

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

 UNIT – I - OBJECT ORIENTED ANALYSIS AND SYSTEM ENGINEERING - SCSA1401

1

SCSA1401 - OBJECT ORIENTED ANALYSIS AND SYSTEM

 ENGINEERING

COURSE OBJECTIVES

 To understand the fundamentals of Object Oriented System Development.

 To understand the object oriented methodologies.

 To use UML in requirements elicitation and designing.

 To understand concepts of relationships and aggregations.

 To test the software against its requirements specification.

COURSE OUTCOMES

On completion of the course, student will be able to:

 Understand the basics object model for System development.

 Understand the object Oriented Methodologies.

 Express software design with UML diagrams.

 Understand the concept of Relationships.

 Design software applications using OO concepts.

 Understand the various testing methodologies for OO software.

UNIT 1 9 Hrs.

AN OVERVIEW OF OBJECT ORIENTED SYSTEM DEVELOPMENT

Introduction - Object Oriented System Development Methodology - Why Object

Orientation - Overview of Unified Approach -Object Basics: Object Oriented

Philosophy - Objects - Classes - Attributes - Object Behavior and Methods,

Messages and Interfaces, Encapsulation and Information Hiding - Class Hierarchy -

Polymorphism - Object Relationships and Associations - Aggregations and Object

Containment - Object Identity - Static and Dynamic Binding - Persistence. Object-

oriented CASE tools, Object Oriented Systems Development Life Cycle: Software

Development Process - Building High Quality Software - Use case Driven

Approach – Reusability.

UNIT 2 9 Hrs.

OBJECT ORIENTED METHODOLOGIES

Rumbaugh et al.’s Object Modeling Technique - Booch Methodology - Jacobson et

al. Methodologies – Patterns - Framework - Unified approach - Unified Modeling

Language: Static and Dynamic Model - UML Diagrams - UML Class Diagram –

UML Use Case –Case study- Use case Modelling – Relating Use cases – include,

extend and generalization – When to use Use-cases- UML Dynamic Modeling –

Case study- UML Extensibility - UML Metamodel.

2

UNIT 3 9 Hrs

OBJECT ORIENTED ANALYSIS.

Business Object Analysis - Use Case Driven Object Oriented Analysis - Business

Process Modeling - Use Case model - Developing Effective Documentation - Object

Analysis Classification: Classification Theory - Noun Phrase Approach - Common

Class Patterns Approach - Use-Case Driven Approach - Classes Responsibilities and

Collaborators – Naming Classes - Identifying Object Relationships, Attributes and

Methods: Association – SuperSubclass Relationships - A-part of Relationships.

UNIT 4 9 Hrs.

OBJECT ORIENTED DESIGN

Object Oriented Design Process - Object Oriented Design Axioms - Corollaries -

Designing Classes: Object Constraint Language - Process of Designing Class - Class

Visibility - Refining Attributes - Access Layer: Object Store and Persistence -

Database Management System - Logical and Physical Database Organization and

Access Control - Distributed Databases and Client Server Computing - Object

Oriented Database Management System – Object Relational Systems – Designing

Access Layer Classes - View Layer: Designing View Layer Classes - Macro Level

Process - Micro Level Process – Purpose of View Layer Interface - Prototyping the

user interface.

UNIT 5 9 Hrs.

 SOFTWARE QUALITY

 Software Quality Assurance- Impact of Object Orientation on Testing - Develop

Test Cases and Test Plans – System Usability and Measuring User Satisfaction:

Usability Testing - User Satisfaction Testing.

3

UNIT 1

AN OVERVIEW OF OBJECT ORIENTED SYSTEM DEVELOPMENT

Introduction - Object Oriented System Development Methodology - Why Object

Orientation - Overview of Unified Approach -Object Basics: Object Oriented

Philosophy - Objects - Classes - Attributes - Object Behavior and Methods,

Messages and Interfaces, Encapsulation and Information Hiding - Class Hierarchy -

Polymorphism - Object Relationships and Associations - Aggregations and Object

Containment - Object Identity - Static and Dynamic Binding - Persistence. Object-

oriented CASE tools, Object Oriented Systems Development Life Cycle: Software

Development Process - Building High Quality Software - Use case Driven

Approach – Reusability.

An Overview of Object Oriented System and Development Aims and

Objectives
The main objective of this unit is to define and understand the

 The object oriented philosophy and why it is needed

 The unified approach, methodology used to study the object

oriented concepts.

 INTRODUCTION

Software development is dynamic and always undergoing major change. The methods and

tools will differ significantly from those currently in use.Today a vast number of tools and

methodologies are available for systems development.

Systems development refers to all activities that go into producing an information systems

solution.

Systems development activities consists of

 systems analysis

 modeling,

 design

 implementation,

 testing, and

 maintenance.

A software development methodology is a series of processes that, if followed leads to the

development of an application. The software processes describe how the work is to be carried

out to achieve the original goal based on the system requirements. The software development

process will continue to exist as long as the development system is in operation.

4

The original goal based on the system requirements. Further we study about the unified

approach, which is the methodology used for learning about object oriented system

development.Object-Oriented (OO) systems development is a way to develop software by

building self-contained modules that can be more easily:

 Replaced

 Modified and

 Reused

Orthogonal View of the Software:
Object-oriented systems development methods differ from traditional development

techniques in that the traditional techniques view software as a collection of programs (or

functions) and isolated data.

A program can be defined as

Algorithms + Data Structures = Programs:

“A software system is a set of mechanisms for performing certain action on certain data.”

The main distinction between traditional system development methodologies and newer

object-oriented methodologies depends on their primary focus

 traditional approach - focuses on the functions of the system

 object-oriented systems development - centers on the object, which combines data

and functionality.

OBJECT-ORIENTED SYSTEMS DEVELOPMENT METHODOLOGY

Object-oriented development offers a different model from the traditional software

development approach, which is based on functions and procedures.

In simplified terms, object-oriented systems development is a way to develop software by

building self-contained modules or objects that can be easily replaced, modified, and reused.

In an object-oriented environment,

 software is a collection of discrete objects that encapsulate their data as well as the

functionality to model real-world "objects."

5

 An object orientation yields important benefits to the practice of software

construction

 Each object has attributes (data) and methods (functions).

 Objects are grouped into classes; in object-oriented terms, we discover and

describe the classes involved in the problem domain.

 Everything is an object and each object is responsible for itself.

Example

Consider the Windows application needs Windows objects A Windows object is

responsible for things like opening, sizing, and closing itself. Frequently, when a window

displays something, that something also is an object (a chart, for example). A chart object is

responsible for things like maintaining its data and labels and even for drawing itself.

Why an Oject Orientation?

To create sets of objects that work together concurrently to produce s/w that better,

model their problem domain that similarly system produced by traditional techniques.

- It adapts to

1. Changing requirements

2. Easier to maintain

3. More robust

4. Promote greater design

5. Code reuse

Importance of Object Orientation.

 Higher level of abstraction

The object-oriented approach supports abstraction at the object level. Since objects

encapsulate both data (attributes) and functions (methods), they work at a higher level of

abstraction. The development can proceed at the object level and ignore the rest of the

system for as long as necessary. This makes designing, coding, testing, and maintaining the

system much simpler.

 Seamless transition among different phases of software development.

The traditional approach to software development requires different styles and methodologies

for each step of the process. Moving from one phase to another requires a complex transition

of perspective between models that almost can be in different worlds. This transition not only

can slow the development process but also increases the size of the project and the chance for

errors introduced in moving from one language to another.

6

The object-oriented approach, on the other hand, essentially uses the same language to talk

about analysis, design, programming, and database design. This seamless approach reduces

the level of complexity and redundancy and makes for clearer, more robust system

development.

 Encouragement of good programming techniques.

A class in an object-oriented system carefully delineates between its interfaces the routines

and attributes within a class are held together tightly. In a properly designed system, the

classes will be grouped into subsystems but remain independent; therefore, changing one

class has no impact on other classes, and so, the impact is minimized. However, the object-

oriented approach is not a panacea; nothing is magical here that will promote perfect design

or perfect code.

 Promotion of reusability.

Objects are reusable because they are modeled directly out of a real-world problem domain.

Each object stands by itself or within a small circle of peers (other objects). Within this

framework, the class does not concern itself with the rest of the system or how it is going to be

used within a particular system.

OVERVIEW OF THE UNIFIED APPROACH

The unified approach (UA) is a methodology for software development that is proposed by the

author, and used in this book. The UA, based on methodologies by Booch, Rumbaugh, and

Jacobson, tries to combine the best practices, processes, and guidelines along with the

Object Management Group's unified modeling language.

 The UA, based on methodologies by Booch, Rumbaugh, Jacobson, and others, tries to

combine the best practices, processes, and guidelines.

 UA based on methodologies by Booch, Rumbaugh and Jacobson tries to combine the

best practices, processes and guidelines along with the object management groups in

unified modelling language.

 UML is a set of notations and conventions used to describe and model an application.

 UA utilizes the unified modeling language (UML) which is a set of notations and

conventions used to describe and model an application.

Figure 1-1 depicts the essence of the unified approach. The heart of the UA is Jacobson's use

case. The use case represents a typical interaction between a user and a computer system to

capture the users' goals and needs.

7

Fig 1.1 The unified approach road map.

The main advantage of an object-oriented system is that the class tree is dynamic and

can grow. Your function as a developer in an object-oriented environment is to foster the

growth of the class tree by defining new, more specialized classes to perform the tasks your

applications require. After your first few projects, you will accumulate a repository or class

library of your own, one that performs the operations your applications most often require. At

that point, creating additional applications will require no more than assembling classes from

the class library.

 OBJECT BASICS:
Goals:

 Define Objects and classes

 Describe objects‘ methods, attributes and how objects respond to messages,

 Define Polymorphism, Inheritance, data abstraction, encapsulation, and protocol,

 Describe objects relationships,

 Describe object persistence,

 Understand meta-classes.

8

What is an object?

• The term object was first formally utilized in the Similar language to simulate some aspect

of reality.

• An object is an entity.

o It knows things (has attributes)

o It does things (provides services or has methods)

Example: It Knows things (attributes)

 I am an Employee.

 I know my name,

 social security number and

 my address.

Attributes

 I am a Car.

 I know my color,

 manufacturer, cost,

 owner and model.

It does things (methods)

 I know how to

 compute

 my payroll.

Attributes or properties describe object‘s state (data) and methods define its behavior.

Object:

 In an object-oriented system, everything is an object: numbers, arrays, records,

fields, files, forms, an invoice, etc.

 An Object is anything, real or abstract, about which we store data and those

methods that manipulate the data.

 Conceptually, each object is responsible for itself.

 A window object is responsible for things like opening, sizing, and closing

itself.

 A chart object is responsible for things like maintaining its data and labels, and

even for drawing itself.

9

Two Basic Questions When developing an O-O application, two basic questions

always arise.

 What objects does the application need?

 What functionality should those objects have?

Traditional Approach

• The traditional approach to software development tends toward writing a lot of code to do

all the things that have to be done.

• You are the only active entity and the code is just basically a lot of building materials.

Object-Oriented Approach OO approach is more like creating a lot of helpers that take on

an active role, a spirit, that form a community whose interactions become the application.

Object’s Attributes

 Attributes represented by data type.

 They describe objects states.

 In the Car example the car‘s attributes are:

 color, manufacturer, cost, owner, model, etc.

Object’s Methods

 Methods define objects behavior and specify the way in which an Object‘s

data are manipulated.

 In the Car example the car‘s methods are:

 drive it, lock it, tow it, carry passenger in it.

Objects are Grouped in Classes

 A class is a set of objects that share a common structure and a common behavior; a

single object is simply an instance of a class.

 A class is a specification of structure (instance variables), behavior (methods), and

inheritance for objects..

 Classes are an important mechanism for classifying objects.

 The role of a class is to define the attributes and methods (the state and behavior)

and applicability of its instances.

 The class car, for example, defines the property color.

 Each individual car (object) will have a value for this property, such as "maroon,"

"yellow" or "white."

 Each object is an instance of a class. There may be many different classes.

10

FIGURE 1.2 Sue, Bill, AI, Hal, and David are instances or objects of the class Employee.

ATTRIBUTES: OBJECT STATE AND PROPERTIES

Properties represent the state of an object. Often, we want to refer to the description of

these properties rather than how they are represented in a particular programming language.

In our example, the properties of a car, such as color, manufacturer, and cost, are abstract

descriptions (Figure1.3).

FIGURE 1.3 The attributes of a car object.

We could represent each property in several ways in a programming language. For

color, we could choose to use a sequence of characters such as

11

red, or the (stock) number for red paint, or a reference to a full-color video image that paints

a red swatch on the screen when displayed. The importance distinction is that an object's

abstract state can be independent of its physical representation.

OB.JECTS BEHAVIOR AND METHODS

 Behavior denotes the collection of methods that abstractly describes what an object is

capable of doing.

 Each produre defines and describes a particular behavior of an object.

 The object , called the receiver, is that on which the method operates.

 Methods encapsulate the behavior of the object, provide interface to the object, and

hide any of the internal strctures and states maintained by the object.

 Procedure provide us the means to communicate with an object and access its

properties.

 Objects take responsibility for their own behavior.

OBJECTS RESPOND TO MESSAGES

An object's capabilities are determined by the methods defined for it. Methods

conceptually are equivalent to the function definitions used in Procedural languages. For

example, a draw method would tell a chart how to draw itself.

However, to do an operation, a message is sent to an object. Objects perform

operations in response to messages. For example, when you press on the brake pedal of a car,

you send a stop message to the car object. The car object knows how to respond to the stop

message, since brakes have been designed with specialized parts such as brake pads and

drums precisely to respond to that message. Sending the same stop message to a different

object, such as a tree, however, would be meaningless an could result in an unanticipated

response.

Messages essentially are nonspecific function calls: We would send a draw message

to a chart when we want the chart to draw itself. A message is different from a subroutine

call, since different objects can respond to the same message in different ways. For example,

cars, motorcycles, and bicycles will all respond to a stop message, but the actual operations

performed are object specific.

In the top example, depicted in Figure 1.4, we send a Brake message to the Car

object. In the middle example, we send a multiplication message to 5 object followed by the

number by which we want to multiply 5. In the bottom example, a Compute Payroll message

is sent to the Employee object, where the employee object knows how to respond to the

Payroll message.

12

FIG 1.4
Polymorphism is the main difference between a message and a subroutine call.

Methods are similar to functions, procedures, or subroutines in more traditional programming

languages, such as COBOL, Basic, or C. The area where methods and functions differ,

however, is in how they are invoked. In a Basic program, you call the subroutine (e.g.,

GOSUB 1000); in a C program, you call the function by name (e.g., draw chart). In an object-

oriented system, you invoke a method of an object by sending an object a message. A

message is much more general than a function call. It is important to understand the

difference between methods and messages. Say you want to tell someone to make you French

onion soup. Your instruction is the message, the way the French soup is prepared is the

method and the French onion soup is the object.

ENCAPSULATION AND INFORMATION HIDING

 Information hiding is the principle of concealing the internal data and procedures of

an object and providing an interface to each object in such a way as to reveal as little

as possible about its inner workings.

 As in conventional programming, some languages permit arbitrary access to objects

and allow methods to be defined outside of a class.

 For example, Simula provides no protection, or information hiding, for objects,

meaning that an object's data, or instance variables, may be accessed wherever

visible.

 However, most object-oriented languages provide a well-defined interface to their

objects through classes. For example, C++ has a very general encapsulation

protection mechanism with public, private, and protected members.

 Public members (member data and member functions) may be accessed from

anywhere. For instance, the compute Payroll method of an employee object will be

public.

13

 Private members are accessible only from within a class. An object data

representation, such as a list or an array, usually will be private.

 Protected members can be accessed only from subclasses.

 An important factor in achieving encapsulation is the design of different classes of

objects that operate using a common protocol, or object's user interface. This means

that many objects will respond to the same message, but each will perform the

message using operations tailored to its class.

 Data abstraction is a benefit of the object-oriented concept that incorporates

encapsulation and polymorphism. Data are abstracted when they are shielded by a full

set of methods and only those methods can access the data portion of an object.

Class Hierarchy

 An object-oriented system organizes classes into subclass-super

hierarchy.

 At the top of the hierarchy are the most general classes and at the bottom are the most

specific

 A subclass inherits all of the properties and methods (procedures) defined in its super

class.

The family car in Figure 1.5 is a subclass of car.

A subclass inherits all of the properties and methods (procedures) defined in its super class. in

this case, we can drive a family car just as we can drive any car or, indeed, almost any motor

vehicle. Subclasses generally add new methods and properties specific to that class.

Subclasses may refine or constrain the state and behavior inherited from its super class. In

our example, race cars only have

14

one occupant, the driver. In this manner, subclasses modify the attribute (number of

passengers) of its super class, Car.

Inheritance (programming by extension)

 Inheritance is a relationship between classes where one class is the parent class of

another (derived) class.

 Inheritance allows classes to share and reuse behaviors and attributes.

 The real advantage of inheritance is that we can build upon what we already

have and,

 Reuse what we already have.

FIGURE 1.6 INHERITANCE ALLOWS REUSABLITY

DYNAMIC INHERITANCE

Dynamic inheritance allows objects to change and evolve over time. Since base

classes provide properties and attributes for objects, changing base classes changes the

properties and attributes of a class. A previous example was a Windows object changing into

an icon and then back again, which involves changing a base class between a Windows class

and an Icon class. More specifically, dynamic inheritance refers to the ability to add, delete,

or change parents from objects (or classes) at run time.

15

In object-oriented programming languages, variables can be declared to hold or

reference objects of a particular class. For example, a variable declared to reference a motor

vehicle is capable of referencing a car or a truck or any subclass of motor vehicle.

MULTIPLE INHERITANCE

Some object-oriented systems permit a class to inherit its state (attributes) and

behaviors from more than one super class. This kind of inheritance is referred to as multiple

inheritance. For example, a utility vehicle inherits attributes from both the Car and Truck

classes.

Multiple inheritance can pose some difficulties. For example, several distinct parent

classes can declare a member within a multiple inheritance hierarchy. This then can become

an issue of choice, particularly when several super classes define the same method. It also is

more difficult to understand programs written in multiple inheritance systems. One way of

achieving the benefits of multiple inheritance in a language with single inheritance is to

inherit from the most appropriate class and then add an object of another class as an

attribute.

Fig 1.7 Utility vehicle inherent from car and truck classses.

POLYMORPHISM

Poly means "many" and morph means "form."

Polymorphism means that the same operation may behave differently on different

classes.

Booch defines polymorphism as the relationship of objects of many different classes

by some common super class; thus, any of the objects designated by this name is able to

respond to some common set of operations in a different way. For example, consider how

driving an automobile with a

16

manual transmission is different from driving a car with an automatic transmission. The

manual transmission requires you to operate the clutch and the shift, so in addition to all

other mechanical controls, you also need information on when to shift gears. Therefore,

although driving is a behavior we perform with all cars (and all motor vehicles), the specific

behavior can be different, and depending on the kind of car we are driving. A car with an

automatic transmission might implement its drive method to use information such as current

speed, engine RPM, and current gear.

Polymorphism allows us to write generic, reusable code more easily, because we can

specify general instructions and delegate the implementation details to the objects involved.

Since no assumption is made about the class of an object that receives a message, fewer

dependencies are needed in the code and, therefore, maintenance is easier. For example, in a

payroll system, manager, office worker, and production worker objects all will respond to

the compute payroll message, but the actual operations performed are object specific.

OBJECT RELATIONSHIPS AND ASSOCIATIONS

ASSOCIATIONS

The concept of association represents relationships between objects and classes.

For example a pilot can fly planes.

FIGURE 1.8 Association represents the relationship among objects, which is bidirectional.

Associations are bidirectional; that means they can be traversed in both directions,

perhaps with different connotations. The direction implied by the name is the forward

direction; the opposite direction is the inverse direction. For example, can fly connects a pilot

to certain airplanes. The inverse of can fly could be called is flown by.

An important issue in association is cardinality, which specifies how many instances

of one class may relate to a single instance of an associated class. Cardinality constrains the

number of related objects and often is described as being "one" or "many," Generally, the

multiplicity value is a single interval, but it may be a set of disconnected intervals. For

example, the number of cylinders in an engine is four, six, or eight. Consider a client-account

relationship where one client can have one or more accounts and vice versa (in case of joint

accounts); here the cardinality of the client-account association is many to many.

17

Consumer-Producer Association

A special form of association is a consumer-producer relationship, also known as a

client-server association or a use relationship. The consumer- producer relationship can be

viewed as one-way interaction: One object requests the service of another object. The object

that makes the request is the consumer or client, and the object that receives the request and

provides the service is the producer or server. For example, we have a print object that prints

the consumer object. The print producer provides the ability to print other objects. Figure 1.9

depicts the consumerproducer association.

FIGURE 1.9 The consumer/producer association.

AGGREGATIONS AND OBJECT CONTAINMENT

All objects, except the most basic ones, are composed of and may contain other

objects. For example, a spreadsheet is an object composed of cells, and cells are objects that

may contain text, mathematical formulas, video and so forth.

Breaking down objects into the objects from which they are composed is

decomposition. This is possible because an object’s attributes need not be somple data fields,

attributes can reference other objects. Since each object has an identity, one object can refer

to other objects. This is known as AGGREGATION, where an attribute can be an object

itself. For example a car object is an aggregation of engine, seat, wheels and other objects.

Fig 1.10 – A car object is an aggregation of other objects such as engine, seat and wheel objects.

18

A Case Study - A Payroll Program

Consider a payroll program that processes employee records at a small manufacturing firm.

This company has three types of employees:

 Managers: Receive a regular salary.

 Office Workers: Receive an hourly wage and are eligible for overtime after 40 hours.

 Production Workers: Are paid according to a piece rate.

Structured Approach

FOR EVERY EMPLOYEE

DO BEGIN

IF employee = manager

THEN CALL

computeManagerSalary

IF employee = office worker

THEN CALL

computeOfficeWorkerSalary

IF employee = production worker

THEN CALL

computeProductionWorkerSalary END

What if we add two new types of employees?

Temporary office workers ineligible for overtime, junior production workers who

receive an hourly wage plus a lower piece rate.

FOR EVERY EMPLOYEE

DO BEGIN

IF employee = manager

THEN CALL

computeManagerSalary

IF employee = office worker

THEN CALL

computeOfficeWorker_salary

IF employee = production worker

THEN CALL

computeProductionWorker_salary

IF employee = temporary office worker

THEN CALL

computeTemporaryOfficeWorkerSalary I F

employee = junior production worker THEN

CALL

computeJuniorProductionWorkerSalary END

An Object-Oriented Approach
What objects does the application need?
• The goal of OO analysis is to identify objects and classes that support the problem domain

and system's requirements.

• Some general candidate classes are:

• Persons

• Places

19

• Things

• Class Hierarchy

• Identify class hierarchy

• Identify commonality among the classes

• Draw the general-specific class hierarchy.

Class Hierarchy

Fig: 1.11 Class hierarchy for the payroll application

OO Approach

FOR EVERY EMPLOYEE

DO BEGIN

employee

computePayroll END

ADVANCE TOPICS

DYNAMIC BINDING

The process of detennining (dynamically) at run time which function to invoke is

termed dynamic binding. Making this detennination earlier, at compile time, is called static

binding.

Static binding optimizes the calls; dynamic binding occurs when polymorphic calls

are issued. Not all function invocations require dynamic binding.

Dynamic binding allows some method invocation decisions to be deferred until the

information is known. A run-time selection of methods often is desired, and even required, in

many applications, including databases and user interaction (e.g., GUIs). For example, a cut

operation in an Edit submenu may pass the cut operation (along with parameters) to any

object on the Desktop, each of which handles the message in its own way. If an (application)

object can cut many kinds of objects, such as text and graphic objects, many overloaded cut

methods, one per type of object to be cut, are available in the receiving object; the particular

20

method being selected is based on the actual type of object being cut (which in the GUI case

is not available until run time) .

OBJECT PERSISTENCE

Objects have a lifetime. They are explicitly created and can exist for a period of time

that, traditionally, has been the duration of the process in which they were created. A file or a

database can provide support for objects having a longer lifeline longer than the duration of the

process for which they were created.This characteristic is called Object Persistence. An object

can persist beyond application session boundaries, during which the object is stored in a file or

a database, in some file or database form.

Meta-Classes

• Everything is an object.

• How about a class?

• Is a class an object?

• Yes, a class is an object! So, if it is an object, it must belong to a class.

• Indeed, class belongs to a class called a Meta-Class or a class' class.

• Meta-class used by the compiler. For example, the meta-classes handle messages to

classes, such as constructors and "new."

Rather than treat data and procedures separately, object-oriented programming packages

them into "objects." O-O system provides you with the set of objects that closely reflects the

underlying application. Advantages of object-oriented programming are:

 The ability to reuse code,

 develop more maintainable systems in a shorter amount of time.

 more resilient to change, and

 more reliable, since they are built from completely tested and debugged classes.

 Object Oriented Systems Development Life Cycle

Goals

 The software development process

 Building high-quality software

 Object-oriented systems development

 Use-case driven systems development

 Prototyping

 Rapid application development

 Component-based development

 Continuous testing and reusability

SOFTWARE PROCESS

The essence of the software process consists of analysis, design, implementation,

testing, and refinement is to transform users' needs into a software solution that satisfies those

needs.

THE SOFTWARE DEVELOPMENT PROCESS

System development can be viewed as a process. Furthermore, the development itself

is a process of change, refinement, transformation, or addition to the existing product. Within

21

the process, it is possible to replace one sub process with a new one, as long as the new sub

process has the same interface as the old one, to allow it to fit into the process as a whole.

With this method of change, it is possible to adapt the new process.

The process can be divided into small, interacting phases-sub processes. The sub

processes must be defined in such a way that they are clearly spelled out, to allow each

activity to be performed as independently of other sub processes as possible. Each sub

process must have the following

A description in terms of how it works

Specification of the input required for the process

Specification of the output to be produced

The software development process also can be divided into smaller, interacting
sub processes. Generally, the software development process can be viewed as a series of

transformations, where the output of one transformation becomes the input of the

subsequent transformation (Figure 1.12):

Fig 1.12: Software process reflecting transformation from needs to a software product that satisfies those

needs.

Transformation 1 (analysis) translates the users' needs into system requirements and

responsibilities. The way they use the system can provide insight into the users' requirements.

For example, one use of the system might be analyzing an incentive payroll system, which

will tell us that this capacity must be included in the system requirements.

Transformation 2 (design) begins with a problem statement and ends with a detailed design

that can be transformed into an operational system. This transformation includes the bulk of

the software development activity, including the definition of how to build the software, its

development, and its testing. It also includes the design descriptions, the program, and the

testing materials.

Transformation 3 (implementation) refines the detailed design into the system deployment

that will satisfy the users' needs. This takes into account the equipment, procedures, people,

and the like. It represents embedding the software product within its operational environment.

For example, the new compensation method is programmed, new forms are put to use, and

new reports now can be printed.

22

An example of the software development process is the waterfall approach, which starts with

deciding what is to be done (what is the problem). Once the requirements have been

determined, we next must decide how to accomplish them. This is followed by a step in

which we do it, whatever "it" has required us to do. We then must test the result to see if we

have satisfied the users' requirements. Finally, we use what we have done (see Figure 1.13).

FIGURE 1.13 The waterfall software development process.

In the real world, the problems are not always well-defined and that is why the

waterfall model has limited utility. For example, if a company has experience in building

accounting systems, then building another such product based on the existing design is best

managed with the waterfall model, as it has been described. Where there is uncertainty

regarding what is required or how it can be built, the waterfall model fails. This model

assumes that the requirements are known before the design begins, but one may need

experience with the product before the requirements can be fully understood. It also assumes

that the requirements will remain static over the development cycle and that a product

delivered months after it was specified will meet the delivery-time needs.

Finally, even when there is a clear specification, it assumes that sufficient design

knowledge will be available to build the product. The waterfall model is the best way to

manage a project with a well-understood product, especially very large projects. Clearly,it is

based on well-established engineering principles. However, its failures can be tracedto its

inability to accommodate software's special properties and its inappropriateness for resolving

partially understood issues; furthermore, it neither emphasizes nor encourages software

reusability.

After the system is installed in the real world, the environment frequently changes,

altering the accuracy of the original problem statement and, consequently, generating revised

software requirements. This can complicate the software development process even more.

For example, a new class of employees or another shift of workers may be added or the

standard workweek or the piece rate changed. By definition, any such changes also change

the environment, requiring changes in the programs. As each such request is processed,

system and programming changes make the process increasingly complex, since each request

must be considered in regard to the original statement of needs as modified by other requests.

BUILDING HIGH-QUALITY SOFTWARE

The software process transforms the users' needs via the application domain to a

software solution that satisfies those needs. Once the system (programs) exists, we must test

it to see if it is free of bugs. High-quality products must meet users' needs and expectations.

23

Furthermore, the products should attain this with minimal or no defects, the focus being on

improving products (or services) prior to delivery rather than correcting them after delivery.

There are two basic approaches to systems testing.

 We can test a system according to how it has been built

 or, alternatively, we can test the system with respect to what it should do.
Blum describes a means of system evaluation in terms of four quality measures:

 correspondence,

 correctness,

 verification,

 and validation.

Correspondence measures how well the delivered system matches the needs of the

operational environment, as described in the original requirements statement. It cannot be

determined until the system is in place.

Correctness measures the consistency of the product requirements with respect to the design

specification.

Verification is to predict the correctness. However, correctness always is objective. Given a

specification and a product, it should be possible to determine if the product precisely

satisfies the requirements of the specification.

24

Validation is to predict the correspondence. True correspondence cannot be determined until

the system is in place.

Verification - "Am I building the product right?"

Validation - "Am I building the right product?"

OB.JECT ORIENTED SYSTEMS DEVELOPMENT: A USE-CASE DRIVEN

APPROACH

FIGURE 1.14 The object-oriented systems development approach. Object- oriented analysis

corresponds to transformation 1;design to transformation 2, and implementation to

transformation 3 of Figure 1.13.

The object-oriented software development life cycle (SDLC) consists of three macro

processes: object-oriented analysis, object-oriented design, and object-oriented

implementation.

25

By following the life cycle model of Jacobson, Ericsson, and Jacobson one can

produce designs that are traceable across requirements, analysis, design, implementation, and

testing (as shown in Figure 1.15). The main advantage is that all design decisions can be

traced back directly to user requirements. Usage scenarios can become test scenarios.

Fig 1.15: By following the life cycle model of Jacobson et aI., we produce designs that are

traceable across requirements, analysis, implementation, and testing.

Object-Oriented Systems Development activities

• Object-oriented analysis.

• Object-oriented design.

• Prototyping.

• Component-based development.

• Incremental testing.

Object-Oriented Analysis-Use-Case Driven

The object-oriented analysis phase of software development is concerned with

determining the system requirements and identifying classes and their re1ationship to other

classes in the problem domain.

To understand the system requirements, we need to identify the users or the actors.

Who are the actors and how do they use the system? In object-oriented as well as traditional

development, scenarios are used to help analysts understand requirements.

Scenarios are a great way of examining who does what in the interactions among

objects and what role they play; that is, their interrelationships. This intersection among

objects' roles to achieve a given goal is called collaboration.

Expressing these high-level processes and interactions with customers in a scenario

and analyzing it is referred to as use-case modeling. The use-case model represents the users'

view of the system or users' needs.

26

This process of developing uses cases, like other object-oriented activities, is

iterative-once your use-case model is better understood and developed you should start to

identify classes and create their relationships.

Object-Oriented Analysis

OO analysis concerns with determining the system requirements and identifying classes

and their relationships that make up an application.

Object-Oriented Design

The goal of object-oriented design (OOD) is to design

• The classes identified during the analysis phase,

• The user interface and

• Data access.

Object-oriented design and object-oriented analysis are distinct disciplines, but they

can be intertwined. Object-oriented development is highly incremental; in other words, you

start with object-oriented analysis, model it, create an object-oriented design, then do some

more of each, again and again, gradually refining and completing models ofthe system. The

activities and focus of object-oriented analysis and object-oriented design are intertwined-

grown, not built.

First, build the object model based on objects and their relationships, then iterate and

refine the model:

 Design and refine classes.

 Design and refine attributes.

 Design and refine methods.

 Design and refine structures.

 Design and refine associations.

Here are a few guidelines to use in your design:

 Reuse, rather than build, a new class. Know the existing classes.

 Design a large number of simple classes, rather than a small number of

complex classes.

 Design methods.

 Critique what you have proposed. If possible, go back and refine the classes.

PROTOTYPING

 A prototype is a version of a software product developed in the early stages of the

product's life cycle for specific, experimental purposes.

 A Prototype enables you to fully understand how easy or difficult it will be to implement
some of the features of the system.

 It can also give users a chance to comment on the usability and usefulness of the design.

 The main idea here is to build a prototype with uses-case modeling to design systems

that users like and need.

Prototyping provides the developer a means to test and refine the user interface and

increase the usability of the system. As the underlying prototype design begins to become

more consistent with the application requirements, more details can be added to the

application, again with further testing, evaluation, and rebuilding, until all the application

components work properly within the prototype framework

Types of Prototypes

27

 A horizontal prototype is a simulation of the interface. but contains no functionality.

This has the advantages of being very quick to implement, providing a good overall

feel of the system, and allowing users to evaluate the interface on the basis of their

normal, expected perception of the system.

 A vertical prototype is a subset of the system features with complete

functionality. The principal advantage of this method is that the few implemented

functions can be tested in great depth.

 An analysis prototype is an aid for exploring the problem domain. This class of

prototype is used to inform the user and demonstrate the proof of a concept. It is not

used as the basis of development, however, and is discarded when it has served its

purpose. The final product will use the concepts exposed by the prototype, not its

code.

 A domain prototype is an aid for the incremental development of the ultimate

software solution. It often is used as a tool for the staged delivery of subsystems to the

users or other members of the development team. It demonstrates the feasibility of the

implementation and eventually will evolve into a deliverable product.

The purpose of this review is threefold:

1. To demonstrate that the prototype has been developed according to the

specification and that the final specification is appropriate.

2. To collect information about errors or other problems in the system, such as user

interface problems that need to be addressed in the intermediate prototype stage.

3. To give management and everyone connected with the project the first (or it could

be second or third. . .) glimpse of what the technology can provide. The evaluation

can be performed easily if the necessary supporting data is readily available. Testing

considerations must be incorporated into the design and subsequent implementation of

the system.

IMPLEMENTATION: COMPONENT-BASED DEVELOPMENT

Today, software components are built and tested in-house, using a wide range of

technologies. For example, computer-aided software engineering (CASE) tools allow their

users to rapidly develop information systems. The main goal of CASE technology is the

automation of the entire information system's development life cycle process using a set of

integrated software tools, such as modeling, methodology, and automatic code generation.

However, most often, the code generated by CASE tools is only the skeleton of an

application and a lot needs to be filled in by programming by hand.

A new generation of CASE tools is beginning to support component-based

development.

Component-based development (CBD) is an industrialized approach to the software

development process. Application development moves from custom development to

assembly of prebuilt, pretested, reusable software components that operate with each other.

Two basic ideas underlie component-based development.

 First, the application development can be improved significantly if

applications can be assembled quickly from prefabricated software
components.

 Second, an increasingly large collection of interpretable software components

could be made available to developers in both general and specialist catalogs.

Put together, these two ideas move application development from a craft activity to an

industrial process fit to meet the needs of modern, highly dynamic, competitive, global

28

businesses. The industrialization of application development is akin to similar

transformations that occurred in other human endeavors.

A CBD developer can assemble components to construct a complete software system.

Components themselves may be constructed from other components and so on down to the

level of prebuilt components or old-fashioned code written in a language such as C,

assembler, or COBOL.

CBD will allow independently developed applications to work together and do so

more efficiently and with less development effort.

Existing (legacy) applications support critical services within an organization and

therefore cannot be thrown away. Massive rewriting from scratch is not a viable option, as

most legacy applications are complex, massive, and often poorly documented. The CBD

approach to legacy integration involves application wrapping, in particular component

wrapping, technology.

The software components are the functional units of a program, building blocks

offering a collection of reusable services. A software component can request a service from

another component or deliver its own services on request. The delivery of services is

independent, which means that components work together to accomplish a task. Of course,

components may depend on one another without interfering with each other. Each component

is unaware of the context or inner workings of the other components. In short, the object-

oriented concept addresses analysis, design, and programming, whereas component-based

development is concerned with the implementation and system integration aspects of

software development.

Fig. 1.16 Reusing legacy system via component wrapping technology.

Rapid Application Development (RAD)

RAD is a set of tools and techniques that can be used to build an application faster

than typically possible with traditional methods. To achieve RAD, the developer sacrifices

the quality of the product for a quicker delivery.

29

RAD is concerned primarily with reducing the "time to market," not exclusively the

software development time. In fact, one successful RAD application achieved a substantial

reduction in time to market but realized no significant reduction in the individual software

cycles.

RAD does not replace SDLC but complements it, since it focuses more on process

description and can be combined perfectly with the object-oriented approach. The task of

RAD is to build the application quickly and incrementally implement the design and user

requirements, through tools such as Delphi, VisualAge, Visual Basic, or PowerBuilder. After

the overall design for an application has been completed, RAD begins.

