
1 
 

 
 

 

 

SCHOOL OF COMPUTING 

DEPARTMENT OF  COMPUTER SCIENCE AND ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – I – Internet of Things – SCSA5301 



2 
 

 

INTRODUCTION TO IOT 

 

Introduction to IoT - Current technological trends and future prospects - Evolution 

of IoT- Business Scope - Relation with embedded system - Basic Architecture of 

an IoT - From M2M to IoT - M2M towards IoT - IoT Value Chains - An emerging 

industrial structure for IoT. 

 

1.INTRODUCTION TO IOT 

It is a network of physical objects or things sending, receiving, or 

communicating using the internet or other communication technologies. The 

Internet of Things (IoT), as this intelligent interconnectivity between the real and 

the digital world is called, will rapidly transform every aspect of how we work and 

do business. By connecting apps with their integrated systems, businesses are able 

to transform their industry significantly. Today almost 90% of all data generated 

by tablets, smartphones or connected appliances is never acted upon. Imagine you 

could change that. It seems safe to say that we have never encountered a single 

technological platform that combines this much complexity, global reach and 

novelty. Since IoT allows devices to be controlled remotely across the internet, 

thus it created opportunities to directly connect & integrate the physical world to 

the computer-based systems using sensors and internet. The interconnection of 

these multiple embedded devices will be resulting in automation in nearly all fields 

and enabling advanced applications. This is resulting in improved accuracy, 

efficiency and economic benefit with reduced human intervention. It encompasses 

technologies such as smart grids, smart homes, intelligent transportation and smart 

cities. The major benefits of IoT are: 

 

 Improved Customer Engagement – IoT improves customer experience by 

automating the action. For e.g. any issue in the car will be automatically 

detected by the sensors. The driver, as well as the manufacturer, will be 

notified about it. Until the time driver reaches the service station, the 



3 
 

manufacturer will make sure that the faulty part is available at the service 

station. 

 Technical Optimization – IoT has helped a lot in improving technologies 

and making them better. The manufacturer can collect data from different 

car sensors and analyze them to improve their design and make them much 

more efficient. 

Reduced Waste – Our current insights are superficial, but IoT provides real-

time information leading to effective decision-making & management of 

resources. For example, if a manufacturer finds fault in multiple engines, he 

can track the manufacturing plant of those engines and can rectify the issue 

with manufacturing belt. 

 

 

1. CURRENT TECHNOLOGICAL TRENDS AND FUTURE PROSPECTS: 

Many firms see big opportunity in IoT uses and enterprises start to believe 

that IoT holds the promise to enhance customer relationships and drive business 

growth by improving quality, productivity, and reliability on one side, and on the 

other side reducing costs, risk, and theft. 

IoT and Security Attacks 

 

Forrester thinks that the recent DDoS attack that hit a whopping 1600 

websites in the United States was just the tip of the iceberg when it comes to the 

threat that the connected device poses to the world. That attack confirmed the fear 

of vulnerability of IoT devices with a massive distributed denial of service attack 

that crippled the servers of services like Twitter, NetFlix, NYTimes, and PayPal 

across the U.S. It‘s the result of an immense assault that involved millions of 

Internet addresses and malicious software. All indications suggest that countless 

Internet of Things (IoT) devices that power everyday technology like closed-circuit 

cameras and smart- home devices were hijacked by the malware, and used against 

the servers. 

 

 



4 
 

IoT and Mobile Elements 

IoT is creating new opportunities and providing a competitive advantage for 

businesses in current and new markets. It touches everything—not just the data, but 

how, when, where and why you collect it. The technologies that have created the 

Internet of Things aren‘t changing the internet only, but rather change the things 

connected to the internet. More mobile moments (the moments in which a person 

pulls out a mobile device to get what he or she wants, immediately and in context) 

will appear on the connected device, right from home appliances to cars to 

smartwatches and virtual assistants. All these connected devices will have the 

potential of offering a rich stream of data that will then be used by product and 

service owners to interact with their consumers. 

 

IoT and artificial Intelligence 

In an IoT situation, AI can help companies take the billions of data points 

they have and boil them down to what‘s really meaningful. The general premise is 

the same as in the retail applications – review and analyzes the data we‘ve 

collected to find patterns or similarities that can be learned from so that better 

decisions can be made. 

IoT and Connectivity 

Connecting the different parts of IoT to the sensors can be done by different 

technologies including Wi-Fi, Bluetooth, Low Power Wi-Fi, Wi-Max, regular 

Ethernet, Long Term Evolution (LTE) and the recent promising technology of Li-

Fi (using light as a medium of communication between the different parts of a 

typical network including sensors). 

IoT and New Business Models 
The bottom line is a big motivation for starting, investing in, and operating any 

business, without a sound and solid business models for IoT we will have another 

bubble, this model must satisfy all the requirements for all kinds of e-commerce; 

vertical markets, horizontal markets, and consumer markets. One key element is to 

bundle service with the product, for example, devices like Amazon‘s Alexa will be 

considered just another wireless speaker without the services provided like voice 

recognition, music streaming, and booking Uber service to mention few. The IoT 

can find its applications in almost every aspect of our daily life. Below are some of 

the examples. 



5 
 

1) Prediction of natural disasters: The combination of sensors and their 

autonomous coordination and simulation will help to predict the occurrence of 

land-slides or other natural disasters and to take appropriate actions in advance. 

2) Industry applications: The IoT can find applications in industry e.g., 

managing a fleet of cars for an organization. The IoT helps to monitor their 

environmental performance and process the data to determine and pick the one 

that need maintenance. 

3) Water Scarcity monitoring: The IoT can help to detect the water scarcity at 

different places. The networks of sensors, tied together with the relevant 

simulation activities might not only monitor long term water interventions such 

as catchment area management, but may even be used to alert users of a stream, 

for instance, if an upstream event, such as the accidental release of sewage into 

the stream, might have dangerous implications. 

4) Design of smart homes: The IoT can help in the design of smart homes e.g., 

energy consumption management, interaction with appliances, detecting 

emergencies, home safety and finding things easily, home security etc. 

5) Medical applications: The IoT can also find applications in medical sector for 

saving lives or improving the quality of life e.g., monitoring health parameters, 

monitoring activities, support for independent living, monitoring medicines 

intake etc. 

 

6) Agriculture application: A network of different sensors can sense data, 

perform data processing and inform the farmer through communication 

infrastructure e.g., mobile phone text message about the portion of land that 

need particular attention. This may include smart packaging of seeds, fertilizer 

and pest control mechanisms that respond to specific local conditions and 

indicate actions. Intelligent farming system will help agronomists to have better 

understanding of the plant growth models and to have efficient farming practices 

by having the knowledge of land conditions and climate variability. This will 



6 
 

significantly increase the agricultural productivity by avoiding the inappropriate 

farming conditions. 

7) Intelligent transport system design: The Intelligent transportation system will 

provide efficient transportation control and management using advanced 

technology of sensors, information and network. The intelligent transportation 

can have many interesting features such as non-stop electronic highway toll, 

mobile emergency command and scheduling, transportation law enforcement, 

vehicle rules violation monitoring, reducing environmental pollution, anti-theft 

system, avoiding traffic jams, reporting traffic incidents, smart beaconing, 

minimizing arrival delays etc. 

8) Design of smart cities: The IoT can help to design smart cities e.g., 

monitoring air quality, discovering emergency routes, efficient lighting up of the 

city, watering gardens etc. 

9) Smart metering and monitoring: The IoT design for smart metering and 

monitoring will help to get accurate automated meter reading and issuance of 

invoice to the customers. The IoT can be used to design such scheme for wind 

turbine maintenance and remote monitoring, gas, water as well as environmental 

metering and monitoring. 

10) Smart Security: The IoT can also find applications in the field of security and 

surveillance e.g., surveillance of spaces, tracking of people and assets, 

infrastructure and equipment maintenance, alarming etc. 

2. EVOLUTION OF IOT AND BUSINESS SCOPE: 

 

The term ―Internet of Things‖ (IoT) was first used in 1999 by British 

technology pioneer Kevin Ashton to describe a system in which objects in the 

physical world could be connected to the Internet by sensors.12 Ashton coined the 

term to illustrate the power of connecting Radio- Frequency Identification (RFID) 

tags13 used in corporate supply chains to the Internet in order to count and track 

goods without the need for human intervention. 



7 
 

 

 
 

 

 

 

 

Fig 1. IOT Evolution Model 

 

By the late 1970s, for example, systems for remotely monitoring meters on the 

electrical grid via telephone lines were already in commercial use.14 In the 1990s, 

advances in wireless technology allowed   ―machine–to–machine‖   (M2M)   

enterprise   and   industrial   solutions   for   equipment monitoring and operation to 

become widespread. Many of these early M2M solutions, however, were based on 

closed purpose–built networks and proprietary or industry. 

From a broad perspective, the confluence of several technology and market 

trends20 is making it possible to interconnect more and smaller devices cheaply 

and easily: 

• Ubiquitous Connectivity—Low–cost, high–speed, pervasive network 

connectivity, especially through licensed and unlicensed wireless services and 

technology, makes almost everything 

―connectable‘‘. 

 

• Widespread adoption of IP–based networking— IP has become the dominant 

global standard for networking, providing a well–defined and widely implemented 

Internet of Things - Evolution 7 



8 
 

platform of software and tools that can be incorporated into a broad range of 

devices easily and inexpensively. 

• Miniaturization— Manufacturing advances allow cutting-edge computing and 

communications technology to be incorporated into very small objects. Coupled 

with greater computing 

 

economics, this has fueled the advancement of small and inexpensive sensor 

devices, which drive many IoT applications. 

• Advances in Data Analytics— New algorithms and rapid increases in computing 

power, data storage, and cloud services enable the aggregation, correlation, and 

analysis of vast quantities of data; these large and dynamic datasets provide new 

opportunities for extracting information and knowledge. 

• Rise of Cloud Computing– Cloud computing, which leverages remote, 

networked computing resources to process, manage, and store data, allows small 

and distributed devices to interact with powerful back-end analytic and control 

capabilities. 

From this perspective, the IoT represents the convergence of a variety of 

computing and connectivity trends that have been evolving for many decades. At 

present, a wide range of industry sectors – including automotive, healthcare, 

manufacturing, home and consumer electronics, and well beyond -- are considering 

the potential for incorporating IoT technology into their products, services, and 

operations. 

BUSINESS SCOPE 

 

Increase Business Opportunities 

 

IoT opens the door for new business opportunities and helps companies benefit 

from new revenue streams developed by advanced business models and services. 



9 
 

IoT-driven innovations build strong business cases, reduce time to market and 

increase return on investments. IoT has the potential to transform the way 

consumers and businesses approach the world by leveraging the scope of the IoT 

beyond connectivity. 

Enhanced Asset Utilization 

 

IoT will improve tracking of assets (equipment, machinery, tools, etc.) using 

sensors and connectivity, which helps organizations benefit from real-time 

insights. Organizations could more easily locate issues in the assets and run 

preventive maintenance to improve asset utilization. 

 

Efficient Processes 

 

Being connected with a maximum number of devices to the internet, IoT allow 

businesses to be smarter with real-time operational insights while reducing 

operating costs. The data collected from logistics network, factory floor, and 

supply chain will help reduce inventory, time to market and downtime due to 

maintenance. 

Improved Safety and Security 

 

IoT services integrated with sensors and video cameras help monitor workplace to 

ensure equipment safety and protect against physical threats. The IoT connectivity 

coordinates multiple teams to resolve issues promptly. 



10 
 

 

 

Fig 2. Business Scope 

 

Increase Productivity 

 

Productivity plays a key role in the profitability of any business. IoT offers just-in-

time training for employees, improve labor efficiency, and reduce mismatch of 

skills while increasing organizational productivity. 

 

Cost Saving 

 

The improved asset utilization, productivity, and process efficiencies can save your 

expenditures. For example, predictive analytics and real-time diagnostics drive 

down the maintenance costs.IoT has reached the pinnacle of inflated expectations 

of emerging technologies. Even though IoT offers great potential value, 

organizations must overcome some significant challenges like data and information 

management issues, lack of interoperable technologies, security and privacy 

concerns, and the skills to manage IoT‘s growing complexity. However, a 

professional IoT service provider can overcome these challenges and increase your 

return on investment. 

 



11 
 

Logistics 

With IoT sensors, supply chain management and order fulfillment processes 

improve markedly to meet customer demand. For example, sensors on delivery 

containers and trucks in transit give managers real-time status updates, allowing 

them to track their items and ensure they reach the right location at the right time. 

Streamlined Industry 

IoT also presents automation opportunities for businesses that need to manage and 

replenish their stock. When data recorded from IoT devices are tied to your 

enterprise resource planning (ERP) system, you can accurately monitor your 

inventory, analyze purchase and consumption rates of a particular product, and 

automatically reorder items when IoT sensors detect that supply is running low. 

This minimizes out-of-stock incidents and prevents excess stock build-up. 

Fast Payment 

Given how most payments are done electronically via point-of-sale systems or the 

internet, IoT has the potential to revolutionize the way businesses process 

transactions. We‘re already seeing a few examples of this today as ApplePay not 

only allows users to purchase goods and services using smartphone applications, 

but through wearable technology as well. 

Soon enough, IoT devices might even allow restaurants and retailers to register or 

charge their customers the moment they walk through the door. 



12 
 

Market Insight 

Businesses that can somehow make sense of IoT-collected data will gain a 

competitive edge. Marketers, for example, can gather valuable insight into how 

their products are used and which demographic is utilizing them the most. This 

information can then inform future marketing efforts and give businesses more 

direction on how to improve their products and services for their customers. 

Although businesses will certainly face many challenges in implementing the 

Internet of Things, those who manage to overcome them will reap all the benefits 

of this burgeoning technology. 

3. RELATIONSHIP WITH EMBEDDED SYSTEMS 

 

Embedded systems are part and parcel of every modern electronic 

component. These are low power consumption units that are used to run specific 

tasks for example remote controls, washing machines, microwave ovens, RFID 

tags, sensors, actuators and thermostats used in various applications, networking 

hardware such as switches, routers, modems, mobile phones, PDAs, etc. Usually 

embedded devices are a part of a larger device where they perform specific task of 

the device. For example, embedded systems are used as networked thermostats in 

Heating, Ventilation and Air Conditioning (HVAC) systems, in Home Automation 

embedded systems are used as wired or wireless networking to automate and 

control lights, security, audio/visual systems, sense climate change, monitoring, 

etc. Embedded microcontrollers can be found in practically all machines, ranging 

from DVD players and power tools to automobiles and computed tomography 

scanners. They differ from PCs in their size and processing power. Embedded 

systems typically have a microprocessor, a memory, and interfaces with the 

external world, but they are considerably smaller than their PC counterparts. 

Frequently, the bulk of the electronic circuitry can be found in a single chip. 



13 
 

 

 
 

 

Fig 3. Embedded Processing 

 

A sensor detects (senses) changes in the ambient conditions or in the state of 

another device or a system, and forwards or processes this information in a certain 

manner. 

 

 Analog Sensors produce a continuous output signal or voltage which is 

generally proportional to the quantity being measured. 

 Physical quantities such as Temperature, Speed, Pressure, Displacement, 

Strain etc. are all analog quantities as they tend to be continuous in nature. 

 Digital Sensors produce discrete digital output signals or voltages that are a 

digital representation of the quantity being measured. 

 Digital sensors produce a binary output signal in the form of a logic ―1‖ or 

a logic ―0‖, (―ON‖ or ―OFF‖). 

An actuator is a component of a machine or system that moves or controls the 

mechanism or the system. An actuator is the mechanism by which a control 

system acts upon an environment 

An actuator requires a control signal and a source of energy. 
 

 

 



14 
 

Power Conservation 

 

Until recently, a common strategy to save power in an embedded system was to 

execute as quickly as possible, and then go into sleep mode immediately. But there 

are now processor core architectures that consume almost no power, although with 

reduced performance. This is an attractive option for a WSN edge node design. 

The programming languages used in deeply embedded systems include C, 

C++ and sometimes Java. It is important to note that Java always runs on top of an 

operating system. So, your choice is not between C/C++ or Java; it is whether you 

will use C/C++ and Java. Java is attractive for IoT devices because the number of 

Java developers worldwide brings tremendous growth potential to the industry. 

Oracle‘s Java ME Embedded is designed for small devices 

When cost is not an issue, we can select a single powerful processor to run all the 

tasks required of your device. However, a common engineering compromise is to 

use two processors in the sensor/actuator device. One low-cost processor (8 or 16 

bit) is used for the physical-world interface, and a second 32-bit processor runs the 

network interface. This second processor is often placed in a separate module, one 

that has already been certified for the protocol and FCC compliance. 

 

Fig 4. IoT Devices with Two Processors 



15 
 

Gateway Design 

 

A gateway connects two dissimilar networks so that data can flow between them. 

Usually this is a connection between a proprietary network and the Internet. 

 

 

Fig 5 Embedded Devices with Gateway 

Bluetooth is a wireless technology standard for exchanging data over short 

distances from fixed and mobile devices, and building personal area networks. 

Zigbee wireless technology is specially designed for sensors and control devices 

that employ low cost connectivity and widely used for several applications. 

Z-Wave is a wireless communications protocol used primarily for home 

automation. It is a mesh network using low-energy radio waves to communicate 

from appliance to appliance, allowing for wireless control of residential 

appliances and other devices, such as lighting control, security systems, 

thermostats, windows. 

Wi-Fi is the name of a popular wireless networking technology that uses radio 

waves to provide wireless high-speed Internet and network connections. A 

common misconception is that the  term Wi-Fi is short for "wireless fidelity. 

ISA100.11a is a wireless networking technology standard developed by the 

International Society of Automation (ISA). The official description is "Wireless 



16 
 

Systems for Industrial Automation: Process Control and Related Applications. 

The EnOcean technology is an energy harvesting wireless technology used 

primarily in building automation systems, and is also applied to other 

applications in industry, transportation, logistics and smart homes. Modules based 

on EnOcean technology combine micro energy converters with ultra low power 

electronics, and enable wireless communications between batteryless wireless 

sensors, switches, controllers and gateways. 

In home automation, different utilities companies may install a wide variety of IoT 

devices in your house, each with their own gateway. These can include electricity 

or gas, water, phone, Internet, cable/satellite, alarm system, medical devices, and 

so on. Some of these gateways may require additional functions, such as local 

storage, or a user interface. 

4. INTRODUCTION TO AUDUINO AND RASPBERRYPI 

 

Arduino is an open-source platform used for building electronics projects. 

Arduino consists of both a physical programmable circuit board (often referred to 

as a microcontroller) and a piece of software, or IDE (Integrated Development 

Environment) that runs on your computer, used to write and upload computer code 

to the physical board. Accepts analog and digital signals as input and gives desired 

output. 

 BOARD DETAILS: 

 Power Supply: 

 USB or power barrel jack 

 Voltage Regulator 

 LED Power Indicator 

 Tx-Rx LED Indicator 

 Output power, 

 Ground 

 Analog Input Pins 

 Digital I/O Pin 

ARDUIN0 UN0 

Feature Value 

OperatingVoltage 5V 

ClockSpeed 16MHz 

Digital I/O 14 

AnalogInput 6 

PWM 6 

UART 1 

Interface USB via ATMega16U2 

 

http://arduino.cc/
http://en.wikipedia.org/wiki/Microcontroller
http://arduino.cc/en/Main/Software


17 
 

 

SET UP: 

 Power the board by connecting it to a PC via USB cable 

 Launch the Arduino IDE 

 Set the board type and the port for the board 

 TOOLS -> BOARD -> select your board 

 TOOLS -> PORT -> select your port 

TYPES: 

 

1. Arduino Uno (R3) 

 

2. LilyPad Arduino 

 

3. RedBoard 

 

4. Arduino Mega (R3) 

 

5. Arduino Leonardo 

Fig 6. Arduino Board 



18 
 

Power (USB / Barrel Jack): 

 

 

Every Arduino board needs a way to be connected to a power source. The 

Arduino UNO can be powered from a USB cable coming from your computer or a 

wall power supply (like this) that is terminated in a barrel jack. In the picture above 

the USB connection is labeled (1) and the barrel jack is labeled (2).The USB 

connection is also how you will load code onto your Arduino board. 

NOTE: Do NOT use a power supply greater than 20 Volts as you will overpower 

(and thereby destroy) Arduino. The recommended voltage for most Arduino 

models is between 6 and 12 Volts. 

 

Pins (5V, 3.3V, GND, Analog, Digital, PWM, AREF): 

 

The pins on your Arduino are the places where you connect wires to construct a 

circuit (probably in conjunction with a breadboard and some wire. They usually 

have black plastic ‗headers‘ that allow you to just plug a wire right into the board. 

The Arduino has several different kinds of pins, each of which is labeled on the 

board and used for different functions. 

 

GND (3): Short for ‗Ground‘. There are several GND pins on the Arduino, any of 

which can be used to ground your circuit. 

 

5V (4) & 3.3V (5): As you might guess, the 5V pin supplies 5 volts of power, and 

the 3.3V pin supplies 3.3 volts of power. Most of the simple components used with 

the Arduino run happily off of 5 or 3.3 volts. 

 

Analog (6): The area of pins under the ‗Analog In‘ label (A0 through A5 on the 

UNO) are Analog In pins. These pins can read the signal from an analog sensor 

(like a temperature sensor) and convert it into a digital value that we can read. 

 

Digital (7): Across from the analog pins are the digital pins (0 through 13 on the 

https://www.sparkfun.com/products/8269
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard/
https://learn.sparkfun.com/tutorials/working-with-wire
https://www.sparkfun.com/products/10988


19 
 

UNO). These pins can be used for both digital input (like telling if a button is 

pushed) and digital output (like powering an LED). 

 

PWM (8): You may have noticed the tilde (~) next to some of the digital pins (3, 

5, 6, 9, 10, and 11 on the UNO). These pins act as normal digital pins, but can also 

be used for something called Pulse-Width Modulation (PWM). We have a tutorial 

on PWM, but for now, think of these pins as being able to simulate analog output 

(like fading an LED in and out). 

 

AREF (9): Stands for Analog Reference. Most of the time you can leave this pin 

alone. It is sometimes used to set an external reference voltage (between 0 and 5 

Volts) as the upper limit for the analog input pins. 

 

Reset Button 

 

Just like the original Nintendo, the Arduino has a reset button (10). Pushing it will 

temporarily connect the reset pin to ground and restart any code that is loaded on 

the Arduino. This can be very useful if your code doesn‘t repeat, but you want to 

test it multiple times. Unlike the original Nintendo however, blowing on the 

Arduino doesn‘t usually fix any problems. 

 

Power LED Indicator 

 

Just beneath and to the right of the word ―UNO‖ on your circuit board, there‘s a tiny 

LED next to the word ‗ON‘ (11). This LED should light up whenever you plug 

your Arduino into a power source. If this light doesn‘t turn on, there‘s a good 

chance something is wrong. Time to re-check your circuit! 

 

TX RX LEDs 

 

TX is short for transmit, RX is short for receive. These markings appear quite a bit 

in electronics to indicate the pins responsible for serial communication. In our case, 

https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/serial-communication


20 
 

there are two places on the Arduino UNO where TX and RX appear – once by 

digital pins 0 and 1, and a second time next  to the TX and RX indicator LEDs 

(12). These LEDs will give us some nice visual indications whenever our Arduino 

is receiving or transmitting data (like when we‘re loading a new program onto the 

board). 

 

Main IC 

 

The black thing with all the metal legs is an IC, or Integrated Circuit (13). Think of 

it as the brains of our Arduino. The main IC on the Arduino is slightly different 

from board type to board 

type, but is usually from the ATmega line of IC‘s from the ATMEL company. This 

can be important, as you may need to know the IC type (along with your board 

type) before loading up a new program from the Arduino software. This 

information can usually be found in writing on the top side of the IC. If you want 

to know more about the difference between various IC‘s, reading the datasheets is 

often a good idea.p 

 

Voltage Regulator 

 

The voltage regulator (14) is not actually something you can (or should) interact 

with on the Arduino. But it is potentially useful to know that it is there and what 

it‘s for. The voltage regulator does exactly what it says – it controls the amount of 

voltage that is let into the Arduino board. Think of it as a kind of gatekeeper; it will 

turn away an extra voltage that might harm the circuit. Of course, it has its limits, 

so don‘t hook up your Arduino to anything greater than 20 volts. 

ARDINO IDE OVERVIEW: 

 

Program coded in Arduino IDE is called a SKETCH 

 

1. To create a new sketchFile -> New 

To open an existing sketch File -> open -> 



21 
 

There are some basic ready-to-use sketches available in the 

EXAMPLES section File -> Examples -> select any program 

2. Verify: Checks the code for compilation errors 

3. Upload: Uploads the final code to the controller board 

4. New: Creates a new blank sketch with basic structure 

5. Open: Opens an existing sketch 

6. Save: Saves the current sketch 

 

 

Fig 7.Compilation and Execution 

 

Serial Monitor: Opens the serial console 

 All the data printed to the console are displayed here 

SKETCH STRUCTURE 

 

 

Fig 8.Structure of SKETCH 

A sketch can be divided into two parts: 

 Setup () 

 Loop() 

The function setup() is the point where the code starts, just like the main() function 



22 
 

in C and C++ I/O Variables, pin modes are initialized in the Setup() function  

Loop() function, as the name suggests, iterates the specified task in the program 

DATA TYPES: 

Void ,Long, Int ,Char ,Boolean, Unsigned char ,Byte, Unsigned int, Word 

,Unsigned long ,Float, Double, Array ,String-char

 array, String-object, Short 

 

Arduino Function libraries 

Input/Output Functions: 

The arduino pins can be configured to act as input or output pins using the 

pinMode() function Void setup () 

{ 

pinMode (pin , mode); 

} 

 

Pin- pin number on the Arduino board Mode- INPUT/OUTPUT 

digitalWrite() : Writes a HIGH or LOW value to a digital pin 

analogRead() : Reads from the analog input pin i.e., voltage applied across the pin 

Character functions such as isdigit(), isalpha(), isalnum(), isxdigit(), islower(), 

isupper(), isspace() return 1(true) or 0(false) 

Delay() function is one of the most common time manipulation function used to 

provide a delay of specified time. It accepts integer value (time in miliseconds) 

 

EXAMPLE BLINKING LED: 

Requirement: 

 Arduino controller board, USB connector, Bread board, LED, 1.4Kohm resistor, 

connecting wires, Arduino IDE 

 Connect the LED to the Arduino using the Bread board and the connecting wires 

 Connect the Arduino board to the PC using the USB connector 

 Select the board type and port  Write the sketch in the editor, verify and upload 

Connect the positive terminal of the LED to digital pin 12 and the negative 



23 
 

terminal to the ground pin (GND) of Arduino Board 

 

void setup() 

{ 

pinMode(12, OUTPUT); // set the pin mode 

} void loop() 

{ 

digitalWrite(12, HIGH); // Turn on the LED 

delay(1000); digitalWrite(12, LOW); //Turn of 

the LED delay(1000); 

} 

Set the pin mode as output which is connected to the led, pin 12 

in this case. Use digitalWrite() function to set the output as 

HIGH and LOW 

Delay() function is used to specify the delay between HIGH-LOW transition of the 
output 

Connect he board to the PC 

 Set the port and board type 

 Verify the code and upload, 

notice the TX – RX led in the board starts flashing as the code is uploaded. 

 

 

RASPBERRY PI: 

 

Raspberry Pi is a credit card sized micro processor available in different 

models with different processing speed starting from 700 MHz. Whether you have 

a model B or model B+, or the very old version, the installation process remains 

the same. People who have checked out the official Raspberry Pi website, But 

using the Pi is very easy and from being a beginner, one will turn pro in no time. 

So, it's better to go with the more powerful and more efficient OS, the Raspbian. 

The main reason why Raspbian is extremely popular is that it has thousands of pre 

built libraries to perform many tasks and optimize the OS. This forms a huge 



24 
 

advantage while building applications. 

 

 

 

 

Fig 9. Raspberry Pi  Element 

Specifications and performance 

 

As for  the  specifications,  the  Raspberry  Pi  is  a  credit  card-sized  computer  

powered  by  the Broadcom BCM2835 system-on-a-chip (SoC). This SoC includes 

a 32-bit ARM1176JZFS processor, clocked at 700MHz, and a Videocore IV GPU. 

 

It also has 256MB of RAM in a POP package above the SoC. The Raspberry Pi is 

powered by a 5V micro USB AC charger or at least 4 AA batteries (with a bit of 

hacking). 

 

While the ARM CPU delivers real-world performance similar to that of a 300MHz 

Pentium 2, the Broadcom GPU is a very capable graphics core capable of hardware 

decoding several high definition video formats. The Raspberry Pi model available 

for purchase at the time of writing — the Model B — features HDMI and 

composite video outputs, two USB 2.0 ports, a 10/100 Ethernet port, SD card slot, 



25 
 

GPIO (General Purpose I/O Expansion Board) connector, and analog audio output 

(3.5mm headphone jack). The less expensive Model A strips out the Ethernet port 

and one of the USB ports but otherwise has the same hardware. 

 
Raspberry pi 3 model B Raspberry pi 2 model B Raspberry Pi zero 

RAM 1GB SDRAM 1GB SDRAM 512 MB SDRAM 

CPU Quad cortex 
A53@1.2GHz 

Quad cortex 
A53@900MHz 

ARM 11@ 1GHz 

GPU 400 MHz video core IV 250 MHz video core IV 250 MHz video 
core 

IV 
Ethernet 10/100 10/100 None 

Wireless 802.11/Bluetooth 4.0 None None 

Video output HDMI/Composite HDMI/Composite HDMI/Composite 

GPIO 40 40 40 

 

Fig 10. Configuration 

 

Raspberry Pi Basics: installing Raspbian and getting it up and running 

 

1 Downloading Raspbian and Image writer. 

 

You will be needing an image writer to write the downloaded OS into the SD card 

(micro SD card in case of Raspberry Pi B+ model). So download the "win32 disk 

imager" from the website. 

2 Writing the image 

 

Insert the SD card into the laptop/pc and run the image writer. Once open, browse 

and select the downloaded Raspbian image file. Select the correct device, that is 

the drive representing the SD card. If the drive (or device) selected is different 

from the SD card then the other selected drive will become corrupted. SO be 

careful. 

After that, click on the "Write" button in the bottom. As an example, see the image 

below, where the SD card (or micro SD) drive is represented by the letter "G:\" 

mailto:A53@1.2GHz
mailto:A53@1.2GHz
mailto:A53@1.2GHz


26 
 

 

 

Fig 1. OS Installation 

Once the write is complete, eject the SD card and insert it into the Raspberry Pi 

and turn it on. It should start booting up. 

3 Setting up the Pi 

 

Please remember that after booting the Pi, there might be situations when the user 

credentials like the "username" and password will be asked. Raspberry Pi comes 

with a default user name and password and so always use it whenever it is being 

asked. The credentials are: 

login: pi 

password: raspberry 

 

When the Pi has been booted for the first time, a configuration screen called the 

"Setup Options" should appear and it will look like the image below. 

 



27 
 

 

Fig 12.Raspberry Configuration 

 

 

If you have missed the "Setup Options" screen, its not a problem, you can always 

get it by typing the following command in the terminal. 

sudoraspi-config 

 

Once you execute this command the "Setup Options" screen will come up as 

shown in the image above. 

Now that the Setup Options window is up, we will have to set a few things. After 

completing each of the steps below, if it asks to reboot the Pi, please do so. After 

the reboot, if you don't get the "Setup Options" screen, then follow the command 

given above to get the screen/window. 

 The first thing to do: 
 

select the first option in the list of the setup options window, that is select the 

"Expand Filesystem" option and hit the enter key. We do this to make use of 

all the space present on the SD card as a full partition. All this does is, expand 

the OS to fit the whole space on the SD card which can then be used as the 

storage memory for the Pi 



28 
 

 The second thing to do: 

 

Select the third option in the list of the setup options window, that is select the 

"Enable BootTo Desktop/Scratch" option and hit the enter key. It will take 

you to another window called the "choose boot option" window that looks 

like the image below. 

 

 

Fig 13.Boot Options 

 

 

In the "choose boot option window", select the second option, that is, "Desktop 

Log in as user 'pi' at the graphical desktop" and hit the enter button. Once done 

you will be taken back to the "Setup Options" page, if not select the "OK" button 

at the bottom of this window and you will be taken back to the previous window. 

We do this because we want to boot into the desktop environment which we are 

familiar with. If we don't do this step then the Raspberry Pi boots into a terminal 

each time with no GUI options.Once, both the steps are done, select the "finish" 

button at the bottom of the page and it should reboot automatically. If it doesn't, 

then use the following command in the terminal to reboot. 

sudo reboot 

 

Updating the firmware 

 

After the reboot from the previous step, if everything went right, then you will end 



29 
 

up on the desktop which looks like the image below. 

 

 

 
 

 

Fig 14.Raspberry Desktop 

Once you are on the desktop, open a terminal and enter the following command to 

update the firmware of the Pi. 

sudorpi-update 

 

Updating the firmware is necessary because certain models of the Pi might not 

have all the required dependencies to run smoothly or it may have some bug. The 

latest firmware might have the fix to those bugs, thus its very important to update it 

in the beginning itself. 

5 Conclusion 
 

So, we have covered the steps to get the Pi up and running. This method works on 

all the different models of Raspberry Pi (model A, B, B+ and also RPi 2) as 

Raspbain was made to be supported on all models. However, while installing other 

software or libraries, the procedure might change a bit while installing depending 

on the model of the Pi or the version of Raspbian itself. The concept of Raspberry 

is to keep trying till you get the result or build that you want. This might involve a 



30 
 

lot of trial and error but spending the time will be worth it. The actual usage doesn't 

end here. This is just the beginning. It is up to you to go ahead to build something 

amazing out of it. 

 

 
 

Fig 15.GPIO Pins 

 

GPIO: 

 

Act as both digital output and digital input. 

 

Output: turn a GPIO pin high or low. 

 

Input: detect a GPIO pin high or low 

Installing GPIO library: 

 

Open terminal 

 

Enter the command ―sudoapt-get install python-dev” to install python 

development Enter the command “sudoapt-get install python-

rpi.gpio” to install GPIO library. Basic python coding: 

Open terminal enter the command 
 

sudonanofilename.py 

 

This will open the nano editor where you can write 



31 
 

your code Ctrl+O : Writes the code to the file 

Ctrl+X : Exits the editor 

 

Blinking LED Code: 

 

import RPi.GPIO as GPIO #GPIO library import time 

GPIO.setmode(GPIO.BOARD) # Set the type of board for pin 

numbering GPIO.setup(11, GPIO.OUT) # Set GPIO pin 11as output 

pin 

for i in range (0,5): 

GPIO.output(11,True) # Turn on GPIO 

pin 11 time.sleep(1) 

GPIO.output(11,False) 

T ime.sleep(2) 

GPIO.output(11,Tr

ue) 

GPIO.cleanup() 

Power Pins 

The header provides 5V on Pin 2 and 3.3V on Pin 1. The 3.3V supply is limited to 

50mA. The 5V supply draws current directly from your microUSB supply so can 

use whatever is left over after the board has taken its share. A 1A power supply 

could supply up to 300mA once the Board has drawn 700mA. 

Basic GPIO 

The header provides 17 Pins that can be configured as inputs and outputs. By 

default they are all configured as inputs except GPIO 14 & 15. 

In order to use these pins you must tell the system whether they are inputs or 

outputs. This can be achieved a number of ways and it depends on how you intend 

to control them. I intend on using Python. 

