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COURSE OBJECTIVES 
Ø To understand the mathematical foundations required for data science. 
Ø To describe a flow process for data science problems. 
Ø To introduce basic data science algorithms and data visualization. 
Ø To learn machine tools and techniques. 
Ø To learn the ideas and tools for data visualization. 

 
UNIT 1 LINEARALGEBRA 9 Hrs. 
Algebraic view – vectors 2D, 3D and nD, matrices, product of matrix & vector, rank, null 
space, solution of over determined set of equations and pseudo-inverse. Geometric view - 
vectors, distance, projections, eigenvalue decomposition, Equations of line, plane, 
hyperplane, circle, sphere, Hypersphere. 
 
UNIT 2 PROBABILITY AND STATISTICS     9 Hrs. 
Introduction to probability and statistics, Population and sample, Normal and Gaussian 
distributions, Probability Density Function, Descriptive statistics, notion of probability, 
distributions, mean, variance, covariance, covariance matrix, understanding univariate and 
multivariate normal distributions, introduction to hypothesis testing, confidence interval for 
estimates. 
 
UNIT 3 EXPLORATORY DATA ANALYSIS AND THE DATA SCIENCE PROCESS
           9 Hrs. 
Exploratory Data Analysis and the Data Science Process - Basic tools (plots, graphs and 
summary statistics) of EDA - Philosophy of EDA - The Data Science Process - Data 
Visualization - Basic principles, ideas and tools for data visualization 
- Examples of exciting projects- Data Visualization using Tableau. 
 
UNIT 4 MACHINE LEARNING TOOLS, TECHNIQUES AND APPLICATIONS 9 
Hrs. 
Supervised Learning, Unsupervised Learning, Reinforcement Learning, Dimensionality 
Reduction, Principal Component Analysis, Classification and Regression models, Tree and 
Bayesian network models, Neural Networks, Testing, Evaluation and Validation of Models. 
 
UNIT 5 INTRODUCTION TO PYTHON  9 Hrs. 
Data structures-Functions-Numpy-Matplotlib-Pandas- problems based on computational 
complexity-Simple case studies based on python (Binary search, common elements in list), 
Hash tables, Dictionary. 

Max. 45 Hrs. 
Course Outcome 
On completion of the course, student will be able to 
CO1 - Explain the basic terms of Linear Algebra and Statistical Inference.  
CO2 - Describe the Data Science process and how its components interact.  
CO3 - Apply EDA and the Data Science process in a case study. 
CO4 - Classify Data Science problems. 
CO5 - Analyse and correlate the results to the solutions.  
CO6 - Simulate Data Visualization in exciting projects. 
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UNIT 1 LINEAR ALGEBRA 
 
Algebraic view – vectors 2D, 3D and nD, matrices, product of matrix & vector, rank, null 
space, solution of over determined set of equations and pseudo-inverse. Geometric view - 
vectors, distance, projections, eigenvalue decomposition, Equations of line, plane, hyperplane, 
circle, sphere, Hypersphere. 
 
1.1.Introduction to Data science 

• Data science is an interdisciplinary field that uses scientific methods, processes, 
algorithms and systems to extract knowledge and insights from noisy, structured 
and unstructured data. 

•  It is an analyzing method to extract accurate and deep understanding of a raw data 
using methods in statistics, Machine Learning etc. 

•  Different process includes in data science are inspecting, cleaning, transforming, 
modeling, analyzing and interpreting raw data.  

 

 
Figure 1 : Collaboration of data science with other branch of studies 

 
Data Science Life Cycle  

 
Figure 2 :Data science life cycle process 
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Applications of Data Science  

• Fraud and risk detection 
• Healthcare 
• Airline Route Planning 
• Image and speech recognition 
• Augmented reality 

 
1.2.Linear Algebra  

• Linear algebra is one of the most important mathematical and computational tools in 
data science. 

• It is a branch of mathematics that deals with the theory of systems of linear equations, 
matrices, vector spaces, determinants, and linear transformations. 
 

 
Figure 3 : Process in Linear Algebra 

1.3.Algebraic View: Vector 

• A vector is an object that has both a magnitude and a direction. 
•  Geometrically, we can picture a vector as a directed line segment, whose length is the 

magnitude of the vector and with an arrow indicating the direction. The direction of 
the vector is from its tail to its head.  

• Vectors are used to represent numeric or symbolic characteristics, called features, of 
an object in a mathematical, easily analyzable way. 
 

 
Figure 4 : Vector representation 
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Perpendicular vector and orthogonal vector 
 

• Two vectors are perpendicular if the angle between them is 90 degrees. 
• If two vectors are nonzero and their dot product is equal to 0, then they are 

perpendicular. 

 
• All perpendicular vectors are orthogonal. 
• The 0 vector is orthogonal to everything else (even to itself) 

 

 
1.4.Defining a 2D point/Vector:  

 
Figure 5: 2D vector plot 

 
In 2D space, a point is defined as the (x,y) coordinates as shown above. Here, the x1 coordinate 
(x coordinate) is 2, and the x2 coordinate (y coordinate) is 3.  
 
 
Defining a 3D point/Vector:  
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Figure 6 : 3D vector plot 

 
 

Extending the 2D concept in 3D space point ‘p’ is defined by (x,y,z) coordinates, where 2 is x1 
coordinate(x coordinate), 3 is x2 coordinate (y coordinate), and 5 is x3 coordinate (z coordinate).  

 
Distance of a point from Origin:  
 

a) In 2D 

 
 

Figure 7 : Distance of a point from origin in 2D space 

In 2D space, the distance d is given by,  

 
 
 

b) In 3D 

 
 

Figure 8 : Distance of a point from origin in 3D space 

In 3D space, the distance d is given by,  
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c)  In nD:  
In n-Dimensional space applying Pythagoras theorem on point ‘p’ we get,  

 
 
Distance between two points 
 

a) In 2D 

 
Figure 9 : Distance between two points in 2D space 

 
Consider we have two points say, p and q then the distance d is given by, 

 

 
 
 
 

b) In 3D 

 
 

Figure 10 : Distance between two points in 3D space 
 

 
Extending the same concept in 3D space we get the distance d’ for the points p and q as 
follows:  
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c) In nD 

Extending the above concept in nD space, we get the distance formulae as,  
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1.5.Dot Product of Vectors  

 

 
 

 

1.6.Matrix Theory and Linear Algebra 

• Matrices can be used to represent samples with multiple attributes in a compact form. 
• Matrices can also be used to represent linear equations in a compact and simple fashion. 
• Linear algebra provides tools to understood and manipulate matrices to derive useful 

knowledge from data. 

 
Figure 11 : Matrix elements 

• A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows 
and columns. 
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• A matrix with m rows and n columns is called an m×n matrix or m-by-n matrix, 
where m and n are called the matrix dimensions. 

• Matrices can be used to compactly write and work with multiple linear equations, that 
is, a system of linear equations.  

• A matrix is a 2-D array of shape (m×n) with m rows and n columns is as given below: 

 
Tensor 

Generally, an n-dimensional array where n>2 is called a Tensor. But a matrix or a vector is also 
a valid tensor. A tensor is an algebraic object that describes a multilinear relationship between 
sets of algebraic objects related to a vector space.  

 
Figure 12 : Matrix and tensor 

Terms related to Matrix 

• Order of matrix – If a matrix has 3 rows and 4 columns, order of the matrix is 3*4  
i.e. row*column. 

• Square matrix – The matrix in which the number of rows is equal to the number of 
columns. 

• Diagonal matrix – A matrix with all the non-diagonal elements equal to 0 is called 
a diagonal matrix. 

• Upper triangular matrix – Square matrix with all the elements below diagonal equal 
to 0. 

• Lower triangular matrix – Square matrix with all the elements above the diagonal 
equal to 0. 

• Scalar matrix – Square matrix with all the diagonal elements equal to some constant 
k. 

• Identity matrix – Square matrix with all the diagonal elements equal to 1 and all the 
non-diagonal elements equal to 0. 

• Column matrix – The matrix which consists of only 1 column. Sometimes, it is used 
to represent a vector. 
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• Row matrix – A matrix consisting only of row. 
• Trace – It is the sum of all the diagonal elements of a square matrix. 

 
Basic operations on matrix 

• Addition – Addition of matrices is almost similar to basic arithmetic addition.  
Eg : Suppose we have 2 matrices ‘A’ and ‘B’ and the resultant matrix after the addition 
is ‘C’. Then 

Cij  =   Aij + Bij  
For example, let’s take two matrices and solve them. 
A      = 1 0 
 2 3 
B    = 4 -1 
 0 5  Then  C    = 5 -1 
       2 8 

• Subtraction – Subtraction of matrices is almost similar to basic arithmetic subtraction.  
Eg : Suppose we have 2 matrices ‘A’ and ‘B’ and the resultant matrix after the 
subtraction is ‘D’. Then 

Dij  =   Aij - Bij  
For example, let’s take two matrices and solve them. 
A      = 1 0 
 2 3 
B    = 4 -1 

0 5    
Then  C    = -3 1 

     2 -2 
 

• Multiplication – In matrix multiplication the matrices don’t need to be quadric, but the 
inner dimension needs to be same. The size of the resulting matrix will be the outer 
dimensions. 
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 Figure 13 : Matrix multiplication 

 
Eg : 

 
Applying Python on matrices 

• In python, matrix can be implemented as 2D list or 2D Array. 
• Matrix operations and array are defines in module “numpy“.  

 
• add() :- This function is used to perform element wise matrix addition. 
• subtract() :- This function is used to perform element wise matrix subtraction. 
• multiply() :- This function is used to perform element wise matrix 

multiplication. 
• dot() :- This function is used to compute the matrix multiplication, rather than 

element wise multiplication.  
Transpose of a matrix 
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Eg : 

 
Determinant of a matrix 
 
The determinant of a matrix can be calculated from square matrices. 

 

 
Applying Python on matrices – Determinant 
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Inverse of a Matrix 
 

 
The formula to find the inverse of a matrix is  

A-1  = 1/det(A) *Adj(A) 

1.7.Rank of a matrix  
• Rank of a matrix is equal to the maximum number of linearly independent row 

vectors in a matrix. 
• A set of vectors is linearly dependent if we can express at least one of the vectors as a 

linear combination of remaining vectors in the set. 
• Note : Rank is the number of rows with non zero vectors.  
• Rank of a matrix – Rank of a matrix is equal to the maximum number of linearly 

independent row vectors in a matrix. 
• A set of vectors is linearly dependent if we can express at least one of the vectors as a 

linear combination of remaining vectors in the set. 
• To Calculate Rank of Matrix There are Two Methods: 
 1.  Minor method  
 2.  Echelon form  
� The maximum number of linearly independent rows in a matrix A is called the row 

rank of A, and the maximum number of linearly independent columns in A is called 
the column rank of A.  

� If A is an m by n matrix, that is, if A has m rows and n columns, then it is obvious that 
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• To find the rank of a matrix, we will transform that matrix into its echelon form.  
• Then determine the rank by the number of non zero rows.  
• Consider the following matrix. 

 
• While observing the rows, we can see that the second row is two times the first row. 

Here we have two rows. But it does not count. The rank is considered as 1. 
 

 
We can see that the rows are independent. Hence the rank of this matrix is 3.  
The rank of a unit matrix of order m is m.  
If A matrix is of order m×n, then ρ(A ) ≤ min{m, n } = minimum of m, n. 
If A is of order n×n and |A| ≠ 0, then the rank of A = n. 
If A is of order n×n and |A| = 0, then the rank of A will be less than n 
 
Rank of a Matrix by Row- Echelon Form 
 

� We can transform a given non-zero matrix to a simplified form called a Row-echelon 
form, using the row elementary operations. In this form, we may have rows all of whose 
entries are zero. Such rows are called zero rows. A non-zero row is one in which at least 
one of the elements is not zero. 

 
A matrix is said to be in row-echelon form if the following rules are satisfied. 

� All the leading entries in each row of the matrix is 1 
� If a column contains a leading entry then all the entries below the leading entry should 

be zero 
� If any two consecutive non-zero rows, the leading entry in the upper row should occur 

to the left of the leading entry in the lower row. 
� All rows which consist only of zeros should occur in the bottom of the matrix 

 
 
A matrix A of order m × n is said to be in echelon form if 
 (i) Every row of A which has all its entries 0 occurs below every row which has a non-
zero entry. 
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 (ii) The number of zeros before the first non-zero element in a row is less then the 
number of such zeros in the next row. 

� For example, consider the following matrix. 
� Here R1 and R2 are non zero rows. 
� R3 is a zero row. 

 
� Note: A non-zero matrix is said to be in a row-echelon form, if all zero rows occur as 

bottom rows of the matrix and if the first non-zero element in any lower row occurs to 
the right of the first non-zero entry in the higher row.  

� If a matrix is in row-echelon form, then all elements below the leading diagonal are 
zeros. 

� Consider the following matrix. 

 
� Check the rows from the last row of the matrix. The third row is a zero row. The first 

non-zero element in the second row occurs in the third column and it lies to the right of 
the first non-zero element in the first row which occurs in the second column. Hence 
the matrix A is in row echelon form. 
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1.8.Null Space and Nullity of a Matrix 
 

• Null space is a concept in linear algebra identifies the linear relationship among 
attributes. 

• The null space of a matrix A consists of all vectors B such that AB -= 0 and B ≠ 0. 
• Size of null space of matrix – number of linear relation among attributes  
 
Consider   

    Size of A is m * n     and 
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Size of B is n * 1 
 
Then the set of linear equations are 

  
 
Eg : Find the null space for given Matrix A 

 

 
Reduce the equation using Echelon form. 
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1.9.Rank - Nullity Theorem 
The rank – nullity theorem helps us to relate the nullity of the data matrix to the rank and the 
number of attributes in the data 

 
Figure 14 : Rank – Nullity Theorem 

Exercise 1: 

 
 Rank of the matrix r=2 
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 Nullity of a matrix =n-r= 3-2=1 
 
 
1.10. Linear Equations 

 
1.11. Solution to over determined set of equations 

• If there are fewer equations than variables, then the system is called underdetermined 
and cannot have a unique solution. In this case, there are either infinitely many or no 
solutions. 

• A system with more equations than variables is called overdetermined.  
• If the number of equations equals the number of variables, it is a balanced or square 

system.  
• A balanced system or an overdetermined system may have a unique solution. 

 
Example 1: This system has infinitely many solutions. You can tell because these two lines 
are the same. (The second one is scaled by a factor of 3.) 

x+2y=4 
3x+6y=12 
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Notice that there is only one pivot column in this row-reduced matrix. The second column is 
not a pivot column, so we call y a free variable. A system with free variables is 
called dependent. Variables that do correspond to a pivot column are called fixed variables. In 
general, we can express the solution of the system as the fixed variables in terms of the free 
variables. 
     

 
x=4−2yx=4−2y 

 
This is a dependent system, and there are infintely many solutions, depending on the value of 
the free variable y. Once a value of yy is selected, the value of x is automatically fixed. 
 
Example 2:This system has no solution, so we call it inconsistent. 

x+y+z=13 
x−y−z=4 

x+5y+5z=−1 
 

 
We don't need to go any further than this. The last row  reads 0x+0y+0z=−10x+0y+0z=−1, that 
is, 0=−10=−1. Such a false statement reveals that this system of equations has no solution. It is 
inconsistent. 
 

1.12. Eigen Values and Eigen Vectors 

The mathematical formulation is, Ax = λx 

• The constant λ (positive) represents the amount of stretch or shrinkage the 
attributes x go through in the x direction. 

• The solution x are known as eigen vectors and λ is eigen values. 
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Figure 15: Eigen value λ 

 

Characteristic Equation 
 

The equation  is called the characteristic equation of the matrix A 

Note: 

1. Solving , we get n roots for   and these roots are called 
characteristic roots or eigen values or latent values of the matrix A 

2. Corresponding to each value of   ,the equation AX = has a non-zero 
solution vector X. 

 

If  be the non-zero vector satisfying AX=  , when ,  is said to be 
the latent vector or eigen vector of a matrix A corresponding to . 

Working rule to find characteristic equation:  

Fora 3x3matrix: 

Method1: 
 

The characteristic equation is  
 

Method2: 
 
Its characteristic equation can be written as where S1 = 

sum of the main diagonal elements, S2=sum of the minors of the main diagonal elements, 
S3=Determinant of A = |A| 
 

Fora2x2matrix 

Method1: 
 

The characteristic equation is  



 29 

. 

 

Method2: 
 

Its characteristic equation can be written as  where S1= sum of the 
main diagonal elements, S2=Determinant of A =  A 

 

Problems: 

1. Find the characteristic equation of 

Solution: 

Its characteristic equation is  

Where S1=sum of the main diagonal elements=8+7+3=18, 
 

S2=sum of the minors of the main diagonal elements=45 
 

S3=Determinant of A=     A=0 
 

Therefore, the characteristic equation is . 

 

2. Find the characteristic equation of   

Solution: 
The characteristic equation of A is 

 

              S1 =  3+2=5and =3(2)–1(-1)=7 
 
               Therefore, the characteristic equation is =0. 

 
Steps to find out the eigen value and eigen vector for variable x, 
 

1. Find the characteristic equation  
2. Solve the characteristic equation to get characteristic roots. They are called 

Eigen values 
3. To find the Eigen vectors, solve  for different values of 
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Problems: 
 

1. Find the eigen values and eigenvectors of the matrix  

 
Solution: 

Let A=  which is a non-symmetric matrix 

To find the characteristic equation: 
 

The characteristic equation of A is  

Where, 

   , 

 =1(-1)–1(3)=-4 
 

Therefore, the characteristic equation is  

i.e.,  or  
 

Therefore, the eigen values are 2,-2 
 

 
To find the eigen vectors: 

 

 
 

---------------(1) 

Case1: If  From(1)] 

i.e., 
 
i.e., , 

 

i.e., we get only one equation  
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Therefore 

Case2:If From(1)] 
 

i.e.,  

i.e.,  
 

 
i.e., we get only one equation  

 

 

Hence,  
 

2. Find the eigen values and eigen vectors of     
 

 

 
Solution: 

Let A=  

To find the characteristic equation: 
 

Its characteristic equation can be written as  

where 
 

, 

=2(-5)-2(-6)-7(2)=-10+12–14=-12 
 
Therefore, the characteristic equation of A is  

 
3 1 0 -13 12 

 
1 

 
3 

 
-4 

 
0 
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Therefore, the eigenvaluesare3,1,and-4 
 
To find the eigen vectors: Let  
 

 

Case1:If  

i.e.,  

 (1) 
 

 (2) 
 

 (3) 
 

 

Considering equations (1) and (2) and using method of cross-multiplication, we 
get, x1 x2 x3 

2 -7 1 2 

0 2 2 0 

x x x x x x 
1=2=3Þ1=2=3 

4 -16 -4 1 

æ1ö 

ç ÷ 
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-4 -1 
Therefore, X1=ç-4÷ 

ç-1÷ 

è ø 

Case 2:If ,  

i.e., 
 
 

 (1) 
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 (2) 
 

 (3) 
 

Considering equations (1) and (2) and using method of cross-multiplication, we get,x1
 x2 x3 

2 -7 -1 2 

-2 2 2 -2 
 

x x x x x x 
1=2=3Þ1=2=3 

-10 -12 -2 5 6 1 
 
 

 
 

Therefore,  

Case3:If 
 
 

 (1) 
 

 (2) 
 

 (3) 
 

Considering equations (1) and (2) and using method of cross-multiplication, we get,x1
 x2 x3 

2 -7 6 2 
 
5 2 2 5 
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Therefore, 

 
1.13. Singular Value Decomposition 
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1.14. Pseudo Inverse 

 
Pseudo inverse or Moore – Penrose inverse is the generalization of the matrix inverse that may not 
be invertible. If the matrix is invertible then its inverse will be equal to pseudo inverse and denoted 
by A+. 
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Problems: 
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1.15. Eigen Value Decomposition: 

⚫ A few applications of eigen values and eigenvectors that are very useful when handing the 
data in a matrix form because you could decompose them into matrices that are easy to 
manipulate.  

⚫ In order for the matrix “A” to be either diagonalized or eigen  decomposed, it has to meet the 
following criteria:  

Ø Must be a Square matrix  

Ø Has to have linearly independent eigenvectors 
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Problem: 

 

 

 

1.16. Equations of Line 

• The equation of a line means an equation in x and y whose  solution set is a line in the 
(x,y) plane.  

• The most popular form in algebra is the "slope-intercept"  form  y = mx + b. 

• This in effect uses x as a parameter and writes y as a function of  x: y = f(x) = mx+b. 
When x = 0, y = b and the point (0,b) is  the intersection of the line with the y-axis. 

• Line as a geometrical object and not the graph of a function,  it makes sense to treat x and 
y more even handedly. The  general equation for a line (normal form) is  ax + by = c,  

• This can easily be converted to slope-intercept form by  solving for y:  

y = (-a/b) + c/b, 
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except for the special case b = 0, when the line is parallel to the  y-axis. 

Finding the equation of a line through 2 points in the plane 

� For any two points P and Q, there is exactly one line PQ through the points. If the coordinates 
of P and Q are known, then the coefficients a, b, c of an equation for the line can be found by 
solving a system of linear equations. 

Example: For P = (1, 2), Q = (-2, 5), find the equation ax + by = c of line PQ. 

� Since P is on the line, its coordinates satisfy the equation:  

a(1) + b(2) = c, or a + 2b = c 

Since Q is on the line, its coordinates satisfy the equation: a(-2) + b5 = c,  

  Or    -2 a + 5b = c. 

� Multiply the first equation by 2 and add to eliminate a from the equation:  

       4b + 5b = 9b = 2c + c = 3c, so b = (1/3)c.  

� Then substituting into the first equation, a = c - 2b = c - (2/3)c = (1/3)c. 

� This gives the equation [(1/3)c]x + [(1/3)c}y = c. 

 

1.17. Equations of Plane 

� A plane in 3D-space has the equation 

ax + by + cz = d, 

� where at least one of the numbers a, b, c must be nonzero. 

� If c is not zero, it is often useful to think of the plane as the graph of a function z of x and y. 
The equation can be rearranged like this: 

z = -(a/c)x + (-b/c) y + d/c 

� Another useful choice, when d is not zero, is to divide by d so that the constant term = 1. 

(a/d)x + (b/d)y + (c/d)z = 1. 

 

Example: Finding the equation of a plane through 3 points in space 
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� Given points P, Q, R in space, find the equation of the plane through the 3 points. 

Example: P = (1, 1, 1), Q = (1, 2, 0), R = (-1, 2, 1). We seek the coefficients of an equation ax + by 
+ cz = d, where P, Q and R satisfy the equations, thus: 

a + b + c = d 

a + 2b + 0c = d 

-a + 2b + c = d 

� Subtracting the first equation from the second and then adding the second equation to the 
third, we eliminate a to get 

b - c = 0 
4b + c = 2d 

� Adding the equations gives 5b = 2d, or b = (2/5)d, then solving for c = b = (2/5)d and then a 
= d - b - c = (1/5)d. 

� So the equation (with a nonzero constant left in to choose) is d(1/5)x + d(2/5)y + d(2/5)z = d, 
so one choice of constant gives 

x + 2y + 2z = 5 

� or another choice would be (1/5)x + (2/5)y + (2/5)z = 1 

 

 

Figure 16. Equation of a plane 

Example 2: P(x1, y1, z1), Q(x2, y2, z2), and R (x3, y3, z3) are three non-collinear points on a 
plane.  Find equation of plane. 
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We know that: ax + by + cz + d = 0 —————(i) 

By plugging in the values of the points P, Q, and R into equation (i), we get the following: 

a(x1) + b(y1) + c(z1) + d = 0 

a(x2) + b(y2) + c(z2) + d = 0 

a(x3) + b(y3) + c(z3) + d = 0 

Suppose, P = (1,0,2), Q = (2,1,1), and R = (−1,2,1) 

Then, by substituting the values in the above equations, we get the following:  

a(1) + b(0) + c(2) + d = 0 

a(2) + b(1) + c(1) + d = 0 

a(-1) + b(2) + c(1) + d = 0 

Solving these equations gives us b = 3a, c = 4a, and d = (-9)a——————(ii) 

By plugging in the values from (ii) into (i), we end up with the following: 

ax + by + cz + d = 0 

ax + 3ay + 4az−9a 

x + 3y + 4z−9 

Therefore, the equation of the plane with the three non-collinear points P, Q, and R is x + 3y + 4z−9. 

Example 3: A (3,1,2), B (6,1,2), and C (0,2,0) are three non-collinear points on a plane. Find the 
equation of the plane. 

Solution: 

We know that: ax + by + cz + d = 0 —————(i) 

By plugging in the values of the points A, B, and C into equation (i), we get the following: 

 

a(3) + b(1) + c(2) + d = 0 

a(6) + b(1) + c(2) + d = 0 

a(0) + b(2) + c(0) + d = 0 
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Solving these equations gives us  

a = 0, c = 1/2b, d = —2b ———————(ii) 

By plugging in the values from (ii) into (i), we end up with the following: 

ax + by + cz + d = 0 

(0)x + (—by) + ½ bz — 2b = 0 

x - y + ½ z —2 = 0 

2x-2y + z-4 = 0 

Therefore, the equation of the plane with the three non-collinear points A, B and C is  

2x-2y + z-4 = 0.  

1.18. Equation of hyperplane 

• A hyperplane is a higher-dimensional generalization of lines and planes.  

• The equation of a hyperplane is w · x + b = 0, where w is a vector normal to the hyperplane 
and b is an offset.  

Half Space 

 

 

Figure 17: Halfspace 

Example 
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1.19. Equation of circle 

A circle is a closed curve that is drawn from the fixed point called the center, in which all the 
points on the curve are  having the same distance from the center point of the center. The 
equation of a circle with (h, k) center and r radius is given by:  

(x-h)2 + (y-k)2 = r2 

This is the standard form of the equation.Thus, if we know the coordinates of the center of 
the circle and its radius as well, we can easily find its equation.  

Example: 

1. Consider a circle whose center is at the origin and radius is equal to 8 units. 

Solution: 
 

Given: Centre is (0, 0), radius is 8 units. 

We know that the equation of a circle when the center is origin: 
x2+ y2 = a2 

For the given condition, the equation of a circle is given as 
x2+ y2 = 82 

x2+ y2= 64, which is the equation of a circle 
 

2. Find the equation of the circle whose center is (3,5) and the radius is 4 units. 

Solution: 

Here, the center of the circle is not an origin. 
Therefore, the general equation of the circle is, 
                 (x-3)2 + (y-5)2 = 42 
                 x2 – 6x + 9 + y2 -10y +25 = 16 
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                        x2 +y2 -6x -10y + 18 =0 is the equation of circle 
 

3. Equation of a circle is x2+y2−12x−16y+19=0. Find the center and radius of the circle. 

Solution: 

Given equation is of the form x2+ y2 + 2gx + 2fy + c = 0, 
2g = −12, 2f = −16,c = 19 
g = −6,f = −8 

Centre of the circle is (6,8) 
Radius of the circle = √[(−6)2 + (−8)2 − 19 ]= √[100 − 19] =  √81 = 9 units. 

Therefore, the radius of the circle is 9 units. 

1.20. Equation of sphere: 

A sphere is a geometrical object in three-dimensional space that resembles the surface of a ball. 
Similar to a circle in two-dimensional space, a sphere can be mathematically defined as the set of all 
points that are at the same distance from a given point. This given point is called the center of the 
sphere. The distance between the center and any point on the surface of the sphere is called the radius, 
represented by r.  

x2 + y2 + z2 = r2 

This is called the equation of a sphere, also known as the general equation of a sphere or the equation 
of a sphere through the circle. 
 

i) Center - Radius form 

 

ii) General Form 
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1.21. Equation of hypersphere 

• A  hypersphere is a four-dimensional analog of a sphere;  also known as a 4-sphere.  

• The intersection of a sphere with a plane is a circle; the intersection of a hypersphere with a 
hyperplane is a sphere.  These analogies are reflected in the underlying mathematics.  

• x2 + y2 = r 2 is the Cartesian equation of a circle of radius r;  x2  + y2  + z2  = r 2  is the 
corresponding equation of a sphere;  x2 + y2 + z2 + w2 = r 2 is the equation of a hypersphere,  
where w is measured along a fourth dimension at right angles  to the x-, y-, and z-axes.  

• The n-hypersphere (often simply called the n-sphere) is a generalization of the circle (called 
by geometers the 2-sphere) and usual sphere (called by geometers the 3-sphere) to 
dimensions n>=4. The n-sphere is therefore defined (again, to a geometer; see below) as the 
set of n-tuples of points (x1, x2, ..., xn) such that 

x12+x22+...+xn2=R2, 

where R is the radius of the hypersphere. 

• The hypersphere has a hypervolume (analogous to the volume of a sphere) of π2r 4/2, and a 
surface volume (analogous to the sphere's surface area) of 2π2r 3.  

• A solid angle of a hypersphere is measured in hypersteradians, of which the hypersphere 
contains a total of 2π2. The apparent pattern of 2π radians in a circle and 4π steradians in a 
sphere does not continue with 8π hypersteradians because the n-volume, n-area, and number 
of n-radians of an n-sphere are all related to gamma function and the way it can cancel out 
powers of π halfway between integers. In general, the term "hypersphere" may be used to 
refer to any n-sphere. 
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QUESTION BANK 

 
Part-A 

Q.No Questions Competence  BT Level 

1.  Define Data science. Remember BTL 1 

2.  Distinguish between between a vector and a scalar point Analysis BTL 4 

3.  List out the applications of data science. Remember BTL 1 

4.  Differentiate between matrices and tensors. Analysis BTL 4 

5.  When two vector will become perpendicular? Analysis BTL 4 

6.  Define Linear algebra. Understand BTL 2 

7.  Illustrate relationship diagram between data science and 
other branch of studies. Analysis BTL 4 

8.  Illustrate the geometrical representation of a vector point. Analysis BTL 4 

9.  Is all orthogonal vector are perpendicular vectors? Justify 
your answer. Analysis BTL 4 

10.  Given two points A and B with coordinates (3,5) and (6,8) 
respectively. What is the distance between A and B? Apply BTL 3 

11.  . 
Define 1D vector?  Understand 

BTL 2 

12.  Define 2D vector? Understand BTL 2 

13.  Enumerate null space. Understand BTL 2 

14.  Define Rank of a matrix with an example. Understand BTL 2 

15.  Describe Rank-Nullity theorem. Understand BTL 2 

16.  Differentiate between underdetermined and overdetermined 
set of equations. Analysis BTL 4 

17.  When a set of equations can be termed as balanced system? Analysis BTL 4 

18.  Compare and contrast hyperplane and halfspace. Analysis BTL 4 

19.  Find out the Eigen value for the matrix !−5 2
−7 4' Apply BTL 3 
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20.  Write the equation of a circle when the center is at the 
origin? Apply BTL 3 

PART B 

Q.No Questions Competence BT Level 

1.  Find the inverse of the given matrix A = (
4 −2 1
5 0 3
−1 2 6

- Apply 
BTL 3 

2.  Find the rank and nullity of the given matrix (
1 2 1
−2 −3 1
3 5 0

- Apply 
BTL 3 

3.  Calculate the Null Space for the matrix A (
1 2 1
1 2 2
2 4 0

			
1
−1
6
- Apply 

BTL 3 

4.  
Find out the eigen values and eigen vectors for the given 

matrix !8 7
2 3' 

Apply 
BTL 3 

5.  

Perform diagonal decomposition to the given matrix A to 
make the sub matrices. 

A = !2 1
1 2' 

Apply 

BTL 3 

6.  
Do Singular Value Decomposition in the given matrix 

!4 0
3 −5' 

Apply 
BTL 3 

7.  Calculate the pseudo inverse for the matrix B = !		1 2 3
2 4 6' Apply BTL 3 

8.  
Find the equation of the sphere which passes through the 
points (2,1,1) and (0,3,2) and has its center on the line  
2x + y + 3z = 0 = x + 2y + 2z 

Apply 
BTL 3 

9.  Explain about the Equation of line, plane, and hyperplane 
with an example? Analysis BTL 4 

10.  Explain about the pseudo inverse with an example? Analysis BTL 4 

11.  Explain 1D,2D and nD vectors? Analysis BTL 4 
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Unit -2  
PROBABILITY AND STATISTICS 

Introduction to probability and statistics, Population and sample, Normal and Gaussian 
distributions, Probability Density Function, Descriptive statistics, notion of probability, 
distributions, mean, variance, covariance, covariance matrix, understanding univariate and 
multivariate normal distributions, introduction to hypothesis testing, confidence interval for 
estimates. 
 
1.1.What is Data? 

Data is the information collected through different sources which can be qualitative or quantitative 
in nature. Mostly, the data collected is used to analyse and draw insights on a particular topic. 
Types of Data. 
Numerical Data 

Numerical data is the information in numbers i.e., numeric which poses as a quantitative 
measurement of things. 

For example: 

1. Heights and weights of people 

2. Stock Prices 

a) Discrete Data 

Discrete data is the information that often counts of some event i.e., can only take specific values. 
These are often integer-based, but not necessarily. 

For example: 

1. Number of times a coin was flipped 

2. Shoe sizes of people 

b) Continuous Data 

Continuous Data is the information that has the possibility of having infinite values i.e., can take any 
value within a range. 

For example: 

How many centimeters of rain fell on a given day? 

Categorical Data 

This type of data is qualitative in nature which has no inherent mathematical significance. It is sort 
of a fixed value under which a unit of observation is assigned or “categorized”. 
For example: 

1. Gender 
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2. Binary Data (Yes/No) 

3. Attributes of a vehicle like color, mileage, number of doors, etc. 

1.2.What are Statistics? 

The field of Statistics deals with the collection, presentation, analysis, and use of data to make 
decisions, solve problems, and design products and processes. Statistics is the science of learning 
from data, and of measuring, controlling, and communicating uncertainty; and it thereby provides the 
navigation essential for controlling the course of scientific and societal advances. In simple terms, 
statistics is the science of data. Statistics is defined as collection, compilation, analysis and 
interpretation of numerical data. 
 
1.2.1. Statistics is the science of data 
The most important aspect of any Data Science approach is how the information is processed. When 
we talk about developing insights out of data it is basically digging out the possibilities. Those 
possibilities in Data Science are known as Statistical Analysis. Most of us wonder how can data in 
the form of text, images, videos, and other highly unstructured formats get easily processed by 
Machine Learning models. But the truth is we actually convert that data into a numerical form which 
is not exactly our data but the numerical equivalent of it. So, this brings us to the very important 
aspect of Data Science. With data in numerical format, it provides us with infinite possibilities to 
understand the information out it. Statistics acts as a pathway to understand your data and process 
that for successful results. Not only the power of statistics is limited to understanding the data it also 
provides methods to measure the success of our insights, getting different approaches for the same 
problem, getting the right mathematical approach for your data. 

• In an agricultural study, researchers want to know which of four fertilizers (which vary in 
their nitrogen contents) produces the highest corn yield. In a clinical trial, physicians want to 
determine which of two drugs is more effective for treating HIV in the early stages of the 
disease. In a public health study, epidemiologists want to know whether smoking is linked to 
a particular demographic class in high school students. 

• To develop an appreciation for variability and how it effects product, process and system. 

• It is estimating the present; predicting the future 

• Study methods that can be used to solve problems, build knowledge. 

• Statistics make data into information 

• Develop an understanding of some basic ideas of statistical reliability, stochastic process 
(probability concepts). 

• Statistics is very important in every aspect of society (Govt., People or Business) 

1.2.2. Basic terms 
Variable: Property with respect to which data from a sample differ in some measurable way 
Measurement: assignment of numbers to something 
Data: collection of measurements 
Population: all possible data 
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Sample: collected data 
 

1. Variable 

A variable is a characteristic or condition that can change or take on different values. Most 
research begins with a general question about the relationship between two variables for a specific 
group of individuals. 

 
 
 
 

Types of Variables 
Variables can be classified as discrete or continuous. Discrete variables (such as class size) consist 
of indivisible categories, and continuous variables (such as time or weight) are infinitely divisible 
into whatever units a researcher may choose.  For example, time can be measured to the nearest 
minute, second, half-second, etc. 
 
2. Measuring Variables 

To establish relationships between variables, researchers must observe the variables and record their 
observations.  This requires that the variables be measured. The process of measuring a variable 
requires a set of categories called a scale of measurement and a process that classifies each 
individual into one category. 
 
