SCSA1307 L [T P| Credits | Total
EMBEDDED SYSTEM Marks

3 |0 03 100

COURSE OBEJCTIVES

I To understand the technologies behind the embedded compygtegis

f To acquire knowledge about micantrollers embedded processorslaheir applications

I To analyze and develop software programs for embedded systems

f Tohave knowledge about the working of a microcontroller systairitaprogramming in assembly
language

I To provide experience to integrate hardware and software for microcontroller application systems

UNIT1 INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE 9 Hrs.

Terminology Gates Timing diagram Memory Microprocessor buses Direct memory access
Interrupts Builtinterrupts Interrupts basis Shared data problems Interrupt lat&msgedded
system evolution trends Roufbbin Round Robin with interrupt function Rescheduling
architecture algorithm.

UNIT 2 REAL TIME OPERATING SYSTEM 9Hrs.

Task and Task states Task and data Semaphore and shared data operating system services
Message queues timing functions Events Memory management Interrupt routines in an RTOS
environment Basic design using RTOS.

UNI 3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERAL 9 Hrs.

Custom single purpose processors: Hardware Combination Sedeertassor design RT
level design optimizingsoftware: Basic Architecture Operation Programmers view
Development Environment ASIP Processor Degtgnipherals Timers, counters and watch
dog timers UART Pulse width modulator LCD controllers Key pad contsdieepper motor
controllers A/D converters Real time clock.

UNIT 4 MEMORY AND INTERFACING 9 Hrs.

Memory writeability and storage performance Memory types composing memory Advance
RAM interfacingcommunication basic Microprocessor interfacing 1/0 addressing Interrupts
Direct memory access Arbitration multilevel bus architecture Serial protocol Parallel
protocolsWireless protocols Digital camera example.

UNIT 5 PROCESSMODELS AND HARDWARE SOFTWARE CO-DESIGN 9 Hrs.
Modes of operation Finite state machine HCFSL and state charts language state machine
models Concurrent processnodel Concurrent process Communication among process
Synchronization among process Implementati@ataFlow mode
MAX. 45Hrs.
Course Outcomes:
On completiorof thecourse student will beableto
COL: Understand basiconceptof embeddesdystemdardware.
CO2: Implement theRTOS development tools building realtime embeddedystems.
CO3: Developthe hardware foembeddedystemapplicationsdbasecon theprocessors.
CO4: Developprototype circuit on breadboard includingcro processor interfacing.
CO5: DesignHardwareandSoftware using processodels.
CO6: Developandimplementembeddedased applications.

TEXT / REFERENCE BOOKS
1.David E.SimonfAn Embedded Software Primero, Pear so
2. Frank Vahid and Tony GwargikE mbedded System Designo, John
3. Steve Heath, fAEmbed®&ecdRigficnPd®m Desi gno, EI
4. Shibu.K.V,fiintroduction to Embedded Systeidc Graw Hill.
5. Raj KamalfiEmbedded Systerad MH.
6.Lyla, AEmbedded Systera$earson,2013.

7.Peter Mawadel,iEmbedded System Desigémbedded SystemBpundations of Cyber
Physical Systems, and the Internet of Things, Sprifiderd Edition,2018.

8. Perry XiaofiDesigning Embedded Systems and the Intesh&hings (loT) with the
ARM @ Mbed,John Wiley & Song2018

9. Rob Toulson & Tim WilmshutsiiFast and Effective Embedded Systems Design,Second
Edition: Applying the ARM mbed, Newnes,2018.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks : 100 Exam Duration : 3 Hrs.
PART A : 10 Question®f 2 markseachNo choice 20 Marks
PART B : 2 Questiondrom eachunit with internalchoice,eachcarrying16 marks 80 Marks

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT-1INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE

UNIT 1INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE

Terminology Gates Timing diagram Memory Microprocessor buses Direct memory access
Interrupts Builtinterrupts Interrupts basis Shared data problems Interrupt latébeypedded
system evolution trends Rowfbbin Round Robin with interrupt function Rescheduling
architecture algorithm.

1.1Embeddedsystemgerminology

Embeddedsystemsare ubiquitous. These dedicatedsmall computersare presentin
communicationssystems,vehicles, manufacturingmachinery, detection systems,and many
machineghatmakeour lives easier.

The open nature of Android Linux and its availability for many differeardware
architecturesnakesit anexcellentcandidate foembeddegblatforms.

The following are the most common concepts you should know while working with
embeddedievices.
Bootloader

A bootloader is a small piece of software that executesadtemyou power up a computer.
On alesktop PC, the bootloader resides on the master boot record (MBR) of the hard drive, and
isexecuted after the PC BIOS performs various system initializations. The bootloader then passes
system information to the kernfor instance, the hard drive partition to mount as root) and then
executeshekernel.

In an embedded system, the role of the bootloader is more complicated, since an embedded
systemdoes not have a BIOS to perform the initial system configuration. The low-level
initialization of the microprocessormemory controllers,and other boardspecific hardware
varies from board to board and CPU to CPU. These initializations must be performed before a
kernelimagecanexecute.

At aminimum,abootloaderfor anembeddedystenperformsthe followingfunctions:
1 Initializesthe hardwaregspeciallythe memorycontroller.

1 Providesbootparameter$or theoperatingsystemmage.

1 Startsthe operating systemmage.

Additionally, mostbootloadersalso provide convenientfeaturesthat simplify
developmentandupdateof thefirmware, suchas:

1 Readingandwriting arbitrarymemorylocations.
1 Uploadingnewbinaryimageso theboard'sRAM via a serialline or Ethernet.
1 Copyingbinaryimages frorRAM to Flashmemory.

Kernel

The kernelis the fundamentapart of an operatingsystem.lt is responsiblefor managing
theresourcesindthe communicatiobetweerhardware andoftwarecomponents.

4

The kernel offers hardware abstraction to dipglications and provides secure acceghdo
system memory. It also includes an interrupt handler that handles all requests or completed 1/0
operations.

Kernel modules

Modules are pieces of code that can be loaded and unloaded into the kernel upah deman
Theyextendthe functionality of the kernelwithout requiringa systenreboot.

For example,onetype of moduleis the devicedriver, which allows the kernelto access
hardwareonnectedo thesystemWithoutthesemodulesLinux developersvould haveto build
monolithic kernels and add new functionality directly into the kernel image. The result would be
a large, cumbersome kernel. Another disadvantage of working without a kernel module is that
you wouldhaveto rebuildand reboothe kernekverytime you add newunctionality.

In embedded systems, whéuactionality can be activated depending on the needs, kernel
modulesbecomea very effectiveway of addingfeatureswithout enlarging thekernelimagesize.

Root file system

Operatingsystems normally rely on a set of files and directories. d file system is
the topof the hierarchical file tree. It contains the files and directories critical for system
operation,including the device directory and programs for booting the systém.root file
system als@ontains mount points where other file systems can be mounted to connect to the root
file systemhierarchy.

Applications

Softwareapplicationsare programsthat employthe capabilitiesand resource®f a computer
todo a particulartask.

Applications make use of hardwaredevicesby communicatingwith devicedrivers, which
argpartof thekernel.

Cross-compilation

If you generatecode for an embeddedtarget on a developmentsystemwith a different
microprocessor architecture, you need a cdesgelopment environment. A credsvelopment
compiler is one that executes in the development system (for example, an x86 PC), but generates
codethatexecutesn a differentprocessoffor examplejf the targtis ARM).

1.2Logic gates

Digital systems are said to be constructed by using logic gates. These gates are the AND, OR,
NOT, NAND, NOR,EXOR andEXNOR gatesThebasicoperationsaredescribedelowwith
theaid of truthtables.

AND gate

2 Input AND gate

A] B | AB
i 0
‘g —} AB o 1 0
— 11 0 0
AND 1 1 1

The AND gateis anelectroniccircuit that givesa high output (1)only if all its inputsare
high. A dot (.) is used to show the AND operation i.e. AB&ar in mind that this dot is

sometime®mittedi.e. AB

OR gate
2 Input OR gate
A, B A+B
a I n
B B I
1 0 1
OR 1 1 1

The OR gateis anelectroniccircuit thatgivesa high output(1) if oneor more of itsinputs
are high A plus(+) is usedto showthe OR operation.

NOT gate
. NOT gate

A 4|>07 A A&
0 1

1 0

The NOT gate is an electronic circuit that produces an inverted version of the input at its
output.lt is also known as amverter. If the input variable is A, the inverted outpukisown as
NOT A. This is also shown as A", or A with a bar over the top, as shown autpets. The
diagrams below show two ways that the NAND logic gate can bigcwedo producea NOT
gate.lt canalsobedoneusing NORIogic gatesin thesameway.

A—] r—=& ’:‘:D:— A

NAND gate

2 Input NAND gate

A | B AB

A 1] 1
o e
1 I 1

NAND 1 1 0

This is a NOTAND gate which is equal to an AND gate followed by a NOT getteoutputs
of all NAND gatesare high if any of the inputsarelow. The symbols an ANDgate witha
smallcircle ontheoutput.The smalkircle representsiversion.

NOR gate
2 Input NOR gate
A | B A+B
0] 1
6] Do—Fm
B 0| 1 0
B 1| 0 0
NOR 1 1 0

Thisis aNOT-OR gatewhich isequalto anOR gate followedby aNOT gate. Theoutputs
of all NOR gates artow if any of theinputs arehigh.

Thesymbolis anOR gate witha smallcircle onthe outputThe smalkircle represents

inversion.
EXOR gate
2 Input EXOR gate
A B A BB
o 1]
>

ADR 0 1 1

B 1 o 1
EOR 1 1 0

The Exclusive-OR' gate is a circuit which will give a high outputither, but not both,
of its two inputs are highAn encircled plus sign)is used t@ show the EQ@Reration.

EXNOR gate

2 Input EXNOR gate
A, B ApB
1 o 1
A _
5__]) >o—nwB 01 ©
1 o 1]
ENOR 1 1 1

The'Exclusive-NOR' gate circuitdoes the opposite to th©R gate. Itwill give a low output
if either, but not both, of its two inputs are high. The symbol is an EXOR gate with a small

circle onthe outputThe smallcircle representmversion.

1.3Timing Diagram
Timing Diagramis agraphicalrepresentatiorit represents thexecutiorntime takerby
eachinstructionin agraphicalformat. Theexecutiorntime is representeh T-states.

Instruction Cycle:
Thetimerequiredto executeaninstructionis calledinstructioncycle.

or
Thetimetakenby theprocessor taompletethe executioof aninstruction.Aninstruction
cycleconsistf oneto sixmachinecycles.

Machine Cycle:
Thetimerequiredto access thenemoryor input/outputdevicess calledmachine

cycle.
or
Thetimerequiredto completeoneoperation;accessingitherthememoryor I/Odevice.
A machinecycleconsistf threeto six T-states.

T-State:

Themachinecycleandinstructioncycletakesmultiple clock periods.A portionof an
operationcarriedoutin onesystem clochperiodis calledasT-state.

or
Time corresponding to one clock period. It is the basic unit to calculate execution of

instructionsor programsn a processor.

Fetchcycle:
The fetch cycle in a microprocessor comprises of sevienal states during which thext

instructionto be executeds copied(fetched)from the memorylocation(whoseaddress in the
ProgramCounter)to thelnstructionRegister.

Conceptof Timing Diagram
The8085microprocessohass5 (seven)asicmachinecycles.Theyare

Opcodefetchceycle (4T)
Memoryreadcycle(3 T)
Memorywrite cycle(3 T)
I/O readcycle(3 T)

. /O write cycle(3T)

o krowbdE

Note : Time period, T = 1/f'; where f = Internal clock frequency

el i iallingedgegmegativeedge
» S VR :
psitiveedge "/ N/ N/ \L
—
[T-state

11 Eachinstructionof the 8085processoconsistof one tofive machinecycles,i.e., whentheB085
processor executes an instruction, it will execute some of the machine cycieifeorder.

1 Theprocessotakesadefinitetime toexecutehe machinecycles.Thetime takenby the
processoto executea machinecycleis expressedh T-states.

i OneT-stateis equal tothetime periodof theinternalclock signalof theprocessor.

i TheT-statestartsatthefalling edgeof aclock.

OpcodeFetch Machine Cycle:

9 Itisthefirst stepin theexecutiorof anyinstruction. Thetiming diagramof this cycleis
giverbelow.

SIGNAL T, T, T, T,
CLOCK N / . / “\ Py
A s-Ag >< HIGHER | ORDER MEMORY | ADDRESS [;NS‘PEC“:IED
AD-AD, rouEnoroer | > gl orcobe| @,-Dy >‘; . e e 4
aLE LN ((\
IO/M.S, S, | X \\ 10/ -0, s,=155-1 :
< N/)z

[1 Thefollowing pointsexplainthe variousoperationghattakeplaceandthe signalsthatare
changediuring theexecutionof opcodefetch machineycle:

T1 clock cycle:

[1 The contentof PCis placedin the addresshus; ADO - AD7 lines containslower bit
addresandA8 7 Al5 containshigherbit address.

01 O/ Mignalis low indicating that a memorylocation is being accessedS1 and SO
alsachangedo thelevels.

[0 ALE is high, indicatesthatmultiplexedADO i AD7 actaslowerorderbus.

