@)

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COMPUTER ARCHITECTURE AND ORGANIZATION
(SCSA1402)

UNIT — I - Central Processing Unit — SCSA1402




UNIT.1 INTRODUCTION

Central Processing Unit - Introduction - General Register Organization - Stack organization --
Basic computer Organization - Computer Registers - Computer Instructions - Instruction Cycle.
Arithmetic, Logic, Shift Microoperations- Arithmetic Logic Shift Unit -Example Architectures:
MIPS, Power PC, RISC, CISC

Central Processing Unit

The part of the computer that performs the bulk of data-processing operations is called the central

processing unit CPU. The CPU is made up of three major parts, as shown in Fig.1

Register set

- [ T 1

Arithmetic
logic unit
(ALU)

Fig 1. Major components of CPU.

e The register set stores intermediate data used during the execution of the instructions.

e The arithmetic logic unit (ALU) performs the required microoperations for executing the
instructions.

e The control unit supervises the transfer of information among the registers and instructs

the ALU as to which operation to perform.

General Register Organization

When a large number of registers are included in the CPU, it is most efficient to connect
them through a common bus system. The registers communicate with each other not only for direct

data transfers, but also while performing various microoperations.



Hence it is necessary to provide a common unit that can perform all the arithmetic, logic,
and shift microoperations in the processor. A bus organization for seven CPU registers is shown

in Fig.2.

e The output of each register is connected to two multiplexers (MUX) to form the two buses A
and B.
e The selection lines in each multiplexer select one register or the input data for the particular

bus. The A and B buses form the inputs to a common arithmetic logic unit (ALU).

g

e

|

Clock
i
4

SELD

Fig 2 Register set with common ALU.



e The operation selected in the ALU determines the arithmetic or logic microoperation that is to

be performed. The result of the microoperation is available for output data and also goes into

the inputs of all the registers. The register that receives the information from the output bus is

selected by a decoder. The decoder activates one of the register load inputs, thus providing a

transfer path between the data in the output bus and the inputs of the selected destination

register.

e The control unit that operates the CPU bus system directs the information flow through the

registers and ALU by selecting the various components in the system.

e For example, to perform the operation

1.
2. MUX B selector (SELB): to place the content o f R 3 into bus B.
3.
4

R 1<--R2+R3
MUX A selector (SELA): to place the content of R2 into bus A.

ALU operation selector (OPR): to provide the arithmetic addition A + B.

Decoder destination selector (SELD): to transfer the content of the output bus into R 1.

The four control selection variables are generated 1 n the control unit and must be available at the

beginning of a clock cycle.

Control Word

There are 14 binary selection inputs in the unit, and their combined value specifies a control

word. The 14-bit control word is defined in Fig. 4.

3 3 3 5
SELA | SELB8 | SEAD DFR

Fig 4. Control Word Format

TABLE 1 Encoding of Register Selection Fields



Binary
Code SELA SELB SELD

000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
on R3 R3 R3
100 R4 R4 R4
101 R5 RS R5
110 R6 R6 R6
111 R7 R7 R7

The encoding of the register selections is specified in Table 1. The 3-bit binary code listed
in the first column of the table specifies the binary code for each of the three fields. The register
selected by fields SELA, SELB, and SELD is the one whose decimal number is equivalent to the
binary number in the code. When SELA or SELB is 000, the corresponding multiplexer selects
the external input data. When SELD = 000, no destination register is selected but the contents of
the output.

The ALU provides arithmetic and logic operations. The shifter may be placed in the input
of the ALU to provide a preshift capability, or at the output of the ALU to provide postshifting
capability. In some cases, the shift operations are included with the ALU. The function table for
this ALU is listed in Fig.5. The encoding of the ALU operations for the CPU is specified in Table.

The OPR field has five bits and each operation is designated with a symbolic name.

OPR

Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A - B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR Aand B OR
01100 XORAandB XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Fig.5 Encoding of ALU Operations

Stack Organization:



A stack is a storage device that stores information in such a manner that the item stored
last is the first item retrieved. The operation of a stack can be compared to a stack of trays. The
last tray placed on top of the stack is the first to be taken off. The register that holds the address
for the stack is called a stack pointer (SP) because its value always points at the top item in the
stack. The two operations of a stack are the insertion and deletion of items. The operation of

insertion is called push. The operation of deletion is called pop.
Register Stack

A stack can be placed in a portion of a large memory or it can be organized as a collection
of a finite number of memory words or registers. Figure 6 shows the organization of a 64-word
register stack. The stack pointer register SP contains a binary number whose value is equal to the
address of the word that is currently on top of the stack. Three items are placed in the stack: A, B,
and C, in that order. Item C is on top of the stack so that the content of SP is now 3. To remove
the top item, the stack is popped by reading the memory word at address 3 and decrementing the
content of SP. Item B is now on top of the stack since SP holds address 2. To insert a new item,
the stack is pushed by incrementing SP and writing a word in the next-higher location in the stack.
Note that item C has been read out but not physically removed. This does not matter because when

the stack is pushed, a new item is written in its place.

The one-bit register FULL is set to 1 when the stack is full, and the one-bit register EMTY
is set to 1 when the stack is empty of items. DR is the data register that holds the binary data to be

written into or read out of the stack.

Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so that SP points
to the word at address 0 and the stack is marked empty and not full. If the stack is not full (if FULL
= 0), a new item is inserted with a push operation. The push operation is implemented with the

following sequence of microoperations:
DR <--M [SP] Read item from the top of stack
SP <--SP—-1  Decrement stack pointer
If (SP = 0) then (EMTY <--1) Check if stack is empty

FULL <--0 Mark the stack not full



Address

63

g

1]
I
w

[

L ox |

Fig.6 Block diagram of a 64 word stack.

The top item is read from the stack into DR. The stack pointer is then decremented. If its
value reaches zero, the stack is empty, so EMTY is set to 1. This condition is reached if the item
read was in location L Once this item is read out, SP is decremented and reaches the value 0, which

is the initial value of SP.
Memory Stack:

A stack can exist as a stand-alone unit as in Fig. 6 or can be implemented in a random-
access memory attached to a CPU. The implementation of a stack in the CPU is done by assigning
a portion of memory to a stack operation and using a processor register as a stack pointer. Fig 7
shows a portion of computer memory partitioned into three segments: program, data, and stack.
The program counter PC points at the address of the next instruction in the program. The address
register AR points at an array of data. The stack pointer SP points at the top of the stack. The three
registers are connected to a common address bus, and either one can provide an address for
memory. PC is used during the fetch phase to read an instruction. AR is used during the execute
phase to read an operand. SP is used to push or pop items into or from the stack. As shown in
Fig.7, the initial value of SP is 4001 and the stack grows with decreasing addresses. Thus the first
item stored in the stack is at address 4000, the second item is stored at address 3999, and the last

address that can be used for the stack is 3000. No provisions are available for stack limit checks.



We assume that the items in the stack communicate with a data register DR. A new item is

inserted with the push operation as follows

SP <-SP-1
M [SP] <-DR
Address
'
1000
2000
3000
997
908
9
2000
4001

Fig .7 Computer memory with Program, data, and sack segments

The stack pointer is decremented so that it points at the address of the next word. A memory write
operation inserts the word from DR into the top of the stack. A new item is deleted with a pop

operation as follows:
DR <-M [SP]
SP <-SP + 1

Instruction Formats:



The format of an instruction is usually depicted in a rectangular box symbolizing the bits
of the instruction as they appear in memory words or in a control register. The bits of the instruction

are divided into groups called fields. The most common fields found in instruction formats are:

1. An operation code field that specifies the operation to be performed.
2. An address field that designates a memory address or a processor register.

3. A mode field that specifies the way the operand or the effective address is determined.

The operation code field of an instruction is a group of bits that define various processor

operations, such as add, subtract, complement, and shift.
Three-Address Instructions

Computers with three-address instruction formats can use each address field to specify
either a processor register or a memory operand. The program in assembly language that
evaluates X = (A + B) * (C + D) is shown below, together with comments that explain the

register transfer operation of each instruction.

ADD R1,A,B R1<-M[A]+M [B]
ADD R2,C,D R2<-M[C]+M [D]
MUL X,R1,R2 MI[X]<-R1+R2

It is assumed that the computer has two processor registers, R 1 and R2. The symbol M [A]
denotes the operand at memory address symbolized by A. The advantage of the three-address
format is that it results in short programs when evaluating arithmetic expressions. The
disadvantage is that the binary-coded instructions require too many bits to specify three

addresses.
Two-Address Instructions

Two-address instructions are the most common in commercial computers. Here again each

address field can specify either a processor register or a memory word. The program to evaluate

X=(A+B)+(C+D)is as follows:
MOV R1,A R1<-MJ[A]

ADD R1,B R1<-R1+M|[B]



MOV R2,C R2<-MIC]
ADD R2,D R2<-R2+M|[D]
MUL RI,R2 R1<-R1+R2
MOV X,R1 M[X]<-R1

The MOV instruction moves or transfers the operands t o and from memory and processor
registers. The first symbol listed in an instruction is assumed to be both a source and the destination

where the result of the operation is transferred.
One-Address Instructions

One-address instructions use an implied accumulator (AC) register for all data
manipulation. For multiplication and division there is a need for a second register. The program to

evaluate

X=(A+B)*(C+D)is

LOAD A AC<-MIA]

A DD B AC<-AC+M|[B]

STORE T MI[T]<-AC

LOAD C AC<-MI[(C]

ADD D AC<-AC+M|[D]

MUL T AC<-AC-MIT]

STORE X M[X]<-AC
Zero-Address Instructions

A stack-organized computer does not use an address field for the instructions ADD and
MUL. The PUSH and POP instructions, however, need an address field to specify the operand that
communicates with the stack. The following program shows how X = (A + B) * (C + D) will be

written for a stack organized computer. (TOS stands for top of stack.)

PUSH A TOS<-A



PUSH B TOS<-B

ADD TOS< (A+B)
PUSH C TOS<C

PUSH D TOS<D

ADD TOS<-(C+D)

MUL TOS<-(C+D)=(A+B)
POP X M[X]<-TOS

Computer Registers

The memory unit has a capacity of 4096 words and each word contains 16 bits. Twelve
bits of an instruction word are needed to specity the address of an operand. This leaves three bits
for the operation part of the instruction and a bit to specify a direct or indirect address. The data
register (DR) holds the operand read from memory. The accumulator (AC) register is a general
purpose processing register. The instruction read from memory is placed in the instruction register

(IR). The temporary register (TR) is used for holding temporary data during the processing.

The memory address register (AR) has 12 bits since this is the width of a memory address.
The program counter (PC) also has 12 bits and it holds the address of the next instruction to be
read from memory after the current instruction is executed. The PC goes through a counting
sequence and causes the computer to read sequential instructions previously stored in memory.
Instruction words are read and executed in sequence unless a branch instruction is encountered. A
branch instruction calls for a transfer to a nonconsecutive instruction in the program. The address
part of a branch instruction is transferred to PC to become the address of the next instruction. To
read an instruction, the content of PC is taken as the address for memory and a memory read cycle
is initiated. PC is then incremented by one, so it holds the address of the next instruction in
sequence. Two registers are used for input and output. The input register (INPR) receives an 8-bit
character from an input device. The output register (OUTR) holds an 8-bit character for an output

device.



Register Number

symbol  of bits Register name Function

DR 16 Data register Holds memory operand

AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register  Holds instruction code

C 12 Program counter Holds address of instruction
TR 16 Temporary register  Holds temporary data
INPR 8 Input register Holds input character
OUTR 8 Output register Holds output character

Fig .8 List of Registers for the Basic Computer

1" 0

| e |

1 0

| ar |

Memory
4096 words

1s 0 16 bits per word
| IR |
15 0 15 0
[ R | | DR |
7 0 7 0 15 0
| oure | | mwer | | AC |

Figure 9. Basic computer registers and memory.
Computer Instructions:

The basic computer has three instruction code formats, as shown in Fig. 10. Each format
has 16 bits. The operation code (opcode) part of the instruction contains three bits and the

meaning of the remaining 13 bits depends on the operation code encountered.

e A memory-reference instruction uses 12 bits to specify an address and one bit to specity
the addressing mode I. I is equal to O for direct address and to 1 for indirect address. The
register reference instructions are recognized by the operation code 111 with a 0 in the

leftmost bit (bit 15) of the instruction.



e A register-reference instruction specifies an operation on or a test of the AC register. An
operand from memory is not needed; therefore, the other 12 bits are used to specify the
operation or test to be executed.

¢ A input-output instruction does not need a reference to memory and is recognized by the
operation code I1l with a 1 in the leftmost bit of the instruction. The remaining 12 bits are

used to specify the type of input-output operation or test performed.

The type of instruction is recognized by the computer control from the four bits in positions
12 through 15 of the instruction. If the three opcode bits in positions 12 through 14 are not equal
to 111, the instruction is a memory-reference type and the bit in position 15 is taken as the
addressing mode 1. If the 3-bit opcode is equal to 111, control then inspects the bit in position 15.
If this bit is 0, the instruction is a register-reference type. If the bit is 1, the instruction is an input
-output type. Note that the bit in position 15 of the instruction code is designated by the symbol I

but is not used as a mode bit when the operation code is equal to 111.

15 14 12 11 0
I Opcode Address (Opcode = 000 through 110)

(a) Memory - reference instruction

15 12 11 0
0O 1 1 1 Register operation (Opcode =111, [=0)

(b) Register - reference instruction

15 12 11 0
[ | I/0 operation (Opcode =111, I=1)

(c) Input - output instruction

Fig 10. Basic computer instruction formats.



Symbol [=0 I=1 Description

AND ox Sxxx AND memory woard to AC
ADD Dox 9ox Add memory word to AC

LDA Jox Axx Load memory word to AC
STA Jox  Buoxx  Store content of AC in memory
BUN 4ox Cox Branch unconditionally

BSA Sox  Dxxx  Branch and save return addres
ISZ Goxx  Exxx  Increment and skip if zero
CLA 7800 Clear AC

CLE 7400 Clear E

CMA TX0 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ourt F400 OQutput character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION Fo80 Interrupt on

10F F40 Interrupt off

Fig 11.Basic Computer Instructions

Stack Organization:

Stack is a storage device that stores information in a way that the item is stored last is the first to
be retrieved (LIFO). Stack in computers is actually a memory unit with address register (stack

pointer SP) that can count only. SP value always points at top item in stack.
The two operations done on stack are,

PUSH (Push Down), operation of insertion of items into stack

POP (Pop Up), operation of deletion item from stack
Those operation are simulated by INC and DEC stack register (SP).

1. Register stack:



A stand alone unit that consists of collection of finite number of registers. The next
example shows 64 location stack unit with SP that stores address of the word that is
currently on the top of stack.

stack Address

Flags 63
FULL | |EMPTY
Stack pointer 4
6 bits B 2
A 1
0

- —

Note that 3 items are placed in the stack A, B, and C. Item C is in top of stack so that SP
holds 3 which the address of item C. To remove top item from stack (popping stack) we
start by reading content of address 3 and decrementing the content of SP. Item B is now in
top of stack holding address 2.

To insert new item (pushing the stack) we start by incrementing SP then writing a new
word where SP now points to (top of stack).