 
 



 55 

4 Types of Measurement Scales 
 
A nominal scale is an unordered set of categories identified only by name.  Nominal measurements 
only permit you to determine whether two individuals are the same or different. 
An ordinal scale is an ordered set of categories.  Ordinal measurements tell you the direction of 
difference between two individuals. 
An interval scale is an ordered series of equal-sized categories.  Interval measurements identify the 
direction and magnitude of a difference.  The zero point is located arbitrarily on an interval scale. 
A ratio scale is an interval scale where a value of zero indicates none of the variable.  Ratio 
measurements identify the direction and magnitude of differences and allow ratio comparisons of 
measurements. 
 
3. Data 

The measurements obtained in a research study are called the data. The goal of statistics is to help 
researchers organize and interpret the data. 
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Quantitative 

 The data which are statistical or numerical are known as Quantitative data. Quantitative data is 
generated through. Quantitative data is also known as Structured data. Experiments, Tests, 
Surveys, Market Report. Quantitative data is again divided into Continuous data and Discrete 
data. 
Continuous Data 

 Continuous data is the data which can have any value. That means Continuous data can give 
infinite outcomes so it should be grouped before representing on a graph. 
Examples 
• The speed of a vehicle as it passes a checkpoint 

• The mass of a cooking apple 

• The time taken by a volunteer to perform a task 

Discrete Data 
• Discrete data can have certain values. That means only a finite number can be categorized as 

discrete data. 

• Numbers of cars sold at a dealership during a given month 

• Number of houses in certain block 

• Number of fish caught on a fishing trip 

• Number of complaints received at the office of airline on a given day 

• Number of customers who visit at bank during any given hour 

• Number of heads obtained in three tosses of a coin 

Differences between Discrete and Continuous data 
• Numerical data could be either discrete or continuous 
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• Continuous data can take any numerical value (within a range); For example, weight, height, 
etc. 

• There can be an infinite number of possible values in continuous data 

• Discrete data can take only certain values by finite ‘jumps’, i.e., it ‘jumps’ from one value to 
another but does not take any intermediate value between them (For example, number of 
students in the class 

Qualitative 
Data that deals with description or quality instead of numbers are known as Quantitative data. 
Qualitative data is also known as unstructured data. Because this type of data is loosely 
compact and can’t be analyzed conventionally. 

4. Population 

The entire group of individuals is called the population. For example, a researcher may be 
interested in the relation between class size (variable 1) and academic performance (variable 
2) for the population of third-grade children. 

5. Sample 

Usually, populations are so large that a researcher cannot examine the entire group. 
Therefore, a sample is selected to represent the population in a research study. The goal is to 
use the results obtained from the sample to help answer questions about the population. 

 
Figure 2.1: Population and Sample 
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Sampling Error 

• The discrepancy between a sample statistic and its population parameter is called sampling 
error. 

• Defining and measuring sampling error is a large part of inferential statistics. 

 

 
1.3.Frequency Distribution 

Frequency Distribution (or Frequency Table) 
Shows how a data set is partitioned among all of several categories (or classes) by listing all 
of the categories along with the number (frequency) of data values in each of them 
Frequency Distribution 
When data are in original form, they are called raw data 
Organizing Data: 
Categorical distribution 
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Grouped distribution 
Ungrouped distribution

           

 
Frequency distribution refers to data classified on the basis of some variable that can be 
measured such as prices, weight, height, wages etc. 
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Measures of Centre Tendency 

• In statistics, the central tendency is the descriptive summary of a data set. 

• Through the single value from the dataset, it reflects the centre of the data distribution. 

• Moreover, it does not provide information regarding individual data from the dataset, where 
it gives a summary of the dataset. Generally, the central tendency of a dataset can be defined 
using some of the measures in statistics. 

 
Mean 
• The mean represents the average value of the dataset. 

• It can be calculated as the sum of all the values in the dataset divided by the number of values. 
In general, it is considered as the arithmetic mean. 

• Some other measures of mean used to find the central tendency are as follows: 

• Geometric Mean (nth root of the product of n numbers) 

• Harmonic Mean (the reciprocal of the average of the reciprocals) 

• Weighted Mean (where some values contribute more than others) 

• It is observed that if all the values in the dataset are the same, then all geometric, arithmetic 
and harmonic mean values are the same. If there is variability in the data, then the mean value 
differs. 

Calculating the Mean 
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Calculate the mean of the following data: 
1   5   4   3   2 
Sum the scores (SX): 
1 + 5 + 4 + 3 + 2 = 15 
Divide the sum (SX = 15) by the number of scores (N = 5): 
15 / 5 = 3 
Mean = X = 3 

The Median 
• The median is simply another name for the 50th percentile 

• Sort the data from highest to lowest 

• Find the score in the middle 

• If N, the number of scores, is even the median is the average of the middle two scores 

Median Example 
What is the median of the following scores: 
10   8   14   15   7   3   3   8   12   10   9 
Sort the scores: 
15   14   12   10   10   9   8   8   7   3   3 
Determine the middle score: 
middle = (N + 1) / 2 = (11 + 1) / 2 = 6 
Middle score = median = 9 
Median Example 
What is the median of the following scores: 
24  18  19  42  16  12 

• Sort the scores: 
42  24  19  18  16  12 

• Determine the middle score: 
middle = (N + 1) / 2 = (6 + 1) / 2 = 3.5 

• Median = average of 3rd and 4th scores: 
(19 + 18) / 2 = 18.5 
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Mode 

The mode is the score that occurs most frequently in a set of data. 

 
Variance 

• Variance is the average squared deviation from the mean of a set of data. 

• It is used to find the Standard deviation. 

• 𝜎! = "
#
∑ (𝑥$ − 𝑥̅)!#
$%"  

Variance 
• This is a good measure of how much variation exists in the sample, normalized by sample 

size. 

• It has the nice property of being additive. 

• The only problem is that the variance is measured in units squared 

How to find Variance 
• Find the Mean of the data. 

• Subtract the mean from each value – the result is called the deviation from the mean. 
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• Square each deviation of the mean. 

• Find the sum of the squares. 

• Divide the total by the number of items. 

How to find Variance? - Example 
• Suppose you're given the data set 1, 2, 2, 4, 6. (X = 1,2,2,4,6) One Variable X 

• Calculate the mean of your data set. The mean of the data is (1+2+2+4+6)/5 

• Mean= 15/5 = 3. 

• Subtract the mean from each of the data values and list the differences. Subtract 3 from each 
of the values 1, 2, 2, 4, 6 

• 1-3 = -2    2-3 = -1   2-3 = -1   4-3 = 1   6-3 = 3 

• Your list of differences is -2, -1, -1, 1, 3 (deviation) 

• You need to square each of the numbers -2, -1, -1, 1, 3 
(-2)2 = 4, (-1)2 = 1, (-1)2 = 1, (1)2 = 1, (3)2 = 9 

• Your list of squares is 4, 1, 1, 1, 9, Add the squares 4+1+1+1+9 = 16 

• Subtract one from the number of data values you started with. You began this process (it may 
seem like a while ago) with five data values. One less than this is 5-1 = 4. 

• Divide the sum from step four by the number from step five. The sum was 16, and the number 
from the previous step was 4. You divide these two numbers 16/4 = 4. 

Variation in one variable 
• So, these four measures all describe aspects of the variation in a single variable: 

• a. Sum of the squared deviations 

• b. Variance 

• c. Standard deviation 

• d. Standard error 

• Can we adapt them for thinking about the way in which two variables might vary together? 

Covariance 

• In mathematics and statistics, covariance is a measure of the relationship between two 
random variables. (X, Y) 

• More precisely, covariance refers to the measure of how two random variables in a data 
set will change together. 

• Positive covariance: Indicates that two variables tend to move in the same direction. 

• Negative covariance: Reveals that two variables tend to move in inverse directions. 
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• The covariance between two random variables X and Y can be calculated using the following 
formula (for population): 

                                   
• For a sample covariance, the formula is slightly adjusted: 

                                    
Where: 
Xi – the values of the X-variable 
Yj – the values of the Y-variable 
X̄ – the mean (average) of the X-variable 
Ȳ – the mean (average) of the Y-variable 
n – the number of data points 
Covariance Example 
Example 1: Find covariance for following data set (Two Variables X and Y) 
X = {2,5,6,8,9}, Y = {4,3,7,5,6} 
Solution: 

• Given data sets X = {2,5,6,8,9}, Y = {4,3,7,5,6} and N = 5 

• Mean(X) = (2 + 5 + 6 + 8 + 9) / 5  = 30 / 5 = 6 

• Mean(Y) = (4 + 3 +7 + 5 + 6) / 5 = 25 / 5 = 5 

• Sample covariance Cov(X,Y) = ∑(Xi - X ) × (Yi - Y)/ (N - 1) 

• = [(2 - 6)(4 - 5) + (5 - 6)(3 - 5) + (6 - 6)(7 - 5) + (8 - 6)(5 - 5) + 

• (9 - 6)(6 - 5)] / 5 - 1 

• = 4 + 2 + 0 + 0 + 3 / 4  = 9 / 4   = 2.25 

• Population covariance Cov(X,Y) = ∑(Xi - X ) × (Yi - Y)/ (N) 

• = [(2 - 6)(4 - 5) + (5 - 6)(3 - 5) + (6 - 6)(7 - 5) + (8 - 6)(5 - 5) + (9 - 6)(6 - 5)] / 5 

• = 4 + 2 + 0 + 0 + 3 /5 

• = 9 / 5 

• = 1.8 

• Answer: The sample covariance is 2.25 and the population covariance is 1.8 

• Positive and Negative Covariance 
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Covariance Matrix 
• The covariance matrix is a math concept that occurs in several areas of machine learning.If 

you have a set of n numeric data items, where each data item has d dimensions, then the 
covariance matrix is a d-by-d symmetric square matrix where there are variance values on the 
diagonal and covariance values off the diagonal. 

• Suppose you have a set of n=5 data items, representing 5 people, where each data item has a 
Height (X), test Score (Y), and Age (Z) (therefore d = 3): 

• Covariance Matrix 

 
Covariance Matrix 

• The covariance matrix for this data set is: 
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• The 11.50 is the variance of X, 1250.0 is the variance of Y, and 110.0 is the variance of Z. 

For variance, in words, subtract each value from the dimension mean. Square, add them up, 
and divide by n-1. For example, for X: 

• Var(X) = [ (64–68.0)^2 + (66–68.0^2 + (68-68.0)^2 + (69-68.0)^2 +(73-68.0)^2 ] / (5-1) = 
(16.0 + 4.0 + 0.0 + 1.0 + 25.0) / 4 = 46.0 / 4 = 11.50. 

Covariance Matrix 

• Covar(XY) = 

• [ (64-68.0)*(580-600.0) + (66-68.0)*(570-600.0) + (68-68.0)*(590-600.0) + (69-68.0)*(660-
600.0) + (73-68.0)*(600-600.0) ] / (5-1) = 

• [80.0 + 60.0 + 0 + 60.0 + 0] / 4 = 

• 200 / 4 = 50.0 

• If you examine the calculations carefully, you’ll see the pattern to compute the covariance of 
the XZ and YZ columns. And you’ll see that Covar(XY) = Covar(YX). 

Standard Deviation 
• Variability is a term that describes how spread out a distribution of scores (or darts) is. 

• Variance and standard deviation are closely related ways of measuring, or quantifying, 
variability. 

• Standard deviation is simply the square root of variance 

• Find the mean (or arithmetic average) of the scores. To find the mean, add up the scores and 
divide by n where n is the number of scores. 

• Find the sum of squared deviations (abbreviated SSD). To get the SSD, find the sum of the 
squares of the differences (or deviations) between the mean and all the individual scores. 

• Find the variance. If you are told that the set of scores constitute a population, divide the 
SSD by n to find the variance. If instead you are told, or can infer, that the set of scores 
constitute a sample, divide the SSD by (n – 1) to get the variance. 

• Find the standard deviation. To get the standard deviation, take the square root of the 
variance. 
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How to find Standard Deviation – Example (in Population score) 

• Example 1: Find the SSD, variance, and standard deviation for the following population 
of scores: 1, 2, 3, 4, 5 using the list of steps given above. 

• Find the mean. The mean of these five numbers (the population mean) is (1+2+3+4+5)/5 = 
15/5 = 3. 

• Let’s use the definitional formula for SSD for its calculation: SSD is the sum of the squares 
of the differences (squared deviations) between the mean and the individual scores. The 
squared deviations are (3-1) 2, (3-2)2, (3-3) 2, (3-4) 2, and (3-5) 2. That is, 4, 1, 0, 1, and 4. The 
SSD is then 4 + 1 + 0 + 1 + 4 = 10. 

• Divide SSD by n, since this is a population of scores, to get the variance. So the variance is 
10/5 = 2. 

• The standard deviation is the square root of the variance. So the standard deviation is the 
square root of 2. = √2   =1.4142 

• For practice, let’s also compute the SSD using the computational formula, ∑i (xi) 2 – 
(1/N)(∑i xi) 2. ∑i (xi) 2 = 12 + 22+ 32 + 42 + 52 = 1 + 4 + 9 + 16 + 25 = 55. (1/N)(∑i xi) 2 = 
(1/5) (1 + 2 + 3 + 4 + 5) 2 = (1/5) (152) = 45. So SSD = 55 – 45 = 10, just like before. 

 

How to find Standard Deviation – Example (in Sample score) 

• Example 2: Find the SSD, variance, and standard deviation for the following sample of 
scores: 1, 3, 3, 5. 

• The average of these four numbers (the sample mean) is (1+3+3+5)/4 = 12/4 = 3. 

• So, SSD = (3-1)2 + (3-3)2 + (3-3)2 + (3-5)2 = 4 + 0 + 0 + 4 = 8. 

• Now, because we were told that these scores constitute a sample, we’ll divide SSD by n-1 to 
get the sample variance. 

• In our case we have four scores, so n = 4 so n-1 = 3. Therefore, our sample variance is 8/3. 

• And the sample standard deviation is square root of 8/3 = √2.6  (SQRT 0F 2.6) = 1.6124 

 

1.4.What is Distribution in statistics? 

• A distribution is simply a collection of data, or scores, on a variable. Usually, these scores 
are arranged in order from smallest to largest and then they can be presented graphically. 

• A distribution is an arrangement of values of a variable showing their observed or theoretical 
frequency of occurrence. 

• A bell curve showing how the class did on our last exam would be an example of a 
distribution. 
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• All distributions can be characterized by the following two dimensions: 

• Central Tendency:  Mean, Median and Mode(s) of the distribution 

• Variability: All distributions have a variance and standard deviation 

• Bell Curve 

• The term bell curve is used to describe the mathematical concept called normal distribution, 
sometimes referred to as Gaussian distribution. 

• "Bell curve" refers to the bell shape that is created when a line is plotted using the data points 
for an item that meets the criteria of normal distribution. 

• In a bell curve, the center contains the greatest number of a value and, therefore, it is the 
highest point on the arc of the line. This point is referred to the mean, but in simple terms, it 
is the highest number of occurrences of an element (in statistical terms, the mode). 

         
Distribution 
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• But there are many cases where the data tends to be around a central value with no bias left 
or right, and it gets close to a "Normal Distribution" like this: 

    
Figure 2.2: Bell cure 

1.4.1. Normal Distribution 

• Normal distribution: a bell-shaped, symmetrical distribution in which the mean, median and 
mode are all equal Z scores (also known as standard scores): the number of standard 
deviations that a given raw score falls above or below the mean 
Standard normal distribution: a normal distribution represented in z scores. The standard 
normal distribution always has a mean of zero and a standard deviation of one. 

• The normal distribution is an important class of Statistical Distribution that has a wide range 
of applications. This distribution applies in most Machine Learning Algorithms and the 
concept of the Normal Distribution is a must for any Statistician, Machine Learning 
Engineer, and Data Scientist. 

Parameters of Normal Distribution 
• Mean 

• Standard Deviation 

Properties of Normal Distribution 
• Symmetricity 

• Measures of Central Tendencies are equal 

• Empirical Rule 

• Skewness and Kurtosis 

• The area under the curve 

Properties of Normal Distribution 
• All forms of the normal distribution share the following characteristics: 

1. It is symmetric 
• The shape of the normal distribution is perfectly symmetrical. 
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• This means that the curve of the normal distribution can be divided from the middle and we 
can produce two equal halves. Moreover, the symmetric shape exists when an equal number 
of observations lie on each side of the curve. 

2. The mean, median, and mode are equal 
• The midpoint of normal distribution refers to the point with maximum frequency i.e., it 

consists of most observations of the variable. 

• The midpoint is also the point where all three measures of central tendency fall. These 
measures are usually equal in a perfectly shaped normal distribution. 

3. Empirical rule 
• In normally distributed data, there is a constant proportion of data points lying under the curve 

between the mean and a specific number of standard deviations from the mean. 

• Thus, for a normal distribution, almost all values lie within 3 standard deviations of the 
mean. 

• These check buttons of normal distribution will help you realize the appropriate percentages 
of the area under the curve. 

• Remember that this empirical rule applies to all normal distributions. Also, note that these 
rules are applied only to the normal distributions. 

 
Figure 2.3: Empirical rule 

Many things closely follow a Normal Distribution 



 71 

Example: 
• Heights of people 

• Size of things produced by machines 

• Errors in measurements 

• Blood pressure 

• Marks on a test 

 
The normal distribution is a bell-shaped, symmetrical distribution in which the mean, median 
and mode are all equal. If the mean, median and mode are unequal, the distribution will be 
either positively or negatively skewed. Consider the illustration below: 

 
Figure 2.4: Symmetric and Skewed distribution 

1.5.Probability Density 
• Given a random variable, we are interested in the density of its probabilities. 

• For example, given a random sample of a variable, we might want to know things like the 
shape of the probability distribution, the most likely value, the spread of values, and other 
properties. 

• Knowing the probability distribution for a random variable can help to calculate moments of 
the distribution, like the mean and variance, but can also be useful for other more general 
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considerations, like determining whether an observation is unlikely or very unlikely and might 
be an outlier or anomaly. 

• The problem is, we may not know the probability distribution for a random variable. 

• We rarely do know the distribution because we don’t have access to all possible outcomes for 
a random variable. In fact, all we have access to is a sample of observations. As such, we must 
select a probability distribution. 

• This problem is referred to as probability density estimation, or simply “density estimation,” 
as we are using the observations in a random sample to estimate the general density of 
probabilities beyond just the sample of data, we have available. 

• A random variable x has a probability distribution p(x). 

• The relationship between the outcomes of a random variable and its probability is referred to 
as the probability density, or simply the “density.” 

• If a random variable is continuous, then the probability can be calculated via probability 
density function, or PDF for short. 

• The shape of the probability density function across the domain for a random variable is 
referred to as the probability distribution and common probability distributions have names, 
such as uniform, normal, exponential, and so on. 

• There are a few steps in the process of density estimation for a random variable. 

• The first step is to review the density of observations in the random sample with a simple 
histogram. 

• From the histogram, we might be able to identify a common and well-understood probability 
distribution that can be used, such as a normal distribution. If not, we may have to fit a model 
to estimate the distribution. 

Histogram 
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Density With a Histogram 
• The first step in density estimation is to create a histogram of the observations in the random 

sample. 

• A histogram is a plot that involves first grouping the observations into bins and counting the 
number of events that fall into each bin. 

• The counts, or frequencies of observations, in each bin are then plotted as a bar graph with 
the bins on the x-axis and the frequency on the y-axis. 

• The choice of the number of bins is important as it controls the coarseness of the distribution 
(number of bars) and, in turn, how well the density of the observations is plotted. 

• It is a good idea to experiment with different bin sizes for a given data sample to get multiple 
perspectives or views on the same data. 

Correlational Studies 
• The goal of a correlational study is to determine whether there is a relationship between two 

variables and to describe the relationship. 

• A correlational study simply observes the two variables as they exist naturally. 

Correlational Studies 

 
Experiment 

• The goal of an experiment is to demonstrate a cause-and-effect relationship between two 
variables; that is, to show that changing the value of one variable causes change to occur in a 
second variable. 

• In an experiment, one variable is manipulated to create treatment conditions. 

• A second variable is observed and measured to obtain scores for a group of individuals in 
each of the treatment conditions. 

• The measurements are then compared to see if there are differences between treatment 
conditions. 

• All other variables are controlled to prevent them from influencing the results. 
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• In an experiment, the manipulated variable is called the independent variable and the 
observed variable is the dependent variable. 

  
 
1.6. What Is a Probability Density Function (PDF)? 
A probability distribution can be described in various forms, such as by a probability density function 
or a cumulative distribution function. Probability density functions, or PDFs, are mathematical 
functions that usually apply to continuous and discrete values. PDFs are very commonly used in 
statistical analysis, and thus are quite commonly used for Data Science. Generally, PDFs are a 
necessary tool when studying data with applied science using statistics. However, there are some PDFs 
that extend beyond this basic usage and have slightly different uses than one might be assume on first 
glance. For example, the PDF of the T distribution is often used to calculate a T-statistic. This T 
statistic, along with the degrees of freedom (n minus one) (v,) are then usually put into the regularized 
lower incomplete beta function, which happens to be the cumulative distribution function for the T 
distribution. While the absolute likelihood for a continuous random variable to take on any particular 
value is 0, the value of the PDF can be used to infer, in any particular sample of random variables, 
how much more likely it is statistically that the random variable would equal one sample compared to 
the other sample. 
A function that defines the relationship between a random variable and its probability, such that you 
can find the probability of the variable using the function, is called a Probability Density Function 
(PDF) in statistics. 

The different types of variables. They are mainly of two types: 

1. Discrete Variable: A variable that can only take on a certain finite value within a specific 
range is called a discrete variable. It usually separates the values by a finite interval, e.g., 
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a sum of two dice. On rolling two dice and adding up the resulting outcome, the result 
can only belong to a set of numbers not exceeding 12 (as the maximum result of a dice 
throw is 6). The values are also definite. 

2. Continuous Variable: A continuous random variable can take on infinite different values 
within a range of values, e.g., amount of rainfall occurring in a month. The rain observed 
can be 1.7cm, but the exact value is not known. It can, in actuality, be 1.701, 1.7687, etc. 
As such, you can only define the range of values it falls into. Within this value, it can 
take on infinite different values. 

Now, consider a continuous random variable x, which has a probability density function, that 
defines the range of probabilities taken by this function as f(x). After plotting the pdf, you get a 
graph as shown below:                      

 

Figure 2.5: Probability Density Function 

In the above graph, you get a bell-shaped curve after plotting the function against the variable. The 
blue curve shows this. Now consider the probability of a point b. To find it, you need to find the area 
under the curve to the left of b. This is represented by P(b). To find the probability of a variable 
falling between points a and b, you need to find the area of the curve between a and b. As the 
probability cannot be more than P(b) and less than P(a), you can represent it as:  

P(a) <= X <= P(b). 

Consider the graph below, which shows the rainfall distribution in a year in a city. The x-axis has 
the rainfall in inches, and the y-axis has the probability density function. The probability of some 
amount of rainfall is obtained by finding the area of the curve on the left of it. 
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Figure 2.6: Probability Density Function of the amount of rainfall 

For the probability of 3 inches of rainfall, you plot a line that intersects the y-axis at the same point 
on the graph as a line extending from 3 on the x-axis does. This tells you that the probability of 3 
inches of rainfall is less than or equal to 0.5. 

1.7. Descriptive Statistics 
What is Statistics? 

Statistics is the science of collecting data and analyzing them to infer proportions (sample) that are 
representative of the population. In other words, statistics is interpreting data in order to make 
predictions for the population. 
Descriptive Statistics 

Descriptive Statistics is summarizing the data at hand through certain numbers like mean, median etc. 
so as to make the understanding of the data easier. It does not involve any generalization or inference 
beyond what is available. This means that the descriptive statistics are just the representation of the 
data (sample) available and not based on any theory of probability. 
Commonly Used Measures 

1. Measures of Central Tendency 
2. Measures of Dispersion (or Variability) 

Measures of Central Tendency 
A Measure of Central Tendency is a one number summary of the data that typically describes the 
center of the data. These one number summary is of three types. 

1. Mean : Mean is defined as the ratio of the sum of all the observations in the data to the 
total number of observations. This is also known as Average. Thus mean is a number 
around which the entire data set is spread. 

2. Median : Median is the point which divides the entire data into two equal halves. One-
half of the data is less than the median, and the other half is greater than the same. Median 
is calculated by first arranging the data in either ascending or descending order. 

• If the number of observations are odd, median is given by the middle observation in the 
sorted form. 
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• If the number of observations are even, median is given by the mean of the two middle 
observation in the sorted form. 

An important point to note that the order of the data (ascending or descending) does not effect the 
median. 
3. Mode : Mode is the number which has the maximum frequency in the entire data set, or in other 
words,mode is the number that appears the maximum number of times. A data can have one or more 
than one mode. 

• If there is only one number that appears maximum number of times, the data has one 
mode, and is called Uni-modal. 

• If there are two numbers that appear maximum number of times, the data has two modes, 
and is called Bi-modal. 

• If there are more than two numbers that appear maximum number of times, the data has 
more than two modes, and is called Multi-modal. 

Example to compute the Measures of Central Tendency 
Consider the following data points. 
17, 16, 21, 18, 15, 17, 21, 19, 11, 23 

• Mean — Mean is calculated as 

 
• Median — To calculate Median, lets arrange the data in ascending order. 

11, 15, 16, 17, 17, 18, 19, 21, 21, 23 
Since the number of observations is even (10), median is given by the average of the two middle 
observations (5th and 6th here). 

 
 

 
 

• Mode — Mode is given by the number that occurs maximum number of times. Here, 17 and 
21 both occur twice. Hence, this is a Bimodal data and the modes are 17 and 21. 

• Since Median and Mode does not take all the data points for calculations, these are robust to 
outliers, i.e. these are not effected by outliers. 

• At the same time, Mean shifts towards the outlier as it considers all the data points. This means 
if the outlier is big, mean overestimates the data and if it is small, the data is underestimated. 

• If the distribution is symmetrical, Mean = Median = Mode. Normal distribution is an example. 
 

 

1.8. Notion of probability, distributions, mean, variance, covariance, covariance matrix,  

Probability and Statistics form the basis of Data Science. The probability theory is very much helpful 
for making the prediction. Estimates and predictions form an important part of Data science. With the 
help of statistical methods, we make estimates for the further analysis. Thus, statistical methods are 
largely dependent on the theory of probability. And all of probability and statistics is dependent on 
Data. 
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1.8.1. Data 

Data is the collected information(observations) we have about something or facts and statistics 
collected together for reference or analysis. 

Data — a collection of facts (numbers, words, measurements, observations, etc) that has been 
translated into a form that computers can process 

Why does Data Matter? 

• Helps in understanding more about the data by identifying relationships that may exist between 
2 variables. 

• Helps in predicting the future or forecast based on the previous trend of data. 

• Helps in determining patterns that may exist between data. 

• Helps in detecting fraud by uncovering anomalies in the data. 

Data matters a lot nowadays as we can infer important information from it. Now let’s delve into how 
data is categorized. Data can be of 2 types categorical and numerical data. For Example in a bank, we 
have regions, occupation class, gender which follow categorical data as the data is within a fixed 
certain value and balance, credit score, age, tenure months follow numerical continuous distribution 
as data can follow an unlimited range of values. 
 

 

Note: Categorical Data can be visualized by Bar Plot, Pie Chart, Pareto Chart. Numerical Data can be 
visualized by Histogram, Line Plot, Scatter Plot 
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1.8.2. Descriptive Statistics 

A descriptive statistic is a summary statistic that quantitatively describes or summarizes features of a 
collection of information. It helps us in knowing our data better. It is used to describe the 
characteristics of data. 

Measurement level of Data 
 

 

The qualitative and quantitative data is very much similar to the above categorical and numerical data. 

Nominal: Data at this level is categorized using names, labels or qualities. eg: Brand Name, ZipCode, 
Gender. 

Ordinal: Data at this level can be arranged in order or ranked and can be compared. eg: Grades, Star 
Reviews, Position in Race, Date 

Interval: Data at this level can be ordered as it is in a range of values and meaningful differences 
between the data points can be calculated. eg: Temperature in Celsius, Year of Birth 

Ratio: Data at this level is similar to interval level with added property of an inherent zero. 
Mathematical calculations can be performed on these data points. eg: Height, Age, Weight 

1.8.3. Population or Sample Data 
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Before performing any analysis of data, we should determine if the data we’re dealing with is 
population or sample. 

Population: Collection of all items (N) and it includes each and every unit of our study. It is hard to 
define and the measure of characteristic such as mean, mode is called parameter. 

Sample: Subset of the population (n) and it includes only a handful units of the population. It is 
selected at random and the measure of the characteristic is called as statistics. 
 

 

For Example, say you want to know the mean income of the subscribers to a movie subscription 
service(parameter). We draw a random sample of 1000 subscribers and determine that their mean 
income(x̄) is $34,500 (statistic). We conclude that the population mean income (μ) is likely to be close 
to $34,500 as well. 

1.8.4. Measures of Central Tendency 

The measure of central tendency is a single value that attempts to describe a set of data by identifying 
the central position within that set of data. As such, measures of central tendency are sometimes called 
measures of central location. They are also classed as summary statistics. 

1.8.5. Mean: The mean is equal to the sum of all the values in the data set divided by the number of 
values in the data set i.e the calculated average. It susceptible to outliers when unusual values 
are added it gets skewed i.e deviates from the typical central value. 
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1.8.6. Median: The median is the middle value for a dataset that has been arranged in order of 
magnitude. Median is a better alternative to mean as it is less affected by outliers and skewness 
of the data. The median value is much closer than the typical central value. 

If the total number of values is odd then 
 

 

If the total number of values is even then 
 

 

1.8.7. Mode: The mode is the most commonly occurring value in the dataset. The mode can, 
therefore sometimes consider the mode as being the most popular option. 

For Example, In a dataset containing {13,35,54,54,55,56,57,67,85,89,96} values. Mean is 60.09. 
Median is 56. Mode is 54. 

1.8.8. Measures of Asymmetry 

Skewness: Skewness is the asymmetry in a statistical distribution, in which the curve appears distorted 
or skewed towards to the left or to the right. Skewness indicates whether the data is concentrated on 
one side. 
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Positive Skewness: Positive Skewness is when the mean>median>mode. The outliers are skewed to 
the right i.e the tail is skewed to the right. 

Negative Skewness: Negative Skewness is when the mean<median<mode. The outliers are skewed 
to the left i.e the tail is skewed to the left. 

Skewness is important as it tells us about where the data is distributed. 
 

 

For eg: Global Income Distribution in 2003 is highly right-skewed.We can see the mean $3,451 in 
2003(green) is greater than the median $1,090. It suggests that the global income is not evenly 
distributed. Most individuals incomes are less than $2,000 and less number of people with income 
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above $14,000, so the skewness. But it seems in 2035 according to the forecast income inequality will 
decrease over time. 

1.8.9. Measures of Variability(Dispersion) 

The measure of central tendency gives a single value that represents the whole value; however, the 
central tendency cannot describe the observation fully. The measure of dispersion helps us to study 
the variability of the items i.e the spread of data. 

Remember: Population Data has N data points and Sample Data has (n-1) data points. (n-1) is called 
Bessel’s Correction and it is used to reduce bias. 

1.8.10. Range: The difference between the largest and the smallest value of a data, is termed as the 
range of the distribution. Range does not consider all the values of a series, i.e. it takes only 
the extreme items and middle items are not considered significant. eg: For {13,33,45,67,70} 
the range is 57 i.e(70–13). 

1.8.11. Variance: Variance measures how far is the sum of squared distances from each point to the 
mean i.e the dispersion around the mean. 

Variance is the average of all squared deviations. 
 

 

Note: The units of values and variance is not equal so we use another variability measure. 

1.8.12. Standard Deviation: As Variance suffers from unit difference so standard deviation is used. 
The square root of the variance is the standard deviation. It tells about the concentration of the 
data around the mean of the data set. 
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For eg: {3,5,6,9,10} are the values in a dataset. 
 

 
 

Given measurements on a sample, what is the difference between a standard deviation and a 
standard error? 
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A standard deviation is a sample estimate of the population parameter; that is, it is an estimate of 
the variability of the observations. Since the population is unique, it has a unique standard deviation, 
which may be large or small depending on how variable the observations are. We would not expect 
the sample standard deviation to get smaller because the sample gets larger. However, a large sample 
would provide a more precise estimate of the population standard deviation than a small sample. 
A standard error, on the other hand, is a measure of precision of an estimate of a population 
parameter. A standard error is always attached to a parameter, and one can have standard errors of 
any estimate, such as mean, median, fifth centile, even the standard error of the standard deviation. 
Since one would expect the precision of the estimate to increase with the sample size, the standard 
error of an estimate will decrease as the sample size increases. 

1.8.13. Coefficient of Variation(CV): It is also called as the relative standard deviation. It is the ratio 
of standard deviation to the mean of the dataset. 

 

 

Standard deviation is the variability of a single dataset. Whereas the coefficient of variance can be 
used for comparing 2 datasets. 
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From the above example, we can see that the CV is the same. Both methods are precise. So it is perfect 
for comparisons. 

1.8.14. Measures of Quartiles 

Quartiles are better at understanding as every data point considered. 

Measures of Relationship 

Measures of relationship are used to find the comparison between 2 variables. 

1.8.15. Covariance: Covariance is a measure of the relationship between the variability of 2 variables 
i.e It measures the degree of change in the variables, when one variable changes, will there be 
the same/a similar change in the other variable. 

 

 

Covariance does not give effective information about the relation between 2 variables as it is not 
normalized. 

1.8.16. Correlation: Correlation gives a better understanding of covariance. It is normalized 
covariance. Correlation tells us how correlated the variables are to each other. It is also called 
as Pearson Correlation Coefficient. 
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The value of correlation ranges from -1 to 1. -1 indicates negative correlation i.e with an increase in 1 
variable independent there is a decrease in the other dependent variable.1 indicates positive correlation 
i.e with an increase in 1 variable independent there is an increase in the other dependent variable.0 
indicates that the variables are independent of each other. 

For Example, 
 

 
 

 

Correlation 0.889 tells us Height and Weight has a positive correlation. It is obvious that as the height 
of a person increases weight too increases. 
 

1.9. Understanding Univariate and Multivariate Normal Distribution 

Gaussian distribution is a synonym for normal distribution. S is a set of random values whose 
probability distribution looks like the picture below. 
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This is a bell-shaped curve. If a probability distribution plot forms a bell-shaped curve like above and 
the mean, median, and mode of the sample are the same that distribution is called normal 
distribution or Gaussian distribution. 

The Gaussian distribution is parameterized by two parameters: 

• The mean and The variance 

So, the Gaussian density is the highest at the point of µ or mean, and further, it goes from the mean, 
the Gaussian density keeps going lower. 

Here is the formula for the Gaussian distribution: 

 
 This is the formula for the bell-shaped curve where sigma square is called the variance. 

Mean =0, and different sigmas 
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This is the probability distribution of a set of random numbers with µ is equal to 0 and sigma is 1. In 
the first picture, µ is 0 which means the highest probability density is around 0 and the sigma is one. 
means the width of the curve is 1.  the height of the curve is about 0.5 and the range is -4 to 4 (look at 
x-axis). The variance sigma square is 1. 

Here is another set of random numbers that has a µ of 0 and sigma 0.5 in the second figure. Because 
the  µ is 0, like the previous picture the highest probability density is at around 0 and the sigma is 0.5. 
So, the width of the curve is 0.5. The variance sigma square becomes 0.25. 

As the width of the curve is half the previous curve, the height became double. The range changed to 
-2 to 2 (x-axis) which is the half of the previous picture. 

 
In this picture, sigma is 2 and µ is 0 as the previous two pictures. Compare it to figure 1 where sigma 
was 1. This time height became half of figure 1. Because the width became double as the sigma 
became double. The variance sigma square is 4, four times bigger than figure 1. Look at the range in 
the x-axis, it’s -8 to 8. 

 
Here, we changed µ to 3 and sigma is 0.5 as figure 2. So, the shape of the curve is exactly the same as 
figure 2 but the center shifted to 3. Now the highest density is at around 3. 



 90 

 It changes shapes with the different values of sigma but the area of the curve stays the same. 

One important property of probability distribution is, the area under the curve is integrated to one. 

 

Parameter Estimation 

Calculating µ is straight forward. it’s simply the average. Take the summation of all the data and divide 
it by the total number of data. 

 
The formula for the variance (sigma square) is: 

  
1.9.1. Univariate Normal Distributions 

• Before defining the multivariate normal distribution, we will visit the univariate normal 
distribution. A random variable X is normally distributed with mean μ and variance σ2 if it 
has the probability density function of X as: 

• ϕ(x)=12πσ2exp⁡{−12σ2(x−μ)2} 

• This result is the usual bell-shaped curve that you see throughout statistics. 