SDA & SCL: The 'DA' in SDA stands for data, the 'CL' in SCL stands for clock; 

the S stands for serial.  You can do more reading  about  the significance of the 



32 
 

clock  line for various types       of computer bus, You will probably find I
2
C 

devices that come with their own userspace drivers and the linux kernel includes 

some as well. Most computers have an I
2
C bus, presumably for some of the 

purposes listed by wikipedia, such as interfacing with the RTC (real time clock) 

and configuring memory. However, it is not exposed, meaning you can't attach 

anything else to it, and there are a lot of interesting things that could be attached -- 

pretty much any kind of common sensor (barometers, accelerometers, gyroscopes, 

luminometers, etc.) as well as output devices and displays. You can buy a USB to 

I
2
C adapter for a normal computer, but they cost a few hundred dollars. You can 

attach multiple devices to the exposed bus on the pi. 

 

UART, TXD & RXD: This is a traditional serial line; for decades most computers 

have had a port for this and a port for parallel.
1
 Some pi oriented OS distros such as 

Raspbian by default boot with this serial line active as a console, and you can plug 

the other end into another computer and use some appropriate software to 

communicate with it. Note this interface does not have a clock line; the two pins 

may be used for full duplex communication (simultaneous transmit and receive). 

 

PCM, CLK/DIN/DOUT/FS: PCM is is how uncompressed digital audio is 

encoded. The data stream is serial, but interpreting this correctly is best done with 

a separate clock line (more lowest level stuff). 

 

SPI, MOSI/MISO/CE0/CE1: SPI is a serial bus protocol serving many of the 

same purposes as I
2
C, but because there are more wires, it can operate in full 

duplex which makes it faster and more flexible. 

Raspberry Pi Terminal Commands 

[sudo apt-get update] - Update Package Lists 

[sudo apt-get upgrade] - Download and Install Updated 

Packages [sudoraspi-config] - The Raspberry Pi 

Configuration Tool 



33 
 

[sudo apt-get clean] - Clean Old 

Package Files [sudo reboot] - Restart 

your Raspberry Pi [sudo halt] - Shut 

Down your Raspberry Pi 

6. KEY ELEMENTS OF IOT 

 

1. Sensing 

The  first  step  in  IoT  workflow  is  gathering  information  at  a  ―point  of  activity.‖  

This  can  be information captured by an appliance, a wearable device, a wall 

mounted control or any number of commonly found devices. The sensing can be 

biometric, biological, environmental, visual or audible (or all the above). The 

unique thing in the context of IoT is that the device doing the sensing is not one 

that typically gathered information in this way. Sensing technology specific to this 

purpose is required. 

 

2. Communication 

This is where things start to get interesting. Many of the new IoT devices we are 

seeing today are not designed for optimal communication with cloud services. IoT 

devices require a means for transmitting the information sensed at the device 

level to a Cloud-based service for subsequent processing. This is where the great 

value inherent in IoT is created. This requires either WiFi (wireless LAN based 

communications) or WAN (wide area network… i.e. cellular) communications. In 

addition, depending on the need short range communication, other capabilities may 

also be needed. These could include Bluetooth, ZigBee, Near-field or a range of 

other short range communication methods. For positioning, GPS is often 

required as well. 

 

3. Cloud Based Capture & Consolidation 

Gathered data is transmitted to a cloud based service where the information 

coming in from the IoT device is aggregated with other cloud based data to 

provide useful information for the end user. The data being consolidated can be 



34 
 

information from other internet sources as well as from others subscribing with 

similar IoT devices. Most often, there will be some data processing required to 

provide useful information that is not necessarily obvious in the raw data. 

 

4. Delivery of Information 

The last step is delivery of useful information to the end user. That may be a 

consumer, a commercial or an industrial user. It may also be another device in the 

M2M workflow. The goal in a consumer use case is to provide the information in 

as simple and transparent a method as possible. It requires execution of a well 

thought out, designed and executed user interface that provides an optimized 

experience across multiple device platforms – tablets, smartphones, desktop – 

across multiple operating systems – iOS, Android, Windows, etc. 

 

7.REFERENCE ARCHITECTURE OF IOT: 

 

The reference architecture consists of a set of components. Layers can be realized 

by means of specific technologies, and we will discuss options for realizing each 

component.There are also some cross-cutting/vertical layers such as access/identity 

management. 

 

 



35 
 

 

Fig 16.Reference architecture for IoT 

 

 

The layers are 

• Client/external communications - Web/Portal, Dashboard, APIs 

• Event processing and analytics (including data storage) 

• Aggregation/bus layer – ESB and message broker 

• Relevant transports - MQTT/HTTP/XMPP/CoAP/AMQP, etc. 

• Devices 

The cross-cutting layers are 

• Device manager 

• Identity and access managements 

THE DEVICE LAYER 

The bottom layer of the architecture is the device layer. Devices can be of various 

types, but in order to be considered as IoT devices, they must have some 

communications that either indirectly or directly attaches to the Internet. Examples 

of direct connections are 

• Arduino with Arduino Ethernet connection 

• Arduino Yun with a Wi-Fi connection 

• Raspberry Pi connected via Ethernet or Wi-Fi 

• Intel Galileo connected via Ethernet or 

Wi-Fi Examples of indirectly connected 

device include 

• ZigBee devices connected via a ZigBee gateway 

• Bluetooth or Bluetooth Low Energy devices connecting via a mobile phone 

• Devices communicating via low power radios to a 

Raspberry Pi There are many more such examples of 

each type. 

Each device typically needs an identity. The identity may be one of the following: 

• A unique identifier (UUID) burnt into the device (typically part of the System-on-



36 
 

Chip, or provided by a secondary chip) 

• A UUID provided by the radio subsystem (e.g. Bluetooth identifier, Wi-Fi MAC address) 

• An OAuth2 Refresh/Bearer Token (this may be in addition to one of the above) 

• An identifier stored in nonvolatile memory such as EEPROM 

For the reference architecture we recommend that every device has a UUID 

(preferably an unchangeable ID provided by the core hardware) as well as an 

OAuth2 Refresh and Bearer token stored in EEPROM. 

The specification is based on HTTP; however, (as we will discuss in the 

communications section) the reference architecture also supports these flows over 

MQTT. 

COMMUNICATIONS LAYER 

The communication layer supports the connectivity of the devices. There are 

multiple potential protocols for communication between the devices and the cloud. 

The most wellknown three potential protocols are 

• HTTP/HTTPS (and RESTful approaches on those) 

• MQTT 3.1/3.1.1(Message Queuing Telemetry Transport) 

• Constrained application protocol (CoAP) 

Let‘s take a quick look at each of these protocols in turn. 

HTTP is well known, and there are many libraries that support it. Because it is a 

simple text based protocol, many small devices such as 8-bit controllers can only 

partially support the protocol – for example enough code to POST or GET a 

resource. The larger 32-bit based devices can utilize full HTTP client libraries that 

properly implement the whole protocol. There are several protocols optimized for 

IoT use. The two best known are MQTT6 and CoAP7. MQTT was invented in 

1999 to solve issues in embedded systems and SCADA. It has been through some 

iterations and the current version (3.1.1) is undergoing standardization in the OASIS 

MQTT Technical Committee8. MQTT is a publish-subscribe messaging system 

based on a broker model. The protocol has a very small overhead (as little as 2 

bytes per message), and was designed to support lossy and intermittently connected 



37 
 

networks. MQTT was designed to flow over TCP. In addition there is an 

associated specification designed for ZigBee-style networks called MQTT-SN 

(Sensor Networks). CoAP is a protocol from the IETF that is designed to 

provide a RESTful application protocol modeled on HTTP semantics, but with a 

much smaller footprint and a binary rather than a text- based approach. CoAP is a 

more traditional client-server approach rather than a brokered approach. CoAP is 

designed to be used over UDP. 

For the reference architecture we have opted to select MQTT as the preferred device 

communication protocol, with HTTP as an alternative option. 

The reasons to select MQTT and not CoAP at this stage are 

• Better adoption and wider library support for MQTT; 

• Simplified bridging into existing event collection and event processing systems; and 

• Simpler connectivity over firewalls and NAT networks 

However, both protocols have specific strengths (and weaknesses) and so there will 

be some situations where CoAP may be preferable and could be swapped in. In 

order to support MQTT we need to have an MQTT broker in the architecture as well 

as device libraries. We will discuss this with regard to security and scalability later. 

One important aspect with IoT devices is not just for the device to send data to the 

cloud/ server, but also the reverse. This is one of the benefits of the MQTT 

specification: because it is a brokered model, clients connect an outbound 

connection to the broker, whether or not the device is acting as a publisher or 

subscriber. This usually avoids firewall problems because this approach works even 

behind firewalls or via NAT. In the case where the main communication is based on 

HTTP, the traditional approach for sending data to the device would be to use HTTP 

Polling. This is very inefficient and costly, both in terms of network traffic as well 

as power requirements. The modern replacement for this is the WebSocket 

protocol9 that allows an HTTP connection to be upgraded into a full two-way 

connection. This then acts as a socket channel (similar to a pure TCP channel) 

between the server and client. Once that has been established, it is up to the system 



38 
 

to choose an ongoing protocol to tunnel over the connection. For the reference 

architecture we once again recommend using MQTT as a protocol with 

WebSockets. In some cases, MQTT over WebSockets will be the only protocol. 

This is because it is even more firewall-friendly than the base MQTT specification 

as well as supporting pure browser/JavaScript clients using the same protocol. Note 

that while there is some support for WebSockets on small controllers, such as 

Arduino, the combination of network code, HTTP and WebSockets would utilize 

most of the available code space on a typical Arduino 8-bit device. Therefore, we 

only recommend the use of WebSockets on the larger 32-bit devices. 

AGGREGATION/BUS LAYER 

An important layer of the architecture is the layer that aggregates and brokers 

communications. This is an important layer for three reasons: 

1. The ability to support an HTTP server and/or an MQTT broker to talk to the devices 

2. The ability to aggregate and combine communications from different devices and 

to route communications to a specific device (possibly via a gateway) 

3. The ability to bridge and transform between different protocols, e.g. to offer 

HTTP based APIs that are mediated into an MQTT message going to the device. 

The aggregation/bus layer provides these capabilities as well as adapting into legacy 

protocols. The bus layer may also provide some simple correlation and mapping 

from different correlation models (e.g. mapping a device ID into an owner‘s ID or 

vice-versa). Finally the aggregation/bus layer needs to perform two key security 

roles. It must be able to act as an OAuth2 Resource Server (validating Bearer 

Tokens and associated resource access scopes). It must also be able to act as a policy 

enforcement point (PEP) for policy-based access. In this model, the bus makes 

requests to the identity and access management layer to validate access requests. 

The identity and access management layer acts as a policy decision point (PDP) in 

this process. The bus layer then implements the results of these calls to the PDP to 

either allow or disallow resource access. 

 



39 
 

 

EVENT PROCESSING AND ANALYTICS LAYER 

This layer takes the events from the bus and provides the ability to process and act 

upon these events. A core capability here is the requirement to store the data into a 

database. This may happen in three forms. The traditional model here would be to 

write a server side application, e.g. this could be a JAX-RS application backed by a 

database. However, there are many approaches where we can support more agile 

approaches. The first of these is to use a big data analytics platform. This is a cloud-

scalable platform that supports technologies such as Apache Hadoop to provide 

highly scalable map reduce analytics on the data coming from the devices. The 

second approach is to support complex event processing to initiate near real-time 

activities and actions based on data from the devices and from the rest of the system. 

Our recommended approach in this space is to use the following approaches: 

• Highly scalable, column-based data storage for storing events 

• Map-reduce for long-running batch-oriented processing of data 

• Complex event processing for fast in-memory processing and near real-time 

reaction and autonomic actions based on the data and activity of devices and other 

systems 

• In addition, this layer may support traditional application processing platforms, 

such as Java Beans, JAX-RS logic, message-driven beans, or alternatives, such as 

node.js, PHP, Ruby or Python. 

 

CLIENT/EXTERNAL COMMUNICATIONS LAYER 

The reference architecture needs to provide a way for these devices to communicate 

outside of the device-oriented system. This includes three main approaches. Firstly, 

we need the ability to create web-based front-ends and portals that interact with 

devices and with the event-processing layer. Secondly, we need the ability to create 

dashboards that offer views into analytics and event 



40 
 

processing. Finally, we need to be able to interact with systems outside this network 

using machine-to-machine communications (APIs). These APIs need to be managed 

and controlled and this happens in an API management system. The recommended 

approach to building the web front end is to utilize a modular front-end architecture, 

such as a portal, which allows simple fast composition of useful UIs. Of course the 

architecture also supports existing Web server-side technology, such as Java 

Servlets/ JSP, PHP, Python, Ruby, etc. Our recommended approach is based on the 

Java framework and the most popular Java-based web server, Apache Tomcat. The 

dashboard is a re-usable system focused on creating graphs and other visualizations 

of data coming from the devices and the event processing layer. 

The API management layer provides three main functions: 

• The first is that it provides a developer-focused portal (as opposed to the user 

focused portal previously mentioned), where developers can find, explore, and 

subscribe to APIs from the system. There is also support for publishers to create, 

version, and manage the available and published APIs; 

• The second is a gateway that manages access to the APIs, performing access 

control checks (for external requests) as well as throttling usage based on policies. It 

also performs routing and load- balancing; 

• The final aspect is that the gateway publishes data into the analytics layer where it 

is stored as well as processed to provide insights into how the APIs are used. 

 

DEVICE MANAGEMENT 

Device management (DM) is handled by two components. A server-side system (the 

device manager) communicates with devices via various protocols and provides 

both individualand bulk control of devices. It also remotely manages software and 

applications deployed on the device. It can lock and/or wipe the device if necessary. 

The device manager works in conjunction with the device management agents. 

There are multiple different agents for different platforms and device types. The 

device manager also needs to maintain the list of device identities and map these 

into owners. It must also work with the identity and access management layer to 



41 
 

manage access controls over devices (e.g. who else can manage the device apart 

from the owner, how much control does the owner have vs. the administrator, etc.) 

There are three levels of device: non-managed, semi-managed and fully managed (NM, 

SM, FM). 

 

Fully managed devices are those that run a full DM agent. A full DM agent supports: 

• Managing the software on the device 

• Enabling/disabling features of the device (e.g. camera, hardware, etc.) 

• Management of security controls and identifiers 

• Monitoring the availability of the device 

• Maintaining a record of the device‘s location if available 

• Locking or wiping the device remotely if the device is compromised, etc. 

Non-managed devices can communicate with the rest of the network, but have no 

agent involved. These may include 8-bit devices where the constraints are too small 

to support the agent. The device manager may still maintain information on the 

availability and location of the device if this is available. 

Semi-managed devices are those that implement some parts of the DM (e.g. feature 

control, but not software management). 

 

IDENTITY AND ACCESS MANAGEMENT 

The final layer is the identity and access management layer. This layer needs to 

provide the following services: 

• OAuth2 token issuing and validation 

• Other identity services including SAML2 SSO and OpenID Connect support for 

identifying inbound requests from the Web layer 

• XACML PDP 

• Directory of users (e.g. LDAP) 

• Policy management for access control (policy control point) 

The identity layer may of course have other requirements specific to the other 

identity and access management for a given instantiation of the reference 

architecture. In this section we have outlined the major components of the 



42 
 

reference architecture as well as specific decisions we have taken around 

technologies. These decisions are motivated by the specific requirements of IoT 

architectures as well as best practices for building agile, evolvable, scalable 

Internet architectures. Of course there are other options, but this reference 

architecture utilizes proven approaches that are known to be successful in real-life 

IoT projects we have worked on. 



1  

 
 

 

 

 

SCHOOL OF COMPUTING 

DEPARTMENT OF  COMPUTER SCIENCE AND ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – II – Internet of Things – SCSA5301 



2  

ELEMENTS OF IOT 

 

Application Sensors & Actuators - Edge Networking (WSN) – Gateways - IoT 

Communication Model – WPAN & LPWA, IoT platform for available applications, 

Hardware Devices: Arduino, Raspberry pi and Smartwifi, etc, Wearable Development 

Boards, Softwares, Programs and Stacks available for building IoT applications, Installation 

of various packages necessary for project and list of tools. 

 

1.SENSORS AND ACTUATORS 

 

A transducer is any physical device that converts one form of energy into another. So, 

in the case of a sensor, the transducer converts some  physical  phenomenon  into  an 

electrical  impulse  that  can then  be interpreted to determine a reading. A microphone is a 

sensor that takes vibration energy (sound waves), and converts it to electrical energy in a 

useful way for other components in the system to correlate back to the original sound. 

Another type of transducer that we will encounter in many IoT systems is an actuator. In 

simple terms, an actuator operates in the reverse direction of a sensor. It takes an electrical 

input and turns it into physical action. For instance, an electric motor, a hydraulic system, 

and a pneumatic system are all different types  of actuators. 

Examples of actuators 

 

 Digital micromirror device 

 Electric motor 

 Electroactive polymer 

 Hydraulic cylinder 

 Piezoelectric actuator 

 Pneumatic actuator 

 Screw jack 

 Servomechanism 

 Solenoid 

 Stepper motor 

 

 

In typical IoT systems, a sensor may collect information and route to a control center 

where a decision is made and a corresponding command is sent back to an actuator in 

response to that sensed input. There  are many different types of sensors. Flow sensors, 

temperature sensors, voltage sensors, humidity sensors, and the list goes on. In addition, 

there are multiple ways to measure the same thing. For instance, airflow might be measured 

by using a small propeller like the one you would see on a weather station. Alternatively, as 

in a vehicle measuring the air through the engine, airflow is measured by heating a small 

https://en.wikipedia.org/wiki/Digital_micromirror_device
https://en.wikipedia.org/wiki/Electric_motor
https://en.wikipedia.org/wiki/Electroactive_polymer
https://en.wikipedia.org/wiki/Hydraulic_cylinder
https://en.wikipedia.org/wiki/Piezoelectric_actuator
https://en.wikipedia.org/wiki/Pneumatic_actuator
https://en.wikipedia.org/wiki/Screw_jack
https://en.wikipedia.org/wiki/Servomechanism
https://en.wikipedia.org/wiki/Solenoid
https://en.wikipedia.org/wiki/Stepper_motor


3  

element and measuring the rate at which the element is cooling. 

We live in a World of Sensors. You can find different types of Sensors in our homes, 

offices, cars etc. working to make our lives easier by turning on the lights by detecting our 

presence, adjusting the room temperature, detect smoke or fire, make us delicious coffee, 

open garage doors as soon as our car is near the door and many other tasks. 

The example we are talking about here is the Autopilot System in aircrafts. Almost all 

civilian and military aircrafts have the feature of Automatic Flight Control system or 

sometimes called as Autopilot. An Automatic Flight Control System consists of several 

sensors for various tasks like speed control, height, position, doors, obstacle, fuel and many 

more. A Computer takes data from all these sensors and processes them by comparing them 

with pre-designed values. The computer then provides control signal to different parts like 

engines, flaps, rudders etc. that help in a smooth flight. 

All the parameters i.e. the Sensors (which give inputs to the Computers), the Computers (the 

brains of the system) and the mechanics (the outputs of the system like engines and motors) 

are equally important in building a successful automated system. Sensor as an input device 

which provides an output (signal) with respect to a specific physical quantity (input). Sensor 

means that it is part of a bigger system which provides input to a main control system (like a 

Processor or a Microcontroller). 

 
S.No Sensor Applications Technology 

 

1. 

 

Inertial sensors 

Industrial machinery, 

automotive, human 

activity 

 

MEMS and 

Gyroscope 

2. 
Speed Measuring 

Sensor 

Industrial machinery, 

automotive, human activity 
Magnetic, light 

 

3. 
Proximity sensor 

Industrial machinery, 

automotive, human 

activity 

Capacitive, 

Inductive, Magnetic, 

Light, 

Ultrasound 

 

4. 
Occupancy sensor Home/office monitoring 

PassiveIR, 

Ultrasound most 

common 

5. 
Temperature/humid
ity 

sensor 

Home/office HVAC control, 

automotive, industrial 

Solid state, 

thermocouple 

 

6. 

 

Light sensor 
Home/office/industrial 

lighting control 

Solid state, photocell, 

Photo 

resistor, 

photodiode 



4  

 

7. 

 

Power 

(current) 

sensor 

Home/office/industrial 

powermonitoring/control 

Technology 

Coil (Faraday‘s law), 

Hall effect 

 

8. 
Air/fluid pressure 

sensor 

Industrial 

monitoring/control, 

automotive, agriculture 

Capacitive, Resistive 

9. Acoustic sensor 
Industrial 
monitoring/control, 

human interface 

Diaphragm 

condenser 

10. Strain sensor 
Industrial 
monitoring/control, 

civil infrastructure 

Resistive thin films 

In the first classification of the sensors, they are divided in to Active and Passive. Active 

Sensors are those which require an external excitation signal or a power signal. Passive 

Sensors, on the other hand, do not require any external power signal and directly generates 

output response. The other type of classification is based on the means of detection used in 

the sensor. Some of the means of detection are Electric, Biological, Chemical, Radioactive 

etc. 

The next classification is based on conversion phenomenon i.e. the input and the output. 

Some of the common conversion phenomena are Photoelectric, Thermoelectric, 

Electrochemical, Electromagnetic, Thermo-optic, etc. The final classification of the sensors 

are Analog and Digital Sensors. Analog Sensors produce an analog output i.e. a continuous 

output signal with respect to the quantity being measured. 

Digital Sensors, in contrast to Analog Sensors, work with discrete or digital data. The data 

in digital sensors, which is used for conversion and transmission, is digital in nature. 

 

 

 



5  

Fig 1.Examples of Sensors 

 

1. IR LED 

 

It is also called as IR Transmitter. It is used to emit Infrared rays. The range of these 

frequencies are greater than the microwave frequencies (i.e. >300GHz to few hundreds of 

THz). The rays generated by an infrared LED can be sensed by Photodiode explained 

below. The pair of IR LED and photodiode is  called IR Sensor. 

 

Fig 2. LED sensor 

 

2. Photo Diode (Light Sensor) 

It is a semiconductor device which is used to detect the light rays and mostly used as IR 

Receiver. Its construction is similar to the normal PN junction diode but the working 

principle differs from it. As we know a PN junction allows small leakage currents when it 

is reverse biased so, this property is used to detect the light rays. A photodiode is 

constructed such that light rays should fall on the PN junction which makes the leakage 

current increase based on the intensity of the light that we have applied. So, in this way, a 

photodiode can be used to sense the light rays and maintain the current through the circuit. 

Check here the working of Photodiode with IR sensor. 

Fig 3.Photo diode 

3. Proximity Sensor 

 

A Proximity Sensor is a non-contact type sensor that detects the presence of an object. 

Proximity Sensors can be implemented using different techniques like Optical (like Infrared 

or Laser), Ultrasonic, Hall Effect, Capacitive, etc. 



6  

 

 

 

Fig 4.Proximity sensor 

 

Some of the applications of Proximity Sensors are Mobile Phones, Cars (Parking Sensors), 

industries (object alignment), Ground Proximity in Aircrafts, etc. Proximity Sensor in 

Reverse Parking is implemented in this Project: Reverse Parking Sensor Circuit. 

 

4. LDR (Light Dependent Resistor) 

As the name itself specifies that the resistor that depends upon the light intensity. It works 

on the principle of photoconductivity which means the conduction due to the light. It is 

generally made up of Cadmium sulfide. When light falls on the LDR, its resistance 

decreases and acts similar to a conductor and when no light falls on it, its resistance is 

almost in the range of MΩ or ideally it acts as an open circuit. One note should be 

considered with LDR is that it won‘t respond if the light is not exactly focused on its 

surface. 

 
 

Fig 5.LDR 

With a proper circuitry using a transistor it can be used to detect the availability of light. A 

voltage divider biased transistor with R2 (resistor between base and emitter) replaced with 

an LDR can work as a light detector. 

 

 

5. Thermistor (Temperature Sensor) 

A thermistor can be used to detect the variation in temperature. It has a negative 



7  

temperature coefficient that means when the temperature increases the resistance 

decreases. So, the thermistor‘s resistance can be varied with the rise in temperature which 

causes more current flow through it. This change in current flow can be used to determine 

the amount of change in temperature. An application for thermistor is, it is used to detect 

the rise in temperature and control the leakage current in a transistor circuit which helps in 

maintaining its stability. Here is one simple application for Thermistor to control the DC 

fan automatically. 

 

Fig 6.Thermistor 

6. Thermocouple (Temperature Sensor) 

 

Another component that can detect the variation in temperature is a thermocouple. In its 

construction, two different metals are joined together to form a junction. Its main principle 

is when the junction of two different metals are heated or exposed to high temperatures a 

potential across their terminals varies. So, the varying potential can be further used to 

measure the amount of change in temperature. 

 

 

 

Fig 7.Thermo couple 



8  

7. Strain Gauge (Pressure/Force Sensor) 

A strain gauge is used to detect pressure when a load is applied. It works on the principle 

of resistance, we know that the resistance is directly proportional to the length of the wire 

and is inversely proportional to its cross-sectional area (R=ρl/a). The same principle can be 

used here to measure the load. On a flexible board, a wire is arranged in a zig-zag manner 

as shown in the figure below. So, when the pressure is applied to that particular board, it 

bends in a direction causing the change in overall length and cross- sectional area of the 

wire. This leads to change in resistance of the wire. The resistance thus obtained is very 

minute (few ohms) which can be determined with the help of the Wheatstone bridge. The 

strain gauge is placed in one of the four arms in a bridge with the remaining values 

unchanged. Therefore, when the pressure is applied to it as the resistance changes the 

current passing through the bridge varies and pressure can be calculated. 

Strain gauges are majorly used to calculate the amount of pressure that an airplane wing 

can withstand and it is also used to measure the number of vehicles allowable on a 

particular road etc. 

 

 

Fig 8.Strain Guage 

8. Load Cell (Weight Sensor) 

 

Load cells are similar to strain gauges which measure the physical quantity like force and 

give the output in form of electrical signals. When some tension is applied on the load cell 

it structure varies causing the change in resistance and finally, its value can be calibrated 



9  

using a Wheatstone bridge. Here is the project on how to measure weight using Load cell. 

Fig 9.Load Cell 

9. Potentiometer 

 

A potentiometer is used to detect the position. It generally has various ranges of resistors 

connected to different poles of the switch. A potentiometer can be either rotary or linear type. 

In rotary type, a wiper is connected to a long shaft which can be rotated. When the shaft has 

rotated the position of the wiper alters such that the resultant resistance varies causing the 

change in the output voltage. Thus the output can be calibrated to detect the change its 

position. 

 

 

 

Fig 10.Potentiometer 

10. Encoder 

 

To detect the change in the position an encoder can also be used. It has a circular rotatable 

disk-like structure with specific openings in between such that when the IR rays or light 

rays pass through it only a few light rays get detected. Further, these rays are encoded into 

a digital data (in terms of binary) which represents the specific position. 

Fig 11.Encoder 

11 Hall Sensor 

 

The name itself states that it is the sensor which works on the Hall Effect. It can be defined 

as when a magnetic field is brought close to the current carrying conductor (perpendicular 

to the direction of the electric  field)  then a potential difference  is  developed across the 



10  

given conductor.  Using this property   a Hall sensor is used to detect the magnetic field 

and gives output in terms of voltage. Care should be taken that the Hall sensor can detect 

only one pole of the magnet. 

 

Fig 12.Hall sensor 

The hall sensor is used in few smartphones which are helpful in turning off the screen 

when the flap cover (which has a magnet in it) is closed onto the screen. Here is one 

practical application of Hall Effect sensor in Door Alarm. 

 

12. Flex Sensor 

A FLEX sensor is a transducer which changes its resistance when its shape is changed or 

when it is bent. A FLEX sensor is 2.2 inches long or of finger length. Simply speaking the 

sensor terminal resistance increases when it‘s bent. This change in resistance can do no 

good unless we can read them. The controller at hand can only read  the  changes  in  

voltage  and  nothing  less,  for this,  we are  going to  use voltage divider circuit, with that 

we can derive the resistance change as a voltage change. 

Fig 13. Flex sensor 

 

 

 

13. Microphone (Sound Sensor) 

 

Microphone can be seen on all the smartphones or mobiles. It can detect the audio signal 

and convert  them into small voltage (mV) electrical signals. A microphone can be of many 

types like condenser microphone, crystal microphone, carbon microphone etc. each type of 

microphone work on the properties like capacitance, piezoelectric effect, resistance 

respectively. Let us see the operation of a crystal microphone which works on the 

https://circuitdigest.com/calculators/voltage-divider-calculator


11  

piezoelectric effect. A bimorph crystal is used which under pressure or vibrations produces 

proportional alternating voltage. A diaphragm is connected to the crystal through a drive 

pin such that when the sound signal hits the diaphragm it moves to and fro, this movement 

changes the position of the drive pin which causes vibrations in the crystal thus an 

alternating voltage is generated with respect to the applied sound signal. The obtained 

voltage is fed to an amplifier in order to  increase the overall strength of the signal. 

 

 

 

Fig 14.Microphone 

 

14. Ultrasonic sensor 

Ultrasonic means nothing but the range of the frequencies. Its range is greater than audible 

range (>20 kHz) so even it is switched on we can‘t sense these sound signals. Only specific 

speakers and receivers  can sense those ultrasonic waves. This ultrasonic sensor is used to 

calculate the distance between the ultrasonic transmitter and the target and also used to 

measure the velocity of the target. 

Ultrasonic sensor HC-SR04 can be used to measure distance in the range of 2cm-400cm 

with an accuracy of 3mm. Let‘s see how this module works. The HCSR04 module 

generates a sound vibration in ultrasonic range when we make the ‗Trigger‘ pin high for 

about 10us which will send an 8 cycle sonic burst at the speed of sound and after striking 

the object, it will be received by the Echo pin. Depending on the time taken by sound 

vibration to get back, it provides the appropriate pulse output. We can calculate the 

distance of the object based on the time taken by the ultrasonic wave to return back to the 

sensor. 

 

Fig 15.Utrasonic sensor 

https://circuitdigest.com/electronic-circuits/lm386-audio-amplifier-circuit


12  

There are many applications with the ultrasonic sensor. We can make use of it avoid 

obstacles for the automated cars, moving robots etc. The same principle will be used in the 

RADAR for detecting the intruder missiles and airplanes. A mosquito can sense the 

ultrasonic sounds. So, ultrasonic waves can be used as mosquito repellent. 

15. Touch Sensor 

In this generation, we can say that almost all are using smartphones which have widescreen 

that too a screen which can sense our touch. So, let‘s see how this touchscreen works. 

Basically, there are two types of touch sensors resistive based and a capacitive based 

touch screens. Let‘s know about working of these sensors briefly. 

The resistive touch screen has a resistive sheet at the base and a conductive sheet under the 

screen both of these are separated by an air gap with a small voltage applied to the sheets. 

When we press or touch the screen the conductive sheet touches the resistive sheet at that 

point causing current flow at that particular point, the software senses the location and 

relevant action is performed. 

 

 

Fig 16.Touch sensor 

16. PIR sensor 

 

PIR sensor stands for Passive Infrared sensor. These are used to detect the motion of 

humans, animals or things. We know that infrared rays have a property of reflection. When 

an infrared ray hits an object, depending upon the temperature of the target the infrared ray 

properties changes, this received signal determines the motion of the objects or the living 

beings. Even if the shape of the object alters, the properties of  the  reflected  infrared  rays  

can  differentiate  the  objects  precisely.  Here  is  the  complete working or PIR sensor. 



13  

 
 

Fig 17.PIR Sensor 

17. Accelerometer (Tilt Sensor) 

 

An accelerometer sensor can sense the tilt or movement of it in a particular direction. It 

works based on the acceleration force caused due to the earth‘s gravity. The tiny internal 

parts of it are such sensitive that those will react to a small external change in position. It 

has a piezoelectric crystal when tilted causes disturbance in the crystal and generates 

potential which determines the exact position with respect to X, Y and Z axis. 

Fig 18.Accelerometer 

These are commonly seen in mobiles and laptops in order to avoid breakage of processors 

leads. When  the device falls the accelerometer detects the falling condition and does 

respective action based on the software. 

18. Gas sensor 

In industrial applications gas sensors plays a major role in detecting the gas leakage. If no 

such device is installed in such areas it ultimately leads to an unbelievable disaster. These 

gas sensors are classified into various types based on the type of gas that to be detected. 

Let‘s see how this sensor works. Underneath a metal sheet there exists a sensing element 

which is connected to the terminals where a current is applied  to it. When the gas particles 

hit the sensing element, it leads to a chemical reaction such that the resistance of the 

elements varies and current through it also alters which finally can detect the gas. 



14  

Fig 19.Gas Sensor 

So finally, we can conclude that sensors are not only used to make our work simple to 

measure the physical quantities, making the devices automated but also used to help living 

beings with disasters. 

 

 

19. Resistive Sensors 

Resistive sensors, such as the potentiometer, have three terminals: power input, grounding 

terminal, and variable voltage output. These mechanical devices have varied resistance that 

can be changed through movable contact with its fixed resistor. Output from the sensor 

varies depending on whether the movable contact is near the resistor's supple end or 

ground end. Thermistors are also variable resistors, although the resistance of the sensor 

varies with temperature 

Fig 20 Resistive Sensors 

20. Voltage generating sensors 

Voltage-generating sensors, such as piezo electrics, generate electricity by pressure with 

types of crystals like quartz. As the crystal flexes or vibrates, AC voltage is produced. 

Knock sensors utilize this technology by sending a signal to an automobile's on-board 

computer that engine knock is happening. The signal is generated through crystal vibration 

within the sensor, which is caused by cylinder block vibration. The computer, in turn, 

reduces the ignition timing to stop the engine knock. 

 

 

 

 

 

 

 

 

 

21. Switch 

Sensors 

. 

Fig 21.Voltage Generating Sensors 



15  

Switch sensors are composed of a set of contacts that open when close to a magnet. A reed 

switch is a common example of a switch sensor and is most commonly used as a speed or 

position sensor. As a speed sensor, a magnet is attached to the speedometer cable and spins 

along with it. Each time one of the magnet's poles passes the reed switch, it opens and then 

closes. How fast the magnet passes allows the sensor to read the vehicle's speed. 

 

 

Fig 22.Switch Sensors 

 

2.Edge Networking 

 

Embedded systems are already playing a crucial role in the development of the 

IoT. In broad strokes, there are four main components of an IoT system: 

 

1. The Thing itself (the device) 

2. The Local Network; this can include a gateway, which translates proprietary 

communication protocols to Internet Protocol 

3. The Internet 

4. Back-End Services; enterprise data systems, or PCs and mobile devices 

 

Fig 23.Embedded Point of View 

 

We can also separate the Internet of Things in two broad categories: 

. 

1.  Industrial IoT, where the local network is based on any one of many different 

technologies. The IoT device will typically be connected to an IP network to 

the global Internet. 



16  

 

2.  Commercial IoT, where local communication is typically either Bluetooth or 

Ethernet (wired or wireless). The IoT device will typically communicate only 

with local devices. 

 

So to better understand how to build IoT devices, you first need to figure out how they 

will communicate with the rest of the world. 

 

Local Network 

Your choice of communication technology directly affects your device‘s hardware 

requirements and costs. Which networking technology is the best choice? 

IoT devices are deployed in so many different ways — in clothing, houses, buildings, 

campuses, factories, and even in your body — that no single networking technology can fit 

all bills. 

 

Let‘s take a factory as a typical case for an IoT system. A factory would need a large number 

of connected sensors and actuators scattered over a wide area, and a wireless technology 

would be the best fit. 

 
 

Fig 24.Wireless Sensor Network Architecture 

 

A wireless sensor network (WSN) is a collection of distributed sensors that monitor 

physical or environmental conditions, such as temperature, sound, and pressure. Data from 

each sensor passes through the network node-to-node. 

WSN Nodes 

WSN nodes are low cost devices, so they can be deployed in high volume. They also 

operate at low power so that they can run on battery, or even use energy harvesting. A WSN 

node is an embedded system that typically performs a single function (such as measuring 

temperature or pressure, or turning on a light or a motor). 

