
1 

 

SCSA1307  

EMBEDDED SYSTEM 

L T P Credits Total 

Marks 

3 0 0 3 100 

      COURSE OBEJCTIVES 

• To understand the technologies behind the embedded computing systems 

• To acquire knowledge about microcontrollers embedded processors and their applications 

• To analyze and develop software programs for embedded systems 

• To have knowledge about the working of a microcontroller system and its programming in assembly 

language 

• To provide experience to integrate hardware and software for microcontroller application systems 

 

UNIT 1  INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE  9 Hrs. 

Terminology Gates Timing diagram Memory Microprocessor buses Direct memory access 

Interrupts Built interrupts Interrupts basis Shared data problems Interrupt latency - Embedded 

system evolution trends Round-Robin Round Robin with interrupt function Rescheduling 

architecture algorithm. 
 

UNIT 2  REAL TIME OPERATING SYSTEM    9 Hrs. 
 

Task and Task states Task and data Semaphore and shared data operating system services 

Message queues timing functions Events Memory management Interrupt routines in an RTOS 

environment Basic design using RTOS. 

 

UNI 3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERAL   9 Hrs. 

Custom single purpose processors: Hardware Combination Sequence Processor design RT 

level design optimizing software: Basic Architecture Operation Programmers view 

Development Environment ASIP Processor Design Peripherals Timers, counters and watch 

dog timers UART Pulse width modulator LCD controllers Key pad controllers Stepper motor 

controllers A/D converters Real time clock. 

 

UNIT 4  MEMORY AND INTERFACING    9 Hrs. 

Memory write ability and storage performance Memory types composing memory Advance 

RAM interfacing communication basic Microprocessor interfacing I/O addressing Interrupts 

Direct memory access Arbitration multilevel bus architecture Serial protocol Parallel 

protocols Wireless protocols Digital camera example. 

 

UNIT 5  PROCESS MODELS AND HARDWARE SOFTWARE CO-DESIGN  9 Hrs. 

Modes of operation Finite state machine HCFSL and state charts language state machine 

models Concurrent process model Concurrent process Communication among process 

Synchronization among process Implementation – Data Flow mode 

  MAX. 45 Hrs. 

Course Outcomes: 

On completion of the course, student will be able to 

CO1: Understand basic concepts of embedded systems hardware. 

CO2: Implement the RTOS development tools in building real time embedded systems.  

CO3: Develop the hardware for embedded system applications based on the processors.  

CO4: Develop prototype circuit on breadboard including micro processor interfacing. 

CO5: Design Hardware and Software using process models. 

CO6: Develop and implement embedded based applications. 
 

  



2 

 

TEXT / REFERENCE BOOKS 

1.David E.Simon, “An Embedded Software Primer”, Pearson Education,2001 

2. Frank Vahid and Tony Gwargie, “ Embedded System Design”, John Wiley & Sons,2002 

3. Steve Heath, “Embedded System Design”, Elsevier, Second Edition,2004. 

4. Shibu.K.V, “Introduction to Embedded Systems”,Mc Graw Hill. 

5. Raj Kamal, “Embedded Systems”,TMH. 

6.Lyla, “Embedded Systems”,Pearson,2013. 

7.Peter Marwadel, “Embedded System Design: Embedded Systems, Foundations of Cyber -

Physical Systems, and the Internet of Things, Springer, Third Edition,2018. 

8. Perry Xiao, “Designing Embedded Systems and the Internet of Things (IoT) with the 

ARM @ Mbed, John Wiley & Sons,2018. 

9. Rob Toulson & Tim Wilmshurst, “Fast and Effective Embedded Systems Design,Second 

Edition: Applying the ARM mbed, Newnes,2018. 

 

END SEMESTER EXAM QUESTION PAPER PATTERN 

Max. Marks : 100 Exam Duration : 3 Hrs. 

PART A : 10 Questions of 2 marks each-No choice 20 Marks 

PART B : 2 Questions from each unit with internal choice, each carrying 16 marks 80 Marks 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 

 

 
 

   
 
 
 

SCHOOL OF ELECTRICAL AND ELECTRONICS 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
      UNIT- 1 INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE 



4 

 

 
 
 

 

UNIT 1 INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE 
 

Terminology Gates Timing diagram Memory Microprocessor buses Direct memory access 

Interrupts Built interrupts Interrupts basis Shared data problems Interrupt latency - Embedded 

system evolution trends Round-Robin Round Robin with interrupt function Rescheduling 

architecture algorithm. 

1.1 Embedded systems terminology 

Embedded systems are ubiquitous. These dedicated small computers are present in 

communications systems, vehicles, manufacturing machinery, detection systems, and many 

machines that make our lives easier. 

The open nature of Android Linux and its availability for many different hardware 
architectures makes it an excellent candidate for embedded platforms. 

The following are the most common concepts you should know while working with 

embedded devices. 
 

Bootloader 

A bootloader is a small piece of software that executes soon after you power up a computer. 

On a desktop PC, the bootloader resides on the master boot record (MBR) of the hard drive, and 

is executed after the PC BIOS performs various system initializations. The bootloader then passes 

system information to the kernel (for instance, the hard drive partition to mount as root) and then 

executes the kernel. 

In an embedded system, the role of the bootloader is more complicated, since an embedded 

system does not have a BIOS to perform the initial system configuration. The low-level 

initialization of the microprocessor, memory controllers, and other board-specific hardware 

varies from board to board and CPU to CPU. These initializations must be performed before a 

kernel image can execute. 

At a minimum, a bootloader for an embedded system performs the following functions: 

• Initializes the hardware, especially the memory controller. 

• Provides boot parameters for the operating system image. 

• Starts the operating system image. 

Additionally, most bootloaders also provide convenient features that simplify 

development and update of the firmware, such as: 

• Reading and writing arbitrary memory locations. 

• Uploading new binary images to the board's RAM via a serial line or Ethernet. 

• Copying binary images from RAM to Flash memory. 
 

Kernel 

The kernel is the fundamental part of an operating system. It is responsible for managing 

the resources and the communication between hardware and software components. 



5 

 

The kernel offers hardware abstraction to the applications and provides secure access to the 

system memory. It also includes an interrupt handler that handles all requests or completed I/O 

operations. 
 

Kernel modules 

Modules are pieces of code that can be loaded and unloaded into the kernel upon demand. 
They extend the functionality of the kernel without requiring a system reboot. 

For example, one type of module is the device driver, which allows the kernel to access 

hardware connected to the system. Without these modules, Linux developers would have to build 

monolithic kernels and add new functionality directly into the kernel image. The result would be 

a large, cumbersome kernel. Another disadvantage of working without a kernel module is that 

you would have to rebuild and reboot the kernel every time you add new functionality. 

In embedded systems, where functionality can be activated depending on the needs, kernel 

modules become a very effective way of adding features without enlarging the kernel image size. 
 

Root file system 

Operating systems normally rely on a set of files and directories. The root file system is 

the top of the hierarchical file tree. It contains the files and directories critical for system 

operation, including the device directory and programs for booting the system. The root file 

system also contains mount points where other file systems can be mounted to connect to the root 

file system hierarchy. 
 

Applications 

Software applications are programs that employ the capabilities and resources of a computer 
to do a particular task. 

Applications make use of hardware devices by communicating with device drivers, which 

are part of the kernel. 
 

Cross-compilation 

If you generate code for an embedded target on a development system with a different 

microprocessor architecture, you need a cross-development environment. A cross-development 

compiler is one that executes in the development system (for example, an x86 PC), but generates 

code that executes in a different processor (for example, if the target is ARM). 

 
1.2 Logic gates 

 
Digital systems are said to be constructed by using logic gates. These gates are the AND, OR, 

NOT, NAND, NOR, EXOR and EXNOR gates. The basic operations are described below with 

the aid of truth tables. 



6 

 

AND gate 
 

 

The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are 

high. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this dot is 

sometimes omitted i.e. AB 

 

 
OR gate 

 

 

The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs 

are high. A plus (+) is used to show the OR operation. 

 

 
 

     NOT gate 
 

 

The NOT gate is an electronic circuit that produces an inverted version of the input at its 

output. It is also known as an inverter. If the input variable is A, the inverted output is known as 

NOT A. This is also shown as A', or A with a bar over the top, as shown at the outputs. The 

diagrams below show two ways that the NAND logic gate can be configured to produce a NOT 

gate. It can also be done using NOR logic gates in the same way. 
 



7 

 

 

 

       NAND gate 
 

 

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The outputs 

of all NAND gates are high if any of the inputs are low. The symbol is an AND gate with a 

small circle on the output. The small circle represents inversion. 

 

 

    NOR gate 
 

 

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs 

of all NOR gates are low if any of the inputs are high. 

The symbol is an OR gate with a small circle on the output. The small circle represents 

inversion. 

   EXOR gate 
 

 

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both, 

of its two inputs are high. An encircled plus sign ( ) is used to show the EOR operation. 



8 

 

EXNOR gate 
 

 

  The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a low output 

if either, but not both, of its two inputs are high. The symbol is an EXOR gate with a small 

circle on the output. The small circle represents inversion. 

 

1.3 Timing Diagram 

Timing Diagram is a graphical representation. It represents the execution time taken by 

each instruction in a graphical format. The execution time is represented in T-states. 

 

Instruction Cycle: 

The time required to execute an instruction is called instruction cycle. 

or 

The time taken by the processor to complete the execution of an instruction. An instruction 

cycle consists of one to six machine cycles. 

 

Machine Cycle: 

The time required to access the memory or input/output devices is called machine 

cycle. 

or 

The time required to complete one operation; accessing either the memory or I/O device. 

A machine cycle consists of three to six T-states. 

 

T-State: 

 

The machine cycle and instruction cycle takes multiple clock periods. A portion of an 

operation carried out in one system clock period is called as T-state. 

 

or 

Time corresponding to one clock period. It is the basic unit to calculate execution of 

instructions or programs in a processor. 

 

Fetch cycle: 

The fetch cycle in a microprocessor comprises of several time states during which the next 

instruction to be executed is copied (fetched) from the memory location (whose address is in the 

Program Counter) to the Instruction Register. 

 

  

  



9 

 

Concept of Timing Diagram 

 

The 8085 microprocessor has 5 (seven) basic machine cycles. They are 

 

1. Opcode fetch cycle (4T) 

2. Memory read cycle (3 T) 

3. Memory write cycle (3 T) 

4. I/O read cycle (3 T) 

5. I/O write cycle (3 T) 

 

• Each instruction of the 8085 processor consists of one to five machine cycles, i.e., when the 8085 

processor executes an instruction, it will execute some of the machine cycles in a specific order. 

 

• The processor takes a definite time to execute the machine cycles. The time taken by the 
processor to execute a machine cycle is expressed in T-states. 

 

• One T-state is equal to the time period of the internal clock signal of the processor. 

• The T-state starts at the falling edge of a clock. 

 

Opcode Fetch Machine Cycle: 

• It is the first step in the execution of any instruction. The timing diagram of this cycle is 

given below. 

 



10 

 

 The following points explain the various operations that take place and the signals that are 

changed during the execution of opcode fetch machine cycle: 

 

T1 clock cycle: 

 The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit 

address and A8 – A15 contains higher bit address. 

 IO/M’ signal is low indicating that a memory location is being accessed. S1 and S0 

also changed to the levels. 

 ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus. 

T2 clock cycle: 

 Multiplexed address bus is now changed to data bus. 

 The (RD)’ signal is made low by the processor. This signal makes the memory device load 

the data bus with the contents of the location addressed by the processor. 

T3 clock cycle: 

 The opcode available on the data bus is read by the processor and moved to the instruction 

register. 

 The (RD)’ signal is deactivated by making it logic 1. 

T4 clock cycle: 

 The processor decode the instruction in the instruction register and generate the necessary 

control signals to execute the instruction. Based on the instruction further operations such as 

fetching, writing into memory etc. takes place. 

 
DRAW TIMING DIAGRAM FOR MEMORY READ, MEMORY WRITE, I/O READ, I/O 
WRITE MACHINE CYCLE 

Memory Read Machine Cycle: 

 The memory read cycle is executed by the processor to read a data byte from 

memory. The machine cycle is exactly same to opcode fetch except: a) It has three T-states b) The 

S0 signal is set to 0. 

 

 

T1 state: 

• The higher order address bus (A8-A15) and lower order address and data multiplexed 

(AD0- AD7) bus. 

• ALE goes high so that the memory latches the (AD0-AD7) so that complete 16-bit address 



11 

 

are     available. 

• The microprocessor identifies the memory read machine cycle from the status 

signals 

IO/M’=0, S1=1, S0=0. This condition indicates the memory read cycle. 

T2 state: 

• Selected memory location is placed on the (D0-D7) of the A/D multiplexed bus. RD’ goes 

LOW 

T3 State: 

• The data which was loaded on the previous state is transferred to the microprocessor. 

• In the middle of the T3 state RD’ goes high and disables the memory read operation. 

• The data which was obtained from the memory is then decoded. 

 

Memory Write Machine Cycle: 

• The memory write cycle is executed by the processor to write a data byte in a memory 

location. The processor takes three T-states and (WR)’signal is made low. 

 

 

T1 state: 

• The higher order address bus (A8-A15) and lower order address and data multiplexed 

(AD0- AD7) bus. 

•  ALE goes high so that the memory latches the (AD0-AD7) so that complete 16-bit 

address are available. 

• The microprocessor identifies the memory read machine cycle from the status signals 

IO/M’=0, S1=0, S0=1. This condition indicates the memory read cycle. 

T2 state: 

• Selected memory location is placed on the (D0-D7) of the A/D multiplexed bus. WR’ goes 

LOW 

T3 State: 

• In the middle of the T3 state WR’ goes high and disables the memory write operation. The 

data which was obtained from the memory is then decoded. 

 

I/O Read Cycle: 

The I/O read cycle is executed by the processor to read a data byte from I/O port or from 



12 

 

peripheral, which is I/O mapped in the system. The 8-bit port address is placed both in the lower 

and higher order address bus. The processor takes three T-states to execute this machine cycle. 

 

 
 

T1 state: 

 The higher order address bus (A8-A15) and lower order address and data multiplexed 

(AD0- AD7) bus. 

 ALE goes high so that the memory latches the (AD0-AD7) so that complete 16-bit address 

are available. 

 The microprocessor identifies the I/O read machine cycle from the status signals IO/M’=1, 

S1=1, S0=0. This condition indicates the I/O read cycle. 

T2 state: 

 Selected memory location is placed on the (D0-D7) of the A/D multiplexed bus. RD’ goes 

LOW 

T3 State: 

 The data which was loaded on the previous state is transferred to the microprocessor. 

 In the middle of the T3 state RD’ goes high and disables the I/O read operation. 

 The data which was obtained from the I/O is then decoded. 

I/O Write Cycle: 

The I/O write cycle is executed by the processor to write a data byte to I/O port or to a 

peripheral, which is I/O mapped in the system. The processor takes three T-states to execute this 

machine cycle. 

T1 state: 

 The higher order address bus (A8-A15) and lower order address and data multiplexed (AD0-

AD7) bus. 

  ALE goes high so that the memory latches the (AD0-AD7) so that complete 16-bit 

address are available. 

 The microprocessor identifies the I/O read machine cycle from the status signals IO/M’=1, 

S1=0, S0=1. This condition indicates the I/O read cycle. 

T2 state: 

 Selected memory location is placed on the (D0-D7) of the A/D multiplexed bus. WR’ goes 

LOW 

 



13 

 

T3 State: 

 In the middle of the T3 state WR’ goes high and disables the I/O write operation. The data 

which was obtained from the I/O is then decoded. 

 

1.4 Memory 

Area where the program instruction and data are retained for processing is called memory, like 

human brain, computer also requires some space to store data and instruction for addressing their 

processing. 

CPU does not have the capacity to store programs or large set of data permanently. It contains only 

basic instruction needed to operate the computer. Therefore memory is required. 

Types of Memory 

Memories primarily is of two types as given here: 

o Random Access Memory (RAM) 

▪ Static RAM (SRAM) 

▪ Dynamic RAM (DRAM) 

o Read Only Memory (ROM) 

▪ Masked Read Only Memory (MROM) 

▪ Programmable Read Only Memory (PROM) 

▪ Erasable and Programmable Read Only Memory (EPROM) 

▪ Electrically Erasable and Programmable Read Only Memory (EEPROM) 

Random Access Memory (RAM) 

A RAM constitutes the internal memory of the CPU for storing data, program and program result. It 

is read/write memory. It is called Random Access Memory (RAM). 

Since access time in RAM is independent of the address to the word that is, each storage location 

inside the memory is as easy to reach as other location and takes the same amount of time. We can 

reach into the memory at random and extremely fast but can also be quite expensive. 

RAM is volatile, that is data stored in it is lost when we switch off or turn off the computer or if 

there is a power Failure. Hence, a backup un-interruptible power system (UPS) is often used with 

computers. RAM is a small, both in terms of its physical size and in the amount of data that can 

hold. 

  



14 

 

Types of RAM 

RAM is of two types: 

1. Static RAM (SRAM) 

2. Dynamic Ram (DRAM) 

Static RAM (SRAM) 

The word static indicates that the memory retains its contents as long as power remains applied. 

However, data is lost when the power gets down due to volatile nature. 

Static RAM chips use a matrix of 6 transistors and no capacitors. 

Transistors do not require power to prevent leakage, so static RAM need not have to be refreshed 

on a regular basis. Because of the extra space in the matrix, static RAM uses more chips than 

dynamic RAM for the same amount of storage space, thus making the manufacturing costs higher. 

Static RAM is used as cache memory needs to be very fast and small. 

Dynamic Ram (DRAM) 

Dynamic RAM, unlike static RAM, must be continually replaced in order for it to maintain the 

data. This is done by placing the memory on a refresh circuit that rewrites the data several hundred 

times per second. 

Dynamic RAM is used for most system memory because it is cheap and small. 

All dynamic rams are made up of memory cells. These cells are composed of one capacitor and one 

transistor. 

Read Only Memory (ROM) 

ROM stands for read only memory. The memory from which we can only read but cannot write on 

it. 

This type of memory is non-volatile. The information is stored permanently in such memories during 

manufacture. 

A ROM, stores such instruction as are required to start computer when electricity is first turned on, 

this operation is referred to as bootstrap. 



15 

 

ROM chip are not only used in the computer but also in other electronic items like washing 

machine and microwave oven. 

Types of ROM 

The following list of ROM available in computer: 

1. Masked Read Only Memory (MROM) 

2. Programmable Read Only Memory (PROM) 

3. Erasable and Programmable Read Only Memory (EPROM) 

4. Electrically Erasable and Programmable Read Only Memory (EEPROM) 

Masked Read Only Memory (MROM) 

The very first ROMs were hardware devices that contained a pre-programmed set of data or 

instructions. This kind of ROMs are known as masked ROMs. Tt is inexpensive ROM. 

Programmable Read Only Memory (PROM) 

PROM is read only memory that can be modified only once by a user. The user buys a blank PROM 

and enters the desired contents using a PROM programmer. 

Inside the PROM, there are small fuses which are burnt open during programming. It can be 

programmed only once and it's not erasable. 

Erasable and Programmable Read Only Memory (EPROM) 

The EPROM can be erased by exposing it to ultra-violet light for a duration of upto 40 minutes. 

Usually, an EPROM eraser achieves this function. during programming, an electrical charge is 

trapped in an insulated Gate region. 

The charge is retained for more than 10 years because the charge has no leakage path. For erasing 

this charge, ultraviolet light is passed through a quartz crystal window (lid). This exposure to 

ultraviolet light dissipates the charge. During normal use the quartz lid is sealed with a sticker. 

Electrically Erasable and Programmable Read Only Memory (EEPROM) 

The EEPROM is programmed and erased electrically. It can be erased and re-programmed about ten 

thousand times. 



16 

 

Both erasing and programming take about 4 to 10 milliseconds. In EEPROM, any location can be 

selectively erased and programmed. 

EEPROMs can be erased 1 byte at a time, rather than erasing the entire chip. Hence, the process of 

reprogramming is flexible but slow. 

1.5 MICROPROCESSOR BUS 

 

Bus is a group of conducting wires which carries information, all the peripherals are connected 

to microprocessor through Bus. Diagram to represent bus organization system of 8085 

Microprocessor. There are three types of buses. It is a group of conducting wires which carries address 

only. 

 

There are three types of buses in a microprocessor  
 

• Data Bus − Lines that carry data to and from memory are called data bus. It is a bidirectional 

bus with width equal to word length of the microprocessor. 

• Address Bus − It is a unidirectional responsible for carrying address of a memory location 

or I/O port from CPU to memory or I/O port. 

• Control Bus − Lines that carry control signals   like clock   signals,   interrupt signal or 

ready signal are called control bus. They are bidirectional. Signal that denotes that a device 

is ready for processing is called ready signal. Signal that indicates to a device to interrupt its 

process is called an interrupt signal. 
 

 

 

 

1.6 DIRECT MEMORY ACCESS (DMA) 

DMA is a technique for transferring blocks of data directly between two hardware devices. 

In the absence of DMA the processor must read the data from one device and write it to the 

other one byte or word at a time. 

 

 



17 

 

DMA Absence Disadvantage: If the amount of data to be transferred is large or frequency of 

transfer is high the rest of the software might never get a chance to run. 

DMA Presence Advantage: The DMA Controller performs entire transfer with little help 

from the Processor. 

Working of DMA 

The Processor provides the DMA Controller with source and destination address & total number 

of bytes of the block of data which needs transfer. 

 

After copying each byte each address is incremented & remaining bytes are reduced by one. 

When number of bytes reaches zeros the block transfer ends & DMA Controller sends an Interrupt 

to Processor. 
 

 
1.7 INTERRUPT 

An interrupt is a signal to the processor emitted by hardware or software indicating an event that 

needs immediate attention. Whenever an interrupt occurs, the controller completes the execution 

of the current instruction and starts the execution of an Interrupt Service Routine (ISR) or 

Interrupt Handler. ISR tells the processor or controller what to do when the interrupt occurs. 

The interrupts can be either hardware interrupts or software interrupts. 

 

Hardware Interrupt 

 

A hardware interrupt is an electronic alerting signal sent to the processor from an external device, 

like a disk controller or an external peripheral. For example, when we press a key on the keyboard 

or move the mouse, they trigger hardware interrupts which cause the processor to read the 

keystroke or mouse position. 

 
Software Interrupt 

A software interrupt is caused either by an exceptional condition or a special instruction in the 



18 

 

instruction set which causes an interrupt when it is executed by the processor. For example, if the 

processor's arithmetic logic unit runs a command to divide a number by zero, to cause a 

divide-by-zero exception, thus causing the computer to abandon the calculation or display an error 

message. Software interrupt instructions work similar to subroutine calls. 

 
Interrupt Service Routine 

 

For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler. When 

an interrupt occurs, the microcontroller runs the interrupt service routine. For every interrupt, 

there is a fixed location in memory that holds the address of its interrupt service routine, ISR. 

The table of memory locations set aside to hold the addresses of ISRs is called as the Interrupt 

Vector Table. 

 

 

Interrupt Vector Table 

 

There are six interrupts including RESET in 8051. 
 

Inte

rru

pts 

ROM Location (Hex) P

i

n 

Interrupts ROM Location (HEX) 
 

Serial COM (RI and TI) 0023 
 

Timer 1 interrupts(TF1) 001B 
 

External HW interrupt 1 (INT1) 0013 P3.3 (13) 

External HW interrupt 0 (INT0) 0003 P3.2 (12) 

Timer 0 (TF0) 000B 
 

Reset 0000 9 

• When the reset pin is activated, the 8051 jumps to the address location 0000. This is power-
up reset. 

• Two interrupts are set aside for the timers: one for timer 0 and one for timer 1. Memory 

locations are 000BH and 001BH respectively in the interrupt vector table. 

• Two interrupts are set aside for hardware external interrupts. Pin no. 12 and Pin no. 13 in Port 

3 are for the external hardware interrupts INT0 and INT1, respectively. Memory locations 



19 

 

are 0003H and 0013H respectively in the interrupt vector table. 

• Serial communication has a single interrupt that belongs to both receive and transmit. 
Memory location 0023H belongs to this interrupt. 

Steps to Execute an Interrupt 

 

When an interrupt gets active, the microcontroller goes through the following steps − 

• The microcontroller closes the currently executing instruction and saves the address of the 

next instruction (PC) on the stack. 

• It also saves the current status of all the interrupts internally (i.e., not on the stack). 

• It jumps to the memory location of the interrupt vector table that holds the address of the 

interrupts service routine. 

• The microcontroller gets the address of the ISR from the interrupt vector table and jumps to 

it. It starts to execute the interrupt service subroutine, which is RETI (return from interrupt). 

• Upon executing the RETI instruction, the microcontroller returns to the location where it was 

interrupted. First, it gets the program counter (PC) address from the stack by popping the top 

bytes of the stack into the PC. Then, it start to execute from that address. 

 
1.8 THE SHARED DATA PROBLEM 

A big problem in embedded systems occurs in embedded software when an interrupt 

service routine and the main program share the same data. What happens if the main program 

is in the middle of doing some important calculations using some piece of data…an interrupt 

occurs that alters that piece of data…and then the main program finishes its calculation? Oops! 

The calculation performed by the main program might be corrupted because it is based off 

the wrong/different data value. This is known as the shared data problem. 

Example of Shared Data Problem 

Imagine you are a software engineer working at a company. Your team is responsible for 

designing an automatic dog entry door. This embedded device can be wirelessly updated 

with RFID tags for dogs or other pets to be allowed entry. 

The door needs to automatically unlock for dogs that are in the vicinity of the door. A pet 

must be allowed to enter even when the table of RFID tags is being updated. The RFID tag IDs 

are shared data since the interrupt service routine that must update the tag IDs and the main () 

program that is responsible for automatically unlocking the door when dogs are in the vicinity 

both share and use this data. A problem will occur when the doggy door is in the middle of an 

RFID tag ID update when a dog needs to get through the door. We wouldn’t want to let the poor 

dog wait outside in the freezing cold while the device is in the middle of an RFID tag update! 
 



20 

 

            
 

 

How do we create a solution that solves the shared data problem? The RFID tags need to be 

updated regularly but that same data is needed regularly by the main () program to let dogs enter 

when they need to. Let’s solve this now. 
 

 

 

• This embedded device can be wirelessly updated with RFID tags. 

• Dogs or other pets must be allowed entry when they are in the vicinity of the door. 

• Dog must be allowed to enter even when the table of RFID tags is being updated. 

• RFID tag IDs are shared data which must be managed. 

• In the shared data problem for the doggy door controller, we need to make sure the dog can 

enter at all times while the RFID tags are being updated. Because this is a dog, it is 

unacceptable for the door to remain locked and keep a dog waiting. 
 

 

1.9 INTERRUPTS LATENCY 

 

Interrupt latency refers primarily to the software interrupt handling latencies. In other words, the 

amount of time that elapses from the time that an external interrupt arrives at the processor 

until the time that the interrupt processing begins. 

