
SATHYABAMA UNIVERSITY
(Established under Section 3, UGC Act 1956)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

SATHYABAMA UNIVERSITY

1

SCSX1022 J2EE

SCSX1022_J2EE

UNIT I

J2EE Platform

Java is one of the most mature and commonly used programming languages for building

enterprise software. Over years java has evolved into three different platform editions

namely:

The Java 2 Platform, Standard Edition (J2SE): Most commonly used platform, consisting of a

run time environment and a set of APIs for building a wide range of applications that run

various platforms and client applications for various enterprise applications.

The Java 2 Platform, Enterprise Edition (J2EE): J2EE is a platform for building server-side

applications. It is an industry standard for developing and deploying the enterprise

application. It was introduced in 1998 and released in 1990 dec.

The Java 2 Platform, Micro Edition (J2ME): J2ME, the latest edition enables building java

application for micro devices such as mobile, set of boxes etc.

Programming for the Enterprise:

Java, which came in 1995, has an independent feature containing OOPS Concept which is

useful in interacting with data application. It has replaced several proprietary and non-

standard technologies as the preferred choice for building e-commerce and other web based

enterprise applications. Today, J2EE is one of the two available alternatives for building e-

commerce applications-the other being Microsoft’s Window and .Net based technologies.

Enterprise Today:

An enterprise means a business organisation, and enterprise applications are those software

applications that facilitate various activities in an enterprise.

Building applications for the enterprise has always been challenging. Some factors that

contribute to this challenge and complexity are:

Diversity of information needs: In an enterprise, information is created and consumed by

various users in number of different forms, depending on specific needs. It is very common to

find that each business activity may process the same information in different forms.

Complexity of business processes: Most of the enterprise business processes involve

complex information capture, processing and sharing. This leads to complex technical and

architectural requirements for building enterprise applications.

Diversity of applications: Due to the complex nature of enterprise business processes, it is

common to find that an enterprise consists of a large number of application each built at

various times to fulfill different needs of various business process.

Over years, these challenges have taken monstrous shapes. In order to maintain a competitive

edge, the adoptions of new technologies are gaining more importance. Some basic

requirements to be met by any developers are:

• Programming productivity-Ability to develop and deploy applications

• Reliability-Ability to withstand/maintain the market at the time of release.

• Security-Make it impossible for hackers.

• Scalability-Ability to accommodate current changes in project.

• Integration-Ability to accommodate new features.

Enterprise Architecture Styles:

These architectural styles are quite common in today’s enterprises. The Systems are generally

data-driven with the server most of the times being a database server, and the client being a

graphical user interface to operate on the data. There are various types of architecture styles.

Tier is an application which is handled row by row or column by column.

(i)Two-Tier Architecture:

 In traditional two tier application, the processing load is given to the client Pc, whereas the

server acts only as a traffic controller between the application and data. When the entire

application is processed on a PC, the application is forced to make multiple requests for data,

thereby heavily tax the network.

Advantages:

The advantage of the two-tier design is its simplicity.

Drawbacks:

• Client send request to server to clear the traffic and most of the time is wasted in

request-response processing

• Easy to deploy but difficult to enhance.

• Not scalable, not suitable for internet.

(ii) Three-Tier Architecture:

 This application is broken up into three separate logical layers, each with a well defined

set of interfaces.

• Presentation Layer:

 It consists of a graphical user interface of some kind. It displays the information

related to services as browsing, purchasing etc. For communicating with other tiers, it outputs

the result to the browser and other tiers in the network.

• Business/Application/Middle/Logic Layer:

 It consists of application or business logic. The business layer controls the

functionality by performing the detailed processing. It is basically the code that the user calls

upon to retrieve the data. The presentation layer then receives the data and formats for

display.

• Data Layer:

It contains the data needed for the application. This data can consists of any source of

information including enterprise database such as Oracle, set of XML documents, or a

directory service such as LDAP server. It keeps the data neutral and independent from

the other two layers.

Advantages and Disadvantages:

The three-tier Web application architecture offers the following advantages:

• High performance, lightweight persistent objects

• High degree of flexibility in deployment platform and configuration

The disadvantage of this architecture is it is less standard than EJB.

(iii) N-Tier Architecture:

 This application is responsible for representing user interface to end users for

communicating business logic tier. The application logic is logically divided by function

rather than physically. It is broken down into:

• User Interface:

 It handles the user’s interaction with the application. It can be a web browser

running through a firewall, a heavier desktop application or even a wireless device.

• Presentation Logic:

 Defines what the user interface displays and how a user’s requests are handled.

• Business Logic:

It models the application’s business rules, often through interaction with the

application’s data.

• Infrastructure Services:

 Provides additionally functionality required by the application components, such as

messaging, transactional support.

• Data Layer:

It stores the enterprise data which can also be retrieved to the business layer.

J2EE Architecture Overview

 J2EE architecture is essentially a distributed architecture for developing multi-tier

enterprise applications. Here, applications are divided into multiple tiers: the client-tier to

provide a user interface, middle-tier modules to provide services and business logic, and

backend EIS to provide data management. Figure illustrates the typical J2EE environment.

 N-tier application architecture provides a model for developers to create a flexible and

reusable application. By breaking up an application into tiers, developers only have to modify

or add a specific layer, rather than have to rewrite the entire application over, if they decide to

change technologies or scale up. In the term "N-tier," "N" implies any number -- like 2-tier,

or 4-tier; basically, any number of distinct tiers used in your architecture.

Applications based on this architecture are employing the Model-View-Controller Pattern.

Model is the data separated from how the information is presented. View represents data

presentation. Controller is the application/business logic that controls the flow of information.

Thus an application is designed based on these three functional components.

J2EE Architecture

The complete J2EE architecture is illustrated below.

Enterprise Architecture:

Enterprise Architecture is basically just n-tier architecture where we need to simply extend

the middle tier by allowing for multiple application objects rather than just a single

application. These application objects must each have an interface that allows them to work

together. The interfaces used should be generic and only the objects are modified, not the

interfaces, making it simple and quick.

With enterprise architecture, we can have multiple applications using a common set of

components across an organization. This promotes the standardization of business practices.

If a business rule changes, then the changes have to be made to the relevant “business object”

and if necessary to the associated interface and the subsequent objects accessing the interface.

J2EE Platform:

The J2EE platform is essentially a distributed application-server environment- a java

environment that provides the following:

• A set of java extension APIs to build applications. These APIs define a programming

model for J2EE applications.

• A run-time infrastructure for hosting and managing applications. This is the server

runtime in which application resides.

J2EE Runtime:

• Applications use interfaces. There is a clear demarcation (limit) between applications

and runtime infrastructure.

• J2EE is more flexible to build applications including long-term and short-term

demands. The long term demands are maintained and reusable. The short term

demands are short lived internet designs.

• The layers in J2EE architecture are loosely coupled.

• It is highly extendable implementation.

• J2EE architecture provides uniform means of accessing platform-level services via its

runtime environment.

• Before J2EE, distributed computing was client-server based.

Server-implements interface, Client-connects to server.

• CORBA is an example of distributed application. It has interfaces using IDL(Interface

Defining Language) to generate stubs and skeletons.

• Enterprise services need the following services- Transaction processing, database

access, messaging and multithreading.

• To access the above services, we need plumbing code or middleware solutions using

APIs.

• J2EE does not specify nature and structure of runtime, instead it introduces container.

J2EE APIs:

A typical commercial J2EE platform includes one or more containers, and access to the

enterprise APIs is specified by the J2EE. The platform includes a set of Java standard

extensions that each J2EE platform must support.

• JDBC 2.0

Improves the standard JDBC 2.0 by adding more efficient means of obtaining

connections, connection pooling distributed transactions etc.

• Enterprise JavaBeans (EJB) 2.0

Component framework for multi-tier distributed applications.

• Java Servlets 2.3

Object oriented abstractions to build dynamic web applications.

• JavaServer Pages (JSP) 1.2

Provides template driven web application development

• Java Message Service (JMS) 1.0

Provides message queuing and types of message oriented middleware services.

• Java Transaction API (JTA) 1.0

Implements distributed transactional applications.

• JavaMail 1.2

Platform-independent and protocol-independent framework to build java based

applications

• JavaBeans Activation Framework (JAF) 1.0

JavaMail uses JAF to determine contents of MIME (Multipurpose Internet Mail

Extension) messages.

• Java API for XML Parsing (JAXP) 1.1

Parses XML Document Object Model (DOM) and XSLT Transformations (Style

sheet Transform)

• The Java Connector Architecture (JCA) 1.0

Integrates J2EE to legacy information systems.

• Java Authentication and Authorization Service (JAAS) 1.0

Provides authentication and authorization mechanisms.

J2SE APIs:

• Java Interface Definition Language (IDL) API

Invokes CORBA (Common Object Request Broker Architecture) objects via IIOP

(Internet Inter-ORB Protocol).

• JDBC Core API

Provides basic database programming facilities.

• Java Remote Method Invocation (RMI)-IIOP API

Bridges the gap between RMI & CORBA Applications.

• Java Naming and Directory Interface (JNDI) API

Acts as SPI (Service Provider Interface) to J2SE.

J2EE Architecture

Containers:

A J2EE Container is a runtime to manage application components developed according

to the API specifications, and to provide access to the J2EE APIs.

J2EE components are also called Managed Objects since they are created and managed

within container runtime.

The J2EE Architecture contains various types of containers:

o A web container foe hosting Java Servlets and JSP pages

o An EJB container for hosting Enterprise JavaBean components

o An applet container for hosting Java applets

o An application client container for hosting standard Java applications

(i)Applet Container:

• Container consists of Java program which is static and embedded within the HTML

pages.

• Used to manage the construction and the execution of applets.

• Consists of web browser and java plug in the runtime environment.

(ii)Application Container:

• Interface between J2EE application client and J2EE server.

• Runs on client machine.

• Acts as the gateway between the client application and java double EE application

(iii)EJB Container (Enterprise Java Bean):

• Interface between the enterprise bean which provides the business logic in J2EE

application and J2EE server.

• Mainly runs on J2EE server.

• Manages the execution of application enterprise beans.

(iv)Web Container:

• Acts as the interface between the web components and web server.

• The main components of web containers are JSP and Servlet.

JSP- It is a mechanism for server sides scripting between the web pages.

Servlet - It is one of the paths of java programming that executes on web server in

response to http request similar to CGI (Computer Graphical Interface). The servlets

produced HTML outputs in the http response and returns by invoking java object

methods on server side without returning any text.

In this architecture, there are primarily two types of clients:

(i)Web Clients:

• Executed in the Web browsers.

• For these clients, UI generated on server side as HTML/XML.

• Use http to communicate with web containers.

• Application components in web containers include Java Servlets. JSP which

implements functionality required by web clients.

• Web containers are responsible for accepting requests from web clients & generating

response with help of application components.

(ii)EJB Clients:

• Applications that access EJB components or EJB containers

• There are three types of EJB Clients

1. Application Clients that are stand alone applications accessing EJB

components using RMI-IIOP Protocol

2. Components in web container- E.g. Java servlets, JSP also access EJB

components using RMI-IIOP Protocol

3. Other EJBs running within the EJB container-communicate via standard Java

method calls via local interface.

Container Architecture:

The J2EE specification defines a container as being responsible for providing the runtime

support for the application components. The container acts as an intermediary between the

J2EE application and the services provided by the J2EE server, to give a federated view of

APls for the application components. The container provides the APls to application

components for accessing services. It also handles security, resource pooling, and state

management.

Figure shown below illustrates the container architecture.

(i)Application Components:

 Application components include Servlets, JSP, and EJB. These can be packaged into

archive files.

(ii)Deployment Descriptors:

 Descriptor is an XML file that describes application components. It also Includes

additional information required by containers.

Architecture of a container is divided into four parts:

(i)Component Contract:

• Set of APIs specified by the container, that application components are required to

extend or implement.

• Basic purpose of container is to provide a runtime for application

• Instance of application components are created and invoked within JVM of the

container.

• This makes container responsible for managing life cycle of application components&

they are required to abide by certain contracts specified by the container.

• J2EE application components are remote to client. Clients can’t directly call methods

on components. It makes request to application server and it is container that actually

invokes methods. Application components are required to follow contract specified

by the container.

• All J2EE application components are managed which includes location, instantiation,

pooling, initializing, service invocation and removal of components from service.

(ii)Container Service APIs:

• Additional services provided by the container, which are commonly required for all

applications in the container.

• A container in the J2EE architecture provides a consolidated view of various

enterprise APIs specified in the J2EE platform.

• Application components can access APIs via appropriate objects created a published

in JNDI service or implementation.

• Loosely coupling between implementation and client.

• Uses delegation (code reusability) instead of inheritance

(iii)Declarative Services:

• Services that the container interposes on applications, based on the deployment

description provided for each application component, such as security, transactions

etc.

• A deployment descriptor defines contract between container and component. As

application developers, we are required to specify a deployment descriptor for each

group of application components

• Two methods for invoking services:

1. Explicit invocation

Standard method. Eg. In DBMS, we explicitly commit/rollback queries.

2. Declarative invocation

These are not explicitly invoked. Instead we specify business transactions

(Start, Stop etc) in deployment descriptor & the container will automatically

start a transaction. Declarative Service is a service performed on the container

on our behalf.

 Advantage:

 We can place new services without changing application components. So decisions

can be postponed to runtime instead of design time.

(iv)Other container services:

• Lifecycle Management of application components

• Resource pooling

• Populating JNDI namespace based on deployment names associated with EJB

components

• Populating JNDI namespaces with objects necessary for utilizing container service

APIs

• Clustering-enhances availability and scalability of applications.

J2EE Technologies:

This large collection, of quite disparate technologies, can be divided according to use as

follows:

• The Component Technologies: There are three types of components: JSP pages,

servlets and Enterprise JavaBeans.

• The Service Technologies: These technologies provide the application’s component

with supported services to function efficiently.

• The Communication Technologies: These technologies provide the mechanism for

communication among different parts of the application, whether they are local or

remote

(i)Component Technologies:

 It is further divided into two types:

• Web components

(i) Components respond to http request

(ii) Extends the functionality of web server to enable dynamic content in

HTML

(iii) JSP- Extension of Java Servlet programming. When user request JSP

pages, web container compiles JSP page into servlet.JSP page provide

powerful & dynamic page assemble mechanism.

• EJB components

(i) EJB 2.0 is a distributed model for developing secure, scalable,

transactional and multi-users components.

(ii) EJBs are reusable software units containing business logic

(iii) EJB allow separation of application logic from system level services.

(iv) Three types of beans: Entity Beans, Session Beans and Message Driven

Beans

(ii)The Service Technologies:

• JDBC- Database connectivity, RDBMS

• JTA (Java Transaction API) & JTS (Java Transaction Services)-for transaction in

distributed applications. They are container controlled so developers need not be

concerned about it

• JNDI-provides means to perform standard operations on directory service

resources such as LDAP (Lightweight Directory Access Protocol), Novell

Directory Services and Netscape Directory Services.

• JMS-Mechanism of sending message asynchronously. It provides such

functionality with the help of MOM (Message Oriented Middleware)

• JavaMail-e-mail sending and receiving. It supports internet protocols like SMTP,

IMAP (Interactive Mail Access Protocol), POP3 (Post Office Protocol)

• JCA (Java Connector Architecture)-Standardised means by which J2EE

applications can access variety of legacy applications mostly ERP systems. Plug

and play components allow us to access legacy system without having to know too

much specific about how to work with it.

• JAAS-means to grant permission based on who is executing the code. It utilizes

pluggable architecture of authentication modules, such as Kerberos or PKI.

(iii)The Communication Technologies:

 It is further divided into:

• Internet Protocol

(i) HTTP-stateless application level protocol

(ii) TCP/IP-separate modules combined into single entity. IP takes care of

data received on both endpoints over internet. TCP takes care of error

checking on packets.

(iii) SSL (Secure Socket Layer)-uses cryptography to encrypt information

across client/server and provides authentication.

• Remote Object Protocols

(i) RMI-One of the primary mechanisms and allows us to use interfaces to

define remote objects.

(ii) RMI-IIOP-extension of RMI. Allows us to use interface to define

remote object that can be implemented in any language that supports

OMG mapping

• JavaIDL

 Java client can invoke method calls on CORBA objects. They need not be

written in java but implement an IDL defined interface.

Java Naming and Directory Services:

(i)Naming Services:

 A service that enables creation of standard name for given set of data. In internet, each

host has a FQDN

FQDN (Fully Qualified Domain Name).

(ii)Directory Services:

 It is a special type of database that is optimised for read access by using various indexing,

caching and disk access technique. The information in directory service is described using a

hierarchial information model.

 Advantage: Allows more flexible searching

 One commonly used directory service is the Domain Naming Service (DNS) used in the

internet.

 General Purpose directory services used by Enterprise:

• Novell Directory Services (NDS)

• Network Information Services (NIS/NIS+)

• Active Directory Services (ADS)

• Windows NT Domains

LDAP (Lightweight Directory Access Protocol):

In 1990, it was the standard directory protocol. JNDI can access LDAP. LDAP defines how

clients should access data in server. It does not specify how data is stored in server.

LDAP Data:

Data in LDAP is organised in a hierarchical tree called DIT (Directory Information Tree).

Each leaf is called an entry and the first entry is called the root entry. An entry comprises a

DN (Distinguished Name) and any number of attribute-value pair. The left most part of a DN

is called a Relative Distinguished Name (RDN).

LDIF (LDAP Data Interchange Format):

 It is human-readable. Attributes also have matching rules.

Matching Rules:

• DN-Attribute is in the form of a Distinguished Name

• Case Insensitive String (CIS)-Attribute can match if the value of the query equals the

attribute’s value, regardless of case.

• Case Sensitive String (CSS)-Attribute can match if the value of the query equals the

attribute’s value including the case.

• Telephone-Is the same as CIS except that the characters like “-” and “()” are ignored

when determining the match.

• Integer-Attribute match is determined using only numbers.

• Binary-Attribute matches if the value of the query and the value of the attribute are

the same binary values.

Database Programming with JDBC/ODBC Bridge:

Database Driver:

Provides set of APIs for accessing data managed by data server. eg. Vendors: Oracle

JDBC Driver:

JDBC-ODBC Bridge:

Open Database Connectivity was originally created to provide an API standard for SQL on

Microsoft Windows platform.

JDBC drivers are divided into four types or levels. The different types of jdbc drivers are:

Type 1: JDBC-ODBC Bridge driver (Bridge)

Type 2: Part Native-API/partly Java driver (Native)

Type 3: Intermediate Database Access Server (Middleware)

Type 4: Pure Java/Native-protocol driver (Pure)

Type 1 JDBC Driver

JDBC-ODBC Bridge driver

The Type 1 driver translates all JDBC calls into ODBC calls and sends them to the ODBC

driver. ODBC is a generic API. The JDBC-ODBC Bridge driver is recommended only for

experimental use or when no other alternative is available.

Advantage

The JDBC-ODBC Bridge allows access to almost any database, since the database's ODBC

drivers are already available.

Disadvantages

1. Since the Bridge driver is not written fully in Java, Type 1 drivers are not portable.

2. A performance issue is seen as a JDBC call goes through the bridge to the ODBC driver,

then to the database, and this applies even in the reverse process. They are the slowest of all

driver types.

3. The client system requires the ODBC Installation to use the driver.

4. Not good for the Web.

Type 2 JDBC Driver

Part Native-API/partly Java driver

The distinctive characteristic of type 2 JDBC drivers is that Type 2 drivers convert JDBC

calls into database-specific calls i.e. this driver is specific to a particular database. Some

distinctive characteristic of type 2 JDBC drivers are shown below. Example: Oracle will have

oracle native API.