Note that in 64-word stack we need to have SP of 6 bits only (from 000000 to 111111). If
111111 is reached then at next push SP will be 000000, that is when the stack is FULL.
Similarly, when SP is 000001 then at next pop SP will go to 000000 that is when the stack
is EMTY.

Initially, SP =0, EMPTY = 1, FULL =0

Procedures for pushing stack

SP<-SP+1

MJ[SP] <- DR

IF (SP=0) THEN (FULL = 1)

EMTY <-0

Note that:



1
2
3.
4

5.

Always we use DR to pass word into stack

M[SP] memory word specified by address currently in SP

First item stored in stack is at address 1

Last item stored in stack is at address 0. That is FULL =1

Any push to stack means EMTY =0

2. Memory Stack :

>

YV V V V V

Stack can be implemented in RAM memory attached to CPU. Only by assigning
special part of it for stack operations.

Next figure shows of main memory divided into program, data, and stack.

PC points to next instruction in instruction part

AR points to array of data of operands

SP points to top of stack All are connected to common address bus

Stack grows (pushed) with decreasing address and empties (pops) with increasing
address.

New item is inserted with push operation by decrementing SP then a write to SP
address is done

SP <-SP -1

M [SP]<- DR

Last item is removed from stack with pop operation by removing item by reading
from memory location addressed by SP then SP is incremented.

DR <- M [SP]

SP <- SP +1



1000

Program

E—’ (instructions)
Data

E—’ (operands)

SP

;| 3000

3997
3998
3999
4000
4001

tack with a Stack grows
1ter In this direction

» As shown in figure initial value of SP is 4001 and first item when pushed in stack stores at
address 4000 and second one stores at address 3999. The last address pushed into will be
3000. (See limitation danger?)

» Most computers are not supported by hardware to sense stack overflow and underflow. But
can be implemented by saving the 2 limits in 2 registers. After each push or pop the SP is
compared with the limit to see if stack has reached its limits. So must be taking care of
using software.

» Always in this way we load SP with bottom address of stack portion of memory
Reverse Polish Notation:
» Very useful notation to utilize stacks to evaluate arithmetic expressions.
We write in infix notation such as:
A*B + C*D

We compute A*B, store product, compute C*D, then sum two products. So we have to scam back

and forth to see which operation comes first.



The 3 notations to evaluate expressions
1. A + B Infix notation
2. +AB Prefix notation (Polish notation)
3. AB+ Postfix notation (reverse Polish

Reverse Polish Notation is in a form suitable for stack manipulation. Starts by scanning expression

from left to right. When operator is found then perform
Instruction Format:

Operation with 2 operands in left of operator and replace result place of 2 operands and operator.

Then you can continue this until you reach final answer.

Example

Expression A*B + C*D is written in RPN as AB*CD*+. And will computed as

(A*B) CD *+
(A*B)(C*D) +

Example

Convert infix notation expression (A + B)*(C * (D + E) + F) to RPN?

AB+ DE+ C * F+*,

Will be computed as

(A+B) (D+tE)C*F +*

» Reverse polish notation combined with stack comprised of registers is most efficient way
to evaluate expression. Stacks are good for handling long and complex problems involving
chain calculations. But need first to convert arithmetic expressions into parenthesis-free
reverse polish notation.

» This procedure is employed in some scientific calculators and some computers.



Example
Convert (3*4) (5*%6) to RPN

34%56%+

(3*4)+(5*6) => 34*56*+

—| 6
-1 4 -1 5 5] =130
g = 2 3 ] —L12 (12 12 ) 121 —142
3 4 ; 5 6 . -

The Instruction coding fields in today’s computers follow the next format

1. Operation code field to specity operation
2. Address field that specifies operand address field or register
3. Mode field to specify effective address

In general, most processors are organized in one of 3 ways

» Single register (Accumulator) organization
e Basic Computer is a good example
e Accumulator is the only general-purpose register
» General register organization
e Used by most modern computer processors
e Any ofthe registers can be used as the source or destination for computer operations
» Stack organization
e All operations are done using the hardware stack
e For example, an OR instruction will pop the two top elements from the stack, do a
logical OR on them, and push the result on the stack
» We are interested with address field of instructions with multiple address fields in
instructions. The number of address fields in the instruction format depends on the internal

organization of CPU. Some CPU combines features from more of one structure.



Instruction Cycle:

A program residing in the memory unit of the computer consists of a sequence of instructions. The
program is executed in the computer by going through a cycle for each instruction. Each instruction
cycle in turn is subdivided into a sequence of subcycles or phases. In the basic computer each

instruction cycle consists of the following phases:

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Read the effective address from memory if the instruction has an indirect address.
4

Execute the instruction.
Fetch and Decode:

Initially, the program counter PC is loaded with the address of the first instruction in the
program. The sequence counter SC is cleared to 0, providing a decoded timing signal To. After
each clock pulse, SC is incremented by one, so that the timing signals go through a sequence
TO, T1, T2, and so on. The micro-operations for the fetch and decode phases can be specified

by the following register transfer statements.
TO0: AR <-PC
T,: IR <-MJ|AR], PC<-PC +1

T2: DO, » » », D7 <- Decode IR(12-14), AR <-— IR(0-11), 1 <--- IR(IS)

Since only AR is connected to the address inputs of memory, it is necessary to transfer the
address from PC to AR during the clock transition associated with timing signal TOe The
instruction read from memory is then placed in the instruction register IR with the clock transition

associated with timing signal T1e

At the same time, PC is incremented by one to prepare it for the address of the next
instruction in the program. At time T2, the operation code in IR is decoded, the indirect bit is
transferred to flip-flop I, and the address part of the instruction is transferred to AR . Note that SC

is incremented after each clock pulse to produce the sequence To, T1, and T2



\ T
IRe— M [AR], PC+PC + 1

I .

Decode operason code in /R (12— 14)
AR «IR(0- 11), { « IR(15)

(Register or 100} = | A =0 (Memory-reference)

\.’/
=0 (register) (indirect) =1 =0 (direct)
I

T; T) ' T)
- Execuse  Execute AR +— MIAR] Nothing
I - o it regster-reference
msEucton et ruct bon
SC«0 SC+«0 1 1
Execute
memoryteference
et rad on
SC+«0
TEXT / REFERENCE BOOKS

1. M.Morris Mano, ;Computer System Architecture”,Prentice-Hall Publishers, Third Edition.

2. John P Hayes , ‘Computer Architecture and Organization’, McGraw Hill international edition,
Third Edition.

3. Kai Hwang and Faye A Briggs ,‘Computer Architecture and Parallel Processing’, McGraw

Hill international edition,1995.



RISC Architecture

RISC (Reduced Instruction Set Computer) is used in portable devices due to its power efficiency.
For Example, Apple iPod and Nintendo DS. RISC is a type of microprocessor architecture that
uses highly-optimized set of instructions. RISC does the opposite, reducing the cycles per
instruction at the cost of the number of instructions per program Pipelining is one of the unique
feature of RISC. It is performed by overlapping the execution of several instructions in a
pipeline fashion. It has a high performance advantage over CISC.

=

(Instruction) (Data)

MMain memory

RISC ARHITECTURE

Figure : RISC Architecture
RISC ARCHITECTURE CHARACTERISTICS

Simple Instructions are used in RISC architecture. RISC helps and supports few simple data
types and synthesize complex data types. RISC utilizes simple addressing modes and fixed
length instructions for pipelining. RISC permits any register to use in any context. One Cycle
Execution Time The amount of work that a computer can perform is reduced by separating
“LOAD” and “STORE” instructions. RISC contains Large Number of Registers in order to
prevent various number of interactions with memory. In RISC, Pipelining is easy as the
execution of all instructions will be done in a uniform interval of time i.e. one click. In RISC,
more RAM is required to store assembly level instructions. Reduced instructions need a less
number of transistors in RISC. RISC uses Harvard memory model means it is Harvard
Architecture. A compiler is used to perform the conversion operation means to convert a high-
level language statement into the code of its form.

RISC & CISC COMPARISON



CISC

RISC

It is prominent on Hardware

It is prominent on the Softwate

It has high cycles per second

It has low cycles per second

It has ftransistors used for storing

Instructions which are complex

More transistorsareused for  storing

memory

LOAD and STORE memory-to-memory is

induced in instructions

LOAD and STORE register-register are

independent

It has multi-clock

It has a single - clock

MUL instruction is
“LOAD” - moves data
“PROD” finds  product

“STORE” —  moves data

The main difference between RISC and CISC is the number of instructions and its complexity.

RISC

of

divided into three
from the memory  bank
two operands located  within
from a  register to  the

CIsC

Machine instructions

Instructions

Machine instructions

Instruction
execiiion

Microcode colmversion

Microinstructions

Microinstruction
execution

Figure: RISC & CISC COMPARISON

SEMANTIC GAP

Both RISC and CISC architectures have been developed as an attempt to cover the semantic gap.



G =R High Level Languages

Increasing
Abstraction
Level

________________________________ Machine Language

With an objective of improving efficiency of software development, several
powerful programming languages have come up, viz., Ada, C, C++, Java, etc. They provide a
high level of abstraction, conciseness and power. By this evolution the semantic gap grows. To
enable efficient compilation of high level language programs, CISC and RISC designs are the
two options.

The features of RISC include the following

e The demand of decoding is less

e Uniform instruction set

e Few data types in hardware

e General purpose register Identical
e Simple addressing nodes

Advantages of RISC architecture:

* RISC(Reduced instruction set computing)architecture has a set of instructions, so high-
level language compilers can produce more efficient code

» It allows freedom of using the space on microprocessors because of its simplicity.

* Many RISC processors use the registers for passing arguments and holding the local
variables.

* RISC functions use only a few parameters, and the RISC processors cannot use the call
instructions, and therefore, use a fixed length instruction which is easy to pipeline.

* The speed of the operation can be maximized and the execution time can be minimized.
Very less number of instructional formats, a few numbers of instructions and a few
addressing modes are needed.

The Disadvantages of RISC architecture:

*  Mostly, the performance of the RISC processors depends on the programmer or compiler
as the knowledge of the compiler plays a vital role while changing the CISC code to a
RISC code



* While rearranging the CISC code to a RISC code, termed as a code expansion, will
increase the size. And, the quality of this code expansion will again depend on the
compiler, and also on the machine’s instruction set.

* The first level cache of the RISC processors is also a disadvantage of the RISC, in which
these processors have large memory caches on the chip itself. For feeding the
instructions, they require very fast memory systems.

CISC Architecture

* The CISC approach attempts to minimize the number of instructions per program,
sacrificing the number of cycles per instruction. Computers based on the CISC
architecture are designed to decrease the memory cost. Because, the large programs need
more storage, thus increasing the memory cost and large memory becomes more
expensive. To solve these problems, the number of instructions per program can be
reduced by embedding the number of operations in a single instruction, thereby making

the instructions more complex.

—

CISC ARCHITECTURE

Main memory

Figure: CISC Architecture

MUL loads two values from the memory into separate registers in CISC. CISC uses minimum
possible instructions by implementing hardware and executes operations. Instruction Set
Architecture is a medium to permit communication between the programmer and the hardware.
Data execution part, copying of data, deleting or editing is the user commands used in the
microprocessor and with this microprocessor the Instruction set architecture is operated. The
main keywords used in the above Instruction Set Architecture are as below

Instruction Set: Group of instructions given to execute the program and they direct the
computer by manipulating the data. Instructions are in the form — Opcode (operational code) and



Operand. Where, opcode is the instruction applied to load and store data, etc. The operand is a
memory register where instruction applied.

Addressing Modes: Addressing modes are the manner in the data is accessed. Depending upon
the type of instruction applied, addressing modes are of various types such as direct mode where
straight data is accessed or indirect mode where the location of the data is accessed. Processors
having identical ISA may be very different in organization. Processors with identical ISA and
nearly identical organization is still not nearly identical.

CPU performance is given by the fundamental law

' Seronds  Imstructions Cycles Seconds
CPU Time = = A— ¥

Program Program  [Instructions  Cycle

Thus, CPU performance is dependent upon Instruction Count, CPI (Cycles per instruction) and
Clock cycle time. And all three are affected by the instruction set architecture.

Instruction Count of the CPU

Instruction Count i Clock
Program X
Compiler X X
Instruction Set Architecture X X X
Microarchitecture T4 X
Physical Design X

Examples of CISC PROCESSORS

IBM 370/168 — It was introduced in the year 1970. CISC design is a 32 bit processor and four
64-bit floating point registers.
VAX 11/780 — CISC design is a 32-bit processor and it supports many numbers of addressing
modes and machine instructions which is from Digital Equipment Corporation.
Intel 80486 — It was launched in the year 1989 and it is a CISC processor, which has instructions
varying lengths from 1 to 11 and it will have 235 instructions.



CHARACTERISTICS OF CISC ARCHITECTURE

Instruction-decoding logic will be Complex. One instruction is required to support multiple
addressing modes. Less chip space is enough for general purpose registers for the instructions

that are Ooperated directly on memory. Various CISC designs are set up two special registers for
the stack pointer, handling interrupts, etc. MUL is referred to as a “complex instruction” and
requires the programmer for storing functions. CISC designs involve very complex architectures,
including a large number of instructions and addressing modes, whereas RISC designs involve
simplified instruction set and adapt it to the real requirements of user programs.

q‘) Registers [€ ]

Th s Address Bus
Barel Shifter |[4E—> Pasing Lhit b (1 1/0) devices

(Virtual Memory) and memory)
A

<" Bus Status .

AL ; ST (et

Data Bus
€ 0 10 devices

and memory)

b 4

Figure: CISC and RISC Design

Advantages of CISC architecture

Microprogramming is easy assembly language to implement, and less expensive than
hard wiring a control unit.

The ease of micro coding new instructions allowed designers to make CISC machines
upwardly compatible:

As each instruction became more accomplished, fewer instructions could be used to
implement a given task.

Disadvantages of CISC architecture

The performance of the machine slows down due to the amount of clock time taken by
different instructions will be dissimilar

Only 20% of the existing instructions is used in a typical programming event, even
though there are various specialized instructions in reality which are not even used
frequently.

The conditional codes are set by the CISC instructions as a side effect of each instruction
which takes time for this setting — and, as the subsequent instruction changes the



condition code bits — so, the compiler has to examine the condition code bits before this
happens.

Memory Unit

RISC has no memory unit and uses a separate hardware to implement instructions. CISC has a
memory unit to implement complex instructions

Program

RISC has a hard-wired unit of programming. CISC has a microprogramming unit
Design

RISC is a complex compiler design. CISC is an easy compiler design
Calculations

RISC calculations are faster and more precise. CISC calculations are slow and precise
Decoding

RISC decoding of instructions is simple. CISC decoding of instructions is complex
Time

Execution time is very less in RISC. Execution time is very high in CISC.
External memory

RISC does not require external memory for calculations. CISC requires external memory for
calculations.

Pipelining

RISC Pipelining does function correctly. CISC Pipelining does not function correctly.

Stalling

RISC stalling is mostly reduced in processors. CISC processors often stall.