The main objective of RAD is to build a version of an application rapidly to see

whether we actually have understood the problem (analysis). Further, it determines whether

the system does what it is supposed to do (design). RAD involves a number of iterations.

Through each iteration we might understand the problem a little better make an improvement.

RAD encourages the incremental development approach of “grow, do not Build” software.

Incremental Testing

• Software development and all of its activities including testing are an iterative process.

• If you wait until after development to test an application for bugs and performance, you

could be wasting thousands of dollars and hours of time.

Reusability A major benefit of object-oriented systems development is reusability, and this is

the most difficult promise to deliver on.

Reuse strategy

• Information hiding (encapsulation).

• Conformance to naming standards.

• Creation and administration of an object repository.

• Encouragement by strategic management of reuse as opposed to constant

redevelopment.

• Establishing targets for a percentage of the objects in the project to be reused

(i.e., 50 percent reuse of objects).

. The essence of the software process is the transformation of users‘ needs into a software

solution. The O-O SDLC is an iterative process and is divided into analysis, design,

prototyping/implementation,and testing.

30

Questions

Part-A

Q.No Questions Competence BT Level

1. Justify the need of object orientation. Evaluate
BTL 5

2. Explain the importance of unified approach Remember
BTL 1

3. Distinguish Static and Dynamic binding. Understand
BTL 2

4. List out the various System development activities? Remember
BTL 1

5. What is meant by Inheritance. Remember
BTL 1

6. Define Classes Remember
BTL 1

7. What is Analysis and Design? Remember
BTL 1

8. What is the main advantage of Object Oriented Development? Remember
BTL 1

9. Illustrate the concepts of Association Relationship. Apply
BTL 3

10. Compare Verification and Validation. Analysis
BTL 4

Part-B

Q.No Questions Competence BT Level

1.

Explain object oriented system with reference to class, object,

encapsulation, abstraction, message, inheritance, interface and

polymorphism with suitable examples.

Remember

BTL 1

2.
Demonstrate in detail about Object Relationships and

Associations.
Apply

BTL 3

3.

Explain in detail about object oriented system development life
cycle.

Remember
BTL 1

4.

(i)Describe the concept of Prototyping and explain the types of

prototyping?
(ii)Explain about Class Hierarchy.

Remember

BTL 1

5.

Write short notes on

a. RAD

b. CBD

Remember

BTL 1

6.

(i)Compare and Contrast Traditional development methodologies

and Object Oriented System.

(ii)Explain about Inheritance.

Evaluate BTL5

7.

(i)List out the Quality measures in building High quality
Software and explain.

(ii)Discuss about Aggregation.

Remember
BTL 1

31

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

UNIT – II - OBJECT ORIENTED ANALYSIS AND SYSTEM ENGINEERING - SCSA1401

32

UNIT 2

OBJECT ORIENTED METHODOLOGIES

Rumbaugh et al.’s Object Modeling Technique - Booch Methodology - Jacobson et

al. Methodologies – Patterns - Framework - Unified approach - Unified Modeling

Language: Static and Dynamic Model - UML Diagrams - UML Class Diagram –

UML Use Case –Case study- Use case Modelling – Relating Use cases – include,

extend and generalization – When to use Use-cases- UML Dynamic Modeling –

Case study- UML Extensibility - UML Metamodel.

OBJECT –ORIENTED METHODOLOGIES

INTRODUCTION

• Object-oriented methodology is a set of methods, models, and rules for

developing systems.

• Modeling is the process of describing an existing or proposed system. It can be

used during any phase of the software life cycle.

• A model is an abstraction of a phenomenon for the purpose of

understanding it. Since a model excludes

• Unnecessary details; it is easier to manipulate than the real object.

• Modeling provides a means for communicating ideas in an easy to understand and

unambiguous form while also accommodating a system's complexity.

TOWARD UNIFICATION-TOO MANY METHODOLOGIES

• 1986 - Booch developed t e object-oriented design concept, the Booch method.

• 1987 - Sally Shlaer and Steve Mellor created the concept of the recursive

design approach.

• 1989 - Beck and Cunningham produced class-responsibility-

collaboration cards.

• 1990 - Wirfs-Brock, Wilkerson, and Wiener came up with

responsibility driven design.

• 1991 - Jim Rumbaugh led a team at the research labs of General Electric to

develop the object modeling technique (OMT) .

• 1991 -Peter Coad and Ed Yourdon developed the Coad lightweight and

Prototypeoriented approach to methods.

• 1994. Ivar Jacobson introduced the concept of the use case and object-

oriented software engineering (OOSE).

SURVEY OF SOME OF THE OBJECT-ORIENTED

METHODOLOGIES

• Many methodologies are available to choose from for system development. Each

methodology is based on modeling the business problem and implementing the

33

application in an object-oriented fashion; the differences lie primarily in the

documentation of information and modeling notations and language.

• An application can be implemented in many ways to meet the same requirements

and provide the same functionality. The largest noticeable differences will be in

the trade-offs and detailed design decisions made.

• In the following sections, we look at the methodologies and their modeling

notations developed by Rumbaugh et aI., Booch, and Jacobson which are the

origins of the Unified Modeling Language (UML).

• Each method has its strengths. The Rumbaugh et ai. method is well-suited

for describing the object model or the static structure of the system.

• The Jacobson et al. method is good for producing user-driven analysis

models.

• The Booch method produces detailed object-oriented design models.

RUMBAUGH’S OB.JECTMODELING TECHNIQUE

• The object modeling technique (OMT) presented by Jim Rumbaugh and his

coworkers describes a method for the analysis, design, and implementation of a

system using an object-oriented technique.

• OMT is a fast, intuitive approach for identifying and modeling all the

objects making up a system. The dynamic behavior of objects within a system can

be described using the OMT dynamic model.

• This model lets you specify detailed state transitions and their descriptions within

a system.

• Finally, a process description and consumer-producer relationships can be

expressed using OMT's functional model.

OMT (Object Modeling Technique) describes a method for the analysis, design, and

implementation of a system using an object-oriented technique. Class attributes, method,

inheritance, and association also can be expressed easily

• OMT consists of four phases, which can be performed iteratively:

1. Analysis. The results are objects and dynamic and functional models.

2. System design. The results are a structure of the basic architecture of the system

along with high-level strategy decisions.

34

3. Object design. This phase produces a design document, consisting of detailed

objects static, dynamic, and functional models.

4. Implementation. This activity produces reusable, extendible, and robust

code.

• OMT separates modeling into three different parts:

1. An object model, presented by the object model and the data

dictionary.

2. A dynamic model, presented by the state diagrams and event flow diagrams.

3. A functional model, presented by data flow and constraints.

2.3.1 THE OBJECT MODEL

• The object model describes the structure of objects in a system: their identity,

relationships to other objects, attributes, and operations.

• The object model is represented graphically with an object diagram (see Fig: 1

).

• The object diagram contains classes interconnected by association

lines.

• Each class represents a set of individual objects.

• The association lines establish relationships among the classes.

• Each association line represents a set of links from the objects of one class to the

objects of another class.

 Fig 1: OMT object model of a bank system

35

Boxes- represents classes, Filled Triangle – represents Specialization, Association

between account and transaction represents one to many, Filled Circle – represents

many(zero or more) . Association between Client and Account represents one to one.

THE OMT DYNAMIC MODEL

• OMT provides a detailed and comprehensive dynamic model, in addition to

letting you depict states, transitions, events, and actions.

• The OMT state transition diagram is a network of states and events (see Fig.

2).

• Each state receives one or more events, at which time it makes the transition

to the next state.

• The next state depends on the current state as well as the events.

 Fig. 2 : State transition diagram for the bank application user interface. The

round boxes represent states and the arrows represent transitions.

36

THE OMT FUNCTIONAL MODEL

• The OMT data flow diagram (DFD) shows the flow of data between different

processes in a business. An OMT DFD provides a simple and intuitive method

for describing business processes without focusing on the details of computer

systems.

• Data flow diagrams use four primary symbols:

1. The process is any function being performed; for example, verify Password

or PIN in the ATM system (see Fig .3).

2. The data flow shows the direction of data element movement; for example,

PIN code.

3. The data store is a location where data are stored; for example, account is a data

store in the ATM example.

4. An external entity is a source or destination of a data element; for example,

the ATM card reader.

Fig 3: OMT DFD of the ATM system.

37

Thus, the Rumbaugh et al. OMT methodology provides one of the strongest tool sets

for the analysis and design of object-oriented systems.

BOOCH METHODOLOGY

• The Booch methodology is a widely used object-oriented method that helps you

design your system using the object paradigm.

• It covers the analysis and design phases of an object-oriented system.

• The Booch method consists of the following diagrams:

 Class diagrams

 Object diagrams

 State transition diagrams

 Module diagrams

 Process diagrams

 Interaction diagrams

• The Booch methodology prescribes a macro development process

and a micro development process.

THE MACRO DEVELOPMENT PROCESS

• The macro process serves as a controlling framework for the micro process

and can take weeks or even months.

• The primary concern of the macro process is technical management of the system.

• The macro development process consists of the following steps:

1. Conceptualization. During conceptualization, establish the core requirements of

the system. You establish a set of goals and develop a prototype to prove the concept.

2. Analysis and development of the model. In this step, use the class diagram to

describe the roles and responsibilities objects are to carry out in performing the desired

behavior of the system. Then,use the object diagram to describe the desired behavior of

the system in terms of scenarios or, alternatively, use the interaction diagram to describe

behavior of the system in terms of scenarios.

38

3. Design or create the system architecture. In the design phase, use the class diagram

to decide what classes exist and how they relate to each other. Next, use the object

diagram to decide what mechanisms are used to regulate how objects collaborate. Then,

use the module diagram to map out where each class and object should be declared.

Finally, use the process diagram to determine to which processor to allocate a process.

Also, determine the schedules for multiple processes on each relevant processor.

4. Evolution or implementation. Successively refine the system through many iterations.

Produce a stream of software implementations (or executable releases), each of which is a

refinement of the prior one.

5. Maintenance. Make localized changes to the system to add new requirements and

eliminate bugs.

Fig .4 : Object modeling using Booch notation

The arrows represent specialization; for example, the class Taurus is subclass of the class Ford.

39

THE MICRO DEVELOPMENT PROCESS

• Each macro development process has its own micro development processes.

• The micro process is a description of the day-to-day activities by a single or small

group of software developers, which could look blurry to an outside viewer, since

the analysis and design phases are not clearly defined.

• The micro development process consists of the following steps:

1. Identify classes and objects.

2. Identify class and object semantics.

3. Identify class and object relationships.

4. Identify class and object interfaces and implementation.

Fig. 5: An alarm class state transition diagram with Booch notation.

This diagram can capture the state of a class based on a stimulus. For example, a

stimulus causes the class to perform some processing, followed by a transition to

another state. In this case, the alarm silenced state can be changed to alarm sounding

state and vice versa.

40

THE JACOBSON METHODOLOGIES

• The Jacobson et al. methodologies (e.g., object-oriented Business Engineering

(OOBE), object-oriented Software Engineering (OOSE), and Objectory) cover the

entire life cycle and stress traceability between the different phases, both forward

and backward.

• This traceability enables reuse of analysis and design work, possibly much bigger

factors in the reduction of development time than reuse of code.

• At the heart of their methodologies is the use-case concept, which evolved with

Objectory (Object Factory for Software Development).

USE CASES

• Use cases are scenarios for understanding system requirements.

• A use case is an interaction between users and a system. The use-case model

captures the goal of the user and the responsibility of the system to its

users.(Fig.6)

Fig.6 : Some Uses of A Library.

41

In the requirements analysis, the use cases are described as one of the following :

 Nonformal text with no clear flow of events.

 Text, easy to read but with a clear flow of events to follow (this is a

recommended style).

 Formal style using pseudo code. The

use case description must contain

 How and when the use case begins and ends.

 The interaction between the use case and its actors, including when the

interaction occurs and what is exchanged.

 How and when the use case will need data stored in the system or will store data

in the system.

 Exceptions to the flow of events.

 How and when concepts of the problem domain are handled.

• Every single use case should describe one main flow of events.

• An exceptional or additional flow of events could be added. The exceptional use

case extends another use case to include the additional one.

• The use-case model employs extends and uses relationships. The extends

relationship is used when you have one use case that is similar to another use case

but does a bit more. In essence, it extends the functionality of the original use case

(like a subclass). The uses relationship reuses common behavior in different use

cases.

• Use cases could be viewed as concrete or abstract. An abstract use case is not

complete and has no actors that initiate it but is used by another use case.

• This inheritance could be used in several levels. Abstract use cases also are the

ones that have uses or extends relationships.

OBJECT-ORIENTED SOFTWARE ENGINEERING:

OBJECTORY

• Object-oriented software engineering (OOSE), also called Objectory, is a method

of object-oriented development with the specific aim to fit the development of

large, realtime systems.

• The development process, called use-case driven development, stresses that use

cases are involved in several phases of the

42

development (see Fig. 7), including analysis, design, validation, and testing.

• The use-case scenario begins with a user of the system initiating a sequence of

interrelated events.

Fig. 7: The use case model is considered in every model and phase.

• The system development method based on OOSE, Objectory, is a disciplined

process for the industrialized development of software, based on a use-case driven

design.

• It is an approach to object-oriented analysis and design that centers on

understanding the ways in which a system actually is used.

• By organizing the analysis and design models around sequences of user

interaction and actual usage scenarios, the method produces

43

systems that are both more usable and more robust, adapting more easily to

changing usage.

• Jacobson et al.'s Objectory has been developed and applied to numerous

application areas and embodied in the CASE tool systems.

• The system development method based on OOSE, Objectory, is a disciplined

process for the industrialized development of software, based on a use-case driven

design.

• It is an approach to object-oriented analysis and design that centers on

understanding the ways in which a system actually is used.

• By organizing the analysis and design models around sequences of user

interaction and actual usage scenarios, the method produces systems that are both

more usable and more robust, adapting more easily to changing usage.

• Jacobson et al.'s Objectory has been developed and applied to numerous

application areas and embodied in the CASE tool systems.

Objectory is built around several different models:

• Use case-model. The use-case model defines the outside (actors) and inside (use

case) of the system's behavior.

• Domain object model. The objects of the "real" world are mapped into the

domain object model.

• Analysis object model. The analysis object model presents how the source

code (implementation) should be carried out and written.

• Implementation model. The implementation model represents the

implementation of the system.

• Test model. The test model constitutes the test plans, specifications, and

reports.

OBJECT-ORIENTED BUSINESS ENGINEERING

• Object-oriented business engineering (OOBE) is object modeling at the enterprise

level. Use cases again are the central vehicle for modeling, providing traceability

throughout the software engineering process

1. Analysis phase. It defines the system to be built in terms of the problem- domain

object model, the requirements model, and the analysis model. The analysis process

should not take into account the actual implementation environment. This reduces

complexity and promotes maintainability over the life of the system, since the

description of the system will be independent of hardware and software

requirements.

Jacobson does not dwell on the development of the problem- domain object

model, but refers the developer to Coad and Yourdon's or

44

Booch's discussion of the topic, who suggest that the customer draw a picture of his

view of the system to promote discussions.

In their view, a full development of the domain model will not localize

changes and therefore will not result in the most "robust and extensible structure." This

model should be developed just enough to form a base of understanding for the

requirements model.

The analysis process is iterative but the requirements and analysis models

should be stable before moving on to subsequent models. Jacobson suggest that

prototyping with a tool might be useful during this phase to help specify user interfaces.

2. Design and implementation phases. The implementation environment must be

identified for the design model. This includes factors such as Database Management

System (DBMS), distribution of process, constraints due to the programming

language, available component libraries, and incorporation of graphical user

interface tools. It may be possible to identify the implementation environment

concurrently with analysis. The analysis objects are translated into design objects

that fit the current implementation environment.

3. Testing phase. Finally, Jacobson describes several testing levels and techniques. The

levels include unit testing, integration testing, and system testing.

PATTERNS

• Any science or engineering discipline must have is a vocabulary for expressing its

concepts and a language for relating them to each other.

• Therefore, we need a body of literature to help software developers resolve

commonly encountered, difficult problems and a vocabulary for communicating

insight and experience about these problems and their solutions.

• Gamma, Helm, Johnson, and Vlissides say that the design pattern identifies the

key aspects of a common design structure that make it useful for creating a

reusable objectoriented design. [Furthermore, it] identifies the participating

classes and instances, their roles and collaborations, and the distribution of

responsibilities. It describes when it applies, whether it can be applied in view of

other design constraints, and the consequences and trade-offs of its use.

45

• The main idea behind using patterns is to provide documentation to help

categorize and communicate about solutions to recurring problems.

• The pattern has a name to facilitate discussion and the information it represents.

• Riehle and Ztillighoven:- A pattern is [an] instructive information that captures

the essential structure and insight of a successful family of proven solutions to

a recurring problem that arises within a certain context and system of forces.

• A pattern involves a general description of a solution to a recurring problem

bundle with various goals and constraints. But a pattern does more than just

identify a solution, it also explains why the solution is needed.

• Even if something appears to have all the requisite pattern components, it should

not be considered a pattern until it has been verified to be a recurring

phenomenon (preferably found in at least three existing systems; this often is

called the rule of three).

• A "pattern in waiting," which is not yet known to recur, sometimes is called a

proto-pattern.

• A good pattern will do the following:

 It solves a problem. Patterns capture solutions, not just abstract principles or

strategies.

 It is a proven concept. Patterns capture solutions with a track record, not theories

or speculation.

 The solution is not obvious. The best patterns generate a solution to a problem

indirectly-a necessary approach for the most difficult problems of design.

 It describes a relationship. Patterns do not just describe modules, but describe

deeper system structures and mechanisms.

 The pattern has a significant human component. All software serves human

comfort or quality of life; the best patterns explicitly appeal to aesthetics and

utility.

Generative and Non generative Patterns

• Generative patterns are patterns that not only describe a recurring problem, they

can tell us how to generate something and can be observed in the resulting system

architectures they helped shape.

46

• Nongenerative patterns are static and passive: They describe recurring

phenomena without necessarily saying how to reproduce them.

• The successive application of several patterns, each encapsulating its own

problem and forces, unfolds a larger solution, which emerges indirectly as a result

of the smaller solutions.

• It is the generation of such emergent behavior that appears to be what is meant by

generativity.

• In this fashion, a pattern language should guide its users to generate whole

architectures that possess the quality.

Patterns Template

• Every pattern must be expressed "in the form of a rule [template] which

establishes a relationship between a context, a system of forces which arises in

that context, and a configuration, which allows these forces to resolve themselves

in that context" .

Essential components should be clearly recognizable on reading a pattern :

• Name. A meaningful name. This allows us to use a single word or short phrase to

refer to the pattern and the knowledge and structure it describes. Good pattern

names form a vocabulary for discussing conceptual abstractions.

• Problem. A statement of the problem that describes its intent: the goals and

objectives it wants to reach within the given context and forces.

• Context. The preconditions under which the problem and its solution seem to

recur and for which the solution is desirable. This tells us the pattern's

applicability. It can be thought of as the initial configuration of the system before

the pattern is applied to it.

• Forces. A description of the relevant forces and constraints and how they interact

or conflict with one another and with the goals we wish to achieve (perhaps with

some indication of their priorities). A concrete scenario that serves as the

motivation for the pattern frequently is employed.

• Solution. Static relationships and dynamic rules describing how to realize

the desired outcome. This often is equivalent to giving instructions that describe

how to construct the necessary products. The description may encompass pictures,

diagrams, and prose that identify the pattern's structure, its participants, and their

collaborations, to

47

show how the problem is solved. The solution should describe not only the static

structure but also dynamic behavior.

• Examples. One or more sample applications of the pattern that illustrate a specific

initial context; how the pattern is applied to and transforms that context; and the

resulting context left in its wake. Examples help the reader understand the

pattern's use and applicability.

• Resulting context. The state or configuration of the system after the pattern has

been applied, including the consequences (both good and bad) of applying the

pattern, and other problems and patterns that may arise from the new context. It

describes the postconditions and side effects of the pattern. This is sometimes

called a resolution of forces because it describes which forces have been resolved,

which ones remain unresolved, and which patterns may now be applicable.

• Rationale. A justifying explanation of steps or rules in the pattern and also of the

pattern as a whole in terms of how and why it resolves its forces in a particular

way to be in alignment with desired goals, principles, and philosophies. It

explains how the forces and constraints are orchestrated in concert to achieve a

resonant harmony. This tells us how the pattern actually works, why it works, and

why it is "good.“

• Related patterns. The static and dynamic relationships between this pattern and

others within the same pattern language or system. Related patterns often share

common forces. They also frequently have an initial or resulting context that is

compatible with the resulting or initial context of another pattern.

• Known uses. The known occurrences of the pattern and its application within

existing systems. This helps validate a pattern by verifying that it indeed is a

proven solution to a recurring problem. Known uses of the pattern often can serve

as instructional examples.

ANTIPATTERNS

• A pattern represents a "best practice," whereas an antipattern

represents "worst practice" or a "lesson learned."

• Anti patterns come in two varieties:

 Those describing a bad solution to a problem that resulted in a bad

situation.

 Those describing how to get out of a bad situation and how to proceed

from there to a good solution.

48

• Anti patterns are valuable because often it is just as important to see and

understand bad solutions as to see and understand good ones.

Capturing Patterns

• Writing good patterns is very difficult, explains Appleton. Patterns should provide

not only facts but also tell a story that captures the experience they are trying to

convey.

• A pattern should help its users comprehend existing systems, customize systems

to fit user needs, and construct new systems.

• The process of looking for patterns to document is called pattern mining (or

sometimes reverse architecting).

Guidelines

• Focus on practicability. Patterns should describe proven solutions to

recurring problems rather than the latest scientific results.

• Aggressive disregard of originality. Pattern writers do not need to be the original

inventor or discoverer of the solutions that they document.

• Nonanonymous review. Pattern submissions are shepherded rather than reviewed.

The shepherd contacts the pattern author(s) and discusses with him or her how the

patterns might be clarified or improved on.

• Writers' workshops instead of presentations. - To improve the patterns presented

by discussing what they like about them and the areas in which they are lacking.

• Careful editing. The pattern authors should have the opportunity to incorporate

all the comments and insights during the shepherding and writers' workshops

before presenting the patterns in their finished form.

 FRAMEWORKS

Frameworks are a way of delivering application development patterns to support

best practice sharing during application development-not just within one company, but

across many companies-through an emerging framework market. This is not an entirely

new idea.

An experienced programmer almost never codes a new program from scratch -

she'll use macros, copy libraries, and template like code fragments from earlier programs

to make a start on a new one. Work on the new

49

program begins by filling in new domain specific code inside the older structures.

A seasoned business consultant who has worked on many consulting projects

performing data modeling almost never builds a new data model from scratch he'll have a

selection of model fragments that have been developed over time to help new modeling

projects hit the ground running. New domain-specific terms will be substituted for those

in his library models.

A framework is a way of presenting a generic solution to a problem that can be

applied to all levels in a development. However, design and software frameworks are the

most popular.

A definition of an object-oriented software framework is given by Gamma:

A framework is a set of cooperating classes that make up a reusable design for a

specific class of software. A framework provides architectural guidance by partitioning

the design into abstract classes and defining their responsibilities and collaborations. A

developer customizes a framework to a particular application by subclassing and

composing instances of framework classes. The framework captures the design decisions

that are common to its application domain. Frameworks thus emphasize design reuse over

code reuse, though a framework will usually include concrete subclasses you can put to

work immediately. A single framework typically encompasses several design patterns.

In fact, a framework can be viewed as the implementation of a system of design

patterns.

Differences between frameworks and design patterns:

*. A framework is executable software, whereas design patterns represent knowledge and

experience about software.

*. Frameworks are of a physical nature, while patterns are of a logical nature.

*. Frameworks are the physical realization of one or more software pattern solution; patterns

are the instructions for how to implement those solution.

Gamma et al. describe the major differences between design patterns and frameworks as

follows:

.Design patterns are more abstract than frameworks. Frameworks can be embodied in code,

but only examples of patterns can be embodied in code. A strength of frameworks is that they

can be written down in programming languages and not only studied but executed and reused

directly. In contrast,

50

design patterns have to be implemented each time they are used. Design patterns also

explain the intent, trade-offs, and consequences of a design.

.Design patterns are smaller architectural elements than frameworks. A typical

framework contains several design patterns but the reverse is never true.

. Design patterns are less specialized than frameworks. Frameworks always have a

particular application domain. In contrast, design patterns can be used in nearly any kind

of application. While more specialized design patterns are certainly possible, even these

would not dictate an application architecture.

THE UNIFIED APPROACH

 The unified approach (UA) establishes a unifying and unitary framework around

their works by utilizing the unified modeling language (UML) to describe, model,

and document the software development process.

 The idea behind the UA is not to introduce yet another methodology. The main

motivation here is to combine the best practices, processes, methodologies, and

guidelines along with UML notations and diagrams for better understanding

object-oriented concepts and system development.

 The unified approach to software development revolves around the following

processes and concepts (see Fig.8). The processes are:

 Use-case driven development

 Object-oriented analysis

 Object-oriented design

 Incremental development and prototyping

 Continuous testing The

methods and technology employed include

1. Unified modeling language used for modeling.

2. Layered approach.

3. Respository for object oriented system development patterns and

frameworks.

4. Component based development.

The UA allows iterative development by allowing us to go back and forth between

the design and the modeling or analysis phases.

51

Fig 8. The Process and components of the unified approach 2.8.1

OBJECT-ORIENTED ANALYSIS

Analysis is the process of extracting the needs of a system and what the system must do

to satisfy the users' requirements. The goal of object- oriented analysis is to first

understand the domain of the problem and the system's responsibilities by understanding

how the users use or will use the system. This is accomplished by constructing several

models of the system. These models concentrate on describing what the system does

rather than how it does it. Separating the behavior of a system from the way it is

implemented requires viewing the system from the user's perspective rather than that of

the machine.

OOA Process consists of the following Steps:

1. Identify the Actors.

2. Develop a simple business process model using UML Activity diagram.

3. Develop the Use Case.

4. Develop interaction diagrams.

5. Identify classes.

52

OBJECT-ORIENTED DESIGN

Booch provides the most comprehensive object-oriented design method.

Ironically, since it is so comprehensive, the method can be somewhat imposing to learn

and especially tricky to fig out where to start.

Rumbaugh et al.'s and Jacobson et al.'s high-level models provide good avenues

for getting started. UA combines these by utilizing Jacobson et al.'s analysis and

interaction diagrams,

Booch's object diagrams, and Rumbaugh et al.'s domain models. Furthermore, by

following Jacobson et al.'s life cycle model, we can produce designs that are traceable

across requirements, analysis, design, coding, and testing.

Process consists of:

 Designing classes, their attributes, methods, associations, structures and

protocols, apply design axioms

 Design the Access Layer

 Design and prototype User interface

 User Satisfaction and Usability Tests based on the Usage/Use Cases

 Iterate and refine the design

ITERATIVE DEVELOPMENT AND CONTINUOUS TESTING

You must iterate and reiterate until, eventually, you are satisfied with the system.

Since testing often uncovers design weaknesses or at least provides additional

information you will want to use, repeat the entire process, taking what you have learned

and reworking your design or moving on to reprototyping and retesting. Continue this

refining cycle through the development process until you are satisfied with the results.

During this iterative process, your prototypes will be incrementally transformed into the

actual application. The UA encourages the integration of testing plans from day I of the

project. Usage scenarios can become test scenarios; therefore, use cases will drive the

usability testing. Usability testing is the process in which the functionality of software is

measured.

53

MODELING BASED ON THE UNIFIED MODELING LANGUAGE

The unified modeling language was developed by the joint efforts of the leading

object technologists Grady Booch, Ivar Jacobson, and James Rumbaugh with

contributions from many others. The UML merges the best of the notations used by the

three most popular analysis and design methodologies: Booch's methodology, Jacobson

et al.'s use case, and Rumbaugh et al.'s object modeling technique.

The UML is becoming the universal language for modeling systems; it is

intended to be used to express models of many different kinds and purposes, just as a

programming language or a natural language can be used in many different ways. The

UML has become the standard notation for object-oriented modeling systems. It is an

evolving notation that still is under development. The UA uses the UML to describe and

model the analysis and design phases of system development.

The UA Proposed Repository

In modem businesses, best practice sharing is a way to ensure that solutions to

process and organization problems in one part of the business are communicated to other

parts where similar problems occur. Best practice sharing eliminates duplication of

problem solving. For many companies, best practice sharing is institutionalized as part of

their constant goal of quality improvement. Best practice sharing must be applied to

application development if quality and productivity are to be added to component reuse

benefits. Such sharing extends the idea of software reusability to include all phases of

software development such as analysis, design, and testing .

The idea promoted here is to create a repository that allows the maximum reuse of

previous experience and previously defined objects, patterns, frameworks, and user

interfaces in an easily accessible manner with a completely available and easily utilized

format. As we saw previously, central to the discussion on developing this best practice

sharing is the concept of a pattern. Everything from the original user request to

maintenance of the project as it goes to production should be kept in the repository. The

advantage of repositories is that, if your organization has done projects in the past,

objects in the repositories from those projects might be useful. You can select any piece

from a repository-from the definition of one data element, to a diagram, all its symbols,

and all their dependent definitions, to entries- for reuse.

54

The UA's underlying assumption is that, if we design and develop applications

based on previous experience, creating additional applications will require no more than

assembling components from the library. Additionally, applying lessons learned from

past developmental mistakes to future projects will increase the quality of the product and

reduce the cost and development time. Some basic capability is available in most

objectoriented environments, such as Microsoft repository, VisualAge, PowerBuilder,

Visual C+ +, and Delphi. These repositories contain all objects that have been previously

defined and can be reused for putting together a new software system for a new

application.

Fig. 9 : Two-layered architecture: interface and data.

If a new requirement surfaces, new objects will be designed and stored in the

main repository for future use. The same arguments can be made about patterns and

frameworks. Specifications of the software components, describing the behavior of the

component and how it should be used, are registered in the repository for future reuse by

teams of developers.

The repository should be accessible to many people. Furthermore, it should be

relatively easy to search the repository for classes based on their attributes, methods,

Two-layered architecture: interface and data, or other characteristics. For example,

application developers could select prebuilt components from the central component

repository that match their business needs and assemble these components into a single

application, customizing where needed. Tools to fully support a comprehensive

repository are not accessible yet, but this will change quickly and, in the near future, we

will see more readily available tools to capture all phases

 of software development into a repository for use and reuse.

55

The Layered Approach to Software Development

Most systems developed with today's CASE tools or client-server application

development environments tend to lean toward what is known as two-layered

architecture: interface and data (see Fig).

In a two-layered system, user interface screens are tied to the data through

routines that sit directly behind the screens; for example, a routine that executes when

you click on a button. With every interface you create, you must re-create the business

logic needed to run the screen. The routines required to access the data must exist within

every screen. Any change to the business logic must be accomplished in every screen that

deals with that portion of the business. This approach resultsin objects that are very

specialized and cannot be reused easily in other projects.

A better approach to systems architecture is one that isolates the functions of the

interface from the functions of the business. This approach also isolates the business

from the details of the data access (see Fig).

56

Business objects represent tangible elements of the application. They should be

completely independent of how they are represented to the user or how they are

physically stored. layered approach, you are able to create objects that represent tangible

elements of your business yet are completely independent of how they are represented to

the user (through an interface) or how they are physically stored (in a database). The

three-layered approach consists of a view or user interface layer, a business layer, and an

access layer (see Fig).

The Business Layer The business layer contains all the objects that represent the

business (both data and behavior). This is where the real objects such as Order,

Customer, Line item, Inventory, and Invoice exist. Most modem objectoriented analysis

and design methodologies are generated toward identifying these kinds of objects.

The responsibilities of the business layer are very straightforward: Model the

objects of the business and how they interact to accomplish the business processes. When

creating the business layer, however, it is important to keep in mind a couple of things.

These objects should not be responsible for the following:

.Displaying details. Business objects should have no special

knowledge of how they are being displayed and by whom. They are designed to be

independent of any particular interface, so the details of how to display an object should

exist in the interface (view) layer of the object displaying it.

Data access details. Business objects also should have no special knowledge of

"where they come from." It does not matter to the business model whether the data are

stored and retrieved via SQL or file I/O. The business objects need to know only to

whom to talk about being stored or retrieved. The business objects are modeled during

the object-oriented analysis. A business model captures the static and dynamic

relationships among a collection of business objects. Static relationships include object

associations and aggregations. For example, a customer could have more than one

account or an order could be aggregated from one or more line items. Dynamic

relationships show how the business objects interact to perform tasks. For example, an

order interacts with inventory to determine product availability. An individual business

object can appear in different business models. Business models also incorporate

control objects that direct their processes. The business objects are identified during

the object

57

oriented analysis. Use cases can provide a wonderful tool to capture business objects.

The User Interface (View) Layer: The user interface layer consists of objects with which

the user interacts as well as the objects needed to manage or control the interface. The

user interface layer also is called the view layer. This layer typically is responsible for

two major aspects of the applications:

. Responding to user interaction. The user interface layer objects must be designed to

translate actions by the user, such as clicking on a button or selecting .from a menu, into

an appropriate response. That response may be to open or close another interface or to

send a message down into the business layer to start some business process; remember,

the business logic does not exist here, just the knowledge of which message to send to

which business object..

. Displaying business objects. This layer must paint the best possible picture of the

business objects for the user. In one interface, this may mean entry fields and list boxes to

display an order and its items. In another, it may be a graph of the total price of a

customer's orders.

The Access layer : The access layer contains objects that know how to communicate with

the palce where the data actually reside, whether it be a relational databasem mainframe,

internetm or file. The Access layer has 2 major responsiblities.

1. Translate request : The access layer must be able to translate any dat- related

requests from the business layer into the appropriate protocol for data access.

2. Translate results/: tje access ;ayer also must ne able to translate the dat retrieved

back into the appropriate business objects and pass those objects back up into the

business layer.

Access objets are indentified during object oriented design.

58

UNIFIED MODELING LANGUAGE

A model is an abstract representation of a system, constructed to understand the

system prior to building or modifying it. Most of the modeling techniques involve

graphical languages.

Modeling frequently is used during many of the phases of the software life cycle,

such as analysis, design, and implementation. For example, Objectory is built around

several different models:

. Use-case model. The use-case model defines the outside (actors) and inside (use

case) of the system's behavior.

. Domain object model. Objects of the "real" world are mapped into the domain

object model.

.Analysis object model. The analysis object model presents how the source code

(i.e., the implementation) should be carried out and written.

.Implementation model. The implementation model represents the implementation

of the system.

. Test model. The test model constitutes the test plans, specifications, and reports.

Modeling is an iterative process.

Static or Dynamic Models

WHY MODELING?

Building a model for a software system prior to its construction is as essential as

having a blueprint for building a large building. Good models are essential for

communication among project teams. As the complexity of systems increases, so does

the importance of good modeling techniques. Many other factors add to a project's

success, but having a rigorous

59

modeling language is essential. A modeling language must include Model

elements-fundamental modeling concepts and semantics.

Notation-visual rendering of model elements.

Guidelines-expression of usage within the trade.

In the face of increasingly complex systems, visualization and

modeling become essential, since we cannot comprehend any such system in its entirety.

The use of visual notation to represent or model a problem can provide us several

benefits relating to clarity, familiarity, maintenance, and simplification.

Clarity. We are much better at picking out errors and omissions from a graphicalor

visual representation than from listings of code or tables of numbers. We very easily can

understand the system being modeled because visual examination of the whole is

possible.

Familiarity. The representation form for the model may turn out to be similar to the

way in which the information actually is represented and used by the employees currently

working in the problem domain. We, too, may find it more comfortable to work with this

type of representation.

Maintenance. Visual notation can improve the main tainability of a system. The

visual identification of locations to be changed and the visual confirmation of those

changes will reduce errors. Thus, you can make changes faster, and fewer errors are

likely to be introduced in the process of making those changes.

Simplification. Use of a higher level representation generally results in the use of

fewer but more general constructs, contributing to simplicity and conceptual

understanding.

Turban cites the following advantages of modeling:

1. Models make it easier to express complex ideas. For example, an architect

builds a model to communicate ideas more easily to clients.

2. The main reason for modeling is the reduction of complexity. Models

reduce complexity by separating those aspects that are unimportant from

those that are important. Therefore, it makes complex situations easier to

understand.

3. Models enhance and reinforce learning and training.

4. The cost of the modeling analysis is much lower than the cost of similar

experimentation conducted with a real system.

5. Manipulation of the model (changing variables) is much easier than

manipulating a real system.

60

key ideas regarding modeling:

 A model is rarely correct on the first try.

 Always seek the advice and criticism of others. You can improve

a model by reconciling different perspectives.

 Avoid excess model revisions, as they can distort the essence of your

model.

What Is the UML?

The unified modeling language is a language for specifying, constructing,

visualizing, and documenting the software system and its components. The UML is a

graphical language with sets of rules and semantics. The rules and semantics of a model

are expressed in English, in a form known as object constraint language (OCL). OCL is a

specification language that uses simple logic for specifying the properties of a system.

The UML is not intended to be a visual programming language in the sense of

having all the necessary visual and semantic support to replace programming languages.