Advantage

The distinctive characteristic of type 2 JDBC drivers are that they are typically offer better

performance than the JDBC-ODBC Bridge as the layers of communication (tiers) are less

than that of Type 1 and also it uses Native API which is Database specific.

Disadvantage

1. Native API must be installed in the Client System and hence type 2 drivers cannot be used

for the Internet.

2. Like Type 1 drivers, it’s not written in Java Language which forms a portability issue.

3. If we change the Database we have to change the native api as it is specific to a database

4. Mostly obsolete now

5. Usually not thread safe.

Type 3 JDBC Driver

Intermediate Database Access Server

Type 3 database requests are passed through the network to the middle-tier server. The

middle-tier then translates the request to the database. If the middle-tier server can in turn use

Type1, Type 2 or Type 4 drivers.

Advantage

1. This driver is server-based, so there is no need for any vendor database library to be

present on client machines.

2. This driver is fully written in Java and hence Portable. It is suitable for the web.

3. There are many opportunities to optimize portability, performance, and scalability.

4. The net protocol can be designed to make the client JDBC driver very small and fast to

load.

5. The type 3 driver typically provides support for features such as caching (connections,

query results, and so on), load balancing, and advanced

system administration such as logging and auditing.

6. This driver is very flexible allows access to multiple databases using one driver.

7. They are the most efficient amongst all driver types.

Disadvantage: It requires another server application to install and maintain. Traversing the

record set may take longer, since the data comes through the backend server.

Type 4 JDBC Driver

Pure Java/Native-protocol driver The Type 4 uses java networking libraries to

communicate directly with the database server.

Advantage

1. The major benefit of using a type 4 jdbc drivers are that they are completely written in Java

to achieve platform independence and eliminate deployment administration issues. It is most

suitable for the web.

2. Number of translation layers is very less i.e. type 4 JDBC drivers don't have to translate

database requests to ODBC or a native connectivity interface or to pass the request on to

another server, performance is typically quite good.

3. You don’t need to install special software on the client or server. Further, these drivers can

be downloaded dynamically.

Disadvantage

With type 4 drivers, the user needs a different driver for each database.

The java.sql Package

The classes in the java.sql package can be divided into the following groups based on their

functionality.

Connection Management

Database Access

Data Types

Database Metadata

Exceptions and Warnings.

JDBC Connection:

java.sql.Connection

JDBC 2.0 Connection Methods Supported

Returns Signature

Statement createStatement(int resultSetType, int

resultSetConcurrency)

PreparedStatement prepareStatement(String sql, int resultSetType, int

resultSetConcurrency)

CallableStatement prepareCall(String sql, int resultSetType, int

resultSetConcurrency

Before you can create a java jdbc connection to the database, you must first import the

java.sql package.

import java.sql.*; The star (*) indicates that all of the classes in the package java.sql are to

be imported.

1. Loading a database driver

In this step of the jdbc connection process, we load the driver class by calling

Class.forName() with the Driver class name as an argument. Once loaded, the Driver class

creates an instance of itself. A client can connect to Database Server through JDBC Driver.

Since most of the Database servers support ODBC driver therefore JDBC-ODBC Bridge

driver is commonly used.

The return type of the Class.forName (String ClassName) method is “Class”. Class is a class

in

java.lang package.

 try {

 Class.forName(”sun.jdbc.odbc.JdbcOdbcDriver”); //Or any other driver

}

catch(Exception x){

 System.out.println(“Unable to load the driver class!”);

}

2.Creating a oracle jdbc Connection

The JDBC DriverManager class defines objects which can connect Java applications to a

JDBC driver. DriverManager is considered the backbone of JDBC architecture.

DriverManager class manages the JDBC drivers that are installed on the system. Its

getConnection() method is used to establish a connection to a database. It uses a username,

password, and a jdbc url to establish a connection to the database and returns a connection

object. A jdbc Connection represents a session/connection with a specific database. Within

the context of a Connection, SQL, PL/SQL statements are executed and results are returned.

An application can have one or more connections with a single database, or it can have many

connections with different databases. A Connection object provides metadata i.e. information

about the database, tables, and fields. It also contains methods to deal with transactions.

 JDBC URL Syntax:: jdbc: <subprotocol>: <subname>

JDBC URL Example:: jdbc: <subprotocol>: <subname>•Each driver has its own subprotocol

•Each subprotocol has its own syntax for the source. We’re using the jdbc odbc subprotocol,

so the DriverManager knows to use the sun.jdbc.odbc.JdbcOdbcDriver.

try{

 Connection dbConnection=DriverManager.getConnection(url,”loginName”,”Password”)

}

catch(SQLException x){

 System.out.println(“Couldn’t get connection!”);

}

3. Creating a jdbc Statement object,

Once a connection is obtained we can interact with the database. Connection interface defines

methods for interacting with the database via the established connection. To execute SQL

statements, you need to instantiate a Statement object from your connection object by using

the createStatement() method.

Statement statement = dbConnection.createStatement();

A statement object is used to send and execute SQL statements to a database.

Three kinds of Statements

Statement: Execute simple sql queries without parameters.

Statement createStatement()

Creates an SQL Statement object.

Prepared Statement: Execute precompiled sql queries with or without parameters.

PreparedStatement prepareStatement(String sql)

returns a new PreparedStatement object. PreparedStatement objects are precompiled

SQL statements.

Callable Statement: Execute a call to a database stored procedure.

CallableStatement prepareCall(String sql)

returns a new CallableStatement object. CallableStatement objects are SQL stored procedure

call statements.

4. Executing a SQL statement with the Statement object, and returning a jdbc resultSet.

Statement interface defines methods that are used to interact with database via the execution

of SQL statements. The Statement class has three methods for executing statements:

executeQuery(), executeUpdate(), and execute(). For a SELECT statement, the method to use

is executeQuery . For statements that create or modify tables, the method to use is

executeUpdate. Note: Statements that create a table, alter a table, or drop a table are all

examples of DDL

statements and are executed with the method executeUpdate. execute() executes an SQL

statement that is written as String object.

ResultSet provides access to a table of data generated by executing a Statement. The table

rows are retrieved in sequence. A ResultSet maintains a cursor pointing to its current row of

data. The next() method is used to successively step through the rows of the tabular results.

ResultSetMetaData Interface holds information on the types and properties of the columns

in a ResultSet. It is constructed from the Connection object.

/*JDBC CONNECTIVITY*/

import java.io.*;

import java.sql.*;

public class jdbcc

{

public static void main(String args[]) throws IOException

{

try

{

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection cn=DriverManager.getConnection("jdbc:odbc:mydsn");

 System.out.println("Connected...");

 Statement st=cn.createStatement();

 st.executeUpdate("Insert into emp values(3,'arun',22,10000,'chennai')");

 ResultSet rs=st.executeQuery("select * from emp");

 while(rs.next())

 {

 System.out.print(rs.getInt(1)+rs.getString(2)+"\t"+rs.getInt(3)+"\t"+rs.getInt(4)+"\t"+r

s.getString(5)+"\t");

 System.out.println();

 }

 cn.close();

}

catch(Exception e)

{

 System.out.println(e);

} } }

/* OutPut : */

Z:\j2ee>java jdbcc

Connected...

1 akash 20 200 hydr

2 raj 23 200 mysore

3 arun 22 10000 chennai

Z:\j2ee> */

Scrollable result sets, updatable result sets

package com.jdbctest.ScrollResult;

import java.sql.*;

import com.jdbctest.Util.JDBCUtil;

public class ScrollResult {

 /** Scrollable result set

 * @param args

 */

 public static void main(String[] args) {

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 conn = JDBCUtil.getConnection();

 try {// Set to become a scrollable, updatable

 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

 String sql = "SELECT id,sno,sname,score FROM score";

 rs = stmt.executeQuery(sql);

 /*********** The scroll of the result set ***********************/

 // Navigate to the second record

 rs.absolute(1);

 print(rs);

 // Backward scrolling a

 //rs.previous();

 print(rs);

 // Navigate to the last record

 rs.last();

 // Navigate to the first

 print(rs);

 rs.first();

 rs.beforeFirst();

 while(rs.next()){

 print(rs);

 }

 /************ Update the data in the result set *******************/

 System.out.println(" Update data -----------------");

 rs.absolute(1);

 rs.updateString("score", "86");

 rs.updateRow();

 rs.beforeFirst();

 while(rs.next()){

 print(rs);

 }

 System.out.println(" Insert data -----------------");

rs.moveToInsertRow();

 rs.updateString("sname", " Wu rain ");

 rs.updateString("sno", "200608016");

 rs.updateDouble("score", 87);

 //rs.updateString("birthday", "1996-1-26");

 rs.insertRow();

 rs.beforeFirst();

 while(rs.next()){

 print(rs);

 }

 System.out.println(" Delete data -----------------------------");

 rs.absolute(3);

 rs.deleteRow();

 // The way to the front

 rs.beforeFirst();

 while(rs.next()){

 print(rs);

 }

 } catch (SQLException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 private static void print(ResultSet rs) throws SQLException {

 System.out.println(rs.getString("sno"));

 System.out.println(rs.getString("sname"));

 System.out.println(rs.getDouble("score"));

 System.out.println("******************************");

 }

}

Executing SQL Statements:

JDBC Execute Statement is used to execute SQL Statement, The Execute Statement accept

SQL object as parameter and return you the result set from a database.

st.execute (): This method is used to execute the SQL query. This may return you a set of

row into your table of database.

String sql = "create table Abc(no integer,name varchar(10))"

 st.execute(sql);

St.executeQuery (): This is used to return the result set obtained from the record set of

the database. The select statement is used to retrieve the result set from the database.

String sql = "select * from person";

 rs = st.executeQuery(sql);

import java.sql.*;

public class JdbcExecuteStatement {

 public static void main(String args[]) {

 Connection con = null;

 Statement st = null;

 String url = "jdbc:mysql://localhost:3306/";

 String db = "komal";

 String driver = "com.mysql.jdbc.Driver";

 String user = "root";

 String pass = "root";

 try {

 Class.forName(driver);

 con = DriverManager.getConnection(url + db, user, pass);

 st = con.createStatement();

 String sql = "create table Abc(no integer,name varchar(10))";

 st.execute(sql);

 } catch (Exception e)

{

 System.out.println(e); }

 }

}

CONNECTION POOLING

Connection pooling being normally used in web-based and enterprise applications is usually

handled by an application server. Any dynamic web page can be coded to open a connection

and close it normally but behind the scenes when a new connection is requested, one is

returned from the connection pool maintained by the application server. Similarly, when a

connection is closed it is actually returned to the connection pool.

Connection pooling is a collection of database connections that is maintained by memory

that can be reused. Once an application has finished its physical connection the connection is

recycled rather than being destroyed.

The JDCConnectionPool.java class makes connections available to calling program in its

getConnection method. This method searches for an available connection in the connection

pool. If no connection is available from the pool, a new connection is created. If a connection

is available from the pool, the getConnection method leases the connection and returns it to

the calling program.

SCSX1022_J2EE

UNIT II

Introduction to Web Containers:

 In J2EE architecture the basic purpose of the container is to provide the runtime

environment for the components. The web container is a Java runtime environment which

is responsible for managing life cycle of JSP pages and Servlets. Servlets and JSP pages

are collectively called web components. A web container is responsible for instantiating,

initializing and invoking Servlets and JSP pages. The web container implements Servlet

and JSP API and provide infrastructure for deploying and managing web components.

The web container is part of web server or application server that provides the network

services over which request and response are sent. All web containers must support

HTTP protocol however it may support addition protocols like HTTPS. Web container is

also called Servlet container or Servlet engine.

The HTTP Protocol

 The Hypertext Transfer Protocol (HTTP) is an application-level TCP/IP based

protocol with the lightness and speed necessary for distributed, collaborative, hypermedia

information systems (internet). HTTP is a request-response standard typical of client-

server computing. The HTTP protocol is a stateless protocol.

 HTTP is a request/response protocol, which means your computer sends a request

for some file (e.g. "Get me the file 'home.html'"), and the web server sends back a

response ("Here's the file", followed by the file itself).

HTTP Request Methods

HTTP/1.0 allows an open-ended set of methods to be used to indicate the purpose of a

request. The three most often used methods are GET, HEAD, and POST.

The GET Method

Information from a form using the GET method is appended onto the end of the action

URI being requested. Your CGI program will receive the encoded form input in the

environment variable QUERY_STRING.

The GET method is used to ask for a specific document - when you click on a hyperlink,

GET is being used. GET should probably be used when a URL access will not change the

state of a database (by, for example, adding or deleting information) and POST should be

used when an access will cause a change. Many database searches have no visible side-

effects and make ideal applications of query forms using GET.

The HEAD method

The HEAD method is used to ask only for information about a document, not for the

document itself. HEAD is much faster than GET, as a much smaller amount of data is

transferred. It's often used by clients who use caching, to see if the document has changed

since it was last accessed. If it was not, then the local copy can be reused, otherwise the

updated version must be retrieved with a GET.

The POST Method

This method transmits all form input information immediately after the requested URI.

The POST method is commonly used for accessing dynamic resources. POST requests

are typically used to transmit information that is request-dependent, or when large

amount of complex information must be sent to the server.

HTTP Response

After receiving and interpreting a request message, a server responds with an HTTP

response message.

Response = Status-Line

 *((general-header

 | response-header

 | entity-header) CRLF)

 CRLF

 [message-body]

Status-Line:

The first line of a Response message is the Status-Line, consisting of the protocol version

followed by a numeric status code

Status Code and Reason Phrase:

The Status-Code element is a 3-digit integer result code of the attempt to understand and

satisfy the request

Response Header Fields:

The response-header fields allow the server to pass additional information about the

response which cannot be placed in the Status- Line. These header fields give information

about the server and about further access to the resource identified by the Request-URI.

A Simple Web Application:

Servlet

 A servlet is a Java programming language class that is used to extend the capabilities

of servers that host applications access via a request-response programming model.

Although servlets can respond to any type of request, they are commonly used to extend

the applications hosted by web servers. For such applications, Java Servlet technology

defines HTTP-specific servlet classes.

A simple Servlet Program

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloWorldServlet extends HttpServlet

{

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

 {

 doPost(req,res); // Pass all GET request to the the doPost method

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

 {

 res.setContentType("text/html"); // Set the content type of the

 response

 PrintWriter out=res.getWriter(); // PrintWriter to write text to

 the response

 out.println("Hello World"); // Write Hello World

 out.close(); // Close the PrintWriter

 }

}

This servlet will produce a simple text response every time it is called by the webserver.

Servlet Exceptions

public class UnavailableException

 extends ServletException

This exception indicates that a servlet is unavailable. Servlets may report this exception at

any time, and the network service running the servlet should behave appropriately. There

are two types of unavailability, and sophisticated services will to deal with these

differently:

• Permanent unavailability. The servlet will not be able to handle client requests

until some administrative action is taken to correct a servlet problem.

• Temporary unavailability. The servlet can not handle requests at this moment due

to a system-wide problem. For example, a third tier server might not be

accessible, or there may be insufficient memory or disk storage to handle

requests. The problem may be self correcting, such as those due to excessive load,

or corrective action may need to be taken by an administrator.

Network services may safely treat both types of exceptions as "permanent", but good

treatment of temporary unavailability leads to more robust network services.

Constructors :

1. public UnavailableException(Servlet servlet,

 String msg)

Constructs a new exception with the specified descriptive message, indicating that

the servlet is permanently unavailable.

Parameters:
servlet - the servlet which is unavailable

msg - the descriptive message

vailableException

 public UnavailableException(int seconds,

 Servlet servlet,

 String msg)

Constructs a new exception with the specified descriptive message, indicating that

the servlet is temporarily unavailable and giving an estimate of how long it will be

unavailable. In some cases, no estimate can be made; this is indicated by a non-

positive time. For example, the servlet might know a server it needs is "down",

but not be able to report how long it will take to restore it to an adequate level of

functionality.

Parameters:
seconds - number of seconds that the servlet is anticipated to be unavailable. If

negative or zero, no estimate is available.

servlet - the servlet which is unavailable

msg - the descriptive message

Methods

isPermanent
 public boolean isPermanent()

Returns true if the servlet is "permanently" unavailable, indicating that the service

administrator must take some corrective action to make the servlet be usable.

getServlet
 public Servlet getServlet()

Returns the servlet that is reporting its unavailability.

getUnavailableSeconds
 public int getUnavailableSeconds()

Returns the amount of time the servlet expects to be temporarily unavailable. If

the servlet is permanently unavailable, or no estimate was provided, returns a

negative number. No effort is made to correct for the time elapsed since the

exception was first reported.

Servlet Request Interface:

This interface defines an object that provides client request information to a servlet. The

servlet container creates a request object and passes it as an argument to the servlet's

service() method.

Public interface ServletRequest

 A Servlet::ServletRequest object provides data including parameter name and

values, attributes, and an input handle. Interfaces that extend ServletRequest can provide

additional protocol-specific data (for example, HTTP data is provided by

Servlet::Http::HttpServletRequest.

Methods:

Methods for Request Parameters:

getParameter($name)

Returns the value of a request parameter, or undef if the parameter does not exist.

Request parameters are extra information sent with the request. For HTTP

servlets, parameters are contained in the query string or posted form data.

getParameterValues($name)

Returns an array containing all of the values of the given request parameter, or

undef if the parameter does not exist. If the parameter has a single value, the array

has a length of 1. If the parameter has no value, the array is empty.

Methods for Request Attributes:

getAttribute($name)
Returns the value of the named attribute, or undef if no attribute of the given name

exists.

getAttributeNames()

Returns an array containing the names of the attributes available to this request, or

an empty array if the request has no attributes available to it.

setAttribute($name, $object)

Stores an attribute in this request. Attributes are reset between requests. This

method is most often used in conjunction with Servlet::RequestDispatcher.

removeAttribute($name)

Removes an attribute from this request. This method is not generally needed as

attributes only persist as long as the request is being handled.

Note: $name: The name of the attribute /parameter being passed.

 $object: The object to be stored. Can be a scalar or a reference to an arbitrary data

structure.

Methods for Input:

getReader()
Retrieves the body of the request as character data. The reader translates the

character data according to the character encoding used on the body.

Servlet Response Interface:

This interface defines an object that assists a servlet in sending a response to the client.

The servlet container creates the object and passes it as an argument to the servlet's

service() method.

Public interface ServletResponse

Methods for Content Type and Length

setContentType($type)

Sets the content type of the response. The content type may include the type of

character encoding used, for example text/html; charset=ISO-8859-4.

Parameters: $type: The MIME type of the content

setContentLength($len)

Sets the length of the content body in the response. In HTTP servlets, this method

sets the HTTP Content-Length header.

Parameters: $len: The length of the content being returned to the client

Methods for Output

getWriter()

Returns a object that can send character text to the client. The character encoding

used is the one specified in the charset parameter of setContentType(), which

must be called before calling this method for the charset to take effect.

Methods for Buffered Output

getBufferSize()

Returns the actual buffer size used for the response, or 0 if no buffering is used.

resetBuffer()

Clears the content of the underlying buffer in the response without clearing

headers or status code.

setBufferSize($size)

Sets the preferred buffer size for the body of the response. The servlet container

will use a buffer at least as large as the size requested.

Parameters: $size: The preferred buffer size

Servlet Security

Security is the science of keeping sensitive information in the hands of authorized users.

On the web, this boils down to three important issues:

Authentication

Being able to verify the identities of the parties involved

Confidentiality

Ensuring that only the parties involved can understand the communication

Integrity

Being able to verify that the content of the communication is not changed during

transmission

 A servlet can retrieve information about the server's authentication using two

methods namely : getRemoteUser() and getAuthType(). The below example shows a

simple servlet that tells the client its name and what kind of authentication has been

performed (basic, digest, or some alternative). To see this servlet in action, web server

should support with a basic or digest security scheme.