T2 clock cycle:

[Multiplexedaddresdusis now changedo databus.
[1 The(R Dsjgialis madelow by theprocessorThissignalmakegshememorydeviceload
thedatabuswith the contentsof thelocationaddressedly the processor.
T3 clock cycle:

[1 Theopcodeavailableon the databusis readby the processoandmovedto the instruction
register.
[1 The(R Dsjignalis deactivatedy makingit logic 1.
T4 clock cycle:

[1 The processor decodie instruction in the instruction register and generate the necessary
control signals to execute the instruction. Based on the instruction further operationsssuch
fetching,writing into memoryetc.takesplace.

DRAW TIMING DIAGRAM FOR MEMORY READ, MEMORY WRITE, I/O READ, I/O
WRITE MACHINE CYCLE

Memory ReadMachine Cycle:

0 The memory read cycle is executed by the processor to read a data byte from
memory. Thanachinecycleis exactlysameto opcodefetchexcept:a) It hasthreeT-states) The
SOsignals setto O.

*-— Ty —re— T; —»t— T3 —pt+— Ty —p»po+— Ty —pt+— T; —»o+— T3 —»

e I LI L L L 1L 1
o < | — _
lonﬁ\ | _

procl -0 o= A e
_Qf A

WR

T1 state:

1 Thehigherorderaddres$us(A8-A15) andlowerorderaddresanddatamultiplexed
(ADO-AD7) bus.
)i ALE goeshighsothatthememorylatchesghe(ADO-AD7) sothatcompletel6-bit address

10

areavailable.
i Themicroprocessoiidentifies the memory read machine cycle from the status
signals
| O/ M&X=D0,S50=0.Thisconditionindicateshememoryreadcycle.
T2 state:

1 Selectednemorylocationis placedonthe(D0-D7) of the A/D multiplexedbus.R D goes
LOW

T3 State:

1 Thedatawhich wasloadedon the previousstateis transferredo themicroprocessor.
1 In themiddleof the T3 stateR D §oeshigh anddisablegshe memoryreadoperation.
q Thedatawhich wasobtainedrom thememoryis thendecoded.

Memory Write Machine Cycle:

9 The memorywrite cycle is executedby the processotto write a databyte in a memory
location.TheprocessotakesthreeT-statesand(WR)signal ismadelow.

*-— Ty —rte—T; —>t— T3 —>+— T, —>t+— Ty —>pet— T; —pet— T3 —»

x4 1 4 L1 f L1 L_f I
2:,:>< S$;,=0,S=1 :
IOrﬁx | 7
p: >< PChH = A1s = As

:g? }<AD,7 = AD> < D7 < :..D: Data > ‘

1}

ALE _/ N

WR

T1 state:

)i Thehigherorderaddres$us(A8-A15) andlowerorderaddresanddatamultiplexed
(ADO-AD7) bus.

)i ALE goeshigh so thatthe memorylatchesthe (ADO-AD7) so that completel6-bit
addresareavailable.

1 Themicroprocessoidentifies the memory read machinecycle from the statussignals
| O/ M&X=0,50=1.Thisconditionindicateshememoryreadcycle.
T2 state:

1 Selectedmemorylocationis placedon the (D0-D7) of the A/D multiplexedbus.WR @oes
LOW
T3 State:

1 In the middle of the T3 stateWR @oeshigh anddisablesthe memorywrite operation.The
datawhich wasobtainedfrom thememoryis thendecoded.
I/O Read Cycle:
The 1/0O read cycle is executed by the processor to read a data byte from I/O port or from

11

peripheralwhichis I/O mappedn thesystem The8-bit portaddresss placedbothin thelower
andhigherorderaddres$us.TheprocessotakesthreeT-statedo executethis machinecycle.

+— Ty —pae—T; —»e— Ty —pt— Ty, —pt— Ty —pt— T; —pe— Ty —»

N S | e
:)(S,=1,5,=0

ﬂf: >< PCy = Ass > Ag D nspeciiod >

of s
ae—/ N\ [o

RD >

T1 state:

[0 Thehigherorderaddresdus(A8-A15) andlower orderaddresanddatamultiplexed
(ADO-AD7) bus.

[0 ALE goeshighsothatthememorylatcheshe (AD0O-AD7) sothatcompletel6-bit address
areavailable.

(1 The microprocessoidentifiesthe I/O read machinecycle from the statussignalsl O/ M6 =1,
S1=1,S0=0.This conditionindicateshel/O readcycle.
T2 state:

O Selectednemorylocationis placedonthe(D0-D7) of the A/D multiplexedbus.R D §oes
LOW

T3 State:

(1 Thedatawhich wasloadedonthe previousstateis transferredo the microprocessor.
O In themiddleof the T3 stateR D §oeshigh anddisableghel/O readoperation.
(1 Thedatawhich wasobtainedrom thel/O is thendecoded.

/O Write Cycle:

The I/O write cycle is executed by the processor to write a data byte to /0 po# or to

peripheral, which is I/O mapped in the system. The processor takes thtates teexecutethis
machinecycle.

T1 state:

[l The higher order address bus ({A&5) and lower order address and data multipleX*e¢aD-
AD7) bus.

O ALE goes high so that the memory latches the (AY) so that complete 1bit
addressreavailable.

O The microprocessoidentifiesthe I/O readmachinecycle from the statussignalsl O/ M6 = 1,
S1=0,S0=1.Thisconditionindicateghel/O readcycle.
T2 state:

0 Selectednemorylocationis placedon the (D0-D7) of the A/D multiplexedbus.WR @oes
LOW

12

T3 State:

O In the middle of the T3 stateWR @oeshigh anddisableghe I/O write operation.The data
which wasobtainedirom thel/O is thendecoded.

1.4Memory

Area where the program instruction and data are retained for processing is called rheenory,
human brain, computer also requires some space to store data and instruction for addressing their
processing.

CPU does not have the capacity to store programs or large set of data permanently. It contains only
basic instruction needed to operate tbmputer. Therefore memory is required.

Types of Memory
Memories primarily is of two types as given here:

o Random Access Memory (RAM)
A Static RAM (SRAM)
A Dynamic RAM (DRAM)
o Read Only Memory (ROM)
A Masked Read Only Memory (MROM)
A Programmable Read Oniemory (PROM)
A Erasable and Programmable Read Only Memory (EPROM)
A Electrically Erasable and Programmable Read Only Memory (EEPROM)

Random Access Memory (RAM)

A RAM constitutes the internal memory of the CPU for storing data, program and program result. It
is read/write memory. It is called Random Access Memory (RAM).

Since access time in RAM is independent of the address to the word that is, each storage location
inside the memory is as easy to reach as other location and takes the same amount of time. We ca
reach into the memory at random and extremely fast but can also be quite expensive.

RAM is volatile, that is data stored in it is lost when we switch off or turn off the computer or if
there is a power Failure. Hence, a backupnterruptible power sysim (UPS) is often used with
computersRAM is a small, both in terms of its physical size and in the amount of data that can
hold.

13

Types of RAM
RAM is of two types:

1. Static RAM (SRAM)
2. Dynamic Ram (DRAM)

Static RAM (SRAM)

The word static indicates théite memory retains its contents as long as power remains applied.
However, data is lost when the power gets down due to volatile nature.

Static RAM chips use a matrix of 6 transistors and no capacitors.

Transistors do not require power to prevent leaksgestatic RAM need not have to be refreshed
on a regular basis. Because of the extra space in the matrix, static RAM uses more chips than
dynamic RAM for the same amount of storage space, thus making the manufacturing costs higher.

Static RAM is used as che memory needs to be very fast and small.

Dynamic Ram (DRAM)

Dynamic RAM, unlike static RAM, must be continually replaced in order for it to maintain the
data. This is done by placing the memory on a refresh circuit that rewrites the data several hundred
times per second.

Dynamic RAM is used for most system memory because it is cheap and small.

All dynamic rams are made up of memory cells. These cells are composed of one capacitor and one
transistor.

Read Only Memory (ROM)

ROM stands for read onijmemory. The memory from which we can only read but cannot write on
it.

This type of memory is newolatile. The information is stored permanently in such memories during
manufacture.

A ROM, stores such instruction as are required to start computer wicgncdieis first turned on,
this operation is referred to as bootstrap.

14

ROM chip are not only used in the computer but also in other electronic items like washing
machine and microwave oven.

Types of ROM
Thefollowing list of ROM available in computer:

Masked Read Only Memory (MROM)
Programmable Read Only Memory (PROM)
Erasable and Programmable Read Only Memory (EPROM)

P wbdPE

Electrically Erasable and Programmable Read Only Memory (EEPROM)

Masked Read Only Memory (MROM)

The very first ROMs were hardwadevices that contained a gpeogrammed set of data or
instructions. This kind of ROMs are known as masked ROMs. Tt is inexpensive ROM.

Programmable Read Only Memory (PROM)

PROM is read only memory that can be modified only once by a user. The userdbarys BROM
and enters the desired contents using a PROM programmer.

Inside the PROM, there are small fuses which are burnt open during programming. It can be
programmed only once and it's not erasable.

Erasable and Programmable Read Only Memory (EPROM)
TheEPROM can be erased by exposing it to wirdet light for a duration of upto 40 minutes.

Usually, an EPROM eraser achieves this function. during programming, an electrical charge is
trapped in an insulated Gate region.

The charge is retained for moteah 10 years because the charge has no leakage path. For erasing
this charge, ultraviolet light is passed through a quartz crystal window (lid). This exposure to
ultraviolet light dissipates the charge. During normal use the quartz lid is sealed wilten sti

Electrically Erasable and Programmable Read Only Memory (EEPROM)

The EEPROM is programmed and erased electrically. It can be erasedpsogreanmed about ten
thousand times.

15

Both erasing and programming take about 4 to 10 millisecon&ERROM, any location can be
selectively erased and programmed.

EEPROMSs can be erased 1 byte at a time, rather than erasing the entire chip. Hence, the process of

reprogramming is flexible but slow.
1.5 MICROPROCESSORBUS

Busis a group of conducting wires which carries information, all the peripheralsareconnected
to microprocessor through Bus. Diagram to represent bus organization system of 8085
Microprocessor. There are three types of buses. It is a group of conducting wires whichddress

only.
Therearethree type®f busesn amicroprocessor

1 DataBusi L i n essry dath mahdfrom memory are calledata buslt is a bidirectional
buswith width equalto word lengthof the microprocessor.

1 Address Busi i$ aunidirectional responsibl®r carryingaddress of anemorylocation
or I/O port from CPU tomemaoryor I/O port.

1 Control Busi Lines that carry control signals likeclock signals, interruptsignalor
ready signalare called control bus. They driglirectional. Signal that denotdsat a device
is ready for processing is calleshdy signal Signal that indicates todevice tointerruptits
processs calledaninterrupt signal.

CPU \iﬂemaw \ ‘ :5'5,;";”?”{'1

HEERERENER
'

l Contral bus

(.
Address bus

¥ ¥
Data bus

System bus

4

1.6 DIRECT MEMORY ACCESS (DMA)
DMA is atechniquefor transferringblocksof datadirectly betweertwo hardwaredevices.

In the absencef DMA the processomustreadthe datafrom onedeviceandwrite it to the
otheronebyteor word atatime.

16

DMA AbsenceDisadvantagelf the amountof datato betransferreds largeor frequencyof
transferis highthe resof the software mighbevergeta chance toun.

DMA PresencéAdvantage:The DMA Controller performsentire transferwith little help
from the Processor.

Working of DMA

The Processgrrovides the DMA Controller with source and destination addresga&number
of bytes ofthe block of data whichneeds transfer.

After copying eaclbyte eachaddresss incremented& remainingbytesarereducedoy one.

When number of byte®aches zeros the block transfer ends & DMA Controller senbideanupt
to Processor.

Start DMA transfer

1

CPU sets up device (eg: disk) for
DMA transfer

1 1

Device transfers
data to
DMA mMmemory

CPuU
handles

other
tasks
mterTtupt l

CcCPrPuU
finishes up the
DMA transfer

Figure: Direct Miemory Access

1.7INTERRUPT

An interrupt is a signal to the processor emitted by hardware or software indicating an event that
needammediateattention Whenevemninterruptocars, the controllercompletesthe execution
of the currentinstruction and starts the executionof aninterrupt ServiceRoutine (ISR) or
Interrupt Handler . ISR tells the processor or controller what to do whenrttegrupt occurs.
Theinterruptscanbe eitherhardwarenterruptsor softwareinterrupts.

Hardware Interrupt

A hardware interrupt is an electronic alerting signal sent to the processor from an edeice|

like a disk controller or an external peripheral. For example, when we prega th&eyboard

or move the mouse, they trigger hardware interrupts which cause the processortlie read
keystrokeor mouseposition.

Software Interrupt
A software interrupt is caused either by an exceptional condition or a spstiattion in the

17

instruction set which causes an interrupt when it is executed by the processor. For exdameple, if
processor'arithmeticlogic unit runsa commandto divide a numberby zero,to causea

divide-by-zero exception, thus causing the coneptd abandon the calculation or displayeator
messageSoftware interrupinstructionswork similarto subroutine calls.