Code Expansion

Code expansion can be a problem in RISC whereas, in CISC, Code expansion is not a problem.
Disc space

Space is saved in RISC whereas in CISC space is wasted. The best examples of CISC instruction
set architecture include VAX, PDP-11, Motorola 68k,And your desktop PCs on Intel’s x86



architecture, whereas the best examples of RISC architecture include DEC Alpha, ARC, AMD
29k, Atmel AVR, Intel 1860, Blackfin, 1960, Motorola 88000, MIPS, PA-RISC, Power, SPARC,
SuperH, and ARM too.



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

UNIT - II - Computer Arithmetic — SCSA1402




II. Computer Arithmetic
Introduction:

Data is manipulated by using the arithmetic instructions in digital computers.Data is
manipulated to produce results necessary to give solution for the computation problems. The
Addition, subtraction, multiplication and division are the four basic arithmetic operations. If we
want then we can derive other operations by using these four operations. To execute arithmetic
operations there is a separate section called arithmetic processing unit in central processing
unit. The arithmetic instructions are performed generally on binary or decimal data. Fixed-
point numbers are used to represent integers or fractions. We can have signed or unsigned
negative numbers. Fixed-point addition is the simplest arithmetic operation. If we want to solve
a problem then we use a sequence of well-defined steps. These steps are collectively called
algorithm.

Data types

= Fixed-point binary

v’ Signed-magnitude representation <

v’ Signed-2’s complement representation ,,
= Floating-point binary ,,
= Binary-coded decimal (BCD)

Addition and Subtraction

There are three ways of representing negative fixed-point binary numbers: Signed-
magnitude, signed-1's complement, or signed-2's complement. Most computers use the signed-2's
complement representation when performing arithmetic operations with integers. For floating-

point operations, most computers use the signed-magnitude representation for the mantissa.



Addition and Subtraction with Signed-Magnitude Data

Where the signed numbers are added or subtracted, we find that there are eight different
conditions to consider, depending on the sign of the numbers and the operationperformed. These
conditions are listed in the first column of Table 2.1. The other columns in the table show the
actual operation to be performed with the magnitude of the numbers. The last column is needed
to present a negative zero. In other words, when two equal numbers are subtracted, the result
should be +0 not -0. The algorithms for addition and subtraction are derived from the table and
can be stated as follows

Table 2.1: Addition and Subtraction of Signed-Magnitude Numbers

Operation Add Magnitudes Subtract Magnitudes

When A > B When A <B When A =B
(+ A) + (+ B) +(A + B)
(+A)+(-B) +(A-B) —-(B-A) + (A -B)
(-=A)+(+B) - (A-B) +(B-A) +(A-B)
CA*(B) —(A+B)
(+ A)—(+B) +(A-B) —(B-A) +(A-B)
(+A)-(-B) +(A + B)
A)-(+B) —(A+B)
=A)-(=B) - (A-B) +(B-A) +(A-B)

When the signs of A and B are same, add the two magnitudes and attach the sign of
result is that of A. When the signs of A and B are not same, compare the magnitudes and subtract
the smaller number from the larger. Choose the sign of the result to be the same as A, if A > B
or the complement of the sign of A if A < B. If thetwo magnitudes are equal, subtract B from

A and make the sign of the result will be positive.

HARDWARE IMPLEMENTATION:-

First, a parallel-adder is needed to perform the micro operation A + B . Second, a comparator
circuit is needed to establish if A > B, A =B, or A < B. Third, two parallel- subtractor circuits
are needed to perform the micro operations A - B and B - A. The sign relationship can be

determined from an exclusive OR gate with A, and B, as inputs.



' B, B Register

l

AVF Complementer . M(Mode Control)

l

E Output Input
E 'ﬁr;yL ParallelAdde-‘i.' " Carry

sl

A, A Register «——Load Sum

Fig. 2.1 Hardware for signed magnitude addition and subtraction

block diagram of the hardware for implementing the addition and subtraction operations. It
consists of registers A and B and sign flip-flops A, and B, . Subtraction is done by adding A to
the 2' s complement of B. The output carry is transferred to flip-flop E, where it can be checked
to determine the relative magnitudes of the two numbers. The add-overflow flip-flop AVF holds
the overflow bit when A and B are added. The A register provides other microoperations that
may be needed when we specify thesequence of steps in the algorithm.

Description
As Sign of A, Bs Sign of B ,As & A Accumulator , AVF Overflow bit for A + BE
Output carry for parallel adder

Data representation Signed magnitude — consists of the magnitude and negative sign(sign bit
in binary, ‘0’ for positive and ‘1’ for negative)

—E.g. +14=00001110, -14=1 0001110

Signed 1°s complement — leaving out the sign bit, convert all 1’s to 0’s and 0’s to 1’s inthe
signed magnitude form of the data

—E.g.-14=11110001

Signed 2’s complement — Add 1 to signed 1’s complement representation of the data —E.g. -14
=11110010



Hardware algorithm:

Subtract operation Add operation

!

Minuend in 4 Augend in 4
Subtrahend in B Addend in B
0 Y =1 =1 =0

Ao =By A, + B,

b

END
(result is in A and A4 ;)

Fig.2.2 Flowchart for add and subtract operations

Signed magnitude addition and subtraction

— For an add operation, identical signs dictate that the magnitudes be added,different
signs require that the magnitudes be subtracted

— For subtraction operation, different signs dictate that magnitudes be added,
identical signs require that magnitudes be subtracted

AVF — Add-overflow flip-flop holds the overflow bit when A and B are added

Addition of A and B is done through parallel adder



2’s complement addition and subtraction:

1001 = =7 1100 = -4

+101 = 5 H100 = |

1120 = =2 10000 = 0
THERERIR] it ‘

(0.l = 3 1100 = =4

10100 = 4 HI1 = =

0111 =1 11011 = -5
RITRIRREES idi i (-1

0101 = 5 1001 = =1

100 = 4 1010 = =f

1002 = Dverfloy 10011 = Qwerflow
AT IRERE ) =3 -4 ‘

0010 = 2
+1001 = =7
1011 = =5

ja) 3 =& = 030
3 -7 - 0111

-5 = 123G
1011 = =§
+1114 = =2
11001 = =7

1oy 3 =—8 = 13i]
5= ¢ = 0310

-5 = il SR
N1l =7

0111 = 7

L1110 = vverflow

1e) M = = JL1l
3= =1 = L]

-5 = JL1l

o
=

L1 a2

2101
+1110
10011

2101
+0010
1111

]
|
=
nmn

nin
+1100
10110

o

inomon
1
[N

o= 2Lt

P
&

ani
iR

INRE

n mu
S

QI0L
1iif
AR

—h
-4
Ovarflow

1oin
INRHE
tiae

Fig. 2.3 Addition and subtraction of numbers in 2’s complement representation

Vv
Overflow

BR register

Complementer and
parallel adder

AC register

Fig.2.4 Block diagram of hardware for signed 2’s complement addition and

subtraction




Add

Subtract
Minuend in AC Augend in AC
Subtrahend in BR Addend in BR
Y Y
AC<AC + BR + | AC«AC + BR
Ve—overflow Ve—overflow
Y Y

END ( END )

Fig.2.5 Algorithm for signed 2’s complement addition and subtraction

Multiplication Algorithm:

A binary example:

23 10111  Multiplicand
19 x 10011 Multiplier
10111 Partial product
10111
00000 +
00000
10111
437 110110101 Product

#of bits in multiplier

/

I B register | | Sequence counter (SC) |

Y . g

Multiplier

Complementer and
parallel adder

1
(rightmost bit)

i,
1

0 A register I—>| Q register l

Partial p\ﬁ(

Fig.2.6 Block diagram of hardware for multiply operation




Multiply operation

 |B=11011  Q=00111

Multiplicand in B

Multiplier in @ 4 Qﬂ-: 1 ,Jﬂl.:ﬂ,QS:l
| EA=A+B=1011
g, :g,gg, EAQ= O 1011 0111
3;10-%75 Shr EAQ= 0 0101 1011
3 0Q3=1

i Q’ i EA = 1 0000
<>" EAQ 1 0000 1011

Shr EAQ 0 1000 0101

y
EA+~A+B
2 Q2=1
¥ EA= 10011

ki EAQ 10011 0101
* shr EAQO 1001 1010
0 a0 1 Q1=0
N Shr EAQ 0 0100 1101=77

L
( END )
(product is in AQ) 0

Fig.2.7 Flow chart for multiply operation Table

2.2 Numerical example for Binary multiplier

———— —— —

Multiplicand B = 10111 E A Q SC
Multiplier in Q 0 00000 10011 101
Q. =1;add B 10111

First partial product 10111

Shift right EAQ 01011 11001 100
Q.=1;add B 10111

Second partial product 00010

Shift right EAQ 10001 01100 011
Q. = 0; shift right EAQ 01000 10110 010
Q. = 0; shift right EAQ 00100 01011 001
Q, =1;add B 10111 '
Fifth partial product 11011

Shift right EAQ 01101 10101 000
Final product in AQ = 0110110101

oo O - o o

oo



Booth multiplication algorithm :

A=00011 B= 00111 => A*B= A*(7) =A* (8-1) =A*8-A*]

Booth algorithm requires examination of the multiplier bits and shifting of the partial

product

Qn - LSB of multiplier Extra flip flop Qn+1 is appended to the multiplier bits to facilitate

double bit inspection of the multiplier.

Compare bits of Q, and Qp+1

Rules are:

1. The multiplicand is subtracted from the partial product upon encountering the firstleast
significant 1 in a string of 1’s in the multiplier

2. The multiplicand is added to the partial product upon encountering the first
O(provided that there was a previous 1) in a string of 0’s in the multiplier

3. The partial product does not change when the multiplier bit is identical to the

previous multiplier bit
In 2’s complement representation, we can use Booth algorithm without change

BR register Sequence counter (SC)
Y
Complementer and
parallel adder
A
Qn Qn +1

Y b

AC register - OR register -

Fig.2.8 Block diagram of hardware for Booth algorithm



Multiply

Multiplicand in BR
Multiplier in OR

AC+— 0
Oy <=0
SC+ n

AC+~ AC + BR + 1

Jr ¥ 4

ashr (AC & OQR)
SC+~SC—1

Fig. 2.9 Booth algorithm for multiplication of signed 2’s complements numbersTable

2.3 Example of multiplication with Booth Algorithm

BR = 10111

Q. Cnia BR + 1 = 01001 AC OR (o S SC

Initial 00000 10011 0 101
1 0 Subtract BR 01001
01001

ashr 00100 11001 1 100

1 1 ashr 00010 01100 1 011
0O 1 Add BR 10111
11001

ashr 11100 10110 0 010

0O o0 ashr 11110 01011 0 001
1 0 Subtract BR 01001
00111

ashr 00011 10101 1 000




Array multiplier: Fast approach

To check the bits of the multiplier one at a time and forming partial products is a
sequential operation requiring a sequence of add and shift micro-operations. The multiplication
of two binary numbers can be done with one micro-operation by using combinational circuit
that forms the product bits all at once. This is a fast way since allit takes is the time for the
signals to propagate through the gates that form the multiplication array. However, an array
multiplier requires a large number of gates, and so it is not an economical unit for the

development of ICs

a
’ [ b bo
b by | l
a a
agb;  agbg k/ \)
a b, abg a b by
3 €2 1 o

B
HA HA
c S c S
ot |

Fig. 2.10 : 2 bit by 2 bit array multiplier



by b
ay
by P 5y 1 By
| 1 1 |
L[J u |\[J LTJ 'Ill
Addend Auvgend
4-bit adder

Summ and ol CAITY

BIEHERE
o9y | |

Ackdend Adgend
4-hit mdider
Sum amd owtput carmy
|
|
L ] 1 L
(=3 cy Ca oy () r. o

Fig. 2.11: 4 bit by 3bit array multiplier
Division algorithm:

Binary division — simpler because the quotient digits are either 0 or 1 and there is no need to
estimate how many times the dividend or partial remainder fits into the divisor

Division operation may result in a quotient with an overflow.
Divide overflow flip flop (DVF) is used to detect overtflow
Divisor — B register, Dividend — A and Q register

If the signs of divisor and dividend are alike, the sign of the quotient is plus. Otherwiseit is
minus.

Best way to avoid divide overflow is to use floating point data.



Example for binary division :

Divisor: 11010

B8 =10001 )0111000000
o1110
011100
-10001

-010110
--10001

--001010
---010100
----10001

----000110

Divisor 8 = 10001,

Dividend:
shl EAQ 0
add B + 1

E=1

Set 0, =1
shl EAQ 0
Add B +1

E=1

Set @, =1
shl EAQ o
Add B+ 1

E=0;leave Q,, =0 0
Add B

Restore remainder
shl EAQ
Add B + 1

E=1

Set Q, =1
shl EAQ
Add B + 1

E=0;leave Q, =0 (0]
Add B

Restore remainder 1
Neglect E

Remainderin A4:

Quotient in O:

] -t

QO =

O b

Quotient = Q

Dividend = A

5 bits of 4 < B, quotient has 5 bits

6 bitsof A > B

Shift right B and subtract: enter 1 in Q

7 bits of remainder 2 B
Shift right B and subtract; enter 1 in Q

Remainder < B;enter 0 in Q; shift right B
Remainder = B
Shift right B and subtract; enter 1 in Q

Remainder < B;enter 0 in Q
Final remainder

B+1=01111

A Q SC
Y e p— e, Py,

01110 00000 5
11100 00000
01111
01011
01011 00001 4
10110 00010
01111
00101
00101 00011 3
01010 00110
01111
11001 00110
10001 2
01010
10100 01100
01111
00011
00011 01101 1
00110 11010
01111
10101 11010
10001
00110 11010 0
00110

11010

Fig.2.12 Example of binary division with digital hardware



Divide operation

Dividend in AQ
Divisor in B

Divide magnitudes
v }
\ B
O; «A;®B,
SC+n-1 shl EAQ
Y
EA+~A+B+1
- -
E 0
A>B N A<B
Y Y
EA+<A+B EA+~A+B
DVF+1 DVF+0
Y r
END END
(Divide overflow) (Quotient is in Q

remainder is in 4)

Fig. 2.13 Flow chart for divide operation
Floating Point Arithmetic Operations:

e Numbers too large for standard integer representations or that have fractional components
are usually represented in scientific notation, a form used commonly by scientists and
engineers.

e Examples: 4.25 x 10!

e Addition and subtraction are more complex than multiplication and division



* Need to align mantissas

* Algorithm: — Check for zeros — Align significant (adjusting exponents) — Add or
subtract significant — Normalize result

F=mxr®
where m: Mantissa, r: Radix, e: Exponent
It is necessary to make two exponents be equal before the mantissas can be added. We

can either shift the first number three positions to the left, or shift the second number three
positions to the right. When we store the mantissas in registers, shifting to the left causes a loss
of most significant digits. Shifting to the right causes a loss of least significant digits. The
second method is preferable because it only reducesthe accuracy, while the first method may
cause an error. The usual alignment procedure is to shift the mantissa that has the smaller
exponent to the right by anumber of places equal to the difference between the exponents.
Now, the mantissas can be added.
. 5372400 x 10°

+. 0001580 x 107
. 5373980 x 10°

When two normalized mantissas are added, the sum may contain an overflow digit. An
overflow can be corrected easily by shifting the sum once to the right and incrementing the
exponent. When two numbers are subtracted, the result may contain most significant zeros as
shown in the following example:

. 56780 x 10°

-. 56430 x 10°
. 00350 x 10°

An underflow occurs if a floating-point number that has a 0 in the most significant
position of the mantissa. To normalize a number that contains an underflow, we shift the
mantissa to the left and decrement the exponent until a nonzero digit appears inthe first
position. Here, it is necessary to shift left twice to obtain .35000 x 10°. In most computers a
normalization procedure is performed after each operation to ensure that all results are in a

normalized form.



