
1

SCSA1307

EMBEDDED SYSTEM

L T P Credits Total

Marks

3 0 0 3 100

 COURSE OBEJCTIVES

¶ To understand the technologies behind the embedded computing systems

¶ To acquire knowledge about microcontrollers embedded processors and their applications

¶ To analyze and develop software programs for embedded systems

¶ To have knowledge about the working of a microcontroller system and its programming in assembly

language

¶ To provide experience to integrate hardware and software for microcontroller application systems

UNIT 1 INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE 9 Hrs.

Terminology Gates Timing diagram Memory Microprocessor buses Direct memory access

Interrupts Built interrupts Interrupts basis Shared data problems Interrupt latency - Embedded

system evolution trends Round-Robin Round Robin with interrupt function Rescheduling

architecture algorithm.

UNIT 2 REAL TIME OPERATING SYSTEM 9 Hrs.

Task and Task states Task and data Semaphore and shared data operating system services

Message queues timing functions Events Memory management Interrupt routines in an RTOS

environment Basic design using RTOS.

UNI 3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERAL 9 Hrs.

Custom single purpose processors: Hardware Combination Sequence Processor design RT

level design optimizing software: Basic Architecture Operation Programmers view

Development Environment ASIP Processor Design Peripherals Timers, counters and watch

dog timers UART Pulse width modulator LCD controllers Key pad controllers Stepper motor

controllers A/D converters Real time clock.

UNIT 4 MEMORY AND INTERFACING 9 Hrs.

Memory write ability and storage performance Memory types composing memory Advance

RAM interfacing communication basic Microprocessor interfacing I/O addressing Interrupts

Direct memory access Arbitration multilevel bus architecture Serial protocol Parallel

protocols Wireless protocols Digital camera example.

UNIT 5 PROCESS MODELS AND HARDWARE SOFTWARE CO-DESIGN 9 Hrs.

Modes of operation Finite state machine HCFSL and state charts language state machine

models Concurrent process model Concurrent process Communication among process

Synchronization among process Implementation ï Data Flow mode

 MAX. 45 Hrs.

Course Outcomes:

On completion of the course, student will be able to

CO1: Understand basic concepts of embedded systems hardware.

CO2: Implement the RTOS development tools in building real time embedded systems.

CO3: Develop the hardware for embedded system applications based on the processors.

CO4: Develop prototype circuit on breadboard including micro processor interfacing.

CO5: Design Hardware and Software using process models.

CO6: Develop and implement embedded based applications.

2

TEXT / REFERENCE BOOKS

1.David E.Simon, ñAn Embedded Software Primerò, Pearson Education,2001

2. Frank Vahid and Tony Gwargie, ñ Embedded System Designò, John Wiley & Sons,2002

3. Steve Heath, ñEmbedded System Designò, Elsevier, Second Edition,2004.

4. Shibu.K.V, ñIntroduction to Embedded Systemsò,Mc Graw Hill.

5. Raj Kamal, ñEmbedded Systemsò,TMH.

6.Lyla, ñEmbedded Systemsò,Pearson,2013.

7.Peter Marwadel, ñEmbedded System Design: Embedded Systems, Foundations of Cyber -

Physical Systems, and the Internet of Things, Springer, Third Edition,2018.

8. Perry Xiao, ñDesigning Embedded Systems and the Internet of Things (IoT) with the

ARM @ Mbed, John Wiley & Sons,2018.

9. Rob Toulson & Tim Wilmshurst, ñFast and Effective Embedded Systems Design,Second

Edition: Applying the ARM mbed, Newnes,2018.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks : 100 Exam Duration : 3 Hrs.

PART A : 10 Questions of 2 marks each-No choice 20 Marks

PART B : 2 Questions from each unit with internal choice, each carrying 16 marks 80 Marks

3

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 UNIT - 1 INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE

4

UNIT 1 INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE

Terminology Gates Timing diagram Memory Microprocessor buses Direct memory access

Interrupts Built interrupts Interrupts basis Shared data problems Interrupt latency - Embedded

system evolution trends Round-Robin Round Robin with interrupt function Rescheduling

architecture algorithm.

1.1 Embedded systems terminology

Embedded systems are ubiquitous. These dedicated small computers are present in

communications systems, vehicles, manufacturing machinery, detection systems, and many

machines that make our lives easier.

The open nature of Android Linux and its availability for many different hardware
architectures makes it an excellent candidate for embedded platforms.

The following are the most common concepts you should know while working with

embedded devices.

Bootloader

A bootloader is a small piece of software that executes soon after you power up a computer.

On a desktop PC, the bootloader resides on the master boot record (MBR) of the hard drive, and

is executed after the PC BIOS performs various system initializations. The bootloader then passes

system information to the kernel (for instance, the hard drive partition to mount as root) and then

executes the kernel.

In an embedded system, the role of the bootloader is more complicated, since an embedded

system does not have a BIOS to perform the initial system configuration. The low-level

initialization of the microprocessor, memory controllers, and other board-specific hardware

varies from board to board and CPU to CPU. These initializations must be performed before a

kernel image can execute.

At a minimum, a bootloader for an embedded system performs the following functions:

¶ Initializes the hardware, especially the memory controller.

¶ Provides boot parameters for the operating system image.

¶ Starts the operating system image.