• In this expression, you see the squared difference between the variable x and its mean, μ. This 
value will be minimized when x is equal to μ. The quantity −σ−2(x−μ)2 will take its largest 
value when x is equal to μ or likewise, since the exponential function is a monotone function, 
the normal density takes a maximum value when x is equal to μ. 

• The variance σ2 defines the spread of the distribution about that maximum. If σ2 is large, then 
the spread is going to be large, otherwise, if the σ2 value is small, then the spread will be 
small. 

1.9.2. Multivariate Gaussian Distribution 
 

• Multivariate analysis is a branch of statistics concerned with the analysis of multiple 
measurements, made on one or several samples of individuals. For example, we may wish to 
measure length, width, and weight of a product. 

• Multivariate statistical analysis is concerned with data that consist of sets of measurements 
on a number of individuals or objects. 
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• The sample data may be heights and weights of some individuals drawn randomly from a 
population of school children in a given city, or the statistical treatment may be made on a 
collection of measurements 

"Why is the multivariate normal distribution so important? “ 
• There are three reasons why this might be so: 

• Mathematical Simplicity. It turns out that this distribution is relatively easy to work with, so 
it is easy to obtain multivariate methods based on this particular distribution. 

• Multivariate version of the Central Limit Theorem. You might recall in the univariate course 
that we had a central limit theorem for the sample mean for large samples of random variables. 
A similar result is available in multivariate statistics that says if we have a collection of 
random vectors X1, X2, ⋯Xn that are independent and identically distributed, then the 
sample mean vector, x¯, is going to be approximately multivariate normally distributed for 
large samples. 

• Many natural phenomena may also be modeled using this distribution, just as in the univariate 
case. 

 

Instead of having one set of data, what if we have two sets of data and we need a multivariate Gaussian 
distribution. Suppose we have two sets of data; x1 and x2. 

Separately modeling p(x1) and p(x2) is probably not a good idea to understand the combined effect of 
both the dataset. In that case, you would want to combine both the dataset and model only p(x). 

Here is the formula to calculate the probability for multivariate Gaussian distribution, 
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The summation symbol in this equation is the determinant of sigma which is actually an n x n matrix 
of sigma. 

Visual Representation of Multivariate Gaussian Distribution 

Standard Normal Distribution 

 

 
The picture represents a probability distribution of a multivariate Gaussian distribution where µ of 
both x1 and x2 are zeros. 

Summation symbol is an identity matrix that contains sigma values as diagonals. The 1s in the 
diagonals are the sigma for both x1 and x2. And the zeros in the off diagonals show 
the correlation between x1 and x2. So, x1 and x2 are not correlated in this case. 

 In both x1 and x2 direction, the highest probability density is at 0 as the µ is zero. 

The dark red color area in the center shows the highest probability density area. The probability density 
keeps going lower in the lighter red, yellow, green, and cyan areas. It’s the lowest in the dark blue 
color zone. 

Changing the Standard Deviation - Sigma 
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when the standard deviation sigma shrinks, the range also shrinks. At the same time, the height of the 
curve becomes higher to adjust the area. 

In the contrast, when sigma is larger, the variability becomes wider. So, the height of the curve gets 
lower. 

The sigma values for both x1 and x2 will not be the same always. 

 
the range looks like an eclipse. It shrunk for the x1 as the standard deviation sigma is smaller for 
sigma. 

Change the Correlation Factor Between the Variables 
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This is a completely different scenario. The off-diagonal values are not zeros anymore. It’s 0.5. It 
shows that x1 and x2 are correlated by a factor of 0.5. 

The eclipse has a diagonal direction now. x1 and x2 are growing together as they are positively 
correlated. 

When x1 is large x2 also large and when x1 is small, x2 is also small. 

 

Different Means  

The center of the curve shifts from zero for x2 now. 

The center position or the highest probability distribution area should be at 0.5 now. 

The center of the highest probability in the x1 direction is 1.5. At the same time, the center of the 
highest probability is -0.5 for x2 direction. 
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1.10. Hypothesis Testing 

Hypothesis testing is a part of statistical analysis, where we test the assumptions made regarding a 
population parameter. 

It is generally used when we were to compare: 

• a single group with an external standard 
• two or more groups with each other 

A Parameter is a number that describes the data from the population whereas, a Statistic is a number 
that describes the data from a sample. 

Terminologies  

1.10.1. Null Hypothesis: Null hypothesis is a statistical theory that suggests there is no statistical 
significance exists between the populations. 

It is denoted by H0 and read as H-naught. 

1.10.2. Alternative Hypothesis: An Alternative hypothesis suggests there is a significant difference 
between the population parameters. It could be greater or smaller. Basically, it is the contrast 
of the Null Hypothesis. 

It is denoted by Ha or H1. 

H0 must always contain equality(=). Ha always contains difference(≠, >, <). 

For example, if we were to test the equality of average means (µ) of two groups: 

for a two-tailed test, we define H0: µ1 = µ2 and Ha: µ1≠µ2 
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for a one-tailed test, we define H0: µ1 = µ2 and Ha: µ1 > µ2 or Ha: µ1 < µ2 

1.10.3. Level of significance: Denoted by alpha or α. It is a fixed probability of wrongly rejecting a 
True Null Hypothesis. For example, if α=5%, that means we are okay to take a 5% risk and 
conclude there exists a difference when there is no actual difference. 

1.10.4. Test Statistic: It is denoted by t and is dependent on the test that we run. It is deciding factor 
to reject or accept Null Hypothesis. 

The four main test statistics are given in the below table: 

 
Test Type Distribution Test Parameters 
Z-test Normal Mean 
T-test Student-t Mean 
ANOVA F distribution Means 
Chi-Square Chi-squared distribution Association between two categorical variables 

Each hypothesis test uses these basic principles. 

Element Example Description 
Hypothesis with 
hypothesized 
value 

 

The  here is that the population 
mean is greater than 45 

Test value 45 
This is used as a benchmark to test 
how likely a mean of 45 is given the 
population mean and SD 

Confidence 
interval  

At the 95% confidence level (1-0.95 = 
0.05), we can be certain that our test 
gets the true answer 95% of the time 

Test statistic 
 

The test statistic gives you the 
standardized value of your test value 
on your test distribution 
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P-value 
 

The p-value is the calculated 
probability of your value occuring 

In hypothesis testing, the following rules are used to either reject or accept the hypothesis 
given a  of 0.05. Keep in mind that if you were to have an  of 0.1, you’re results would 
be given with 90% confidence and the example above, with a p-value of 0.06, would 

reject . 

  

P-value < 0.05 Region of rejection Reject  
P-value > 0.05 Region of acceptance Fail to reject  
 

p-value: It is the proportion of samples (assuming the Null Hypothesis is true) that would be as 
extreme as the test statistic. It is denoted by the letter p. 

Now, assume we are running a two-tailed Z-Test at 95% confidence. Then, the level of significance 
(α) = 5% = 0.05. Thus, we will have (1-α) = 0.95 proportion of data at the center, and α = 0.05 
proportion will be equally shared to the two tails. Each tail will have (α/2) = 0.025 proportion of data. 

The critical value i.e., Z95% or Zα/2 = 1.96 is calculated from the Z-scores table. 

Now, take a look at the below figure for a better understanding of critical value, test-statistic, and p-
value. 

 
Steps of Hypothesis testing 

For a given business problem, 
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1. Start with specifying Null and Alternative Hypotheses about a population parameter 
2. Set the level of significance (α) 
3. Collect Sample data and calculate the Test Statistic and P-value by running a Hypothesis test 

that well suits our data 
4. Make Conclusion: Reject or Fail to Reject Null Hypothesis 
5. Confusion Matrix in Hypothesis testing 

To plot a confusion matrix, we can take actual values in columns and predicted values in rows or vice 
versa. 

 

 
 

Confidence: The probability of accepting a True Null Hypothesis. It is denoted as (1-α) 

Power of test: The probability of rejecting a False Null Hypothesis i.e., the ability of the test to detect 
a difference. It is denoted as (1-β) and its value lies between 0 and 1. 

Type I error: Occurs when we reject a True Null Hypothesis and is denoted as α. 

Type II error: Occurs when we accept a False Null Hypothesis and is denoted as β. 

Accuracy:  Number of correct predictions / Total number of cases 

The factors that affect the power of the test are sample size, population variability, and the confidence 
(α). 

Confidence and power of test are directly proportional. Increasing the confidence increases the power 
of the test. 



 99 

Type 1 and 2 errors occur when we reject or accept our null hypothesis when, in reality, 
we shouldn’t have. This happens because, while statistics is powerful, there is a certain 
chance that you may be wrong. The table below summarizes these types of errors. 

  

 Accept  Reject  

In reality,  is 
actually true 

Correct:  is true and statistical 

test accepts  

Incorrect: Type 1 error -  is 
true and statistical test 

rejects  

In reality,  is 
actually false 

Incorrect: Type 2 error -  is 
false and statistical test 

accepts  

Correct:  is false and 

statistical test rejects  

 

Confidence Interval 

A confidence interval, in statistics, refers to the probability that a population parameter will fall 
between a set of values for a certain proportion of times. 

A confidence interval is the mean of your estimate plus and minus the variation in that estimate. This 
is the range of values you expect your estimate to fall between if you redo your test, within a certain 
level of confidence. 

Confidence, in statistics, is another way to describe probability. For example, if you construct a 
confidence interval with a 95% confidence level, you are confident that 95 out of 100 times the 
estimate will fall between the upper and lower values specified by the confidence interval. 

The desired confidence level is usually one minus the alpha ( a ) value you used in the statistical test: 

Confidence level = 1 − a 

So if you use an alpha value of p < 0.05 for statistical significance, then your confidence level would 
be 1 − 0.05 = 0.95, or 95%. 

When to use confidence intervals? 

Confidence intervals can be calculated for many kinds of statistical estimates, including: 

• Proportions 
• Population means 
• Differences between population means or proportions 
• Estimates of variation among groups 

These are all point estimates, and don’t give any information about the variation around the number. 
Confidence intervals are useful for communicating the variation around a point estimate. 

Example: Variation around an estimate 
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You survey 100 Brits and 100 Americans about their television-watching habits, and find that both 
groups watch an average of 35 hours of television per week. 

However, the British people surveyed had a wide variation in the number of hours watched, while the 
Americans all watched similar amounts. 

Even though both groups have the same point estimate (average number of hours watched), the British 
estimate will have a wider confidence interval than the American estimate because there is more 
variation in the data. 

Calculating a confidence interval 

Most statistical programs will include the confidence interval of the estimate when you run a statistical 
test. 

If you want to calculate a confidence interval on your own, you need to know: 

• The point estimate you are constructing the confidence interval for 
• The critical values for the test statistic 
• The standard deviation of the sample 
• The sample size 

Once you know each of these components, you can calculate the confidence interval for your estimate 
by plugging them into the confidence interval formula that corresponds to your data. 

Point estimate 

The point estimate of your confidence interval will be whatever statistical estimate you are making 
(e.g. population mean, the difference between population means, proportions, variation among 
groups). 

Example: Point estimate - In the TV-watching example, the point estimate is the mean number of 
hours watched: 35. 

Finding the critical value 

Critical values tell you how many standard deviations away from the mean you need to go in order to 
reach the desired confidence level for your confidence interval. 

There are three steps to find the critical value. 

1. Choose your alpha ( a ) value. 

The alpha value is the probability threshold for statistical significance. The most common alpha value 
is p = 0.05, but 0.1, 0.01, and even 0.001 are sometimes used. It’s best to look at the papers published 
in your field to decide which alpha value to use. 

2. Decide if you need a one-tailed interval or a two-tailed interval. 

You will most likely use a two-tailed interval unless you are doing a one-tailed t-test. 

For a two-tailed interval, divide your alpha by two to get the alpha value for the upper and lower tails. 

3. Look up the critical value that corresponds with the alpha value. 
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If your data follows a normal distribution, or if you have a large sample size (n > 30) that is 
approximately normally distributed, you can use the z-distribution to find your critical values. 

For a z-statistic, some of the most common values are shown in this table: 

Confidence level 90% 95% 99% 

alpha for one-tailed CI 0.1 0.05 0.01 

alpha for two-tailed CI 0.05 0.025 0.005 

z-statistic 1.64 1.96 2.57 

If you are using a small dataset (n ≤ 30) that is approximately normally distributed, use the t-
distribution instead. 

The t-distribution follows the same shape as the z-distribution, but corrects for small sample sizes. For 
the t-distribution, you need to know your degrees of freedom (sample size minus 1). 

Check out this set of t tables to find your t-statistic. The author has included the confidence level 
and p-values for both one-tailed and two-tailed tests to help you find the t-value you need. 

For normal distributions, like the t-distribution and z-distribution, the critical value is the same on 
either side of the mean. 

Example: Critical value In the TV-watching survey, there are more than 30 observations and the data 
follow an approximately normal distribution (bell curve), so we can use the z-distribution for our test 
statistics. 

For a two-tailed 95% confidence interval, the alpha value is 0.025, and the corresponding critical value 
is 1.96. 

This means that to calculate the upper and lower bounds of the confidence interval, we can take the 
mean ±1.96 standard deviations from the mean. 

Finding the standard deviation 

Most statistical software will have a built-in function to calculate your standard deviation, but to find 
it by hand you can first find your sample variance, then take the square root to get the standard 
deviation. 

1.Find the sample variance 

Sample variance is defined as the sum of squared differences from the mean, also known as the mean-
squared-error (MSE): 

 
To find the MSE, subtract your sample mean from each value in the dataset, square the resulting 
number, and divide that number by n − 1 (sample size minus 1). 
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Then add up all of these numbers to get your total sample variance (s2). For larger sample sets, it’s 
easiest to do this in Excel. 

 

 

2.Find the standard deviation. 

The standard deviation of your estimate (s) is equal to the square root of the sample variance/sample 
error (s2): 

 
Example: Standard deviation In the television-watching survey, the variance in the GB estimate is 
100, while the variance in the USA estimate is 25. Taking the square root of the variance gives us a 
sample standard deviation (s) of: 

10 for the GB estimate. 

5 for the USA estimate. 

Sample size 

The sample size is the number of observations in your data set. 

Example: Sample size In our survey of Americans and Brits, the sample size is 100 for each group. 

Confidence interval for the mean of normally-distributed data 

Normally-distributed data forms a bell shape when plotted on a graph, with the sample mean in the 
middle and the rest of the data distributed fairly evenly on either side of the mean. 

The confidence interval for data which follows a standard normal distribution is: 

 
Where: 

CI = the confidence interval 

X̄ = the population mean 

Z* = the critical value of the z-distribution 

σ = the population standard deviation 

√n = the square root of the population size 

The confidence interval for the t-distribution follows the same formula, but replaces the Z* with the t*. 
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In real life, you never know the true values for the population (unless you can do a complete census). 
Instead, we replace the population values with the values from our sample data, so the formula 
becomes: 

 
Where: 

ˆx = the sample mean 

s = the sample standard deviation 

Example: Calculating the confidence interval-  In the survey of Americans’ and Brits’ television 
watching habits, we can use the sample mean, sample standard deviation, and sample size in place of 
the population mean, population standard deviation, and population size. 

To calculate the 95% confidence interval, we can simply plug the values into the formula. 

For the USA: 

 
So for the USA, the lower and upper bounds of the 95% confidence interval are 34.02 and 35.98. 

For GB: 

 
So for the GB, the lower and upper bounds of the 95% confidence interval are 33.04 and 36.96. 

 

1. The confidence ‘level’ refers to the long term success rate of the method i.e. how often this type of 
interval will capture the parameter of interest. 

2. A specific confidence interval gives a range of plausible values for the parameter of interest. 

3. A larger margin of error produces a wider confidence interval that is more likely to contain the 
parameter of interest(increased confidence) 

4. Increasing the confidence will increase the margin of error resulting in a wider interval. 
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1.11. PROBLEMS ON PROBABILITY AND STATISTICS 
 
1) Find the probability of drawing two cards that belong to different colors or different 

shapes (suits) from a shuffled deck of 52 cards? 
 
Solution: 

We will have a match only after the second card is drawn. That decides whether it is a match or not. 
After we have drawn any card from the deck, there will be 51 cards left. Of these 51 cards, have 12 
cards that belong to the same suit of the card we have already drawn. We need to avoid these 12 
cards. 

So, number of favorable cases = 51 -12 = 39 and all possible cases = 51 

Hence, the probability = 39 / 51 = 13 / 17 

 
2) Suppose there are two events, A and B, with P(A) = 0.50, P(B) = 0.60, and P(A ∩∩ B) = 

0.40. 
a. Find P(A|B). 

b. Find P(B|A). 

c. Are A and B independent? Why or why not? 

Solution: 

We know that, 

P(A|B)=P(A∩B)P(B)P(A|B)=P(A∩B)P(B) 
Putting values, we get - 

P(A|B)=0.400.60P(A|B)=0.400.60 
P(A|B)=23P(A|B)=23 
P(A|B)=0.666667 
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3) 

 
5) 
 

 
 
 
6) Find the median for the data set: 34, 22, 15, 25, 10. 
 
Step 1: Arrange data in increasing order 10, 15, 22, 25, 34 
Step 2: There are 5 numbers in the data set, n = 5. 
Step 3:  n = 5, so n is an odd number Median = middle number, median is 22 
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7) Find the median for the data set: 19, 34, 22, 15, 25, 10. 
 
Step 1: Arrange data in increasing order 10, 15, 19, 22, 25, 34 
Step 2: There are 6 numbers in the data set, n = 6. 
Step 3: n = 6, so n is an even number Median = average of two middle numbers median = 
(19+22)/2= 20.5 
 
Notes:   Mean and median don’t have to be numbers from the data set!Mean and median can only 
take one value each.Mean is influenced by extreme values, while median is resistant. 
 
8) Find the mode for the data set: 19, 19, 34, 3, 10, 22, 10, 15, 25, 10, 6. 
 
The number that occurs the most is number 10, mode = 10. 
 
9) Find the mode for the data set: 19, 19, 34, 3, 10, 22, 10, 15, 25, 10, 6, 19. 
 
Number 10 occurs 3 times, but also number 19 occurs 3 times, since there is no number that occur 4 
times both numbers 10 and 19 are mode, mode = {10, 19}. 
 
Notes:  Mode is always the number from the data set.Mode can take zero, one, or more than one 
values. (There can be zero modes, one mode, two modes, ...) 
 
10) The set S = { 5,10,15,20,30}, Mean of set S = 5+10+15+20+30/5 = 80/5 = 16 

Sometimes, the question includes frequency of the values. In that case, the formula changes to 

Mean = ∑FiXi / ∑Fi , 

Where, Fi = frequency of the ith value of the distribution, Xi = ith value of the distribution 

 

11) Find the mean, median, mode, and range for the following list of values:  13, 18, 13, 14, 13, 
16, 14, 21, 13 

Solution:   The mean is the usual average, so we’ll add and then divide: 
(13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13) ÷ 9 = 15 

Note that the mean, in this case, isn’t a value from the original list. This is a common result. You 
should not assume that your mean will be one of your original numbers. 

The median is the middle value, so first we’ll have to rewrite the list in numerical order: 

13, 13, 13, 13, 14, 14, 16, 18, 21 
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There are nine numbers in the list, so the middle one will be the (9 + 1) ÷ 2 = 10 ÷ 2 = 5th number: 

13, 13, 13, 13, 14, 14, 16, 18, 21 

 

So the median is 14. 

The mode is the number that is repeated more often than any other, so 13 is the mode, since 13 is 
being repeated 4 times. 

The largest value in the list is 21, and the smallest is 13, so the range is 21 – 13 = 8. 

Mean: 15                         |median: 14                                 |mode: 
13                                         |range: 8 

12) Find the mean, median, mode, and range for the following list of values: 1, 2, 4, 7 

Solution: The mean is the usual average: 

(1 + 2 + 4 + 7) ÷ 4 = 14 ÷ 4 = 3.5 

The median is the middle number. In this example, the numbers are already listed in numerical 
order, so we don’t have to rewrite the list. But there is no “middle” number, because there are  even 
number of numbers. Because of this, the median of the list will be the mean (that is, the usual 
average) of the middle two values within the list. The middle two numbers are 2 and 4, so: 

(2 + 4) ÷ 2 = 6 ÷ 2 = 3 

So the median of this list is 3, a value that isn’t in the list at all. 

The mode is the number that is repeated most often, but all the numbers in this list appear only 
once, so there is no mode. 

The largest value in the list is 7, the smallest is 1, and their difference is 6, so the range is 6. 

Mean: 3.5                    | median: 3                                    |mode: 
none                                        |range: 6 

 13) Calculate covariance for the following data set: 
x: 2.1, 2.5, 3.6, 4.0 (mean = 3.1) 
y: 8, 10, 12, 14 (mean = 11) 

Substitute the values into the formula and solve: 
Cov(X,Y) = ΣE((X-μ)(Y-ν)) / n-1 
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= (2.1-3.1)(8-11)+(2.5-3.1)(10-11)+(3.6-3.1)(12-11)+(4.0-3.1)(14-11) /(4-1) 
= (-1)(-3) + (-0.6)(-1)+(.5)(1)+(0.9)(3) / 3 
= 3 + 0.6 + .5 + 2.7 / 3 
= 6.8/3 
= 2.267 
14) Let A and B be events on the same sample space, with P (A) = 0.6 and P (B) = 0.7. Can these 
two events be disjoint? 

Answer: 

No 

These two events cannot be disjoint because P(A)+P(B) >1. 

P(AꓴB) = P(A)+P(B)-P(AꓵB). 

An event is disjoint if P(AꓵB) = 0. If A and B are disjoint P(AꓴB) = 0.6+0.7 = 1.3 

And Since probability cannot be greater than 1, these two mentioned events cannot be disjoint. 

15) Alice has 2 kids and one of them is a girl. What is the probability that the other child is 
also a girl?  

You can assume that there are an equal number of males and females in the world. 

The outcomes for two kids can be {BB, BG, GB, GG} 

Since it is mentioned that one of them is a girl, we can remove the BB option from the sample 
space. Therefore the sample space has 3 options while only one fits the second condition. Therefore 
the probability the second child will be a girl too is 1/3. 

=0.333 

16) A player is randomly dealt a sequence of 13 cards from a deck of 52-cards. All sequences of 
13 cards are equally likely. In an equivalent model, the cards are chosen and dealt one at a time.  
Solution: 
When choosing a card, the dealer is equally likely to pick any of the cards that remain in the deck. 
Since we are not told anything about the first 12 cards that are dealt, the probability that the 13th card 
dealt is a King, is the same as the probability that the first card dealt, or in fact any particular card 
dealt is a King, and this equals: 4/52 
Answer: 1/13 
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17) Suppose a life insurance company sells a $240,000 one year term life insurance policy to a 
25-year old female for $210. The probability that the female survives the year is .999592. Find 
the expected value of this policy for the insurance company. 

Solution: 

P(company loses the money ) = 0.99592 

P(company does not lose the money ) = 0.000408 

The amount of money company loses if it loses = 240,000 – 210 = 239790 

While the money it gains is $210 

Expected money the company will have to give = 239790*0.000408 = 97.8 

Expect money company gets = 210. 

Therefore the value = 210 – 98 = $112 

 
18) Find the variance and mean of the number obtained on a throw of an unbiased die. 
 

In Statistics, we have studied that the variance is a measure of the spread or scatter in data. 
Likewise, the variability or spread in the values of a random variable may be measured by variance. 

For a random variable X which takes on values x1, x2, x3 … xn with probabilities  p1, p2, p3 … p
n and the expectation is  E[X]  
The variance of X or Var(X) is denoted by 

 

 
We know that the sample space of this experiment is {1,2,3,4,5,6}  

Let’s define our random variable X, which represents the number obtained on a throw.  

So, the probabilities of the values which our random variable can take are,  

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) =  

Therefore, the probability distribution of the random variable is,  

 

X 1 2 3 4 5 6 
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Probabilities  

 

E[X] =  
 

Also, E[X2]  
 
Thus, Var(X) = E[X2] – (E[X])2 
 

                      =  

So, therefore mean is  

and variance is  

 

19) The mean population IQ for adults is 100 with an SD of 15. You want to see whether those 
born prematurely have a lower IQ. To test this, you attain a sample of the IQ’s adults that were 
born prematurely with a sample mean of 95. Your hypothesis is that prematurely born people 
do not have lower IQs. 

 Because we know the population mean and standard deviation, as well as the distribution (IQ’s are 
generally normally distributed), we can use a z-test. 

Null Hypothesis : IQ of 95 or above is normal  

Alternative Hypothesis : IQ of 95 is not normal 

First, we find the z-score 
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Next, we find the z-score on a z-table for negative values. 

Z 0.00 0.01 0.02 0.03 
0.2 0.42074 0.41683 0.41294 0.40905 
0.3 0.38209 0.37828 0.37448 0.37070 
 

With a p-value of 0.3707, we the fail to reject the null hypothesis. 

 

  

Type 1 Error Example 

In the example above, you can see that we have chosen our confidence level to be at 95%. This gives 
us an alpha of 0.05. As explained above, a type 1 error occurs when our statistical test rejects the null 
hypothesis when, in reality, the null hypothesis is true. 

The main question is, how do we know when a type 1 error has occurred? The only way we could 
know for certain would be if we had all population values, which we don’t. Luckily, we can use the 
same logic as we do for the confidence level. If we are 95% certain of something occurring, this 
means that the probability that this thing really didn’t occur as the tail end of our rejection region. 
Therefore, the type 1 error is calculated simply as the 1 minus the probability that our hypothesis 
occurred, which is simply our p-value 0.3707. 

20) Jane has just begun her new job as on the sales force of a very competitive company. In a 
sample of 16 sales calls it was found that she closed the contract for an average value of 108 
dollars with a standard deviation of 12 dollars. Test at 5% significance that the population 
mean is at least 100 dollars against the alternative that it is less than 100 dollars. Company 
policy requires that new members of the sales force must exceed an average of ?100 per contract 
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during the trial employment period. Can we conclude that Jane has met this requirement at 
the significance level of 95%? 
 
 
1. H0: µ ≤ 100 

Ha: µ > 100 
 

The null and alternative hypothesis are for the parameter µ because the number of dollars of the 
contracts is a continuous random variable. Also, this is a one-tailed test because the company has 
only an interested if the number of dollars per contact is below a particular number not “too high” a 
number. This can be thought of as making a claim that the requirement is being met and thus the 
claim is in the alternative hypothesis. 

2. Test statistic:  

 
3. Critical value:  with n-1 degrees of freedom= 15 

 
The test statistic is a Student’s t because the sample size is below 30; therefore, we cannot use the 
normal distribution. Comparing the calculated value of the test statistic and the critical value 

of   at a 5% significance level, we see that the calculated value is in the tail of the distribution. 
Thus, we conclude that 108 dollars per contract is significantly larger than the hypothesized value of 
100 and thus we cannot accept the null hypothesis. There is evidence that supports Jane’s 
performance meets company standards. 

 
 
 
 
21) A teacher believes that 85% of students in the class will want to go on a field trip to the local 
zoo. She performs a hypothesis test to determine if the percentage is the same or different from 
85%. The teacher samples 50 students and 39 reply that they would want to go to the zoo. For 
the hypothesis test, use a 1% level of significance. 



 113 

Since the problem is about percentages, this is a test of single population proportions. 

H0 : p = 0.85 

Ha: p ≠ 0.85 

p = 0.7554 

 

Because p > α, we fail to reject the null hypothesis. There is not sufficient evidence to suggest that 
the proportion of students that want to go to the zoo is not 85%. 
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QUESTION BANK 

 
Part-A 

Q.No Questions Competence  BT Level 

1.  Define Statistics Remember BTL 1 

2.  Differentiate discrete data and continuous data Analysis BTL 4 

3.  Define Normal Distribution Remember BTL 1 

4.  List the properties of Normal distribution Understand BTL 2 

5.  Enumerate the measure of central tendency? Understand BTL 2 

6.  Differentiate population and sample Analysis BTL 4 

7.  Define mean and median Remember BTL 1 

8.  Define Standard Deviation Remember BTL 1 

9.  Find the mean, median, mode, and range for the following 
list of values: 1, 2, 4, 7 Apply BTL 3 

10.  
Calculate covariance for the following data set: 
x: 2.1, 2.5, 3.6, 4.0 (mean = 3.1) 
y: 8, 10, 12, 14 (mean = 11) 

Apply 
BTL 3 

11.  Find the median for the data set: 34, 22, 15, 25, 10 
 Analysis BTL 4 

12.  Enumerate covariance matrix Remember BTL 2 

13.  Define covariance? Remember BTL 1 

14.  Differentiate positive and negative covariance? Analysis BTL 4 

15.  Describe the measures of Variability Understand BTL 2 

16.  Why is the multivariate normal distribution so important? Analysis BTL 4 

17.  Enumerate measures of asymmetry Understand BTL 2 

18.  Differentiate Null and Alternate Hypothesis Analysis BTL 4 

19.  Interpret Hypothesis testing? Understand BTL 2 

20.  Consider the following data points. 
17, 16, 21, 18, 15, 17, 21, 19, 11, 23. Apply BTL 3 
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Find the mean and median. 

PART B 

Q.No Questions Competence BT Level 

1.  Illustrate  different types of normal distributions Analysis BTL 4 

2.  Define Hypothesis testing and Discuss how to test the 
assumptions made regarding a population parameter. Analysis BTL 4 

3.  Explain the notion of probability, distributions, mean, 
variance, covariance, covariance matrix with an example. Analysis BTL 4 

4.  Explain about probability density function? Analysis BTL 4 

5.  Find the variance and mean of the number obtained on a 
throw of an unbiased die. Apply BTL 3 

6.  Explain about T-test, F-test and Z-test? Analysis BTL 4 

7.  

The mean population IQ for adults is 100 with an SD of 15. 
You want to see whether those born prematurely have a 
lower IQ. To test this, you attain a sample of the IQ’s adults 
that were born prematurely with a sample mean of 95. Your 
hypothesis is that prematurely born people do not have lower 
IQs. 

Apply 

 
 

BTL 3 

8.  Explain about descriptive statistics? Analysis BTL 4 

9.  

Suppose a life insurance company sells a $240,000 one year 
term life insurance policy to a 25-year old female for $210. 
The probability that the female survives the year is 
.999592. Find the expected value of this policy for the 
insurance company. 

 
Apply 

 
 

BTL 3 

10.  

A teacher believes that 85% of students in the class will want 
to go on a field trip to the local zoo. She performs a 
hypothesis test to determine if the percentage is the same or 
different from 85%. The teacher samples 50 students and 39 
reply that they would want to go to the zoo. For the 
hypothesis test, use a 1% level of significance. 

Apply 
 
 

 
BTL 3 

 

 

 



 116 

 
SCHOOL OF COMPUTING 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT – III  
 Exploratory Data Analysis and the Data Science Process – SCSA3016 



 117 

UNIT 3 EXPLORATORY DATA ANALYSIS AND THE DATA SCIENCE PROCESS  
Exploratory Data Analysis and the Data Science Process - Basic tools (plots, graphs and summary 
statistics) of EDA -Philosophy of EDA - The Data Science Process – Data Visualization - Basic 
principles, ideas and tools for data visualization - Examples of exciting projects- Data Visualization 
using Tableau. 
 
3.1 EXPLORATORY DATA ANALYSIS 
 Exploratory Data Analysis, or EDA, is an important step in any Data Analysis or Data 
Science project. EDA is the process of investigating the dataset to discover patterns, and anomalies 
(outliers), and form hypotheses based on our understanding of the dataset. EDA involves generating 
summary statistics for numerical data in the dataset and creating various graphical representations to 
understand the data better.  

 To explore data in a systematic way, a task that statisticians call exploratory data analysis, or 
EDA.  

EDA is an iterative cycle. 

1. Generate questions about your data. 
2. Search for answers by visualising, transforming, and modelling your data. 
3. Use what you learn to refine your questions and/or generate new questions. 

WHAT IS EDA? 

    Exploratory Data Analysis (EDA) is an approach to analyzing datasets to summarize their 
main characteristics, often with visual methods. EDA is used for seeing what the data can tell us 
before the modeling task. It is not easy to look at a column of numbers or a whole spreadsheet and 
determine important characteristics of the data. It may be tedious, boring, and/or overwhelming to 
derive insights by looking at plain numbers. Exploratory data analysis techniques have been devised 
as an aid in this situation. EDA assists Data science professionals in various ways: - 

1. Getting a better understanding of data 
2. Identifying various data patterns 
3. Getting a better understanding of the problem statement. 

The EDA is important to, 

� Detect outliers and anomalies 
� Determine the quality of data 
� Determine what statistical models can fit the data 
� Find out if the assumptions about the data, that you or your team started out with is correct or 

way off. 
� Extract variables or dimensions on which the data can be pivoted. 
� Determine whether to apply univariate or multivariate analytical techniques. 
� EDA is typically used for these four goals: 
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� Exploring a single variable and looking at trends over time. 
� Checking data for errors. 
� Checking assumptions. 
� Looking at relationships between variables 

3.1.1. Why is exploratory data analysis important in data science? 

The main purpose of EDA is to help look at data before making any assumptions. It can help identify 
obvious errors, as well as better understand patterns within the data, detect outliers or anomalous 
events, find interesting relations among the variables. 

Data scientists can use exploratory analysis to ensure the results they produce are valid and applicable 
to any desired business outcomes and goals. EDA also helps stakeholders by confirming they are 
asking the right questions. EDA can help answer questions about standard deviations, categorical 
variables, and confidence intervals. Once EDA is complete and insights are drawn, its features can 
then be used for more sophisticated data analysis or modelling, including machine learning. 

3.1.2. Various exploratory data analysis methods like:  

� Descriptive Statistics, which is a way of giving a brief overview of the dataset we are dealing 
with, including some measures and features of the sample. 

� Grouping data (Basic grouping with group by) 
� ANOVA, Analysis Of Variance, which is a computational method to divide variations in an 

observations set into different components. 
� Correlation and correlation methods. 

Descriptive Statistics: It is a helpful way to understand characteristics of your data and to get a quick 
summary of it. Pandas in python provide an interesting method describe(). The describe function 
applies basic statistical computations on the dataset like extreme values, count of data points standard 
deviation etc. Any missing value or NaN value is automatically skipped. describe() function gives a 
good picture of distribution of data. 

Grouping data: Group by is an interesting measure available in pandas which can help us figure out 
effect of different categorical attributes on other data variables.  

ANOVA 

� ANOVA stands for Analysis of Variance. It is performed to figure out the relation 
between the different group of categorical data.  

� Under ANOVA we have two measures as result:  
– F-testscore : which shows the variation of groups mean over variation  
– p-value: it shows the importance of the result  

� This can be performed using python module scipy method name f_oneway()  
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Correlation and Correlation computation: Correlation is a simple relationship between two 
variables in a context such that one variable affects the other. Correlation is different from act 
of causing. 

3.1.3. Types of EDA 

 Exploratory data analysis is generally cross-classified in two ways. First, each method is 
either non-graphical or graphical. And second, each method is either univariate or multivariate 
(usually just bivariate) 

 There are broadly two categories of EDA, graphical and non-graphical. 

Ø Univariate Non-graphical 
Ø Multivariate Non-graphical 
Ø Univariate graphical 
Ø Multivariate graphical 

Univariate non-graphical: This is the simplest form of data analysis as during this we use just one 
variable to research the info. The standard goal of univariate non-graphical EDA is to know the 
underlying sample distribution/ data and make observations about the population. Outlier detection 
is additionally part of the analysis.  

The characteristics of population distribution include:  

� Central tendency:  The central tendency or location of distribution has got to do with typical 
or middle values. The commonly useful measures of central tendency are statistics called 
mean, median, and sometimes mode during which the foremost common is mean. For skewed 
distribution or when there’s concern about outliers, the median may be preferred. 

� Spread:  Spread is an indicator of what proportion distant from the middle we are to seek out 
the find the info values. the quality deviation and variance are two useful measures of spread. 
The variance is that the mean of the square of the individual deviations and therefore the 
variance is the root of the variance 

� Skewness and kurtosis: Two more useful univariates descriptors are the skewness and 
kurtosis of the distribution. Skewness is that the measure of asymmetry and kurtosis may be 
a more subtle measure of peakedness compared to a normal distribution 

Multivariate non-graphical: Multivariate non-graphical EDA technique is usually wont to show the 
connection between two or more variables within the sort of either cross-tabulation or statistics.   

• For categorical data, an extension of tabulation called cross-tabulation is extremely useful. 
For 2 variables, cross-tabulation is preferred by making a two-way table with column 
headings that match the amount of one-variable and row headings that match the amount of 
the opposite two variables, then filling the counts with all subjects that share an equivalent 
pair of levels. 
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• For each categorical variable and one quantitative variable, we create statistics for 
quantitative variables separately for every level of the specific variable then compare the 
statistics across the amount of categorical variable. 