Floating-point multiplication and division need not do an alignment of the mantissas.
Multiplying the two mantissas and adding the exponents can form the product. Dividing the
mantissas and subtracting the exponents perform division.

Register Configuration:

Three registers are there, BR, AC, and QR. Each register is subdivided into two parts.

The mantissa part has the same uppercase letter symbols as in fixed-point representation. The

exponent part may use corresponding lower-case letter symbol.

B, B b BR
Parallel-adder
E Parallel-adder and comparator

Qs Q q OR

Fig. 2.14 Registers for floating point arithmetic operations

Assuming that each floating-point number has a mantissa in signed-magnitude
representation and a biased exponent. Thus the AC has a mantissa whose sign is in As, and a
magnitude that is in A. The diagram shows the most significant bit of A, labeled by Al.
The bit in his position must be a 1 to normalize the number. Note that the symbol AC
represents the entire register, that is, the concatenation of A, A and a. In the similar way,
register BR is subdivided into Bs, B, and b and QR into Qs, Q and q. A parallel-adder adds the
two mantissas and loads the sum into A and the carry into E. Addition and Subtraction of

Floating Point Numbers

During addition or subtraction, the two floating-point operands are kept in AC andBR. The

sum or difference is formed in the AC.
The algorithm can be divided into four consecutive parts:

1. Check for zeros.



2. Align the mantissas.
3. Add or subtract the mantissas
4. Normalize the result

A floating-point number cannot be normalized, if it is 0. If this number is used for
computation, the result may also be zero. Instead of checking for zeros during the normalization
process we check for zeros at the beginning and terminate the process if necessary. The
alignment of the mantissas must be carried out prior to their operation. After the mantissas are
added or subtracted, the result may be un-normalized. The normalization procedure ensures that

the result is normalized before it is transferred to memory.

For adding or subtracting two floating-point binary numbers, if BR is equal tozero,
the operation is stopped, with the value in the AC being the result. If AC = 0, we transfer the
content of BR into AC and also complement its sign we have to subtract the numbers. If neither
number is equal it to zero, we proceed to align the mantissas. The magnitude comparator

attached to exponents a and b gives three outputs, which show their relative magnitudes.

If the two exponents are equal, we go to perform the arithmetic operation. If the
exponents are not equal, the mantissa having the smaller exponent is shifted to the rightand its

exponent incremented. This process is repeated until two exponents are equal.

The addition and subtraction of the two mantissas is similar to the fixed-point additionand

subtraction algorithm presented in the following Fig



Add or subtract

r s A
,V..
a<b a>b
\“’>
a=b Jl’
Align
Check shr A shr B ;
T Add a+a+1 ¥ -8 % 1 mantissas
Zeros
4
Sub {
A + X, Sub Add ¥
op A
‘? - v 0
=0 =] =] =
<1, 08— 4, @8, >—
Mantissa
' . addition
EA<A+B or
subtraction

= s
Normalization
4
shl A shr A
a+a—1 A, +E
a+atl

4 ‘L  J A

D

Fig. 2.15 Addition and subtraction of floating point numbers




Multiplication:

The algorithm can be divided into four consecutive parts:

1. Check for zeros.
2. Add the exponents.
3. Multiply the mantissas

4. Normalize the result

Multiply

Multiplicand in BR
Multiplier in OR

BR

I AC — O

shl 4 Q
a<«—a — 1

Y

a<—a—biasl

¥

Multiply mantissa
as in Fig. 10-6

END
(product is in AC)

Fig. 2.16 Multiplication of floating point numbers



Division:

The algorithm can be subdivided into five consecutive parts:

1. Check for zeros.
2. Initialize the register and evaluate the sign
3. Align the dividend
4. Subtract the exponents.
5. Divide the mantissa
ivi in 8 )
g:v:z‘:’;'id in}/_‘; C
=90 Br
=0
=0
AC
#= O
v
| OR — 0O I - B
gs“_ OAS a E
J SC+~n — 1
r
Divide by
zero [ £4a—a+5+1]

A =08 A << B
PRV Ry

shr 4
a<+—a+1

[ravz 1]
¥

I a*—a+biasl

¥
[ a+ve |
¥

Divide magnitude of
mantissas as in Fig. 10-13

¥
END
(Quotient is in OR)

Fig. 2.17 Division of floating point numbers




Microprogrammed Control
Introduction:

Microprogram
- Program stored in memory that generates all the control signals required toexecute
the instruction set correctly
- Consists of microinstructions
Microinstruction
- Contains a control word and a sequencing word
Control Word - All the control information required for one clock cycle Sequencing
Word - Information needed to decide the next microinstruction adress
Control Memory(Control Storage: CS)
- Storage in the microprogrammed control unit to store the microprogram
Writeable Control Memory(Writeable Control Storage: WCS)
- CS whose contents can be modified
-> Allows the microprogram can be changed
-> Instruction set can be changed or modified
Dynamic Microprogramming
- Computer system whose control unit is implemented with a microprogram in WCS
- Microprogram can be changed by a systems programmer or a user
a. Control Memory
@ Control Unit
¢ Initiate sequences of microoperations
» Control signal (that specify microoperations) in a bus-organized system
0 groups of bits that select the paths in multiplexers,
decoders, and arithmetic logic units
e Two major types of Control Unit

» Hardwired Control :



Meniory —-‘ Instruction code !

Sequence Counter

—

Combinational
Logic Circuits

Cantrol
slgiads

0 The control logic is implemented with gates, F/Fs, decoders, and other digitalcircuits

o + Fast operation, - Wiring change(if the design has to be modified)

» Microprogrammed Control

Moty Instruction code

CAR: Contral Address Renisisr
COR: Contro! Data Register

Next Address
Generator | CA
(sequencer) R

Control
Memory

CDR [

Decoding
Cireu!

—

[

]

- Contral
" signale

0 The control information is stored in a control memory, and the control memoryis

programmed to initiate the required sequence of microoperations

o + Any required change can be done by updating the microprogram in controlmemory,

- Slow operation

€ Control Word

0 The control variables at any given time can be represented by a string of 1’sand 0’s.

€ Microprogrammed Control Unit

0 A control unit whose binary control variables are stored in memory (control

memory).

€ Microinstruction : Control Word in Control Memory

0 The microinstruction specifies one or more microoperations



€ Microprogram

0] A sequence of microinstruction
0] Dynamic microprogramming : Control Memory = RAM
L 4 RAM can be used for writing (to change a writable

control memory)
L 2 Microprogram is loaded initially from an auxiliary
memory such as a magnetic disk
0] Static microprogramming : Control Memory = ROM
L 4 Control words in ROM are made permanent duringthe
hardware production.

L 4 Microprogrammed control Organization :

Etemal | Next-
put ! e
genertr
(Seuencer

Contol User Prozram

Contrl Control Contrl il |

> 3dd.1955 - TRTOY d?[a Machine Instruction
g (ROM) gt | |

TinchEmE:ram
!

Micromstruction
1

o '
Next-address information Miczrooperation

Fig. 2.18 Microprogrammed control operation
1) Control Memory

e A memory is part of a control unit : MicroprogramO|
e Computer Memory (employs a microprogrammed control unit)
e Main Memory : for storing user program (Machine instruction/data)
e Control Memory : for storing microprogram (Microinstruction)
2) Control Address Register
e Specify the address of the microinstruction
3) Sequencer (= Next Address Generator)

e Determine the address sequence that is read from control memory



e Next address of the next microinstruction can be specified several way

depending on the sequencer input

4) Control Data Register (= Pipeline Register)
e Hold the microinstruction read from control memory
o Allows the execution of the microoperations specified by the control word
simultaneously with the generation of the next microinstruction
@ RISC Architecture Concept
RISC(Reduced Instruction Set Computer) system use hardwired control rather than
microprogrammed control :
b. Address Sequencing
€ Address Sequencing = Sequencer : Next Address Generator

o Selection of address for control memory

@ Routine —> Subroutine: program used by other ROUTINES

e  Microinstruction are stored in control memory in groups
€ Mapping
e Instruction Code - Address in control memory(where routine is
located)
€ Address Sequencing Capabilities : control memory address
1) Incrementing of the control address register
2) Unconditional branch or conditional branch, depending on status bit
conditions
3) Mapping process (bits of the instruction address for control memory)
4) A facility for subroutine return

€ Sclection of address for control memory :



Instruction code I

!

Select a status

(CAR)

Mapping
logic
* A 4 v’ {
Stamus Branch MUX .
bits logic select Multiplexers
i Subroutine
register
(SBR)
Y ‘—1
Clock k. Control address register [

| Incrementer |

Y

Control memory

bit

Branch address

|

Microoperations

Fig. 2.19 Selection of address for control memory

e Multiplexer

[J CAR

Increment

1 JMP/CALL

[J Mapping

[J Subroutine Return

e CAR: Control Address Register

» CAR receive the address from4

different paths

1) Incrementer

2) Branch address from
control memory

3) Mapping Logic

4) SBR : Subroutine Register

e SBR: Subroutine Register

» Return Address can not be stored in ROM



» Return Address for a subroutine is stored in SBR

€ Conditional Branching
e Status Bits
» Control the conditional branch decisions generated in the
Branch Logic
e Branch Logic
» Test the specified condition and Branch to the indicated
address if the condition is met ; otherwise, the control
address register is just incremented.
o Status Bit Test - Branch Logic
» 4 X 1 Mux - Input Logic

€ Mapping of Instruction :

Opcode
Computer instruction: 1. 011 address —l
Mapping bits: Ojx x x x|0 O
Microinstruction address: | o1 01100 1

Fig. 2.20 Mapping from instruction code to microinstruction address

e 4 bit Opcode = specify up to 16 distinct instruction
e Mapping Process : Converts the 4-bit Opcode to a 7-bit control
memory address
» 1) Place a “0” in the most significant bit of the address
» 2) Transfer 4-bit Operation code bits
» 3) Clear the two least significant bits of the CAR
e Mapping Function : Implemented by Mapping ROM or PLD
Control Memory Size : 128 words (= 27)
€ Subroutine

e Subroutines are programs that are used by other routines



» Subroutine can be called from any point within the mainbody
of the microprogram
¢ Microinstructions can be saved by subroutines that use common
section of microcode
e Subroutine must have a provision for
» storing the return address during a subroutine call
» restoring the address during a subroutine return
e Last-In First Out(LIFO) Register Stack
C. Microprogram Example

€ Computer Configuration :

10 0
10 0
L] 0 6 | 0

Control unit

Fig. 2.21 Computer hardware configuration



e 2 Memory : Main memory(instruction/data), Control

memory(microprogram)

» Data written to memory come from DR, and Data read from

memory can go only to DR

e 4 CPU Register and ALU : DR, AR, PC, AC, ALU

» DR can receive information from AC, PC, or Memory
(selected by MUX)

» AR can receive information from PC or DR (selected by

MUX)

» PC can receive information only from AR

» ALU performs microoperation with data from AC and DR

e 2 Control Unit Register : SBR, CAR

& Instruction Format

e Instruction Format : Fig. 2.22

15 14

11

10

1| Opeode

Address

(a) Instruction format

Fig. 2.22 Computer instruction format

» 1:1 bit for indirect addressing

» Opcode : 4 bit operation code

» Address : 11 bit address for system memory

e Computer Instruction : Fig 2.23

Symbol Opcode Description
ADD 0000 AC «— AC + M [EA]
BRANCH 0001 If (AC < 0) then (PC <« EA)
STORE 0010 M [EA] «— AC
EXCHANGE 0011 AC «— M[EA], M[EA] «— AC

EA is the effective address

Fig. 2.23 Computer instruction- four computer instruction



€ Microinstruction Format : Fig. 2.24

3 3 3 2 2 7
|F1IF2|F3|CDIBR| AD I

F1, F2, F3: Microoperation ficlds
CD: Condition for branching
BR: Branch field

AD: Address field
Fig. 2.24 Microinstruction code format (20 bits)
e 3 bit Micro operation Fields : F1, F2, F3
»  21Microoperation : Tab. 2.4
» two or more conflicting microoperations can not be specified
simultaneously
e 010001000
» Clear AC to 0 and subtract DR from AC at the same time
» Symbol DRTAC(F1 = 100)
e stand for a transfer from DR to AC (T = to)
» 2 bit Condition Fields : CD
» 00 : Unconditional branch, U = 1
» 01 : Indirect address bit, I = DR(15)
» 10 : Sign bit of AC, S = AC(15)
» 11 :Zero value in AC, Z=AC=0
» 2 bit Branch Fields : BR
» 00:JMP
e Condition=0:
e Condition=1:
» 01:CALL
¢ Condition=0:
e Condition=1:
» 10: RET
» 11:MAP
» 7 bit Address Fields : AD128 word : 128 X 20 bit



Table 2.4 Symbols and binary code for microinstruction fields

F1 Microoperation Symbol
000 None NOP
001 AC«—AC + DR ADD
010 AC—0 CLRAC
011 AC<—AC + 1 INCAC
100 AC «—DR DRTAC
101 AR «— DR(0-10) DRTAR
110 AR «— PC PCTAR
111 M[AR] <« DR WRITE
F2 Microoperation Symbol
000 None NOP
001 AC<«—AC — DR SUB
010 AC<—AC\/ DR OR
011 AC<—AC N\ DR AND
100 DR «— M[AR] READ
101 DR «—AC ACTDR
110 DR «—DR + 1 INCDR
111 DR(0-10) «— PC PCTDR
F3 Microoperation Symbol
000 None NOP
001 AC—AC® DR XOR
010 AC «—AC COM
011 AC «—shl AC SHL
100 AC «—shr AC SHR
1 101 PC«—PC + 1 INCPC
110 PC<«— AR ARTPC
111 Reserved
CD Condition Symbol Comments
00 Always = 1 U Unconditional branch
01 DR(15) I Indirect address bit
10 AC(15) S Sign bit of AC
11 AC =0 z Zero value in AC

BR Symbol Function

00 JMP CAR «— AD if condition = 1
CAR «— CAR + 1 if condition = 0

01 CALL CAR «— AD, SBR «— CAR + 1 if condition = 1
CAR «— CAR + 1 if condition = 0

10 RET CAR «<—SBR (Return from subroutine)

11 MAP CAR(2-5)<«—DR(11-14), CAR(0,1,6) <0

»



€ Symbolic Microinstruction
) Label Field : Terminated with a colon ( :)
[ Microoperation Field : one, two, or three
symbols, separated by commas
[1CDField: U, I, S,orZ
] BR Field : JMP, CALL, RET, or MAP
1 AD Field
a. Symbolic Address : Label ( = Address )
b. Symbol “NEXT” : next address
c. Symbol “RET” or “MAP” : AD field = 0000000
o ORG : Pseudoinstruction(define the origin, or first address of
routine)
@ Fetch (Sub)Routine
e  Memory Map(/28 words) : Tab. 2.5, Tab. 2.6
Table 2.5 Symbolic micro program