Additionally, most bootloaders also provide convenient features that simplify

development and update of the firmware, such as:

¶ Reading and writing arbitrary memory locations.

¶ Uploading new binary images to the board's RAM via a serial line or Ethernet.

¶ Copying binary images from RAM to Flash memory.

Kernel

The kernel is the fundamental part of an operating system. It is responsible for managing

the resources and the communication between hardware and software components.

5

The kernel offers hardware abstraction to the applications and provides secure access to the

system memory. It also includes an interrupt handler that handles all requests or completed I/O

operations.

Kernel modules

Modules are pieces of code that can be loaded and unloaded into the kernel upon demand.
They extend the functionality of the kernel without requiring a system reboot.

For example, one type of module is the device driver, which allows the kernel to access

hardware connected to the system. Without these modules, Linux developers would have to build

monolithic kernels and add new functionality directly into the kernel image. The result would be

a large, cumbersome kernel. Another disadvantage of working without a kernel module is that

you would have to rebuild and reboot the kernel every time you add new functionality.

In embedded systems, where functionality can be activated depending on the needs, kernel

modules become a very effective way of adding features without enlarging the kernel image size.

Root file system

Operating systems normally rely on a set of files and directories. The root file system is

the top of the hierarchical file tree. It contains the files and directories critical for system

operation, including the device directory and programs for booting the system. The root file

system also contains mount points where other file systems can be mounted to connect to the root

file system hierarchy.

Applications

Software applications are programs that employ the capabilities and resources of a computer
to do a particular task.

Applications make use of hardware devices by communicating with device drivers, which

are part of the kernel.

Cross-compilation

If you generate code for an embedded target on a development system with a different

microprocessor architecture, you need a cross-development environment. A cross-development

compiler is one that executes in the development system (for example, an x86 PC), but generates

code that executes in a different processor (for example, if the target is ARM).

1.2 Logic gates

Digital systems are said to be constructed by using logic gates. These gates are the AND, OR,

NOT, NAND, NOR, EXOR and EXNOR gates. The basic operations are described below with

the aid of truth tables.

6

AND gate

The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are

high. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this dot is

sometimes omitted i.e. AB

OR gate

The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs

are high. A plus (+) is used to show the OR operation.

 NOT gate

The NOT gate is an electronic circuit that produces an inverted version of the input at its

output. It is also known as an inverter. If the input variable is A, the inverted output is known as

NOT A. This is also shown as A', or A with a bar over the top, as shown at the outputs. The

diagrams below show two ways that the NAND logic gate can be configured to produce a NOT

gate. It can also be done using NOR logic gates in the same way.

7

 NAND gate

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The outputs

of all NAND gates are high if any of the inputs are low. The symbol is an AND gate with a

small circle on the output. The small circle represents inversion.

 NOR gate

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs

of all NOR gates are low if any of the inputs are high.

The symbol is an OR gate with a small circle on the output. The small circle represents

inversion.

 EXOR gate

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both,

of its two inputs are high. An encircled plus sign () is used to show the EOR operation.

8

EXNOR gate

 The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a low output

if either, but not both, of its two inputs are high. The symbol is an EXOR gate with a small

circle on the output. The small circle represents inversion.

1.3 Timing Diagram

Timing Diagram is a graphical representation. It represents the execution time taken by

each instruction in a graphical format. The execution time is represented in T-states.

Instruction Cycle:

The time required to execute an instruction is called instruction cycle.

or

The time taken by the processor to complete the execution of an instruction. An instruction

cycle consists of one to six machine cycles.

Machine Cycle:

The time required to access the memory or input/output devices is called machine

cycle.

or

The time required to complete one operation; accessing either the memory or I/O device.

A machine cycle consists of three to six T-states.

T-State:

The machine cycle and instruction cycle takes multiple clock periods. A portion of an

operation carried out in one system clock period is called as T-state.

or

Time corresponding to one clock period. It is the basic unit to calculate execution of

instructions or programs in a processor.

Fetch cycle:

The fetch cycle in a microprocessor comprises of several time states during which the next

instruction to be executed is copied (fetched) from the memory location (whose address is in the

Program Counter) to the Instruction Register.

9

Concept of Timing Diagram

The 8085 microprocessor has 5 (seven) basic machine cycles. They are

1. Opcode fetch cycle (4T)

2. Memory read cycle (3 T)

3. Memory write cycle (3 T)

4. I/O read cycle (3 T)

5. I/O write cycle (3 T)

¶ Each instruction of the 8085 processor consists of one to five machine cycles, i.e., when the 8085

processor executes an instruction, it will execute some of the machine cycles in a specific order.

¶ The processor takes a definite time to execute the machine cycles. The time taken by the
processor to execute a machine cycle is expressed in T-states.

¶ One T-state is equal to the time period of the internal clock signal of the processor.

¶ The T-state starts at the falling edge of a clock.

Opcode Fetch Machine Cycle:

¶ It is the first step in the execution of any instruction. The timing diagram of this cycle is

given below.

10

 The following points explain the various operations that take place and the signals that are

changed during the execution of opcode fetch machine cycle:

T1 clock cycle:

 The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit

address and A8 ï A15 contains higher bit address.

 IO/Mô signal is low indicating that a memory location is being accessed. S1 and S0

also changed to the levels.