Energy harvesting is a new technology that derives energy from external sources (for 

example, solar  power, thermal energy, wind energy, electromagnetic radiation, kinetic 

energy, and more). The energy is captured and stored for use by small, low-power wireless 

autonomous devices, like the nodes on a WSN. 



17  

Fig 25.Edge Nodes 

 

WSN Edge Nodes 

 

A WSN edge node is a WSN node that includes Internet Protocol connectivity. It acts as a 

gateway  between the WSN and the IP network. It can also perform local processing, 

provide local storage, and can have a user interface. 

 

 

Fig 25.WSN Edge 

 

WSN Technologies 

 

The battle over the preferred networking protocol is far from over. There are multiple 

candidates. 

Wi-Fi 

The first obvious networking technology candidate for an IoT device is Wi-Fi, because it is 

so ubiquitous. Certainly, Wi-Fi can be a good solution for many applications. Almost every 

house that has an Internet connection has a Wi-Fi router. However, Wi-Fi needs a fair 

amount of power. There are myriad devices that can‘t afford that level of power: battery 

operated devices, for example, or sensors positioned in locations that are difficult to power 

from the grid. 

 

New application protocols and data formats that enable autonomous operation For example, 

EnOceanhas patented an energy-harvesting wireless technology to meet the power 

consumption challenge. EnOcean‘s wireless transmitters work in the frequencies of 868 

MHz for Europe and 315 MHz for North America. The transmission range is up to 30 

meters in buildings and up to 300 meters outdoors. 

 

EnOcean wireless technology uses a combination of energy harvesting and very low power 

wireless communications to enable virtually indefinite communications to be maintained 

without the need for recharging. 



18  

The EnOcean technology is used for wireless sensors, controllers and gateways. 

One of the key issues with small machines is the need for ensuring that batteries are 

maintained charged. In traditional systems, either mains power was required, or batteries 

needed to be replaced, even if only infrequently. The use of EnOcean removes the need for 

power to be directly applied thereby reducing the cost of the system operation. 

IEEE 802.15.4 Low-Rate Wireless Personal Area Networks (LR-WPANs) 

 

One of the major IoT enablers is the IEEE 802.15.4 radio standard, released in 

2003.Commercial radios meeting this standard provide the basis for low-power systems. 

This IEEE standard was extended and improved in 2006 and 2011 with the 15.4e and 15.4g 

amendments. Power consumption of commercial RF devices is now cut in half compared to 

only a few years ago, and we are expecting another 50% reduction with the next generation 

of devices. 

 

6LoWPAN 

Devices that take advantage of energy-harvesting must perform their tasks in the shortest 

time possible, which means that their transmitted messages must be as small as possible. 

This requirement has implications for protocol design. 

3. Internet of Things Communications Models 

From an operational perspective, it is useful to think about how IoT devices 

connect and communicate in terms of their technical communication models. In 

March 2015, the Internet Architecture Board (IAB) released a guiding architectural 

document for networking of smart objects which outlines a framework of four 

common communication models used by IoT devices. The discussion below 

presents this framework and explains key characteristics of each model in the 

framework. 

 

Device-to-Device Communications 

The device-to-device communication model represents two or more devices that 

directly connect and communicate between one another, rather than through an 

intermediary application server. These devices communicate over many types of 

networks, including IP networks or the Internet. Often, however these devices use 

protocols like Bluetooth, Z-Wave, or ZigBee to establish direct device-to-device 

communications, as shown in Figure 26. 

https://en.wikipedia.org/wiki/Personal_area_network


19  

Manufacturer B Bluetooth,Z+Wave,ZigBee Manufacturer A 

Light 
Switch 

Wireless 
Network 

Light 
Bulb 

 

 

Fig 26.Example of device-to-device communication model 

 

These device-to-device networks allow devices that adhere to a particular 

communication protocol to communicate and exchange messages to achieve their 

function. This communication model is commonly used in applications like home 

automation systems, which typically use small data packets of information to 

communicate between devices with relatively low data rate requirements. Residential 

IoT devices like light bulbs, light switches, thermostats, and door locks normally send 

small amounts of information to each other (e.g. a door lock status message or turn on 

light command) in a home automation scenario. 

From the user‘s point of view, this often means that underlying device-to-device 

communication2 protocols are not compatible, forcing the user to select a family of 

devices that employ a common protocol. For example, the family of devices using the 

Z-Wave protocol is not natively compatible with the ZigBee family of devices. While 

these incompatibilities limit user choice to devices within a particular protocol family, 

the user benefits from knowing that products within a particular family tend to 

communicate well. 

 

Device-to-Cloud Communications 

In a device-to-cloud communication model, the IoT device connects directly to an 

Internet cloud service like an application service provider to exchange data and 

control message traffic. This approach frequently takes advantage of existing 

communications mechanisms like traditional wired Ethernet or Wi-Fi connections 

to establish a connection between the device and the IP network, which ultimately 

connects to the cloud service. This is shown in Figure 27. 



20  

 
 

Fig 27.Device-to-cloud communication model diagram. 

 

This communication model is employed by some popular consumer IoT devices 

like the Nest Labs Learning Thermostat and the Samsung SmartTV. In the case of 

the Nest Learning Thermostat, the device transmits data to a cloud database where 

the data can be used to analyze home energy consumption. 

Further, this cloud connection enables the user to obtain remote access to their 

thermostat via a smartphone or Web interface, and it also supports software updates 

to the thermostat. Similarly, with the Samsung SmartTVtechnology, the television 

uses an Internet connection to transmit user viewing information to Samsung for 

analysis and to enable the interactive voice recognition features of the TV. In these 

cases, the device-to-cloud model adds value to the end user by extending the 

capabilities of the device beyond its native features. 

However, interoperability challenges can arise when attempting to integrate devices 

made by different manufacturers. Frequently, the device and cloud service are from 

the same vendor. If proprietary data protocols are used between the device and the 

cloud service, the device owner or user may be tied to a specific cloud service, 

limiting or preventing the use of alternative service providers.  This  is  commonly  

referred  to  as  ―vendor  lock-in‘‘,  a  term  that  encompasses  other facets of the 

relationship with the provider such as ownership of and access to the data. At the 

same time, users can generally have confidence that devices designed for the 

specific platform can be integrated. 

 

Device-to-Gateway Model 

In the device-to-gateway model, or more typically, the device-to-application-layer 

gateway (ALG) model, the IoT device connects through an ALG service as a 

conduit to reach a cloud service. In simpler terms, this means that there is 

Monoxide Temperature 

Device with 

Carbon Devicewith 

CoAP 

DTLS 

UDP 

IP 

Application Service 

Provider 

HTTP 

TLS 

TCP 

IP 



21  

application software operating on a local gateway device, which acts as an 

intermediary between the device and the cloud service and provides security and 

other functionality such as data or protocol translation. 

 

 
 

 

Several forms of this model are found in consumer devices. In many cases, the local 

gateway device is a Smartphone running an app to communicate with a device and 

relay data to a cloud service. model employed with popular consumer items like 

personal fitness trackers. These devices do not have the native ability to connect 

directly to a cloud service, so they frequently rely on Smartphone app software to 

serve as an intermediary gateway to connect the fitness device to the cloud. 

The  other  form  of  this  device-to-gateway  model  is  the  emergence  of  ―hub‖  

devices  in  home automation applications. These are devices that serve as a local 

gateway between individual IoT devices and a cloud service, but they can also bridge 

the interoperability gap between devices themselves. For example, the Smart Things 

hub is a stand-alone gateway device that has Z-Wave and Zigbee transceivers 

installed to communicate with both families of devices. It then connects to the Smart 

Things cloud service, allowing the user to gain access to the devices using a 

Smartphone app and an Internet connection. The evolution of systems using the 

device-to-gateway communication model and its larger role in addressing 

interoperability challenges among IoT devices is still unfolding. 

 

Fig 28.Device-to-gateway communication model diagram. 

IEEE 802.15.4 (LRDWPAN) 

Device with 

Carbon 

Monoxide 

Sensor 

Layer 1 Protocol 
Bluetooth Smart 

IEEE 802.11 (WiDFi) 

Device with 

Temperature 

Sensor 

CoAP 

DTLS 

UDP 

IPv6 

Local Gateway 

HTTP 

TLS 

TCP 

IPv6 

Protocol 
Stack 

IPv4/IPv6 

Application Service 

Provider 



22  

Back-End Data-Sharing Model 

The back-end data-sharing model refers to a communication architecture that enables 

users to export and analyze smart object data from a cloud service in combination 

with data from other sources. This architecture supports ―the [user‘s] desire for 

granting access to the uploaded sensor data to third parties. This approach is an 

extension of the single device-to-cloud communication model,  which can lead to 

data silos where  ―IoT  devices upload data only to  a single application 

 

service provider‘‘. A back-end sharing architecture allows the data collected from 

single IoT device data streams to be aggregated and analyzed. 

For example, a corporate user in charge of an office complex would be interested in 

consolidating and analyzing the energy consumption and utilities data produced by 

all the IoT sensors and Internet-enabled utility systems on the premises. Often in 

the single device-to-cloud model, the data each IoT sensor or system produces sits 

in a stand-alone data silo. An effective back-end data sharing architecture would 

allow the company to easily access and analyze the data in the cloud produced by 

the whole spectrum of devices in the building. Also, this kind of architecture 

facilitates data portability needs. Effective back-end data- sharing architectures 

allow users to move their data when they switch between IoT services, breaking 

down traditional data silo barriers. 

The back-end data-sharing model suggests a federated cloud services approach or 

cloud applications programmer interfaces (APIs) are needed to achieve 

interoperability of smart device data hosted in the cloud. A graphical representation 

of this design is shown in Fig 29. 

 

 



23  

 

Fig 29.Back-end data sharing model 

diagram Internet of Things Communications Models Summary 

The four basic communication models demonstrate the underlying design 

strategies used to allow IoT devices to communicate. Aside from some technical 

considerations, the use of these models is largely influenced by the open versus 

proprietary nature of the IoT devices being networked. And in the case of the 

device-to-gateway model, its primary feature is its ability to overcome proprietary 

device restrictions in connecting IoT devices. This means that device 

interoperability and open standards are key considerations in the design and 

development of internetworked IoT systems. 

From a general user perspective, these communication models help illustrate the 

ability of 



24  

networked devices to add value to the end user. By enabling the user to achieve 

better access to an IoT device and its data, the overall value of the device is 

amplified. For example, in three of the four communication models, the devices 

ultimately connect to data analytic services in a cloud computing setting. By 

creating data communication conduits to the cloud, users, and service providers 

can more readily employ data aggregation, big data analytics, data visualization, 

and predictive analytics technologies to get more value out of IoT data than can be 

achieved in traditional data-silo applications. In other words, effective 

communication architectures are an important driver of value to the end user by 

opening possibilities of using information in new ways. It should be noted, 

however, these networked benefits come with trade-offs. Careful consideration 

needs to be paid to the incurred cost burdens placed on users to connect to cloud 

resources when 

 

4. Low Power Wide Area Networks: An Overview 

 

Low Power Wide Area (LPWA) networks represent a novel communication 

paradigm, which will complement traditional cellular and short range wireless 

technologies in addressing diverse requirements of IoT applications. LPWA 

technologies offer unique sets of features including wide- area connectivity for low 

power and low data rate devices, not provided by legacy wireless technologies. 

LPWA networks are unique because they make different tradeoffs than the 

traditional technologies prevalent in IoT landscape such as short-range wireless 

networks e.g., Zig- Bee, Bluetooth, Z-Wave, legacy wireless local area networks 

(WLANs) e.g., Wi-Fi, and cellular  networks e.g. Global Sys- tem for Mobile 

Communications (GSM), Long-Term Evolution (LTE) etc. The legacy non-cellular 

wireless technologies are not ideal to connect low power devices distributed over 

large geographical areas. The range of these technologies is limited to a few hundred 

meters at best. The devices, therefore, cannot be arbitrarily deployed or moved 

anywhere, a requirement for many applications for smart city, logistics and personal 

health The range of these technologies is extended using a dense deployment of 

devices and gateways connected using multihop mesh networking. Large 

deployments are thus prohibitively expensive. Legacy WLANs, on the other hand, are 

characterized by shorter coverage areas and higher power consumption for machine-

type communication (MTC). 

A wide area coverage is provided by cellular networks, a reason of a wide adoption of 

second generation (2G) and third generation (3G) technologies for M2M 

communication. How- ever, an impending decommissioning of these technologies[5], 

as announced by some mobile network operators (MNOs),will broaden the 

technology gap in connecting low-power devices. In general, traditional cellular 



25  

technologies do not achieve energy efficiency high enough to offer ten years of 

battery lifetime. The complexity and cost of cellular devices is high due to their 

ability to deal with complex waveforms, optimized for voice, high speed data 

services, and text. For low-power MTC, there is a clear need to strip complexity to 

reduce cost. Efforts in this direction are underway for cellular networks by the Third 

Generation Partnership Project and are covered as 

 
 

 

Fig 30.Applications of LPWA technologies across 

different sectors 

 

 

Key Objective Of LPWA Technologies 

 

A. Long range 

LPWA technologies are designed for a wide area coverage and an excellent signal 

propagation to hard-to-reach indoor places such as basements. The physical layer 

compromises on high data rate and slows downs the modulation rate to put more 

energy in each transmitted bit (or symbol). Due to this reason, the receivers can 

decode severely attenuated signals correctly. Typical sensitivity of state of the art 

LPWA receivers reaches as low as -130 dBm. 

B. Ultra low power operation 

Ulra-low power operation is a key requirement to tap into the huge business 

opportunity provided by battery-powered IoT/M2M devices. A battery lifetime of 

10 years or more with AA or coin cell batteries is desirable to bring the 

maintenance cost down. 

C. Topology 



26  

While mesh topology has been extensively used to extend the coverage of short 

range wireless networks, their high deployment cost is a major disadvantage in con- 

necting large number of geographically distributed devices. Further, as the traffic is 

forwarded over multiple hops towards a gateway, some nodes get more congested 

than others depend- ing on their location or network traffic patterns. Therefore, they 

deplete their batteries quickly, limiting overall network lifetime to only a few 

months to years .On the other hand, a very long range of LPWA technologies 

overcomes these limitations by connecting end devices directly to base stations, 

obviating the need for the dense and expensive deployments of relays and gateways 

altogether. The resulting topology is a star that is used extensively in cellular 

networks and brings huge energy saving advantages. As opposed to the mesh 

topology, the devices need not to waste precious energy in busy-listening to other 

devices that want to relay their traffic through them. An always-on base 

station provides convenient and quick access when required by the end-devices. 

 

D.  Duty Cycling: Low power operation is achieved by opportunistically turning off 

power hungry components of M2M/IoT devices e.g., data transceiver. Radio duty 

cycling allows LPWA end devices to turn off their transceivers, when not required. Only 

when the data is to be transmitted or received, the transceiver is turned on. 

 

E.  Lightweight Medium Access Control: Most-widely used Medium Access Control 

(MAC) rotocols for cellular net- works or short range wireless networks are too complex 

for LPWA technologies. For example, cellular networks synchro- nize the base stations 

and the user equipment (UE) accurately to benefit from complex MAC schemes that 

exploit frequency. 

 

 

CHALLENGES AND OPEN RESEARCH DIRECTIONS LPWA 

 

 

On the business side, the proprietary solution providers are in a rush to bring their 

services to the market and capture their share across multiple verticals. In this race, 

it is easy but counter- productive to overlook important challenges faced by LPWA 

technologies. In this section, we highlight these challenges and some research 

directions to overcome them and improve performance in long-term. 

 

1. Scaling networks to massive number of devices 

LPWA technologies will connect tens of millions of devices transmitting data at an 

unprecedented scale over limited and often shared radio resources. This complex 

resource allocation problem is further complicated by several other factors. First, the 

device density may vary significantly across different geographical areas, creating 



27  

the so called hot-spot problem. These hot-spots will put the LPWA base stations to a 

stress test. Second, cross-technology interference  can severely de- grade the 

performance of LPWA technologies. 

2. Interoperability between different LPWA technologies 

Given that market is heading towards an intense competition between different 

LPWA technologies, it is safe to assume that several may coexist in future. 

Interoperability between these heterogeneous technologies is thus crucial to their 

long- term profitability. With little to no support for interoperability between 

different technologies, a need for standards that glue them together is strong. 

Interoperability is a still an open challenge. Test beds and open-source tool chains 

for LPWA technologies are not yet widely available to evaluate interoperability 

mechanisms. 

 

3. Localization 

LPWA networks expect to generate significant revenue from logistics, supply 

chain management, and personal IoT applications, where location of mobile 

objects, vehicles, humans, and animals may be of utmost interest. An accurate 

localization support is thus an important feature for keeping track of valuables, 

kids, elderly, pets, shipments, vehicle fleets, etc. In fact, it is regarded as an 

important feature to enable new applications. 

 

4. Link optimizations and adaptability 

If a LPWA technology permits, each individual link should be optimized for high 

link quality and low energy consumption to maximize overall network capacity. 

Every LPWA technology allows multiple link level configurations that introduce 

tradeoffs between different performance metrics such as data rate, time-on-air, 

area coverage, etc. This motivates a need for adaptive techniques that can monitor 

link quality and then read just its parameters for better performance. However for 

such techniques to work, a feedback from gateway to end devices is usually 

required over down link. 

5. LPWA test beds and tools 

LPWA technologies enable several smart city applications. A few smart city test 

beds e.g. Smart Santander have emerged in recent years. Such test beds 

incorporate sensors equipped with different wireless technologies such as Wi-Fi, 

IEEE 802.15.4 based networks and cellular networks. How- ever, there are so far 

no open test beds for LPWA networks. Therefore, it is not cost-effective to 

widely design LPWA systems and compare their performance at a metropolitan 

scale. At the time of writing, only a handful of empirical studies compare two 

our more LPWA technologies under same conditions. In our opinion, it is a 

significant barrier to entry for potential customers. Providing LPWA 



28  

technologies as a scientific instrumentation for general public through city 

governments can act as a confidence building measure. 

 

6. Authentication, Security, and Privacy 

Authentication, security, and privacy are some of the most important features of 

any communication system. Cellular networks provide proven authentication, 

security, and privacy mechanisms. Use of Subscriber Identity Modules (SIM) 

simplifies identification and authentication of the cellular devices. LPWA 

technologies, due to their cost and energy considerations, not only settle for 

simpler communication protocols but also depart from SIM based authentication. 

Techniques and protocols are thus required to provide equivalent or better 

authentication support for LPWA technologies. Further to assure that end devices 

are not exposed to any security risks over prolonged duration, a support for over-

the-air (OTA) updates is a crucial feature. A lack of adequate support for OTA 

updates poses a great security risk to most LPWA technologies. 

 

7. Mobility and Roaming 

Roaming of devices between different network operators is a vital feature 

responsible for the commercial success of cellular networks. Whilst some LPWA 

technologies do not have the notion of roaming (work on a global scale  such as  

SIGFOX),  there are others that  do  not  have support for roaming as of the time of 

this writing. The major challenge is to provide roaming without compromising the 

lifetime of the devices. To this effect, the roaming support should put minimal 

burden on the battery powered end-devices. Because the end-devices duty cycle 

aggressively, it is reasonable to assume that the low power devices cannot receive 

downlink  traffic at all times. Data exchanges over the uplink should be exploited 

more aggressively. Network assignment is to be resolved in backend systems as 

opposed to the access network. All the issues related to agility of roaming process 

and efficient resource management have to bead dressed. 



29  

5. Wireless Personal Area Network (WPAN) 

WPANs are used to convey information over short distances among a private, 

intimate group of participant devices. Unlike a WLAN, a connection made through a 

WPAN involves little or no infrastructure or direct connectivity to the world outside the 

link. This allows small, power-efficient, inexpensive solutions to be implemented for a 

wide range of device. 

 

Applications 

 

 Short-range (< 10 m) connectivity for multimedia applications 

 PDAs, cameras, voice (hands free devices) 

 High QoS, high data rate (IEEE 802.15.3) 

 Industrial sensor applications 

 Low speed, low battery, low cost sensor networks (IEEE 802.15.4) 

 Common goals 

 Getting rid of cable connections 

 Little or no infrastructure 

 Device interoperability 

 

WPAN Topologies: 

 

 

Fig 31 WPAN Topologies 

 

IEEE 802.15 WPAN Standards: 

 

1. IEEE 802.15.2- Co existence of Bluetooth and 802.11b 

2. IEEE 802.15.3- High Rate WPAN 

Low power and low cost applications for digital imaging and multimedia applications. 

3. IEEE 802.15.4- Low Rate WPAN 

Industrial ,Medical and agriculture applications. 

 

Bluetooth ≈ IEEE 802.15.1 

A widely used WPAN technology is known as Bluetooth (version 1.2 or version 2.0). 

The IEEE 

 standard specifies the architecture and operation of Bluetooth devices, but only as 



30  

far as physical layer and medium access control (MAC) layer operation is concerned 

(the core system architecture) 

.Higher protocol layers and applications defined in usage profiles are standardized by the 

Bluetooth SIG. Bluetooth is the base for IEEE Std 802.15.1-2002 (rev. 2005).Data rate of 1 

Mbps (2 or 3 Mbps with enhanced data rate). 

Piconets 

 

 Bluetooth enabled electronic devices connect and communicate wirelessly through 

short-range, ad hoc networks known as piconets. Piconets are established 

dynamically and automatically as Bluetooth enabled devices enter and leave radio 

proximity. Up to 8 devices in one piconet (1 master and up to 7 slave devices) 

 Max range is 10 m. The piconet master is a device in a piconet whose clock and 

device address  are used to define the piconet physical channel characteristics.All 

other devices in the piconet are called piconet slaves.All devices have the same 

timing and frequency hopping sequence. At any given time, data can be transferred 

between the master and one slave. 

 The master switches rapidly from slave to slave in a round-robin fashion. Any 

Bluetooth device can be either a master or a slave. Any device may switch the 

master/slave role at any time. 

Scatternet 

Any Bluetooth device can be a master of one piconet and a slave of another piconet at the 

same time (scatternet). Scatternet is formed by two ormore Piconets. Master of one piconet 

can participate as a slave in another connected piconet. No time or frequency 

synchronization between piconets 

 

Bluetooth Protocol 

Stack Radio Layer 

The radio layer specifies details of the air interface, including the usage of the frequency 

hopping sequence, modulation scheme, and transmit power. The radio layer FHSS 

operation and radio parameters 

Baseband Layer 

The baseband layer specifies the lower level operations at the bit and packet levels. It 

supports Forward Error Correction (FEC) operations and Encryption, Cyclic 

Redundancy Check (CRC) calculations. Retransmissions using the Automatic Repeat 

Request (ARQ) Protocol. 

 



31  

 

 

Fig 32 Bluetooth Protocol Stack 

 

Link Manager layer 

The link manager layer specifies the establishment and release links, authentication, traffic 

scheduling, link supervision, and power management tasks. Responsible for all the physical 

link resources in the system. Handles the control and negotiation of packet sizes used when 

transmitting data.Sets up, terminates, and manages baseband connections between devices. 

L2CAP layer 

The Logical Link Control and Adaptation Protocol (L2CAP) layer handles the 

multiplexing of higher layer protocols and the segmentation and reassembly (SAR) of 

large packets The L2CAP layer provides both connectionless and connection-oriented 

services 

 

L2CAP performs 4 major functions 

 

Managing the creation and termination of logical links for each connection through 

channel structures. Adapting Data, for each connection, between application (APIs) and 

Bluetooth Baseband formats  through Segmentation and Reassembly (SAR). Performing 

Multiplexing to support multiple concurrent connections over a single common radio 

interface (multiple apps. using link between two devices simultaneously). L2CAP 

segments large packets into smaller baseband manageable packets. Smaller received 

baseband packets are reassembled coming back up the protocol stack. 

 

RFCOMM 

Applications may access L2CAP through different support protocols Service Discovery 

Protocol (SDP) RFCOMM Telephony Control Protocol Specification (TCS) TCP/IP based 



32  

applications, for instance information transfer using the Wireless Application Protocol 

(WAP), can be extended to Bluetooth devices by using the Point-to-Point Protocol (PPP) on 

top of RFCOMM. 

OBEX Protocol 

The Object Exchange Protocol (OBEX) is a sessionlevel protocol for the exchange of 

objects This protocol can be used for example for phonebook, calendar or messaging 

synchronization, or for file transfer between connected devices. 

TCSBIN Protocol 

 

The telephony control specification - binary (TCS BIN) protocol defines the call-control 

signaling for the establishment of speech and data calls between Bluetooth devices In 

addition, it defines mobility management procedures for handling groups of Bluetooth 

devices. 

Service Discovery Protocol 

 

The Service Discovery Protocol (SDP) can be used to access a specific device (such as a 

digital camera) and retrieve its capabilities, or to access a specific application (such as a print 

job) and find devices that support this application. 

 

6. Smart Wi-Fi module 

 

Smart Wi-Fi is an IoT-enabler tool. The applications it can cater to are only limited by 

the imagination of makers. The very basic applications could be for smart homes or smart 

offices. This module can be used for data logging, data monitoring and more, and provides 

very good support for product development. It also has all features to act as a full-fledged 

product. Platforms such as ThingSpeak add to the benefits and provide support for testing 

and development of an IoT product. Smart Wi-Fi enables making a product quickly and 

reliably. With open software resources and hardware data, moving to the final product after 

the proof of concept is also easy. 

7. IoT platform 

The purpose of any IoT device is to connect with other IoT devices and applications 

(cloud-based mostly) to relay information using internet transfer protocols. 

The gap between the device sensors and data networks is filled by an IoT Platform. Such a 

platform connects the data network to the sensor arrangement and provides insights using 

backend applications to make sense of plethora of data generated by hundreds of sensors. 

 

While there are hundreds of companies and a few startups venturing into IoT platform 

development, players like Amazon and Microsoft are way ahead of others in the 

competition. Read on to know about top 10 IoT platforms you can use for your applications. 

 

http://internetofthingswiki.com/iot-devices
http://internetofthingswiki.com/iot-devices


33  

IoT platform: Amazon Web Services (AWS) IoT 

 

Last year Amazon announced the AWS IoT platform at it s Re:Invent conference. 

Main features of AWS IoT platform are: 

 

 Registry for recognizing devices 

 Software Development Kit for devices 

 Device Shadows 

 Secure Device Gateway 

 Rules engine for inbound message evaluation 

According to Amazon, their IoT platform will make it a lot easier for developers to connect 

sensors for multiple applications ranging from automobiles to turbines to smart home light 

bulbs. 

Taking the scope of AWS IoT to the next level, the vendor has partnered with hardware 

manufacturers like Intel, Texas Instruments, Broadcom and Qualcomm to create starter kits 

compatible with their platform. 

 

IoT Platform: Microsoft Azure IoT 

 

Microsoft is very  much  interested  in  bringing  up  products  for  internet  of  things.  For  

the  initiative the Microsoft Azure cloud services compatible IoT platform, the Azure IoT 

suite is on the offer.  Features included in this platform are: 

 Device shadowing 

 A rules engine 

 Identity registry 

 Information monitoring 

For processing the massive amount of information generated by sensors Azure IoT suite 

comes with Azure Stream Analytics to process massive amounts of information in real-time. 

 

Top IoT Platforms-Google Cloud Platform (New) 

 

Google can make things happen. With its end-to-end platform, Google cloud is among the 

best IoT platforms we have currently. With the ability to handle the vast amount of data 

using Cloud IoT Core, 



34  

Google stands out from the rest. You get advanced analytics owing to Google‘s Big Query 

and Cloud Data Studio. 

Some of the features of the Google Cloud platform are:- 

 Accelerate your Business 

 Speed up your devices 

 Cut Cost with Cloud Service. 

 Partner Ecosystem 

 

IoT Platform: ThingWorx IoT Platform 

 

In  vendor‘s  own  words,  ―ThingWorx  is  the  industry‘s  leading  Internet  of  Things  

(IoT)  technology platform. It enables innovators to rapidly create and deploy game-

changing applications, solutions and experiences for today‘s smart, connected world.” 

Thingsworx is an IoT platform which is designed for enterprise application development. It 

offers features like: 

 Easy connectivity of devices to the platform 

 Remove complexity from IoT application development 

 Sharing platform among developers for rapid development 

 Integrated machine learning for automating complex big data analytics 

 Deploy cloud, embedded or on-premise IoT solutions on the go 

 

IoT platform: IBM Watson 

 

We can never expect the Big Blue to miss on the opportunity to making a mark in the 

internet of things segment. IBM Watson is an IoT platform which is pretty much taken 

among developers already. Backed by IBM‘s hybrid cloud PaaS (platform as a service) 

development platform, the Bluemix, Watson IoT enables developers to easily deploy IoT 

applications. 

Users of IBM Watson get: 

 Device Management 

 Secure Communications 

 Real Time Data Exchange 

 Data Storage 

 Recently added data sensor and weather data service 

 

Top IoT Platforms-Artik 

(New):samsung IoT Platform: 

Cisco IoT Cloud Connect 

Top IoT Platforms-Universal of Things (IoT) Platform 

(New) :HP Top IoT Platforms-Datav by Bsquare (New) 

IoT platform: Salesforce IoT Cloud 

Top IoT Platforms-Mindsphere by 

http://internetofthingswiki.com/iot-applications-examples/541
http://internetofthingswiki.com/iot-applications-examples/541
http://internetofthingswiki.com/iot-applications-examples/541


35  

Siemens (New) Top IoT Platforms-Ayla 

Network by Ayla (New) Top IoT 

Platforms-Bosch IoT Suite(New) 

IoT Platform: Carriots 

IoT Platform: Oracle Integrated 

Cloud IoT Platform: General 

Electric‘s Predix 

Top IoT Platforms-MBED IoT Device platform(New) 
 

Top IoT Platforms-Mosaic (LTI) 

(New) IoT Platform: Kaa 

AWS IoT Core is a managed cloud platform that lets connected devices easily and securely 

interact with cloud applications and other devices. AWS IoT Core can support billions of 

devices and trillions of messages, and can process and route those messages to AWS 

endpoints and to other devices reliably and securely. With AWS IoT Core, your 

applications can keep track of and communicate with all your devices, all the time, even 

when they aren‘t connected. 

AWS IoT  Core  makes  it  easy  to  use  AWS  services  like AWS  Lambda, Amazon  

Kinesis, Amazon  S3, Amazon   Machine    Learning, Amazon    DynamoDB, Amazon    

CloudWatch, AWS    CloudTrail, and Amazon Elasticsearch Service with built-in Kibana 

integration, to build IoT applications that gather, process, analyze and act on data generated 

by connected devices, without having to manage any infrastructure. 

 

AWS IoT provides secure, bi-directional communication between Internet-connected 

devices such as sensors, actuators, embedded micro-controllers, or smart appliances and the 

AWS Cloud. This enables you to collect telemetry data from multiple devices, and store and 

analyze the data. You can also create applications that enable your users to control these 

devices from their phones or tablets. 

 

AWS IoT Components 

 

AWS IoT consists of the following components: 

 

A. Device gateway 

Enables devices to securely and efficiently communicate with AWS IoT. 

 

B. Message broker 

Provides a secure mechanism for devices and AWS IoT applications to publish and receive 

messages from each other. You can use either the MQTT protocol directly or MQTT over 

WebSocket to publish and subscribe. You can use the HTTP REST interface to publish. 

 

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/aml/
https://aws.amazon.com/aml/
https://aws.amazon.com/aml/
https://aws.amazon.com/aml/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/kibana/
https://aws.amazon.com/elasticsearch-service/kibana/
https://aws.amazon.com/elasticsearch-service/kibana/


36  

C. Rules engine 

Provides message processing and integration with other AWS services. You can use an 

SQL-based language to select data from message payloads, and then process and send the 

data to other services, such as Amazon S3, Amazon DynamoDB, and AWS Lambda. You 

can also use the message broker to republish messages to other subscribers. 

D. Security and Identity service: 

Provides shared responsibility for security in the AWS Cloud. Your devices must keep their 

credentials  safe in order to securely send data to the message broker. The message broker 

and rules engine use AWS security features to send data securely to devices or other AWS 

services. 

E. Registry 

Organizes the resources associated with each device in the AWS Cloud. You register your 

devices and associate up to three custom attributes with each one. You can also associate 

certificates and MQTT client IDs with each device to improve your ability to manage and 

troubleshoot them. 

F. Group registry 

 

Groups allow you to manage several devices at once by categorizing them into groups. 

Groups can also contain groups—you can build a hierarchy of groups. Any action you 

perform on a parent group will apply to its child groups, and to all the devices in it and in 

all of its child groups as well. Permissions given to a group will apply to all devices in the 

group and in all of its child groups. 

G. Device shadow 

A JSON document used to store and retrieve current state information for a device. 

 

H. Device Shadow service 

Provides persistent representations of your devices in the AWS Cloud. You can publish 

updated state information to a device's shadow, and your device can synchronize its state 

when it connects. Your devices can also publish their current state to a shadow for use by 

applications or other devices. 

I. Device Provisioning service 

Allows you to provision devices using a template that  describes the resources required  for  

your device:   a thing, a certificate, and one or more policies. A thing is an entry in the 

registry that contains attributes  that describe a device. Devices use certificates to 

authenticate with AWS IoT. Policies determine which operations a device can perform in 

AWS IoT. 

 

The templates contain variables that are replaced by values in a dictionary (map). You can 

use the same template to provision multiple devices just by passing in different values for 



37  

the template variables in the dictionary. 

 

J. Custom Authentication service 

 

You can define custom authorizers that allow you to manage your own authentication and 

authorization strategy using a custom authentication service and a Lambda function. 

Custom authorizers allow AWS IoT to authenticate your devices and authorize operations 

using bearer token authentication and authorization strategies. Custom authorizers can 

implement various authentication strategies and must return policy documents which are 

used by the device gateway to authorize MQTT operations. 

 

K. Jobs Service 

 

Allows you to define a set of remote operations that are sent to and executed on one or more 

devices connected to AWS IoT. For example, you can define a job that instructs a set of 

devices to download and install application or firmware updates, reboot, rotate certificates, 

or perform remote troubleshooting operations.To create a job, you specify a description of 

the remote operations to be performed and a list of targets that should perform them. The 

targets can be individual devices, groups or both. 

 

Accessing AWS IoT 

 

AWS IoT provides the following interfaces to create and interact with your devices: 

 

 AWS Command Line Interface (AWS CLI)—Run commands for AWS IoT on 

Windows, macOS, and Linux. These commands allow you to create and manage 

things, certificates, rules, and policies. To get started, see the AWS Command Line 

Interface User Guide. For more information about the commands for AWS IoT, see 

iot in the AWS CLI Command Reference. 

 

 AWS IoT API—Build your IoT applications using HTTP or HTTPS requests. These 

API actions allow you to programmatically create and manage things, certificates, 

rules, and policies. For more information about the API actions for AWS IoT, see 

Actions in the AWS IoT API Reference. 

 AWS SDKs—Build your IoT applications using language-specific APIs. These 

SDKs wrap the HTTP/HTTPS API and allow you to program in any of the supported 

languages. 

 AWS IoT Device SDKs—Build applications that run on devices that send messages 

to and receive messages from AWS IoT. 

 

 

 

http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://docs.aws.amazon.com/iot/latest/apireference/API_Operations.html


38  

Related Services 

 

AWS IoT integrates directly with the following AWS services: 

 

 Amazon Simple Storage Service—Provides scalable storage in the AWS Cloud. For 

more information, see Amazon S3. 

 Amazon DynamoDB—Provides managed NoSQL databases. For more information, 

see Amazon DynamoDB. 

 Amazon Kinesis—Enables real-time processing of streaming data at a massive scale. 

For more information, see Amazon Kinesis. 