Interrupt ServiceRoutine

For every interrupt, there must be an interrupt service routine (ISRjyeoupt handler . When
an interrupt occurs, the microcontroller runs the interrupt service routine. Forietexrypt,
there is a fixed location in memory that holds the addregs mterrupt serviceoutine, ISR.
The table of memory locations set aside to hold the addresses of ISRs is cHilednéerrupt
VectorTable.

Program Execution without interrupts

Time

| Main Program

Program Execution with Interrupts

e
| men e | e

ISR : Interrupt Service Routine

Time

Interrupt Vector Table

Therearesix interruptsincludingRESET in8051.

Inte ROM Location (Hex) P
rru [
pts n

Interrupts ROM Location(HEX)

Serial COM (RI andTI) 0023

Timer 1 interrupts(TF1) 001B

ExternalHW interruptl (INT1) 0013 P3.3(13)

ExternalHW interruptO (INTO) 0003 P3.2(12)

Timer 0 (TFO) 000B

Reset 0000 9

T When thereset pin is activated, the 8051 jumps to the address location 0000. pdwgeis

upreset.

1 Two interrupts are set aside for the timers: one for timer O and one for timer 1. Memory
locationsare 000BH an@01BH respectivelyn theinterruptvectortable.

T Two interrupts are set aside for hardware external interrupts. Pin no. 12 and Pin Rarl3 in
3 are for the external hardware interrupts INTO and INT1, respectively. Mdowatjons

18

are 0003H an@013H respectivelin theinterruptvectortable.

1 Serial communication has a single interrupt that belongs to both receive and transmit.
Memorylocation0023Hbelongs tahis interrupt.

Stepsto Executean Interrupt

Whenan interrupgetsactive,the microcontrollergoesthroughthefollowing steps

1 The microcontroller closes the currently executing instruction and saves the addtess of
nextinstruction(PC)onthestack.

1 It alsosaveghecurrentstatusof all theinterruptsinternally(i.e., notonthe stack).

T It jumps to the memory location dfi¢ interrupt vector table that holds the address of the
interruptsserviceroutine.

1 The microcontroller gets the address of the ISR from the interrupt vector table antbjumps
it. It starts to execute the interrupt service subroutine, which is RE&flrn frominterrupt).

1 Upon executing the RETI instruction, the microcontroller returns to the location whexre it
interruptedFirst, it gets theoprogram counter (P@ddres$rom thestackby popping the top
bytes of thestack into the PC. Then, gart to execute from thaiddress.

1.8THE SHARED DATA PROBLEM

A big problem in embedded systems occurs in embedded software when an interrupt
serviceroutine and the main program share the same data. What happens if the main program
isin themiddleofdi ng some I mportant <calculations usi
occurs thasltersthatpiece ofd a t a é&henmthe main prograniinishesits calculationops!

The calculation performed by the main program might be corrupted because it isfbased
thewrong/differentdata valueThis is knownasthe shareddataproblem.

Example of Shared Data Problem

Imagineyou are a software enginesorking ata companyYour team is responsibfer
designingan automaticdog entry door. This embeddeddevice can be wirelessly updated
with RFID tags fordogsor otherpetsto be allowedentry.

The door needs to automatically unlock for dogs that are iitivgty of the door. A pet
mustbe allowed to enter even when the table of RFID tags is lo@dated. The RFID tag IDs
areshared data since the interrupt service routine that must update the tag IDs and the main ()
program that is responsible for automatically unlocking the door when dogs are in the vicinity
both share and use this data. A prablsill occur when the doggy door is in the middle of an
RFI D tag I D update when a dog needs to get th
dogwait outsidein the freezing cold whileghe deviceis in the middle of anRFID tag update!

19

How do we create a solution that solves the shared data problem? The RFID tags need to be
updated regularly but that same data is needed regularly by the main () program to let dogs enter
whentheyneedto. L e tsd@vethis now.

magnetic field from RFID gate RFID reader
induces current in RFID card chip poweredupand receieves dat et opened
/ data transmitted details checked
. . against database .

Thisembeddedievicecanbe wirelesslyupdatedwith RFID tags.

Dogsor otherpetsmustbe allowedentrywhentheyarein thevicinity of the door.
Dog mustbeallowed toenterevenwhenthetableof RFID tagsis beingupdated.
RFID tagIDs areshareddatawhich mustbe managed.

To To o Do o

In the shared data problem for the doggy door controller, we need to make sure ¢he dog
enter at all times while the RFID tags are being updated. Because this is a dog, it is
unacceptabléor the doorto remainlockedandkeepa dogwaiting.

1.9INTERRUPTS LATENCY

Interrupt latency refers primarily to the software interrupt handling latencies. In other words, the
amountof time thatelapsedrom the time thaan externainterrupt arrives at the processor
until thetime thattheinterrupt processingbegins

One of the most important aspects of kernel-tiéa¢ performance is the ability to service an
interruptreques(IRQ) within a specifiecamountof time.

20

NS IR PRrr st

Source

p < Interrupt
Controller Response

Here are the sources contributing the intertagncy (abstracts from Reduce RTOS latency in
interruptintensive apps):

Operating system(OS) interrupt latency

An RTOS must sometimes disable interrupts while accessing critical OS data structures. The
maximum time thaan RTOS disablesterrupts is referred tas the OS interrupatency.
Although this overheadwill not be incurred on most interruptssince the RTOS disables
interrupts relativelyinfrequently, developersmust always factor in this interrupt latency to
understandhe worg-casescenario.

Low-levelinterrupt -related operations

When an interrupt occurs, the context must be initially saved and then later restored after the
interrupt processing has been completed. The amount of context that needs to be saved depends
onhow many registersvould potentiallybe modified bythe ISR (Interrupt ServicdRoutine).

Enabling the ISR tointeract with the RTOS

An ISR will typically interactwith an RTOSby makinga systemcall suchasa semaphorgost.

To ensure the ISR function canmplete and exibefore any contexdwitch to a task is made,
theRTOS interruptlispatchemustdisablepreemptiorbeforecalling the ISR function.

Once the ISR function completes, preemption ienmabled and the application will context
switch tothe highest priority thread that is ready to run. If there is no need for an ISR to make
anRTOS system call, the disable/enable kernel preemption operations would again add
overhead. It logicalto handlesuchanISR outsideof the RTOS.

Context switching

When an ISR defers processing to an RTOS task or other thread, a context switch needs to
occurfor the task to run. Context switching will still typically be the largest part ofRaFQ S
relatedinterruptprocessingverhead.

IRQ (Interrupt Request)

An (or IRQ) is a hardware signal sent to the processor that temporarily stops a running program
and allows a special program, an interrupt handler, to run instead. Interrupts are used to handle
sucheventsasdatareceiptfrom a modemor network,or akey pressor mousemovement.

21

FIQ (Fastinterrupt Request)

An FIQ is just a higher priority interrupt request, that is prioritized by disabling IRQ and other
FIQ handlers duringequestservicing. Therefore,no otherinterrupts caroccur during the
processingf theactive FIQ interrupt.

1.10EMBEDDED SYSTEM EVOLUTION TRENDS

Embedded systems are on the rise as the technology paves the way for the future of smart
manufacturing across a range of industries. Microcontralletbe hardware ahe center of
embeddedsystemsd are improving quickly, allowing for better machine control and
monitoring. In this article, we will discussthe emergingtrendsfor embeddedsystemsin

201%hat will enable enhanceskcurity,bettercontrol,andimproved scalability.

Current Trends in EmbeddedSystemsApplications

An embedded system is an applicatgpecific system designed with a combination of
hardwareand softwareto meetreattime constraints.The key characteristicof embedded
industrialsystems include speed, security, size, and power. The major trends in the embedded
systemsnarketrevolve aroundhe improvementf these characteristics.

To give contextinto howlargetheembeddedystems industris, hereareafew statistics

1 The global market for the embedded systems industry was valued at $68.9 billion in 2017
andis expectedo rise t0$105.7billion by the endof 2025.
T 40%of theindustrialsharefor embeddedystemsnarketis sharedoy thetop 10vendors.

T In 2015,embeddedhardwarecontributedto 93% of the marketshare andt is expected to
dominatethe market oveembeddedoftwarein the upcoming/earsaswell.

Future Trends of EmbeddedSystemdndustry

The industry for embeddeystems is growing and there are still several barriers that must be
overcomeBelow arefive notabletrendsof the embedded systemmsarketfor 2019.

Improved Security for EmbeddedDevices

With the rise of the Internet of Things (IoT), the primaigcus of developers and
manufacturerss on security.In 2019, advancedechnologiesfor embeddedsecurity will
emergeaskey generators for identifying devices in an IoT network, and as microcontroller
security solutionshatisolatesecurityoperationgrom normaloperations.

Cloud Connectivity and Mesh Networking

Getting embedded industrial systems connected to the internet and cloud can take weeks and
months in the traditional development cycle. Consequently, cloud connectivity tools will be
animportant future market for embedded systems. These tools are designed to simplify the
processof connecting embedded systems with ckaded services by reducing the
underlying hardwam@mplexities.

22

A similar yet innovative marketfor low-energyloT device developerss Bluetoothmesh
networks. Thesesolutionscan be usedfor seamlessonnectivity of nearbydeviceswhile
reducingenergyconsumptiorandcosts.

ReducedEnergy Consumption

A key challenge for developers is thptimization of batterypowered devices for low power
consumption and maximum uptime. Several solutions are under development for monitoring
andeducing the energy consumption of embedded devices that we can expect to see in 2019.
Theseinclude energy mators and visualizations that can help developers-tiime their
embeddedystems, and advanced Bluetooth andRMinodules that consume less power at

the hardwaréayer.

Visualization Toolswith Real Time Data

Developers currently lack tools fanonitoring and visualizing their embedded industrial
systemi real time. The industry is working on rdahe visualization tools that will give
softwareengineers the ability to review embedded software execution. These tools will enable
developerdo keep a check on key metrics such as raw or processed sensor data and event
based contexgwitchesfor trackingthe performance oémbeddedystems.

DeepLearning Applications

Deep learning represents a rich, yet unexplored embedded systems marketahangasof
applications from image processing to audio analysis. Even though developers are primarily
focused on security and cloud connectivity right now, deep learning and artificial intelligence
conceptswill soonemergeas a trendn embeddedystems.

EmbeddedSysteminnovations

The industrial sector for embedded systems is undergoing numerous transformations that will
enable developers to build systems that are-pgjforming, secure, and robust. As a
developerand manufacturer in thisdustry, it is important to stay updated with the latest
technologies anttends. For 2019, the embedded systems market is shaping up for simplified
cloud connectivity, improved security tools, redéilme visualizations, lower power
consumption, and deegdrningsolutions.

23

1.11ROUND ROBIN ARCHITECTURE

=

method_MN()

The RoundRobin architectureis the easiesarchitecturefor embeddedsystems.The main

method consistef a loop thatrunsagainandagain,checkingeachof the I/O devicesat each

turnin orderto seeif they needservice.No fancy interrupts,no fear of sharedd at a éj u st
a plainsingle executiotime

Example: Multimeter
verysmallnumber ofl/O: (switch, displayprobes)

no particularlylengthyprocessingevenvery simple microprocessorsan checkswitch,
take measuremeanhdupdatedisplayseveratimespersecond.)

measurementsanbe takeratanytime.
displaycan bewrittento at anyspeed.

small delaysn switch positionrchangewill go unnoticedthreadthat getsexecutedagain
andagain.

Advantages:

1 Simplestof all thearchitectures
1 No interrupts
1 No shared data

24

1 No latencyconcerns
1 Notight responseequirements

Disadvantages:

T A sensorconnectedo the Arduino thaturgentlyneedsservicemustwait its turn.

T Fragile.Only as strongs theweakestink. If asensoibreaks osomethingelse
breaksgverythingbreaks.

1 Responsé&me haslow stability in the event o€hangedo thecode

Round-Robin Problems

If anydeviceneedsaresponsen lesstime thanthe worstdurationof the loop the systemwon't
function.

If A andB take5ms eaclandZ needs aesponseime of lessthan7msits not possible.This can
be mitigate somewhaby doing (A,Z,B,Z) in aloopinsteadof (A,B,Z).

Scalability of thissolution is poor. Even if absolute deadlines do not exist, overall response time
may becomeunacceptablyoor.

RoundRobinarchitecturas fragilei Evenif theprogrammemanageso tunetheloop sufficiently
to provide afunctionalsystema singleaddiion or change canuin everything.

Round Robin with Interrupts

—

method_1{() - - interrupt_1()
I

method_2()

- interrupt_2()

L |
method_3() - 1
- interrupt_N()

I

Shared Data

1

method_N() -

This Round Robin with Interrupts architecture is similar to the Round Robin architecture, except
25

it has interrupts. When an interrupt is triggered, the main program is put ocanubbdntrokhifts
to theinterrupt service routineCode thatis inside theinterrupt service routinesas ahigher
priority thanthetaskcode.

Advantages:

1 Greatercontrolover thepriority levels

T Flexible

1 Fastrespons¢imeto I/O signals

1 Greatfor managingsensorshatneedto bereadat prespecifiedime intervals

Disadvantages:

T Sharedlata
1 All interruptscouldfire off concurrently

PREEMPTIVE AND NON-PREEMPTIVE SCHEDULING

Prerequisit¢é CPU Scheduling

1. Preemptive Scheduling:

Preemptive scheduling is used when a process switches from running state to ready state or from
waiting state to readyate. The resources (mainly CPU cycles) are allocated to the proctss for
limited amount of time and then is taken away, and the process is again placed backadyhe
queue if that process still has CPU burst time remaining. That process staydyigqueadll it

gets nexthance texecute.