 ALE is high, indicates that multiplexed AD0 ï AD7 act as lower order bus.

T2 clock cycle:

 Multiplexed address bus is now changed to data bus.

 The (RD)ô signal is made low by the processor. This signal makes the memory device load

the data bus with the contents of the location addressed by the processor.

T3 clock cycle:

 The opcode available on the data bus is read by the processor and moved to the instruction

register.

 The (RD)ô signal is deactivated by making it logic 1.

T4 clock cycle:

 The processor decode the instruction in the instruction register and generate the necessary

control signals to execute the instruction. Based on the instruction further operations such as

fetching, writing into memory etc. takes place.

DRAW TIMING DIAGRAM FOR MEMORY READ, MEMORY WRITE , I /O READ, I /O
WRITE MACHINE CYCLE

Memory Read Machine Cycle:

 The memory read cycle is executed by the processor to read a data byte from

memory. The machine cycle is exactly same to opcode fetch except: a) It has three T-states b) The

S0 signal is set to 0.

T1 state:

¶ The higher order address bus (A8-A15) and lower order address and data multiplexed

(AD0- AD7) bus.

¶ ALE goes high so that the memory latches the (AD0-AD7) so that complete 16-bit address

11

are available.

¶ The microprocessor identifies the memory read machine cycle from the status

signals

IO/Mô=0, S1=1, S0=0. This condition indicates the memory read cycle.

T2 state:

¶ Selected memory location is placed on the (D0-D7) of the A/D multiplexed bus. RDô goes

LOW

T3 State:

¶ The data which was loaded on the previous state is transferred to the microprocessor.

¶ In the middle of the T3 state RDô goes high and disables the memory read operation.

¶ The data which was obtained from the memory is then decoded.

Memory Write Machine Cycle:

¶ The memory write cycle is executed by the processor to write a data byte in a memory

location. The processor takes three T-states and (WR)ôsignal is made low.

T1 state:

¶ The higher order address bus (A8-A15) and lower order address and data multiplexed

(AD0- AD7) bus.

¶ ALE goes high so that the memory latches the (AD0-AD7) so that complete 16-bit

address are available.

¶ The microprocessor identifies the memory read machine cycle from the status signals

IO/Mô=0, S1=0, S0=1. This condition indicates the memory read cycle.

T2 state:

¶ Selected memory location is placed on the (D0-D7) of the A/D multiplexed bus. WRô goes

LOW

T3 State:

¶ In the middle of the T3 state WRô goes high and disables the memory write operation. The

data which was obtained from the memory is then decoded.

I/O Read Cycle:

The I/O read cycle is executed by the processor to read a data byte from I/O port or from

12

peripheral, which is I/O mapped in the system. The 8-bit port address is placed both in the lower

and higher order address bus. The processor takes three T-states to execute this machine cycle.

T1 state:

 The higher order address bus (A8-A15) and lower order address and data multiplexed

(AD0- AD7) bus.

 ALE goes high so that the memory latches the (AD0-AD7) so that complete 16-bit address

are available.

 The microprocessor identifies the I/O read machine cycle from the status signals IO/Mô=1,

S1=1, S0=0. This condition indicates the I/O read cycle.

T2 state:

 Selected memory location is placed on the (D0-D7) of the A/D multiplexed bus. RDô goes

LOW

T3 State:

 The data which was loaded on the previous state is transferred to the microprocessor.

 In the middle of the T3 state RDô goes high and disables the I/O read operation.

 The data which was obtained from the I/O is then decoded.

I/O Write Cycle:

The I/O write cycle is executed by the processor to write a data byte to I/O port or to a

peripheral, which is I/O mapped in the system. The processor takes three T-states to execute this

machine cycle.

T1 state:

 The higher order address bus (A8-A15) and lower order address and data multiplexed (AD0-

AD7) bus.

 ALE goes high so that the memory latches the (AD0-AD7) so that complete 16-bit

address are available.

 The microprocessor identifies the I/O read machine cycle from the status signals IO/Mô=1,

S1=0, S0=1. This condition indicates the I/O read cycle.

T2 state:

 Selected memory location is placed on the (D0-D7) of the A/D multiplexed bus. WRô goes

LOW

13

T3 State:

 In the middle of the T3 state WRô goes high and disables the I/O write operation. The data

which was obtained from the I/O is then decoded.

1.4 Memory

Area where the program instruction and data are retained for processing is called memory, like

human brain, computer also requires some space to store data and instruction for addressing their

processing.

CPU does not have the capacity to store programs or large set of data permanently. It contains only

basic instruction needed to operate the computer. Therefore memory is required.

Types of Memory

Memories primarily is of two types as given here:

o Random Access Memory (RAM)

Á Static RAM (SRAM)

Á Dynamic RAM (DRAM)

o Read Only Memory (ROM)

Á Masked Read Only Memory (MROM)

Á Programmable Read Only Memory (PROM)

Á Erasable and Programmable Read Only Memory (EPROM)

Á Electrically Erasable and Programmable Read Only Memory (EEPROM)

Random Access Memory (RAM)

A RAM constitutes the internal memory of the CPU for storing data, program and program result. It

is read/write memory. It is called Random Access Memory (RAM).