One of the most important aspects of kernel real-time performance is the ability to service an 

interrupt request (IRQ) within a specified amount of time. 



21 

 

 

 
 

Here are the sources contributing the interrupt latency (abstracts from Reduce RTOS latency in 

interrupt-intensive apps): 

Operating system (OS) interrupt latency 

An RTOS must sometimes disable interrupts while accessing critical OS data structures. The 

maximum time that an RTOS disables interrupts is referred to as the OS interrupt latency. 

Although this overhead will not be incurred on most interrupts since the RTOS disables 

interrupts relatively infrequently, developers must always factor in this interrupt latency to 

understand the worst-case scenario. 

Low-level interrupt-related operations 

 
When an interrupt occurs, the context must be initially saved and then later restored after the 

interrupt processing has been completed. The amount of context that needs to be saved depends 

on how many registers would potentially be modified by the ISR (Interrupt Service Routine). 

Enabling the ISR to interact with the RTOS 

 
An ISR will typically interact with an RTOS by making a system call such as a semaphore post. 

 

To ensure the ISR function can complete and exit before any context switch to a task is made, 

the RTOS interrupt dispatcher must disable preemption before calling the ISR function. 

Once the ISR function completes, preemption is re-enabled and the application will context 

switch to the highest priority thread that is ready to run. If there is no need for an ISR to make 

an RTOS system call, the disable/enable kernel preemption operations would again add 

overhead. It is logical to handle such an ISR outside of the RTOS. 

Context switching 

 
When an ISR defers processing to an RTOS task or other thread, a context switch needs to 

occur for the task to run. Context switching will still typically be the largest part of any-RTOS 

related interrupt processing overhead. 

IRQ (Interrupt Request) 

 
An (or IRQ) is a hardware signal sent to the processor that temporarily stops a running program 

and allows a special program, an interrupt handler, to run instead. Interrupts are used to handle 

such events as data receipt from a modem or network, or a key press or mouse movement. 



22 

 

FIQ (Fast Interrupt Request) 

 
An FIQ is just a higher priority interrupt request, that is prioritized by disabling IRQ and other 

FIQ handlers during request servicing. Therefore, no other interrupts can occur during the 

processing of the active FIQ interrupt. 

 
1.10 EMBEDDED SYSTEM EVOLUTION TRENDS 

 

Embedded systems are on the rise as the technology paves the way for the future of smart 

manufacturing across a range of industries. Microcontrollers — the hardware at the center of 

embedded systems — are improving quickly, allowing for better machine control and 

monitoring. In this article, we will discuss the emerging trends for embedded systems in 

2019 that will enable enhanced security, better control, and improved scalability. 

 

Current Trends in Embedded Systems Applications 

 

An embedded system is an application-specific system designed with a combination of 

hardware and software to meet real-time constraints. The key characteristics of embedded 

industrial systems include speed, security, size, and power. The major trends in the embedded 

systems market revolve around the improvement of these characteristics. 

 

To give context into how large the embedded systems industry is, here are a few statistics 

 

• The global market for the embedded systems industry was valued at $68.9 billion in 2017 

and is expected to rise to $105.7 billion by the end of 2025. 

• 40% of the industrial share for embedded systems market is shared by the top 10 vendors. 
 

• In 2015, embedded hardware contributed to 93% of the market share and it is expected to 

dominate the market over embedded software in the upcoming years as well. 

 

Future Trends of Embedded Systems Industry 

 

The industry for embedded systems is growing and there are still several barriers that must be 

overcome. Below are five notable trends of the embedded systems market for 2019. 

 

Improved Security for Embedded Devices 

 
With the rise of the Internet of Things (IoT), the primary focus of developers and 

manufacturers is on security. In 2019, advanced technologies for embedded security will 

emerge as key generators for identifying devices in an IoT network, and as microcontroller 

security solutions that isolate security operations from normal operations. 

 

Cloud Connectivity and Mesh Networking 

 
Getting embedded industrial systems connected to the internet and cloud can take weeks and 

months in the traditional development cycle. Consequently, cloud connectivity tools will be 

an important future market for embedded systems. These tools are designed to simplify the 

process of connecting embedded systems with cloud-based services by reducing the 

underlying hardware complexities. 



23 

 

 
A similar yet innovative market for low-energy IoT device developers is Bluetooth mesh 
networks. These solutions can be used for seamless connectivity of nearby devices while 

reducing energy consumption and costs. 

 
Reduced Energy Consumption 

 
A key challenge for developers is the optimization of battery-powered devices for low power 

consumption and maximum uptime. Several solutions are under development for monitoring 

and reducing the energy consumption of embedded devices that we can expect to see in 2019. 

These include energy monitors and visualizations that can help developers fine-tune their 

embedded systems, and advanced Bluetooth and Wi-Fi modules that consume less power at 

the hardware layer. 

 

Visualization Tools with Real Time Data 

 
Developers currently lack tools for monitoring and visualizing their embedded industrial 

systems in real time. The industry is working on real-time visualization tools that will give 

software engineers the ability to review embedded software execution. These tools will enable 

developers to keep a check on key metrics such as raw or processed sensor data and event-

based context switches for tracking the performance of embedded systems. 
 

Deep Learning Applications 

 
Deep learning represents a rich, yet unexplored embedded systems market that has a range of 

applications from image processing to audio analysis. Even though developers are primarily 

focused on security and cloud connectivity right now, deep learning and artificial intelligence 

concepts will soon emerge as a trend in embedded systems. 

 
Embedded System Innovations 

 

The industrial sector for embedded systems is undergoing numerous transformations that will 

enable developers to build systems that are high-performing, secure, and robust. As a 

developer and manufacturer in this industry, it is important to stay updated with the latest 

technologies and trends. For 2019, the embedded systems market is shaping up for simplified 

cloud connectivity, improved security tools, real-time visualizations, lower power 

consumption, and deep learning solutions. 

 

  



24 

 

1.11 ROUND ROBIN ARCHITECTURE 

 

 

 
The Round Robin architecture is the easiest architecture for embedded systems. The main 

method consists of a loop that runs again and again, checking each of the I/O devices at each 

turn in order to see if they need service. No fancy interrupts, no fear of shared data…just 

a plain  single execution time 

 
Example: Multimeter 

 
• very small number of I/O: (switch, display, probes) 

 
• no particularly lengthy processing (even very simple microprocessors can check switch, 

take measurement and update display several times per second.) 

 
• measurements can be taken at any time. 

 
• display can be written to at any speed. 

 
• small delays in switch position changes will go unnoticed thread that gets executed again 

and again. 

 

 
Advantages: 

 
• Simplest of all the architectures 

• No interrupts 

• No shared data 



25 

 

• No latency concerns 

• No tight response requirements 

 
Disadvantages: 

 
• A sensor connected to the Arduino that urgently needs service must wait its turn. 

• Fragile. Only as  strong as the weakest link. If a sensor breaks  or something else 

breaks, everything breaks. 
• Response time has low stability in the event of changes to the code 

 

Round-Robin Problems 

 

If any device needs a response in less time than the worst duration of the loop the system won't 

function. 

 

If A and B take 5ms each and Z needs a response time of less than 7ms its not possible. This can 

be mitigate somewhat by doing (A,Z,B,Z) in a loop instead of (A,B,Z). 

Scalability of this solution is poor. Even if absolute deadlines do not exist, overall response time 

may become unacceptably poor. 

 

Round-Robin architecture is fragile – Even if the programmer manages to tune the loop sufficiently 

to provide a functional system a single addition or change can ruin everything. 

 

Round Robin with Interrupts 
 

 

 

 
 

 
 

This Round Robin with Interrupts architecture is similar to the Round Robin architecture, except 



26 

 

it has interrupts. When an interrupt is triggered, the main program is put on hold and control shifts 

to the interrupt service routine. Code that is inside the interrupt service routines has a higher 

priority than the task code. 

 
 

Advantages: 

 
• Greater control over the priority levels 

• Flexible 

• Fast response time to I/O signals 

• Great for managing sensors that need to be read at prespecified time intervals 

Disadvantages: 

 
• Shared data 

• All interrupts could fire off concurrently 

 

PREEMPTIVE AND NON-PREEMPTIVE SCHEDULING 

 

Prerequisite – CPU Scheduling 

 

1. Preemptive Scheduling: 

 

Preemptive scheduling is used when a process switches from running state to ready state or from 

waiting state to ready state. The resources (mainly CPU cycles) are allocated to the process for the 

limited amount of time and then is taken away, and the process is again placed back in the ready 

queue if that process still has CPU burst time remaining. That process stays in ready queue till it 

gets next chance to execute. 

 

Algorithms based on preemptive scheduling are: Round Robin (RR),Shortest Remaining Time 

First (SRTF), Priority (preemptive version), etc. 
 

 

 

 

 

 

 
 

 

 

https://www.geeksforgeeks.org/gate-notes-operating-system-process-scheduling/
https://www.geeksforgeeks.org/program-round-robin-scheduling-set-1/
https://www.geeksforgeeks.org/program-shortest-job-first-scheduling-set-2srtf-make-changesdoneplease-review/
https://www.geeksforgeeks.org/program-shortest-job-first-scheduling-set-2srtf-make-changesdoneplease-review/
https://www.geeksforgeeks.org/program-for-preemptive-priority-cpu-scheduling/


27 

 

2. Non-Preemptive Scheduling: 

 

Non-preemptive Scheduling is used when a process terminates, or a process switches from 

running to waiting state. In this scheduling, once the resources (CPU cycles) is allocated to a 

process, the process holds the CPU till it gets terminated or it reaches a waiting state. In case of 

non-preemptive scheduling does not interrupt a process running CPU in middle of the execution. 

Instead, it waits till the process complete its CPU burst time and then it can allocate the CPU 

to another process. 

 

Algorithms based on non-preemptive scheduling are: Shortest Job First (SJF basically non 

preemptive) and Priority (non preemptive version), etc. 
 

 

 

 

 

 

 

 

 
Key Differences between Preemptive and Non-Preemptive Scheduling: 

 

1. In preemptive scheduling the CPU is allocated to the processes for the limited 

time whereas in Non-preemptive scheduling, the CPU is allocated to the process till it 

terminates or switches to waiting state. 

 

2. The executing process in preemptive scheduling is interrupted in the middle of execution 

when higher priority one comes whereas, the executing process in non-preemptive scheduling is 

not interrupted in the middle of execution and wait till its execution. 

 

3. In Preemptive Scheduling, there is the overhead of switching the process from ready state to 

running state, vise-verse, and maintaining the ready queue. Whereas in case of non- preemptive 

scheduling has no overhead of switching the process from running state to ready state. 

 

4.In preemptive scheduling, if a high priority process frequently arrives in the ready queue then 

the process with low priority has to wait for a long, and it may have to starve. On the other hands, 

in the non-preemptive scheduling, if CPU is allocated to the process having larger burst time 

then the processes with small burst time may have to starve. 

 

5. Preemptive scheduling attain flexible by allowing the critical processes to access CPU 

https://www.geeksforgeeks.org/program-shortest-job-first-sjf-scheduling-set-1-non-preemptive/
https://www.geeksforgeeks.org/program-shortest-job-first-sjf-scheduling-set-1-non-preemptive/


28 

 

as they arrive into the ready queue, no matter what process is executing currently. Non- 

preemptive scheduling is called rigid as even if a critical process enters the ready queue the 

process running CPU is not disturbed. 

 

6. The Preemptive Scheduling has to maintain the integrity of shared data that’s why it 

is cost associative as it which is not the case with Non-preemptive Scheduling. 

 

Comparison Chart 

 

Parameter PREEMPTIVE SCHEDULING NON-PREEMPTIVE SCHEDULING 

 

 

 
Basic 

 

In this resources (CPU Cycle) are 

allocated to a process for a limited 

time. 

Once resources (CPU Cycle) are 

allocated to a process, the process holds 

it till it completes its burst time or 

switches to waiting state. 

 

Interrupt 

Process can be interrupted in 

between. 

Process cannot be interrupted until it 

terminates itself or its time is up. 

 

 

 
Starvation 

If a process having high priority 

frequently arrives in the ready 

queue, low priority process may 

starve. 

 

If a process with long burst time is 

running CPU, then later coming process 

with less CPU burst time may starve. 

 

Overhead 

It has overheads of scheduling the 

processes. 

 

It does not have overheads. 

Flexibility Flexible rigid 

Cost cost associated no cost associated 

CPU 

Utilization 
In preemptive scheduling, CPU 

utilization is high. 

 

It is low in non preemptive scheduling. 

 

 

Examples 

Examples of preemptive 

scheduling are Round Robin and 

Shortest Remaining Time First. 

Examples of non-preemptive scheduling 

are First Come First Serve and Shortest 

Job First. 



29 

 

 

 

Part A  

1.What is an embedded system? What are the components of embedded system? 

2.What are the applications of an embedded system? 

3.Interpret about embedded microcontroller. 

  4.What are the various classifications of embedded systems? 

5.Define interrupt latency? How to avoid it. 

  6.Identify some of the hardware parts of embedded systems? 

7.What are the various types of memory in embedded systems? 

8.What are the requirements of embedded system? 

9.Identify the functions of memory? 

10.What is shared data problem? 

11.Summarize the ways to eliminate Shared Data problem? 

12.What is Round Robin Scheduling? 

13.Compare round robin scheduling with and without interrupt.  

14.Identify the functions of DMA 

15.Interpret purpose of a bus? 

 

Part B 
 

1.Analyze in detail about the data transfer mechanism using DMA in Embedded System. 

2.Explain in detail about Interrupt servicing Mechanism in an embedded device. 

3.Elaborate the basic processors and hardware units in the embedded system. 

 4.Explain in detail about interrupt latency and their solutions. 

5.Appraise in detail about Round Robin Scheduling with and    without interrupt. Give 

example also. 

6.Explain in detail about shared data problem and how to avoid it. Give example 

 

TEXT/ REFEENCE BOOKS 

1.David E.Simon, “An Embedded Software Primer”, Pearson Education,2001 

2. Frank Vahid and Tony Gwargie,“Embedded System Design”, John Wiley & 

Sons,2002 

3. Steve Heath, “Embedded System Design”, Elsevier, Second Edition,2004.  
 

 

  



30 

 

 

 

 
 

 

 

SCHOOL OF ELECTRICAL AND ELECTRONICS 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 

 

 

 
           UNIT- 2 REAL TIME OPERATING SYSTEM 



31 

 

UNIT 2 REAL TIME OPERATING SYSTEM 

 

Task and Task states Task and data Semaphore and shared data operating system services 

Message queues timing functions Events Memory management Interrupt routines in an RTOS 

environment Basic design using RTOS. 

 

 
Embedded systems are microcontroller-based systems that are designed to perform 

specific functions such as reading sensor data, responding to external events, 

communicating with other systems, controlling processes, etc. The tricky part is to make 

the distinction of what exactly qualifies such a system as real-time. Aren’t all 

embedded systems operating in real-time? In order for an embedded system to be 

classified as real-time, it must guarantee a strictly defined response time to the events 

it is tasked with observing and controlling. It should be noted that all systems have a 

response time (latency). Real-time embedded systems do not react immediately to every 

event but can guarantee a worse case response time. 

 

Real-time operating systems (RTOS) provide a framework that enables guaranteed 

response times and deterministic behaviour. This is achieved using a scheduling 

mechanism. This mechanism is at the heart of every RTOS. We can design a real -time 

embedded system without the use of RTOS, however, using one can make the design 

process shorter and the whole system easier to manage. 

 

As part of the embedded system abstraction layers, an RTOS is placed above the low - 

level device drives and below the user application. The RTOS does not provide low - 

level drivers for microcontroller peripherals. Some RTOS may contain middleware 

software such as networking, file systems, etc.(fig 2.1) 

 
 

Fig.2.1 RTOS within the embedded system abstraction layers 



32 

 

2.1 Task and Task States 

Tasks 

Task is a piece of code or program that is separate from another task and can be 

executed independently of the other tasks. 

In embedded systems, the operating system has to deal with a limited number of 

tasks depending on the functionality to be implemented in the embedded system. 

Multiple tasks are not executed at the same time instead they are executed in pseudo 

parallel i.e. the tasks execute in turns as the use the processor. 

From a multitasking point of view, executing multiple tasks is like a single book being read 

by multiple people, at a time only one person can read it and then take turns to read it. Different 

bookmarks may be used to help a reader identify where to resume reading next time. 

An Operating System decides which task to execute in case there are multiple tasks to be 

executed. The operating system maintains information about every task and information 

about the state of each task. 

The information about a task is recorded in a data structure called the task context. When a 

task is executing, it uses the processor and the registers available for all sorts of processing. 

When a task leaves the processor for another task to execute before it has finished its own, 

it should resume at a later time from where it stopped and not from the first instruction. This 

requires the information about the task with respect to the registers of the processor to be 

stored somewhere. This information is recorded in the task context. 

 

 
A C++ version of a Task that holds all information needed by operating system is as follows: 

 

 
class Task 

{ 
 

public: 

Task(void (*function)(), Priority p, int stackSize); 

 

 
TaskId id; Context context; 

TaskState state; Priority 

priority; 

int * pStack; Task * pNext; 



33 

 

void (*entryPoint)(); 
 

 

private: 

static TaskId nextId; 

}; 
 

 

Task States 

 

In an operation system there are always multiple tasks. At a time only one task can be executed. 

This means that there are other tasks which are waiting their turn to be executed. 

Depending upon execution or not a task may be classified into the following three states (Fig 

2.2): 

Running state - Only one task can actually be using the processor at a given time that task is 

said to be the “running” task and its state is “running state”. No other task can be in that same 

state at the same time 

Ready state - Tasks that are not currently using the processor but are ready to run are in the 

“ready” state. There may be a queue of tasks in the ready state. 

Waiting state - Tasks that are neither in running nor ready state but that are waiting for some 

event external to themselves to occur before the can go for execution on are in the “waiting” 

state. 

 
Fig 2.2 Task States 

 

 
A transition of state between the ready and running state occurs whenever the operating system 

selects a new task to run. 

The task that was previously in running state becomes ready and the new task is promoted to 

running state. 



34 

 

A task will leave running state only if it needs to wait for some event external to itself to occur 

before continuing. 

 
A task's state can be defined as follows: 

enum TaskState {Ready, Running, Waiting}; 

SCHEDULER 

The heart and soul of any operating system is its scheduler. 

This is the piece of the operating system that decides which of the ready tasks has the right to 

use the processor at a given time. 

It simple checks to see if the running task is the highest priority ready task. Some of the more 

common scheduling algorithms: 

First-in-first-out 

First-in-first-out (FIFO) scheduling describes an operating system which is not a multitasking 

operating system. 

Each task runs until it is finished, and only after that is the next task started on a first come 

first served basis. 

Shortest job first 

Shortest job first scheduling uses algorithms that will select always select a task that will 

require the least amount of processor time to complete. 

Round robin. 

Round robin scheduling uses algorithms that allow every task to execute for a fixed amount to 

time. 

A running task is interrupted an put to a waiting state if its execution time expires. 

Scheduling Points 

The scheduling points are the set of operating system events that result in an invocation of the 

scheduler. 

There are three such events: task creation and task deletion. During each of these events a 

method is called to select the next task to be run. 

A third scheduling point called the clock tick is a periodic event that is triggered by a timer 

interrupt. When a timer expires, all of the tasks that are waiting for it to complete are changed 

from the waiting state to the ready state. 

Ready List 

The scheduler uses a data structure called the ready list to track the tasks that are in the ready 

state. 

The ready list is implemented as an ordinary linked list, ordered by priority. So the head of this 

list is always the highest priority task that is ready to run. Idle task 

If there are no tasks in the ready state when the scheduler is called, the idle task will be     



35 

 

executed. 

The idle task looks the same in every operating system. The idle task is always considered to 

be in the ready state. Scheduler 

The scheduler is an integral part of every RTOS. It controls which task should be 

executed at any given point in time. The scheduler may use various types of algorithms 

for performing the scheduling of the tasks. Almost all of these algorithms can be 

classified into two main types: 

 
• Preemptive Scheduling – this algorithm allows the interruption of a currently running 

task, so another one with higher priority can be run. 

• Non-preemptive Scheduling ( C-operative Scheduling) – once   a   task   is started it 

can’t be interrupted, it will run until it decides that it should release the CPU to another 

task. 

 

Advantages: 

 
• Better Structure and Scalability – Using an RTOS gives you a well-defined mechanism 

for adding and removing software modules. 

• Timing Constraints -Using RTOS makes it easier to fulfill the timing requirements of 

the many modules used in complex embedded systems. 

• Better Focus – RTOS allows you to focus on the actual application by offloading the 

development of components such as memory management, exception handling, power 

management, etc. 

• Functional Safety – There are RTOS distributions that are pre-certified for standards 

such as IEC 61508 and ISO 26262. This can greatly reduce the development effort in 

systems that must comply with such standards. 

      Disadvantages: 

 
• Learning Curve – Even the simpler real-time operating systems will require time 

for learning their specifics and how to properly use them. 

• Price and Licensing – Although there are many free RTOS, their licenses may differ a 

lot. If you want to use a free RTOS for commercial products there may be some 

limitations or fees. 

 

Popular real-time operating systems are Free RTOS, mBed, TinyOS, Riot, Zephyr, 

etc. 

  



36 

 

 

 
 

2.3 Semaphore 

Multiple concurrent threads of execution within an application must be able to synchronize 

their execution and coordinate mutually exclusive access to shared resources. 

To address these requirements, RTOS kernels provide a semaphore object and associated 

semaphore management services. 

 

Semaphores 

A semaphore (sometimes called a semaphore token) is a kernel object that one or more 

threads of execution can acquire or release for the purposes of synchronization or mutual 

exclusion. 

When a semaphore is first created, the kernel assigns to it an associated semaphore control 

block (SCB), a unique ID, a value (binary or a count), and a task-waiting list, as shown in Figure 

2.3 . 

                     
 

Fig 2.3 Semaphore 

A semaphore is like a key that allows a task to carry out some operation or to access a resource. 

If the task can acquire the semaphore, it can carry out the intended operation or access the 

resource. 

A single semaphore can be acquired a finite number of times. 

In this sense, acquiring a semaphore is like acquiring the duplicate of a key from an apartment 

manager when the apartment manager runs out of duplicates, the manager can give out no more 

keys. 

Likewise, when a semaphore’s limit is reached, it can no longer be acquired until someone 

gives a key back or releases the semaphore. 

The kernel tracks the number of times a semaphore has been acquired or released by 

maintaining a token count, which is initialized to a value when the semaphore is created. 

As a task acquires the semaphore, the token count is decremented; as a task releases the 



37 

 

semaphore, the count is incremented. 

If the token count reaches 0, the semaphore has no tokens left. 

A requesting task, therefore, cannot acquire the semaphore, and the task blocks if it chooses to 

wait for the semaphore to become available. 

The task-waiting list tracks all tasks blocked while waiting on an unavailable semaphore. 
 

These blocked tasks are kept in the task-waiting list in either first in/first out (FIFO) order 

or highest priority first order. 

When an unavailable semaphore becomes available, the kernel allows the first task in the 

task- waiting list to acquire it. 

The kernel moves this unblocked task either to the running state, if it is the highest 

priority task, or to the ready state, until it becomes the highest priority task and is able to run. 

Note that the exact implementation of a task-waiting list can vary from one kernel to 

another. A kernel can support many different types of semaphores, including binary, 

counting, and mutual-exclusion (mutex) semaphores. 

1- Binary Semaphores :- 

A binary semaphore can have a value of either 0 or 1. 

When a binary semaphore’s value is 0, the semaphore is considered unavailable (or 

empty); when the value is 1, the binary semaphore is considered available (or full). 

Note that when a binary semaphore is first created, it can be initialized to either available 

or unavailable (1 or 0, respectively). 

The state diagram of a binary semaphore is shown in Figure 2.4 
 
 

 
Fig 2.4 Binary Semaphore 

Binary semaphores are treated as global resources, which means they are shared among 

all tasks that need them. 

Making the semaphore a global resource allows any task to release it, even if the task did   

not initially acquire it. 

  



38 

 

 

2- Counting Semaphores :- 

 

A counting semaphore uses a count to allow it to be acquired or released multiple times. 
 

When creating a counting semaphore, assign the semaphore a count that denotes the 

number of semaphore tokens it has initially. 

If the initial count is 0, the counting semaphore is created in the unavailable state. 

If the count is greater than 0, the semaphore is created in the available state, and the number 

of tokens it has equals its count, as shown in Figure 2.5 

 

 
Fig 2.5 Counting Semaphore 

One or more tasks can continue to acquire a token from the counting semaphore until no tokens 

are left. 

When all the tokens are gone, the count equals 0, and the counting semaphore moves from 

the available state to the unavailable state. 

To move from the unavailable state back to the available state, a semaphore token must 

be released by any task. 

Note that, as with binary semaphores, counting semaphores are global resources that can 

be shared by all tasks that need them. 

This feature allows any task to release a counting semaphore token. 

Each release operation increments the count by one, even if the task making this call did 

not acquire a token in the first place. 

Some implementations of counting semaphores might allow the count to be bounded. 

A bounded count is a count in which the initial count set for the counting semaphore, 

determined when the semaphore was first created, acts as the maximum count for the 

semaphore. 



39 

 

An unbounded count allows the counting semaphore to count beyond the initial count to the 

maximum value that can be held by the count’s data type (Ex :- an unsigned integer or an 

unsigned long value). 

 

3- Mutual Exclusion (Mutex) Semaphores :- 

 

A   mutual   exclusion   (mutex)   semaphore   is    a special    binary    semaphore that supports 

ownership, recursive access, task deletion safety, and one or more protocols for avoiding 

problems inherent to mutual exclusion. 

Figure 2.6 illustrates the state diagram of a mutex. 
 

 

 
Fig 2.6 State diagram of a mutex 

As opposed to the available and unavailable states in binary and counting semaphores, 

the states of a mutex are unlocked or locked (0 or 1, respectively). 

A mutex is initially created in the unlocked state, in which it can be acquired by a task. After 

being acquired, the mutex moves to the locked state. 

Conversely, when the task releases the mutex, the mutex returns to the unlocked state. Note 

that some kernels might use the terms lock and unlock for a mutex instead of acquire and 

release. 

Depending on the implementation, a mutex can support additional features not found in binary 

or counting semaphores. 

These key differentiating features include ownership, recursive locking, task deletion safety, 

and priority inversion avoidance protocols. 

Mutex Ownership :- 

Ownership of a mutex is gained when a task first locks the mutex by acquiring it. Conversely, 

a task loses ownership of the mutex when it unlocks it by releasing it. 

When a task owns the mutex, it is not possible for any other task to lock or unlock that mutex. 

Contrast this concept with the binary semaphore, which can be released by any task, even a 

task that did not originally acquire the semaphore. 

 



40 

 

 Recursive Locking :- 

 

Many mutex implementations also support recursive locking , which allows the task that owns the 

mutex to acquire it multiple times in the locked state. 