 AWS Lambda—Runs your code on virtual servers from Amazon EC2 in response to 

events. For more information, see AWS Lambda. 

 Amazon Simple Notification Service—Sends or receives notifications.  For  more  

information, see Amazon SNS. 

 Amazon Simple Queue Service—Stores data in a queue to be retrieved by 

applications. For more information, see Amazon SQS. 

 

 

 

Benefits 

Connect and Manage Your Devices 

AWS IoT Core allows you to easily connect devices to the cloud and to other devices. AWS 

IoT Core supports HTTP, WebSockets, and MQTT, a lightweight communication protocol 

specifically designed to tolerate intermittent connections, minimize the code footprint on 

devices, and reduce network bandwidth requirements. AWS IoT Core also supports other 

industry-standard and custom protocols, and devices can communicate with each other even 

if they are using different protocols 

 

 

 

 

 

Fig 33. IOT Device Management 

https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/lambda/
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/


39  

Secure Device Connections and Data 

AWS IoT Core provides authentication and end-to-end encryption throughout all points of 

connection, so that data is never exchanged between devices and AWS IoT Core without 

proven identity. In addition, you can secure access to your devices and applications by 

applying policies with granular permissions 

 

 

 

 

 

 

 

 

Fig 34.Secure 

Connection PROCESS AND ACT UPON DEVICE 

DATA 

With AWS IoT Core, you can filter, transform, and act upon device data on the fly, based 

on business rules you define. You can update your rules to implement new device and 

application features at any time. AWS IoT Core makes it easy to use AWS services like 

AWS Lambda, Amazon Kinesis, Amazon S3, Amazon Machine Learning, Amazon 

DynamoDB, Amazon CloudWatch, and Amazon Elasticsearch Service for even more 

powerful IoT applications 

 

Fig 35. Process And Act Upon 

Device Data Read and set device state at any time 

AWS IoT Core stores the latest state of a device so that it can be read or set at anytime, 

making the device appear to your applications as if it were online all the time. This means 

that your application can read a device‘s state even when it is disconnected, and also allows 

you to set a device state and have it implemented when the device reconnects 



40  

 
 

Fig 36. Read and set device state at any time 

 

7. PROGRAMS for Arduino, 

Raspberry pi PIR motion sensor 

The passive infra red sensor or simply PIR sensor is integrated with an arduino uno 

board and we can get serial data through it. The PIR sensor basically works on the thermal 

radiation which are being emitted by the body of humans as well as animals. 

The parts needed for this build are given as 

1.Arduino uno or clone 

2. PIR Sensor 

3.breadboard 

4.led(any 

colour) 

5.buzzer 

The following fig 26 shows the pin description of PIR sensor. 

 

Fig 37.Arduino Board 

 

Features and Electrical Specification 

 

Compact size (28 x 38 mm) 

Supply current: DC5V-20V(can design DC3V-24V) 

Current drain :< 50uA (Other choice: DC0.8V-4.5V; Current drain: 1.5mA-0.1mA) 

Voltage Output: High/Low level 



41  

signal ：3.3V (Other choice: Open-Collector Output) TTL output 

High sensitivity Delay time：5s-18 minute 

 

Blockade time：0.5s-50s (acquiescently 0 

seconds) the connections follows as 

 

ARDUINO UNO PIR SENSOR:: 

+5V ------------------------------- +5V(VCC) 

GND ----------------------------- GND 

5 PIN------------------------------ OUT 

The coding related to the following circuit is very simple the code follows 

in this way At the starting we need to declare the pins which we are going 

to use 

 

int PIR_output=5; // output of pir 

sensor int led=13; // led pin 

int buzzer=12;// buzzer pin 

After that is done we can move on to the void setup fuction 

pinMode(PIR_output, INPUT);// setting pir output as 

arduino input pinMode(led, OUTPUT);//setting led as 

output 

pinMode(buzzer, OUTPUT);//setting buzzer as output 

Serial.begin(9600);//serial communication between 

arduino and pc 

you can download the full program from above PIR_sensor_by_kj_electronics file and 

upload it to the arduino uno by using the arduino ide 

 

Ultrasonic sensor 

It works by sending sound waves from the transmitter, which then bounce off of an object 

and then return to the receiver. You can determine how far away something is by the time it 

takes for the sound waves to get back to the sensor. Let's get right to it!. Connections 

The connections are very simple: 

 VCC to 5V 

 GND to GND 

 Trig to pin 9 

 Echo to pin 10 

You can actually connect Trig and Echo to whichever pins you want, 9 and 10 are just the ones 



42  

const int trigPin = 9; 

const int echoPin = 10; 

void setup() { 

pinMode(trigPin, OUTPUT); 

pinMode(echoPin, INPUT); 

Serial.begin(9600); 

} 

I'm using. 

 

Fig 38.Ultra Sonic Sensor 

 

Code: 

 

we define the pins that Trig and Echo are connected to. 

 

 
Then we declare 2 floats, duration and distance, which will hold the length of the sound wave 
and how 

far away the object is. 

 

 float  duration, distance;  

Next, in the setup, we declare the Trig pin as an output, the Echo pin as an input, and start 

Serial communications. 

 

 

Now, in the loop, what we do is  first  set the trigPin low  for 2 microseconds just to make 

sure that the pin in low first. Then, we set it high for 10 microseconds, which sends out an 

8 cycle sonic  burst  from the transmitter, which then bounces of an object and hits the 

receiver(Which is connected to t he Echo Pin). 

void loop() { 

digitalWrite(trigPin, 

LOW); 

delayMicroseconds(2); 



43  

duration = pulseIn(echoPin, HIGH); 

digitalWrite(trigPin, 

HIGH); 

delayMicroseconds(10); 

digitalWrite(trigPin, 

LOW); 

 

When the sound waves hit the receiver, it turns the Echo pin high for however long the 

waves were traveling for. To get that, we can use a handy Arduino function called  

pulseIn(). It takes 2 arguments,  the pin you are listening to(In our case, the Echo pin), and 

a state(HIGH or LOW). What the function does is waits for the pin to go whichever sate 

you put in, starts timing, and then stops timing when it switches to the other state. In our 

case we would put HIGH since we want  to start  timing  when the Echo pin goes high. We 

will store the time in the duration variable. (It returns the  time  in microseconds) 

 

Now that  we have the time, we can use the equation speed = distance/time, but  we will  
make  it  time  x 

speed = distance because we have the speed. What speed do we have? The speed of sound, 

of course! The speed of sound is approximately 340 meters per  second,  but  since  the 

pulseIn() function returns the time in microseconds, we will need to have a speed in 

microseconds also, which is easy to get. A quick Google search for "speed of sound in 

centimeters per microsecond" will say that it is .0343 c/μS. You could do the math, but 

searching it is easier. Anyway, with that information, we can calculate the 

distance! Just multiply the duration by .0343 and the divide it by 2(Because the sound 

waves travel to  the object AND back). We will store that in the distance variable. 

 

 

distance = (duration*.0343)/2; 

 

The rest is just printing out the results to the Serial 

Monitor. Serial.print("Distance: "); 

Serial.println(distan

ce); delay(100); 

} 
 

Temperature Sensor 

 

Connecting to a Temperature Sensor 

 

These sensors have little chips in them and while they're not that delicate, they do need to 

be handled properly. Be careful of static electricity when handling them and make sure the 



44  

power supply is connected up correctly and is between 2.7 and 5.5V DC - so don't try to use 

a 9V battery! 

 

They come in a "TO-92" package which means the chip is  housed  in  a  plastic hemi-

cylinder with three legs. The legs can be  bent easily to allow  the sensor to be plugged 

into a breadboard. You can also solder to the pins to connect long wires. 

 

 

Reading the Analog Temperature Data 

 

Unlike the FSR or photocell sensors we have looked at, the TMP36 and friends doesn't 

act like a resistor. Because of that, there is really only one way to read the temperature 

value  from the sensor, and that is plugging the output pin directly into an Analog (ADC) 

input. 

Remember that you can use anywhere between 2.7V and 5.5V as the power supply.  For 

this example I'm showing it with a 5V supply but note that you can use this with a 3.3v 

supply just as easily. No matter what supply you use, the analog voltage reading will 

range from about 0V (ground) to about 1.75V. 

If you're using a 5V Arduino, and connecting the sensor directly into an Analog pin, you 

can use these formulas to turn the 10-bit analog reading into a temperature: 

 

Voltage at pin in milliVolts = (reading from ADC) * (5000/1024) 

 

This formula converts the number 0-1023 from the ADC into 0-5000mV (= 5V) If you're 

using a 3.3V Arduino, you'll want to use this: 

 

Voltage at pin in milliVolts = (reading from ADC) * (3300/1024) 

 

This formula converts the number 0-1023 from the ADC into 0-3300mV (= 3.3V) Then, to 

convert millivolts into temperature, use this formula: 

 

Centigrade temperature = [(analog voltage in mV) - 500] / 10 

 

 



45  

Fig 50 Temperature Sensor 

 

Fig 39.Temperature Sensor 

 

Arduino Sketch - Simple Thermometer 

This example code for Arduino shows a quick way to create a temperature sensor, it 

simply prints to  the serial port what the current temperature is in both Celsius and 

Fahrenheit. 

For better results, using the 3.3v reference voltage as ARef instead of the 5V will be more 

precise and less 

noisy 

int sensorPin = 0; 

* setup() - this function runs once when you turn your 

Arduino on void setup() 

{ 

Serial.begin(9600); //Start the serial connection with the computer 

//to view the result open the serial monitor 

} 

void loop() // run over and over again 

{ 

//getting the voltage reading from the temperature 

sensor int reading = analogRead(sensorPin); 

// converting that reading to voltage, for 3.3v arduino 

use 3.3 float voltage = reading * 5.0; 

voltage /= 1024.0; 

// print out the voltage 

Serial.print(voltage); Serial.println(" volts"); 

// now print out the temperature 

float temperatureC = (voltage - 0.5) * 100 ; //converting from 10 mv per degree wit 500 mV 

offset 

//to degrees ((voltage - 500mV) times 100) 

Serial.print(temperatureC); Serial.println(" degrees C"); 



46  

// now convert to Fahrenheit 

float temperatureF = (temperatureC * 9.0 / 5.0) 

+ 32.0; Serial.print(temperatureF); 

Serial.println(" degrees F"); delay(1000);

 //waiting a 

second 

} 
 

PYTHON CODE : 

 

PIR sensor code 

import RPi.GPIO as GPIO  #Import GPIO 

library import time #Import time library 

GPIO.setmode(GPIO.BOARD)   #Set GPIO pin 

numbering pir = 26 #Associate pin 26 to pir 

GPIO.setup(pir, GPIO.IN)  #Set pin as GPIO in 

print "Waiting for sensor to settle" 

time.sleep(2) #Waiting 2 seconds for the sensor to 

initiate print "Detecting motion" 

while True: 

if GPIO.input(pir): #Check whether pir is 

HIGH print "Motion Detected!" 

time.sleep(2) #D1- Delay to avoid multiple detection 

time.sleep(0.1) #While loop delay should be less than detection(hardware) 

delay 

 

Ultrasonic 

import RPi.GPIO as 

GPIO import time 

GPIO.setmode(GPIO.B

CM) 

 

TRIG = 23 

ECHO = 24 

 

print "Distance Measurement In Progress" 

 

GPIO.setup(TRIG,GPIO.

OUT) 

GPIO.setup(ECHO,GPIO.

IN) 

 

GPIO.output(TRIG, False) 



47  

print "Waiting For Sensor To 

Settle" time.sleep(2) 

 

GPIO.output(TRIG, True) 

time.sleep(0.00001) 

GPIO.output(TRIG, False) 

 

while 

GPIO.input(ECHO)==0: 

pulse_start = time.time() 

 

while GPIO.input(ECHO)==1: 

pulse_end = time.time() 

pulse_duration = pulse_end - 

pulse_start distance = 

pulse_duration * 17150 distance = 

round(distance, 2) 

print 

"Distance:",distance,"cm" 

GPIO.cleanup() 

8. WERABLE DEVELOPMENT BOARDS 
 

Wearable devices are creating great buzz in the market and has become the trend of the 

day. Innovations are more focused on body-borne computers (also referred as wearables) 

which are miniature electronic devices that are worn on face, wrist, clothes or even shoes! 

Eco-system of wearable devices involves extensive product development knowledge and 

expertise in technology areas from hardware design to cloud applications to mobile 

application development. Specifically, for developing wearable devices one requires 

following technology expertise: 

 

 Hardware / electronic design and development expertise for developing products with 

minimum form factor size. Moreover, power management expertise is a must-have to 

ensure that devices can last several days / weeks / months on a single battery charge. 



48  

 BSP / firmware development expertise ensuring memory optimized driver 

development with minimum footprint, enhanced power management and highest 

performance in spite of low-end microcontroller. 

 Smartphone application development on Android and iPhone platforms to allow 

connectivity with the wearable device. 

 Cloud / web application for enabling M2M (machine-to-machine) / IoT (Internet of 

things) for remote monitoring and control. 

 

Challenges 

Having end-to-end expertise for product development is tough ask and there are very few 

organizations which can ensure quality end-to-end product development. In order to 

achieve seamless communication, all the components of wearable devices from hardware to 

cloud to smartphones need to be closely knit. Integration is key and experience of native 

operating system primitives is a must to extract maximum performance with minimum 

code! Here are some basic skills required: 

 

 Complex hardware designing abilities smaller sized form factor development. 

 Knowledge of choosing the right components for size and efficient power 

management. 

 Certifications to ensure radiations do not affect human body. 

 Expertise in driver development for developing optimized drivers for new types of 

sensors. 

 Ability to develop code that fits on lower capacity RAM / flash. 

 

 Domain knowledge for efficient application development. 

 Ability to develop iPhone / Android / Windows applications. 

 Ability to develop Cloud / web / smartphone connectivity applications. 

 

Input wearables are devices which get input from something and transmit it to the server, 

for example health monitoring devices. Maven has experience in medical electronics 

coupled with remote communication capabilities that can be used for developing such type 

of applications. 

Output wearables are device those provide you some information like a smart watch or 

smart glasses. Maven has already worked on smart watch technology based on Pebble 

platform. 

 

BSP / firmware / operating system development services 

 

 Developing firmware for microcontrollers from Microchip, TI, Atmel, Cypress, 

Freescale, NXP etc. 

 

Firmware is a software program permanently etched into a hardware device such 



49  

as a keyboards, hard drive, BIOS, or video cards. It is programmed to give 

permanent instructions  to communicate with other devices and perform functions 

like basic input/output tasks. Firmware is typically stored in the flash ROM (read 

only memory) of a hardware device. Firmware was originally designed for high 

level software and could be changed without having to exchange the hardware for 

a newer device. Firmware also retains the basic instructions for hardware devices 

that make them operative. Without firmware, a hardware device would be non-

functional. 

 

Development Boards for IoT 

 

 Driver development for various sensors such as accelerometers, gyroscopes, motion 

sensors, proximity sensors, magnetometers etc. 

 Driver development for communication interfaces like BLE 4.0, NFC, RF and even 

using the 3.5 mm audio headphone jack. 

 Development of power management algorithms. 

 Power management by using the right components and critical designs. 

 

Embedded / real-time application development services 

Key aspects of application development include: 

 

 Developing algorithms based on various type of sensors such as using combination of 

accelerometer, gyrometer and magnetometer for determining relative positions, 

sudden falls, acceleration, angle and so on. 

 Development of fast and intelligent data transfer protocols with minimum overheads 

considering both wired and wireless data transfer mechanisms 

 Development of over the air firmware upgrade / remote diagnostics and health 

monitoring protocols. 

 Integrating with smartphones. 



50  

Smart phone application development services 

Usability, rich user interface and performance are the key parameters for application 

development. Some of the aspects of smartphone application development include: 

 

 Developing communication protocols over BLE, NFC and 3.5 mm jack for getting 

data from the wearable devices. 

 Intelligence to take decisions based on the data, such as send event / alarm 

notifications over SMS, transferring data to the server. 

 Integrating navigation applications to give direction on an output type of wearable 

device such as a smart watch. 

 

Cloud / web application development services 

With applications hosted on platforms like Amazon, Microsoft and similar, availability and 

uptimes are assured. Development expertise include: 

 

 Developing applications in HTML5, Dot Net and Java with database servers such as 

SQL, Oracle, PostgreSQL, MySQL and application servers such as IIS, Tomcat and 

JBOSS. 

 Building applications for displaying real-time parameters, historical trends. 
 

1. C.H.I.P 

 

CHIP is the new kid on the block. It comes with a powerful 1GHz processor powered by 

Allwinner R8. The best thing about CHIP is that it comes with embedded Bluetooth 4.0 and 

WiFi radios, providing out- of-the-box connectivity. The board has 4GB of high-speed 

storage to run a special Linux distribution based on Debian. You don‘t need a separate SD 

Card to install and run the OS. With 8 GPIO pins, CHIP can be connected to a variety of 

sensors. The board also supports PWM, UART, I2C for connecting motors and other 

actuators. One of the key advantages of CHIP is the cost and the form-factor. Developers 

can SSH into the Linux OS and install required packages. 

 

 

 

 

 

 

 

 

 

 

Fig 40. CHIP 

http://getchip.com/pages/chip


51  

 

2. Mediatek Linkit One 

 

 

 

 

 

Fig 41. Linkit 

Based on the smallest SOC, the Linkit One board comes with compatible Arduino pinout 

features. The chipset is based on with 260MHz speed. Regarding connectivity, Linkit One 

has the most comprehensive collection of radios – GPS, GSM, GPRS, WiFi, and Bluetooth. 

One of the unique features of Linkit One is the rich API that can be used from Arduino IDE. 

The SDK comes with libraries to connect the board to AWS and PubNub. Because it 

supports the Arduino pinout, multiple shields from the Arduino ecosystem can be used with 

the board. 

3.Particle Photon 

 

 

 

 

 

 

Fig 42.Particle Photon 

Photon is one of the smallest prototyping boards available in the market. It comes with the 

same Broadcom BCM43362 Wi-Fi chip that powers Next, LiFX, and Amazon Dash 

buttons. Powered by the STM32F205 120Mhz ARM Cortex M3 processor, Photon has 

1MB flash and 128KB RAM. Once configured, the board is accessible from the Internet, 

which makes it an ideal prototyping platform to build connected applications. The board 

comes with five analog pins and eight digital pins for connecting various sensors and 

actuators. The official iOS and Android Apps that Particle has published come handy in 

controlling these pins directly. The powerful web-based IDE lets you write sketches that are 

compatible with Arduino 

3.Tessel 

 

 

 

 

 

http://labs.mediatek.com/site/global/developer_tools/mediatek_linkit/whatis_linkit/index.gsp
https://www.particle.io/prototype#photon


52  

 

 

 

Tessel 2 is a solid development board for serious developers. It comes with a choice of 

sensors and actuators that can be directly connected to the module ports. The board is 

powered by a 580MHz MediaTek MT7620n processor for faster execution. It has 64 MB 

DDR2 RAM & 32 MB Flash, which is more than sufficient for running complex code. The 

Micro-USB port is used for both powering the board as well as connecting to the PC. The 

embedded Wi-Fi and Ethernet ports bring connectivity to Tessel. It has a wide collection of 

sensors and actuators that come along with the required libraries. Based on JavaScript and 

Node.js, it is easy to get started with the platform. Developers looking for a rapid 

prototyping platform can go for Tessel 2. 

 

http://thenewstack.io/year-ahead-node-js-internet-things/
http://thenewstack.io/year-ahead-node-js-internet-things/


53  

 

3. Adafruit Flora 

 

It‘s a wearable electronic platform based on the most popular Arduino 

microcontroller. Flora‘s size makes it an ideal choice for embedded it in clothes and 

apparel. It comes with a thin, sewable, conductor thread which acts as the wire that connects 

the power and other accessories. The latest version of Flora ships with a micro-USB and 

Neopixel LEDs for easy programmability and testing. 

Adafruit Flora is based on Atmega 32u4 microcontroller, which powers Arduino Mega and 

Leonardo. There is an onboard polarized 2 JST battery connector with protection Schottky 

diode for use with external battery packs from 3.5v to 9v DC. Given its compatibility with 

Arduino, most of the sketches would run without modifications. You can use the same 

Arduino IDE with that you may already be familiar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 44.Adafruit Flora 

 

4. LightBlue Bean 

 

LightBlue Bean is an Arduino-compatible microcontroller board that ships with embedded 

Bluetooth Low Energy (BLE), RGB LED, temperature sensor, and an accelerometer. Bean+ 

is the successor to the already popular, which includes a rechargeable LiPo battery along 

with a couple of Grove connectors. The board comes with a coin-cell battery, which further 

helps it to maintain the small form factor. It can be paired with Android or iOS devices for 

remote connectivity and control. It also comes with a software called BeanLoader for 

programming from Windows or Mac equipped with BLE. BeanLoader installs an Arduino 

IDE add-on for programming the Bean platform. LightBlue Bean / Bean+ is powered by an 

ATmega328p microcontroller with 32KB Flash memory and 2KB SRAM. With 8 GPIO 

pins, two analog pins, four PWM pins, and an I2C port, Bean is perfect for quickly 

prototyping BLE-based IoT projects. 

 

https://punchthrough.com/bean


54  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 45.Light blue Bean 



55  

5. Udoo Neo 

 

Udoo Neo is a full-blown computer that also has an Arduino-compatible microcontroller. 

It‘s positioned as the combination of Raspberry Pi and Arduino. The board has the same 

pinout as Arduino Uno.  Neo embeds two cores on the same processor – a powerful 1GHz 

ARM Cortex-A9, and an ARM Cortex-M4 I/O real-time co-processor. It packs a punch 

with an embedded 9-axis motion sensors and a Wi-Fi + Bluetooth 4.0 module. You can 

install Android Lollipop  or  a  customized  flavor  of  Debian  Linux  called UDOObuntu, 

which is compatible with Ubuntu 14.04 LTS. 

When it comes to the power-packed features and specifications, Udoo NEO is nothing short 

of a desktop computer. With a Freescale i.MX 6SoloX applications processor with an 

embedded ARM Cortex-A9 core and a Cortex-M4 Core, Neo comes with 1GB RAM. The 

Micro HDMI port can be connected to an external display and audio sources. The standard 

Arduino pin layout is compatible with Arduino shields. You can install Node.js, Python, 

and even Java on Udoo Neo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 46.Udoo neo 

 

6. Intel Edison 

 

Trust Intel to deliver the most powerful single-board computer for advanced IoT projects. 

Intel Edison is a high-performance, dual-core CPU with a single core micro-controller that 

can support complex data collection. It has an integrated Wi-Fi certified in 68 countries, 

Bluetooth® 4.0 support, 1GB DDR and 4GB flash memory. Edison comes with two 

breakout boards – one that‘s compatible with Arduino and the other board designed to be a 

smaller in size for easy prototyping. The Arduino breakout board has 20 digital input/output 

pins, including four pins as PWM outputs, Six analog inputs, one UART (Rx/Tx), and one 

I2C pin. Edison runs on a distribution of embedded Linux called Yocto. It‘s one of the few 

boards to get certified by Microsoft, AWS, and IBM for cloud connectivity. 

 

http://www.udoo.org/docs-neo/Software_%26_Operating_Systems/UDOObuntu.html
https://www.yoctoproject.org/


56  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 47.Intel Edison 



57  

7. Raspberry Pi 

 

Raspberry Pi is undoubtedly the most popular platform used by many hobbyists and 

hackers. Even non- technical users depend on it for configuring their digital media systems 

and surveillance cameras. The recently launched Raspberry Pi 3 included built-in WiFi and 

Bluetooth making it the most compact and standalone computer. Based on a Broadcom 

BCM2837 SoC with a 1.2 GHz 64-bit quad-core ARM Cortex-A53 processor and 1GB 

RAM, the Pi is a powerful platform. The Raspberry Pi 3 is equipped with 

2.4 GHz WiFi 802.11n and Bluetooth 4.1 in addition to the 10/100 Ethernet port. The 

HDMI port makes it further easy to hook up A/V sources. 

Raspberry Pi runs on a customized Debian Linux called Raspbian, which provides an 

excellent user experience. For developers and hackers, it offers a powerful environment to 

install a variety of packages including Node.js, the LAMP stack, Java, Python and much 

more. With four USB ports and 40 GPIO pins, you can connect many peripherals and 

accessories to the Pi.  

 

 

 

 

 

 

Fig 48.RaspBerry pi 
There are third party breakout boards to connect various Arduino shields to the Pi. At a 

throwaway price of $35, Raspberry Pi 3 is certainly the most affordable and powerful 

computing platform. 

 

8. Arduino Uno 

Arduino Uno remains to be the top favorite of absolute beginners and experts. Considered 

to be one of the first microcontroller-based development boards, the Arduino Uno R3 is 

simplest yet the most powerful prototyping environment. It is based on the ATmega328P 

which has 14 digital input/output pins and six analog inputs. Though it comes with just 32 

KB of Flash memory, it can accommodate code that deals with complex logic and 

operations.Arduino enjoys the best community participation and support.  

 

 

 

 

From sensors to actuators to libraries, it has a thriving ecosystem. The board layout has 

become almost the gold standard for microcontrollers. Almost every prototyping 

https://www.raspberrypi.org/
https://www.raspbian.org/
https://www.arduino.cc/en/main/arduinoBoardUno


58  

environment tries to be compatible with the Arduino pin breakout. The open source IDE to 

develop sketches is another reason for its popularity. With a simple syntax based on ‗C‘ 

language, the code is easy to learn. If you are eager to learn basics of electronics and IoT, 

look no further. Do yourself a favor and get an Arduino Uno R3. 

 

9. Programs and Stack for Constrained 

Devices Sensors and Actuators 

The ―Thing‖ in the IoT is the starting point for an IoT solution It is typically the originator 

of the data, and it interacts with the physical world Things are often very constrained in 

terms of size or power supply; therefore, they are often programmed using microcontrollers 

(MCU) that have very limited capabilities The microcontrollers powering IoT devices are 

specialized for a specifc task and are designed for mass production and low cost 

The software running on MCU-based devices aims at supporting specifc tasks. The key 

features of the software stack running on a device may include 

1. IoT Operating System – many devices will run with ‗bare metal‘, but some will have 

embedded or real- time operating systems that are particularly suited for small constrained 

devices, and that can provide Io T- specifc capabilities. 

2. Hardware Abstraction – a software layer that enables access to the hardware features of 

the MCU, such as fash memory, GPIOs, serial interfaces, etc 

3. Communication Support – drivers and protocols allowing to connect the device to a 

wired or wireless protocol like Bluetooth, Z-Wave, Thread, CAn bus, MQTT, CoAP, etc , 

and enabling device communication 4 Remote Management – the ability to remotely 

control the device to upgrade its frmware or to monitor its battery level. 

 

 

Fig 50.Software Stack for devices 

 

 



59  

Stack for Gateways 

Connected and Smart 

Things 

The IoT gateway acts as the aggregation point for a group of sensors and actuators to 

coordinate the connectivity of these devices to each other and to an external network An 

IoT gateway can be a physical piece  of  hardware  or  functionality  that  is  incorporated  

into  a  larger  ―Thing‖  that  is  connected  to  the network For example, an industrial 

machine might act like a gateway, and so might a connected automobile or a home 

automation appliance 

An  IoT  gateway  will  often  processing  of  the  data  ―at  the  edge‖  and  storage  

capabilities  to  deal  with network latency and reliability For device to device connectivity, 

an IoT gateway deals with the interoperability issues between incompatible devices A 

typical IoT architecture would have many IoT gateways supporting masses of devices 

IoT gateways are becoming increasingly dependant on software to implement the core 

functionality The key features of a gateway software stack include 

1 Operating System – typically a general purpose operating system such as Linux 

 

2 Application Container or Runtime Environment – IoT gateways will often have the ability 

to run application code, and to allow the applications to be dynamically updated For 

example, a gateway may have support for Java, Python, or node js 

3 Communication and Connectivity – IoT gateways need to support different connectivity 

protocols to connect with different devices (e.g. Bluetooth, Wi-Fi, Z-Wave, ZigBee). IoT 

gateways also need to connect to different types of networks (e g Ethernet, cellular, Wi-Fi, 

satellite, etc …) and ensure the reliability, security, and confidentiality of the 

communications. 

4 Data Management & Messaging – local persistence to support network latency, ofine 

mode, and real- time analytics at the edge, as well as the ability to forward device data in a 

consistent manner to an IoT Platform 

5 Remote Management – the ability to remotely provision, configure, startup/shutdown 

gateways as well as the applications running on the gateways 



60  

 

 

Fig 51. Software Stack for Gateway 

 

Stack for IoT Cloud Platforms 

 

The IoT Cloud Platform represents the software infrastructure and services required to 

enable an IoT solution An IoT Cloud Platform typically operates on a cloud infrastructure 

(e g OpenShift, AWS, Microsoft Azure, Cloud Foundry) or inside an enterprise data center 

and is expected to scale both horizontally, to support the large number of devices 

connected, as well as vertically to address the variety of IoT solutions The IoT Cloud 

Platform will facilitate the interoperability of the IoT solution with existing enterprise 

applications and other IoT solutions The core features of an IoT Cloud Platform include 

1. Connectivity and Message Routing – IoT platforms need to be able to interact with very 

large numbers of devices and gateways using diferent protocols and data formats, but then 

normalize it to allow for easy integration into the rest of the enterprise 

2. Device Management and Device Registry – a central registry to identify the 

devices/gateways running in an IoT solution and the ability to provision new software 

updates and manage the devices 

3 . Data Management and Storage – a scalable data store that supports the volume and 

variety of IoT data Software stack for gateways Software stack for IoT Cloud Platforms 7 

The Three Software Stacks Required for IoT Architectures IOT ARCHITECTURES 

4 Event Management, Analytics & UI – scalable event processing capabilities, ability to 

consolidate and analyze data, and to create reports, graphs, and dashboards 

5 Application Enablement – ability to create reports, graphs, dashboards, … and to use API 

for application integration. 



61  

 

 

Fig 52.Software Stack for Cloud 

 

Cross-Stack Functionality 

 

Across the different stacks of an IoT solution are a number of features that need to be 

considered for any IoT architecture, including 

1 Security – Security needs to be implemented from the devices to the cloud Features such 

as authentication, encryption, and authorization need be part of each stack 

2 Ontologies – The format and description of device data is an important feature to enable 

data analytics and data interoperability. The ability to define ontologies and metadata across 

heterogeneous domains is a key area for IoT 

3 Development Tools and SDKs – IoT Developers will require development tools that 

support the diferent hardware and software platforms involved 

10. Packages for Project 

Python packages for developing IoT applications. I mostly develop applications on the 

Raspberry Pi Model 3 or the Intel Edison. Both are extremely capable Single Board 

Computers, with a lot of peripherals to play around with. Both support Linux derived OS 

distributions and support full Python 2.7 or 3.4. With the  right Python packages installed, 

both of these devices become very versatile components in the IoT domain. 

Mraa 

mraa is a skeleton GPIO library for most SBCs which support Python. The good thing about 

it is  that there's just one library for all devices, so I don't have to use different ones for an 

Edison and a Pi. Being a high level library, reading from and writing to pins is a one line 

affair, and the library also provides support for communication protocols such as I2C, 

UART and SPI 

 

 

 

 



62  

 

Sockets 

sockets is a package which facilitates networking over TCP/IP and UDP using Python. It 

provides access to Berkeley socket APIs to access the Internet. Both TCP/IP and UDP being 

Transport layer protocols, are ideal for communication with devices on the same WiFi 

network. One of the more interesting uses of sockets, in my experience is that one can build 

their own communication protocol using this package as the base 

 

 

 

 

 

 

 

 

 

. 

 

Fig 53.Socket 

 

Mysqldb 

 

A database is a no-brainer when it comes to most IoT applications. For something whose 

sole purpose is to send data to the internet, there should be a database, at least a remote one 

which stores all this generated data. MySQL is the go-to relational database for most 

developers. In this regard, mysqldb is a very convenient little tool which circumvents the 

need to execute shell commands within a Python script to read and write to a database. 

 

Numpy 

Having used MatLab extensively during my undergraduate studies, I've grown accustomed 

to dealing with arrays. Python, on the other hand, deals with lists as a substitute for the 

array which is the same as having a birch tree replace your Rottweiler as the guardian of the 

house. It just doesn't work. Thankfully, numpy is there to help you out. It is, in essence, a 

package for scientific computing using Python, very similar to MatLab, but much lighter. 

The feature I use most is to read sensor data in bulk from my  databases and work on them 

using the inbuilt functions. 



63  

 

Fig 54.numpy 

 

Matplotlib 

 

Data visualization is one of the most fundamental operations that can be performed. It looks 

pretty impressive when you convert a huge list of numbers to a concise graph which can be 

understood  intuitively. It's also very useful if you happen to be an academician. You know 

how important those graphs can be in a publication. matplotlib provides a number of 

different styles of graphs that can be plotted using local data. If you're a data scientist, this is 

althemore useful to you. Personally, matplotlib is a very usefultool to quickly give me 

insight to the data I have at my disposal. 

 

 

 

Fig 55. Matplot 

 

Pandas 

 

Another library for data scientists, pandas is a package dedicated towards data analysis. It is 

in essence, a local alternative to using SQL databases which is more suited to dealing with 

data as it is built on numpy. It has many advantages over the former, such as a more 

streamlined approach to data handling and analysis, direct operations on local datasets and 

the ability to handle heterogeneous and unordered data 

 

 

 

 

 

 

 



64  

Openv 

The big brother of signal processing, image processing, was traditionally the domain of high 

performance, custom built hardware. Although such devices still carry out the job much 

faster than their single board counterparts, it is at the very least, a possibility. And, in 

situations where mobility and connectivity are prioritized over speed, this may just be the 

solution for those rare times. Opencv is a Python port of the  very successful C library for 

image processing. It contains high-level variants of familiar image processing functions 

which make photo analysis much easier. 

 
Fig 57. Opencv 

tkinter 

Although this library does come preinstalled with all installations of Python, its still worthy 

of a mention. Tkinter is a GUI development library which comes bundled in with all 

distributions of Python. For people who are more comfortable with a stab wound rather than 

object oriented programming, learning how to use this package may be a bit daunting at 

first, but the rewards more than make up for the effort. Every aspect of your Python script 

can be controlled via a completely ad hoc GUI. This is extremely useful in situations such as 

functionality testing or repeated executions of the same code. 

 
Fig58. Tkinter 

Tensorflow 

Tensorflow is a package for numerical computations for machine learning. It utilizes a 

different mathematical representation called data flow graphs which use nodes as 

mathematical operations and edges as data arrays. This is a very useful library to have if 

you deal with a lot of non linear datasets or work extensively with decision trees and neural 

networks. 

 

 



65  

 

Fig 59. Tensorflow 

Requests 

 

HTTP is one of the major protocols used in traditional internet based resource exchange, 

being more suited towards large data exchanges. The requests package is used in Python to 

make HTTP calls and parse responses. This package is useful when dealing with HTTP 

based third party cloud services. 

 

 
Fig 60. Requests 

 

 

11. Open source tools and resources for IoT 

 

1. AllSeen Alliance 

2. Open Interconnect Consortium (OIC) 

3. COMPOSE 

4. Eclipse 

5. Open Source Hardware Association (OSHWA) 

Protocols 

6. Advanced Message Queuing Protocol (AMQP) 

7. Constrained Application Protocol (CoAP) 

8. Extensible Messaging and Presence Protocol (XMPP) 

9. OASIS Message Queuing Telemetry Transport (MQTT) 

10. Very Simple Control Protocol (VSCP) 

Operating systems (OS) 

11. ARM mbed 

12. Canonical Ubuntu and Snappy Ubuntu Core 

13. Contiki 

14. Raspbian 



66  

15. RIOT 

16. Spark 

17. webinosAPIs 

18. BipIO 

19. Qeo Tinq 

20. Zetta 

21. 