TABLE 7-2 Symbolic Microprogram (Parrtial)

Label Microoperations CD BR AD

ORG 0

ADD: NOP I CALL INDRCT
READ u IMP NEXT
ADD u JMP FETCH
ORG 4

BRANCH: NOP S JIMP OVER
NOP [9) IMP FETCH

OVER: NOP I CALL INDRCT
ARTPC u JMP FETCH
ORG 8

STORE: NOP I CALL INDRCT
ACTDR U IMP NEXT
WRITE U IMP FETCH
ORG 12

EXCHANGE: NOP I CALL INDRCT
READ (9] IMP NEXT
ACTDR, DRTAC u IMP NEXT
WRITE u IMP FETCH
ORG 64

FETCH: PCTAR U IMP NEXT
READ, INCPC u JMP NEXT
DRTAR u MAP

INDRCT: READ u JMP NEXT
DRTAR U RET




Table 2.6 Binary micro program for control memory (Partial)

Address Binary Microinstruction

Micro
Routine Decimal Binary F1 F2 F3 CD BR AD

ADD 0 0000000 000 000 000 01 01 1000011
1 0000001 000 100 000 00 00 0000010

2 0000010 001 00O 000 00 0O 1000000

3 0000011 000 00O 000 00O 0O 1000000

BRANCH 4 0000100 000 000 000 10 00 0000110
5 0000101 000 00O 00O 00 0O 1000000

6 0000110 000 000 000 01 01 1000011

7 0000111 000 QOO 110 00 00 1000000

STORE § 0001000 000 000 000 01 01 1000011
9 0001001 000 101 000 00 00 0001010

10 0001010 111 000 000 00 00 1000000

11 0001011 000 000 000 00 00 1000000

EXCHANGE 12 0001100 000 000 000 01 01 1000011
13 0001101 001 000 00O 00 00 0001110

14 0001110 100 101 000 00 00 0001111

15 0001111 111 000 000 00 00 1000000

FETCH 64 1000000 110 000 000 00 00 1000001
65 1000001 000 100 101 00 00 1000010

66 1000010 101 000 000 00 11 0000000

INDRCT 67 1000011 000 100 000 00 00 1000100
68 1000100 101 000 000 00 10  000COOO

» Address 0 to 63 : Routines for the 16 instruction
» Address 64 to 127 : Any other purpose (Subroutines :
FETCH, INDRCT)

Microinstruction for FETCH Subroutine
b AR DPE ,q_-_-:_l qﬂ

codé Fetch
AR]. BC  PC=1 ]—

AR(2-3Ye DROI-14), CAR(E L) =0 {1 Opcode Decods

%

i e .
%Operandiddress?} ﬁpumg :E' et
15 14 1110 raes 0
I | Opcode Address

e Fetch Subroutine : address 64



ORG B4

FETCH: PCTAR U JMP  NEXT
READ, INCPC U  JMP  NEXT
DRTAR U  MAP

€ Symbolic Microprogram : Tab. 7-2
o The execution of MAP microinstruction in FETCH subroutine
» Branch to address 0xxxx00 (xxxx = 4 bit Opcode)
e ADD:0000000=0
e BRANCH:0000100=4
e STORE:0001000=28
e EXCHANGE :0001100=12,( 16, 20, ..., 60)
o Indirect Address: I =1
o Indirect Addressing : 4R 01 M[AR]
e INDRCT subroutine

Label Microoperation  CD  BR  AD
INDRCT: ~ READ U MPNEXT DR < M[AR]
DRTAR U RET 0 AR < DR

e Execution of Instruction
e ADD instruction
e BRANCH instruction
¢ STORE instruction
¢ EXCHANGE instruction

Design of Control Unit
€ Decoding of Microinstruction Fields : Fig. 2.25



Fl

1) 1) L]

3 x 8 decoder 3 x 8 decoder 3 x B decoder
76 543210 76 5 43 210 76 5 43210
RARE RRAREE TYYYYYY
AND
ADD -
DRTAC g Arithmetic
logic §hif:
unit
ARE:
E E F;(::‘m DRF([(?:n 10) Load Y
l l ———-l AC 4—
0 1
Select X
- Multiplexers
Load Y
. AR 4 Clock

Fig. 2.25 Decoding of micro operation fields

e FI, F2, and F3 of Microinstruction are decoded witha 3 x 8
decoder

e  Output of decoder must be connected to the proper circuit to
initiate the corresponding microoperation

e F1=101(5):DRTAR

. F1 =110(6): PCTAR

e OQutput 5 and 6 of decoder F1 are connected to the load input of AR(two
input of OR gate)

e Multiplexer select the data from DR when output 5 is active

e Multiplexer select the data from AC when output 5 is inactive

o Arithmetic Logic Shift Unit

e Control signal of ALU in hardwired control

e Control signal will be now come from the output of the decoders
associated with the AND, ADD, and DRTAC.
€  Microprogram Sequencer : Fig. 2.26



Fig. 2.26 Microprogram sequencer for a control memory
2 Microprogram Sequencer select

the next address for control memory

L 2 MUX 1
e Select an address source and route to CAR
[J CAR +1
[J JIMP/CALL
[J Mapping

[J Subroutine Return
L 2 MUX 2
o Test a status bit and the result of the test is applied to aninput
logic circuit
e One of 4 Status bit is selected by Condition bit (CD)
2 Design of Input Logic Circuit



e Select one of the source address(So, S1) for CAR
e Enable the load input(L) in SBR
e Input Logic Truth Table : Tab. 2.7
» Input :
B o, [ from Branch bit (BR)
B TfromMUX?2(T)
» Output :
B MUX 1 Select signal (So, S1)
S1=NLly +Llo=TLio" +1o)=1
SO=1"Io’T + I’IoT + Lilo
=I"T(Io> + Io) + Inlo

=1T + Lilo
B SBR Load signal (L)
L=1IT
S=1I
So=hLlo+ KT
L = BLT

Table 2.7: Input logic truth table for micro program sequencer

BE Input MLUIX 1 Load SER

~~s000
~o==00
E-E-T-8-




SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT - III - Memory Organization — SCSA1402




UNIT III Memory Organization

Memory Hierarchy - Main memory - auxiliary Memory - Associative Memory —Cache Memory -
Virtual memory

Memory Hierarchy

The memory unit is an essential component in any digital computer since It Is needed for
storing programs and data. The memory unit that communicates directly with the CPU is called the
main memory. Devices that provide backup storage are called auxiliary memory. The most
common auxiliary memory devices used in computer systems are magnetic disks and tapes. They
are used for storing system programs, large data files, and other backup information. The memory
hierarchy system consists of all storage devices employed in a computer system from the slow but
high-capacity auxiliary memory to a relatively faster main memory, to an even smaller and faster
cache memory accessible to the high-speed processing logic. Figure 1 illustrates the components in
a typical memory hierarchy

Auxiliary memory

Magnetic P —
pes P
—_—— ——
— 10 procasy e
= 1 1 — oegrEy
Muagnetc
disks T
A
{
Y
[~ | Cache
|
! o ]

Fig.1 Memory hierarchy in a typical Computer system

Main memory

Main memory is the central storage unit in a computer system. It is a relatively large and
fast memory used to store programs and data during the computer operation. The principal
technology used for the main memory is based on semi conductor integrated circuits. Integrated
circuits RAM chips are available in two possible operating modes, static and dynamic.

» Static RAM — Consists of internal flip flops that store the binary information.

* Dynamic RAM - Stores the binary information in the form of electric charges that are applied to
capacitors.



Most of the main memory in a general purpose computer is made up of RAM integrated
circuit chips, but a portion of the memory may be constructed with ROM chips.

* Read Only Memory —Store programs that are permanently resident in the computer and for tables
of constants that do not change in value once the production of the computer is completed.

The ROM portion of main memory is needed for storing an initial program called a Bootstrap
loader.

* Boot strap loader —function is start the computer software operating when power is turned on.

* Boot strap program loads a portion of operating system from disc to main memory and control is
then transferred to operating system.

RAM and ROM CHIP

* RAM chip —utilizes bidirectional data bus with three state buffers to perform communication with
CPU

Chip select | e CS|

Chip select 2 ==—=={ CS2

Read == RD ';i‘;s - S data bUS

Write = WR
7-bit address = AD7

(a) Block diagram

CSI CS2 RD WR |Memory function State of data bus
0 0 x x Inhibit High-impedance
0 1 X X Inhibit High-impedance
1 0O 0 O Inhibit High-impedance
1 0 0 1 Write Input data to RAM
I 0 I x Read Output data from RAM
| I x X Inhibit High-impedance

(b) Function table

Fig.2: Block Diagram of a RAM Chip



The block diagram of a RAM Chip is shown in Fig.2. The capacity of memory is 128 words
of eight bits (one byte) per word. This requires a 7-bit address and an 8-bit bidirectional data bus.
The read and write inputs specify the memory operation and the two chips select (CS) control
inputs are enabling the chip only when it is selected by the microprocessor. The read and write
inputs are sometimes combined into one line labelled R/W. The function table listed in Fig.12-2(b)
specifies the operation of the RAM chip. The unit is in operation only when CS1=1 and CS2=0.The
bar on top of the second select variable indicates that this input is enabled when it is equal to 0. If
the chip select inputs are not enabled, or if they are enabled but the read or write inputs are not
enabled, the memory is inhibited and its data bus is in a high-impedance state. When CS1=1 and
CS2=0, the memory can be placed in a write or read mode. When the WR input is enabled, the
memory stores a byte from the data bus into a location specified by the address input lines. When
the RD input is enabled, the content of the selected byte is placed into the data bus. The RD and
WR signals control the memory operation as well as the bus buffers associated with the
bidirectional data bus.

( )

Chip select 1 Cs1
Chip select 2 cs2 5128 _

ROM > 8-bit data bus
9-bit address ADS

L 4

Fig.3: Typical ROM Chip

A ROM chip is organized externally in a similar manner. However, since a ROM can only
read, the data bus can only be in an output mode. The block diagram of a ROM chip is shown in
fig.3. The nine address lines in the ROM chip specify any one of the512 bytes stored in it. The two
chip select inputs must be CS1=1 and CS2=0 for the unit to operate. Otherwise, the data bus is in a
high-impedance state.

Memory Address Map

The interconnection between memory and processor is then established from knowledge of
the size of memory needed and the type of RAM and ROM chips available. The addressing of
memory can be established by means of a table that specify the memory address assigned to each
chip. The table called Memory address map, is a pictorial representation of assigned address space
for each chip in the system.



Table 1: Memory address map for microcomputer

Address bus
Hexadecimal
Component address 10 9 8 7 6 5 4 3 2 1
RAM 1 0000-007F 0o 0 0 x x x X X X X
RAM 2 008000FF 00 I x x X X X X X
RAM 3 0100-017F 0 1 0 x x x X X X X
RAM 4 018001 FF 01 I ¥ x =x X X X X
ROM 0200-03FF 1 x X X x x X X X X

The memory address map for this configuration is shown in table. The component column
specifies whether a RAM or a ROM chip is used. The hexadecimal address column assigns a range
of hexadecimal equivalent addresses for each chip. The address bus lines are listed in the third
column. The RAM chips have 128 bytes and need seven address lines. The ROM chip has 512

bytes and needs 9 address lines.

Memory Connection to CPU

RAM and ROM chips are connected to a CPU through the data and address buses. The low
order lines in the address bus select the byte within the chips and other lines in the address bus

select a particular chip through its chip select inputs.

T i
L L | " F.i Rl oww 10
T T
— Y
CLLIE] I
]
n!i
b 138« & ) —_—
o W AAA 1 -
5 L
|.|-|.i -
RO 138 = § "_HI FEF S
i AT
AT
[0 L= » i -
4 o [T =
AL
[EY
L= F 3
N e H =
e naty = e
ADr
Lai
—‘ ',:l'?—- £
2 LTE Ty ] i
[ | . LI ]
]

Fig.4: Memory connection to the CPU



The connection of memory chips to the CPU is shown in the above figure. This
configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of ROM. Each RAM
receives the seven low-order bits of the address bus to select one of 128 possible bytes. The
particular RAM chip selected is determined from lines 8 and 9 in the address bus. This is done
through a 2 X 4 decoder whose outputs go to the CS1 inputs in each RAM chip. Thus, when
address lines 8 and 9 are equal to 00, the first RAM chip is selected. When 01, the second RAM
chip is select, and so on. The RD and WR outputs from the microprocessor are applied to the inputs
of each RAM chip. The selection between RAM and ROM is achieved through bus line 10. The
RAMs are selected when the bit in this line is 0, and the ROM when the bit is 1. Address bus lines 1
to 9 are applied to the input address of ROM without going through the decoder. The data bus of
the ROM has only an output capability, whereas the data bus connected to the RAMs can transfer
information in both directions.

Auxiliary Memory

The time required to find an item stored in memory can be reduced considerably if stored data can
be identified for access by the content of the data itself rather than by an address. A memory unit
accessed by content is called an associative memory or content addressable memory (CAM).

* CAM is accessed simultaneously and in parallel on the basis of data content rather than by
specific address or location

» Associative memory is more expensive than a RAM because each cell must have storage
capability as well as logic circuits

» Argument register —holds an external argument for content matching
* Key register —mask for choosing a particular field or key in the argument word

Hardware Organization

Sremment Register {A)

Y

Koy register (A)

Alanch
reisier

T =t AssuEtive memory

array with related logic
—{ A
Rl —— M words
. b ts per wond
Wy ——i
Ourput

Fig.S: Block Diagram of associative memory



It consists of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The match register M has
m bits, one for each memory word. Each word in memory is compared in parallel with the content
of the argument register. The words that match the bits of the argument register set a corresponding
bit in the match register. After the matching process, those bits in the match register that have been
set b indicate the fact that their corresponding words have been matched. Reading is accomplished
by a sequential access to memory for those words whose corresponding bits in the match register
have been set

Read and Write operation Read Operation

If more than one word in memory matches the unmasked argument field , all the matched words
will have 1’s in the corresponding bit position of the match register

* In read operation all matched words are read ink sequence by applying a read signal to each word
line whose corresponding Mi bit is a logic 1

* In applications where no two identical items are stored in the memory , only one word may match
, in which case we can use Mi output directly as a read signal for the corresponding word

A, A A,
3 ¥ 1
K, K; K,
r /
Word 1| | Cyy Cy; Cin M,
Word i Ch Cy Cin | b= M,
Word m Cm] Cm; Cota M,
Bit 1 Bitj Bitn

Fig.6:Associative memory of m word, n cells per word

The relation between the memory array and external registers in an associative memory is
shown in Fig.6. The cells in the array are marked by the letter C with two subscripts. The first
subscript gives the word number and second specifies the bit position in the word. Thus cell Cij is
the cell for bit j in word i. A bit Aj in the argument register is compared with all the bits in column j
of the array provided that kj =1.This is done for all columns j=1,2,....n. If a match occurs between
all the unmasked bits of the argument and the bits in word I, the corresponding bit Mi in the match



register is set to 1. If one or more unmasked bits of the argument and the word do not match, Mi is
cleared to 0.