Algorithms based on preemptive scheduling &eund Robin (RRghortest Remaining Time
First (SRTF) Priority (preemptive versionkgtc.

Process Arrival CPU Burst Time
Time (in millisec.)

PO 3 2

P1 2 4

P2 0 6
1 4

P3
| P2 || P3 || Po |[P || P2
0 : 5 7 1

Preemptive Scheduling

16

26

https://www.geeksforgeeks.org/gate-notes-operating-system-process-scheduling/
https://www.geeksforgeeks.org/program-round-robin-scheduling-set-1/
https://www.geeksforgeeks.org/program-shortest-job-first-scheduling-set-2srtf-make-changesdoneplease-review/
https://www.geeksforgeeks.org/program-shortest-job-first-scheduling-set-2srtf-make-changesdoneplease-review/
https://www.geeksforgeeks.org/program-for-preemptive-priority-cpu-scheduling/

2. Non-Preemptive Scheduling:

Non-preemptive Schedulings used when a process terminates, or a process switches from
running to waiting state. In this scheduling, once the resources (CPU cycles) is allocated to a
process, the process holds the CPU till it gets terminated or it reaches a waiting stateofin case
nonpreemptiveschedulingdoes nointerrupta process runnin@PU in middle of the execution.

Instead it waitstill the processcompleteits CPU bursttime andthenit canallocatethe CPU
toanotherprocess.

Algorithms basedon nonpreemptiveschedulingare: ShortestlobFirst (SJFbasicallynon
preemptive)andPriority (nonpreemptive versionkgtc.

Process Arrival CPU Burst Time
Time (in millisec.)

PO 3 2

P1 2 4

P2 0 6

P3 1 4

R0

0 6 10 14 16

Non-Preemtive Scheduling

Key Differences betweenPreemptive and Non-Preemptive Scheduling:

1. In preemptiveschedulingthe CPU is allocatedto the processesor the limited
timewhereasn Non-preemptiveschedulingthe CPU s allocatedto the procesdill it
terminatesor switchesto waiting state.

2. The executing process in preemptive scheduling is interrupted in the middle of execution
whenhigherpriority onecomeswvhereastheexecutingorocessn nonpreemptiveschedulingis
not interruptedin the middle of executionandwait till its execution.

3. In PreemptiveScheduling, there ishe overhead of switchinghe processfrom ready statéo
runningstate, viseverse, and maintaininfpe ready queue. Whereas in case of poaemptive
schedulinghasno overhead of switchinghe process from runningtate tareadystate.

4.In preemptive schedulingf,a high priority process frequently arrives the ready queuthen

the process with low priority has to wait for a long, and it may have to starve. Gihéndands,
in the norpreemptive scheduling, if CPU is allocated to the process héaiger burst time

then the processesvith small burst time may have to starve.

5. Preemptiveschedulingattainflexible by allowing the critical processe$o accessCPU
27

https://www.geeksforgeeks.org/program-shortest-job-first-sjf-scheduling-set-1-non-preemptive/
https://www.geeksforgeeks.org/program-shortest-job-first-sjf-scheduling-set-1-non-preemptive/

agheyarrive into the readyqueue ,no matterwhat processs executingcurrently. Non-

preemptiveschedulings calledrigid as even if &ritical process enters the ready qubee
processunning CPUis not disturbed.

6. The Preemptiv&chedulindhastomai nt ain the integrity of
iscostassociativeasit which is not the casewith Non-preemptiveScheduling.

Comparison Chart
Parameter PREEMPTIVESCHEDULING NON-PREEMPTIVESCHEDULING
OnceresourcegCPU Cycle)are

In this resource@CPU Cycle) are allocatedo aprocesstheprocessolds
allocatedto aprocesdor alimited it till it completests burst timeor

Basic time. switchesto waiting state.
Procesganbeinterruptedn Procesgannotbeinterrupteduntil it

Interrupt between. terminatestself or its time is up.
If a process having high priority
frequently arrives in the ready If a process with long burst time is
queue, low priority process may runningCPU,thenlatercomingprocess

Starvation starve. with lessCPU bursttime maystarve.
It hasoverheadsf schedulinghe

Overhead processes. It doesnot haveoverheads.

Flexibility Flexible rigid

Cost costassociated no costassociated

CPU In preemptiveschedulingCPU

Utilization utilization s high. It is low in nonpreemptivescheduling.
Examples of preemptive Examplesof nonpreemptivescheduling
schedulingareRoundRobinand are First Come First Serve and Shortes

Examples ShortesRemainingTime First. JobFirst.

28

s ha

Part A
1.Whatis anembedded systemWhatare thecomponent®f embeddedystem?

2.Whatarethe applications ohnembeddedystem?
3.Interpret aboueémbeddednicrocontroller.

4 Whatarethevariousclassificationof embeddedystems?

5.Defineinterruptlatency?How to avoidit.

6.ldentify someof the hardwaregpartsof embeddedystems?
7.Whatare thevarioustypesof memoryin embedded systems?

8.Whataretherequirement®f embeddedystem?

9.1dentify thefunctionsof memory?

10.Whatis shareddataproblem?

11.Summarize theaysto eliminate Share®ataproblem?
12.What is Round Robin Scheduling?

13.Compare round robin scheduling with and without interrupt.

14.1dentify the functions of DMA
15.Interpret purpose of a bus?

Part B

1.Analyzein detailaboutthedatatransfermechanisnusingDMA in Embeddedystem.
2.Explainin detailaboutinterruptservicingMechanismn anembeddedevice.

3.Elaboratehebasicprocessorandhardwareunitsin theembeddedystem.
4.Explainin detailaboutinterruptlatencyandtheir solutions.

5.Appraise in detail about Round Robin Scheduling with and without interrupt. G
example also.

6.Explainin detailaboutshared data probleemdhow to avoid it. Give example

TEXT/ REFEENCE BOOKS
1.David E.SimonfiAn Embedded Softwale r i me r 0 , Pear sol

~

2 . Frank Vahid and Tony Gwargi e, i
Sons,2002

3. Steve Heat h, AEMDbed®&eahd iia,20804n

29

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT -2 REAL TIME OPERATING SYSTEM

30

UNIT 2 REAL TIME OPERATING SYSTEM

Task and Task states Task and data Semaphore and shared data operating system services
Message queues timing functions Events Memory management Interrupt routines in an RTOS
environment Basic design using RTOS.

Embedded systemsare microcontrollerbasedsystemsthat are designed to perform
specific functions such as reading sensor data, responding to external events,
communicatingvith other systems;ontrolling processegtc. The tricky part is to make
the distinction of what exactly qualifies such a system asreal-time. Ar e ralb t
embeddedsystemsoperatingin reakttime? In order for an embedded system to be
classifiedas reaktime, it must guaranteea strictly defined responsetime to the events
it is tasked with observing anzbntrolling. It should be noted thatll systems have a
response time (latency). Reahe embedded systems dot react immediately to every

eventbut can guarantee a worse caseresponsetime.

Realtime operating systems(RTOS) provide a framework that enables guaranteed
responsetimes and deterministic behaviour This is achieved using a scheduling
mechanism. This mechanism is at the heart of every RTOS. We can designtanesal
embeddedsystemwithout the useof RTOS, however,usingonecan make the design
processshorterandthe whole systemeasierto manage.

As partof theembeddedystemabstractioriayers, an RTOS is placed above the low
level devicedrivesandbelowthe user application. The RTOS does not provide low -
level drivers for microcontrollerperipherals.Some RTOS may contain middleware

softwaresuchas networking,file systemsetc.(fig 2.1)

e

Low Level Drivers

Hardware

Fig.2.1 RTOS within the embeddedsystemabstractionlayers

31

2.1Task and Task States
Tasks

Taskis a pieceof codeor programthatis separatdrom anothertaskand canbe
executethdependentlyf theother tasks.

In embeddedsystems,the operatingsystemhas to deal with a limited number of
taskslependingon thefunctionality to bemplemented in the embedded system.

Multiple tasksarenot executedat the sametime insteadthey areexecutedn pseudo
paralleli.e. thetasks execute in turras the uséhe processor.

From a multitasking point of view, executing multiple tasks is like a single book being read
by multiplepeopleatatimeonly onepersorcanreadt andthentaketurnstoreadit. Different
bookmarkamay beused tahelp a readeidentify whereto resume readingext time.

An Operating System decides which task to execute in case there are multiple tasks to be
executed.The operatingsystemmaintainsinformation aboutevery task and information
abouthe state ofeach task.

The information about a task is recorded in a data structure calleabkheontextWhen a

task is executing, it uses the processor and the registers available dotsadif processing.

When a task leaves the processor for another task to execute before it has finished its own,
it should resume at a later time from where it stopped and not from the first instruction. This
requiresthe information aboutthe taskwith respectto the registersof the processoto be
storeddomewhereThis information is recorded in thaskcontext.

A C++version of araskthat holdsall informationneeded byperating systens as follows:

classTask
{
public:
Task(void(*function)(), Priority p, int stackSize);

Taskld id;Context context;
TaskState stat@riority
priority;

int * pStack;Task *pNext;

32

void (*entryPoint)();

private:

staticTaskldnextld:;

Task States

In anoperatiorsystentherearealwaysmultipletasks At atime only onetaskcanbeexecuted.
This means that there are othiasks whicharewaiting their turn to bexecuted.

Depending upon execution or not a task may be classified into the following three states (Fi
2.2):

Running state- Only one task can actually be using the processor at a given time that task is
said to be the Arunningo task and its state
stateat thesame time

Ready state- Tasks that are naurrently using the processor but are ready to run are in the
i r e sstaitg. dherenaybeaqueueof tasksin the ready state.

Waiting state- Tasksthatareneitherin runningnor readystatebutthatarewaiting for some
eventexternaltb hemsel ves to occur before the can go

State

Figure: Task States

Fig 2.2 Task States

A transitionof statebetweernthereadyandrunningstateoccurswhenevetheoperatingsystem
selectsa new task to run.

The task that wagreviously in running state becomes ready and the new task is promoted to
running state.

33

A taskwill leaverunningstateonly if it needdo wait for someeventexternalto itself to occur
before continuing.

A task's statean bedefinedas follows:
enumTaskStatgReady, Running,Waiting};
SCHEDULER

Theheartandsoul of anyoperatingsystemis its scheduler.

This is the piece of the operating system that decides which of the ready tasks has the right to
usethe processor atgiven time.

It simplechecksto seeif the runningtaskis the highestpriority ready taskSomeof the more
common scheduling algorithms:
First-in-first -out

Firstin-first-out (FIFO) scheduling describem operatingsystem whichs nota multitasking
operatingsystem.

Eachtaskrunsuntil it is finished,andonly afterthatis the nexttaskstartedon a first come
first served basis.

Shortestjob first

Shortestjob first schedulingusesalgorithmsthat will selectalways selecta task that will
requiretheleast amounof processor timé complete.

Round robin.

Roundrobin scheduling usealgorithmsthatallow everytaskto executdor afixed amountto
time.

A runningtaskis interruptedan put to awaiting stateif its executiontime expires.
SchedulingPoints

The scheduling points are the set of operating system events that result in an invocation of the
scheduler.

There are three such eventssk creation andtask deletion. During each of these events a
methodis called to seledthe next task to beun.

A third scheduling point called thdock tick is a periodic event that is triggered by a timer
interrupt. When a timer expires, all of the tasks that are waiting for it to complete are changed
from thewaiting state tahe ready state.

ReadyList

The scheduler uses a data structure calledethay list to track the tasks that are in the ready
State.

The ready list is implemented as an ordinary linked list, ordered by priddtthe head of this
list is always the highest priority task that is ready toldlmtask

If thereare no tasksin the ready statewhen the scheduleris called, the idle task will be
34

executed.

The idle task looks the same in every operating systémidle task imlways considered to

be in the ready stat8&cheduler

The scheduleris anintegral part of every RTOS. It controls which task should be
executedat any given point in time. The schedulemay usevarioustypesof algorithms
for performingthe schedulingof the tasks. Almost all of these algorithms can be

classifiedinto two maintypes:

1 Preemptive Schedulingi this algorithmallows the interruptionof a currentlyrunning
task, so anotherone with higherpriority canbe run.

1 Non-preemptive Scheduling(C-operative Scheduling i once a task is startedit
candt be itiwill tue untl b gecidesdthat itshould release th€PU to another

task.
Advantages:

1 Better Structure and Scalability T UsinganRTOSgivesyou awell-definedmechanism
for addingandremovingsoftwaremodules.

T Timing Constraints -UsingRTOSmakest easierto fulfill the timing requirementof
the many modulesusedin complexembeddedsystems.

T Better Focusi RTOS allowsyou tofocus on the actuahpplication by offloadingthe
developmenbf componentssuch as memory managementexceptiorhandling,power
managementetc.

T Functional Safetyi Thereare RTOSdistributionsthat are pre-certified for standards
suchas|EC 61508and SO 26262.This cangreatlyreduce the developmenteffort in

systemsthat must comply with suchstandards.