Snooping the authorization information:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class AuthorizationSnoop extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><HEAD><TITLE>Authorization

Snoop</TITLE></HEAD><BODY>");

 out.println("<H1>This is a password protected resource</H1>");

 out.println("<PRE>");

 out.println("User Name: " + req.getRemoteUser());

 out.println("Authorization Type: " + req.getAuthType());

 out.println("</PRE>");

 out.println("</BODY></HTML>");

 }

}

 The below example shows a servlet that performs custom authorization, receiving

an Authorization header and sending the SC_UNAUTHORIZED status code and WWW-

Authenticate header when necessary. The servlet restricts access to its "top-secret stuff"

to those users (and passwords) it recognizes in its user list. For this example, the list is

kept in a simple Hashtable and its contents are hard-coded; this would, of course, be

replaced with some other mechanism, such as an external relational database, for a

production servlet.

Security in a servlet

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CustomAuth extends HttpServlet {

 Hashtable users = new Hashtable();

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 users.put("Wallace:cheese", "allowed");

 users.put("Gromit:sheepnapper", "allowed");

 users.put("Penguin:evil", "allowed");

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 PrintWriter out = res.getWriter();

 // Get Authorization header

 String auth = req.getHeader("Authorization");

 // Do we allow that user?

 if (!allowUser(auth)) {

 // Not allowed, so report he's unauthorized

 res.setHeader("WWW-Authenticate", "BASIC realm=\"users\"");

 res.sendError(res.SC_UNAUTHORIZED);

 // Could offer to add him to the allowed user list

 }

 else {

 // Allowed, so show him the secret stuff

 out.println("Top-secret stuff");

 }

 }

 // This method checks the user information sent in the Authorization

 // header against the database of users maintained in the users Hashtable.

 protected boolean allowUser(String auth) throws IOException {

 if (auth == null) return false; // no auth

 if (!auth.toUpperCase().startsWith("BASIC "))

 return false; // we only do BASIC

 // Get encoded user and password, comes after "BASIC "

 String userpassEncoded = auth.substring(6);

 // Decode it, using any base 64 decoder

 sun.misc.BASE64Decoder dec = new sun.misc.BASE64Decoder();

 String userpassDecoded = new String(dec.decodeBuffer(userpassEncoded));

 // Check our user list to see if that user and password are "allowed"

 if ("allowed".equals(users.get(userpassDecoded)))

 return true;

 else

 return false;

 }

}

Servlet Communication

Servlet to Servlet Communication

 Servlets are not alone in a Web Server. They have access to other Servlets in the

same Servlet Context (usually a Servlet directory), represented by an instance of

javax.servlet.ServletContext. The ServletContext is available through the ServletConfig

object's getServletContext method.A Servlet can get a list of all other Servlets in the

Servlet Context by calling getServletNames on the ServletContext object. A Servlet for a

known name (probably obtained through getServletNames) is returned by getServlet.

Note that this method can throw a ServletException because it may need to load and

initialize the requested Servlet if this was not already done.After obtaining the reference

to another Servlet that Servlet's methods can be called. Methods which are not declared in

javax.servlet.Servlet but in a subclass thereof can be called by casting the returned object

to the required class type. Note that in Java the identity of a class is not only defined by

the class name but also by the ClassLoader by which it was loaded. Web servers usually

load each Servlet with a different class loader. This is necessary to reload Servlets on the

fly because single classes cannot be replaced in the running JVM. Only a ClassLoader

object with all loaded classes can be replaced.

Servlet to applet Communication

Tespapplet.java

import java.io.*;

import java.awt.*;

import java.applet.*;

/*<applet code="testapplet.class" width=426 height=266></applet>*/

public class testapplet extends Applet

{

public void init()

{

setLayout(null);

setSize(426,266);

goButton.setLabel("GO");

add(goButton);

goButton.setBackground(java.awt.Color.lightGray);

goButton.setBounds(144,12,101,39);

SymMouse asm=new SymMouse();

goButton.addMouseListener(asm);

}

java.awt.Button goButton=new java.awt.Button();

class SymMouse extends java.awt.event.MouseAdapter

{

public void mouseClicked(java.awt.event.MouseEvent event)

{

Object object=event.getSource();

}

}

void goButton_MouseClicked(java.awt.event.MouseEvent event)

{

try{

System.out.println("Attempting to connect to http://localhost:7001/appserv/testservlet");

java.net.URL url=new java.net.URL("http://localhost:7001/appserv/testservlet");

java.net.URLConnection c=url.openConnection();

c.setUseCaches(false);

c.setDoOutput(true);

c.setDoInput(true);

ByteArrayOutputStream byteout=new ByteArrayOutputStream();

DataOutputStream outdata=new DataOutputStream(byteout);

System.out.println("writing test data");

outdata.writeByte(1);

outdata.writeChar(2);

outdata.writeInt(3);

outdata.writeUTF("test message");

outdata.flush();

byte buf[]=byteout.toByteArray();

c.setRequestProperty("Content-type","application/octet-stream");

c.setRequestProperty ("Content-length", "" + buf.length);

DataOutputStream dataout = new DataOutputStream(c.getOutputStream());

dataout.write(buf);

dataout.flush();

dataout.close();

System.out.println("reading response");

DataInputStream inData=new DataInputStream(c.getInputStream());

byte byteval=inData.readByte();

char charval=inData.readChar();

int intval =inData.readInt();

String stringval=inData.readUTF();

inData.close ();

System.out.println("Data read: " + byteval + " " + ((int) charval) + " " + intval + " " +

stringval);

}

catch(Exception e)

{

 e.printStackTrace ();

}

}

}

testservlet.java

import javax.servlet.http.*;

import java.io.*;

import javax.servlet.*;

import java.util.*;

public class testservlet extends HttpServlet

{

public void service(HttpServletRequest req, HttpServletResponse resp)throws

ServletException,IOException

{

DataInputStream br=new DataInputStream(req.getInputStream());

resp.setContentType("application/octect-stream");

ByteArrayOutputStream byteout=new ByteArrayOutputStream();

DataOutputStream outdata=new DataOutputStream(byteout);

byte byteval=br.readByte();

char charval=br.readChar();

int intval=br.readInt();

String stringval=br.readUTF();

outdata.writeByte(byteval);

outdata.writeChar(charval);

outdata.writeInt(intval);

outdata.writeUTF(stringval);

outdata.flush();

byte[] buf=byteout.toByteArray();

resp.setContentLength(buf.length);

ServletOutputStream servout=resp.getOutputStream();

servout.write(buf);

servout.close();

}

}

Simple Servlet example

You have learned about J2EE web containers,J2EE web application structure and basics

of Java Servlets in previous Servlet tutorials. This Servlet tutorial provides a very

simple servlet example.

What is covered in this Servlet example

1. How to write the servlet class.

2. How to compile the Servlet class.

3. How to extract the HTML form parameters from HttpServletRequest.

4. web.xml deployment descriptor file.

5. How to create the war (web application archive) file.

6. How to deploy and run the sample web application in tomcat web container.

You need the Java SDK and tomcat web server installed, to run the example Servlet

application developed in this tutorial. Setting up the Servlet development environment

tutorial explains how to setup the development environment.

If you don’t have the basic understanding of the J2EE web containers and web

application structure, read the previous Servlet tutorials which explain these basic things.

This is a very simple web application containing a HTML file and a servlet. The HTML

document has a form which allows the user to enter the name, when the form is submitted

application displays the welcome message to the user.

First of all we need to create the directory structure for our sample web application as

explained in the tutorial Understanding the directory structure of web applications. Create

the directory structure as shown in below figure.

Create the HTML file.

Copy the following code into form.html file and save it under servlet-example/pages

directory.

<html>

 <head>

 <title>The servlet example </title>

 </head>

 <body>

 <h1>A simple web application</h1>

 <form method="POST" action="WelcomeServlet">

 <label for="name">Enter your name </label>

 <input type="text" id="name" name="name"/>

 <input type="submit" value="Submit Form"/>

 <input type="reset" value="Reset Form"/>

 </form>

 </body>

</html>

The welcome Servlet class

Copy the following code into WelcomeServlet.java file and save it under servlet-

example/WEB-INF/src/jsptube/tutorials/servletexample directory.

Note: it is not necessary to crate /src directory under WEB-INF directory and you can

safely exclude WEB-INF/src directory when creating WAR file. You can put the source

files any where you want, but don’t forget to put the compiled classes into WEB-

INF/classes directory before creating the WAR file.

package jsptube.tutorials.servletexample;

 import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class WelcomeServlet extends HttpServlet {

public void init(ServletConfig config) throws ServletException {

super.init(config);

}

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

/*

* Get the value of form parameter

*/

String name = request.getParameter("name");

String welcomeMessage = "Welcome "+name;

/*

* Set the content type(MIME Type) of the response.

*/

response.setContentType("text/html");

 PrintWriter out = response.getWriter();

/*

* Write the HTML to the response

*/

out.println("<html>");

out.println("<head>");

out.println("<title> A very simple servlet example</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>"+welcomeMessage+"</h1>");

out.println(""+"Click here to go back to

input page "+"");

out.println("</body>");

out.println("</html>");

out.close();

 }

 public void destroy() {

 }

}

Now compile the servlet class as explained below.

Open the command prompt and change the directory to the servlet-example/WEB-

INF/src/jsptub/tutorials/servletexample directory. Compile the WelcomeServlet.java

using the following command. javac WelcomeServlet.java It will create the file

WelcomeServlet.class in the same directory. Copy the class file to classes directory. All

the Servlets and other classes used in a web application must be kept under WEB-

INF/classes directory.

Note: to compile a servlet you need to have servlet-api.jar file in the class path.

The deployment descriptor (web.xml) file.

Copy the following code into web.xml file and save it directly under servlet-

example/WEB-INF directory.

<web-app version="2.4"

xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <servlet>

 <servlet-name>WelcomeServlet</servlet-name>

 <servlet-

class>jsptube.tutorials.servletexample.WelcomeServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>WelcomeServlet</servlet-name>

 <url-pattern>/WelcomeServlet</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file> /pages/form.html </welcome-file>

 </welcome-file-list>

</web-app>

Deploying the application to tomcat web container.

Deployment steps are different for different J2EE servers. This tutorial explains how to

deploy the sample web application to tomcat web container. If you are using any other

J2EE server, consult the documentation of the server.

A web application can be deployed in tomcat server simply by copying the war file to

<TOMCAT_HOME>/webapp directory.

Copy servletexample.war to <TOMCAT_HOME>/webapp directory. That’s it! You have

successfully deployed the application to tomcat web server. Once you start the server,

tomcat will extract the war file into the directory with the same name as the war file.

To start the server, open the command prompt and change the directory to

<TOMCAT_HOME/bin> directory and run the startup.bat file.

Our sample application can be accessed at http://localhost:8080/servletexample/. If

tomcat server is running on port other than 8080 than you need to change the URL

accordingly.

If the application has been deployed properly, you should see the screen similar to below

when you open the application in browser.

Enter your name in text box and click on submit button. It will display welcome message

with your name as shown in below figure.

A simple program for Session Tracking

E:\viki1\WEB-INF\classes\SessionLifeCycleServlet.java

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import java.io.PrintWriter;

import java.io.IOException;

import java.util.Date;

public class SessionLifeCycleServlet extends HttpServlet

{

protected void doPost(HttpServletRequest req,HttpServletResponse resp) throws

ServletException,IOException

{

String action=req.getParameter("action");

if(action!=null && action.equals("invalidate"))

{

 HttpSession ses=req.getSession();

 ses.invalidate();

 resp.setContentType("text/html");

 PrintWriter out=resp.getWriter();

 out.println("<html>");

 out.println("<head><title>Session Lifecycle</title></head>");

 out.println("<body>");

 out.println("<p> Wer session has been invalidated</p>");

String lfcyurl="/session/servlet/lifecycle";

 out.println("");

 out.println("Create a new session");

 out.println("</body></html>");

}

else

{

 HttpSession ses=req.getSession();

 resp.setContentType("text/html");

 PrintWriter out=resp.getWriter();

 out.println("<html>");

 out.println("<meta http-equiv=\"Pragma\" content=\"no-cache\">");

 out.println("<head><title>Session Life Cycle</title></head>");

 out.println("<body bgcolor=\"#FFFFFF\">");

 out.println("<h1> Session Lifecycle</center></h1>");

 out.print("
 Session Status: ");

 if(ses.isNew())

 {

 out.println("New Session.");

 }

 else

 {

 out.println("Old Session. ");

 }

 out.println("
 Session ID: ");

 out.println(ses.getId());

 out.println("
Creation Time: ");

 out.println(new Date(ses.getCreationTime()));

 out.println("
 Last Accessed Time: ");

 out.println(new Date(ses.getLastAccessedTime()));

 out.println("
 Max inactive interval(seconds): ");

 out.println(ses.getMaxInactiveInterval());

 String lfcyurl="/session/servlet/lifeCycle";

 out.print("
");

out.println("Reload this pg");

out.println("</body></html>");

out.close();

}

}

}

E:\viki1\WEB-INF\index.html

<html>

<head>

<title>Pro-java registration</title>

</head>

<body>

<h1>Welcome</h1>

<form action="http://localhost:7001/viki1/SessionLifeCycleServlet" method="POST">

<p>Action<input type="text" size="40" name="action"/></p>

<input type="submit" value="submit"/></p>

</form>

</body>

</html>

Input Screen

Output Screen

Web.xml for sessionlifecycle servlet

 <!DOCTYPE web-app (View Source for full doctype...)>

- <web-app>

- <servlet>

 <servlet-name>SessionLifeCycleServlet</servlet-name>

 <servlet-class>SessionLifeCycleServlet</servlet-class>

 </servlet>

- <servlet-mapping>

 <servlet-name>SessionLifeCycleServlet</servlet-name>

 <url-pattern>/SessionLifeCycleServlet/*</url-pattern>

 </servlet-mapping>

- <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 <welcome-file>index.htm</welcome-file>

 </welcome-file-list>

- <security-constraint>

- <web-resource-collection>

 <web-resource-name>My secure resources</web-resource-name>

 <description>Resources to be placed under security control.</description>

 <url-pattern>/private/*</url-pattern>

 <url-pattern>/registered/*</url-pattern>

 </web-resource-collection>

- <auth-constraint>

 <role-name>guest</role-name>

 </auth-constraint>

- <user-data-constraint>

 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

- <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>WebApp</realm-name>

 </login-config>

- <security-role>

 <description>The role allowed to access our content</description>

 <role-name>guest</role-name>

 </security-role>

 </web-app>

A Simple Shopping Cart using Sessions

//catalog servlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.ArrayList;

public class catalog extends HttpServlet

{

protected void doGet(HttpServletRequest req,HttpServletResponse res) throws

ServletException,IOException

{

HttpSession ses=req.getSession();

int itemcount=0;

ArrayList cart=(ArrayList)ses.getAttribute("cart");

if(cart!=null)

{

itemcount=cart.size();

}

res.setContentType("text/html");

PrintWriter out=res.getWriter();

out.println("<html><head><title>Shopping cart Example</title></head>");

out.println("<body><table border=\"0\" width=\"100%\"><tr>");

out.println("<td valign=\"top\">");

out.println("<td align=\"left\" valign=\"bottom\" >");

out.println("<h1>Apress Book store</h1></td></tr></table><hr>");

out.println("<p>We've "+itemcount+" items in wer cart.</p>");

out.println("<form action=\"");

out.println(res.encodeURL("/shopping/cart"));

out.println("\"method=\"post\">");

out.println("<table cellspacing=\"5\" cellpadding=\"5\"><tr>");

out.println("<td align=\"center\">Add to cart</td>");

out.println("<td align=\"center\"></td></tr><tr>");

out.println("<td align=\"center\">");

out.println("<input type=\"checkbox\" name=\"item\" value=\"Pro Java

programming\"></td>");

out.println("<td align=\"left\">Item 1:"+"Projava programming</td></tr><tr>");

out.println("<td align=\"center\">");

out.println("<input type=\"checkbox\" name=\"item\" value=\"Beginning java

objects\"></td>");

out.println("<td align=\"left\">Item 2:"+"Beginning java objects</td></tr><tr>");

out.println("<td align=\"center\">");

out.println("<input type=\"checkbox\" name=\"item\" value=\"Professional java server

programming\"></td>");

out.println("<td align=\"left\">Item 3:"+"Professional java server

programming</td></tr><tr>");

out.println("</table><hr>");

out.println("<input type=\"submit\" name=\"btn_submit\" value=\"Add to cart\">");

out.println("</form></body></html>");

out.close();

}

}

//shoppingcart servlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class shoppingcart extends HttpServlet

{

protected void doPost(HttpServletRequest req,HttpServletResponse res) throws

ServletException,IOException

{

HttpSession ses=req.getSession(true);

int itemcount=0;

ArrayList cart=(ArrayList)ses.getAttribute("cart");

if(cart!=null)

{

cart=new ArrayList();

ses.setAttribute("cart",cart);

}

res.setContentType("text/html");

PrintWriter out=res.getWriter();

String[] itemselected;

String itemname;

itemselected=req.getParameterValues("item");

if(itemselected!=null)

{

for(int i=0;i<itemselected.length;i++)

{

itemname=itemselected[i];

cart.add(itemname);

}

}

//print the contents of the cart

out.println("<html><head><title>Shopping cart contents</title></head>");

out.println("<body>");

out.println("<h1>Items currently in wer cart</h1>");

out.println("<hr>");

Iterator iterator=cart.iterator();

while(iterator.hasNext())

{

out.println("<p>"+iterator.next()+"</p>");

}

out.println("<hr><p><a href=\"");

out.println(res.encodeURL("/shopping/catalog"));

out.println("\">Back to the shop</p>");

out.close();

}

}

//Web.xml

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application

2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>

 <servlet-name>catalog</servlet-name>

 <display-name>catalog</display-name>

 <servlet-class>catalog</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>cart</servlet-name>

 <display-name>cart</display-name>

 <servlet-class>shoppingcart</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>catalog</servlet-name>

 <url-pattern>/catalog/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>cart</servlet-name>

 <url-pattern>/cart/*</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 <welcome-file>index.htm</welcome-file>

 </welcome-file-list>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>My secure resources</web-resource-name>

 <description>Resources to be placed under security control.</description>

 <url-pattern>/private/*</url-pattern>

 <url-pattern>/registered/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>guest</role-name>

 </auth-constraint>

 <user-data-constraint>

 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>WebApp</realm-name>

 </login-config>

 <security-role>

 <description>The role allowed to access our content</description>

 <role-name>guest</role-name>

 </security-role>

</web-app>

//weblogic.xml

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application

8.1//EN" "http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd">

<weblogic-web-app>

 <jsp-descriptor>

 <jsp-param>

 <param-name>compileCommand</param-name>

 <param-value>javac</param-value>

 </jsp-param>

 <jsp-param>

 <param-name>workingDir</param-name>

 <param-value>C:\DOCUME~1\TEJASW~1\LOCALS~1\Temp\</param-value>

 </jsp-param>

 <jsp-param>

 <param-name>keepgenerated</param-name>

 <param-value>true</param-value>

 </jsp-param>

 <jsp-param>

 <param-name>pageCheckSeconds</param-name>

 <param-value>5</param-value>

 </jsp-param>

 </jsp-descriptor>

</weblogic-web-app>

//output screen

Session Tracking

 An important feature required by most web-applications is Session-Tracking.Its

used to

maintain state across a series of requests from the same user over a period of time.

Ex: Online Shopping Cart

STATELESSNESS AND SESSIONS

 HTTP is a stateless protocol. A client open a connection and requests some resource or

information. The server responds with the requested resources(if available), of sends an

HTTP error status.after closing the connection, the server does not remember any

information about the client. So, the server considers the next request from the same

client as a fresh request, with no relation to the previous request. This is what makes

HTTP a stateless protocol.