Depending on the implementation, recursion within a mutex can be automatically built into the 

mutex, or it might need to be enabled explicitly when the mutex is first created. 

The mutex with recursive locking is called a recursive mutex.  

This type of mutex is most useful when a task requiring exclusive access to a shared resource calls 

one or more routines that also require access to the same resource. 

A recursive mutex allows nested attempts to lock the mutex to succeed, rather than cause deadlock 

, which is a condition in which two or more tasks are blocked and are waiting on mutually 

locked resources. 

As shown in the above figure, when a recursive mutex is first locked, the kernel registers the 

task that locked it as the owner of the mutex. 

On successive attempts, the kernel uses an internal lock count associated with the mutex to track 

the number of times that the task currently owning the mutex has recursively acquired it. To 

properly unlock the mutex, it must be released the same number of times. 

In this example, a lock count tracks the two states of a mutex (0 for unlocked and 1 for locked), as 

well as the number of times it has been recursively locked (lock count > 1). 

In other implementations, a mutex might maintain two counts: a binary value to track its state, 

and a separate lock count to track the number of times it has been acquired in the lock state by 

the task that owns it. 

Do not confuse the counting facility for a locked mutex with the counting facility for a counting 

semaphore. 

The count used for the mutex tracks the number of times that the task owning the mutex has 

locked or unlocked the mutex. 

The count used for the counting semaphore tracks the number of tokens that have been acquired 

or released by any task. Additionally, the count for the mutex is always unbounded, which 

allows multiple recursive accesses. 

 

Task Deletion Safety :- 

 

Some mutex implementations also have built-in task deletion safety. 

Premature task deletion is avoided by using task deletion locks when a task locks and 

unlocks a mutex. 

Enabling this capability within a mutex ensures that while a task owns the mutex, the 

task cannot be deleted.  



41 

 

Typically protection from premature deletion is enabled by setting the appropriate 

initialization options when creating the mutex. 

 

Priority Inversion Avoidance :- 

 

Priority inversion commonly happens in poorly designed real-time embedded applications. 

Priority inversion occurs when a higher priority task is blocked and is waiting for a 

resource being used by a lower priority task, which has itself been preempted by an unrelated 

medium- priority task. 

In this situation, the higher priority task’s priority level has effectively been inverted to 

the lower priority task’s level. 

Enabling certain protocols that are typically built into mutexes can help avoid priority 

inversion. 

Two common protocols used for avoiding priority inversion include:- 

A- Priority Inheritance Protocol :- ensures that the priority level of the lower priority task that 

has acquired the mutex is raised to that of the higher priority task that has requested the mutex 

when inversion happens. The priority of the raised task is lowered to its original value after the 

task releases the mutex that the higher priority task requires. 

B- Ceiling Priority Protocol :- ensures that the priority level of the task that acquires the mutex 

is automatically set to the highest priority of all possible tasks that might request that mutex 

when it is first acquired until it is released. 

When the mutex is released, the priority of the task is lowered to its original value. 

2.4 Message Queue 

A message queue is a buffer-like object through which tasks and ISRs send and receive 

messages to communicate and synchronize with data. A message queue is like a pipeline. It 

temporarily holds messages from a sender until the intended receiver is ready to read them. 

This temporary buffering decouples a sending and receiving task; that is, it frees the tasks from 

having to send and receive messages simultaneously. 

A message queue has several associated components that the kernel uses to manage the 

queue. When a message queue is first created, it is assigned an associated queue control block 

(QCB), a message queue name, a unique ID, memory buffers, a queue length, a maximum 

message length, and one or more task-waiting lists, as illustrated in Fig 2.7 

 



42 

 

 

Figure 2.7 : A message queue, its associated parameters, and supporting data 

structures. 

 
 

It is the kernel’s job to assign a unique ID to a message queue and to create its QCB and 

task-waiting list. The kernel also takes developer-supplied parameters—such as the length of the 

queue and the maximum message length—to determine how much memory is required for the 

message queue. After the kernel has this information, it allocates memory for the message queue 

from either a pool of system memory or some private memory space. 

 
The message queue itself consists of a number of elements, each of which can hold a 

single message. The elements holding   the   first   and   last   messages   are   called 

the head and tail respectively. Some elements of the queue may be empty (not containing a 

message). The total number of elements (empty or not) in the queue is the total length of the 

queue . The developer specified the queue length when the queue was created. 

As fig 2.7 shows, a message queue has two associated task-waiting lists. The receiving task- 

waiting list consists of tasks that wait on the queue when it is empty. The sending list consists 

of tasks that wait on the queue when it is full. 

Message Queue States 
 

As with other kernel objects, message queues follow the logic of a simple FSM, as shown in fig 

2.8 When a message queue is first created, the FSM is in the empty state. If a task attempts to 

receive messages from this message queue while the queue is empty, the task blocks and, if it 

chooses to, is held on the message queue's task-waiting list, in either a FIFO or priority-based 

order. 
 



43 

 

 

 

Figure 2.8 : The state diagram for a message queue. 
 

In this scenario, if another task sends a message to the message queue, the message is delivered 

directly to the blocked task. The blocked task is then removed from the task-waiting list and 

moved to either the ready or the running state. The message queue in this case remains empty 

because it has successfully delivered the message. 

If another message is sent to the same message queue and no tasks are waiting in the message 

queue's task-waiting list, the message queue's state becomes not empty. 

As additional messages arrive at the queue, the queue eventually fills up until it has exhausted 

its free space. At this point, the number of messages in the queue is equal to the queue's length, 

and the message queue's state becomes full. While a message queue is in this state, any task 

sending messages to it will not be successful unless some other task first requests a message 

from that queue, thus freeing a queue element. 

In some kernel implementations when a task attempts to send a message to a full message 

queue, the sending function returns an error code to that task. Other kernel implementations 

allow such a task to block, moving the blocked task into the sending task-waiting list, which is 

separate from the receiving task-waiting list (fig. 2.9). 

 

 
 

Figure 2.9: Message copying and memory use for sending and receiving messages. 

  



44 

 

 

Message Queue Content 
 

Message queues can be used to send and receive a variety of data. Some examples include: 

▪ a temperature value from a sensor, 

▪ a bitmap to draw on a display, 

▪ a text message to print to an LCD, 

▪ a keyboard event, and 

▪ a data packet to send over the network. 

 
Some of these messages can be quite long and may exceed the maximum message length, 

which is determined when the queue is created. (Maximum message length should not be 

confused with total queue length, which is the total number of messages the queue can hold.) 

One way to overcome the limit on message length is to send a pointer to the data, rather than 

the data itself. Even if a long message might fit into the queue, it is sometimes better to send 

a pointer instead in order to improve both performance and memory utilization. 

 
When a task sends a message to another task, the message normally is copied twice, as shown 

in fig 2.9. The first time, the message is copied when the message is sent from the sending 

task’s memory area to the message queue’s memory area. The second copy occurs when the 

message is copied from the message queue’s memory area to the receiving task’s memory area. 

An exception to this situation is if the receiving task is already blocked waiting at the message 

queue. Depending on a kernel’s implementation, the message might be copied just once in this 

case—from the sending task’s memory area to the receiving task’s memory area, bypassing the 

copy to the message queue’s memory area. 

Because copying data can be expensive in terms of performance and memory requirements, 

keep copying to a minimum in a real-time embedded system by keeping messages small or, if 

that is not feasible, by using a pointer instead. 

Message Queue Storage 

 
Different kernels store message queues in different locations in memory. One kernel might use 

a system pool, in which the messages of all queues are stored in one large shared area of 

memory. Another kernel might use separate memory areas, called private buffers, for each 

message queue. 

System Pools 

 
Using a system pool can be advantageous if it is certain that all message queues will never be 

filled to capacity at the same time. The advantage occurs because system pools typically save 



45 

 

on memory use. The downside is that a message queue with large messages can easily use most 

of the pooled memory, not leaving enough memory for other message queues. Indications that 

this problem is occurring include a message queue that is not full that starts rejecting messages 

sent to it or a full message queue that continues to accept more messages. 

Private Buffers 

 
Using private buffers, on the other hand, requires enough reserved memory area for the full 

capacity of every message queue that will be created. This approach clearly uses up more 

memory; however, it also ensures that messages do not get overwritten and that room is 

available for all messages, resulting in better reliability than the pool approach. 

 
Typical Message Queue Operations 

 

Typical message queue operations include the following: 

▪ creating and deleting message queues, 

▪ sending and receiving messages, and 

▪ obtaining message queue information. 

Typical Message Queue Use 
 

The following are typical ways to use message queues within an application: 

▪ non-interlocked, one-way data communication, 

▪ interlocked, one-way data communication, 

▪ interlocked, two-way data communication, and 

▪ broadcast communication. 

 

2.5 Interrupt routines in RTOS environment 

 
 

ISRs have the higher priorities over the RTOS functions and the tasks. An ISR should not wait 

for a semaphore, mailbox message or queue message An ISR should not also wait for mutex 

else it has to wait for other critical section code to finish before the critical codes in the ISR 

can run. Only the IPC accept function for these events (semaphore, mailbox, queue) can be 

used, not the post function 

 
Interrupt Routine Rules 

Interrupt routines in RTOS must follow two rules that do not apply to task code: 

 
• An interrupt routine must not call any RTOS functions that might block. 

• could block the highest priority task 

• might not reset the hardware or allow further interrupts 



46 

 

• An interrupt routine must not call any RTOS function that might cause the RTOS to 

switch tasks 

• causing a higher priority task to run may cause the interrupt routine to take a very long 

time to complete. 

 
Low- and high-level ISRs 

 

Low-level ISR 
 

A low-level interrupt service routine (LISR) executes as a normal ISR, which includes using 

the current stack. Nucleus RTOS saves context before calling an LISR and restores context 

after the LISR returns. Therefore LISRs may be written in C and may call other C routines. 

However, there are only a few Nucleus RTOS services available to an LISR. If the interrupt 

processing requires additional Nucleus RTOS services, a high-level interrupt service routine 

(HISR) must be activated. Nucleus RTOS supports nesting of multiple LISRs. 

 

High-level ISR 

 
HISRs are created and deleted dynamically. Each HISR has its own stack space and its own 

control block. The memory for each is supplied by the application. Of course, the HISR must 

be created before it is activated by an LISR. Since an HISR has its own stack and control block, 

it can be temporarily blocked if it tries to access a Nucleus RTOS data structure that is already 

being accessed. 

 
2.6 Memory Management 

 

A kernel manages program code within an embedded system via tasks. The kernel must also 

have some system of loading and executing tasks within the system, since the CPU only 

executes task code that is in cache or RAM. With multiple tasks sharing the same memory 

space, an OS needs a security system mechanism to protect task code from other independent 

tasks. Also, since an OS must reside in the same memory space as the tasks it is managing, the 

protection mechanism needs to include managing its own code in memory and protecting it 

from the task code it is managing. It is these functions, and more, that are the responsibility 

of the memory management components of an OS. In general, a kernel’s memory management 

responsibilities include: 

 
• Managing the mapping between logical (physical) memory and task memory references. 

• Determining which processes to load into the available memory space. 

• Allocating and deallocating of memory for processes that make up the system. 



47 

 

• Supporting memory allocation and deallocation of code requests (within a process), 

• such as the C language “alloc” and “dealloc” functions, or specific buffer allocation and 

• deallocation routines. 

• Tracking the memory usage of system components. 

• Ensuring cache coherency (for systems with cache). 

• Ensuring process memory protection. 

Physical memory is composed of two-dimensional arrays made up of cells addressed by 

a unique row and column, in which each cell can store 1 bit. 

 
Again, the OS treats memory as one large one-dimensional array, called a memory map . 

Either a hardware component integrated in the master CPU or on the board does the 

conversion between logical and physical addresses (such as a memory management unit 

(MMU) ), or it must be handled via the OS. 

How OSs manage the logical memory space differs from OS to OS, but kernels generally run 

kernel code in a separate memory space from processes running higher level code (i.e., 

middleware and application layer code). Each of these memory spaces (kernel containing kernel 

code and user containing the higher-level processes) is managed differently. In fact, most OS 

processes typically run in one of two modes: kernel mode and user mode , depending on the 

routines being executed. Kernel routines run in kernel mode (also referred to as supervisor 

mode ), in a different memory space and level than higher layers of software such as middleware 

or applications. Typically, these higher layers of software run in user mode , and can only access 

anything running in kernel mode via system calls , the higher-level interfaces to the kernel’s 

subroutines. The kernel manages memory for both itself and user processes. 

 
User Memory Space 

 
Because multiple processes are sharing the same physical memory when being loaded 

into RAM for processing, there also must be some protection mechanism so processes cannot 

inadvertently affect each other when being swapped in and out of a single physical memory 

space. These issues are typically resolved by the OS through memory “swapping,” where 

partitions of memory are swapped in and out of memory at runtime. The most common 

partitions of memory used in swapping are segments (fragmentation of processes from within) 

and pages (fragmentation of logical memory as a whole). Segmentation and paging not only 

simplify the swapping – memory allocation and deallocation – of tasks in memory, but allow 

for code reuse and memory protection, as well as providing the foundation for virtual memory . 

Virtual memory is a mechanism managed by the OS to allow a device’s limited memory space 

to be shared by multiple competing “user” tasks, in essence enlarging the device’s actual 



48 

 

physical memory space into a larger “virtual” memory space. 

 

User Memory Space 

 

Because multiple processes are sharing the same physical memory when being loaded 

into RAM for processing, there also must be some protection mechanism so processes cannot 

inadvertently affect each other when being swapped in and out of a single physical memory 

space. These issues are typically resolved by the OS through memory “swapping,” where 

partitions of memory are swapped in and out of memory at runtime. The most common 

partitions of memory used in swapping are segments (fragmentation of processes from within) 

and pages (fragmentation of logical memory as a whole). Segmentation and paging not only 

simplify the swapping – memory allocation and deallocation – of tasks in memory, but allow 

for code reuse and memory protection, as well as providing the foundation for virtual memory 

. Virtual memory is a mechanism managed by the OS to allow a device’s limited memory space 

to be shared by multiple competing “user” tasks, in essence enlarging the device’s actual 

physical memory space into a larger“ virtual” memory space. 

 

Segmentation 
 

A process encapsulates all the information that is involved in executing a program, including 

source code, stack, and data. All of the different types of information within a process are 

divided into “logical” memory units of variable sizes, called segments. A segment is a set of 

logical addresses containing the same type of information. Segment addresses are logical 

addresses that start at 0, and are made up of a segment number, which indicates the base address 

of the segment, and a segment offset, which defines the actual physical memory address. 

Segments are independently protected, meaning they have assigned accessibility 

characteristics, such as shared (where other processes can access that segment), read-only, or 

read/write. 

 
Most OSs typically allow processes to have all or some combination of five types of 

information within segments: text (or code) segment, data segment, BSS (block started by 

symbol) segment, stack segment, and the heap segment. A text segment is a memory space 

containing the source code. A data segment is a memory space containing the source code’s 

initialized variables (data). A BSS segment is a statically allocated memory space containing 

the source code’s un-initialized variable (data). The data, text, and BSS segments are all fixed 

in size at compile time, and are as such static segments; it is these three segments that typically 

are part of the executable file. 

 



49 

 

Executable files can differ in what segments they are composed of, but in general they contain 

a header, and different sections that represent the types of segments, including name, 

permissions, etc., where a segment can be made up of one or more sections. 

The OS creates a task’s image by memory mapping the contents of the executable file, meaning 

loading and interpreting the segments(sections) reflected in the executable into memory. There 

are several executable file formats supported by embedded OSs, the most common including: 

 
2.7 Basic Design Using RTOS 

Most operating systems are put together based on kernel designs. Kernel design has been used 

for almost 4 decades because it separates the operating system from the different applications 

running on it. The different applications are allocated in different memory locations. The OS 

processes utilize kernel functionality through conducting system calls. System calls are 

software interrupts that allow users to switch from the operating system to applications and 

vice versa. Therefore, the kernel must install an interrupt handler that tackles different modes 

of operation in order to ensure effective switches. The interrupt handler is enabled in the 

program status (i.e., the supervisor mode and user mode). As such, protection is conducted on 

the modern system on a chip (SoCs) at the peripheral side. However, some processor registers 

can be changed if the CPU indicates a particular execution mode like master mode through 

additional HW signals. 

All processes outside the operating system are implemented within the user mode and cannot 

execute any instructions availed in supervisor mode only. Meaning that user mode instructions 

hold a non-critical subset of instructions under the supervisor mode. During a process runtime, 

the supervisor mode under the PSW is disabled and only gets enabled once an interrupt like 

external interrupt or system call occurs. The OS activates the user mode once the user process 

is activated. Note that, a user process contains a virtual memory address space that separates 

it from the kernel entirely. However, this feature is only available to embedded 

microcontrollers that constitute a memory management unit that allows the use of virtual 

memory. Virtual memory usage must be upheld without other unbound memory accesses such 

as swapping on an external disk or changing (TLB) translation lookaside buffer entries by 

examining a dynamically sized page table. 

To utilize the functionality offered by the OS kernel design, you must identify an interface that 

allows applications to run effectively while using it. The interface is known as the application 

binary interface (ABI). ABI delineates a registered usage convention, a set of system calls, a 

stack layout and facilitates binary compatibility. On the other hand, an API (application 

programming interface) facilitates source code compatibility by defining a set of function 

signatures that offer a fixed interface for calling the required functions. The kernel can have 



50 

 

many designs, but it must provide basic activities like; process communication, process 

synchronization, process management and interrupt handling. 

Process management ensures that process termination, creation, dispatching, scheduling, and 

switching context among other related activities run as required. In a real-time operating 

system, interrupt handling differs from the standardized implementation of a regular operating 

system. Interrupts in regular operating systems can preempt all running processes unexpectedly. 

This leads to unbound delays that are intolerable in a real-time operating system. As such, 

handling of interruptions is assimilated into the scheduler so that it is scheduled along with other 

important processes and feasibility is guaranteed even when interruption requests are made. 

 

 

Part A 

1.Define task and Task state. 

2.Define Task Control Block 

3.Define Inter process communication 

4.Define Semaphore. 

5.Interpret Priority inversion? 

 6.Define Message Queue. 

7.List the functions of a kernel. 

8.What is a thread? 

9.What are the problems of semaphore? 

10.What is memory management in embedded system? 

11.What is ISR? 

 

Part B 

 

1.Explain in detail about semaphores and its applications. 
2.What is IPC? Mention the two methods available for it. 
 3.Explain in detail about message queues. 

4.Discuss in detail about the following. A) Timer function events. B) Memory 

management functions. 

5.Elaborate in detail about task and task state with suitable diagram 

  
TEXT/ REFEENCE BOOKS 

 

1.David E.Simon, “An Embedded Software Primer”, Pearson 

Education,2001 

2. Frank Vahid and Tony Gwargie, “ Embedded System Design”, John 

Wiley & Sons,2002 

3. Steve Heath, “Embedded System Design”, Elsevier, Second 

Edition,2004.  



51 

 

 

 
 

 

 

 

 

SCHOOL OF ELECTRICAL AND ELECTRONICS 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

UNIT-3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERAL 



52 

 

 

 

 

UNIT 3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERAL  

 

Custom single purpose processors: Hardware Combination Sequence Processor design RT 

level design optimizing software: Basic Architecture Operation Programmers view 

Development Environment ASIP Processor Design Peripherals Timers, counters and watch 

dog timers UART Pulse width modulator LCD controllers Key pad controllers Stepper motor 

controllers A/D converters Real time clock. 

 

 

 

3.1 Custom single-purpose processors: Hardware 

 
A single-purpose processor is a digital system intended to solve a specific computation 

task. While a manufacturer builds a standard single-purpose processor for use in a variety 

of applications, we build a custom single- purpose processor to execute a specific task 

within our embedded system. An embedded system designer choosing to use a custom 

single-purpose, rather than a general-purpose, processor to implement part of a system’s 

functionality may achieve several benefits. 

 
First, performance may be fast, due to fewer clock cycles resulting from a customized data 

path, and due to shorter clock cycles resulting from simpler functional units, less 

multiplexors, or simpler control logic. Second, size may be small, due to a simpler data path 

and no program memory. In fact, the processor may be faster and smaller than a standard 

one implementing the same functionality, since we can optimize the implementation for 

our particular task. 

 
However, because we probably won't manufacture as many of the custom processor as a 

standard processor, we may not be able to invest as much NRE, unless the embedded system 

we are building will be sold in large quantities or does not have tight cost constraints. This 

fact could actually penalize performance and size. 

 

Combinational logic design 

 
A transistor is the basic electrical component of digital systems. Combinations of transistors 

form more abstract components called logic gates, which designers primarily use when 



53 

 

building digital systems. Thus, we begin with a short description of transistors before 

discussing logic design. 

 
A transistor acts as a simple on/off switch. One type of transistor (CMOS -- Complementary 

Metal Oxide Semiconductor) is shown in Figure 3.1(a). The gate 

 (not to be confused with logic gate) controls whether or not current flows from the source to 

the drain. When a high voltage (typically +5 Volts, which we'll refer to as logic 1) is applied 

to the gate, the transistor conducts, so current flows. When low voltage (which we'll refer to 

as logic 0, typically ground, which is drawn as several horizontal lines of decreasing width) is 

applied to the gate, the transistor does not conduct. We can also build a transistor with the 

opposite functionality, illustrated in in Figure 3.1(b). When logic 0 is applied to the gate, the 

transistor conducts, and when logic 1 is applied, the transistor does not conduct. Given these 

two basic transistors, we can easily build a circuit whose output inverts its gate input, as shown 

in in Figure 3.1(c). When the input x is logic 0, the top transistor conducts (and the bottom 

does not), so logic 1 appears at the output F. We can also easily build a circuit whose output 

is logic 1 when at least one of its inputs is logic 0, as shown in Figure 3.1(d). When at least 

one of the inputs x and y is logic 0, then at least one of the top transistors conducts (and the 

bottom transistors do not), so logic 1 appears at F. If both inputs are logic 1, then neither of 

the top transistors conducts, but both of the bottom ones do, so logic 0 appears at F. Likewise, 

we can easily build a circuit whose output is logic 1 when both of its inputs are logic 0, as 

illustrated in Figure 3.1(e). The three circuits shown implement three basic logic gates: an 

inverter, a NAND gate, and a NOR gate. 

Figure 3.1: CMOS transistor implementations of some basic logic gates: (a) nMOS 
transistor, (b) pMOS transistor, (c) inverter, (d) NAND gate, (e) NOR gate. 

source 

Conducts 

if gate=+5V 

+5V +5V +5V 

gate 

x y x 

gate 

drain 
(a) 

source 

Conducts 

x F = x’ 
F = (xy)’ y 

x F = (x+y)’ 

y 
if gate=0V 

drain 

(b) 

x y 

(c) (d) (e) 



54 

 

Figure 3.2: Basic logic gates 

x  
x 

y 

x 

y 
 

x 

y 
 

F = x 

Driver 

x 

0 

1 

F 

0 

1 

 

F = x y 

AND 

F = x + y 

OR 

F = x  y 

XOR 

x  
x 

y 

F = x’ 

Inverter 

x 

0 

1 

F 

1 

0 

 
x 

y 
 

x 

y 
 

F = (x y)’ 

NAND 
F = (x+y)’ 

NOR 

F = x  y 

XNOR 

 

 

 

 
 

   

 

 

 

 

 

Digital system designers usually work with logic gates, not transistors. Figure 3.2 describes 8 

basic logic gates. Each gate is represented symbolically, with a Boolean equation, and with a 

truth table. The truth table has inputs on the left, and output on the right. The AND gate outputs 

1 if and only if both inputs are 1. The OR gate outputs 1 if and only if at least one of the inputs 

is 1. The XOR (exclusive-OR) gate outputs 1 if and only if exactly one of its two inputs is 1. 

The NAND, NOR, and XNOR gates output the complement of AND, OR, and XOR, 

respectively. As you might have noticed from our transistor implementations, the NAND and 

NOR gates are actually simpler to build than AND and OR gates. 

 
A combinational circuit is a digital circuit whose output is purely a function of its current 

inputs; such a circuit has no memory of past inputs. We can apply a simple technique to design 

a combinational circuit using our basic logic gates, as illustrated in Figure 3.3. We start with 

a problem description, which describes the outputs in terms of the inputs. We translate that 

description to a truth table, with all possible combinations of input values on the left, and 

desired output values on the right. For each output column, we can derive an output equation, 

with one term per row. However, we often want to minimize the logic gates in the circuit. We 

can minimize the output equations by algebraically manipulating the equations. Alternatively, 

we can use Karnaugh maps, as shown in the figure. Once we’ve obtained the desired 

output equations (minimized or not), we can draw the circuit diagram. 

 

  

x y F 
0 0 0 
0 1 0 

1 0 0 

1 1 1 

 

x y F 
0 0 0 
0 1 1 

1 0 1 

1 1 1 

 

x y F 
0 0 0 
0 1 1 

1 0 1 

1 1 0 

 

x y F 
0 0 1 
0 1 1 
1 0 1 

1 1 0 

 

x y F 
0 0 1 

0 1 0 

1 0 0 

1 1 0 

 

x y F 
0 0 1 

0 1 0 
1 0 0 

1 1 1 

 



55 

 

a 
b 
c 

   y 

z 

Figure 3.3: Combinational logic design. 

 
(d) Minimized output equations 

y 
bc 00 

a 
01 11 10 

0 

 
1 

(b) Truth table y = a + bc 

z 

a 
bc   00 01 11 10 

0 

 
1 

z = ab + b’c + bc’ 

1 1 1 0 

1 0 1 0 

(c) Output equations 

 

y = a'bc + ab'c' + ab'c + abc' + 

abc 

 

z = a'b'c + a'bc' + ab'c + abc' + 

abc 

(a) Problem description 

 

y is 1 if a is equal to 1, or b and c is 

equal to 1. z is 1 if b or c is equal 

to 1, but not both. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

0 0 1 0 

 1 1 1 1 

 
 

 

 

 

 

 

Although we can design all combinational circuits in the above manner, large circuits would 

be very complex to design. For example, a circuit with 16 inputs would have 216, or 64K, rows 

in its truth table. One way to reduce the complexity is to use components that are more abstract 

than logic gates. Figure 3.4 shows several such combinational components. We now describe 

each briefly. 

 
A multiplexor, sometimes called a selector, allows only one of its data inputs Im to pass 

through to the output O. Thus, a multiplexor acts much like a railroad switch, allowing only 

one of multiple input tracks to connect to a single outputtrack. If there are m data inputs, 

then there are log2(m) select lines S, and we call this an m-by-1 multiplexor (m data inputs, 

one data output). The binary value of S determines which data input passes through; 00...00 

means I0 may pass, 00...01 means I1 may pass, 00...10 means I2 may pass, and so on. For 

 

a 
Inputs 

b 

 

c 
Outputs 

y z 
0 0 0 0 0 
0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 1 0 
1 0 1 1 1 

1 1 0 1 1 

1 1 1 1 1 



56 

 

example, an 8x1 multiplexor has 8 data inputs and thus 3 select lines. If those three select lines 

have values of 110, then I6 will pass through to the output. So if I6 is 1, then the output would 

be 1; if I6 is 0, then the output would be 0. We commonly use a more complex device called 

an n-bit multiplexor, in which each data input, as well as the output, consists of n lines. 