A K
Input d
Write

R |

R hY
Fff L’l[atch b= To M{
Read »| logic
Output

Fig.7: One cell of associative memory

It consists of flip-flop storage element Fij and the circuits for reading, writing, and matching
the cell. The input bit is transferred into the storage cell during a write operation. The bit stored is
read out during a read operation. The match logic compares the content of the storage cell with
corresponding unmasked bit of the argument and provides an output for the decision logic that sets
the bit in Mi.

Read and Write operation
Read Operation

If more than one word in memory matches the unmasked argument field all the matched words will
have 1’s in the corresponding bit position of the match register

* In read operation all matched words are read in A sequence by applying a read signal to each
word line whose corresponding Mi bit is a logic 1

* In applications where no two identical items are stored in the memory , only one word may match
, in which case we can use Mi output directly as a read signal for the corresponding word

Write Operation

Can take two different forms

1. Entire memory may be loaded with new information
2.Unwanted words to be deleted and new words to be inserted

1.Entire memory : writing can be done by addressing each location in sequence — This makes it
random access memory for writing and content addressable memory for reading — number of lines
needed for decoding is d Where m =2 d , m is number of words.



2.Unwanted words to be deleted and newA words to be inserted :

* Tag register is used which has as many bits as there are words in memory

* For every active ( valid ) word in memory , the corresponding bit in tag register is set to 1
* When word is deleted the corresponding tag bit is reset to 0

» The word is stored in the memory by scanning the tag register until the first 0 bit is encountered
After storing the word the bit is set to 1.

Cache Memory

Effectiveness of cache mechanism is based on a property of computer programs called “locality of
reference”

* The references to memory at any given time interval tend to beA confined within a localized areas

* Analysis of programs shows that most of their execution time is spent on routines in which
instructions are executed repeatedly These instructions may be — loops, nested loops , or few
procedures that call each other

* Many instructions in localized areas of program are executed
* Repeatedly during some time period and reminder of the program is accessed infrequently
This property is called “Locality of Reference”.

A special very- high- speed memory called a Cache is sometimes used to increase the speed
of processing by making current programs and data available to the CPU at a rapid rate. The cache
memory is employed in computer systems to compensate for the speed differential between main
memory access time and processor logic. CPU logic is usually faster than main memory access
time, with the result that processing speed is limited primarily by the speed of main memory.

A technique used to compensate for the mismatch in operating speeds is to employ
an extremely fast, small cache between the CPU and main memory whose access time Is dose to
processor logic dock cycle time. The cache is used for storing segments of programs currently
being executed in the CPU and temporary data frequently needed in the present calculations.

Analysis of a large number of typical programs has shown that the references to memory at
any given interval of time tend to be confined within a few localized areas in memory. This
phenomenon is known as the property of locality of reference locality of reference. When a
program loop is executed, the CPU repeatedly refers to the set of instructions in memory that
constitute the loop. Every time a given subroutine is called, its set of instructions are fetched from
memory. Thus loops and subroutines tend to localize the references to memory for fetching
instructions. The result of all these observations is the locality of reference property, which states that
over a short interval of time, the addresses generated by a typical program refer to a few localized
areas of memory repeatedly, while the remainder of memory is accessed relatively infrequently.

If the active portions of the program and data are placed in a fast small memory, the average
memory access time can be reduced, thus reducing the total execution time of the program. Such a



fast small memory is referred to as a cache memory. It is placed between the CPU and main
memory

Main memory CPU

RK X 12 Cache memory

512X 12 = E

Fig.8:Example of cache memory

The main memory can store 32k words of 12 bits each. The cache is capable of storing 512
of these words at any given time. For every word stored , there is a duplicate copy in main memory.
The CPU communicates with both memories. It first sends a 15 bit address to cache. If there is a
hit, the CPU accepts the 12 bit data from cache. If there is a miss, the CPU reads the word from
main memory and the word is then transferred to cache.

* When a read request is received from CPU, contents of a block of memory words containing the
location specified are transferred in to cache

* When the program references any of the locations in this block , the contents are read from the
cache Number of blocks in cache is smaller than number of blocks in main memory

* Correspondence between main memory blocks and those in the cache is specified by a mapping
function

» Assume cache is full and memory word not in cache is referenced

* Control hardware decides which block from cache is to be removed to create space for new block
containing referenced word from memory

* Collection of rules for making this decision is called “Replacement algorithm ”

Read/ Write operations on cache

* Cache Hit Operation

* CPU issues Read/Write requests using addresses that refer to locations in main memory
* Cache control circuitry determines whether requested word currently exists in cache

« If it does, Read/Write operation is performed on the appropriate location in cache (Read/Write
Hit )

Read/Write operations on cache in case of Hit
* In Read operation main memory is not involved.
* In Write operation two things can happen.

1.Cache and main memory locations are updated A simultaneously (* Write Through ) OR



2. Update only cache location and mark it as “ Dirty or A Modified Bit ” and update main memory
location at the time of cache block removal (“ Write Back ™ or “ Copy Back ) .

Read/Write operations on cache in case of Miss Read Operation
* When addressed word is not in cache Read Miss occurs there are two ways this can be dealt with

1.Entire block of words that contain the requested word is copied from main memory to cache and
the particular word requested is forwarded to CPU from the cache ( Load Through ) (OR)

2.The requested word from memory is sent to CPU first and then the cache is updated ( Early
Restart )

Write Operation
* If addressed word is not in cache Write Miss occurs
* [f write through protocol is used information is directly written in to main memory

* In write back protocol , block containing the word is first brought in to cache , the desired word is
then overwritten.

Mapping Functions

+ Correspondence between main memory blocks and those in the cache is specified by a memory
mapping function

* There are three techniques in memory mapping
1. Direct Mapping

2. Associative Mapping

3. Set Associative Mapping

Direct mapping:

A particular block of main memory can be brought to a particular block of cache memory.
So, it is not flexible.

6 bits 9 bits
I Tag ‘ Index —I
00/, 000 32K X 12 000 512X 12
) Octal Cache memory
Octal Main memory address Address = 9 bits
address = i
res Address = 15 bits 777 Data=12 bits.
A Data = 12 bits
7 377

Fig.9:Addressing relationship between main and cache memories



The CPU address of 15 bits is divided into two fields. The nine least significant bits
constitute the index field and remaining six bits form the tag field. The main memory needs an
address that includes both the tag and the index bits. The number of bits in the index field is equal
to the number of address bits required to access the cache memory.

Memory Index

address Memory data address Tag Data
00000 1220 000 ] 1220
00777 2340
01000 3450
01777 4560 777 02 6710
02000 5670

(b) Cache memory

02777 6710

(@ Main memory

Fig.10:Direct mapping cache organization

The direct mapping cache organization uses the n- bit address to access the main memory
and the k-bit index to access the cache. Each word in cache consists of the data word and associated
tag. When a new word is first brought into the cache, the tag bits are stored alongside the data bits.
When the CPU generates a memory request, the index field is used the index field is used for the
address to access the cache. The tag field of the CPU address is compared with the tag in the word
read from the cache. If the two tags match, there is a hit and the desired data word is in cache. If
there is no match, there is a miss and the required word is read from main memory.

Associative mapping

In this mapping function, any block of Main memory can potentially reside in any cache block
position. This is much more flexible mapping method.

CPU address (15 bits)

| Argument register ]

Address Data
01000 3450
02777 6710
22345 1234

Fig.11:Associative mapping cache (all numbers in octal)



The associative memory stores both address and content(data) of the memory word. This
permits any location in cache to store any word from main memory. The diagram shows three
words presently stored in the cache. The address value of 15 bits is shown as a five-digit ctal
number and its corresponding 12-bit word is shown as a four-digit octal number. A CPU address of
15-bits is placed in the argument register and the associative memory is searched for a matching
address. If address is found, the corresponding 12-bit data is read and sent to the CPU. If no match
occurs, the main memory is accessed for the word.

Set-associative mapping

In this method, blocks of cache are grouped into sets, and the mapping allows a block of
main memory to reside in any block of a specific set. From the flexibility point of view, it is in
between to the other two methods.

ree ac Data J Data

(0 o0 42 N1 ™®

FF 02 As [0 AD

Fig.12:2 way set associative cache memory

The octal numbers listed in Fig.12-15 are with reference to the main memory contents.
When the CPU generates a memory request, the index values of the address is used to access the
cache. The tag field of the CPU address is then compared with both tags in the cache to determine if
a match occurs. The comparison logic dine by an associative search of the tags in the set similar to
an associative memory search thus the name “Set Associative”

Replacement Policies

* When the cache is full and there is necessity to bring new data to cache , then a decision must be
made as to which data from cache is to be removed

* The guideline for taking a decision about which data is to be removed is called replacement policy
Replacement policy depends on mapping

* There is no specific policy in case of Direct mapping as we have no choice of block placement in
cache Replacement Policies In case of associative mapping

* A simple procedure is to replace cells of the cache in round robin order whenever a new word is
requested from memory

* This constitutes a First-in First-out (FIFO) replacement policy



In case of set associative mapping

» Random replacement

* First-in First-out (FIFO) ( item chosen is the item that has been in the set longest)

* Least Recently Used (LRU) ( item chosen is the item A that has been least recently used by CPU)
Virtual Memory

Virtual Memory is a storage allocation scheme in which secondary memory can be addressed
as though it were part of main memory. The addresses a program may use to reference memory are
distinguished from the addresses the memory system uses to identify physical storage sites, and
program generated addresses are translated automatically to the corresponding machine addresses.
The size of virtual storage is limited by the addressing scheme of the computer system and amount of
secondary memory is available not by the actual number of the main storage locations.

It is a technique that is implemented using both hardware and software. It maps memory
addresses used by a program, called virtual addresses, into physical addresses in computer memory.
All memory references within a process are logical addresses that are dynamically translated into
physical addresses at run time. This means that a process can be swapped in and out of main
memory such that it occupies different places in main memory at different times during the course
of execution.

A process may be broken into number of pieces and these pieces need not be
continuously located in the main memory during execution. The combination of dynamic run-time
address translation and use of page or segment table permits this

Virtual Address Physical Address
o A 1 o

4K B K c
8K < —_— r BK
12K D 12K

16K E — e 16K B
20K

e 24K A

L e

Secondary Memory

Fig.13: virtual memory

Virtual memory is commonly implemented by demand paging. It can also be implemented in a
segmentation system. Demand segmentation can also be used to provide virtual memory






SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT - IV - INPUT AND OUTPUT ORGANIZATION

— SCS1402




Introduction I/0O System

Peripherals:

The input and output devices that are attached to the computer are called peripheral
devices.

Eg: Keyboard, printer, display unit.

e Peripherals that provide auxiliary storage to the system are magnetic disks and tapes.
e Printers provide a permanent record on paper of computer output data or text.

The 3 types of printers:

1) Daisy wheel

2) Dot matrix

3) Laser
e Magnetic tapes are used for storing files of data.

Access — Sequential

Slowest and cheapest method.

Tapes can be removed when not in use.

e Magnetic disks are used for bulk storage of programs and data.
Access — by moving the read/write mechanism to a track in the magnetized surface.

ASCII —American Standard Code for Information Interchange
It is a 7 bit code. Most computers manipulate an 8 bit quantity as a single unit
called a byte. ASCII characters are often stored one per byte.

Input Output Interface

It provides a method for transferring information between internal storage and external
I/O devices. Peripherals need special communication links for interfacing with CPU. The
purpose of the communication link is to resolve the differences between the central computer
and each peripheral.

The major differences are:
1. Peripherals are electromagnetic and electromechanical devices, whereas CPU and
memory are electronic devices.
2. The data transfer rate of peripherals is slower than that of the CPU.



3. The operating modes of peripherals are different from each other.
4. Data codes and formats in peripherals differ from the word format of CPU and memory.

To resolve the differences, special hardware components are included between CPU and
peripherals to supervise and synchronize all the input and output transfers called interface units.

I/O Bus and Interface Modules

The communication between the processor and several peripherals through the I/O Bus is
shown in the following figure.

I/0 bus

Data
Address

Control

Figure 1 I/O Bus and Interface Modules

I/0 Command:
The function code is referred to as an I/O command. It is an instruction that is

executed in the interface and its attached peripheral unit.

An interface may receive four types of commands. They are control, status, data input
and data output

Control command: It is issued to activate the peripheral and to inform it what to do.

Status command: It is used to test various status conditions in the interface and the
peripheral.

Data input command: The interface receives an item of data from the peripheral and
places it in its buffer register.



Data output command: The command causes the interface to respond by transferring data
from the bus into one of its registers.

I/O versus memory bus
There are 3 ways that computer buses can be used to communicate with memory

and 1/0.

1. Use two separate buses, one for memory and the other for I/0.

2. Use one common bus for both memory and I/O but have separate control lines for
each.

3. Use one common bus for memory and I/O with common control lines.

Isolated versus Memory mapped I/0O
Isolated 1/O :

1) The CPU has distinct input and output instructions.
2) Isolates memory and I/O addresses.
3) Each has its own address space.

Memory mapped 1/0
1) No specific input output instructions.
2) Use memory related instuctions for accessing data.

3) Do not distinguish between memory and I/O addresses.
4) Memory and I/O share the same set of addresses.

Example of I/O interface :

Example of an I/O Interface

Bidirectional I/0 Data
e BUs Buffers pe— :

Data Bus

Chip Select = F’Urt e | /O Data
: Register

Sgister pelect HItRe Control
Register Jglec & B4 Control Hh
/O Read Control s Register
. Signal 9
1/0 Write >ignal s -
— 7] tatus
N Status :
I Register
G o1 PU To I/O Devicg=—————»

Fig. Example of an 1/0 Interface Unit
Figure 2 I/0O interface



An example of an I/O interface unit is shown in the following block diagram.

CS RSI RSO Register selected

0 X X None: dauAs inhigh—inpedance
| 0 0 Port A4 register

1 0 1 Port B register

1 1 0 Control registcr

| 1 1 Sums register

Asynchronous data transfer :

Control signals are transmitted between the two communicating units to indicate the time
at which data is being transmitted.

A strobe pulse is supplied by one of the units to indicate to the other unit when the
transfer has to occur.

The unit receiving the data item responds with another control signal to acknowledge
receipt of the data.

This type of agreement between two independent units is referred to as handshaking.



Source
unit

Data bus

Destination

W

Data

(a) Block diagram

———Valid data ————— &

Strobe

(b) Timing diagram

Figure 3 Asynchronous data transfer

Source initiated strobe for data transfer



Data bus
Source = Destination
unit | Strobe unit
(a) Block diagram
Da[a ""‘—Ualld data — -
Strobe

(b) Timing diagram

Figure 4 Timing Diagram
Destination initiated strobe for data transfer

Disadvantage of strobe method:

The source/ destination unit that initiates the transfer has no way of knowing whether the
destination/source unit has actually received the data item that was placed in the bus.

Handshaking:

The two handshaking lines are data valid, which is generated by the source unit and data
accepted, generated by the destination unit.

1) The source unit initiates the transfer by placing the data on the bus and enablingits
data valid signal.

2) The data accepted signal is activated by the destination unit after it accepts the data
from the bus.

3) The source unit then disables its data valid signal, which invalidates the data on the
bus.

4) The destination unit then disables its data accepted signal and the system goes into
initial state.