However, the UML does have a tight mapping to a family of object-oriented languages,

so that you can get the best of both worlds.

What it is/isn’t? Is NOT

• A process

• A formalism

Is

• A way to describe your software

• more precise than English

• less detailed than code

What is UML Used For?

 Trace external interactions with the software

 Plan the internal behavior of the application

 Study the software structure

 View the system architecture

 Trace behavior down to physical components

61

The primary goals in the design of the UML were as follows :

1. Provide users a ready-to-use, expressive visual modeling language so

they can develop and exchange meaningful models.

2. Provide extensibility and specialization mechanisms to extend the core

concepts.

3. Be independent of particular programming languages and

development processes.

4. Provide a formal basis for understanding the modeling

language.

5. Encourage the growth of the OO tools market.

6. Support higher-level development concepts.

7. Integrate best practices and methodologies.

UML DIAGRAMS

The UML defines nine graphical diagrams:

1. Class diagram (static)

2. Use-case diagram

3. Behavior diagrams (dynamic):

– 3.1. Interaction diagram:

• 3.1.1. Sequence diagram

• 3.1.2. Collaboration diagram

– 3.2. State chart diagram

– 3.3. Activity diagram

4. Implementation diagram:

Component diagram

Deployment diagram

62

Fig 11.Diagrams Are Views of a Model

UML CLASS DIAGRAM

The UML class diagram, also referred to as object modeling, is the main static

analysis diagram. These diagrams show the static structure of the model.

A class diagram is a collection of static modeling elements, such as classes and

their relationships, connected as a graph to each other and to their contents; for

example,the things that exist (such as classes), their internal structures, and their

relationships to other classes.

Class diagrams do not show temporal information, which is required in dynamic

modeling.

 A class diagram describes the types of objects in the system and the various

kinds of static relationships that exist among them.

 A graphical representation of a static view on declarative static elements.

 A central modeling technique that runs through nearly all object- oriented

methods.

 The richest notation in UML.

 A class diagram shows the existence of classes and their relationships in the

logical view of a system

63

Class Notation: Static Structure

A class is drawn as a rectangle with three components separated by horizontal

lines. The top name compartment holds the class name, other general properties of the

class, such as attributes, are in the middle compartment, and the bottom compartment

holds a list of operations (see Fig12.).

Either or both the attribute and operation compartments may be suppressed.

Aseparator line is not drawn for a missing compartment if a compartment is suppressed;

no inference can be drawn about the presence or absence of elements in it.

The class name and other properties should be displayed in up to three sections. A

stylistic convention of UML is to use an italic font for abstract classes and a normal

(roman) font for concrete classes.

Essential Elements of a UML Class Diagram

– Class

– Attributes

– Operations

– Relationships

 Associations

 Generalization

– Dependency

– Realization

Constraint Rules and Notes

A class is the description of a set of objects having similar attributes, operations,

relationships and behavior.

Fig.12 In class notation, either or both the attributes and operation compartments

may be suppressed.

64

Attributes

– Classes have attributes that describe the characteristics of their objects.

– Attributes are atomic entities with no responsibilities.

– Attribute syntax (partial):

o [visibility] name [: type] [= defaultValue]

– Class scope attributes are underlined

Visibility

• Visibility describes whether an attribute or operation is visible and can be referenced

from classes other than the one in which they are defined.

• language dependent

o Means different things in different languages

• UML provides four visibility abbreviations: + (public) – (private) # (protected)

~ (package)

Object Diagram

A static object diagram is an instance of a class diagram. It shows a snapshot of

the detailed state of the system at a point in time. Notation is the same for an object

diagram and a class diagram. Class diagrams can contain objects, so a class diagram with

objects and no classes is an object diagram.

UML modeling elements in class diagrams

• Classes and their structure, association, aggregation, dependency, and inheritance

relationships

• Multiplicity and navigation indicators, etc.

Class Interface Notation

Class interface notation is used to describe the externally visible behavior of a

class; for example, an operation with public visibility. Identifying class interfaces is a

design activity of object-oriented system development.

The UML notation for an interface is a small circle with the name of the interface

connected to the class. A class that requires the operations in the interface may be

attached to the circle by a dashed arrow. The dependent class is not required to actually

use all of the operations.

For example, a Person object may need to interact with the BankAccount object

to get the Balance; this relationship is depicted in Fig13. with UML class interface

notation.

65

Fig 13. Interface notation of a Class

Binary Association Notation

A binary association is drawn as a solid path connecting two classes, or both ends

may be connected to the same class. An association may have an association name. The

association name may have an optional black triangle in it, the point of the triangle

indicating the direction in which to read the name. The end of an association, where it

connects to a class, is called the association role (see Fig14).

Fig 14: Association notation.

Association Role

A simple association- binary association-is drawn as a solid line connecting two

class symbols. The end of an association, where it connects to a class, shows the

association role. The role is part of the association, not part of the class. Each association

has two or more roles to which it is connected.

In above Fig14. the association worksFor connects two roles, employee and

employer. A Person is an employee of a Company and a Company is an employer of a

Person.

The UML uses the term association navigation or navigability to specify a role

affiliated with each end of an association relationship. An

66

arrow may be attached to the end of the path to indicate that navigation is supported in

the direction of the class pointed to. An arrow may be attached to neither, one, or both

ends of the path. In particular, arrows could be shown whenever navigation is supported

in a given direction.

In the UML, association is represented by an open arrow, as represented in

Fig.15. Navigability is visually distinguished from inheritance, which is denoted by an

unfilled arrowhead symbol near the superclass.

Fig 15. Association Notation

In this example, the association is navigable in only one direction, from the

BankAccount to Person, but not the reverse. This might indicate a design decision, but it

also might indicate an analysis decision, that the Person class is frozen and cannot be

extended to know about the BankAccount class, but the BankAccount class can know

about the Person class.

Qualifier

A qualifier is an association attribute. For example, a person object may be

associated to a Bank object. An attribute of this association is the account#. The account#

is the qualifier of this association.(Fig 16)

Fig 16 Association Qualifier.

67

A qualifier is shown as a small rectangle attached to the end of an association

path, between the final path segment and the symbol of the class to which it connects.

The qualifier rectangle is part of the association path, not part of the class. The qualifier

rectangle usually is smaller than the attached class rectangle (see above Fig).

Multiplicity

Multiplicity specifies the range of allowable associated classes. It is given for

roles within associations, parts within compositions, repetitions, and other purposes. A

multiplicity specification is shown as a text string comprising a period-separated

sequence of integer intervals, where an interval represents a range of integers in this

format (see Fig 17):

lower bound.. upper bound.

The terms lower bound and upper bound are integer values, specifying the range

of integers including the lower bound to the upper bound. The star character (*) may be

used for the upper bound, denoting an unlimited upper bound. If a single integer value is

specified, then the integer range contains the single values.

For example,

0..1

0..*

1..3, 7..10, 15, 19..*

Fig 17. Assocaition Qualifier and its multiplicity.

68

OR Association

An OR association indicates a situation in which only one of several potential

associations may be instantiated at one time for any single object. This is shown as a

dashed line connecting two or more associations, all of which must have a class in

common, with the constraint string {or} labeling the dashed line (see Fig 18). In other

words, any instance of the class may participate in, at most, one of the associations at one

time.

Fig 18. An OR association notation. A car may associate with a person or a

company.

Association Class

An association class is an association that also has class properties. An

association class is shown as a class symbol attached by a dashed line to an association

path. The name in the class symbol and the name string attached to the association path

are the same (see Fig 19). The name can be shown on the path or the class symbol or

both. If an ssociation class has attributes but no operations or other associations, then the

name may be displayed on the association path and omitted from the association class to

emphasize its "association nature." If it has operations and attributes, then the name may

be omitted from the path and placed in the class rectangle to emphasize its "class nature."

69

Fig 19. Association Class

N-Ary Association

An n-ary association is an association among more than two classes. Since n-ary

association is more difficult to understand, it is better to convert an n-ary association to

binary association.

An n-ary association is shown as a large diamond with a path from the diamond to

each participant class. The name of the association (if any) is shown near the diamond.

The role attachment may appear on each path as with a binary association. Multiplicity

may be indicated; however, qualifiers and aggregation are not permitted. An association

class symbol may be attached to the diamond by a dashed line, indicating an n-ary

association that has attributes, operation, or associations. The example depicted in Fig 20

shows the grade book of a class in each semester.

Fig 20 . An n-ary (ternary) association that shows association among class, year, and

student classes. The association class GradeBook which contains the attributes of the
associations such as grade, exam, and lab.

70

Aggregation and Composition (a.part.of)

Aggregationis a form of association. A hollow diamond is attached to the end of

the path to indicate aggregation. However, the diamond may not be attached to both ends

of a line, and it neednot be presentedat all (see Fig 21).

Composition, also known as the apart-of, is a form of aggregation with strong

ownership to represent the component of a complex object. Composition also is referred

to as a part-whole relationship.The UML notation for composition is a solid diamond at

the end of a path. Alternatively,the UML provides a graphically nestedform that, in many

cases,is more convenientfor showingcomposition (see Fig 22).

Parts with multiplicity greater than one may be created after the aggregate itself

but, once created, they live and die with it. Such parts can also be explicitly removed

before the death of the aggregate.

Fig 21. Association Path

Fig 22. Different ways to show Composition.

71

Generalization

Generalization is the relationshipbetweena more generalclass and a more specific

class. Generalization is displayed as a directed line with a closed, hollow arrowhead at

the superclass end (see Fig 23). The UML allows a discriminator label to be attached to

a generalization of the superclass. For example, the class Boeing- Airplane has instances

of the classes Boeing 737, Boeing 747, Boeing 757, and Boeing 767, which are

subclasses of the class BoeingAirplane. Ellipses (...) indicate that the generalization is

incomplete and more subclasses exist that are not shown (see Fig 24).

The constructor complete indicates that the generalization is complete and no

more subclasses are needed. If a text label is placed on the hollow triangle shared by

several generalization paths to subclasses, the label applies to all of the paths. In other

words, all subclasses share the given properties.

Fig 23. Generalization Notation

72

Fig 24. Ellipses(...) indicate that additional classes exist and are not shown.

USE-CASE DIAGRAM

The use-case concept was introduced by Ivar Jacobson in the object- oriented

software engineering (OOSE) method. The functionality of a system is described in a

number of different use cases, each of which represents a specific flow of events in the

system.

A use case corresponds to a sequence of transactions, in which each

transaction is invoked from outside the system (actors) and engages internal objects

to interact with one another and with the system's surroundings.

The description of a use case defines what happens in the system when the use

case is performed. In essence, the use-case model defines the outside (actors) and inside

(use case) of the system's behavior. Use cases represent specific flows of events in the

system. The use cases are initiated by actors and describe the flow of events that these

actors set off. An actor is anything that interacts with a use case: It could be a human

user, external hardware, or another system. An actor represents a category of user

rather

73

than a physical user. Several physical users can play the same role. For example, in terms

of a Member actor, many people can be members of a library, which can be represented

by one actor called Member.

A use-case diagram is a graph of actors, a set of use cases enclosed by a system

boundary, communication (participation) associations between the actors and the use

cases, and generalization among the use cases.

Fig 25. use-case diagram shows the relationship among actors and use cases within

a system.

Fig 25. diagrams use cases for a Help Desk. A use-case diagram shows the

relationship among the actors and use cases within a system. A client makes a call that is

taken by an operator, who determines the nature of the problem. Some calls can be

answered immediately; other calls require research and a return call.

A use case is shown as an ellipse containing the name of the use case. The name

of the use case can be placed below or inside the ellipse. Actors' names and use case

names should follow the capitalization and punctuation guidelines of the model.

74

An actor is shown as a class rectangle with the label < <actor> >, or the label and

a stick fig, or just the stick fig with the name of the actor below the fig (see Fig 26).

Fig 26. The three representations of an actor are equivalent. These

relationships are shown in a use-case diagram:

1. Communication. The communication relationship of an actor in a use case is shown

by connecting the actor symbol to the use-case symbol with a solid path. The actor is said

to "communicate" with the use case.

2. Uses. A uses relationship between use cases is shown by a generalization arrow from

the use case.

3. Extends. The extends relationship is used when you have one use case that is similar

to another use case but does a bit more. In essence, it is like a subclass.

UML DYNAMIC MODELING (BEHAVIOR DIAGRAMS)

The diagrams we have looked at so far largely are static. However, events happen

dynamically in all systems: Objects are created and destroyed, objects send messages to

one another in an orderly fashion, and in some systems, external events trigger operations

on certain objects. Furthermore, objects have states. The state of an object would be

difficult to capture in a static model. The state of an object is the result of its behavior.

Booch provides us an excellent example:

"When a telephone is first installed, it is in idle state, meaning that no previous

behavior is of great interest and that the phone is ready to initiate and receive calls. When

someone picks up the handset, we say that the phone is now off-hook and in the dialing

state; in this state,. we do not expect the phone to ring: we expect to be able to initiate a

conversation with a party or parties on another telephone. When the phone is on-hook, if

it rings and then we pick up the handset, the phone is now in the receiving state, and we

expect to be able to converse with the party that initiated the conversation ."

75

Booch explains that describing a systematic event in a static medium such as on

a sheet of paper is difficult, but the problem confronts almost every discipline.

The Dynamic semantics of a problem with the following diagrams:

Behavior diagrams (Dynamic)

 Interaction Diagrams:

 Sequence diagrams

 Collaboration diagrams

 State Chart diagrams

 Activity diagrams

Each class may have an associated activity diagram that indicates the behavior of

the class's instance (its object). In conjunction with the use-case model, we may provide

a scripts or an interaction diagram to show the time or event ordering of messages as

they are evaluated .

UML INTERACTION DIAGRAMS

Interaction diagrams are diagrams that describe how groups of objects collaborate

to get the job done.

Interaction diagrams capture the behavior of a single use case, showing the

pattern of interaction among objects. The diagram shows a number of example objects

and the messages passed between those objects within the use case . There are two kinds

of interaction models: sequence diagrams and collaboration diagrams.

UML Sequence Diagram : Sequence diagrams are an easy and intuitive way of

describing the behavior of a system by viewing the interaction between the system and its

environment. A sequence diagram shows an interaction arranged in a time sequence. It

shows the objects participating in the interaction by their lifelines and the messages they

exchange, arranged in a time sequence.

A sequence diagram has two dimensions: the vertical dimension represents time,

the horizontal dimension represents different objects. The vertical line is called the

object's lifeline. The lifeline represents the object's existence during the interaction. This

form was first popularized by Jacobson. An object is shown as a box at the top of a

dashed vertical line (see Fig 27). A role is a slot for an object within a collaboration that

describes the type of object that may play the role and its relationships to other roles. a

sequence diagram does not show the relationships among the

76

roles or the association among the objects. An object role is shown as a vertical dashed

line, the lifeline.

Fig 27. An example of a Sequence Diagram

Each message is represented by an arrow between the lifelines of two objects. The

order in which these messages occur is shown top to bottom on the page. Each message is

labeled with the message name. The label also can include the argument and some control

information and show self- delegation, a message that an object sends to itself, by

sending the message arrow back to the same lifeline. The horizontal ordering of the

lifelines is arbitrary. Often, call arrows are arranged to proceed in one direction across the

page, but this is not always possible and the order conveys no information.

The sequence diagram is very simple and has immediate visual appeal-this is its

great strength. A sequence diagram is an alternative way to understand the overall flow of

the control of a program. Instead of looking at the code and trying to find out the overall

sequence of behavior, you can use the sequence diagram to quickly understand that

sequence.

UML Collaboration Diagram : Another type of interaction diagram is the collaboration

diagram. A collaboration diagram represents a collaboration, which is a set of objects

related in a particular context, and interaction, which is a set of messages exchanged

among the objects within the

77

collaboration to achieve a desired outcome. In a collaboration diagram, objects are shown

as figs. As in a sequence diagram, arrows indicate the message sent within the given use

case. In a collaboration diagram, the sequence is indicated by numbering the messages.

A collaboration diagram provides several numbering schemes. The simplest is

illustrated in Fig 28. You can also use a decimal numbering scheme (see Fig- 28 a) where

1.2: DialNumber means that the Caller (1) is calling the Exchange (2); hence, the number

1.2.

Fig.28. A collaboration diagram with simple numbering.

78

Fig.28 a. A collaboration diagram with decimal numbering.

The UML uses the decimal scheme because it makes it clear which operation is

calling which other operation, although it can be hard to see the overall sequence .

Different people have different preferences when it comes to deciding whether to use

sequence or collaboration diagrams.

Fowler and Scott argue that the main advantage of interaction diagrams (both

collaboration and sequence) is simplicity. You easily can see the message by looking at

the diagram. The disadvantage of interaction diagrams is that they are great only for

representing a single sequential process; they begin to break down when you want to

represent conditional looping behavior.

Conditional behavior can be represented in sequence or collaboration diagrams

through two methods.

*. The preferred method is to use separate diagrams for each scenario.

*. Another way is to use conditions on messages to indicate the behavior.

UML STATECHART DIAGRAM

A statechart diagram (also called a state diagram) shows the sequence of states

that an object goes through during its life in response to outside stimuli and messages.

The state is the set of values that describes an object at a specific point in time and

is represented by state symbols and the transitions are

79

represented by arrows connecting the state symbols. A statechart diagram may contain

subdiagrams.

A state diagram represents the state of the method execution (that is, the state

of the object executing the method), and the activities in the diagram represent the

activities of the object that performs the method.

The purpose of the state diagram is to understand the algorithm involved in

performing a method. To complete an object-oriented design, the activities within the

diagram must be assigned to objects and the control flows assigned to links in the object

diagram.

A statechart diagram is similar to a Petri net diagram, where a token (shown by a

solid black dot) represents an activity symbol. When an activity symbol appears within a

state symbol, it indicates the execution of an operation. Executing a particular step within

the diagram represents a state within the execution of the overall method. The same

operation name may appear more than once in a state diagram, indicating the invocation

of the same operation in a different phase. An outgoing solid arrow attached to a

statechart symbol indicates a transition triggered by the completion of the activity. The

name of this implicit event need not be written, but conditions that depend on the result

of the activity or other values may be included. An event occurs at the instant in time

when the value is changed.

A message is data passed from one object to another. At a minimum, a message is

a name that will trigger an operation associated with the target object; for example, an

Employee object that contains the name of an employee. If the Employee object received

a message (getEmployeeName) asking for the name of the employee, an operation

contained in the Employee class (e.g., returnEmployeeName) would be invoked. That

operation would check the attribute Employee and then assign the value associated with

that attribute back to the object that sent the message in the first place.

In this case, the state of the Employee object would not have been changed. Now,

consider a situation where the same Employee object received a message

updateEmployeeAddress) that contained a parameter (2000 21st Street, Seattle, WA):

updateEmployeeAddress (2000 21st Street, Seattle, WA)

In this case the object would invoke an operation from its class that would modify

the value associated with the attribute Employee, changing it from the old address to the

new address; therefore, the state of the employee object has been changed.

A state is represented as a rounded box, which may contain one or more

compartments. The compartments are all optional. The name

80

compartment and the internal transition compartment are two such compartments:

 The name compartment holds the optional name of the state. States without

names are "anonymous" and all are distinct. Do not show the same named

state twice in the same diagram, since it will be very confusing.

 The internal transition compartment holds a list of internal actions or

activities performed in response to events received while the object is in the

state, without changing states:

The syntax used is this: event-name argument-list / action-expression; for

example, help / display help.

Two special events are entry and exit, which are reserved words and cannot be

used for event names. These terms are used in the following ways: entry I

actionexpression (the action is to be performed on entry to the state) and exit I

actionexpressed (the action is to be performed on exit from the state).

The statechartsupports nested state machines; to activate a substate machine use

the keyword do: do I machine-name (argument-list). If this state is entered, afterthe entry

action is completed, the nested (sub)state machine will be executed with its initial state.

When the nested state machine reaches its final state, it will exit the action of the current

state, and the current state will be considered completed. An initial state is shown as a

small dot, and the transition from the initial state may be labeled with the event that

creates the objects; otherwise, it is unlabeled. If unlabeled, it represents any transition to

the enclosing state.

A final state is shown as a circle surrounding a small dot, a bull's-eye. This

represents the completion of activity in the enclosing state and triggers a transition on the

enclosing state labeled by the implicit activity completion event, usually displayed as an

unlabeled transition (see Fig 29).

The transition can be simple or complex. A simple transition is a relationship

between two states indicating that an object in the first state

will enter the second state and perform certain actions when a specific event occurs; if the

specified conditions are satisfied, the transition is said to "fire." Events are processed one

at a time. An event that triggers no transition is simply ignored.

A complex transition may have multiple source and target states. It represents a

synchronization or a splitting of control into concurrent threads. A complex transition is

enabled when all the source states are changed, after a complex transition "fires" all its

destination states. A complex transition

81

is shown as a short heavy bar.! The bar may have one or more solid arrows from states to

the bar (these are source states); the bar also may have one or more solid arrows from the

bar to states (these are the destination states). A transition string may be shown near the

bar. Individual arrows do not have their own transition strings (see Fig 5-30).

Fig 29: A simple idele and a nested state.

Fig 30: A complex Transition

82

UML ACTIVITY DIAGRAM

An activity diagram is a variation or special case of a state machine, in which the

states are activities representing the performance of operations and the transitions are

triggered by the completion of the operations. Unlike state diagrams that focus on the

events occurring to a single object as it responds to messages, an activity diagram can be

used to model an entire business process. The purpose of an activity diagram is to provide

a view of flows and what is going on inside a use case or among several classes. An

activity diagram can also be used to represent a class's method implementation.

Fig 31. An activity diagram for processing mortgage requests (Loan: Processing Mortgage

Request).

An activity model is similar to a statechart diagram, where a token (shown by a

black dot) represents an operation. An activity is shown as a round box, containing the

name of the operation. When an operation symbol

83

appears within an activity diagram or other state diagram, it indicates the execution of the

operation.

Executing a particular step within the diagram represents a state within the

execution of the overall method. The same operation name may appear more than once in

a state diagram, indicating the invocation of the same operation in different phases.

An outgoing solid arrow attached to an activity symbol indicates a transition

triggered by the completion of the activity. The name of this implicit event need not be

written, but the conditions that depend on the result of the activity or other values may be

included (see Fig 31).

Several transitions with different conditions imply a branching off of control. If

conditions are not disjoint, then the branch is nondeterministic. The concurrent control is

represented by multiple arrows leaving a synchronization bar, which is represented by a

short thick bar with incoming and outgoing arrows. Joining concurrent control is

expressed by multiple arrows entering the synchronization bar.

Fig 32: A decision.

An activity diagram is used mostly to show the internal state of an object, but

external events may appear in them. An external event appears when the object is in a

"wait state," a state during which there is no internal activity by the object and the object

is waiting for some external event to occur as the result of an activity by another object

(such as a user input or some other signal). The two states are wait state and activity state.

More than one possible event might take the object out of the wait state; the first one that

occurs triggers the transition. A wait state is the "normal" state.

Activity and state diagrams express a decision when conditions (the UML calls

them guard conditions) are used to indicate different possible transitions that depend on

Boolean conditions of container object. The fig 32 provided for a decision is the

traditional diamond shape, with one or more

84

incoming arrows and two or more outgoing arrows, each labeled by a distinct guard

condition. All possible outcomes should appear on one

of the outgoing transitions (see Fig 32).

Actions may be organized into swimlanes, each separated from neighboring

swimlanes by vertical solid lines on both sides. Each swimlane represents responsibility

for part of the overall activity and may be implemented by one or more objects. The

relative ordering of the swimlanes has no semantic significance but might indicate some

affinity. Each action is assigned to one swimlane. A transition may cross lanes; there is no

significance to the routing of the transition path (see Fig 33).

Fig 33. Swimlanes in an activity diagram.

85

UML IMPLEMENTATION DIAGRAMS

Implementation diagrams show the implementation phase of systems

development, such as the source code structure and the run-time implementation

structure. There are 2 types of implementation diagrams:

*. Component diagrams – Its Show the stucture of the code itself.

*. Deployment Diagrams – Its show the structure of the runtime system.

These are relatively simple, high-level diagrams compared with other UML

diagrams.

Component Diagram :

Component diagrams model the physical components (such as source code,

executable program, user interface) in a design. These high-level physical components

mayor may not be equivalent to the many smaller components you use in the creation of

your application. For example, a user interface may contain many other offtheshelf

components purchased to put together a graphical user interface.

Another way of looking at components is the concept of packages. A package is

used to show how you can group together classes, which in essence are smaller scale

components. A package usually will be used to group logical components of the

application, such as classes, and not necessarily physical components. However, the

package could be a first approximation of what eventually will turn into physical

grouping. In that case, the package will become a component .

A component diagram is a graph of the design's components connected by

dependency relationships. A component is represented by the boxed fig shown in Fig 34

Dependency is shown as a dashed arrow.

Fig 34: A Component Diagram

86

Deployment Diagram

Deployment diagrams show the configuration of run-time processing elements

and the software components, processes, and objects that live in them. Software

component instances represent run-time manifestations of code units. In most cases,

component diagrams are used in conjunction with deployment diagrams to show how

physical modules of code are distributed on various hardware platforms. In many cases,

component and deployment diagrams can be combined.

A deployment diagram is a graph of nodes connected by communication association.

Nodes may contain component instances, which mean that the component lives or runs at

that node. Components may contain objects; this indicates that the object is part of the

component. Components are connected to other components by dashedarrow

dependencies, usually through interfaces, which indicate one component uses the services

of another. Each node or processing element in the system is represented by a three-

dimensional box. Connections between the nodes (or platforms) themselves are shown by

solid lines (see Fig 35).

Fig 35. The Basic UML notation for a deployment diagram.

87

MODEL MANAGEMENT: PACKAGES AND MODEL

ORGANIZATION

A package is a grouping of model elements. Packages themselves may contain

other packages. A package may contain both subordinate packages and ordinary model

elements. The entire system can be thought of as a single high-level package with

everything else in it. All UML model elements and diagrams can be organized into

packages.

A package is represented as a folder, shown as a large rectangle with a tab

attached to its upper left corner. If contents of the package are not shown, then the name

of the package is placed within the large rectangle. If contents of the package are shown,

then the name of the package may be placed on the tab (see Fig 36). The contents of the

package are shown within the large rectangle. Fig shows an example of several packages.

This fig shows three packages (Clients, Bank, and Customer) and three classes, (Account

class, Savings class, and Checking class) inside the Business Model package.

Fig 36: A package and its contents

88

A real model would have many more classes in each package. The contents

might be shown if they are small, or they might be suppressed from higher levels. The

entire system is a package. Fig 37 also shows the hierarchical structure, with one

package dependent on other packages. For example, the Customer depends on the

package Business Model, meaning that one or more elements within Customer depend

on one or more elements within the other packages. The package Business Model is

shown partially expanded. In this case, we see that the package Business Model owns the

classes Bank, Checking, and Savings as well as the packages Clients and Bank.

Ownership may be shown by a graphic nesting of the figs or by the expansion of a

package in a separate drawing. Packages can be used to designate not only logical and

physical groupings but also use-case groups. A use-case group, as the name suggests, is a

package of use cases.

Model dependency represents a situation in which a change to the target element

may require a change to the source element in the dependency, thus indicating the

Fig 37: A package and its dependencies

relationship between two or more model elements. It relates the model elements

themselves and does not require a set of instances for its meaning. A dependency is shown

as a dashed arrow from

89

one model element to another on which the first element is dependent (see Fig 38).

Fig 38: An e ample of constraints. A person is a manager of people who work for
the accounting department.

UML EXTENSIBILITY

1. Model Constraints and comments

Constraints are assumptions or relationship among model elements specifying

conditions and propositions that must be maintained as true; otherwise the system

described by the model would be invalid. Some constraints, such as association OR

constraints are predefined in the UML; others may be defined by users.

Constraints are shown as text in braces (ref. Fig 38). The UML also provides

language for writing constraints in the OCL. The constraints may be written in a natural

language.

A constraint may be a “Comment”, in which case it is written in text. For an

element whose notation is a text string such as an attribute, the constraint string may

follow the element text string. For a list of elements whose notation is a list of text

strings, such as the attributes within class, the constraint string may appear as an element

in the list. The constraint applies to all succeeding elements of the list until reaching

another constraint string list element or the end of the list. A constraint attached to an

individual list element does not supersede the general constraints but may modify

individual constraints string may be placed near the symbol name.

The above example fig 38, shows two classes and two associations. The

constraint is shown as a dashed arrow from one element to the other, labeled by the

constraints string in brace. The direction of the arrow is relevant information within the

constraint.

90

2. Note

A Note is a graphic symbol containing textual information; it also could contain

embedded images. It is attached to the diagram rather than to a model element. A note is

shown as a rectangle with “Bent Corner” in the upper right corner. It can contains any

length text. (ref. Fig 39).

Fig 39. Note

3. Stereotype

Stereotype represent a built-in extensibility mechanism of the UML. User-

defined extensions of the UML are enabled through the use of stereotypes and

constraints. A stereotype is a new class of modeling element introduced during modeling,

It represents a subclass of an existing modeling element with the same form (attributed

and relationships) but a different intent. UML stereotype extend and tailor the UML for a

specific domain or process.

The general presentation of a stereotype is to use a figure for the base element but

place a keyword string above the name of the element (if used, the keyword string is the

name of a stereotype within matched guillemets, “<<”,”>>”, such as <<flow>.. Note that

a guillemet looks like a angle- bracket, but it is a single character in most fonts.

<< Flow >>

copy

Number of Copy

MakeCopy

91

<< Flow >>

copy

Number of Copy

MakeCopy

Copy

Number of Copy

MakeCopy

Fig 40: Various forms of Stereotype notation

The stereotype allows extension of UML notation as well as a graphic figure,

texture, and color. The figure can be used in one of two ways: (1) instead of or in

addition to the stereotype keyword string as part of the symbol for the base model

element or (2) as the entire base model element. Other information contained by the base

model element symbol is suppressed.

3. UML Meta-model

The UML defined notations as well as a meta model. UML graphic notations can

be used not only to describe the system’s components but also to describe a model itself.

This is known as a meta-model.

In other words, a meta-model is a model of modeling elements. The purpose of

the UML meta-model is to provide a single,common, and definitive statement of the

syntax and semantics of the elements of the UML.

92

The meta model provides us a means to commect different UML diagrams. The

connection between the different diagrams is very important, and the UML attempts to

make these coupling more explict through defining the underlying model while imposing

no methodology.

The presence of this meta model has made it possible for its developers to agree

on semantics and how those semantics would be best rendered. This is an important step

forword, since it can assure consistency among diagrams. The meta-model aslomcan

serve as a means to exchange data between different cas tools. The fig 41 is an example

fo the UML meta- model that describes relationship with association and generalization;

association is depicted as a composition of association roles.

Fig 41. The UML meta-model describing the relationship between

association and generalization.

93

Questions

Part-A

Q.No Questions Competence BT Level

1. What is antipattern? Remember
BTL 1

2. Define framework. Remember
BTL 1

3. Distinguish Static and Dynamic Models Understand
BTL 2

4. Compare patterns and frameworks. Analysis
BTL 4

5. Define Design Pattern Remember
BTL 1

6. Define UML. Remember
BTL 1

7. List out the various UML diagrams Remember
BTL 1

8.
What are the advantages and disadvantages of interaction

diagrams?
Remember

BTL 1

9. What is UML class diagram? Remember
BTL 1

10. Classify the kinds of actors in use case. Analysis
BTL 4

Part-B

Q.No Questions Competence BT Level

1. Discuss in detail about Rumbaugh method. Understand
BTL 2

2.
Design the Use case, Sequence and Activity diagram for an ATM

application.
Create

BTL 6

3.

Discuss briefly about the usecase diagram with example.
Understand

BTL 2

4. Explain in detail about Jacobson methodology? Remember
BTL 1

5.
Design the Class diagram for Library Management System.
Specify the attributes, methods and relationship among classes.

Create
BTL 6

6. Describe patterns and the various pattern templates? Remember
BTL 1

7. Discuss in detail about BOOCH methodology Understand
BTL 2

94

95

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

UNIT – III - OBJECT ORIENTED ANALYSIS AND SYSTEM ENGINEERING - SCSA1401

96

UNIT 3

OBJECT ORIENTED ANALYSIS.

Business Object Analysis - Use Case Driven Object Oriented Analysis - Business

Process Modeling - Use Case model - Developing Effective Documentation - Object

Analysis Classification: Classification Theory - Noun Phrase Approach - Common

Class Patterns Approach - Use-Case Driven Approach - Classes Responsibilities and

Collaborators – Naming Classes - Identifying Object Relationships, Attributes and

Methods: Association – SuperSubclass Relationships - A-part of Relationships.

OBJECT ORIENTED ANALYSIS: USE-CASE DRIVEN

Analysis is the process of extracting the needs of a system and what the system

must do to satisfy the users' requirement. The goal of object oriented analysis is to

understand the domain of tile problem and the system's responsibilities by understanding

how the users use or will use the system.

The first step in finding an appropriate solution to a given problem is to

understand the problem and its domain. The main objective of the analysis is to capture a

complete, unambiguous, and consistent picture of the requirements of the system and

what the system must do to satisfy the users' requirements and needs. This is

accomplished by constructing several models of the system that concentrate on

describing what the system does rather than how it does it. Separating the behavior of a

system from the way that behavior is implemented requires viewing the system from the

perspective of the user rather than that of the machine.

Analysis is the process of transforming a problem definition from a fuzzy set of

facts and myths into a coherent statement of a system's requirements. In previous chapter

we looked at the software development process as three basic transformations:

Transformation 1, which is the transformation of the users' needs into a set of problem

statements and requirements (also known as requirement determination). In this phase of

the software process, you must analyze how the users will use the system and what is

needed to accomplish the system's operational requirements. Analysis involves a great

deal of interaction with the people who will be affected by the system, including the

actual users and anyone else on which its creation will have an impact.

The analyst has four major tools at his or her disposal for extracting information about a

system:

1. Examination of existing system documentation

2. Interviews

3. Questionnaire

4. Observation

In addition, there are minor methods, such as literature review. However, these

activities must be directed by a use-case model that can capture the user requirements.

The inputs to this phase are the users' requirements, both written and oral, which will be

reduced to the model of the required operational capability of the system.

An object-oriented environment allows the same set of models to be used for

97

analysis, design, and implementation. The analyst is concerned with the uses of the

system, identifying the objects and inheritance, and thinks about the events that change

the state of objects. The designer adds detail to this model, perhaps designing screens,

user interaction, and database access. The thought process flows so naturally from analyst

to designer that it may be difficult to tell where analysis ends and design begins.

 WHY ANALYSIS IS A DIFFICULT ACTIVITY

Analysis is a creative activity that involves understanding the problem, its

associated constraints, and methods of overcoming those constraints. This is an iterative

process that goes on until the problem is well understood. Norman explains the three

most common sources of requirement difficulties:

1. Fuzzy descriptions - such as "fast response time" or "very easy and very secure

updating mechanisms." A requirement such as fast response time is open to

interpretation, which might lead to user dissatisfaction if the user's interpretation of a fast

response is different from the systems analyst's interpretation

2. Incomplete requirements - mean that certain requirements necessary for successful

system development are not included for a variety of reasons. These reasons could

include the users' forgetting to identify them, high cost, politics within the business, or

oversight by the system developer. However, because of the iterative nature of object-

oriented analysis and the unified approach most of the incomplete requirements can be

identified in subsequent tries.

3. Unnecessary features - When addressing features of the system, keep in mind that

every additional feature could affect the performance, complexity, stability, maintenance,

and support costs of an application. Features implemented by a small extension to the

application code do not necessarily have a proportionally small effect on a user interface.

Analysis is a difficult activity. You must understand the problem in some

application domain and then define a solution that can be implemented with software.

Experience often is the best teacher. If the first try reflects the errors of an incomplete

understanding of the problems, refine the application and try another run.

 BUSINESS OB.JECT ANALYSIS: UNDERSTANDING THE BUSINESS

LAYER

Business object analysis is a process of understanding the system's requirements

and establishing the goals of an application. The main intent of this activity is to

understand users' requirements. The outcome of the business object analysis is to identify

classes that make up the business layer and the relationships that playa role in achieving

system goals.

To understand the users' requirements, we need to find out how they "use" the

system. This can be accomplish by developing use cases. Use cases are scenarios for

understanding system requirements.

In addition to developing use cases, which will be described in the next section,

the uses and the objectives of the application must be discussed with those who are going

to use it or be affected by the system. Usually, domain users or experts are the best

authorities. Try to understand the expected inputs and desired responses. Defer

unimportant details until later. State what must be done, not how it should be done. This,

98

of course, is easier said than done. Yet another tool that can be very useful for

understanding users' requirements is preparing a prototype of the user interface.

Preparation of a prototype usually can help you better understand how the system will be

used, and therefore it is a valuable tool during business object analysis.

 USECASE DRIVEN OBJECT ORIENTED ANALYSIS: THE UNIFIED

APPROACH

The object-oriented analysis (OOA) phase of the unified approach uses actors

and use cases to describe the system from the users' perspective. The actors are

external factors that interact with the system; use cases are scenarios that describe how
actors use the system. The use cases identified here will be involved throughout the

development process.

The OOA process consists of the following steps :

1 Identify the actors:

*Who is using the system?