Disadvantages:

1 Learning Curve i Even the simpler reattime operating systemswill requiretime
for learningtheir specificsand how to properly usethem.

1 Price and Licensingi Althoughthereare manyfree RTOS,their licensesmaydiffer a
lot. If you want to use a free RTOS for commercial products there maybe some

limitations or fees.

Popularreattime operatingsystemsare FreeRTOS, mBed, TinyOS, Riot, Zephyr,
etc.

35

2.3 Semaphore
Multiple concurrent threads of execution within an application must be able to synchronize
theirexecution anadoordinatenutually exclusiveaccesso shared resources.
To address theseequirements, RTOS kernels provide a semaphore object and associated

semaphorenanagemengervices.

Semaphores
A semaphordsometimescalleda semaphordoken)is a kernelobjectthat oneor more
threadsf execution caracquireor releasefor the purposes okynchronization omutual
exclusion.
When a semaphore is first created, the kernel assigns to it an associated semaphore control

block (SCB), a unique ID, a value (binary or a count), and awasing list, as shown ifigure
2.3.

Semaphore-
Control Block
sSCB
Semaphore — =
Name or ID Task-Waiting List
= B
Z
Task 1| [Task2 | ===
~
T E——— >
Value |
Bi \Determines how many
IRl O semaphore tokens are
Count

available.

Fig 2.3Semaphore
A semaphorgs like akeythatallowsataskto carry out someoperationor to accessresource.

If the task can acquire the semaphore, it can carry out the intended operation or access the

resource.

A singlesemaphoreanbeacquiredafinite numberof times.

In this senseacquiringa semaphorés like acquiringthe duplicateof a key from anapartment
managewhentheapartmentmanagerunsoutof duplicatesthemanagercangive outnomore

keys.

Li kewi se, when a semaphorebés | imit i s reach
givesakey back oreleaseshe semaphore.

The kernel tracks the number of times a semaphorehas been acquiredor releasedby
maintainingatokencount, which ignitialized toavaluewhen thesemaphorés created.

As a task acquires the semaphore, the token count is decremented; as a task releases the

36

semaphorehecount is incremented.

If thetokencountreache®, thesemaphoréas no tokenkeft.

A requestindask,thereforecannotacquirethesemaphoreandthetaskblocksif it chooseso
wait for the semaphoréo becomeavailable.

Thetaskwaiting list tracks all taskblockedwhile waiting on anunavailable semaphore.

Theseblockedtasksarekeptin thetaskwaiting list in eitherfirst in/first out (FIFO) order
orhighestpriority first order.

Whenanunavailablesemaphorbecomesvailable thekernelallowsthefirst taskin the
taskwaiting list to acquireit.

The kernelmovesthis unblockedtask eitherto the running state,if it is the highest
prioritytask,or to theready stateyntil it becomeghehighest priority taskand is abldo run.
Note that the exact implementation of a taskting list can vary from one kernel to
anotherA kernel can supportmany different types of semaphoresncluding binary,
counting,andnutuatexclusion(mutex) semaphores.

1- Binary Semaphores

A binarysemaphoreanhaveavalueof eitherO or 1.

Whenabinarys e ma p hvalueis @ the semaphorés considerecdunavailable(or
empty)whenthevalueis 1, thebinary semaphoris considered availabler full).

Notethatwhena binary semaphoraés first createdjt canbeinitialized to eitheravailable

orunavailablgl or0, respectively).

Thestatediagram ofa binary semaphoris shownin Figure2.4

Acquire
(value =0)

Initial Available Unavailable Initial
value = 1 value =0
Release

(value = 1)

Fig 2.4Binary Semaphore
Binary semaphoreare treatedas global resourceswhich meansthey are sharedamong
alltasksthatneed them.
Making the semaphora globalresourceallows anytaskto releasat, evenif thetaskdid

notinitially acquireit.

37

2- CountingSemaphores :

A counting semaphongses aountto allowit to beacquiredor releasednultiple times.

Whencreatinga countingsemaphoreassignthe semaphore countthat denoteshe
numbeof semaphoréokens it has initially.

If theinitial countis O, thecountingsemaphorés createdn theunavailablestate.

If thecountis greatethanO, thesemaphorés createdn theavailablestate andthenumber

oftokensit has equals its courds shownn Figure2.5

Release
(count = count + 1)

Release
(count=1)

Available .

Initial count > 0 Unavailable Initial count = 0

Acquire
(count = 0)

Acquire
(count = count -1)
Fig 2.5Counting Semaphore

Oneor moretaskscancontinueto acquireatokenfrom thecountingsemaphorentil notokens
areleft.
Whenall thetokensaregone the countequals), and thecountingsemaphorenovesfrom
theavailablestateto theunavailablestate.
To move from the unavailablestatebackto the availablestate,a semaphoréoken must
bereleasedy any task.
Note that, aswith binary semaphores;ountingsemaphoreare global resourceghat can
besharedvy all tasks that need them.
Thisfeature allowsanytaskto releasea countingsemaphoréoken.
Eachreleaseoperationincrementghe countby one,evenif the taskmakingthis call did
notacquire aokenin thefirst place.
Someimplementations ofountingsemaphoremight allow the countto bebounded.
A boundedcountis a countin which the initial count set for the counting semaphore,
determinedwhen the semaphorewas first created,acts as the maximum count for the

semaphore.

38

An unbounded courdllows the counting semaphore to count beyond the initial count to the
maxi mum value that can be -haeudnsigndadyntegethhoeanc oun't

unsignedong value).

3- Mutual Exclusion(Mutex) Semaphores

A mutual exclusion (mutex) semaphoreis a special binary semaphore thatipports
ownership, recursivaccess, taskleletion safety,and one or more protocoldoravoiding
problems inherertb mutual exclusion.

Figure2.6illustratesthe statediagramof a mutex.

Acquire (recursive)

. (lock count = lock count +1)
Acquire

(lock count = 1)

Initial
(lock count = 0)

Release

(lock count = 0)

Release (recursive)
(lock count = lock count - 1)

Fig 2.6 Statediagram of a mutex
As opposedo the availableand unavailablestatesin binary and countingsemaphores,
thestatesof amutex araunlocked olocked (0 orl, respectively).
A mutex is initially created in the unlocked state, in which it can be acquired by Aftask.
beingacquired, thenutex movego thelocked state.
Conversely, when the task releases the mutex, the mutex returns to the unlocked state. Note
that some kernels might use the terms lock and unlock for a mutex instead of acquire and
release.
Dependingntheimplementationamutexcansupportadditionalfeaturesnotfoundin binary
or counting semaphores.
These key differentiatinfeatures include ownership, recursive locking, task deletion safety,

andpriority inversion avoidance protocols.

Mutex Ownership-

Ownership of a mutex is gained when a task first locks the mutex by acquiGagvtersely,
atasklosesownershipof the mutexwhenit unlocksit by releasingt.

When a task owns the mutex, it is not possible for any other task to lock or unlock that mutex.
Contrast this concept with the binary semaphore, which can be released by any task, even a
taskthatdid notoriginally acquirehe semaphore.

39

Recursivd_ocking :-

Many muteximplementationslsosupportrecursivelocking , which allows the taskthatownghe
mutex to acquir@ multiple times in thdocked state.

Dependingon the implementationyecursionwithin a mutex can be automaticallybuilt into the
mutex,or it might need tdoe enabledexplicitly when themutexis first created.

Themutexwith recursive lockings calleda recursivanutex.

This type of mutex is most usefithen a task requiring exclusive access to a shared resalice
oneor moreroutines that also requieccesdo the sameresource.

A recursive mutex allows nested attempts to lock the mutex to succeed, rather thaleadloszk
, Which is a condition in which two or more tasks are blocked and are waitingutwally

locked resources.

As shown in the above figure, when a recursive mutex is first locked, the kernel registers the
taskthatlocked it as th@wnerof the mutex.

On sucessive attempts, the kernel uses an internal lock count associated with the rirate to
the numberof timesthat the task currently owning the mutexhasrecursivelyacquiredit. To
properlyunlockthe mutexjt mustbereleased theamenumberof times.

In thisexamplealock counttracksthetwo statesof amutex(0 for unlockedand1 for locked)as
well as thenumberof timesit has been recursively locked (lockunt> 1).

In otherimplementationsa mutexmight maintaintwo counts:a binary valueto trackits state,
andaseparatéock count to trackhe numberof timesit hasbeenacquiredn thelock stateby
thetaskthat ownat.

Do not confusethe countingfacility for alockedmutexwith the countingfacility for acounting

semaphore.

The count used for the mutex tracks the number of times that the task owning the mutex has
lockedor unlocked themutex.

Thecountusedor thecountingsemaphoréacksthenumbernf tokenghathavebeermacquired

or released by any k. Additionally, the count for the mutex is always unbounded, which

allowsmultiple recursiveaccesses.

TaskDeletionSafety:-

Somemuteximplementations alsbavebuilt-in taskdeletionsafety.

Premature taseteletionis avoidedby usingtaskdeletionlockswhena taskocksand
unlocksa mutex.

Enablingthis capability within a mutex ensureghat while a task ownsthe mutex, the

taskcannotbedeleted.
40

Typically protectionfrom prematurealeletionis enabledy settingtheappropriate

initializationoptionswhen creating the mutex.

Priority InversionAvoidance:-

Priority inversion commonly happens in poorly designedties embedded applications.
Priority inversionoccurswhena higherpriority taskis blockedandis waiting for a
resourceeingused bya lowerpriority task,which has itselfoeen preempted lnunrelated
mediumpriority task.

In this situation,the higherpriority t a s kidrity level haseffectively beeninvertedto
thdower priority t a slévél.s

Enablingcertainprotocolsthataretypically built into mutexescanhelp avoid priority
inversion.

Two commonprotocols usedbr avoidingpriority inversioninclude:

A- Priority Inheritance Protocol ensures that the priority level of the lower priority task that

hasacquiredhe mutexis raisedto thatof the higherpriority taskthathasrequestedhe mutex
wheninversionhappensThepriority of theraisedtaskis loweredto its original valueafterthe
taskreleases themutex that thénigherpriority task requires.

B- Ceiling Priority Protocol:- ensureshatthepriority level of thetaskthatacquireshemutex

is automatically set to the highest priority of all possible tasks that mighesethat mutex
whenit is first acquired untilt is released.

Whenthemutex isreleasedthe priority of thetask islowered taits original value.
2.4 MessageQueue

A messagegueuds abuffer-like objectthroughwhichtasksandISRssendandreceive
messages to communicate and synchronize with data. A message queue is like a pipeline. It
temporarily holds messages from a sender until the intended receiver is ready to read them.
Thistemporanpufferingdecouplessendingandreceivingtask;thatis, it freesthetasksfrom
havingto send and receivaeessages simultaneously.

A messagegueuehasseverabssociatedomponentshatthekernelusego managehe
gueue. When a message queue is first created, it is assigned an associated queuedontrol bl
(QCB), a message queue name, a unique ID, memory buffers, a queue length, a maximum

messagéength, and oner moretaskwaiting lists, asllustrated inFig 2.7

41

Quoue Control Memory

Block (System Pool or
Private Buffers)
oce
! : Receiving Task
Sending Task i Q Name/lD |
Waili:g LT:sl ' .1 Walting List
T 1 c=b
Maximum
wws | Task Task Message Task Task | =ee
(o] (o o | e (]
L1 IR S
Queue Length \
osd S
Figure 2.7 : A message queue, its associated parameters, and supporting data
structures.
It is the kernelds job to assign a ahi que

taskwaitinglist. Thekernelalsotakesdevelopersuppliedparametei® suchasthelengtiof the
gueue and the maximum message ledigthdetermine how och memory is requirefdr the
message queue. After the kernel has this information, it allocates memoryrfasbaggueue

from either goool of system memory aomeprivate memory space.

The message queue itself consists of a number of elemerisfeabich can hold a
single message.The elements holding the first and last messages are called
the headandtail respectively. Some elements of the queue may be empty (not containing a
message). The total number of elements (empty or not) in the queueéasathength of the

gueue. Thedeveloper specifiethe queudengthwhen thequeuewascreated.

As fig 2.7 shows, a message queue has two associatedddsig lists. Thereceiving task

waiting list consists of tasks that wait on the queue when it is empty. The sending list consists
of tasks that wait on thgueuewhen it is full.

MessageQueueStates

As with otherkernelobjects messaggueuedollow thelogic of asimpleFSM, asshownin fig

2.8 When a message queue is first created, the FSM is in the empty state. If a task attempts to
receive messages from this message queue while the queue is empty, the task blocks and, if it

chooses to, is held on the messageuqisetaskvaiting list, in either a FIFO or prioritpased
order.

42

Message Delivered
(msgs = msgs ~1)

Queve Created Message Delivered (I Message Delivered
(msgs = 0) (msgs = 0) \ (msgs = msgs ~1)

ION (e (v)
M A. G ‘! ;e.;age Arrived
esage Amiee J (msgs = Queue Length)

(msgs = 1) \ /

Message Arrived
(Msgs = msgs +1)

Figure2.8 : Thestatediagram foramessageueue.

In thisscenarioif anothetasksendsamessag# themessaggueuethemessages delivered
directly to the blocked task. Thiocked task is then removed from the taskting list and
moved to either the ready or the running state. The message queue in this case remains empty

becausdt has successfully delivered the message.

