The MIB tree is defined 

by RFC 1155 (Structure of Management Information).  

 

Fig.5.18 MIB Tree 
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You can define a MIB view that the user can access or a MIB view that the user cannot access. When 

you want to permit a user to access a MIB view, you include a particular view. When you want to deny 

a user access to a MIB view, you exclude a particular view. 

After you specify a MIB subtree view you have the option of further restricting a view by defining a 

subtree mask. The relationship between a MIB subtree view and a subtree mask is analogous to the 

relationship between an IP address and a subnet mask. The switch uses the subnet mask to determine 

which portion of an IP address represents the network address and which portion represents the node 

address. In a similar way, the subtree mask further refines the subtree view and enables you to restrict 

a MIB view to a specific row of the OID MIB table. You need a thorough understanding of the OID MIB 

table to define a subtree mask. 