*Or, in the case of a new system, whowill be using the system?

2. Develop a simple business process model using UML activity diagram.

3. Develop the use case: .
*What are the users doing with the system?.

*Or, in case of the new system, what will users be doing with the system?

*Use cases provide us with comprehensive documentation of the system under

study.

4. Prepare interaction diagrams:

*Determine the sequence.

*Develop collaboration diagrams.

5. Classification -develop a static UML class diagram:

*Identify classes.

*Identify relationships.

*Identify attributes.

*. Identify methods.

6. Iterate and refine: If needed, repeat the preceding steps.

99

Fig 3.1 : Object Oriented analysis process in the Unified Approach(UA)

 BUSINESS PROCESS MODELING

This is not necessarily the start of every project, but when required, business

processes and user requirements may be modeled and recorded to any level of detail. This

may include modeling as-is processes and the applications that support them and any

number of phased, would-be models of reengineered processes or implementation of the

system. These activities would be enhanced and supported by using an activity diagram.

Business process modeling can be very time consuming, so the main idea should be to get

a basic model without spending too much time on the process. The advantage of

developing a business process model is that it makes you more familiar with the system

and therefore the user requirements and also aids in developing use cases. For example,

let us define the steps or activities involved in using your school library. These activities

can be represented with an activity diagram. (see Fig- 3.2)

Developing an activity diagram of the business process can give us a better

understanding of what sort of activities are performed in a library by a library member.

100

Fig 3.2 : This activity diagram shows some activities that can be performed by a library member.

101

 USE-CASE MODEL

Use cases are scenarios for understanding system requirements.

* A use-case model can be instrumental in project development, planning, and

documentation of systems requirements.

* A use case is an interaction between users and a system; it captures the goal of the users

and the responsibility of the system to its users). For example, take a car; typical uses of a

car include "take you different places" or "haul your stuff" or a user may want to use it

"off the road."

*The use-case model describes the uses of the system and shows the courses of events

that can be performed.

*A use-case model also can discover classes and the relationships among subsystems of

the systems.

*Use-case model can be developed by talking to typical users and discussing the

various things they might want to do with the application being prepared.

*Each use or scenario represents what the user wants to do.

*Each use case must have a name and short textual description, no more than a few

paragraphs.

*Since the use-case model provides an external view of a system or application, it is

directed primarily toward the users or the "actors" of the systems, not its implementers

(see Figure 3.3).

*The use-case model expresses what the business or application will do and not how;

that is the responsibility of the UML class diagram

 Fig 3.3 Use Case Diagram – Library System

102

The UML class diagram, also called an object model, represents the static

relationships between objects, inheritance, association, and the like. The object model

represents an internal view of the system, as opposed to the use-case model, which

represents the external view of the system. The object model shows how the business is

run. Jacobson, Ericsson, and Jacobson call the use-case model a "what model," in

contrast to the object model, which is a "how model.".

Guidelines for developing Use Case Models:

1. Use Cases under the Microscope

2. Uses and Extends Associations

3. Identifying the Actors

4. Guidelines for Finding Use Cases

5. How Detailed Must a Use Case Be? When to Stop Decomposing and When to

Continue

6. Dividing Use Cases into Packages

7. Naming a Use Case

1. Use Cases under the Microscope:

Use cases represent the things that the user is doing with the system, which can be

different from the users' goals.

Definition of use case by Jacobson "A Use Case is a sequence of transactions in a

system whose task is to yield results of measurable value to an individual actor of the

system."

Now let us take a look at the key words of this definition:

*Use case - Use case is a special flow of events through the system. By definition, many

courses of events are possible and many of these are very similar.

*Actors - An actor is a user playing a role with respect to the system. When dealing

with actors, it is important to think about roles rather than just people and their job titles.

*In a system - . This simply means that the actors communicate with the system's use

case.

*A measurable value- A use case must help the actor to perform a task that has some

identifiable value.

*Transaction. - A transaction is an atomic set of activities that are performed either fully

or not at all. A transaction is triggered by a stimulus from an actor to the system or by a

point in time being reached in the system.

The following are some examples of use cases for the library (see Figure 3.4).

103

Three actors appear in Figure 3.4: a member, a circulation clerk, and a supplier.

1. Use-case name: Borrow books. A member takes books from the library to read at

home, registering them at the checkout desk so the library can keep track of its books..

Depending on the member's record, different courses of events will follow.

2. Use-case name: Get an interlibrary loan. A member requests a book that the library

does not have. The book is located at another library and ordered through an interlibrary

loan.

3. Use-case name: Return books. A member brings borrowed books back to the library. .

4.Use-case name: Check library card. A member submits his or her library card to the

clerk, who checks the borrower's record.

5. Use-case name: Do research. A member comes to the library to do research. The

member can search in a variety of ways (such as through books, journals, CDROM,

WWW) to find information on the subjects of that research.

6. Use-case name: Read books, newspaper. A member comes to the library for a quiet

place to study or read a newspaper, journal, or book.

7.. Use-case name: Purchase supplies. The supplier provides the books, journals, and

newspapers purchased by the library.

2. Uses and Extends Associations:

A use-case description can be difficult to understand if it contains too many

alternatives or exceptional flows of events that are performed only if certain conditions

are met as the use-case instance is carried out.

104

A way to simplify the description is to take advantage of extends and uses

associations.

The extends association is used when you have one use case that is similar to

another use case but does a bit more or is more specialized; in essence, it is like a

subclass.

The uses association occurs when you are describing your use cases and

notice that some of them have subflows in common. To avoid describing a subflow

more than once in several use cases, you can extract the common subflow and make

it a use case of its own. This new use case then can be used by other use cases. The

relationships among the other use cases and this new extracted use case are called a

uses association. The uses association helps us avoid redundancy by allowing a use case

to be shared. For example, checking a library card is common among the borrow books,

return books, and interlibrary loan use cases (see Figure 3.4).

The similarity between extends and uses associations is that both can be viewed

as a kind of inheritance. When you want to share common sequences in several use

cases, utilize the uses association by extracting common sequences into a new, shared use

case. The extends association is found when you add a bit more specialized, new use case

that extends some of the use cases that you have.

Use cases could be viewed as concrete or abstract. An abstract use case is not

complete and has no initiation actors but is used by a concrete use case, which does

interact with actors. This inheritance could be used at several levels. Abstract use cases

also are the use cases that have uses or extends associations.

Fowler and Scott provide us excellent(guidelines for addressing variations in usecase

modeling : .

1. Capture the simple and normal use case first.
2. For every step in that use case, ask

*.What could go wrong here?

*. How might this work out differently?

3. Extract common sequences into a new, shared use case with the uses association. If

you are adding more specialized or exceptional uses cases, take advantage of use cases

you already have with the extends association.

3. Identifying the Actors:

Identifying the actors is (at least) as important as identifying classes, structures,

associations, attributes, and behavior.

The term actor represents the role a user plays with respect to the system. When

dealing with actors, it is important to think about roles rather than people or job titles .

A user may play more than one role. For instance, a member of a public library

also may play the role of volunteer at the help desk in the library. However, an actor

should represent a single user; in the library example, the member can perform tasks

some of which can be done by others and others that are unique. However, try to isolate

the roles that the users can play.(Fig 3.5)

105

You have to identify the actors and understand how they will use and

interact with the system. In a thought-provoking book on requirement analysis, Gause

and Weinberg , explain what is known as the railroad paradox:

When trying to find all users, we need to beware of the Railroad Paradox.When

railroads were asked to establish new stops on the schedule, they "studied the

requirements," by sending someone to the station at the designated time to see if anyone

was waiting for a train. Of course, nobody was there because no stop was scheduled, so

the railroad turned down the request because there was no demand.

Gause and Weinberg concluded that the railroad paradox appears everywhere there are

products and goes like this (which should be avoided):

1. The product is not satisfying the users.

2. Since the product is not satisfactory, potential users will not use it.

3. Potential users ask for a better product.

4. Because the potential users do not use the product, the request is denied.

Therefore, since the product does not meet the needs of some users, they are not

identified as potential users of a better product. They are not consulted and the product

stays bad . The railroad paradox suggests that a new product actually can create users

where none existed before{ Candidates for actors can be found through the answers to the

following questions:

*Who is using the system? Or, who is affected by the system? Or, which groups need

help from the system to perform a task?

*Who affects the system? Or, which user groups are needed by the system to perform its

functions? These functions can be both main functions and secondary / functions, such as

administration.

*Which external hardware or other systems (if any) use the system to perform tasks?

* What problems does this application solve (that is, for whom)?. And, finally, how do

users use the system (use case)? What are they doing with the system?

When requirements for new applications are modeled and designed by a group

that excludes the targeted users, not only will the application not meet the users' needs,

but potential users will feel no involvement in the process and not be committed to giving

the application a good try. Always remember Veblen's principle: 'There's no change, no

matter how awful, that won't benefit some people; and no change, no matter how good,

that won't hurt some." ,

Another issue worth mentioning is that actors need not be human, although

actors are represented as stick figures within a usecase diagram. An actor also can be an

external system. For example, an accounting system that needs information from a

system to update its accounts is an actor in that system .

106

Fig 3.5 : The difference between users and actors

4. Guidelines for Finding Use Cases:

When you have defined a set of actors, it is time to describe the way they interact

with the system. This should be carried out sequentially, but an iterated approach may be

necessary.

Here are the steps for finding use cases :

1. For each actor, find the tasks and functions that the actor should be able to perform or

that the system needs the actor to perform. The use case should represent a course of

events that leads to a clear goal (or, in some cases, several distinct goals that could be

alternatives for the actor or for the system).

2. Name the use cases

3. Describe the use cases briefly by applying terms with which the user is familiar. This

makes the description less ambiguous.

Once you have identified the use-cases candidates, it may not be apparent that all

of these use cases need to be described separately; some may be modeled as variants of

others. Consider what the actors want to do.

It is important to separate actors from users. The actors each represent a role that

one or several users can play. Therefore, it is not necessary to model different actors that

can perform the same use case in the same way. The approach should allow different

users to be different actors and play one role when performing a particular actor's use

case. Thus, each use case has only one main actor. To achieve this, you have to

. Isolate users from actors.

. Isolate actors from other actors (separate the responsibilities of each actor).

.Isolate use cases that have different initiating actors and slightly different behavior

(if the actor had been the same, this would be modeled by a use-case alternative

behavior).

107

5. How Detailed Must a Use Case Be? When to Stop Decomposing and When to

Continue

A use case, as already explained, describes the courses of events that will be

carried out by the system. Jacobson et al. believe that, in most cases, too much detail may

not be very useful.

During analysis of a business system, you can develop one use-case diagram as

the system use case and draw packages on this use case to represent the various business

domains of the system. For each package, you may create a child usecase diagram. On

each child use-case diagram, you can draw all of the use cases of the domain, with

actions and interactions. You can further refine the way the use cases are categorized.

The extends and uses relationships can be used to eliminate redundant modeling of

scenarios.

When should use cases be employed? Use cases are an essential tool in capturing

requirements and planning and controlling any software development project.

Capturing use cases is a primary task of the analysis phase. Although most use

cases are captured at the beginning of the project, you will uncover more as you proceed.

The UML specification recommends that at least one scenario be prepared for

each significantly different kind of use case instance

6. Dividing Use Cases into Packages

work.

Each use case represents a particular scenario in the system.

You may model either how the system currently works or how you want it to

A design is broken down into packages.

You must narrow the focus of the scenarios in your system.

For example, in a library system, the various scenarios involve a supplier providing

books or a member doing research or borrowing books. In this case, there should be three

separate packages, one each for Borrow books, Do research, and Purchase books.

Many applications may be associated with the library system and one or more

databases used to store the information (see Figure 3.6).

7. Naming a Use Case

Use-case names should provide a general description of the use-case function.
The name should express what happens when an instance of the use case is

performed."

Jacobson et al. recommend that the name should be active, often expressed in the

form of a verb (Borrow) or verb and noun (Borrow books).

The naming should be done with care; the description of the use case should be

descriptive and consistent.

For example, the use case that describes what happens when a person deposits money

into an ATM machine could be named either receive money or deposit money. A library

system can be divided into many packages, each of which encompasses multiple use

cases.

108

Fig 3.6 A libray system can be divided into many packages, each of which encompasses mulitple

use cases.

 DEVELOPING EFFECTIVE DOCUMENTATION

Documenting your project not only provides a valuable reference point and form

of communication but often helps reveal issues and gaps in the analysis and design. A

document can serve as a communication vehicle among the project's team members, or it

can serve as an initial understanding of the requirements. Blum concludes that

management has responsibility for resources such as software, hardware, and operational

expenses.

In many projects, documentation can be an important factor in making a decision

about committing resources. Application software is expected to provide a solution to a

problem. It is very difficult, if not impossible, to document a poorly understood problem.

The main issue in documentation during the analysis phase is to determine what the

system must do. Decisions about how the system works are delayed to the design phase.

Blum raises the following questions for determining the importance of documentation:

How . will a document be used? (If it will not be used, it is not necessary.) What is the

objective of the document? What is the management view of the document? Who are the

readers of the document?

109

1. Organization Conventions for Documentation

The documentation depends on the organization's rules and regulations. Most

organizations have established standards or conventions for developing documentation.

However, in many organizations, the standards border on the nonexistent. In other cases,

the standards may be excessive. Too little documentation invites disaster; too much

documentation, as Blum put it, transfers energy from the problem solving tasks to a

mechanical and unrewarding activity. Each organization determines what is best for it,

and you must respond to that definition and refinement.

Bell and Evans provide us with guidelines and a template for preparing a

document that has been adapted for documenting the unified approach's systems

development Remember that your modeling effort becomes the analysis, design, and

testing documentation. However this template which is based on the unified approach life

cycle assists you in organizing and composing your models into an effective

documentation.

2. Guidelines for Developing Effective Documentation

Bell and Evans provide us the following guidelines for making documents fit the needs

and expectations of your audience:

1.Common cover. All documents should share a common cover sheet that identifies the

document, the current version, and the individual responsible for the content. As the

document proceeds through the life cycle phases, the responsible individual may change.

That change must be reflected in the cover sheet .

2.80-20 rule. As for many applications, the 80-20 rule generally applies for

documentation : 80 percent of the work can be done with 20 percent of the

documentation. The trick is to make sure that the 20 percent is easily accessible and the

rest (80 percent) is available to those (few) who need to know.

3. Familiar vocabulary. The formality of a document will depend on how it is used and

who will read it. When developing a documentation use a vocabulary that your readers

understand and are comfortable with. The main objective here is to communicate with

readers and not impress them with buzz words.

4. Make the document as short as possible. Assume that you are developing a manual.

The key in developing an effective manual is to eliminate all repetition; present

summaries, reviews, organization chapters in less than three pages; and make chapter

headings task oriented so that the table of contents also could serveas an index .

5. Organize the document. Use the rules of good organization (such as the organization's

standards, college handbooks, Strunk and White's Elements of Styleor the University of

Chicago Manual of Style) within each section. Appendix A provides a template for

developing documentation for a project. Most CASE tools provide documentation

capability by providing customizable reports. The purpose of these guidelines is to assist

you in creating an effective documentation.

110

Fig : 3.7 Cover Sheet template.

 Case Study : ANALYSING THE VIANET BANK ATM – THE USE CASE

DRIVEN PROCESS

The Following section provides the description of the vianet bank atm system’s

requirement.

*The Bank client must be able to deposit an amount to and withdraw an amount from

his or her accounts using the touch screen at the vianet bank atm. Each transaction must

be recorded, and the client must be able to review all transactions performed against the

given account. Recorded transactions must include the date, time, Transaction type,

amount and account balance after the transactions.

*A ViaNet bank client can have two types of accounts: a checking account and savings

account. For each checking account, one related savings account can exist.

*Access to the ViaNet bank accounts is rovided by a PIN code consisting of four integer

digits between 0 and 9.

* One PIN code allows access to all accounts held by a bank client.

*No receipts will be provided for any account transactions.

*The bank application operates for a single banking institution only.

*Neither a checking nor a savings account can have a negative balance. The system

should automatically withdraw money from a related savings account if the requested

withdrawal amount on the checking account is more than its current balance. If the

balance on a savings account is less than the withdrawal amount requested, the

transaction will stop and the bank client will be notified.

i) Identifying Actors and Use Cases for the ViaNet Bank ATM System

The bank application will be used by one category of users: bank clients. Notice

that identifying the actors of the system is an iterative process and can be modified as you

learn more about the system. The actor of the bank system is the bank client. The bank

client must be able to deposit an amount to and withdraw an amount from his or her

accounts using the bank application. The following scenarios show use-case interactions

between the actor (bank client) and the bank. In real life application these use cases are

(Document Name)

For

(Product)

(Version no)

Responsible individual

Name :

Title :

111

created by system requirements, examination of existing system documentation,

interviews, questionnaire, observation, etc.

*. Use-case name: Bank ATM transaction. The bank clients interact with the bank

system by going through the approval process. After the approval process, the bank client

can perform the transaction. Here are the steps in the ATM transaction use case:

1. Insert ATM card.

2. Perform the approval process.

3. Ask type of transaction.

4. Enter type of transaction.

5. Perform transaction.

6. Eject card.

7. Request take card.

8. Take card.

These steps are shown in the Figure activity diagram. .

Fig 3.8 : Activities involved in an ATM transction

*. Use-case name: Approval process. The client enters a PIN code that consists of 4digits.

Activities involved in an ATM transaction.

1. Request password.

2. Enter password.

3. Verify password.

112

* .Use-case name: Invalid PIN. If the PIN code is not valid, an appropriate message is

displayed to the client. This use case extends the approval process. (See Figure .)

* .Use-case name: Deposit amount. The bank clients interact with the bank system after

the approval process by requesting to deposit money to an account. The client selects the

account for which a deposit is going to be made and enters an amount in dollar currency.

The system creates a record of the transaction. (See Figure) This use case extends the

bank ATM transaction use case. Here are the steps:

1. Request account type.

2. Request deposit amount.

3. Enter deposit amount.

4. Put the check or cash in the envelope and insert it into ATM.

Fig : 3.9 Transaction use cases

* Use-case name: Deposit savings. The client selects the savings account for which a

deposit is going to be made. All other steps are similar to the deposit amount use case.

The system creates a record of the transaction. This use case extends the deposit amount

use case. (See Figure 6-11.)

113

*Use-case name: Withdraw checking. The client tries to withdraw an amount from his or

her checking account. If the amount is more than the checking account's balance, the

insufficient amount is withdrawn from the related savings account. The system creates a

record of the transaction and the withdrawal is successful. This use case extends the

withdraw checking use case and uses the withdraw savings use case. (See Figure)

*Use-case name: Withdraw savings. The client tries to withdraw an amount from a

savings account. The amount is less than or equal to the balance and the transaction is

performed on the savings account. The system creates a record of the transaction since

the withdrawal is successful. This use case extends the withdraw amount use case.

*Use-case name: Withdraw savings denied. The client withdraws an amount from a

savings account. If the amount is more than the balance, the transaction ishalted and a

message is displayed. The savings account use-cases package. This use case extends the

bank transaction use case. (See Figure 3.10))

*Use-case name: Savings transaction history. The bank client requests a history of

transactions for a savings account. The system displays the transaction history for the

savings account. This use case extends the bank transaction use case. (See Figure)

The use-case list contains at least one scenario of each significantly different kind

of use-case instance. Each scenario shows a different sequence of interactions between

actors and the system, with all decisions definite. If the scenario consists of an if

statement, for each condition create one scenario.

 Fig 3.10 The checking account use-cases

114

OBJECT ANALYSIS :

CLASSIFICATION

 CLASSIFICATIONS THEORY

Classification, the process of checking to see if an object belongs to a category

or a class, is regarded as a basic attribute of human nature.

Booch explains that, intelligent classification is part of all good science.

Classification guides us in making decisions about modularization. We may choose to

place certain classes and objects together in the same module or in different modules,

depending upon the sameness we find among these declarations; coupling and cohesion

are simply measures of this sameness. Classification also plays a role in allocating

processes to procedures. We place certain processes together in the same processor or

different processors, depending upon packaging, performance, or reliability concerns.

Human beings classify information every instant of their waking lives. We

recognize the objects around us, and we move and act in relation to them. A human being

is sophisticated information system, partly because he or she possesses a superior

classification capability . For example, when you see a new model of a car, you have no

trouble identifying it as a car. What has occurred here, even though you may never have

seen this particular car before, is that you not only can immediately identify it as a car,

but you also can guess the manufacturer and model. Clearly, you have some general idea

of what cars look like, sound like, do, and are good for-you have a notion of car-kind or,

in object-oriented terms, the class car.

Classes are an important mechanism for classifying objects. The chief role of

a class is to define the attributes, methods, and applicability of its instances. The class

car, for example, defines the property color. Each individual car (formally, each instance

of the class car) will have a value for this property, such as maroon, yellow, or white. It is

airly natural to partition the world into objects that have properties (attributes)and

methods (behaviors). It is common and useful partitioning or classification, but we also

routinely divide the world along a second dimension: We distinguish classes from

instances.

A class is a specification of structure, behavior, and the description of an

object. Classification is concerned more with identifying the class of an object than the

individual objects within a system.

The problem of classification may be regarded as one of discriminating things,

not between the individual objects but between classes, via the search for features or

invariant attributes or behaviors among members of a class.

Classification can be defined as the categorization of input data (things) into

identifiable classes via the extraction of significant features of attributes of the data from

a background of irrelevant detail.

Another issue in relationships among classes is studied.

115

 APPROACHES FOR IDENTIFYING CLASSES

In the following sections, we look at four alternative approaches for identifying

classes:

1. The Noun Phrase approach;

2. The Common Class Patterns approach;

3. The Usecase Driven, Sequence/Collaboration Modeling approach;

4. The Classes, Responsibilities, and Collaborators (CRC) approach.

The first two approaches have been included to increase your understanding of the

subject; the unified approach uses the use-case driven approach for identifying classes

and understanding the behavior of objects. However, you always can combine these

approaches to identify classes for a given problem.

Another approach that can be used for identifying classes is Classes,

Responsibilities, and Collaborators (CRC) developed by Cunningham, Wilkerson, and

Beck.

Classes, responsibilities, and Collaborators, more technique than method, is used

for identifying classes responsibilities and therefore their attributes and methods.

3.10. NOUN PHRASE APPROACH

The noun phrase approach was proposed by Rebecca Wirfs-Brock, Brian

Wilkerson, and Lauren Wiener .

In this method, you read through the requirements or use cases looking for noun

phrases.

Nouns in the textual description are considered to be classes and verbs.to be

methods of the classes (identifying methods will be covered in later chapter).

All plurals are changed to singular, the nouns are listed, and the list divided
into three categories (see Figure 3.11): relevant classes, fuzzy classes (the "fuzzy

area," classes we are not sure about), and irrelevant classes.

It is safe to scrap the irrelevant classes, which either have no purpose or will be

unnecessary. Candidate classes then are selected from the other two categories. Keep in

mind that identifying classes and developing a UML class diagram just like other

activities is an iterative process. Depending on whether such object modeling is for the

analysis or design phase of development, some classes may need to be added or removed

from the model and, remember, flexibility is a virtue. You must be able to formulate a

statement of purpose for each candidate class; if not, simply eliminate it.

116

Fig 3.11: Using the noun phrase strategy, candidate classes can be divided into 3

categories.

i) Identifying Tentative Classes

The following are guidelines for selecting classes in an application: .

 Look for nouns and noun phrases in the use cases. .

 Some classes are implicit or taken from general knowledge.

 All classes must make sense in the application domain; avoid computer

implementation classes-defer them to the design stage.

 Carefully choose and define class names.

ii) Selecting Classes from the Relevant and Fuzzy Categories

The following guidelines help in selecting candidate classes from the relevant and

fuzzy categories of classes in the problem domain.

 Redundant classes. Do not keep two classes that express the same information. If

more than one word is being used to describe the same idea, select the one that is

the most meaningful in the context of the system. This is part of building a

common vocabulary for the system as a whole . Choose your vocabulary

carefully; use the word that is being used by the user of the system.

 Adjectives classes. Adjectives can be used in many ways. An adjective can

suggest a different kind of object, different use of the same object, or it could be

utterly irrelevant. Does the object represented by the noun behave differently

when the adjective is applied to it? If the use of the adjective signals that the

behavior of the object is different, then make a new class" . For example, Adult

Members behave differently than Youth Members, so ,the two should be

classified as different classes.

 Attribute classes. Tentative objects that are used only as values should be

defined or restated as attributes and not as a class. For example, Client Status and

Demographic of Client are not classes but attributes of the Client class.

 Irrelevant classes. Each class must have a purpose and every class should be

clearly defined and necessary. You must formulate a statement of purpose for

each candidate class. If you cannot come up with a statement of purpose, simply

eliminate the candidate class.

117

Fig 3.12: The process of eliminating the redundant classes and refining the

remaining classes is not sequential. You can move back and forth among these steps

as often as you like.

Example: The ViaNet Bank ATM System: Identifying Classes by Using Noun

Phrase Approach

To better understand the noun phrase method, we will go through a case and

apply the noun phrase strategy for identifying the classes. We must start by reading the

use cases and applying the principles discussed in this chapter for identifying classes.

Initial List of Noun Phrases: Candidate Classes

The initial study of the use cases of the bank system produces the following
noun phrases (candidate classes-maybe).

Account

Account Balance

Amount

Approval Process

ATM Card

ATM Machine

Bank

Bank Client

Card

Cash

Check

Checking

Checking Account

Client

Client's Account

Currency

Dollar

Envelope

Four Digits

Fund

118

Invalid PIN

Message

Money

Password

PIN

PIN Code

Record

Savings

Savings Account

Step.

System

Transaction

Transaction History

It is safe to eliminate the irrelevant classes. The candidate classes must be selected

from relevant and fuzzy classes. The following irrelevant classes can be eliminated

because they do not belong to the problem statement: Envelope, Four Digits, and Step.

Strikeouts indicate eliminated classes.

Account

Account Balance

Amount

Approval Process

ATM Card

ATM Machine

Bank .

BankClient

Card

Cash

Check

Checking

Checking Account

Client

Client's Account

Currency

Dollar

Envelope

Four Digits

Fund

Invalid PIN

Message

Money,

Password

PIN

PIN Code

Record

Savings

Savings Account

119

Step

System

Transaction -

Transaction History

Reviewing the Redundant Classes and Building a Common Vocabulary

We need to review the candidate list to see which classes are redundant. If

different words are being used to describe the same idea, we must select the one that is

the most meaningfull the context of the system and eliminate the others. The

following are the different class names that are being used to refer to the same concept:

Client, BankClient Account, Client's Account PIN, PIN Code Checking,

Checking Account = BankClient (the term chosen)

Checking Account = Account

Checking Account = PIN

Checking Account = Checking Account

Savings, Savings Account = Savings Account

Fund, Money = Fund

ATM Card, Card = ATM Card

Here is the revised list of candidate classes:

Account

Account Balance

Amount

Approval Process

ATM Card

Bank

BankClient

Card

Cash

Check

Checking

Checking Account

Client

Client’s account

Currency

Dollar

Envelope

Fund digits

Fund

Invalid PIN

Message

Message

Money

Password

PIN

120

PIN Code

Record

Savings

Savings Account

Step

System

Transaction

Transaction History

Reviewing the Classes Containing Adjectives

We again review the remaining list, now with an eye on classes with adjectives.

The main question is this: Does the object represented by the noun behave differently

when the adjective is applied to it? If an adjective suggests a different kind of class or the

class represented by the noun behaves differently when the adjective is applied to it, then

we need to make a new class. However(it is a different use of the same object or the class

is irrelevant, we must eliminate it) In this example, we have no classes containing

adjectives that we can eliminate.

Reviewing the Possible Attributes

The next review focuses on identifying the noun phrases that are attributes, not classes.

The noun phrases used only as values should be restated as attributes. This process also

will help us identify the attributes of the classes in the system.

Amount : a value, not a class.

Account Balance: An attribute of the Account class.

Invalid PIN: It is only a value, not a class.

Password: An attribute, possibly of the BankClient class.

Transaction History: An attribute, possibly of the Transaction class.

PIN: An attribute, possibly of the BankClientclass.

Here is the revised list of candidate classes. Notice that the eliminated classes are

strikeouts (they have a line through them).

Account

Account Balance

Amount

Approval Process

ATM Card

Bank

BankClient

Cash

Card

Check

Checking

Checking Account

Currency

Dollar

121

Envelope

Fund digits

Fund

Message

MaBey

PIN

PIN Code

Record

Savings Account

System

step

Transaction

Transaction History

Reviewing the Class Purpose

Identifying the classes that playa role in achieving system goals and requirements

is a major activity of object-oriented analysis) Each class must have a purpose. Every

class should be clearly defined and necessary in the context of achieving the system's

goals. If you cannot formulate a statement of purpose for a class, simply eliminate it. The

classes that add no purpose to the system have been deleted from the list. The candidate

classes are these:

ATM Machine class: Provides an interface to the ViaNet bank.

ATMCard class: Provides a client with a key to an account.

BankClient class: A client is an individual that has a checking account and,

possibly, a savings account.

Bank class: Bank clients belong to the Bank. It is a repository of accounts and

processes the accounts' transactions.

Account class: An Account class is a formal (or abstract) class, it defines the

common behaviors that can be inherited by more specific classes such as

CheckingAccount and SavingsAccount.

CheckingAccount class: It models a client's checking account and provides more

specialized withdrawal service.

.savingsAccount class: It models a client's savings account.

Transaction class: Keeps track of transaction, time, date, type, amount, and

'balance.

 COMMON CLASS PATTERN APPROACH

The second method for identifying classes is using common class patterns, which is

based on a knowledge base of the common classes that have been proposed by

various researchers, such as Shlaer and Mellor [10], Ross[8], and Coad and

Yourdon [3]. They have compiled and listed the following patterns for finding the

candidate class and object :

122

 Name. Concept class

Context: A concept is a particular idea or understanding that we have of our

world. The concept class encompasses principles that are not tangible but used to

organize or keep track of business activities or communications. Marin and Odell

describe concepts elegantly, ”Privately held ideas or notions are called conceptions.

When an understanding is shared by another, it becomes a concept. To

communicate with others, we must share our individually held conceptions and

arrive at agreed concepts.” Furthermore, Martin and Odell explain that, without

concepts, mental life would be total chaos since every item we encountered would

be different.

Example. Performance is an example of concept class object.

 Name. Events class

Context: Events classes are points in time that must be recorded. Things

happen, usually to something else at a given date and time or as a step in an ordered

sequence. Associated with things remembered are attributes (after all, the things to

remember are objects) such as who, what, when, where, how, or why.

Example. Landing, interrupt, request, and order are possible events.

 Name. Organization class

Context: . An organization class is a collection of people, resources,

facilities, or groups to which the users belong; their capabilities have a defined

mission, whose existence is largely independent of the individuals.

Example. An accounting department might be considered a potential class.

 Name. People class (also known as person, roles, and roles played class)

Context. The people class represents the different roles users play in interacting
with the application. People carry out some function. What roles does a person play in the
system? Coad and Yourdon [3] explain that a class which is represented by a person can be
divided into two types: those representing users of the system, such as an operator or
clerk who interacts with the system; and those representing people who do not use the
system but about whom information is kept by the system.

Example. Employee, client, teacher, and manager are examples of people.

 Name. Places class

Context. Places are physical locations that the system must keep information about.
Example. Buildings, stores, sites, and offices are examples of places.

 Name. Tangible things and devices class

Context. This class includes physical objects or groups of objects that are tangible and

devices with which the application interacts.

123

Example. Cars are an example of tangible things, and pressure sensors are an example

of devices.

 USE-CASE DRIVEN APPROACH: IDENTIFYING CLASSES AND THEIR

BEHAVIORS THROUGH SEQUENCE/COLLABORATION MODELING

The use cases are employed to model the scenarios in the system and specify

what external actors interact with the scenarios. The scenarios are described in text or

through a sequence of steps. Use-case modeling is considered a problem-driven approach

to object-oriented analysis, in that the designer first considers the problem at hand and

not the relationship between objects, as in a data-driven approach.

Modeling with use cases is a recommended aid in finding the objects of a system

and is the technique used by the unified approach. Once the system has been described in

terms of its scenarios, the modeler can examine the textual description or steps of each

scenario to determine what objects are needed for the scenario to occur. However, this is

not a magical process in which you start with use cases, develop a sequence diagram, and

voila, classes appear before your eyes.

The process of creating sequence or collaboration diagrams is a systematic way to

think about how a use case (scenario) can take place; and by doing so, it forces you to

think about objects involved in your application.

When building a new system, designers model the scenarios of the way the

system of business should work. When redesigning an existing system, many modelers

choose to first model the scenarios of the current system, and then model the scenarios of

the way the system should work.

i) Implementation Of Scenarios

The UML specification recommends that at least one scenario be prepared for

each significantly different use-case instance. Each scenario shows a different sequence

of interaction between actors and the system, with all decisions definite. In essence, this

process helps us to understand the behavior of the system's objects.

When you have arrived at the lowest use-case level, you may create a child

sequence diagram or accompanying collaboration diagram for the use case. With the

sequence and collaboration diagrams, you can model the implementation of the scenario.

Like use-case diagrams, sequence diagrams are used to model scenarios in the

systems. Whereas use cases and the steps or textual descriptions that define them offer a

high-level view of a system, the sequence diagram enables you to model a more specific

analysis and also assists in the design of the system by modeling the interactions between

objects in the system.

As explained in a sequence diagram, the objects involved are drawn on the

diagram as a vertical dashed line, with the name of the objects at the top. Horizontal lines

corresponding to the events that occur between objects are drawn between the vertical

object lines. The event lines are drawn in sequential order, from the top of the diagram to

the bottom. They do not necessarily correspond to the steps defined for a usecase

scenario.

124

CASE STUDY : THE VIANET BANK ATM SYSTEM: DECOMPOSING

Scenario with a Sequence Diagram: Object Behavior Analysis A sequence

diagram represents the sequence and interactions of a given use case or scenario.

Sequence diagrams are among the most popular UML diagrams and, if used with an

object model or class diagram, can capture most of the information about a system. Most

object-to-object interactions and operations are considered events, and events include

signals, inputs, decisions, interrupts, transitions, and actions to or from users or external

devices. An event also is considered to be any action by an object that sends information.

The event line represents a message sent from one object to another, in which the "from"

object is requesting an operation be performed by the "to" object. The "to" object

performs the operation using a method that its class contains. Developing sequence or

collaboration diagrams requires us to think about objects that generate these events and

therefore will help us in identifying classes.

To identify objects of a system, we further analyze the lowest level use cases with

a sequence and collaboration diagram pair (actually, most CASE tools such as SA/Object

allow you to create only one, either a sequence or a collaboration diagram, and the

system generates the other one). Sequence and collaboration diagrams represent the order

in which things occur and how the objects in the system send messages to one another.

These diagrams provide a macro-level analysis of the dynamics of a system. Once

you start creating these diagrams, you may find that objects may need to be added to

satisfy the particular sequence of events for the given use case.

You can draw sequence diagrams to model each scenario that exists when a

BankClient withdraws, deposits, or needs information on an account. By walking through

the steps, you can determine what objects are necessary for those steps to take place.

Therefore, the process of creating sequence or collaboration diagrams can assist you in

Identifying Classes or objects of the system. This approach can be combined with noun

phrase and class categorization for the best results. We identified the use cases for the

bank system. The following are the low level (executable) use cases:

Deposit Checking

Deposit Savings

Invalid PIN

Withdraw Checking

Withdraw More from Checking

Withdraw Savings

Withdraw Savings Denied

Checking Transaction History

Savings Transaction History

Let us create a sequence/collaboration diagram for the following use cases:

.Invalid PIN use case

.Withdraw Checking use case

.Withdraw More from Checking use case

125

Sequence/collaboration diagrams are associated with a use case. For example, to

model the sequence/collaboration diagrams in SA/Object, you must first select a use case,

such as the Invalid PIN use case, then associate a sequence or collaboration child process.

To create a sequence you must think about the classes that probably will be

involved in a use-case scenario. Keep in mind that use case refers to a process, not a

class. However, a use case can contain many classes, and the same class can occur in

many different use cases. Point of caution: you should defer the interfaces classes to the

design phase and concentrate on the identifying business classes here. Consider how we

would prepare a sequence diagram for the Invalid PIN use case. Here, we need to think

about the sequence of activities that the actor BankClient performs:

. Insert ATM Card.

.Enter PIN number.

. Remove the ATM Card.

Based on these activities, the system should either grant the access right to the

account or reject the card. Next, we need to more explicitly define the system. With what

are we interacting? We are interacting with an ATMMachine and the BankClient. So, the

other objects of this use case are ATMMachine and BankClient.

Now that we have identified the objects involved in the use case, we need to list

them in a line along the top of a page and drop dotted lines beneath each object (see

Figure 3.13). The client in this case is whoever tries to access an account through the

ATM, and mayor may not have an account. The BankClient on the other hand has an

account.