If another message is sent to the same message apetne tasks are waiting in the message

gueue'saskwaiting list,the messaggueue's statbecomes not empty.

As additional messages arrive at the queue, the queue eventually fills up until it has exhausted
its freespaceAt this point,thenumberof messages thequeues equalto thequeue'sength,

and the message queue's state becomes full. While a message queue is in this state, any task
sending messages to it will not be successful unless some other task first requests a message

from that queuethus freeing a queuslement.

In some kernel implementations when a task attempts to send a message to a full message
gueue the sendingfunctionreturnsan error codeto thattask.Otherkernelimplementations

allow suchataskto block, movingtheblockedtaskinto thesendingaskwaitinglist, whichis

separatdérom thereceiving taskwaiting list(fig. 2.9).

tSendingTask ——» e tReceivingTask

o

Message queus's ! Receiving task's |
' | memory area

Figure2.9: Messageopyingand memorysefor sendingand receivingnessages.

43

MessageQueueContent

Messagaejueuesanbeusedto send andeceivea variety of data. Somexamplesnclude:
A atemperatureralue fromasensor,

abitmap to draw on display,

atext messagw printto an LCD,

akeyboard eventand

> > > >

adatapacket tosendover thenetwork.

Some of these messages cambie long and may exceed the maximum message length,
which is determined when the queue is created. (Maximum message length should not be
confused with total queue length, which is the total number of messages the queue can hold.)
One way to overcome tHienit on message length is to send a pointer to the data, rather than
the data itself. Even if a long message might fit into the queue, it is sometimes better to send
apointerinstead in order to improvath performancand memoryutilization.

When a task sends a message to another task, the message normally is copied twice, as shown

in fig 2.9. The first time, the message is copied when the message is sent from the sending
taskds memory area to the senend®pypeEursgunenthe 6 s me
messagés copiedfromthemessagg u e unemosyareaothereceivingt a snkeda@yarea.

An exceptiorto this situationis if thereceivingtaskis alreadyblockedwaiting atthemessage
queueDependingpnak e r nimpleentationthemessagenightbecopiedjustoncein this

cas® fromthesending a snked@yareaothereceivingt a snkem@yareapypassinghe

copytothemessagg ueueds memory area.

Because copying data can be expensive in termsrfafrpgnce and memory requirements,
keep copying to a minimum in a re¢ahe embedded system by keeping messages small or, if
thatis not feasible, by using@ointer instead.

MessageQueueStorage

Differentkernelsstoremessaggueuesn differentlocationsn memory.Onekernelmightuse
a system pool, in which the messages of all queues are stored in one large shared area of
memory. Another kernel might use separate memory areas, called private buffers, for each

messagegueue.

SystemPods

Using a system pool can be advantageous if it is certain that all message queues will never be

filled to capacity at the same time. The advantage occurs because system pools typically save

44

onmemoryuse.Thedownsidds thatamessaggueuewith largemessagesaneasilyusemost
of thepooledmemory notleavingenoughmemoryfor othermessaggueuesindicationsthat
thisproblemis occurringincludeamessagegueuehatis notfull thatstartsrejectingmessages

sentto it or afull messagegueuethatcontinues to accept momeessages.

Private Buffers

Using private buffers, on the other hand, requires enough reserved memory area for the full
capacity of every message queue that will be created. This approach clearly uses up more
memay; however, it also ensures that messages do not get overwritten and that room is

availablefor all messages, resulting betterreliability than thepool approach.

Typical MessageQueueOperations

Typical messagegueueoperationsnclude thefollowing:
A creatinganddeletingmessaggueues,

A sendingandreceivingmessagesand

A obtainingmessageueue information.

Typical MessageQueueUse

Thefollowing aretypical waysto usemessaggueues withiranapplication:
A nortrinterlocked,oneway datacommunication,

A interlocked,oneway datacommunication,

A interlocked two-way datacommunicationand
A

broadcastommunication.

2.5 Interrupt routinesin RTOS environment

ISRshavethehigherprioritiesovertheRTOSfunctionsandthetasks An ISR shouldnotwait

for a semaphore, mailbox message or queue message An ISR should not also wait for mutex
else it has to wait for other critical section code to finish before the critical codes in the ISR
can run. Only the IPC accept function for thesents (semaphore, mailbox, queue) can be

used,not thepost function

Interrupt Routine Rules
Interruptroutinesin RTOS musfollow two rules thatdo notapply totaskcode:

1 An interruptroutinemustnot call anyRTOSfunctions thatmightblock.
T couldblock thehighest prioritytask

1 might notresetthe hardwareor allow furtherinterrupts

45

1 An interruptroutine mustnot call any RTOS function that might causethe RTOS to
switchtasks
T causinga higherpriority taskto run maycausetheinterruptroutineto takeavery long

time tocomplete.

Low- and high-level ISRs
Low-level ISR

A low-level interrupt service routine (LISR) executes as a normal ISR, which includes using
the current stack. Nucleus RTOS saves context before calling an LISR tordge®ntext

after the LISR returns. Therefore LISRs may be written in C and may call other C routines.
However, there are only a few Nucleus RTOS services available to an LISR. If the interrupt
processing requires additional Nucleus RTOS services, ddwghinterrupt service routine
(HISR) must beactivated. Nucleus RTOSupports nesting ahultiple LISRS.

High-level ISR

HISRs are created and deleted dynamically. Each HISR has its own stack space and its own
control block. The memory for eachsspplied by the application. Of course, the HISR must
becreatedeforeit is activatedoy anLISR. SinceanHISR hasits own stackandcontrolblock,

it canbetemporarilyblockedif it tries toaccess &lucleusRTOSdatastructurethatis already

beingaccessed.

2.6 Memory Management

A kernel manages program code within an embedded system via tasks. The kernel must also
have some system of loading and executing tasks within the system, since the CPU only
executes task code that is in cache or RAM. Withtiplel tasks sharing the same memory
space, an OS needs a security system mechanism to protect task code from other independent
tasks Also, sinceanOSmustresidein thesamememoryspaceasthetasksit is managingthe
protection mechanism needs to u® managing its own code in memory and protecting it

from the task code it is managing. It is these functions, and more, that are the responsibility
ot he memory management components of an OS.

responsibilitiesnclude:

1 Managingthe mappingbetweerogical (physical) memorandtaskmemoryreferences.
1 Determiningwhich processeto loadinto theavailablememoryspace.

T Allocatingand deallocatingf memory forprocessethatmakeup the system.

46

Supportingnemoryallocationanddeallocatiorof coderequestgwithin a process),
suchastheCl anguagend ai dfenatiors,orspecificbufferallocationand
deallocatiorroutines.

Trackingthe memoryusageof systemcomponents.

Ensuringcachecoherency (fosystems with cache).

= =4 =4 -4 -—a -2

Ensuringprocessmemoryprotection.
Physical memory is composed of tdonensional arrays made up of cells addressed by

auniguerow andcolumn, in which eachell can stord. bit.

Again, the OStreatsmemoryasonelargeonedimensionahrray,calleda memorymap.
Eitherma hardware componentintegratedin the master CPU or on the board does the
conversionbetween logical and physical addresses (such m&raory management unit
(MMU)), or it mustbe handled via th®©S.
How OSs manage the logical memory space differs from OS to OS, but kernels generally run
kernel code in a separate memory space fpyotesses running higher level code (i.e.,
middleware and application layer code). Each of these memory skangsl¢ontainingkernel
code andusercontaining the highelevel processes) is managed differently. In fasdstOS
processesypically run in oneof two modes:kernelmodeand usermode, dependingn the
routines being executed.Kernel routines run in kernel modéalso referred toassupervisor
mode), in adifferentmemoryspaceandlevelthanhigherlayersof softwaresuctas middleware
or applications. Typically, these higher layers of software ruisén modeand can only access
anything runningn kernel mode viaystem calls the highedleveli nt er f aces t o t h

subroutines. The kernel manages memory for lisétf and useprocesses.

User Memory Space

Because multiple processes are sharing the same physical memory when being loaded
into RAM for processing, there also must be some protection mechanism so processes cannot
inadvertently affect each other whbeingswappedn and out of a single physical memory
space. These issues are typically resolved
partitions of memory arswappedin and out of memory at runtime. The most common
partitionsof memoryusedin swappingaresegmentgfragmentatiorof processefrom within)
andpages(fragmentation of logical memory as a whole). Segmentation and paging not only
simplify the swapping memory allocation and deallocatidrof tasks in memory, but allow
for codereuse andmemoryprotection aswell asprovidingthefoundationfor virtual memory:.

Virtual memoryis amechanisnmanagedy theOSto allowad e v i limiéed rsemoryspace

to be shared by multiple competdeaygi cieubsser ac tt
47

physicalmemory spacento alargerfivi r t ual 0 memory space.

UserMemory Space

Because multiple processes are sharing the same physical memory when being loaded
into RAM for processing, there also must be some protection mechanism ssspsocannot
inadvertently affect each other when besvgappedn and out of a single physical memory
space.Theseissuesare typically resolvedby the OS throughmemoryi s wa p pvheneg , 0
partitions of memory arewappedin and out of memory atuntime. The most common
partitionsof memoryusedn swappingaresegmentg¢fragmentatiorof processeom within)
andpages(fragmentation of logical memory as a whole). Segmentation and paging not only
simplify the swapping memory allocation and dedatationi of tasks in memory, but allow
for codereuseandmemaoryprotection aswell asprovidingthefoundationfor virtual memory
Virtual memoryis amechanisnmanagedyy theOStoallowad e v i limieednsemoryspace
to be sharedbynul t i pl e competing fAusero tasks, i no

physicalmemory spacento al ar g & r fimeraory&pace.

Segmentation

A process encapsulates all the information that is involved in executing a program, including
sourcecode, stack, and data. All of the different types of information within a process are
divided into fAlogical 0 memory units of varia
logical addresses containing the same type of information. Segment addmessagical
addressethatstartat0, andaremadeup of asegmenhumberwhichindicategshebaseaddress

of the segment, and a segment offset, which defines the actual physical memory address.
Segments are independently protected, meaning they have assigned accessibility
characteristics, such as shared (where other processes can access that segruay), sead

read/write.

Most OSs typically allow processes to have all or some combination of five types of
information within segments: textr@ode) segment, data segment, BSS (block started by
symbol) segment, stack segment, and the heap segment. A text segment is a memory space
containing the source code. A data segment i
initialized variables (daf). A BSS segment is a statically allocated memory space containing
t he s our cirgtialized vheabls (daten The data, text, and BSS segments are all fixed
in sizeatcompiletime,andareassuchstaticsegmentsi is thesehreesegmentshattypically

arepart ofthe executabléle.

48

Executabldiles candiffer in whatsegmentsheyarecomposeaf, butin generatheycontain
a header,and different sectionsthat representthe types of segments,including name,
permissionsetc., whereasegment can bmadeup of oneor moresections.

TheOScreatesat a sirkageby memorymappinghecontentof theexecutabldile, meaning
loadingandinterpretinghesegments(sectionsjflectedn theexecutablénto memory.There

areseverakexecutabldile formatssupportedy embedde®dSs,themost commormnncluding:

2.7 BasicDesignUsingRTOS

Mostoperatingsystemsareputtogethebasedn kerneldesignsKerneldesignhasbeenused

for almost 4 decaddsecause it separates the operating system from the different applications
running on it. The different applications are allocated in different memory locations. The OS
processeaitilize kernel functionality through conductingsystemcalls. Systemcalls are
software interrupts that allow users to switch from the operating system to applications and
vice versa. Therefore, the kernel must install an interrupt handler that tackles different modes
of operation in order to ensure effective switches. The intetraptiler is enabled in the
program status (i.e., the supervisor mode and user mode). As such, protection is conducted on
the modern system on a chip (SoCs) at the peripheral side. However, some processor registers
can be changed if the CPU indicates aipaldr execution mode like master mode through
additional HWsignals.

All processes outside the operating system are implemented within the user mode and cannot
executeanyinstructionsavailedin supervisomodeonly. Meaningthatusermodeinstructions
holdanon-critical subsebf instructionsunderthe supervisomode.During aprocessuntime,

the supervisor mode under the PSW is disabled and only gets enabled once an interrupt like
external interrupt or system call occurs. The OS a&$/tdte user mode once the user process

is activated Notethat,a userprocesontains asirtual memoryaddresspacehatseparates

it from the kernel entirely. However, this feature is only available to embedded
microcontrollershat constitute a memory management unit that allows the use of virtual
memory. Virtuaimemory usage must be upheld without other unbound memory accesses such
as swapping oman externaldisk or changing(TLB) translationlookaside buffer entrieby
examininga dynamicallysized pagéable.

To utilize thefunctionalityofferedby the OSkerneldesign you mustidentify aninterfacethat

allows applications to run effectively while using it. The interface is known as the application
binary interface (ABI). ABldelineates a registered usage convention, a set of system calls, a
stack layout and facilitates binary compatibility. On the other hand, an API (application
programming interface) facilitates source code compatibility by defining a set of function

signatuesthatoffer a fixed interfacefor calling the requiredfunctions.The kernelcanhave

49

many designshut it must provide basicactivities like; processcommunication,process
synchronizationprocessmanagement and interruipandling.