• Comparing the means is an off-the-cuff version of ANOVA and comparing medians may be 
a robust version of one-way ANOVA. 

Univariate graphical: Non-graphical methods are quantitative and objective, they are doing not give 
the complete picture of the data; therefore, graphical methods are more involve a degree of subjective 
analysis also are required. 

Common sorts of univariate graphics are: 

� Histogram: The foremost basic graph is a histogram, which may be a bar plot during which 
each bar represents the frequency (count) or proportion (count/total count) of cases for a 
variety of values. Histograms are one of the simplest ways to quickly learn a lot about your 
data, including central tendency, spread, modality, shape and outliers. 

� Stem-and-leaf plots: An easy substitute for a histogram may be stem-and-leaf plots. It shows 
all data values and therefore the shape of the distribution. 

� Boxplots: Another very useful univariate graphical technique is that the boxplot. Boxplots 
are excellent at presenting information about central tendency and show robust measures of 
location and spread also as providing information about symmetry and outliers, although they 
will be misleading about aspects like multimodality. One among the simplest uses of boxplots 
is within the sort of side-by-side boxplots. 

� Quantile-normal plots: The ultimate univariate graphical EDA technique is that the most 
intricate. it’s called the quantile-normal or QN plot or more generally the quantile-quantile or 
QQ plot. it’s wont to see how well a specific sample follows a specific theoretical distribution. 
It allows detection of non-normality and diagnosis of skewness and kurtosis 

Multivariate graphical: A graphical representation always gives you a better understanding of the 
relationship, especially among multiple variables. 

Other common sorts of multivariate graphics are: 

� Scatterplot: For 2 quantitative variables, the essential graphical EDA technique is that the 
scatterplot, sohas one variable on the x-axis and one on the y-axis and therefore the point for 
every case in your dataset. 

� Run chart:  It’s a line graph of data plotted over time. 
� Heat map:  It’s a graphical representation of data where values are depicted by color. 
� Multivariate chart: It’s a graphical representation of the relationships between factors and 

response. 
� Bubble chart: It’s a data visualization that displays multiple circles (bubbles) in two-

dimensional plot. 

3.2. TOOLS in EDA 
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 Non-graphical exploratory data analysis involves data collection and reporting in 
nonvisual or non-pictorial formats. Some of the most common data science tools used to create an 
EDA include: 

� Python: An interpreted, object-oriented programming language with dynamic semantics. Its 
high-level, built-in data structures, combined with dynamic typing and dynamic binding, 
make it very attractive for rapid application development, as well as for use as a scripting or 
glue language to connect existing components together. Python and EDA can be used together 
to identify missing values in a data set, which is important so you can decide how to handle 
missing values for machine learning. 

� R: An open-source programming language and free software environment for statistical 
computing and graphics supported by the R Foundation for Statistical Computing.  

The R language is widely used among statisticians in data science in developing statistical 
observations and data analysis. 

Graphical exploratory data analysis employs visual tools to display data, such as: 

Box plots 

� Box plots are used where there is a need to summarize data on an interval scale like the 
ones on the stock market, where ticks observed in one whole day may be represented in a 
single box, highlighting the lowest, highest, median and outliers.   

Heatmap 

� Heatmaps are most often used for the representation of the correlation between variables. 
Here is an example of a heatmap. 

� As you can see from the chart, there is a strong correlation between density and residual 
sugar and absolutely no correlation between alcohol and residual sugar. 

Histograms 

� The histogram is the graphical representation of numerical data that splits the data into 
ranges. The taller the bar, the greater the number of data points falling in that range. A 
good example here is the height data of a class of students. You would notice that the 
height data looks like a bell curves for a particular class with most the data lying within a 
certain range and a few of outside these ranges. There will be outliers too, either very 
short or very small.  

Line graphs: one of the most basic types of charts that plots data points on a graph; has a wealth of 
uses in almost every field of study.  
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Pictograms: replace numbers with images to visually explain data. They’re common in the design 
of infographics, as well as visuals that data scientists can use to explain complex findings to non-
data-scientist professionals and the public.   

Scattergrams or scatterplots: typically used to display two variables in a set of data and then look 
for correlations among the data. For example, scientists might use it to evaluate the presence of two 
particular chemicals or gases in marine life in an effort to look for a relationship between the two 
variables.  

3.3 PHILOSOPHY OF EDA 

• The father of EDA is John Tukey who officially coined the term in his 1977 masterpiece. Lyle 
Jones, the editor of the multi-volume “The collected works of John W. Tukey: Philosophy 
and principles of data analysis” describes EDA as “an attitude towards flexibility that is absent 
of prejudice”. 

• The key frame of mind when engaging with EDA and thus VDA is to approach the dataset 
with little to no expectation, and not be influenced by rigid parameterisations. EDA 
commands to let the data speak for itself. To use the words of Tukey (1977, preface): 

•   “It is important to understand what you CAN DO before you learn to measure how WELL 
you seem to have DONE it… Exploratory data analysis can never be the whole story, but 
nothing else can serve as the foundation stone –as the first step.” 

• Since the inception of EDA as unifying class of methods, it has influenced the development 
of several other major statistical developments including in non-parametric statistics, robust 
analysis, data mining, and visual data analytics. These classes of methods are motivated by 
the need to stop relying on rigid assumption-driven mathematical formulations that often fail 
to be confirmed by observables.  

• EDA is not identical to statistical graphics although the two terms are used almost 
interchangeably. Statistical graphics is a collection of techniques--all graphically based and 
all focusing on one data characterization aspect. EDA encompasses a larger venue; EDA is 
an approach to data analysis that postpones the usual assumptions about what kind of model 
the data follow with the more direct approach of allowing the data itself to reveal its 
underlying structure and model. EDA is not a mere collection of techniques; EDA is a 
philosophy as to how we dissect a data set; what we look for; how we look; and how we 
interpret. It is true that EDA heavily uses the collection of techniques that we call "statistical 
graphics", but it is not identical to statistical graphics. 
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3.4. DATA SCIENCE PROCESS 

 
Figure 3.1: Data Science process 

The key steps involved in Data Science Modelling are:  
Step 1: Understanding the Problem 
Step 2: Data Extraction  
Step 3: Data Cleaning 
Step 4: Exploratory Data Analysis 
Step 5: Feature Selection 
Step 6: Incorporating Machine Learning Algorithms 
Step 7: Testing the Models  
Step 8: Deploying the Model 
 
Step 1: Understanding the Problem 

The first step involved in Data Science Modelling is understanding the problem. A Data Scientist 
listens for keywords and phrases when interviewing a line-of-business expert about a business 
challenge. The Data Scientist breaks down the problem into a procedural flow that always involves 
a holistic understanding of the business challenge, the Data that must be collected, and various 
Artificial Intelligence and Data Science approach that can be used to address the problem. 

Step 2: Data Extraction 

� The next step in Data Science Modelling is Data Extraction. Not just any Data, but the 
Unstructured Data pieces you collect, relevant to the business problem you’re trying to 
address. The Data Extraction is done from various sources online, surveys, and existing 
Databases. 

 
Step 3: Data Cleaning 
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Data Cleaning is useful as you need to sanitize Data while gathering it. Data cleaning is the process 
of detecting, correcting and ensuring that your given data set is free from error, consistent and usable 
by identifying any errors or corruptions in the data, correcting or deleting them, or manually 
processing them as needed to prevent the error from corrupting our final analysis. 
The following are some of the most typical causes of Data Inconsistencies and Errors: 

� Duplicate items are reduced from a variety of Databases. 

� The error with the input Data in terms of Precision. 

� Changes, Updates, and Deletions are made to the Data entries. 

� Variables with missing values across multiple Databases. 

Steps In Data Preprocessing: 

� Gathering the data 

� Import the dataset & Libraries 

� Dealing with Missing Values 

� Divide the dataset into Dependent & Independent variable 

� dealing with Categorical values 

� Split the dataset into training and test set 

� Feature Scaling 

Gathering the data 

� Data is raw information, its the representation of both human and machine observation of the 
world. Dataset entirely depends on what type of problem you want to solve. Each problem in 
machine learning has its own unique approach. 

Some website to get the dataset : 

� Kaggle: 
https://www.kaggle.com/datasets 

� UCI Machine Learning Repository: One of the oldest sources on the web to get the dataset. 
http://mlr.cs.umass.edu/ml/ 

� This awesome GitHub repository has high-quality datasets. 
https://github.com/awesomedata/awesome-public-datasets 

Import the dataset & Libraries 

� First step is usually importing the libraries that will be needed in the program. A library is 
essentially a collection of modules that can be called and used. 

� Pandas offer tools for cleaning and process your data. It is the most popular Python library 
that is used for data analysis. In pandas, a data table is called a dataframe. 
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Dealing with Missing Values 

� Sometimes we may find some data are missing in the dataset. if we found then we will remove 
those rows or we can calculate either mean, mode or median of the feature and replace it 
with missing values. This is an approximation which can add variance to the dataset. 

 #Check for null values- dataset.isna() or dataset.isnull() to see the null values in dataset. 

 #Drop Null values- Pandas provide a dropna() function that can be used to drop either row 
or columns with missing data. 

 #Replacing Null values with Strategy: For replacing null values we use the strategy that can 
be applied on a feature which has numeric data. We can calculate the Mean, Median or Mode of the 
feature and replace it with the missing values. 

� De-Duplicate means remove all duplicate values. There is no need for duplicate values in data 
analysis. These values only affect the accuracy and efficiency of the analysis result. To find 
duplicate values in the dataset we will use a simple dataframe function i.e. duplicated(). Let’s 
see the example: 

 dataset.duplicated() 

Feature Scaling 

� The final step of data preprocessing is to apply the very important feature scaling. 

� Feature Scaling is a technique to standardize the independent features present in the data in a 
fixed range. It is performed during the data pre-processing. 

� Why Scaling :- Most of the times, your dataset will contain features highly varying in 
magnitudes, units and range. But since, most of the machine learning algorithms use 
Euclidean distance between two data points in their computations, this is a problem. 

Standardization and Normalization 

� Data Standardization and Normalization is a common practice in machine learning.  

� Standardization is another scaling technique where the values are centered around the mean 
with a unit standard deviation. This means that the mean of the attribute becomes zero and 
the resultant distribution has a unit standard deviation. 

� Normalization is a scaling technique in which values are shifted and rescaled so that they end 
up ranging between 0 and 1. It is also known as Min-Max scaling. 

Step 4: Exploratory Data Analysis 

� Exploratory Data Analysis (EDA) is a robust technique for familiarising yourself with Data 
and extracting useful insights. Data Scientists sift through Unstructured Data to find patterns 
and infer relationships between Data elements. Data Scientists use Statistics and Visualisation 
tools to summarise Central Measurements and variability to perform EDA. 

Step 5: Feature Selection 
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� Feature Selection is the process of identifying and selecting the features that contribute the 
most to the prediction variable or output that you are interested in, either automatically or 
manually. 

� The presence of irrelevant characteristics in your Data can reduce the Model accuracy and 
cause your Model to train based on irrelevant features. In other words, if the features are 
strong enough, the Machine Learning Algorithm will give fantastic outcomes. 

�  Two types of characteristics must be addressed: 

� Consistent characteristics that are unlikely to change. 

Variable characteristics whose values change over time  
Step 6: Incorporating Machine Learning Algorithms 

� This is one of the most crucial processes in Data Science Modelling as the Machine Learning 
Algorithm aids in creating a usable Data Model. There are a lot of algorithms to pick from, 
the Model is selected based on the problem. There are three types of Machine Learning 
methods that are incorporated: 

 
1) Supervised Learning 

� It is based on the results of a previous operation that is related to the existing business 
operation. Based on previous patterns, Supervised Learning aids in the prediction of an 
outcome. Some of the Supervised Learning Algorithms are: 

� Linear Regression 

� Random Forest 

� Support Vector Machines 

 

2) Unsupervised Learning 

� This form of learning has no pre-existing consequence or pattern. Instead, it concentrates on 
examining the interactions and connections between the presently available Data points. 
Some of the Unsupervised Learning Algorithms are: 

� KNN (k-Nearest Neighbors) 

� K-means Clustering 

� Hierarchical Clustering 

� Anomaly Detection 

3.5 DATA VISUALIZATION 
� Data visualization is the process of translating large data sets and metrics into charts, graphs 

and other visuals.  
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� The resulting visual representation of data makes it easier to identify and share real-time 
trends, outliers, and new insights about the information represented in the data.   

� Data visualization is one of the steps of the data science process, which states that after data 
has been collected, processed and modeled, it must be visualized for conclusions to be made.  

� Data visualization is also an element of the broader data presentation architecture (DPA) 
discipline, which aims to identify, locate, manipulate, format and deliver data in the most 
efficient way possible. 

Why Data Visualization is important? 

� It’s hard to think of a professional industry that doesn’t benefit from making data more 
understandable. Every STEM field benefits from understanding data—and so do fields in 
government, finance, marketing, history, consumer goods, service industries, education, 
sports, and so on. And, since visualization is so prolific, it’s also one of the most useful 
professional skills to develop. The better we can convey the points visually, whether in a 
dashboard or a slide deck, the better we can leverage that information. The concept of the 
citizen data scientist is on the rise. Skill sets are changing to accommodate a data-driven 
world. It is increasingly valuable for professionals to be able to use data to make decisions 
and use visuals to tell stories of when data informs the who, what, when, where, and how. 
While traditional education typically draws a distinct line between creative storytelling and 
technical analysis, the modern professional world also values those who can cross between 
the two: data visualization sits right in the middle of analysis and visual storytelling. 

 

� Some examples of Data Visualization 
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 Common general types of data visualization: 

• Charts 

• Tables 

• Graphs 

• Maps 

• Infographics 

• Dashboards 

• More specific examples of methods to visualize data: 
• Area Chart 

• Bar Chart 

• Box-and-whisker Plots 

• Bubble Cloud 

• Bullet Graph 

• Cartogram 

• Circle View 

• Dot Distribution Map 

• Gantt Chart 
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• Heat Map 

• Highlight Table 

• Histogram 

• Matrix 

• Network 

• Polar Area 

• Radial Tree 

• Scatter Plot (2D or 3D) 

• Streamgraph 

• Text Tables 

• Timeline 

• Treemap 

• Wedge Stack Graph 

• Word Cloud 

• And any mix-and-match combination in a dashboard 

Challenges in Data Visualization 

• Which graphs can be used for analysis of my data? 
• How to create these graphs 
• How should these graphs be analysed? 
• How to make these graphs looking good for publication or presentation? 

 

3.6. Data Visualization Tools 

1. Tableau 

� It is a business intelligence service that aids people in visualizing as well as understanding 
their data it’s also one of those very widely used services in the field of business intelligence. 
It allows you to design an interactive reports dashboard and worksheets to obtain business 
visions it has outstanding visualization capabilities and has a great performance. 

Pros: 

� Outstanding visual library 



 130 

� User friendly 
� Great performance 
� Connectivity to data 
� Powerful computation 
� Quick insights 

Cons: 

� Inflexible pricing 
� No option for auto-refresh 
� Restrictive imports 
� Manual updates for static features 

2. Power BI 

� Power BI, Microsoft's easy-to-use data visualization tool, is available for both on-premise 
installation and deployment on the cloud infrastructure. Power BI is one of the most complete 
data visualization tools that supports a myriad of backend databases, including Teradata, 
Salesforce, PostgreSQL, Oracle, Google Analytics, Github, Adobe Analytics, Azure, SQL 
Server, and Excel. The enterprise-level tool creates stunning visualizations and delivers real-
time insights for fast decision-making. 

The Pros of Power BI: 

� No requirement for specialized tech support 
� Easily integrates with existing applications   
� Personalized, rich dashboard 
� High-grade security  
� No speed or memory constraints 
� Compatible with Microsoft products 

The Cons of Power BI: 

� Cannot work with varied, multiple datasets 

3. Dundas BI 

� Dundas BI offers highly-customizable data visualizations with interactive scorecards, maps, 
gauges, and charts, optimizing the creation of ad-hoc, multi-page reports. By providing users 
full control over visual elements, Dundas BI simplifies the complex operation of cleansing, 
inspecting, transforming, and modeling big datasets.  

The Pros of Dundas BI: 

� Exceptional flexibility 
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� A large variety of data sources and charts  
� Wide range of in-built features for extracting, displaying, and modifying data 

The Cons of Dundas BI: 

� No option for predictive analytics 
� 3D charts not supported 

4. JupyteR 

� A web-based application, JupyteR, is one of the top-rated data visualization tools that enable 
users to create and share documents containing visualizations, equations, narrative text, and 
live code. JupyteR is ideal for data cleansing and transformation, statistical modeling, 
numerical simulation, interactive computing, and machine learning.  

The Pros of JupyteR: 

� Rapid prototyping 
� Visually appealing results 
� Facilitates easy sharing of data insights 

The Cons of JupyteR: 

� Tough to collaborate 
� At times code reviewing becomes complicated 

 

5. Zoho Reports 

� Zoho Reports, also known as Zoho Analytics, is a comprehensive data visualization tool that 
integrates Business Intelligence and online reporting services, which allow quick creation and 
sharing of extensive reports in minutes. The high-grade visualization tool also supports the 
import of Big Data from major databases and applications.  

The Pros of Zoho Reports: 

� Effortless report creation and modification 
� Includes useful functionalities such as email scheduling and report sharing 
� Plenty of room for data 
� Prompt customer support. 

The Cons of Zoho Reports: 

� User training needs to be improved 
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� The dashboard becomes confusing when there are large volumes of data 

6. GoogleCharts 

� One of the major players in the data visualization market space, Google Charts, coded with 
SVG and HTML5, is famed for its capability to produce graphical and pictorial data 
visualizations. Google Charts offers zoom functionality, and it provides users with unmatched 
cross-platform compatibility with iOS, Android, and even the earlier versions of the Internet 
Explorer browser. 

The Pros of Google Charts: 

� User-friendly platform 
� Easy to integrate data 
� Visually attractive data graphs 
� Compatibility with Google products. 

The Cons of Google Charts: 

� The export feature needs fine-tuning  
� Inadequate demos on tools 
� Lacks customization abilities 
� Network connectivity required for visualization 

7. Sisense 

Regarded as one of the most agile data visualization tools, Sisense gives users access to instant data 
analytics anywhere, at any time. The best-in-class visualization tool can identify key data patterns 
and summarize statistics to help decision-makers make data-driven decisions. 

The Pros of Sisense: 

� Ideal for mission-critical projects involving massive datasets 
� Reliable interface 
� High-class customer support 
� Quick upgrades 
� Flexibility of seamless customization 

The Cons of Sisense: 

� Developing and maintaining analytic cubes can be challenging 
� Does not support time formats 
� Limited visualization versions 

8. Plotly 
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� An open-source data visualization tool, Plotly offers full integration with analytics-centric 
programming languages like Matlab, Python, and R, which enables complex visualizations. 
Widely used for collaborative work, disseminating, modifying, creating, and sharing 
interactive, graphical data, Plotly supports both on-premise installation and cloud 
deployment.  

The Pros of Plotly: 

� Allows online editing of charts  
� High-quality image export 
� Highly interactive interface 
� Server hosting facilitates easy sharing  

The Cons of Plotly: 

� Speed is a concern at times 
� Free version has multiple limitations 
� Various screen-flashings create confusion and distraction  

9. Data Wrapper 

� Data Wrapper is one of the very few data visualization tools on the market that is available 
for free. It is popular among media enterprises because of its inherent ability to quickly create 
charts and present graphical statistics on Big Data. Featuring a simple and intuitive interface, 
Data Wrapper allows users to create maps and charts that they can easily embed into reports. 

The Pros of Data Wrapper: 

� Does not require installation for chart creation 
� Ideal for beginners 
� Free to use 

The Cons of Data Wrapper: 

� Building complex charts like Sankey is a problem 
� Security is an issue as it is an open-source tool 

10. QlikView 

A major player in the data visualization market, Qlikview provides solutions to over 40,000 clients 
in 100 countries. Qlikview's data visualization tool, besides enabling accelerated, customized 
visualizations, also incorporates a range of solid features, including analytics, enterprise reporting, 
and Business Intelligence capabilities.  

The Pros of QlikView: 
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� User-friendly interface  
� Appealing, colorful visualizations 
� Trouble-free maintenance 
� A cost-effective solution 

The Cons of QlikView: 

� RAM limitations 
� Poor customer support 
� Does not include the 'drag and drop' feature 

3.7. DATA VISUALIZATION WITH PYTHON 

Python offers multiple great graphing libraries that come packed with lots of different features. 

Here are a few popular plotting libraries: 

� Matplotlib: low level, provides lots of freedom 
� Pandas Visualization: easy to use interface, built on Matplotlib 
� Seaborn: high-level interface, great default styles 
� ggplot: based on R’s ggplot2, uses Grammar of Graphics 
� Plotly: can create interactive plots 

Matplotlib 

� Matplotlib is a visualization library in Python for 2D plots of arrays. Matplotlib is written in 
Python and makes use of the NumPy library. It can be used in Python and IPython shells, 
Jupyter notebook, and web application servers. Matplotlib comes with a wide variety of plots 
like line, bar, scatter, histogram, etc. which can help us, deep-dive, into understanding trends, 
patterns, correlations. It was introduced by John Hunter in 2002. 

Seaborn 

� Conceptualized and built originally at the Stanford University, this library sits on top 
of matplotlib. In a sense, it has some flavors of matplotlib while from the visualization point, 
its is much better than matplotlib and has added features as well. Below are its advantages 

� Built-in themes aid better visualization 
� Statistical functions aiding better data insights 
� Better aesthetics and built-in plots 
� Helpful documentation with effective examples 

Bokeh 

� Bokeh is an interactive visualization library for modern web browsers. It is suitable for large 
or streaming data assets and can be used to develop interactive plots and dashboards. There 
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is a wide array of intuitive graphs in the library which can be leveraged to develop solutions. 
It works closely with PyData tools. The library is well-suited for creating customized visuals 
according to required use-cases. The visuals can also be made interactive to serve a what-if 
scenario model. All the codes are open source and available on GitHub. 

plotly 

� plotly.py is an interactive, open-source, high-level, declarative, and browser-based 
visualization library for Python. It holds an array of useful visualization which includes 
scientific charts, 3D graphs, statistical charts, financial charts among others. Plotly graphs can 
be viewed in Jupyter notebooks, standalone HTML files, or hosted online. Plotly library 
provides options for interaction and editing. The robust API works perfectly in both local and 
web browser mode. 

plotly 

� plotly.py is an interactive, open-source, high-level, declarative, and browser-based 
visualization library for Python. It holds an array of useful visualization which includes 
scientific charts, 3D graphs, statistical charts, financial charts among others. Plotly graphs can 
be viewed in Jupyter notebooks, standalone HTML files, or hosted online. Plotly library 
provides options for interaction and editing. The robust API works perfectly in both local and 
web browser mode. 

ggplot 

� ggplot is a Python implementation of the grammar of graphics. The Grammar of Graphics 
refers to the mapping of data to aesthetic attributes (colour, shape, size) and geometric objects 
(points, lines, bars). The basic building blocks according to the grammar of graphics are data, 
geom (geometric objects), stats (statistical transformations), scale, coordinate system, and 
facet. 

� Using ggplot in Python allows you to develop informative visualizations incrementally, 
understanding the nuances of the data first, and then tuning the components to improve the 
visual representations. 

3.9. Examples Of Exciting Projects- Exploratory Data Analysis : Iris Dataset 
Importing relevant libraries 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn import metrics 
sns.set() 
Source Of Data 

� Data has been stored inside a csv file namely ‘iris.csv’ 
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Loading data 

� iris_data = pd.read_csv(‘iris.csv’) 

� iris_data 
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Getting Information about the Dataset 

� We will use the shape parameter to get the shape of the dataset. 

iris_data.shape 

Output: 

� (150, 6)We can see that the dataframe contains 6 columns and 150 rows. 

Gaining information from data 
iris_data.info() 

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 150 entries, 0 to 149 
Data columns (total 5 columns): 
# Column Non-Null Count Dtype  
--- ------ -------------- -----  
0 sepal_length 150 non-null float64 
1 sepal_width 150 non-null float64 
2 petal_length 150 non-null float64 
3 petal_width 150 non-null float64 
4 species 150 non-null object  
dtypes: float64(4), object(1) 
memory usage: 6.0+ KB 



 138 

We can see that only one column has categorical data and all the other columns are of the numeric 
type with non-Null entries. 

� We can see that only one column has categorical data and all the other columns are of the 
numeric type with non-Null entries. 

Data Insights: 

� 1 All columns are not having any Null Entries 

� 2 Four columns are numerical type 

� 3 Only Single column categorical type 

Statistical Insight 

� iris_data.describe() 

 
Data Insights: 

� Mean values 

� Standard Deviation , 

� Minimum Values 

� Maximum Values 

Checking Missing Values 

� We will check if our data contains any missing values or not. Missing values can occur 
when no information is provided for one or more items or for a whole unit. We will use 
the isnull() method. 
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� iris_data.isnull().sum() 

 
We can see that no column as any missing value. 

Checking For Duplicate Entries 

� iris_data[iris_data.duplicated()] 

 
There are 3 duplicates, therefore we must check whether each species data set is balanced in no's or 
no 

Checking the balance 

iris_data[‘species’].value_counts() 

  

Therefore we shouldn’t delete the entries as it might imbalance the data sets and hence will prove 
to be less useful for valuable insights 

Data Visualization 

Visualizing the target column 

� Our target column will be the Species column because at the end we will need the result 
according to the species only. Note: We will use Matplotlib and Seaborn library for the data 
visulalization.  
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# importing packages 

import seaborn as sns 

import matplotlib.pyplot as plt 

plt.title(‘Species Count’) 
sns.countplot(iris_data[‘species’]) 

 
Data Insight: 

� This further visualizes that species are well balanced 

� Each species ( Iris virginica, setosa, versicolor) has 50 as it’s count 

 
Uni-variate Analysis 

Comparison between various species based on sepal length and width 

plt.figure(figsize=(17,9)) 
plt.title(‘Comparison between various species based on sapel length and width’) 
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sns.scatterplot(iris_data[‘sepal_length’],iris_data[‘sepal_width’],hue 
=iris_data[‘species’],s=50) 

 
Data Insights: 

� Iris Setosa species has smaller sepal length but higher width. 

� Versicolor lies in almost middle for length as well as width 

� Virginica has larger sepal lengths and smaller sepal widths 

Comparison between various species based on petal length and width 

plt.figure(figsize=(16,9)) 
plt.title(‘Comparison between various species based on petal lenght and width’) 
sns.scatterplot(iris_data[‘petal_length’], iris_data[‘petal_width’], hue = iris_data[‘species’], 
s= 50) 
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Data Insights 

� Setosa species have the smallest petal length as well as petal width 

� Versicolor species have average petal length and petal width 

� Virginica species have the highest petal length as well as petal width 

Let’s plot all the column’s relationships using a pairplot. It can be used for multivariate 
analysis. 

� sns.pairplot(iris_data,hue=”species”,height=4) 
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Data Insights: 

� High co relation between petal length and width columns. 

� Setosa has both low petal length and width 

� Versicolor has both average petal length and width 

� Virginica has both high petal length and width. 

� Sepal width for setosa is high and length is low. 

� Versicolor have average values for for sepal dimensions. 

� Virginica has small width but large sepal length 

The heatmap is a data visualization technique that is used to analyze the dataset as colors in 
two dimensions. Basically, it shows a correlation between all numerical variables in the dataset. 
In simpler terms, we can plot the above-found correlation using the heatmaps. 

Checking Correlation 

� plt.figure(figsize=(10,11)) 
sns.heatmap(iris_data.corr(),annot=True) 
plt.plot() 
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Data Insights: 

Sepal Length and Sepal Width features are slightly correlated with each other 

Checking Mean & Median Values for each species 

� iris.groupby(‘species’).agg([‘mean’, ‘median’]) 
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visualizing the distribution , mean and median using box plots & violin plots 

Box plots to know about distribution 

� boxplot to see how the categorical feature “Species” is distributed with all other four input 
variables 

� fig, axes = plt.subplots(2, 2, figsize=(16,9)) 
sns.boxplot( y=”petal_width”, x= “species”, data=iris_data, orient=’v’ , ax=axes[0, 0]) 
sns.boxplot( y=”petal_length”, x= “species”, data=iris_data, orient=’v’ , ax=axes[0, 1]) 
sns.boxplot( y=”sepal_length”, x= “species”, data=iris_data, orient=’v’ , ax=axes[1, 0]) 
sns.boxplot( y=”sepal_width”, x= “species”, data=iris_data, orient=’v’ , ax=axes[1, 1]) 
plt.show() 

 
Data Insights: 

� Setosa is having smaller feature and less distributed 

� Versicolor is distributed in a average manner and average features 

� Virginica is highly distributed with large no .of values and features 

� Clearly the mean/ median values are being shown by each plots for various features(sepal 
length & width, petal length & width) 

Violin Plot for checking distribution 

� The violin plot shows density of the length and width in the species. The thinner part 
denotes that there is less density whereas the fatter part conveys higher density 

fig, axes = plt.subplots(2, 2, figsize=(16,10)) 
sns.violinplot( y=”petal_width”, x= “species”, data=iris_data, orient=’v’ , ax=axes[0, 
0],inner=’quartile’) 
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sns.violinplot( y=”petal_length”, x= “species”, data=iris_data, orient=’v’ , ax=axes[0, 
1],inner=’quartile’) 
sns.violinplot( y=”sepal_length”, x= “species”, data=iris_data, orient=’v’ , ax=axes[1, 
0],inner=’quartile’) 
sns.violinplot( y=”sepal_width”, x= “species”, data=iris_data, orient=’v’ , ax=axes[1, 
1],inner=’quartile’) 
plt.show() 

 
Data Insights: 

� Setosa is having less distribution and density in case of petal length & width 

� Versicolor is distributed in a average manner and average features in case of petal length & 
width 

� Virginica is highly distributed with large no .of values and features in case of sepal length & 
width 

� High density values are depicting the mean/median values, for example: Iris Setosa has 
highest density at 5.0 cm ( sepal length feature) which is also the median value(5.0) as per 
the table 

 
Mean / Median Table for reference 
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Plotting the Histogram & Probability Density Function (PDF) 

� plotting the probability density function(PDF) with each feature as a variable on X-axis and 
it’s histogram and corresponding kernel density plot on Y-axis. 

� sns.FacetGrid(iris, hue="species", height=5) \ 
.map(sns.distplot, "sepal_length") \ 
.add_legend() 

� sns.FacetGrid(iris, hue="species", height=5) \ 
.map(sns.distplot, "sepal_width") \ 
.add_legend() 

� sns.FacetGrid(iris, hue="species", height=5) \ 
.map(sns.distplot, "petal_length") \ 
.add_legend() 

� sns.FacetGrid(iris, hue="species", height=5) \ 
.map(sns.distplot, "petal_width") \ 
.add_legend() 
plt.show() 
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Plot 1 | Classification feature : Sepal Length 

Plot 2 | Classification feature : Sepal Width 
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Data Insights: 

� Plot 1 shows that there is a significant amount of overlap between the species on sepal 
length, so it is not an effective Classification feature 

� Plot 2 shows that there is even higher overlap between the species on sepal width, so it is 
not an effective Classification feature 

� Plot 3 shows that petal length is a good Classification feature as it clearly separates the 
species . The overlap is extremely less (between Versicolor and Virginica) , Setosa is well 
separated from the rest two 

Plot 3 | Classification feature : Petal Length 

Plot 4 | Classification feature : Petal Width 
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� Just like Plot 3, Plot 4 also shows that petal width is a good Classification feature . The 
overlap is significantly less (between Versicolor and Virginica) , Setosa is well separated 
from the rest two 

Choosing Plot 3 (Classification feature as Petal Length)to distinguish among the species 

Choosing Plot 3 (Classification feature as Petal Length)to distinguish among the 
species 

  

Data Insights: 

� The pdf curve of Iris Setosa ends roughly at 2.1 

� If petal length < 2.1, then species is Iris Setosa 

� The point of intersection between pdf curves of Versicolor and Virginica is roughly at 4.8 

� If petal length > 2.1 and petal length < 4.8 then species is Iris Versicolor 

� If petal length > 4.8 then species is Iris Virginica 

 
3.8 DATA VISUALIZATION USING TABLEAU 

� Tableau is a Data Visualisation tool that is widely used for Business Intelligence but is not 
limited to it. It helps create interactive graphs and charts in the form of dashboards and 
worksheets to gain business insights. And all of this is made possible with gestures as simple 
as drag and drop 

Plot 3 | Classification feature : Petal Length 
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� Tableau is a powerful and fastest growing data visualization tool used in the Business 
Intelligence Industry. It helps in simplifying raw data in a very easily understandable format. 
Tableau helps create the data that can be understood by professionals at any level in an 
organization. It also allows non-technical users to create customized dashboards. 

� Data analysis is very fast with Tableau tool and the visualizations created are in the form of 
dashboards and worksheets. 

� The best features of Tableau software are 

� Data Blending 

� Real time analysis 

� Collaboration of data 

� What Products does Tableau offer? 

 
Why Tableau? 

� Tableau is greatly used because data can be analyzed very quickly with it. Also, visualizations 
are generated as dashboards and worksheets. Tableau allows one to create dashboards that 
provide actionable insights and drive the business forward. Tableau products always operate 
in virtualized environments when they are configured with the proper underlying operating 
system and hardware. Tableau is used by data scientists to explore data with limitless visual 
analytics. 

Features of Tableau 

• Tableau Dashboard 
• Collaboration and Sharing 
• Live and In-memory Data 
• Data Sources in Tableau  
• Advanced Visualizations  
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• Mobile View 
• Revision History 
• Licensing Views 
• Subscribe others 
• ETL Refresh and many more make Tableau one of the most famous Data Visualization tools. 

3.8.1. Tableau Product Suite 

� The Tableau Product Suite consists of 

� Tableau Desktop 

� Tableau Public 

� Tableau Online 

� Tableau Server 

� Tableau Reader 

 
Figure 3.2: Tableau Product Suite 

For a clear understanding, data analytics in Tableau tool can be classified into two section. 

� Developer Tools: The Tableau tools that are used for development such as the creation of 
dashboards, charts, report generation, visualization fall into this category. The Tableau 
products, under this category, are the Tableau Desktop and the Tableau Public. 
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� Sharing Tools: As the name suggests, the purpose of these Tableau products is sharing the 
visualizations, reports, dashboards that were created using the developer tools. Products that 
fall into this category are Tableau Online, Server, and Reader. 

Tableau Desktop 

� Tableau Desktop has a rich feature set and allows you to code and customize reports. Right 
from creating the charts, reports, to blending them all together to form a dashboard, all the 
necessary work is created in Tableau Desktop. 

� For live data analysis, Tableau Desktop provides connectivity to Data Warehouse, as well as 
other various types of files. The workbooks and the dashboards created here can be either 
shared locally or publicly. 

� Based on the connectivity to the data sources and publishing option, Tableau Desktop is 
classified into 

� Tableau Desktop Personal: The development features are similar to Tableau 
Desktop. Personal version keeps the workbook private, and the access is limited. The 
workbooks cannot be published online. Therefore, it should be distributed either 
Offline or in Tableau Public. 

� Tableau Desktop Professional: It is pretty much similar to Tableau Desktop. The 
difference is that the work created in the Tableau Desktop can be published online or 
in Tableau Server. Also, in Professional version, there is full access to all sorts of the 
datatype. It is best suitable for those who wish to publish their work in Tableau Server. 

Tableau Public 

� It is Tableau version specially build for the cost-effective users. By the word “Public,” it 
means that the workbooks created cannot be saved locally; in turn, it should be saved to the 
Tableau’s public cloud which can be viewed and accessed by anyone. 

� There is no privacy to the files saved to the cloud since anyone can download and access the 
same. This version is the best for the individuals who want to learn Tableau and for the ones 
who want to share their data with the general public. 

Tableau Server 
� The software is specifically used to share the workbooks, visualizations that are created in the 

Tableau Desktop application across the organization. To share dashboards in the Tableau 
Server, you must first publish your work in the Tableau Desktop. Once the work has been 
uploaded to the server, it will be accessible only to the licensed users. 

� However, It’s not necessary that the licensed users need to have the Tableau Server installed 
on their machine. They just require the login credentials with which they can check reports 
via a web browser. The security is high in Tableau server, and it is much suited for quick and 
effective sharing of data in an organization. 

� The admin of the organization will always have full control over the server. The hardware 
and the software are maintained by the organization. 
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Tableau Online 
� As the name suggests, it is an online sharing tool of Tableau. Its functionalities are similar to 

Tableau Server, but the data is stored on servers hosted in the cloud which are maintained by 
the Tableau group. 