1248.io 

Horizontal platforms 

22. Canopy 

23. Chimera IoT 

24. DeviceHive 

25. Distributed Services Architecture (DSA) 

26. Pico Labs (Kynetx open source assigned to Pico Labs) 

27. M2MLabs Mainspring 

28. Nimbits 

29. Open Source Internet of Things (OSIOT) 

30. prpl Foundation 

31. RabbitMQ 

32. SiteWhere 

33. webinos 

34. Yaler 

 

Middleware 

35. IoTSyS 

36. OpenIoT 

37. OpenRemote 

38. Kaa 

Node flow editors 

39. Node-RED 

40. ThingBox 

Toolki

ts 

 

41. KinomaJS 

42. IoT Toolkit 

Data visualization 

43. Freeboard 

44. ThingSpeak 

Search 

45. Thingful 

Hardware 

46. Arduino Ethernet Shield 

47. BeagleBone 



67 
 

48. Intel Galileo 

49. openPicus FlyportPro 

50. Pinoccio 

51. WeIO 

52. WIZnet 

In-memory data grids 

53. Ehcache 

54. Hazelcast 

Home automation 

55. Home Gateway Initiative (HGI) 

56. Ninja Blocks 

57. openHAB 

58. Eclipse SmartHome 

59. PrivateEyePi 

60. RaZberry 

61. The Thing System 

Robotics 

62. Open Source Robotics Foundation 

Mesh networks 

63. Open Garden 

64. OpenWSN 

Health 

65. e-Health Sensor Platform 

Air pollution 

66. HabitatMap Airbeam 

Water 

67. Oxford Flood Network 



 

 

 
 

 

 

 

 

SCHOOL OF COMPUTING 

DEPARTMENT OF  COMPUTER SCIENCE AND ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

UNIT – III – Internet of Things – SCSA5301 



 

 

COMMUNICATION AND CONNECTIVE TECHNOLOGIES 
 

IoT Communication Model - Cloud computing in IoT - IoT in cloud architecture - 

Logging on to cloud - Selecting and Creating cloud service - cloud based IoT platforms - 

IBM Watson - Google cloud. 

 

1. IoT Communication Model 

 

The term of internet of things (IoT) communication offered by Internet 

protocols . Many of the devices often called as smart objects operated by 

humans as components in buildings or vehicles, or are spread out in the 

environment. 

 

Communication types 

1. Device-to-Device Communications 

2. Device-to-Cloud Communications 

 Device-to-Device Communications: 

The device-to-device communication model represents two or more 

devices that directly connect and communicate between one another, rather 

than through an intermediary application server. These devices communicate 

over many types of networks, including IP networks or the Internet. 

Often,however these devices use protocols like Bluetooth-Wave, or ZigBee to 

establish direct device-to-device communications. 

Attack Surfaces on Device to Device Communication: 

 Credentials stealing from the firmware 

 Sensitive information disclosure 

 No proper updating mechanism of firmware 

 DoS Attacks 

Buffer-overflow 

attacks 

A buffer is a temporary area for data storage. When more data gets placed by a 

program or system process, the extra data overflows. It causes some of that data 



 

 

to leak out into other buffers, which can corrupt or overwrite whatever data they 

were holding. In a buffer- overflow attack, the extra data sometimes holds 

specific instructions for actions intended by a hacker or malicious user; for 

example, the data could trigger a response that damages files, changes data or 

unveils private information. 

Best Practices for securing Device to Device Communication: 

 Evaluate hardware components, firmware, software, communications protocols 

 Try to Make the signed Firmware, software and hash your binaries. 

 Implement the machine to machine authentication securely. 

 Get the feedback from the clients to improve the device security levels 

 

 Device-to-Cloud Communications 

In a device to cloud communication model, the IoT device connects 

directly to an Internet cloud service like an application service provider to 

exchange data and control message traffic. This approach frequently takes 

advantage of existing communications mechanisms like traditional wired 

Ethernet or Wi-Fi connections to establish a connection between the device 

and the IP network, which ultimately connects to the cloud service. 

 

 

Figure 1: Device to Cloud Communication 

 

 

 

 

 



 

 

Device to Cloud protocols . Below table 1 explains the details about 

the protocols : 

 
Protocols AMQP MQT

T 
XMPP CoAP 

Transport TCP/IP TCP/I
P 

TCP/IP UDP/I
P 

 

 

Message 

pattern 

 

Publish 

— 

Subscrib

e 

 

Publish 

— 

Subscrib

e 

Point — 
Point 

 

Publish 

– 

Subscri

be 

 

 

Request 

– 

Respons

e 

 

The Advanced Message Queuing Protocol (AMQP) and the MQTT 

Protocol are often seen as mutually exclusive choices, especially in the Internet 

of Things (IoT). AMQP is a general-purpose message transfer protocol suitable 

for a broad range of messaging- middleware infrastructures, and also for peer-

to-peer data transfer. It’s a symmetric and bi- directional protocol that allows 

either party on an existing connection to initiate links and transfers, and has rich 

extensibility and annotation features at practically all layers. Both protocols 

share that they can be tunneled over Web Sockets and therefore function well in 

environments that restrict traffic to communication over TCP port 443 

(HTTPS). 

 

 MQTT Concepts 

In MQTT, all messages are published into a shared topic space at the broker 

level. A 

―topic‖ in MQTT is a filter condition on the consolidated message stream that 

runs through the MQTT broker from all publishers. Publishing topics have a 

hierarchical structure (a path through topic space) and filters can be expressed as 

direct matching conditions (topic name and filter expression must match), or the 

filter can use wild-cards for single or multiple path segments. 

 



 

 

 

 

 

 

 

 

Figure 2: MQTT Protocol 

 

Every published message from any publisher is eligible for delivery into 

any client session where a subscription exists with a matching topic filter. 

MQTT is very suitable for fast  and  ―online‖  dispatch  and  distribution  of  

messages  to  many  subscribers  in  scenarios where it’s feasible for the entirety 

of the consolidated published message stream to be inspected on behalf of all 

concurrent subscribers. 

 

MQTT’s ―subscribe‖ gesture is much lighter weight. It establishes a filter 

context and simultaneously initiates and unbounded receive operation on that 

context. If session recovery is used, to scope of undelivered messages is that 

individual filter context. Subscribing is receiving. In some brokers, such an 

MQTT subscription context may indeed be backed by a volatile queue to allow 

leveling between fast and slow subscribers and to allow for caching of messages 

while a subscriber is temporarily disconnected and if session recovery is 

supported; but that’s an implementation detail, not an explicit construct. The 

trouble with MQTT is that  it uses TCP connections to a MQTT broker. Having 

an always-on connection will limits the time the devices can be put to sleep. 

This can be somewhat mitigated by using MQTT-S, which works with UDP 



 

 

instead of TCP. But MQTT also lacks encryption since the protocol was 

intended to be lightweight and encryption would add significant overhead. 

 

Advanced Message Queuing Protocol (AMQP) is an open source published 

standard for asynchronous messaging by wire. AMQP enables encrypted and 

interoperable messaging between organizations and applications. The protocol 

is used in client/server messaging and in IoT device management. AMPQ is 

efficient, portable, multichannel and secure. The messaging protocol is fast and 

features guaranteed delivery with acknowledgement of received messages. 

AMPQ works well in multi-client environments and provides a means for 

delegating tasks and making servers handle immediate requests faster. Because 

AMPQ is a streamed binary messaging system with tightly mandated messaging 

behavior, the interoperability of clients from different vendors is assured. 

AMQP allows for various guaranteed messaging modes specifying a message be sent: 

 At-most-once(sent one time with the possibility of being missed). 

 At-least-once (guaranteeing delivery with the possibility of duplicated 

messages). 

 Exactly-once (guaranteeing a one-time only delivery). 

eXtensible Messaging and Presence Protocol (XMPP) is a TCP protocol based 

on XML. It enables the exchange of structured data between two or more 

connected entities, and out of the box it supports presence and contact list 

maintenance (since it started as a chat protocol). Because of the open nature of 

XML, XMPP can be easily extended to include publish- subscribe systems, 

making it a good choice for information that is handed to a central server and 

then distributed to numerous IoT devices at once. It is decentralized, and 

authentication can be built in by using a centralized XMPP server. The 

downsides of XMPP for IoT is that it lacks end-to-end encryption. It also doesn’t 

have quality-of-service functionality, which can be a real deal-breaker 

depending on the application. 

http://whatis.techtarget.com/definition/open-source
http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
http://searchenterprisedesktop.techtarget.com/definition/client


 

 

 

Constrained Application Protocol (CoAP) is a protocol specifically developed 

for resource- constrained devices. It uses UDP instead of TCP, and developers 

can work with CoAP the same way they work with REST-based APIs. Since it 

uses minimal resources, it is a good option or low-power sensors. Since it uses 

UDP, it also can run on top of packet-based technologies such as SMS, and 

messages can be marked confirmable or nonconfirmable to work with QoS. 

Datagram Transport Layer Security (DTLS) can be used for encryption. The 

downside of CoAP is that it is a one-to-one protocol, so broadcast capabilities 

are not native to the protocol. 

 Attack Surfaces on Device to Cloud Communication 

1. SQL injection , Cross-site scripting , Cross-site Request Forgery possible 

attacks on cloud application interfaces. 

SQL Injection (SQLi) refers to an injection attack wherein an attacker can 

execute malicious SQL statements (also commonly referred to as a malicious 

payload) that control a web application’s database server (also commonly 

referred to as a Relational Database Management System – RDBMS). Since an 

SQL Injection vulnerability could possibly affect any website or web 

application that makes use of an SQL-based database, the vulnerability is one of 

the oldest, most prevalent and most dangerous of web application 

vulnerabilities. 

2. Cross-site Scripting (XSS) refers to client-side code injection attack 

wherein an attacker can execute malicious scripts (also commonly 

referred to as a malicious payload) into a legitimate website or web 

application. XSS is amongst the most rampant of web application 

vulnerabilities and occurs when a web application makes use of 

unvalidated or unencoded user input within the output it generates. By 

leveraging XSS, an attacker does not target a victim directly. Instead, an 

attacker would exploit a vulnerability within a website or web application 

that the victim would visit, essentially using the vulnerable website as a 

vehicle to deliver a malicious script to the victim’s browser. 

3. Username and password enumeration attacks 



 

 

4. MITM attacks 

Man-in-the-middle attack (MITM) is an attack where the attacker secretly 

relays and possibly alters the communication between two parties who believe 

they are directly communicating  with  each  other.   One   example   of   man-

in-the-middle   attacks   is active eavesdropping, in which the attacker makes 

independent connections with the victims and relays messages between them to 

make them believe they are talking directly to each other over a private 

connection, when in fact the entire conversation is controlled by the attacker. 

The attacker must be able to intercept all relevant messages passing between the 

two victims and inject new ones. 

5. Man in the Cloud (MiTC) attacks 

Man in the cloud (MitC) attacks are interesting, and worrying, as they do 

not require any exploits or the running malicious code in order to get a 

grip during the initial infection stage. Instead they rely upon the type of 

common file synchronization service that we have all become used to, the 

likes of DropBox or Google Drive for example, to be the infrastructure 

providing command and control, data exfiltration  and remote access 

options. Man in the cloud attacks are interesting, and worrying, as they do 

not require any exploits or the running malicious code .Simply by 

reconfiguring these cloud services, without end user knowledge and 

without the need for plaintext credential compromise to have occurred. It 

is hard for common security measures to detect as the synchronization 

protocol being used makes it all but impossible to distinguish between 

malicious and normal traffic. 

 

Best Practices for securing Device to Cloud Security: 

 Check all cloud interfaces are reviewed for security vulnerabilities (e.g. 

API interfaces and cloud-based web interfaces) 

 Make sure cloud-based web interface not having weak passwords 

 Ensure that any cloud-based web interface has an account lockout mechanism 

 Implement two-factor authentication for cloud-based web interfaces 

https://en.wikipedia.org/wiki/Eavesdropping


 

 

 Maintain transport encryption 

 Ensure that any cloud-based web interface has been tested for XSS, SQLi 

and CSRF vulnerabilities. 

2. IoT in Cloud 

 

The advent of cloud computing has acted as a catalyst for the development 

and deployment of scalable Internet-of-Things business models and 

applications. Therefore, IoT and cloud are nowadays two very closely affiliated 

future internet technologies, which go hand-in-hand in non-trivial IoT 

deployments. 

Cloud computing is the next evolutionary step in Internet-based computing, 

which provides the means for delivering ICT resources as a service. The ICT 

resources that can be delivered through cloud computing model include 

computing power, computing infrastructure (e.g.,servers and/or storage 

resources), applications, business processes and more. Cloud computing 

infrastructures and services have the following characteristics, which typically 

differentiate them from similar (distributed computing) technologies: 

  Elasticity and the ability to scale up and down: Cloud computing 

services can scale upwards during high periods of demand and downward 

during periods of lighter demand. This elastic nature of cloud computing 

facilitates the implementation of flexibly scalable business models, e.g., 

through enabling enterprises to use more or less resources as their business 

grows or shrinks. 

  Self-service provisioning and automatic deprovisioning: Contrary to 

conventional web-based Application Service Providers (ASP) models (e.g., 

web hosting), cloud computing enables easy access to cloud services without 

a lengthy provisioning process. In cloud computing, both provisioning and de-

provisioning of resources can take place automatically. 

  Application programming interfaces (APIs): Cloud services are 

accessible via APIs, which enable applications and data sources to 

communicate with each other. 

  Billing and metering of service usage in a pay-as-you-go model: Cloud 

services are associated with a utility-based pay-as-you-go model. To this end, 

they provide the means for metering resource usage and subsequently issuing 



 

 

bills. 

  Performance monitoring and measuring: Cloud computing 

infrastructures provide a service management environment along with an 

integrated approach for managing physical environments and IT systems. 

  Security: Cloud computing infrastructures offer security functionalities 

towards safeguarding critical data and fulfilling customers’ compliance 

requirements. 

The two main business drivers behind the adoption of a cloud computing model 

and associated services including: 

  Business Agility: Cloud computing alleviates tedious IT procurement 

processes, since it facilitates flexible, timely and on-demand access to 

computing resources (i.e. compute cycles, storage) as needed to meet business 

targets. 

Depending on the types of resources that are accessed as a service, cloud 

computing is associated with different service delivery models. 

  Infrastructure as a Service (IaaS): IaaS deals with the delivery of 

storage and computing resources towards supporting custom business 

solutions. Enterprises opt for an IaaS cloud computing model in order to 

benefit from lower prices, the ability to aggregate resources, accelerated 

deployment, as well as increased and customized security. The most 

prominent example of IaaS service Amazon’s Elastic Compute Cloud (EC2), 

which uses the Xen open-source hypervisor to create and manage virtual 

machines. 

  Platform as a Service (PaaS): PaaS provides development environments 

for creating cloud-ready business applications. It provides a deeper set of 

capabilities comparing to  IaaS, including development, middleware, and 

deployment capabilities. PaaS services create and encourage deep ecosystem 

of partners who commit to this environment. Typical examples of PaaS 

services are Google’s App Engine and Microsoft’s Azure cloud environment, 

which both provide a workflow engine, development tools, a testing 

environment, database integration functionalities, as well as third-party tools 

and services. 

  Software as a Service (SaaS): SaaS services enable access to purpose-

built business applications in the cloud. Such services provide the pay-go-go, 



 

 

reduced CAPEX  and elastic properties of cloud computing infrastructures. 

Cloud services can be offered through infrastructures (clouds) that are publicly  

accessible (i.e. public cloud services), but also by privately owned 

infrastructures (i.e. private cloud services). Furthermore, it is possible to offer 

services supporting by both public and private clouds, which are characterized 

as hybrid cloud services. 

 IoT/Cloud Convergence 

 

Internet-of-Things can benefit from the scalability, performance and pay-

as-you-go nature of cloud computing infrastructures. Indeed, as IoT 

applications produce large volumes of data and comprise multiple 

computational components (e.g., data processing and analytics algorithms), 

their integration with cloud computing infrastructures could provide them with 

opportunities for cost-effective on-demand scaling. As prominent examples 

consider the following settings: 

  A Small Medium Enterprise (SME) developing an energy management 

IoT product, targeting smart homes and smart buildings. By streaming the 

data of the product (e.g., sensors and WSN data) into the cloud it can 

accommodate its growth needs in a scalable and cost effective fashion. 

  A smart city can benefit from the cloud-based deployment of its IoT 

systems and applications. A city is likely to deploy many IoT applications, 

such as applications for smart energy management, smart water management, 

smart transport management, urban mobility of the citizens and more. These 

applications comprise multiple sensors and devices, along with computational 

components. Furthermore, they are likely to produce very large data volumes. 

Cloud integration enables the city to host these data and applications in a cost-

effective way. Furthermore, the elasticity of the cloud can directly support 

expansions to these applications, but also the rapid deployment of new ones 

without major concerns about the provisioning of the required cloud 

computing resources. 

  A cloud computing provider offering pubic cloud services can extend 

them to the IoT area, through enabling third-parties to access its infrastructure 

in order to integrate IoT data and/or computational components operating 

over IoT devices. The provider can offer IoT data access and services in a 

pay-as-you-fashion, through enabling third-parties to access resources of its 



 

 

infrastructure and accordingly to charge them in a utility-based fashion. 

 

One of the earliest efforts has been the famous Pachube.com infrastructure 

(used extensively for radiation detection and production of radiation maps 

during earthquakes in Japan). Pachube.com has evolved (following several 

evolutions and acquisitions of this infrastructure) to Xively.com, which is 

nowadays one of the most prominent public IoT clouds.   Nevertheless,   there   

are   tens   of   other   public   IoT   clouds   as   well,   such   as ThingsWorx, 

ThingsSpeak, Sensor-Cloud, Realtime.io and more. The list is certainly non- 

exhaustive. These public IoT clouds offer commercial pay-as-you-go access to 

end-users wishing to deploying IoT applications on the cloud. Most of them 

come with developer friendly tools, which enable the development of cloud 

applications, thus acting like a PaaS  for IoT in the cloud. 

Similarly to cloud computing infrastructures, IoT/cloud infrastructures and 

related services can be classified to the following models: 

  Infrastructure-as-a-Service (IaaS) IoT/Clouds: These services provide 

the means for accessing sensors and actuator in the cloud. The associated 

business model involves the IoT/Cloud provide to act either as data or sensor 

provider. IaaS services for IoT provide access control to resources as a 

prerequisite for the offering of related pay-as-you-go services. 

  Platform-as-a-Service (PaaS) IoT/Clouds: This is the most widespread 

model for IoT/cloud services, given that it is the model provided by all public 

IoT/cloud infrastructures outlined above. As already illustrate most public IoT 

clouds come with a range of tools and related environments for applications 

development and deployment in a cloud environment. A main characteristic 

of PaaS IoT services is that they provide access to data, not to hardware. This 

is a clear differentiator comparing to IaaS. 

  Software-as-a-Service (SaaS) IoT/Clouds: SaaS IoT services are the 

ones enabling their uses to access complete IoT-based software applications 

through the cloud, on- demand and in a pay-as-you-go fashion. As soon as 

sensors and IoT devices are not  visible, SaaS IoT applications resemble very 

much conventional cloud-based SaaS applications. 

 

 

http://xively.com/
https://www.thingworx.com/
https://www.thingworx.com/
https://www.thingworx.com/
https://www.thingworx.com/
https://www.sensor-cloud.com/
https://realtime.io/


 

 

The benefits of integrating IoT into Cloud are discussed in this section as follows. 

1. Communication 

The Cloud is an effective and economical solution which can be used to 

connect, manage, and track anything by using built-in apps and customized 

portals . The availability of fast systems facilitates dynamic monitoring and 

remote objects control, as well as data real-time access. It is worth declaring 

that, although the Cloud can greatly develop and facilitate the IoT 

interconnection, it still has weaknesses in certain areas. Thus, practical 

restrictions can appear when an enormous amount of data needs to be 

transferred from the Internet to the Cloud. 

2. Storage 

As the IoT can be used on billions of devices, it comprises a huge number of 

information sources, which generate an enormous amount of semi-structured or 

non-structured data . This is known as Big Data, and has three characteristics : 

variety (e.g. data types), velocity (e.g. data generation frequency), and volume 

(e.g. data size). The Cloud is considered to be one of the most cost-effective and 

suitable solutions when it comes to dealing with the enormous amount of data 

created by the IoT. Moreover, it produces new chances for data integration, 

aggregation, and sharing with third parties . 

3. Processing capabilities 

IoT devices are characterized by limited processing capabilities which prevent 

on-site and complex data processing. Instead, gathered data is transferred to 

nodes that have high capabilities; indeed, it is here that aggregation and 

processing are accomplished. However, achieving scalability remains a 

challenge without an appropriate underlying infrastructure. Offering a solution, 

the Cloud provides unlimited virtual processing capabilities and an on- demand 

usage model . Predictive algorithms and data-driven decisions making can be 

integrated into the IoT in order to increase revenue and reduce risks at a lower 

cost . 

4. Scope 

With billions of users communicating with one another together and a variety of 

information being collected, the world is quickly moving towards the Internet of 

Everything (IoE) realm - a network of networks with billions of things that 

generate new chances and risks . The Cloud-based IoT approach provides new 

applications and services based on the expansion of the Cloud through the IoT 



 

 

objects, which in turn allows the Cloud to work with a number of new real 

world scenarios, and leads to the emergence of new services . 

5. New abilities 

The IoT is characterised by the heterogeneity of its devices, protocols, and 

technologies. Hence, reliability, scalability, interoperability, security, 

availability and efficiency can be very hard to achieve. Integrating IoT into the 

Cloud resolves most of these issues. It provides other features such as easeof-

use and ease-of-access, with low deployment costs . 

6. New Models 

Cloud-based IoT integration empowers new scenarios for smart objects, 

applications, and services. Some of the new models are listed as follows: 

• SaaS (Sensing as a Service) , which allows access to sensor data; 

• EaaS (Ethernet as a Service), the main role of which is to provide ubiquitous 

connectivity to control remote devices; 

• SAaaS (Sensing and Actuation as a Service), which provides control logics 

automatically. 

• IPMaaS (Identity and Policy Management as a Service) , which provides 

access to policy and identity management. 

• DBaaS (Database as a Service), which provides ubiquitous database management; 

• SEaaS (Sensor Event as a Service) , which dispatches messaging services that are 

generated by sensor events; 

• SenaaS (Sensor as a Service) , which provides management for remote sensors; 

• DaaS (Data as a Service), which provides ubiquitous access to any type of data. 

 

3. Cloud Architecture 

The cloud components of IoT architecture are positioned within a 

three-tier architecture pattern comprising edge, platform and enterprise 

tiers, as described in the Industrial Internet Consortium Reference 

Architecture . The edge-tier includes Proximity Networks and Public 

Networks where data is collected from devices and transmitted to devices. 

Data flows through the IoT gateway or optionally directly from/to the 

device then through edge services into the cloud provider via IoT 

transformation and connectivity. The Platform tier is the provider cloud,  

which receives, processes and analyzes data flows from the edge tier and 

provides API Management and Visualization. It provides the capability to 

initiate control commands from the enterprise network to the public 

network as well. The Enterprise tier is represented by the Enterprise 



 

 

Network comprised of Enterprise Data, Enterprise User Directory, and 

Enterprise Applications. The data flow to and from the enterprise network 

takes place via a Transformation and Connectivity component. The data 

collected from structured and non-structured data sources, including real-

time data from stream computing, can be stored in the enterprise data. 

One of the features of IoT systems is the need for application logic 

and control logic in a hierarchy of locations, depending on the timescales 

involved and the datasets that need to be brought to bear on the decisions 

that need to be made. Some code may execute directly in the devices at the 

very edge of the network, or alternatively in the IoT Gateways close to the 

devices. Other code executes centrally in the provider cloud services  or  in  

the  enterprise  network.  This  is  sometimes  alternatively  called  ―fog 

computing‖  to  contrast  with  centralised  ―cloud  computing‖,  although  fog  

computing can also contain one or more layers below the cloud that each 

could potentially provide capabilities for a variety of services like 

analytics. 

 

Aspects of the architecture include: 

 

 The user layer is independent of any specific network domain. 

It may be in or outside any specific domain. 

 The proximity network domain has networking capabilities that 

typically extend the public network domain. The devices 

(including sensor/actuator, firmware and management agent) and 

the physical entity are part of the proximity network domain. The 

devices communicate for both data flow and control flow either 

via an IoT Gateway and edge services or directly over the public 

network via edge services. 
 The public network and enterprise network domains contain data  

sources  

that feed the entire architecture. Data sources include traditional 

systems of record from the enterprise as well as new sources 

from Internet of Things (IoT). The public network includes 

communication with peer clouds. 

 The provider cloud captures data from devices, peer cloud 

services and other data sources (for example Weather services). It 

can use integration technologies or stream processing to 

transform, filter and analyse this data in real time and it can store 



 

 

the data into repositories where further analytics can be 

performed. This processing, which can be augmented with the 

use of Cognitive and Predictive analytics, is used to generate 

Actionable Insights. These insights are used by users and 

enterprise applications and can also be used to trigger actions to 

be performed by IoT Actuators. All of this needs to be done in a 

secure and governed environment. 

 

The following figure 3 shows the capabilities and relationships for supporting 

IoT using cloud computing. 

 

Figure 3: Cloud Components for IoT 



 

 

 

 

User Layer - contains IoT users and their end user applications. 

 

  IoT User (people/system) - a person or alternatively an automated 

system that makes use of one or more end user applications to achieve 

some goal. The IoT User is one of the main beneficiaries of the IoT 

solution. 

  End User Application - domain specific or device specific application. 

The IoT user may use end user applications that run on smart phones, 

tablets, PCs or alternatively on specialised IoT devices including control 

panels. 

 

Proximity Network - contains the physical entities that are at the heart of 

the IoT system, along with the devices that interact with the physical 

entities and connect them to the IoT system. 

 

Physical Entity - the physical entity is the real-world object that is of 

interest – it is subject to sensor measurements or to actuator behavior. It is 

the ―thing‖ in the Internet of Things. This architecture distinguishes between 

the physical entities and the IT devices that sense them or act on them. For 

example, the thing can be the ocean and the device observing is it a water 

temperature thermometer. 

 

Device - contains sensor(s) and/or actuator(s) plus a network connection 

that enables interaction with the wider IoT system. There are cases where 

the device is also the physical entity being monitored by the sensors – such 

as an accelerometer inside a smart phone. 

  Sensor/Actuator - senses and acts on physical entities. A sensor is a 

component  that senses or measures certain characteristics of the real 

world and converts them into a digital representation. An actuator is a 

component that accepts a digital command to act on a physical entity in 

some way. 

  Agent - provides remote management capabilities for the device, 

supporting a device management protocol that can be used by the Device 

Management service or IoT management system. 

  Firmware - software that provides control, monitoring and data 



 

 

manipulation of engineered products and systems. The firmware 

contained in devices such as consumer electronics provides the low-level 

control program for the devices. 

  Network Connection - provides the connection from the device to the 

IoT system. This is often a local network that connects the device with an 

IoT gateway – low power and low range in many cases to reduce the 

power demands on the device. 

  User Interface - allows users to interact with applications, agents, 

sensors and actuators (optional – some devices have no user interface 

and all interaction takes place from remote applications over the 

network). 

 

IoT Gateway - acts as a means for connecting one or more devices to the 

public network (typically the Internet). It is commonly the case that devices 

have limited network connectivity – they may not be able to connect 

directly to the Internet. This can be for a number of reasons, including the 

limitation of power on the device, which can restrict the device to using a 

low-power local network. The local network enables the devices to 

communicate with a local IoT Gateway, which is then able to communicate 

with the public network. The IoT Gateway contains the following 

components: 

 

  App Logic - provides domain specific or IoT solution specific logic that 

runs on the IoT Gateway. For IoT systems that have Actuators which act 

on physical entities, a significant capability of the app logic is the 

provision of control logic which makes decisions on how the actuators 

should operate, given input from sensors and data of other kinds, either 

held locally or held centrally. 

  Analytics - provides Analytics capability locally rather than in the 

provider cloud. 

  Agent - allows management of the IoT Gateway itself and can also 

enable management of the attached devices by providing a 

connection to the provider cloud layer's Device 

Management.service via the device management protocol. 

  Device Data Store - stores data locally. Devices may generate a large 

amount of data in real time it may need to be stored locally rather than 

being transmitted to a central location. Data in the device data store 



 

 

can be used by the application logic and analytics capability in the IoT 

Gateway. 

 

Public Network - contains the wide area networks (typically the internet), 

peer cloud systems, the edge services. 

 

Peer Cloud - a 3rd party cloud system that provides services to bring data 

and capabilities to the IoT platform. Peer clouds for IoT may contribute to 

the data in the IoT system and may also provide some of the capabilities 

defined in this IoT architecture. For example an IoT for Insurance solution 

may use services from partners, such as weather data. 

 

Edge Services - services needed to allow data to flow safely from the 

internet into the provider cloud and into the enterprise. Edge services also 

support end user applications. Edge services include: 

 

Domain Name System Server - resolves the URL for a particular web 

resource to the TCP-IP address of the system or service that can deliver that 

resource. 

Content Delivery Networks (CDN) - support end user applications by 

providing geographically distributed systems of servers deployed to 

minimize the response time for serving resources to geographically 

distributed users, ensuring that content is highly available and provided to 

users with minimum latency. Which servers are engaged will depend on 

server proximity to the user, and where the content is stored or cached. 

Firewall - controls communication access to or from a system 

permitting only traffic meeting a set of policies to proceed and 

blocking any traffic that does not meet the policies. Firewalls can be 

implemented as separate dedicated hardware, or as a component in 

other networking hardware such as a load-balancer or router or as 

integral software to an operating system. 

Load Balancers - provides distribution of network or application traffic 

across many resources (such as computers, processors, storage, or 

network links) to maximize throughput, minimize response time, 

increase capacity and increase reliability of applications. Load 

balancers can balance loads locally and globally. Load balancers should 

be highly available without a single point of failure. Load balancers are 

sometimes integrated as part of the provider cloud analytical system 



 

 

components like stream processing, data integration, and repositories. 

Provider Cloud - provides core IoT applications and associated services 

including storage of device data; analytics; process management for the 

IoT system; create visualizations of data. Also hosts components for 

device management including a device registry. 

 

A cloud computing environment provides scalability and elasticity to cope 

with varying data volume, velocity and related processing requirements. 

Experimentation and iteration using different cloud service configurations 

is a good way to evolve the IoT system, without upfront capital investment. 

 

IoT Transformation and Connectivity - enables secure connectivity to 

and from IoT devices. This component must be able to handle and perhaps 

transform high volumes of messages and quickly route them to the right 

components in the IoT solution. The Transformation and Connectivity 

component includes the following capabilities: 

 

 Secure Connectivity - provides the secured connectivity which 

authenticates and authorizes access to the provider cloud. 

 Scalable Messaging - provides messaging from and to IoT devices. 

Scalability of  the messaging component is essential to support high data 

volume applications and applications with highly variable data rates, 

like weather. 

 Scalable Transformation - provides transformation of device IoT data 

before it gets  to provider cloud layer, to provide a form more suitable for 

processing and analysis. This may include decoding messages that are 

encrypted, translating a compressed formatted message, and/or 

normalizing messages from varying devices. 

 

Application Logic - The core application components, typically 

coordinating the handling of IoT device data, the execution of other 

services and supporting end user applications. An Event based 

programming model with trigger, action and rules is often a good way to 

write IoT application logic. Application logic can include workflow. 

Application logic may also include control logic, which determines how to 

use actuators to affect physical entities, for those IoT systems that have 

actuators. 

Visualization - enables users to explore and interact with data from the 



 

 

data repositories, actionable insight applications, or enterprise 

applications. Visualization capabilities include End user UI, Admin UI & 

dashboard as sub components. 

 

 End User UI - allows users to communicate and interact with Enterprise 

applications, analytics results, etc. This also includes internal or 

customer facing mobile user interfaces. 

 Admin UI - enables administrators to access metrics, operation data, and 

various logs. 

 Dashboard - allows users to view various reports. Admin UI and 

Dashboard are internal facing user interfaces. 

Analytics - Analytics is the discovery and communication of meaningful 

patterns of information found in IoT data, to describe, to predict, and to 

improve business performance. 

 

Process Management - activities of planning, developing, deploying 

and monitoring the performance of a business process. For IoT 

systems, real-time process management may provide significant 

benefits. 

 

Device Data Store - stores data from the IoT devices so that the data can 

be integrated with processes and applications that are part of the IoT 

System. Devices may generate a large amount of data in real time calling 

for the Device Data Store to be elastic and scalable. 

 

API Management - publishes catalogues and updates APIs in a wide 

variety of deployment environments. This enables developers and end 

users to rapidly assemble solutions through discovery and reuse of existing 

data, analytics and services. 

 

Device Management - provides an efficient way to manage and connect 

devices securely and reliably to the cloud platform. Device management 

contains device provisioning, remote administration, software updating, 

remote control of devices, monitoring devices. Device management may 

communicate with management agents on devices using management 

protocols as well as communicate with management systems for the IoT 

solutions. 



 

 

Device Registry - stores information about devices that the IoT system 

may read, communicate with, control, provision or manage. Devices may 

need to be registered before they can connect to and or be managed by the 

IoT system. IoT deployments may have a large number of devices 

therefore scalability of the registry is important. 

 

Device Identity Service - ensures that devices are securely identified 

before being granted access to the IoT systems and applications. In the IoT 

systems, device identification can help address threats that arise from fake 

servers or fake devices. 

 

Transformation and Connectivity - enables secure connections to 

enterprise systems and the ability to filter, aggregate, or modify data or its 

format as it moves between cloud and IoT systems components and 

enterprise systems (typically systems of record). Within the IoT reference 

architecture the transformation and connectivity component sits between 

the cloud provider and enterprise network. However, in a hybrid cloud 

model these lines might become blurred. The Transformation and 

Connectivity component includes the following capabilities: 

 

 Enterprise Secure Connectivity -  integrates with enterprise data  

security systems to authenticate and authorize access to enterprise 

systems. 
 Transformation - transforms data going to and from enterprise systems. 

 Enterprise Data Connectivity - enables provider cloud components to 

connect securely to enterprise data. Examples include VPN and 

gateway tunnels. 

 

Enterprise Network - host a number of business specific enterprise 

applications that deliver critical business solutions along with supporting 

elements including enterprise data. Typically, enterprise applications have 

sources of data that are extracted and integrated with services provided by the 

cloud provider. Analysis is performed in the cloud computing environment, 

with output consumed by the enterprise applications. 

 

Enterprise Data - includes metadata about the data as well as systems of 

record for enterprise applications. Enterprise data may flow directly to 

data integration or the  data repositories providing a feedback loop in the 



 

 

analytical system for IoT. IoT systems may store raw, analyzed, or 

processed data in appropriate Enterprise Data elements. Enterprise Data 

includes: 

 

Enterprise User Directory - stores user information to support authentication, 

authorization, or profile data. The security services and edge services use this 

to control access to the enterprise network, enterprise services, or enterprise 

specific cloud provider services. 

  

Enterprise Applications - Enterprise applications consume cloud provider data and 

analytics to produce results that address business goals and objectives. Enterprise 

applications can be updated from enterprise data or from IoT applications or they can 

provide input and content for enterprise data and 

 

Security and Privacy - Security and Privacy in IoT deployments must address 

both information technology (IT) security as well as operations technology (OT)  

security elements. Furthermore, the level of attention to security and the topic 

areas to address varies depending upon the application environment, business 

pattern, and risk assessment. A risk assessment will take into account multiple 

threats and attacks along with an estimate of the potential costs associated with 

such attacks. In addition to security considerations, the connecting of IT 

systems with physical systems also brings with it the need to consider the 

impact to safety that the IoT system may have. IoT systems must be designed, 

deployed, and managed such that they can always bring the system to a safe 

operating state, even when disconnected from communications with other 

systems that are part of the deployment. Identity and Access Management- As 

with any computing system, there must be strong identification of all 

participating entities – users, systems, applications, and, in the case of IoT, 

devices and the IoT gateways through which those devices communicate with 

the rest of the system. Device identity and management necessarily involves 

multiple entities, starting with chip and device manufacturers, including IoT 

platform providers, and also including enterprise users and operators of the 

devices. In IoT solutions it is often the case that multiple of these entities will 

continue to communicate and address the IoT devices throughout their 

operational lifetime. 