Process management ensures that process termination, creation, dispatching, scheduling, and
switching context among other related activities run as required. In -imeabperating
systemjnterrupthandlingdiffers from the standardizedmplementationof aregularoperating
systemIinterruptsin regularoperatingsystemsanpreempiall runningprocessasmexpectedly.

This leadsto unbounddelaysthat are intolerablein a reattime operatingsystemAs such,
handlingof interruptiongs assimilatednto theschedulesothatit is scheduleclongwith other

important processes and feasibility is guaranteed even when interruption regeestde.

Part A

1.Definetask andlask state.

2.Define TaskControlBlock
3.Definelnter processommunication

4 DefineSemaphore.
5.InterpretPriority inversion?
6.DefineMessage Queue.

7.List the functionsf akernel.

8 Whatis a thread?

9.Whatare theproblemsof semaphore?
10What is memory managementembedded system?
11What is ISR?

Part B

1.Explainin detailaboutsemaphoreandits applications.

2 Whatis IPC?Mention the two methodsavailablefor it.
3.Explainin detailaboutmessaggueues.

4 Discussin detailaboutthefollowing. A) Timer functionevents
managemerfunctions.

5.Elaborate in detail about task and task state with suitable

TEXT/ REFEENCE BOOKS

1.David EESimonfAn Embedded Software Pri mer
Education,2001

2. Frank Vahid and Tony Gwargi e,
Wiley & Sons,2002

3. Steve Heat h, AEmbed®&eahd System De
Edition,2004.

50

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT -3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERAL

51

UNIT 3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERAL

Custom single purpose processors: Hardware Combination Sedeertassor design RT
level design optimizingsoftware: Basic Architecture Operation Programmers view
Development Environment ASIP Processor Degtgnipherals Timers, counters and watch
dog timers UART Pulse width modulator LCD controllers Key pad contsdieepper motor
controllers A/D converters Real time clock.

3.1Customsingle-purposeprocessors:Hardware

A single-purpose processor is a digital system intended to solve a specifputation
task. While a manufacturer builds a standangjle purpose processéor use in a variety
of applications, we build a custom singfaurpose processor &xecute a specific task
within our embedded system. An embedded system deslgp@sing to use a custom
singlepurpose, rather than a genepalpose, processoto implement partoas y st e mo s

functionalitymay achieveseverabenefits.

First, performance may be fast, due to fewer clock cycles resulting foust@mizedlata
path, and due to shorter clock cycles resulting from simpler functional units, less
multiplexors, or simpler control logic. Second, size magthball, due to a simpler data path
and no program memory. In fact, the processay be fasterandsmallerthana standard
oneimplementing the samefunctionality, sSincewe canoptimize the implementatiorfor

our particulartask.

However, because we probabipn't manufacture asnany of thecustomprocessor as a
standard processor, we may not be able to invest as muchuNRES the embeddsgistem
we are building will be sold in laegquantities or doasot have tight cost constrainiBhis

fact could actually penalize performance armk.

Combinational logic design

A transistor is the basic electrical component of digital systems. Combinatiagssistors

form moreabstract components called logic gates, which desigmmargrily use when

52

building digital systems.Thus, we begin with a short descriptionof transistorsbefore

discussindogic design.

A transistor acts as a simple on/off switch. One type of trangBMOS-- Complementary

Metal Oxide Semiconductor)s shownin Figure 3.1(a). The gate

(not to be confused with logic gate) controls whether or not current flows frosotineeto
thedrain. When a high voltage (typically +5 Volts, which we'll referadpgic 1) is applied

to the gate, the transistor conducts, so current flows. Wherdtage (which we'll refer to

as logic 0, typically ground, which is drawn as sevieogizontal lines of decreasing width) is
applied to the gate, the transistor doesconduct.We canalso build a transistorwith the
oppositefunctionality, illustratedn in Figure 3.1(b). When logic 0 is applied to the gate, the
transistor conducts, arvdhen logic 1 is applied, the transistor does not conduct. Given these
two basidransistors, we can easily budctircuit whose output inverts its gate inputslagwn

in in Figure 3.1(c). When the inputis logic 0O, the top transistor condugesd the bottom
does not), so logic 1 appears at the oupuVe can also easilyuild acircuit whose output

is logic 1 when at least one of its inputs is logic Osfa®wvn in Figure 3.1(d). When at least
one of the inputg andy is logic 0, then aeastone of the top transistorsconducts(and the
bottom transistorsdo not), sdogic 1 appears d&. If both inputs are logic 1, then neither of
the top transistorsonducts, but both of the bottom ones do, so logic 0 appearsigewise,

we caneasilybuild a circuit whose output is logic 1 when both of its inputs are logic 0, as
illustrated in Figure 3.1(e). The three circuits shown implement three basiogkgis.an
inverter, aNAND gate,andaNOR gate.

Figure3.1: CMOStransistoimplementation®f somebasiclogic gates(a) nMOS
transistor(b) pMOStransistor, (c) inverte{d) NAND gate,(e) NORgate.

source +5V +5V +5V
l Conducts
gate |

if gate=+5\V x _Cl b_ y X _q

drai F=
. X F=(xy)y—

ource X 4 F=(x+
STy | ey ' ALk
drain — —

(b) (c) (d) (e)

53

Figure3.2:Basiclogic gate:
X X X
D e D BEED FEEDY 3y
00 0 00/ 0 01O 0 0[O
11 0 10 0 1|1) 0 1|1
F=x F=xy 1 0 |OF=x+y 1 0|1 F=xAy 1 0|1
Driver AND 1 1 |10R 1 1 |1 [XOR 1 110
X X X
X Flx | F = F x y |F F X y|F F x y | F
uE y oo 11 Y 0 01| vy 0 01
0O 110 — 0O 1|0
10 0 111 1 00 FEXSY 1 50
F=x 6 F=(xy) |1 01 F= (x 7 10 XNOR
Inverter NAND 1 110 NOR 1 1)1

Digital system designers usually work with logic gates, not transistors. Figutest:@2bes 8
basic logic gates. Each gate is represented symbolically, with a Beqlestion, and with a
truth table. The truth table has inputs on the &ftl output othe right. The AND gate outputs

1 if and only if both inputs are 1. The OR gatgputs 1 if and only if at least one of the inputs
is 1. The XOR (exclusiv®R) gateutputs 1 if and only if exactly one of its two inputs is 1.
The NAND, NOR and XNOR gates output the complement of AND, OR, and XOR,
respectively. As yomight have noticed from our transistor implementations, the NAND and

NOR gateareactually simpler tduild thanAND andOR gates.

A combinational circuit is a digital cirduwhose output is purely a function of itsirrent
inputs; such a circuit has no memory of past inputs. We can apply a tectpdgueo design

a combinationakircuit usingour basiclogic gates, asillustrated in Figure 3.3. We start with

a problem description, which describes thgputs in terms of the inputs. We translate that
description to a truth table, with glbssible combinations of input values on the left, and
desired output values on thight. For each output column, we can deran output equation,
with one term perow. However, we often want to minimize the logic gates in the circuit. We
canminimizetheoutputequationdy algebraicalIymaniplélIaiingheequationsAIternativer,

we can use Karnaugh maps, as shownin the figure. EQr;cew e 0 obtainedthe desired

outputequationgminimized or not), we candraw the circuitdiagram.

54

Figure3.3: Combinationalogic design.

(a) Problemdescription (d) Minimized outputequations
y
y is1if aisequalto 1, orbandcis a\bc 00 01 11 10
equalto1l.zis 1ifb orcis equal 0
to 1, butnotboth.
1
(b) Truthtable y=a+hbe
Inputs Outputs 3 bcoo 01 11 10
a b c y z I
0 0 0|0 O O 0 [:1:| O 1
0 O 1,0 1 —
0 1 0,0 1 1 0
0o 1 1,1 o0
1 0 0|1 O
1 0 11 1
1 1 0|1 1
1 1 1)1 1
a
b
(c) Outputequations ¢ y
c— O 1 0
y =a'bc+ ab'c'+ ab'c+ abc'+ . _|
abc —é—JDOﬁ\ 1¥‘\1 Z
./
z=a'b'c+a’bc'+ ab'c+ abc'+
abc —|>o—

Although we can design all combinational circuits in the above mannerclacgis would
be very complex to design. For example, a circuit with 16 inpatsd have 2, or 64K, rows
in its truth table. One way to reduce the complexity isse compon#s that are more abstract
than logic gates. Figure 3.4 shows sevsughcombinationatomponentswWe now describe
eachbriefly.

A multiplexor, sometimes called a selector, allows only one of its data ilmputspass
through to the output rhus, a multiplexor acts much like a railroaalitch, allowing only
one of multiple input tracksto connectto a single outputrack. If there are m data inputs,
then there are logm) select lines S, and we cdlis an mby-1 multiplexor(m data inputs,
one data output). The binary value ofl&ermines whicldata input passes through; 00...00

means 10 may pass, 00...0fans |11 may pass, 00...10 means I2 may pass, and so on. For

55

example, an 8xfnultiplexor has 8 data inputs and thus 3 select lines. $ktttoree select lines
havevalues of 110, then 16 wipass through to the output. So if I6 is 1, then the owtputd
be 1;if 16 is O, then the output would be 0. We commonly use a coonplex device called
an nbit multiplexor, in which each data inpuas well as theutput, consistsof n lines.
Supposehepreviousexamplauseda4-bit 8x1 multiplexor. Thus, it6is 0110, then the output
would be 0110.Note that n doesot affectthenumberof selectlines.

A decoder converts its binary inpuhto a onehot output O. "Onéiot" meanthat exactly
one of the output lines can be 1 at a given time. Thus, if therecuuts, then there must
be log(n) inputs. We call this a legh)xn decoder. Fogxamplea 3x8 decoder has 3 inputs
and 8 outputslf the input is 000, then theutput OO0 will be 1. If the input is 001, then the
output O1 would be 1, and so oncdmmon featur®n a decoder is an extra input called

enable. When enable is 0, alltputsare0. Whenenable is 1the decodefunctionsas before.

An adder adds two-hit binary inputs A and B, generating aibm output sumalong with an
output carry. For example, abit adder would have alit A input, a-bit B input, a 4bit
sum output, and aAhit carry output. If A is 1010 and B 1001,then sum would bé011and

carry wouldbe 1.

A comparator compares twehit binary inputs A and B, generating outptitat indicate
whetherA is lessthan,equalto, or greaterthanB. If A is 1010andBis 1001, therdess would
be0, equaWwould be0, andgreatemwould bel.

An ALU (arithmeticlogic unit) can perform a variety of arithmetic and lofgioctions onits

n-bit inputsA andB. Theselectlines Schoose the currefinction;

if thereare m possiblefunctions,thentheremustbe at leastlog.(m) selectlines.

Commonfunctionsincludeaddition,subtraction AND, andOR.

STANDARD SINGLE-PURPOSEPROCESSORSPERIPHERALS

Introduction

A single-purpose processor is a digital system intended to solve a seciffzutation task.
The processor may be a standard one, intendedderin a widevariety of applicationsin

which the sametaskmustbe performed. Themanufacturer of such an etfie-shelf processor
56

sells the device in large quantiti€3n the other hand, therocessor may be a custom one,
built by a designer tamplement a task specific to a particular application. An embedded
system designehoosing to use a standard singb@rpose, rather than a genepalpose,

processdo implement parbfa s y s tneionalisymdyachieveseverabenefits.

First, performancenaybefast,sincethe processors customizedor theparticular task at
hand. Not only might the task execute in fewer clock cyclesalbatthose cycles themselves
may be shorter. Fewer clocycles may result froormanydatapathcomponent®peratingn
parallel,from datapathcomponentpassing data directly to one another without the need for
intermediate register&haining), or from elimination of program memory fetches. Shorter
cycles mayresult from simpler functional units, less multiplexors, or simpler control logic.
For standardsingle purposeprocessorsmanufacturergnay spreadNRE cost over many
units. Thus, the processor's clock cycle may be further reduced by the asstarh IC
technology, leadingdge IC's, and expert designers, just as is thevadsgeneralpurpose
processors.

Second, size may be small. A singlerpose processor does not requirgragram
memory. Also, since it does not need to suppdat@e instruction set, ihay havea simpler

datapathandcontroller.

Third, a standard singlgurpose processor may have low unit cost, due tméreifacturer
spreading NRE cost ovenany units. Likewise, NRE cost may loev, since the embedded
systemdesignerneed notdesign a standardsinglepurposeprocessorandmaynot even

needto programit.

Timers, counters,and watchdogtimers

A timer is a device that generates a signal pulse at specified time interviate iAterval
is a "realtime" measure of time, such as 3 milliseconds. Thes&es are extremely useful
in systems in which a particular action, suchsasipling an input signar generating an
output signal,must be performed evel timeunits.

Internally, a simple timemay consist of a register, counter, and an extresmalyle
controller. The register holds a count value representing the nunddecktycles that equals

the desired redime value. This number can be computgEdgthe simpleformula:

Numberof clock cycles = Desiredreattimevalue/ Clockcycle

57

For example, to obtain a duration of 3 milliseconds from a clock cycle of 10
nanoseconds (100 MHz), we must count (3%40 10x1@ s/cycle) = 300 cycled.he counter
is initially loaded with thecount value, and then counts downemery clock cycle until O is
reached, at which point an output signal is generdted;ount values reloaded, andhe

procesgepeatstself.