Suppose the previous example used a 4-bit 8x1 multiplexor. Thus, if I6 is 0110, then the output 

would be 0110. Note that n does not affect the number of select lines. 

 
A decoder converts its binary input I into a one-hot output O. "One-hot" means that exactly 

one of the output lines can be 1 at a given time. Thus, if there are n outputs, then there must 

be log2(n) inputs. We call this a log2(n)xn decoder. For example, a 3x8 decoder has 3 inputs 

and 8 outputs. If the input is 000, then the output O0 will be 1. If the input is 001, then the 

output O1 would be 1, and so on. A common feature on a decoder is an extra input called 

enable. When enable is 0, all outputs are 0. When enable is 1, the decoder functions as before. 

 
An adder adds two n-bit binary inputs A and B, generating an n-bit output sum along with an 

output carry. For example, a 4-bit adder would have a 4-bit A input, a 4-bit B input, a 4-bit 

sum output, and a 1-bit carry output. If A is 1010 and B is 1001, then sum would be 0011 and 

carry would be 1. 

 
A comparator compares two n-bit binary inputs A and B, generating outputs that indicate 

whether A is less than, equal to, or greater than B. If A is 1010 and B is 1001, then less would 

be 0, equal would be 0, and greater would be 1. 

 
An ALU (arithmetic-logic unit) can perform a variety of arithmetic and logic functions on its 

n-bit inputs A and B. The select lines S choose the current function; 

if there are m possible functions, then there must be at least log2(m) select lines. 

Common functions include addition, subtraction, AND, and OR. 

 

STANDARD SINGLE-PURPOSE PROCESSORS: PERIPHERALS 

 

Introduction 

 
A single-purpose processor is a digital system intended to solve a specific computation task. 

The processor may be a standard one, intended for use in a wide variety of applications in 

which the same task must be performed. The manufacturer of such an off-the-shelf processor 



57 

 

sells the device in large quantities. On the other hand, the processor may be a custom one, 

built by a designer to implement a task specific to a particular application. An embedded 

system designer choosing to use a standard single- purpose, rather than a general-purpose, 

processor to implement part of a system’s functionality may achieve several benefits. 

 
First, performance may be fast, since the processor is customized for the particular task at 

hand. Not only might the task execute in fewer clock cycles, but also those cycles themselves 

may be shorter. Fewer clock cycles may result from many data path components operating in 

parallel, from data path components passing data directly to one another without the need for 

intermediate registers (chaining), or from elimination of program memory fetches. Shorter 

cycles may result from simpler functional units, less multiplexors, or simpler control logic. 

For standard single-purpose processors, manufacturers may spread NRE cost over many 

units. Thus, the processor's clock cycle may be further reduced by the use of custom IC 

technology, leading-edge IC's, and expert designers, just as is the case with general-purpose 

processors. 

Second, size may be small. A single-purpose processor does not require a program 

memory. Also, since it does not need to support a large instruction set, it may have a simpler 

data path and controller. 

Third, a standard single-purpose processor may have low unit cost, due to the manufacturer 

spreading NRE cost over many units. Likewise, NRE cost may be low, since the embedded 

system designer need  not design a standard single- purpose processor, and may not even 

need to program it. 

 

Timers, counters, and watchdog timers 

 
A timer is a device that generates a signal pulse at specified time intervals. A time interval 

is a "real-time" measure of time, such as 3 milliseconds. These devices are extremely useful 

in systems in which a particular action, such as sampling an input signal or generating an 

output signal, must be performed every X time units. 

Internally, a simple timer may consist of a register, counter, and an extremely simple 

controller. The register holds a count value representing the number of clock cycles that equals 

the desired real-time value. This number can be computed using the simple formula: 

 
Number of clock cycles = Desired real-time value / Clock cycle 

 



58 

 

 

For example, to obtain a duration of 3 milliseconds from a clock cycle of 10 

nanoseconds (100 MHz), we must count (3x10-6 s / 10x10-9 s/cycle) = 300 cycles. The counter 

is initially loaded with the count value, and then counts down on every clock cycle until 0 is 

reached, at which point an output signal is generated, the count value is reloaded, and the 

process repeats itself. 

 
To use a timer, we must configure it (write to its registers), and respond to its output 

signal. When we use a timer in conjunction with a general-purpose processor, we typically 

respond to the timer signal by assigning it to an interrupt, so we include the desired action in 

an interrupt service routine. Many microcontrollers that include built-in timers will have 

special interrupts just for its timers, distinct from external interrupts. 

 

Note that we could use a general-purpose processor to implement a timer. Knowing 

the number of cycles that each instruction requires, we could write a loop that executed the 

desired number of instructions; when this loop completes, we know that the desired time 

passed. This implementation of a timer on a dedicated general-purpose processor is 

obviously quite inefficient in terms of size. One could alternatively incorporate the timer 

functionality into a main program, but the timer functionality then occupies much of the 

program’s run time, leaving little time for other computations. Thus, the benefit of assigning 

timer functionality to a special-purpose processor becomes evident. 

 
A counter is nearly identical to a timer, except that instead of counting clock cycles 

(pulses on the clock signal), a counter counts pulses on some other input signal. 

 

A watchdog timer can be thought of as having the inverse functionality than that of a 

regular timer. We configure a watchdog timer with a real-time value, just as with a regular 

timer. However, instead of the timer generating a signal for us every X time units, we must 

generate a signal for the timer every X time units. If we fail to generate this signal in time, then 

the timer generates a signal indicating that we failed. We often connect this signal to the reset 

or interrupt signal of a general-purpose processor. Thus, a watchdog timer provides a 

mechanism of ensuring that our software is working properly; every so often in the software, 

we include a statement that generates a signal to the watchdog timer (in particular, that resets 

the timer). If something undesired happens in the software (e.g., we enter an undesired infinite 



59 

 

loop, we wait for an input signal that never arrives, a part fails, etc.), the watchdog generates a 

signal that we can use to restart or test parts of the system. Using an interrupt service routine, 

we may record information as to the number of failures and the causes of each, so that a service 

technician may later evaluate this information to determine if a particular part requires 

replacement. Note that an embedded system often must recover from failures whenever 

possible, as the user may not have the means to reboot the system in the same manner that 

he/she might reboot a desktop system. 

 
UART 

 
A UART (Universal Asynchronous Receiver/Transmitter) receives serial data and stores 

it as parallel data (usually one byte), and takes parallel data and transmits it as serial data. 

Such serial communication is beneficial when we need to communicate bytes of data 

between devices separated by long distances, or when we simply have few available I/O pins. 

We must be aware that we must set the transmission and reception rate, called the baud rate, 

which indicates the frequency that the signal changes. Common rates include 2400, 4800, 

9600, and 19.2k. We must also be aware that an extra bit may be added to each data word, 

called parity, to detect transmission errors -- the parity bit is set to high or low to indicate if 

the word has an even or odd number of bits. 

 
Internally, a simple UART may possess a baud-rate configuration register, and two 

independently operating processors, one for receiving and the other for transmitting. The 

transmitter may possess a register, often called a transmit buffer, that holds data to be sent. 

This register is a shift register, so the data can be transmitted one bit at a time by shifting at 

the appropriate rate. Likewise, the receiver receives data into a shift register and then this 

data can be read in parallel. Note that in order to shift at the appropriate rate based on the 

configuration register, a UART requires a timer. 

To use a UART, we must configure its baud rate by writing to the configuration register, 

and then we must write data to the transmit register and/or read data from the received register. 

Unfortunately, configuring the baud rate is usually not as simple as writing the desired rate 

(e.g., 4800) to a register. For example, to configure the UART of an 8051, we must use the 

following equation: 

 
 

 
 



60 

 

 

smod corresponds to 2 bits in a special-function register, 

oscfreq is the frequency of the oscillator, and  

TH1 is an 8-bit rate register of a built-in timer. 

Note that we could use a general-purpose processor to implement a UART completely 

in software. If we used a dedicated general-processor, the implementation would be 

inefficient in terms of size. We could alternatively integrate the transmit and receive 

functionality with our main program. This would require creating a routine to send data 

serially over an I/O port, making use of a timer to control the rate. It would also require using 

an interrupt service routine to capture serial data coming from another I/O port whenever 

such data begins arriving. However, as with the timer functionality, adding send and receive 

functionality can detract from time for other computations. 

 
Knowing the number of cycles that each instruction requires, we could 

write a loop that executed the desired number of instructions; when this loop completes, we 

know that the desired time passed. This implementation of a timer on a dedicated general-

purpose processor is obviously quite inefficient in terms of size. One could alternatively 

incorporate the timer functionality into a main program, but the timer functionality then 

occupies much of the program’s run time, leaving little time for other computations. Thus, 

the benefit of assigning timer functionality to a special- purpose processor becomes evident. 

 
Pulse width modulator 

 
A pulse-width modulator (PWM) generates an output signal that repeatedly switches 

between high and low. We control the duration of the high value and of the low value by 

indicating the desired period, and the desired duty cycle, which is the percentage of time the 

signal is high compared to the signal’s period. A square wave has a duty cycle of 50%. The 

pulse’s width corresponds to the pulse’s time high. 

Again, PWM functionality could be implemented on a dedicated general- purpose 

processor, or integrated with another program’s functionality, but the single-purpose 

processor approach has the benefits of efficiency and simplicity. 

One common use of a PWM is to control the average current or voltage input to a 

device. For example, a DC motor rotates when power is applied, and this power can be 

turned on and off by setting an input high or low. To control the speed, we can adjust the 



61 

 

input voltage, but this requires a conversion of our high/low digital signals to an analog 

signal. Fortunately, we can also adjust the speed simply by modifying the duty cycle of the 

motors on/off input, an approach which adjusts the average voltage. This approach works 

because a DC motor does not come to an immediate stop when power is turned off, but rather 

it coasts, much like a bicycle coasts when we stop pedaling. Increasing the duty cycle 

increases the motor speed, and decreasing the duty cycle decreases the speed. This duty cycle 

adjustment principle applies to the control other types of electric devices, such as dimmer 

lights. 

Another use of a PWM is to encode control commands in a single signal for use by 

another device. For example, we may control a radio-controlled car by sending pulses of 

different widths. Perhaps a 1 ms width corresponds to a turn left command, a 4 ms width to 

turn right, and 8 ms to forward. 

 

LCD controller 

 
An LCD (Liquid crystal display) is a low-cost, low-power device capable of displaying 

text and images. LCDs are extremely common in embedded systems, since such systems often 

do not have video monitor’s standard for desktop systems. LCDs can be found in numerous 

common devices like watches, fax and copy machines, and calculators. 

The basic principle of one type of LCD (reflective) works as follows. First, incoming 

light passes through a polarizing plate. Next, that polarized light encounters liquid crystal 

material. If we excite a region of this material, we cause the material’s molecules to align, 

which in turn causes the polarized light to pass through the material. Otherwise, the light does 

not pass through. Finally, light that has passed through hits a mirror and reflects back, so the 

excited region appears to light up. Another type of LCD (absorption) works similarly, but uses 

a black surface instead of a mirror. The surface below the excited region absorbs light, thus 

appearing darker than the other regions. 

One of the simplest LCDs is 7-segment LCD. Each of the 7 segments can be activated to 

display any digit character or one of several letters and symbols. Such an LCD may have 7 

inputs, each corresponding to a segment, or it may have only 4 inputs to represent the numbers 

0 through 9. An LCD driver converts these inputs to the electrical signals necessary to excite 

the appropriate LCD segments. 

A dot-matrix LCD consists of a matrix of dots that can display alphanumeric characters 

(letters and digits) as well as other symbols. A common dot-matrix LCD has 5 columns and 8 



62 

 

rows of dots for one character. An LCD driver converts input data into the appropriate 

electrical signals necessary to excite the appropriate LCD bits. 

 
Each type of LCD may be able to display multiple characters. In addition, each 

character may be displayed in normal or inverted fashion. The LCD may permit a character to 

be blinking (cycling through normal and inverted display) or may permit display of a cursor 

(such as a blinking underscore) indicating the "current" character. This functionality would be 

difficult for us to implement using software. Thus, we use an LCD controller to provide us 

with a simple interface, perhaps 8 data inputs and one enable input. To send a byte to the LCD, 

we provide a value to the 8 inputs and pulse the enable. This byte may be a control word, which 

instructs the LCD controller to initialize the LCD, clear the display, select the position of the 

cursor, brighten the display, and so on. Alternatively, this byte may be a data word, such as an 

ASCII character, instructing the LCD to display the character at the currently-selected display 

position. 

 

Keypad controller 

 
A keypad consists of a set of buttons that may be pressed to provide input to an 

embedded system. Again, keypads are extremely common in embedded systems, since such 

systems may lack the keyboard that comes standard with desktop systems. 

 
A simple keypad has buttons arranged in an N-column by M-row grid. The device has N 

outputs, each output corresponding to a column, and another M outputs, each output 

corresponding to a row. When we press a button, one column output and one row output go 

high, uniquely identifying the pressed button. To read such a keypad from software, we must 

scan the column and row outputs. 

 
The scanning may instead be performed by a keypad controller (actually, such a device 

decodes rather than controls, but we’ll call it a controller for consistency with the other 

peripherals discussed). A simple form of such a controller scans the column and row outputs 

of the keypad. When the controller detects a button press, it stores a code corresponding to 

that button into a register and sets an output high, indicating that a button has been pressed. 

Our software may poll this output every 100 milliseconds or so, and read the register when 

the output is high. Alternatively, this output can generate an interrupt on our general-purpose 

processor, eliminating the need for polling. 



63 

 

Stepper motor controller 

 
A stepper motor is an electric motor that rotates a fixed number of degrees 

whenever we apply a "step" signal. In contrast, a regular electric motor rotates 

continuously whenever power is applied, coasting to a stop when power is removed. We 

specify a stepper motor either by the number of degrees in a single step, such as 1.8 degree, 

or by the number of steps required to move 360 degree, such as 200 steps. Stepper motors 

obviously abound in embedded systems with moving parts, such as disk drives, printers, 

photocopy and fax machines, robots, camcorders, VCRs, etc. 

Internally, a stepper motor typically has four coils. To rotate the motor one step, we 

pass current through one or two of the coils; the particular coils depend on the present 

orientation of the motor. Thus, rotating the motor 360 degree requires applying current to 

the coils in a specified sequence. Applying the sequence in reverse causes reversed rotation. 

In some cases, the stepper motor comes with four inputs corresponding to the four coils, 

and with documentation that includes a table indicating the proper input sequence. To control 

the motor from software, we must maintain this table in software, and write a step routine 

that applies high values to the inputs based on the table values that follow the previously-

applied values. 

In other cases, the stepper motor comes with a built-in controller (i.e., a special- purpose 

processor) implementing this sequence. Thus, we merely create a pulse on an input signal of 

the motor, causing the controller to generate the appropriate high signals to the coils that 

will cause the motor to rotate one step. 

 

Analog-digital converters 

 

An analog-to-digital converter (ADC, A/D or A2D) converts an analog signal to a digital 

signal, and a digital-to-analog converter (DAC, D/A or D2A) does the opposite. Such 

conversions are necessary because, while embedded systems deal with digital values, an 

embedded system’s surroundings typically involve many analog signals. Analog refers to 

continuously-valued signal, such as temperature or speed represented by a voltage between 

0 and 100, with infinite possible values in between. "Digital" refers to discretely-valued 

signals, such as integers, and in computing systems, these signals are encoded in binary. By 

converting between analog and digital signals, we can use digital processors in an analog 

environment. 

 



64 

 

For example, consider the analog signal of Figure 3.1(a). The analog input voltage varies 

over time from 1 to 4 Volts. We sample the signal at successive time units, and encode the 

current voltage into a 4-bit binary number. Conversely, consider Figure 3.1(b). We want to 

generate an analog output voltage for the given binary numbers over time. We generate the 

analog signal shown. 

We can compute the digital values from the analog values, and vice-versa, using the 

following ratio: 

 
 

 
 

Vmax is the maximum voltage that the analog signal can assume, n is the number of bits available 

for the digital encoding, d is the present digital encoding, and e is the present analog voltage. 

This proportionality of the voltage and digital encoding is shown graphically in Figure 3.1(c). 

 
In our example of Figure 3.1, suppose Vmax is 7.5V. Then for e = 5V, we have the 

following ratio: 5/7.5 = d/15, resulting in d = 1010 (ten), as shown in Figure 3.1(c). The 

resolution of a DAC or ADC is defined as Vmax/(2
n-1), representing the number of volts 

between successive digital encodings. The above discussion assumes a minimum voltage of 

0V. 

Internally, DACs possess simpler designs than ADCs. A DAC has n inputs for the digital 

encoding d, a Vmax analog input, and an analog output e. A fairly straightforward circuit 

(involving resistors and an op-amp) can be used to convert d to e. 

 

 



65 

 

 
ADCs, on the other hand, require designs that are more complex, for the following 

reason. Given a Vmax analog input and an analog input e, how does the converter know what 

binary value to assign in order to satisfy the above ratio? Unlike DACs, there is no simple 

analog circuit to compute d from e. Instead, an ADC may itself contain a DAC also connected 

to Vmax. The ADC "guesses" an encoding d, and then evaluates its guess by inputting d into 

the DAC, and comparing the generated analog output e’ with the original analog input e (using 

an analog comparator). If the two sufficiently match, then the ADC has found a proper 

encoding. So now the question remains: how do we guess the correct encoding? 

 
This problem is analogous to the common computer-programming problem of 

finding an item in a list. One approach is sequential search, or "counting-up" in analog- digital 

terminology. In this approach, we start with an encoding of 0, then 1, then 2, etc., until we 

find a match. Unfortunately, while simple, this approach in the worst case (for high voltage 

values) requires 2n comparisons, so it may be quite slow. 

A faster solution uses what programmers call binary search, or "successive 

approximation" in analog-digital terminology. We start with an encoding corresponding half 

of the maximum. We then compare the resulting analog value with the original; if the resulting 

value is greater (less) than the original, we set the new encoding to halfway between this 

one and the maximum (minimum). We continue this process, dividing the possible encoding 

range in half at each step, until the compared voltages are equal. This technique requires at 

most n comparisons. However, it requires a more complex converter. 

Because ADCs must guess the correct encoding, they require some time. Thus, in addition 

to the analog input and digital output, they include an input "start" that starts the conversion, 

and an output "done" to indicate that the conversion is complete. 

Real-time clocks 

 
Much like a digital wristwatch, a real-time clock (RTC) keeps the time and date in an 

embedded system. Read-time clocks are typically composed of a crystal- controlled oscillator, 

numerous cascaded counters, and a battery backup. The crystal-controlled oscillator generates 

a very consistent high-frequency digital pulse that feed the cascaded counters. The first 

counter, typically, counts these pulses up to the oscillator frequency, which corresponds to 

exactly one second. At this point, it generates a pulse that feeds the next counter. This counter 

counts up to 59, at which point it generates a pulse feeding the minute counter. The hour, date, 



66 

 

month and year counters work in similar fashion. In addition, real-time clocks adjust for leap 

years. The rechargeable back-up battery is used to keep the real-time clock running while the 

system is powered off. 

 
From the micro-controller’s point of view, the content of these counters can be set to a 

desired value, (this corresponds to setting the clock), and retrieved. Communication between 

the micro-controller and a real-time clock is accomplished 

through a serial bus, such as I2C. It should be noted that, given a timer peripheral, it is possible 

to implement a real-time clock in software running on a processor. In fact, many systems use 

this approach to maintain the time. However, the drawback of such systems is that when 

the processor is shut down or reset, the time is lost. 

       Part A 

1.Compare synchronous communication and iso-synchronous 

communication. 

2.Extend a) SPI b) SCI 

3.Define software timer. 

4.What is meant by UART? 

5.Outline the states of timer? 

6.What is meant by status flag? 

7.Identify the use of RTC in embedded system? 

8.What is RT level combinational components? 

9.What is ASIP in embedded system? 

10.What is the function of pulse width modulator? 

11.Identify the common types of displays used in embedded system? 

12.What are the common LCD screens used in embedded systems? 

13.Compare ADC and DAC in embedded system? 

 

Part B 

 

1.Explain in detail about custom single purpose processor with 

example. 
2.Discuss the RT level design of embedded system 
3.Elaborate in detail about ASIP design in embedded system. 

4.Explain in detail about Real Time Clock in embedded system. 

5.Design stepper motor control interface with embedded system 
 

TEXT/ REFEENCE BOOKS 

1.David E.Simon, “An Embedded Software Primer”, Pearson Education,2001 

2. Frank Vahid and Tony Gwargie, “Embedded System Design”, John Wiley & Sons,2002 

3. Steve Heath, “Embedded System Design”, Elsevier, Second Edition,2004. 

 



67 

 

  
 

   
 

 

 

SCHOOL OF ELECTRICAL AND ELECTRONICS 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 

 

 

 

 

 

 

UNIT- 4 MEMORY AND INTERFACING 

 



68 

 

 

 

UNIT 4 MEMORY AND INTERFACING  

 

Memory write ability and storage performance Memory types composing memory Advance 

RAM interfacing communication basic Microprocessor interfacing I/O addressing Interrupts 

Direct memory access Arbitration multilevel bus architecture Serial protocol Parallel 

protocols Wireless protocols Digital camera example. 

 

4.1 Write Ability and Storage Performance 

 

There are two important specifications for the Memory as far as Real 

Time Embedded Systems are concerned. 

1. Write Ability  

2. Storage Performance 

 

1. Write ability 

 

It is the manner and speed that a particular memory can be written 

• Ranges of write ability 

– High end 

• processor writes to memory simply and quickly e.g., RAM 

– Middle range 

• processor writes to memory, but slower e.g., 
FLASH, EEPROM (Electrically Erasable and 
Programmable Read Only Memory) 

– Lower range 

• special equipment, “programmer”, must be used to write 
to memory e.g., EPROM, OTP ROM (One Time 
Programmable Read Only Memory) 

– Low end 

• bits stored only during fabrication e.g., Mask-programmed ROM 

• In-system programmable memory 

– Can be written to by a processor in the embedded system using the memory 

– Memories in high end and middle range of write ability 

2. Storage permanence 

 

It is the ability to hold the stored bits. 

Range of storage permanence 

– High end 

• essentially never loses bits 

• e.g., mask-programmed ROM 

– Middle range 

• holds bits days, months, or years after memory’s power source turned off 

• e.g., NVRAM 

– Lower range 

• holds bits as long as power supplied to memory 



69 

 

• e.g., SRAM 

– Low end 

• begins to lose bits almost immediately after written 

• e.g., DRAM 

Nonvolatile memory 

• Holds bits after power is no longer supplied 

• High end and middle range of storage permanence 

 

4.2 Memory and its types 

 

Any embedded system’s functionality consists of three aspects: processing, storage, and 

communication. Processing is the transformation of data, storage is the retention of data for 

later use, and communication is the transfer of data. Each of these aspects must be 

implemented. We use processors to implement processing, memories to implement storage, 

and buses to implement communication. The earlier chapters described common processor 

types: general-purpose processors, standard single-purpose processors, and custom single-

purpose processors. This chapter describes memories. 

 
A memory stores large numbers of bits. These bits exist as m words of n bits each, for a total 

of m*n bits. We refer to a memory as an m x n ("m-by-n") memory. Log2(m) address input 

signals are necessary to identify a particular word. Stated another way, if a memory has k 

address inputs, it can have up to 2k words. n signals are necessary to output (and possibly input) 

a selected word. To read a memory means to retrieve the word of a particular address, while to 

write a memory means to store a word in a particular address. Some memories can only be read 

from (ROM), while others can be both read from and written to (RAM). There isn’t much 

demand for a memory that can only be written to (what purpose would such a memory serve?). 

Most memories have an enable input; when this enable is low, the address is ignored, and no 

data is written to or read from the memory. 

 

Read-only memory -- ROM 

 

ROM, or read-only memory, is a memory that can be read from, but not typically written to, 

during execution of an embedded system. Of course, there must be a mechanism for setting 

the bits in the memory (otherwise, of what use would the read data serve?), but we call this 

"programming," not writing. Such programming is usually done off-line, i.e., when the 

memory is not actively serving as a memory in an embedded system. We usually program a 

ROM before inserting it into the embedded system. Figure 4.1(b) provides a block diagram of 

a ROM. 



70 

 

Figure 4.1: Basic memories: (a) words and bits per word, (b) ROM block diagram, (c) 

RAM block diagram. 
In-1

 
I0 

m x n memory 

enable     
r/w  

enable 

A0 

    … 

Ak-1 

A0 

… 

Ak-1 

n bits per word 
Qn-1 Q0 

(a) (b) 

Qn-1 Q0 

(c) 

 
We can use ROM for various purposes. One use is to store a software program for a 

general- purpose processor. We may write each program instruction to one ROM word. For 

some processors, 

we write each instruction to several ROM words. For other processors, we may pack several 

instructions into a single ROM word. A related use is to store constant data, like large lookup 

tables of strings or numbers. 

 
Another common use is to implement a combinational circuit. We can implement any 

combinational function of k variables by using a 2kx 1 ROM, and we can implement n 

functions of the same k variables using a 2kx n ROM. We simply program the ROM to 

implement the truth table for the functions, as shown in Figure 4.2. 

 
Figure 4.3 provides a symbolic view of the internal design of an 8x4 ROM. To the right of the 

3x8 decoder in the figure is a grid of lines, with word lines running horizontally and data lines 

vertically; lines that cross without a circle in the figure are not connected. Thus, word lines 

only connect to data lines via the programmable connection lines shown. The figure shows all 

connection lines in place except for two connections in word 2. To see how this device acts 

as a read-only memory, consider an input address of "010." The decoder will thus set word 

2’s line to 1. Because the lines connecting this word line with data lines 2 and 0 do not exist, 

the ROM output will read "1010." Note that if the ROM enable input is 0, then no word is 

read. Also note that each data line is shown as a wired-OR, meaning that the wire itself acts to 

logically OR all the connections to it. 

 

 

 

 
 

 

 

 

 

How do we program the programmable connections? The answer depends on the type of 

ROM being used. In a mask-programmed ROM, the connection is made when the chip is being 

fabricated (by creating an appropriate set of masks). Such ROM types are typically only used 

m
 w

o
rd

s 

2k x n ROM 

 …    

 

     

 x n RAM 

2k   

 …    

 



71 

 

Figure 4.2: Implementing combinational functions with a ROM: (a) truth table, (b) ROM 

contents. 

Truth table (ROM contents) 

8 

2 ROM 

word 0 

word 1 

word 7 

(a) (b) 

in high-volume systems, and only after a final design has been determined. 