Since access time in RAM is independent of the address to the word that is, each storage location

inside the memory is as easy to reach as other location and takes the same amount of time. We can

reach into the memory at random and extremely fast but can also be quite expensive.

RAM is volatile, that is data stored in it is lost when we switch off or turn off the computer or if

there is a power Failure. Hence, a backup un-interruptible power system (UPS) is often used with

computers. RAM is a small, both in terms of its physical size and in the amount of data that can

hold.

14

Types of RAM

RAM is of two types:

1. Static RAM (SRAM)

2. Dynamic Ram (DRAM)

Static RAM (SRAM)

The word static indicates that the memory retains its contents as long as power remains applied.

However, data is lost when the power gets down due to volatile nature.

Static RAM chips use a matrix of 6 transistors and no capacitors.

Transistors do not require power to prevent leakage, so static RAM need not have to be refreshed

on a regular basis. Because of the extra space in the matrix, static RAM uses more chips than

dynamic RAM for the same amount of storage space, thus making the manufacturing costs higher.

Static RAM is used as cache memory needs to be very fast and small.

Dynamic Ram (DRAM)

Dynamic RAM, unlike static RAM, must be continually replaced in order for it to maintain the

data. This is done by placing the memory on a refresh circuit that rewrites the data several hundred

times per second.

Dynamic RAM is used for most system memory because it is cheap and small.

All dynamic rams are made up of memory cells. These cells are composed of one capacitor and one

transistor.

Read Only Memory (ROM)

ROM stands for read only memory. The memory from which we can only read but cannot write on

it.

This type of memory is non-volatile. The information is stored permanently in such memories during

manufacture.

A ROM, stores such instruction as are required to start computer when electricity is first turned on,

this operation is referred to as bootstrap.

15

ROM chip are not only used in the computer but also in other electronic items like washing

machine and microwave oven.

Types of ROM

The following list of ROM available in computer:

1. Masked Read Only Memory (MROM)

2. Programmable Read Only Memory (PROM)

3. Erasable and Programmable Read Only Memory (EPROM)

4. Electrically Erasable and Programmable Read Only Memory (EEPROM)

Masked Read Only Memory (MROM)

The very first ROMs were hardware devices that contained a pre-programmed set of data or

instructions. This kind of ROMs are known as masked ROMs. Tt is inexpensive ROM.

Programmable Read Only Memory (PROM)

PROM is read only memory that can be modified only once by a user. The user buys a blank PROM

and enters the desired contents using a PROM programmer.

Inside the PROM, there are small fuses which are burnt open during programming. It can be

programmed only once and it's not erasable.

Erasable and Programmable Read Only Memory (EPROM)

The EPROM can be erased by exposing it to ultra-violet light for a duration of upto 40 minutes.

Usually, an EPROM eraser achieves this function. during programming, an electrical charge is

trapped in an insulated Gate region.

The charge is retained for more than 10 years because the charge has no leakage path. For erasing

this charge, ultraviolet light is passed through a quartz crystal window (lid). This exposure to

ultraviolet light dissipates the charge. During normal use the quartz lid is sealed with a sticker.

Electrically Erasable and Programmable Read Only Memory (EEPROM)

The EEPROM is programmed and erased electrically. It can be erased and re-programmed about ten

thousand times.

16

Both erasing and programming take about 4 to 10 milliseconds. In EEPROM, any location can be

selectively erased and programmed.

EEPROMs can be erased 1 byte at a time, rather than erasing the entire chip. Hence, the process of

reprogramming is flexible but slow.

1.5 MICROPROCESSOR BUS

Bus is a group of conducting wires which carries information , all the peripherals are connected

to microprocessor through Bus. Diagram to represent bus organization system of 8085

Microprocessor. There are three types of buses. It is a group of conducting wires which carries address

only.

There are three types of buses in a microprocessor

¶ Data Bus ī Lines that carry data to and from memory are called data bus. It is a bidirectional

bus with width equal to word length of the microprocessor.

¶ Address Bus ī It is a unidirectional responsible for carrying address of a memory location

or I/O port from CPU to memory or I/O port.

¶ Control Bus ī Lines that carry control signals like clock signals, interrupt signal or

ready signal are called control bus. They are bidirectional. Signal that denotes that a device

is ready for processing is called ready signal. Signal that indicates to a device to interrupt its

process is called an interrupt signal.

1.6 DIRECT MEMORY ACCESS (DMA)

DMA is a technique for transferring blocks of data directly between two hardware devices.

In the absence of DMA the processor must read the data from one device and write it to the

other one byte or word at a time.

17

DMA Absence Disadvantage: If the amount of data to be transferred is large or frequency of

transfer is high the rest of the software might never get a chance to run.

DMA Presence Advantage: The DMA Controller performs entire transfer with little help

from the Processor.

Working of DMA

The Processor provides the DMA Controller with source and destination address & total number

of bytes of the block of data which needs transfer.

After copying each byte each address is incremented & remaining bytes are reduced by one.

When number of bytes reaches zeros the block transfer ends & DMA Controller sends an Interrupt

to Processor.

1.7 INTERRUPT

An interrupt is a signal to the processor emitted by hardware or software indicating an event that

needs immediate attention. Whenever an interrupt occurs, the controller completes the execution

of the current instruction and starts the execution of an Interrupt Service Routine (ISR) or

Interrupt Handler . ISR tells the processor or controller what to do when the interrupt occurs.