A protocol is stateful if the response to a given request may depend not only on the

current request, but also on the outcome of previous requests.

SESSION: A session is a conversion between the server and a client. A conversion

consists series of continuous request and response.By associating a specific request to

belong to a specific working session, the shopping cart or the online banking application

can distinguish one user from another.

STATE: The server should be able to remember information related to previous requests

and other business decisions that are made for requests. That is, the application should be

able to associate state with each session. In the case of the shopping cart application,

possible state could include the user’s favorite item categories, user profile or even the

shopping cart itself.

Approaches to Session Tracking

There are essentially four approaches to session tracking :

� Hidden Form Field

� URL Rewriting

� Using Cookies

� Sessions using the Secure Socket Layer (SSL)

Hidden Form Field

 We can use hidden form fields t maintain the session information of a user while the

user interacts with the Web application. A hidden form field is embedded in an HTML

page and is not visible when viewed in a browser. The following code snipped shows a

hidden form field in an HTML page:

 <HTML>

 <FORM METHOE=”GET” Action=”/servlet/TestServlet”>

 <input type=”hidden” name=”id” value=”l123”>-

 - - - - - - - - - - - - - -

 - - - - - - - - - - - - - -

 </HTML>

URL Rewriting

 URL rewriting is a session management technique that manages user session by

modifying a URL. Usually, technique is used when information that is to be transferred is

not very critical because the URL can be intercepted easily during transfer. For example,

in an online shopping portal, a servlet can modify a URL to include user information,

such as username. The servlet can then display the URL. When the user clicks the URL

hyper link, The information is sent to another servlet that retrieves the user information

aand displays a welcome message. We can use the following code to create the servlet,

RewriteServletURL, that modifies and displays a URL.

/*import the java packages*/

Import java.io.*;

Import javax.servlet.*;

Import javax.servlet.http.*;

Public class RewriteServletURL extends HttpServlet

{

Public void doGet(HttpServletRequest req, HttpServletResponse res)throws

ServletException, IOException

{

 dpPost(req,res);

}

Public void doPost(HttpServletRequest req, HttpServletResponse res)throws

servletException, IOException

{

/*retrieve the parameters bound to user, password and login from the request

object*/

 String username=req.getparameter(“user”);

 PrintWriter pw=res.getwriter();

/*verify the login status*/

 res.serContentType(“text/html”);

 pw.println(“hello<a

href=\http://localhost:8080/rewrite_cntxt/servlet/SecondServlet?uname=”+userna

me +”\”>click hear to proceed”);

 }

}

Using Cookies

 Cookies are small text files that are stored by an application server in the client browser

to keep track of all the user. A cookies has values in the form of name/value pairs. For

example, a cookie can hava a name, user with the value, Michael. They are created by the

server and sent to the client with the HTTP response headers. The client saves the cookies

in the local disk and sends them along with the HTTP request headers to the server. A

Web browser is expected to support 20 cookies per characteristics of cookies are:

1. Cookies can only be read by the application server that had written them in the

client browser. For example, if a cookie is created by the application server of

www.macromedia .com and sent to the client or to the browser, the cookie can be

sent back to the same server only.

2. Cookies can be used by the server to find out the computer name, IP address any

other details of the client computer by retrieving the remote host address of the

client where the cookies are stored.

The Servlet API provides support for cookies. The cookie class of javax.servlet.http

package represents a cookie. The cookie class provides a constructor that accepts the

name and value to create a cookie. The following code snippet shows the constructor for

creating a cookie with name, name and value.

Value:

Public Cookie(String name, String value);

The HttpServletResponse class provides the getCookie() method to add a cookie to the

response object, for sending it to the client. The following code snippet shows how to add

a cookie:

resp.addCookie(Cookie cookie);

 The HttpServletRequest class provides the getCookie() method that returns an array of

cookies that the request object contains. The following code snippet shows how to add a

cookie:

Cookie cookie[]=req.getCookies();

The Cookie class provides several methods to set and retrieve various properties of a

cookie. The following table describes the various methods of the Cookie class:

METHODS DESCTIPTION

Public String getName() Returns the name of the cookie .

Public void setMaxAge(int expiry)
Sers the maximum time for which the

client browser retains the cookie value.

Public int getMaxAge()
Returns the maximum age of the cookie

in seconds.

Secure socket layer(ssl) sessions :

SSL is an encrypting technology that runs on top of TCP/IP and below application-level

protocols such as HTTP. SSL is the technology used in the HTTPS protocols. SSL-

enabled servers can authenticate SSL-enabled client, and use an encrypted connection

between the client and server. In the process of establishing an encrypt connection

between the client and server generate what are called ‘session keys’, which are

symmetric keys used for encrypting and decrypting messages. Server based on the

HTTPS protocols can use the client’s symmetric keys to establish a session.

SERVLET API

The classes and interfaces defined in the Servlet Session API is used to create and

manage user sessions. Various interfaces provided by Servlet Session API to create and

manage user session are, javax.servlet.http.HttpSession,

javax.servlet.http.HttpSessionListener, and

javax.servlet.http.HttpSessionBindingListener.

The javax.servlet.http.HttpSession interfaces provides methods for tracking the

session of a user. An object of HttpSession interface is created to store session

information as name/value pairs, which can be later retrieved to manage user sessions.

The following table describes the various methods defined in the HttpSession interface:

METHODS DESCTIPTION

Public void setAttribute(String name,

Object value)

Binds the attribute session object with a

unique name and stores the name/value

pair in the current session. If an object is

already bound with the same attribute, then

the new object replaces the existing object

Public getAttribute(String name) Retrieves the object bound with the

attribute name specified in the method,

from the session object. If no object is

found for the specified attribute, then the

getAttribute() method returns null

Public void setMaxInactiveInterval(int

interval)

Sets the maximum time for which the

session will remain active. The time is

specified in seconds. A negative value in

this method signifies that the session

should always remain active.

Public int getMaxInactiveInterval() Returns the maximum time in seconds for

which the server will not invalidate the

session even if there is no client request.

Public void invalidate() Invalidates a session. All time objects

bound to the session are automatically

unbound.

SERVLET CONTEXT

In the Java Servlet API, the servlet context defines a servlet’s view of the web

application, and provides access to resources and facilities(such as login) common to all

servlets in the application. Unlike a session, wich is specify to a client, the servlet context

in specific to a particular web application runnin in JVM. That is each web application in

a container will have a single servlet context associated with it.

Servlet context is yet another useful concept provide by the Servlet API. In the previous

section, we saw how we coule use Httpsession objects to maintain state relating ot a

single client on the server. The servlet context complements this facility by letting we

maintain application-level state-that is state information common to all servelets and

clients in that application.

The Java Servlet API provides a Servletcontext interface to represent a context: the

resources shared by a group of servlets. In the 1.0 and 2.0 vdrsions of the servlet API the

SERVLET CONTEXT interface onlu provided access to information about the servlet’s

environment, such as the name of the server MIME type mappings, etc., and a log()

method for writing log messages to the server’s log file.

THE SERVLETCONTEXT INTERFACES

The ServeletContext interfaces specifies the following methods; web container provide

an implementation.

 public String getMimeType(String filename)

 public RequestDispatcher getRequestDispatcher(String path)

 public String getserverinfo()

 public set getResourcePaths(String path)

 public void log(java.lang.String msg)

 public void log(String messages,Throwable throwable)

The getMimeType() method

 public String getMimeType(String filename)

This method returns the MIME type of a file by its extension. As we shall see in chapter

9,we can specify the MIME types that wer application can handle in the deployment

descriptor.

The getResource() method

 public RequestDispatcher getRequestDispatcher(String path)

This method returns a RequestDispatcher object associated with the resource located at

the current path. We can use the RequestDispatcher to delegate request/response

processing to other resources within the application.

The getServerInfo() method

 public String getserverinfo()

This method is returns the name and version of the servlet container on which the servlet

is running. This information may be used for logging purpose.

The getResourcePaths() method

 public set getResourcePaths(String path)

This method is functionally similar to executing a directory listing command. Given a

path name relative to the root of the web application, this method returns all sub-paths.

The ServletContext interface provides two methods for logging purpose. Of these, the

second method can be used to log exceptions, while the first method can be used for

general-purpose logging.

The log() method

 public void log(java.lang.String msg)

 public void log(String message, Throwable throwable)

These four methods let we maintain the state of a web application. Any servlet can set an

attribute, which can then be obtained by any other servlet within the same application,

irrespective of whether these servlets are serving the same client or not. Using these

methods, servlets can share information common to all servlets.

SERVLETCONTEXT LIFECYCLE EVENT HANDLING

The container creates the servlet context before attempting to serve any contents of a web

application. Similarly, the container may delete the context before stopping to serve the

contents of a web application. In order to handle these two events, the Servlet API

specifies the following interface:

THE SERVLET CONTEXT LISTENER INTERFACE

 public interface ServletContextListner extends java.util.EventListener

An object of this interface receives events about the creation or destruction of a servlet

context. This interface has the following methods:

 public void contextDestroyed(ServletContextEvent event)

 This method will be called when a new context is created.

Public void contextDestroyed(ServletContextEvent event)

 This method will be called when an existing context is destroyed.

We can register a class implementing this interface using the <listener> element in the

deployment descriptor:

 <listener>

 <listener-class> MyContextListener</listener>

</listener>

SERVLET CONTEXT ATTRIBUTE LISTENER

public interface ServletContextAttributeListener extends java.util.EventListener

 This interface is similar to the HttpSessionAttributeListner and gets notifies

when there is change in the state of a context. This interface has the following methods:

public void attributeAdded(ServletContextAttributeEvent event).The container invokes

this method on the listener when a new attribute is added to the context.

public void attributeReplaced(ServketContextAttributeEvent event)

This container invokes this method on the listener when the value of an attribute is

changed, but not the attribute itself. This happens when we call the setAttribute() method

on the context with the name of a previously added attribute as the name.

public void attributeRemoved(ServletContextAttributeEvent event)

The container invokes this method on the listener when an attribute is removed from the

context.

SERVLET COLLABORATION

 In the typical servlet model, a servlet receives an HTTP request,execute some

application logic, and prepares the response. This completes one request-response trip for

the client. However, there are several scenarios in which this basic model is not adequate:

• A servlet receives an HTTP request from a client, processes application logic, and

a JavaServerPage drives the response. In this case the servlet is not responsible for

response generation. Instead, the JSP page is responsible for dynamic content.

• A servlet receives an HTTP request from client, processes application logic

partially, and hands over the request to another servlet. The second servlet

completes the application logic, and either prepares the response, or request a JSP

page to drive the response.

 In both the scenarios, the servlet is not completely responsible for processing a

request. Instead , it delegates the processing to another servlet(or a JSP page, which

equivalent to a servlet at run time)

1.SERVLET CHAINING

 This was once a very widely used approach, and supported by some of the

servlet engine vendors. Although this is not supported by the Java Servlet API

specification, a short description below.

2.REQUEST DISPATCHING

 Request dispatching allows one servlet to dispatch the request to another

resource(a servlet, a JSP page ,or any other resources). Prior to version2.2 of the Servlet

API, this approach used to be called ‘inter-servlet communication’. The API used to

provide a method to get an instance of another servlet using a name. see the

documentation of the now deprecated getServlet() method of the

javax.servlet.ServletContext interface. From version 2.2 of the API request dispatchers

replace this functionality.

SERVLET CHAINING

Servlet chaining predates J2EE and its component model. The idea of servlet chaining is

very simple: we design a set of servlets, each of which does a single task. After

developing these servlets, we configure the servlet engine to specify chain of servlets for

a given URL path alias. Once the servlet engine receives a request fof this alias , it

invokes the servlets in the specified in the order. This is similar to piping on Unix, where

output of one program become input for another program in the pipe.

 Suppose we’ve servlets 1,2,&3 executing three parts of a request-response

proves for single customer service. Let’s assume that/custService is the alias giben to this

chain(/custService=1,2,3). Consider a browser sending a request to the URL path

pointing to this alias. The servlet engine sends all request for this alias to servlet 1. after

executing servlet 1’s service method, the servlet engine invokes servlet 2’s service

method, followed by servlets 3’s service method. The final response is then sending to

the client. Briefly, this is servlet chaining. Refer to the fig below for an overview of the

approach.

 This J2EE tip demostrates chaining method in servlets. Servlet

Chaining means the output of one servlet act as a input to another servlet. Servlet

Aliasing allows us to invoke more than one servlet in sequence when the URL is opened

with a common servlet alias. The output from first Servlet is sent as input to other Servlet

and so on. The Output from the last Servlet is sent back to the browser. The entire

process is called Servlet Chaining.

// FirstServlet

import javax.servlet.*;

import java.io.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

 String name ;

 ServletConfig config;

 public void doGet(HttpServletRequest request ,

 HttpServletResponse response)

 throws ServletException , IOException {

 response.setContentType("text/plain");

 PrintWriter out = response.getWriter();

 name = request.getParameter("name");

 RequestDispatcher rd = config.

 getServletContext().getRequestDispatcher("SecondServlet");

 if(name!=null) {

 request.setAttribute("UserName",name);

 rd.forward(request , response);

 // Forward the value to another Secondservlet

 } else {

 response.sendError(response.SC_BAD_REQUEST,

 "UserName Required");

 }

 }

}

// SecondServlet

import javax.servlet.*;

import java.io.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

 public void doGet(HttpServletRequest request ,

 HttpServletResponse response)

 throws ServletException , IOException {

 response.setContentType("text/plain");

 PrintWriter out = response.getWriter();

 String UserName = (String)request.getAttribute("UserName");

 // Extracting the value which is set in FirstServlet

 out.println("The UserName is "+ UserName);

 }

}

REQUEST DESPATCHING

 Request dispatching allows a servlet or a JSP page to dispatch a request to

another servlet,(or a JSP page, or even a plain HTML page), which will then be

responsible for any further processing and for generating the response.

When the web container receives a request,it constructs request and response objects and

invokes one of the servlet service methods with the request and response objects. This is

a process of the web container dispatching a request to a servlet. What if this servlet

wants to dispatch the same request to another servlet after some preliminary processing?

For this purpose, the first servlet should be able to obtain a reference to the second

servlet. Using this reference,the first servlet can dispatch a request to the second servlet.

In simple terms this is request dispatching.

The java servlet API has a special interface called ‘ javax.servlet.ReqiestDispacher for

this purpose. REQUEST DISPATCHER INTERFACE

public Interface RequestDispatcher

This interface encpasulates a reference to another web resources at a specified path

within the scope of the same servlet context. A javax.servlet.RequestDispatcher object

can be used to despatch reques to other servlets and JSP pages.

This interface has two methods, which allow we to delegate the request-response

processing to another resource, after the calling servlet has finishyed any preliminary

processing.

The forward() METHOD

Public void forward(servletRequest request, ServletResponse response)

throws ServeltException, java.io.IOException

This method lets we forward the request to another servlet or a JSP page, or an HTML

file on the server;

This resource then takes over responsibility for processing the response.

The include()Method

Public void include(ServletRequest request,ServletResponse response)

throws ServletExcepton, java.io.IOException

This method lets we include the content producedby another resource in the calling

servlet’s response.

OBTAINING A REQUESTDISPATCHER OBJECT

 There are three ways in which we can obtain a RequestDispatcher object for a resource:

1. Public RequestDispatcher getRequestDispatcher(String path)

2. Public RequestDispatcher getNamedDispatcher(String name)

3. Public RequestDispatcher getRequestDispatcher(String path)

 Although these methods serve the same purpose, the usage depends on

what information is available to we.

 The two getRequestDispatcher()methods accept a URL path referring to the

target respurce. However, the getRequestDispatcher()methods on

javax.servlet.ServletContext requires the absolute path(that is , the path name should be

begin with a/). For example, if we have a servlet /myWebApp/servlet/servlet1, and want

to get the RequestDispatcher object for /myWebApp/servlet/servlet2, we should specify

the complete path relative to the root context. Hear the root context is myWebApp ,and

the absolute path is /servlet/servlet2.

The same method on javax.servlet.servletRequst accepts both absolute and relative paths.

In the above example, we could now also use Servlet2 as the paths.

 A javax.servlet.ServletRequest is associated with a URL path, and the web

container can use this to resolve relative paths into absolute paths.

The getNamedDispatcher() method is a convenience method that acceps a name

associated with the servlet. This is the same name that we specify in the deployemt

descriptor in the <servlet-name> element.

Example 5-3 demonstrates a basic servlet, derived from HttpServlet, that examines

incoming text for a <DATE> tag and replaces the tag with the current date. This servlet is

never called on its own, but instead after another servlet (such as, an HTML generator)

has produced the actual content.

Example 5-3. Date Filtering Servlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class DateFilter extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 PrintWriter out = resp.getWriter();

 String contentType = req.getContentType();

 if (contentType == null)

 return; // No incoming data

 // Note that if we were using MIME filtering we would have to set this to

 // something different to avoid an infinite loop

 resp.setContentType(contentType);

 BufferedReader br = new BufferedReader(req.getReader());

 String line = null;

 Date d = new Date();

 while ((line = br.readLine()) != null) {

 int index;

 while ((index=line.indexOf("<DATE>")) >= 0)

 line = line.substring(0, index) + d + line.substring(index + 6);

 out.println(line);

 }

 br.close();

 }

}

The DateFilter servlet works by reading each line of input, scanning for the text

<DATE>, and replacing it with the current date. This example introduces the getReader()

method of HttpServletRequest, which returns a PrintReader that points to the

original request body. When we call getReader() in an HttpServlet, we can read the

original HTTP form variables, if any. When this method is used within a filtering servlet,

it provides access to the output of the previous servlet in the chain.

SCSX1022_J2EE

UNIT III JAVA SERVER PAGES

Introduction to JSP:

 The goal of the java server pages is to simplify the creation and management

of dynamic web pages. JSP page combine static markup, like HTML, XML, with special

scripting tags. JSP page resemble markup documents, but each page is translated into a

servlet the first time it is invoked. The resulting servlet is a combination of the markup

from the JSP file and embedded dynamic content specified by the scripting tags.

A simple JSP that includes the current date in an HTML page would like this:

<% @ page import=”java.util.Date” %>

<html>

<body> The content time is < % = (new Date()).toString() %> </body>

</html>

Save the example as ddate.jsp and deploy it.After deploying navigate to

http://localhost:8000/JSPExamples/dddate.jsp and we obtain the output as follows:

The JSP page and the dependent files are together known as a translation unit.The first

time the JSP engine intercepts a request for JSP,it compiles the translation uint into a

servlet.

The distinction between translation time and run time is very important in understanding

how JSP pages work. This figure summarizes the process:

 The first time a JSP is loaded by the JSP container, the servlet code

necessary to implement the JSP tags is automatically generated, compiled and loaded into

the servlet container. this occurs at translation time. It is important to note that this occurs

only the first time a JSP page is requested. There will be a slow response the first time a

JSP page is accessed, but on subsequent requests the previously compiled servlet simply

process the requests. This occurs at run time.

Three major life event methods working together in JSP are:

public void jspInit()

 javax.servlet.jsp.JspPage interface

public void jspDestroy()

public void jspService (HttpServletRequest req,

 HttpServletResponse rep) javax.servlet.jsp.HttpJspPage (I/f)

 throws ServletException,IOException

� The page is first initialized by invoking the jspInit() method, which may be

defined by the page author. This initializes the JSP in the same way as Servlets.

Text
uses

uses

Translated

First Request

Generates Response

 CLIENT

JSP
<JSP TAGS>
<Java code>

Servlet

JSP
<JSP TAGS>
<Java code>

JSP
<JSP TAGS>
<Java code>

Subsequent requests from any
client are handled by the Servlet

� Every time a request is made to the JSP, the container generated JSP

pageservice() method is invoked, the request is processed and the response is

generated.