Most other systems use user-programmable ROM devices, or PROM, which can be 

programmed by the chip’s user, well after the chip has been manufactured. These devices are 

better suited to prototyping and to low-volume applications. To program a PROM device, the 

user provides a file indicating the desired ROM contents. A piece of equipment called a ROM 

programmer (note: the programmer is a piece of equipment, not a person who writes software) 

then configures each programmable connection according to the file. A basic PROM uses a fuse 

for each programmable connection. The ROM programmer blows fuses by passing a large 

current wherever a connection should not exist. However, once a fuse is blown, the connection 

can never be re- established. For this reason, basic PROM is often referred to as one-time-

programmable device, or OTP. 

Another type of PROM is an erasable PROM, or EPROM. This device uses a MOS 

transistor as its programmable component. The transistor has a "floating gate," meaning its 

gate is not connected. An EPROM programmer injects electrons into the floating gate, using 

higher than normal voltage (usually 12V to 25V) that causes electrons to "tunnel" into the gate. 

When that high voltage is removed, the electrons cannot escape, and hence 

 

 

 

 

 
 

 

 
the gate has been charged and programming has occurred. Standard EPROMs are 

guaranteed to hold their programs for at least 10 years. To erase the program, the electrons 

must be excited enough to escape from the gate. Ultra-violet (UV) light is used to fulfil this 

role of erasing. The device must be placed under a UV eraser for a period of time, typically 

ranging from 5 to 30 minutes, after which the device can be programmed again. In order for 

the UV light to reach the chip, EPROM’s come with a small quartz window in the package 

through which the chip can be seen. For this reason, EPROM is often referred to as a 

windowed ROM device. 

Input 

a 

s (addr 

b 

ess) 

c 

Out 

y 

puts 

z 
0 0 0 0 0 

0 0 1 0 1 
0 1 0 0 1 

0 1 1 1  

1 0 0 1 0 
1 0 1 1 1 
1 1 0 1 1 

1 1 1 1 1 

 

0 
 

 

 

 

 

 

 

  z 

 



72 

 

Electrically-erasable PROM, or EEPROM, is designed to eliminate the time- consuming 

and sometimes impossible requirement of exposing an EPROM to UV light toerase the ROM. 

An EEPROM is not only programmed electronically, but is also erased electronically. These 

devices are typically more expensive the EPROM’s, but far more convenient to use. 

EEPROM’s are often called "E-squared’s" for short. Flash memory is a type of EEPROM in 

which reprogramming can be done to certain regions of the memory, rather than the entire 

memory at once. 

Which device should be used during development? The answer depends on cost and 

convenience. For example, OTP’s are typically quite inexpensive, so they are quite practical 

unless frequent reprogramming is expected. In that case, windowed devices are typically 

cheaper than E- squared’s. However, if one can not (or does not want to) deal with the time 

required for UV erasing, or if one can not move the device to a UV eraser (e.g., if it’s being 

used in a microcontroller emulator), then E-squared’s may be used. 

 
For final implementation in a product, masked-ROM may be best for high-volume 

production, since its high up-front cost can be amortized over the large number of products. 

OTP has the advantage of low cost as well as resistance to undesired program changes caused 

by noise. Windowed parts if used in production should have their windows covered by a 

sticker to prevent undesired changes of the memory. 

 

 

 

Read-write memory -- RAM 

RAM, or random-access memory, is a memory that can be both read and written. In contrast 

to ROM, a RAM’s content is not "programmed" before being inserted into an embedded 

system. Instead, the RAM contains no data when inserted in the embedded system; the system 

writes data to and then reads data from the RAM during its execution. Figure 1(c) provides a 

block diagram of a RAM. 

Figure 4.3: ROM internals 

 
8x4 ROM 

enable 3x8 

decoder 

A0 

A1 

A2 

word 0 
word 1 

word 2 
Word line 

word 7 
Data line 

Programmable 

connection 
Wired-OR 

Q3  Q2   Q1    Q0 



73 

 

A RAM’s internal structure is somewhat more complex than a ROM’s, as shown in Figure 

4.4, which illustrates a 4x4 RAM (note: RAMs typically have thousands of words, not just 4 

as in the figure). Each word consists of a number of memory cells, each storing one bit. In the 

figure, each input data connects to every cell in its column. Likewise, each output data line 

connects to every cell in its column, with the output of a memory cell being OR’ed with the 

output data line from above. Each word enable line from the decoder connects to every cell 

its its row. The read/write input (rd/wr) is assumed to be connected to every cell. The memory 

cell must possess logic such that it stores the input data bit when rd/wr indicates write and the 

row is enabled, and such that it outputs this bitwhen rd/wr indicates read and the row is 

enabled. 

 
There are two basic types of RAM, static and dynamic. Static RAM is faster but bigger 

than dynamic RAM. Static RAM, or SRAM, uses a memory cell consisting of a flip-flop to store 

a bit. Each bit thus requires about 6 transistors. This RAM type is called static because it will 

hold its data as long as power is supplied, in contrast to dynamic RAM. Static RAM is typically 

used for high-performance parts of a system (e.g., cache). 

 
Dynamic RAM, or DRAM, uses a memory cell consisting of a MOS transistor and capacitor 

to store a bit. Each bit thus requires only 1 transistor, resulting in more compact memory than 

SRAM. However, the charge stored in the capacitor leaks gradually, leading to discharge and 

eventually to loss of data. To prevent loss of data, each cell must regularly have its charge 

"refreshed." A typical DRAM cell minimum refresh rate is once 

 

 

 

every 15.625 microseconds. Because of the way DRAMs are designed, reading a DRAM word 

refreshes that word’s cells. In particular, accessing a DRAM word result in the word’s data 

being stored in a buffer and then being written back to the word’s cells. DRAMs tend to be 

Figure 4.4: RAM internals 

I3 I2     I1 I0 

enable 

2x4 RAM 
2x4 

decoder 

A0 

A1 

rd/wr 

 

cell 
To every cell 

Q3     Q2   Q1    Q0 



74 

 

slower to access than SRAMs. 

 

Many RAM variations exist. Pseudo-Static RAMs, or PSRAMs, are DRAMs with a refresh 

controller built-in. Thus, since the RAM user need not worry about refreshing, the device 

appears to behave much like an SRAM. However, in contrast to true SRAM, a PSRAM may 

be busy refreshing itself when accessed, which could slow access time and add some system 

complexity. Nevertheless, PSRAM is a popular low-cost alternative to SRAM in many 

embedded systems. 

 
Non-volatile RAM, or NVRAM, is another RAM variation. Non-volatile storage is storage 

that can hold its data even after power is no longer being supplied. Note that all forms of ROM 

are non- volatile, while normal forms of RAM (static or dynamic) are volatile. One type of 

NVRAM contains a static RAM along with its own permanently connected battery. A second 

type contains a static RAM and its own (perhaps flash) EEPROM. This type stores RAM data 

into the EEPROM just before power is turned off (or whenever instructed to store the data), 

and reloads that data from EEPROM into RAM after power is turned back on. NVRAM is very 

popular in embedded systems. For example, a digital camera must digitize, store and compress 

an image in a fraction of a second when the camera’s button is pressed, requiring writes to a 

fast RAM (as opposed to programming of a slower EEPROM). But it also must store that 

image so that the image is saved even when the camera’s power is shut off, requiring 

EEPROM. Using NVRAM accomplishes both these goals, since the data is originally and 

quickly stored in RAM, and then later copied to EEPROM, which may even take a few 

seconds. 

 
Note that the distinction we made between ROM and RAM, namely that ROM is 

programmed before insertion into an embedded system while RAM is written by the 

embedded system, does not hold in every case. As in the digital camera example above, 

EEPROM may be programmed by the embedded system during execution, though such 

programming is typically infrequent due to its time- consuming nature. 

 
A common is question is: where does the term "random-access" come from in random-

access memory? RAM should really be called read-write memory, to contrast it from read-

only memory. However, when RAM was first introduced, it was in stark contrast to the then 

common sequentially- accessed memory media, like magnetic tapes or drums. These media 

required that the particular location to be accessed be positioned under an access device (e.g., 

a head). To access another location not immediately adjacent to the current location on the 

media, one would have sequence through a number of other locations, e.g., for a tape, one 



75 

 

would have to rewind or fast-forward the tape. In contrast, with RAM, any "random" memory 

location could be accessed in the same amount of time as any other location, regardless of the 

previously read location. This random-access feature was the key distinguishing feature of this 

memory type at the time of its introduction, and the name has stuck even today. 

 
4.3 Composing memories 

An embedded system designer is often faced with the situation of needing a particular-

sized memory (ROM or RAM), but having readily available memories of a different size. For 

example, the designer may need a 2k x 8 ROM, but may have 4k x 16 ROMs readily available. 

Alternatively, the designer may need a 4k x 16 ROM, but may have 2k x 8 ROMs available 

for use. 

 
The case where the available memory is larger than needed is easy to deal with. We 

simply use the needed lower words in the memory, thus ignoring unneeded higher words and 

their high-order address bits, and we use the lower data input/output lines, thus ignoring 

unneeded higher data lines. (Of course, we could use the higher data lines and ignore the lower 

lines instead). 

The case where the available memory is smaller than needed requires more design effort. 

In this case, we must compose several smaller memories to behave as the larger memory we 

need. Suppose the available memories have the correct number of words, but each word is not 

wide enough. In this case, we can simply connect the available memories side-by-side. For 

example, Figure 4.5(a) illustrates the situation of needing a ROM three-times wider than that 

available. We connect three ROMs side-by-side, sharing the same address and enable lines 

among them, and concatenating the data lines to form the desired word width. 

 
Suppose instead that the available memories have the correct word width, but not enough 

words. In this case, we can connect the available memories top-to-bottom. For example, Figure 

4.5(b) illustrates the situation of needing a ROM with twice as many words, and hence needing 

one extra address line, than that available. We connect the ROMs top-to-bottom, OR’ing the 

corresponding data lines of each. We use the extra high-order address line to select the higher 

or lower ROM (using a 1x2 decoder), and the remaining address lines to offset into the selected 

ROM. Since only one ROM will ever be enabled at a time, the OR’ing of the data lines never 

actually involves more than one 1. 

If we instead needed four times as many words, and hence two extra address lines, we would 

instead use four ROMs. A 2x4 decoder having the two high-order address lines as input would 

select which of the four ROMs to access. 



76 

 

 

Finally, suppose the available memories have a smaller word with as well as fewer words 

than necessary. We then combine the above two techniques, first creating the number of 

columns of memories necessary to achieve the needed word width, and then creating the 

number of rows of memories necessary, along with a decoder, to achieve the needed number 

of words. The approach is illustrated in Figure 4.5(c). 

 

 
 
 

4.4 Interfacing 

 Buses implement communication among processors or among processors and memories. 

Communication is the transfer of data among those components. For example, a general-

purpose processor reading or writing a memory is a common form of communication. A 

general-purpose processor reading or writing a peripheral’s register is another common form. 

 
 A bus consists of wires connecting two or more processors or memories. Figure 6.1(a) shows 

the wires of a simple bus connecting a processor with a memory. Note that each wire may be 

uni-directional, as are rd/wr, enable, and addr, or bi-directional, as is data. Also note that a 

Figure 4.5: Composing memories into larger ones. 

(a) 

2m x 3n ROM 

enable 2m x n ROM    2m x n ROM    2m x n ROM 

A0 

    …     … 

Q3n-1 Q2n-1 Qn-1 Q0 

(b) 

2m+1 x n ROM (c) 

   2m x n ROM 

A0 

Am-1 

Am 1x2 

decoder 
2m x n ROM enable 

enable 
outputs 

… 

Qn-1 Q0 



77 

 

set of wires with the same function is typically drawn as a thick line (or a line with a small 

angled line drawn through it). addr and data each represent a set of wires; the addr wires 

transmit an address, while the data wires transmit data. The bus connects to "pins" of a 

processor (or memory). A pin is the actual conducting device (i.e., metal) on the periphery of 

a processor through which a signal is input to or output from the processor. When a processor 

is packaged as its own IC, there are actual pins extending from the package, designed to be 

plugged into a socket on a printed-circuit board. Today, however, a processor commonly co-

exists on a single IC with other processors and memories. Such a processor does not have any 

actual pins on its periphery, but rather "pads" of metal in the IC. In fact, even for a processor 

packaged in its own IC, alternative packaging-techniques may use something other than pins 

for connections, such as small metallic balls. For consistency, though, we shall use the term 

pin in this chapter regardless of the packaging situation. 

 
A bus must have an associated protocol describing the rules for transferring data over 

those wires. We deal primarily with low-level hardware protocols in this chapter, while 

higher-level protocols, like IP (Internet Protocol) can be built on top of these protocols, 

using a layered approach. 

 
Interfacing with a general-purpose processor is extremely common. We describe three 

issues relating to such interfacing: addressing, interrupts, and direct memory access. 

When multiple processors attempt to access a single bus or memory simultaneously, 

resource contention exists. 

Timing diagrams 
 

The most common method for describing a hardware protocol is a timing diagram. 

Consider the example processor-memory bus of Figure 4.6 (a). Figure 4.6 (b) uses a timing 

diagram to describe the protocol for reading the memory over the bus. In the diagram, time 

Figure 4.6: Timing diagrams: (a) bus structure, (b) read, (c) write. 

rd/wr 
Processor 

enable
 

addr 

data 

rd/wr 

enable 

addr 

bus 

(a) 
rd/wr 

enable 

addr 

data data 

tsetup tread tsetup 

(b) 

twrite 

(c) 

Memory 



78 

 

proceeds to the right along the x-axis. The diagram shows that the processor must set the rd/wr 

line low for a read to occur. The diagram also shows, using two vertical lines, that the processor 

must place the address on addr for at least tsetup time before setting the enable line high. The 

diagram shows that the high enable line triggers the memory to put data on the data wires 

after a time tread. Note that a timing diagram represents control lines, like rd/wr and enable, as 

either being high or low, while it represents data lines, like addr and data, as being either invalid 

(a single horizontal line) or valid (two horizontal lines); the value of data lines is not normally 

relevant when describing a protocol. 

 
In the above protocol, the control line enable is active high, meaning that a 1 on the enable 

line triggers the data transfer. In many protocols, control lines are instead active low, meaning 

that a 0 on the line triggers the transfer. Such a control line is typically written with a bar above 

it, a single quote after it (e.g., enable’), or an underscore l after it(e.g., enable_l). To be general, 

we will use the term "assert" to mean setting a control lineto its active value (i.e., to 1 for an 

active high line, to 0 for an active low line), and the term "deassert" to mean setting the control 

line to its inactive value. 

Hardware protocol basics 
 

Concepts 

The protocol described above was a simple one. Hardware protocols can be much more 

complex. However, we can understand them better by defining some basic protocol 
 

 

 
 

Figure 4.7: Time-multiplexed data transfer: (a) data serializing, (b) 

address/data muxing. req 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 An actor is a processor or memory involved in the data transfer. A protocol typically 

involves two actors: a master and a servant. A master initiates the data transfer. A servant 

(usually called a slave) responds to the initiation request. In the example of Figure 4.7, the 

processor is the master and the memory is the servant, i.e., the memory cannot initiate a data 

transfer. The servant could also be another processor. Masters are usually general-purpose 

Master  

 data(15:0)  

data(8) 
 mux ckt 

  

 

 
Servant 

data(15:0)  

demux ckt  

 

 
Servant 

addr  data 

demux ckt  

 



79 

 

processors, while servants are usually peripherals and memories. 

 

Data direction denotes the direction that the transferred data moves between the actors. 

We indicate this direction by denoting each actor as either receiving or sending data. Note that 

actor types are independent of the direction of the data transfer. In particular, a master may 

either be the receiver of data, as in Figure 4.6(b), or the sender of data, as shown in Figure 

4.6(c). 

 
Addresses represent a special type of data used to indicate where regular data should go 

to or come from. A protocol often includes both an address and regular data, as did the memory 

access protocol in Figure 4.6, where the address specified where the data should be read from 

or written to in the memory. An address is also necessary when a general- purpose processor 

communicates with multiple peripherals over a single bus; the address not only specifies a 

particular peripheral, but also may specify a particular register within that peripheral. 

 
Another protocol concept is time multiplexing. To multiplex means to share a single set of 

wires for multiple pieces of data. In time multiplexing, the multiple pieces of data are sent one 

at a time over the shared wires. For example, Figure 4.7(a) shows a master sending 16 bits of 

data over an 8- bit bus using a strobe protocol and time-multiplexed data. The master first sends 

the high-order byte, then the low-order byte. The servant must receive the bytes and then 

demultiplex the data. This serializing of data can be done to any extent, even down to a 1-bit 

bus, in order to reduce the number of wires. As another example, Figure 4.7(b) shows a master 

sending both an address and data to a servant (probably a memory). In this case, rather than 

using separate sets of lines for 

 

 

 

Figure 4.8: Two protocol control methods: (a) strobe, (b) handshake. 

Master req Servant Master Servant 

data 

req 

ack 

data 

req 1 

data 2 

3  

 

req 1 

ack 

 

 4  

t 
data   

access 

Master asserts req to receive data 1. Master asserts req to receive data 

Servant puts data on bus within time taccess 2. Servant puts data on bus and asserts ack 

Master receives data and deasserts req 3. Master receives data and deasserts req 

Servant ready for next request 4. Servant ready for next request 

(b) 



80 

 

address and data, as was done in Figure 4.6, we can time multiplex the address and data 

over a shared set of lines addr/data. 

Control methods are schemes for initiating and ending the transfer. Two of the most 

common methods are strobe and handshake. In a strobe protocol, the master uses one control 

line, often called the request line, to initiate the data transfer, and the transfer is considered to 

be complete after some fixed time interval after the initiation. For example, Figure 4.8(a) 

shows a strobe protocol with a master wanting to receive data from a servant. The master first 

asserts the request line to initiate a transfer. The servant then has time taccess 

,to put the data on the data bus. After this time, the master reads the data bus, believing the 

data to be valid. The master than deasserts the request line, so that the servant can stop putting 

the data on the data bus, and both actors are then ready for the next transfer. An analogy is a 

demanding boss who tells an employee "I want that report (the data) on my desk (the data bus) 

in one hour (taccess)," and merely expects the report to be on the desk in one hour. 

The second common control method is a handshake protocol, in which the master uses a 

request line to initiate the transfer, and the servant uses an acknowledge line to inform the 

master when the data is ready. For example, Figure 4.8 (b) shows a handshake protocol with a 

receiving master. The master first asserts the request line to initiate the transfer. The servant 

takes however much time is necessary to put the data on the data bus, and then asserts the 

acknowledge line to inform the master that the data is valid. The master reads the data bus and 

then deasserts the request line so that the servant can stop putting data on the data bus. The 

servant deasserts the acknowledge line, and both actors are then ready for the next transfer. In 

our boss-employee analogy, a handshake protocol corresponds to a more tolerant boss who 

tells an employee "I want that report on my desk soon; let me know when 

it’s ready." A handshake protocol can adjust to a servant (or 
 

 

Figure 4.9: A strobe/handshake compromise: (a) fast-response case, (b) slow-response 

case. 
Master req 

wait

data 

Servant 

req 1 

wait 

data 

 req 1 

wait 

data 

 

  

 

taccess 

  

Master asserts req to receive data 

Servant puts data on bus within time taccess 

(wait line is unused) 

Master receives data and deasserts request 

Servant ready for next request 

(a) 

taccess 

Master asserts req to receive data 
Servant can’t put data within taccess, asserts wait 

Master receives data and deasserts request 

Servant ready for next request 

(b) 



81 

 

servants) with varying response times, unlike a strobe protocol. However, when 

response time is known, a handshake protocol may be slower than a strobe protocol, since it 

requires the master to detect the acknowledgement before getting the data, possibly requiring 

an extra clock cycle if the master is synchronizing the bus control signals. A handshake also 

requires an extra line for acknowledge. 

 
To achieve both the speed of a strobe protocol and the varying response time 

tolerance of a handshake protocol, a compromise protocol is often used, as illustrated in 

Figure 

4.9. In the case, when the servant can put the data on the bus within time taccess, the protocol 

is identical to a strobe protocol, as shown in Figure 4.9(a). However, if the servant cannot put 

the data on the bus in time, it instead tells the master to wait longer, by asserting a line we’ve 

labeled wait. When the servant has finally put the data on the bus, it deasserts the wait line, 

thus informing the master that the data is ready. The master receives the data and deasserts the 

request line. Thus, the handshake only occurs if it is necessary. In our boss-employee analogy, 

the boss tells the employee "I want that report on my desk in an hour; if you can’t finish by 

then, let me know that and then let me know when it’s ready." 

 

Example: A simple bus protocol Interfacing with a general-purpose processor 

Perhaps the most common communication situation in embedded systems is the input and 

output (I/O) of data to and from a general-purpose processor, as it communicates with 

its peripherals and memories. I/O is relative to the processor: input means data comes into the 

processor, while output means data goes out of the processor. 

I/O addressing 

A microprocessor may have tens or hundreds of pins, many of which are control pins, such 

as a pin for clock input and another input pin for resetting the microprocessor. Many of the 

other pins are used to communicate data to and from the microprocessor, which we call 

processor I/O. There are two common methods for using pins to support I/O: ports, and system 

buses. 

A port is a set of pins that can be read and written just like any register in the 

microprocessor; in fact, the port is usually connected to a dedicated register. For example, 

consider an 8-bit port named P0. A C-language programmer may write to P0 using an 

instruction like: P0 = 255, which would set all 8 pins to 1’s. In this case, the C compiler manual 

would have defined P0 as a special variable that would automatically be mapped to the register 

P0 during compilation. Conversely, the programmer might read the value of a port P1 being 



82 

 

written by some other device, by saying something like a=P1. In some microprocessors, each 

bit of a port can be configured as input or output by writing to a configuration register for the 

port. For example, P0 might have an associated configuration register called CP0. To set the 

high-order four bits to input and the low- order four bits to output, we might say: CP0 = 15. 

This writes 00001111 to the CP0 register, where a 0 means input and a 1 means output. Ports 

are often bit-addressable, meaning that a programmer can read or write specific bits of the port. 

For example, one might say: x = P0.2, giving x the value of the number 2 connection of port 

P0. Port- based I/O is also called parallel I/O. 

 
In contrast to a port, a system bus is a set of pins consisting of address pins, data pins, and 

control pins (for strobing or handshaking). The microprocessor uses the bus to access memory 

as well as peripherals. We normally consider the access to the peripherals as I/O, but don't 

normally consider the access to memory as I/O, since the memory is considered more as a part 

of the microprocessor. A microprocessor may use one of two methods for communication over 

a system bus: standard I/O or memory-mapped I/O. 

 
In memory-mapped I/O, peripherals occupy specific addresses in the existing address 

space. For example, consider a bus with a 16-bit address. The lower 32K addresses may 

correspond to memory addresses, while the upper 32K may correspond to I/O addresses. 

 
In standard I/O (also known as I/O-mapped I/O), the bus includes an additional pin, 

which we label M/IO, to indicate whether the access is to memory or to a peripheral (i.e., an 

I/O device). For example, when M/IO is 0, the address on the address bus corresponds to a 

memory address. When M/IO is 1, the address corresponds to a peripheral. 

An advantage of memory-mapped I/O is that the microprocessor need not include special 

instructions for communicating with peripherals. The microprocessor’s assembly instructions 

involving memory, such as MOV or ADD, will also work for peripherals. For example, a 

microprocessor may have an ADD A, B instruction that adds the data at address B to the data 

at address A and stores the result in A. A and B may correspond to memory locations, or 

registers in peripherals. In contrast, if the microprocessor uses standard I/O, the 

microprocessor requires special instructions for reading and writing peripherals. These 

instructions are often called IN and OUT. Thus, to perform the same addition of locations A 

and B corresponding to peripherals, the following instructions would be necessary: 

 

IN R0, A IN R1, B ADD R0, 

R1 OUT A, R0 
 



83 

 

4.5 Interrupts 

 
An interrupt is a signal to the processor emitted by hardware or software indicating an event 

that needs immediate attention. Whenever an interrupt occurs, the controller completes the 

execution of the current instruction and starts the execution of an Interrupt Service 

Routine (ISR) or Interrupt Handler. ISR tells the processor or controller what to do when 

the interrupt occurs. The interrupts can be either hardware interrupts or software interrupts. 

Hardware Interrupt 
 

A hardware interrupt is an electronic alerting signal sent to the processor from an external 

device, like a disk controller or an external peripheral. For example, when we press a key on 

the keyboard or move the mouse, they trigger hardware interrupts which cause the processor 

to read the keystroke or mouse position. 

Software Interrupt 
 

A software interrupt is caused either by an exceptional condition or a special instruction in the 

instruction set which causes an interrupt when it is executed by the processor. For example, if 

the processor's arithmetic logic unit runs a command to divide a number by zero, to cause a 

divide-by- zero exception, thus causing the computer to abandon the calculation or display an 

error message. Software interrupt instructions work similar to subroutine calls. 

 

 Interrupt Service Routine 

 

For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler. 

When an interrupt occurs, the microcontroller runs the interrupt service routine. For every 

interrupt, there is a fixed location in memory that holds the address of its interrupt service 

routine, ISR. The table of memory locations set aside to hold the addresses of ISRs is called as 

the Interrupt Vector Table. 

  



84 

 

Interrupt Vector Table 

There are six interrupts including RESET in 8051. 
 

Interrupts ROM Location (Hex) Pin 

Interrupts ROM Location (HEX) 
 

Serial COM (RI and TI) 0023 
 

Timer 1 interrupts(TF1) 001B 
 

External HW interrupt 1 (INT1) 0013 P3.3 (13) 

External HW interrupt 0 (INT0) 0003 P3.2 (12) 

Timer 0 (TF0) 000B 
 

Reset 0000 9 

• When the reset pin is activated, the 8051 jumps to the address location 0000. This is power- up 

reset. 

• Two interrupts are set aside for the timers: one for timer 0 and one for timer 1. Memory 

locations are 000BH and 001BH respectively in the interrupt vector table. 

 

• Two interrupts are set aside for hardware external interrupts. Pin no. 12 and Pin no. 13 in 

Port 3 are for the external hardware interrupts INT0 and INT1, respectively. Memory locations 

are 0003H and 0013H respectively in the interrupt vector table. 

• Serial communication has a single interrupt that belongs to both receive and transmit. 

Memory location 0023H belongs to this interrupt. 

Steps to Execute an Interrupt 
 

When an interrupt gets active, the microcontroller goes through the following steps. 

• The microcontroller closes the currently executing instruction and saves the address of 

the next instruction (PC) on the stack. 

• It also saves the current status of all the interrupts internally (i.e., not on the stack). 

• It jumps to the memory location of the interrupt vector table that holds the address of the 

interrupts service routine. 

• The microcontroller gets the address of the ISR from the interrupt vector table and jumps 

to it. It starts to execute the interrupt service subroutine, which is RETI (return from interrupt). 