Fig.3.13: The sequence diagram for the INVALID PIN use case

126

The dotted lines are the lifelines. The line on the right represents an actor, in this

case the BankClient, or an event that is outside the system boundary. Recall from

previous chapter that an event arrow connect objects. In effect, the event arrow suggests

that a message is moving between those two objects. An example of an event message is

the request for a PIN. An event line can pass over an object without stopping at that

object. Each event must ha"\'e'a descriptive name. In some cases, several objects are

active simultaneously, even if they are only waiting for another object to return

information to them. In other cases, an object becomes active when it receives a message

and then becomes inactive as soon as it responds . Similarly, we can develop sequence

diagrams for other use cases (as in Figures 3.14 and 3.16). Collaboration diagrams are

just another view of the sequence diagrams and therefore can be created automatically;

most UML modeling tools automatically create them (see Figures 3.15)

The following classes have been identified by modeling the UML sequence /

collaboration diagrams: Bank, BankClient, ATMMachine, Account, Checking Account,

and Savings Account. Similarly other classes can be identified by developing the

remaining sequence/ collaboration diagrams.

Fig 3.14 : Sequence Diagram for the Withdraw Checking use case

127

128

 CLASSES, RESPONSIBILITIES, AND COLLABORATORS (CRC)

APPROACH

Classes, responsibilities, and collaborators (CRC), developed by Cunningham,

Wilkerson, and Beck, was first presented as a way of teaching the basic concepts of

object-oriented development .

Classes, Responsibilities, and Collaborators is a technique used for
identifying classes' responsibilities and therefore their attributes and methods.

Furthermore, Classes, Responsibilities, and Collaborators can help us identify

classes. Classes, Responsibilities, and Collaborators is more a teaching technique than a

method for identifying classes.

Classes, Responsibilities, and Collaborators is based on the idea that an object

either can accomplish a certain responsibility itself or it may require the assistance of

other objects. It requires the assistance of other objects, it must collaborate with those

objects to fulfill its responsibility . By identifying an object's responsibilities and

collaborators (cooperative objects with which it works) you can identify its attributes

and methods.

Classes, Responsibilities, and Collaborators cards are 4" X 6" index cards.

All the information for an object is written on a card, which is cheap, portable,

readily available, and familiar. Figure 3.17 shows an idealized card.

The class name should appear in the upper left-hand corner, a bulleted list of

responsibilities should appear under it in the left two thirds of the card, and the list

of collaborators should appear in the right third.

Classes, Responsibilities, and Collaborators cards place the designer's focus

on the motivation for collaboration by representing (potentially) many messages as

phrases of English text.

.

Fig 3.16 A Classess, Responsibilities and Collaborators (CRC) Index Card

CRC starts with only one or two obvious cards. If the situation calls for a

responsibility not already covered by one of the objects: Add, or create a new object to

address that responsibility.

– Finding classes is not easy.

– The more practice you have, the better you get at identifying classes.

– There is no such thing as the ―right set of classes.‖

– Finding classes is an incremental and iterative process.

129

i) Classes, Responsibilities, And Collaborators Process

The Classes, Responsibilities, and Collaborators process consists of three steps

(Figure 3.17)

1. Identify classes' responsibilities (and identify classes).

2. Assign responsibilities.

3. Identify collaborators.

Classes are identified and grouped by common attributes, which also provides

candidates for super classes. The class names then are written onto Classes,

Responsibilities, and Collaborators cards. The card also notes sub- and super classes to

show the class structure. The application's requirements then are examined for actions

and information associated with each class to find the responsibilities of each class.

Next, the responsibilities are distributed; they should be as general as possible and

placed as high as possible in the inheritance hierarchy. The idea in locating collaborators

is to identify how classes interact. Classes (cards) that have a close collaboration are

grouped together physically.

Fig 3.17 : The Classes, Responsiblities and Collaborators process.

CASE STUDY : The ViaNet Bank ATM System: Identifying Classes by Using

Classes, Responsibilities, and Collaborators

We already identified the initial classes of the bank system. The objective of this

example is to identify objects' responsibilities such as attributes and methods in that

system. Account and Transaction provide the banking model. Note that Transaction

assumes an active role while money is being dispensed and a passive role thereafter. The

class Account is responsible mostly to the BankClient class and it collaborates with

several objects to fulfill its responsibilities. Among the responsibilities of the Account

class to the BankClient class is to keep track of the BankClient balance, account number,

and other data that need to be remembered. These are the attributes of the Account class.

Furthermore, the Account class provides certain services or methods, such as means for

130

BankClient to deposit or withdraw an amount and display the account's Balance (see

Figure 3.18).

Fig 3.18: Classes, Responsibilities and Collaborators for the Account Object.

Classes, Responsibilities, and Collaborators encourages team members to pick up

the card and assume a role while "executing" a scenario. It is not unusual to see a

designer with a card in each hand, waving them about, making a strong identification

with the objects while describing their collaboration.

In similar fashion other cards for the classes that have been identified earlier in

this chapter must be created, with the list of their responsibilities and their collaborators.

As you can see from Figure , this process is iterative.

Start with few cards (classes) then proceed to play "what if." If the situation calls

for a responsibility not already covered by one of the objects, either add the responsibility

to an object or create a new object to address that responsibility.

 NAMING CLASSES

Naming a class in an important activity.

Guidelines for Naming Classes

• The class should describe a single object, so it should be the singular form of noun.

• Use names that the users are comfortable with.

• The name of a class should reflect its intrinsic nature.

• By the convention, the class name must begin with an upper case letter.

• For compound words, capitalize the first letter of each word - for example, Loan

Window.

131

IDENTIFYING OBJECT, RELATIONSHIPS, ATTRIBUTES, &

METHODS

In an object oriented environment, objects take on an active role in a system. All

objects stand in relationship to others on whom they rely for services and control. The

relationship among objects is based on the assumption each makes about the other

objects, including what operations can be performed and what behavior results. Three

types of relationships among objects are :

 Association: How are objects associated? This information will guide us

in designing classes.

 Super-sub structure (also known as generalization hierarchy) : How are

objects orgainsed into super classes and subclasses? This information

provides us the direction of inheritance.

 Aggregation and a-part-of structure : What is the composition of

complex classes? This information guides us in defining mechanisms that

properly manage object within-object.

Generally, The relationships among objects are known as associations.

The hierarchical or super-sub relation allows the sharing of properties or inheritance.

A-part-of structure is a familiar means of organizing components of a bigger object.

.

 ASSOCIATIONS

Association represents a physical or conceptual connection between two or

more Objects. For example, if an object has the responsibility for telling another object
that a credit card number is valid or invalid, the two classes have an association.

In previous chapters, we learnt that the binary associations are shown as lines

connecting two class symbols. Ternary and higher-order associations are shown as

diamonds connecting to a class symbol by lines, and the association name is written

above or below the line. The association name can be omitted if the relationship is

obvious.

In some cases, you will want to provide names for the roles played by the

individual classes making up the relationship. The role name on the side closest to each

class describes the role that class plays relative to the class at the other end of the line,

and vice versa .

132

Fig 3.19: Basic Associations

i) Identifying Associations

Identifying associations begins by analyzing the interactions between classes.

After all, any dependency relationship between two or more classes is an association.

You must examine the responsibilities to determine dependencies.

In other words, if an object is responsible for a specific task (behavior) and

lacks all the necessary knowledge needed to perform the task, then the object must

delegate the task to another object that possesses such knowledge.

Wirfs-Brock, Wilkerson,"'arid Wiener provide the following questions that can

help us to identify associations:

*.As the class capable of fulfilling the required task by itself?

*.If not, what does it need?

*.From what other class can it acquire what it needs?

Answering these questions helps us identify association. The approach you should

take to identify association is flexibility. First, extract all candidates' associations from

the problem statement and get them down on paper.

ii) Guidelines For Identifying Association

The Following are general guidelines for identifying the tentative associations:

 .A dependency between two or more classes may be an association. Association

often corresponds to a verb or prepositional phrase, such as part of, next to, works

for, or contained in.

 A reference from one class to another is an association. Some associations are

implicit or taken from general knowledge.

iii) Common Association Patterns

The common association patterns are based on some of the common associations

defined by researchers and practioners: Rumbaugh et al. Coad and Yourdon , and others.

133

These include .

Location association - -next to, part of, contained in. For example, consider a

soup object, cheddar cheese is a-part-of soup. The a-part-of relation is a special type of

association.

Communication association – talk to, order to. For example, a customer places

an order (communication association) with an operator person (see Figure 3.20).

Fig 3.20: A customer places an order (communication association) with an operator

person.

These association patterns and similar ones can be stored in the repository and

added to as more patterns are discovered.

IV) Eliminate Unnecessary Associations

 Implementation association. Defer implementation-specific associations to the

design phase. Implementation associations are concerned with the implementation

or design of the class within certain programming or development environments

and not relationships among business objects.

 Ternary associations. Ternary or n-ary association is an association among more

than two classes. Ternary associations complicate the representation. When

possible, restate ternary associations as binary associations.

 Directed actions (or derived) association. Directed actions (derived)

associations can be defined in terms of other associations. Since they are

redundant, avoid these types of association. For example, Grandparent of can be

defined in terms of the parent of association (see Figure 3.21).

customer operator

Order

134

Fig 3.21 – Grandparent of Ken can be defined in terms of the parent association.

 SUPER-SUB CLASS RELATIONSHIPS

The other aspect of classification is identification of super-sub relations among

classes. For the most part, a class is part of a hierarchy of classes, where the top class

is the most general one and from it descend all other, more specialized classes.

The super-sub class relationship represents the inheritance relationships

between related classes, and the class hierarchy determines the lines of inheritance

between classes.

Class inheritance is useful for a number of reasons. For example, in some cases,

you want to create a number of classes that are similar in all but a few

characteristics. In other cases, someone already has developed a class that you can use,

but you need to modify that class.

Subclasses are more specialized versions of their superclasses. Superclass-

subclass relationships, also known as generalization hierarchy, allow objects to be

built from other objects. Such relationships allow us to explicitly take advantage of the

commonality of objects when constructing new classes.

The super-sub class hierarchy is a relationship between classes, where one

class is the parent class of another (derived) class. Recall from earlier chapter that the

parent class also is known as the base or super class or ancestor.

The super-sub class hierarchy is based on inheritance, which is programming by

extension as opposed to programming by reinvention . The real advantage of using this

technique is that we can build on what we already have and, more important, reuse

what we already have. Inheritance allows classes to share and reuse behaviors and

attributes. Where the behavior of a class instance is defined in that class's methods,

a class also inherits the behaviors and attributes of all of its superclasses.

135

i) Guidelines For Identifying Super-Sub Relationship, A Generalization

The following are guidelines for identifying super-sub relationships in the

application:

 Top-down. Look for noun phrases composed of various adjectives in a class

name. Often, you can discover additional special cases. Avoid excessive

refinement. Specialize only when the subclasses have significant behavior. For

example, a phone operator employee can be represented as a cook as well as a

clerk or manager because they all have similar behaviors.

 Bottom-up. Look for classes with similar attributes or methods. In most cases,

you can group them by moving the common attributes and methods to an abstract

class. You may have to alter the definitions a bit; this is acceptable as long as

generalization truly applies.

 Reusability. Move attributes and behaviors (methods) as high as possible in the

hierarchy. At the same time, do not create very specialized classes at the top of

the hierarchy. This is easier said than done. The balancing act can be achieved

through several iterations. This process ensures that you design objects that can be

reused in another application.

 Multiple inheritance. Avoid excessive use of multiple inheritances. Multiple

inheritance brings with it complications such as how to determine which behavior

to get from which class, particularly when several ancestors define the same

method. It also is more difficult to understand programs written in a multiple

inheritance system. One way of achieving the benefits of multiple inheritance is to

inherit from the most appropriate class and add an object of another class as an

attribute. (See fig 3.22)

136

Fig. 3.22 – One way of achieving the benefits of multiple inheritancefrom the most

appropriate class.

A PART OF RELATIONSHIPS-AGGREGATION

A-part-of relationship, also called aggregation, represents the situation where a

class consists of several component classes. A class that is composed of other classes

does not behave like its parts; actually, it behaves very differently.

For example, a car consists of many other classes, one of which is a radio, but a

car does not behave like a radio (see Figure 3.23).

Fig 3.23 - A-part-ofcomposition.A carburetoris a part of an engine and an engine

and a radio are parts of a car.

Two major properties of a-part-of relationship are transitivity and antisymmetry,

 Transitivity. The property where, if A is part of Band B is part of C, then

A is part of C. For example, a carburetor is part of an engine and an engine

is part of a car; therefore, a carburetor is part of a car. Figure3.23 shows a-

part-of structure.

 Antisymmetry. The property of a-part-of relation where, if A is part

of B, then . B is not part of A. For example, an engine is part of a car, but

a car is not part of an engine.

A clear distinction between the part and the whole can help us determine where

responsibilities for certain behavior must reside. This is done mainly by asking the

following questions :

 . Does the part class belong to a problem domain?

 .Is the part class within the system's responsibilities?

 .Does the part class capture more than a single value? (If it captures only a single

value, then simply include it as an attribute with the whole class.)

137

 .Does it provide a useful abstraction in dealing with the problem domain?

We saw that the UML uses hollow or filled diamonds to represent aggregations. A

filled diamond signifies the strong form of aggregation, which is composition. For

example, one might represent aggregation such as container and collection as hollow

diamonds (see Figures 3.24, 3.25) and use a solid diamond to represent composition,

which is a strong form of aggregation (see Figure 3.23).

Fig 3.24 A house is a container

138

Fig 3.25. A football team is a collection of players.

i) Part-Of Relationship Patterns

To identify a-part-of structures, Coad and Yourdon provide the following guidelines:

 Assembly. An assembly is constructed from its parts and an assembly-part

situation physically exists; for example, a French onion soup is an assembly of onion,

butter, flour, wine, French bread, cheddar cheese, and so on.

 Container. A physical whole encompasses but is not constructed from physical

parts; for example, a house can be considered as a container for furniture and

appliances (see Figure 3.24).

 Collection-member. A conceptual whole encompasses parts that may be

physical or conceptual; for example, a football team is a collection of

players.(fig.3.25).

CASE STUDY: RELATIONSHIP ANALYSIS FOR THE VIANET BANK ATM

SYSTEM

1) Identifying Classes' Relationships

One of the strengths of object-oriented analysis is the ability to model objects as

they exist in the real world. To accurately do this, you must be able to model more than

just an object's internal workings. You also must be able to model how objects relate to

each other. Several different relationships exist in the ViaNet bank ATM system, so we

need to define them.

2) Developing a UML Class Diagram Based on the Use-Case Analysis

The UML class diagram is the main static analysis and design diagram of a system.
The analysis generally consists of the following class diagrams .

139

 One class diagram for the system, which shows the identity and definition of

classes in the system, their interrelationships, and various packages containing
groupings of classes.

Fig 3.26. UML class diagram for the ViaNet bank ATM system.

Some CASE tools such as the SA/Object Architect can automatically define classes

and draw them from use cases or collaboration/ sequence diagrams. However, presently,

it cannot identify all the classes. For this example, S/A Object was able to identify only

the BankClient class.

 Multiple class diagrams that represent various pieces, or views, of the

system class diagram.

 Multiple class diagrams, that show the specific static relationships between

various classes.

First, we need to create the classes that have been identified in the previous

chapter; we will add relationships later (see Figure 3.26).

3) Defining Association Relationships

Identifying association begins by analyzing the interactions of each class.

Remember that any dependency between two or more classes is an association.

The following are general guidelines for identifying the tentative associations:

 Association often corresponds to verb or prepositional phrases, such as

part of, next to, works for, or contained in.

 A reference from one class to another is an association. Some associations

are implicit or taken from general knowledge.

Some common patterns of associations are these:

 Location association. For example, next to, part of, contained in (notice that

apart- of relation is a special type of association).

 Directed actions association.

 Communication association. For example, talk to, order from.

140

Fig 3.27. Defining the BankClient-Accountassociation multiplicity.One Client can

have one or more Accounts (checking and savings accounts).

The first obvious relation is that each account belongs to a bank client since each

BankClient has an account. Therefore, there is an association between the BankClient and

Account classes. We need to establish cardinality among these classes.

By default, in most CASE tools such as SNObject Architect, all associations are

considered one to one (one client can have only one account and vice versa). However,

since each BankClient can have one or two accounts we need to change the cardinality of

the association (see Figure 3.27). Other associations and their cardinalities are defined in

Table 8-1 and demonstrated in Figure 3.28 .

Table 8.1

141

Fig 3.28. Associations among the ViaNet bank ATMsystem classes.

4) Defining Super-Sub Relationships

Let us review the guidelines for identifying super-sub relationships:

*. Top-down. Look for noun phrases composed of various adjectives in the class name.

*. Bottom-up. Look for classes with similar attributes or methods. In most cases, you

can group them by moving the common attributes and methods to an abstract class.

*. Reusability. Move attributes and behaviors (methods) as high as possible in the

hierarchy.

*. Multiple inheritance. Avoid excessive use of multiple inheritance.

CheckingAccount and SavingsAccount both are types of accounts. They can be defined

as specializations of the Account class. When implemented, class will define attributes

and services common to all kinds of accounts, with CheckingAccount and

SavingsAccount each defining methods that make them more specialized. Fig 3.29.

142

Fig 3.29- Super-sub relationships among the Account, SavingsAccount and

CheckingAccount Classes

5) Identifying the Aggregation/a-Part-of Relationship

To identify a-part-of structures, we look for the following clues:

*.Assembly. A physical whole is constructed from physical parts.

*. Container. A physical whole encompasses but is not constructed from physical parts.

. *. Collection-Member. A conceptual whole encompasses parts that may be physical or

conceptual.

143

Fig 8.30. Association, generalization, and aggregation among the ViaNet bank classes. Notice that the super-sub

arrows for CheckingAccount and SavingsAccount have merged. The relationship between BankClient and
ATMMachine is an interface.

A bank consists of ATM machines, accounts, buildings, employees, and so forth.

However, since buildings and employees are outside the domain of this application, we

define the Bank class as an aggregation of ATMMachine and Account

classes.Aggregation is a special type of association. Figure 3.30 depicts the association,

generalization, and aggregation among the bank systems classes. If you are wondering

what is the relationship between the BankClient and ATMMachine, it is an interface.

Identifying a class interface is a design activity of object-oriented system development.

 CLASS RESPONSIBILITY : IDENTIFYING ATTRIBUTES AND

METHODS

Identifying attributes and methods is like finding Classes, still a difficult activity

and an iterative process.

Responsibilities identify problems to be solved.

Attributes are things an object must remember such as color, cost and

manufacturer. Identifying attributes of a system’s classes starts with understanding the

system’ s responsibilities.

The following questions help in identifying the responsibilities of classes and

deciding what data elements to keep track of :

#. What information about an object should we keep track of?

What services must a class provide?

144

 CLASS RESPONSIBILITY : DEFING ATTRIBUTES BY ANALYZING USE

CASES AND OTHER UML DIAGRAMS

Attributes can be derived from scenario testing ; therefore, by analyzing the use

cases and sequence/collaboration, activity and state diagrams, you can begin to

understand classes responsibilities and how they must interact to perform their tasks.

The main goal is to understand what the class is responsible for knowledging.

Responsibility is the issue.

What kind of questions what kind of question would you like ask;

 How am I going to be used?

 How am I going to collaborate with other classes?

 How am I described in the context of this system’s responsibility?

Guidelines for Defining Attributes.

 Attributes usually correspond to nouns followed by prepositional phrases

such as cost of the soup. Attributes also may correspond to adjectives or

adverbs.

 Keep the class simple; state only enough attributes to define the object state.

 Attributes are less to be fully described in the problem statement.

 Omit derived attributes.

 Do not carry discovery of attributes to excess. You can add more attributes

in subsequent iterations.

Important point to remember is that you may think of many attributes that can be

associated with a class. You must careful to add only those attributes necessary to the

design at hand.

 OBJECT RESPONSIBILITY : METHODS AND MESSAGES.

Objects not only describe abstract data but also must provide some services.

Methods and messages are the workhorses of object oriented systems.

In an object oriented environment, every pieces of data or object is surrounded by

a rich set of routines called methods.

These methods do everything from printing the object to initializing its variables.

Every class is responsible for storing certain information from the domain

knowledge. It also is logical to assign the responsibility for performing any operation

necessary on that information.

Operations (methods or Behavior) in the o-o-system usually correspond to queries

about attributes.

Methods are responsible for managing the value of attributes such as query,

updating , reading and writing;

145

CASE STUDY : DEFINING ATTRIBUTES FOR VIANET BANK OBJETCTS.

1. Defining Attributes for the BankClient Class

By analysing the use cases, the sequence/collaboration diagrams and activity

diagram of bank atm process, it is apparent that, for the BankClient Class, the

problem domain and system dictate certain attributes. In essence, what does the

system need to know about the BankClient?

By looking at the activity diagram (See Fig 3.9) we notice that the BankClient

must have a PIN number and CardNumber. Therefore, the PIN number and CardNumber

are appropriate attributes for the BankClient.

The Attributes of the BankClient are

firstName

lastName

pinNumber

cardNumber

account:Account

At this stage of the design we are concerned with the functionality of the

BankClinet object and not with implementation attributes.

2. Defining Attributes for the AccountClass.

Similarly, what information does the system need to know about an account? Based

on the ATM Usecase diagram, Sequence/Collaboration diagram and activity diagram,

BankClient can interact with its account by entering the account number and the

could deposit money, get an account history, or get the balance. Therefore, we have

defined the following attributes for the Account Class : number, balance.

CASE STUDY: DEFINING METHODS BY ANALYZING UML DIAGRAMS
AND USE CASES.

We know that, in a sequence diagram, the objects involved are drawn on the

diagram as vertical dashed lines. Furthermore, the events that occur between objects are

drawn between the vertical object lines. An Event is considered tobe an action that

transmits information.

For example, to define methods for the Account class, we look at sequence

diagrams for the following use cases.

Deposit Checking

Deposit Savings

Withdraw Checking

Withdraw More from Checking

Withdraw Savings

Withdraw Savings Denied

Checking Transaction History

Savings Transaction History

146

CASE STUDY: DEFINING METHODS BY BANK OBJECTS

.
Operations (methods or behavor) in the object-oriented system usually correspond

to events or actions that transmit information in the sequence diagram or queries about

attributes of the objects. In other words, methods are responsible for managing the value

fo attributes such as query, updating, reading and writing.

1) Defining Account Class operations.

Deposit and withdrawal operations are available to the Client through the bank

application, but they are provided as services by the Account Class, since the accout

objects must be able to manipulate their internal attributes. Accout objects also must be

able to create transaction records of any deposit or withdrawal they perform.

Here are the methods that we need to define for the Account Class:

deposit

withdraw

createTransaction.

The services added to the Account class are thopse that apply to all subclasses of

Account; namely, CheckingAccount and SavingsAccount. The subclass will either inherit

these generic services without chage or enhace them to suit their own needs.

2) Defining BankClient Class Operation

Analyzing the sequence diagram(fig 3.13), it is apparent that the BankClient requires

a method to validate client’s passwords.

3) Defining CheckingAccount Class Operations

The requirement specification states that, when a checking account has insufficient

funds to cover a withdrawal, it must try to withdraw the insufficient amount from its

related saving account. To provide the service, the CheckingAccount class needs a

withdrawal service that enables the transfer. Similarly, we must add the withdrawal

service to the CheckingAccount class.

147

Questions

Part-A

Q.No Questions Competence BT Level

1. List out the steps in OOA process. Remember
BTL 1

2.
List out the guidelines for developing effective

documentation.
Remember

BTL 1

3. Analyze the following approaches a) CRC b) noun phrase Analyze
BTL 4

4. List out the guidelines for developing use case models. Remember
BTL 1

5. What is Aggregation? Remember
BTL 1

6. Define ‘uses’ and ‘extends’ association. Remember
BTL 1

7. Define classification Remember
BTL 1

8. List the approaches for identifying classes Remember
BTL 1

9. Explain how we can identify actors for a system. Understand
BTL 2

10. Compare Aggregation and Composition. Evaluate
BTL 5

Part-B

Q.No Questions Competence BT Level

1. Discuss in detail about Object Analysis Classification. Understand
BTL 2

2. Explain noun phrase approach with an example. Analyze
BTL 4

3. Analyze the approaches for identifying classes Analyze
BTL 4

4. Discuss in brief about a)CRC approach b)Associations Understand
BTL 2

5.
Explain the guidelines for developing effective documentation in

detail
Remember

BTL 1

6. Explain use-case driven approach with example. Analyze
BTL 4

7. Explain in detail about Commom class patterns approach. Remember
BTL 1

148

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

UNIT – IV - OBJECT ORIENTED ANALYSIS AND SYSTEM ENGINEERING - SCSA1401

149

UNIT 4

OBJECT ORIENTED DESIGN

Object Oriented Design Process - Object Oriented Design Axioms - Corollaries -

Designing Classes: Object Constraint Language - Process of Designing Class -

Class Visibility - Refining Attributes - Access Layer: Object Store and Persistence -

Database Management System - Logical and Physical Database Organization and

Access Control - Distributed Databases and Client Server Computing - Object

Oriented Database Management System – Object Relational Systems – Designing

Access Layer Classes - View Layer: Designing View Layer Classes - Macro Level

Process - Micro Level Process – Purpose of View Layer Interface - Prototyping the

user interface.

The Object Oriented Design Process and Design Axioms

Designing systems using self-contained objects and object classes

 To explain how a software design may be represented as a set of interacting

objects that manage their own state and operations

 To describe the activities in the object-oriented design process

 To introduce various models that describe an object-oriented design

 To show how the UML may be used to represent these models

Characteristics of OOD

 Objects are abstractions of real-world or system entities and manage themselves

 Objects are independent and encapsulate state and representation information.

 System functionality is expressed in terms of object services

 Shared data areas are eliminated. Objects communicate by message passing

 Objects may be distributed and may execute sequentially or in parallel

 THE OBJECT ORIENTED DESIGN PROCESS

During the design phase the Classes in o-o- analysis must be revisited with a shift

in focus to their implementation. New Classes or attributes and methods must be added

for implementation purposes and their user interfaces.

The o-o design process consists of the following activities (Fig 4.1):

1. Apply design axioms to design classes, their attributes, methods, associations,

structures and protocols.

 Refine and complete the static UML Class diagram by adding details

150

to the uml class diagram. This step consists of the following activities.

 Refine attributes.

 Design methods and protocols by utilizing a UML Activity

diagram to represent the method’s algorithm.

 Refine associations between classes (if required)

 Refine class hierarchy and design with inheritance (if required)

 Iterate and refine again.

2. Design the access layer

 Create mirror classes. For every business class identified and created,

Create one access class.

Identify access layer class relationships.

 Simplify Classes and the relationships. – The main goal is to eliminate

redundant classes and structures.

 Redundant Classes: Do not keep 2 classes that perform

similar translate request and translate results activities. Simply select one and

eliminate the other.

 Method Classes: Revisit the classes that consist of only

one or two methods to see if they can be eliminated or combine with existing

classes.

 Iterate and refine again

3. Design the view layer classes.

 Design the macro level user interface, identifying view layer objects.

 Design the micro level user interface, which includes these activities:

 Design the view layer objects by applying the design

axioms and corollaries.

 Build a prototype of the view layer interface.

 Test usability and user satisfaction

 Iterate and refine.

4. Iterate and refine the whole design. Reapply the design axioms and if needed,

repeat the proceeding steps.

Fig 4.1 The object-oriented design process in the unified
approach.

151

 OBJECT-ORIENTED DESIGN AXIOMS

 Main focus of the analysis phase of SW development “what needs to be

done”?

 Objects discovered during analysis serve as the framework for design.

 Class‘s attributes, methods, and associations identified during analysis must be

designed for implementation as a data type expressed in the implementation
language.

 During the design phase, we elevate the model into logical entities, some of which

might relate more to the computer domain (such as user interface, or the access

layer) than the real world or the physical domain (such as people or employees).

Start thinking how to actually implement the problem in a program.

 The goal to design the classes that we need to implement the system.

 Design is about producing a solution that meets the requirements that have been

specified during analysis.

 Analysis Versus Design.

 An axiom = is a fundamental truth that always is observed to be valid and for

which there is no counterexample or exception.

 A theorem = is a proposition that may not be self-evident but can be proven from

accepted axioms. Therefore, is equivalent to a law or principle?

 A theorem is valid if its referent axioms & deductive steps are valid.

 A corollary = is a proposition that follows from an axiom or another proposition

that has been proven.

 Suh‘s design axioms to OOD :

152

 Axiom 1 : The independence axiom. Maintain the independence of

components

 Axiom 2 : The information axiom. Minimize the information content of

the design.

 Axiom 1 states that, during the design process, as we go from requirement and

use-case to a system component, each component must satisfy that requirement,

without affecting other requirements

 Axiom 2 concerned with simplicity. Rely on a general rule known as Occam’s

razor.

 Occam’s razor rule of simplicity in OO terms :
The best designs usually involve the least complex code but not necessarily

the fewest number of classes or methods. Minimizing complexity should be the

goal, because that produces the most easily maintained and enhanced application.

In an object-oriented system, the best way to minimize complexity is to use

inheritance and the system’s built-in classes and to add as little as possible to what

already is there.

 COROLLARIES

From the two design axioms, many corollaries may be derived as a direct

consequence of the axioms. These corollaries may be more useful in making specific

design decisions, since they can be applied to actual situations more easily than the

original axioms. They even may be called design rules, and all are derived from the two

basic axioms (see Figure 4.2):

Fig 4.2 The origin of corollaries. Corollaries 1, 2, and 3 are from both axioms,

whereas Corollary 4 is from axiom 1 and corollaries 5 and 6 are from

axiom 2.

153

 Corollary 1. Uncoupled design with less information content. Highly cohesive

objects can improve coupling because only a minimal amount of essential

information need be passed between objects.

 Corollary 2. Single purpose. Each class must have a single, clearly defined

purpose. When you document, you should be able to easily describe the purpose

of a class in a few sentences.

 Corollary 3. Large number of simple classes. Keeping the classes simple allows

reusability.

 Corollary 4. Strong mapping. There must be a strong association between the

physical system (analysis's object) and logical design (design's object).

 Corollary 5. Standardization. Promote standardization by designing

interchangeable components and reusing existing classes or components.

 Corollary 6. Design with inheritance. Common behavior (methods) must be

moved to super classes. The super class-subclass structure must make logical

sense.

 Corollary 1. Uncoupled Design with Less Information Content

 Highly cohesive objects can improve coupling because only a minimal amount of

essential information need be passed between objects.

 The main goal is to maximize objects cohesiveness among objects and

software components in order to improve coupling because only a minimal

amount of essential information need be passed between components.

 Coupling

 Coupling is a measure of the strength of association established by a

connection from one object or software component to another.

 Coupling is a binary relationship: A is coupled with B. Coupling is

important when evaluating a design because it helps us focus on an

important issue in design. For example, a change to one component of a system

should have a minimal impact on other components.

 Strong coupling among objects complicates a system, since the class is harder

to understand or highly interrelated with other classes. The degree of coupling is

a function of

1. How complicated the connection is.

2. Whether the connection refers to the object itself or something inside it.

3. What is being sent or received.

 The degree, or strength, of coupling between two components is measured by the

amount and complexity of information transmitted between them.

 Coupling increases (becomes stronger) with increasing complexity or

obscurity of the interface.

 Coupling decreases (becomes lower) when the connection is to the component

interface rather than to an internal component.

 Coupling also is lower for data connections than for control connections.

154

 Object-oriented design has two types of coupling: interaction coupling and
inheritance coupling.

Interaction coupling the amount & complexity of messages between

components.

 Desirable to have a little interaction.

 Coupling also applies to the complexity of the message.

 The general guideline is to keep the messages as simple and

infrequent as possible.

 Minimize the number of messages sent & received by an object

 Types of coupling among objects or components , refer

. In general, if a message connection involves more than three parameters (e.g., in

Method (X, Y, Z), the X, Y, and Z are parameters), examine it to see if it can be

simplified. It has been documented that objects connected to many very complex

messages are tightly coupled, meaning any change to one invariability leads to a ripple

effect of changes in others (see Figure 4.3).

Fig 4.3 E is a tightly coupled object.

In addition to minimizing the complexity of message connections, also reduce the

number of messages sent and received by an object . Table 9-1 contains different types of

interaction couplings.

155

 Inheritance coupling -> coupling between super-and subclasses

 A subclass is coupled to its superclass in terms of attributes & methods

 High inheritance coupling is desirable

 Each specialization class should not inherit lots of unrelated & unneeded

methods & attributes.

 Cohesion

 Cohesion deals with interaction within a single object or software component.

 Need to consider interaction within a single object or sw component Cohesion

 Cohesion reflects the ‘single-purposeness‘ of an object (see corollaries 2
& 3)

 Highly cohesive components can lower coupling because only a minimum of

essential information need be passed between components.

 Cohesion also helps in designing classes that have very specific goals and
clearly defined purposes.

 Method cohesion a method should carry only one function.

 A method carries multiple functions is undesirable.

 Class cohesion means that all the class's methods and attributes must be highly

cohesive, meaning to be used by internal methods or derived classes' methods.

 Inheritance cohesion is concerned with the following questions: 1.How

interrelated are the classes? 2.Does specialization really portray specialization or

is it just something arbitrary? See Corollary 6, which also addresses these

questions.

156

 Corollary 2. Single Purpose

Each class must have a purpose. Every class should be clearly defined and

necessary in the context of achieving the system's goals.

When you document a class, you should be able to easily explain its purpose in a

sentence or two.

If you cannot, then rethink the class and try to subdivide it into more independent

pieces. In summary, keep it simple; to be more precise, each method must provide only

one service.

Each method should be of moderate size, no more than a page; half a page is

better.

 Corollary 3. Large Number of Simpler Classes, Reusability

 Keeping the classes simple allows reusability

 A class that easily can be understood and reused (or inherited) contributes to the

overall system

 Complex & poorly designed class usually cannot be reused

 Guideline The smaller are your classes, the better are your chances of reusing

them in other projects. Large & complex classes are too specialized to be reused

 The emphasis OOD places on encapsulation, modularization, and polymorphism

suggests reuse rather than building anew

 Primary benefit of sw reusability Higher productivity

Coad and Yourdon describe four reasons why people are not utilizing this

concept:

1. Software engineering textbooks teach new practitioners to build systems from "first

principles"; reusability is not promoted or even discussed.

2. The "not invented here" syndrome and the intellectual challenge of solving an

interesting software problem in one's own unique way mitigates against reusing someone

else’s software component.

3. Unsuccessful experiences with software reusability in the past have convinced many

practitioners and development managers that the concept is not practical.

4. Most organizations provide no reward for reusability; sometimes productivity is

measured in terms of new lines of code written plus a discounted credit (e.g., 50 percent

less credit) for reused lines of code.

 Corollary 4. Strong Mapping

 Object-oriented analysis and object-oriented design are based on the same model.

 As the model progresses from analysis to implementation, more detail is added, but

it remains essentially the same. For example, during analysis we might identify a

class Employee.

 During the design phase, we need to design this class design its methods, its
association with other objects, and its view and access classes.

157

 A strong mapping links classes identified during analysis and classes designed
during the design phase (e.g., view and access classes).

 Corollary 5. Standardization

To reuse classes, you must have a good understanding of the classes in the object

oriented programming environment you are using. Most object-oriented systems, such as

Smalltalk, Java, C+ +, or PowerBuilder, come with several built-in class libraries.

Similarly, object-oriented systems are like organic systems, meaning that they grow

as you create new applications.

The knowledge of existing classes will help you determine what new classes

are needed to accomplish the tasks and where you might inherit useful behavior

rather than reinvent the wheel. However, class libraries are not always well

documented or, worse yet, they are documented but not up to date.

The concept of design patterns might provide a way to capture the design

knowledge, document it, and store it in a repository that can be shared and reused

in different applications.

 Corollary 6. Designing with Inheritance

When you implement a class, you have to determine its ancestor, what attributes it

will have, and what messages it will understand. Then, you have to construct its methods

and protocols. Ideally, you will choose inheritance to minimize the amount of program

instructions. Satisfying these constraints sometimes means that a class inherits from a

superclass that may not be obvious at first glance.

For example, say, you are developing an application for the government that

manages the licensing procedure for a variety of regulated entities. To simplify the

example, focus on just two types of entities: motor vehicles and restaurants. Therefore,

identifying classes is straightforward. All goes well as you begin to model these two

portions of class hierarchy. Assuming that the system has no existing classes similar to a

restaurant or a motor vehicle, you develop two classes, MotorVehicle and Restaurant.

Subclasses of the MotorVehicle class are Private Vehicle and

CommercialVehicleo These are further subdivided into whatever level of specificity

seems appropriate (see Figure 4.4).

Fig 4.4 The initial single inheritance design.

158

Subclasses of Restaurant are designed to reflect their own licensing procedures.

This is a simple, easy to understand design,

In any case, the design is approved, implementation is accomplished, and the

system goes into production.

You know you need to redesign the application-but redesign how? The answer

depends greatly on the inheritance mechanisms supported by the system's target

language. If the language supports single inheritance exclusively, the choices are

somewhat limited. You can choose to define a formal super class to both MotorVehicle

and Restaurant, License, and move common methods and attributes from both classes

into this License class (see Figure4.5).

Fig 4.5 The single inheritance design modified to allow licensing food trucks.