� When the JSP is destroyed by the server, the JSP destroy() method is invoked to

perform any cleanup.

The Nuts and Bolts

There are three categories of JSP tags:

o Directives: These affect the overall structure of the servlet that results from

translation, but produces no output themselves.

o Scripting Elements: These let us inside java code into the JSP page.

o Actions: These are special tags available to affect the runtime behavior of the JSP

page. Two types of actions: Standard Actions and Custom Actions.

General rule that apply to JSP pages: As for sending mail from webserver, using

JavaMail API, the following code shows how the required data

such as 'from', 'to', 'subject' and 'message' are collected by the servlet and then processed

for sending the mail.

--

mailservlet.htm

<html>

<body>

<form method=post action="http://localhost:8080/servlet/mailservlet">

 sender <input type=text name=text1>

 Reciever <input type=text name=text2>

 Subject <input type=text name=text3>

 Message <textarea name='area1' rows=5 cols=30>

</textarea> <input type=submit>

</form>

</body>

</html>

 mailservlet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import javax.mail.*;

import javax.mail.internet.*; // important

import javax.mail.event.*; // important

import java.net.*;

import java.util.*;

public class servletmail extends HttpServlet

{

 public void doPost(HttpServletRequest request,HttpServletResponse response)

 throws ServletException, IOException

 {

 PrintWriter out=response.getWriter();

 response.setContentType("text/html");

 try

 {

 Properties props=new Properties();

 props.put("mail.smtp.host","localhost"); // 'localhost' for testing

 Session session1 = Session.getDefaultInstance(props,null);

 String s1 = request.getParameter("text1"); //sender (from)

 String s2 = request.getParameter("text2");

 String s3 = request.getParameter("text3");

 String s4 = request.getParameter("area1");

 Message message =new MimeMessage(session1);

 message.setFrom(new InternetAddress(s1));

 message.setRecipients

 (Message.RecipientType.TO,InternetAddress.parse(s2,false));

 message.setSubject(s3);

 message.setText(s4);

 Transport.send(message);

 out.println("mail has been sent");

 }

 catch(Exception ex)

 {

 System.out.println("ERROR....."+ex);

 }

 }

}

 Using javamail, requires classpath to mail.jar & activation.jar. These should have been

already installed in our machine. Otherwise, we will not be able to compile the servlet.

 For testing the servlet, we should have installed some mail server in our machine. For

compiling the servlet, we have to set classpath to c:\jsdk2.0\src (java servlet development

kit).

JSP DIRECTIVES

JSP directives provide directions and instructions to the container, telling it how to

handle certain aspects of JSP processing.

A JSP directive affects the overall structure of the servlet class. It usually has the

following form:

<%@ directive attribute="value" %>

Directives can have a number of attributes which you can list down as key-value pairs

and separated by commas.

The blanks between the @ symbol and the directive name, and between the last attribute

and the closing %>, are optional.

There are three types of directive tag:

Directive Description

<%@ page ... %> Defines page-dependent attributes, such as scripting language,

error page, and buffering requirements.

<%@ include ... %> Includes a file during the translation phase.

<%@ taglib ... %> Declares a tag library, containing custom actions, used in the

page

The page Directive:

The page directive is used to provide instructions to the container that pertain to the

current JSP page. You may code page directives anywhere in your JSP page. By

convention, page directives are coded at the top of the JSP page.

Following is the basic syntax of page directive:

<%@ page attribute="value" %>

You can write XML equivalent of the above syntax as follows:

<jsp:directive.page attribute="value" />

Attributes:

Following is the list of attributes associated with page directive:

Attribute Purpose

buffer Specifies a buffering model for the output stream.

autoFlush Controls the behavior of the servlet output buffer.

contentType Defines the character encoding scheme.

errorPage Defines the URL of another JSP that reports on Java unchecked

runtime exceptions.

isErrorPage Indicates if this JSP page is a URL specified by another JSP

page's errorPage attribute.

extends Specifies a superclass that the generated servlet must extend

import Specifies a list of packages or classes for use in the JSP as the

Java import statement does for Java classes.

info Defines a string that can be accessed with the servlet's

getServletInfo() method.

isThreadSafe Defines the threading model for the generated servlet.

language Defines the programming language used in the JSP page.

session Specifies whether or not the JSP page participates in HTTP

sessions

isELIgnored Specifies whether or not EL expression within the JSP page

will be ignored.

isScriptingEnabled Determines if scripting elements are allowed for use.

Check more detail related to all the above attributes at Page Directive.

The include Directive:

The include directive is used to includes a file during the translation phase. This

directive tells the container to merge the content of other external files with the current

JSP during the translation phase. You may code include directives anywhere in your JSP

page.

The general usage form of this directive is as follows:

<%@ include file="relative url" >

The filename in the include directive is actually a relative URL. If you just specify a

filename with no associated path, the JSP compiler assumes that the file is in the same

directory as your JSP.

You can write XML equivalent of the above syntax as follows:

<jsp:directive.include file="relative url" />

Check more detail related to include directive at Include Directive.

The taglib Directive:

The JavaServer Pages API allows you to define custom JSP tags that look like HTML or

XML tags and a tag library is a set of user-defined tags that implement custom behavior.

The taglib directive declares that your JSP page uses a set of custom tags, identifies the

location of the library, and provides a means for identifying the custom tags in your JSP

page.

The taglib directive follows the following syntax:

<%@ taglib uri="uri" prefix="prefixOfTag" >

JSP actions

 use constructs in XML syntax to control the behavior of the servlet engine. You can

dynamically insert a file, reuse JavaBeans components, forward the user to another page,

or generate HTML for the Java plugin.

There is only one syntax for the Action element, as it conforms to the XML standard:

<jsp:action_name attribute="value" />

Action elements are basically predefined functions and there are following JSP actions

available:

Syntax Purpose

jsp:include Includes a file at the time the page is requested

jsp:useBean Finds or instantiates a JavaBean

jsp:setProperty Sets the property of a JavaBean

jsp:getProperty Inserts the property of a JavaBean into the output

jsp:forward Forwards the requester to a new page

jsp:plugin Generates browser-specific code that makes an OBJECT or EMBED tag

for the Java plugin

jsp:element Defines XML elements dynamically.

jsp:attribute Defines dynamically defined XML element's attribute.

jsp:body Defines dynamically defined XML element's body.

jsp:text Use to write template text in JSP pages and documents.

Common Attributes:

There are two attributes that are common to all Action elements: the idattribute and

the scope attribute.

• Id attribute: The id attribute uniquely identifies the Action element, and allows the action to

be referenced inside the JSP page. If the Action creates an instance of an object the id value

can be used to reference it through the implicit object PageContext

• Scope attribute: This attribute identifies the lifecycle of the Action element. The id attribute

and the scope attribute are directly related, as the scope attribute determines the lifespan of

the object associated with the id. The scope attribute has four possible values: (a) page,

(b)request, (c)session, and (d) application.

The <jsp:include> Action

This action lets you insert files into the page being generated. The syntax looks like this:

<jsp:include page="relative URL" flush="true" />

Unlike the include directive, which inserts the file at the time the JSP page is translated

into a servlet, this action inserts the file at the time the page is requested.

Following is the list of attributes associated with include action:

Attribute Description

page The relative URL of the page to be included.

flush The boolean attribute determines whether the included resource has its

buffer flushed before it is included.

Example:

Let us define following two files (a)date.jsp and (b) main.jsp as follows:

Following is the content of date.jsp file:

<p>

 Today's date: <%= (new java.util.Date()).toLocaleString()%>

</p>

Here is the content of main.jsp file:

<html>

<head>

<title>The include Action Example</title>

</head>

<body>

<center>

<h2>The include action Example</h2>

<jsp:include page="date.jsp" flush="true" />

</center>

</body>

</html>

Now let us keep all these files in root directory and try to access main.jsp. This would

display result something like this:

The include action Example

 Today's date: 12-Sep-2010 14:54:22

The <jsp:useBean> Action

The useBean action is quite versatile. It first searches for an existing object utilizing the

id and scope variables. If an object is not found, it then tries to create the specified

object.

The simplest way to load a bean is as follows:

<jsp:useBean id="name" class="package.class" />

Once a bean class is loaded, you can use jsp:setProperty andjsp:getProperty actions to

modify and retrieve bean properties.

Following is the list of attributes associated with useBean action:

Attribute Description

class Designates the full package name of the bean.

type Specifies the type of the variable that will refer to the object.

beanName Gives the name of the bean as specified by the instantiate () method of

the java.beans.Beans class.

Let us discuss about jsp:setProperty and jsp:getProperty actions before giving a valid

example related to these actions.

The <jsp:setProperty> Action

The setProperty action sets the properties of a Bean. The Bean must have been

previously defined before this action. There are two basic ways to use the setProperty

action:

You can use jsp:setProperty after, but outside of, a jsp:useBean element, as below:

<jsp:useBean id="myName" ... />

...

<jsp:setProperty name="myName" property="someProperty" .../>

In this case, the jsp:setProperty is executed regardless of whether a new bean was

instantiated or an existing bean was found.

A second context in which jsp:setProperty can appear is inside the body of a

jsp:useBean element, as below:

<jsp:useBean id="myName" ... >

...

 <jsp:setProperty name="myName" property="someProperty" .../>

</jsp:useBean>

Here, the jsp:setProperty is executed only if a new object was instantiated, not if an

existing one was found.

Following is the list of attributes associated with setProperty action:

Attribute Description

name Designates the bean whose property will be set. The Bean must have

been previously defined.

property Indicates the property you want to set. A value of "*" means that all

request parameters whose names match bean property names will be

passed to the appropriate setter methods.

value The value that is to be assigned to the given property. The the

parameter's value is null, or the parameter does not exist, the setProperty

action is ignored.

param The param attribute is the name of the request parameter whose value

the property is to receive. You can't use both value and param, but it is

permissible to use neither.

The <jsp:getProperty> Action

The getProperty action is used to retrieve the value of a given property and converts it

to a string, and finally inserts it into the output.

The getProperty action has only two attributes, both of which are required ans simple

syntax is as follows:

<jsp:useBean id="myName" ... />

...

<jsp:getProperty name="myName" property="someProperty" .../>

Following is the list of required attributes associated with setProperty action:

Attribute Description

name The name of the Bean that has a property to be retrieved. The Bean must

have been previously defined.

property The property attribute is the name of the Bean property to be retrieved.

Example:

Let us define a test bean which we will use in our example:

/* File: TestBean.java */

package action;

public class TestBean {

 private String message = "No message specified";

 public String getMessage() {

 return(message);

 }

 public void setMessage(String message) {

 this.message = message;

 }

}

Compile above code to generated TestBean.class file and make sure that you copied

TestBean.class in C:\apache-tomcat-7.0.2\webapps\WEB-INF\classes\action folder and

CLASSPATH variable should also be set to this folder:

Now use the following code in main.jsp file which loads the bean and sets/gets a simple

String parameter:

<html>

<head>

<title>Using JavaBeans in JSP</title>

</head>

<body>

<center>

<h2>Using JavaBeans in JSP</h2>

<jsp:useBean id="test" class="action.TestBean" />

<jsp:setProperty name="test"

 property="message"

 value="Hello JSP..." />

<p>Got message....</p>

<jsp:getProperty name="test" property="message" />

</center>

</body>

</html>

Now try to access main.jsp, it would display following result:

Using JavaBeans in JSP

Got message....

Hello JSP...

The <jsp:forward> Action

The forward action terminates the action of the current page and forwards the request to

another resource such as a static page, another JSP page, or a Java Servlet.

The simple syntax of this action is as follows:

<jsp:forward page="Relative URL" />

Following is the list of required attributes associated with forward action:

Attribute Description

page Should consist of a relative URL of another resource such as a static

page, another JSP page, or a Java Servlet.

Example:

Let us reuse following two files (a) date.jsp and (b) main.jsp as follows:

Following is the content of date.jsp file:

<p>

 Today's date: <%= (new java.util.Date()).toLocaleString()%>

</p>

Here is the content of main.jsp file:

<html>

<head>

<title>The include Action Example</title>

</head>

<body>

<center>

<h2>The include action Example</h2>

<jsp:forward page="date.jsp" />

</center>

</body>

</html>

Now let us keep all these files in root directory and try to access main.jsp. This would

display result something like as below. Here it discarded content from main page and

displayed content from forwarded page only.

 Today's date: 12-Sep-2010 14:54:22

The <jsp:plugin> Action

The plugin action is used to insert Java components into a JSP page. It determines the

type of browser and inserts the <object> or <embed> tags as needed.

If the needed plugin is not present, it downloads the plugin and then executes the Java

component. The Java component can be either an Applet or a JavaBean.

The plugin action has several attributes that correspond to common HTML tags used to

format Java components. The <param> element can also be used to send parameters to

the Applet or Bean.

Following is the typical syntax of using plugin action:

<jsp:plugin type="applet" codebase="dirname" code="MyApplet.class"

 width="60" height="80">

 <jsp:param name="fontcolor" value="red" />

 <jsp:param name="background" value="black" />

 <jsp:fallback>

 Unable to initialize Java Plugin

 </jsp:fallback>

</jsp:plugin>

You can try this action using some applet if you are interested. A new element, the

<fallback> element, can be used to specify an error string to be sent to the user in case

the component fails.

The <jsp:element> Action

The <jsp:attribute> Action

The <jsp:body> Action

The <jsp:element>, lt;jsp:attribute> and <jsp:body> actions are used to define XML

elements dynamically. The word dynamically is important, because it means that the

XML elements can be generated at request time rather than statically at compile time.

Following is a simple example to define XML elements dynamically:

<%@page language="java" contentType="text/html"%>

<html xmlns="http://www.w3c.org/1999/xhtml"

 xmlns:jsp="http://java.sun.com/JSP/Page">

<head><title>Generate XML Element</title></head>

<body>

<jsp:element name="xmlElement">

<jsp:attribute name="xmlElementAttr">

 Value for the attribute

</jsp:attribute>

<jsp:body>

 Body for XML element

</jsp:body>

</jsp:element>

</body>

</html>

This would produce following HTML code at run time:

<html xmlns="http://www.w3c.org/1999/xhtml"

 xmlns:jsp="http://java.sun.com/JSP/Page">

<head><title>Generate XML Element</title></head>

<body>

<xmlElement xmlElementAttr="Value for the attribute">

 Body for XML element

</xmlElement>

</body>

</html>

The <jsp:text> Action

The <jsp:text> action can be used to write template text in JSP pages and documents.

Following is the simple syntax for this action:

<jsp:text>Template data</jsp:text>

The body fo the template cannot contain other elements; it can only contain text and EL

expressions (Note: EL expressions are explained in subsequent chapter). Note that in

XML files, you cannot use expressions such as ${whatever > 0}, because the greater

than signs are illegal. Instead, use the gt form, such as ${whatever gt 0} or an alternative

is to embed the value in a CDATA section.

<jsp:text><![CDATA[
]]></jsp:text>

If you need to include a DOCTYPE declaration, for instance

Where the uri attribute value resolves to a location the container understands and

the prefix attribute informs a container what bits of markup are custom actions.

You can write XML equivalent of the above syntax as follows:

<jsp:directive.taglib uri="uri" prefix="prefixOfTag" />

JSP with XML tags

Write a JSP Document (XML-based document) that uses the correct syntax.

What is a JSP document? (JSP6.1)

The key word here is document as opposed to page, though sometimes the two terms are

used interchangeably. Everywhere else we have been considering JSP pages which are

not fully formed xml documents. To allow JSP documents to be manipulated by standard

XML programs the tags need to be in standardised XML structure. Thus for example you

might have a JSP page where you are using a Java XML parser to transform all of one tag

occurrence to another.

When I first discovered the existence of XML equivalents of JSP tags I tried converting

existing pages on the mistaken that “XML is good”. This was an unrewarding experience

and I suspect that the XML tag equivalents are only used where there is a definite need to

automatically parse or generate valid JSP pages. This is probably a reason to pay

additional attention to this topic, as most JSP you come across will not use the XML

format tags. Note that in earlier versions of JSP a document had to begin with the

<jsp:root element but this is not true of JSP 2.

Throughout this book I have tried to include the XML equivalent for each of the tags,

thus for the import page tag I had

<%@ page import=”java.util.*,java.io.*” %>

The xml equivalent tag is

<jsp:directive.page import="java.util.*"/>

<jsp:expression

The <jsp:expression tag is the equivalent of the <%= tag. When translated it generates

Java code that has an output terminated by a semi-colon. It is very similar to generating a

System.out.print(“somestring”); in traditional Java programming. The following two

lines of code are functionally equivalent.

<%= request.getParameter("username") %>

<jsp:expression>request.getParameter("username")</jsp:expression>

<jsp:scriptlet

The <jsp:scriptlet tag is the equivalent of the <% tag. Thus the following lines of code are

equivalent.

<html>

<%

 for(int i =0; i <2; i++){

 out.print(i);

 }

%>

<jsp:scriptlet>

 <![CDATA[

 for(int i =0; i < 2; i++){

 out.print(i);

 }

]]>

</jsp:scriptlet>

Note the use of the <![CDATA[tags which effectively “escapes” the following code. The

reason for this is so that the less than symbol < does not get interpreted as the start of the

closure of the <jsp:scriptlet tag

<jsp:declaration

The servlet code generated for declarations is external to the service method and the tag

can be used to create class fields and for the creation of methods.

<jsp:declaration>

 public String amethod() {

 return "amethod";

 }

</jsp:declaration>

Which is the equivalent of

<%!

 public String amethod() {

 return "amethod";

 }

%>

<jsp:directive.directivetext

JSP directives, i.e. Those tags that start with <%@ characters can be created with XML

syntax in the form <jsp:directive.directivetext. The following are examples of JSP

directives with the page syntax followed by the document (XML) syntax.

<%@ include file="standac.jsp"%>

<jsp:directive.include file="standac.jsp"/>

<%@ page import="java.util.*" %>

<jsp:directive.page import="java.util.*" />

<%@ page errorPage="errorPage" %>

<jsp:directive.page errorPage = "errorPage.jsp"/>

<%@ page isErrorPage="true" %>

<jsp:directive.page isErrorPage="true"/>

<jsp:text

The <jsp:text tag is designed for outputting template text, so it can be considered the

equivalent of plain text within a jsp page. According to the Sun J2EE tutorial at

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPX3.html

“If you use jsp:text, all white space is preserved. “

However in my tests white space is preserved without the <jsp:text tag. I suspect that this

tag is mainly for the convenience of parsers to flag up what is template text.

<!--

The <!-- is the standard XML comment tag and is the equivalent of the JSP <%-- tag.

Unfortunately it does not work quite correctly as a JSP document comment tag as there is

a clash with the meaning of the same tag in standard HTML. The contents of the <!-- tag

are sent to the output stream, and thus appear in the final HTML page. I'm not quite sure

if this should be considered a JSP document tag, but I feel it is unlikely to come up as a

topic in the exam.

Other sources

Writing JSPs in XML by Stephanie Fesler

http://www.onjava.com/pub/a/onjava/2001/11/28/jsp_xml.html

Carl Trusiak of Javaranch on JSP xml tags

http://www.javaranch.com/newsletter/Feb2002/xmljsp.html

According to Sun

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPX3.html

More JSP best practices by Dustin Marx

http://www.javaworld.com/javaworld/jw-07-2003/jw-0725-morejsp.html

This objective according to Mikalai Zaikin

http://java.boot.by/wcd-guide/ch06s03.html

JSP TAGS

These elements are used to identify the tag library, and are nested within

the <taglib> ... </taglib> element.