To use a timer, we must configure it (write to its registers),ragpond to it®utput
signal. Whenwe usea timer in conjunctionwith a generalpurposeprocessorywe typically
respond to the timer signal by assigning it to an interagoie includethe desiredactionin
an interrupt serviceroutine. Many microcontrolers that include budin timers will have

special interrupts just for tisners,distinctfrom externalinterrupts.

Note that we could use a genepairpose processor to implement a tinifémowing
the number of cycles that each instructtequires, we could write l@op that executed the
desired number of instructions; when this loop completesknow that the desiredtime
passed. This implementationof a timer on adedicated genergdurpose processor is
obviously quite inefficient in term of sizeOne could alternatively incorporate the timer
functionality into a main progranput the timer functionality then occupies much of the
progr amods r uitle timefonethercompuatiansTigus,the benefitof assigning

timerfunctiondity to a specialpurposgrocessobecomes evident.

A counter is nearly identical to a timer, except that instead of couclday cycles

(pulses on the clock signal), a counter counts pulses on somimptiteignal.

A watchdog timer can b#hought of as having the inverse functionality thiaat ofa
regular timer. We configure a watchdog timer with a-teaé value, just@as with a regular
timer. However, instead of the timer generating a signal favesy X timeunits, we must
generate aignal for the timer every X time units.vife fail to generate this signal in time, then
the timer generates a signal indicatthgt we failed. We often connect this signal to the reset
or interrupt signal of ageneralpurpose processor.Thus, a watchd@ timer provides a
mechanisnofensuring that our software is working properly; every so often in the software,
we include a statement that generates a signal toMdwiehdog timer (in particulathat resets
the timer). If something undesired happensmgoftware (e.g., wenter an undesired infinite

58

loop, we wait for an input signal that never arrivepat fails, etc.), the watchdog generates a
signal that we can use to restart or fests of the system. Using an interrupt service routine,
we mayrecord informatioas to the number of failures and the causes of each, so that a service
technicianmay later evaluatethis information to determineif a particular part requires
replacementNote that an embeddedsystem often must recover from failureswhenever
possible,as the usermay not havethe meansto rebootthe systemin thesamemanner that
he/shemight reboot alesktopsystem.

UART

A UART (Universal Asynchronous Receiver/Transmitter) receives serighmdstores
it asparalleldata(usuallyone byte) andtakesparalleldata andransmitsit as seriablata.

Such serial communication is beneficial when we need to communicatedbydasa
between devices separated by long distances, or when we simply havaifalle IO pins.
We must be aware that we must set the transmissioreaadtion rate, callethe baud rate,
which indicates the frequency that the sigoahnges. Common rates include 2400, 4800,
9600, and 19.2k. We must also deare that an extrait may be aded to each data word,
called parity, to detectansmission errors the parity bit is set to high or low to indicate if

the word hasn everor odd numberof bits.

Internally, a simple UART may possess a baateé configuration registerand two
independently operating processors, one for receiving and the othearfemitting.The
transmittermay possess register,oftencalled a transmitbuffer, that holds data to be sent.
This register is a shift register, so the data cdarahsmitted onéit at a time by shifting at
the appropriate ratdikewise,the receiverreceivesdatainto a shift register and then this
data can be read parallel. Note thatin orderto shift at the appropriaterate basedon the
configurationregister, dJART requiresatimer.

To usea UART, we mustconfigureits baudrateby writing to the configuration register,
and then we must write data to the transmit register arelldrdata from the received register.
Unfortunately, configuring the baud rateusuallynot as simple as writing the desired rate
(e.g., 4800) to a register. Fexampleto configurethe UART of an 8051, we mustusethe

following equation:

Baudrate = (2™ / 32) * oscfreq / (12 * (256 — TH1)))

59

smodcorrespondso 2 bits ina speciafunctionregister,

oscfreqis the frequency of the oscillator, and

TH1is an 8bit rate register @built-in timer.

Note that we could use a genepalrpose processor to implement a UAEImMpletely
in software. If we useda dedicatedgeneralprocessor,the implementationwould be
inefficient in terms of size. We could alternatively integrate the transmit and receive
functionality with our main program. This woutequire creatinga routine to send data
serially over an 1/0O port, making use diraer to controthe rate. It would also require using
an interrupt service routine taptureserial datacomingfrom anotherl/O port whenever
suchdatabeginsarriving. However,aswith thetimerfunctionality,addingsendandreceive
functionalitycan detract fronime for othercomputations.

Knowing the number of cycles that each instruction requires, we could
write aloop that executed the desired number of instructions; when tipistoopletes, we
know thatthe desired time passed. This implementation of a timer on a dedigatech
purpose processor is obviously quite inefficient in terms of size. One atiatdatively
incorporate the timer functionality into a mgnogram, but the timefunctionality then
occupies much of the pr ogr atmbdceomputations. Thusne , | e a\

the benefit of assigning timer functionality to a spe@arposeprocessor becomewident.

Pulsewidth modulator

A pulsewidth modulator (PWM) generates an output sighal repeatedlyswitches
between highand low. We controthe duration of the highvalue and othe low value by
indicating the desired period, and the desired duty cycle, whtble gercentagef time the
signalis high comparedo thes i g nparibddAssquarevave hasa duty cycleof 50%. The
p ul svielth sorresponddo thep u | direebigh.

Again, PWM functionality could be implementedon a dedicatedgeneralpurpose
processor,or integratedwith anotherp r o g r fanotidrality, but the singlepurpose
processoapproacthas thébenefitsof efficiencyandsimplicity.

One commonuseof a PWM is to control the averagecurrentor voltageinputto a
device. For example,a DC motor rotateswhen power is applied, and thispower can be

turned on and off by setting an input high or low. To controlsireed we canadjustthe

60

input voltage, but this requiresa conversionof our high/low digital signals to an analog
signal. Fortunatelywe can also adjust ttepeed simply by modifying the duty cycle of the
motors on/off input, an approaevhich adjusts the average voltage. This approach works
because a DC motor doest come to an immediate stop when power is turned off, but rather
it coasts, muchlike a bicycle coasts when we stop pedaling. Increasing the duty cycle
increases theotor speed, and decreasing the duty cycle decreases the speed. This duty cycle
adjustment principle applies to the control other types of electric devicesasdichmer
lights.

Anotheruseof a PWM is to encodecontrol commandsn a single signal foruse by
another device. For example, we may control a radigrolled car bysending pulses of
different widths. Perhaps a 1 ms width corresponds to defirommanda4 ms widthto

turnright, and8 msto forward.

LCD controller

An LCD (Liquid crystal display) is a lowost, lowpower device capable displaying
text and images. LCDs are extremely common in embedded systeagssuch systems often
do not have video monit oL@Ds cas bedourdl@anunderodsor des k'

common devices like watches, fax and capchinesandcalculators.

The basic principle of one type of LCD (reflective) works as follokisst, incoming
light passedhrougha polarizing plate. Next, that polarizedlight encounters liquid crystal
material. If we excite a region of this material, we caudee mat er i al 6 s mol ecul
which in turn causes the polarized light to pghassugh the material. O¢hwise, the light does
not pass through. Finally, light thiads passed through hits a mirror and reflects back, so the
excited region appearslight up. Anothertype ofLCD (absorptionworkssimilarly, butuses
a blacksurface instead of a mirror. Tiserface below the excited region absorbs light, thus

appearinglarker than thetherregions.

One of the simplest LCDs issegment LCD. Each of the 7 segments caadbgated to
display any digit character or one of several letters and symbols.a8udbD may have7
inputs,eachcorrespondingo asegmentpr it mayhaveonly4 inputs taepresent the numbers
0 through 9. An LCD driver converts these inpoitke electricalsignalsnecessaryo excite
theappropriatd.CD segments.

A dot-matrix LCD consists of a matrix of dots that can display alphanuncbacacters
(letters and digits) as well as other symbols. A commomudtix LCDhas 5 columns and 8

61

rows of dots for one character. An LCD driver converts ingath into theappropriate

electri@l signals necessary to excite the appropriate bff

Each type of LCD may be able to display multiple characters. In addition, each
character may be displayed in normal or inverted fashion. The LCD may peainaitaecter to
be blinking(cycling throudpn normal and inverted display) or mpgrmit display of a cursor
(such as a blinking underscore) indicating the "currehéracter. This functionalitywould be
difficult for us to implement using softwar&€hus, we use an LCD controller to provide us
with a simpleinterface,perhaps3data inputs and one enable input. To send a byte to the LCD,
we provide a value tthe 8 inputsandpulsetheenableThis byte maybeacontrolword, which
instructsthe LCD controller to initialize the LCD, clear thigsplay, select the position of the
cursor, brighten the display, and so on. Alternatively, this byte may be a datasuards an
ASCII character, instructing the LCD to display the character atutrently-selecteddisplay

position.

Keypad controller

A keypadconsists of a set of buttons that may be pressed to provide input to an
embedded system. Again, keypads are extremely common in embedded syisiegssch

systemsnaylack thekeyboardhatcomesstandardvith desktopsystems.

A simple keypd has buttons arranged in archlumn by Mrow grid. Thedevice has N
outputs, each output corresponding to a column, and anMheutputs, each output
corresponding to a row. When we press a button, one cabumpait and one row output go
high, uniquelyidentifying the pressed button. To readha keypadfrom software, wemust

scanthecolumn andow outputs.

The scanningmay insteadbe performedby a keypadcontroller (actually,sucla device
decodes rather than auwrpllerrfar tossjstenbyuth thewothér! | cal l
peripherals discussed). A simple form of such a controller scawsltinanandrow outputs
of the keypad.Whenthe controller detectsa button pressit stores a code corresponding to
that button into aegister and sets an output higidicating that a button has been pressed.

Our software may poll this output evel®0 milliseconds or so, and read the register when
the output is high. Alternativelyhis output can generate an interrupt on our geipengdose

processor, eliminatinthe needfor polling.
62

Steppermotor controller

A stepper motoiis an electric motor that rotates a fixed numbedef§rees
whenever we apply a "step” signal. In contrast, a regular electric motor rotates
continuouslywhenevempoweris applied,coastingto a stopwhen power is removed. We
specify a stepper motor either by the number of degrees in a siaglesuch as 1.8 degree,
or by the number of steps required to move 360 deguaf, as 200 steps. $per motors
obviously abound in embedded systems withving parts, such as disk drives, printers,
photocopy and fax machines, robaamcordersyCRs,etc.

Internally, a stepper motor typically hatour coils. To rotate the motor ors¢ep, we
pass currenthrough one or two of the coils; the particular coils dependhenpresent
orientation of the motor. Thus, rotating the motor 360 degree reqppging current to
the coils in a specified sequence. Applying the sequenes@nsecauseseversedotation.

In some cases, the stepper motor comes with four inputs correspondinfpta tals,
and with documentation that includes a table indicating the properseguéncel o control
the motor fromsoftware,we must maintairthis table insoftware, and write a step routine
that applies high values to the inputs based ornathle values that follow th@reviously
applied values.

In othercasesthesteppemotorcomeswith abuilt-in controller(i.e., aspecial purpose
processor) implemeinig this sequence. Thus, we merely cregialaeon aninputsignalof
the motor, causingthe controllerto generatehe appropriatehigh signalsto the coils that
will causeghemotorto rotate onestep.

Analog-digital converters

An analogto-digital converter (ADC, A/D or A2D) converts an analog sigoaal digital
signal, and a digitaio-analog converter (DAC, D/A or D2A) does tlopposite. Such
conversions are necessary because, while embedded systemstliehdjital values, an
embedded systemds surr ouanatbg siggatsAnalogpefersta |l | 'y i nv
continuouslyvalued signalsuch agsemperaturer speed represented by a voltage between
0 and 100, with infinite possible values letween. "Digital" refers taliscreely-valued
signals, such as integees)d incomputing systems, these signals are encoded in binary. By
converting betweeanalogand digitalsignals, wecan usedligital processorsn ananalog

environment.

63

For example, consider the analog signdtigure 3.1(a). The analog inputltage varies
over time from 1 to 4 Volts. We sample the signal at successiveritagand encode the
currentvoltage intoa 4-bit binary numberConverselyconsider Figure 3.1(b). We want to
generate an analog outpudltage for the givelminary numbers over timéWNe generatehe
analogsignal shown.

We can compute the digital values from the analog values, andesisa,usingthe

following ratio:

VmaxiS the maximum voltage that the analog signalassumen is thenumber of bits available
for the digital encoding] is the present digital encodirgnde is the present analog voltage.

This proportionality of the voltage and digitaicodings shown graphically in Figui&1(c).

In our example of iGure 3.1, suppos¥maxis 7.5V. Then fore = 5V, we havethe
following ratio: 5/7.5 = d/15, resulting id = 1010 (ten), as shown in FiguBel(c). The
resolutionof a DAC or ADC is defined a¥ma/(2"-1), representing theumberof volts
betweensuccessie digital encodingsThe abovediscussiorassumes minimum voltageof
oVv.

Internally, DACs possess simpler designs than ADCs. A DAQtiaputsfor the digital
encodingd, a Vmaxanalog input, and an analog outmitA fairly straightforwardcircuit

(involving resistorsandan op-amp)canbe usedto convertd to e.

64