 Achieving Multiple Inheritance in a Single Inheritance System

Single inheritance means that each class has only a single superclass. This

technique is used in Smalltalk and several other object-oriented systems. One result of

using a single inheritance hierarchy is the absence of ambiguity as to how an object

will respond to a given method; you simply trace up the class tree beginning with

the object's class, looking for a method of the same name.

However, languages like LISP or C++ have a multiple inheritance scheme

whereby objects can inherit behavior from unrelated areas of the class tree. This could be

desirable when you want a new class to behave similar to more than one existing class.

However, multiple inheritance brings with it some complications, such as how to

determine which behavior to get from which class, particularly when several ancestors

define the same method. It also is more difficult to understand programs written in a

multiple inheritance system.

One way of achieving the benefits of multiple inheritance in a language with

single inheritance is to inherit from the most appropriate class and add an object of

another class as an attribute or aggregation. Therefore, as class designer, you have two

ways to borrow existing functionality in a class. One is to inherit it, and the other is to use

the instance of the class (object) as an attribute. This approach is described in the next

section.

159

 Avoiding Inheriting Inappropriate Behaviors

Beginners in an object oriented system frequently err by designing subclasses that

inherit from inappropriate superclasses. Before a class inherits, ask the following

questions:

 Is the subclass fundamentally similar to its superclass (high inheritance

coupling)?

 .Is it an entirely new thing that simply wants to borrow some expertise

from its superclass (low inheritance coupling)?

Often you will find that the latter is true, and if so, you should add an attribute that

incorporates the proposed superclass's behavior rather than an inheritance from the

superclass.

 DESIGN PATTERNS

 Provides a scheme for refining the subsystems or components of a sw system or

the relationships among them

 Are devices that allow systems to share knowledge about their design, by

describing commonly recurring structures of communicating components that

solve a general design problem within a particular context

 The main idea to provide documentation to help categorize & communicate

about solutions to recurring problems

 The pattern has a name to facilitate discussion and the information it represents

.

For example , refer the book . page no 212.

160

Designing Classes
Object-oriented design requires taking the objects identified during object-

oriented analysis and designing classes to represent them. As a class designer, you have

to know the specifics of the class you are designing and be aware of how that class

interacts with other classes. Once you have identified your classes and their interactions,

you are ready to design classes.

Underlying the functionality of any application is the quality of its design.

Objectives To explain how a software design may be represented as a set of

interacting objects that manage their own state and operations To describe the activities

in the object-oriented design process To introduce various models that describe an object-

oriented design To show how the UML may be used to represent these models

Characteristics of OOD :

 Characteristics of OOD Objects are abstractions of real-world or system

entities and manage themselves Objects are independent and encapsulate state and

representation information.

 System functionality is expressed in terms of object services Shared data

areas are eliminated.

 Objects communicate by message passing Objects may be distributed and

may execute sequentially or in parallel

Advantages of OOD :

 Advantages of OOD Easier maintenance.

 Objects may be understood as stand-alone entities Objects are appropriate

reusable components For some systems, there may be an obvious mapping from

real world entities to system objects

Object-oriented development :

Object-oriented development Object-oriented analysis, design and programming

are related but distinct OOA is concerned with developing an object model of the

application domain OOD is concerned with developing an object-oriented system model

to implement requirements OOP is concerned with realising an OOD using an OO

programming language such as Java or C++

Objects and object classes :

Objects and object classes Objects are entities in a software system which

represent instances of real-world and system entities Object classes are templates for

objects. They may be used to create objects Object classes may inherit attributes and

services from other object classes

Objects :

Objects An object is an entity which has a state and a defined set of operations

which operate on that state. The state is represented as a set of object attributes. The

operations associated with the object provide services to other objects (clients) which

request these services when some computation is required. Objects are created according

to some object class definition. An object class definition serves as a template for objects.

It includes declarations of all the attributes and services which should be associated with

an object of that class.

161

 UML OBJECT CONSTRAINT LANGUAGE

The UML is a graphical language with a set of rules and semantics. The rules and

semantics of the UML are expressed in English, a form known as OBJECT

CONSTRAING LANGUAGE. OCL is a specification language that uses simple logic

for specifying the properties of a system.

Many UML modeling constructs require expression: For eg; there are expressions

for types, Boolean values and numbers.

Expressions are stated as strings in ocl. The syntax for some common

navigational expressions is shown here. These forms ca be chained together. The

Leftmost element must be an expression for an object or a set of objects. The expressions

are meant to work on sets of values when applicable.

 Item-Selector : - The selector is the name of an attribute in the item. The

result is the value of the attribute. For eg: John.age(the age is attribute of

the object john, and john.age represents the value of the attribute).

 Item-selector [qualifier-value]. The selector indicates a qualified

association that qualifies the item. The result is the related object selected

by an qualifier. For eg; John.phone[3], assuming john has several phone.

 Set -> select (Boolean-expression). The Boolean expression is written in

terms of objects within the set. The result is the subset of objects in the set

for which the Boolean expression is true.

For eg; company.employee->salary->50000. This represents employees

with salaries over $50,000.

 DESINGING CLASSES : THE PROCESS

In this section we concentrate on step 1 of the design process described in chap 9,

which consists of the following activities:

1. Apply design axioms to design classes, their attributes, methods, associations,

structures and protocols.

 Refine and complete the static UML Class diagram by adding details

to the uml class diagram. This step consists of the following activities.

 Refine attributes.

 Design methods and protocols by utilizing a UML Activity

diagram to represent the method’s algorithm.

 Refine associations between classes (if required)

 Refine class hierarchy and design with inheritance (if required)

 Iterate and refine again.

O-O design is an iterative process. After all, design is as much about discovery as

construction.

162

 CLASS VISIBILITY: DESIGNING WELL-DEFINED PUBLIC, PRIVATE,

AND PROTECTED PROTOCOLS

In designing methods or attributes for classes, you are confronted with two

problems. One is the protocol, or interface to the class operations and its visibility; and

the other is how it is implemented.

Often the two have very little to do with each other. For example, you might have

a class Bag for collecting various objects that counts multiple occurrences of its elements.

One implementation decision might be that the Bag class uses another class, say,

Dictionary (assuming that we have a class Dictionary), to actually hold its elements. Bags

and dictionaries have very little in common, so this may seem curious to the outside

world. Implementation, by definition, is hidden and off limits to other objects.

The class's protocol, or the messages that a class understands, on the other hand,

can be hidden from other objects (private protocol) or made available to other objects

(public protocol).

Public protocols define the functionality and external messages of an object;

private protocols define the implementation of an object.

A class also might have a set of methods that it uses only internally, messages to

itself. This, the private protocol (visibility) of the class, includes messages that normally

should not be sent from other objects; it is accessible only to operations of that class. In

private protocol, only the class itself can use the method.

The public protocol (visibility) defines the stated behavior of the class as a citizen

in a population and is important information for users as well as future descendants, so it

is accessible to all classes.

If the methods or attributes can be used by the class itself or its subclasses, a

protected protocol can be used.

In a protected protocol (visibility), subclasses the can use the method in addition

to the class itself.

Lack of a well-designed protocol can manifest itself as encapsulation leakage. The

problem of encapsulation leakage occurs when details about a class's internal

implementation are disclosed through the interface. As more internal details become

visible, the flexibility to make changes in the future decreases. If an implementation is

completely open, almost no flexibility is retained for future carefully controlled.

However, do not make such a decision lightly because that could impact the flexibility

and therefore the quality of the design.

 PRIVATE AND PROTECTED PROTOCOL LAYERS: INTERNAL

Items in these layers define the implementation of the object. Apply the design

axioms and corollaries, especially Corollary 1 (uncoupled design with less information

content, see Chapter 9) to decide what should be private: what attributes (instance

variables)? What methods? Remember, highly cohesive objects can improve coupling

because only a minimal amount of essential information need be passed between objects.

163

 PUBLIC PROTOCOL LAYER: EXTERNAL

Items in this layer define the functionality of the object. Here are some things to

keep in mind when designing class protocols:

*. Good design allows for polymorphism.

*. Not all protocol should be public; again apply design axioms and corollaries

The following key questions must be answered:

 What are the class interfaces and protocols?

 What public (external) protocol will be used or what external messages

must the system understand?

 What private or protected (internal) protocol will be used or what internal

messages or messages from a subclass must the system understand?

 DESIGNING CLASSES: REFINING ATTRIBUTES

Attributes identified in object-oriented analysis must be refined with an eye on

implementation during this phase. In the analysis phase, the name of the attribute was

sufficient. However, in the design phase, detailed information must be added to the model

(especially, that defining the class attributes and operations).

The main goal of this activity is to refine existing attributes (identified in analysis)

or add attributes that can elevate the system into implementation.

 Attribute Types

The three basic types of attributes are

1. Single-value attributes.

2. Multiplicity or multivalue attributes.

3. Reference to another object, or instance connection.

Attributes represent the state of an object. When the state of the object changes,

these changes are reflected in the value of attributes. The single-value attribute is the

most common attribute type. It has only one value or state. For example, attributes such

as name, address, or salary are of the single-value type.

The multiplicity or multivalue attribute is the opposite of the single-value attribute

since, as its name implies, it can have a collection of many values at any point in time.

For example, if we want to keep track of the names of people who have called a customer

support line for help, we must use the multivalues attributes.

Instance connection attributes are required to provide the mapping needed by an

object to fulfill its responsibilities, in other words, instance connection model association.

For example, a person might have one or more bank accounts. A person has zero to many

instance connections to Account{s). Similarly, an Account can be assigned to one or

more persbns (i.e., joint account). Therefore, an Account also has zero to many instance

connections to Person{s).

164

 UML Attribute Presentation

OCL can be used during the design phase to define the class attributes. The

following is the attribute presentation suggested by UML :

visibility name: type-expression =initial- value

Where visibility is one of the following:

+ public visibility (accessibility to all classes).

protected visibility (accessibility to subclasses and operations of the class).

- private visibility (accessibility only to operations of the class).

Type-expression is a language-dependent specification of the implementation type

of an attribute.

Initial-value is a language-dependent expression for the initial value of a newly

created object. The initial value is optional. For example, + size: length = 100

The UML style guidelines recommend beginning attribute names with a

lowercase letter.

In the absence of a multiplicity indicator (array), an attribute holds exactly one

value. Multiplicity may be indicated by placing a multiplicity indicator in brackets after

attribute name; for example,

names[lO]: String

points[2.. *]: Point

The multiplicity of 0..1 provides the possibility of null values: the absence of a

value, as opposed to a particular value from the range. For example, the following

declaration permits a distinction between the null value and an empty string: name[O..lj:

String

 REFINING ATTRIBUTES FOR THE VIANET BANK OB.JECTS

In this section, we go through the ViaNet bank ATM system classes and refine the

attributes identified during object-oriented analysis.

 Refining Attributes for the BankClient Class

During object-oriented analysis, we identified the following attributes:

firstName

lastN ame

pinNumber

cardNumber

At this stage, we need to add more information to these attributes, such as

visibility and implementation type. Furthermore, additional attributes can be identified

during this phase to enable implementation of the class:

#firstName: String

165

#lastName: String

#pinNumber: String

#cardNumber: String

#account: Account (instance connection)

In Chapter 8 we identified an association between the BankClient and the

Account classes. (see Figure 3.27). To design this association, we need to add an account

attribute of type Account, since the BankClient needs to know about his or her account

and this attribute can provide such information for the BankClient class. This is an

example of instance connection, where it represents the association between the

BankClient and the Account objects. All the attributes have been given protected

visibility.

 Refining Attributes for the Account Class

Here is the refined list of attributes for the Account class:

#number: String

#balance: float

#transaction: Transaction (This attribute is needed for implementing the association

between the Account and Transaction classes.)

#bankClient: BankClient (This attribute is needed for implementing the association

between the Account and BankClient classes.)

At this point we must make the Account class very general, so that it can be

reused by the checking and savings accounts.

 Refining Attributes for the Transaction Class

The attributes for the Transactionclass are these:

#transID: String

#transDate: Date

#trans Time: Time

#transType: String

#amount: float

#postBalance: float

 Refining Attributes for the ATMMachine Class

The ATMMachine class could have the following attributes:

#address: String

#state: String

 Refining Attributes for the CheckingAccount Class

Add the savings attribute to the class. The purpose of this attribute is to

implement the association between the CheckingAccount and SavingsAccount classes.

 Refining Attributes for the SavingsAccount Class

Add the checking attribute to the class. The purpose of this attribute is to

implement the association between the SavingsAccount and CheckingAccount classes.

Figure 10-1 shows a more complete UML class diagram for the bank system. At this

stage, we also need to add a very short description of each attribute or certain attribute

constraints. For example, Class ATMMachine

166

#address: String (The address for this ATM machine.)

#state: String (The state of operation for this ATM machine, such as running,

off, idle, out of money, security alarm.)

Fig 4.6 A more complete UML class diagram for the ViaNet bank system.

 DESIGNING METHODS AND PROTOCOLS

The main goal of this activity is to specify the algorithm for methods identified so

far. Once you have designed your methods in some formal structure such as UML

activity diagrams with an OCL description, they can be converted to programming

language manually or in automated fashion.

A class can provide several types of methods :

 Constructor. Method that creates instances (objects) of the class.

 Destructor. The method that destroys instances.

 Conversion method. The method that converts a value from one unit of measure to

another.

 Copy method. The method that copies the contents of one instance to another

instance. .

 Attribute set. The method that sets the values of one or more attributes.

 Attribute get. The method that returns the values of one or more attributes.

 I/O methods. The methods that provide or receive data to or from a device.

167

 Domain specific. The method specific to the application.

Corollary 1, that in designing methods and protocols you must minimize the

complexity of message connections and keep as low as possible the number of messages

sent and received by an object. Your goal should be to maximize cohesiveness among

objects and software components to improve coupling, because only a minimal amount of

essential information should be passed between components. Abstraction leads to

simplicity and straightforwardness and, at the same time, Increases class versatility. The

requirement of simplification, while retaining functionality, seems to lead to increased

utility. Here are five rules :

1. If it looks messy, then it's probably a bad design.

2. If it is too complex, then it's probably a bad design.

3. If it is too big, then it's probably a bad design.

4. If people don't like it, then it's probably a bad design.

5. If it doesn't work, then it's probably a bad design.

 DESIGN ISSUES: AVOIDING DESIGN PITFALLS

As described it is important to apply design axioms to avoid common design

problems and pitfalls. For example, we learned that it is much better to have a large set

of simple classes than a few large, complex classes.

A common occurrence is that, in your first attempt, your class might be too big

and therefore more complex than it needs to be. Take the time to apply the design

axioms and corollaries, then critique what you have proposed. You may find you

can gather common pieces of expertise from several classes, which in itself becomes

another "peer" class that the others consult; or you might be able to create a

superclass for several classes that gathers in a single place very similar code. Your

goal should be maximum reuse of what you have to avoid creating new classes as much

as possible.

Take the time to think in this way-good news, this gets easier over time. Lost

object focus is another problem with class definitions.

A meaningful class definition starts out simple and clean but, as time goes on

and changes are made, becomes larger and larger, with the class identity becoming

harder to state concisely (Corollary 2). This happens when you keep making

incremental changes to an existing class. If the class does not quite handle a situation,

someone adds a tweak to its description. When the next problem comes up, another tweak

is added. Or, when a new feature is requested, another tweak is added, and so on.

Apply the design axioms and corollaries, such as Corollary 2 (which states

that each class must have a single, clearly defined purpose). When you document,

you easily should be able to describe the purpose of a class in a few sentences.

Some possible actions to solve this problem are these:

 *Keep a careful eye on the class design and make sure that an object's role remains well

defined. If an object loses focus, you need to modify the design. Apply Corollary 2 (single

purpose).

 *Move some function into new classes that the object would use. Apply corrolary 1 (

Uncoupled design with less information content).

 *Break up the class into 2 or 3 classes. Apply corollary 3 (large number of simple classes).

168

 *Rethink the class definition based on experience gained.

 UML Operation Presentation

The following operation presentation has been suggested by the UML. The

operation syntax is this :

visibility name: (parameter list”) : return type expression

Where visibility is one of the following:

+ public visibility (accessibility to all classes).

protected visibility (accessibility to subclasses and operations of the class).

- private visibility (accessibility only to operations of the class).

Here, The name is the name of the operation.

Parameter list is a list of parameter, separated by commas, each specified by

name:type-expression=default value.

Return-type-expression: is a language-dependent specification of the

implementation of the value returned by the method. If return-type is omitted, the

operation does not return a value.

 DESIGNING METHODS FOR THE VIANET BANK OBJECTS.

Fig 4.7An activity diagram for the BankClient class verifyPassword method, using OCl

to describe the diagram. The syntax for describing a class's method is Class

name::methodName.

169

BankClient Class VerifyPassword Method

The following describes the verifyPassword service in greater detail. A client PIN

code is sent from the ATMMachine object and used as an argument in the verify-

Password method. The verify Password method retrieves the client record and checks the

entered PIN number against the client's PIN number. If they match, it allows the user to

proceed. Otherwise, a message sent to the ATMMachine displays "Incorrect PIN, please

try again" (see Figure 4.7).

The verifyPassword methods' performs first creates a bank client object and

attempts to retrieve the client data based on the supplied card and PIN numbers. At this

stage, we realize that we need to have another method, retrieveClient. The

retrieveClientmethod takes two arguments, the card number and a PIN number, and

returns the client object or "nil" if the password is not valid. We postpone design of the

retrieveClient method to next chapter.

Account Class Deposit Method

The following describes the deposit service in greater detail. An amount to be

deposited is sent to an account object and used as an argument to the deposit service. The

account adjusts its balance to its current balance plus the deposit amount. The account

object records the deposit by creating a transaction object containing the date and time,

posted balance, and transaction type and amount (see Figure 4.8).

Once again we have discovered another method, updateClient. This method, as

the name suggests, updates client data. We postpone design of the updateClient method

to the (designing the access layer classes).

Fig 4.8 An activity diagram for the Account class deposit method.

Account class withdraw method

This is the generic withdrawal method that simply withdraws funds if they are

available. It is designed to be inherited by the CheckingAccount and SavingsAccount

classes to implement automatic funds transfer.

The following describes the withdraw method. An amount to be withdrawn is sent

to an account object and used as the argument to the withdraw service. The account

170

checks its balance for sufficient funds. If enough funds are available, the account makes

the withdrawal and updates its balance; otherwise, it returns an error, saying "insufficient

funds." If successful, the account records the withdrawal by creating a transaction object

containing date and time, posted balance, and transaction type and amount (see

Figure4.9).

Fig 4.9 An activity diagram for the account class withdraw method.

Account class CreateTransaction Method

The CreateTransaction method generates a record of each transaction performed

against it. The description is as follows. Each time a successful transaction is performed

against an account, the account object creates a transaction object to record it. Arguments

into this service include transaction type (withdrawal or deposit), the transaction amount,

and the balance after the transaction. The account creates a new transaction object and

sets its attributes to the desired information. Add this description to the create

Transaction 's description field (see Figure 4.10).

Fig 4.10An activity diagram for the Account class createTransaction method.

171

Checking Account Class withdraw method

This is the checking account-specific version of the withdrawal service. It takes

into consideration the possibility of withdrawing excess funds from a companion savings

account. The description is as follows. An amount to be withdrawn is sent to a checking

account and used as the argument to the withdrawal service. If the account has

insufficient funds to cover the amount but has a companion savings account, it tries to

withdraw the excess from there. If the companion account has insufficient funds, this

method returns the appropriate error message. If the companion account has enough

funds, the excess is withdrawn from there, and the checking account balance goes to zero

(0). If successful, the account records the withdrawal by creating a transaction object

containing the date and time, posted balance, and transaction type and amount.

 PACKAGES AND MANAGING CLASSES

A package groups and manages the modeling elements, such as classes, their

associations, and their structures. Packages themselves may be nested within other

packages.

A package may contain both other packages and ordinary model elements. The

entire system description can be thought of as a single high-level subsystem package with

everything else in it. All kinds of UML model elements and diagrams can be organized

into packages. For example, some packages may contain groups of classes and their

relationships, subsystems, or models. A package provides a hierarchy of different system

components and can reference other packages.

For example, the bank system can be viewed as a package that contains other

packages, such as Account package, Client package, and so on. Classes can be packaged

based on the services they provide or grouped into the business classes, access classes,

and view classes (see Figure 4.11). Furthermore, since packages own model elements and

model fragments, they can be used by CASE tools as the basic storage and access control.

In Chapter 5, we learned that a package is shown as a large rectangle with a small

rectangular tab. If the contentS' of the package are shown, then the name of the package

may be placed within the tab. A keyword string may be placed above the package name.

The keywords subsystem and model indicate that the package is a meta-model subsystem

or model. The visibility of a package element outside the package may be indicated by

preceding the name of the element by a visibility symbol (+ for public, - for private, # for

protected). If the element is in an inner package, its visibility as exported by the outer

package is obtained by combining the visibility of an element within the package with the

visibility of the package itself: The most restrictive visibility prevails.

172

Fig 4.11 More complete UML class diagram for the ViaNet bank ATM system.

Note that the method parameter list is not shown.

Relationships may be drawn between package symbols to show relationships

between at least some of the elements in the packages. In particular, dependency between

packages implies one or more dependencies among the elements.

173

ACCESS LAYER : OBJECT STORAGE & OBJECT INTEROPERABILITY

A DataBase Management System (DBMS) is a set of programs that enables the

creation and maintenance of a collection of related data. A DBMS and associated

programs access, manipulate, protect and manage the data.

The fundamental purpose of a DBMS is to provide a reliable, persistent data

storage facility and mechanisms for efficient, convenient data access and retrieval.

Persistence refers to the ability of some objects to outlive the programs that

created them.

Object lifetimes can be short for local objects (called transient objects) or long

for objects stored indefinitely in a database (called persistent objects).

Most object-oriented languages do not support serialization or object persistence,

which is the process of writing or reading an object to and from a persistence storage

medium, such as disk file.

OBJECT STORE AND PERSISTENCE: AN OVERVIEW

A program will create a large amount of data throughout its execution. Each item

of data will have a different lifetime.

Atkinson et al. describe six broad categories for the lifetime of data:

1. Transient results to the evaluation of expressions.

2. Variables involved in procedure activation (parameters and variables with a

localized scope).

3. Global variables and variables that are dynamically allocated.

4. Data that exist between the executions of a program.

5. Data that exist between the versions of a program.

6. Data that outlive a program.

 The first three categories are transient data, data that cease to exist

beyond the lifetime of the creating process.

 The other three are nontransient, or persistent, data.

 Programming languages provide excellent, integrated support for the first

three categories of transient data.

 The other three categories can be supported by a DBMS, or a file system.

The same issues also apply to objects; after all, objects have a lifetime, too. They

are created explicitly and can exist for a period of time (during the application session).

However, an object can persist beyond application session boundaries, during which the

object is stored in a file or a database. A file or a database can provide a longer life for

objects-longer than the duration of the process in which they were created. From a

language perspective, this characteristic is called persistence. Essential elements in

providing a persistent store are :

174

 Identification of persistent objects or reachability (object ID).

 Properties of objects and their interconnections. The store must be able to

coherently manage nonpointer and pointer data (i.e., interobject
references).

 Scale of the object store. The object store should provide a conceptually

infinite store.

 Stability. The system should be able to recover from unexpected failures

and return the system to a recent self-consistent state. This is similar to

the reliability requirements of a DBMS, object-oriented or not.

 DATABASEMANAGEMENT SYSTEMS

Databases usually are large bodies of data seen as critical resources to a company.

A DBMS is a set of programs that enable the creation and maintenance of a collection of

related data.

DBMSs have a number of properties that distinguish them from the file-based

data management approach.

In traditional file processing, each application defines and implements the files it

requires. Using a database approach, a single repository of data is maintained, which can

be defined once and subsequently accessed by various users (see Figure).

Fig.4.11: Database system vs file system.

175

A fundamental characteristic of the database approach is that the DBMS

contains not only the data but a complete definition of the data formats it manages.

This description is known as the schema, or meta-data, and contains a complete

definition of the data formats, such as the data structures, types, and constraints.

In traditional file processing applications, such meta-data usually are encapsulated

in the application programs themselves. In DBMS, the format of the metadata is

independent of any particular application data structure; therefore, it will provide

a generic storage management mechanism. Another advantage of the database

approach is program-data independence. By moving the meta-data into an external

DBMS, a layer of insulation is created between the applications and the stored data

structures. This allows any number of applications to access the data in a simplified and

uniform manner.

 Database Views

*. The DBMS provides the database users with a conceptual representation that

is independent of the low-level details (physical view) of how the data are stored.

*. The database can provide an abstract data model that uses logical concepts

such as field, records, and tables and their interrelationships. Such a model is understood

more easily by the user than the low-level storage concepts.

*. This abstract data model also can facilitate multiple views of the same

underlying data.

*. Many applications will use the same shared information but each will be

interested in only a subset of the data.

*. The DBMS can provide multiple virtual views of the data that are tailored to

individual applications. This allows the convenience of a private data representation with

the advantage of globally managed information.

 Database Models

A database model is a collection of logical constructs used to represent the data

structure and data relationships within the database.

Database models may be grouped into two categories: conceptual models and

implementation models.

The conceptual model focuses on the logical nature of that data presentation.

Therefore, the conceptual model is concerned with what is represented in the database.

The implementation model is concerned with how it is represented.

Hierarchical Model: The hierarchical model represents data as a single rooted tree.

Each node in the tree represents a data object and the connections represent a parent-

child relationship.

For example, a node might be a record containing information about Motor vehicle and

its child nodes could contain a record about Bus parts (see Figure 4.12).

176

Fig. 4.12 A hierarchical Model

Network Model : A network database model is its’ record can have more than one

parent. For example, in Figure 4.13 , an Order contains data from the Soup and Customer

nodes.

Fig 4.13: An order contains data from both customer and soup

Relational Model: This database model is the relation, which can be thought of as a

table. The columns of each table are attributes that define the data or value domain for

entries in that column. The rows of each table are tuples representing individual data

objects being stored. A relational table should have only one primary key.

A primary key is a combination of one or more attributes whose value

unambiguously locates each row in the table.

In Figure , Soup-ID, Cust-ill, and Order-ill are primary keys in Soup, Customer, and

Order tables.

A foreign key is a primary key of one table that is embedded in another table to

link the tables. In Figure 4.14 , Soup-ill and Cust-ill are foreign keys in the Order table.

177

Fig 4.14 : The fig depicts primary and foreign key in a relation database.

 Database Interface

The interface on a database must include a data definition language (DDL), a

query, and data manipulation language (DML).
These languages must be designed to fully reflect the flexibility and constraints

inherent in the data model.

Database systems have adopted two approaches for interfaces with the system.

1. Structured query language (SQL) - This approach is a very popular way of

defining and designing a database and its schema, especially with the popularity

of languages such as SQL, which has become an industry standard for defining

databases. The problem with this approach is that application programmers

have to learn and use two different languages.

2. To extend the host programming language with database related constructs.

This is the major approach, since application programmers need to learn only a

new construct of the same language rather than a completely new language. Many of

the currently operational databases and object-oriented database systems have

adopted this approach; a good example is GemStone from Servio Logic, which has

extended the Smalltalk object-oriented programming.

Database Schema and Data Definition Language :

To represent information in a database, a mechanism must exist to describe or

specify to the database the entities of interest.

A data definition language (DDL) is the language used to describe the

structure of and relationships between objects stored in a database. This structure of

information is termed the database schema.

178

In traditional databases, the schema of a database is the collection of record

types and set types or the collection of relationships, templates, and table records

used to store information about entities of interest to the application.

For example, to create logical structure or schema, the following SQL command

can be used:

CREATE SCHEMA AUTHORIZATION (creator)

CREATE DATABASE (database name)

For example,

CREATE TABLE INVENTORY (Inventory_Number CHAR(10) NOT NULL

DESCRIPTION CHAR(25) NOT NULL PRICE DECIMAL (9, 2));

where the boldface words are SQL keywords.

Data Manipulation Language and Query Capabilities :

A data Manipulation Language (DML) is the language that allows users to

access and manipulate(such as, create, save, or destroy) data organization.

The structured query language (SQL) is the standard DML for relational DBMSs. SQL

is widely used for its query capabilities. The query usually specifies

*. The domain of the discourse over which to ask the query.

*. The elements of general interest.

*. The conditions or constraints that apply.

*. The ordering, sorting, or grouping of elements and the constraints that, apply to

the ordering or grouping.

Traditionally, DML are either procedural or nonprocedural. A procedural

DML requires users to specify what data are desired and how to get the data. A

nonprocedural DML, like most databases' fourth generation programming

language (4GLs), requires users to specify what data are needed but not how to get

the data.

Object-oriented query and data manipulation languages, such as Object SQL,

provide object management capabilities to the data manipulation language.

In a relational DBMS, the DML is independent of the host programming

language. A host language such as C or COBOL would be used to write the body of the

application. Typically, SQL statements then are embedded in C or COBOL applications

to manipulate data. Once SQL is used to request and retrieve database data, the results of

the SQL retrieval must be transformed into the data structures of the programming

language. A disadvantage of this approach is that programmers code in two languages,

SQL and the host language. Another is that the structural transformation is required in

both database access directions, to and from the database.

179

 LOGICAL AND PHYSICAL DATABASE ORGANIZATION AND ACCESS

CONTROL

Logical database organization refers to the conceptual view of database structure

and the relationships within the database. For example, object-oriented systems represent

databases composed of objects, and many allow multiple databases to share information

by defining the same object.

Physical database organization refers to how the logical components of the

database are represented in a physical form by operating system constructs (i.e., objects

may be represented as files).

 Shareability and Transactions

Data and objects in the database often need to be accessed and shared by different

applications. With multiple applications having access to the object concurrently, it is

likely that conflicts over object access will arise. The database then must detect and

mediate these conflicts and promote the greatest amount of sharing possible without

sacrificing the integrity of data. This mediation process is managed through concurrency

control policies, implemented, in part, by transactions.

A transaction is a unit of change in which many individual modifications are

aggregated into a single modification that occurs in its entirety or not at all. Thus, either

all changes to objects within a given transaction are applied to the database or none of the

changes. A transaction is said to commit if all changes can be made successfully to the

database and to abort if canceled because all changes to the database cannot be made

successfully. This ability of transactions ensures atomicity of change that maintains the

database in a consistent state.

 Concurrency Policy

*. When several users (or applications) attempt to read and write the same object

simultaneously, they create a contention for object.

*. The concurrency control mechanism is established to mediate such conflicts by

making policies that dictate how they will be handled.

*. A basic goal of the transaction is to provide each user with a consistent view

of the database. This means that transactions must occur in serial order.

*. The most conservative way to enforce serialization is to allow a user to lock

all objects or records when they are accessed and to release the locks only

after a transaction commits. This approach, traditionally known as a

conservative or pessimistic policy, provides exclusive access to the object,

despite what is done to it.

*. Under an optimistic policy, two conflicting transactions are compared in their

entirety and then their serial ordering is determined. As long as the database is

180

able to serialize them so that all the objects viewed by each transaction are from a

consistent state of the database, both can continue even though they have read and

write locks on a shared object.

*. Thus, a process can be allowed to obtain a read lock on an object already write

locked if its entire transaction can be serialized as if it occurred either entirely

before or entirely after the conflicting transaction. The reverse also is true:

*. A process may be allowed to obtain a write lock on an object that has a read

lock if its entire transaction can be serialized as if it occurred after the conflicting

transaction. In such cases, the optimistic policy allows more processes to operate

concurrently than the conservative policy.

 DISTRIBUTED DATABABSES AND CLIENT-SERVER COMPUTING

Many modern databases are distributed databases, which imply that portions of

the database reside on different nodes (computers) and disk drives in the network.

Usually, each portion of the database is managed by a server, a process responsible for

controlling access and retrieval of data from the database portion.

The server dispenses information to client applications and makes queries or data

requests to these client applications or other servers.

Clients generally reside on nodes in the network other than those on which the

servers execute. However, both can reside on the same node, too.

 What Is Client-Server Computing?

*. Client-Server computing is the logical extension of modular programming.

*. The fundamental assumption of modular programming is that separation of a

large piece of software into its constituent parts (“modules”) creates the possibility for

easier development and better maintainability.

*.Client-server computing extends this theory a step further by recognizing that

all those modules need not be executed within the same memory space or even on the

same machine. With this architecture, the calling module becomes the “client” (that

which requests a service) and the called module becomes the “server” (that which

provides the service).

*. Another important component of client-server computing is connectivity,

which allows applications to communicate transparently with other programs or

processes, regardless of their locations. The key element of connectivity is the Network

Operating System (NOS), also known as middleware. The NOS provides services such

as routing, distribution, messages, filing and printing, and network management.

181

*. The client is a process (program) that sends a message to a server process

(program) requesting that the server perform a task (service).

*. Client programs usually manage the user interface portion of the application,

validate data entered by the user, dispatch requests to server programs, and sometimes

execute business logic.

*. The business layer contains all the objects that represent the business (real

objects), such as Order, Customer, Lineitem, Inventory.

*. The client-based process is the front-end of the application, which the user sees

and interacts with.

*. The client process contains solution-specific logic and provides the interface

between the user and the rest if the application system. It also manages the local

resources with which the user interacts, such as the monitor, keyboard, workstation, CPU,

and peripherals.

*. A key component of a client workstation is the graphical user interface (GUI),

which normally is a part of the operating system (i.e., the Windows manager). It is

responsible for detecting user actions, managing the Windows on the display, and

displaying the data in the Windows.

*. A server process (program) fulfills the client request by performing the task

requested.

*. Server programs generally receive requests from client programs, execute

database retrieval and updates, manage data integrity, and dispatch responses to client

requests.

*. Sometimes, server programs execute common or complex business logic. The

server-based process “may” run on another machine on the network. This server could be

the host operating system or network file server; the server then is provided both file

system services and application services.

*. In some cases, another desktop machine provide the application services. Their

server process acts as a software engine that manages shared resources such as databases,

printers, communication links, or high-powered processors. The server process performs

the back-end tasks that are common to similar applications.

server.

*. The server can take different forms. The simplest form of server is a file

*. With a file server, the client passes requests for files or file records over a

network to the file server. This form of data service requires large bandwidth (the range

of data that can be sent over a given medium simultaneously) and can considerably slow

down a network with many users.

*. Traditional LAN computing allows users to share resources, such as data files

and peripheral devices.

*. More advanced forms of servers are database servers, transaction servers,

application servers, and more recently object servers.

*. With database servers, clients pass SQL requests as message to the server and

the results of the query are returned over the network. Both the code that process the SQL

request and the data reside on the server, allowing it to use its own processing power to

find the requested data. This is in contrast to the file server, which requires passing all the

records back to the client and then letting the client find its own data.

182

*. With transaction servers, clients invoke remote procedures that reside on

servers, which also contain an SQL database engine. The server has procedural

statements to execute a group of SQL statements (transactions), which either all succeed

or fail as a unit.

*. The applications based on transaction servers, handled by on-line transaction

processing (OLTP) tend to be mission-critical applications that always require a 1-3

second response time and tight control over the security and the integrity of the database.

The communication overhead of a single request and reply (as opposed to multiple SQL

statements in database servers).

*. Application servers are not necessarily database centered but are used to serve

user needs, such as downloading capabilities from Dow Jones or regulating an electronic

mail process. Basing resources on a server allows users to share data, while security and

management services, also based on the server, ensure data integrity and security.

* The logical extension of this is to have clients and servers running on the

appropriate hardware and software platforms for their functions. For example, database

management system servers should run on platforms especially with special elements for

managing files.

*. In a two-tier architecture, a client talks directly to a server, with no

intervening server. This type of architecture typically is used in small environments with

less than 50 users. A common error in client-server development is to prepare a prototype

of an application in a small two-tier environment then scale up by simply adding more

users to the server. This approach usually will result in an ineffective system, as the

server becomes overwhelmed. To properly scale up to hundreds or thousands of users, it

usually is necessary to move to three-tier architecture.

*. A three-tier architecture introduces a server (application or Web server)

between the client and the server. The role of the application or Web server is manifold.

It can provide translation services (as in adapting a legacy application on a mainframe to

a client-server environment), meeting services (as in acting as a transaction monitor to

limit the number of simultaneous requests to a given server), or intelligent agent services

(as in mapping a request to a number of different servers, collating the results, and

returning a single response to the client).

Ravi Kalakota describes the basic characteristics of client-server

architectures as follows:

1. A combination of a client or front-end portion that interacts with the user and a

server or back end portion that interacts with the shared resource. The client

process contains solution-specific logic and provides the interface between the

user and the rest of the application system. The server process acts as a software

engine that manages shared resources such as databases, printer, modems, or

high-powered processors.

2. The front-end task and back-end task have fundamentally different

requirements for computing resources such as processor speeds, memory, disk

speeds and capacities, and input/output devices.

3. The environment is typically heterogeneous and multivendor. The hardware

platform and operating system of client and server are not usually the same. Client

183

and server processes communicate through a well-defines set of standard

application program interfaces(APIs)

4. An important characteristic of client-server systems is scalability. They can be

scaled horizontally or vertically. Horizontal scaling means adding or removing

client workstations with only a slight performance impact. Vertical scaling means

migrating to a larger and faster server machine or multi-servers.