<tlibversion>version_number</tlibversion>

(Required) The version number of the tag library. The current version number is

1.0

<jspversion>version_number</jspversion>

(Optional) The JSP version that this tag library is designed to work with.

WebLogic supposrts JSP version 1.1 from this release.

<shortname>TagLibraryName</shortname>

(Required) Assigns a short name to this tag library. Currently, this elements is not

used by WebLogic.

<uri>unique_string</uri>

(Optional) Currently, this element is not used by WebLogic.

<info>...text...</info>

(Optional) Use this element to provide a description of the tag library. Currently,

this element is not used by WebLogic.

Defining a tag

Use a separate <tag element to define each new tag in the tag library. The <tag> element

takes the following nested tags.

<tag>

<name>tag_name</name>

(Required) Defines the name of the tag. This is used in the referencing JSP file

after the : symbol, such as:

 <mytaglib:tag_name>

For more details, see Using custom tags in a JavaServer page.

<tagclass>package.class.name</tagclass>

(Required) Declares the tag handler class that implements the functionality of

this tag. You must specify the fully qualified package name of the class. The

class files should be located under the WEB-INF/classes directory, under a

directory structure reflecting the package name. For more detail on writing the

tag handler class, see Implementing the tag handler.

<teiclass>package.class.name</teiclass>

(Optional) Declares the subclass of TagExtraInfo that describes the scripting

variables introduced by this tag. If your tag does not define new scripting

variables, it does not use this element.

You must specify the fully qualified package name of the class. The class files

should be located under the WEB-INF/classes directory, under a directory

structure reflecting the package name. For more detail on writing the tag

handler class, see Defining new scripting variables.

<bodycontent>tagdependent | JSP | empty</bodycontent>

(Optional) Defines the content of the tag body. If you specify empty, then the

tag must appear in the empty-tag format <taglib:tagname\> in the JSP page. If

you specify JSP, the contents of the tag can be interpreted as JSP, and the tag

must be used in the body-tag format <taglib:tagname>. You should

specify tagdependent if your tag expects to interpret the contents of the body as

non-JSP, for example an SQL statement.

If the <bodycontent> element is not defined, the default value is JSP.

<attribute>

Use a separate <attribute> element to define each attribute that the tag can take.

Tag attributes are useful for allowing the JSP author to alter the behavior of your

tags.

<name>attr_name</name>

(Required) Defines the name of the attribute as it appears in the tag

element in the JSP page. Such as:

<taglib:mytag attr_name="xxxxxx">

<required>true | false</required>

(Optional) Defines whether this attribute has optional use in the JSP page.

If not defined here, the default is false -- that is, the attribute is optional by

default. If true is specified, and the attribute is not used in a JSP page, a

translation-time error will occur.

<rtexprvalue>true | false</rtexprvalue>

(Optional) Defines whether this attribute can take a scriptlet expression as

a value, allowing it to be dynamically calculated at request time.

The default value false is assumed if this element is not specified.

</attribute>

</tag>

Sample JSP program for <jsp:forward page=”url”>

E:\j2ee\myjsp\forward.html

<html>

<head><title>Welcome to my JSP</title></head>

<body>

</h1>Forward action test</h1>

<form method="post" action="http://localhost:7001/myjsp/forward.jsp">

<p>Please enter your username:

<input type="text" name="username">

and password:

<input type="password" name="password">

</p>

<p><input type="submit" value="Log in">

</form>

</body>

</html>

E:\j2ee\myjsp\forward.jsp

<html>

<head><title>welcome</title></head>

</body>

<%

if((request.getParameter("username").equals("richard"))&&

(request.getParameter("password").equals("xyz"))){

%>

<jsp:forward page="forward2.jsp"/>

<% } else { %>

<%@ include file="forward.html"%>

<%} %>

</body>

</html>

E:\j2ee\myjsp\forward2.jsp

<html>

<head><title>Forward action test: </title></head>

<body>

<h1>Forward action test:Login successful</h1>

<form method="post" action="forward.jsp">

<p>Welcome, <%= request.getParameter("username") %> !

</body>

</html>

Input screen:

output screen:

JAVA MAIL

The JavaMailTM API provides classes that model a mail system. The javax.mail package

defines classes that are common to all mail systems. Thejavax.mail.internet package

defines classes that are specific to mail systems based on internet standards such as

MIME, SMTP, POP3, and IMAP. The JavaMail API includes the javax.mail package and

subpackages.

For an overview of the JavaMail API, read the JavaMail specification.

The code to send a plain text message can be as simple as the following:

 Properties props = new Properties();

 props.put("mail.smtp.host", "my-mail-server");

 Session session = Session.getInstance(props, null);

 try {

 MimeMessage msg = new MimeMessage(session);

 msg.setFrom("me@example.com");

 msg.setRecipients(Message.RecipientType.TO,

 "you@example.com");

 msg.setSubject("JavaMail hello world example");

 msg.setSentDate(new Date());

 msg.setText("Hello, world!\n");

 Transport.send(msg, "me@example.com", "my-password");

 } catch (MessagingException mex) {

 System.out.println("send failed, exception: " + mex);

 }

The JavaMail download bundle contains many more complete examples in the "demo"

directory.

Don't forget to see the JavaMail API FAQ for answers to the most common questions.

The JavaMail web site contains many additional resources.

Properties

The JavaMail API supports the following standard properties, which may be set in

the Session object, or in the Properties object used to create the Sessionobject. The

properties are always set as strings; the Type column describes how the string is

interpreted. For example, use

 props.put("mail.debug", "true");

to set the mail.debug property, which is of type boolean.

Name Type Description

mail.debug boolean The initial debug mode. Default is false.

mail.from String
The return email address of the current user, used by

the InternetAddress method getLocalAddress.

mail.mime.address.strict boolean

The MimeMessage class uses

the InternetAddress method parseHeader to parse

headers in messages. This property controls the strict

flag passed to the parseHeader method. The default is

true.

mail.host String
The default host name of the mail server for both Stores

and Transports. Used if the mail.protocol.host property

isn't set.

mail.store.protocol String

Specifies the default message access protocol.

The Session method getStore() returns a Store object

that implements this protocol. By default the first Store

provider in the configuration files is returned.

mail.transport.protocol String

Specifies the default message transport protocol.

The Session method getTransport() returns a Transport

object that implements this protocol. By default the first

Transport provider in the configuration files is returned.

mail.user String

The default user name to use when connecting to the

mail server. Used if the mail.protocol.user property isn't

set.

mail.protocol.class String

Specifies the fully qualified class name of the provider

for the specified protocol. Used in cases where more

than one provider for a given protocol exists; this

property can be used to specify which provider to use

by default. The provider must still be listed in a

configuration file.

mail.protocol.host String
The host name of the mail server for the specified

protocol. Overrides the mail.host property.

mail.protocol.port int

The port number of the mail server for the specified

protocol. If not specified the protocol's default port

number is used.

mail.protocol.user String

The user name to use when connecting to mail servers

using the specified protocol. Overrides

the mail.user property.

The following properties are supported by the reference implementation (RI) of JavaMail,

but are not currently a required part of the specification. The names, types, defaults, and

semantics of these properties may change in future releases.

Name Type Description

mail.debug.auth boolean

Include protocol authentication

commands (including usernames and

passwords) in the debug output. Default

is false.

mail.transport.protocol.a

ddress-type
String

Specifies the default message transport

protocol for the specified address type.

The Sessionmethod getTransport(Addr

ess) returns a Transport object that

implements this protocol when the

address is of the specified type (e.g.,

"rfc822" for standard internet

addresses). By default the first

Transport configured for that address

type is used. This property can be used

to override the behavior of

the send method of the Transport class

so that (for example) the "smtps"

protocol is used instead of the "smtp"

protocol by setting the

propertymail.transport.protocol.rfc822 t

o "smtps".

mail.event.scope String

Controls the scope of events. (See the

javax.mail.event package.) By default,

a separate event queue and thread is

used for events for each Store,

Transport, or Folder. If this property is

set to "session", all such events are put

in a single event queue processed by a

single thread for the current session. If

this property is set to "application", all

such events are put in a single event

queue processed by a single thread for

the current application. (Applications

are distinguished by their context class

loader.)

mail.event.executor
java.util.concurrent.Ex

ecutor

By default, a new Thread is created for

each event queue. This thread is used to

call the listeners for these events. If this

property is set to an instance of an

Executor, the Executor.execute method

is used to run the event dispatcher for

an event queue. The event dispatcher

runs until the event queue is no longer

in use.

The JavaMail API also supports several System properties; see

the javax.mail.internet package documentation for details.

The JavaMail reference implementation includes protocol providers in subpackages

of com.sun.mail. Note that the APIs to these protocol providers are not part of the

standard JavaMail API. Portable programs will not use these APIs.

Nonportable programs may use the APIs of the protocol providers by (for example)

casting a returned Folder object to a com.sun.mail.imap.IMAPFolderobject. Similarly

for Store and Message objects returned from the standard JavaMail APIs.

The protocol providers also support properties that are specific to those providers. The

package documentation for the IMAP, POP3, and SMTP packages provide details.

In addition to printing debugging output as controlled by the Session configuration, the

current implementation of classes in this package log the same information

using Logger as described in the following table:

Logger Name Logging Level Purpose

javax.mail CONFIG Configuration of the Session

javax.mail FINE General debugging output

JAVA MAIL PROGRAM

1. import java.util.*;

2. import javax.mail.*;

3. import javax.mail.internet.*;

4. import javax.activation.*;

5.

6. public class SendEmail

7. {

8. public static void main(String [] args){

9. String to = "sonoojaiswal1988@gmail.com";//change accordingly

10. String from = "sonoojaiswal1987@gmail.com";change accordingly

11. String host = "localhost";//or IP address

12.

13. //Get the session object

14. Properties properties = System.getProperties();

15. properties.setProperty("mail.smtp.host", host);

16. Session session = Session.getDefaultInstance(properties);

17.

18. //compose the message

19. try{

20. MimeMessage message = new MimeMessage(session);

21. message.setFrom(new InternetAddress(from));

22. message.addRecipient(Message.RecipientType.TO,new InternetAddress(to)

);

23. message.setSubject("Ping");

24. message.setText("Hello, this is example of sending email ");

25.

26. // Send message

27. Transport.send(message);

28. System.out.println("message sent successfully....");

29.

30. }catch (MessagingException mex) {mex.printStackTrace();}

31. }

32. }

SCSX1022_J2EE

UNIT IV

Enterprise Java Beans

Enterprise JavaBeans (EJB) is a managed, server software for modular construction of

enterprise software, and one of several Java APIs. EJB is a server-side software

component that encapsulates the business logic of an application. The EJB specification

is a subset of the Java EE specification. An EJB web container provides a runtime

environment for web related software components, including computer security, Java

servlet lifecycle management, transaction processing, and other web services.

Types of Enterprise Beans

Table summarizes the three types of enterprise beans. The following sections discuss

each type in more detail.

Table : Enterprise Bean Types

Enterprise Bean

Type
Purpose

Session Performs a task for a client; implements a web service

Entity Represents a business entity object that exists in persistent storage

Message-Driven
Acts as a listener for the Java Message Service API, processing

messages asynchronously

SESSION BEAN

A session bean represents a single client inside the Application Server. To access

an application that is deployed on the server, the client invokes the session bean's

methods. The session bean performs work for its client, shielding the client from

complexity by executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A session bean is

not shared; it can have only one client, in the same way that an interactive session can

have only one user. Like an interactive session, a session bean is not persistent. (That is,

its data is not saved to a database.) When the client terminates, its session bean appears to

terminate and is no longer associated with the client.

State Management Modes

There are two types of session beans: stateless and stateful.

Stateless Session Beans

A stateless session bean does not maintain a conversational state for the client. When a

client invokes the method of a stateless bean, the bean's instance variables may contain a

state, but only for the duration of the invocation. When the method is finished, the state is

no longer retained. Except during method invocation, all instances of a stateless bean are

equivalent, allowing the EJB container to assign an instance to any client.

Because stateless session beans can support multiple clients, they can offer better

scalability for applications that require large numbers of clients. Typically, an application

requires fewer stateless session beans than stateful session beans to support the same

number of clients.

At times, the EJB container may write a stateful session bean to secondary storage.

However, stateless session beans are never written to secondary storage. Therefore,

stateless beans may offer better performance than stateful beans.

A stateless session bean can implement a web service, but other types of enterprise beans

cannot.

The Life Cycle of a Stateless Session Bean

Because a stateless session bean is never passivated, its life cycle has only two stages:

nonexistent and ready for the invocation of business methods. Figure illustrates the stages

of a stateless session bean.

Stateful Session Beans

The state of an object consists of the values of its instance variables. In a stateful session

bean, the instance variables represent the state of a unique client-bean session. Because

the client interacts ("talks") with its bean, this state is often called the conversational

state.

The state is retained for the duration of the client-bean session. If the client removes the

bean or terminates, the session ends and the state disappears. This transient nature of the

state is not a problem, however, because when the conversation between the client and

the bean ends there is no need to retain the state.

The Life Cycle of a Stateful Session Bean

Figure illustrates the stages that a session bean passes through during its lifetime. The

client initiates the life cycle by invoking the create method. The EJB container

instantiates the bean and then invokes the setSessionContext and ejbCreate methods in

the session bean. The bean is now ready to have its business methods invoked.

While in the ready stage, the EJB container may decide to deactivate, or passivate, the

bean by moving it from memory to secondary storage. (Typically, the EJB container uses

a least-recently-used algorithm to select a bean for passivation.) The EJB container

invokes the bean's ejbPassivate method immediately before passivating it. If a client

invokes a business method on the bean while it is in the passive stage, the EJB container

activates the bean, calls the bean's ejbActivate method, and then moves it to the ready

stage.

At the end of the life cycle, the client invokes the remove method, and the EJB container

calls the bean's ejbRemove method. The bean's instance is ready for garbage collection.

EJB Architechture

EJB CONTAINERS

Starting with EJB 3.1, the EJB specification defines two variants of the EJB container; a

full version and a limited version. The limited version adheres to a proper subset of the

specification called EJB 3.1 Lite [35][36] and is part of Java EE 6's web profile (which is

itself a subset of the full Java EE 6 specification).

EJB 3.1 Lite excludes support for the following features:

• Remote interfaces

• RMI-IIOP Interoperability

• JAX-WS Web Service Endpoints

• EJB Timer Service (@Schedule, @Timeout)

• Asynchronous session bean invocations (@Asynchronous)

• Message-driven beans

EJB 3.2 Lite excludes less features. Particularly it no longer excludes @Asynchronous

and @Schedule/@Timeout, but for @Schedule it does not support the "persistent"

attribute that full EJB 3.2 does support.

The complete excluded list for EJB 3.2 Lite is:

• Remote interfaces

• RMI-IIOP Interoperability

• JAX-WS Web Service Endpoints

• Persistent timers ("persistent" attribute on @Schedule)

• Message-driven beans

• Container Services

• The container provides various services for the EJB to relieve the developer from

having to implement such services, namely

• Distribution via proxies—The container will generate a client-side stub and

server-side skeleton for the EJB. The stub and skeleton will use RMI over IIOP to

communicate.

ENTITY BEANS

An entity bean represents a business object in a persistent storage mechanism. Some

examples of business objects are customers, orders, and products. In the Application

Server, the persistent storage mechanism is a relational database. Typically, each entity

bean has an underlying table in a relational database, and each instance of the bean

corresponds to a row in that table.

The Life Cycle of an Entity Bean

Figure shows the stages that an entity bean passes through during its lifetime. After the

EJB container creates the instance, it calls the setEntityContext method of the entity bean

class. The setEntityContext method passes the entity context to the bean.

After instantiation, the entity bean moves to a pool of available instances. While in the

pooled stage, the instance is not associated with any particular EJB object identity. All

instances in the pool are identical. The EJB container assigns an identity to an instance

when moving it to the ready stage.

There are two paths from the pooled stage to the ready stage. On the first path, the client

invokes the create method, causing the EJB container to call the ejbCreate and

ejbPostCreate methods. On the second path, the EJB container invokes the ejbActivate

method. While an entity bean is in the ready stage, and its business methods can be

invoked.

There are also two paths from the ready stage to the pooled stage. First, a client can

invoke the remove method, which causes the EJB container to call the ejbRemove

method. Second, the EJB container can invoke the ejbPassivate method.

At the end of the life cycle, the EJB container removes the instance from the pool and

invokes the unsetEntityContext method.

What Makes Entity Beans Different from Session Beans?

Entity beans differ from session beans in several ways. Entity beans are persistent, allow

shared access, have primary keys, and can participate in relationships with other entity

beans.

Persistence

Because the state of an entity bean is saved in a storage mechanism, it is persistent.

Persistence means that the entity bean's state exists beyond the lifetime of the application

or the Application Server process. If you've worked with databases, you're familiar with

persistent data. The data in a database is persistent because it still exists even after you

shut down the database server or the applications it services.

There are two types of persistence for entity beans: bean-managed and container-

managed. With bean-managed persistence, the entity bean code that you write contains

the calls that access the database. If your bean has container-managed persistence, the

EJB container automatically generates the necessary database access calls.

MESSAGE DRIVEN BEAN

A message-driven bean is an enterprise bean that allows J2EE applications to process

messages asynchronously. It normally acts as a JMS message listener, which is similar to

an event listener except that it receives JMS messages instead of events. The messages

can be sent by any J2EE component--an application client, another enterprise bean, or a

web component--or by a JMS application or system that does not use J2EE technology.

Message-driven beans can process either JMS messages or other kinds of messages.

The Life Cycle of a Message-Driven Bean

Figure illustrates the stages in the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For each

instance, the EJB container instantiates the bean and performs these tasks:

1. It calls the setMessageDrivenContext method to pass the context object to the

instance.

2. It calls the instance's ejbCreate method.

Like a stateless session bean, a message-driven bean is never passivated, and it has only

two states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls the ejbRemove method. The bean's

instance is then ready for garbage collection.

What Makes Message-Driven Beans Different from Session and Entity

Beans?

The most visible difference between message-driven beans and session and entity beans

is that clients do not access message-driven beans through interfaces. Unlike a session or

entity bean, a message-driven bean has only a bean class.

In several respects, a message-driven bean resembles a stateless session bean.

• A message-driven bean's instances retain no data or conversational state for a

specific client.

• All instances of a message-driven bean are equivalent, allowing the EJB container

to assign a message to any message-driven bean instance. The container can pool

these instances to allow streams of messages to be processed concurrently.

• A single message-driven bean can process messages from multiple clients.

Message-driven beans have the following characteristics:

• They execute upon receipt of a single client message.

• They are invoked asynchronously.

• They are relatively short-lived.

• They do not represent directly shared data in the database, but they can access and

update this data.

• They can be transaction-aware.

• They are stateless.

When a message arrives, the container calls the message-driven bean's onMessage

method to process the message. The onMessage method normally casts the message to

one of the five JMS message types and handles it in accordance with the application's

business logic. The onMessage method can call helper methods, or it can invoke a session

or entity bean to process the information in the message or to store it in a database.

A message can be delivered to a message-driven bean within a transaction context, so all

operations within the onMessage method are part of a single transaction. If message

processing is rolled back, the message will be redelivered.

When to Use Message-Driven Beans

Session beans and entity beans allow you to send JMS messages and to receive them

synchronously, but not asynchronously. To avoid tying up server resources, you may

prefer not to use blocking synchronous receives in a server-side component. To receive

messages asynchronously, use a message-driven bean.

EJB CONTAINER SERVICES

• Lifecycle management—Bean initialization, state management, and destruction

is driven by the container, all the developer must do is implement the appropriate

methods.

• Naming and registration—The EJB container and server will provide the EJB

with access to naming services. These services are used by local and remote

clients to look up the EJB and by the EJB itself to look up resources it may need.