The interrupts can be either hardware interrupts or software interrupts.

Hardware Interrupt

A hardware interrupt is an electronic alerting signal sent to the processor from an external device,

like a disk controller or an external peripheral. For example, when we press a key on the keyboard

or move the mouse, they trigger hardware interrupts which cause the processor to read the

keystroke or mouse position.

Software Interrupt

A software interrupt is caused either by an exceptional condition or a special instruction in the

18

instruction set which causes an interrupt when it is executed by the processor. For example, if the

processor's arithmetic logic unit runs a command to divide a number by zero, to cause a

divide-by-zero exception, thus causing the computer to abandon the calculation or display an error

message. Software interrupt instructions work similar to subroutine calls.

Interrupt Service Routine

For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler . When

an interrupt occurs, the microcontroller runs the interrupt service routine. For every interrupt,

there is a fixed location in memory that holds the address of its interrupt service routine, ISR.

The table of memory locations set aside to hold the addresses of ISRs is called as the Interrupt

Vector Table.

Interrupt Vector Table

There are six interrupts including RESET in 8051.

Inte

rru

pts

ROM Location (Hex) P

i

n

Interrupts ROM Location (HEX)

Serial COM (RI and TI) 0023

Timer 1 interrupts(TF1) 001B

External HW interrupt 1 (INT1) 0013 P3.3 (13)

External HW interrupt 0 (INT0) 0003 P3.2 (12)

Timer 0 (TF0) 000B

Reset 0000 9

¶ When the reset pin is activated, the 8051 jumps to the address location 0000. This is power-
up reset.

¶ Two interrupts are set aside for the timers: one for timer 0 and one for timer 1. Memory

locations are 000BH and 001BH respectively in the interrupt vector table.

¶ Two interrupts are set aside for hardware external interrupts. Pin no. 12 and Pin no. 13 in Port

3 are for the external hardware interrupts INT0 and INT1, respectively. Memory locations

19

are 0003H and 0013H respectively in the interrupt vector table.

¶ Serial communication has a single interrupt that belongs to both receive and transmit.
Memory location 0023H belongs to this interrupt.

Steps to Execute an Interrupt

When an interrupt gets active, the microcontroller goes through the following steps ī

¶ The microcontroller closes the currently executing instruction and saves the address of the

next instruction (PC) on the stack.

¶ It also saves the current status of all the interrupts internally (i.e., not on the stack).

¶ It jumps to the memory location of the interrupt vector table that holds the address of the

interrupts service routine.

¶ The microcontroller gets the address of the ISR from the interrupt vector table and jumps to

it. It starts to execute the interrupt service subroutine, which is RETI (return from interrupt).

¶ Upon executing the RETI instruction, the microcontroller returns to the location where it was

interrupted. First, it gets the program counter (PC) address from the stack by popping the top

bytes of the stack into the PC. Then, it start to execute from that address.

1.8 THE SHARED DATA PROBLEM

A big problem in embedded systems occurs in embedded software when an interrupt

service routine and the main program share the same data. What happens if the main program

is in the middle of doing some important calculations using some piece of dataéan interrupt

occurs that alters that piece of dataéand then the main program finishes its calculation? Oops!

The calculation performed by the main program might be corrupted because it is based off

the wrong/different data value. This is known as the shared data problem.

Example of Shared Data Problem

Imagine you are a software engineer working at a company. Your team is responsible for

designing an automatic dog entry door. This embedded device can be wirelessly updated

with RFID tags for dogs or other pets to be allowed entry.

The door needs to automatically unlock for dogs that are in the vicinity of the door. A pet

must be allowed to enter even when the table of RFID tags is being updated. The RFID tag IDs

are shared data since the interrupt service routine that must update the tag IDs and the main ()

program that is responsible for automatically unlocking the door when dogs are in the vicinity

both share and use this data. A problem will occur when the doggy door is in the middle of an

RFID tag ID update when a dog needs to get through the door. We wouldnôt want to let the poor

dog wait outside in the freezing cold while the device is in the middle of an RFID tag update!

20

How do we create a solution that solves the shared data problem? The RFID tags need to be

updated regularly but that same data is needed regularly by the main () program to let dogs enter

when they need to. Letôs solve this now.

Å This embedded device can be wirelessly updated with RFID tags.

Å Dogs or other pets must be allowed entry when they are in the vicinity of the door.

Å Dog must be allowed to enter even when the table of RFID tags is being updated.

Å RFID tag IDs are shared data which must be managed.

Å In the shared data problem for the doggy door controller, we need to make sure the dog can

enter at all times while the RFID tags are being updated. Because this is a dog, it is

unacceptable for the door to remain locked and keep a dog waiting.

1.9 INTERRUPTS LATENCY

Interrupt latency refers primarily to the software interrupt handling latencies. In other words, the

amount of time that elapses from the time that an external interrupt arrives at the processor

until the time that the interrupt processing begins.

One of the most important aspects of kernel real-time performance is the ability to service an

interrupt request (IRQ) within a specified amount of time.

21

Here are the sources contributing the interrupt latency (abstracts from Reduce RTOS latency in

interrupt-intensive apps):

Operating system (OS) interrupt latency

An RTOS must sometimes disable interrupts while accessing critical OS data structures. The

maximum time that an RTOS disables interrupts is referred to as the OS interrupt latency.