Client-server and distributed computing have arisen because of a change in business

needs. Unfortunately, most business have existing systems, based on older technology,

that must be incorporated into the new, integrated environment; that is, mainframes with

a great deal of legacy (older application) software.

A typical client-server application consists of the following components:

1. User interface. This major component of the client-server application interacts with

users, screens, windows, Windows managements, keyboard, and mouse handling.

2. Business processing. This part of the application uses the user interface data to

perform business tasks. In this book, we look at how to develop this component by

utilizing an object-oriented technology.

3. Database Processing. This part of the application code manipulates data within the

application. The data are managed by a database management system, object oriented or

not. Data manipulation language , such as SQL or a dialect of SQL (perhaps, an object –

oriented query language). Ideally , the DBMS processing is transparent to the business

processing layer of the application.

The development and implementation of client-server computing is more

complex, more difficult, and more expensive that traditional, single process applications.

However, utilizing an object-oriented methodology, we can manage the complexity of

client-server applications.

 DISTRIBUTED AND COOPERATIVE PROCESSING

The distributed processing means distribution of applications and business

logic across multiple processing platforms.

*. Distributed processing implies that processing will occur on more than one

processor in order for a transaction to be completed.

*. In other words, processing is distributed across two or more machines, where

each process performs part of an application in a sequence. These processes may not run

at the same time. For example, in processing an order from a client, the client information

may process at one machine and the account information then may process on a different

machine.

*. Often, the object used in a distributed processing environment also is

distributed across platforms.

184

*. Cooperative processing is computing that requires two or more distinct

processors to complete a single transaction.

*. Cooperative processing is related to both distributed and client-server

processing. Cooperative is a form of distributed computing in which two or more distinct

processes are required to complete a single business transaction.

*. Usually, these programs interact and execute concurrently on different

processors.

*. Cooperative processing also can be considered to be a style of distributed

processing, if communication between processors is performed through a message-

passing architecture.

 DISTRIBUTED OBJECTS COMPUTING : THE NEXT GENERATION OF

CLIENT-SERVER COMPUTING

Software technology is in the midst of a major computational shift toward

distributed object computing (DOC). Distributed computing is poised for a second

generation client-server era. In this new client-server model, servers are plentiful

instead of scarce (because every client can be a server) and proximity no longer

matters.

In the first generation client-server era, which still is very much is progress,

SQL database, transaction processing (TP) monitors, and groupware have begun to

displace file servers as client-server application models.

In the new client-server era, distributed object technology is expected to

dominate other client-server application models.

Distributed object computing promises the most flexible client-server systems,

because it utilized reusable software components that can roam anywhere on networks,

run on different platforms, communicate with legacy applications by means of object

wrappers, and manage themselves and the resources they control. Objects can help break

monolithic applications into more manageable components that coexist on the expanded

bus.
Distributed objects are reusable software components that can be distributed

and accessed by users across the network. These objects can be assembled into

distributed applications. Distributed object computing introduces a higher level of

abstraction into the world of distributed applications. Applications no longer need to

know which server process performs a given function. All information about the function

is hidden inside the encapsulated object. A message requesting an operation is sent to the

object, and the appropriate method is invoked.

Distributed object computing will be the key part of tomorrow’s information

systems. DOC resulted from the need to integrate mission-critical applications and

data residing on systems that are geographically remote, sometimes from users and

often from each other, and running on many different hardware platforms.

Furthermore, the information systems must link applications developed in different

languages, use data from object and relational databases and from mainframe systems,

and he optimized from use across the Internet and thorough departmental intranets.

Historically, business have had to integrate applications and data by writing custom

185

interfaces between systems, forcing developers to spend their time building and

maintaining an infrastructure rather than adding new business functionality.

Distributed object technology has been tied to standards from the early stage.

Since 1989, the Object Management Group (OMG), with over 500 member

companies, has been specifying the architecture for an open software bus on which object

components written by different vendors can operate across networks and operating

systems. The OMG and the object bus are well on their way to becoming the universal

client-server middleware.

Currently, there are several competing DOC standards, including the object

Management Group’s COBRA, OpenDoc, standards, and Microsoft’s

ActiveX/DCOM. Although DOC technology offers unprecedented computing power,

few organizations have been able to harness it as yet. The main reasons commonly cited

for slow adoption of DOC include closed legacy architecture, incompatible protocols,

inadequate network bandwidths, and security issues. In the next subsections, we look at

Microsoft’s DCOM and OMG’s CORBA.

 Common Object Request Broker Architecture

Many Organizations are now adopting the object Management Group’s Common

object request broker architecture (CORBA), a standard proposed as a means to

integrate distributed, heterogeneous business applications and data.

The CORBA interface definition language (IDL) allows developers to specify

language-neutral, object-oriented interfaces for application and system

components.

IDL Definitions are stored in an interface repository, a sort of phone book that

offers object interfaces and services. For distributed enterprise computing, the

interface repository is central to communication among objects located on

different systems.

CORBA object request brokers (ORBs) implement a communication channel

though which applications can access object interfaces and request data and services. The

CORBA common object environment (COE) provides system-level services such as life

cycle management for objects accessed through CORBA, event notification between

objects, and transaction and concurrency control.

 Microsoft’s ActiveX/DCOM

Microsoft’s component object model (COM) and its successor the distributed

component object model (DCOM) are Microsoft’s alternatives to OMG’s distributed

object architecture CORBA.

Microsoft and the OMG are competitors, and few can say for sure which

technology will win the challenge.

Although CORBA benefits from wide industry support, DCOM is supported

mostly by one enterprise, Microsoft.

However, Microsoft is no small business concern and hold firmly a huge part of

the microcomputer population, so DCOM has appeared a very serious competitor to

186

CORBA. DCOM was bundled with Windows NT 4.0 and there is a good chance to see

DCOM in all forthcoming Microsoft products.

The distributed component object model, Microsoft’s alternative to OMG’s

CORBA, is an Internet and component strategy where ActiveX (formerly known as

object linking and embedding, or OLE) plays the role DCOM object. DCOM also is

backed by a very efficient Web browser, the Microsoft Internet Explorer.

 OB.JECT.ORIENTED DATABASE MANAGEMENT SYSTEMS: THE

PURE WORLD

The object-oriented database management system is a marriage of object

oriented programming and database technology (see Figure 17) to provide what we now

call object oriented databases.

Additionally, object-oriented databases allow all the benefits of an object

orientation as well as the ability to have a strong equivalence with object-oriented

programs, an equivalence that would be lost if an alternative were chosen, as with a

purely relational database.

By combining object-oriented programming with database technology, we have

an integrated application development system, a significant characteristic of object-

oriented database technology.

Many advantages accrue from including the definition of operations with the

definition of data.

1. The defined operations apply universally and are not dependent on the

particular database application running at the moment.

2. The data types can be extended to support complex data such as multimedia

by defining new object classes that have operations to support the new kinds of

information.

Fig 4.17 The object-oriented database management system is a marriage of

object-oriented programming and database technology.

The "Object-Oriented Database System Manifesto" by Malcom Atkinson et al.

described the necessary characteristics that a system must satisfy to be considered an

187

object oriented database. These categories can be broadly divided into object-oriented

language properties and database requirements.

First, the rules that make it an object-oriented system are as follows:

1. The system must support complex objects. A system must provide simple atomic types

of objects (integers, characters, etc.) from which complex objects can be built by applying

constructors to atomic objects or other complex objects or both.

2. Object identity must be supported. A data object must have an identity and

existence independent of its values.

3. Objects must be encapsulated. An object must encapsulate both a program and its

data. Encapsulation embodies the separation of interface and implementation and the

need for modularity.

4. The system must support types or classes. The system must support either the type

concept (embodied by C++) or the class concept (embodied by Smalltalk).

5. The system must support inheritance. Classes and types can participate in a class

hierarchy. The primary advantage of inheritance is that it factors out shared code and

interfaces.

6. The system must avoid premature binding. This feature also is known as late binding

or dynamic binding Since classes and types support encapsulation and inheritance, the

system must resolve conflicts in operation names at run time.

7. The system must be computationally complete. Any computable function should be

expressible in the data manipulation language (DML) of the system, thereby allowing

expression of any type of operation.

8. The system must be extensible. The user of the system should be able to create new

types that have equal status to the system's predefined types. These requirements are met

by most modem object-oriented programming languages such as Smalltalk and C+ +.

Also, clearly, these requirements are not met directly (more on this in the next section) by

traditional relational, hierarchical, or network database systems. Second, these rules make

it a DBMS:

9. It must be persistent, able to remember an object state. The system must allow the

programmer to have data survive beyond the execution of the creating process for it to be

reused in another process.

10. It must be able to manage very large databases. The system must efficiently manage

access to the secondary storage and provide performance features, such as indexing,

clustering, buffering, and query optimization.

11. It must accept concurrent users. The system must allow multiple concurrent users

and support the notions of atomic, serializable transactions.

12. It must be able to recover from hardware and software failures. The system must be

able to recover from software and hardware failures and return to a coherent state.

13. Data query must be simple. The system must provide some high-level mechanism for

ad-hoc browsing of the contents of the database. A graphical browser might fulfill this

requirement sufficiently. These database requirements are met by the majority of existing

database systems. From these two sets of definitions it can be argued that an OODBMS is

a DBMS with an underlying object-oriented model.

188

4.17.1 Object-Oriented Databases versus Traditional Databases

*. The scope of the responsibility of an OODBMS includes definition of the

object structures, object manipulation, and recovery, which is the ability to maintain data

integrity regardless of system, network, or media failure.

*. Furthermore, OODBMSs like DBMSs must allow for sharing; secure,

concurrent multiuser access; and efficient, reliable system performance.

 Traditional / Relational

database

Obj-Oriented data base

1 Records play passive role. These databases are derived from the

object’s ability to interact with other objects

itself. The objects are an “active”

component in an o-o database,

2. Relational Database systems do

not explicitly provide inheritance

of attributes and methods.

It represent relationships explicitly, support

both navigational and associative access to

information. So data access performance is
improved.

3. This is purely value-oriented

approach.

They allow representation and storage of

data in the form of objects. Each object has

its own identity, or object-ID. The object

identity is independent of the state of the

object.

All these advantages point to the application of object-oriented databases to information

management problems that are characterized by the need to manage

*. A large number of different data types.

*..A large number of relationships between the objects.

*. Objects with complex behaviors.

 OBJECT – RELATIONAL SYSTEMS: THE PRACTIVAL WORLD.

Many applications increasingly are developed in an o-o-programming

technology, chances are good that the data those applications need to access live in a very

different universe – a relational database. In such environment, the introduction of o-o-

development creates a fundamental mismatch between the programming model (objects)

and the way in which existing data are stored.

*. To resolve the mismatch, a mapping tool between the application objects and

the relational data must be established.

*. Creating an object model from the existing relational database layout (schema)

is referred to as Reverse engineering.

*. Creating a relational schema from an existing object model is referred to as

forward engineering.

189

*. In Practice, over the life cycle of an application, forward and reverse

engineering need to be combined in an iterative process to maintain the relationship

between the object and relational data representations.

*. Tools that can be used to establish the object-relational mapping processes

have begun to emerge. The main process in relational and object integration is defining

the relationships between the table structures in the relational database with classes in the

object model.

 OBJECT-RELATION MAPPING

*. In a relational database, the schema is made up of tables, consisting of rows and

columns, where each column has a name and a simple data type.

*. In an object model, the counterpart to a table is a class (or classes), which has a

set of attributes (properties or data members). Object classes describe behavior with

methods. A tuple (row) of a table contains data for a single entity that correlates to an

object (instance of a class) in an object-oriented system.

*. In addition, a stored procedure in a relational database may correlate to a

method in an object-oriented architecture. A stored procedure is a module of

precompiled SQL code maintained within the database that executes on the server to

enforce rules the business has set about the data.

*. Therefore, the mappings essential to object and relational integration are

between a table and a class, between columns and attributes, between a row and an

object, and between a stored procedure and a method.

For a tool to be able to define how relational data maps to and from application

objects, it must have at least the following mapping capabilities (note all these are two-

way mappings, meaning they map from the relational system to the object and from the

object back to the relational system):

1. Table-class mapping.

2. Table-multiple classes mapping.

3. Table-inherited classes mapping.

4. Tables-inherited classes mapping.

Furthermore, in addition to mapping column values, the tool must be capable of

interpretation of relational foreign keys. The tool must describe both how the foreign key

can be used to navigate among classes and instances in the mapped object model and how

referential integrity is maintained. Referential integrity means making sure that a

dependent table's foreign key contains a value that refers to an existing valid tuple in

another relation.

 TABLE-CLASS MAPPING

Table-class mapping is a simple one-to-one mapping of a table to a class and the

mapping of columns in a table to properties in a class. In this mapping, a single table is

mapped to a single class, as shown in Figure 4.18

190

In such mapping, it is common to map all the columns to properties. However, this is not

required, and it may be more efficient to map only those columns for which an object

model is required by the application(s).

Fig 4.19 Table-multiple classes mapping. The custiD column provides the discriminant.

If the value for custlD is null, an Employee instance is created at run time; otherwise, a

Customer instance is created.

In this approach, each row in the table represents an object instance and each column in

the table corresponds to an object attribute. This one-to-one mapping of the table-class

approach provides a literal translation between a relational data representation and an

application object. It is appealing in its simplicity but offers little flexibility.

 TABLE-MULTIPLE CLASSES MAPPING

In the table-multiple classes mapping, a single table maps to multiple

noninheriting classes. Two or more distinct, noninheriting classes have properties that are

mapped to columns in a single table. At run time, a mapped table row is accessed as an

instance of one of the classes, based on a column value in the table .

In Figure 4.20 , the custiD column provides the discriminant. If the value for

custID is null, an Employee instance is created at run time; otherwise, a Customer

instance is created.

191

4.20 : Table –multiple classes mapping

 Table-inherited Classes mapping

In table-inherited classes mapping, a single table maps to many classes that have

a common superclass. This mapping allows the user to specify the columns to be shared

among the related classes. The superclass may be either abstract or instantiated.

In Figure 4.21 , instances of salariedEmployee can be created for any row in the

Person table that has a non null value for the Salary column. If Salary is null, the row is

represented by an hourly Employee instance.

Fig 4.21: Table Inherited classes mapping

192

 Table-inherited Classes mapping.

Another approach here is tables-inherited classes mapping, which allows the

translation of is-a relationships that exist among tables in the relational schema into

class inheritance relationships in the object model.

In a relational database, an is-a relationship often is modeled by a primary key

that acts as a foreign key to another table. In the object model, is-a is another term for an

inheritance relationship.

By using the inheritance relationship in the object model, the mapping can

express a richer and clearer definition of the relationships than is possible in the relational

schema.

Fig 4.22 Tables-inherited classes mapping. Instances of Person are mapped directly from

the Person table. However, instances of Employee can be created only for the rows in the

Employee table (the joining of the Employee and Person tables on the ssn key).The ssn is

used both as a primary key on the Person table and.as a foreign key on the Person table

and a primary key on the Employee table for activating instances of type Employee.

Figure 4.22 shows an example that maps a Person table to class Person and then

maps a related Employee table to class Employee, which is a subclass of class Person. In

this example, instances of Person are mapped directly from the Person table. However,

instances of Employee can be created only for the rows in the Employee table (the

joining of the Employee and Person tables on the SSN key). Furthermore, SSN is used

both as a primary key on the Person table for activating instances of Person and as a

foreign key on the Person table and a primary key on the Employee table for activating

instances of type Employee.

193

 Keys for Instance Navigation

In mapping columns to properties, the simplest approach is to translate a column's

value into the corresponding class property value. There are two interpretations of this

mapping: Either the column is a data value or it defines a navigable relationship between

instances (i.e., a foreign key). The mapping also should specify how to convert each data

value into a property value on an instance.

In addition to simple data conversion, mapping of column values defines the

interpretation of relational foreign keys. The mapping describes both how the foreign key

can be used to navigate among classes and instances in the mapped object model and how

referential integrity is maintained. A foreign key defines a relationship between tables in

a relational database.

In an object model, this association is where objects can have references to other

objects that enable instance to instance navigation.

 MULTIDATABASE SYSTEMS

• A different approach for integration object-oriented applications with relational

data environments is multidatabase systems or heterogeneous database systems,

which facilitate the integration of heterogeneous databases and other information

sources.

• Heterogeneous information systems facilitate the integration of heterogeneous

information sources, where they can be structured (having regular schema), semi-

structured and sometimes even unstructured. Some heterogeneous information

systems are constructed on a global schema over several databases. So users can

have the benefits of a database with a schema to access data stored in different

databases and cross database functionality. Such heterogeneous information

systems are referred to as federated multidatabase systems.

Federated Multi Data Base

Federated multidatabase systems provide uniform access to data stored in multiple

databases that involve several different data models. A multidatabase system (MDBS) is

a database system that resides unobtrusively on top of, existing relational and object

databases and file systems (local database systems) and presents a single database illusion

to its users. The MDBS maintains a single global database schema and local database

systems maintain all user data. The schematic differences among local databases are

handled by neutralization (homogenization), the process of consolidating the local

schemata.

MultiDatabase Systems (MDBS)

• The MDBS translates the global queries and updates for dispatch to the

appropriate local database system for actual processing, merges the results from

them and generates the final result for the user. MDBS coordinates the

committing and aborting of global transactions by the local database systems that

processed them to maintain the consistency of the data within the local databases.

An MDBS controls multiple gateways (or drivers). It manages local databases

through gateways, one gateway for each local database.

194

To summarize the distinctive characteristic of MDBS

*. Automatic generation of a unified global database schema from local databases, in

addition to schema capturing and mapping for local databases.

*. Provision of cross-database functionality by using unified schemata

*. Integration of heterogeneous database systems with multiple databases.

*. Integration of data types other than relational data through the use of such tools as

driver generators.

*. Provision of a uniform but diverse set of interfaces to access and manipulate data

stored in local databases.

OPEN DATABASE CONNECTIVITY : MULTIDATABASE APPLICATION

PROGRAMMING INTERFACES

• Open Data Base Connective (ODBC) is an application programming interface that

provides solutions to the multidatabase programming problem. It provides a

vendor-neutral mechanism for independently accessing multiple database hosts.

• ODBC and other APIs provide standard database access through a common client-

side interface. It avoids the burden of learning multiple database APIs. Here one

can store data for various applications or data from different sources in any

database and transparently access or combing the data on an as needed basis.

Details of back-end data structure are hidden from the user.

ODBC is similar to Windows print model, where the application developer writes to

a generic printer interface and a loadable driver maps that logic to hardware-

specific commands. This approach virtualizes the target printer or DBMS because

the person with the specialized knowledge to make the application logic work with the

printer or database is the driver developer and not the application programmer. The

application interacts with the ODBC driver manager, which sends the application

calls (such as SQL statements) to the database. The driver manager loads and unloads

drivers, perform status checks and manages multiple connections between applications

and data sources

Refer Text Book –page no. 262 – 263

 Designing Access Layer Classes

The main idea behind creating an access layer is to create a set of classes that

know how to communicate with the place(s) where the data actually reside. Regardless of

where the data reside whether it be a file, relational database, mainframe, Internet,

DCOM or via ORB, the access classes must be able to translate any data-related requests

from the business layer into the appropriate protocol for data access. These classes also

must be able to translate the data retrieved back into the appropriate business objects. The

access layer‘s main responsibility is to provide a link between business or view objects

and data storage. Three-layer architecture is similar to 3-tier architecture. The view layer

corresponds to the client tier, the business layer to the application server tier and the

access layer performs two major tasks:

195

 Translate the request: The access layer must be able to translate any data related

requests from the business layer into the appropriate protocol for data access.

 Translate the results: The access layer also must be able to translate the data

retrieved back into the appropriate business objects and pass those objects back
into the business layer.

 Here design is tied to any base engine or distributed object technology such as

CORBA or DCOM. Here we can switch easily from one database to another with

no major changes to the user interface or business layer objects. All we need to

change are the access classes‘ methods.

• Unlike object oriented DBMS systems, the persistent object stores do not

support query or interactive user interface facilities.

• Controlling concurrent access by users, providing ad-hoc query capability and

allowing independent control over the physical location of data are not possible with

persistent objects.

• The access layer (AL), which is a key part of every n-tier system, is mainly

consist of a simple set of code that does basic interactions with the database or any other

storage device. These functionalities are often referred to as CRUD (Create, Retrieve,

Update, and Delete).

• The data access layer need to be generic, simple, quick and efficient as much as

possible. It should not include complex application/ business logics.

• I have seen systems with lengthy, complex store procedures (SP), which run

through several cases before doing a simple retrieval. They contain not only most part of

the business logic, but application logic and user interface logic as well. If SP is getting

longer and complicated, then it is a good indication that you are burring your business

logic inside the data access layer.

Refer Text Book - page no – 264 -268.

196

VIEW LAYER : DESIGNING INTERFACE OBJECTS

 DESIGING VIEW LAYER CLASSES

The view layer objects are responsible for two major aspects of the applications:

1. Input-responding to user interaction. The user interface must be designed to translate

an action by the user, such as clicking on a button or selecting from a menu, into an

appropriate response. That response may be to open or close another interface or to send

a message down into the business layer to start some business process. Remember, the

business logic does not exist here, just the knowledge of which message to send to which

business object.

2. Output-displaying or printing business objects. This layer must paint the best picture

possible of the business objects for the user. In one interface, this may mean entry fields

and list boxes to display an order and its items. In another, it may be a graph of the total

price of a customer's orders.

The process of designing view layer classes is divided into four major activities:

1. The macro level VI design process-identifying view layer objects.

This activity, for the most part, takes place during the analysis phase of system

development. The main objective of the macro process is to identify classes that

interact with human actors by analyzing the use cases developed in the 'analysis

phase. These use cases should capture a complete, unambiguous, and consistent

picture of the interface requirements of the system.

After all, use cases concentrate on describing what the system does rather than how it

does it by separating the behavior of a system from the way it is implemented, which

requires viewing the system from the user's perspective rather than that of the machine.

However, in this phase, we also need to address the issue of how the interface must be

implemented. Sequence or collaboration diagrams can help by allowing us to zoom in on

the actor-system interaction and extrapolate interface classes that interact with human

actors; thus, assisting us in identifying and gathering the requirements for the view layer

objects and designing them.

2. Micro level VI design activities:

 Designing the view layer objects by applying design axioms and corollaries.

In designing view layer objects, decide how to use and extend the

components so they best support application-specific functions and provide the

most usable interface.

 Prototyping the view layer interface. After defining a design model, prepare a

prototype of some of the basic aspects of the design. Prototyping is particularly useful

early in the design process.

3. Testing usability and user satisfaction. "We must test the application to make sure it

meets the audience requirements. To ensure user satisfaction, we must measure user

satisfaction and its usability along the way as the UI design takes form. Usability experts

agree that usability evaluation should be part of the development process rather than a

197

post-mortem or forensic activity. Despite the importance of usability and user

satisfaction, many system developers still fail to pay adequate attention to usability,

focusing primarily on functionality" . In too many cases, usability still is not given

adequate consideration.

 Macro-level process: identifying view classes by analyzing use cases

The interface object handles all communication with the actor but processes no

business rules or object storage activities. In essence, the interface object will Effective

interface design is more than just following a set of rules. It also involves early planning

of the interface and continued work through the software development process. The

process of designing the user interface involves can fying the specific needs of the

application, identifying the use cases and interface object and then devising a design that

best meets users' needs. The remainder of this chapter describes the micro-level VI

design process and the issues involved.

Fig 4.23 The macro level design process.

198

Questions

Part-A

Q.No Questions Competence BT Level

1. Compare Coupling and Cohesion. Analysis
BTL 4

2. List out the types of Database models. Remember
BTL 1

3. Define Corollaries. Remember
BTL 1

4. List out the types of attributes. Remember
BTL 1

5. Define DDL and DML. Remember
BTL 1

6. Define Axiom. Remember
BTL 1

7. What is meant by Coupling? Remember
BTL 1

8. What is OCL? Remember
BTL 1

9. Analyze the purpose of DBMS. Analysis
BTL 4

10. List out the various Visibility modes. Remember
BTL 1

Part-B

Q.No Questions Competence BT Level

1. Elaborate Object Oriented Design process in detail. Remember
BTL 1

2. Explain the steps involved in designing the access layer classes. Remember
BTL 1

3.
Explain the activities involved in the macro and micro level

processes while designing the view layer classes.
Remember

BTL 1

4. Explain about Corollaries in detail. Remember
BTL 1

5.

Discuss in detail about

(i)Client Server computing

(ii)Distributed Database

Understand

BTL 2

6.

(i)Compare Traditional Database and Object Oriented

Database.

(ii)Analyze the Characteristics of OOD

Analysis

BTL 4

7. Explain OODBMS in detail. Remember
BTL 1

199

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

UNIT – V - OBJECT ORIENTED ANALYSIS AND SYSTEM ENGINEERING - SCSA1401

200

UNIT 5

 SOFTWARE QUALITY

 Software Quality Assurance- Impact of Object Orientation on Testing - Develop

Test Cases and Test Plans – System Usability and Measuring User Satisfaction:

Usability Testing - User Satisfaction Testing.

SOFTWARE QUALITY ASSURANCE

In the early history of computers, live bugs could be a problem (see Bugs and

Debugging). Moths and other forms of natural insect life no longer trouble digital

computers. However, bugs and the need to debug programs remain. In a 1966 article in

Scientific American, computer scientist Christopher Strachey wrote,Although programming

techniques have improved immensely since the early years, the process of finding and

correcting errors in prograrnming-"debugging" still remains a most difficult, confused and

unsatisfactory operation. The chief impact of this state of affairs is psychological.

The elimination of the syntactical bug is the process of debugging, whereas the

detection and elimination of the logical bug is the process of testing. Gruenberger writes,

The logical bugs can be extremely subtle and may need a great deal of effort to eliminate

them. It is commonly accepted that all large software systems(operating or application) have

bugs remaining in them. The number of possible paths through a large computer program is

enormous, and it is physically impossible to explore all of them. The single path containing a

bug may not be followed in actual production runs for a long time (if ever) after the program

has been certified as correct by its author or others.

QUALITY ASSURANCE TESTS

One reason why quality assurance is needed is because computers are infamous for

doing what you tell them to do, not necessarily what you want them to do. To close this gap,

the code must be free of errors or bugs that cause unexpected results, a process called

debugging..

Scenario-based testing, also called usage-based testing, concentrates on what the user

201

does, not what the product does. This means capturing use cases and the tasks users perform,

then performing them and their variants as tests. These scenarios also can identify

interaction bugs. They often are more complex and realistic than error-based tests.

Scenario-based tests tend to exercise multiple subsystems in a single test, because that is

what users do. The tests will not find everything, but they will cover at least the higher

visibility system interaction bugs .

TESTING STRATEGIES

The extent of testing a system is controlled by many factors, such as the risks

involved, limitations on resources, and deadlines. In light of these issues, we must deploy a

testing strategy that does the "best" job of finding defects in a product within the given

constraints. There are many testing strategies, but most testing uses a combination of these:

black box testing, white box testing, top-down testing, and bottom-up testing. However, no

strategy or combination of strategies truly can prove the correctness of a system; it can

establish only its "acceptability."

Black Box Testing

The concept of the black box is used to represent a system whose inside workings

are not available for inspection . In a black box, the test item is treated as "black," since its

logic is unknown; all that is known is what goes in and what comes out, or the input and

output (see Figure 13-1). Weinberg describes writing a user manual as an example of a

black box approach to requirements. The user manual does not show the internal logic,

because the users of the system do not care about what is inside the system.

In black box testing, you try various inputs and examine the resulting output; you can learn

what the box does but nothing about how this conversion is implemented . Black box

testing works very nicely in testing objects in an object-oriented environment. The black

box testing technique also can be used for scenario-based tests, where the system's inside

may not be available for inspection but the input and output are defined through use cases or

other analysis information.

White Box Testing

White box testing assumes that the specific logic is important and must be tested to

guarantee the system's proper functioning. The main use of the white box is in error-based

202

testing, when you already have tested all objects of an application and all external or public

methods of an object that you believe to be of greater importance (see Figure).

In white box testing, you are looking for bugs that have a low probability of execution, have

been carelessly implemented, or were overlooked previously .

One form of white box testing, called path testing, makes certain that each path in a

object's method is executed at least once during testing. Two types of path testing are

statement testing coverage and branch testing coverage : .Statement testing coverage. The

main idea of statement testing coverage is to test every statement in the object's method by

executing it at least once. Murray states, "Testing less than this for new software is

unconscionable and should be criminalized" [quoted in 2]. However, realistically, it is

impossible to test a program on every single input, so you never can be sure that a program

will not fail on some input. .Branch testing coverage. The main idea behind branch testing

coverage is to perform enough tests to ensure that every branch alternative has been

executed at least once under some test . As in statement testing coverage, it is unfeasible to

fully test any program of considerable size.Most debugging tools are excellent in statement

and branch testing coverage. White box testing is useful for error-based testing.

Top-Down Testing

Top-down testing assumes that the main logic or object interactions and systems

messages of the application need more testing than an individual object's methods or

supporting logic. A top-down strategy can detect the serious design flaws early in the

implementation.

In theory, top-down testing should find critical design errors early in the testing

process and significantly improve the quality of the delivered software because of the

iterative nature of the test . A top-down strategy supports testing the user interface and

event-driven systems. Testing the user interface using a top-down approach means testing

interface navigation. This serves two purposes, according to Conger. First, the top-down

approach can test the navigation through screens and verify that it matches the requirements.

Second, users can see, at an early stage, how the final application will look and feel . This

approach also is useful for scenario-based testing. Topdown testing is useful to test

subsystem and system integration.

203

Bottom-Up Testing

Bottom-up testing starts with the details of the system and proceeds to higher levels

by a progressive aggregation of details until they collectively fit the requirements for the

system. This approach is more appropriate for testing the individual objects in a system.

Here, you test each object, then combine them and test their interaction and the messages

passed among objects by utilizing the top-down approach.

In bottom-up testing, you start with the methods and classes that call or rely on no

others. You test them thoroughly. Then you progress to the next level up: those methods and

classes that use only the bottom level ones already tested. Next, you test combinations of the

bottom two layers. Proceed until you are testing the entire program. This strategy makes

sense because you are checking the behavior of a piece of codebefore it is used by

another.Bottom-up testing leads to integration testing, which leads to systems testing.

TEST CASES

To have a comprehensive testing scheme, the test must cover all methods or a

good majority of them.

All the services of your system must be checked by at least one test.

To test a system, you must construct some test input cases, then describe how

the output will look.

Next, perform the tests and compare the outcome with the expected output.

The good news is that the use cases developed during analysis can be used to

describe the usage test cases.

After all, tests always should be designed from specifications and not by looking at

the product!
Myers describes the objective of testing as follows.

Testing is the process of executing a program with the intent of finding errors. A

good test case is the one that has a high probability of detecting an as-yet undiscovered error.

A successful test case is the one that detects an as-yet undiscovered error.

Guidelines for Developing Quality Assurance Test Cases

Gause and Weinberg provide a wonderful example to highlight the essence of a test

case. Say, we want to test our new and improved "Superchalk": Writing a geometry lesson

on a blackboard is clearly normal use for Superchalk. Drawing on clothing is not normal,

but is quite reasonable to expect. Eating Superchalk may be unreasonable, but the design

will have to deal with this issue in some way, in order to prevent lawsuits. No single failure

of requirements work leads to more lawsuits than the confident declaration.

Basically, a test case is a set of what-if questions. Freedman and Thomas have

developed guidelines that have been adapted for the UA: .Describe which feature or service

(external or internal) your test attempts to cover. .If the test case is based on a use case (i.e.,

this is a usage test), it is a good idea to refer to the use-case name. Remember that the use

cases are the source of test cases. In theory, the software is supposed to match the use cases,

not the reverse. As soon as you have enough of use cases, go ahead and write the test plan

for that piece. . Specify what you are testing and which particular feature (methods). Then,

204

specify what you are going to do to test the feature and what you expect to happen. .Test the

normal use of the object's methods. .Test the abnormal but reasonable use of the object's

methods. .Test the abnormal and unreasonable use of the object's methods.

Test the boundary conditions. For example, if an edit control accepts 32 characters,

try 33, then try 40. Also specify when you expect error dialog boxes, when you expect some

default event, and when functionality still is being defined. .Test objects' interactions and the

messages sent among them. If you have developed sequence diagrams, they can assist you in

this process.

.When the revisions have been made, document the cases so they become the starting basis

for the follow-up test. .

.The internal quality of the software, such as its reusability and extendability, should be

assessed as well. Although the reusability and extendability are more difficult to test,

nevertheless they are extremely important. Software reusability rarely is practiced

effectively. The organizations that will survive in the 21st century will be those that have

achieved high levels of reusability-anywhere from 70-80 percent or more . Griss argues that,

although reuse is widely desired and often the benefit of utilizing object technology, many

object-oriented reuse efforts fail because of too narrow a focus on technology rather than

the policies set forth by an organization. He recommends an institutionalized approach to

software development, in which software assets intentionally are created or acquired to be

reusable. These assets then are consistently used and maintained to obtain high levels of

reuse, thereby optimizing the organization's ability to produce high-quality software

products rapidly and effectively. Your test case may measure what percentage of the system

has been reused, say, measured in terms of reused lines of code as opposed to new lines of

code written. Specifying results is crucial in developing test cases. You should test cases

that are supposed to fail. During such tests, it is a good idea to alert the person running them

that failure is expected. Say, we are testing a File Open feature. We need to specify the result

as follows:

1. Drop down the File menu and select Open.

2. Try opening the following types of files:

. A file that is there (should work).

.A file that is not there (should get an Error message).

.A file name with international characters (should work).

.A file type that the program does not open (should get a message or conversion dialog box).

TEST PLANS

On paper, it may seem that everything will fall into place with no preparation and a

bug- free product will be shipped. However, in the real world, it may be a good idea to use

a test plan to find bugs and remove them. A dreaded and frequently overlooked activity in

software development is writing the test plan. A test plan offers a road map for testing

activities, whether usability, user satisfaction, or quality assurance tests. It should state the

test objectives and how to meet them. The test plan need not be very large; in fact, devoting

too much time to the plan can be counterproductive.

205

The following steps are needed to create a test plan:

1. Objectives of the test. Create the objectives and describe how to achieve them.

For example, if the objective is usability of the system, that must be stated and also how to

realize it.

2. Development of a test case. Develop test data, both input and expected output, based on

the domain of the data and the expected behaviors that must be tested (more on this in the

next section).

3. Test analysis. This step involves the examination of the test output and the

documentation of the test results. If bugs are detected, then this is reported and the activity

centers on debugging. After debugging, steps 1 through 3 must be repeated until no bugs can

be detected.

All passed tests should be repeated with the revised program, called regression

testing, which can discover errors introduced during the debugging process. When sufficient

testing is believed to have been conducted, this fact should be reported, and testing for this

specific product is complete .

According to Tamara Thomas , the test planner at Microsoft, a good test plan is one

of the strongest tools you might have. It gives you the chance to be clear with other groups

or departments about what will be tested, how it will be tested, and the intended schedule.

Thomas explains that, with a good, clear test plan, you can assign testing features to other

people in an efficient manner. You then can use the plan to track what has been tested, who

did the testing, and how the testing was done. You also can use your plan as a checklist, to

make sure that you do not forget to test any features.

Who should do the testing? For a small application, the designer or the design team usually

will develop the test plan and test cases and, in some situations, actually will perform the

tests. However, many organizations have a separate team, such as a quality assurance group,

that works closely with the design team and is responsible for these activities (such as

developing the test plans and actually performing the tests). Most software companies also

use beta testing, a popular, inexpensive, and effective way to test software on a select group

of the actual users of the system. This is in contrast to alpha testing, where testing is done by

inhouse testers, such as programmers, software engineers, and internal users. If you are

going to perform beta testing,make sure to include it in your plan, since it needs to be

communicated to your users well in advance of the availability of your application in a beta

version.

GUIDELINES FOR DEVELOPING TEST PLANS

As software gains complexity and interaction among programs is more tightly

coupled, planning becomes essential. A good test plan not only prevents overlooking a

feature (or features), it also helps divide the work load among other people, explains

Thomas.

The following guidelines have been developed by Thomas for writing test plans :

.You may have requirements that dictate a specific appearance or format for your test plan.

These requirements may be generated by the users. Whatever the appearance of your test

206

plan, try to include as much detail as possible about the tests. .The test plan should contain a

schedule and a list of required resources. List how many people will be needed, when the

testing will be done, and what equipment will be required.

After you have detennined what types of testing are necessary (such as black box,

white box, top-down, or bottom-up testing), you need to document specifically what you are

going to do. Document every type of test you plan to complete.

The level of detail in your plan may be driven by several factors, such as the

following: How much test time do you have?
Will you use the test plan as a training tool for newer team members? .

A configuration control system provides a way of tracking the changes to the code.

At a minimum, every time the code changes, a record shouh l, De kept that tracks which

module has been changed, who changed it, and when it was altered, with a comment about

why the change was made. Without configuration control, you may have difficulty keeping

the testing in line with the changes, since frequent changes may occur without being

communicated to the testers. .