• Transaction management—Declarative transactions provide a means for the

developer to easily delegate the creation and control of transactions to the

container.

• Security and access control—Again, declarative security provides a means for

the developer to easily delegate the enforcement of security to the container.

• Persistence (if you want)—Using the Entity EJB's container-managed

persistence mechanism, state can be saved and restored without having to write a

single line of code.

SCSX1022_J2EE

 UNIT V

STRUTS:

A brief introduction

Struts, an open source framework you can use to build Web applications, is based on the popular

Model-View-Controller (MVC2) design paradigm. The framework is built upon standard

technologies like Java Servlets, JavaBeans, ResourceBundles, and XML, and it provides flexible

and extensible components. Struts implements the Controller layer in the form of ActionServlet

and recommends building the View layer using JSP tag libraries. Struts also provides a wrapper

around the Model layer through Action classes. Figure 1 illustrates the Struts framework based

on the Model-View-Controller design.

Figure 1.

Overview of the MVC design pattern

The model-view-controller design pattern, also known as Model 2 in J2EE application

programming, is a well-established design pattern for programming. Table 1 summarizes the

three main components of MVC.

Table 1. Summary of MVC components

 Purpose Description

Model Maintain data Business logic plus one or more data sources such as

a relational database

View Display all or a portion of

the data

The user interface that displays information about the

model to the user

Controller Handle events that affect the

model or view

The flow-control mechanism means by which the

user interacts with the application

Model 1 versus Model 2

The Model 1 and Model 2 architectures both separate content generation (business logic) from

the content presentation (HTML formatting). Model 2 differs from Model 1 in the location where

the bulk of the request processing is performed: by a controller rather than in the JSP pages.

In the JSP Model 1 architecture, the JSP page alone processes the incoming request and replies

to the client, as shown in Figure 1.

Figure 1. JSP Model 1 architecture

1. The browser sends a request to a JSP page.

2. The JSP page communicates with a Java bean.

3. The Java bean is connected to a database.

4. The JSP page responds to the browser.

In the JSP Model 2 architecture, the servlet processes the request, creates any beans or objects

used by the JSP file, and forwards the request, as shown in Figure 2.

Figure 2. JSP Model 2 architecture

1. The browser sends a request to a servlet.

2. The servlet instantiates a Java bean that is connected to a database.

3. The servlet communicates with a JSP page.

4. The JSP page communicates with the Java bean.

5. The JSP page responds to the browser.

Table 2 presents criteria to help you determine when Model 1 or Model 2 is likely to be more

appropriate:

Table 2. Guidelines for using Model 1 or Model 2

Criterion Model 1 Model 2

Table 2. Guidelines for using Model 1 or Model 2

Criterion Model 1 Model 2

Type of Web

application

Simple Complex

Nature of

developer's task

Quick prototyping Creating an application to be

modified and maintained

Who is doing the

work

View and controller being done by

the same team

View and controller being done by

different teams

The Struts implementation of Model 2

The Struts implementation of Model 2 uses a specific type of servlet, called on action servlet,

and one or more actions and action mappings to implement the controller. It also uses a specific

type of Java bean, called a form bean. As illustrated in Figure 3, the Web server at run time

contains both the view and controller components of a Model 2 Web application, while a third

tier (which is usually outside of the Web server) contains the model.

Figure 3. Struts framework: a Model 2 architecture

Struts contribution to MVC components as shown in Table 3.

Table 3. Struts's contributions to model, view, and controller

Component Contribution

Model None directly. However, the Struts actions and configuration file provide an

elegant way to control the circumstances under which the model components are

invoked.

View • Java™ class org.apache.struts.action.ActionForm, which you subclass to

create a form bean that is used in two ways at run time:

o When a JSP page prepares the related HTML form for display, the

JSP page accesses the bean, which holds values to be placed into

the form. Those values are provided from business logic or from

previous user input.

o When user input is returned from a Web browser, the bean

validates and holds that input either for use by business logic or (if

validation failed) for subsequent redisplay.

• Numerous custom JSP tags that are simple to use but are powerful in the

sense that they hide information. Page Designer does not need to know

much about form beans, for example, beyond the bean names and the

names of each field in a given bean.

Controller • The Struts action servlet handles run-time events in accordance with a set

of rules that are provided at deployment time. Those rules are contained in

a Struts configuration file and specify how the servlet responds to every

outcome received from the business logic. Changes to the flow of control

require changes only to the configuration file.

• Struts also provides the Java class org.apache.struts.action.Action, which a

Java developer subclasses to create an "action class". At run time, the

Table 3. Struts's contributions to model, view, and controller

Component Contribution

action servlet is said to "execute actions," which means that the servlet

invokes the execute method of each of the instantiated action classes. The

object returned from the execute method directs the action servlet as to

what action or JSP file to access next.

We recommend that you promote reuse by invoking business logic from

the action class rather than including business logic in that class.

Benefits of the MVC design pattern

The application of the model-view-controller division to the development of dynamic Web

applications has several benefits:

• You can distribute development effort to some extent, so that implementation changes in

one part of the Web application do not require changes to another. The developers

responsible for writing the business logic can work independently of the developers

responsible for the flow of control, and Web-page designers can work independently of

the developers.

• You can more easily prototype your work. You might do as follows, for example:

1. Create a prototype Web application that accesses several workstation-based

programs.

2. Change the application in response to user feedback.

3. Implement the production-level programs on the same or other platforms.

Outside of the work you do on the programs themselves, your only adjustments are to

configuration files or name-server content, not to other source code.

• You can more easily migrate legacy programs, because the view is separate from the

model and the control and can be tailored to platform and user category.

• You can maintain an environment that comprises different technologies across different

locations.

• The MVC design has an organizational structure that better supports scalability (building

bigger applications) and ease of modification and maintenance (due to the cleaner

separation of tasks).

BASIC COMPONENTS OF STRUTS

The Struts framework is a rich collection of Java libraries and can be broken down into the

following major pieces:

• Base framework

• JSP tag libraries

• Tiles plugin

• Validator plugin

A brief description of each follows.

Base Framework

The base framework provides the core MVC functionality and is comprised of the building

blocks for your application. At the foundation of the base framework is the Controller servlet:

ActionServlet. The rest of the base framework is comprised of base classes that your application

will extend and several utility classes. Most prominent among the base classes are the Action

and ActionForm classes. These two classes are used extensively in all Struts applications.

Action classes are used by ActionServlet to process specific requests. ActionForm classes are

used to capture data from HTML forms and to be a conduit of data back to the View layer for

page generation.

JSP Tag Libraries

Struts comes packaged with several JSP tag libraries for assisting with programming the View

logic in JSPs. JSP tag libraries enable JSP authors to use HTML-like tags to represent

functionality that is defined by a Java class.

Following is a listing of the libraries and their purpose:

• HTML Used to generate HTML forms that interact with the Struts APIs.

• Bean Used to work with Java bean objects in JSPs, such as accessing bean values.

• Logic Used to cleanly implement simple conditional logic in JSPs.

• Nested Used to allow arbitrary levels of nesting of the HTML, Bean, and Logic tags that

otherwise do not work.

Tiles Plugin

Struts comes packaged with the Tiles subframework. Tiles is a rich JSP templating framework

that facilitates the reuse of presentation (HTML) code. With Tiles, JSP pages can be broken up

into individual 'tiles' or pieces and then glued together to create one cohesive page. Similar to the

design principles that the core Struts framework is built on, Tiles provides excellent reuse of

View code. As of Struts 1.1, Tiles is part of and packaged with the core Struts download. Prior to

Struts 1.1, Tiles was a third-party add-on, but has since been contributed to the project and is

now more tightly integrated.

Validator Plugin

Struts comes packaged, as of version 1.1, with the Validator subframework for performing data

validation. Validator provides a rich framework for performing data validation on both the server

side and client side (browser). Each validation is configured in an outside XML file so that

validations can easily be added to and removed from an application declaratively versus being

hard-coded into the application. Similar to Tiles, prior to Struts 1.1, Validator was a third-party

add-on, but has since been included in the project and is more tightly integrated.

BUILDING A SIMPLE STRUTS APPLICATION

1). Click on File Menu and choose New Project. A Dialog Box will be opened,choose Java

Web from catagoeries and Web application from Projects list.

Click on Next button, type HelloStruts in the Project name and click on

Choose Apache Tomcat 6.0 or GlassFish V3 Domain from Server and press Next.

From Frameworks click on struts 1.3.8 checkbox, and finally click on Finish button.

It will open welcomeStruts.jsp page by default.

This is the Directory Structure of HelloStruts application

Right click on HelloStruts application and choose Java Package. Enter the package name

as com.satish.form and click Finish.

Right click on the newly created Package New->Java Class. Enter the class name

as HelloWorldForm and click on Finish.

In the HelloWorldForm class add the following code.

package com.satish.form;

import org.apache.struts.action.ActionForm;

public class HelloWorldForm extends ActionForm {

private static final long serialVersionUID = -473562596852452021L;

private String message;

public String getMessage() {

return message;

}

public void setMessage(String message) {

this.message = message;

}

}

In the same way create a new package com.arpit.action and create a HelloWorldAction class,

extending org.apache.struts.action.Action. And add following code in action class.

package com.arpit.action;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionForward;

import org.apache.struts.action.ActionMapping;

import com.satish.form.HelloWorldForm;

public class HelloWorldAction extends Action {

@Override

public ActionForward execute(ActionMapping mapping, ActionForm form, HttpServletRequest

request,

HttpServletResponse response) throws Exception {

HelloWorldForm hwForm = (HelloWorldForm) form;

hwForm.setMessage(“Hello World”);

return mapping.findForward(“success”);

}

}

Add the following entries in the struts-config.xml file.

<?xml version=”1.0″ encoding=”UTF-8″ ?>

<!DOCTYPE struts-config PUBLIC

“-//Apache Software Foundation//DTD Struts Configuration 1.3//EN”

“http://jakarta.apache.org/struts/dtds/struts-config_1_3.dtd”>

<struts-config>

<form-beans>

<form-bean/>

</form-beans>

<global-exceptions>

</global-exceptions>

<global-forwards>

<forward path=”/helloWorld.do”/>

</global-forwards>

<action-mappings>

<action path=”/helloWorld”>

<forward path=”/helloWorld.jsp” />

</action>

</action-mappings>

Now configure the deployment descriptor. Add the following configuration information in

the web.xml file.

When we run the application the index.jsp page will be executed first. In the index.jsp page

we redirect the request to the helloWorld.do URI, which inturn invokes

the HelloWorldAction.

<%@ taglib uri="http://struts.apache.org/tags-logic" prefix="logic" %>

<logic:redirect forward="helloWorld"/>

Add these lines of code in index.jsp page.

In the action class we return the ActionForward “success” which is mapped to

thehelloWorld.jsp page. In the helloWorld.jsp page we display the “Hello World” message.

<%@taglib uri="http://struts.apache.org/tags-bean" prefix="bean" %>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-">

<title>Hello World</title>

</head>

<body>

<bean:write name="HelloWorldForm" property="message"/>

</body>

</html>

Output:

INTRODUCTION TO WEB SERVICE TECHNOLOGIES

Java Message Service (JMS)

The Java Message Service API is a Java Message Oriented Middleware (MOM) API for

sending messages between two or more clients.

It is a messaging standard that allows application components based on the Java 2 Platform,

Enterprise Edition (J2EE) to create, send, receive, and read messages.

It allows the communication between different components of a distributed application to be

loosely coupled, reliable, and asynchronous

JMS Architecture

 Sends to

 Creates Creates Creates

 Creates

 Creates

 Gets from

There are six principal building blocks in the JMS architecture. They are used one by one to

build the JMS application. The JMS API is provided in the Java package javax.jms.

1. Administered objects

• An administered object is that a client uses to create a connection to the JMS provider.

• JMS clients access the connectionfactory through portable interfaces so the code does not

need to be changed if the underlying implementation changes.

Connection

factory

Connection
Session

Message

Producer

Message

consumer

Message

Queue

Queue

• Administrators configure the connection factory in the Java Naming and Directory

Interface (JNDI) namespace so that JMS clients can look them up.

2. Connection

• A Connection represents an open communication channel between an application and

the messaging system, and is used to create a Session for producing and consuming

messages.

• A connection creates server-side and client-side objects that manage the messaging

activity between an application and JMS.

• A Connection is created by a ConnectionFactory, obtained through a JNDI lookup.

3. Session

• It represents a single-threaded context used for sending and receiving messages.

• The benefit of a session is that it supports transactions

• A session allows users to create message producers to send messages, and message

consumers to receive messages.

• A Session is created by a Connection

4. Message Producers

• A Message Producers sends messages to a queue or topic.

• A Session creates the Message Producers that are attached to queues and topics.

.

5. Message Consumers

• A Message Consumers receives messages from a queue or topic.

• A Session creates the Message Consumers that are attached to queues and topics.

6. Messages

An object that is sent between consumers and producers; that is, from one application to another.

A message has three main parts:

1. A message header (required): Contains operational settings to identify and route

messages.

2. A set of message properties (optional): Contains additional properties to support

compatibility with other providers or users

3. A message body (optional): Allows users to create five types of messages (text message,

map message, bytes message, stream message, and object message).

The JMS API Supports two models:

• point-to-point or queuing model

• publish and subscribe model

1. Point-to-point or queuing model:

• In this model, a producer sends messages to a particular queue and a consumer

gets messages from the queue.

• Only one consumer will get the message and producer knows the consumer of the

message.

 Message

2. Publish and subscribe model:

• In this model, many subscribers can receive messages on a particular message

topic.

• Publisher and subscriber both are unaware of each other.

 Messages

 Messages

Producer Consumer

Sends

Queue

Acknowledges

Consumes

Producer

Consumer 1

Consumer 2
Publishes

 Queue
 Delivers

Delivers

 Subscribes

Subscribes

WEB SERVICES

∗ Web Services is a technology that allows applications to communicate with each other in

a platform- and programming language-independent manner.

∗ It is a software interface that describes a collection of operations that can be accessed

over the network through standardized XML messaging.

∗ It uses protocols based on the XML language to describe an operation to execute or data

to exchange with another Web service.

The following are the technologies available for the creation of web services

• SOAP (Simple Object Access Protocol)

• UDDI (Universal Description, Discovery and Integration)

• WSDL (Web Services Description Language)

SOAP Simple Object Access Protocol

The SOAP is a lightweight, XML-based protocol for exchanging information in a decentralized,

distributed environment. SOAP supports different styles of information exchange, including:

• Remote Procedure Call style (RPC), which allows for request-response processing,

where an endpoint receives a procedure oriented message and replies with a correlated

response message.

• Message-oriented information exchange, which supports organizations and applications

that need to exchange business or other types of documents where a message is sent but

the sender may not expect or wait for an immediate response.

A SOAP message is an ordinary XML document containing the following elements:

• An Envelope element is the root element of a SOAP message that identifies the XML

document as a SOAP message

• A Header element that contains header information

• A Body element that contains call and response information

• A Fault element containing errors and status information

Here are some important syntax rules:

• A SOAP message MUST be encoded using XML

• A SOAP message MUST use the SOAP Envelope namespace

• A SOAP message MUST use the SOAP Encoding namespace

Syntax:

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

...

</soap:Header>

<soap:Body>

...

 <soap:Fault>

 ...

 </soap:Fault>

</soap:Body>

</soap:Envelope>

WSDL Web Services Description Language

WSDL describes network services by using an XML grammar. It provides documentation for

distributed systems and has the goal to enable applications to communicate with each other in an

automated way.

o WSDL v1.0, 9/2000

o WSDL v1.1 submitted to W3C 3/2001.

WSDL is an XML grammar for describing web services. The specification itself is divided into

six major elements:

 definitions

The definitions element must be the root element of all WSDL documents. It defines the name of

the web service, declares multiple namespaces used throughout the remainder of the document,

and contains all the service elements described here.

types

The types element describes all the data types used between the client and server.

message

The message element describes a one-way message, whether it is a single message request or a

single message response.

port

The port element combines multiple message elements to form a complete one-way or round-trip

operation

binding

The binding element describes the concrete specifics of how the service will be implemented on

the wire. WSDL includes built-in extensions for defining SOAP services, and SOAP-specific

information therefore goes here.

service

The service element defines the address for invoking the specified service. Most commonly, this

includes a URL for invoking the SOAP service.

The structure of a WSDL document is:

<definitions>

<types>

 definition of types........

</types>

<message>

 definition of a message....

</message>

<portType>

 definition of a port.......

</portType>

<binding>

 definition of a binding....

</binding>

</definitions>

 UDDI Universal Description, Discovery and Integration

UDDI is a platform-independent framework for describing services, discovering businesses, and

integrating business services by using the Internet.

• UDDI is a directory for storing information about web services

• UDDI is a directory of web service interfaces described by WSDL

• UDDI communicates via SOAP

• UDDI is built into the Microsoft .NET platform

A Web-based distributed directory that enables businesses to list themselves on the Internet and

discover each other, similar to a traditional phone book's yellow and white pages.

JAXP

The Java API for XML Processing (JAXP) is for processing XML data using applications

written in the Java programming language. JAXP leverages the parser standards Simple API for

XML Parsing (SAX) and Document Object Model (DOM) so that you can choose to parse your

data as a stream of events or to build an object representation of it. JAXP also supports the

Extensible Stylesheet Language Transformations (XSLT) standard, giving you control over the

presentation of the data and enabling you to convert the data to other XML documents or to other

formats, such as HTML. JAXP also provides namespace support, allowing you to work with

DTDs that might otherwise have naming conflicts. Finally, as of version 1.4, JAXP implements

the Streaming API for XML (StAX) standard.

Designed to be flexible, JAXP allows you to use any XML-compliant parser from within your

application. It does this with what is called a pluggability layer, which lets you plug in an

implementation of the SAX or DOM API. The pluggability layer also allows you to plug in an

XSL processor, letting you control how your XML data is displayed.

The JAXP APIs

The main JAXP APIs are defined in the javax.xml.parsers package. That package contains

vendor-neutral factory classes, SAXParserFactory, DocumentBuilderFactory, and

TransformerFactory, which give you a SAXParser, a DocumentBuilder, and an XSLT

transformer, respectively. DocumentBuilder, in turn, creates a DOM-compliant Document

object.

The factory APIs let you plug in an XML implementation offered by another vendor without

changing your source code. The implementation you get depends on the setting of the

javax.xml.parsers.SAXParserFactory, javax.xml.parsers.DocumentBuilderFactory, and

javax.xml.transform.TransformerFactory system properties, using System.setProperties() in the

code, <sysproperty key="..." value="..."/> in an Ant build script, or -DpropertyName="..." on the

command line. The default values (unless overridden at runtime on the command line or in the

code) point to Sun's implementation.

Overview of the Packages

The SAX and DOM APIs are defined by the XML-DEV group and by the W3C, respectively.

The libraries that define those APIs are as follows:

• javax.xml.parsers: The JAXP APIs, which provide a common interface for different

vendors' SAX and DOM parsers.

• org.w3c.dom: Defines the Document class (a DOM) as well as classes for all the

components of a DOM.

• org.xml.sax: Defines the basic SAX APIs.

• javax.xml.transform: Defines the XSLT APIs that let you transform XML into other

forms.

• javax.xml.stream: Provides StAX-specific transformation APIs.

The Simple API for XML (SAX) is the event-driven, serial-access mechanism that does element-

by-element processing. The API for this level reads and writes XML to a data repository or the

web. For server-side and high-performance applications, you will want to fully understand this

level. But for many applications, a minimal understanding will suffice.

The DOM API is generally an easier API to use. It provides a familiar tree structure of objects.

You can use the DOM API to manipulate the hierarchy of application objects it encapsulates.