� There is no storage limit on the data that can be published in the Tableau Online. Tableau 
Online creates a direct link to over 40 data sources that are hosted in the cloud such as the 
MySQL, Hive, Amazon Aurora, Spark SQL and many more. 

� To publish, both Tableau Online and Server require the workbooks created by Tableau 
Desktop. Data that is streamed from the web applications say Google Analytics, 
Salesforce.com are also supported by Tableau Server and Tableau Online. 

Tableau Reader 
� Tableau Reader is a free tool which allows you to view the workbooks and visualizations 

created using Tableau Desktop or Tableau Public. The data can be filtered but editing and 
modifications are restricted. The security level is zero in Tableau Reader as anyone who gets 
the workbook can view it using Tableau Reader. 

� If you want to share the dashboards that you have created, the receiver should have Tableau 
Reader to view the document. 

3.8.2. How does Tableau work? 
� Tableau connects and extracts the data stored in various places. It can pull data from any 

platform imaginable. A simple database such as an excel, pdf, to a complex database like 
Oracle, a database in the cloud such as Amazon webs services, Microsoft Azure SQL 
database, Google Cloud SQL and various other data sources can be extracted by Tableau. 

� When Tableau is launched, ready data connectors are available which allows you to connect 
to any database. Depending on the version of Tableau that you have purchased the number of 
data connectors supported by Tableau will vary. 

� The pulled data can be either connected live or extracted to the Tableau’s data engine, Tableau 
Desktop. This is where the Data analyst, data engineer work with the data that was pulled up 
and develop visualizations. The created dashboards are shared with the users as a static file. 
The users who receive the dashboards views the file using Tableau Reader. 

� The data from the Tableau Desktop can be published to the Tableau server. This is an 
enterprise platform where collaboration, distribution, governance, security model, automation 
features are supported. With the Tableau server, the end users have a better experience in 
accessing the files from all locations be it a desktop, mobile or email. 

 
3.8.3. Tableau Uses- Following are the main uses and applications of Tableau: 

� Business Intelligence 

� Data Visualization 

� Data Collaboration 
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� Data Blending 

� Real-time data analysis 

� Query translation into visualization 

� To import large size of data 

� To create no-code data queries 

� To manage large size metadata 

3.8.4. Excel Vs. Tableau 

� Both Excel and Tableau are data analysis tools, but each tool has its unique approach to data 
exploration. However, the analysis in Tableau is more potent than excel. 

� Excel works with rows and columns in spreadsheets whereas Tableau enables in exploring 
excel data using its drag and drop feature. Tableau formats the data in Graphs, pictures that 
are easily understandable. 

 

Parameters Excel Tableau 

Purpose Spreadsheet application used 
for manipulating the data. 

Perfect visualization tool 
used for analysis. 

Usage Most suitable for statistical 
analysis of structured data. 

Most suitable for quick and 
easy representation of big 
data which helps in resolving 
the big data issues. 

Performance Moderate speed with no 
option to quicken. 

Moderate speed with options 
to optimize and enhance the 
progress of an operation. 

Security 

The inbuilt security feature is 
weak when compared to 
Tableau. The security update 
needs to be installed on a 
regular basis. 

Extensive options to secure 
data without scripting. 
Security features like row 
level security and permission 
are inbuilt. 

User Interface 

To utilize excel to full 
potential, macro and visual 
basic scripting knowledge is 
required. 

The tool can be used without 
any coding knowledge. 
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Business need Best for preparing on-off 
reports with small data 

Best while working with big 
data. 

Products Bundled with MS Office 
tools 

Comes with different 
versions such as the Tableau 
server, cloud, and desktop. 

Integration Excel integrates with around 
60 applications 

Tableaus integrated with 
over 250 applications 

Real time data exploration 

When you are working in 
excel, you need have an idea 
of where your data takes you 
to get to know the insights 

In Tableaus, you are free to 
explore data without even 
knowing the answer that you 
want. With the in-built 
features like data blending 
and drill-down, you will be 
able to determine the 
variations and data patterns. 

Easy Visualizations 

When working in excel, we 
first manipulate the data that 
is present and then the 
visualization such as the 
different charts, graphs are 
created manually. To make 
the visualizations easily 
understandable, you should 
understand the features of 
excel well. 

Whereas in Tableau, the data 
is visualized from the 
beginning. 

 

 
3.8.5. Creating Visuals in Tableau 

Tableau supports the following data types: 

� Boolean: True and false can be stored in this data type. 

� Date/Datetime: 
This data type can help in leveraging Tableau’s default date hierarchy 
behavior when applied to valid date or DateTime fields. 

� Number: These are values that are numeric. Values can be integers or floating-point 
numbers (numbers with decimals). 

� String: This is a sequence of characters encased in single or double quotation marks. 
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� Geolocation: These are values that we need to plot maps. 

3.8.6. Understanding different Sections in Tableau 

� Tableau work-page consist of different section.  

 

 
Figure 3.3: Tableau Work page 

Source: Local 

� Menu Bar: Here you’ll find various commands such as File, Data, and Format. 

� Toolbar Icon: The toolbar contains a number of buttons that enable you to perform various 
tasks with a click, such as Save, Undo, and New Worksheet. 

� Dimension Shelf: This shelf contains all the categorical columns under it. example: 
categories, segments, gender, name, etc 

� Measure Shelf: This shelf contains all numerical columns under it like profit, total sales, 
discount, etc 

� Page Shelf: This shelf is used for joining pages and create animations. we will come on it 
later 
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� Filter Shelf: You can choose which data to include and exclude using the Filters shelf, for 
example, you might want to analyze the profit for each customer segment, but only for 
certain shipping containers and delivery times. You may make a view like this by putting 
fields on the Filters tier. 

� Marks Card: The visualization can be designed using the Marks card. The markings card 
can be used to change the data components of the visualization, such as color, size, shape, 
path, label, and tooltip. 

� Worksheet: In the workbook, the worksheet is where the real visualization may be seen. 
The worksheet contains information about the visual’s design and functionality. 

� Data Source: Using Data Source we can add new data, modify, remove data. 

� Current Sheet: The current sheets are those sheets which we have created and to those, we 
can give some names. 

� New Sheet: If we want to create a new worksheet ( blank canvas ) we can do using this tab. 

� New Dashboard: This button is used to create a dashboard canvas. 

� New Storyboard: It is used to create a new story 
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QUESTION BANK 

 
Part-A 

Q.No Questions Competence  BT Level 

1.  Define EDA Remember BTL 1 

2.  Why is exploratory data analysis important in data science? Analysis BTL 4 

3.  Define Descriptive Statistics Remember BTL 1 

4.  List the various methods in EDA Understand BTL 2 

5.  List the types of EDA? Understand BTL 2 

6.  Enumerate the characteristics of population distribution Understand BTL 2 

7.  State the philosophy of EDA? Understand BTL 2 

8.  List the steps involved in Data Science Process? Remember BTL 1 

9.  List the steps involved in data preprocessing Understand BTL 2 

10.  Define feature scaling Understand BTL 2 

11.  List some popular plotting libraries of python in data 
visualization? Understand BTL 2 

12.  Define Data Visualization Remember BTL 2 

13.  List the data visualization tools Remember BTL 1 

14.  Difference between tableau desktop, tableau server and 
tableau public Analysis BTL 4 

15.  How does tableau work? Understand BTL 2 

16.  Enumerate the challenges in data visualization? Analysis BTL 4 
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17.  How to clean the data? Understand BTL 2 

18.  Differentiate Excel and Tableau Analysis BTL 4 

19.  Why Data Visualization is important? Analysis BTL 4 

20.  Enumerate the most typical causes of Data Inconsistencies 
and Errors Analysis BTL 4 

PART B 

Q.No Questions Competence BT 
Level 

1.  Explain the steps involved in data science process? Analysis BTL 4 

2.  Explain various types of EDA? Analysis BTL 4 

3.  Explain various univariate and multivariate graphs? Analysis BTL 4 

4.  Explain about graphical exploratory data analysis? Analysis BTL 4 

5.  Explain about the different stages of preprocessing? Analysis BTL 4 

6.  Discuss in detail about preprocessing and data cleaning 
stages? Analysis BTL 4 

7.  

Explain the following 
1. Univariate Non-graphical 
2. Multivariate Non-graphical 
3. Univariate graphical 
4. Multivariate graphical 

Analysis 

BTL 4 

8.  Discuss about the different data visualization tools Analysis BTL 4 

9
.  Explain about the tableau product suit? Analysis 

 
 

BTL 4 

10.  How to analyse the data insights for the isis dataset?  Create 
 
 

BTL 5 
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UNIT 4 
MACHINE LEARNING TOOLS, TECHNIQUES AND APPLICATIONS 

 
Supervised Learning, Unsupervised Learning, Reinforcement Learning, Dimensionality Reduction, 
Principal Component Analysis, Classification and Regression models, Tree and Bayesian network 
models, Neural Networks, Testing, Evaluation and Validation of Models. 

 
4.1. MACHINE LEARNING 

Machine learning is a method of data analysis that automates analytical model building. 
It is a branch of artificial intelligence based on the idea that systems can learn from data, identify 
patterns and make decisions with minimal human intervention. 
Example: Image recognition, Speech recognition, Medical diagnosis, Statistical arbitrage, Predictive 
analytics, etc. 
 
Artificial Intelligence, Machine Learning and Deep Learning 

• AI is defined as a program that exhibits cognitive ability similar to that of a human being.  
• Making computers think like humans and solve problems the way we do is one of the main 

tenets of artificial intelligence. 
• Any computer program that shows characteristics, such as self-improvement, learning 

through inference, or even basic human tasks, such as image recognition and language 
processing, is considered to be a form of AI. 

• The field of artificial intelligence includes within it the sub-fields of machine learning and 
deep learning.  

• Deep Learning is a more specialized version of machine learning that utilizes more complex 
methods for difficult problems.  

• However, the difference between machine learning and artificial intelligence is that machine 
learning is probabilistic (output can be explained, thereby ruling out the black box nature of 
AI), deep learning is deterministic. 

 
4.2. TYPES OF MACHINE LEARNING 

These are three types of machine learning:  
1. Supervised Learning 
2. Unsupervised Learning  
3. Reinforcement Learning 
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1. Supervised Learning:  
• Supervised learning is one of the most basic types of machine learning.  

• In this type, the machine learning algorithm is trained on labelled data.  

• In supervised learning, the ML algorithm is given a small training dataset to work with.  

• This training dataset is a smaller part of the bigger dataset and serves to give the algorithm a 

basic idea of the problem, solution, and data points to be dealt with.  

• The algorithm then finds relationships between the parameters given, essentially establishing 

a cause and effect relationship between the variables in the dataset.  

• At the end of the training, the algorithm has an idea of how the data works and the relationship 

between the input and the output. 

• This solution is then deployed for use with the final dataset, which it learns from in the same 

way as the training dataset.  

• Example : Risk Assessment, Image classification, Fraud Detection, spam filtering, etc. 

How Supervised Learning Works? 

In supervised learning, models are trained using labelled dataset, where the model learns about each 

type of data. Once the training process is completed, the model is tested on the basis of test data (a 

subset of the training set), and then it predicts the output. 
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Suppose we have a dataset of different types of shapes which includes square, rectangle, triangle, and 

Polygon. Now the first step is that we need to train the model for each shape. 

o If the given shape has four sides, and all the sides are equal, then it will be labelled as 

a Square. 

o If the given shape has three sides, then it will be labelled as a triangle. 

o If the given shape has six equal sides then it will be labelled as hexagon. 

Now, after training, we test our model using the test set, and the task of the model is to identify the 

shape. 

The machine is already trained on all types of shapes, and when it finds a new shape, it classifies the 

shape on the bases of a number of sides, and predicts the output. 

Advantages of Supervised learning: 

o With the help of supervised learning, the model can predict the output on the basis of prior 
experiences. 

o In supervised learning, we can have an exact idea about the classes of objects. 

Disadvantages of supervised learning: 

o Supervised learning models are not suitable for handling the complex tasks. 

o Supervised learning cannot predict the correct output if the test data is different from the 
training dataset. 

o Training required lots of computation times. 
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2. Unsupervised Learning: 

• Unsupervised machine learning holds the advantage of being able to work with unlabelled 
data.  

• This means that human labour is not required to make the dataset machine-readable, allowing 
much larger datasets to be worked on by the program. 

• In supervised learning, the labels allow the algorithm to find the exact nature of the 
relationship between any two data points. However, unsupervised learning does not have 
labels to work off of, resulting in the creation of hidden structures.  

• Relationships between data points are perceived by the algorithm in an abstract manner, with 
no input required from human beings. 

• The creation of these hidden structures is what makes unsupervised learning algorithms 
versatile.  

• Instead of a defined and set problem statement, unsupervised learning algorithms can adapt 
to the data by dynamically changing hidden structures.  

• This offers more post-deployment development than supervised learning algorithms. 

• Example : Principal Component Analysis, Clustering 

How Unsupervised Learning Works? 

 

Here, we have taken an unlabelled input data, which means it is not categorized and corresponding 
outputs are also not given. Now, this unlabelled input data is fed to the machine learning model in 
order to train it. Firstly, it will interpret the raw data to find the hidden patterns from the data and 
then will apply suitable algorithms such as k-means clustering, Decision tree, etc. 
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Once it applies the suitable algorithm, the algorithm divides the data objects into groups according 
to the similarities and difference between the objects. 

Advantages of Unsupervised Learning 

o Unsupervised learning is used for more complex tasks as compared to supervised learning 
because, in unsupervised learning, we don't have labelled input data. 

o Unsupervised learning is preferable as it is easy to get unlabelled data in comparison to 
labelled data. 

Disadvantages of Unsupervised Learning 

o Unsupervised learning is intrinsically more difficult than supervised learning as it does not 
have corresponding output. 

o The result of the unsupervised learning algorithm might be less accurate as input data is not 
labelled, and algorithms do not know the exact output in advance. 

 
 
 

3. Reinforcement Learning  

• Reinforcement Learning directly takes inspiration from how human beings learn from data in 

their lives. It features an algorithm that improves upon itself and learns from new situations 

using a trial-and-error method. Favourable outputs are encouraged or ‘reinforced’, and non-

favourable outputs are discouraged or ‘punished’. 

• In every iteration of the algorithm, the output result is given to the interpreter, which decides 

whether the outcome is favourable or not. 

• In case of the program finding the correct solution, the interpreter reinforces the solution by 

providing a reward to the algorithm. If the outcome is not favourable, the algorithm is forced 

to reiterate until it finds a better result. In most cases, the reward system is directly tied to the 

effectiveness of the result. 

• In typical reinforcement learning use-cases, such as finding the shortest route between two 

points on a map, the solution is not an absolute value. Instead, it takes on a score of 

effectiveness, expressed in a percentage value. The higher this percentage value is, the more 

reward is given to the algorithm.  

• Thus, the program is trained to give the best possible solution for the best possible reward. 
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Terms used in Reinforcement Learning 

o Agent(): An entity that can perceive/explore the environment and act upon it. 

o Environment(): A situation in which an agent is present or surrounded by. In RL, we assume 

the stochastic environment, which means it is random in nature. 

o Action(): Actions are the moves taken by an agent within the environment. 

o State(): State is a situation returned by the environment after each action taken by the agent. 

o Reward(): A feedback returned to the agent from the environment to evaluate the action of 

the agent. 

o Policy(): Policy is a strategy applied by the agent for the next action based on the current 

state. 

o Value(): It is expected long-term retuned with the discount factor and opposite to the short-

term reward. 

o Q-value(): It is mostly similar to the value, but it takes one additional parameter as a current 

action (a). 

Types of Reinforcement learning 

There are mainly two types of reinforcement learning, which are: 

o Positive Reinforcement 

o Negative Reinforcement 
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i. Positive Reinforcement: 

The positive reinforcement learning means adding something to increase the tendency 

that expected behaviour would occur again. It impacts positively on the behaviour of the agent and 

increases the strength of the behaviour. 

This type of reinforcement can sustain the changes for a long time, but too much positive 

reinforcement may lead to an overload of states that can reduce the consequences. 

ii. Negative Reinforcement: 

The negative reinforcement learning is opposite to the positive reinforcement as it 

increases the tendency that the specific behaviour will occur again by avoiding the negative condition. 

It can be more effective than the positive reinforcement depending on situation and 

behaviour, but it provides reinforcement only to meet minimum behaviour. 

Reinforcement Learning Applications 
 



 169 

 

Difference Between Supervised, Unsupervised and Reinforcement Learning  
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4.3. DIMENSIONALITY REDUCTION 

• The number of input features, variables, or columns present in a given dataset is known as 

dimensionality, and the process to reduce these features is called dimensionality reduction. 

• A dataset contains a huge number of input features in various cases, which makes the 

predictive modelling task more complicated.  

• Because it is very difficult to visualize or make predictions for the training dataset with a high 

number of features, for such cases, dimensionality reduction techniques are required to use. 

• Dimensionality reduction technique can be defined as, "It is a way of converting the higher 

dimensions dataset into lesser dimensions dataset ensuring that it provides similar 

information."  

• These techniques are widely used in machine learning for obtaining a better fit predictive 

model while solving the classification and regression problems. 

• It is commonly used in the fields that deal with high-dimensional data, such as speech 

recognition, signal processing, bioinformatics, etc.  
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The Curse of Dimensionality 

• Handling the high-dimensional data is very difficult in practice, commonly known as 

the curse of dimensionality.  

• If the dimensionality of the input dataset increases, any machine learning algorithm and model 

becomes more complex.  

• As the number of features increases, the number of samples also gets increased proportionally, 

and the chance of overfitting also increases.  

• If the machine learning model is trained on high-dimensional data, it becomes overfitted and 

results in poor performance. 

• Hence, it is often required to reduce the number of features, which can be done with 

dimensionality reduction. 

Benefits of Dimensionality Reduction 

o By reducing the dimensions of the features, the space required to store the dataset also gets 
reduced. 

o Less Computation training time is required for reduced dimensions of features. 

o Reduced dimensions of features of the dataset help in visualizing the data quickly. 

o It removes the redundant features (if present) by taking care of multicollinearity. 

Disadvantages of dimensionality Reduction 

o Some data may be lost due to dimensionality reduction. 
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o In the PCA dimensionality reduction technique, sometimes the principal components required 
to consider are unknown. 

4.3.1. Approaches of Dimension Reduction 

There are two ways to apply the dimension reduction technique, which are given below: 

• Feature Selection 
• Feature Extraction 

i. Feature Selection: 

Feature selection is the process of selecting the subset of the relevant features and leaving out 
the irrelevant features present in a dataset to build a model of high accuracy. In other words, it is a 
way of selecting the optimal features from the input dataset. 

ii. Feature Extraction: 

Feature extraction is the process of transforming the space containing many dimensions into 
space with fewer dimensions. This approach is useful when we want to keep the whole information 
but use fewer resources while processing the information. 

Common techniques of Dimensionality Reduction 

a. Principal Component Analysis 

b. Backward Elimination 

c. Forward Selection 

d. Score comparison 

e. Missing Value Ratio 

f. Low Variance Filter 

g. High Correlation Filter 

h. Random Forest 

i. Factor Analysis 

j. Auto-Encoder 

 
4.4. Principal Component Analysis 

• Principal Component Analysis is an unsupervised learning algorithm that is used for the 

dimensionality reduction in machine learning.  

• It is a statistical process that converts the observations of correlated features into a set of 

linearly uncorrelated features with the help of orthogonal transformation.  
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• These new transformed features are called the Principal Components.  

• It is one of the popular tools that is used for exploratory data analysis and predictive 

modelling. 

• It is a technique to draw strong patterns from the given dataset by reducing the variances. 

• PCA generally tries to find the lower-dimensional surface to project the high-dimensional 

data. 

• PCA works by considering the variance of each attribute because the high attribute shows the 

good split between the classes, and hence it reduces the dimensionality. 

• Example :  image processing, movie recommendation system, etc. 

Principal Components in PCA 

• The transformed new features or the output of PCA are the Principal Components.  

• The number of these PCs are either equal to or less than the original features present in the 

dataset.  

Some properties of these principal components are given below: 

o The principal component must be the linear combination of the original features. 

o These components are orthogonal, i.e., the correlation between a pair of variables is zero. 

o The importance of each component decreases when going to 1 to n, it means the 1 PC has the 
most importance, and n PC will have the least importance. 

 
Algorithm of PCA 

The PCA algorithm is based on some mathematical concepts such as: 

o Variance and Covariance 

o Eigenvalues and Eigen factors 

Some common terms used in PCA algorithm: 

o Dimensionality: It is the number of features or variables present in the given dataset. More 

easily, it is the number of columns present in the dataset. 

o Correlation: It signifies that how strongly two variables are related to each other. Such as if 

one changes, the other variable also gets changed. The correlation value ranges from -1 to +1. 
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Here, -1 occurs if variables are inversely proportional to each other, and +1 indicates that 

variables are directly proportional to each other. 

o Orthogonal: It defines that variables are not correlated to each other, and hence the 

correlation between the pair of variables is zero. 

o Eigenvectors: If there is a square matrix M, and a non-zero vector v is given. Then v will be 

eigenvector if Av is the scalar multiple of v. 

o Covariance Matrix: A matrix containing the covariance between the pair of variables is 

called the Covariance Matrix. 

Steps for PCA algorithm 
1. Getting the dataset 

Firstly, we need to take the input dataset and divide it into two subparts X and Y, where X is 

the training set, and Y is the validation set. 

2. Representing data into a structure 

Now we will represent our dataset into a structure. Such as we will represent the two-

dimensional matrix of independent variable X. Here each row corresponds to the data items, 

and the column corresponds to the Features. The number of columns is the dimensions of 

the dataset. 

3. Standardizing the data 

In this step, we will standardize our dataset. Such as in a particular column, the features 

with high variance are more important compared to the features with lower variance. If the 

importance of features is independent of the variance of the feature, then we will divide 

each data item in a column with the standard deviation of the column. Here we will name 

the matrix as Z. 

4. Calculating the Covariance of Z 

To calculate the covariance of Z, we will take the matrix Z, and will transpose it. After 

transpose, we will multiply it by Z. The output matrix will be the Covariance matrix of Z. 

5. Calculating the Eigen Values and Eigen Vectors 

Now we need to calculate the eigenvalues and eigenvectors for the resultant covariance 

matrix Z. Eigenvectors or the covariance matrix are the directions of the axes with high 

information. And the coefficients of these eigenvectors are defined as the eigenvalues. 

6. Sorting the Eigen Vectors 

In this step, we will take all the eigenvalues and will sort them in decreasing order, which 
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means from largest to smallest. And simultaneously sort the eigenvectors accordingly in 

matrix P of eigenvalues. The resultant matrix will be named as P*. 

7. Calculating the new features Or Principal Components 

Here we will calculate the new features. To do this, we will multiply the P* matrix to the Z. 

In the resultant matrix Z*, each observation is the linear combination of original features. 

Each column of the Z* matrix is independent of each other. 

8. Remove less or unimportant features from the new dataset. 

The new feature set has occurred, so we will decide here what to keep and what to remove. 

It means, we will only keep the relevant or important features in the new dataset, and 

unimportant features will be removed out. 

 
PCA Algorithm : 

  

The steps involved in PCA Algorithm are as follows- 
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• Step-01: Get data. 

• Step-02: Compute the mean vector (µ). 

• Step-03: Subtract mean from the given data. 

• Step-04: Calculate the covariance matrix. 

• Step-05: Calculate the eigen vectors and eigen values of the covariance matrix. 

• Step-06: Choosing components and forming a feature vector. 

• Step-07: Deriving the new data set. 

  

PRACTICE PROBLEMS BASED ON PRINCIPAL COMPONENT ANALYSIS 

Problem-01: 

Given data = { 2, 3, 4, 5, 6, 7 }; {1, 5, 3, 6, 7, 8 }. 

Compute the principal component using PCA Algorithm. 

OR 

Consider the two dimensional patterns (2, 1), (3, 5), (4, 3), (5, 6), (6, 7), (7, 8). 

Compute the principal component using PCA Algorithm. 

OR 

Compute the principal component of following data- 

CLASS 1 

X = 2 , 3 , 4 

Y = 1 , 5 , 3 

CLASS 2 

X = 5 , 6 , 7 

Y = 6 , 7 , 8 

Solution: 

Step-01: 

Get data. 

The given feature vectors are- 

• x1 = (2, 1) 
• x2 = (3, 5) 
• x3 = (4, 3) 
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• x4 = (5, 6) 
• x5 = (6, 7) 
• x6 = (7, 8) 

 
Step-02: 

Calculate the mean vector (µ). 

Mean vector (µ) 

= ((2 + 3 + 4 + 5 + 6 + 7) / 6, (1 + 5 + 3 + 6 + 7 + 8) / 6) 

= (4.5, 5) 

  

Thus, 

 
Step-03: 
  

Subtract mean vector (µ) from the given feature vectors. 

• x1 – µ, y1 - µ  = (2 – 4.5, 1 – 5) = (-2.5, -4) 
• x2 – µ, y2 - µ   = (3 – 4.5, 5 – 5) = (-1.5, 0) 
• x3 – µ, y3 - µ   = (4 – 4.5, 3 – 5) = (-0.5, -2) 
• x4 – µ, y4 - µ   = (5 – 4.5, 6 – 5) = (0.5, 1) 
• x5 – µ, y5 - µ   = (6 – 4.5, 7 – 5) = (1.5, 2) 
• x6 – µ, y6 - µ   = (7 – 4.5, 8 – 5) = (2.5, 3) 

  

Feature vectors (xi) after subtracting mean vector (µ) are- 

 
Step-04: 
 

Calculate the covariance matrix. 
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Hence,  

 
Now, 

Covariance matrix = (m1 + m2 + m3 + m4 + m5 + m6) / 6 

  

On adding the above matrices and dividing by 6, we get- 

 
Step-05: 
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Calculate the eigen values and eigen vectors of the covariance matrix. 

λ is an eigen value for a matrix M if it is a solution of the characteristic equation  

|M – λI| = 0. 

So, we have- 

 
From here, 

(2.92 – λ)(5.67 – λ) – (3.67 x 3.67) = 0 

16.56 – 2.92λ – 5.67λ + λ2 – 13.47 = 0 

λ2 – 8.59λ + 3.09 = 0 

  

Solving this quadratic equation, we get λ = 8.22, 0.38 

Thus, two eigen values are λ1 = 8.22 and λ2 = 0.38. 

  

Clearly, the second eigen value is very small compared to the first eigen value. 

So, the second eigen vector can be left out. 

  

Eigen vector corresponding to the greatest eigen value is the principal component for the given data 
set. 

So. we find the eigen vector corresponding to eigen value λ1. 

  

We use the following equation to find the eigen vector- 

MX = λX 

where- 

• M = Covariance Matrix 



 180 

• X = Eigen vector 
• λ = Eigen value 

  

Substituting the values in the above equation, we get- 

 

 
 

Solving these, we get- 

2.92X1 + 3.67X2 = 8.22X1 

3.67X1 + 5.67X2 = 8.22X2 

 

On simplification, we get- 

5.3X1 = 3.67X2 ………(1) 

3.67X1 = 2.55X2 ………(2) 

  

From (1) and (2), X1 = 0.69X2 

From (2), the eigen vector is- 

 
 
Thus, principal component for the given data set is- 
 

  
 
Lastly, we project the data points onto the new subspace as- 
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PCA Example using Python 

 
#Importing required libraries 
import numpy as np 

 

1. Subtract the mean of each variable 

Subtract the mean of each variable from the dataset so that the dataset should be centered on the 
origin. Doing this proves to be very helpful when calculating the covariance matrix. 

#Generate a dummy dataset. 
X = np.random.randint(10,50,100).reshape(20,5)  
# mean Centering the data   
X_meaned = X - np.mean(X , axis = 0) 
 

Data generated by the above code have dimensions (20,5) i.e. 20 examples and 5 variables for each 
example. we calculated the mean of each variable and subtracted that from every row of the respective 
column 
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2.  Calculate the Covariance Matrix 

Calculate the Covariance Matrix of the mean-centered data. The covariance matrix is a square matrix 
denoting the covariance of the elements with each other. The covariance of an element with itself is 
nothing but just its Variance. 

So the diagonal elements of a covariance matrix are just the variance of the elements. 

# calculating the covariance matrix of the mean-centered data. 
cov_mat = np.cov(X_meaned , rowvar = False) 
 
We can find easily calculate covariance Matrix using numpy.cov( ) method. The default value 
for rowvar is set to True, remember to set it to False to get the covariance matrix in the required 
dimensions. 
 
3. Compute the Eigenvalues and Eigenvectors 
Now, compute the Eigenvalues and Eigenvectors for the calculated Covariance matrix. The 
Eigenvectors of the Covariance matrix we get are Orthogonal to each other and each vector represents 
a principal axis. 
 
A Higher Eigenvalue corresponds to a higher variability. Hence the principal axis with the higher 
Eigenvalue will be an axis capturing higher variability in the data. 
Orthogonal means the vectors are mutually perpendicular to each other. 

#Calculating Eigenvalues and Eigenvectors of the covariance matrix 
eigen_values , eigen_vectors = np.linalg.eigh(cov_mat) 
 

NumPy linalg.eigh( ) method returns the eigenvalues and eigenvectors of a complex Hermitian or a 
real symmetric matrix. 

4. Sort Eigenvalues in descending order 
 

Sort the Eigenvalues in the descending order along with their corresponding Eigenvector. 

Remember each column in the Eigen vector-matrix corresponds to a principal component, so 
arranging them in descending order of their Eigenvalue will automatically arrange the principal 
component in descending order of their variability. 

Hence the first column in our rearranged Eigen vector-matrix will be a principal component that 
captures the highest variability. 
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5. Select a subset from the rearranged Eigenvalue matrix 

Select a subset from the rearranged Eigenvalue matrix as per our need i.e. number_comp = 2. This 
means we selected the first two principal components. 
 
# select the first n eigenvectors, n is desired dimension of our final reduced data. 
  
n_components = 2 #you can select any number of components. 
eigenvector_subset = sorted_eigenvectors[:,0:n_components] 
 
n_components = 2 means our final data should be reduced to just 2 variables. if we change it to 3 
then we get our data reduced to 3 variables. 
 
6. Transform the data 
Finally, transform the data by having a dot product between the Transpose of the Eigenvector subset 
and the Transpose of the mean-centered data. By transposing the outcome of the dot product, the 
result we get is the data reduced to lower dimensions from higher dimensions. 
 
#Transform the data  
X_reduced = np.dot(eigenvector_subset.transpose(),X_meaned.transpose()).transpose() 
 
The final dimensions of X_reduced will be ( 20, 2 ) and originally the data was of higher dimensions 
( 20, 5 ). 
 
4.5. REGRESSION AND CLASSIFICATION IN MACHINE LEARNING 

Regression and Classification algorithms are Supervised Learning algorithms. Both the 
algorithms are used for prediction in Machine learning and work with the labelled datasets.  

The main difference between Regression and Classification algorithms that Regression 
algorithms are used to predict the continuous values such as price, salary, age, etc. and 
Classification algorithms are used to predict/Classify the discrete values such as Male or Female, 
True or False, Spam or Not Spam, etc. 

Example : 
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4.5.1. REGRESSION 

Regression is a process of finding the correlations between dependent and independent 
variables. It helps in predicting the continuous variables such as prediction of Market Trends, 
prediction of House prices, etc. 

The task of the Regression algorithm is to find the mapping function to map the input 
variable(x) to the continuous output variable(y). 

Example: Suppose we want to do weather forecasting, so for this, we will use the Regression 
algorithm. In weather prediction, the model is trained on the past data, and once the training is 
completed, it can easily predict the weather for future days. 

Types of Regression Algorithm: 

o Simple Linear Regression 

o Multiple Linear Regression 

o Polynomial Regression 

o Logistic Regression 

Regression Analysis in Machine learning 

Regression analysis is a statistical method to model the relationship between a dependent 
(target) and independent (predictor) variables with one or more independent variables. More 
specifically, Regression analysis helps us to understand how the value of the dependent variable is 
changing corresponding to an independent variable when other independent variables are held fixed. 
It predicts continuous/real values such as temperature, age, salary, price, etc. 
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We can understand the concept of regression analysis using the below example: 

Example: Suppose there is a marketing company A, who does various advertisement every year and 
get sales on that. The below list shows the advertisement made by the company in the last 5 years 
and the corresponding sales: 

Now, the company wants to do the advertisement of $200 in the year 2019 and wants to 
know the prediction about the sales for this year. So to solve such type of prediction problems in 
machine learning, we need regression analysis. 

Terminologies Related to the Regression Analysis: 
o Dependent Variable: The main factor in Regression analysis which we want to predict or 

understand is called the dependent variable. It is also called target variable. 
o Independent Variable: The factors which affect the dependent variables or which are used 

to predict the values of the dependent variables are called independent variable, also called as 
a predictor. 

o Outliers: Outlier is an observation which contains either very low value or very high value 
in comparison to other observed values. An outlier may hamper the result, so it should be 
avoided. 

o Multicollinearity: If the independent variables are highly correlated with each other than 
other variables, then such condition is called Multicollinearity. It should not be present in the 
dataset, because it creates problem while ranking the most affecting variable. 

o Underfitting and Overfitting: If our algorithm works well with the training dataset but not 
well with test dataset, then such problem is called Overfitting. And if our algorithm does not 
perform well even with training dataset, then such problem is called underfitting. 
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Linear Regression: 

o Linear regression is a statistical regression method which is used for predictive analysis. 

o It is one of the very simple and easy algorithms which works on regression and shows the 

relationship between the continuous variables. 

o It is used for solving the regression problem in machine learning. 

o Linear regression shows the linear relationship between the independent variable (X-axis) and 

the dependent variable (Y-axis), hence called linear regression. 

o If there is only one input variable (x), then such linear regression is called simple linear 

regression.  

o And if there is more than one input variable, then such linear regression is called multiple 

linear regression. 

o The relationship between variables in the linear regression model can be explained using the 

below image.  

o Here we are predicting the salary of an employee on the basis of the year of experience. 

 

Below is the mathematical equation for Linear regression: 



 187 

Y= aX+b   

Here,  

Y = dependent variables (target variables) 

X = Independent variables (predictor variables) 

a and b are the linear coefficients 

Types of Linear Regression : 

Linear regression can be further divided into two types of the algorithm: 

o Simple Linear Regression: 
If a single independent variable is used to predict the value of a numerical dependent 
variable, then such a Linear Regression algorithm is called Simple Linear Regression. 

o Multiple Linear regression: 
If more than one independent variable is used to predict the value of a numerical dependent 
variable, then such a Linear Regression algorithm is called Multiple Linear Regression. 

Linear Regression Line 

A linear line showing the relationship between the dependent and independent variables is called 

a regression line. A regression line can show two types of relationship: 

o Positive Linear Relationship: 

If the dependent variable increases on the Y-axis and independent variable increases on X-

axis, then such a relationship is termed as a Positive linear relationship. 
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o Negative Linear Relationship: 

If the dependent variable decreases on the Y-axis and independent variable increases on the 

X-axis, then such a relationship is called a negative linear relationship. 

 
 

Example of Linear Regression: 
Consider the following table with x,y: 

SUBJECT AGE X GLUCOSE LEVEL Y 
1 43 99 
2 21 65 
3 25 79 
4 42 75 
5 57 87 
6 59 81 
Σ 247 486 

Step 1: Calculate the following : xy, X 2 , Y 2  

 

SUBJECT AGE X GLUCOSE LEVEL Y XY X 2  Y 2  
1 43 99 4257 1849 9801 
2 21 65 1365 441 4225 
3 25 79 1975 625 6241 
4 42 75 3150 1764 5625 
5 57 87 4959 3249 7569 
6 59 81 4779 3481 6561 
Σ 247 486 20485 11409 40022 
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From the above table,  

Σx = 247,  

Σy = 486,  

Σxy = 20485,  

Σx2 = 11409,  

Σy2 = 40022.  

n is the sample size (6, in our case). 

Step 2 : Use the following equations to find a and b. 