 



 

 

Data Protection -Data in the device, in flight throughout the public network, 

provider cloud, and enterprise network, as well as at rest in a variety of locations 

and formats must be protected from inappropriate access and use. Multiple 

methods can be utilized, and indeed, in many cases, multiple methods are 

applied simultaneously to provide different levels of protection of dataagainst 

different types ofthreatsor isolation from different entities supporting the system. 

 

4. AWS IoT 

 

AWS IoT provides secure, bi-directional communication between 

Internet-connected devices such as sensors, actuators, embedded micro-

controllers, or smart appliances and the AWS Cloud. This enables you to collect 

telemetry data from multiple devices, and store and analyze the data. You can 

also create applications that enable your users to control these devices from their 

phones or tablets. 

 

AWS IoT consists of the following components: 

 

Device gateway -Enables devices to securely and efficiently communicate 

with AWS IoT. Message broker-Provides a secure mechanism for devices and 

AWS IoT applications to publish and receive messages from each other. You 

can use either the MQTT protocol directly or MQTT over WebSocket to 

publish and subscribe. You can use the HTTP REST interface to publish. 

Rules engine-Provides message processing and integration with other AWS 

services. You can use an SQL-based language to select data from message 

payloads, and then process and send the data to other services, such as Amazon 

S3, Amazon DynamoDB, and AWS Lambda. You can also use the message 

broker to republish messages to other subscribers. 

Security and Identity service-Provides shared responsibility for security in the 

AWS Cloud. Your devices must keep their credentials safe in order to securely 

send data to the message broker. The message broker and rules engine use AWS 

security features to send data securely to devices or other AWS services. 

Registry-Organizes the resources associated with each device in the AWS 

Cloud. You register your devices and associate up to three custom attributes 

with each one. You can also associate certificates and MQTT client IDs with 

each device to improve your ability to manage and troubleshoot them. 



 

 

Group registry-Groups allow you to manage several devices at once by 

categorizing them into groups. Groups can also contain groups—you can build a 

hierarchy of groups. Any action you perform on a parent group will apply to its 

child groups, and to all the devices in it and in all of its child groups as well. 

Permissions given to a group will apply to all devices in the group and in all of 

its child groups. 

Device shadow-A JSON document used to store and retrieve current state 

information for a device. 

Device Shadow service-Provides persistent representations of your devices in 

the AWS Cloud. You can publish updated state information to a device's 

shadow, and your device can synchronize its state when it connects. Your 

devices can also publish their current state to a shadow for use by applications 

or other devices. 

Device Provisioning service- Allows you to provision devices using a template 

that describes the resources required for your device: a thing, a certificate, and 

one or more policies. A thing is an entry in the registry that contains attributes 

that describe a device. Devices use certificates to authenticate with AWS IoT. 

Policies determine which operations a device can perform in AWS IoT. 

Custom Authentication service- You can define custom authorizers that allow 

you to manage your own authentication and authorization strategy using a 

custom authentication service and a Lambda function. Custom authorizers allow 

AWS IoT to authenticate your devices and authorize operations using bearer 

token authentication and authorization strategies. Custom authorizers can 

implement various authentication strategies (for example: JWT verification, 

OAuth provider call out, and so on) and must return policy documents which 

are used by the device gateway to authorize MQTT operations. 

Jobs Service- Allows you to define a set of remote operations that are sent to 

and executed on one or more devices connected to AWS IoT. For example, you 

can define a job that instructs a set of devices to download and install 

application or firmware updates, reboot, rotate certificates, or perform remote 

troubleshooting operations. To create a job, you specify a description of the 

remote operations to be performed and a list of targets that should  perform 

them. The targets can be individual devices, groups or both. 

 

  



 

 

 Accessing AWS IoT 

 

AWS IoT provides the following interfaces to create and interact with your devices: 

 

 AWS Command Line Interface (AWS CLI)—Run commands for AWS 

IoT on Windows, macOS, and Linux. These commands allow you to 

create and manage things, certificates, rules, and policies. To get started, 

see the AWS Command Line Interface User Guide. 

 AWS IoT API—Build your IoT applications using HTTP or HTTPS 

requests. These API actions allow you to programmatically create and 

manage things, certificates, rules, and policies. 

 AWS SDKs—Build your IoT applications using language-specific APIs. 

These SDKs wrap the HTTP/HTTPS API and allow you to program in 

any of the supported languages. 

 

 AWS IoT Device SDKs—Build applications that run on devices that 

send messages to and receive messages from AWS IoT. 

 

 Related Services 

 

AWS IoT integrates directly with the following AWS services: 

 

 Amazon Simple Storage Service—Provides scalable storage in the AWS Cloud. 

Amazon DynamoDB—Provides managed NoSQL databases. 

 Amazon Kinesis—Enables real-time processing of streaming data at a 

massive scale. AWS Lambda—Runs your code on virtual servers from 

Amazon EC2 in response to events. 

 Amazon Simple Notification Service—Sends or receives notifications. 

 Amazon Simple Queue Service—Stores data in a queue to be retrieved 

by applications. 

 

 Working of AWS IoT 

 

 AWS IoT enables Internet-connected devices to connect to the AWS 

Cloud and lets applications in the cloud interact with Internet-connected 

devices. Common IoT applications either collect and process telemetry 

http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/


 

 

from devices or enable users to control a device remotely. 

 Devices report their state by publishing messages, in JSON format, on 

MQTT topics. Each MQTT topic has a hierarchical name that identifies 

the device whose state is being updated. When a message is published on 

an MQTT topic, the message is sent to the AWS IoT MQTT message 

broker, which is responsible for sending all messages published on an 

MQTT topic to all clients subscribed to that topic. 

 Communication between a device and AWS IoT is protected through the 

use of X.509 certificates. AWS IoT can generate a certificate for you or 

you can use your own. In either case, the certificate must be registered 

and activated with AWS IoT, and then copied onto your device. When 

your device communicates with AWS IoT, it presents the certificate to 

AWS IoT as a credential. 

 We recommend that all devices that connect to AWS IoT have an entry in 

the registry. The registry stores information about a device and the 

certificates that are used by the device to secure communication with 

AWS IoT. 

 You can create rules that define one or more actions to perform based on 

the data in a message. For example, you can insert, update, or query a 

DynamoDB table or invoke a Lambda function. Rules use expressions to 

filter messages. When a rule matches a message, the rules engine invokes 

the action using the selected properties. Rules also contain an IAM role 

that grants AWS IoT permission to the AWS resources used to perform 

the action. 



 

 

 

 

Figure 4: AWS IOT Architecture 

 

 Each device has a shadow that stores and retrieves state information. 

Each item in the state information has two entries: the state last reported 

by the device and the desired state requested by an application. An 

application can request the current state information for a device. The 

shadow responds to the request by providing a JSON document with the 

state information (both reported and desired), metadata, and a version 

number. An application can control a device by requesting a change in its 

state. The shadow accepts the state change request, updates its state 

information, and sends a message to indicate the state information has 

been updated. The device receives the message, changes its state, and 

then reports its new state. 

 

5. Managing Cloud Account Credentials 

 

If you do not have an AWS account, create one. 

 To create an AWS account: 

 

1. Open the AWS home page and choose Create an AWS Account. 

2. Follow the online instructions. Part of the sign-up procedure involves 

receiving a phone call and entering a PIN using your phone's keypad. 

3. Sign in to the AWS Management Console and open the AWS IoT console. 

4. On the Welcome page, choose Get started. 

https://aws.amazon.com/
https://console.aws.amazon.com/iot/home


 

 

Figure 5: Registration 

 

 Register a Device in the Registry 

 

Devices connected to AWS IoT are represented by things in the registry. 

The registry allows you to keep a record of all of the devices that are connected 

to your AWS IoT account. The fastest way to start using your AWS IoT Button 

is to download the mobile app for iOS or Android. The mobile app creates the 

required AWS IoT resources for you, and adds an event source to your button 

that uses a Lambda blueprint to invoke a new AWS Lambda function of your 

choice. If you are unable to use the mobile apps, follow these instructions. 

 

1. On the Welcome to the AWS IoT Console page, in the  left  navigation  

pane,  choose Manage to expand the choices, and then choose Things. 

 

 

 

2. On the page that says You don't have any things yet, choose Register a thing. 

 

 

 



 

 

Figure 6: Register a Thing 

 

 

3. On the Creating AWS IoT things page, choose Create a single thing. 

4. On the Create a thing page, in the Name field, type a name  for  your  

device,  such as MyIoTButton. Choose Next to add your device to the 

registry. 

 

 Create and Activate a Device Certificate 

 

Communication between your device and AWS IoT is protected through the 

use of 

X.509 certificates. AWS IoT can generate a certificate for you or you can use your 

own 

X.509 certificate. AWS IoT generates the X.509 certificate for you. 

Certificates must be activated prior to use. 

 

1. Choose Create certificate. 

 

 

 

 

 

Figure 7: Certificate Creation 

 

2. On the Certificate created! page, choose Download for the certificate, 

private key, and the root CA for AWS IoT (the public key need not be 



 

 

downloaded). Save each of them to your computer, and then choose 

Activate to continue.Be aware that the downloaded filenames may be 

different than  those  listed  on  the Certificate created! page. For 

example: 

 2a540e2346-certificate.pem.crt.txt 

 2a540e2346-private.pem.key 

 2a540e2346-public.pem.key 

Note 

Although it is unlikely, root CA certificates are subject to expiration 

and/or revocation. If this should occur, you must copy new a root 

CA certificate onto your device. 

 

3. Choose the back arrow until you have returned to the main AWS 

IoT console screen. 

 

 Create an AWS IoT Policy 

 

X.509 certificates are used to authenticate your device with AWS IoT. AWS 

IoT policies are used to authorize your device to perform AWS IoT operations, 

such as subscribing or publishing to MQTT topics. Your device will presents its 

certificate when sending messages to AWS IoT. To allow your device to 

perform AWS IoT operations, you must create an AWS IoT policy and attach it 

to your device certificate. 

 

1. In the left navigation pane, choose Secure, and then Policies. On the You 

don't have a policy yet page, choose Create a policy. 

2. On the Create a policy page, in the Name field, type a name for the 

policy (for example,MyIoTButtonPolicy).    In     the Action field,     

type iot:Connect.     In  the Resource ARN field, type *. Select the 

Allow checkbox. This allows all clients to connect to AWS IoT. 

 

You can restrict which clients (devices) are able to connect by specifying a 

client ARN as the resource. The client ARNs follow this format: 

arn:aws:iot:your-region:your-aws-account:client/<my-client-id> 

 



 

 

Finally, select the Allow check box. This allows your device to publish 

messages to the specified topic.After you have entered the information for your 

policy, choose Create. 

 

 Attach an AWS IoT Policy to a Device Certificate 

 

Now that you have created a policy, you must attach it to your device 

certificate. Attaching an AWS IoT policy to a certificate gives the device the 

permissions specified in the policy. 

 

1. In the left navigation pane, choose Secure, and then Certificates. 

 

 

 

 

Figure 8: Attach Certificate 

 

2. In the box for the certificate you created, choose ... to open a drop-down 

menu, and then choose Attach policy. 

3. In the Attach policies to certificate(s) dialog box, select the check box 

next to the policy you created in the previous step, and then choose 

Attach. 

 

 Attach a Certificate to a Thing 

 

A device must have a certificate, private key and root CA certificate to 

authenticate with AWS IoT. We recommend that you also attach the device 

certificate to the thing that represents your device in AWS IoT. This allows you 

to create AWS IoT policies that grant permissions based on certificates attached 

to your things. For more information. see Thing Policy Variables 

https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html


 

 

 

1. In the box for the certificate you created, choose ... to open a drop-down 

menu, and then choose Attach thing. 

2. In the Attach things to certificate(s) dialog box, select the check box 

next to the thing you registered, and then choose Attach. 

3. To verify the thing is attached, select the box representing the certificate. 

4. On the Details page for the certificate, in the left navigation pane, choose 

Things. 

5. To verify the policy is attached, on the Details page for the certificate, in 

the left navigation pane, choose Policies. 

 

 Configure Your Device and Button 

 

Configuring your device allows it to connect to your Wi-Fi network. Your 

device must be connected to your Wi-Fi network to install required files and 

send messages to AWS IoT. All devices must install a device certificate, private 

key, and root CA certificate in order to communicate with AWS IoT. The easiest 

way to configure your AWS IoT button is to use the AWS IoT button smart 

phone app.  You can download it  from the Apple App Store or  the Google Play 

Store. If you are unable to use the smart phone app, follow these directions to 

configure your button. 

 

 Turn on your device 

 

1. Remove the AWS IoT button from its packaging, and then press and hold 

the button until a blue blinking light appears. (This should take no longer 

than 15 seconds.) 

2. The button acts as a Wi-Fi access point, so when your computer searches 

for Wi-Fi networks, it will find one called Button ConfigureMe - XXX 

where XXX is a three- character string generated by the button. Use your 

computer to connect to the button's Wi-Fi access point. 

https://itunes.apple.com/us/app/aws-iot-button/id1178216626
https://play.google.com/store/apps/details?id=com.amazonaws.iotbutton
https://play.google.com/store/apps/details?id=com.amazonaws.iotbutton


 

 

 

 Configure a Different Device 

 

Consult your device's documentation to connect to it and copy your 

device certificate, private key, and root CA certificate onto your device. You 

can use the AWS IoT MQTT client to better understand the MQTT messages 

sent by a device. Devices publish MQTT messages on topics. You can use the 

AWS IoT MQTT client to subscribe to these topics to see these messages. 

 

To view MQTT messages: 

 

1. In the AWS IoT console, in the left navigation pane, choose Test. 

 

 

 

Figure 9: MQTT Messages 

 

2. Subscribe to the topic on which your thing publishes. In the case of the 

AWS IoT button, you  can  subscribe  to iotbutton/+ (note  that + is  the  

wildcard  character).  In Subscribe to a topic, in the Subscription topic 

field, type iotbutton/+, and then choose Subscribe to topic. Choosing 

Subscribe  to  topic above,  results  in  the  topic iotbutton/+ appearing 

in theSubscriptions column. 

3. Press your AWS IoT button, and then view the resulting message in the 

AWS IoT MQTT client. If you do not have a button, you will simulate a 

https://console.aws.amazon.com/iot/home


 

 

{ 

"serialNumber": "ABCDEFG12345", 

"clickType": "SINGLE", 

"batteryVoltage": "2000 mV" 

} 

button press in the next step. 

4. To use the AWS IoT console to publish a message: 
 
 

On the MQTT client page, in the Publish section, in the Specify a topic 

and a message to publish… field, type iotbutton/ABCDEFG12345. In 

the message payload section, type the following JSON: 

 

 

Choose Publish to topic. You should see the message in the AWS IoT 

MQTT client (choose iotbutton/+ in the Subscription column to see the 

message). 

 

 Configure and Test Rules 

 

The AWS IoT rules engine listens for incoming MQTT messages that 

match a rule. When a matching message is received, the rule takes some action 

with the data in the MQTT message (for example, writing data to an Amazon S3 

bucket, invoking a Lambda function, or sending a message to an Amazon SNS 

topic). In this step, you will create and configure a rule to send the data received 

from a device to an Amazon SNS topic. Specifically, you will: 

 

 Create an Amazon SNS topic. 

 Subscribe to the Amazon SNS topic using a cell phone number. 

 Create a rule that will send a message to the Amazon SNS topic when a 

message is received from your device. 

 Test the rule using your AWS IoT button or an MQTT client. 

6. Microsoft Azure 

 

Millions of developers know how to create applications using the 

Windows Server programming model. Yet applications written for Windows 



 

 

Azure, don’t exactly use this familiar model. While most of a Windows 

developer’s skills still apply, Windows Azure provides its own programming 

model. Many vendors’ cloud platforms do just this, providing virtual 

machines (VMs) that act like on-premises VMs. This approach, commonly 

called Infrastructure as a Service (IaaS), certainly has value, and it’s the 

right choice for some applications. 

Instead of IaaS, Windows Azure offers a higher-level abstraction that’s 

typically categorized as Platform as a Service (PaaS). While it’s similar in 

many ways to the on- premises Windows world, this abstraction has its own 

programming model meant to help developers build better applications. 

Applications built using the Windows Azure programming model can be 

easier to administer, more available, and more scalable (up or down) than 

those built on traditional Windows servers. 

 

 

 

Figure 10: Microsoft Azure Architecture 

 Administration 

In PaaS, the platform itself handles most of the administrative tasks. With 

Windows Azure, this means that the platform automatically takes care of 

things such as applying Windows patches and installing new versions of 

system software. The goal is to reduce the effort and the cost of administering 

the application environment. 



 

 

 

 Availability 

Whether planned or not, today’s applications usually have down time for 

patches, application upgrades, hardware failures, and other reasons. With 

cloud platforms there is no need for any downtime. The Windows Azure 

programming model is designed to let applications be continuously available, 

even in the face of software upgrades and hardware failures. 

 

 Scalability 

The kinds of applications that people want to host in the cloud are often 

meant to handle lots of users. Yet the traditional Windows Server 

programming model wasn’t explicitly designed to support Internet-scale 

applications. The Windows Azure programming model, however, was 

intended from the start to do this. Created for the cloud era, it’s designed to let 

developers build the scalable applications that massive cloud data centres can 

support. Just as important, it also allows applications to scale down when 

necessary, letting them use just the resources they need and pay for only the 

computing resources used. 

Windows Azure has three core components: Compute, Storage and Fabric. As 

the names suggest, Compute provides a computation environment with Web 

Role and Worker Role while Storage focuses on providing scalable storage 

(Blobs, Tables, Queue and Drives) for large-scale needs. 

 

Fabric Controller 

Windows Azure is designed to run in data centres containing lots of 

computers. Accordingly, every Windows Azure application runs on multiple 

machines  simultaneously. All the computers in a particular Windows Azure 

data centre are managed by an application called the fabric controller. The 

fabric controller is itself a distributed application that runs across multiple 

computers. When a developer gives Windows Azure an application to run, he 

provides the code for the application’s roles together with the service 

definition and service configuration files for this application. Among other 

things, this information tells the fabric controller how many instances of each 

role it should create. The fabric controller chooses a physical machine for 



 

 

each instance, then creates a VM on that machine and starts the instance 

running. The role instances for a single application are spread across different 

machines within this data centre. Once it’s created these instances, the fabric 

controller continues to monitor them. If an instance fails for any reason— 

hardware or software—the fabric controller will start a new instance for that 

role. While failures might cause an application’s instance count to temporarily 

drop below what the developer requested, the fabric controller will always 

start new instances as needed to maintain the target number for each of the 

application’s roles. 

 

Windows Azure programming model: 

 

 A Windows Azure application is built from one or more roles. 

 A Windows Azure application runs multiple instances of each role. 

 A Windows Azure application behaves correctly when any role instance fails. 

 

 Azure storage 

Windows Azure offers blobs, tables, queues etc., as data storage options. 

They are a new type of data storage, they are fast and they are non-relational. 

Storage must  be external to role instances. This is to ensure if a role instance 

fails, any data it contains is  not lost. So Windows Azure stores data 

persistently outside role instances. This way another role instance can now 

access data that otherwise would have been lost if that data had been stored 

locally on a failed instance. Storage is replicated. Just as a Windows Azure 

application runs multiple role instances to allow for failures, Windows Azure 

storage provides multiple copies of data. Without this, a single failure would 

make data unavailable, something that’s not acceptable for highly available 

applications. 

 

Storage must be able to handle very large amounts of data. Traditional 

relational systems aren’t necessarily the best choice for very large data sets. 

Since Windows Azure is designed in part for massively scalable applications, 

it must provide storage mechanisms for handling data at this scale. We can 

use blobs for storing binary data and tables for storing large structured data 

sets. 



 

 

 

 Windows Azure Application Deployment 

When we deploy the application, you can select the subregion (which at 

the moment determines the data centre) where you want to host the 

application. You can also define affinity groups that you can use to group 

inter-dependent Azure applications and storage accounts together in order to 

improve performance and reduce costs. Performance improves because 

Windows Azure co-locates members of the affinity group in the same data 

centre. This reduces costs because data transfers within the same data centre 

do not incur bandwidth charges. Affinity groups offer a small advantage over 

simply selecting the  same  subregion  for  your  hosted  services,  because  

Windows  Azure  makes  a  ―best effort‖ to optimise the location of those 

services. 

 

 Identity Management 

All applications and services must manage user identity. This is 

particularly important in cloud-based scenarios that can potentially serve a 

very large number of customers and each of these customers may have their 

own identity framework. The ideal solution is a solution that takes advantage 

of the customers existing on-premises or federated directory service to enable 

single sign on (SSO) across their local and all external hosted services. This 

reduces the development effort of building individual and separate identity 

management systems. SSO allows users to access the application or service 

using their existing credentials. 

Windows Azure - One or more instances of web roles and worker roles: Every 

Windows Azure application consists of one or more roles. When it executes, 

an application that conforms to the Windows Azure programming model must 

run at least two copies—two distinct instances—of each role it contains. Each 

instance runs as its own VM. Every instance of a particular role runs the exact 

same code. In fact, with most Windows Azure applications, each instance is 

just like all of the other instances of that role—they’re interchangeable. For 

example, Windows Azure automatically load balances HTTP requests 



 

 

 

across an application’s Web role instances. 

 

This load balancing doesn’t support sticky sessions, so there’s no way to 

direct all of a client’s requests to the same Web role instance. Storing client-

specific state, such as a shopping cart, in a particular Web role instance won’t 

work, because Windows Azure provides no way to guarantee that all of a 

client’s requests will be handled by that instance. Instead, this kind of state 

must be stored externally, for example in SQL Azure. An application that 

follows the Windows Azure programming model must be built using roles, 

and it must run two or more instances of each of those roles. A Windows 

Azure application behaves correctly when any role instance fails. If all 

instances of a particular role fail, an application will stop behaving as it 

should—this can’t be helped. The requirement to work correctly during partial 

failures is fundamental to the Win 



 

 

 

 

 
 

 

 

SCHOOL OF COMPUTING 

DEPARTMENT OF  COMPUTER SCIENCE AND ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

UNIT – IV – Internet of Things – SCSA5301 



 

 

DATA ANALYTICS AND IOT PLATFORM 
 
   Big Data Analytics - Apache Hadoop - Using Hadoop Map Reduce for Batch Data Analysis - Apache Storm - Data 

 Visualization - Visualization tools for IoT. 
 

1. Big Data Analytics 

 

Big Data Analytics is “the process of examining large data sets containing a variety 

of data types – i.e., Big Data – to uncover hidden patterns, unknown correlations, market 

trends, customer preferences, and other useful information.” Companies and enterprises 

that implement Big Data Analytics often reap several business benefits, including more 

effective marketing campaigns, the discovery of new revenue opportunities, improved 

customer service delivery, more efficient operations, and competitive  advantages. 

Companies implement Big Data Analytics because they want to make more informed 

business decisions. Big Data Analytics gives analytics professionals, such as data scientists 

and predictive modelers, the ability to analyze Big Data from multiple and varied sources, 

including transactional data 

 

 Characteristics 

Big Data is often defined in terms of "3V's" i.e. 

Volume - the amount of data generated, stored and analysed. The amount of data stored 

determines the level of insight that can be obtained from that data; 

Variety - type and nature of data. Historically data was structured and from a single 

source - in which case it would fit readily into 'columns' and 'rows'. Increasingly data is 

sourced from a variety of sources with many different formats; 

Velocity - the speed at which data is generated and processed. Where historically data 

could reasonably be expected to be uploaded via a daily 'batch' process now data is 

measured in thousands or even millions of transactions per minute. 

In addition, other "V's" may be added including: 

Variability - Variations in the data sets. For example is a temperature measured in degrees 

Celsius, Fahrenheit or Kelvin; 

Veracity - Quality of the captured data. Where decisions are being made on data you need 

to be sure that the data is correct. 

http://searchbusinessanalytics.techtarget.com/definition/big-data-analytics


 

 

 Analytics 

Analytics is the scientific process of discovering and communicating the meaningful 

patterns which can be found in data. 

It is concerned with turning raw data into insight for making better decisions. Analytics 

relies on the application of statistics, computer programming, and operations research in 

order to quantify and gain insight to the meanings of data. It is especially useful in areas 

which record a lot of data or information. 

 Types 

 

"Descriptive: A set of techniques for reviewing and examining the data set(s) to understand 

the data and analyze business performance. 

Diagnostic: A set of techniques for determine what has happened and why 

 

Predictive: A set of techniques that analyze current and historical data to determine what is 

most likely to (not) happen 

Prescriptive: A set of techniques for computationally developing and analyzing 

alternatives that can become courses of action – either tactical or strategic – that may 

discover the unexpected 

Decisive: A set of techniques for visualizing information and recommending courses of 

action to facilitate human decision-making when presented with a set of alternatives 

 

 Challenges for IoT Big Data 

Some of the key challenges for IoT Big Data, which have a bearing on the design of 

architectures suitable for service delivery include 

1. The number of IoT devices: With forecasted growth in the number of connected 

"things" expected into the billions world-wide there will be masses of devices which may 

be a data source, and which may be subject to third party control; 

2. The variety of IoT devices: There will be enormous variety in the devices which 

may provide data, even in the case of similar devices e.g. an electronic thermostat. Data 

from any individual device manufacturer or model may be quite dissimilar from that of 



 

 

nominally identical devices in such areas as field names, units, and data structures; 

3. Intelligence of IoT devices: IoT devices have more and more compute resources and 

integrate several technologies like Graphics Processing Unit (GPU) and Solid State Drive 

(SSD) storage. Simple sensors are evolving to autonomous systems which will be able to 

manage their own analytics and be part of large analytics networks; 

4. Risk of IoT device malfunction: With a great number of IoT devices and 

manufacturers it is reasonable to assume there will be many occasions where IoT devices 

malfunction in various ways. In the mos t drastic situations devices will fail completely but 

it should be expected that more subtle malfunctions will occur which might result in 

aberrations of data coming from those devices, or a failure of the device to perform a 

required control function; 

5. Update frequency: Though some devices (e.g. remote sensors) will produce data 

reports at a low frequency there may be substantial quantities of data streaming from more 

sophisticated Internet connected things such as cars; 

6. Historical data: It is expected that many Big Data insights will derive from historical 

data recorded from IoT devices. This may be processed alone to derive analytics/ 

intelligence or considered alongside current data particularly to enable smart monitoring 

and control; 

7. Context data: Much IoT data will make more sense when put in context with other 

data. Context data might be generally "static" (or at least with a slow update period) such 

as geographical data, or could be more dynamic e.g. weather forecast data. Another 

important source of context data can be information gathered from the mobile networks 

themselves e.g. mobile user location or usage dynamics; 

8. Privacy issues: With so many expected IoT devices acquiring data there could be a 

substantial risk relating to the disclosure of data which is considered personal to end users. 

When IoT data is stored in a Big Data system and made available to third parties there is a 

need to implement strong safeguards to ensure end users remain in control of their 

personal information. Mobile Network Operators (MNOs) are in a strong position to help 

users remain in control of their data and to make data available in the best way via consent, 

aggregation or anonymisation. 

 

 General Architecture for IoT Big Data 

 Context Data Layer 



 

 

This functional unit is concerned with obtaining external non IoT data ("Context 

data") which is either available to the third party application or used during the processing 

of IoT data e.g. "mashing up" IoT data with context data. The Context Data Layer is also 

able to communicate with the external data sources, e.g. to start and stop data feeds. 

Examples of context data might include geographic/ mapping information, weather 

forecasts, schedules 

e.g. for transportation, or information generated from mobile networks/ users. This allows 

IoT data to be associated with further context data e.g. a moisture sensor reports the 

current moisture level whilst a weather forecast for the same geographical area identifies 

whether rain is predicted - allowing a decision to be made as to whether to water a crop. 

Context data might be received in different ways e.g. via Hypertext Transfer Protocol 

(HTTP) based APIs which request data from external servers, information received within 

an email, via batch file by making an outgoing File Transfer Protocol (FTP) request or by 

a batch file being deposited via FTP, or data received using removable media. This unit is 

principally concerned with implementing the relevant adapters in order to receive the 

various types of context data. 

 



 

 

 

 

 

The diagram below shows the general architecture for delivery of IoT Big Data 

services. This is explained in the following narrative. 

 

 

 

 

 

Figure 1: General Architecture for IoT Big 

Data 

 

 IoT Service Layer 

The IoT service layer is concerned with handling the device specific interactions 

required for obtaining data from IoT devices and sending control commands (where 



 

 

relevant) to those IoT devices. Therefore this layer is required to handle bi-directional 

communications both to IoT devices and to the upper layers of the architecture. 

 

The IoT Service Layer is expected to handle the lower level interactions with IoT 

devices. Those devices might be connected using a variety of protocols and low level 

communication technologies including (but not limited to) oneM2M [3], Hypercat [4], 

Constrained Application Protocol (CoAP), MQ Telemetry Transport (MQTT), Real Time 

Streaming Protocol (RTSP), or device specific interfaces such as JavaScript Object 

Notation (JSON)/Extensible Markup Language (XML) over HTTP. 

The IoT Service Layer is expected to handle authentication and security aspects regarding 

the interfacing with IoT devices. 

 

 Data and Protocol Mediator 

The Data and Protocol Mediator is responsible for ingesting information from IoT 

devices as well as other external sources ("context data"). It ensures that data is 

transformed to the Harmonised Entity Definition before being stored and published by the 

Data & Control Broker. The harmonisation process itself may be partially implemented in 

the 'Context Data Layer' function or the 'IoT Service Layer' function but the Data & 

Protocol Mediator will ensure that harmonisation is complete before data is exposed to the 

higher level parts of the architecture. 

The harmonisation process includes: 

 

 Conversion of payload encoding e.g. converting between an XML format payload 

of the IoT or context data and the JSON based structures defined in the Harmonised 

Entity Definitions; 

 Mapping of the data structures and data fields between the lower level IoT device 

structures and fields and the Harmonised Entity Definitions e.g. the IoT device might 

store a temperature value in a field named 'temp' whereas the Harmonised Entity 

Definition in a field named 'currentTemperature'; 

 Unit conversion from the values and ranges of the lower level IoT 

devices to the Harmonised Entity Definition e.g. 

o The Harmonised Entity Definition might represent a switch as the Boolean true or 



 

 

false value whereas the IoT device could represent as the integer 1 or 0 respectively; 

o The Harmonised Entity Definition might represent a temperature in degrees 

Centigrade as a double precision float whereas the IoT device might record in degrees 

Fahrenheit. 

 Data quality verification e.g. identifying a situation where an IoT sensor is 

apparently faulty such as delivering a sensor reading which is outside of the expected 

range. For example an outdoor temperature sensor transmitting a value which is 

significantly outside of the normal weather temperature range; 

 Combining ("mash up") or linking relevant context data with IoT data e.g. 

associating a specific IoT sensor with its geographic location or weather forecast data 

to form a richer entity definition; 

 Cross referencing related entity data e.g. different sensors with say the car to which 
they belong. 

 

The Data & Protocol Mediator will also enable control requests to be processed - 

performing broadly a 'reverse' process compared with data harmonisation: 

 Verifying the control request to make sure that the request is valid e.g. 

 

Refers to a valid IoT device; 

o The control action is relevant to that IoT device e.g. a fixed position sensor cannot 

be asked to move to a different position; 

o The control action is valid according to the current state of the device/ system 

(which should be maintained by the control broker); 

o The parameter values supplied in the request are valid both in terms of individual 

parameter range and in combination. 

 

 Transforming the high level control request into the equivalent device specific 

request payload 

e.g. generating an XML format payload if that is required by the IoT device; 

 Mapping of the data structures and data fields in the control request between the 

high level structures and fields of the Harmonised Entity Definitions and the lower 

level IoT device structures and fields; 

  



 

 

 Data & Control Broker 

The Data & Control Broker is responsible for enabling third party application access 

to harmonised data entities through a query and subscribe API, allowing applications to 

gain access to such data in a standard way. The broker may store data in the short to 

medium term, coming from multiple devices and data sources via the Data and Protocol 

Mediator. This function also transforms control requests coming from the application layer 

to be passed onwards to the Data & Protocol Mediator. 

The control process itself may be partially implemented in the 'IoT Service Layer' 

function but the Data & Control Broker in collaboration with the Data & Protocol 

Mediator will ensure responsibility for providing third party application access to control 

services in a consistent (harmonised) and controlled way. Control brokering will perform 

broadly a 'reverse' process compared with data harmonisation, receiving high level control 

requests from the third party application - normally formatted as a JSON based request 

communicated over HTTPS, and adapting this through the Data & Protocol Mediator and 

IoT Service Layer. 

The Data & Control Broker is expected to have access to a data store which may act as a 

short to medium term buffer space for control actions or a short to medium term store for 

harmonised data entities. The expected use of this is: 

 Retention of current instances of harmonised data entities processed from IoT devices 

and external sources (context data); 

 

 Storage of control requests and any status information relevant to the request; 

 Storage of a window of historical harmonised data entities that may be queried directly 

via the third party application. Note that it is expected that such a data store would be for 

short to medium term harmonised data entities, whereas longer term storage of 

harmonised data entities would be provided  in the "IoT Big Data Store”; 

 Storage of any results of Analytics and Intelligence results which become additional 

context data that can be queried or mashed up with other IoT data or external data 

sources. 

It should be noted that the Data & Control Broker has the option of using its own internal 

database for data storage or the defined IoT Big Data Store function defined in this 



 

 

architecture i.e. some of the logically separate elements of the defined architecture may be 

physically implemented together. 

 

 Peer API Access Management 

The Peer API Access Management function is responsible for interfacing with its 

peers in other organisations to receive and publish additional relevant harmonised IoT and 

context data. The policies applied to these trusted interfaces may be different to those 

applied to the main developer interface provided by the Developer API Access 

Management function. For example, organisations may be willing to share certain 

sensitive data with each other but require this sensitive data to be anonymised before being 

offered to third party developers. See sections 4.2.6 and 4.2.7 on I6 and I7 interfaces for 

more details. 

 

 Developer API Access Management 

The Developer API Access Management function controls access to harmonised 

data entities, covering both IoT and context data, as well as control services to third party 

applications. It implements authentication, authorisation and access control using industry 

standards to ensure privacy and security around the harmonised data. This function is 

mainly concerned with managing the privacy and security aspects of the data access by 

external parties. It is expected that this layer does not perform any actual IoT and context 

data processing or storage but is ensuring that data and control services from lower layers 

of the architecture are delivered in a properly managed way. It is assumed that any data 

processing/ complex queries/ analytics/ intelligence is the responsibility of the third party 

application. 

The Developer API Access Management function access control for the harmonised data, 

it is expected to perform the following: 

 Be responsible for presenting data & control services to third party applications 

via a RESTful based API over http
3
. This interface shall use JSON based encoding of 

data using the Harmonised Entity Definitions for both data and control and use the 

NGSIv2 interface to support entity retrieval/ simple queries; 



 

 

 Implement API access control (i.e. application level security) to ensure only 

known/ approved applications have access to IoT and context data and control 

services. Access control should be provided on a per application basis allowing 

granularity over which application should be able to access what IoT and context data 

and control functions; 

 Implement any usage policies against applications accessing the APIs e.g. 

applying IP address based access rules or throttling rules to ensure there is relevant fair 

usage of the platform; 

 Provide access to a publish/ subscribe service so that IoT and context data can be 

pushed to the third party application server as new data is received; 

 Log API usage information e.g. number of API calls made by an application, 

number and type of entity data retrieved, number and type of control requests received. 