Although this overhead will not be incurred on most interrupts since the RTOS disables

interrupts relatively infrequently, developers must always factor in this interrupt latency to

understand the worst-case scenario.

Low-level interrupt -related operations

When an interrupt occurs, the context must be initially saved and then later restored after the

interrupt processing has been completed. The amount of context that needs to be saved depends

on how many registers would potentially be modified by the ISR (Interrupt Service Routine).

Enabling the ISR to interact with the RTOS

An ISR will typically interact with an RTOS by making a system call such as a semaphore post.

To ensure the ISR function can complete and exit before any context switch to a task is made,

the RTOS interrupt dispatcher must disable preemption before calling the ISR function.

Once the ISR function completes, preemption is re-enabled and the application will context

switch to the highest priority thread that is ready to run. If there is no need for an ISR to make

an RTOS system call, the disable/enable kernel preemption operations would again add

overhead. It is logical to handle such an ISR outside of the RTOS.

Context switching

When an ISR defers processing to an RTOS task or other thread, a context switch needs to

occur for the task to run. Context switching will still typically be the largest part of any-RTOS

related interrupt processing overhead.

IRQ (Interrupt Request)

An (or IRQ) is a hardware signal sent to the processor that temporarily stops a running program

and allows a special program, an interrupt handler, to run instead. Interrupts are used to handle

such events as data receipt from a modem or network, or a key press or mouse movement.

22

FIQ (Fast Interrupt Request)

An FIQ is just a higher priority interrupt request, that is prioritized by disabling IRQ and other

FIQ handlers during request servicing. Therefore, no other interrupts can occur during the

processing of the active FIQ interrupt.

1.10 EMBEDDED SYSTEM EVOLUTION TRENDS

Embedded systems are on the rise as the technology paves the way for the future of smart

manufacturing across a range of industries. Microcontrollers ð the hardware at the center of

embedded systems ð are improving quickly, allowing for better machine control and

monitoring. In this article, we will discuss the emerging trends for embedded systems in

2019 that will enable enhanced security, better control, and improved scalability.

Current Trends in Embedded Systems Applications

An embedded system is an application-specific system designed with a combination of

hardware and software to meet real-time constraints. The key characteristics of embedded

industrial systems include speed, security, size, and power. The major trends in the embedded

systems market revolve around the improvement of these characteristics.

To give context into how large the embedded systems industry is, here are a few statistics

¶ The global market for the embedded systems industry was valued at $68.9 billion in 2017

and is expected to rise to $105.7 billion by the end of 2025.

¶ 40% of the industrial share for embedded systems market is shared by the top 10 vendors.

¶ In 2015, embedded hardware contributed to 93% of the market share and it is expected to

dominate the market over embedded software in the upcoming years as well.

Future Trends of Embedded Systems Industry

The industry for embedded systems is growing and there are still several barriers that must be

overcome. Below are five notable trends of the embedded systems market for 2019.

Improved Security for Embedded Devices

With the rise of the Internet of Things (IoT), the primary focus of developers and

manufacturers is on security. In 2019, advanced technologies for embedded security will

emerge as key generators for identifying devices in an IoT network, and as microcontroller

security solutions that isolate security operations from normal operations.

Cloud Connectivity and Mesh Networking

Getting embedded industrial systems connected to the internet and cloud can take weeks and

months in the traditional development cycle. Consequently, cloud connectivity tools will be

an important future market for embedded systems. These tools are designed to simplify the

process of connecting embedded systems with cloud-based services by reducing the

underlying hardware complexities.

23

A similar yet innovative market for low-energy IoT device developers is Bluetooth mesh
networks. These solutions can be used for seamless connectivity of nearby devices while

reducing energy consumption and costs.

Reduced Energy Consumption

A key challenge for developers is the optimization of battery-powered devices for low power

consumption and maximum uptime. Several solutions are under development for monitoring

and reducing the energy consumption of embedded devices that we can expect to see in 2019.

These include energy monitors and visualizations that can help developers fine-tune their

embedded systems, and advanced Bluetooth and Wi-Fi modules that consume less power at

the hardware layer.

Visualization Tools with Real Time Data

Developers currently lack tools for monitoring and visualizing their embedded industrial

systems in real time. The industry is working on real-time visualization tools that will give

software engineers the ability to review embedded software execution. These tools will enable

developers to keep a check on key metrics such as raw or processed sensor data and event-

based context switches for tracking the performance of embedded systems.

Deep Learning Applications

Deep learning represents a rich, yet unexplored embedded systems market that has a range of

applications from image processing to audio analysis. Even though developers are primarily

focused on security and cloud connectivity right now, deep learning and artificial intelligence

concepts will soon emerge as a trend in embedded systems.

Embedded System Innovations

The industrial sector for embedded systems is undergoing numerous transformations that will

enable developers to build systems that are high-performing, secure, and robust. As a

developer and manufacturer in this industry, it is important to stay updated with the latest

technologies and trends. For 2019, the embedded systems market is shaping up for simplified

cloud connectivity, improved security tools, real-time visualizations, lower power

consumption, and deep learning solutions.