 
Find a: 

= ((486 × 11,409) – ((247 × 20,485)) / 6 (11,409) – 2472) 

= 484979 / 7445 

= 65.14 

Find b: 

= (6(20,485) – (247 × 486)) / (6 (11409) – 2472) 

= (122,910 – 120,042) / 68,454 – 2472 

= 2,868 / 7,445 

= 0.385225 

 
Step 3 : Insert the values into the equation. 
 

y’ = a + bx 
y’ = 65.14 + .385225x 
 

Now, if suppose age is 34 then we can find the glucose level by substituting in the above equation: 
X=34 
y’ = 65.14 + .385225x 
y’ = 65.14 + .385225 x 34 
y’ = 65.14 + 13.09765 
y’ = 78.23765 
Thus the glucose level for the person with age 34 is approximately 78. 
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Linear regression using Python 
 
There are five basic steps when you’re implementing linear regression: 

1. Import the packages and classes you need. 
2. Provide data to work with and eventually do appropriate transformations. 
3. Create a regression model and fit it with existing data. 
4. Check the results of model fitting to know whether the model is satisfactory. 
5. Apply the model for predictions. 

 
Step 1: Import packages and classes 

The first step is to import the package numpy and the 
class LinearRegression from sklearn.linear_model: 

import numpy as np 
from sklearn.linear_model import LinearRegression 
 
Step 2: Provide data 

The inputs (regressors, 𝑥) and output (predictor, 𝑦) should be arrays (the instances of the 
class numpy.ndarray) or similar objects. This is the simplest way of providing data for regression: 

x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1)) 
y = np.array([5, 20, 14, 32, 22, 38]) 
 
The .reshape() on x variable is used because this array is required to be two-dimensional, or to be 
more precise, to have one column and as many rows as necessary. That’s exactly what the 
argument (-1, 1) of .reshape() specifies. 
Step 3: Create a model and fit it 

The next step is to create a linear regression model and fit it using the existing data. 

Let’s create an instance of the class LinearRegression, which will represent the regression model: 

model = LinearRegression() 
 

This statement creates the variable model as the instance of LinearRegression. You can provide 
several optional parameters to LinearRegression: 

• fit_intercept is a boolean (True by default) that decides whether to calculate the intercept 
𝑏₀ (True) or consider it equal to zero (False). 
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• normalize is a Boolean (False by default) that decides whether to normalize the input 
variables (True) or not (False). 

• copy_X is a Boolean (True by default) that decides whether to copy (True) or overwrite the 
input variables (False). 

• n_jobs is an integer or None (default) and represents the number of jobs used in parallel 
computation. None usually means one job and -1 to use all processors. 

This example uses the default values of all parameters. 

With .fit(), you calculate the optimal values of the weights 𝑏₀ and 𝑏₁, using the existing input and 
output (x and y) as the arguments. In other words, .fit() fits the model. It returns self, which is 
the variable model itself. That’s why you can replace the last two statements with this one: 

model = LinearRegression().fit(x, y) 
 

Step 4: Get results 

Once you have your model fitted, you can get the results to check whether the model works 
satisfactorily and interpret it. 

You can obtain the coefficient of determination (𝑅²) with .score() called on model: 

r_sq = model.score(x, y) 
print('coefficient of determination:', r_sq) 
coefficient of determination: 0.715875613747954 
 

When you’re applying .score(), the arguments are also the predictor x and regressor y, and the return 
value is 𝑅². 

The attributes of model are .intercept_, which represents the coefficient, 𝑏₀ and .coef_, which 
represents 𝑏₁: 

print('intercept:', model.intercept_) 
intercept: 5.633333333333329 
print('slope:', model.coef_) 
slope: [0.54] 
 

The code above illustrates how to get 𝑏₀ and 𝑏₁. You can notice that .intercept_ is a scalar, 
while .coef_ is an array. 

The value 𝑏₀ = 5.63 (approximately) illustrates that your model predicts the response 5.63 when 𝑥 is 
zero. The value 𝑏₁ = 0.54 means that the predicted response rises by 0.54 when 𝑥 is increased by one. 
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Step 5: Predict response 

Once there is a satisfactory model, you can use it for predictions with either existing or new data. 

To obtain the predicted response, use .predict(): 

y_pred = model.predict(x) 
print('predicted response:', y_pred) 
predicted response: 
[ 8.33333333 13.73333333 19.13333333 24.53333333 29.93333333 35.33333333] 
 

When applying .predict(), you pass the regressor as the argument and get the corresponding predicted 
response. 

 

4.5.2. CLASSIFICATION 

Classification is a process of finding a function which helps in dividing the dataset into classes 
based on different parameters. In Classification, a computer program is trained on the training dataset 
and based on that training, it categorizes the data into different classes. 

The task of the classification algorithm is to find the mapping function to map the input(x) to 
the discrete output(y). 

Example: The best example to understand the Classification problem is Email Spam Detection. The 
model is trained on the basis of millions of emails on different parameters, and whenever it receives 
a new email, it identifies whether the email is spam or not. If the email is spam, then it is moved to 
the Spam folder. 

Types of ML Classification Algorithms: 

Classification Algorithms can be further divided into the following types: 

o K-Nearest Neighbours 

o Support Vector Machines 

o Kernel SVM 

o Naïve Bayes 

o Decision Tree Classification 

o Random Forest Classification 

Difference between Regression and Classification : 
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Regression Algorithm Classification Algorithm 
In Regression, the output variable must be of 

continuous nature or real value. 
In Classification, the output variable must 

be a discrete value. 
The task of the regression algorithm is to map 
the input value (x) with the continuous output 

variable(y). 

The task of the classification algorithm is 
to map the input value(x) with the discrete 

output variable(y). 
Regression Algorithms are used with 

continuous data. 
Classification Algorithms are used with 

discrete data. 
In Regression, we try to find the best fit line, 
which can predict the output more accurately. 

In Classification, we try to find the 
decision boundary, which can divide the 

dataset into different classes. 
Regression algorithms can be used to solve 
the regression problems such as Weather 
Prediction, House price prediction, etc. 

Classification Algorithms can be used to 
solve classification problems such as 
Identification of spam emails, Speech 

Recognition, Identification of cancer cells, 
etc. 

The regression Algorithm can be further 
divided into Linear and Non-linear 

Regression. 

The Classification algorithms can be 
divided into Binary Classifier and Multi-

class Classifier. 
 
DECISION TREE CLASSIFICATION ALGORITHM 

 
o Decision Tree is a Supervised learning technique that can be used for both classification 

and Regression problems, but mostly it is preferred for solving Classification problems. It is 
a tree-structured classifier, where internal nodes represent the features of a dataset, 
branches represent the decision rules and each leaf node represents the outcome. 

o In a Decision tree, there are two nodes, which are the Decision Node and Leaf 
Node. Decision nodes are used to make any decision and have multiple branches, whereas 
Leaf nodes are the output of those decisions and do not contain any further branches. 

o The decisions or the test are performed on the basis of features of the given dataset. 
o It is a graphical representation for getting all the possible solutions to a problem/decision 

based on given conditions. 
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o It is called a decision tree because, similar to a tree, it starts with the root node, which expands 
on further branches and constructs a tree-like structure. 

 
Examples: 

1. Predicting an email as spam or not spam 

2. Predicting of a tumor is cancerous  

3. Predicting a loan as a good or bad credit risk based on the factors in each of these. 

Generally, a model is created with observed data also called training data. Then a set of 
validation data is used to verify and improve the model. 

Suppose you hosted a huge party and you want to know how many of your guests were non-
vegetarians. To solve this problem, a simple Decision Tree is used. 
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Structure of Decision Tree : 

 
 
Decision Tree Terminologies 
 

• Root Node: Root node is from where the decision tree starts. It represents the entire dataset, 

which further gets divided into two or more homogeneous sets. 

• Leaf Node: Leaf nodes are the final output node, and the tree cannot be segregated further 

after getting a leaf node. 

• Splitting: Splitting is the process of dividing the decision node/root node into sub-nodes 

according to the given conditions. 

• Branch/Sub Tree: A tree formed by splitting the tree. 
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• Pruning: Pruning is the process of removing the unwanted branches from the tree. 

• Parent/Child node: The root node of the tree is called the parent node, and other nodes are 

called the child nodes. 

Decision Tree Algorithm : 
The Decision Tree Algorithm follows the below steps: 

Step 1: Select the feature (predictor variable) that best classifies the data set into the desired 
classes and assign that feature to the root node. 
Step 2: Traverse down from the root node, while making relevant decisions at each internal node 
such that each internal node best classifies the data. 
Step 3: Route back to step 1 and repeat until you assign a class to the input data. 

 
Types of Decision Tree Algorithm: 

o Decision stump 
Used for generating a decision tree with just a single split hence also known as a one-level 
decision tree. It is known for its low predictive performance in most cases due to its 
simplicity. 

o M5 
Known for its precise classification accuracy and its ability to work well to a boosted 
decision tree and small datasets with too much noise. 

o ID3(Iterative Dichotomiser 3) 
One of the core and widely used decision tree algorithms uses a top-down, greedy search 
approach through the given dataset and selects the best attribute for classifying the given 
dataset 

o C4.5 
Also known as the statistical classifier this type of decision tree is derived from its parent 
ID3. This generates decisions based on a bunch of predictors. 

o C5.0 
Being the successor of the C4.5 it broadly has two models namely the basic tree and rule-
based model, and its nodes can only predict categorical targets. 

o CHAID 
Expanded as Chi-squared Automatic Interaction Detector, this algorithm basically studies 
the merging variables to justify the outcome on the dependant variable by structuring a 
predictive model 

o MARS 
Expanded as multivariate adaptive regression splines, this algorithm creates a series of 
piecewise linear models which is used to model irregularities and interactions among 
variables, they are known for their ability to handle numerical data with greater efficiency. 
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o Conditional Inference Trees 
This is a type of decision tree that uses a conditional inference framework to recursively 
segregate the response variables, it’s known for its flexibility and strong foundations. 

o CART 
Expanded as Classification and Regression Trees, the values of the target variables are 
predicted if they are continuous else the necessary classes are identified if they are 
categorical. 

Decision tree using id3 algorithm : 
• ID3 or the Iterative Dichotomiser 3 algorithm is one of the most effective algorithms used 

to build a Decision Tree. 

• It uses the concept of Entropy and Information Gain to generate a Decision Tree for a 

given set of data. 

ID3 algorithm 
• The ID3 algorithm follows the below workflow in order to build a Decision Tree: 

o Select Best Attribute (A) 

o Assign A as a decision variable for the root node. 

o For each value of A, build a descendant of the node. 

o Assign classification labels to the leaf node. 

o If data is correctly classified: Stop. 

o Else: Iterate over the tree. 

1. Entropy 
• Entropy measures the impurity or uncertainty present in the data. It is used to decide how a 

Decision Tree can split the data.  

• If the sample is completely uniform then entropy is 0, if it’s uniformly partitioned it is one. 

Higher the entropy more difficult it becomes to draw conclusions from that information. 

• Equation For Entropy: 

 
2. Information Gain (IG) 

• Information Gain (IG) is the most significant measure used to build a Decision Tree.  

• It indicates how much “information” a particular feature/ variable gives us about the final 

outcome. 
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• Information Gain is important because it used to choose the variable that best splits the 

data at each node of a Decision Tree.  

• The variable with the highest IG is used to split the data at the root node. 

• Equation For Information Gain (IG): 

 
 
Example of Decision Tree using ID3 Algorithm: 
 
At which days the children's will play Tennis? 
 

 
Step :1 
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Step 2: 

 
Step 3: 
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Step 4: 

 
Step 5: Choose the maximum gain… 
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Step 6: 
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Step 7:  

 
Step 8: 
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Step 9: Choose the maximum gain… 
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Step 10: 

 
Step 11: 
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Step 12: 

 
Step 13: Choose the maximum gain… 
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Advantages 

• Easy to understand and interpret. 

• Does not require Data normalization 
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• Doesn’t facilitate the need for scaling of data 

• The preprocessing stage requires lesser effort compared to other major algorithms, hence 

in a way optimizes the given problem 

Disadvantages 
• Requires higher time to train the model 

• It has a considerable high complexity and takes more time to process the data 

• When decrease in user input parameter is very small it leads to the termination of the tree 

• Calculations can get very complex at times 

 

 
Decision Tree using Python : (Dummy Data) 
from sklearn import tree 
X = [[0, 0], [1, 1], [0, 1], [1, 0], [2, 2]] 
Y = [0, 1, 0, 1, 2] 
clf = tree.DecisionTreeClassifier() 
clf = clf.fit(X, Y) 
print(clf.predict([[2., 1.]])) 
Now, plot using the built-in plot_tree in the tree module 
tree.plot_tree(clf) 
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At the root node, we have 5 samples. It checks for the first value in X and if it's less than or 

equal to 0.5, it classifies the sample as 0. If it’s not, then it checks if the first value in X is less than or 

equal to 1.5, in which case it assigns the label 1 to it, otherwise 2. 

Note that the decision tree doesn’t include any check on the second value in X. This is not an 

error as the second value is not needed in this case. If the decision tree is able to make all the 

classifications without the need for all the features, then it can ignore other features. 
 
4.6. BAYESIAN NETWORK  

Bayesian belief network is key computer technology for dealing with probabilistic events and 
to solve a problem which has uncertainty. We can define a Bayesian network as: 

"A Bayesian network is a probabilistic graphical model which represents a set of variables 
and their conditional dependencies using a directed acyclic graph." 

It is also called a Bayes network, belief network, decision network, or Bayesian model. 

Bayesian networks are probabilistic, because these networks are built from a probability 
distribution, and also use probability theory for prediction and anomaly detection. 

Real world applications are probabilistic in nature, and to represent the relationship between 
multiple events, we need a Bayesian network. It can also be used in various tasks 
including prediction, anomaly detection, diagnostics, automated insight, reasoning, time series 
prediction, and decision making under uncertainty. 
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What is a Bayesian Network? 

A Bayesian network falls under the category of Probabilistic Graphical Modelling 
technique, which is used to calculate uncertainties by using the notion of probability. 

They are used to model improbability using directed acyclic graphs. 

 

Bayesian Network can be used for building models from data and experts opinions, and it consists 
of two parts: 

o Directed Acyclic Graph 
o Table of conditional probabilities. 
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What is Directed Acyclic Graph? 

It is used to represent the Bayesian Network. A directed acyclic graph contains nodes and 
links, where links denote the relationship between nodes.  

 

The generalized form of Bayesian network that represents and solve decision problems under 
uncertain knowledge is known as an Influence diagram. 
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A Bayesian network graph is made up of nodes and Arcs (directed links), where: 

 
Each node corresponds to the random variables, and a variable can 

be continuous or discrete. 

Arc or directed arrows represent the causal relationship or conditional probabilities between 
random variables. These directed links or arrows connect the pair of nodes in the graph. 

These links represent that one node directly influence the other node, and if there is no directed 
link that means that nodes are independent with each other 

o In the above diagram, A, B, C, and D are random variables represented by the nodes 
of the network graph. 

o If we are considering node B, which is connected with node A by a directed arrow, 
then node A is called the parent of Node B. 

o Node C is independent of node A. 

The Bayesian network has mainly two components: 

o Causal Component 

o Actual numbers 
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Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi) ), 
which determines the effect of the parent on that node. 

Bayesian network is based on Joint probability distribution and conditional probability. 

Joint probability distribution: 

If we have variables x1, x2, x3,....., xn, then the probabilities of a different combination of x1, 
x2, x3.. xn, are known as Joint probability distribution. 

P[x1, x2, x3,....., xn], it can be written as the following way in terms of the joint probability 
distribution. 

= P[x1| x2, x3,....., xn]P[x2, x3,....., xn] 

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]....P[xn-1|xn]P[xn]. 

In general for each variable Xi, we can write the equation as: 

 P(Xi|Xi-1,........., X1) = P(Xi |Parents(Xi )) 

Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably 

responds at detecting a burglary but also responds for minor earthquakes. Harry has two neighbours 

David and Sophia, who have taken a responsibility to inform Harry at work when they hear the alarm. 

David always calls Harry when he hears the alarm, but sometimes he got confused with the phone 

ringing and calls at that time too. On the other hand, Sophia likes to listen to high music, so sometimes 

she misses to hear the alarm. Here we would like to compute the probability of Burglary Alarm. 

Problem: 

Calculate the probability that alarm has sounded, but there is neither a burglary, nor an 
earthquake occurred, and David and Sophia both called the Harry. 

Solution: 

o The network structure is showing that burglary and earthquake is the parent node of the alarm 
and directly affecting the probability of alarm's going off, but David and Sophia's calls depend 
on alarm probability. 

o The network is representing that our assumptions do not directly perceive the burglary and 
also do not notice the minor earthquake, and they also not confer before calling. 

o The conditional distributions for each node are given as conditional probabilities table or CPT. 
o Each row in the CPT must be sum to 1 because all the entries in the table represent an 

exhaustive set of cases for the variable. 
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o In CPT, a boolean variable with k boolean parents contains 2K probabilities. Hence, if there 
are two parents, then CPT will contain 4 probability values 

 

List of all events occurring in this network: 

o Burglary (B) 

o Earthquake(E) 

o Alarm(A) 

o David Calls(D) 

o Sophia calls(S) 

We can write the events of problem statement in the form of probability: P[D, S, A, B, E], can 

rewrite the above probability statement using joint probability distribution: 

P[D, S, A, B, E] = P[D | S, A, B, E]. P[S, A, B, E] 

      = P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E] 

      = P [D| A]. P [ S| A, B, E]. P[ A, B, E] 

      = P[D | A]. P[ S | A]. P[A| B, E]. P[B, E] 
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      = P[D | A ]. P[S | A]. P[A| B, E]. P[B |E]. P[E] 

Let's take the observed probability for the Burglary and earthquake component: 

P(B= True) = 0.002, which is the probability of burglary. 

P(B= False)= 0.998, which is the probability of no burglary. 

P(E= True)= 0.001, which is the probability of a minor earthquake 

P(E= False)= 0.999, Which is the probability that an earthquake not occurred. 

We can provide the conditional probabilities as per the below tables: 

Conditional probability table for Alarm A: 

The Conditional probability of Alarm A depends on Burglar and earthquake: 

B E P(A= True) P(A= False) 
True True 0.94 0.06 
True False 0.95 0.04 
False True 0.31 0.69 
False False 0.001 0.999 

Conditional probability table for David Calls: 

The Conditional probability of David that he will call depends on the probability of Alarm. 

A P(D= True) P(D= False) 
True 0.91 0.09 
False 0.05 0.95 

Conditional probability table for Sophia Calls: 

The Conditional probability of Sophia that she calls is depending on its Parent Node "Alarm." 

A P(S= True) P(S= False) 
True 0.75 0.25 
False 0.02 0.98 

From the formula of joint distribution, we can write the problem statement in the form of probability 
distribution: 

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E) 

= 0.75* 0.91* 0.001* 0.998*0.999 

= 0.00068045. 



 215 

Hence, a Bayesian network can answer any query about the domain by using Joint distribution. 

Bayesian Networks in Python 

Bayesian Networks can be developed and used for inference in Python. 

A popular library for this is called PyMC and provides a range of tools for Bayesian 
modelling, including graphical models like Bayesian Networks. 

The most recent version of the library is called PyMC3, named for Python version 3, and was 
developed on top of the Theano mathematical computation library that offers fast automatic 
differentiation. 
 
Installation with environment: 

conda create -n BNLEARN python=3.6 
conda activate BNLEARN 
conda install -c ankurankan pgmpy 
 
conda deactivate 
conda activate BNLEARN 
 
pip install bnlearn 
 
# Load titanic dataset containing mixed variables 
df_raw = bnlearn.import_example(data='titanic') 
 
# Pre-processing of the input dataset 
dfhot, dfnum = bnlearn.df2onehot(df_raw) 
 
# Structure learning 
DAG = bnlearn.structure_learning.fit(dfnum) 
 
# Plot 
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G = bnlearn.plot(DAG) 
 

# Parameter learning 
model = bnlearn.parameter_learning.fit(DAG, df) 
 
# Print CPDs 
bnlearn.print_CPD(model) 
 
# Make inference 
q = bnlearn.inference.fit(model, variables=['Survived'], evidence={'Sex':0, 'Pclass':1}) 
 
print(q.values) 
print(q.variables) 
 
4.7. NEURAL NETWORK 

Neural Networks is a computational learning system that uses a network of functions to 

understand and translate a data input of one form into a desired output, usually in another form. The 

concept of the artificial neural network was inspired by human biology and the way neurons of the 

human brain function together to understand inputs from human senses. 
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In simple words, Neural Networks are a set of algorithms that tries to recognize the patterns, 

relationships, and information from the data through the process which is inspired by and works like 

the human brain/biology. 

 
The figure illustrates the typical diagram of Biological Neural Network. 

 
Components / Architecture of Neural Network 

A simple neural network consists of three components : 

• Input layer 

• Hidden layer 

• Output layer 
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Input Layer: Also known as Input nodes are the inputs/information from the outside world is 

provided to the model to learn and derive conclusions from. Input nodes pass the information to the 

next layer i.e Hidden layer. 

Hidden Layer: Hidden layer is the set of neurons where all the computations are performed on the 

input data. There can be any number of hidden layers in a neural network. The simplest network 

consists of a single hidden layer. 

Output layer: The output layer is the output/conclusions of the model derived from all the 

computations performed. There can be single or multiple nodes in the output layer. If we have a 

binary classification problem the output node is 1 but in the case of multi-class classification, the 

output nodes can be more than 1. 

 

The typical Artificial Neural Network looks something like the above figure. 
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Relationship between Biological neural network and artificial neural network: 

Biological Neural Network Artificial Neural Network (ANN) 

Dendrites Inputs 

Cell nucleus Nodes 

Synapse Weights 

Axon Output 

 

The artificial neural network takes input and computes the weighted sum of the inputs and 
includes a bias. This computation is represented in the form of a transfer function. 

It determines weighted total is passed as an input to an activation function to produce the 
output. Activation functions choose whether a node should fire or not. Only those who are fired make 
it to the output layer. There are distinctive activation functions available that can be applied upon the 
sort of task we are performing. 

Perceptron and Multi-Layer Perceptron 

Perceptron is a simple form of Neural Network and consists of a single layer where all the 

mathematical computations are performed. 

 

Whereas, Multilayer Perceptron also known as Artificial Neural Networks consists of 

more than one perception which is grouped together to form a multiple layer neural network. 
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In the above figure, The Artificial Neural Network consists of four layers interconnected with each 

other: 

• An input layer, with 6 input nodes 
• Hidden Layer 1, with 4 hidden nodes/4 perceptrons 
• Hidden layer 2, with 4 hidden nodes 
• Output layer with 1 output node 

Step by Step Working of the Artificial Neural Network 
  

 

1. In the first step, Input units are passed i.e data is passed with some weights attached to it 

to the hidden layer. We can have any number of hidden layers. In the above image inputs 

x1,x2,x3,….xn is passed. 

2. Each hidden layer consists of neurons. All the inputs are connected to each neuron. 

3. After passing on the inputs, all the computation is performed in the hidden layer. 
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Computation performed in hidden layers are done in two steps which are as follows : 

• First of all, all the inputs are multiplied by their weights. Weight is the gradient or 

coefficient of each variable. It shows the strength of the particular input. After assigning the 

weights, a bias variable is added. Bias is a constant that helps the model to fit in the best way 

possible. 

Z1 = W1*In1 + W2*In2 + W3*In3 + W4*In4 + W5*In5 + b 

W1, W2, W3, W4, W5 are the weights assigned to the inputs In1, In2, In3, In4, In5, and b is the bias. 

• Then in the second step, the activation function is applied to the linear equation Z1. The 

activation function is a non-linear transformation that is applied to the input before sending it 

to the next layer of neurons. The importance of the activation function is to inculcate 

nonlinearity in the model. 

4. The whole process described in point 3 is performed in each hidden layer. After passing 

through every hidden layer, we move to the last layer i.e our output layer which gives us 

the final output. 

The process explained above is known as forwarding Propagation. 

5. After getting the predictions from the output layer, the error is calculated i.e the difference 

between the actual and the predicted output. 

If the error is large, then the steps are taken to minimize the error and for the same purpose, Back 

Propagation is performed. 

What is Back Propagation and How it works? 

Back Propagation is the process of updating and finding the optimal values of weights or 

coefficients which helps the model to minimize the error i.e difference between the actual and 

predicted values. 
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The weights are updated with the help of optimizers. Optimizers are the methods/ 

mathematical formulations to change the attributes of neural networks i.e weights to minimize the 

error. 

Activation Functions 

Activation functions are attached to each neuron and are mathematical equations that 

determine whether a neuron should be activated or not based on whether the neuron’s input is relevant 

for the model’s prediction or not. The purpose of the activation function is to introduce the 

nonlinearity in the data. 

Various Types of Activation Functions are : 

• Sigmoid Activation Function 

• TanH / Hyperbolic Tangent Activation Function 

• Rectified Linear Unit Function (ReLU) 

• Leaky ReLU 

• Softmax 

What Is a Convolutional Neural Network? 
A convolutional neural network is one adapted for analysing and identifying visual data such as 
digital images or photographs. 

What Is a Recurrent Neural Network? 
A recurrent neural network is one adapted for analysing time series data, event history, or temporal 
ordering. 

What Is a Deep Neural Network? 
Also known as a deep learning network, is one that involves two or more processing layers. 

Types of Artificial Neural Network: 

There are various types of Artificial Neural Networks (ANN) depending upon the human 
brain neuron and network functions, an artificial neural network similarly performs tasks. For 
example, segmentation or classification. 

• Feedback ANN: 

The feedback networks feed information back into itself and are well suited to solve 
optimization issues. The Internal system error corrections utilize feedback ANNs. 
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• Feed-Forward ANN: 

A feed-forward network is a basic neural network comprising of an input layer, an output 
layer, and at least one layer of a neuron. Through assessment of its output by reviewing its input, 
the intensity of the network can be noticed based on group behaviour of the associated neurons, 
and the output is decided. The primary advantage of this network is that it figures out how to 
evaluate and recognize input patterns. 

Importance of Neural Network: 
o Without Neural Network:  

Let's have a look at the example given below. Here we have a machine, such that we have trained 
it with four types of cats, as you can see in the image below. And once we are done with the training, 
we will provide a random image to that particular machine that has a cat. Since this cat is not similar 
to the cats through which we have trained our system, so without the neural network, our machine 
would not identify the cat in the picture. Basically, the machine will get confused in figuring out 
where the cat is. 
 

 

o With Neural Network:  

However, when we talk about the case with a neural network, even if we have not trained our 
machine with that particular cat. But still, it can identify certain features of a cat that we have trained 
on, and it can match those features with the cat that is there in that particular image and can also 
identify the cat.  
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Advantages of Artificial Neural Network 

• Parallel processing capability 
• Storing data on the entire network 
• Capability to work with incomplete knowledge 
• Having a memory distribution 
• Having fault tolerance 

Disadvantages of Artificial Neural Network 

• Assurance of proper network structure 
• Unrecognized behaviour of the network 
• Hardware dependence 
• Difficulty of showing the issue to the network 
• The duration of the network is unknown 

4.8. TRAINING, TESTING AND EVALUATING MACHINE LEARNING MODELS 
 
Introduction to Model Evaluation 

In Machine Learning, our goal is to achieve a machine learning model that generalizes well on 

new unseen data or unknown data. There is always a problem of overfitting while training your 

machine learning model which is a central obstacle to take care of. While some of you may have a 

small dataset and training neural networks on small datasets doesn’t generalize well and began to 

overfit. It’s very important to measure the generalization power of your model so that it can perform 

well for what it was trained for avoiding overfitting case. 
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Training, Validation and Test Sets 

While evaluating a model we always split our data into three sets:  

• Training 

• Validation  

• Test set.  

First train the model on the training data and evaluate the validation data and once the model is ready, 

test it one final time on the test data. 
 

Training set – refers to a subset of a dataset used to build predictive models. It includes a set of input 

examples that will be used to train a model by adjusting the parameters of the set. 

Validation set – is a subset of a dataset whose purpose is to assess the performance of the model 

built, during the training phase. It periodically evaluates a model and allows for fine-tuning of the 

parameters of the model.  

Test set – this is also known as unseen data. It is the final evaluation that a model undergoes after the 

training phase. A test set is a subset of a dataset used to assess the possible future performance of a 

model. For example, if a model fits the training better than the test set, overfitting is likely present. 

Overfitting– refers to when a model contains more parameters than can be accounted for by the 

dataset. Noisy data contributes to overfitting. The generalization of these models is unreliable since 

the model learns more than it is meant to from the dataset. 

Common split percentages include: 

• Train: 80%, Test: 20% 
• Train: 67%, Test: 33% 
• Train: 50%, Test: 50% 
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Why not only training and test set, Why Validation? 

We can train on the training set and evaluate it on the test set and model will be ready, then 

why validation set? 

Workflow without a validation set 

We divide our dataset into two parts : 

 

Then we follow this process : 

 

We train a model on a training set and then evaluate it on a test set and according to the result 

we tune our model parameters and then after the different iterative process on tuning model, we pick 

a model that does best on the test set. 

Why the Validation set? 
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To reduce overfitting, a new set called validation set is used. In this approach, we divide our 

dataset into three sets: training, testing and validation sets. 

 

 

And then we follow this process : 

 

We train our model on the training set and this time we evaluate our model on the validation 

set and tune the parameters of the model according to the validation loss and accuracy and we repeat 

this process until we get the model that best fit on the validation set. And after choosing the best model 

we test or confirm our results on testing set to get the correct accuracy or how well our model is 

generalised. 
Model evaluation techniques 

The techniques to evaluate the performance of a model can be divided into two parts: cross-

validation and holdout. Both these techniques make use of a test set to assess model performance. 
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1. Cross validation : 

Cross-validation involves the use of a training dataset and an independent dataset. These two 

sets result from partitioning the original dataset. The sets are used to evaluate an algorithm. 

First, we split the dataset into groups of instances equal in size. These groups are called folds. 

The model to be evaluated is trained on all the folds except one. After training, we test the model on 

the fold that was excluded. This process is then repeated over and over again, depending on the 

number of folds. 

If there are six folds, we will repeat the process six times. The reason for the repetition is that 

each fold gets to be excluded and act as the test set. Last, we measure the average performance across 

all folds to get an estimation of how effective the algorithm is on a problem. 

A popular cross-validation technique is the k-fold cross-validation. It uses the same steps 

described above. The k, (is a user-specified number), stands for the number of folds. The value of k 

may vary based on the size of the dataset but as an example, let us use a scenario of 3-fold cross-

validation. 

The model will be trained and tested three times. Let’s say the first-round trains on folds 1 

and 2 . The testing will be on fold 3. For the second round, it may train on folds 1 and 3 and test on 

fold 2. For the last round, it may train on folds 2 and 3 and test on fold 1. 

The interchange between training and test data makes this method very effective. However, 

compared to the holdout technique, cross-validation takes more time to run and uses more 

computational resources. 
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2. Holdout 

It’s important to get an unbiased estimate of model performance. This is exactly what the 

holdout technique offers. To get this unbiased estimate, we test a model on data different from the 

data we trained it on. This technique divides a dataset into three subsets: training, validation, and test 

sets. 

As mentioned earlier, that the training set helps the model make predictions and that the test 

set assesses the performance of the model. The validation set also helps to assess the performance of 

the model by providing an environment to fine-tune the parameters of the model. From this, we select 

the best performing model. 

The holdout method is ideal when dealing with a very large dataset, it prevents model 

overfitting, and incurs lower computational costs. 

When a function fits too tightly to a set of data points, an error known as overfitting occurs. 

As a result, a model performs poorly on unseen data. To detect overfitting, we could first split our 

dataset into training and test sets. We then monitor the performance of the model on both training 

data and test data. 
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If our model offers superior performance on the training set when compared to the test set, 

there’s a good chance overfitting is present. For instance, a model might offer 90% accuracy on the 

training set yet give 50% on the test set. 

 
Model evaluation metrics 

a. Metrics for classification problems 

Predictions for classification problems yield four types of outcomes: true positives, true 

negatives, false positives, and false negatives. 

1. Classification accuracy 

The most common evaluation metric for classification problems is accuracy. It’s taken as the 

number of correct predictions against the total number of predictions made (or input samples). 

Classification accuracy works best if the samples belonging to each class are equal in number. 

Consider a scenario with 97% samples from class X and 3% from class Y in a training set. A model 

can very easily achieve 97% training accuracy by predicting each training sample in class X. 

Testing the same model on a test set with 55% samples of X and 45% samples of Y, the test 

accuracy is reduced to 55%. This is why classification accuracy is not a clear indicator of 

performance. It provides a false sense of attaining high levels of accuracy. 

2. Confusion matrix 

The confusion matrix forms the basis for the other types of classification metrics. It’s a matrix 

that fully describes the performance of the model. A confusion matrix gives an in-depth breakdown 

of the correct and incorrect classifications of each class. 
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Confusion Matrix Terms: 
• True positives are when you predict an observation belongs to a class and it actually does 

belong to that class. 
• True negatives are when you predict an observation does not belong to a class and it actually 

does not belong to that class. 
• False positives occur when you predict an observation belongs to a class when in reality it 

does not. 
• False negatives occur when you predict an observation does not belong to a class when in 

fact it does. 
 

The confusion matrix explained above is an example for the case of binary classification. 

  From this it’s important to amplify true positives and true negatives. False positives and false 

negatives represent misclassification, that could be costly in real-world applications. Consider 

instances of misdiagnosis in a medical deployment of a model. 

A model may wrongly predict that a healthy person has cancer. It may also classify someone 

who actually has cancer as cancer-free. Both these outcomes would have unpleasant consequences in 

terms of the well being of the patients after being diagnosed (or finding out about the misdiagnosis), 

treatment plans as well as expenses. Therefore it’s important to minimize false negatives and false 

positives. 
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The green shapes in the image represent when the model makes the correct prediction. The 

blue ones represent scenarios where the model made the wrong predictions. The rows of the matrix 

represent the actual classes while the columns represent predicted classes. 

We can calculate accuracy from the confusion matrix. The accuracy is given by taking the 

average of the values in the “true” diagonal. 

Accuracy = (True Positive + True Negative) / Total Sample 

That translates to:  

Accuracy = Total Number of Correct Predictions / Total Number of Observations 

 
This can also extended to plot multi-class classification predictions like following example of 
classifying observations from the Iris flower dataset. 
 

 Accuracy 
It is also useful to calculate the accuracy based on classifier prediction and actual value. 
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Accuracy is a measure of how often, over all observations, the classifier is correct.  

Accuracy is : (TP+TN)/total = (100+50)/(165) = 0.91. 

3. Precision 

Precision refers to the number of true positives divided by the total positive results predicted 

by a classifier. That is, precision aims to understand what fraction of all positive predictions were 

actually correct. 

Precision = True Positives / (True Positives + False Positives) 

4. Recall 

On the other hand, recall is the number of true positives divided by all the samples that should 

have been predicted as positive. Recall has the goal to perceive what fraction of actual positive 

predictions were identified accurately. 

Recall = True Positives / (True Positives + False Negatives) 
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5. F-score 

F-score is a metric that incorporates both the precision and recall of a test to determine the 

score. F-score is also known as F-measure or F1 score. 

In addition to robustness, the F-score shows us how precise a model is by letting us know 

how many correct classifications are made. The F-score ranges between 0 and 1. The higher the F-

score, the greater the performance of the model. 

 

 

b. Metrics for regression problems 

Classification models deal with discrete data. The above metrics are ideal for classification 

tasks since they are concerned with whether a prediction is correct.  

Regression models, on the other hand, deal with continuous data. Predictions are in a 

continuous range. This is the distinction between the metrics for classification and regression 

problems. 

1. Mean absolute error 

The mean absolute error represents the average of the absolute difference between the original 

and predicted values. 

Mean absolute error provides the estimate of how far off the actual output the predictions 

were. However, since it’s an absolute value, it does not indicate the direction of the error. 
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Mean absolute error is given by: 

 

2. Mean squared error 

The mean squared error is quite similar to the mean absolute error. However, mean squared 

error uses the average of the square of the difference between original and predicted values. Since 

this involves the squaring of the errors, larger errors are very notable. 

Mean squared error is given by: 

3. Root mean squared error 

The root mean squared error (RMSE), computes the idealness of fit by calculating the square root 

of the average of squared differences between the predicted and actual values. It’s a measure of the 

average error magnitude. 