• Upon executing the RETI instruction, the microcontroller returns to the location where it 

was interrupted. First, it gets the program counter (PC) address from the stack by popping the 

top bytes of the stack into the PC. Then, it start to execute from that address. 



85 

 

Enabling and Disabling an Interrupt 

Upon Reset, all the interrupts are disabled even if they are activated. The interrupts must be 

enabled using software in order for the microcontroller to respond to those interrupts. 

IE (interrupt enable) register is responsible for enabling and disabling the interrupt. IE is a bit 

addressable register. 

Interrupt Enable Register 

 

EA - ET2 ES ET1 EX1 ET0 EX0 

• EA − Global enable/disable. 

• - − Undefined. 

• ET2 − Enable Timer 2 interrupt. 

• ES − Enable Serial port interrupt. 

• ET1 − Enable Timer 1 interrupt. 

• EX1 − Enable External 1 interrupt. 

• ET0 − Enable Timer 0 interrupt. 

• EX0 − Enable External 0 interrupt. 

To enable an interrupt, we take the following steps  

Bit D7 of the IE register (EA) must be high to allow the rest of register to take effect. 

• If EA = 1, interrupts will be enabled and will be responded to, if their corresponding bits 

in IE are high. If EA = 0, no interrupts will respond, even if their associated pins in the IE 

register are high. 

Interrupt Priority in 8051 
 

We can alter the interrupt priority by assigning the higher priority to any one of the interrupts. 

- - - - PT1 PX1 PT0 PX0 

- IP.7 Not Implemented. 

- IP.6 Not Implemented. 

- IP.5 Not Implemented. 

- IP.4 Not Implemented. 

PT1 IP.3 Defines the Timer 1 interrupt priority level. 

PX1 IP.2 Defines the External Interrupt 1 priority level. 

PT0 IP.1 Defines the Timer 0 interrupt priority level. 

PX0 IP.0 Defines the External Interrupt 0 priority level. 



86 

 

This is accomplished by programming a register called IP (interrupt priority). 

The following figure shows the bits of IP register. Upon reset, the IP register contains all 0's. 

To give a higher priority to any of the interrupts, we make the corresponding bit in the IP 

register high. 

 

Interrupt inside Interrupt 

What happens if the 8051 is executing an ISR that belongs to an interrupt and another one gets 

active? In such cases, a high-priority interrupt can interrupt a low-priority interrupt. This is 

known as interrupt inside interrupt. In 8051, a low-priority interrupt can be interrupted by a 

high- priority interrupt, but not by any another low-priority interrupt. 

Triggering an Interrupt by Software 

There are times when we need to test an ISR by way of simulation. This can be done with the 

simple instructions to set the interrupt high and thereby cause the 8051 to jump to the interrupt 

vector table. For example, set the IE bit as 1 for timer 1. An instruction SETB TF1 will 

interrupt the 8051 in whatever it is doing and force it to jump to the interrupt vector table. 

 
4.6 Direct memory access (DMA) 

 
 

Direct memory access (DMA) is a means of having a peripheral device control a processor's 

memory bus directly. DMA permits the peripheral, such as a UART, to transfer data directly 

to or from memory without having each byte (or word) handled by the processor. Thus DMA 

enables more efficient use of interrupts, increases data throughput, and potentially reduces 

hardware costs by eliminating the need for peripheral-specific FIFO buffers. 

 
Dealing direct 

 
 

In a typical DMA transfer, some event (such as an incoming data-available signal from a 

UART) notifies a separate device called the DMA controller that data needs to be transferred 

to memory. The DMA controller then asserts a DMA request signal to the CPU, asking its 

permission to use the bus. The CPU completes its current bus activity, stops driving the bus, 

and returns a DMA acknowledge signal to the DMA controller. The DMA controller then reads 

and writes one or more memory bytes, driving the address, data, and control signals as if it were 

itself the CPU. (The CPU's address, data, and control outputs are tri stated while the DMA 

controller has control of the bus.) When the transfer is complete, the DMA controller stops 

driving the bus and de-asserts the DMA request signal. The CPU can then remove its DMA 

acknowledge signal and resume control of the bus. 

Each DMA cycle will typically result in at least two bus cycles: either a peripheral read 



87 

 

followed by a memory write or a memory read followed by a peripheral write, depending on 

the transfer base addresses. The DMA controller itself does no processing on this data. It just 

transfers the bytes as instructed in its configuration registers. 

It's possible to do a flyby transfer that performs the read and write in a single bus cycle. 

However, though supported on the ISA bus and its embedded cousin PC/104, flyby transfers 

are not typical. 

 
Processors that support DMA provide one or more input signals that the bus requester can 

assert to gain control of the bus and one or more output signals that the processor asserts to 

indicate it has relinquished the bus. A typical output signal might be named HLDA (short for 

HoLD Acknowledge). 

 
When designing with DMA, address buffers must be disabled during DMA so the bus requester 

can drive them without bus contention. To avoid bus contention, the bus buffer used by the 

DMA device must not drive the address bus until after HLDA goes active to indicate that the 

CPU has stopped driving the bus signals, and it must stop driving the bus before the CPU drives 

HLDA inactive. The system design may also need pullup resistors or terminators on control 

signals (such as read and write strobes) so the control signals don't float to the active state during 

the brief period when neither the processor nor the DMA controller is driving them. 

DMA controllers require initialization by software. Typical setup parameters include the base 

address of the source area, the base address of the destination area, the length of the block, 

and whether the DMA controller should generate a processor interrupt once the block transfer 

is complete. 

 
It's typically possible to have the DMA controller automatically increment one or both 

addresses after each byte (word) transfer, so that the next transfer will be from the next 

memory location. Transfers between peripherals and memory often require that the peripheral 

address not be incremented after each transfer. When the address is not incremented, each 

data byte will be transferred to or from the same memory location. 

 
DMA or burst 

DMA operations can be performed in either burst or single-cycle mode. Some DMA 

controllers support both. In burst mode, the DMA controller keeps control of the bus until all 

the data buffered by the requesting device has been transferred to memory (or when the 

output device buffer is full, if writing to a peripheral). 

 



88 

 

In single-cycle mode, the DMA controller gives up the bus after each transfer. This minimizes 

the amount of time that the DMA controller keeps the processor off of the memory bus, but it 

requires that the bus request/acknowledge sequence be performed for every transfer. This 

overhead can result in a drop in overall system throughput if a lot of data needs to be 

transferred. 

In most designs, you would use single cycle mode if your system cannot tolerate more than a 

few cycles of added interrupt latency. Likewise, if the peripheral devices can buffer very large 

amounts of data, causing the DMA controller to tie up the bus for an excessive amount of time, 

single-cycle mode is preferable. 

Note that some DMA controllers have larger address registers than length registers. For 

instance, a DMA controller with a 32-bit address register and a 16-bit length register can access 

a 4GB memory space, but can only transfer 64KB per block. If your application requires DMA 

transfers of larger amounts of data, software intervention is required after each block. 

Get on the bus 

The simplest way to use DMA is to select a processor with an internal DMA controller. This 

eliminates the need for external bus buffers and ensures that the timing is handled correctly. 

Also, an internal DMA controller can transfer data to on-chip memory and peripherals, which 

is something that an external DMA controller cannot do. Because the handshake is handled 

on-chip, the overhead of entering and exiting DMA mode is often much faster than when an 

external controller is used. 

 
If an external DMA controller or processor is used, be sure that the hardware handles the 

transition between transfers correctly. To avoid the problem of bus contention, ensure that bus 

requests are inhibited if the bus is not free. This prevents the DMA controller from requesting 

the bus before the processor has reacquired it after a transfer. DMA is not as mysterious as it 

sometimes seems. DMA transfers can provide real advantages when the system is properly 

designed. 

 

4.7 Arbitration 

For example, multiple peripherals might share a single microprocessor that services their 

interrupt requests. As another example, multiple peripherals might share a single DMA 

controller that services their DMA requests. In such situations, two or more peripherals may 

request service simultaneously. We therefore must have some method to arbitrate among these 

contending requests, i.e., to decide which one of the contending peripherals gets service, and 

thus which peripherals need to wait. 

 



89 

 

Multi-level bus architectures 

 
A microprocessor-based embedded system will have numerous types of communications 

that must take place, varying in their frequencies and speed requirements. The most frequent 

and high- speed communications will likely be between the microprocessor and its memories. 

Less frequent communications, requiring less speed, will be between the microprocessor and 

its peripherals, like a UART. We could try to implement a single high-speed bus for all the 

communications, but this approach has several disadvantages. First, it requires each peripheral 

to have a high-speed bus interface. Since a peripheral may not need such high-speed 

communication, having such an interface may result in extra gates, power consumption and 

cost. Second, since a high- speed bus will be very processor-specific, a peripheral with an 

interface to that bus may not be very portable. Third, having too many peripherals on the bus 

may result in a slower bus. 

 
Therefore, we often design systems with two levels of buses: a high-speed processorlocal 

bus and a lower-speed peripheral bus, as illustrated in Figure 4.10. The processor local bus 

typically connects the microprocessor, cache, memory controllers, certain high- speed co-

processors, and is highly processor specific. It is usually wide, as wide as a memory word. 

 

 

The peripheral bus connects those processors that do not have fast processor local bus 

access as a top priority, but rather emphasize portability, low power, or low gate count. The 

peripheral bus is typically an industry standard bus, such as ISA or PCI, thus supporting 

portability of the peripherals. It is often narrower and/or slower than a processor local bus, thus 

requiring fewer gates and less power for interfacing. 

 
A bridge connects the two buses. A bridge is a single-purpose processor that converts 

communication on one bus to communication on another bus. For example, the microprocessor 

may generate a read on the processor local bus with an address corresponding to a peripheral. 

The bridge detects that the address corresponds to a peripheral, and thus it then generates a 

read on the peripheral bus. After receiving the data, the bridge sends that data to the 

microprocessor. The microprocessor thus need not even know that a bridge exists -- it receives 

the data, albeit a few cycles later, as if the peripheral were on the processor local bus. 

 
A three-level bus hierarchy is also possible, as proposed by the VSI Alliance. The first 

level is the processor local bus, the second level a system bus, and the third level a peripheral 

bus. The system bus would be a high-speed bus, but would offload much of the traffic from 



90 

 

the processor local bus. It may be beneficial in complex systems with numerous co-processors. 

 
 

 

4.8 Communication Protocols 

 
4.8.1 Serial Protocols 

Communication between electronic devices is like communication between humans. Both sides 

need to speak the same language. In electronics, these languages are called communication protocols. 

Luckily for us, there are only a few communication protocols we need to know when building most 

electronics projects. The basics of the three most common protocols: SPI, I2C and UART. 

SPI, I2C, and UART are quite a bit slower than protocols like USB, Ethernet, Bluetooth, and Wi-

Fi, but they’re a lot simpler and use less hardware and system resources. SPI, I2C, and UART are 

ideal for communication between microcontrollers and between microcontrollers and sensors where 

large amounts of high speed data don’t need to be transferred. 

 

Data Communication Types: 

(1) PARALLEL 

(2) SERIAL: (I) ASYNCHRONOUS (II) SYNCHRONOUS Parallel Communication: 

• In parallel communication, all the bits of data are transmitted 

simultaneously onseparate communication lines. 

• Used for shorter distance. 

• In order to transmit n bit, n wires or lines are used. 

• More costly. 

• Faster than serial transmission. 

• Data can be transmitted in less time. 

Example: printers and hard disk 

Serial Communication Basics: 

• In serial communication the data bits are transmitted serially one by 

one 

i.e. bit by bit on single communication line 

• It requires only one communication line rather than n lines to 

transmit data from sender to receiver. 

Figure 4.10: A two-level bus architecture. 

 

 

 

 

 
Processor-local bus 

 

 

 

 

 
Peripheral bus 

Bridge Peripheral Peripheral Peripheral 

DMA 

controller 

Memory 

controller 

Cache Micro- 

processor 



91 

 

• Thus all the bits of data are transmitted on single lines in serial 

fashion. 

• Less costly. 

• Long distance transmission. 

Example: Telephone. 

 

 

 

 
Serial communication uses two methods: 

• Asynchronous. 

• Synchronous. Asynchronous: 

• Transfers single byte at a time. 

• No need of clock signal 

❖ Example: UART (universal asynchronous receiver transmitter) Synchronous: 

• Transfers a block of data (characters) at a time. 

• Requires clock signal 

❖ Example: SPI (serial peripheral interface), 

I2C (inter integrated circuit). 

 

Data Transmission: In data transmission if the data can be transmitted and received, 

it is a duplex transmission. 

Simplex: Data is transmitted in only one direction i.e. from TX to RX only one TX and 

one RX only 

Half duplex: Data is transmitted in two directions but only one way at a time i.e. 

two TX's, two RX’s and one line 

Full duplex: Data is transmitted both ways at the same time i.e. two TX's, two 

RX’s and two lines 
 



92 

 

A Protocol is a set of rules agreed by both the sender and receiver on 

• How the data is packed 

• How many bits constitute a character 

• When the data begins and ends 

Table: Various Serial Communication Protocols 

Serial 

Protocol 

Synchronous 

/Asynchronous 

 

Type 

 

Duplex 
Data transfer 

rate (kbps) 

UART Asynchronous peer-to-peer Full-duplex 20 

I2C Synchronous multi-master Half-duplex 3400 

SPI Synchronous multi-master Full-duplex >1,000 

MICROWIRE Synchronous master/slave Full-duplex > 625 

1-WIRE Asynchronous master/slave Half-duplex 16 

Baud Rate Concepts: 

Data transfer rate in serial communication is measured in terms of bits per second (bps). 

This is also called as Baud Rate. Baud Rate and bps can be used inter changeably with respect 

to UART. 

Ex: The total number of bits gets transferred during 10 pages of text, each with 100 

× 25 characters with 8 bits per character and 1 start & stop bit is: 

For each character a total number of bits are 10. The total number of bits is: 

100 × 25 × 10 = 25,000 bits per page. For 10 pages of data it is required to transmit 2, 

50,000 

bits. Generally baud rates of SCI are 1200, 2400, 4800, 9600, 19,200 etc. To transfer 2, 

50,000 bits at a baud rate of 9600, we need: 250000/9600 = 26.04 seconds (27 seconds). 

Synchronous/Asynchronous Interfaces (like UART, SPI, I2C, and USB): 

Serial communication protocols can be categorized as Synchronous and Asynchronous 

protocols. In synchronous communication, data is transmission and receiving is a continuous 

stream at a constant rate. Synchronous communication requires the clock of transmitting device 

and receiving device synchronized. In most of the systems, like ADC, audio codes, 

potentiometers, transmission and reception of data occurs with same frequency. Examples of 

synchronous communication are: I2C, SPI etc. In the case of asynchronous communication, 

the transmission of data requires no clock signal and data transfer occurs intermittently rather 

than steady stream. Handshake signals between the transmitter and receiver are important in 

asynchronous communications. Examples of asynchronous communication are Universal 

Asynchronous Receiver Transmitter (UART), CAN etc. 

Synchronous and asynchronous communication protocols are well-defined standards 

and can be implemented in either hardware or software. In the early days of embedded systems, 

Software implementation of I2C and SPI was common as well as a tedious work and used to 

take long programs. Gradually, most the microcontrollers started incorporating the standard 

communication protocols as hardware cores. This development in early 90‟s made job of the 

embedded software development easy for communication protocols. 



93 

 

Microcontroller of our interest TM4C123 supports UART, CAN, SPI, I2C and USB 

protocols. The five (UART, CAN, SPI, I2C and USB) above mentioned communication 

protocols are available in most of the modern day microcontrollers. Before studying the 

implementation and programming details of these protocols in TM4C123, it is required to 

understand basic standards, features and applications. In the following sections, we discuss 

fundamentals of the above mentioned communication protocols. 

 
UART COMMUNICATION 

In UART communication, two UARTs communicate directly with each other. The 

transmitting UART converts parallel data from a controlling device like a CPU into serial form, 

transmits it in serial to the receiving UART, which then converts the serial data back into 

parallel data for the receiving device. Only two wires are needed to transmit data between two 

UARTs. Data flows from the Tx pin of the transmitting UART to the Rx pin of the receiving 

UART: 

 

 

UARTs transmit data asynchronously, which means there is no clock signal to 

synchronize the output of bits from the transmitting UART to the sampling of bits by the 

receiving UART. Instead of a clock signal, the transmitting UART adds start and stop bits to 

the data packet being transferred. These bits define the beginning and end of the data packet so 

the receiving UART knows when to start reading the bits. 

When the receiving UART detects a start bit, it starts to read the incoming bits at a 

specific frequency known as the baud rate. Baud rate is a measure of the speed of data transfer, 

expressed in bits per second (bps). Both UARTs must operate at about the same baud rate. The 

baud rate between the transmitting and receiving UARTs can only differ by about 10% before 

the timing of bits gets too far off. 

Both UARTs must be configured to transmit and receive the same data packet structure. 



94 

 

 

 

HOW UART WORKS 

The UART that is going to transmit data receives the data from a data bus. The data bus 

is used to send data to the UART by another device like a CPU, memory, or microcontroller. 

Data is transferred from the data bus to the transmitting UART in parallel form. After the 

transmitting UART gets the parallel data from the data bus, it adds a start bit, a parity bit, and 

a stop bit, creating the data packet. Next, the data packet is output serially, bit by bit at the Tx 

pin. The receiving UART reads the data packet bit by bit at its Rx pin. The receiving UART 

then converts the data back into parallel form and removes the start bit, parity bit, and stop 

bits. Finally, the receiving UART transfers the data packet in parallel to the data bus on the 

receiving end: 

 



95 

 

 

UART transmitted data is organized into packets. Each packet contains 1 start bit, 5 to 9 data 

bits (depending on the UART), an optional parity bit, and 1 or 2 stop bits: 

 

 

 

 

 

 

 
START BIT 

 
The UART data transmission line is normally held at a high voltage level when 

it’s not  transmitting data. To start the transfer of data, the transmitting UART pulls the 

transmission line from high to low for one clock cycle. When the receiving UART detects the 

high to low voltage transition, it begins reading the bits in the data frame at the frequency of 

the baud rate. 

 

DATA FRAME 

 

The data frame contains the actual data being transferred. It can be 5 bits to 9 bits long 

if a parity bit is used. If no parity bit is used, the data frame can be 8 bits long. In most cases, 

the data is sent with the least significant bit first. 

 

PARITY 

 

Parity describes the evenness or oddness of a number. The parity bit is a way for the 

receiving UART to tell if any data has changed during transmission. Bits can be changed 

by electromagnetic radiation, mismatched baud rates, or long distance data transfers. After the 

receiving UART reads the data frame, it counts the number of bits with a value of 1 and checks 

if the total is an even or odd number. If the parity bit is a 0 (even parity), the 1 bits in the data 

frame should total to an even number. If the parity bit is a 1 (odd parity), the 1 bits in the data 

frame should total to an odd number. When the parity bit matches the data, the UART knows 

that the transmission was free of errors. But if the parity bit is a 0, and the total is odd; or the 

parity bit is a1, and the total is even, the UART knows that bits in the data frame have changed. 

 

STOP BITS 

 

The Stop Bit, as the name suggests, marks the end of the data packet. It is usually two 

bits long but often only on bit is used. In order to end the transmission, the UART maintains 

the data line at high voltage (1). 

 

 

 

 

  



96 

 

 

STEPS OF UART TRANSMISSION 
 

1. The transmitting UART receives data in parallel from the data bus: 
 

2. The transmitting UART adds the start bit, parity bit, and the stop bit(s) to the data frame: 
 

 

3. The entire packet is sent serially from the transmitting UART to the receiving UART. The 

receiving UART samples the data line at the pre-configured baud rate: 

 

4. The receiving UART discards the start bit, parity bit, and stop bit from the data frame: 



97 

 

 
 

5. The receiving UART converts 

 
6. the serial data back into parallel and transfers it to the data bus on the receiving end: 

ADVANTAGES AND DISADVANTAGES OF UARTS 

No communication protocol is perfect, but UARTs are pretty good at what they do. 
Here 

are some pros and cons to help you decide whether or not they fit the needs of your project: 

 
ADVANTAGES 

• Only uses two wires 

• No clock signal is necessary 

• Has a parity bit to allow for error checking 

• The structure of the data packet can be changed as long as both sides are set up for it 

• Well documented and widely used method 

DISADVANTAGES 

• The size of the data frame is limited to a maximum of 9 bits 

• Doesn’t support multiple slave or multiple master systems 

• The baud rates of each UART must be within 10% of each other 

 

UART or Universal Asynchronous Receiver Transmitter is a dedicated hardware 

associated with serial communication. The hardware for UART can be a circuit integrated on 

the microcontroller or a dedicated IC. This is contrast to SPI or I2C, which are just 

communication protocols. 

UART is one of the most simple and most commonly used Serial Communication 

techniques. Today, UART is being used in many applications like GPS Receivers, Bluetooth 

Modules, GSM and GPRS Modems, Wireless Communication Systems, RFID based 

applications etc. 



98 

 

 

 

SPI COMMUNICATION PROTOCOL 

SPI is a common communication protocol used by many different devices. For example, 

SD card modules, RFID card reader modules, and 2.4 GHz wireless transmitter/receivers all 

use SPI to communicate with microcontrollers. 

One unique benefit of SPI is the fact that data can be transferred without interruption. 

Any number of bits can be sent or received in a continuous stream. With I2C and UART, data 

is sent in packets, limited to a specific number of bits. Start and stop conditions define the 

beginning and end of each packet, so the data is interrupted during transmission. 

Devices communicating via SPI are in a master-slave relationship. The master is the 

controlling device (usually a microcontroller), while the slave (usually a sensor, display, or 

memory chip) takes instruction from the master. The simplest configuration of SPI is a single 

master, single slave system, but one master can control more than one slave (more on this 

below). 

 

 

 
 

 

 
MOSI (Master Output/Slave Input) – Line for the master to send data to the slave. MISO 

(Master Input/Slave Output) – Line for the slave to send data to the master SCLK (Clock) 

– Line for the clock signal. 

SS/CS (Slave Select/Chip Select) – Line for the master to select which slave to send data to. 

*In practice, the number of slaves is limited by the load capacitance of the system, which 

reduces the ability of the master to accurately switch between voltage levels. 

HOW SPI WORKS 

THE CLOCK 

The clock signal synchronizes the output of data bits from the master to the sampling 

of bits by the slave. One bit of data is transferred in each clock cycle, so the speed of data 

transfer is determined by the frequency of the clock signal. SPI communication is always 



99 

 

initiated by the master since the master configures and generates the clock signal. 

Any communication protocol where   devices   share   a   clock   signal   is   known 

as synchronous. SPI    is     a     synchronous     communication     protocol.     There     are 

also asynchronous methods that don’t use a clock signal. For example, in UART 

communication, both sides are set to a pre-configured baud rate that dictates the speed and 

timing of data transmission. 

The clock signal in SPI can be modified using the properties of clock polarity and clock 

phase. These two properties work together to define when the bits are output and when they 

are sampled. Clock polarity can be set by the master to allow for bits to be output and sampled 

on either the rising or falling edge of the clock cycle. Clock phase can be set for output and 

sampling to occur on either the first edge or second edge of the clock cycle, regardless of 

whether it is rising or falling. 

SLAVE SELECT 

The master can choose which slave it wants to talk to by setting the slave’s CS/SS line 

toa low voltage level. In the idle, non-transmitting state, the slave select line is kept at a high 

voltage level. Multiple CS/SS pins may be available on the master, which allows for multiple 

slaves to be wired in parallel. If only one CS/SS pin is present, multiple slaves can be wired 

to the master by daisy-chaining. 

MULTIPLE SLAVES 

SPI can be set up to operate with a single master and a single slave, and it can be set up 

with multiple slaves controlled by a single master. There are two ways to connect multiple 

slaves to the master. If the master has multiple slave select pins, the slaves can be wired in 

parallel like this: 

 

 
 



100 

 

If only one slave select pin is available, the slaves can be daisy-chained like this: 

 

MOSI AND MISO 

The master sends data to the slave bit by bit, in serial through the MOSI line. The slave receives the 

data sent from the master at the MOSI pin. Data sent from the master to the slave   is usually sent with the 

most significant bit first. 

The slave can also send data back to the master through the MISO line in serial. The data sent from 

the slave back to the master is usually sent with the least significant bit first. 

 

STEPS OF SPI DATA TRANSMISSION 

1. The master outputs the clock signal: 
 

 

2. The master switches the SS/CS pin to a low voltage state, which activates the slave: 
 

 

3. The master sends the data one bit at a time to the slave along the MOSI line. The slave           reads the 

bits as they are received: 



101 

 

 

4. If a response is needed, the slave returns data one bit at a time to the master along the MISOline. 

The master reads the bits as they are received: 

 
ADVANTAGES AND DISADVANTAGES OF SPI 

There are some advantages and disadvantages to using SPI, and if given the choice between 

different communication protocols, you should know when to use SPI according to the requirements of 

your project: 

ADVANTAGES 

• No start and stop bits, so the data can be streamed continuously without interruption 

• No complicated slave addressing system like I2C 

• Higher data transfer rate than I2C (almost twice as fast) 

• Separate MISO and MOSI lines, so data can be sent and received at the same time 

DISADVANTAGES 

• Uses four wires (I2C and UARTs use two) 

• No acknowledgement that the data has been successfully received (I2C has this) 

• No form of error checking like the parity bit in UART 

• Only allows for a single master 



102 

 

 

 

I2C COMMUNICATION PROTOCOL 

Inter IC (i2c) (IIC) is important serial communication protocol in modern electronic 

systems. Philips invented this protocol in 1986. The objective of reducing the cost of production 

of television remote control motivated Philips to invent this protocol. IIC is a serial bus interface, 

can be implemented in software, but most of the microcontrollers support IIC by incorporating 

it as hard IP (Intellectual Property). IIC can be used to interface microcontroller with RTC, 

EEPROM and different variety of sensors. IIC is used to interface chips on motherboard, 

generally between a processor chip and any peripheral which supports IIC. IIC is very reliable 

wireline communication protocol for an on board or short distances. I2C is a serial protocol for 

two-wire interface to connect low-speed devices like microcontrollers, EEPROMs, A/D and 

D/A converters, I/O interfaces and other similar peripherals in embedded systems 

I2C combines the best features of SPI and UARTs. With I2C, you can connect multiple 

slaves to a single master (like SPI) and you can have multiple masters controlling single, or 

multiple slaves. This is really useful when you want to have more than one microcontroller 

 

 

 

 

 
Fig: SPI Master connected to a single slave 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: SPI master connected to multiple slaves 



103 

 

logging data to a single memory card or displaying text to a single LCD. 

IIC protocol uses two wires for data transfer between devices: Serial Data Line (SDA) 

and Serial Clock Line (SCL). The reduction in number of pins in comparison with parallel data 

transfer is evident. This reduces the cost of production, package size and power consumption. 

IIC is also best suited protocol for battery operated devices. IIC is also referred as two wire 

serial interface (TWI). 