 

 

 IoT Big Data Store 

The provision of Big Data Analytics and Intelligence is dependent on having access 

to the relevant mass of data from which the various insights can be obtained. This function 

provides data storage for this massive data and it may also provide short to medium term 

storage capabilities for use by the Data & Control Broker, depending on the specific 

implementation. 

For IoT Big Data usage it is considered that the Data Store must be able to handle a 

data set  greater than 50TB in size. For small scale deployments/ prototypes a Relational 

Database such as MySQL may support IoT data storage. However realistically a NoSQL 

or 'graph' database is considered more suitable for commercial 'Big Data' deployment 

particularly because the graph data model is richer and more versatile. 

"Big Data" databases address needs such as: 

 

 The need to store vast amounts of data (orders of magnitude higher than Relational 

Databases reasonably work to); 

 Insights are obtained when exploring ad-hoc relationships between data; 

 Data is arriving at such a rate that it is impossible to maintain an indexing process; 

 Data are not tightly constrained into fixed table/ column formats. 



 

 

 

The "Big Data" database is expected to be used to store the harmonised data entities 

received from the IoT devices and/or the external data sources. As it is expected there 

could be many millions  of IoT devices generating data frequently, the required storage 

space may be vast (i.e. of the order of many terabytes to many petabytes of data). It is 

expected the "Big Data" database could be implemented using products such as Apache 

Cassandra, Apache Hadoop, MongoDB, Neo4j, Titan or DynamoDB. To achieve high 

performance the database component may employ substantial quantities of memory to 

hold copies of data that is persistently stored on "hard disk".
4
 

 

 IoT Big Data Processing 

The processing of stored IoT data to perform analytics and intelligence is identified 

as the responsibility of the IoT Big Data Processing function. The IoT Big Data Processing 

function also provides related Developer API Access Management to control access to the 

intelligence and analytics by implementing authentication, authorisation and access control 

to ensure privacy and security. A broad division is made between analytics and 

intelligence. In practice both analytics and intelligence will be processing subsets of the 

mass of IoT data retained in the IoT Big Data Store. The main difference is 

 

 Analytics - principally involves relatively conventional methods (by human analysts 

and normal programming techniques) of exploring links and statistical relationships 

between data and then the analytics engine will produce its output based on the execution 

of a defined process; 

 Intelligence - encompassing machine learning / artificial intelligence, it would be 

expected that algorithms 'adapt' to the observed data and the match between predicted and 

desired outcomes. 

The outputs from Analytics and Intelligence are expected to be in a wide range of different 

formats, many of which will not conform to a uniform 'API' based approach e.g. the 

generation of a PDF report or the generation of a data set to be FTP'd to the third party 

developer's platform. 

Relevant products for Analytics & Intelligence provision include: 

 



 

 

 Apache Spark 

 

Apache Spark
15

 is a powerful data processing system based upon Cassandra or Hadoop
16

 

for the data storage component and provides several powerful tools for building 

applications around it such as an SQL interface, graph data library and a job server. 

Spark is not a complete solution out of the box, but does provide a powerful big data 

platform with great performance. Spark is considered the leading solution for high 

performance Big Data analytics. 

A Spark solution could be delivered over a RESTful interface or a websockets connection 

(for better notification and real time services). More usually however developers would 

use the standard programming interfaces available to Java, Python, Scala and R 

programming languages. 

 Apache TinkerPop3 + Titan + Elastic Search + Gremlin 

 

Titan provides Casandra backends, integration with Elastic search
17

, Apache Lucene
18

 / 

Solr
19

, Spark and others which allows it to support Geo searches, full text searches, graph 

traversals and regular 'SQLesque' queries making it ideal for the IoT Big Data project. 

 

Apache TinkerPop3
20

 is a graph computing framework which is seeing a rapid adoption in 

data driven applications. Many projects are seeking to incorporate the TinkerPop 

specification into their interfaces for interoperability in graph databases and servers. There 

are several implementations of graph databases which expose a Gremlin
21

 querying 

interface which makes it easier to query the graph database. Two such databases are Titan 

and Google Cayley. 

 Apache Mahout 

 

Mahout
22

 is designed for the development of high performance and scalable machine 

learning applications. It builds for example on top of Apache Spark / Hadoop and supports 

a range of machine learning algorithms. Uses include 

Collaborative filtering – mines user behaviour and makes product recommendations (e.g. 

Amazon recommendations); 

Clustering – takes items in a particular class (such as web pages or newspaper articles) and 



 

 

organizes them into naturally occurring groups, such that items belonging to the same 

group are similar to each other; 

Classification – learns from existing categorizations and then assigns unclassified items to 

the best category; 

Frequent itemset mining – analyses items in a group (e.g. items in a shopping cart or terms 

in a query session) and then identifies which items typically appear together. 

 

 

 Tensorflow 

 

Another open source set of tools for machine learning - developed originally by the 

Google Brain Team to support advances in search ranking algorithms as well as other 

Google research activities. 

Tensorflow
23

 could be used for example in IoT applications such as developing high 

accuracy automated number plate recognition algorithms based on images captured from 

CCTV cameras. This can then be applied in the IoT Big Data system to applications such 

as security, congestion or traffic planning. 

Tensorflow can also be coupled with Apache Spark which is used to obtain the select the 

data from the IoT Big Data store to use with the tensorflow algorithms. 

 

2. Big Data Analytical Tools Classification 

 

 Data Storage and Management 

 Data Cleaning 

 Data Mining 

 Data Analysis 

 

 Data Storage and Management 

 

 Hadoop 

Apache Hadoop
6
 is a highly scalable storage platform designed to process very large data 

sets across hundreds to thousands of computing nodes that operate in parallel. It provides a 

very cost effective storage solution for large data volumes with no particular format 



 

 

requirements. MapReduce [6] is the programming paradigm that allows for this massive 

scalability, is at the heart of Hadoop. The term MapReduce refers to two separate and 

distinct tasks that Hadoop programs perform. Hadoop has two main components - HDFS 

and YARN. 

HDFS
7
 – the Hadoop Distributed File System is a distributed file system designed to run 

on commodity hardware. It differs from other distributed file systems in that HDFS is 

highly fault- tolerant and is designed to be deployed on low-cost hardware. HDFS 

provides high throughput access to application data and is suitable for applications that 

have large data sets. 

YARN
8
 - YARN is a large-scale, distributed operating system for big data applications 

that runs on top of HDFS. It provides a framework for job scheduling and cluster resource 

management. 

 Cassandra 

Cassandra
5
 is a scalable database for large scale data storage from the Apache foundation 

and is used by many of the world‟s leading tech companies including github, Netflix, 

Apple and Instagram. The largest known deployment of Cassandra contains 75000 nodes 

(cloud servers) and stores over 10PB (Petabytes) of data. Cassandra is a NoSQL data store, 

which provides a robust means of storing data which spans many nodes, however it does 

not provide a very powerful query interface; it's highly inefficient to query on anything 

other than Cassandra's equivalent of a 'primary key'. Several solutions can be combined 

with Cassandra to provide a more powerful query interface. Apache Spark is one of the 

most powerful of these. 

 

 Cloudera 

Cloudera is essentially a brand name for Hadoop with some extra services stuck on. They 

can help your business build an enterprise data hub, to allow people in your organization 

better access to the data you 

http://cassandra.apache.org/


 

 

 

are storing. While it does have an open source element, Cloudera is mostly and enterprise 

solution to help businesses manage their Hadoop ecosystem. Essentially, they do a lot of 

the hard work of administering Hadoop for you. They will also deliver a certain amount of 

data security, which is highly important if you‟re storing any sensitive or personal data. 

 

 MongoDB 

MongoDB
9
 is a hybrid open source and closed source database, where the core of the 

database  is available freely on an open source license, although some features which may 

be required on larger commercial deployments are commercially supported add-ons. This 

model has made MongoDB arguably one of the most popular document oriented databases 

in use today. A 'document' in MongoDB is a 'binary' representation of a JSON document. 

This allows arbitrary JSON encoded data to be stored in the database and then queried 

using a rich JSON based querying interface. 

 

2.1.4 Graph Databases 

Other databases such as Neo4J
10

 or Titan
11

 are a powerful way for structuring data which 

allows for easily traversing relationships as well as retrieving attributes about a particular 

node. It is worth clarifying that a Graph Database works efficiently where there are ad-hoc 

relationships between data whereas a Relational Database is efficient for more structured 

relationships between data. The key strength of these systems is that they're very well 

adapted for traversing different data types to perform ad-hoc mash-ups. 

 

 Data Cleaning Tool 

 

 OpenRefine 

OpenRefine (formerly GoogleRefine) is an open source tool that is dedicated to cleaning 

messy data. You can explore huge data sets easily and quickly even if the data is a little 

unstructured. As far as data softwares go, OpenRefine is pretty user-friendly. Though, a 

good knowledge of data cleaning principles certainly helps. The nice thing about 

OpenRefine is that it has a huge community with lots of contributors meaning that the 

software is constantly getting better and better. 

 

http://openrefine.org/


 

 

 Data Cleaner 

DataCleaner recognises that data manipulation is a long and drawn out task. Data 

visualization tools can only read nicely structured, “clean” data sets. DataCleaner does the 

hard work for you and transforms messy semi-structured data sets into clean readable data 

sets that all of the visualization companies can read. DataCleaner also offers data 

warehousing and data management services. The company offers a 30- day free trial and 

then after that a monthly subscription fee. 

 

 Data Mining Tool 

 

 IBM SPSS Modeler 

The IBM SPSS Modeler offers a whole suite of solutions dedicated to data mining. This 

includes text analysis, entity analytics, decision management and optimization. Their five 

products provide a range of advanced algorithms and techniques that include text 

analytics, entity analytics, decision management and optimization. SPSS Modeler is a 

heavy-duty solution that is well suited for the needs of big companies. It can run on 

virtually any type of database and you can integrate it with other IBM SPSS products such 

as SPSS collaboration and deployment services and the SPSS Analytic server. 

 

 Oracle data mining 

Another big hitter in the data mining sphere is Oracle. As part of their Advanced Analytics 

Database option, Oracle data mining allows its users to discover insights, make predictions 

and leverage their Oracle data. You can build models to discover customer behavior, target 

best customers and develop profiles. The Oracle Data Miner GUI enables data analysts, 

business analysts and data scientists to work with data inside a database using a rather 

elegant drag and drop solution. It can also create SQL and PL/SQL scripts for automation, 

scheduling and deployment throughout the enterprise. 

 

 FramedData 

If you‟re after a specific type of data mining there are a bunch of startups which specialize 

in helping businesses    answer    tough    questions    with    data.    If    you‟re    worried    

about    user    churn,    we recommend FramedData, a startup which analyzes your 

http://datacleaner.org/
http://www-01.ibm.com/software/analytics/spss/products/modeler/
http://www.oracle.com/
http://framed.io/


 

 

analytics and tell you which customers are about to abandon your product. 

 

 Data Analysis Tool 

 

 Qubole 

Qubole simplifies, speeds and scales big data analytics workloads against data stored on 

AWS, Google, or Azure clouds. They take the hassle out of infrastructure wrangling. Once 

the IT policies are in place, any number of data analysts can be set free to collaboratively 

“click to query” with the power of Hive, Spark, Presto and many others in a growing list of 

data processing engines. Qubole is an enterprise  level solution. They offer a free trial that 

you can sign up to at this page.The flexibility of the program really does set it apart from 

the rest as well as being the most accessible of the platforms. 

 BigML 

BigML is attempting to simplify machine learning. They offer a powerful Machine 

Learning service with an easy-to-use interface for you to import your data and get 

predictions out of it. You can even use their models for predictive analytics. A good 

understanding of modeling is certainly helpful, but not essential,  if you want to get the 

most from BigML. They have a free version of the tool that allows you to create tasks that 

are under 16mb as well as having a pay as you go plan and a virtual private cloud that 

meet enterprise-grade requirements. 

 

 Statwing 

Statwing takes data analysis to a new level providing everything from beautiful visuals to 

complex analysis. They have a particularly cool blog post on NFL data! It‟s so simple to 

use that you can actually get started with Statwing in under 5 minutes. This allows you to 

use unlimited datasets of up to 50mb in size each. There are other enterprise plans that 

give you the ability to upload bigger datasets. 

 

3 Data Exploration 

Data exploration is an informative search used by data consumers to form true analysis 

from the information gathered. Often, data is gathered in a non-rigid or controlled manner 

in large bulks. For true analysis, this unorganized bulk of data needs to be narrowed down. 

https://www.qubole.com/
https://www.qubole.com/features/
https://bigml.com/
http://blog.statwing.com/dataset-ten-years-of-nfl-plays-analyzed-visualized-quizzified-downloadable/


 

 

This is where data exploration is used to analyze the data and information from the data to 

form further analysis. 

Data often converges in a central warehouse called a data warehouse. This data can come 

from various sources using various formats. Relevant data is needed for tasks such as 

statistical reporting, trend spotting and pattern spotting. Data exploration is the process of 

gathering such relevant data. 

Below are the steps involved to understand, clean and prepare your data for building your 

predictive model: 

 

1. Variable Identification 

2. Univariate Analysis 

3. Bi-variate Analysis 

4. Missing values treatment 

5. Outlier treatment 

6. Variable transformation 

7. Variable creation 

 

 Variable Identification 

First, identify Predictor (Input) and Target (output) variables. Next, identify the data type 

and category of the variables. Let‟s understand this step more clearly by taking an 

example. 

 

Example:- Suppose, we want to predict, whether the students will play cricket or not (refer 

below data set). Here you need to identify predictor variables, target variable, data type of 

variables and category of variables. 

 

 

Below, the variables have been defined in different category: 



 

 

 

 

Figure 2: Variable Identification 

 Univariate Analysis 

 

At this stage, we explore variables one by one. Method to perform uni-variate analysis will 

depend on whether  the   variable  type is  categorical  or continuous. Let‟s  look  at  these  

methods  and  statistical measures for categorical and continuous variables individually: 

 

Continuous Variables:- A continuous variable is a variable that has an infinite number 

of possible values. In other words, any value is possible for the variable. 

 

Categorical Variables:- A categorical variable (sometimes called a nominal variable) is 

one that has two or more categories, but there is no intrinsic ordering to the categories. For 

example, gender is a  categorical variable having two categories (male and female) and 

there is no intrinsic ordering to the categories. Hair color is also a categorical variable 

having a number of categories (blonde, brown, brunette, red, etc.) and again, there is no 

agreed way to order these from highest to lowest. 

Bi-variate Analysis 

Bi-variate Analysis finds out the relationship between two variables. Here, we look for 

association and disassociation between variables at a pre-defined significance level. We 

can perform bi-variate analysis for any combination of categorical and continuous 

variables. The combination can be: Categorical & Categorical, Categorical & Continuous 

and Continuous & Continuous. Different methods are used to tackle these combinations 

during analysis process. 



 

 

Continuous & Continuous: While doing bi-variate analysis between two continuous 

variables, we should look at scatter plot. It is a nifty way to find out the relationship 

between two variables. The pattern of scatter plot indicates the relationship between 

variables. The relationship can be linear or non-linear. 

 

 

Figure 3: Scatter plot indicates Relationship 

Scatter plot shows the relationship between two variable but does not indicates the strength 

of relationship amongst them. To find the strength of the relationship, we use Correlation. 

Correlation varies between -1 and +1. 

 

 -1: perfect negative linear correlation 

 +1:perfect positive linear correlation and 

 0: No correlation 

 

Correlation can be derived using following formula: 

 

Correlation = Covariance(X,Y) / SQRT( Var(X)* Var(Y)) 

 

Various tools have function or functionality to identify correlation between variables. In 

Excel, function CORREL() is used to return the correlation between two variables and 

SAS uses procedure PROC CORR to identify the correlation. These function returns 

Pearson Correlation value to identify the relationship between two variables: 

 



 

 

 

 

Figure 4: Correlation 

Categorical & Categorical: To find the relationship between two categorical variables, we 

can use following methods: 

 

 Two-way table: We can start analyzing the relationship by creating a two-way table 

of count and count%. The rows represents the category of one variable and the columns 

represent the categories of the other variable. We show count or count% of observations 

available in each combination of row and column categories. 

 Stacked Column Chart: This method is more of a visual form of Two-way table. 

 

 

Figure 5: Two-way table and Stacked 

Column Chart 

 

 Chi-Square Test: This test is used to derive the statistical significance of 

relationship between the variables. Also, it tests whether the evidence in the sample is 

strong enough to generalize that the relationship for a larger population as well. Chi-square 

is based on the difference between the expected 



 

 

 

and observed frequencies in one or more categories in the two-way table. It returns 

probability for the computed chi-square distribution with the degree of freedom. 

 

Categorical & Continuous: While exploring relation between categorical and continuous 

variables, we can draw box plots for each level of categorical variables. If levels are small 

in number, it will not show the statistical significance. To look at the statistical 

significance we can perform Z-test, T-test or ANOVA. 

 

 Z-Test/ T-Test:- Either test assess whether mean of two groups are statistically 

different from each other or not. 

Example: Suppose, we want to test the effect of five different exercises. For this, we 

recruit 20 men and assign one type of exercise to 4 men (5 groups). Their weights are 

recorded after a few weeks. We need to find out whether the effect of these exercises on 

them is significantly different or not. This can be done by comparing the weights of the 5 

groups of 4 men each. Till here, we have understood the first three stages of Data 

Exploration, Variable Identification, Uni-Variate and Bi-Variate analysis. We also looked 

at various statistical and visual methods to identify the relationship between variables. 

Now, we will look at the methods of Missing values Treatment. More importantly, we will 

also look at why missing values occur in our data and why treating them is necessary. 

 Missing Value Treatment 

Missing data in the training data set can reduce the power / fit of a model or can lead 

to a biased model because we have not analysed the behavior and relationship with other 

variables correctly. It can lead to wrong prediction or classification



 

 

Figure 6: Missing Value Treatment 

 

Notice the missing values in the image shown above: In the left scenario, we have not 

treated missing values. The inference from this data set is that the chances of playing 

cricket by males is higher than females. On the other hand, if you look at the second table, 

which shows data after treatment of missing values (based on gender), we can see that 

females have higher chances of playing cricket compared to males.  Now,  let‟s  identify  

the  reasons  for  occurrence  of these  missing  values.  They may occur  at  two stages: 

 

1. Data Extraction: It is possible that there are problems with extraction process. In 

such cases, we should double-check for correct data with data guardians. Some hashing 

procedures can also be used to make sure data extraction is correct. Errors at data 

extraction stage are typically easy to find and can be corrected easily as well. 

2. Data collection: These errors occur at time of data collection and are harder to 

correct. They can be categorized in four types: 

o   Missing completely at random: This  is a case when the probability of missing 

variable is same  for all observations. For example: respondents of data collection process 

decide that they will declare their earning after tossing a fair coin. If an head occurs, 

respondent declares his / her earnings & vice versa. Here each observation has equal 

chance of missing value. 

o Missing at random: This is a case when variable is missing at random and missing 

ratio varies  for different values / level of other input variables. For example: We are 

collecting data for age and female has higher missing value compare to male. 

o Missing that depends on unobserved predictors: This is a case when the missing 

values are not random and are related to the unobserved input variable. For example: In a 

medical study, if a particular diagnostic causes discomfort, then there is higher chance of 

drop out from the study. This missing value is not at random unless we have included 

“discomfort” as an input variable for all patients. 

o Missing that depends on the missing value itself: This is a case when the 

probability of missing value is directly correlated with missing value itself. For example: 

People with higher or lower income are likely to provide non-response to their earning. 

 

  

  



 

 

 Methods to treat missing values 

 

1. Deletion: It is of two types: List Wise Deletion and Pair Wise Deletion. 

o In list wise deletion, we delete observations where any of the variable is missing. 

Simplicity is one of the major advantage of this method, but this method reduces the 

power of model because it reduces the sample size. 

 

o In pair wise deletion, we perform analysis with all cases in which the variables of 

interest are present. Advantage of this method is, it keeps as many cases available for 

analysis. One of the disadvantage of this method, it uses different sample size for different 

variable 

 

 

 

 

Figure 7: List Wise Deletion and Pair Wise 

Deletion 

 

o Deletion methods are used when the nature of missing data is “Missing completely at 

random” else non random missing values can bias the model output. 

2. Mean/ Mode/ Median Imputation: Imputation is a method to fill in the missing 

values with estimated ones. The objective is to employ known relationships that can be 

identified in the valid values of the data set to assist in estimating the missing values. Mean 

/ Mode / Median imputation is one of the most frequently used methods. It consists of 

replacing the missing data for a given attribute by the mean or median (quantitative 



 

 

attribute) or mode (qualitative attribute) of all known values of that variable. It can be of 

two types:- 

 

Generalized Imputation: In this case, we calculate the mean or median for all non  

missing values of that variable then replace missing value with mean or median. Like in 

above table, variable “Manpower” is missing so we take average of all non missing 

values of “Manpower” (28.33) and then replace missing value with it. 

 

Similar case Imputation: In this case, we calculate average for gender “Male” 

(29.75) and “Female” (25) individually of non missing values then replace the missing 

value based on gender. For “Male“, we will replace missing values of manpower with 

29.75 and for “Female” with 25. 

 

3. Prediction Model: Prediction model is one of the sophisticated method for handling 

missing  data. Here, we create a predictive model to estimate values that will substitute the 

missing data. In this case, we divide our data set into two sets: One set with no missing 

values for the variable and another one with missing values. First data set become training 

data set of the model while second data set with missing values is test data set and variable 

with missing values is treated as target variable. Next, we create a model to predict target 

variable based on other attributes of the training data set and populate missing values of 

test data set.We can use regression, ANOVA, Logistic regression and various modeling 

technique to perform this. There are 2 drawbacks for this approach: 

1. The model estimated values are usually more well-behaved than the true values 

2. If there are no relationships with attributes in the data set and the attribute with 

missing values, then the model will not be precise for estimating missing values. 

KNN Imputation: In this method of imputation, the missing values of an attribute 

are imputed using the given number of attributes that are most similar to the attribute 

whose values are missing. The similarity of two attributes is determined using a distance 

function. It is also known to have certain advantage & disadvantages. 

 

 Techniques of Outlier Detection and Treatment 

 

Outlier is a  commonly  used terminology by analysts and  data scientists as it  needs close 

attention else  it can result in wildly wrong estimations. Simply speaking, Outlier is an 



 

 

observation that appears far away and diverges from an overall pattern in a sample. 

 

Let‟s  take  an  example,  we  do  customer  profiling  and  find  out  that  the  average  

annual  income  of customers is $0.8 million. But, there are two customers having annual 

income of $4 and $4.2 million. These two customers annual income is much higher than 

rest of the population. These two observations will be seen as Outliers. 

 

 

Figure 8: outlier 

 Types of Outliers 

Outlier can be of two types: Univariate and Multivariate. Above, we have discussed the 

example of univariate outlier. These outliers can be found when we look at distribution of a 

single variable. Multi- 



 

 

 

variate outliers are outliers in an n-dimensional space. In order to find them, you have to 

look at distributions in multi-dimensions. 

 

Let us understand this with an example. Let us say we are understanding the relationship 

between height and weight. Below, we have univariate and bivariate distribution for 

Height, Weight. Take a look at the box plot. We do not have any outlier (above and below 

1.5*IQR, most common method). Now look at the scatter plot. Here, we have two values 

below and one above the average in a specific segment of weight and height. 

 

 

Figure 9: Types of outliers 

 

 Data Entry Errors:- Human errors such as errors caused during data collection, 

recording, or entry can cause outliers in data. For example: Annual income of a customer 

is $100,000. Accidentally, the data entry operator puts an additional zero in the figure. 

Now the income becomes $1,000,000 which is 10 times higher. Evidently, this will be the 

outlier value when compared with rest of the population. 

 Measurement Error: It is the most common source of outliers. This is caused 

when the measurement instrument used turns out to be faulty. For example: There are 10 

weighing machines. 9 of them are correct, 1 is faulty. Weight measured by people on the 

faulty machine will be higher / lower than the rest of people in the group. The weights 

measured on faulty machine can lead to outliers. 

 Experimental Error: Another cause of outliers is experimental error. For example: 

In a 100m sprint  of 7 runners, one runner  missed out on concentrating on the „Go‟ call 

which caused  him to start late. Hence, this caused the runner‟s run time to be more than 

other runners. His total run time can be an outlier. 



 

 

 Intentional Outlier: This is commonly found in self-reported measures that 

involves sensitive data. For example: Teens would typically under report the amount of 

alcohol that they consume. Only a fraction of them would report actual value. Here actual 

values might look like outliers because rest of the teens are under reporting the 

consumption. 

 Data Processing Error: Whenever we perform data mining, we extract data from 

multiple sources. It is possible that some manipulation or extraction errors may lead to 

outliers in the dataset. 

 

 Sampling error: For instance, we have to measure the height of athletes. By 

mistake, we include a few basketball players in the sample. This inclusion is likely to 

cause outliers in the dataset. 

 Natural Outlier: When an outlier is not artificial (due to error), it is a natural 

outlier.  For instance: In my last assignment with one of the renowned insurance company, 

I noticed that the performance of top 50 financial advisors was far higher than rest of the 

population. Surprisingly, it was not due to any error. Hence, whenever we perform any 

data mining activity with advisors, we used to treat this segment separately. 

 

 Detect Outliers 

 

Most commonly used method to detect outliers is visualization. We use various 

visualization methods, like Box-plot, Histogram, Scatter Plot (above, we have used box 

plot and scatter plot for visualization). Some analysts also various thumb rules to detect 

outliers. Some of them are: 

 

 Any value, which is beyond the range of -1.5 x IQR to 1.5 x IQR 

 Use capping methods. Any value which out of range of 5th and 95th percentile can be 

considered as outlier 

 Data points, three or more standard deviation away from mean are considered outlier 

 Outlier detection is merely a special case of the examination of data for influential data 

points and it also depends on the business understanding 

 

  

  



 

 

 Remove Outliers 

 

Most of the ways to deal with outliers are similar to the methods of missing values like 

deleting observations, transforming them, binning them, treat them as a separate group, 

imputing values and other statistical methods. Here, we will discuss the common 

techniques used to deal with outliers: 

 

Deleting observations: We delete outlier values if it is due to data entry error, data 

processing error or outlier observations are very small in numbers. We can also use 

trimming at both ends to remove outliers. 

 

Transforming and binning values: Transforming variables can also eliminate outliers. 

Natural log of a value reduces the variation caused by extreme values. Binning is also a 

form of variable transformation. Decision Tree algorithm allows to deal with outliers well 

due to binning of variable. We can also use the process of assigning weights to different 

observations. 

 

Imputing: Like imputation of missing values, we can also impute outliers. We can use 

mean, median, mode imputation methods. Before imputing values, we should analyse if it 

is natural outlier or artificial. If it is artificial, we can go with imputing values. We can also 

use statistical model to predict values of outlier observation and after that we can impute it 

with predicted values. 

 

Treat separately: If there are significant number of outliers, we should treat them 

separately in the statistical model. One of the approach is to treat both groups as two 

different groups and build individual model for both groups and then combine the output. 

 

Feature engineering is the science (and art) of extracting more information from existing 

data. You are not adding any new data here, but you are actually making the data you 

already have more useful. For example, let‟s say you are trying to predict foot fall in a 

shopping mall based on dates. If you try and use the dates directly, you may not be able to 

extract meaningful insights from the data. This is because the foot fall is less affected by 

the day of the month than it is by the day of the week. Now this information about day of 

week is implicit in your data. You need to bring it out to make your model better. 

https://www.analyticsvidhya.com/blog/2015/02/7-steps-data-exploration-preparation-building-model-part-2/


 

 

 Variable Transformation 

In data modelling, transformation refers to the replacement of a variable by a function. For 

instance, replacing a variable x by the square / cube root or logarithm x is a 

transformation. In other words, transformation is a process that changes the distribution or 

relationship of a variable with others. 

 

Let‟s look at the situations when  variable transformation is useful. 

 

 Methods of Variable Transformation 

 

There are various methods used to transform variables. As discussed, some of them 

include square root, cube   root,   logarithmic,   binning,   reciprocal   and   many   others.   

Let‟s   look   at   these   methods   in detail by highlighting the pros and cons of these 

transformation methods. 

 

 Logarithm: Log of a variable is a common transformation method used to change 

the shape of distribution of the variable on a distribution plot. It is generally used for 

reducing right skewness of variables. Though, It can‟t be applied to zero or negative values 

as well. 

 

 Square / Cube root: The square and cube root of a variable has a sound effect on 

variable distribution. However, it is not as significant as logarithmic transformation. Cube 

root has its own advantage. It can be applied to negative values including zero. Square root 

can be applied to positive values including zero. 

 

 Binning: It is used to categorize variables. It is performed on original values, 

percentile or frequency. Decision of categorization technique is based on business 

understanding. For example, we can 



 

 

 

categorize income in three categories, namely: High, Average and Low. We can also 

perform co-variate binning which depends on the value of more than one variables. 

 

Feature / Variable Creation 

 

Feature / Variable creation is a process to generate a new variables / features based on 

existing variable(s). For example, say, we have date(dd-mm-yy) as an input variable in a 

data set. We can generate new variables like day, month, year, week, weekday that may 

have better relationship with  target variable. This step is used to highlight the hidden 

relationship in a variable: 

 

 

Figure 10: Creating derived variables 

 

There are various techniques to create new features. Let‟s look at the some of the 

commonly used methods: 

 

 Creating derived variables: This refers to creating new variables from existing 

variable(s) using set of functions or different  methods. Let‟s look at  it through “Titanic 

– Kaggle competition”. In this data set, variable age has missing values. To predict 

missing values, we used the salutation (Master, Mr, Miss, Mrs) of name as a new variable. 

How do we decide which variable to create? Honestly, this depends on business 

understanding of the analyst, his curiosity and the set of hypothesis he might have about 

the problem. Methods such as taking log of variables, binning variables and other methods 

of variable transformation can also be used to create new variables. 

 

 Creating  dummy  variables: One  of   the   most   common  application   of   

dummy   variable is to convert categorical variable into numerical variables. Dummy 

https://www.kaggle.com/c/titanic-gettingStarted/data
https://www.kaggle.com/c/titanic-gettingStarted/data


 

 

variables are also called Indicator Variables. It is useful to take categorical variable as a 

predictor in statistical models. Categorical variable can  take  values  0  and  1.  Let‟s  take  

a  variable  „gender‟.  We  can  produce  two  variables,  namely, “Var_Male” with values 

1 (Male) and 0 (No male) and “Var_Female” with values 1 (Female) and 0 (No Female). 

We can also create dummy variables for more than two classes of a categorical variables 

with n or n-1 dummy variables. 

 

 
 

Figure 11: Creating dummy variables 

 

 

4 Data Visualization 

 

Data visualization is the visual and interactive exploration and graphic representation of 

data of any size, type (structured and unstructured) or origin. Visualizations help people 

see things that were not obvious to them before. Even when data volumes are very large, 

patterns can be spotted quickly and easily. Visualizations convey information in a 

universal manner and make it simple to share ideas with others. 

It‟s  a  way  to  get  fast  insights  through  visual  exploration,  robust  reporting  and  

flexible  information sharing. It helps a wide variety of users to make sense of the 

increasing amount of data within your organization. It‟s a way to present big data in a way 

business users can quickly understand and use. Data visualization brings the story of your 

data to life. 

Data visualization can be used for different purposes. 

 

Some examples: 

 To create and share meaningful reports with anyone anywhere 

 To forecast and quickly identify opportunities and anticipate future trends 



 

 

 To optimize corporate processes & to drive innovation 

 To give anyone in the organization the power to visually explore and analyze all 

available data. 

Data visualization was created to visually explore and analyze data quickly. It‟s designed 

for anyone in your organization who wants to use and derive insights from data regardless 

of analytic skill level – from influencers, decision makers and analysts to statisticians and 

data scientists. It also offers IT an easy way to protect and manage data integrity and 

security. The amount of data will continue to grow while often time and resources to 

interpret the data continue to decrease. Data visualization will become one of the few tools 

able to help us win that challenge. 

Data visualization helps uncover insights buried in your data and discover trends within 

your business and the market that affect your bottom line. Insights in your data can 

provide competitive advantage and the opportunity to differentiate. 

 

Data visualization lets you read your market intelligently, compare your overall position 

with the industry trend, define the most appreciated features of your products and adapt 

development accordingly, combine information about sales with consumer preferences 

and much more. 

Data visualization allows you to spot market trends and grow your business Data 

visualization allows you now  your  market‟s dynamics like  never  before   Knowing  your 

customer  better leads to  more effective sales and marketing actions and enhances 

customer experience. Data visualization allows you to know your customers‟ needs and 

act on it. Data visualization provides information that  is easy to  understand and to share. 

Company KPIs are always under control. Data from a variety of internal and external 

sources is channeled into one single, shared source of information. 

 

Big Data visualization tool must be able to deal with semi-structured and unstructured 

data because big data usually have this type of format. It is realized that to cope with 

such huge amount of data there is need for immense parallelization, which is a 

challenge in visualization. The challenge in parallelization algorithm is to  break  

down  the problem into such independent task that they can  run independently. The 

task of big data visualization is to recognize interesting patterns and correlations. We 

need to carefully choose the dimensions of data to be visualized, if we reduce 



 

 

dimensions to make our visualization low then we may end up losing interesting 

patterns but if we use  all  the  dimensions  we  may end up having visualization too 

dense to be useful to  the users. For example: “Given the conventional displays ( 1.3 

million pixels), visualizing every data point can  lead         to  over-plotting,  

overlapping  and  may  overwhelm  user‟s  perceptual  and  cognitive capacities 

 

Due to vast volume and high magnitude of big data it becomes difficult to visualize. 

Most of the current visualization tool have low performance in scalability, 

functionality and response time 

.Methods have been proposed which not only visualizes data but processes at the same 

time. These methods use Hadoop and storage solution and R programming language 

as compiler environment in the model 

 

 

 Visualization Tools 

Various tools have emerged to help us out from the above pointed problems. The most 

important feature that a visual- ization must have is that it should be interactive, which 

means that user should be able to interact with the visualization. Visualization must 

display relevant information when hovered over it, zoom in and out panel should be 

there, visualization should adapt itself at runtime if we select subset or superset of 

data. We reviewed some of the most popular visualization tools. 

 

 Tableau 

Tableau is interactive data visualization tool which is focused on Business 

Intelligence. Tableau provides very wide range of visualization options. It provides 

option to create custom visualization. It is fast and flexible. It supports mostly all the 

data format and connection to various servers right from the Amazon Aurora to 

Cloudera Hadoop and Salesforce. User interface is intuitive, wide variety of charts are 

available. For simple calculations and statistics one does not require any coding skills 

but for heavy analytics we can run models in R and then import the results into 

Tableau. This requires quite a bit of programming skill based upon the task we need to 

perform. 

 



 

 

Some other important big data visualization problems are as follows 

Visual noise: Most of the objects in dataset are too relative to each other. It becomes 

very difficult to separate them. 

Information loss: To increase the response time we can reduce data set visibility, but 

this leads to information loss. 

Large image perception: Even after achieving desired me- chanical output we are 

limited by our physical perception. 