24

1.11 ROUND ROBIN ARCHITECTURE

The Round Robin architecture is the easiest architecture for embedded systems. The main

method consists of a loop that runs again and again, checking each of the I/O devices at each

turn in order to see if they need service. No fancy interrupts, no fear of shared dataéjust

a plain single execution time

Example: Multimeter

¶ very small number of I/O: (switch, display, probes)

¶ no particularly lengthy processing (even very simple microprocessors can check switch,

take measurement and update display several times per second.)

¶ measurements can be taken at any time.

¶ display can be written to at any speed.

¶ small delays in switch position changes will go unnoticed thread that gets executed again

and again.

Advantages:

¶ Simplest of all the architectures

¶ No interrupts

¶ No shared data

25

¶ No latency concerns

¶ No tight response requirements

Disadvantages:

¶ A sensor connected to the Arduino that urgently needs service must wait its turn.

¶ Fragile. Only as strong as the weakest link. If a sensor breaks or something else

breaks, everything breaks.
¶ Response time has low stability in the event of changes to the code

Round-Robin Problems

If any device needs a response in less time than the worst duration of the loop the system won't

function.

If A and B take 5ms each and Z needs a response time of less than 7ms its not possible. This can

be mitigate somewhat by doing (A,Z,B,Z) in a loop instead of (A,B,Z).

Scalability of this solution is poor. Even if absolute deadlines do not exist, overall response time

may become unacceptably poor.

Round-Robin architecture is fragile ï Even if the programmer manages to tune the loop sufficiently

to provide a functional system a single addition or change can ruin everything.

Round Robin with Interrupts

This Round Robin with Interrupts architecture is similar to the Round Robin architecture, except

26

it has interrupts. When an interrupt is triggered, the main program is put on hold and control shifts

to the interrupt service routine. Code that is inside the interrupt service routines has a higher

priority than the task code.

Advantages:

¶ Greater control over the priority levels

¶ Flexible

¶ Fast response time to I/O signals

¶ Great for managing sensors that need to be read at prespecified time intervals

Disadvantages:

¶ Shared data

¶ All interrupts could fire off concurrently

PREEMPTIVE AND NON-PREEMPTIVE SCHEDULING

Prerequisite ï CPU Scheduling

1. Preemptive Scheduling:

Preemptive scheduling is used when a process switches from running state to ready state or from

waiting state to ready state. The resources (mainly CPU cycles) are allocated to the process for the

limited amount of time and then is taken away, and the process is again placed back in the ready

queue if that process still has CPU burst time remaining. That process stays in ready queue till it

gets next chance to execute.

Algorithms based on preemptive scheduling are: Round Robin (RR),Shortest Remaining Time

First (SRTF), Priority (preemptive version), etc.

https://www.geeksforgeeks.org/gate-notes-operating-system-process-scheduling/
https://www.geeksforgeeks.org/program-round-robin-scheduling-set-1/
https://www.geeksforgeeks.org/program-shortest-job-first-scheduling-set-2srtf-make-changesdoneplease-review/
https://www.geeksforgeeks.org/program-shortest-job-first-scheduling-set-2srtf-make-changesdoneplease-review/
https://www.geeksforgeeks.org/program-for-preemptive-priority-cpu-scheduling/

27

2. Non-Preemptive Scheduling:

Non-preemptive Scheduling is used when a process terminates, or a process switches from

running to waiting state. In this scheduling, once the resources (CPU cycles) is allocated to a

process, the process holds the CPU till it gets terminated or it reaches a waiting state. In case of

non-preemptive scheduling does not interrupt a process running CPU in middle of the execution.

Instead, it waits till the process complete its CPU burst time and then it can allocate the CPU

to another process.

Algorithms based on non-preemptive scheduling are: Shortest Job First (SJF basically non

preemptive) and Priority (non preemptive version), etc.

Key Differences between Preemptive and Non-Preemptive Scheduling:

1. In preemptive scheduling the CPU is allocated to the processes for the limited

time whereas in Non-preemptive scheduling, the CPU is allocated to the process till it

terminates or switches to waiting state.

2. The executing process in preemptive scheduling is interrupted in the middle of execution

when higher priority one comes whereas, the executing process in non-preemptive scheduling is

not interrupted in the middle of execution and wait till its execution.

3. In Preemptive Scheduling, there is the overhead of switching the process from ready state to

running state, vise-verse, and maintaining the ready queue. Whereas in case of non- preemptive

scheduling has no overhead of switching the process from running state to ready state.

4.In preemptive scheduling, if a high priority process frequently arrives in the ready queue then

the process with low priority has to wait for a long, and it may have to starve. On the other hands,

in the non-preemptive scheduling, if CPU is allocated to the process having larger burst time

then the processes with small burst time may have to starve.

5. Preemptive scheduling attain flexible by allowing the critical processes to access CPU

https://www.geeksforgeeks.org/program-shortest-job-first-sjf-scheduling-set-1-non-preemptive/
https://www.geeksforgeeks.org/program-shortest-job-first-sjf-scheduling-set-1-non-preemptive/

28

as they arrive into the ready queue, no matter what process is executing currently. Non-

preemptive scheduling is called rigid as even if a critical process enters the ready queue the

process running CPU is not disturbed.

6. The Preemptive Scheduling has to maintain the integrity of shared data thatôs why it

is cost associative as it which is not the case with Non-preemptive Scheduling.