 

 

 

 

 

 

 

 
SDA (Serial Data) – The line for the master and slave to send and receive data. 

SCL (Serial Clock) – The line that carries the clock signal. 

I2C is a serial communication protocol, so data is transferred bit by bit along a single 

wire(the SDA line). 

Like SPI, I2C is synchronous, so the output of bits is synchronized to the sampling of 

bits by a clock signal shared between the master and the slave. The clock signal is always 

controlled by the master. 

 

 
 

GENERAL ELECTRICAL CHARACTERISTICS OF I2C 
 

To implement I2C (For TIVA series microcontrollers or for most of the 

microcontrollers) a 4.7kilo ohm pull-up resistor for each line is needed. This is required to 

implement wired-AND logic in IIC. 

More than 100 devices can be connected to I2C bus theoretically. It is better to restrict 



104 

 

to 15 devices for better performance of the network. Each device is called as node. Nodes which 

generates clock are called Master nodes and devices which work based on the clock generated 

by master node are called Slave nodes. Generally, master nodes initiate and terminate the 

transmission. The four possible modes of operation are: master transmitter, master receiver, 

slave transmitter and slave receiver. 

HOW I2C WORKS 

With I2C, data is transferred in messages. Messages are broken up into frames of data. 

Each message has an address frame that contains the binary address of the slave, and one or 

more data frames that contain the data being transmitted. The message also includes start and 

stop conditions, read/write bits, and ACK/NACK bits between each data frame: 

 

 

 

 

 

 

 

Start Condition: The SDA line switches from a high voltage level to a low voltage level before 

the SCL line switches from high to low. 

Stop Condition: The SDA line switches from a low voltage level to a high voltage level after 

the SCL line switches from low to high. 

Address Frame: A 7 or 10 bit sequence unique to each slave that identifies the slave when the 

master wants to talk to it. 

Read/Write Bit: A single bit specifying whether the master is sending data to the slave (low 

voltage level) or requesting data from it (high voltage level). 

ACK/NACK Bit: Each frame in a message is followed by an acknowledge/no-acknowledge 

bit. If an address frame or data frame was successfully received, an ACK bit is returned to the 

sender from the receiving device. 

 

 



105 

 

 

ADDRESSING 

I2C doesn’t have slave select lines like SPI, so it needs another way to let the slave 

know that data is being sent to it, and not another slave. It does this by addressing. The address  

frame is always the first frame after the start bit in a new message. 

The master sends the address of the slave it wants to communicate with to every slave 

connected to it. Each slave then compares the address sent from the master to its own address. 

If the address matches, it sends a low voltage ACK bit back to the master. If the address doesn’t 

match, the slave does nothing and the SDA line remains high. 

READ/WRITE BIT 

The address frame includes a single bit at the end that informs the slave whether the 

master wants to write data to it or receive data from it. If the master wants to send data to the 

slave, the read/write bit is a low voltage level. If the master is requesting data from the slave, 

the bit is a high voltage level. 

THE DATA FRAME 

After the master detects the ACK bit from the slave, the first data frame is ready to be 

sent. 
 

The data frame is always 8 bits long, and sent with the most significant bit first. Each 

data frame is immediately followed by an ACK/NACK bit to verify that the frame has been 

received successfully. The ACK bit must be received by either the master or the slave 

(depending on who is sending the data) before the next data frame can be sent. 

After all of the data frames have been sent, the master can send a stop condition to the 

slave to halt the transmission. The stop condition is a voltage transition from low to high on 

the SDA line after a low to high transition on the SCL line, with the SCL line remaining high. 

 

STEPS OF I2C DATA TRANSMISSION 

1. The master sends the start condition to every connected slave by switching the SDA 

line from a high voltage level to a low voltage level before switching the SCL line from high 

to low: 



106 

 

 
 

 

2. The master sends each slave the 7 or 10 bit address of the slave it wants to 



107 

 

Communicate with, along with the read/write bit: 

 
3. Each slave compares the address sent from the master to its own address. If the address 

matches, the slave returns an ACK bit by pulling the SDA line low for one bit. If the address 

from the master does not match the slave’s own address, the slave leaves the SDA line high. 

 

 

4. The master sends or receives the data frame: 
 
 



108 

 

5. After each data frame has been transferred, the receiving device returns another 

ACK bit  to the sender to acknowledge successful receipt of the frame: 
 

 
6. To stop the data transmission, the master sends a stop condition to the slave by 

switching SCL high before switching SDA high: 
 

SINGLE MASTER WITH MULTIPLE SLAVES 

Because I2C uses addressing, multiple slaves can be controlled from a single master. 

With a 7 bit address, 128 (27) unique address are available. Using 10 bit addresses is uncommon, 

but provides 1,024 (210) unique addresses. To connect multiple slaves to a single master, wire 

them like this, with 4.7K/10K Ohm pull-up resistors connecting the SDA and SCL lines to Vcc: 



109 

 

 
 

MULTIPLE MASTERS WITH MULTIPLE SLAVES 

Multiple masters can be connected to a single slave or multiple slaves. The problem 

with multiple masters in the same system comes when two masters try to send or receive data 

at the same time over the SDA line. To solve this problem, each master needs to detect if the 

SDA line is low or high before transmitting a message. If the SDA line is low, this means that 

another master has control of the bus, and the master should wait to send the message. If the 

SDA line is high, then it’s safe to transmit the message. To connect multiple masters to multiple 

slaves, use the following diagram, with 4.7K Ohm pull-up resistors connecting the SDA and 

SCL lines to Vcc: 

 

 

ADVANTAGES AND DISADVANTAGES OF I2C 

There is a lot to I2C that might make it sound complicated compared to other protocols, but 

there are some good reasons why you may or may not want to use I2C to connect to a particular 

device: 

ADVANTAGES 

• Only uses two wires 

• Supports multiple masters and multiple slaves 

• ACK/NACK bit gives confirmation that each frame is transferred successfully 

• Hardware is less complicated than with UARTs 

• Well known and widely used protocol 



110 

 

DISADVANTAGES 

• Slower data transfer rate than SPI 

• The size of the data frame is limited to 8 bits 

• More complicated hardware needed to implement than SPI 

 

4.8.2 Parallel Protocols 

Examples of Parallel Communication Protocols are ISA, MCA,EISA,VESA,PCI. ISA Bus 

This is the most common type of early expansion bus, which was designed for use in 

the original IBM PC. The IBM PC-XT used an 8-bit bus design. This means that the data 

transfers take place in 8 bit chunks (i.e. one byte at a time) across the bus. The ISA bus ran at a 

clock speed of 4.77 MHz. 

For the 80286-based IBM PC-AT, an improved bus design, which could transfer 16-

bits of data at a time, was announced. The 16-bit version of the ISA bus is sometimes known 

as the AT bus. (AT-Advanced Technology) 

The improved AT bus also provided a total of 24 address lines, which allowed 16MB 

of memory to be addressed. The AT bus was backward compatible with its 8-bit predecessor 

and allowed 8-bit cards to be used in 16-bit expansion slots. 

 

When it first appeared the 8-bit ISA bus ran at a speed of 4.77MHZ – the same speed 

as the processor. It was improved over the years and eventually the AT bus ran at a clock speed 

of 8MHz. 

MCA (Micro Channel Architecture) 

 

This bus was developed by IBM as a replacement for ISA when they designed the 

PS/2 PC which was launched in 1987. 

The bus offered a number of technical improvements over the ISA bus. For instance, 

the MCA runs at a faster speed of 10MHz and can support either 16-bit or 32- bit data. It also 

supports bus mastering - a technology that placed a mini- processor on each expansion card. 

These mini-processors controlled much of the data transfer allowing the CPU to perform other 

tasks. 

One advantage of MCA was that the plug-in cards were software 

configurable i.e. they required minimal intervention by the user when configuring. 

The MCA expansion bus did not support ISA cards and IBM decided to charge other 

manufacturers royalties for use of the technology. This made it unpopular and it is now an 

obsolete technology. 

 



111 

 

EISA (Extended Industry Standard Architecture) 

 

It was developed by a group of manufactures as an alternative to MCA. It was 

designed to use a 32-bit data path and provided 32 address lines giving access to 4GBof 

memory. 

Like the MCA, EISA offered a disk-based setup for the cards, but it still ran at 

8MHz in order for it to be compatible with ISA. 

The EISA expansion slots are twice as deep as an ISA slot. If an ISA card is placed 

in an EISA slot it will use only the top row of connectors, whereas a full EISA card uses 

both rows. It offered bus mastering. 

EISA cards were relatively expensive and were normally found on high-end 

workstations and network servers. 

 

VESA Bus 

 

Also known as the Local bus or the VESA-Local bus. VESA (Video Electronics 

Standards Association) was invented to help standardize PCs video specifications, thus 

solving the problem of proprietary technology where different manufacturers were 

attempting to develop their own buses. 

The VL Bus provides 32-bit data path and can run at 25 or 33MHZ. It ran at the 

same clock frequency as the host CPU. But this became a problem as processor speeds 

increased because, the faster the peripherals are required to run, the more expensive they 

are to manufacture. 

It was difficult to implement the VL-Bus on newer chips such as the 486s and the 

new Pentiums and so eventually the VL-Bus was superseded by PCI. 

VESA slots have extra set of connectors and therefore the cards are larger. 

The VESA design was backward compatible with the older ISA cards. 

 

Peripheral Component Interconnect (PCI) 

 
Peripheral Component Interconnect (PCI) is one of the latest developments in 

bus architecture and is the current standard  for PC expansion cards.  It was developed 

by Intel and launched as the expansion bus for the Pentium processor in 1993. It is a local 

bus like VESA i.e. it connects the CPU, memory and peripherals to wider, faster data 

pathway. 

PCI supports both 32-bit and 64-bit data width; therefore it is compatible with 

486s and Pentiums. The bus data width is equal to the processor, for example, a 32 bit 

processor would have a 32 bit PCI bus, and operates at 33MHz. 



112 

 

 
PCI was used in developing Plug and Play (PnP) and all PCI cards support PnP 

i.e. the user can plug a new card into the computer, power it on and it will “self identify” 

and “self specify” and start working without manual configuration using jumpers. 

Unlike VESA, PCI supports bus mastering that is, the bus has some processing 

capability and therefore the CPU spends less time processing data. Most PCI cards are 

designed for 5v, but there are also 3v and dual-voltage cards, Keying slots are used to 

differentiate 3v and 5v cards and slots to ensure that a 3v card is not slotted into a 5v socket 

and vice versa. 

 

4.8.3 Wireless Protocols 

 
IoT (Internet of Things) has power to make the complete system automatic. There are 

various IOT communication protocols which are used in communication between 

devices in the IoT network. The wireless communication protocol is a standard set of 

rules with reference to which various electronic devices communicate with each other 

wirelessly. 

 
 

Since there are many wireless communication protocols available to use for your product, it 

becomes difficult for the product designers to choose the correct one but once the scope of IoT 

application is decided it would become easier to select the right protocol. Here we are briefly 

explaining some protocols used in IOT with their features and applications. 

Wi-Fi 
 

Wi-Fi (Wireless Fidelity) is the most popular IOT communication protocols for wireless local 

area network (WLAN) that utilizes the IEEE 802.11 standard through 2.4 GHz UHF and 5 GHz 

ISM frequencies. Wi-Fi provides Internet access to devices that are within the range of about 20 - 

40 meters from the source. It has a data rate up to 600 Mbps maximum, depending on channel 

frequency used and the number of antennas. In embedded systems, ESP series controllers from 

Espressif are popular for building IoT based Applications. 

ESP32 and ESP8266 are the most commonly use wi-fi modules for embedded applications. In 

terms of using the Wi-Fi protocol for IOT, there are some pros & cons to be considered. The 

infrastructure or device cost for Wi-Fi is low & deployment is easy but the power consumption is 

high and the Wi-Fi range is quite moderate. So, the Wi-Fi may not be the best choice for all types 

of IOT applications but it can be used for applications like Home Automation. 

There are many development boards available that allow people to build IOT applications using Wi-

Fi. The most popular ones are the Raspberry Pi and Node MCU. These boards allow people to build 

https://iotdesignpro.com/iot-home-automation-projects
https://iotdesignpro.com/raspberry-pi-projects
https://iotdesignpro.com/tags/nodemcu


113 

 

IOT prototypes and also can be used for small real-time applications. Likewise is the Marvell 

Avastar 88W8997 SoC, which follows the Wi-Fi’s IEEE 802.11n standard. The chip has 

applications like wearables, wireless audio & smart home. 

Bluetooth 

 
Bluetooth is a technology used for exchanging data wirelessly over short distances and preferred 

over various IOT network protocols. It uses short-wavelength UHF radio waves of frequency 

ranging from 2.4 to 2.485 GHz in the ISM band. The Bluetooth technology has 3 different versions 

based on its applications: 

 

• Bluetooth: The Bluetooth that is used in devices for communication has many applications in 

IOT/M2M devices nowadays. It is a technology using which two devices can communicate and share 

data wirelessly. It operates at 2.4GHz ISM band and the data is split in packets before sending and 

then is shared using any one of the designated 79 channels operating at 1 MHz of bandwidth. 

• BLE (Bluetooth 4.0, Bluetooth Low Energy): The BLE has a single main difference from 

Bluetooth that it consumes low power. With that, it makes the product of low cost & more long-

lasting than Bluetooth. 

• iBeacon: It is a simplified communication technique used by Apple and is completely based on 

Bluetooth technology. The Bluetooth 4.0 transmits an ID called UUID for each user and makes it 

each to communicate between iPhone users. 

Bluetooth has many applications, such as in telephones, tablets, media players, robotics systems, 

etc. The range of Bluetooth technology is between 50 – 150 meters and the data is being shared at 

a maximum data rate of 1 Mbps. 

After launching the BLE protocol, there have been many new applications developed using 

Bluetooth in the field of IOT. They fall under the category of low-cost consumer products and 

Smart-Building applications. Like Wi-Fi, Bluetooth also has a module Bluetooth HC-05 that can 

be interfaced with development boards like Arduino or Raspberry Pi to build DIY projects. 

When it comes to Real-time applications, Marvell’s Avastar 88W8977 comes with Bluetooth v4.2 

and has features like high speed, mesh networking for IOT. Another product, M5600 is a wireless 

pressure transducer with a Bluetooth v4.0 embedded in it. 

 
Zigbee 

ZigBee is another IOT wireless protocols has features similar to the Bluetooth technology. But it 

follows the IEEE 802.15.4 standard and is a high-level communication protocol. It has some 

advantages similar to Bluetooth i.e. low-power consumption, robustness, high security, and high 

scalability. 

Zigbee offers a range of about 10 – 100 meters maximum and data rate to transfer data between 

https://iotdesignpro.com/iot-home-automation-projects


114 

 

communicated devices is around 250 Kbps. It has a large number of applications in technologies 

like M2M & IOT. 

Having limitations in regards to data rate, range, and power consumption, Zigbee is only 

appropriate for Small-Scale Wireless applications. Though having some limitations, it provides a 

128-bit AES encryption and is giving a big hand in making secure communication for Home 

automation   &   small   Industrial   applications.   Zigbee   too   has   its   DIY    module named 

XBee & XBee Pro which can be interfaced with Arduino or Raspberry Pi boards to make simple 

projects or application prototypes. 

The company Develco has made products using Zigbee technologies like Sensors, gateways, meter 

interfaces, smart plugs, smart relays, etc which all work on the Zigbee wireless Mesh network, 

consuming low power and free from external interferences. Another company, Datanet has Zigbee 

based products which are used in real-time applications already, like the DNL910 & DNL920. 

RFID 

 
Radio-frequency identification (RFID) is a technology that uses electromagnetic fields to identify 

objects or tags which contains some stored information. The range of RFID variesfrom about 10cm 

to 200m maximum and such a long difference makes the two range have names like short-range 

distance and long-range distance. Since the range has a huge difference, the frequency at which the 

RFID operates has a huge difference too i.e. it starts from KHz and ranges till GHz or can be said as 

frequency ranges from Low frequency (LF) to Microwave depending upon the application and distance 

of communication. 

RFID has RC522 Arduino & Raspberry Pi compatible module that can be used to build an IOT 

based RFID application or application prototypes like attendance system. 

 
Cellular 

The cellular network has been in use since the last 2 decades and comprises of 

GSM/GPRS/EDGE(2G)/UMTS or HSPA(3G)/LTE(4G) communication protocols. This protocol 

is generally used for long-distance communications. The data can be sent of large size and with 

high speeds compared to other technologies. 

 
The operating frequencies range from 900 – 2100 MHz with a distance coverage of 35km to 200km 

and the data rates i.e. the speed of transferring data is from 35 Kbps to 10 Mbps. A company 

Quectel has cellular IOT products like EC21, EC23, EG91 and many more LTE standard products 

working on 4G. UMTS/HSPDA UC15, UC20, UC15 Mini & UC20 Mini are the 3G based IOT 

module launched by the same company. 

  

https://iotdesignpro.com/projects/arduino-rfid-based-attendance-system


115 

 

 

4.9 Digital camera Example: 

A digital camera is an example of sophisticated embedded system. It consists of a lot of 

components including the DSP processors. The fig(a) shows one possible block diagram of a 

digital camera. 

Digital camera includes various types of memories like DRAM, memory card, flash memory 

with controller etc. 

The CPU is the main processor is also connected with the various other processors. The host 

processor just controls the various operations and the complicated operations are performed by 

these task processors. 

 
 

 

• The JPEG co-processor is mainly meant to compress and decompose image into JPEG format. 

 

● The camera DSP processes the images taken by CCD camera after it is converted to digital 

form. A graphics processor is also connected to do graphics processing for displaying the 

images and videos from the memory either on the LCD panel through the LCD controller 

interface or to the video out after video encoding. 

● The IrDA interface is provided for remote controlling of the camera through the infrared 

remote. An Ethernet interface is given for Ethernet connection. There are other interfaces like 

RS232 and Bluetooth for advance communication support. 

 

 

 

 



116 

 

Part A 

1.What is meant by writing skills and Storage permanence of memory? 
2.What type of memory technology is generally used to store program 
variables in an embedded system? 

3.Interpret about Composing memory 
4.Compare serial and parallel communication interface 

5.List out the examples of Wireless protocol? 

6.Identify the functions of DMA 

7.List the types of memory  

8.How does a digital camera use an embedded system? 

 

Part B 

1.Explain in detail about operations of DMA 
2.Examine in detail about Microprocessor interfacing I/O addressing 
3.Explain in detail about bus arbitration mechanism in embedded 

system 

4.Discuss about serial and parallel protocols used in embedded 

system 

 

TEXT/ REFEENCE BOOKS 

 

1.David E.Simon, “An Embedded Software Primer”, Pearson Education,2001 

2. Frank Vahid and Tony Gwargie, “ Embedded System Design”, John Wiley & Sons,2002 

3. Steve Heath, “Embedded System Design”, Elsevier, Second Edition,2004. 

 

  



117 

 

 

                                        
 

 

SCHOOL OF ELECTRICAL AND ELECTRONICS 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    UNIT- 5 PROCESS MODELS AND HARDWARE SOFTWARE CO-DESIGN 



118 

 

UNIT 5  PROCESS MODELS AND HARDWARE SOFTWARE CO-DESIGN 

 

Modes of operation Finite state machine HCFSL and state charts language state machine models 

Concurrent process model Concurrent process Communication among process Synchronization 

among process Implementation – Data Flow mode 

 

5.1Mode of Operation 

 We implement a system’s processing behavior with processors. But to accomplish this, we must 

have first described that processing behavior. One method we’ve discussed for describing 

processing behavior uses assembly language. Another, more powerful method uses a high-level 

programming language like C. Both these methods use what is known as a sequential program 

computation model, in which a set of instructions executes sequentially. A high-level programming 

language provides more advanced constructs for sequencing among the instructions than does an 

assembly language, and the instructions are more complex, but nevertheless, the sequential execution 

model (one statement at a time) is the same. 

 
 However, embedded system processing behavior is becoming very complex, requiring more 

advanced computation models to describe that behavior. The increasing complexity results from 

increasing IC capacity: the more we can put on an IC, the more functionality we want to put into 

our embedded system. Thus, while embedded systems previously encompassed applications like 

washing machines and small games requiring perhaps hundreds of lines of code, today they also 

extend to fairly sophisticated applications like television set- top boxes and digital cameras 

requiring perhaps hundreds of thousands of lines. 

 
Trying to describe the behavior of such systems can be extremely difficult. The desired behavior is 

often not even fully understood initially. Therefore, designers must spend much time and effort 

simply understanding and describing the desired behavior ofa system, and some studies have found 

that most system bugs come from mistakes made describing the desired behavior rather than from 

mistakes in implementing that behavior. The common method today of using an English (or some 

other natural language) description of desired behavior provides a reasonable first step, but is not 

nearly sufficient, because English is not precise. Trying to describe a system precisely in English 

can be an arduous and often futile endeavor -- just look at any legal document forany example of 

attempting to be precise in a natural language. 

 
A computation model assists the designer to understand and describe the behavior by providing a 

means to compose the behavior from simpler objects. A computation model provides a set of 

objects, rules for composing those objects, and execution semantics of the composed objects. For 

example, the sequential program model providesa set of statements, 



119 

 

rules for putting statements one after another, and semantics stating how the statements are executed 

one at a time. Unfortunately, this model is often not enough. Several other models are therefore 

also used to describe embedded system behavior. These include the communicating process model, 

which supports description ofmultiple sequential programs running concurrently. Another model is 

the state machine model, used commonly for control- dominated systems. A control-dominated 

system is one whose behavior consists mostly of monitoring control inputs and reacting by setting 

control outputs. Yet another model is the dataflow model, used for data-dominated systems. A data-

dominated system’s behavior consists mostly of transforming streams of input data into streams of 

output data, such as a system for filtering noise out of an audio signal as part of a cell phone. An 

extremely complex system may be best described using an object-oriented model, which provides an 

elegant means for breaking the complex system into simpler, well-defined objects. 

 
A model is an abstract notion, and therefore we use languages to capture the model in a concrete form. 

For example, the sequential program model can be captured in a variety of languages, such as C, 

C++, Pascal, Java, Basic, Ada, VHDL, and Verilog. Furthermore, a single language can capture a 

variety of models. Languages typically are textual, but may also be graphical. For example, 

graphical languages have been proposed for sequential programming (though they have not been 

widely adopted). 

5.1 State 

machine model 

In a state machine model, we describe system behavior as a set of possible states; the system can 

only be in one of these states at a given time. We also describe the possible transitions from one 

state to another depending on input values. Finally, we describe the actions that occur when in a 

state or when transitioning between states. 

 
For example, Figure 5.1 shows a state machine description of the Unit Control part of our elevator 

example. The initial state, Idle, sets upand downto 0 and open to 1. The state machine stays in 

state Idle until the requested floor differs from the current floor. If the requested floor is greater, 

then the machine transitions to state Going Up, which sets up to 1, whereas if the requested floor is 

less, then the machine transitions to state Going Down, which sets down to 1. The machine stays in 

either state until the current floor equals the requested floor, after which the machine transitions 

to state Door Open, which sets open to 1. We assume the system includes a timer, so we startthe 

timer while transitioning to Door Open,. 



120 

 

We stay in this state until the timer says 10 seconds have passed, after which we transition 

back to the Idle state. 

5.1.1 Finite-state machines: FSM 

 We have described state machines somewhat informally, but now provide a more formal 

definition. We start by defining the well-known finite-state machine computation model, or 

FSM, and then we’ll define extensions to that model to obtain a more useful model for 

embedded system design. An FSM is a 6-tuple, <S, I, O, F, H, s0>, where: 

 
S is a set of states {s0, s1, … , sl}, I is a 

set of inputs {i0, i1, …, im}, 

O is a set of outputs {o0, o1, …, on}, 

F is a next-state function (i.e., transitions), mapping states and inputs to  states 

(S 

XI S), 

H is an output function, mapping current states to outputs (SO), and s0 is an 

initial state. 

 
The above is a Moore-type FSM above, which associates outputs with states. A second type of 

FSM is a Mealy-type FSM, which associates outputs with transitions, i.e., H maps S x I O.   

You might remember that Moore outputs are associated with states by noting that the name 

Moore has two o's in it, which look like states in a state diagram. Many tools that support FSM's 

support combinations of the two types, meaning we can associate outputs with states, transitions, 

or both. 

We can use some shorthand notations to simplify FSM descriptions. First, there may be many 

system outputs, so rather than explicitly assigning every output in every state, we can say that 

any outputs not assigned in a state are implicitly assigned 0. Second, we often use an FSM to 

describe a single-purpose processor (i.e., hardware). Most hardware is synchronous, meaning 

that register updates are synchronized to clock pulses, e.g., registers are only updated on the 

rising (or falling) edge of a clock. Such an FSM would have every transition condition AND’ed 

with the clock edge (e.g., clock’rising and x and y). To avoid having to add this clock edge to 

every transition condition, we can simply say that the FSM is synchronous, meaning that every 

transition condition is implicitly AND’ed with the clock edge. 



121 

 

 

5.1.2 Finite-state machines with data paths: FSMD 

When using an FSM for embedded system design, the inputs and outputs represent 

Boolean data types, and the functions therefore represent Boolean functions with Boolean 

operations. This model is sufficient for purely control systems that do not input or output data. 

However, when we must deal with data, two new features would be helpful: more complex 

data types (such as integers or floating point numbers), and variables to store data. Gajski 

refers to an FSM model extended to support more complex data types and variables as an 

FSM with data path, or FSMD. Most other authors refer to this model as anextended FSM, 

but there are many kinds of extensions and therefore we prefer the more precise name of 

FSMD. One possible FSMD model definition is as follows: 

 
<S, I, O, V, F, H, s0> where: 

 
 

S is a set of states {s0, s1, … , sl},I is a set of inputs {i0, i1, …, im}, 

O is a set of outputs {o0, o1, …, on}, V is a set of variables {v0, v1, …, vn},  

F is a next-state function, mapping states and inputs and variables to states (S XIX V S), 

H is an action function, mapping current states to outputs and variables (S O 

îþ V), and 

s0 is an initial state. 

 
 

In an FSMD, the inputs, outputs and variables may represent various data types (perhaps 

as complex as the data types allowed in a typical programming language), and the functions 

F and H therefore may include arithmetic operations, such as addition, rather than just Boolean 

operations as in an FSM. We now call H an action function rather than an output function, 

since it describes not just outputs, but also variable updates. Note that the above definition is 

for a Moore-type FSMD, and it could easily be modified for a Mealy type or a combination 

of the two types. During execution of the model, the complete system state consists not only 

of the current state si, but also the values of all variables. Our earlier state machine description 

of Unit Control was an FSMD, since it had inputs whose data types were integers, and had 

arithmetic operations (comparisons)in its transition conditions. 



122 

 

5.1.3 Describing a system as a state machine 

Describing a system's behavior as a state machine (in particular, as an FSMD) consists of several 

steps: 

 
1. List all possible states, giving each a descriptive name. 

2. Declare all variables. 

3. For each state, list the possible transitions, with associated conditions, 

to other states. 