 

 Microsoft Power BI 

Power BI is a powerful cloud-base business analytics service. Visualization are 

interactive and rich. Power BI consists of 3 elements, Power BI Desktop, 

Service(SaaS), Apps. Every service is available to us that is why it makes Power BI 

flexible and persuasive. With more than 60 types of source integration you can start 

creating visualization in matter of minutes. Power BI combines the familiar Microsoft 

tools like Office, SharePoint and SQL Server. The feature that it distinguishes from 

other tools is that you can use natural language to query the data.  You  don‟t require 

programming skills for this tool but there is option available to run your R script. You 

can merge multiple data sources and create models, which comes in handy. Fig. 4 

represents 3 visualizations in 3 coordinates, i.e.  left, bottom and right. Left represents 

profit by county and market, bottom represents profit by region and right coordinate 

represents all over sales and profit. 



 

 

Figure 12: Microsoft Power BI 

 

 Plotly 

Plotly is also known as Plot.ly is build using python and Django framework. The 

actions it can perform are analyzing and visualizing data. It is free for users but 

with limited features, for all  the features we need to buy the professional 

membership.  It creates charts  and dashboards online but can be used as offline 

service inside Ipython notebook, jupyter notebook and panda. Different variety of 

charts are available like statistical chart, scientific charts, 3D charts, multiple axes, 

dashboards etc. Plotly uses a tool called “Web Plot Digitizer(WPD)” which 

automatically grabs the data from the static image .Plotly on premises service is 

also available, it is like plot.ly cloud but you host data on your private cloud behind 

your own firewall. This for those wo have concern about the privacy of their data. 

Python, R,  MATLAB and Julia APIs are available for  the same. 

Figure 13: Plotly 

 

 

 Gephi 

Gephi is open-source network analysis tool writ- ten in Java and OpenGL. It is 

used to handle very large and complex datasets. The network analysis includes 

 

• Social Network Analysis 

• Link Analysis 

• Biological Network Analysis 

 

With its dynamic data exploration Gephi stands out rest of its competition for graph 

analysis. No programming skills are required to run thin tools but a good knowledge 



 

 

in graphs is necessary. It uses GPU 3D render engine to accelerate the performance 

and give real time analysis 

 

 

 

 
 

Figure 14: Gephi 

 

 

 

 Excel 2016 

Microsoft Excel is a spreadsheet developed by Microsoft. It can not only be used for 

Big Data and statistical analysis but it is also a powerful visualization tool. Using 

power query excel can connect to most of the services like HDFS, SaaS etc and is 

capable of managing Semi- Structured data. Combined with visualization techniques 

like ”Conditional Formatting” and interactive graphs makes Excel 2016 a good 

contender in the ocean of Big Data visualization tools. 

 

 



 

 

Figure 15: Excel 

 Oracle Visual Analyzer 

Introduced in 2015, this web-based tool within the Oracle Business Intelligence Cloud 

Service claimed a spot at the Magic Quadrant Business Intelligence and Analytics 

Platform report by Gartner. Interactive visuals and highly advanced analysis clubbed with 

a customizable dashboard are some of the key features of Oracle Visual Analyzer. Being 

highly scalable, this data visualization tool is very suitable for enterprises with large-scale 

deployments where deep insights and well curated reports are essential. 

Every bit of data carries a story with it and these data visualization tools are the gateway to 

fathom the story it tries to tell us. It helps us to understand about the current statistics and 

the future trends of the market. 

 

 Datawrapper 

Datawrapper is a data visualization tool that‟s gaining popularity fast, especially among 

media companies which use it for presenting statistics and creating charts. It has an easy to 

navigate user interface where you can easily upload a csv file to create maps, charts and 

visualizations that can be quickly added to reports. Although the tool is primarily aimed at 

journalists, it‟s flexibility should accommodate a host of applications apart from media 

usage. 

 Google Chart 

Google is an obvious benchmark and  well  known  for  the  user-friendliness  offered  by  

its  products and Google chart is not an exception. It is one of the easiest tools for 

visualizing huge data sets. Google chart holds a wide range of chart gallery, from a simple 

line graph to complex hierarchical tree-like structure and you can use any of them that fits 

your requirement. Moreover, the most important part while designing  a  chart  is 

customization and  with Google  charts,  it‟s  fairly Spartan.  You can always ask  for some 

technical help if you want to dig deep. It renders the chart in HTML5/SVG format and it is 

cross- browser compatible. Added to this,  it  also  has adopted VML for supporting old IE 

browsers and that‟s also cross-platform compatible, portable to iOS and the new release of 

Android. The chart data can be easily exported to PNG format. 

 Qlikview 

https://cloud.oracle.com/business_intelligence
https://cloud.oracle.com/business_intelligence
https://cloud.oracle.com/business_intelligence
https://www.datawrapper.de/
https://developers.google.com/chart/
https://www.promptcloud.com/blog/difference-between-structured-and-unstructured-web-data
https://developers.google.com/chart/interactive/docs/customizing_charts


 

 

Qlik is one of the major players in the data analytics space with their Qlikview tool which 

is also one of the biggest competitors of Tableau. Qlikview boasts over 40,000 customers 

spanning across over 100 countries. Qlik is particularly known for its highly customizable 

setup and a host of features that help create the visualizations much faster. However, the 

available options could mean there would be a learning curve to get accustomed with the 

tool so as to use it to its full potential. 

Apart from its data visualization prowess, Qlikview also offers analytics, business 

intelligence and enterprise reporting features. The clean and clutter-free user experience is 

one of the notable aspects of Qlikview. Qliksense is a sister package of Qlikview which is 

often used alongside the former to aid in  data exploration and discovery. Another 

advantage of using Qlikview is the strong community of users and resources which will 

help you get started with the tool. 

http://www.qlik.com/us/


 

 

 

 
 

 

 

SCHOOL OF COMPUTING 

DEPARTMENT OF  COMPUTER SCIENCE AND ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

UNIT – V – Internet of Things – SCSA5301 



 

 

 

 

HANDS-ON PROJECTS 

 

 Industry 4.0 concepts - Sensors and sensor Node and interfacing using any Embedded 

 target boards (Raspberry Pi / Intel Galileo/ARM Cortex/ Arduino) - DIY Kits – Soil 

 moisture monitoring - Weather monitoring - Air quality Monitoring -  Movement 

 Detection. 

 

1. Soil Moisture Monitoring 

 

Soil  moisture  sensors measure  the   volumetric  water   content in soil. 

Since   the  direct gravimetric measurement of free soil moisture requires 

removing, drying, and weighting of a sample, soil moisture sensors measure the 

volumetric water content indirectly by using some other property of the soil, such  

as  electrical  resistance,  dielectric  constant,  or  interaction  with neutrons, as a 

proxy for the moisture content. The relation between the measured property and 

soil moisture must be calibrated and may vary depending on environmental factors 

such as soil type, temperature, or electric conductivity. Reflected microwave 

radiation is affected by the soil moisture and is used for remote sensing in 

hydrology and agriculture. 

 

 

 

Figure 1: Soil Moisture Sensor 

 

 

https://en.wikipedia.org/wiki/Water_content
https://en.wikipedia.org/wiki/Soil
https://en.wikipedia.org/wiki/Soil
https://en.wikipedia.org/wiki/Soil
https://en.wikipedia.org/wiki/Gravimetric_analysis
https://en.wikipedia.org/wiki/Neutron
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Electric_conductivity
https://en.wikipedia.org/wiki/Microwave
https://en.wikipedia.org/wiki/Microwave
https://en.wikipedia.org/wiki/Microwave
https://en.wikipedia.org/wiki/Remote_sensing
https://en.wikipedia.org/wiki/Hydrology


 

 

Now let‗s wire the sensor to the Raspberry Pi. 

 

VCC-->3v3 

GND --> 

GND 
D0 --> GPIO 17 (Pin 11) 

 

With everything now wired up, we can turn on the Raspberry Pi. Without writing 

any code we can test to see our moisture sensor working. When the sensor detects 

moisture, a second led will illuminate .So as a quick test, grab a glass of water (be 

very careful not to spill water!!) then place the probes into the water and see the 

detection led shine. If the detection light doesn‗t illuminate, you can adjust the 

potentiometer on the sensor which allows you to change the detection threshold 

(this only applies to the digital output signal). In this example we want to monitor 

the moisture levels of our plant pot. So we want to set the detection point at a level 

so that if it drops below we get notified that our plant pot is too dry and needs 

watering. Our plant here, is a little on the dry side, but ok for now, if it gets any 

drier it‗ll need watering. 

 

 

 

 



 

 

Figure 2: Experimental Setup 

 

 

To run the script simply run the following command from the same directory as 

the script: sudo python moisture.py 

 

1.1 Code 

 

import RPi.GPIO as 

GPIO import smtplib 

import time 
 

smtp_username = "enter_username_here" # This is the username used to login 

to your SMTP provider 

 

smtp_password = "enter_password_here" # This is the password used to login 
to your SMTP provider 

 

smtp_host = "enter_host_here" # This is the host of the SMTP 

provider smtp_port = 25 # This is the port that your SMTP 

provider uses smtp_sender = "sender@email.com" # This is the 

FROM email address smtp_receivers = ['receiver@email.com'] 

# This is the TO email address message_dead = """From: 

Sender Name <sender@email.com> 

To: Receiver Name <receiver@email.com> 

 

Subject: Moisture Sensor Notification 

mailto:sender@email.com
mailto:sender@email.com
mailto:receiver@email.com


 

 

 

# This is the message that will be sent when moisture IS 

detected again message_alive = """From: Sender Name 

<sender@email.com> 

To: Receiver Name <receiver@email.com> 
 

Subject: Moisture Sensor 

Notification # This is our 

sendEmail function 

def sendEmail(smtp_message): 

 

try: 

 

smtpObj = smtplib.SMTP(smtp_host, smtp_port) 

 

smtpObj.login(smtp_username, smtp_password) # If you don't 

need to login to your smtp provider, simply remove this line 

 

smtpObj.sendmail(smtp_sender, smtp_receivers, 

smtp_message) print "Successfully sent email" 

except smtplib.SMTPException: 
 

print "Error: unable to send email" 

 
# This is our callback function, this function will be called every time there is a 
change on the specified GPIO channel, in this example we are using 17 

 

def callback(channel): 

mailto:sender@email.com
mailto:receiver@email.com


 

 

 

if GPIO.input(channel): 

 

print "LED off" 

sendEmail(message_d

ead) 

else: 
 

print "LED on" 

sendEmail(message_al

ive) 

# Set our GPIO numbering to 

BCM 

GPIO.setmode(GPIO.BCM) 

# Define the GPIO pin that we have our digital output from our sensor 

connected to channel = 17 

# Set the GPIO pin to an input 

 

GPIO.setup(channel, GPIO.IN) 

 

# This line tells our script to keep an eye on our gpio pin and let us know 

when the pin goes HIGH or LOW 

 

GPIO.add_event_detect(channel, GPIO.BOTH, bouncetime=300) 

 



 

 

# This line assigns a function to the GPIO pin so that when the above line 

tells us there is a change on the pin, run this function 

 

GPIO.add_event_callback(channel, callback) 

 

# This is an infinte loop to keep our script 

running while True: 

# This line simply tells our script to wait 0.1 of a second, this is so the script 

doesnt hog all of the CPU 

 

time.sleep(0.1) 

 

2. Weather Monitoring 

 

The DHT11 is a low-cost temperature and humidity sensor. It isn‗t the 

fastest sensor around but its cheap price makes it useful for experimenting or 

projects where you don‗t require new readings multiple times a second. The device 

only requires three connections to the Pi. 

+3.3v, ground and one GPIO pin. 

 

 DHT11 Specifications 

 

The device itself has four pins but one of these is not used. You can buy the 4-pin 

device on its own or as part of a 3-pin module. The modules have three pins and 

are easy to connect directly to the Pi‗s GPIO header. 

 

 Humidity : 20-80% (5% accuracy) 

 Temperature : 0-50°C (±2°C accuracy) 



 

 

 Hardware Setup 

 

 

 

 

Figure 3: Humidity and Temperature Sensor 

 

The 4-pin device will require a resistor (4.7K-10K) to be placed between Pin 1 

(3.3V) and Pin 2 (Data). The 3-pin modules will usually have this resistor included 

which makes the wiring a bit easier. The 3 pins should be connected to the Pi as 

shown in the table below : 

 

 
DHT Pin Signal Pi Pin 
1 3.3V 1 
2 Data/Out 11 (GPIO17) 
3 not used – 
4 Ground 6 or 9 

 

 

 

Your data pin can be attached to any GPIO pin you prefer. In my example I am 

using physical pin 11 which is GPIO 17. Here is a 4-pin sensor connected to the 

Pi‗s GPIO header. It has a 10K resistor between pin 1 (3.3V) and 2 (Data/Out). 

 

 Python Library 

 

The DHT11 requires a specific protocol to be applied to the data pin. In 



 

 

order to  save time trying to implement this yourself it‗s far easier to use the 

Adafruit DHT library. The library deals with the data that needs to be exchanged 

with the sensor but it is sensitive to timing issues. The Pi‗s operating system may 

get in the way while performing other tasks so to compensate for this the library 

requests a number of readings from the device until it gets one that is valid. To start 

with update your package lists and install a few Python libraries : 

 

sudo apt-get update 

sudo apt-get install build-essential python-dev 

Then clone the Adafruit library from their repository : 

Git clone 

https://github.com/adafruit Cd 

Adafruit_Python_DHT 

Then install the library for Python 2 and 

Python 3 sudo python setup.py install 

sudo python3 setup.py 

install python 

AdafruitDHT.py 11 17 

The example script takes two parameters. The first is the sensor type so is set to 

―11‖ to represent the DHT11. The second is the GPIO number so for my example 

I am using ―17‖ for GPIO17. You can change this if you are using a different 

GPIO pin for your data/out wire. You should see an output similar to this : 

Temp=22.0*Humidity=6

8.0% import 

Adafruit_DHT 

https://github.com/adafruit


 

 

 

# Set sensor type : Options are DHT11,DHT22 or 

AM2302 sensor=Adafruit_DHT.DHT11 

# Set GPIO sensor is 

connected to gpio=17 

# Use read_retry method. This will retry up to 15 times to 

 

# get a sensor reading (waiting 2 seconds between each retry). 

 

humidity, temperature = Adafruit_DHT.read_retry(sensor, gpio) 

 

# Reading the DHT11 is very sensitive to timings and occasionally 

 

# the Pi might fail to get a valid reading. So check if readings 

are valid. if humidity is not None and temperature is not 

None: 

print('Temp={0:0.1f}*C Humidity={1:0.1f}%'.format(temperature, 

humidity)) else: 

print('Failed to get reading. Try again!') 

 

3. Air Pollution Monitoring 

 

Air pollution is a major problem in urban centers as well as rural set-up. The 

major pollutants of concern are primarily carbon monoxide, nitrogen oxides, 

hydrocarbons and particulate matter (PM10, PM2.5). Ozone, PAN and PBN are 

other secondary pollutants generated as a result of the photochemical reactions 

of the primary pollutants. These pollutants affect human health as well as 

environment. Therefore, air pollution monitoring is necessary to keep a check 



 

 

on the concentration of these pollutants in ambient air. The grove sensors, grove 

DHT (for temperature and humidity), grove gas sensor modules like dust, MQ-5 

(for smoke), MQ-7 (for CO) and MQ-135 (for CO2) are interfaced to this shield 

for monitoring in our proposed. 

Adafruit CCS811 is a gas sensor that can detect a wide range of Volatile 

Organic Compounds (VOCs) and is intended for indoor air quality monitoring. 

When connected to your microcontroller (running our library code) it will return a 

Total Volatile Organic Compound (TVOC) reading and an equivalent carbon 

dioxide reading (eCO2) over I2C. There is also an on- board thermistor that can be 

used to calculate the approximate local ambient temperature. 

 

 

 

 
 

 

Figure 4: Gas Sensor 

 Power Pins 

 

 Vin - this is the power pin. Since the sensor uses 3.3V, we have included an 

onboard voltage regulator that will take 3-5VDC and safely convert it 

down. To power  the board,  give it  the same power as the logic level of  

your  microcontroller  - e.g. for a  5V micro like Arduino, use 5V 

 3Vo - this is the 3.3V output from the voltage regulator, you can grab up  to 
100mA  from this if you like 

 GND - common ground for power and logic 



 

 

1. sudo apt-get update 

 

Logic pins 

 

 SCL  - this is the  I2C  clock  pin,  connect  to  your  microcontrollers I2C

clock line. 

There is a 10K pullup on this pin and it is level shifted so you can use 3 - 

5VDC. 

 SDA - this is the I2C  data pin, connect to  your microcontrollers  I2C data 

line.  There is a 10K pullup on this pin and it is level shifted so you can 

use 3 - 5VDC. 

 INT - this is the interrupt-output pin. It is 3V logic and  you  can use it  to  

detect when  a new reading is ready or when a reading gets too high or too 

low. 

 WAKE - this is the wakeup pin for the sensor. It needs to  be pulled  to  

ground  in  order to communicate with the sensor. This pin is level shifted  

so  you can  use  3- 5VDC logic. 

 RST - this is the reset pin. When it is  pulled to  ground the sensor resets  

itself.  This  pin is level shifted so you can use 3-5VDC logic. 

 

3. 3 Raspberry Pi Wiring & Test 

The Raspberry Pi also has an I2C interface that can be used to communicate 

with this sensor. Once your Pi is all set up, and you have internet access set up, 

lets install the software we will need. First make sure your Pi package manager 

is up to date 

 

Next, we will install the Raspberry Pi library and Adafruit_GPIO which is our 

hardware interfacing layer 



 

 

1. sudo apt-get install -y build-essential python-pip python-dev python-smbus git 

2. git clone https://github.com/adafruit/Adafruit_Python_GPIO.git 

3. cd Adafruit_Python_GPIO 

4. sudo python setup.py install 

1. sudo pip install Adafruit_CCS811 

1. sudo raspi-config 

1. sudo nano /boot/config.txt 

1. dtparam=i2c_baudrate=10000 

 

Next install the adafruit CCS811 python library. 

 

Enable I2C 
 

We need to enable the I2C bus so we can communicate with the sensor. 

 

Once I2C is enabled, we need to slow the speed way down due to constraints of 

this particular sensor. 

 

add this line to the file 

 



 

 

1. sudo i2cdetect -y 1 

1. cd ~/ 

2. git clone https://github.com/adafruit/Adafruit_CCS811_python.git 

3. cd Adafruit_CCS811_python/examples 

4. sudo python CCS811_example.py 

 

press Ctrl+X, then Y, then enter to save and exit. Then run sudo shutdown -h 

now to turn off the Pi and prepare for wiring. 
Wiring Up Sensor 

With the Pi powered off, we can wire up the sensor to the Pi Cobbler like this: 

 

 Connect Vin to the 3V or 5V power supply (either is fine) 

 Connect GND to the ground pin on the Cobbler 

 Connect SDA to SDA on the Cobbler 

 Connect SCL to SCL on the Cobbler 

 Connect Wake to the ground pin on the Cobbler 

 
Now you should be able to verify that the sensor is wired up correctly by asking the 

Pi to detect what addresses it can see on the I2C bus: 

 

Run example code 
 

At long last, we are finally ready to run our example code 

 

from time import sleep 

 

from Adafruit_CCS811 import 

Adafruit_CCS811 ccs = 

Adafruit_CCS811() 



 

 

while not 

ccs.available(): 

pass 

temp = 

ccs.calculateTemperature() 

ccs.tempOffset = temp - 25.0 

while(1): 

 

if ccs.available(): 

 

temp = 

ccs.calculateTemperature() if 

not ccs.readData(): 

print "CO2: ", ccs.geteCO2(), "ppm, TVOC: ", ccs.getTVOC(), " 

temp: ", temp else: 

print 

"ERROR!" 

while(1): 

pas

s sleep(2) 



 

 

 

4. Movement Detection 

 

 

PIR stands for passive infrared. This motion sensor consists of a fresnel lens, an 

infrared detector, and supporting detection circuitry. The lens on the sensor focuses 

any infrared radiation present around it toward the infrared detector. Our bodies 

generate infrared heat, and as a result, this heat is picked up by the motion sensor. 

The sensor outputs a 5V signal for a period of one minute as soon as it detects the 

presence of a person. It offers a tentative range of detection of about 6–7 meters 

and is highly sensitive. When the PIR motion sensor detects a person, it outputs a 

5V signal to the Raspberry Pi through its GPIO and we define what the Raspberry 

Pi should do as it detects an intruder through the Python coding. Here we are just 

printing "Intruder detected". 

 

 
 

Figure 5: Working of PIR Sensor 

 

4.1 Working Mechanism 

All living beings radiate energy to the surroundings in the form of infrared 

radiations which are invisible to human eyes. A PIR (Passive infrared) sensor can 

be used to detect these passive radiations. When an object (human or animal) 



 

 

emitting infrared radiations passes through the field of view of the sensor, it detects 

the change in temperature and therefore can be used to detect motion.HC-SR501 

uses differential detection with two pyroelectric infrared sensors. By taking a 

difference of the values, the average temperature from the field of view of a sensor 

is removed and thereby reducing false positives. 

 

import RPi.GPIO as GPIO 

import time #Import time 

library 

GPIO.setmode(GPIO.BOARD) #Set GPIO pin 

numbering pir = 26 #Associate pin 26 to pir 

GPIO.setup(pir, GPIO.IN) #Set pin as GPIO in print "Waiting for 

sensor to settle" time.sleep(2) #Waiting 2 seconds for the sensor to 

initiate print "Detecting motion" 

while True: 

 

if GPIO.input(pir): #Check whether pir is HIGH print "Motion 

Detected!" time.sleep(2) #D1- Delay to avoid multiple 

detection 

time.sleep(0.1) #While loop delay should be less than detection(hardware) delay 

 

5. Upload Your Raspberry Pi Sensor Data to 

Thingspeak Website Things needed 



 

 

1. Raspbeery Pi 

2. Power Cable 

3. Wifi adapter or LAN connection to Raspbeery Pi 

 

Step 1: Signup for 

Thingspeak Go to 

www.thinspeak.com 

 

 

 

 

 

 

 

 

 

Figure 6: Thingspeak Website 

 

Click on ―Sign Up‖ option and complete the details 

 

 

 

Figure7: Create user 

http://www.thinspeak.com/


 

 

account Step 2: Create a Channel for Your Data 

Once  you  Sign  in  after  your  account  activation,  Create  a  new  channel  by  

clicking  ―New Channel‖ button 

 

Figure 8: Creating New Channel 

 

After the ―New Channel‖ page  loads, enter the Name and Description of the data   

you want   to upload. You can enter the name of your data (ex: Temperature) in 

Field1. If you want more Fields you can check the box next to Field option and 

enter the corresponding name of your data. 

 
 

Figure 9: New Channel settings 



 

 

 

Click on ―Save Channel‖ button to save all of your settings. 

 

We created two Fields, one is CPU Memory and one for CPU Temperature 

 

 

Figure 10: Creating field charts to display data 

 

Step 3: Get an API Key 

 

To upload our data, we need an API key, which we will later include in a piece of 

python code to upload our sensor data to Thingspeak Website. 

 

Click on ―API Keys‖ tab to get the key for uploading your sensor data. 



 

 

 

Figure 11: Copy the Write API Key of the channel 

 

The advantage of using Thingspeak compared to Xively or any other websites is 

that the convenience of using Matlab Analysis and Matlab Visualizations. Once 

you have the ―Write API Key‖. We are almost ready to upload our data, except for 

the python code. 

 

Step 4: Modifying the Python Code 

 

Go to 

https://github.com/sriharshakunda/Thingspeak_CPU_Python-

Code Download the code into your Raspberry Pi Home folder. 

https://github.com/sriharshakunda/Thingspeak_CPU_Python-Code
https://github.com/sriharshakunda/Thingspeak_CPU_Python-Code


 

 

 

Open the CPU_Python.py file in a 

notepad. Code: 

import httplib, urllib 
import time 
sleep = 60 # how many seconds to sleep between posts to the channel 

key = 'Put your Thingspeak Channel Key here' # Thingspeak channel to update 

 

#Report Raspberry Pi internal temperature to Thingspeak 

Channel def thermometer(): 
while True: 

#Calculate CPU temperature of Raspberry Pi in Degrees C 

temp = int(open('/sys/class/thermal/thermal_zone0/temp').read()) / 1e3 # Get 
Raspberry Pi CPU temp 

params = urllib.urlencode({'field1': temp, 'key':key }) 
headers = {"Content-typZZe": "application/x-www-form-

urlencoded","Accept": "text/plain"} 

conn = 

httplib.HTTPConnection("api.thingspeak.com:80"

) try: 

conn.request("POST", "/update", params, 

headers) response = conn.getresponse() 
print temp 
print response.status, 

response.reason data = 

response.read() 
conn.close

() except: 
print "connection 

failed" break 

#sleep for desired amount of 

time if  name  == " 

main ": 
while True: 



 

 

thermometer() 

time.sleep(sle

ep) 

Edit the line 19 by using CPU_Temp instead of temp. 

 

Use your Write API Key to replace the key with your API Key 

 

Use your Write API Key to replace the key with your API Key 

 

Save the file to overwrite changes 

 

Step 5: Assuming you have python 2.7 and proper python libraries, go to the 

folder where you copied the CPU_Python.py file 

 

Type python2.7 CPU_Python.py file 

 

In case if there are any errors uploading the data, you will receive ―connection failed‖ 

message 

 

Step 6: Check Thinspeak API and Confirm data transfer 

 

Open your channel and you should see the temperature uploading into thinspeak 

website. 



 

 

 

 

 

Figure: 12 CPU Temperature data displayed in 

Field Chart 

 

6. IFTTT 

 

IFTTT – short for ‗If This Then That‗ – is a free online service that lets you 

automate specific tasks. It lets you trigger actions on other apps, web services and 

devices automatically every time certain conditions are met. These trigger > action 

relationships used to be called recipes. but will now be known as Applets. The 

trigger and action relationships have always been known as recipes‗, but that‗s all 

changing. From now on, they will be dubbed Applets. There are no major changes 

to the way things work, but there are a few differences worth being aware of. Each 

Applet you enable will still trigger ‗if this then that‗ action when the relevant 

conditions are met, but now Applets can trigger multiple actions, instead of just 

one. Once the first action is completed, a second, third, fourth, etc, can also be 

triggered. 

 

"Channel" is IFTTT parlance for a Web service or other action. IFTTT currently 

supports 67 different channels spanning a wide range of popular services, and it 



 

 

can perform basic actions such as calling or texting a phone, or sending you an 

email. Here's a list of all the available IFTTT channels. You may recognize some 

of them: Craigslist, Dropbox, Evernote, Facebook, Flickr, Foursquare, Instagram, 

SkyDrive, Twitter, YouTube, and a wide range of Google services are just the tip 

of the iceberg. A newly released iPhone IFTTT app even adds channels for your 

phone's Reminders, Contacts, and Photos apps. Once you've gone through and 

activated some channels—basically, granting IFTTT access to your various 

services or providing it with personal details—you're ready to start crafting. 

 Services 

 

A service is just what it sounds like, a tool, application, or facility that works with 

IFTTT. The brilliant thing about IFTTT is that its variety of channels allows it to 

offer something to everybody. The list of available services is enormous and more 

are added all the time. Some of the  most  popular  services   include   Facebook,   

Twitter,   Instagram,   YouTube,   SoundCloud, Dropbox, Evernote, and Pocket. 

 

  

 Applets 

 

Applets are what make IFTTT worth your time. Basically, they are the 

combination of services that use a trigger and an action. When something happens 

on one service, it triggers an action on another. 

 

 Create an Applet 

 

The first step is to click My Applets and then New Applet. Next, click the word This. 

https://ifttt.com/channels
https://ifttt.com/channels
http://www.macworld.com/article/2044123/hands-on-ifttt-for-ios-automates-your-online-life.html
https://ifttt.com/search/services
http://dropbox.com/


 

 

 
 

Figure13: Login Page 

 

For this example, we will select the Instagram trigger, which will then ask us to 

activate Instagram just this once. Having done that, we will choose a trigger 

action: 

 

 

Figure 14: Service 



 

 

 

Figure 15: Trigger 

 

 

 

 

 
 

Figure 16: Action Service 

 

After doing this, we will be greeted by the second batch of actions. We‗ll select the 

first one and be asked to complete the fields. In this case, it‗s asking us where to 

grab the photos, how to name them and where it should put them. All you have to 

do is click on the Add ingredient, make  your selection from the drop-down box, 

and hit the Create Action button. Finally, you will be asked to review your Applet. 

You can optionally enable notifications when the Applet runs. Then, click Finish. 

  

  



 

 

 Pre-Made Applets 

 

We can browse other people‗s Applets, view options by category, check out 

collections, look at recommendations, or do a search if you are looking for 

something specific. And, using existing Applets is easier than creating your own. 

 

Figure 17: Pre Made Applets 

 

Just click on an Applet to review the details, and move the slider to turn it on. 

Depending on the Applet you choose, you may be asked to connect an account like 

Facebook or configure pieces of the Applet like date and time. But, this is all very 

simple and self-explanatory as you move through the process. 

Top 7 Applets 

 

Applet #1 – Daily SMS Weather Forecast 

You get IFTTT to send an SMS each morning telling you what the weather 

conditions are going to be for the day. 

Applet #2 – Wake Up Call 

You get a call at a time of your preference with an automated message. 

 

Applet #3 – Starred Emails in Gmail to Evernote 

When you mark an email with a star on Gmail, a copy of it is sent to your Evernote 

account. 

https://ifttt.com/recipes/24908
https://ifttt.com/recipes/152
https://ifttt.com/recipes/6440


 

 

 

Applet #4 – NASA’s Image of the Day 

NASA is well-known for many things, not the least of which is their stunning 

photographs of our galaxy. Set this up and you‗ll get an amazing photo in your 

email every day. 

Applet #6 – Email For a Call to Find a Lost Phone 

We‗ve all lost our phone before. With this Applet you get a call when you send an 

email to the specified address, helping you hear where it is. 

Applet #7 – Timed Daily Tweet 

Your account sends a tweet every day at a time you choose. 

 

7. Other Apps and Services 

 Cayenne IoT Builder 

Cayenne is an app for smartphones and computers that allows you to control the 

Raspberry Pi and soon also the Arduino through the use of an elegant graphical 

interface and a solid nice communication protocol. 

 

The features are: 

 

 Add and remotely control sensors, motors, actuators, GPIO boards, and more 

 Customizable dashboards with drag-and-drop widgets for connection devices 

 Create triggers and threshold alerts for devices, events, and actions 

 Schedule one-time or multi-device events for easy automation 

 Quick and easy setup - connect your Pi in minutes 

 

Step 1: Go to Cayenne site and Sign Up. After download the file and install the 

Cayenne system on your Raspberry Pi. Download the app on your Smartphone or 

tablet by using the follows link 

https://ifttt.com/applets/zgD6EJ8h-receive-nasa-s-image-of-the-day-in-your-email
https://ifttt.com/recipes/1828
https://ifttt.com/applets/390278p-timed-daily-tweet


 

 

 

Cayenne on Apple Store or Cayenne on Play Store 

 

Install on your Raspberry Pi the Raspbian system. For this step download NOOBS 

from Raspberripi.org: https://www.raspberrypi.org/downloads/ 

 

Copy the package on your SD, and start the Raspbian installation. For the raspbian 

installation I recommend to use a HDMI screen, a USB mouse and a USB 

keyboard.After this, connect your Raspberry at your LAN by cable. Then open your 

Cayenne app and install the library on your device. The next step. 

Step 2: Download the App and Install Cayenne 

 

Download the app on your Smartphone or tablet by using the 

follows link Cayenne on Apple Store or Cayenne on Play Store 

Install on your Raspberry Pi the Raspbian system. After this, connect your Raspberry 

at your LAN  by cable. Then open your Cayenne app and install the library on your 

device (or) 

 

Install manually Cayenne on your Raspberry Pi by using commands in Terminal of 

Raspberry Pi: 

 

wget 

https://cayenne.mydevices.com/dl/rpi_b8w8pn82i

9.sh sudo bash rpi_b8w8pn82i9.sh -v 

 

https://itunes.apple.com/us/app/cayenne-connect-create-control/id1057997711?mt=8
https://play.google.com/store/apps/details?id=com.mydevices.cayenne
https://www.raspberrypi.org/downloads/
https://itunes.apple.com/us/app/cayenne-connect-create-control/id1057997711?mt=8
https://play.google.com/store/apps/details?id=com.mydevices.cayenne


 

 

After this reboot your Raspberry. 

 

Step 3: See Your Device on Cayenne Dashboard 

 

 

 

Figure 18: Device on Cayenne Dashboard 

 

By using Computer you can see your device on: https://cayenne.mydevices.com/ like 

in photo. By using a Smartphone you can open the app and see your devices.You can 

personalize the Dashboard of Cayenne by using the widgets. The default Dashboard 

have CPU, Temp and RAM widget . These are the values of your Raspberry Pi. You 

can see the temp and the work flow of Raspberry pi. Then you can see the GPIO 

schedule. In the GPIO you can set every pin of GPIO of Raspberry. You can set the 

pin like Output or Input. Then you can activate the pin or read the value of the pin. The 

two values are HIGH or LOW. This is valid for Input and Output. 

https://cayenne.mydevices.com/


 

 

Step 4: Connect a Led to Your Raspberry Pi 

 

Now you can connect a led to GPIO port of Raspberry Pi. Use ALWAYS a resistor in 

series to led. If you don't use a resistor, you can burn the led or the Raspberry Pi. See 

the photo and connect the led to pin number 11 or GPIO 17. 

 

 

 

 

Figure 19: Connections with LED 

 

Step 5: Switch ON the Led 

Now go to the Dashboard of Cayenne, and open the GPIO schedule. Then Select the 

Pin 17 and click on Input. Setup the pin like Output, and after click on LOW button. 

The button below Green and the word HIGH appear on it. Now your led in ON. You 

can switch on the led by using your Raspberry Pi by LAN, and also by a different 

Network Area. This is because Cayenne use a proprietary proxy. 

Step 6: Create the Buttons on Dashboard 

 

Go to Cayenne Dashboard on smartphone app, and click + on right up corner of 

screen. 

 

Now you can add a widget. Select Actuators device --> Select Generic --> Select 



 

 

Digital Output. Fill the all the fields, and select the correct channel for RGB led. 

The Blue pin in the 25 

 

The Green pin in the 24 

 

The Red pin in the 23 

 

Step 7: Now Switch on the Rainbow 

 

Figure 20: Create Buttons on Dashboard 

 

You can use a normal breadboard and an RGB led common cathode. The RGB led is a 

led that have 3 leds inside. Why the pin are only 3? Because the 3 leds share a cathode, 

or anode pin. For this reason you must specify the kind of led you want. Now I use a 

common cathode led. 

 

The GPIO port on Raspberry are: 



 

 

The Blue pin in the 

25 The Green pin in 

the 24 

The Red pin in the 23  

 Amazon Alexa 

Alexa is Amazon‘s cloud-based voice service available on tens of millions of 

devices from Amazon and third-party device manufacturers. With Alexa, you can build 

natural voice experiences that offer customers a more intuitive way to interact with the 

technology they use every day. Our collection of tools, APIs, reference solutions, and 

documentation make it easy for anyone to build with Alexa. Alexa Enabled is a 

category of products with built-in access to Alexa. You can talk to the device with the 

wake word ―Alexa,‖ and receive voice responses and content instantly. Alexa- enabled 

products work with Alexa skills and Alexa compatible smart home devices and 

gadgets, bringing familiar capabilities from the Amazon Echo family of devices to a 

range of new form  factors and use cases developed by leading brands. 

The Alexa Voice Service (AVS) enables you to access cloud-based Alexa 

capabilities with the support of AVS APIs, hardware kits, software tools, and 

documentation. We simplify building voice-forward products by handling complex 

speech recognition and natural language understanding in the cloud, reducing your 

development costs and accelerating your time to market. Best of all, regular Alexa 

updates bring new features to your product and add support for a growing assortment 

of compatible smart home devices. Build with AVS, and become part of the Alexa 

family. 