The DOM API is ideal for interactive applications because the entire object model is present in

memory, where it can be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML structure and holding

the object tree in memory, so it is much more CPU- and memory-intensive. For that reason, the

SAX API tends to be preferred for server-side applications and data filters that do not require an

in-memory representation of the data.

The XSLT APIs defined in javax.xml.transform let you write XML data to a file or convert it

into other forms. As shown in the XSLT section of this tutorial, you can even use it in

conjunction with the SAX APIs to convert legacy data to XML.

Finally, the StAX APIs defined in javax.xml.stream provide a streaming Java technology-based,

event-driven, pull-parsing API for reading and writing XML documents. StAX offers a simpler

programming model than SAX and more efficient memory management than DOM.

Simple API for XML APIs

The basic outline of the SAX parsing APIs is shown in Figure 1-1. To start the process, an

instance of the SAXParserFactory class is used to generate an instance of the parser.

Figure 1-1 SAX APIs

The parser wraps a SAXReader object. When the parser's parse() method is invoked, the reader

invokes one of several callback methods implemented in the application. Those methods are

defined by the interfaces ContentHandler, ErrorHandler, DTDHandler, and EntityResolver.

Here is a summary of the key SAX APIs:

SAXParserFactory

A SAXParserFactory object creates an instance of the parser determined by the system

property, javax.xml.parsers.SAXParserFactory.

SAXParser

The SAXParser interface defines several kinds of parse() methods. In general, you pass

an XML data source and a DefaultHandler object to the parser, which processes the XML

and invokes the appropriate methods in the handler object.

SAXReader

The SAXParser wraps a SAXReader. Typically, you do not care about that, but every

once in a while you need to get hold of it using SAXParser's getXMLReader() so that you

can configure it. It is the SAXReader that carries on the conversation with the SAX event

handlers you define.

DefaultHandler

Not shown in the diagram, a DefaultHandler implements the ContentHandler,

ErrorHandler, DTDHandler, and EntityResolver interfaces (with null methods), so you

can override only the ones you are interested in.

ContentHandler

Methods such as startDocument, endDocument, startElement, and endElement are

invoked when an XML tag is recognized. This interface also defines the methods

characters() and processingInstruction(), which are invoked when the parser encounters

the text in an XML element or an inline processing instruction, respectively.

ErrorHandler

Methods error(), fatalError(), and warning() are invoked in response to various parsing

errors. The default error handler throws an exception for fatal errors and ignores other

errors (including validation errors). This is one reason you need to know something about

the SAX parser, even if you are using the DOM. Sometimes, the application may be able

to recover from a validation error. Other times, it may need to generate an exception. To

ensure the correct handling, you will need to supply your own error handler to the parser.

DTDHandler

Defines methods you will generally never be called upon to use. Used when processing a

DTD to recognize and act on declarations for an unparsed entity.

EntityResolver

The resolveEntity method is invoked when the parser must identify data identified by a

URI. In most cases, a URI is simply a URL, which specifies the location of a document,

but in some cases the document may be identified by a URN - a public identifier, or

name, that is unique in the web space. The public identifier may be specified in addition

to the URL. The EntityResolver can then use the public identifier instead of the URL to

find the document-for example, to access a local copy of the document if one exists.

A typical application implements most of the ContentHandler methods, at a minimum. Because

the default implementations of the interfaces ignore all inputs except for fatal errors, a robust

implementation may also want to implement the ErrorHandler methods.

SAX Packages

The SAX parser is defined in the packages listed in Table 1-1.

Table 1-1 SAX Packages

Packages Description

org.xml.sax Defines the SAX interfaces. The name org.xml is the package prefix that

was settled on by the group that defined the SAX API.

org.xml.sax.ext Defines SAX extensions that are used for doing more sophisticated SAX

processing-for example, to process a document type definition (DTD) or to

see the detailed syntax for a file.

org.xml.sax.helpers Contains helper classes that make it easier to use SAX-for example, by

defining a default handler that has null methods for all the interfaces, so that

you only need to override the ones you actually want to implement.

javax.xml.parsers Defines the SAXParserFactory class, which returns the SAXParser. Also

defines exception classes for reporting errors.

Document Object Model APIs

Figure 1-2 shows the DOM APIs in action.

Figure 1-2 DOM APIs

You use the javax.xml.parsers.DocumentBuilderFactory class to get a DocumentBuilder

instance, and you use that instance to produce a Document object that conforms to the DOM

specification. The builder you get, in fact, is determined by the system property

javax.xml.parsers.DocumentBuilderFactory, which selects the factory implementation that is

used to produce the builder. (The platform's default value can be overridden from the command

line.)

You can also use the DocumentBuilder newDocument() method to create an empty Document

that implements the org.w3c.dom.Document interface. Alternatively, you can use one of the

builder's parse methods to create a Document from existing XML data. The result is a DOM tree

like that shown in Figure 1-2.

Note - Although they are called objects, the entries in the DOM tree are actually fairly low-level

data structures. For example, consider this structure: <color>blue</color>. There is an element

node for the color tag, and under that there is a text node that contains the data, blue! This issue

will be explored at length in the DOM chapter of this tutorial, but developers who are expecting

objects are usually surprised to find that invoking getNodeValue() on the element node returns

nothing. For a truly object-oriented tree, see the JDOM API at http://www.jdom.org.

DOM Packages

The Document Object Model implementation is defined in the packages listed in Table 1-2.

Table 1-2 DOM Packages

Package Description

org.w3c.dom Defines the DOM programming interfaces for XML (and, optionally, HTML)

documents, as specified by the W3C.

javax.xml.parsers Defines the DocumentBuilderFactory class and the DocumentBuilder class,

which returns an object that implements the W3C Document interface. The

factory that is used to create the builder is determined by the javax.xml.parsers

system property, which can be set from the command line or overridden when

invoking the new Instance method. This package also defines the

ParserConfigurationException class for reporting errors.

Extensible Stylesheet Language Transformations APIs

Figure 1-3 shows the XSLT APIs in action.

Figure 1-3 XSLT APIs

A TransformerFactory object is instantiated and used to create a Transformer. The source object

is the input to the transformation process. A source object can be created from a SAX reader,

from a DOM, or from an input stream.

Similarly, the result object is the result of the transformation process. That object can be a SAX

event handler, a DOM, or an output stream.

When the transformer is created, it can be created from a set of transformation instructions, in

which case the specified transformations are carried out. If it is created without any specific

instructions, then the transformer object simply copies the source to the result.

XSLT Packages

The XSLT APIs are defined in the packages shown in Table 1-3.

Table 1-3 XSLT Packages

Package Description

javax.xml.transform Defines the TransformerFactory and Transformer classes, which you

use to get an object capable of doing transformations. After creating

a transformer object, you invoke its transform() method, providing it

with an input (source) and output (result).

javax.xml.transform.dom Classes to create input (source) and output (result) objects from a

DOM.

javax.xml.transform.sax Classes to create input (source) objects from a SAX parser and

output (result) objects from a SAX event handler.

javax.xml.transform.stream Classes to create input (source) objects and output (result) objects

from an I/O stream.

Streaming API for XML APIs

StAX is the latest API in the JAXP family, and provides an alternative to SAX, DOM, TrAX,

and DOM for developers looking to do high-performance stream filtering, processing, and

modification, particularly with low memory and limited extensibility requirements.

To summarize, StAX provides a standard, bidirectional pull parser interface for streaming XML

processing, offering a simpler programming model than SAX and more efficient memory

management than DOM. StAX enables developers to parse and modify XML streams as events,

and to extend XML information models to allow application-specific additions. More detailed

comparisons of StAX with several alternative APIs are provided in Chapter 5, Streaming API for

XML, in Comparing StAX to Other JAXP APIs.

StAX Packages

The StAX APIs are defined in the packages shown in Table 1-4.

Table 1-4 StAX Packages

Package Description

javax.xml.stream Defines the XMLStreamReader interface, which is used to iterate over

the elements of an XML document. The XMLStreamWriter interface

specifies how the XML should be written.

javax.xml.transform.stax Provides StAX-specific transformation APIs.

Introduction to JAXB

Java Architecture for XML Binding (JAXB) provides a fast and convenient way to bind XML

schemas and Java representations, making it easy for Java developers to incorporate XML data

and processing functions in Java applications. As part of this process, JAXB provides methods

for unmarshalling (reading) XML instance documents into Java content trees, and then

marshalling (writing) Java content trees back into XML instance documents. JAXB also provides

a way to generate XML schema from Java objects.

JAXB 2.0 includes several important improvements to JAXB 1.0:

• Support for all W3C XML Schema features. (JAXB 1.0 did not specify bindings for some

of the W3C XML Schema features.)

• Support for binding Java-to-XML, with the addition of the javax.xml.bind.annotation

package to control this binding. (JAXB 1.0 specified the mapping of XML Schema-to-

Java, but not Java-to-XML Schema.)

• A significant reduction in the number of generated schema-derived classes.

• Additional validation capabilities through the JAXP 1.3 validation APIs.

• Smaller runtime libraries.

This lesson describes the JAXB architecture, functions, and core concepts, and provides

examples with step-by-step procedures for using JAXB.

JAXB Architecture

This section describes the components and the interactions in the JAXB processing model.

Architectural Overview

The following figure shows the components that make up a JAXB implementation.

Figure: JAXB Architectural Overview

A JAXB implementation consists of the following architectural components:

• Schema compiler: Binds a source schema to a set of schema-derived program elements.

The binding is described by an XML-based binding language.

• Schema generator: Maps a set of existing program elements to a derived schema. The

mapping is described by program annotations.

• Binding runtime framework: Provides unmarshalling (reading) and marshalling (writing)

operations for accessing, manipulating, and validating XML content using either schema-

derived or existing program elements.

The JAXB Binding Process

The following figure shows what occurs during the JAXB binding process.

Figure: Steps in the JAXB Binding Process

The general steps in the JAXB data binding process are:

1. Generate classes: An XML schema is used as input to the JAXB binding compiler to

generate JAXB classes based on that schema.

2. Compile classes: All of the generated classes, source files, and application code must be

compiled.

3. Unmarshal: XML documents written according to the constraints in the source schema

are unmarshalled by the JAXB binding framework. Note that JAXB also supports

unmarshalling XML data from sources other than files and documents, such as DOM

nodes, string buffers, SAX sources, and so forth.

4. Generate content tree: The unmarshalling process generates a content tree of data objects

instantiated from the generated JAXB classes; this content tree represents the structure

and content of the source XML documents.

5. Validate (optional): The unmarshalling process involves validation of the source XML

documents before generating the content tree. Note that if you modify the content tree in

Step 6, you can also use the JAXB Validate operation to validate the changes before

marshalling the content back to an XML document.

6. Process content: The client application can modify the XML data represented by the Java

content tree by using interfaces generated by the binding compiler.

7. Marshal: The processed content tree is marshalled out to one or more XML output

documents. The content may be validated before marshalling.

More About Unmarshalling

Unmarshalling provides a client application the ability to convert XML data into JAXB-derived

Java objects.

Representing XML Content

This section describes how JAXB represents XML content as Java objects.

Java Representation of XML Schema

JAXB supports the grouping of generated classes in Java packages. A package consists of the

following:

• A Java class name that is derived from the XML element name or specified by a binding

customization.

• An ObjectFactory class, which is a factory that is used to return instances of a bound Java

class.

Binding XML Schemas

This section describes the default XML-to-Java bindings used by JAXB. All of these bindings

can be overridden globally or case-by-case by using a custom binding declaration. See the JAXB

Specification for complete information about the default JAXB bindings.

Simple Type Definitions

A schema component using a simple type definition typically binds to a Java property. Because

there are different kinds of schema components, the following Java property attributes (common

to the schema components) include:

• Base type

• Collection type, if any

• Predicate

The rest of the Java property attributes are specified in the schema component using the simple

type definition.

Default Data Type Bindings

The following sections explain the default schema-to-Java, JAXBElement, and Java-to-schema

data type bindings.

Schema-to-Java Mapping

The Java language provides a richer set of data types than the XML schema. The following table

provides a mapping of XML data types to Java data types in JAXB.

Table: JAXB Mapping of XML Schema Built-in Data Types

XML Schema Type Java Data Type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:int int

xsd.long long

xsd:short short

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName

xsd:dateTime javax.xml.datatype.XMLGregorianCalendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time javax.xml.datatype.XMLGregorianCalendar

xsd:date javax.xml.datatype.XMLGregorianCalendar

xsd:g javax.xml.datatype.XMLGregorianCalendar

xsd:anySimpleType java.lang.Object

xsd:anySimpleType java.lang.String

xsd:duration javax.xml.datatype.Duration

xsd:NOTATION javax.xml.namespace.QName

JAXBElement Object

When XML element information cannot be inferred by the derived Java representation of the

XML content, a JAXBElement object is provided. This object has methods to get and set the

object name and object value.

Java-to-Schema Mapping

The following table shows the default mapping of Java classes to XML data types.

Table: JAXB Mapping of XML Data Types to Java Classes

Java Class XML Data Type

java.lang.String xs:string

java.math.BigInteger xs:integer

java.math.BigDecimal xs:decimal

java.util.Calendar xs:dateTime

java.util.Date xs:dateTime

javax.xml.namespace.QName xs:QName

java.net.URI xs:string

javax.xml.datatype.XMLGregorianCalendar xs:anySimpleType

javax.xml.datatype.Duration xs:duration

java.lang.Object xs:anyType

java.awt.Image xs:base64Binary

javax.activation.DataHandler xs:base64Binary

javax.xml.transform.Source xs:base64Binary

java.util.UUID xs:string

Customizing Generated Classes and Java Program Elements

The following sections describe how to customize generated JAXB classes and Java program

elements.

Schema-to-Java

Custom JAXB binding declarations enable you to customize your generated JAXB classes

beyond the XML-specific constraints in an XML schema to include Java-specific refinements,

such as class and package name mappings.

JAXB provides two ways to customize an XML schema:

• As inline annotations in a source XML schema

• As declarations in an external binding customization file that is passed to the JAXB

binding compiler

Code examples that show how to customize JAXB bindings are provided later in this document.

Java-to-Schema

The JAXB annotations defined in the javax.xml.bind.annotation package can be used to

customize Java program elements to XML schema mapping. The following table summarizes the

JAXB annotations that can be used with a Java package.

Table: JAXB Annotations Associated with a Java Package

Annotation Description and Default Setting

@XmlSchema Maps a package to an XML target namespace.

Default settings:

@XmlSchema (

 xmlns = {},

 namespace = "",

 elementFormDefault = XmlNsForm.UNSET,

 attributeFormDefault = XmlNsForm.UNSET

)

@XmlAccessorType Controls default serialization of fields and properties.

Default settings:

@XmlAccessorType (

 value = AccessType.PUBLIC_MEMBER

)

@XmlAccessorOrder Controls the default ordering of properties and fields mapped to XML

elements.

Default settings:

@XmlAccessorOrder (

 value = AccessorOrder.UNDEFINED

)

@XmlSchemaType Allows a customized mapping to an XML Schema built-in type.

Default settings:

@XmlSchemaType (

 namespace =

 "http://www.w3.org/2001/XMLSchema",

 type = DEFAULT.class

)

@XmlSchemaTypes A container annotation for defining multiple @XmlSchemaType

annotations.

Default settings:None

The following table summarizes JAXB annotations that can be used with a Java class.

Table: JAXB Annotations Associated with a Java Class

Annotation Description and Default Setting

@XmlType Maps a Java class to a schema type.

Default settings:

@XmlType (

 name = "##default",

 propOrder = {""},

 namespace = "##default",

 factoryClass = DEFAULT.class,

 factoryMethod = ""

)

@XmlRootElement Associates a global element with the schema type to which the class is

mapped.

Default settings:

@XmlRootElement (

 name = "##default",

 namespace = "##default"

)

The following table summarizes JAXB annotations that can be used with a Java enum type.

Table: JAXB Annotations Associated with a Java enum Type

Annotation Description and Default Setting

@XmlEnum Maps a Java type to an XML simple type.

Default settings:

@XmlEnum (value = String.class)

@XmlEnumValue Maps a Java type to an XML simple type.

Default settings:None

@XmlType Maps a Java class to a schema type.

Default settings:

@XmlType (

 name = "##default",

 propOrder = {""},

 namespace = "##default",

 factoryClass = DEFAULT.class,

 factoryMethod = ""

)

@XmlRootElement Associates a global element with the schema type to which the class is

mapped.

Default settings:

@XmlRootElement (

 name = "##default",

 namespace = "##default"

)

The following table summarizes JAXB annotations that can be used with Java properties and

fields.

Table: JAXB Annotations Associated with Java Properties and Fields

Annotation Description and Default Setting

@XmlElement Maps a JavaBeans property or field to an XML element derived from a

property or field name.

Default settings:

@XmlElement (

 name = "##default",

 nillable = false,

 namespace = "##default",

 type = DEFAULT.class,

 defaultValue = "\u0000"

)

@XmlElements A container annotation for defining multiple @XmlElement

annotations.

Default settings:None

@XmlElementRef Maps a JavaBeans property or field to an XML element derived from a

property or field’s type.

Default settings:

@XmlElementRef (

 name = "##default",

 namespace = "##default",

 type = DEFAULT.class

)

@XmlElementRefs A container annotation for defining multiple @XmlElementRef

annotations.

Default settings:None

@XmlElementWrapper Generates a wrapper element around an XML representation. It is

typically used as a wrapper XML element around collections.

Default settings:

@XmlElementWrapper (

 name = "##default",

 namespace = "##default",

 nillable = false

)

@XmlAnyElement Maps a JavaBeans property to an XML infoset representation or a

JAXB element.

Default settings:

@XmlAnyElement (

 lax = false,

 value = W3CDomHandler.class

)

@XmlAttribute Maps a JavaBeans property to an XML attribute.

Default settings:

@XmlAttribute (

 name = ##default,

 required = false,

 namespace = "##default"

)

@XmlAnyAttribute Maps a JavaBeans property to a map of wildcard attributes.

Default settings:None

@XmlTransient Prevents the mapping of a JavaBeans property to an XML

representation.

Default settings:None

@XmlValue Defines mapping of a class to an XML Schema complex type with a

simpleContent or an XML Schema simple type.

Default settings:None

@XmlID Maps a JavaBeans property to an XML ID.

Default settings:None

@XmlIDREF Maps a JavaBeans property to an XML IDREF.

Default settings:None

@XmlList Maps a property to a list simple type.

Default settings:None

@XmlMixed Marks a JavaBeans multi-valued property to support mixed content.

Default settings:None

@XmlMimeType Associates the MIME type that controls the XML representation of the

property.

Default settings:None

@XmlAttachmentRef Marks a field/property that its XML form is a URI reference to mime

content.

Default settings:None

@XmlInlineBinaryData Disables consideration of XOP encoding for data types that are bound

to base64-encoded binary data in XML.

Default settings:None

The following table summarizes the JAXB annotation that can be used with object factories.

Table: JAXB Annotations Associated with Object Factories

Annotation Description and Default Setting

@XmlElementDecl Maps a factory method to an XML element.

Default settings:

@XmlElementDecl (

 scope = GLOBAL.class,

 namespace = "##default",

 substitutionHeadNamespace = "##default",

 substitutionHeadName = ""

)

The following table summarizes JAXB annotations that can be used with adapters.

Table: JAXB Annotations Associated with Adapters

Annotation Description and Default Setting

@XmlJavaTypeAdapter Use the adapter that implements the @XmlAdapter annotation for

custom marshalling.

Default settings:

@XmlJavaTypeAdapter (type = DEFAULT.class)

@XmlJavaTypeAdapters A container annotation for defining multiple @XmlJavaTypeAdapter

annotations at the package level.

Default settings: None