4. For each state and/or transition, list the associated actions 

5. For each state, ensure that exiting transition conditions are exclusive (no 

two conditions could be true simultaneously) and complete (one of the 

conditions is true at any time). 

 

If the transitions leaving a state are not exclusive, then we have a non- deterministic state machine. 

When the machine executes and reaches a state with more than one transition that could be 

taken, then one of those transitions is taken, but we don’t know which one that would be. The 

non-determinism prevents having to over-specify behavior in some cases, and may result in 

don’t-cares that may reduce hardware size, but we won’tfocus on non-deterministic state 

machines in this book. 

If the transitions leaving a state are not complete, then that usually means that we stay in that state until 

one of the conditions becomes true. This way of reducing the number of explicit transitions 

should probably be avoided when first learning to use state machines. 

 

5.1.4 Comparing the state machine and sequential program models 

 

Many would agree that the state machine model excels over the sequential program model for 

describing a control-based system like the elevator controller. The state machine model is 

designed such that it encourages a designer to think of all possible states of the system, and to 

think of all possible transitions among states based on possible input conditions. The sequential 

program model, in contrast, is designed to transform data through a series of instructions that 

may be iterated and conditionally executed. Each encourages a different way of thinking of a 

system’s behavior. 

A common point of confusion is the distinction between state machine and sequential program models 

versus the distinction between graphical and textual languages. In particular, 



123 

 

a state machine description excels in many cases, not because of its graphical representation, but rather 

because it provides a more natural means of computing for those cases; it can be captured 

textually and still provide the same advantage. For example, while in Figure 8.2 we described 

the elevator’s Unit Controlas a state machine captured in a graphical state-machine language, 

called a state diagram, we could have instead captured the state machine in a textual state-

machine language. One textual language would be a state table, in which we list each state as 

an entry in a table. Each state’s row would list the state’s actions. Each row would also list all 

possible input conditions, and the next state for each such condition. Conversely, while in 

Figure 5.1 we described the elevator’s Unit Control as a sequential program captured using a 

textual sequential programming language (in this case C), we could have instead captured the 

sequential program using a graphical sequential programming language, such as a flowchart. 

 
 

Figure 5.1: Capturing the elevator’s Unit Control state machine in a 

sequentialprogramming language (in this case C). 

#define IDLE 

#define GOINGUP 

#define GOINGDN 

#define DOOROPEN 

void UnitControl() 
 

int state = IDLE; 

while (1) { 

switch (state) { 

 

 

 

 

IDLE: up=0; down=0; open=1; timer_start=0; 

if (req==floor) {state = IDLE;} 

if   (req > floor)     {state = GOINGUP;} 

if (req < floor) {state = GOINGDN;} 

break; 

GOINGUP: up=1; down=0; open=0; timer_start=0; 

if (req > floor) {state = GOINGUP;} 

if (!(req>floor)) {state = DOOROPEN;} 

break; 

GOINGDN: up=1; down=0; open=0; timer_start=0; 
if (req > floor) {state = GOINGDN;} 

if (!(req>floor)) {state = DOOROPEN;} 

break; 

DOOROPEN: up=0; down=0; open=1; timer_start=1; 

if (timer < 10) {state = DOOROPEN;} 

if (!(timer<10)){state = IDLE;} 

break; 
 

 

 



124 

 

5.1.5 Capturing a state machine model in a sequential programming language 

As elegant as the state machine model is for capturing control-dominated systems, the fact 

remains that the most popular embedded system development tools use sequential 

programming languages like C, C++, Java, Ada, VHDL or Verilog. These tools are typically 

complex and expensive, supporting tasks like compilation, synthesis, simulation, interactive 

debugging, and/or in-circuit emulation. Unfortunately, sequential programming languages do 

not directly support the capture of state machines, i.e., they don’t possess specific constructs 

corresponding to states or transitions. Fortunately, we can still describe our system using a 

state machine model while capturing the model in a sequential program language, by using one 

of two approaches. 

 
In a front-end tool approach, we install an additional tool that supports a state machine 

language. These tools typically define graphical and perhaps textual state machine languages, 

and include nice graphic interfaces for drawing and displaying states as circles and transitions 

as directed arcs. They may support graphical simulation of the state machine, highlighting the 

current state and active transition. Such tools automatically generate code in a sequential 

program language (e.g., C code) with the same functionality as the state machine. This 

sequential program code can then be input to our main development tool. In many cases, the 

front-end tool is designed to interface directly with our main development tool, so that we can 

control and observe simulations occurring in the development tool directly from the front-end 

tool. The drawback of this approach is that we must support yet another tool, which includes 

additional licensing costs, version upgrades, training, integration problems with our 

development environment, and so on. 

In contrast, we can use a language subset approach. In this approach, we directly capture 

our state machine model in a sequential program language, by following a strict set of rules for 

capturing each state machine construct in an equivalent set of sequential program constructs. 

This approach is by far the most common approach for capturing state machines, both in 

software languages like C as well as hardware languages like VHDL and Verilog. We now 

describe how to capture a state machine model in a sequential program language. 



125 

 

 

 

We start by capturing our Unit Control state machine in the sequential 

programming language C, illustrated in Figure 8.3. We enumerate all states, in this case using 

the #define C construct. We capture the state machine as a subroutine, in which we declare a 

state variable initialized to the initial state. We then create an infinite loop, containing a single 

switch statement that branches to the case corresponding to the value of the state variable. Each 

state’s case starts with the actions in that state, and then the transitions from that state. Each 

transition is captured as an if statement that checks if the transition’s condition is true and then 

sets the next state. Figure 5.2 shows a general template for capturing a state machine in C. 

Figure 5.2: General template for capturing a state machine in a sequential programming 

language. 

#define S0 
#define S1 
... 

#define SN 

void StateMachine() 

 

 

 

 

 

int state = S0; // or whatever is the initial state. 

while (1) { 

switch (state) { 

S0: 
 

// Insert transitions Ti leaving S0: 

if (T0’s condition is true ) {state = T0’s next state; // insert T0’s actions here.} 

if (T1’s condition is true ) {state = T1’s next state; // insert T1’s actions here. } 
... 
if (Tm’s condition is true ) {state = Tm’s next state; // insert Tm’s actions here. } 
break; 

S1: 

 

// Insert transitions Ti leaving S1 

break; 

... 

SN: 

// Insert SN’s actions here 

// Insert transitions Ti leaving SN 

break; 
 

 

 



126 

 

 
 

5.1.6 Hiererarchical/Concurrent state     machines (HCFSM)and State charts 

Harel proposed extensions to the state machine model to support hierarchy and 

concurrency, and developed Statecharts, a graphical state machine language designed to 

capture that model. We refer to the model as a hierarchical/concurrent FSM, or HCFSM. 

 
The hierarchy extension allows us to decompose a state into another state machine, or 

conversely stated, to group several states into a new hierarchical state. For example, consider 

the state machine in Figure 5.3(a), having three states A1 (the initial state), A2, and B. 

Whenever we are in either A1 or A2 and event z occurs, we transition to state B. We can 

simplify this state machine by grouping A1 and A2 into a hierarchical state A, as shown in 

Figure 5.3(b). State A is the initial state, which in turn has an initial state A1. We draw the 

transition to B on event z as originating from state A, not A1 or A2. The meaning is that 

regardless of whether we are in A1 or A2, event z causes a transition to state B. 

 
As another hierarchy example, consider our earlier elevator example, and suppose that 

we want to add a control input fire, along with new behavior that immediately moves the 

elevator down to the first floor and opens the door when fire is true. As shown in Figure 5.4(a), 

we can capture this behavior by adding a transition from every state originally in Unit Control 

to a new state called Fire Going Dn, which moves the elevator to the first floor, followed by a 

state Fire Dr Open, which holds the door open on the first floor. When fire becomes false, we 

Figure 5.3: Adding hierarchy and concurrency to the state machine model: (a) three-state 

example without hierarchy, (b) same example with hierarchy, (c) concurrency. 

A1  

 

A1  

  
 

 
    

A2 z  A2 

(a) (b) 

 

 

C1 

 

D1 

    

C2 D2 

(c) 



127 

 

go to the Idle state. While this new state machine captures the desired behavior, it is becoming 

more complex due to many more transitions, and harder to comprehend due to more states. We 

can use hierarchy to reduce the number of transitions and enhance understandability. As shown 

inFigure 5.4(b), we can group the original state machine into a hierarchical state called Normal 

Mode, and group the fire-related states into a state called Fire Mode. This grouping reduces the 

number of transitions, since instead of four transitions from each original state to the fire- 

related states, we need only one transition, from Normal Mode to Fire Mode. This grouping 

also enhances understandability, since it clearly represents two main operating modes, one 

normal and one in case of fire. 

 

 
The concurrency extension allows us to  use hierarchy to  decompose a  state into two 

Figure 5.4: The elevator’s UnitControl with new behavior for a new input fire: (a) without 

hierarchy, (b) with hierarchy. 

req>floor UnitControl 

u,d,o = 1,0,0 GoingUp 

req>floor 
!(req>floor) 

u,d,o = 0,0,1 
Idle u,d,o = 0,0,1 

req==floor 
req<floor 

u,d,o = 0,1,0 

timout(10) 

 

GoingDn fire 

DoorOpen 

fire 

FireGoingDn 

req<floor floor>1 

!fire 

u,d,o = 0,1,0 

floor==1 u,d,o = 0,0,1 

FireDrOpen 

fire 

(a) 

UnitControl 

req>floor 
NormalMode 

u,d,o = 1,0,0 GoingUp 

req>floor 
!(req>floor) 

u,d,o = 0,0,1 
Idle DoorOpen u,d,o = 0,0,1 

req==floor 
req<floor 

timeout(10) 

!(req>floor) 
u,d,o = 0,1,0 GoingDn 

req<floor 

fire FireMode 

!fire 
FireGoingDn u,d,o = 0,1,0 

floor>1 
floor==1 u,d,o = 0,0,1 

FireDrOpen 

fire 

(b) 



128 

 

concurrent states, or conversely stated, to group two concurrent states into a new hierarchical 

state. For example, Figure 5.3 (c), shows a state B decomposed into two concurrent states C 

and 

D. C happens to be decomposed into another state machine, as does D. Figure 5.5 shows the 

entire Elevator Controller behavior captured as a HCFSM with two concurrent states. 

Therefore, we see that there are two methods for using hierarchy to decompose a state 

into substates. OR-decomposition decomposes a state into sequential states, in which only 

one state is active at a time (either the first state OR the second state OR the third state, etc.). 

AND- decomposition decomposes a state into concurrent states, all of which are active at a time 

(the first state AND the second state AND the third state, etc.). 

 
The State charts language includes numerous additional constructs to improve state 

machine capture. A timeout is a transition with a time limit as its condition. 

 
 

 
The transition is automatically taken if the transition source state is active for an amount 

of time equal to the limit. Note that this would have simplified the Unit Control state machine; 

rather than starting and checking an external timer, we could simply have created a transition 

from Door Open to Idle with the condition time out (10). History is a mechanism for 

remembering the last substate that an OR-decomposed state A was in before transitioning to 

another state B. Upon re-entering state A, we can start with the remembered substate rather 

than A’s initial state. Thus, the transition leaving A is treated much like an interrupt and B as 

an interrupt service routine. 

5.2 Concurrent process model 

 
In a concurrent process model, we describe system behavior as a set of processes, which 

communicate with one another. A process refers to a repeating sequential program. While 

many embedded systems are most easily thought of as one process, other systems are more 

easily thought of as having multiple processes running concurrently. 

Figure 5.5: Using concurrency in an HCFSM to describe both processes of the 

ElevatorController. 

ElevatorController 

UnitControl RequestResolver 

NormalMode 

... 

!fire fire 

FireMode 



129 

 

For example, consider the following made-up system. The system allows a user to 

provide two numbers X and Y. We then want to write "Hello World" to a display every X 

seconds, and "How are you" to the display every Y seconds. A very simple way to 

 

 
describe this system using concurrent processes is shown in Figure 5.6(a). After reading in X 

and Y, we call two subroutines concurrently. One subroutine prints "Hello World" every X 

seconds, the other prints "How are you" every Y seconds. (Note that you can’t call two 

subroutines concurrently in a pure sequential program model, such as the model supported by 

the basic version of the C language). As shown in Figure 5.6(b), these two subroutines execute 

simultaneously. Sample output for X=1 and Y=2 is shown in Figure 5.7(c). 

To see why concurrent processes were helpful, try describing the same system using a 

sequential program model (i.e., one process). You’ll find yourself exerting effort figuring out 

how to schedule the two subroutines into one sequential program. Since this example is a trivial 

one, this extra effort is not a serious problem, but for a complex system, this extra effort can 

be significant and can detract from the time you have to focus on the desired system behavior. 

Recall that we described our elevator controller using two "blocks." Each block is really 

a process. The controller was simply easier to comprehend if we thought of the two blocks 

independently. 

 
5.3.1 Concurrent Process 

Two concurrent processes communicate using one of two techniques: message 

passing, or shared data. In the shared data technique, processes read and write variables that 

Figure 5.6: A simple concurrent process example: (a) pseudo-code, (b) subroutine 

execution over time, (c) sample input and output. 

x = ReadX() 
y = ReadY() 
Call concurrently: 

PrintHelloWorld(x) and 
PrintHowAreYou(y) 

PrintHelloWorld 

ReadX ReadY 

PrintHelloWorld(x) 

while (1) { 

print "Hello world." 
delay(x); 

 

 

PrintHowAreYou(x) 

while (1) { 

print "How are you?" 

delay(y); 
 

(a) 

PrintHowAreYou 

  

time 

(b) 

Enter X: 1 

Enter Y: 2 

Hello world. (Time = 1 s) 

Hello world. (Time = 2 s) How 

are you? (Time = 2 s) Hello 

world. (Time = 3 s) How are 

you? (Time = 4 s) Hello world. 

(Time = 4 s) 

... 

(c) 



130 

 

both processes can access, called global variables. For example, in the elevator example 

above, the Request Resolver process writes to a variable req, which is also read by the Unit 

Control process. 

 
In message passing, communication occurs using send and receive constructs that are 

part of the computation model. Specifically, a process P explicitly sends data to another 

process Q, which must explicitly receive the data. In the elevator example, Request Resolver 

would include a statement: Send (Unit Control, rr_req). Likewise, Unit Control would include 

statements of the form: Receive (Request Resolver, uc_req). rr_req and uc_req are variables 

local to each process. 

Message passing may be blocking or non-blocking. In blocking message passing, a 

sending process must wait until the receiving process receives the data before executing the 

statement following the send. Thus, the processes synchronize at their send/receive points. In 

fact, a designer may use a send/receive with no actual message being passed, in order to 

achieve the synchronization. In non-blocking message passing, the sending process need not 

wait for the receive to occur before executing more statements. Therefore, a queue is implied 

in which the sent data must be stored before being received by the receiving process. 

 
5.3.2 Communication among process 

• Processes need to communicate data and signals to solve their computation problem 

– Processes that don’t communicate are just independent programs solving 

separate problems 

• Basic example: producer/consumer 

– Process A produces data items, Process B consumes them 

E.g., A decodes video packets, B display decoded packets on a screen 

5.3.3 Synchronization among process 

• Sometimes concurrently running processes must synchronize their execution 

– When a process must wait for: 

• another process to compute some value 

• reach a known point in their execution 

• signal some condition 

• Recall producer-consumer problem 

– Process A must wait if buffer is full 

– Process B must wait if buffer is empty 

– This is called busy-waiting 

• Process executing loops instead of being blocked 

• CPU time wasted 



131 

 

• More efficient methods 

– Join operation, and blocking send and receive discussed earlier 

• Both block the process so it doesn’t waste CPU time 

– Condition variables and monitors 

 
5.3.4 Implementing concurrent processes 

 

The most straightforward method for implementing concurrent processes on processors is to 

implement each process on its own processor. This method is common when each process is 

to be implemented using a single-purpose processor. 

However, we often decide that several processes should be implemented using general- 

purpose processors. While we could conceptually use one general-purpose processor per 

process, this would likely be very expensive and in most cases is not necessary. It is not 

necessary because the processes likely do not require 100% of the processor’s processing 

time; instead, many processes may share a single processor’s time and still execute at the 

necessary rates. 

One method for sharing a processor among multiple processes is to manually rewrite the 

processes as a single sequential program. For example, consider our Hello World program 

from earlier. We could rewrite the concurrent process model as a sequential one by replacing 

the concurrent running of the Print HelloWorld and Print How Are You routines  by the 

following: 

I = 1; 
T = 0; 
while (1) { 

Delay(I); T = T + I 
if X modulo T is 0 then call PrintHelloWorldif Y modulo T is 0 then call 

PrintHowAreYou 

} 

 

We would also modify each routine to have no parameter, no loop and no delay; each would 

merely print its message. If we wanted to reduce iterations, we could set I to the greatest 

common divisor of X and Y rather than to 1. 

Manually rewriting a model may be practical for simple examples, but extremely difficult for 

more complex examples. While some automated techniques have evolved to assist with such 

rewriting of concurrent processes into a sequential program, these techniques are not very 

commonly used. 

Instead, a second, far more common method for sharing a processor among multiple processes 

is to rely on a multi-tasking operating system. An operating system is a low- level program that 

runs on a processor, responsible for scheduling processes, allocating storage, and interfacing 



132 

 

to peripherals, among other things. A real-time operating system (RTOS) is an operating 

system that allows one to specify constraints on the rate of processes, and that guarantees 

that these rate constraints will be met. In such an approach, we would describe our concurrent 

processes using either a language with processes built- in (such as Ada or Java), or a 

sequential program language (like C or C++) using a library of routines that extends the 

language to support concurrent processes. POSIX threads were developed for the latter 

purpose. 

A third method for sharing a processor among multiple processes is to convert the processes 

to a sequential program that includes a process scheduler right in the code. This method results 

in less overhead since it does not rely on an operating system, but also yields code that may be 

harder to maintain. 

 

5.5 Dataflow Model 

 
In a dataflow model, we describe system behavior as a set of nodes representing 

transformations, and a set of directed edges representing the flow of data from one node to 

another. Each node consumes data from its input edges, performs its transformation, and 

produces data on its output edge. All nodes may execute concurrently. 

 

For example, Figure 5.7(a) shows a dataflow model of the computation Z = (A+B)*(C- D). 

Figure 5.7(b) shows another dataflow model having more complex node transformations. 

Each edge may or not have data. Data present on an edge is called a token. When all input 

edges to a node have at least on token, the node may fire. When a node fires, it consumes one 

token from each input edge, executes its data transformation on the consumed token, and 

generates a token on its output edge. Note that multiple nodes may fire simultaneously, 

depending only on the presence of tokens. 

 
Several commercial tools support graphical languages for the capture of dataflow models. 

These tools can automatically translate the model to a concurrent process model for 

implementation on a microprocessor. We can translate a dataflow model to a concurrent 

process model by converting each node to a process, and each edge to a channel. This 

concurrent process model can be implemented either by using a real-time operating system, 

or by mapping the concurrent processes to a sequential program. 

 
Lee observed that in many digital signal-processing systems, data flows in to and out of the 

system at a fixed rate, and that a node may consume and produce many tokens per firing. He 

therefore created a variation of dataflow called synchronous dataflow. In this model, we 



133 

 

annotate each input and output edge of a node with the number of tokens that node consumes 

and produces, respectively, during one firing. The advantage of this model is that, rather than 

translating to a concurrent process model for implementation, we can instead statically 

schedule the nodes to produce a sequential program model. This model can be captured in a 

sequential program language like C, thus running without a real-time operating system and 

hence executing more efficiently. Much effort has gone into developing algorithms for 

scheduling the nodes into "single-appearance" schedules, in which the C code only has one 

statement that calls each node’s associated procedure (though this call may be in a loop). Such 

a schedule allows for procedure in lining, which further improves performance by reducing 

the overhead of procedure calls, without resulting in an explosion of code size that would have 

occurred had there been many statements that called each node’s procedure. 

 

 

5.6 Design Technology 

• Design technologies developed to improve productivity 

• Focus on technologies advancing hardware/software unified view 

• Automation 

• Program replaces manual design 

• Synthesis 

• Reuse 

• Predesigned components 

• Cores 

• General-purpose and single-purpose processors on single IC 

– Verification 

• Ensuring correctness/completeness of each design step 

• Hardware/software co-simulation 

5.7 Automation: synthesis 

• Early design mostly hardware 

Figure 5.7: Simple dataflow models: (a) nodes representing arithmetic transformations, 

(b) nodes representing more complex transformations, (c) synchronous dataflow. 

 B   C   B   C   

mA 

modulate 

B C 

 

 

mD 

  

t1 t2 

modulate 

e 
convolve convolve 

t1 t2 

 transform 

 

(a) 

 

(b) 

        
tt1 tt2 
transform 

tZ 

 

(b) 



134 

 

• Software complexity increased with advent of general-purpose processor 

• Different techniques for software design  and hardware design 

– Caused division of the two fields 

• Design tools evolve for higher levels of abstraction 

– Different rate in each field 

• Hardware/software design fields rejoining 

– Both can start from behavioral description in sequential program model 

– 30 years longer for hardware design to reach this step in the ladder 

• Many more design dimensions 

• Optimization critical 

Hardware/software parallel evolution 

• Software design evolution 

– Machine instructions 

– Assemblers 

• convert assembly programs into machine instructions 

– Compilers 

• translate sequential programs into assembly 

• Hardware design evolution 

– Interconnected logic gates 

– Logic synthesis 

• converts logic equations or FSMs into gates 

– Register-transfer (RT) synthesis 

• converts FSMDs into FSMs, logic equations, predesigned RT 

components (registers, adders, etc.) 

– Behavioral synthesis 

• converts sequential programs into FSMDs 

5.8 Hardware/software co-simulation 

• Variety of simulation approaches exist 

– From very detailed 

• E.g., gate-level model 

– To very abstract 

• E.g., instruction-level model 

• Simulation tools evolved separately for hardware/software 

– Recall separate design evolution 

– Software (GPP) 

• Typically with instruction-set simulator (ISS) 



135 

 

– Hardware (SPP) 

• Typically with models in HDL environment 

• Integration of GPP/SPP on single IC creating need for merging simulation tools 

Integrating GPP/SPP simulations 

 
 

• Simple/naïve way 

– HDL model of microprocessor 

• Runs system software 

• Much slower than ISS 

• Less observable/controllable than ISS 

– HDL models of SPPs 

– Integrate all models 

Hardware-software co-simulator 

– ISS for microprocessor 

– HDL model for SPPs 

– Create communication between simulators 

– Simulators run separately except when transferring data 

– Faster 

– Though, frequent communication between ISS and HDL model slows it down 

 
 

Advantages/disadvantages of soft/firm cores 

 
 

• Soft cores 

– Can be synthesized to nearly any technology 

– Can optimize for particular use 

• E.g., delete unused portion of core 

– Lower power, smaller designs 

– Requires more design effort 

– May not work in technology not tested for 

– Not as optimized as hard core for same processor 

• Firm cores 

– Compromise between hard and soft cores 

• Some retargetability 

• Limited optimization 

• Better predictability/ease of use 



136 

 

New challenges to processor providers 

• Cores have dramatically changed business model 

– Pricing models 

• Past 

– Vendors sold product as IC to designers 

– Designers must buy any additional copies 

• Could not (economically) copy from original 

• Today 

– Vendors can sell as IP 

– Designers can make as many copies as needed 

• Vendor can use different pricing models 

– Royalty-based model 

• Similar to old IC model 

• Designer pays for each additional model 

– Fixed price model 

• One price for IP and as many copies as needed 

– Many other models used 

5.9 IP core (intellectual property core) 

 

An IP (intellectual property) core is a block of logic or data that is used in making a field 

programmable gate array ( FPGA ) or application-specific integrated circuit ( ASIC ) for a 

product. As essential elements of design reuse , IP cores are part of the growing electronic 

design automation ( EDA ) industry trend towards repeated use of previously designed 

components. Ideally, an IP core should be entirely portable - that is, able to easily be inserted 

into any vendor technology or design methodology. Universal Asynchronous 

Receiver/Transmitter ( UART s), central processing units ( CPU s), Ethernet controllers, and 

PCI interfaces are all examples of IP cores. 

 
IP cores fall into one of three categories: hard cores , firm cores , or soft cores . Hard cores are 

physical manifestations of the IP design. These are best for plug-and-play applications, and are 

less portable and flexible than the other two types of cores. Like the hard cores, firm (sometimes 

called semi-hard ) cores also carry placement data but are configurable to various applications. 

The most flexible of the three, soft cores exist either as a netlist (a list of the logic gate s and 

https://whatis.techtarget.com/definition/ASIC-application-specific-integrated-circuit
https://whatis.techtarget.com/definition/design-reuse
https://whatis.techtarget.com/definition/design-reuse
https://searchstorage.techtarget.com/definition/portability
https://whatis.techtarget.com/definition/UART-Universal-Asynchronous-Receiver-Transmitter
https://whatis.techtarget.com/definition/processor
https://www.techtarget.com/searchnetworking/definition/Ethernet
https://whatis.techtarget.com/definition/logic-gate-AND-OR-XOR-NOT-NAND-NOR-and-XNOR


137 

 

associated interconnections making up an integrated circuit ) or hardware description language ( 

HDL ) code. 

 

5.10 Design process model 

 
 

• Describes order that design steps are processed 

– Behavior description step 

– Behavior to structure conversion step 

– Mapping structure to physical implementation step 

• Waterfall model 

– Proceed to next step only after current step completed 

• Spiral model 

– Proceed through 3 steps in order but with less detail 

– Repeat 3 steps gradually increasing detail 

– Keep repeating until desired system obtained 

– Becoming extremely popular (hardware & software development) 

  

https://whatis.techtarget.com/definition/integrated-circuit-IC


138 

 

Part A  

1.Define Finite State Machine model? 

2.What is hardware-software co design in embedded system? 

3.What are the fundamental issues in hardware and software co design in an embedded system? 

4.Interpret about data flow models? 

5.What is synthesis in embedded systems? 

6.Interpret embedded automation? 

7.What is design technology in embedded system? 

8.List out the functions of IP core in embedded system? 

9.Compare SoC and IP? 

10.What are the operations defined by the concurrent process? 

 

Part B 

 

1.Build the steps involved in describing a system’s behavior as a state Machine. 

2.Elaborate a note on concurrent process model and communication among the process. 
3.Explain the Synchronization among process with examples 

4.Explain in brief about the following. A) FSM B) Data flow model. 

 

TEXT/ REFEENCE BOOKS 

1.David E.Simon, “An Embedded Software Primer”, Pearson Education,2001 

2. Frank Vahid and Tony Gwargie, “Embedded System Design”, John Wiley & Sons,2002 

3. Steve Heath, “Embedded System Design”, Elsevier, Second Edition,2004. 

 

  

 