The root mean squared error is a form of normalized distance between the vectors of the observed 

and predicted values. 
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QUESTION BANK 

 
Part-A 

Q.No Questions Competence  BT Level 

1.  Define Machine Learning. Remember BTL 1 

2.  List the types of Machine Learning? Explain with 
example Understand BTL 2 

3.  List the types of Reinforcement Learning. Understand BTL 2 

4.  Define curse of Dimensionality. Remember BTL 1 

5.  
Define Entropy and Information Gain in Decision Tree 
algorithm Remember 

BTL 1 

6.  Differentiate between Regression and Classification 
Algorithm. Understand BTL 2 

7.  Illustrate Outlier, Overfitting and Underfitting? Understand BTL 2 

8.  List the approaches of dimensionality reduction? Understand BTL 2 

9.  Define PCA. Remember BTL 1 

10.  Interpret Perceptron and Multi-Layer Perceptron? Understand BTL 2 

11.  List the types of Activation functions? Understand BTL 2 

12.  
 List  the common splitting percentages of training and 
testing? Understand 

BTL 2 

13.  Define feature selection Understand BTL 2 

14.  Mention the two components of Bayesian Network. Understand BTL 2 

15.  Define Neural Network and mention its components Understand BTL 2 

16.  Differentiate between Precision and Recall. Analysis BTL 4 

17.  List the different methods in feature selection? Understand BTL 2 

18.  How F-score is calculated? Analysis BTL 4 

19.  List the types of ANN Apply BTL 3 

20.  Define Confusion Matrix? Understand BTL 2 
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PART B 

Q.No Questions Competence BT Level 

1.  Explain the three types of Machine Learning. 
 Analysis BTL 4 

2.  
Compute the principal component of following data : 
(2, 1), (3, 5), (4, 3), (5, 6), (6, 7), (7, 8). 

 
Apply 

BTL 3 

3.  Explain Linear Regression with example. Analysis BTL 4 

4.  

Explain the following terms in Bayesian Network: 
1. DAG 
2. Components of Bayesian network 
3. Joint Probability Distribution 

Analysis 

BTL 4 

5.  Discuss about Decision tree? Explain its structure and 
steps involved in ID3 algorithm. Analysis BTL 4 

6.  Explain the working of neural network with its 
architecture  Analysis BTL 4 

7.  Explain the need of Validation set with its working 
flow? Analysis BTL 4 

8.  

Explain the following Evaluation Metrics: 
1. Classification Accuracy 
2. Confusion Matrix 
3. Mean absolute error 
4. Mean squared error 

Analysis 

BTL 4 

9.  Explain the methods to test and validate the machine 
learning model? Analysis BTL 4 

10.  Explain about the Bayesian network with its building 
models? Analysis BTL 4 
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Data Structures-Functions-Numpy-Matplotlib-Pandas-Problems based on Computational 
Complexity-Simple Case Studies based on Python(Binary Search, Common elements in 
list),Hash tables, Dictionary 
 
5.1. INTRODUCTION TO DATA SCIENCE WITH PYTHON  
 
The main focus of businesses using big data was on building frameworks that can store a large amount 
of data. Then, frameworks like Hadoop were created, which helped in storing massive amounts 
of data.With the problem of storage solved, the focus then shifted to processing the data that is stored. 
This is where data science came in as the future for processing and analysing data. Now, data science 
has become an integral part of all the businesses that deal with large amounts of data. Companies 
today hire data scientists and professionals who take the data and turn it into a meaningful resource.  
 
What is Data Science? Data science is all about finding and exploring data in the real world and 
using that knowledge to solve business problems. Some examples of data science are: 

• Customer Prediction - System can be trained based on customer behavior patterns to 
predict the likelihood of a customer buying a product 

• Service Planning - Restaurants can predict how many customers will visit on the 
weekend and plan their food inventory to handle the demand  

 
Why Python? When it comes to data science, we need some sort of programming language or tool, 
like Python. Although there are other tools for data science, like R and SAS, we will focus on 
Python and how it is beneficial for data science in this article.  

• Python as a programming language has become very popular in recent times. It has been 
used in data science, IoT, AI, and other technologies, which has added to its popularity.  

• Python is used as a programming language for data science because it contains costly tools 
from a mathematical or statistical perspective. It is one of the significant reasons why data 
scientists around the world use Python. If you track the trends over the past few years, you 
will notice that Python has become the programming language of choice, particularly for 
data science. 

• There are several other reasons why Python is one of the most used programming languages 
for data science, including: 

• Speed - Python is relatively faster than other programming languages 
• Availability - There are a significant number of packages available that other users have 

developed, which can be reused  
• Design goal - The syntax roles in Python are intuitive and easy to understand, thereby 

helping in building applications with a readable codebase. 
 
Python has been used worldwide for different fields such as making websites, artificial 
intelligence and much more. But to make all of this possible, data plays a very important role which 
means that this data should be stored efficiently and the access to it must be timely. So how do you 
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achieve this? We use something called Data Structures. With that being said, let us go through the 
topics we will cover in Data Structures in Python.  

• What is a Data Structure? 
• Types of Data Structures in Python 
• Built-in Data Structures 

o List 
o Dictionary 
o Tuple 
o Sets 

• User-Defined Data Structures 
o Arrays vs. List 
o Stack 
o Queue 
o Trees 
o Linked Lists 
o Graphs 
o HashMaps 

 
5.2. DATA STRUCTURE 
 
Organizing, managing and storing data is important as it enables easier access and efficient 
modifications. Data Structures allows you to organize your data in such a way that enables you to 
store collections of data, relate them and perform operations on them accordingly.  
 
 
Types of Data Structures in Python 
Python has implicit support for Data Structures which enable you to store and access data. These 
structures are called List, Dictionary, Tuple and Set. 
 
Python allows its users to create their own Data Structures enabling them to have full control over 
their functionality. The most prominent Data Structures are Stack, Queue, Tree, Linked List and so 
on which are also available to you in other programming languages. So now that you know what are 
the types available to you, why don’t we move ahead to the Data Structures and implement them 
using Python. 

 
 
 



 243 

5.2.1. Built-in Data Structures 
 
As the name suggests, these Data Structures are built-in with Python which makes programming 
easier and helps programmers use them to obtain solutions faster.  
 
Lists 
Lists are used to store data of different data types in a sequential manner. There are addresses assigned 
to every element of the list, which is called as Index. The index value starts from 0 and goes on until 
the last element called the positive index. There is also negative indexing which starts from -1 
enabling you to access elements from the last to first.  
 
Dictionary 
Dictionaries are used to store key-value pairs. To understand better, think of a phone directory where 
hundreds and thousands of names and their corresponding numbers have been added. Now the 
constant values here are Name and the Phone Numbers which are called as the keys. And the various 
names and phone numbers are the values that have been fed to the keys. If you access the values of 
the keys, you will obtain all the names and phone numbers. So that is what a key-value pair is. And 
in Python, this structure is stored using Dictionaries. Let us understand this better with an example 
program. 
 
Tuple 
Tuples are the same as lists are with the exception that the data once entered into the tuple cannot be 
changed no matter what. The only exception is when the data inside the tuple is mutable, only then 
the tuple data can be changed. The example program will help you understand better. 
 
Sets 
Sets are a collection of unordered elements that are unique. Meaning that even if the data is repeated 
more than one time, it would be entered into the set only once. It resembles the sets that you have 
learnt in arithmetic. The operations also are the same as is with the arithmetic sets. An example 
program would help you understand better. 
 
 
5.2.3. User-Defined Data Structures 
 
Arrays vs. Lists 
Arrays and lists are the same structure with one difference. Lists allow heterogeneous data element 
storage whereas Arrays allow only homogenous elements to be stored within them. 
 
Stack 
Stacks are linear Data Structures which are based on the principle of Last-In-First-Out (LIFO) where 
data which is entered last will be the first to get accessed. It is built using the array structure and has 
operations namely, pushing (adding) elements, popping (deleting) elements and accessing elements 
only from one point in the stack called as the TOP. This TOP is the pointer to the current position of 
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the stack. Stacks are prominently used in applications such as Recursive Programming, reversing 
words, undo mechanisms in word editors and so forth. 

 
Figure 5.1: Stack 

Queue 
A queue is also a linear data structure which is based on the principle of First-In-First-Out (FIFO) 
where the data entered first will be accessed first. It is built using the array structure and has 
operations which can be performed from both ends of the Queue, that is, head-tail or front-back. 
Operations such as adding and deleting elements are called En-Queue and De-Queue and accessing 
the elements can be performed. Queues are used as Network Buffers for traffic congestion 
management, used in Operating Systems for Job Scheduling and many more. 

 
Figure 5.2: Queue 

 
Tree 
Trees are non-linear Data Structures which have root and nodes. The root is the node from where the 
data originates and the nodes are the other data points that are available to us. The node that precedes 
is the parent and the node after is called the child. There are levels a tree has to show the depth of 
information. The last nodes are called the leaves. Trees create a hierarchy which can be used in a lot 
of real-world applications such as the HTML pages use trees to distinguish which tag comes under 
which block. It is also efficient in searching purposes and much more. 
 
Linked List 
Linked lists are linear Data Structures which are not stored consequently but are linked with each 
other using pointers. The node of a linked list is composed of data and a pointer called next. These 
structures are most widely used in image viewing applications, music player applications and so forth. 
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Figure 5.3: LinkedList 
 

Graph 
Graphs are used to store data collection of points called vertices (nodes) and edges (edges). Graphs 
can be called as the most accurate representation of a real-world map. They are used to find the 
various cost-to-distance between the various data points called as the nodes and hence find the least 
path. Many applications such as Google Maps, Uber, and many more use Graphs to find the least 
distance and increase profits in the best ways. 

 
Figure 5.4: HashMaps 

HashMaps are the same as what dictionaries are in Python. They can be used to implement 
applications such as phonebooks, populate data according to the lists and much more. 

 
Figure 5.5: HashMaps 

That wraps up all the prominent Data Structures in Python. I hope you have understood built-in as 
well as the user-defined Data Structures that we have in Python and why they are important. 
 
5.3. FUNCTION IN PYTHON 

• A function is a block of code which only runs when it is called. 
• You can pass data, known as parameters, into a function. 
• A function can return data as a result. 
• Python Functions is a block of related statements designed to perform a computational, 

logical, or evaluative task. The idea is to put some commonly or repeatedly done tasks 
together and make a function so that instead of writing the same code again and again for 
different inputs, we can do the function calls to reuse code contained in it over and over 
again.  

• Functions can be both built-in or user-defined. It helps the program to be concise, non-
repetitive, and organized. 
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Syntax 
def functionname( parameters ): 
   "function_docstring" 
   function_suite 
   return [expression] 
 
 
How Function works in Python? 

 
 
Types of Functions 
Basically, we can divide functions into the following two types: 

1. Built-in functions - Functions that are built into Python. 
2. User-defined functions - Functions defined by the users themselves. 

 

Creating a Function 

In Python a function is defined using the def keyword: 

Example 
def my_function(): 
  print("Hello from a function") 
 
Calling a Function 
To call a function, use the function name followed by parenthesis: 
 
Example 
def my_function(): 
  print("Hello from a function") 
my_function() 
 
Function Arguments 
You can call a function by using the following types of formal arguments − 
 

1. Required arguments 
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2. Keyword arguments 
3. Default arguments 
4. Variable-length arguments 

Arguments of a Function 
 
Arguments are the values passed inside the parenthesis of the function. A function can have any 
number of arguments separated by a comma. 
 
Example: Python Function with arguments 
In this example, we will create a simple function to check whether the number passed as an 
argument to the function is even or odd. 
# A simple Python function to check 
# whether x is even or odd 
def evenOdd(x): 
    if (x % 2 == 0): 
        print("even") 
    else: 
        print("odd") 
 # Driver code to call the function 
evenOdd(2) 
evenOdd(3) 
 
Output 
even 
odd 
 
Types of Arguments 
Python supports various types of arguments that can be passed at the time of the function call.  
Required arguments 
Required arguments are the arguments passed to a function in correct positional order. Here, the 
number of arguments in the function call should match exactly with the function definition. 
# Function definition is here 
def printme( str ): 
   "This prints a passed string into this function" 
   print str 
   return; 
 
# Now you can call printme function 
printme() 
 
When the above code is executed, it produces the following result − 
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Traceback (most recent call last): 
   File "test.py", line 11, in <module> 
      printme(); 
TypeError: printme() takes exactly 1 argument (0 given) 
 
Keyword arguments 
Keyword arguments are related to the function calls. When you use keyword arguments in a 
function call, the caller identifies the arguments by the parameter name. 
 
# Function definition is here 
def printinfo( name, age ): 
   "This prints a passed info into this function" 
   print "Name: ", name 
   print "Age ", age 
   return; 
 
# Now you can call printinfo function 
printinfo( age=50, name="miki" ) 
When the above code is executed, it produces the following result − 
 
Name:  miki 
Age  50 
Default arguments 
A default argument is a parameter that assumes a default value if a value is not provided in the 
function call for that argument. The following example illustrates Default arguments. 
 

# Python program to demonstrate 
# default arguments 
  
  
def myFun(x, y=50): 
    print("x: ", x) 
    print("y: ", y) 
  
  
# Driver code (We call myFun() with only 
# argument) 
myFun(10) 

Output 
('x: ', 10) 

('y: ', 50) 
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5.4. PYTHON LIBRARIES FOR DATA ANALYSIS 
 
Python is a simple programming language to learn, and there is some basic stuff that you can do 
with it, like adding, printing statements, and so on. However, if you want to perform data analysis, 
you need to import specific libraries. Some examples include: 

• Pandas - Used for structured data operations 
• NumPy - A powerful library that helps you create n-dimensional arrays  
• SciPy - Provides scientific capabilities, like linear algebra and Fourier transform 
• Matplotlib - Primarily used for visualization purposes 
• Scikit-learn - Used to perform all machine learning activities  

In addition to these, there are other libraries as well, like: 
• Networks & I graph 
• TensorFlow 
• BeautifulSoup  
• OS 

 
5.5. NumPy 

• NumPy, which stands for Numerical Python, is a library consisting of 
multidimensional array objects and a collection of routines for processing those arrays. 
Using NumPy, mathematical and logical operations on arrays can be performed. 

• NumPy is a Python package. It stands for ‘Numerical Python’. It is a library consisting 
of multidimensional array objects and a collection of routines for processing of array. 

• Numeric, the ancestor of NumPy, was developed by Jim Hugunin. Another package 
Numarray was also developed, having some additional functionalities. In 2005, Travis 
Oliphant created NumPy package by incorporating the features of Numarray into 
Numeric package. There are many contributors to this open-source project. 

• NumPy – A Replacement for MatLab 
• NumPy is often used along with packages like SciPy (Scientific Python) 

and Matplotlib (plotting library). This combination is widely used as a replacement 
for MatLab, a popular platform for technical computing. However, Python alternative 
to MatLab is now seen as a more modern and complete programming language. 

• It is open-source, which is an added advantage of NumPy. 
• The most important object defined in NumPy is an N-dimensional array type 

called ndarray. It describes the collection of items of the same type. Items in the 
collection can be accessed using a zero-based index. 

• Every item in a ndarray takes the same size as the block in the memory. Each element 
in ndarray is an object of the data-type object (called dtype). 

• Any item extracted from ndarray object (by slicing) is represented by a Python object 
of one of array scalar types.  

• NumPy is the fundamental package for scientific computing with Python. It contains: 
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Ø Powerful N-dimensional array objects 
Ø Tools for integrating C/C++, and Fortran code 
Ø It has useful linear algebra, Fourier transform, and random number capabilities 

• Operations using NumPy 
Ø Using NumPy, a developer can perform the following operations − 

§ Mathematical and logical operations on arrays. 
§ Fourier transforms and routines for shape manipulation. 
§ Operations related to linear algebra. NumPy has in-built functions for linear 

algebra and random number generation. 
• An instance of ndarray class can be constructed by different array creation routines 

described later in the tutorial. The basic ndarray is created using an array function in 
NumPy as follows 
   numpy.array  

• It creates a ndarray from any object exposing an array interface, or from any method 
that returns an array. 

 numpy.array(object, dtype = None, copy = True, order = None, subok = False, 
 ndmin = 0) 

• The ndarray object consists of a contiguous one-dimensional segment of computer 
memory, combined with an indexing scheme that maps each item to a location in the 
memory block. The memory block holds the elements in row-major order (C style) or a 
column-major order (FORTRAN or MatLab style). 

The above constructor takes the following parameters − 
Sr.No. Parameter & Description 

1  object Any object exposing the array interface method returns an array or any 
(nested) sequence. 

2 
3 

dtype The desired data type of array, optionalcopyOptional. By default (true), the 
object is copied 

4 order C (row-major) or F (column-major) or A (any) (default) 

5 subok By default, returned array forced to be a base class array. If true, sub-
classes passed through 

6 ndmin Specifies minimum dimensions of the resultant array 

 
Example 1 
import numpy as np  
a = np.array([1,2,3])  
print(a) 
 
The output is as follows – 
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[1, 2, 3] 
 
The ndarray object consists of a contiguous one-dimensional segment of computer memory, 
combined with an indexing scheme that maps each item to a location in the memory block.  
 
 
 
 
 
 
 
5.5.1. NumPy – Data Types 
 
bool_ 
Boolean (True or False) stored as a byte 
 
int_ 
Default integer type (same as C long; normally either int64 or int32) 
 
intc 
Identical to C int (normally int32 or int64) 
 
intp 
An integer used for indexing (same as C ssize_t; normally either int32 or int64) 
 
int8 
Byte (-128 to 127) 
 
int16 
Integer (-32768 to 32767) 
 
float_ 
Shorthand for float64 
 
float64 
Double precision float: sign bit, 11 bits exponent, 52 bits mantissa 
 
float64 
Double precision float: sign bit, 11 bits exponent, 52 bits mantissa 
 
complex_ 
Shorthand for complex128 
 
complex64 
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Complex number, represented by two 32-bit floats (real and imaginary components) 
 
complex128 
Complex number, represented by two 64-bit floats (real and imaginary components) 
NumPy numerical types are instances of dtype (data-type) objects, each having unique 
characteristics. The dtypes are available as np.bool_, np.float32, etc. 
 
Data Type Objects (dtype) 
A data type object describes the interpretation of a fixed block of memory corresponding to an 
array, depending on the following aspects − 

• Type of data (integer, float or Python object) 
• Size of data 
• Byte order (little-endian or big-endian) 
• In case of structured type, the names of fields, data type of each field and part of the 

memory block taken by each field. 
• If the data type is a subarray, its shape and data type 

The byte order is decided by prefixing ‘<‘ or ‘>’ to the data type. ‘<‘ means that encoding is 
little-endian (least significant is stored in smallest address). ‘>’ means that encoding is big-
endian (a most significant byte is stored in smallest address). 
 
 
A dtype object is constructed using the following syntax − 
  numpy.dtype(object, align, copy) 
 
The parameters are − 

• Object − To be converted to data type object 
• Align − If true, adds padding to the field to make it similar to C-struct 
• Copy − Makes a new copy of dtype object. If false, the result is a reference to builtin 

data type object 
 
Example 1 
# using array-scalar type  
import numpy as np  
dt = np.dtype(np.int32)  
print(dt) 
 
The output is as follows − int32 
 
5.5.2. ndarray.shape 
This array attribute returns a tuple consisting of array dimensions. It can also be used to resize 
the array. 
 
Example 1 
import numpy as np  
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a = np.array([[1,2,3],[4,5,6]])  
print (a.shape) 
 
The output is as follows −(2, 3) 
 
Example 2 
# this resizes the ndarray  
import numpy as np  
a = np.array([[1,2,3],[4,5,6]])  
a.shape = (3,2)  
print(a)  
 
The output is as follows -[[1, 2][3, 4] [5, 6]] 
 
5.5.3. ndarray.ndim 
This array attribute returns the number of array dimensions. 
 
Example 1 
# an array of evenly spaced numbers  
import numpy as np  
a = np.arange(24)  
print(a) 
 
The output is as follows – 
[0 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 17 18 19 20 21 22 23]  
 
Example 2 
# this is one dimensional array  
import numpy as np  
a = np.arange(24)  
a.ndim   
# now reshape it  
b = a.reshape(2,4,3)  
print(b) 
# b is having three dimensions 
 
The output is as follows – 
[[[ 0,  1,  2]  
  [ 3,  4,  5]  
  [ 6,  7,  8]  
  [ 9, 10, 11]]   
  [[12, 13, 14]  
   [15, 16, 17] 
   [18, 19, 20]  
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   [21, 22, 23]]]  
 
5.5.4. numpy.itemsize 
 
This array attribute returns the length of each element of array in bytes. 
 
Example 1 
# dtype of array is int8 (1 byte)  
import numpy as np  
x = np.array([1,2,3,4,5], dtype = np.int8) 
print (x.itemsize) 
 
5.5.5. numpy.flags 
 
The ndarray object has the following attributes. Its current values are returned by this function. 
 
Sr.No. Attribute & Description 
1 C_CONTIGUOUS (C)The data is in a single, C-style contiguous 

segment 
2 F_CONTIGUOUS (F)The data is in a single, Fortran-style contiguous 

segment 
3 OWNDATA (O)The array owns the memory it uses or borrows it from 

another object 
4 WRITEABLE (W)The data area can be written to. Setting this to False 

locks the data, making it read-only 
5 ALIGNED (A)The data and all elements are aligned appropriately for the 

hardware 
6 UPDATEIFCOPY (U)This array is a copy of some other array. When 

this array is deallocated, the base array will be updated with the contents 
of this array 

 
Example 
The following example shows the current values of flags. 
 
import numpy as np  
x = np.array([1,2,3,4,5])  
print(x.flags) 
 
The output is as follows − 
C_CONTIGUOUS : True  
F_CONTIGUOUS : True  
OWNDATA : True  
WRITEABLE : True  



 255 

ALIGNED : True  
UPDATEIFCOPY : False 
 
5.5.6. NumPy – Array Creation Routines 
 
A new ndarray object can be constructed by any of the following array creation routines or 
using a low-level ndarray constructor. 
  numpy.empty 
It creates an uninitialized array of specified shape and dtype. It uses the following constructor − 
 
numpy.empty(shape, dtype = float, order = ‘C’) 
 
The constructor takes the following parameters. 
 
Sr.No. Parameter & Description 
1 Shape: Shape of an empty array in int or tuple of int 
2 Dtype: Desired output data type. Optional 
3 Order: ‘C’ for C-style row-major array, ‘F’ for FORTRAN style 

column- 
 
Example 
 
The following code shows an example of an empty array. 
import numpy as np  
x = np.empty([3,2], dtype = int)  
print(x) 
 
The output is as follows −[[22649312    1701344351]   
[1818321759  1885959276] [16779776    156368896]] 
 
 
5.5.7. numpy.zeros 
 
Returns a new array of specified size, filled with zeros. 
numpy.zeros(shape, dtype = float, order = ‘C’) 
 
Example 1 
# array of five ones. Default dtype is float  
import numpy as np  
x = np.ones(5)  
print(x) 
 
The output is as follows − 
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[ 1.  1.  1.  1.  1.] 
 
 
5.5.8. NumPy – Indexing & Slicing 
 
Contents of ndarray object can be accessed and modified by indexing or slicing, just like Python’s 
in-built container objects. items in ndarray object follows zero-based index. Three types of 
indexing methods are available − field access, basic slicing and advanced indexing. 

• Basic slicing is an extension of Python’s basic concept of slicing to n dimensions. A 
Python slice object is constructed by giving start, stop, and step parameters to the built-
in slice function. This slice object is passed to the array to extract a part of array. 

Example 1 
 
import numpy as np  
a = np.arange(10)  
s = slice(2,7,2)  
print (a[s]) 
 
Its output is as follows − 
[2  4  6] 
 
In the above example, an ndarray object is prepared by arange() function. Then a slice object is 
defined with start, stop, and step values 2, 7, and 2 respectively. When this slice object is passed 
to the ndarray, a part of it starting with index 2 up to 7 with a step of 2 is sliced. 
 
5.5.9. NumPy – Advanced Indexing 
 
It is possible to make a selection from ndarray that is a non-tuple sequence, ndarray object of 
integer or Boolean data type, or a tuple with at least one item being a sequence object. Advanced 
indexing always returns a copy of the data. As against this, the slicing only presents a view. 
 
There are two types of advanced indexing − Integer and Boolean. 
 
Integer Indexing 

• This mechanism helps in selecting any arbitrary item in an array based on its N-
dimensional index. Each integer array represents the number of indexes into that 
dimension. When the index consists of as many integer arrays as the dimensions of the 
target ndarray, it becomes straightforward. 
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• In the following example, one element of the specified column from each row of 
ndarray object is selected. Hence, the row index contains all row numbers, and the 
column index specifies the element to be selected. 

Example 1 
import numpy as np  
x = np.array([[1, 2], [3, 4], [5, 6]])  
y = x[[0,1,2], [0,1,0]]  
print(y)  
 
Its output would be as follows − 
[1  4  5] 

• The selection includes elements at (0,0), (1,1) and (2,0) from the first array. 
• In the following example, elements placed at corners of a 4X3 array are selected. The row 

indices of selection are [0, 0] and [3,3] whereas the column indices are [0,2] and [0,2]. 
• Advanced and basic indexing can be combined by using one slice (:) or ellipsis (…) with 

an index array. The following example uses a slice for the advanced index for column. 
The result is the same when a slice is used for both. But advanced index results in copy 
and may have different memory layout. 

 
 
 
Boolean Array Indexing 
 
This type of advanced indexing is used when the resultant object is meant to be the result of 
Boolean operations, such as comparison operators. 
 
Example 1 
In this example, items greater than 5 are returned as a result of Boolean indexing. 
import numpy as np  
x = np.array([[ 0,  1,  2],[ 3,  4,  5],[ 6,  7,  8],[ 9, 10, 11]])  
print (‘Our array is:’) 
print(x) 
print ‘\n’   
# Now we will print the items greater than 5  
print (‘The items greater than 5 are:’) 
print (x[x > 5]) 
 
 
The output of this program would be − 
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Our array is:  
[[ 0  1  2]  
 [ 3  4  5]  
 [ 6  7  8]  
 [ 9 10 11]]  
The items greater than 5 are: 
[ 6  7  8  9 10 11]  
 
 
5.5.10. NumPy – Broadcasting 
 
The term broadcasting refers to the ability of NumPy to treat arrays of different shapes during 
arithmetic operations. Arithmetic operations on arrays are usually done on corresponding 
elements. If two arrays are of exactly the same shape, then these operations are smoothly 
performed. 
 
Example 1 
import numpy as np  
a = np.array([1,2,3,4])  
b = np.array([10,20,30,40])  
c = a * b  
print(c) 
 
Its output is as follows −[10   40   90   160] 

• If the dimensions of the two arrays are dissimilar, element-to-element operations are not 
possible. However, operations on arrays of non-similar shapes is still possible in 
NumPy, because of the broadcasting capability. The smaller array is broadcast to the 
size of the larger array so that they have compatible shapes. 

5.5.11. NumPy – Iterating Over Array 
 
NumPy package contains an iterator object numpy.nditer. It is an efficient multidimensional 
iterator object using which it is possible to iterate over an array. Each element of an array is 
visited using Python’s standard Iterator interface. 
Let us create a 3X4 array using arrange() function and iterate over it using nditer. 
 
5.5.12. NumPy – Array Manipulation 
 
Several routines are available in NumPy package for manipulation of elements in ndarray 
object. They can be classified into the following types − 
Changing Shape 
Sr.No. Shape & Description 
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1 reshape:Gives a new shape to an array without changing its data 
2 flat:A 1-D iterator over the array 
3 flatten:Returns a copy of the array collapsed into one dimension 
4 ravel:Returns a contiguous flattened array 

 
Transpose Operations 
Sr.No. Operation & Description 
1 transpose:Permutes the dimensions of an array 
2 ndarray.T:Same as self.transpose() 
3 rollaxis:Rolls the specified axis backwards 
4 swapaxes:Interchanges the two axes of an array 

 
Changing Dimensions 
Sr.No. Dimension & Description 
1 broadcast:Produces an object that mimics broadcasting 
2 broadcast_to:Broadcasts an array to a new shape 
3 expand_dims:Expands the shape of an array 
4 squeeze:Removes single-dimensional entries from the shape of 

an array 
 
Joining Arrays 
Sr.No. Array & Description 
1 concatenate:Joins a sequence of arrays along an existing axis 
2 stack:Joins a sequence of arrays along a new axis 
3 hstack:Stacks arrays in sequence horizontally (column wise) 
4 vstack:Stacks arrays in sequence vertically (row wise) 

 
Splitting Arrays 
 
Sr.No. 

Array & Description 

1 split:Splits an array into multiple sub-arrays 
2 hsplit:Splits an array into multiple sub-arrays horizontally (column-

wise) 
3 vsplit:Splits an array into multiple sub-arrays vertically (row-wise) 

 
Adding / Removing Elements 
Sr.No. Element & Description 
1 resizeReturns a new array with the specified shape 
2 appendAppends the values to the end of an array 
3 insertInserts the values along the given axis before the given indices 
4 deleteReturns a new array with sub-arrays along an axis deleted 
5 uniqueFinds the unique elements of an array 
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NumPy – Binary Operators 
 
Following are the functions for bitwise operations available in NumPy package. 
Sr.No. Operation & Description 
1 bitwise_and:Computes bitwise AND operation of array 

elements 
2 bitwise_or:Computes bitwise OR operation of array elements 
3 invert:Computes bitwise NOT   
4 right_shift:Shifts bits of binary representation to the right 

 
5.5.13. NumPy – Mathematical Functions 
Quite understandably, NumPy contains a large number of various mathematical operations. 
NumPy provides standard trigonometric functions, functions for arithmetic operations, handling 
complex numbers, etc. 
 
Trigonometric Functions 
NumPy has standard trigonometric functions which return trigonometric ratios for a given angle 
in radians. 
 
Example 
import numpy as np  
a = np.array([0,30,45,60,90])  
print (‘Sine of different angles:’ ) 
# Convert to radians by multiplying with pi/180  
Print(np.sin(a*np.pi/180)) 
print (‘\n’)   
print(‘Cosine values for angles in array:’_  
print(np.cos(a*np.pi/180)) 
print (‘\n’ ) 
print(‘Tangent values for given angles:’ ) 
print (np.tan(a*np.pi/180) ) 
 
 
Here is its output − 
 
Sine of different angles: 
[ 0.          0.5         0.70710678  0.8660254   1.        ] 
Cosine values for angles in array: 
[  1.00000000e+00   8.66025404e-01   7.07106781e-01   5.00000000e-01 
   6.12323400e-17]                                                             
Tangent values for given angles: 
[  0.00000000e+00   5.77350269e-01   1.00000000e+00   1.73205081e+00 
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   1.63312394e+16] 
 
 
arcsin, arcos, and arctan functions return the trigonometric inverse of sin, cos, and tan of the 
given angle. The result of these functions can be verified by numpy.degrees() function by 
converting radians to degrees. 
 
 
Functions for Rounding 
numpy.around() 
This is a function that returns the value rounded to the desired precision. The function takes the 
following parameters. 
  numpy.around(a,decimals) 
Where,  
Sr.No. Parameter & Description 
1 a: Input data 
2 decimals: The number of decimals to round to. Default is 0. If 

negative, the integer is rounded to position to the left of the 
decimal point 

 
 
5.5.14. NumPy – Statistical Functions 
 
NumPy has quite a few useful statistical functions for finding minimum, maximum, percentile 
standard deviation and variance, etc. from the given elements in the array. The functions are 
explained as follows − 
  numpy.amin() and numpy.amax()numpy.amin() and numpy.amax() 
 
These functions return the minimum and the maximum from the elements in the given array 
along the specified axis. 
 
Example 
import numpy as np  
a = np.array([[3,7,5],[8,4,3],[2,4,9]])  
print ‘Our array is:’  
print(a) 
print (‘\n’ ) 
print ‘Applying amin() function:’  
print(np.amin(a,1)) 
print (‘\n’ ) 
print ‘Applying amin() function again:’  
print (np.amin(a,0)) 
print (‘\n’ ) 
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print ‘Applying amax() function:’  
print (np.amax(a) ) 
print (‘\n’) 
print ‘Applying amax() function again:’  
print(np.amax(a, axis = 0)) 
 
 
It will produce the following output − 
Our array is: 
[[3 7 5] 
[8 4 3] 
[2 4 9]] 
Applying amin() function: 
[3 3 2] 
Applying amin() function again: 
[2 4 3] 
Applying amax() function: 
9 
Applying amax() function again: 
[8 7 9] 
 
 
5.5.15. numpy.ptp() 
 
The numpy.ptp() function returns the range (maximum-minimum) of values along an axis. 
 
 
import numpy as np  
a = np.array([[3,7,5],[8,4,3],[2,4,9]])  
print (‘Our array is:’)  
print(a) 
print (‘\n’)    
print ‘Applying ptp() function:’  
print np.ptp(a)  
print (‘\n’)    
print ‘Applying ptp() function along axis 1:’  
print np.ptp(a, axis = 1)  
print (‘\n’)    
print(‘Applying ptp() function along axis 0:’) 
print(np.ptp(a, axis = 0) ) 
numpy.percentile() 
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Percentile (or a centile) is a measure used in statistics indicating the value below which a given 
percentage of observations in a group of observations fall. The 
function numpy.percentile() takes the following arguments. 
 
Where, 
Sr.No. Argument & Description 
1 a Input array 
2 q The percentile to compute must be between 0-100 
3 axis The axis along which the percentile is to be calculated 

 
A variety of sorting related functions are available in NumPy. These sorting functions implement 
different sorting algorithms, each of them characterized by the speed of execution, worst-case 
performance, the workspace required and the stability of algorithms. Following table shows the 
comparison of three sorting algorithms. 
 
kind speed worst case work space stable 
‘quicksort’ 1 O(n^2) 0 no 
‘mergesort’ 2 O(n*log(n)) ~n/2 yes 
‘heapsort’ 3 O(n*log(n)) 0 no 

 
5.5.16. numpy.sort() 
 
The sort() function returns a sorted copy of the input array. It has the following parameters − 
  numpy.sort(a, axis, kind, order) 
Where, 
Sr.No. Parameter & Description 
1 aArray to be sorted 
2 axisThe axis along which the array is to be sorted. If none, the array is flattened, 

sorting on the last axis 
3 kindDefault is quicksort 
4 orderIf the array contains fields, the order of fields to be sorted 

 
5.5.17. NumPy – Byte Swapping 
We have seen that the data stored in the memory of a computer depends on which architecture 
the CPU uses. It may be little-endian (least significant is stored in the smallest address) or big-
endian (most significant byte in the smallest address). 
numpy.ndarray.byteswap() 
 
The numpy.ndarray.byteswap() function toggles between the two representations: bigendian 
and little-endian. 
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5.5.18. NumPy – Copies & Views 
While executing the functions, some of them return a copy of the input array, while some return 
the view. When the contents are physically stored in another location, it is called Copy. If on 
the other hand, a different view of the same memory content is provided, we call it as View. 
 
5.5.19. No Copy 
Simple assignments do not make the copy of array object. Instead, it uses the same id() of the 
original array to access it. The id() returns a universal identifier of Python object, similar to the 
pointer in C. 
Furthermore, any changes in either gets reflected in the other. For example, the changing shape 
of one will change the shape of the other too. 
 
5.5.20. View or Shallow Copy 
NumPy has ndarray.view() method which is a new array object that looks at the same data of 
the original array. Unlike the earlier case, change in dimensions of the new array doesn’t 
change dimensions of the original. 
 
5.5.21. NumPy – Matrix Library 
NumPy package contains a Matrix library numpy.matlib. This module has functions that return 
matrices instead of ndarray objects. 
 
5.5.22. matlib.empty() 
 
The matlib.empty() function returns a new matrix without initializing the entries. The function 
takes the following parameters. 
  numpy.matlib.empty(shape, dtype, order) 
Where, 
Sr.No. Parameter & Description 
1 shapeint or tuple of int defining the shape of the new matrix 
2 Dtype Optional. Data type of the output 
3 order C or F 

 
Example 
import numpy.matlib  
import numpy as np  
print(np.matlib.empty((2,2))) 
# filled with random data 
 
 It will produce the following output − 
[[ 2.12199579e-314,   4.24399158e-314]  
 [ 4.24399158e-314,   2.12199579e-314]]  
numpy.matlib.eye() 
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This function returns a matrix with 1 along the diagonal elements and the zeros elsewhere. The 
function takes the following parameters. 
numpy.matlib.eye(n, M,k, dtype) 
Where, 
Sr.No. Parameter & Description 
1 n  The number of rows in the resulting matrix 
2 M The number of columns, defaults to n 
3 k Index of diagonal 
4 dtype Data type of the output 

Example 
import numpy.matlib  
import numpy as np  
print np.matlib.eye(n = 3, M = 4, k = 0, dtype = float) 
It will produce the following output − 
[[ 1.  0.  0.  0.]  
 [ 0.  1.  0.  0.]  
 [ 0.  0.  1.  0.]]  
 