5) The source does not send the next data item until after the destination unit shows its
readiness to accept new data by disabling its data accepted signal,



This scheme allows arbitrary delays from one state to the next and permits each unit
to respond at its own data transfer rate. The rate of transfer is determined by the
slowest unit.

Data bus
Source Data valid Destination
unit .
Data unit
accepted
(a) Block diagram
Databus ,/~ Valid data —=
Data valid T

Data accepted /’ kﬁ

(b) Timing diagram

Source unit Destination unit

Place data on bus.

Enable cla re vn/id. \

Y

Accept data from bus.
Enable data accepted.

Disable data ilalid.

Inv | ,
alidate data on bus Disable data at’cepted.
Ready to accept data

/"__/——- (initial state).

Figure 5 Sequence of events



Source initiated transfer using handshaking
Asynchronous serial transfer

Serial transmission may be synchronous or asynchronous.

In serial synchronous transmission, two units share a common clock frequency
and the bits are transmitted at a rate dictated by the clock pulses.

A serial asynchronous data transmission technique used in many interactive
terminals employs special bits that are inserted at both ends of the character code.
Each character consists of three fields : a start bit, the character bits and stop bits.
The transmitter rests at the 1- state when no characters are transmitted.

The first bit, called the start bit is always a 0 and is used to indicate the beginning
of a character,

The last bit called the stop bit is always a 1.

1 1 0 0 0 1 0 1

Start
bit

Asynchronous
UART:

The integrated

- Character bits %}4* S‘EOP —
bits

Figure 6 Asynchronous serial transfers

serial transmission

circuits that are specially designed to provide the interface between computer and

similar interactive terminals is called an asynchronous communication interface or a universal

asynchronous receiver — transmitter (UART)

Baud rate

The rate at which serial information is transmitted and is equivalent to the data transfer in bits

per second.



FIFO buffer

e A first in first out (FIFO) buffer is a memory unit that stores information in such a
manner that the item first in is the item first out.

e A FIFO buffer comes with separate input and output terminals.

e [t can input data and output data at two different rates and the output data are always in
the same order in which the data entered the buffer.

e Useful in some applications when data are transferred asynchronously.

Modes of transfer

Data transfer to and from peripherals may be handled in one of the three modes

1. Programmed 1/O
2. Interrupt initiated 1/0
3. Direct memory access

Programmed 1/0O
Figure Dara transfer from /O device to CPU,
Interface
. Data bug . I bus
Address bus Data register
CPU /0 read e Data valid 11

= device

1/ write f Status
e register o Data accepred e

F = Flag bit



e FEach data item is initiated by an instruction in the program.

e The transfer is to and from a CPU register and peripheral.

e Transferring data under program control requires constant monitoring of the
peripheral by the CPU.

e The CPU stays in a program loop until the I/O unit indicates that it is ready for
data transfer.

e Time consuming process since it keeps the processor busy needlessly.

Interrupt initiated 1/0

e The interface monitors the device.

e When the device is ready for data transfer, the interface generates an interrupt
request to the computer.

e Upon detecting the external interrupt signal, the CPU momentarily stops the task
it is processing, branches to a service program to process the I/O transfer and then
returns to the task it was originally performing.

DMA

e The interface transfers data into and out of the memory unit through the
memory bus.

o The CPU initiates the transfer by supplying the interface with the starting
address and the number of words needed to be transferred and then proceeds to
execute other tasks.

e When the transfer is made, the DMA requests memory cycles through the
memory bus.

¢  When the request is granted by the memory controller, the DMA transfers the
data directly into memory.

e The CPU delays its memory access operation to allow the direct memory I/0
transfer.



Priority Interrupt

There are number of 1O devices attached to the computer. They are all capable of generating the
interrupt.
When the interrupt is generated from more than one device, priority interrupt systeml | is used to
determine which device is to be serviced first.
Devices with high speed transfer are given higher priority and slow devices are given! ' lower
priority. Establishing the priority can be done in two ways:

e Using Software

e Using Hardware

A pooling procedure is used to identify highest priority in software means.

Polling Procedure : There is one common branch address for all interrupts.

Branch address contain the code that polls the interrupt sources in sequence.The highest priority is
tested first.
The particular service routine of the highest priority device is served.

The disadvantage is that time required to poll them can exceed the time to serve them

in large number of 10 devices.

Using Hardware: Hardware priority system function as an overall manager
It accepts interrupt request and determine the priorities.

To speed up the operation each interrupting devices has its own interrupt vector.

No polling is required, all decision are established by hardware priority interrupt unit.
It can be established by serial or parallel connection of interrupt lines.

Serial or Daisy Chaining Priority:

Device with highest priority is placed first.
Device that wants the attention send the interrupt request to the CPU.
CPU then sends the INTACK signal which is applied to PI(priority in) of the first device. If it had
requested the attention, it place its VAD(vector address) on the bus.
And it block the signal by placing 0 in PO(priority out) If not it pass the signal to next device
through PO(priority out) by placing 1.
This process is continued until appropriate device is found.
The device whose Pl is 1 and PO is 0 is the device that send the interrupt request.



Processor data bus

i FAL 1 FAD 2 FAD 3
WG -ie-"'l Device 3
Device | Device S
1 Pl L e i i) e | P FL) f—
]
Interrupt reguest
i — [NT
f CPU
Interrupt acknowledge
e 2 INTACK

Figure [aisy-chain pricrity intérmupt.

Parallel Priority Interrupt :
It consist of interrupt register whose bits are set separately by the interrupting devices.
Priority is established according to the position of the bits in the register
Mask register is used to provide facility for the higher priority devices to interrupt
when lower priority device is being serviced or disable all lower priority devices when higher is
being serviced.
Corresponding interrupt bit and mask bit are ANDed and applied to priority encoder.
Priority encoder generates two bits of vector address.
Another output from it sets IST (interrupt status flip flop).



Priowity Encoder Truth Tahble

Inputs Outpuls
T =fy Fa K ¥ gr JET Boolean functions
d | o X i i A
U T - x = ILI
g B 4 = TR 7 A | y=1T5F + 35
6 00 5% F - (USTy =10, + I, +1; + I3
o 0 0 o o A S ]

10P

o The Intel 8089 I/O processor is contained in a 40 pin integrated circuit package.
e There are two independent units called channels.



Reads the message from memory, carries out the operation and notifies the CPU when it
has finished.

Contains 50 basic instructions that can operate on individual bits, on bytes or 16 bit
words.

It can execute programs in a manner similar to a CPU except that the instruction set is
specifically chosen to provide efficient input-output processing.

It provides efficient data transfer between any two components attached to the system
bus, such as I/O to memory, memory to memory or I/O to I/O.

In the Intel 8086/8089 microcomputer system, the 8086 fuctions as the CPU and the 8089
as the IOP.

The two units share a common memory through a bus controller connected to asystem
bus, called a “multibus” by Intel.

The IOP uses a local bus to communicate with various interface units connected to I/O
devices.

The CPU communicates with the IOP by enabling the channel attention line.

The CPU uses the select line to select one of the two channels in IOP.

The I0OP gets the attention of the CPU by sending an interrupt request.

The CPU and IOP communicates with each other by writing messages for one another in
system memory.

The CPU prepares the message area and signals the IOP by enabling the channel
attention line.

The IOP reads the message, performs the required I/O functions and executes the
appropriate channel program .

When the channel has completed its program, it issues an interrupt request to the CPU.
The communication scheme consists of program sections called blocks.

Each block contains control and parameter information as well as an address pointer to its
successor block.

The address of the control block is passed to each IOP channel during initialization.

The busy flag indicates whether the IOP is busy or ready to perform a new I/O operation.
The CCW (Channel command word) is specified by the CPU to indicate the type of
operation required from the IOP.



8086

CPU s
A b
dm
= =1 5
Z 2 E 2 Bus _ System .
ol sl =| 5 controller [~ e = Memory unit
=] 2| S|z
p— o

4 v 1

8089 % v Local bus

10P “

Jh =
v
Interface Interface

A

W

Input device Output device

Figure 7 Intel 8086/8089 microcomputer block diagram

Direct Memory Access (DMA)

Direct memory access (DMA) is a feature of computer systems that allows certain hardware
subsystems to access main system memory (RAM) independently of the central processing unit

(CPU).

Without DMA, when the CPU is using programmed input/output, it is typically fully occupied
for the entire duration of the read or write operation, and is thus unavailable to perform other
work. With DMA, the CPU first initiates the transfer, then it does other operations while the
transfer is in progress, and it finally receives an interrupt from the DMA controller when the
operation is done. This feature is useful at any time that the CPU cannot keep up with the rate of
data transfer, or when the CPU needs to perform useful work while waiting for a relatively slow
I/O data transfer. Many hardware systems use DMA, including disk drive controllers, graphics
cards, network cards and sound cards. DMA is also used for intra-chip data transfer in multi-core



processors. Computers that have DMA channels can transfer data to and from devices with much
less CPU overhead than computers without DMA channels. Similarly, a processing element
inside a multi-core processor can transfer data to and from its local memory without occupying
its processor time, allowing computation and data transfer to proceed in parallel.

DMA can also be used for "memory to memory" copying or moving of data within memory.
DMA can offload expensive memory operations, such as large copies or scatter-gather
operations, from the CPU to a dedicated DMA engine. An implementation example is the I/O
Acceleration Technology.

ABUS jp——Address Bus
Bus Request—— gR

DBUS L Data Bus

High Impedance
{disable) when BG

is enable
RD L« Read

Bus Grant = BG

WR " Write

CPL bus Signals for DMA Transfer

Types of modes:
Burst mode

An entire block of data is transferred in one contiguous sequence. Once the DMA controller is
granted access to the system bus by the CPU, it transfers all bytes of data in the data block before
releasing control of the system buses back to the CPU, but renders the CPU inactive for
relatively long periods of time. The mode is also called "Block Transfer Mode". It is also used to
stop unnecessary data.



Address Bus

Data bus Address bus buffers
Data bus «——s buffers . -
1
N
T A
DMA Select Ds E Address Register
R
Register Select =% RS N
{" + Word Count Register
Read +—* RD =
B
Write =% WR U
S Lk o Control Register
Bus Request =] BR
Bus Grant ——* BG : DMA Request
Interrupt * Interrupt to IO devices
DMA Acknowledement

Block Diagram of DMA Controller

Cycle stealing mode

The cycle stealing mode is used in systems in which the CPU should not be disabled for the
length of time needed for burst transfer modes. In the cycle stealing mode, the DMA controller
obtains access to the system bus the same way as in burst mode, using BR (Bus Request) and BG
(Bus Grant) signals, which are the two signals controlling the interface between the CPU and the
DMA controller. However, in cycle stealing mode, after one byte of data transfer, the control of
the system bus is deasserted to the CPU via BG. It is then continually requested again via BR,
transferring one byte of data per request, until the entire block of data has been transferred. By
continually obtaining and releasing the control of the system bus, the DMA controller essentially
interleaves instruction and data transfers. The CPU processes an instruction, then the DMA
controller transfers one data value, and so on. On the one hand, the data block is not transferred
as quickly in cycle stealing mode as in burst mode, but on the other hand the CPU is not idled for
as long as in burst mode. Cycle stealing mode is useful for controllers that monitor data in real
time.

Transparent mode

The transparent mode takes the most time to transfer a block of data, yet it is also the most
efficient mode in terms of overall system performance. The DMA controller only transfers data
when the CPU is performing operations that do not use the system buses. It is the primary
advantage of the transparent mode that the CPU never stops executing its programs and the
DMA transfer is free in terms of time. The disadvantage of the transparent mode is that the
hardware needs to determine when the CPU is not using the system buses, which can be
complex.



Serial Communication
Data transmission between two points occurs in three different modes

1) Simplex — This line carries information in one direction only.
Ex: radio and TV broadcasting

2) Half-duplex — This transmission system is capable of transmitting in both directions , but
data can be transmitted in only one direction at a time.
Ex: Modem

3) Full-duplex — This transmission system can send and receive data in both directions
simultaneously.
Ex: a two wire circuit

SYN | SYN | SOH | Header STX Text ETX‘ BCC

Figure 8 Typical message format for character oriented protocol

o There are a number of control characters used for message formation.

e Each character, including the control characters, is transmitted serially as an 8- bit binary
code which consists of the 7 bit ASCII code plus an odd parity bit in the eighth most
significant position.

e The two SYN characters are used to synchronize transmitter and receiver.

o The heading starts with the SOH character and continues with two characters that specify
the address of the terminal.

Bit oriented protocol

o A frame starts with the 8 bit flag 01111110 followed by an address and control sequence.

e The frame check field is a CRC (cyclic redundancy check) sequence used for detecting
errors in transmission.

e The ending flag indicates to the receiving station that the 16 bits just received constitute
the CRC bits.

e The ending frame can be followed by another frame, another flag or a sequence of
consecutive 1°s.

e A frame must have a minimum of 32 bits between flags to accomodate the address,
control and frame check fields.



Flag Address | Control Information Frame check Flag
01111110 8 bits 8 bits any number of bits 16 bits 01111110

Figure 9 Frame format for bit oriented protocol

REFERENCES :

1. COMPUTER SYSTEM ARCHITECTURE, MORRIS M. MANO, 3RD EDITION, PRENTICE
HALL INDIA.

2. HTTP://NPTEL.AC.IN/COURSES



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

UNIT - V — Characteristics of Multiprocessors — SCSA1402




V.  Characteristics of multiprocessors

5.1 Multiprocessor:

A set of processors connected by a communications network

Processor Processor IEIIGTPYUC?SSQT
Communication

'Network

-

3

Processor Processor

Processor Processor

Fig. 5.1 Basic multiprocessor architecture
A multiprocessor system is an interconnection of two or more CPU’s with

memory and input-output equipment.

Multiprocessors system are classified as multiple instruction stream,
multiple data stream systems(MIMD).

There exists a distinction between multiprocessor and multicomputers that
though both support concurrent operations.

In multicomputers several autonomous computers are connected through
a network and they may or may not communicate but in a multiprocessor
system there is a single OS Control that provides interaction between
processors and all the components of the system to cooperate in the
solution of the problem.

VLSI circuit technology has reduced the cost of the computers to such a
low Level that the concept of applying multiple processors to meet system

performance requirements has become an attractive design possibility.



Processor Organization

Serial Parallel
SISD SIMD MISD MIMD
et Vector Array g $
i processor processor
Tightly Loosely
coupled coupled
(:pirrrt{'ﬁf Maulti AL Shared Distributed
MEmory MEMGFY
JJ $ Clusters
Symmetric : ;
mudtiprocessor m::;:;'ﬂ;::\
{SMP} (NUMA)

Fig. 5.2 Taxonomy of mono- mulitporcessor organizations
Characteristics of Multiprocessors:
Benefits of Multiprocessing:

1. Multiprocessing increases the reliability of the system so that a failure or error
in one part has limited effect on the rest of the system. If a fault causes one processor
to fail, a second processor can be assigned to perform the functions of the disabled
one.

2. Improved System performance. System derives high performance from the
fact that computations can proceed in parallel in one of the two ways:

a) Multiple independent jobs can be made to operate in parallel.
b) A single job can be partitioned into multiple parallel tasks.