A well-thought-out design tends to produce better code and result in more ,complete

testing, so it is a good idea to try to keep the plan up to date. Generally, the older a plan gets,

the less useful it becomes. If a test plan is so old that it has become part of the fossil record,

it is not terribly useful. As you approach the end of a project, you will have less time to

create plans . If you do not take the time to document the work that needs to be done, you

risk forgetting something in the mad dash to the finish line. Try to develop a habit of

routinely bringing the test plan in sync with the product or product specification. . At the end

of each month or as you reach each milestone, take time to complete routine updates. This

will help you avoid being overwhelmed by being so outof- date that you need to rewrite the

whole plan. Keep configuration infonnation on your plan, too. Notes about who made

which updates and when can be very helpful down the road

MYERS'S DEBUGGING PRINCIPLES

The Myers's bug location and debugging principles:

1. Bug Locating Principles . Think. . If you reach an impasse, sleep on it. . If the impasse

remains, describe the problem to someone else. .Use debugging tools (this is slightly

different from Myers's suggestion). .Experimentation should be done as a last resort (this is

slightly different from Myers's suggestion).

2. Debugging Principles . Where there is one bug, there is likely to be another. .Fix the

error, not just the symptom of it. .The probability of the solution being correct drops as the

size of the program increases. .Beware of the possibility that an error correction will create a

new error (this is less of a problem in an object-oriented environment).

CASE STUDY: DEVELOPING TEST CASES FOR THE VIANET BANK ATM

SYSTEM

We identified the scenarios or use cases for the ViaNet bank ATM system. The ViaNet bank

ATM system has scenarios involving Checking Account, Savings Account, and general

Bank Transaction (see Figures. Here again is a list of the use cases that drive many object-

oriented activities, including the usability testing: .Bank Transaction (see Figure).

207

.Checking Transaction History (see Figure). .Deposit Checking (see Figure).

.Deposit Savings (see Figure). .Savings Transaction History (see Figure). .Withdraw

Checking (see Figure). .Withdraw Savings (see Figure). .Valid/Invalid PIN (see Figure).

The activity diagrams and sequence/collaboration diagrams created for these use cases are

used to develop the usability test cases. For example, you can draw activity and sequence

diagrams to model each scenario that exists when a bank client withdraws, deposits, or needs

information on an account. Walking through the steps can assist you in developing a usage

test case.

Let us develop a test case for the activities involved in the ATM transaction based on the

use cases identified so far. (See the activity diagram in Figure and the sequence diagram of

Figure to refresh your memory.)

SYSTEM USABLILITY AND USER

SATISFACTION INTRODUCTION

Quality refers to the ability of products to meet the users' needs and expectations.

The task of satisfying user requirements is the basic motivation for quality. Quality also

means striving to do the things right the first time, while always looking to improve how

things are being done. Sometimes, this even means spending more time in the initial phases

of a project-such as analysis and design-making sure that you are doing the right things.

Having to correct fewer problems means significantly less wasted time and capital. When all

the losses caused by poor quality are considered, high quality usually costs less than poor

quality.

Two main issues in software quality are validation or user satisfaction and

verification or quality assurance (see Previous chapter). There are different reasons for

testing. You can use testing to look for potential problems in a proposed design. You can

focus on comparing two or more designs to determine which is better, given

a specific task or set of tasks. Usability testing is different from quality assurance testing in

that, rather than finding programming defects, you assess how well the interface or the

software fits the use cases, which are the reflections of users' needs and expectations. To

ensure user satisfaction, we must measure it throughout the system development with user

satisfaction tests. Furthermore, these tests can be used as a communication vehicle between

designers and end users . In the next section, we look at user satisfaction tests

that can be invaluable in developing high- Once the design is complete, you can walk users

through the steps of the scenarios to determine if the design enables the scenarios to occur as

planned.

USABILITY TESTING

The International Organization for Standardization (ISO) defines usability as the

effectiveness, efficiency; and satisfaction with which a specified set others can achieve a

specified set of tasks in particular environments. The ISO definition requires .Defining

tasks. What are the tasks? . Defining users. Who are the users? .A means for measuring

208

effectiveness, efficiency, and satisfaction. How do we measure usability?

The phrase two sides of the same coin is helpful for describing the relationship

between the usability and functionality of a system. Both are essential for the development

of high-quality software . Usability testing measures the ease of use as well as the degree of

comfort and satisfaction users have with the software. Products with poor usability can be

difficult to learn, complicated to operate, and misused or not used at all. Therefore, low

product usability leads to high costs for users and a bad reputation for the developers.

Usability is one of the most crucial factors in the design and development of a product,

especially the user interface. Therefore, usability testing must be a key part of the UI design

process.

Usability testing should begin in the early stages of product development; for

example, it can be used to gather information about how users do their work and find out

their tasks, which can complement use cases. You can incorporate your findings into the

usability test plan and test cases. As the design progresses, usability testing continues to

provide valuable input for analyzing initial design concepts and, in the later stages of

product development, can be used to test specific product tasks, especially the ill.

Usability test cases begin with the identification of use cases that can specify the

target audience, tasks, and test goals. When designing a test, focus on use cases or tasks, not

features. Even if your goal is testing specific features, remember that your users will use

them within the context of particular tasks. It also is a good idea to run a pilot test to work

the bugs out of the tasks to be tested and make certain the task scenarios, prototype, and test

equipment work smoothly. Test cases must include all use cases identified so far. Recall

from Previous chapter that the use case can be used through most activities of software

development.

Furthermore, by following Jacobson's life cycle model, you can produce designs that

are traceable across requirements, analysis, design, implementation, and testing. The main

advantage is that all design traces directly back to the user requirements. Use cases and

usage scenarios can become test scenarios; and therefore, the use case will drive the

usability, user satisfaction, and quality assurance test cases (see Figure).

209

The use cases identified during analysis can be used in testing the design. Once the design is

complete, walk users through the steps of the scenarios to determine if the design enables

the scenarios to occur as planned.

GUIDELINES FOR DEVELOPING USABILITY TESTING

Many techniques can be used to gather usability information. In addition to use

cases, focus groups can be helpful for generating initial ideas or trying out new ideas. A

focus group requires a moderator who directs the discussion about aspects of a task or

design but allows participants to freely express their opinions.

Usability tests can be conducted in a one-on-one fashion, as a demonstration, or as a

"walk through," in which you take the users through a set of sample scenarios and ask about

their impressions along the way. In a technique called the Wizard of OZ, a testing specialist

simulates the interaction of an interface. Although these latter techniques can be

valuable, they often require a trained, experienced test coordinator 9. Let us take a look at

some guidelines for developing usability testing: .The usability testing should include aU of

a software's components. . Usability testing need not be very expensive or elaborate, such as

including trained specialists working in a soundproof lab with one-way mirrors and

sophisticated recording equipment. Even the small investment of tape recorder, stopwatch,

and notepad in an office or conference room can produce excellent results. . Similarly, all

tests need not involve many subjects. More typically, quick, iterative tests with a small,

well-targeted sample of 6 to 10 participants can identify 80-90 percent of most design

problems. .Consider the user's experience as part of your software usability. You can study

80-90 percent of most design problems with as few as three or four users if you target only a

single skill level of users, such as novices or intermediate level users. .

RECORDING THE USABILITY TEST

When conducting the usability test, provide an environment comparable to the target

setting; usually a quiet location, free from distractions is best. Make participants feel

comfortable. It often helps to emphasize that you are testing the software, not the

participants. If the participants become confused or frustrated, it is no reflection on them.

210

Unless you have participated yourself, you may be surprised by the pressure many test

participants feel. You can alleviate some of the pressure by explaining the testing process

and equipment. . Tandy Trower, director of the Advanced User Interface group at Microsoft,

explains that the users must have reasonable time to try to work through any difficult

situation they encounter. Although it generally is best not to interrupt participants during a

test, they may get stuck or end up in situations that require intervention. This need not

disqualify the test data, as long as the test coordinator carefully guides or hints around a

problem. Begin with general hints before moving to specific advice. For more difficult

situations, you may need to stop the test and make adjustments. Keep in mind that less

intervention usually yields better results. Always record the techniques and search patterns

users employ when attempting to work through a difficulty and the number and type of

hints you have to provide them.

Ask subjects to think aloud as they work, so you can hear what assumptions and

inferences they are making. As the participants work, record the time they take to perform a

task as well as any problems they encounter. You may want to follow up the session with

the user satisfaction test (more on this in the next section) and a questionnaire that asks the

participants to evaluate the product or tasks they performed.

Record the test results using a portable tape recorder or, better, a video camera.Since even

the best observer can miss details, reviewing the data later will prove invaluable. Recorded

data also allows more direct comparison among multiple participants. It usually is risky to

base conclusions on observing a single subject. Recorded data allows the design team to

review and evaluate the results.

Whenever possible, involve all members of the design team in observing the test and

reviewing the results. This ensures a common reference point and better design solutions as

team members apply their own insights to what they observe. If direct observation is not

possible, make the recorded results available to the entire team. To ensure user satisfaction

and therefore high-quality software, measure user satisfaction along the way as the design

takes form . In the next section, we look at the user satisfaction test, which can be an

invaluable tool in developing highquality software.

USER SATISFCATION TEST

INTRODUCTION

A positive side effect of testing with a prototype is that you can observe how people

actually use the software. In addition to prototyping and usability testing, another tool that

can assist us in developing high-quality software is measuring and monitoring user

satisfaction during software development, especially during the design and development of

the user interface.

USER SATISFACTION TEST

User satisfaction testing is the process of quantifying the usability test with some

211

measurable attributes of the test, such as functionality, cost, or ease of use. Usability can be

assessed by defining measurable goals, such as .95 percent of users should be able to find

how to withdraw money from the ATM machine without error and with no formal training.

.70 percent of all users should experience the new function as "a clear improvement over the

previous one." . 90 percent of consumers should be able to operate the VCR within 30

minutes. Furthermore, if the product is being built incrementally, the best measure of user

satisfaction is the product itself, since you can observe how users are using it-or avoiding it .

Gause and Weinberg have developed a user satisfaction test that can be used along with

usability testing. Here are the principal objectives of the user satisfaction test : .

As a communication vehicle between designers, as well as between users and

designers. .To detect and evaluate changes during the design process. .To provide a periodic

indication of divergence of opinion about the current design. .To enable pinpointing specific

areas of dissatisfaction for remedy. .To provide a clear understanding of just how the

completed design is to be evaluated.

Even if the results are never summarized and no one fills out a questionnaire, the

process of creating the test itself will provide useful information. Additionally, the test is

inexpensive, easy to use, and it is educational to both those who administer it and those who

take it.

GUIDELINES FOR DEVELOPING A USER SATISFACTION TEST

The format of every user satisfaction test is basically the same, but its content is

different for each project. Once again, the use cases can provide you with an excellent

source of information throughout this process. Furthermore, you must work with the users or

clients to find out what attributes should be included in the test. Ask the users to select a

limited number (5 to 10) of attributes by which the final product can be evaluated. For

example, the user might select the following attributes for a customer tracking system: ease

of use, functionality, cost, intuitiveness of user interface, and reliability.

A test based on these attributes is shown in Figure . Once these attributes have been

identified, they can playa crucial role in the evaluation of the final product. Keep these

attributes in the foreground, rather than make assumptions about how the design will be

evaluated . The user must use his or her judgment to answer each question by selecting a

number between 1 and 10, with 10 as the most favorable and 1 as the least. Comments often

are the most significant part of the test. Gause and Weinberg raise the following important

point in conducting a user satisfaction test : "When the design of the test has been drafted,

show it to the clients and ask, 'If you fill this out monthly (or at whatever interval), will it

enable you to express what you like and don't like?' If they answer negatively then find out

what attributes would enable them to express themselves and revise the test."

A TOOL FOR ANALYZING USER SATISFACTION: THE USER SATISFACTION

TEST TEMPLATE

Commercial off-the-shelf (COTS) software tools are already written and a few are

available for analyzing and conducting user satisfaction tests. However, here, I have selected

an electronic spreadsheet to demonstrate how it can be used to record and analyze the user

212

satisfaction test. The user satisfaction test spreadsheet (USTS) automates many bookkeeping

tasks and can assist in analyzing the user satisfaction

test results. Furthermore, it offers a quick start for creating a user satisfaction test for a

particular project.

Recall from the previous section that the tests need not involve many subjects. More

typically, quick, iterative tests with a small, well-targeted sample of 6 to 10 participants can

identify 80-90 percent of most design problems. The spreadsheet should be designed to

record responses from up to 10 users. However, if there are inputs from more than 10

users, it must allow for that (see Figures).

One use of a tool like this is that it shows patterns in user satisfaction level. For

example, a shift in the user satisfaction rating indicates that something is happening (see

Figure . Gause and Weinberg explain that this shift is sufficient cause to follow up with an

interview. The user satisfaction test can be a tool for

Measuring User Satisfaction

Project Name: Customer Tracking System

User 1 2 3 4 5 6 7 8 9
Ease of use 4 7
Functionalit
y

5 4

Cost 1 6
Realiablity 3 4

Fig: User Satisfaction test for a Customer Tracing System

Periodical plotting can reveal shifts in user satisfaction, which can pinpoint a problem-

Plotting the high and low responses indicates where to go for maximum information (Gause

and Weinberg)

finding out what attributes are important or unimportant. An interesting side effect of

developing a user satisfaction test is that you benefit from it even if the test is never

administered to anyone; it still provides useful information. However, performing the test

regularly helps to keep the user involved in the system. It also helps you focus on user

wishes. Here is the user satisfaction cycle that has been suggested by Gause and Weinberg:

1. Create a user satisfaction test for your own project. Create a custom form that fits the

project's needs and the culture of your organization. Use cases are a great source of

information; however, make sure to involve the user in creation of the test.
2. Conduct the test regularly and frequently.
3. Read the comments very carefully, especially if they express a strong feeling.

Never forget that feelings are facts, the most important facts you have about the users of the

system.

4. Use the information from user satisfaction test, usability test, reactions to prototypes,

interviews recorded, and other comments to improve the product.

Another benefit of the user satisfaction test is that you can continue using it even

213

after the product is delivered. The results then become a measure of how well users are

learning to use the product and how well it is being maintained. They also provide a starting

point for initiating follow-up projects.

CASE STUDY: DEVELOPING USABILITY TEST PLANS AND TEST CASES

FOR THE VIANET BANK ATM SYSTEM

In previous previous chapter, we learned that test plans need not be very large; in

fact, devoting too much time to the plans can be counterproductive. Having this in mind let

us develop a usability test plan for the ViaNet ATM kiosk by going through the followings

steps.

DEVELOP TEST OBJECTIVES

The first step is to develop objectives for the test plan. Generally, test objectives are based

on the requirements, use cases, or current or desired system usage. In this case, ease of use is

the most important requirement, since the ViaNet bank customers should be able to perform

their tasks with basically no training and are not expected to read a user manual before

withdrawing money from their checking accounts.

Here are the objectives to test the usability of the ViaNet bank ATM kiosk and its user

interface: 95 percent of users should be able to find out how to withdraw money from the

ATM machine without error or any formal training. .90 percent of consumers should be

able to operate the ATM within 90 seconds.

DEVELOP TEST CASES

Test cases for usability testing are slightly different from test cases for quality

assurance. Basically, here, we are not testing the input and expected output but how users

interact with the system. Once again, the use cases created during analysis can be used to

develop scenarios for the usability test. The usability test scenarios are based on the

following use cases:

Deposit Checking (see Figures).

Withdraw Checking (see Figures).

Deposit Savings (see Figures).

Withdraw Savings (see Figures).

Savings Transaction History (see Figures).

Checking Transaction History(see

Figures).

Next we need to select a small number of test participants (6 to 10) who have never before

used the kiosk and ask them to perform the following scenarios based on the use case:
1. Deposit $1056.65 to your checking account.
2. Withdraw $40 from your checking account.
3. Deposit $200 to your savings account.
4. Withdraw $55 from savings account.
5. Get your savings account transaction history.
6. Get your checking account transaction history.

214

Start by explaining the testing process and equipment to the participants to ease the

pressure. Remember to make participants feel comfortable by emphasizing that you are

testing the software, not them. If they become confused or frustrated, it is no reflection on

them but the poor usability of the system. Make sure to ask them to think aloud as they

work, so you can hear what assumptions and inferences they are making. After all, if they

cannot perform these tasks with ease, then the system is not useful.

As the participants work, record the time they take to perform a task as well as any

problems they encounter. In this case, we used the kiosk video...camera to record the test

results along with a tape recorder. This allowed the design team to review and evaluate how

the participants interacted with the user interface, like those developed in Previous chapter .

For example, look for things such as whether they are finding the appropriate buttons easily

and the buttons are the right size. Once the test subjects complete their tasks, conduct a user

satisfaction test to measure their level of satisfaction with the kiosk.

ANALYZE THE TESTS

The final step is to analyze the tests and document the test results. Here, we need to

answer questions such as these: What percentage were able to operate the ATM within 90

seconds or without error? Were the participants able to find out how to withdraw money

from the ATM machine with no help? The results of the analysis must be examined.

We also need to analyze the results of user satisfaction tests. The USTS described

earlier or a tool similar to it can be used to record and graph the results of user satisfaction

tests. As we learned earlier, a shift in user satisfaction pattern indicates that something is

happening and a follow-up interview is needed to find out the reasons for the changes. The

user satisfaction test can be used as a tool for finding out what attributes are important or

unimportant. For example, based 011 the user satisfaction test, we might find that the users

do not agree that the system "is efficient to use," and it got a low score.

After the follow-up interviews, it became apparent that participants wanted, in

addition to entering the amount for withdrawal, to be able to select from a list with

predefined values (say,

$20, $40).

215

216

Questions

Part-A

Q.No Questions Competence BT Level

1. Compare Debugging and Testing. Analysis
BTL 4

2. Why quality assurance is needed? Evaluate
BTL 5

3. Define Blackbox Testing. Remember
BTL 1

4. List out the Testing strategies. Remember
BTL 1

5. Justify the importance of usability testing. Evaluate
BTL 5

6. Define Test case. Remember
BTL 1

7. Discuss scenario-based testing? Evaluate
BTL 5

8. Define Test Plan. Remember
BTL 1

9. What is meant by SQA? Remember
BTL 1

10. Compare Alpha and Beta testing. Analysis
BTL 4

Part-B

Q.No Questions Competence BT Level

1. Explain Myer’s debugging principles
Analyze BTL4

2. Describe the different types of testing strategies Understand
BTL 2

3. Explain user satisfaction test with example.
Analyze BTL4

4.

Explain in detail about

(i)Blackbox Testing

(ii)Whitebox Testing

Remember

BTL 1

5.

(i) Analyze the guidelines for developing quality assurance

Test cases described by Freedman and Thomas.

(ii)Explain about Software Quality Assurance.

Analyze BTL4

6.

Describe the following

(i)Debugging

(ii)Guidelines for developing Test Plans

Understand

BTL 2

7.
Develop usability test plans and test cases for vianet bank

ATM system.

Create BTL 6

217

References

[1] Ali Bahrami, “Object oriented systems development using the unified modelling

language”, McGraw- Hill.

[2] Grady Booch, James Rumbaugh, and Ivar Jacobson,“The Unified Modeling Language

User Guide”, 3rd Edition Addison Wesley.

[3] John Deacon, “Object Oriented Analysis and Design”, 1st Edition, Addison Wesley.

[4] Bernd Oestereich, “Developing Software with UML, Object - Oriented Analysis and

Design in Practice”, AddisonWesley

218

	INTRODUCTION
	Orthogonal View of the Software:
	OBJECT-ORIENTED SYSTEMS DEVELOPMENT METHODOLOGY
	 Seamless transition among different phases of software development.
	 Encouragement of good programming techniques.
	 Promotion of reusability.

	OVERVIEW OF THE UNIFIED APPROACH
	OBJECT BASICS:
	What is an object?
	Object:
	Object’s Attributes
	Object’s Methods
	Objects are Grouped in Classes

	OBJECTS RESPOND TO MESSAGES
	Class Hierarchy
	Inheritance (programming by extension)

	FIGURE 1.6 INHERITANCE ALLOWS REUSABLITY
	Fig 1.7 Utility vehicle inherent from car and truck classses.
	Consumer-Producer Association
	AGGREGATIONS AND OBJECT CONTAINMENT
	Meta-Classes
	Object-Oriented Systems Development activities
	Incremental Testing
	Reuse strategy

	INTRODUCTION
	TOWARD UNIFICATION-TOO MANY METHODOLOGIES
	SURVEY OF SOME OF THE OBJECT-ORIENTED METHODOLOGIES
	• Each method has its strengths. The Rumbaugh et ai. method is well-suited for describing the object model or the static structure of the system.
	• The Booch method produces detailed object-oriented design models.
	2.3.1 THE OBJECT MODEL
	Fig 1: OMT object model of a bank system
	THE OMT DYNAMIC MODEL
	Fig. 2 : State transition diagram for the bank application user interface. The round boxes represent states and the arrows represent transitions.
	Fig 3: OMT DFD of the ATM system.
	BOOCH METHODOLOGY
	and a micro development process.
	Fig .4 : Object modeling using Booch notation
	THE MICRO DEVELOPMENT PROCESS
	1. Identify classes and objects.
	3. Identify class and object relationships.

	THE JACOBSON METHODOLOGIES
	USE CASES
	Fig.6 : Some Uses of A Library.
	OBJECT-ORIENTED SOFTWARE ENGINEERING: OBJECTORY
	Fig. 7: The use case model is considered in every model and phase.
	Objectory is built around several different models:
	OBJECT-ORIENTED BUSINESS ENGINEERING
	PATTERNS
	• A good pattern will do the following:
	Generative and Non generative Patterns
	Patterns Template
	Essential components should be clearly recognizable on reading a pattern :
	ANTIPATTERNS
	• Anti patterns come in two varieties:
	 Those describing how to get out of a bad situation and how to proceed from there to a good solution.
	Capturing Patterns
	Guidelines
	FRAMEWORKS
	Differences between frameworks and design patterns:
	THE UNIFIED APPROACH
	Fig 8. The Process and components of the unified approach 2.8.1 OBJECT-ORIENTED ANALYSIS
	OBJECT-ORIENTED DESIGN
	ITERATIVE DEVELOPMENT AND CONTINUOUS TESTING
	MODELING BASED ON THE UNIFIED MODELING LANGUAGE
	The UA Proposed Repository
	Fig. 9 : Two-layered architecture: interface and data.
	The Layered Approach to Software Development
	UNIFIED MODELING LANGUAGE
	Static or Dynamic Models

	key ideas regarding modeling:
	What Is the UML?

	What it is/isn’t? Is NOT
	What is UML Used For?
	UML DIAGRAMS
	1. Class diagram (static)
	3. Behavior diagrams (dynamic):
	• 3.1.1. Sequence diagram
	– 3.2. State chart diagram
	4. Implementation diagram: Component diagram
	UML CLASS DIAGRAM
	Class Notation: Static Structure
	Essential Elements of a UML Class Diagram
	Constraint Rules and Notes

	Attributes
	Visibility
	Object Diagram
	UML modeling elements in class diagrams

	Class Interface Notation
	Binary Association Notation
	Association Role
	Qualifier
	Multiplicity
	OR Association
	Fig 18. An OR association notation. A car may associate with a person or a company.
	Fig 19. Association Class
	Aggregation and Composition (a.part.of)
	Fig 21. Association Path
	Generalization
	Fig 23. Generalization Notation
	USE-CASE DIAGRAM
	A use case corresponds to a sequence of transactions, in which each transaction is invoked from outside the system (actors) and engages internal objects to interact with one another and with the system's surroundings.
	Fig 25. use-case diagram shows the relationship among actors and use cases within a system.
	Behavior diagrams (Dynamic)
	UML INTERACTION DIAGRAMS
	Fig 27. An example of a Sequence Diagram
	UML IMPLEMENTATION DIAGRAMS
	Component Diagram :
	Fig 34: A Component Diagram
	MODEL MANAGEMENT: PACKAGES AND MODEL ORGANIZATION
	Fig 36: A package and its contents
	Fig 37: A package and its dependencies
	UML EXTENSIBILITY
	2. Note
	Fig 39. Note
	Fig 40: Various forms of Stereotype notation
	3. UML Meta-model
	WHY ANALYSIS IS A DIFFICULT ACTIVITY
	BUSINESS OB.JECT ANALYSIS: UNDERSTANDING THE BUSINESS LAYER
	USECASE DRIVEN OBJECT ORIENTED ANALYSIS: THE UNIFIED APPROACH
	1 Identify the actors:
	2. Develop a simple business process model using UML activity diagram.
	4. Prepare interaction diagrams:
	5. Classification -develop a static UML class diagram:
	Fig 3.1 : Object Oriented analysis process in the Unified Approach(UA)
	USE-CASE MODEL
	Fig 3.3 Use Case Diagram – Library System
	Guidelines for developing Use Case Models:
	2. Uses and Extends Associations
	4. Guidelines for Finding Use Cases
	6. Dividing Use Cases into Packages
	1. Use Cases under the Microscope:
	Three actors appear in Figure 3.4: a member, a circulation clerk, and a supplier.
	2. Uses and Extends Associations:
	The extends association is used when you have one use case that is similar to another use case but does a bit more or is more specialized; in essence, it is like a subclass.
	Fowler and Scott provide us excellent(guidelines for addressing variations in usecase modeling : .
	3. Identifying the Actors:
	Fig 3.5 : The difference between users and actors
	. Isolate users from actors.
	5. How Detailed Must a Use Case Be? When to Stop Decomposing and When to Continue
	6. Dividing Use Cases into Packages (1)
	7. Naming a Use Case
	Fig 3.6 A libray system can be divided into many packages, each of which encompasses mulitple use cases.
	1. Organization Conventions for Documentation
	2. Guidelines for Developing Effective Documentation
	Case Study : ANALYSING THE VIANET BANK ATM – THE USE CASE DRIVEN PROCESS
	i) Identifying Actors and Use Cases for the ViaNet Bank ATM System
	Fig 3.8 : Activities involved in an ATM transction
	Fig : 3.9 Transaction use cases
	OBJECT ANALYSIS : CLASSIFICATION
	Classification, the process of checking to see if an object belongs to a category or a class, is regarded as a basic attribute of human nature.
	APPROACHES FOR IDENTIFYING CLASSES
	3.10. NOUN PHRASE APPROACH
	Fig 3.11: Using the noun phrase strategy, candidate classes can be divided into 3 categories.
	ii) Selecting Classes from the Relevant and Fuzzy Categories
	Fig 3.12: The process of eliminating the redundant classes and refining the remaining classes is not sequential. You can move back and forth among these steps as often as you like.
	Initial List of Noun Phrases: Candidate Classes
	Reviewing the Redundant Classes and Building a Common Vocabulary
	Reviewing the Classes Containing Adjectives
	Reviewing the Possible Attributes
	Reviewing the Class Purpose
	COMMON CLASS PATTERN APPROACH
	USE-CASE DRIVEN APPROACH: IDENTIFYING CLASSES AND THEIR BEHAVIORS THROUGH SEQUENCE/COLLABORATION MODELING
	i) Implementation Of Scenarios
	CASE STUDY : THE VIANET BANK ATM SYSTEM: DECOMPOSING
	Fig 3.14 : Sequence Diagram for the Withdraw Checking use case
	Classes, Responsibilities, and Collaborators is a technique used for identifying classes' responsibilities and therefore their attributes and methods.
	Classes, Responsibilities, and Collaborators cards are 4" X 6" index cards. All the information for an object is written on a card, which is cheap, portable, readily available, and familiar. Figure 3.17 shows an idealized card.
	Classes, Responsibilities, and Collaborators cards place the designer's focus on the motivation for collaboration by representing (potentially) many messages as phrases of English text.
	Fig 3.16 A Classess, Responsibilities and Collaborators (CRC) Index Card
	i) Classes, Responsibilities, And Collaborators Process
	Fig 3.17 : The Classes, Responsiblities and Collaborators process.
	NAMING CLASSES
	ASSOCIATIONS
	In previous chapters, we learnt that the binary associations are shown as lines connecting two class symbols. Ternary and higher-order associations are shown as diamonds connecting to a class symbol by lines, and the association name is written above ...
	Fig 3.19: Basic Associations
	Identifying associations begins by analyzing the interactions between classes. After all, any dependency relationship between two or more classes is an association.
	In other words, if an object is responsible for a specific task (behavior) and lacks all the necessary knowledge needed to perform the task, then the object must delegate the task to another object that possesses such knowledge.
	Fig 3.20: A customer places an order (communication association) with an operator person.
	Fig 3.21 – Grandparent of Ken can be defined in terms of the parent association.
	The super-sub class hierarchy is a relationship between classes, where one class is the parent class of another (derived) class. Recall from earlier chapter that the parent class also is known as the base or super class or ancestor.
	Fig. 3.22 – One way of achieving the benefits of multiple inheritancefrom the most appropriate class.
	Fig 3.24 A house is a container
	CASE STUDY: RELATIONSHIP ANALYSIS FOR THE VIANET BANK ATM SYSTEM
	2) Developing a UML Class Diagram Based on the Use-Case Analysis
	3) Defining Association Relationships
	 Directed actions association.
	4) Defining Super-Sub Relationships
	Fig 3.29- Super-sub relationships among the Account, SavingsAccount and CheckingAccount Classes
	CLASS RESPONSIBILITY : IDENTIFYING ATTRIBUTES AND METHODS
	CLASS RESPONSIBILITY : DEFING ATTRIBUTES BY ANALYZING USE CASES AND OTHER UML DIAGRAMS
	Guidelines for Defining Attributes.
	 Keep the class simple; state only enough attributes to define the object state.
	 Omit derived attributes.
	OBJECT RESPONSIBILITY : METHODS AND MESSAGES.
	2. Defining Attributes for the AccountClass.
	1) Defining Account Class operations.
	2) Defining BankClient Class Operation
	3) Defining CheckingAccount Class Operations
	Designing systems using self-contained objects and object classes
	Characteristics of OOD
	THE OBJECT ORIENTED DESIGN PROCESS
	OBJECT-ORIENTED DESIGN AXIOMS
	 Suh‘s design axioms to OOD :
	COROLLARIES
	Corollary 1. Uncoupled Design with Less Information Content
	 The main goal is to maximize objects cohesiveness among objects and software components in order to improve coupling because only a minimal amount of essential information need be passed between components.
	 Coupling is a measure of the strength of association established by a connection from one object or software component to another.
	1. How complicated the connection is.
	3. What is being sent or received.
	 Object-oriented design has two types of coupling: interaction coupling and inheritance coupling.
	 Inheritance coupling -> coupling between super-and subclasses

	Cohesion
	 Cohesion also helps in designing classes that have very specific goals and clearly defined purposes.
	Corollary 2. Single Purpose
	Corollary 3. Large Number of Simpler Classes, Reusability
	Corollary 4. Strong Mapping
	Corollary 5. Standardization
	Corollary 6. Designing with Inheritance
	DESIGN PATTERNS
	Designing Classes
	Underlying the functionality of any application is the quality of its design.
	Advantages of OOD :
	Object-oriented development :
	Objects and object classes :
	Objects :
	UML OBJECT CONSTRAINT LANGUAGE
	DESINGING CLASSES : THE PROCESS
	CLASS VISIBILITY: DESIGNING WELL-DEFINED PUBLIC, PRIVATE, AND PROTECTED PROTOCOLS
	PRIVATE AND PROTECTED PROTOCOL LAYERS: INTERNAL
	PUBLIC PROTOCOL LAYER: EXTERNAL
	DESIGNING CLASSES: REFINING ATTRIBUTES
	Attribute Types
	UML Attribute Presentation
	visibility name: type-expression =initial- value

	REFINING ATTRIBUTES FOR THE VIANET BANK OB.JECTS
	Refining Attributes for the BankClient Class
	Refining Attributes for the Account Class
	Refining Attributes for the Transaction Class
	Refining Attributes for the ATMMachine Class
	Refining Attributes for the CheckingAccount Class
	Refining Attributes for the SavingsAccount Class
	DESIGNING METHODS AND PROTOCOLS
	DESIGN ISSUES: AVOIDING DESIGN PITFALLS
	Apply the design axioms and corollaries, such as Corollary 2 (which states that each class must have a single, clearly defined purpose). When you document, you easily should be able to describe the purpose of a class in a few sentences.
	*Keep a careful eye on the class design and make sure that an object's role remains well defined. If an object loses focus, you need to modify the design. Apply Corollary 2 (single purpose).
	*Move some function into new classes that the object would use. Apply corrolary 1 (Uncoupled design with less information content).
	*Break up the class into 2 or 3 classes. Apply corollary 3 (large number of simple classes).
	*Rethink the class definition based on experience gained.
	UML Operation Presentation
	visibility name: (parameter list”) : return type expression

	DESIGNING METHODS FOR THE VIANET BANK OBJECTS.
	BankClient Class VerifyPassword Method
	Account Class Deposit Method
	Account class withdraw method
	Fig 4.9 An activity diagram for the account class withdraw method. Account class CreateTransaction Method
	Checking Account Class withdraw method
	PACKAGES AND MANAGING CLASSES
	ACCESS LAYER : OBJECT STORAGE & OBJECT INTEROPERABILITY
	OBJECT STORE AND PERSISTENCE: AN OVERVIEW
	DATABASEMANAGEMENT SYSTEMS
	Fig.4.11: Database system vs file system.
	Database Views
	Database Models
	Fig. 4.12 A hierarchical Model
	Fig 4.13: An order contains data from both customer and soup
	unambiguously locates each row in the table.
	Database Interface
	query, and data manipulation language (DML).
	In traditional databases, the schema of a database is the collection of record types and set types or the collection of relationships, templates, and table records used to store information about entities of interest to the application.
	Traditionally, DML are either procedural or nonprocedural. A procedural DML requires users to specify what data are desired and how to get the data. A nonprocedural DML, like most databases' fourth generation programming language (4GLs), requires user...
	LOGICAL AND PHYSICAL DATABASE ORGANIZATION AND ACCESS CONTROL
	Shareability and Transactions
	Concurrency Policy
	DISTRIBUTED DATABABSES AND CLIENT-SERVER COMPUTING
	What Is Client-Server Computing?
	server.
	Ravi Kalakota describes the basic characteristics of client-server architectures as follows:
	A typical client-server application consists of the following components:
	DISTRIBUTED AND COOPERATIVE PROCESSING
	DISTRIBUTED OBJECTS COMPUTING : THE NEXT GENERATION OF CLIENT-SERVER COMPUTING
	In the first generation client-server era, which still is very much is progress, SQL database, transaction processing (TP) monitors, and groupware have begun to displace file servers as client-server application models.
	Distributed objects are reusable software components that can be distributed
	The CORBA interface definition language (IDL) allows developers to specify language-neutral, object-oriented interfaces for application and system components.
	The distributed component object model, Microsoft’s alternative to OMG’s CORBA, is an Internet and component strategy where ActiveX (formerly known as object linking and embedding, or OLE) plays the role DCOM object. DCOM also is backed by a very effi...
	4.17.1 Object-Oriented Databases versus Traditional Databases
	OBJECT – RELATIONAL SYSTEMS: THE PRACTIVAL WORLD.
	OBJECT-RELATION MAPPING
	TABLE-CLASS MAPPING
	TABLE-MULTIPLE CLASSES MAPPING
	Table-inherited Classes mapping
	Table-inherited Classes mapping.
	Keys for Instance Navigation
	MULTIDATABASE SYSTEMS
	Federated Multi Data Base
	MultiDatabase Systems (MDBS)
	To summarize the distinctive characteristic of MDBS
	OPEN DATABASE CONNECTIVITY : MULTIDATABASE APPLICATION PROGRAMMING INTERFACES
	Refer Text Book –page no. 262 – 263
	Refer Text Book - page no – 264 -268.
	DESIGING VIEW LAYER CLASSES
	The process of designing view layer classes is divided into four major activities:
	1. The macro level VI design process-identifying view layer objects.
	2. Micro level VI design activities:

	Macro-level process: identifying view classes by analyzing use cases

	SOFTWARE QUALITY ASSURANCE
	QUALITY ASSURANCE TESTS
	TESTING STRATEGIES
	Black Box Testing
	White Box Testing
	Top-Down Testing
	Bottom-Up Testing
	TEST CASES
	Myers describes the objective of testing as follows.
	Guidelines for Developing Quality Assurance Test Cases
	TEST PLANS
	The following steps are needed to create a test plan:
	GUIDELINES FOR DEVELOPING TEST PLANS
	MYERS'S DEBUGGING PRINCIPLES
	CASE STUDY: DEVELOPING TEST CASES FOR THE VIANET BANK ATM SYSTEM
	SYSTEM USABLILITY AND USER SATISFACTION INTRODUCTION
	USABILITY TESTING
	GUIDELINES FOR DEVELOPING USABILITY TESTING
	RECORDING THE USABILITY TEST
	USER SATISFCATION TEST
	INTRODUCTION
	USER SATISFACTION TEST
	GUIDELINES FOR DEVELOPING A USER SATISFACTION TEST
	A TOOL FOR ANALYZING USER SATISFACTION: THE USER SATISFACTION TEST TEMPLATE
	Measuring User Satisfaction
	CASE STUDY: DEVELOPING USABILITY TEST PLANS AND TEST CASES FOR THE VIANET BANK ATM SYSTEM
	DEVELOP TEST OBJECTIVES
	DEVELOP TEST CASES
	ANALYZE THE TESTS