5.5.23. Numpy- Linear Algebra 
 
NumPy package contains numpy.linalg module that provides all the functionality required for linear 
algebra. Some of the important functions in this module are described in the following table. 
Sr.No. Function & Description 

1 dot 

Dot product of the two arrays 

2 vdot 

Dot product of the two vectors 

3 inner 

Inner product of the two arrays 

4 matmul 

Matrix product of the two arrays 

5 determinant 

Computes the determinant of the array 

6 solve 

Solves the linear matrix equation 

7 inv 

Finds the multiplicative inverse of the matrix 
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Addition and Subtraction 
# importing numpy for matrix operations  
import numpy  
    
# initializing matrices  
x = numpy.array([[1, 2], [4, 5]])  
y = numpy.array([[7, 8], [9, 10]])  
    
# using add() to add matrices  
print ("The element wise addition of matrix is : ")  
print (numpy.add(x,y))  
    
# using subtract() to subtract matrices  
print ("The element wise subtraction of matrix is : ")  
print  (numpy.subtract(x,y)) 
  
 
Multiplication and Dot Product 
# importing numpy for matrix operations 
import numpy  
   
# initializing matrices 
x = numpy.array([[1, 2], [4, 5]]) 
y = numpy.array([[7, 8], [9, 10]]) 
   
# using multiply() to multiply matrices element wise 
print ("The element wise multiplication of matrix is : ") 
print (numpy.multiply(x,y)) 
   
# using dot() to multiply matrices 
print ("The product of matrices is : ") 
print (numpy.dot(x,y)) 
 
Transpose 
 
“T” :- This argument is used to transpose the specified matrix.  
 
# importing numpy for matrix operations 
import numpy  
   
# initializing matrices 
x = numpy.array([[1, 2], [4, 5]]) 
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# using "T" to transpose the matrix 
print ("The transpose of given matrix is : ") 
print (x.T) 

 
  

Determinant 

 
 
Inverse 
 
# Import required package 
import numpy as np  
import numpy.linalg as la 
   
# Taking a 3 * 3 matrix 
A = np.array([[6, 1, 1], 
              [4, -2, 5], 
              [2, 8, 7]]) 
   
# Calculating the inverse of the matrix 
print(la.inv(A)) 
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Solve  
Example-1 
import numpy as np 
m_list = [[4, 3], [-5, 9]] 
A = np.array(m_list) 
#To find the inverse of a matrix, the matrix is passed to the linalg.inv() method of the Numpy 
module 
inv_A = np.linalg.inv(A)  
print(inv_A) 
#find the dot product between the inverse of matrix A, and the matrix B. 
B = np.array([20, 26]) 
X = np.linalg.inv(A).dot(B) 
print(X) 
Output: 
[2. 4.] 
Here, 2 and 4 are the respective values for the unknowns x and y in Equation 1. 
 
Example 2 
A = np.array([[4, 3, 2], [-2, 2, 3], [3, -5, 2]]) 
B = np.array([25, -10, -4]) 
X = np.linalg.inv(A).dot(B) 
print(X) 
Output: 
[ 5.  3. -2.] 
 
np.arange 
 
import  numpy as np 
#create an array 
arr = np.arange(1,10).reshape(3,3) 
#finding the Eigenvalue and Eigenvectors of arr 
np.linalg.eig(arr) 
 
 
5.6. Matplotlib 

• Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib 
is a multi-platform data visualization library built on NumPy arrays and designed to work 
with the broader SciPy stack. It was introduced by John Hunter in the year 2002. 

• One of the greatest benefits of visualization is that it allows us visual access to huge amounts 
of data in easily digestible visuals. Matplotlib consists of several plots like line, bar, scatter, 
histogram etc. 

Installation : 
Windows, Linux and macOS distributions have matplotlib and most of its dependencies as wheel 
packages. Run the following command to install matplotlib package : 
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python -mpip install -U matplotlib 

Importing matplotlib : 
 
from matplotlib import pyplot as plt 
or 
import matplotlib.pyplot as plt  

 
Basic plots in Matplotlib : 

Matplotlib comes with a wide variety of plots. Plots helps to understand trends, patterns, and to 
make correlations. They’re typically instruments for reasoning about quantitative information. 
Some of the sample plots are covered here. 

1. Line plot : 
# importing matplotlib module  
from matplotlib import pyplot as plt 
   
# x-axis values 
x = [5, 2, 9, 4, 7] 
   
# Y-axis values 
y = [10, 5, 8, 4, 2] 
   
# Function to plot 
plt.plot(x,y) 
   
# function to show the plot 
plt.show() 
 
Output: 
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2. Bar plot : 

# importing matplotlib module  
from matplotlib import pyplot as plt 
   
# x-axis values 
x = [5, 2, 9, 4, 7] 
   
# Y-axis values 
y = [10, 5, 8, 4, 2] 
   
# Function to plot the bar 
plt.bar(x,y) 
   
# function to show the plot 
plt.show() 

Output: 
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3. Histogram : 

A histogram is a graph showing frequency distributions. 
 
It is a graph showing the number of observations within each given interval. 
 

# importing matplotlib module  
from matplotlib import pyplot as plt 
   
# Y-axis values 
y = [10, 5, 8, 4, 2] 
   
# Function to plot histogram 
plt.hist(y) 
   
# Function to show the plot 
plt.show() 

 
Output: 
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4. Scatter Plot : 

With Pyplot, you can use the scatter() function to draw a scatter plot. 
 
The scatter() function plots one dot for each observation. It needs two arrays of the same 
length, one for the values of the x-axis, and one for values on the y-axis: 

# importing matplotlib module  
from matplotlib import pyplot as plt 
   
# x-axis values 
x = [5, 2, 9, 4, 7] 
   
# Y-axis values 
y = [10, 5, 8, 4, 2] 
   
# Function to plot scatter 
plt.scatter(x, y) 
   
# function to show the plot 
plt.show() 

Output: 
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Creating Pie Charts 
With Pyplot, you can use the pie() function to draw pie charts: 
 
import matplotlib.pyplot as plt 
import numpy as np 
 
y = np.array([35, 25, 25, 15]) 
 
plt.pie(y) 
plt.show()  
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5.7. Pandas 
 

• Pandas is an open-source library that is built on top of NumPy library. It is a Python 
package that offers various data structures and operations for manipulating numerical data 
and time series. It is mainly popular for importing and analyzing data much easier. Pandas 
is fast and it has high-performance & productivity for users. 

What is Python Pandas? 
 
Pandas is used for data manipulation, analysis and cleaning. Python pandas is well suited for different 
kinds of data, such as:  

• Tabular data with heterogeneously-typed columns 
• Ordered and unordered time series data 
• Arbitrary matrix data with row & column labels 
• Unlabelled data 
• Any other form of observational or statistical data sets 

 
Python Pandas Data Structure 
 
The primary two components of pandas are the Series and DataFrame. 
 
A Series is essentially a column, and a DataFrame is a multi-dimensional table made up of a 
collection of Series. 
 

 
 
 
 
5.7.1. Series 
Create a simple Pandas Series from a list: 
 
import pandas as pd 
 
a = [1, 7, 2] 
 
myvar = pd.Series(a) 
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print(myvar) 
 
 
5.7.2. What is a DataFrame? 
 
A Pandas DataFrame is a 2 dimensional data structure, like a 2 dimensional array, or a table with 
rows and columns. 

It is a widely used data structure of pandas and works with a two-dimensional array with labeled axes 
(rows and columns). DataFrame is defined as a standard way to store data and has two different 
indexes, i.e., row index and column index. It consists of the following properties: 

o The columns can be heterogeneous types like int, bool, and so on. 

o It can be seen as a dictionary of Series structure where both the rows and columns are indexed. 
It is denoted as "columns" in case of columns and "index" in case of rows.  

Example 
Create a simple Pandas DataFrame: 
 
import pandas as pd 
 
data = { 
  "calories": [420, 380, 390], 
  "duration": [50, 40, 45] 
} 
 
#load data into a DataFrame object: 
df = pd.DataFrame(data) 
 
print(df)  
 
Result 
 
     calories  duration 
  0       420        50 
  1       380        40 
  2       390        45 
 
 
Create a DataFrame using List: 

We can easily create a DataFrame in Pandas using list. 

import pandas as pd   
# a list of strings   
x = ['Python', 'Pandas']  
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# Calling DataFrame constructor on list   
df = pd.DataFrame(x)   
print(df)   

Output 

      0 
0   Python 
1   Pandas 
 
Create an empty DataFrame 

The below code shows how to create an empty DataFrame in Pandas: 

# importing the pandas library   
import pandas as pd   
df = pd.DataFrame()   
print (df)   

Output 

Empty DataFrame 
Columns: [] 
Index: [] 
 
 

Create a DataFrame from Dict of ndarrays/ Lists 

# importing the pandas library   
import pandas as pd   
info = {'ID' :[101, 102, 103],'Department' :['B.Sc','B.Tech','M.Tech',]}   
df = pd.DataFrame(info)   
print (df)   

Output 

       ID      Department 
0      101        B.Sc 
1      102        B.Tech 
2      103        M.Tech 
 
 

Create a DataFrame from Dict of Series: 
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# importing the pandas library   
import pandas as pd   
   
info = {'one' : pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f']),   

   'two' : pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h' 
 

d1 = pd.DataFrame(info)   
print (d1)   

Output 
        one         two 
a       1.0          1 
b       2.0          2 
c       3.0          3 
d       4.0          4 
e       5.0          5 
f       6.0          6 
g       NaN          7 
h       NaN          8 
 

Column Selection 

We can select any column from the DataFrame. Here is the code that demonstrates how to select a 
column from the DataFrame. 

# importing the pandas library   
import pandas as pd   
info = {'one' : pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f']),   

   'two' : pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'} 
d1 = pd.DataFrame(info)   
print (d1 ['one'])   

Output 
a      1.0 
b      2.0 
c      3.0 
d      4.0 
e      5.0 
f      6.0 
g      NaN 
h      NaN 
Name: one, dtype: float64 

Column Addition 
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We can also add any new column to an existing DataFrame. The below code demonstrates how to 
add any new column to an existing DataFrame: 

# importing the pandas library   
import pandas as pd   
info = {'one' : pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']),   
   'two' : pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f'])}   
df = pd.DataFrame(info)   
# Add a new column to an existing DataFrame object    
print ("Add new column by passing series")   
df['three']=pd.Series([20,40,60],index=['a','b','c'])   
print (df)   
   
print ("Add new column using existing DataFrame columns")   
df['four']=df['one']+df['three']   
   
print (df)   

Output 
 
Add new column by passing series 
      one     two      three 
a     1.0      1        20.0 
b     2.0      2        40.0 
c     3.0      3        60.0 
d     4.0      4        NaN 
e     5.0      5        NaN 
f     NaN      6        NaN 
 
Add new column using existing DataFrame columns 
       one      two       three      four 
a      1.0       1         20.0      21.0 
b      2.0       2         40.0      42.0 
c      3.0       3         60.0      63.0 
d      4.0       4         NaN      NaN 
e      5.0       5         NaN      NaN 
f      NaN       6         NaN      NaN 

Column Deletion: 

We can also delete any column from the existing DataFrame. This code helps to demonstrate how 
the column can be deleted from an existing DataFrame: 

# importing the pandas library   
import pandas as pd   
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info = {'one' : pd.Series([1, 2], index= ['a', 'b']),    
   'two' : pd.Series([1, 2, 3], index=['a', 'b', 'c'])}   
      
df = pd.DataFrame(info)   
print ("The DataFrame:")   
print (df)   
   
# using del function   
print ("Delete the first column:")   
del df['one']   
print (df)   
# using pop function   
print ("Delete the another column:")   
df.pop('two')   
print (df)   

Output 

The DataFrame: 
      one    two 
a     1.0     1 
b     2.0     2 
c     NaN     3 
 
Delete the first column: 
     two 
a     1 
b     2 
c     3 
 
Delete the another column: 
Empty DataFrame 
Columns: [] 
Index: [a, b, c] 
 

Row Selection, Addition, and Deletion 

Row Selection: 

We can easily select, add, or delete any row at anytime. First of all, we will understand the row 
selection. Let's see how we can select a row using different ways that are as follows: 

Selection by Label: 
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We can select any row by passing the row label to a loc function. 

# importing the pandas library   
import pandas as pd   
   
info = {'one' : pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']),    
   'two' : pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f'])}   
   
df = pd.DataFrame(info)   
print (df.loc['b'])   

Output 

one    2.0 
two    2.0 
Name: b, dtype: float64 

Selection by integer location: 

The rows can also be selected by passing the integer location to an ilocfunction. 

# importing the pandas library   
import pandas as pd   
info = {'one' : pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']),   
   'two' : pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f'])}   
df = pd.DataFrame(info)   
print (df.iloc[3])   

Output 

one    4.0 
two    4.0 
Name: d, dtype: float64 

Slice Rows 

It is another method to select multiple rows using ':' operator. 

# importing the pandas library   
import pandas as pd   
info = {'one' : pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']),    
   'two' : pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f'])}   
df = pd.DataFrame(info)   
print (df[2:5])   

Output 
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      one    two 
c     3.0     3 
d     4.0     4 
e     5.0     5 

Addition of rows: 

We can easily add new rows to the DataFrame using append function. It add the new rows at the 
end. 

# importing the pandas library   
import pandas as pd   
d = pd.DataFrame([[7, 8], [9, 10]], columns = ['x','y'])   
d2 = pd.DataFrame([[11, 12], [13, 14]], columns = ['x','y'])   
d = d.append(d2)   
print (d)   

Output 

      x      y 
0     7      8 
1     9      10 
0     11     12 
1     13     14 

Deletion of rows: 

We can delete or drop any rows from a DataFrame using the index label. If in case, the label is 
duplicate then multiple rows will be deleted. 

# importing the pandas library   
import pandas as pd   
   
a_info = pd.DataFrame([[4, 5], [6, 7]], columns = ['x','y'])   
b_info = pd.DataFrame([[8, 9], [10, 11]], columns = ['x','y'])   
a_info = a_info.append(b_info)   
# Drop rows with label 0   
a_info = a_info.drop(0)   

Output 

x      y 
1     6      7 
1     10    11 
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5.7.3. Pandas Read CSV 

A simple way to store big data sets is to use CSV files (comma separated files). 

CSV files contains plain text and is a well know format that can be read by everyone including 
Pandas. 

Load the CSV into a DataFrame: 

import pandas as pd 
 
df = pd.read_csv('data.csv') 
 
print(df.to_string())  

Print the DataFrame without the to_string() method: 

import pandas as pd 
 
df = pd.read_csv('data.csv') 
 
print(df)  

Viewing the Data 

One of the most used method for getting a quick overview of the DataFrame, is the head() method. 

The head() method returns the headers and a specified number of rows, starting from the top. 

Example 
import pandas as pd 
 
df = pd.read_csv('data.csv') 
 
print(df.head(10)) 

There is also a tail() method for viewing the last rows of the DataFrame. 

The tail() method returns the headers and a specified number of rows, starting from the bottom. 

Example 
Print the last 5 rows of the DataFrame: 
print(df.tail())  
 

Info About the Data 

The DataFrames object has a method called info(), that gives you more information about the data 
set. 
 
Example: Print information about the data: 
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print(df.info())  
 
 
5.8. PROBLEM BASED ON COMPUTATIONAL COMPLEXITY 
 
 
Computational Complexity 

• Computational complexity is a field from computer science which analyzes algorithms based on 
the amount resources required for running it. The amount of required resources varies based on 
the input size, so the complexity is generally expressed as a function of n, where n is the size of 
the input. 

• It is important to note that when analyzing an algorithm we can consider the time complexity 
and space complexity. The space complexity is basically the amount of memory space required 
to solve a problem in relation to the input size. Even though the space complexity is important 
when analyzing an algorithm, in this story we will focus only on the time complexity. 

 
Time Complexity in Python Now-a-days, for one problem we can write the solution in n number of 
ways, but, how can we decide which type is better. We can use different types of algorithms to solve 
one problem. We need to compare these algorithms and have to choose the best one to solve the 
problem. 
 
What is Time Complexity? 
 
The amount of time it takes to run the program and perform the functions in it is known as Time 
Complexity. By using Time Complexity we can determine whether the program is efficient or we 
have to use another algorithm which take less time compared to the other one. Reducing Time 
Complexity of an algorithm is often difficult in Data Science, rather than difficult we can say its a 
bigger challenge. 
 
We will tell the time complexity of a program by calculating the time taken to run the algorithm in 
the worst-case scenario. 
 
When analyzing the time complexity of an algorithm we may find three cases: best-case, average-
case and worst-case.  
 
Example: Suppose we have the following unsorted list [1, 5, 3, 9, 2, 4, 6, 7, 8] and we need to find 
the index of a value in this list using linear search. 
 
best-case: this is the complexity of solving the problem for the best input. In our example, the best 
case would be to search for the value 1. Since this is the first value of the list, it would be found in the 
first iteration. 
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average-case: this is the average complexity of solving the problem. This complexity is defined with 
respect to the distribution of the values in the input data. Maybe this is not the best example but, based 
on our sample, we could say that the average-case would be when we’re searching for some value in 
the “middle” of the list, for example, the value 2. 
 
worst-case: this is the complexity of solving the problem for the worst input of size n. In our example, 
the worst-case would be to search for the value 8, which is the last element from the list. 
 
To quantify the Time Complexity, Big-O notation is used. 
 
5.8.1. Big-O Notation 
 
Big-O notation, sometimes called “asymptotic notation”, is a mathematical notation that 
describes the limiting behavior of a function when the argument tends towards a particular value 

or infinity. 
 
Big-O notation is used to classify algorithms according to how their run time or space requirements 
grow as the input size grows. The letter O is used because the growth rate of a function is also referred 
to as the order of the function or order of the program. We will always refer order of the function 
in its worst-case. 
 
A list of some common asymptotic notations is mentioned below, 

Complexity Class 
 

Name 
 

O(1) 
 

constant 
 

O(logn) 
 

logarithmic 
 

O(n) 
 

linear 
 

Ο(n log n) 
 

Linear logarithmic 
 

Ο(n2) 
 
 

quadratic 
 

Ο(n3) 
 
 

cubic 
 

O(2n) exponential 
 
 
Example 1: Linear Search- O(n) 
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• A linear search is the most basic kind of search that is performed. A linear or sequential 
search, is done when you inspect each item in a list one by one from one end to the other to 
find a match for what you are searching for. 

• Let’s see the example I stated above once again to understand the Linear Search 
• We have a list which consists of integers and we have to check whether the number given by 

the user is present in that list or not. 
  l = [1,2,3,6,4,9,10,12] 
  k = 12 

The simple code for this is 

l = [1,2,3,6,4,9,10,12] 
k = 12 
for i in range(0, len(l)): 
  if l[i] == k: 
    print("Yes") 
    break 

• Here, the worst-case for this algorithm is to check the number which is present in the last 
element of the given list. So, if we go by the above program, first it’ll start with index 0 and 
check whether that element in the list is equal to k or not, i.e, one operation and we have to 
check for every element in the list for worst-case scenario. 

• The Time Complexity of the above program is O(n). 

Example 2: O(n2) 
 
The complexity of an algorithm is said to be quadratic when the steps required to execute an algorithm 
are a quadratic function of the number of items in the input. Quadratic complexity is denoted as 
O(n^2). Take a look at the following example to see a function with quadratic complexity: 
 
def quadratic_algo(items): 
    for item in items: 
        for item2 in items: 
            print(item, ' ' ,item) 
 
quadratic_algo([4, 5, 6, 8]) 
 
In this example, we have an outer loop that iterates through all the items in the input list and then a 
nested inner loop, which again iterates through all the items in the input list. The total number of steps 
performed is n * n, where n is the number of items in the input array. 
 
Example 3: Merge Sort - O(n*logn). 
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def mergeSort(alist): 
    print("Splitting ",alist) 
    if len(alist)>1: 
        mid = len(alist)//2 
        lefthalf = alist[:mid] 
        righthalf = alist[mid:] 
 
        mergeSort(lefthalf) 
        mergeSort(righthalf) 
 
        i=0 
        j=0 
        k=0 
        while i < len(lefthalf) and j < len(righthalf): 
            if lefthalf[i] <= righthalf[j]: 
                alist[k]=lefthalf[i] 
                i=i+1 
            else: 
                alist[k]=righthalf[j] 
                j=j+1 
            k=k+1 
 
        while i < len(lefthalf): 
            alist[k]=lefthalf[i] 
            i=i+1 
            k=k+1 
 
        while j < len(righthalf): 
            alist[k]=righthalf[j] 
            j=j+1 
            k=k+1 
 
alist = input('Enter the list of numbers: ').split() 
alist = [int(x)for x in alist] 
mergeSort(alist) 
print('Sorted list: ', end='') 
print(alist) 
 
 
 
Output:  
Enter the list of numbers: 56 48 10 2 40 
 
Sorted list: [2, 10, 40, 48, 56] 
 
 
The Time Complexity for the above program is O(n*logn). 
 
Example 4: Insertion sort- O(n2) 
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def insertionSort(nlist): 
   for index in range(1,len(nlist)): 
     currentvalue = nlist[index] 
     position = index 
     while position>0 and nlist[position-1]>currentvalue: 
         nlist[position]=nlist[position-1] 
         position = position-1 
     nlist[position]=currentvalue 
 
nlist = input('Enter the list of numbers: ').split() 
nlist = [int(x)for x in nlist] 
insertionSort(nlist) 
print('Sorted list: ', end='') 
print(nlist) 
 
Output:  
Enter the list of numbers: 4 5 6 3 1  
Sorted list: [1, 3, 4, 5, 6] 
 
The time complexity of insertion sort is O(n2) 
 
5.9. Simple Case Studies based on Python 
Binary Search 
 

• Binary search is a searching algorithm that works efficiently with a sorted list. 
• If a list is already sorted, then the search for an element in the list can be made faster by using 

‘divide and conquer’ technique.  
• The list is divided into two halves separated by the middle element. 
• The binary search follows the following steps: 

Step 1: The middle element is tested for the required element. If found, then its 
position is reported else the following test is made. 
Step 2: If search element ‘val’< ‘middle’ element, search the left half of the list, else 
search the right half of the list. 
Step 3: Repeat step 1 and 2 on the selected half until the entry is found otherwise 
report failure. 

This search is called binary because in each iteration, the given list is divided into two parts. Then 
the search becomes limited to half the size of the list to be searched. 

 
 
Step 1: 
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# Iterative Binary Search Function method Python Implementation   
# It returns index of n in given list1 if present,    
# else returns -1    
def binary_search(list1, n):   
    low = 0   
    high = len(list1) - 1   
    mid = 0   
   
    while low <= high:   
        # for get integer result    
        mid = (high + low) // 2   
   
        # Check if n is present at mid    
        if list1[mid] < n:   
            low = mid + 1   
   
        # If n is greater, compare to the right of mid    
        elif list1[mid] > n:   
            high = mid - 1   
   
        # If n is smaller, compared to the left of mid   
        else:   
            return mid   
   
            # element was not present in the list, return -1   
    return -1   
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# Initial list1   
list1 = input('Enter the list of numbers: ').split() 
list1 = [int(x)for x in list1] 
n=int(input(‘enter the search element’)) 
 
 
# Function call    
result = binary_search(list1, n)   
  
if result != -1:   
    print("Element is present at index", str(result))   
else:   
    print("Element is not present in list1")   
Output: 
Enter the list of numbers: 10 3 2 13 5 6 
enter the search element 2 
2 

Element is present at index 2 
 

 
Binary Search Complexity 
Time Complexities 

• Best case complexity: O(1) 
• Average case complexity: O(log n) 
• Worst case complexity: O(log n) 

Space Complexity 
The space complexity of the binary search is O(1). 
 
 
Binary Search Applications 

• In libraries of Java, .Net, C++ STL 
• While debugging, the binary search is used to pinpoint the place where the error happens. 

 
 
5.10. Common elements in list  
	
Given two lists, print all the common elements of two lists.  
Input : list1 = [1, 2, 3, 4, 5]  

        list2 = [5, 6, 7, 8, 9] 

Output : {5} 

Explanation: The common elements of  

both the lists are 3 and 4  
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Input : list1 = [1, 2, 3, 4, 5]  

        list2 = [6, 7, 8, 9] 

Output : No common elements  

Explanation: They do not have any  

elements in common in between them 

  

 
Method 1:Using Set’s & property 

Convert the lists to sets and then print set1&set2. set1&set2 returns the common elements set, 
where set1 is the list1 and set2 is the list2.  
Below is the Python3 implementation of the above approach:  
 
# Python program to find the common elements 
# in two lists 
def common_member(a, b): 
    a_set = set(a) 
    b_set = set(b) 
 
    if (a_set & b_set): 
        print(a_set & b_set) 
    else: 
        print("No common elements") 
a = [1, 2, 3, 4, 5] 
b = [5, 6, 7, 8, 9] 
common_member(a, b) 
   
a = [1, 2, 3, 4, 5] 
b = [6, 7, 8, 9] 
common_member(a, b) 
 
Output:  
{5} 

No common elements 

  

Method 2:Using Set’s intersection property 
 
Convert the list to set by conversion. Use the intersection function to check if both sets have any 
elements in common. If they have many elements in common, then print the intersection of both 
sets.  
Below is the Python3 implementation of the above approach:  
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# Python program to find common elements in 
# both sets using intersection function in 
# sets 
# function 
def common_member(a, b):    
    a_set = set(a) 
    b_set = set(b) 
      
    # check length 
    if len(a_set.intersection(b_set)) > 0: 
        return(a_set.intersection(b_set))  
    else: 
        return("no common elements") 
a = [1, 2, 3, 4, 5] 
b = [5, 6, 7, 8, 9] 
print(common_member(a, b)) 
   
a =[1, 2, 3, 4, 5] 
b =[6, 7, 8, 9] 
print(common_member(a, b)) 

Output:  
{5} 

No common elements 

 
5.11. Hash Table 
The Hash table data structure stores elements in key-value pairs where 

• Key- unique integer that is used for indexing the values 
• Value - data that are associated with keys. 

 
Figure: Key and Value in Hash table 

 
• A hash table is a form of list where elements are accessed by a keyword rather than an 

index number. 
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Figure: An ideal hash table 

 

In Python, the Dictionary data types represent the implementation of hash tables. The Keys in the 
dictionary satisfy the following requirements. 

• The keys of the dictionary are hashable i.e. the are generated by hashing function which 
generates unique result for each unique value supplied to the hash function. 

• The order of data elements in a dictionary is not fixed. 

 
5.12. DICTIONARY 
 

• Python dictionary is an unordered collection of items. Each item of a dictionary has 
a key/value pair. 

• Dictionaries are optimized to retrieve values when the key is known. 
 
Creating Python Dictionary 

• Creating a dictionary is as simple as placing items inside curly braces {} separated by 
commas. 

• An item has a key and a corresponding value that is expressed as a pair (key: value). 
• While the values can be of any data type and can repeat, keys must be of immutable type 

(string, number or tuple with immutable elements) and must be unique. 
# empty dictionary 
my_dict = {} 
 
# dictionary with integer keys 
my_dict = {1: 'apple', 2: 'ball'} 
 
# dictionary with mixed keys 
my_dict = {'name': 'John', 1: [2, 4, 3]} 
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# using dict() 
my_dict = dict({1:'apple', 2:'ball'}) 
 
# from sequence having each item as a pair 
my_dict = dict([(1,'apple'), (2,'ball')]) 
 
As you can see from above, we can also create a dictionary using the built-in dict()function. 
 
 
5.12.1. Accessing Elements from Dictionary 

• While indexing is used with other data types to access values, a dictionary uses keys. Keys 
can be used either inside square brackets [] or with the get() method. 

• If we use the square brackets [], KeyError is raised in case a key is not found in the 
dictionary. On the other hand, the get() method returns None if the key is not found. 

 
# get vs [] for retrieving elements 
my_dict = {'name': 'Jack', 'age': 26} 
 
# Output: Jack 
print(my_dict['name']) 
 
# Output: 26 
print(my_dict.get('age')) 
 
# Trying to access keys which doesn't exist throws error 
# Output None 
print(my_dict.get('address')) 
 
# KeyError 
print(my_dict['address']) 
 
Output 
Jack 
26 
None 
Traceback (most recent call last): 
  File "<string>", line 15, in <module> 
    print(my_dict['address']) 
KeyError: 'address' 
 
5.12.2. Changing and Adding Dictionary elements 

• Dictionaries are mutable. We can add new items or change the value of existing items using 
an assignment operator. 
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• If the key is already present, then the existing value gets updated. In case the key is not 
present, a new (key: value) pair is added to the dictionary. 

# Changing and adding Dictionary Elements 
my_dict = {'name': 'Jack', 'age': 26} 
 
# update value 
my_dict['age'] = 27 
 
#Output: {'age': 27, 'name': 'Jack'} 
print(my_dict) 
 
# add item 
my_dict['address'] = 'Downtown' 
 
# Output: {'address': 'Downtown', 'age': 27, 'name': 'Jack'} 
print(my_dict) 
 
Output 
{'name': 'Jack', 'age': 27} 
{'name': 'Jack', 'age': 27, 'address': 'Downtown'} 
 
5.12.3. Removing elements from Dictionary 
 

• We can remove a particular item in a dictionary by using the pop() method. This method 
removes an item with the provided key and returns the value. 

• The popitem() method can be used to remove and return an arbitrary (key, value)item pair 
from the dictionary. All the items can be removed at once, using the clear() method. 

• We can also use the del keyword to remove individual items or the entire dictionary itself. 
# Removing elements from a dictionary 
 
# create a dictionary 
squares = {1: 1, 2: 4, 3: 9, 4: 16, 5: 25} 
 
# remove a particular item, returns its value 
# Output: 16 
print(squares.pop(4)) 
 
# Output: {1: 1, 2: 4, 3: 9, 5: 25} 
print(squares) 
 
# remove an arbitrary item, return (key,value) 
# Output: (5, 25) 
print(squares.popitem()) 
 
# Output: {1: 1, 2: 4, 3: 9} 
print(squares) 
 



 296 

# remove all items 
squares.clear() 
 
# Output: {} 
print(squares) 
 
# delete the dictionary itself 
del squares 
 
# Throws Error 
print(squares) 
 
Output 
16 
{1: 1, 2: 4, 3: 9, 5: 25} 
(5, 25) 
{1: 1, 2: 4, 3: 9} 
{} 
Traceback (most recent call last): 
  File "<string>", line 30, in <module> 
    print(squares) 
NameError: name 'squares' is not defined 
 
5.12.4. Python Dictionary Methods 
Methods that are available with a dictionary are tabulated below. Some of them have already been 
used in the above examples. 
Method Description 
clear() Removes all items from the dictionary. 
copy() Returns a shallow copy of the dictionary. 
fromkeys(seq[, 
v]) 

Returns a new dictionary with keys from seq and value equal to v 
(defaults to None). 

get(key[,d]) Returns the value of the key. If the key does not exist, returns d 
(defaults to None). 

items() Return a new object of the dictionary's items in (key, value) format. 
keys() Returns a new object of the dictionary's keys. 
pop(key[,d]) Removes the item with the key and returns its value or d if key is not 

found. If d is not provided and the key is not found, it raises KeyError. 
popitem() Removes and returns an arbitrary item (key, value). Raises KeyError if 

the dictionary is empty. 
setdefault(key[,d]) Returns the corresponding value if the key is in the dictionary. If not, 

inserts the key with a value of d and returns d (defaults to None). 
update([other]) Updates the dictionary with the key/value pairs from other, 

overwriting existing keys. 
values() Returns a new object of the dictionary's values 

 
Here are a few example use cases of these methods. 
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# Dictionary Methods 
marks = {}.fromkeys(['Math', 'English', 'Science'], 0) 
 
# Output: {'English': 0, 'Math': 0, 'Science': 0} 
print(marks) 
 
for item in marks.items(): 
    print(item) 
 
# Output: ['English', 'Math', 'Science'] 
print(list(sorted(marks.keys()))) 
 
Output 
{'Math': 0, 'English': 0, 'Science': 0} 
('Math', 0) 
('English', 0) 
('Science', 0) 
['English', 'Math', 'Science'] 
 
5.12.5. Python Dictionary Comprehension 

• Dictionary comprehension is an elegant and concise way to create a new dictionary from an 
iterable in Python. 

• Dictionary comprehension consists of an expression pair (key: value) followed by 
a for statement inside curly braces {}. 

• Here is an example to make a dictionary with each item being a pair of a number and its 
square. 

# Dictionary Comprehension 
squares = {x: x*x for x in range(6)} 
 
print(squares) 
 
Output 
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25} 
 
This code is equivalent to 
squares = {} 
for x in range(6): 
    squares[x] = x*x 
print(squares) 
 
Output 
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25} 
 
A dictionary comprehension can optionally contain more for or if statements. 
An optional if statement can filter out items to form the new dictionary. 
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Here are some examples to make a dictionary with only odd items. 
# Dictionary Comprehension with if conditional 
odd_squares = {x: x*x for x in range(11) if x % 2 == 1} 
 
print(odd_squares) 
 
Output 
{1: 1, 3: 9, 5: 25, 7: 49, 9: 81} 
 
To learn more dictionary comprehensions, visit Python Dictionary Comprehension. 
 
5.12.6. Other Dictionary Operations 
 
Dictionary Membership Test 
 
We can test if a key is in a dictionary or not using the keyword in. Notice that the membership test 
is only for the keys and not for the values. 
 
# Membership Test for Dictionary Keys 
squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81} 
 
# Output: True 
print(1 in squares) 
 
# Output: True 
print(2 not in squares) 
 
# membership tests for key only not value 
# Output: False 
print(49 in squares) 
Output 
True 
True 
False 
 
Iterating Through a Dictionary 
 
We can iterate through each key in a dictionary using a for loop. 
 
# Iterating through a Dictionary 
squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81} 
for i in squares: 
    print(squares[i]) 
Output 
1 
9 
25 
49 
81 
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Dictionary Built-in Functions 
Built-in functions like all(), any(), len(), cmp(), sorted(), etc. are commonly used with dictionaries 
to perform different tasks. 
Function Description 
all() Return True if all keys of the dictionary are True (or if the dictionary is 

empty). 
any() Return True if any key of the dictionary is true. If the dictionary is empty, 

return False. 
len() Return the length (the number of items) in the dictionary. 
cmp() Compares items of two dictionaries. (Not available in Python 3) 
sorted() Return a new sorted list of keys in the dictionary. 

 
Here are some examples that use built-in functions to work with a dictionary. 
# Dictionary Built-in Functions 
squares = {0: 0, 1: 1, 3: 9, 5: 25, 7: 49, 9: 81} 
 
# Output: False 
print(all(squares)) 
 
# Output: True 
print(any(squares)) 
 
# Output: 6 
print(len(squares)) 
 
# Output: [0, 1, 3, 5, 7, 9] 
print(sorted(squares)) 
Output 
False 
True 
6 
[0, 1, 3, 5, 7, 9] 
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QUESTION BANK 

 
Part-A 

Q.No Questions Competence  BT Level 

1.  Define Data structure Remember BTL 1 

2. List the types of built-in data structures Understand BTL 2 

3. Define function and write the syntax of function? Remember BTL 1 

4. Define function call Remember BTL 1 

5. Write a python program to find even or odd  using function Apply BTL 3 

6. Define pandas Remember BTL 1 

7. Interpret Dataframe Understand BTL 2 

8. Elaborate numpy Understand BTL 2 

9. How to load data in pandas? Understand BTL 2 

10. 
Write about the libraries used for pre-processing and array 
operations? Understand 

BTL 2 

11. List various plots using matplotlib Understand BTL 2 

12.  Define matplotlib and How to import matplotlib Understand BTL 2 

13. Interpret dictionary Understand BTL 2 

14. State the use of hash table Understand BTL 2 

15. Define computational complexity Understand BTL 2 

16. Elaborate time complexity Understand BTL 2 

17. Write the time complexity of Linear search with an 
example program. Analysis BTL 4 

18. State the operations using Numpy Understand BTL 2 

19. Define series  Remember BTL 1 
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20. How to remove an element from dictionary? Analysis BTL 4 

PART B 

Q.No Questions Competence BT Level 

1. Explain about the python function with an example Analysis BTL 4 

2. Explain the various operations performed using numpy  Analysis BTL 4 

3. Explain about Dataframe in pandas Analysis BTL 4 

4. Explain about NumPy – Array Manipulation Analysis BTL 4 

5. Write a python code to create 1D and 2D array using 
numpy Analysis BTL 4 

6. Explain about the operations performed using Numpy- 
Linear Algebra with an example program Analysis BTL 4 

7. Explain about the basic plots in Matplotlib  Analysis BTL 4 

8. 
Explain about python pandas data structure with an 
example Analysis 

BTL 4 

9. Discuss about the different problems based on 
computational complexity Analysis BTL 4 

10. Write the python program to find the binary search  Apply BTL 3 

11. Write the python program to find common elements in 
python list using two different methods Apply BTL 3 

12. Write a python code to add and remove elements from 
dictionary? Apply BTL 3 
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