This can be achieved in two ways:

- The user explicitly declares that the tasks of the program be executed in

parallel



- The compiler provided with multiprocessor s/w that can automatically
detect parallelism in program. Actually it checks for Data dependency
COUPLING OF PROCESSORS
Tightly Coupled System/Shared Memory:
- Tasks and/or processors communicate in a highly synchronized fashion
- Communicates through a common global shared memory
- Shared memory system. This doesn’t preclude each processor from having
its own local memory(cache memory)
Loosely Coupled System/Distributed Memory
- Tasks or processors do not communicate in a synchronized fashion.
- Communicates by message passing packets consisting of an address, the
data content, and some error detection code.
- Overhead for data exchange is high
- Distributed memory system
Loosely coupled systems are more efficient when the interaction between tasks is
minimal, whereas tightly coupled system can tolerate a higher degree of interaction

between tasks.

Shared (Global) Memory
- A Global Memory Space accessible by all processors
- Processors may also have some local memory
Distributed (Local, Message-Passing) Memory
- All memory units are associated with processors
- To retrieve information from another processor's memory a message must be
sent there
Uniform Memory
- All processors take the same time to reach all memory locations
Non-uniform (NUMA) Memory

- Memory access is not uniform



SHARED MEMORY
Memory DISTRIBUTED MEMORY
N s S Network
WY Y AN
Network

N\

0 B

ProcessorsiMemory

Processors

Fig. 5.3 Shared and distributed memory

Shared memory multiprocessor:

M M M
Buses,
Interconnection Network Multistage IN,
] Crosshar Switch
P P £us P

Fig 5.4 Shared memory multiprocessor
Characteristics
- All processors have equally direct access to one large memory address
space
Limitations

- Memory access latency; Hot spot problem

5.2 Interconnection Structures:

The interconnection between the components of a multiprocessor System can
have different physical configurations depending n the number of transfer paths that are
available between the processors and memory in a shared memory system and among

the processing elements in a loosely coupled system.



Some of the schemes are as:

Time-Shared Common Bus

- Multiport Memory
- Crossbar Switch
- Multistage Switching Network
- Hypercube System
a. Time shared common Bus
- All processors (and memory) are connected to a common bus or busses
- Memory access is fairly uniform, but not very scalable
- A collection of signal lines that carry module-to-module communication
- Data highways connecting several digital system elements

- Operations of Bus

Memory unit

CPU 1 CPU 2 CPU 3 IOP 1 IOP 2

Fig. 5.5 Time shared common bus organization

Local Bus

Common System
Shared Bus cPU 10F | iy
Memory Controller
SYSTEM BUS
System Local System Local
Bus CPU (o] Memory Bus CPU Memory
Controller Controller
Local Bus Local Bus

Fig. 5.6 system bus structure for multiprocessor



In the above figure we have number of local buses to its own local memory and to one
or more processors. Each local bus may be connected to a CPU, an IOP, or any
combinations of processors. A system bus controller links each local bus to a common
system bus. The I/O devices connected to the local IOP, as well as the local memory,
are available to the local processor. The memory connected to the common system bus
is shared by all processors. If an |IOP is connected directly to the system bus the 1/O
devices attached to it may be made available to all processors
Disadvantage.:
¢ Only one processor can communicate with the memory or another
processor at any given time.
e As a consequence, the total overall transfer rate within the system is
limited by the speed of the single path
b. Multiport Memory:
Multiport Memory Module
- Each port serves a CPU
Memory Module Control Logic
- Each memory module has control logic
- Resolve memory module conflicts Fixed priority among CPUs
Advantages
- The high transfer rate can be achieved because of the multiple paths.
Disadvantages:
- It requires expensive memory control logic and a large number of cables

and connections

Memory Modules

MM 1 MM 2 MM 3 MM 4

CPU 1

CPU 2

CPU 3

CPU 4

Fig. 5.7 Multiport memory



c. Crossbar switch:

processor and a memory.

- It also resolves the multiple requests for access to the same memory on

the predetermined priority basis.

- Though this organization supports simultaneous transfers from all memory

Each switch point has control logic to set up the transfer path between a

modules because there is a separate path associated with each Module.

- The H/w required to implement the switch can become quite large and

complex

Memory modules

MM1

mmz2 MM3] | MM4

CPU

CPU2

[E1[E][E]

o
c
o

a)

" data address, and
[ control from CPU1
_‘ data h
Multiplesers [ | dataaddress,and
_address| g ‘_.} controlfrom CPU 2
ey 1 bitafion
Module | RW .
o data address, and
a 1 ]
¢ z:anilloew _}controlfrom CPU3
=" data,address, and
— [ control from CPU 4
b)

Fig. 5.8 a) cross bar switch  b) Block diagram of cross bar switch

Advantage:

- Supports simultaneous transfers from all memory modules

Disadvantage:

- The hardware required to implement the switch can become quite large and

complex.

d. Multistage Switching Network:

- The basic component of a multi stage switching network is a two-input, two-

output interchange switch.



Interstage Switch

A 0 A 0
) \ 1
B — — B — —
A connected to 0 A connected to 1
A ] 0 A o
/ 1 1
B e—  — B
B connected to 0 B connected to 1

Fig. 5.9 operation of 2X2 interconnection switch

Using the 2x2 switch as a building block, it is possible to build a multistage network to
control the communication between a number of sources and destinations.
- To see how this is done, consider the binary tree shown in Fig. below.
- Certain request patterns cannot be satisfied simultaneously.
i.e., if P1 > 000~011, then P> 100~111

Binary Tree with 2 x 2 Switches /. D 000

0 1
001

ol 1

0 T L 010

Some requests cannot be P1 1
Satisfied simultaneously \ 1 011

For Ex: if P1 is connected to P2 i
000 through 001, p2 can be p— 100

connected to only one of the _\1_

Destinations ie100 through 111 1 101
L 110

1

Fig 5.10 Binary tree with 2x2 switches

8x8 Omega Switching Network

Fig. 5.11 8X8 Omega switching network



- Some request patterns cannot be connected simultaneously. i.e., any two
sources cannot be connected simultaneously to destination 000 and 001

- In a tightly coupled multiprocessor system, the source is a processor and the
destination is a memory module.

- Setupthe path > transfer the address into memory - transfer the data

- In aloosely coupled multiprocessor system, both the source and destination are

Processsing elements.

. Hypercube System:
The hypercube or binary n-cube multiprocessor structure is a loosely coupled
system composed of N=2n processors interconnected in an n-dimensional binary
cube.
- Each processor forms a node of the cube, in effect it contains not only a CPU
but also local memory and I/O interface.
- Each processor address differs from that of each of its n neighbors by exactly
one bit position.
- Fig. below shows the hypercube structure for n=1, 2, and 3.
- Routing messages through an n-cube structure may take from one to n links
from a source node to a destination node.
- Arouting procedure can be developed by computing the exclusive-OR of the
source node address with the destination node address.
- The message is then sent along any one of the axes that the resulting binary
value will have 1 bits corresponding to the axes on which the two nodes differ.
- A representative of the hypercube architecture is the Intel iPSC computer
complex.
- It consists of 128(n=7) microcomputers, each node consists of a CPU, a
floating point processor, local memory, and serial communication interface

units

10



One-cube Two-cube Three-cube

Fig. 5.12 Hypercube structures for n=1,2,3

5.3 Inter-processor Arbitration

- Only one of CPU, IOP, and Memory can be granted to use the bus at a time
- Arbitration mechanism is needed to handle multiple requests to the shared
resources to resolve multiple contention
- SYSTEM BUS:
0 A bus that connects the major components such as CPU’s, IOP’s and
memory
0 A typical System bus consists of 100 signal lines divided into three
functional groups: data, address and control lines. In addition there are
power distribution lines to the components.
- Synchronous Bus
0 Each dataitem is transferred over a time slice
0 known to both source and destination unit
o Common clock source or separate clock and synchronization signal is
transmitted periodically to synchronize the clocks in the system
- Asynchronous Bus
0 Each data item is transferred by Handshake mechanism
= Unit that transmits the data transmits a control signal that indicates
the presence of data
= Unit that receiving the data responds with another control signal to

acknowledge the receipt of the data

11



o Strobe pulse -supplied by one of the units to indicate to the other unit
when the data transfer has to occur
Table 5.1 IEEE standard 796 multibus signals

Signal name

Data and address

Data lines (16 lines) DATAO-DATAI1S
Address lines (24 lines) ADRSO-ADRS23
Data transfer

Memory read MRDC

Memory write MWTC

IO read IORC

IO write IOWC

Transfer acknowledge TACK

Interrupt control
Interrupt request (8 lines) INTO-INT7

Interrupt acknowledge INTA
Miscellaneous control
Master clock CCLK
System initialization INIT
Byte high enable BHEN
Memory inhibit (2 lines) INHI1-INH2
Bus lock LOCK
Bus arbitration
Bus reguest BREQ
Common bus request CBROQ
Bus busy BUSY
Bus clock BCLK
Bus priority in BPRN
Bus priority out BPRO

Power and ground (20 lines)

INTERPROCESSOR ARBITRATION STATIC ARBITRATION

Serial Arbitration Procedure

Highest
riorit
P y To next
arbiter
1 ——={PI Bus PO}——|PI Bus PO Pl Bus PO Pl pys PO l———s
arbiter 1 arbiter 2 arbiter 3 arbiter 4
Bus busy line
Parallel Arbitration Procedure
Bus Bus Bus Bus
arbiter 1 arbiter 2 arbiter 3 arbiter 4
Ack Reqg Ack Reqg Ack Reg Ack Reqg
[y I l [y l l .
Bus busy line
v ¥ v 3
4x2
Priority encoder
v
I 2x4 |
Decoder
I |

Fig. 5.13 Inter-processor arbitration static arbitration

12



Interprocessor Arbitration Dynamic Arbitration

Priorities of the units can be dynamically changeable while the system is in
operation
Time Slice
o0 Fixed length time slice is given sequentially to each processor, round-
robin fashion
Polling
0 Unit address polling -Bus controller advances the address to identify the
requesting unit. When processor that requires the access recognizes its
address, it activates the bus busy line and then accesses the bus. After a
number of bus cycles, the polling continues by choosing a different
processor.
LRU
0 The least recently used algorithm gives the highest priority to the
requesting device that has not used bus for the longest interval.
FIFO
o0 The first come first serve scheme requests are served in the order
received. The bus controller here maintains a queue data structure.
Rotating Daisy Chain
0 Conventional Daisy Chain -Highest priority to the nearest unit to the bus
controller
0 Rotating Daisy Chain —The PO output of the last device is connected to
the PI of the first one. Highest priority to the unit that is nearest to the unit

that has most recently accessed the bus(it becomes the bus controller)

5.4 Inter processor communication and synchronization:

The various processors in a multiprocessor system must be provided with a
facility for communicating with each other.
0 A communication path can be established through a portion of memory or

a common input-output channels.

13



The sending processor structures a request, a message, or a procedure, and
places it in the memory mailbox.

0 Status bits residing in common memory

0 The receiving processor can check the mailbox periodically.

0 The response time of this procedure can be time consuming.
A more efficient procedure is for the sending processor to alert the receiving
processor directly by means of an interrupt signal.
In addition to shared memory, a multiprocessor system may have other shared
resources.

0 e.g., a magnetic disk storage unit.
To prevent conflicting use of shared resources by several processors there must
be a provision for assigning resources to processors. i.e., operating system.
There are three organizations that have been used in the design of operating
system for multiprocessors: master-slave configuration, separate operating
system, and distributed operating system.
In a master-slave mode, one processor, master, always executes the operating
system functions.
In the separate operating system organization, each processor can execute the
operating system routines it needs. This organization is more suitable for loosely
coupled systems.
In the distributed operating system organization, the operating system routines
are distributed among the available processors. However, each particular
operating system function is assigned to only one processor at a time. It is also

referred to as a floating operating system.

Loosely Coupled System

There is no shared memory for passing information.

The communication between processors is by means of message passing
through I/O channels.

The communication is initiated by one processor calling a procedure that resides

in the memory of the processor with which it wishes to communicate.

14



- The communication efficiency of the interprocessor network depends on the
communication routing protocol, processor speed, data link speed, and the
topology of the network.

Interprocess Synchronization

- The instruction set of a multiprocessor contains basic instructions that are used
to implement communication and synchronization between cooperating
processes.

o Communication refers to the exchange of data between different
processes.

o0 Synchronization refers to the special case where the data used to
communicate between processors is control information.

- Synchronization is needed to enforce the correct sequence of processes and to
ensure mutually exclusive access to shared writable data.

- Multiprocessor systems usually include various mechanisms to deal with the
synchronization of resources.

0 Low-level primitives are implemented directly by the hardware.
0 These primitives are the basic mechanisms that enforce mutual exclusion
for more complex mechanisms implemented in software.
0 A number of hardware mechanisms for mutual exclusion have been
developed.
= A binary semaphore
Mutual Exclusion with Semaphore

- A properly functioning multiprocessor system must provide a mechanism that will
guarantee orderly access to shared memory and other shared resources.

o Mutual exclusion: This is necessary to protect data from being changed
simultaneously by two or more processors.

o Critical section: is a program sequence that must complete execution
before another processor accesses the same shared resource.

- A binary variable called a semaphore is often used to indicate whether or not a

processor is executing a critical section.

15



- Testing and setting the semaphore is itself a critical operation and must be
performed as a single indivisible operation.

- A semaphore can be initialized by means of a test and set instruction in
conjunction with a hardware lock mechanism.

- The instruction TSL SEM will be executed in two memory cycles (the first to
read and the second to write) as follows:

R < M[SEM], M[SEM] < 1
5.5 Cache Coherence

cache coherence is the consistency of shared resource data that ends up stored in
multiple local caches. When clients in a system maintain caches of a common memory
resource, problems may arise with inconsistent data, which is particularly the case with

CPUs in a multiprocessing system.

CACHE COHERENCE

Caches are Coherent [Cx=52_] Main memory
‘%“% Bus
L ]
P C—
([ x=52 ] [x=52] [(x=52 | caches
\W“ “'ﬁ-v-w.m-\..m.-m.,.. R e Tt ""Al‘
Lrp e 1l [__Pa | Processors

Cache Incoherency in
Write Through

Lp | Lp 1| [ pa | Processors

Cache Incoherency in Write Back Policy -
ood x|

Main memory

¢ x=12 | ':f|"'| X=5 | [MX=5 I‘:Cacnes

ey e

rd
F

W
Yay
.....
[
...............................

L | | o | I e | Processors

Fig. 5.14 cache coherence

16



Shared Cache

-Disallow private cache

-Access time delay

Software Approaches

* Read-Only Data are Cacheable

Private Cache is for Read-Only data
Shared Writable Data are not cacheable
Compiler tags data as cacheable and noncacheable

Degrade performance due to software overhead

* Centralized Global Table

Status of each memory block is maintained in CGT: RO(Read-Only);
RW(Read and Write)

All caches can have copies of RO blocks

Only one cache can have a copy of RW block

Hardware Approaches

* Snoopy Cache Controller

Cache Controllers monitor all the bus requests from CPUs and IOPs

All caches attached to the bus monitor the write operations

When a word in a cache is written, memory is also updated (write through)
Local snoopy controllers in all other caches check their memory to
determine if they have a copy of that word; If they have, that location is

marked invalid(future reference to this location causes cache miss)

17