Comparison Chart

Parameter PREEMPTIVE SCHEDULING NON-PREEMPTIVE SCHEDULING

Basic

In this resources (CPU Cycle) are

allocated to a process for a limited

time.

Once resources (CPU Cycle) are

allocated to a process, the process holds

it till it completes its burst time or

switches to waiting state.

Interrupt

Process can be interrupted in

between.

Process cannot be interrupted until it

terminates itself or its time is up.

Starvation

If a process having high priority

frequently arrives in the ready

queue, low priority process may

starve.

If a process with long burst time is

running CPU, then later coming process

with less CPU burst time may starve.

Overhead

It has overheads of scheduling the

processes.

It does not have overheads.

Flexibility Flexible rigid

Cost cost associated no cost associated

CPU

Utilization
In preemptive scheduling, CPU

utilization is high.

It is low in non preemptive scheduling.

Examples

Examples of preemptive

scheduling are Round Robin and

Shortest Remaining Time First.

Examples of non-preemptive scheduling

are First Come First Serve and Shortest

Job First.

29

Part A

1.What is an embedded system? What are the components of embedded system?

2.What are the applications of an embedded system?

3.Interpret about embedded microcontroller.

 4.What are the various classifications of embedded systems?

5.Define interrupt latency? How to avoid it.

 6.Identify some of the hardware parts of embedded systems?

7.What are the various types of memory in embedded systems?

8.What are the requirements of embedded system?

9.Identify the functions of memory?

10.What is shared data problem?

11.Summarize the ways to eliminate Shared Data problem?

12.What is Round Robin Scheduling?

13.Compare round robin scheduling with and without interrupt.

14.Identify the functions of DMA

15.Interpret purpose of a bus?

Part B

1.Analyze in detail about the data transfer mechanism using DMA in Embedded System.

2.Explain in detail about Interrupt servicing Mechanism in an embedded device.

3.Elaborate the basic processors and hardware units in the embedded system.

 4.Explain in detail about interrupt latency and their solutions.

5.Appraise in detail about Round Robin Scheduling with and without interrupt. Give

example also.

6.Explain in detail about shared data problem and how to avoid it. Give example

TEXT/ REFEENCE BOOKS

1.David E.Simon, ñAn Embedded Software Primerò, Pearson Education,2001

2. Frank Vahid and Tony Gwargie,ñEmbedded System Designò, John Wiley &

Sons,2002

3. Steve Heath, ñEmbedded System Designò, Elsevier, Second Edition,2004.

30

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 UNIT - 2 REAL TIME OPERATING SYSTEM

31

UNIT 2 REAL TIME OPERATING SYSTEM

Task and Task states Task and data Semaphore and shared data operating system services

Message queues timing functions Events Memory management Interrupt routines in an RTOS

environment Basic design using RTOS.

Embedded systems are microcontroller-based systems that are designed to perform

specific functions such as reading sensor data, responding to external events,

communicating with other systems, controlling processes, etc. The tricky part is to make

the distinction of what exactly qualifies such a system as real-time. Arenôt all

embedded systems operating in real-time? In order for an embedded system to be

classified as real-time, it must guarantee a strictly defined response time to the events

it is tasked with observing and controlling. It should be noted that all systems have a

response time (latency). Real-time embedded systems do not react immediately to every

event but can guarantee a worse case response time.

Real-time operating systems (RTOS) provide a framework that enables guaranteed

response times and deterministic behaviour. This is achieved using a scheduling

mechanism. This mechanism is at the heart of every RTOS. We can design a real -time

embedded system without the use of RTOS, however, using one can make the design

process shorter and the whole system easier to manage.

As part of the embedded system abstraction layers, an RTOS is placed above the low -

level device drives and below the user application. The RTOS does not provide low -

level drivers for microcontroller peripherals. Some RTOS may contain middleware

software such as networking, file systems, etc.(fig 2.1)

Fig.2.1 RTOS within the embedded system abstraction layers

32

2.1 Task and Task States

Tasks

Task is a piece of code or program that is separate from another task and can be

executed independently of the other tasks.

In embedded systems, the operating system has to deal with a limited number of

tasks depending on the functionality to be implemented in the embedded system.

Multiple tasks are not executed at the same time instead they are executed in pseudo

parallel i.e. the tasks execute in turns as the use the processor.

From a multitasking point of view, executing multiple tasks is like a single book being read

by multiple people, at a time only one person can read it and then take turns to read it. Different

bookmarks may be used to help a reader identify where to resume reading next time.

An Operating System decides which task to execute in case there are multiple tasks to be

executed. The operating system maintains information about every task and information

about the state of each task.

The information about a task is recorded in a data structure called the task context. When a

task is executing, it uses the processor and the registers available for all sorts of processing.

When a task leaves the processor for another task to execute before it has finished its own,

it should resume at a later time from where it stopped and not from the first instruction. This

requires the information about the task with respect to the registers of the processor to be

stored somewhere. This information is recorded in the task context.

A C++ version of a Task that holds all information needed by operating system is as follows:

class Task

{

public:

Task(void (*function)(), Priority p, int stackSize);

TaskId id; Context context;

TaskState state; Priority

priority;

int * pStack; Task * pNext;

33

void (*entryPoint)();

private:

static TaskId nextId;

};

Task States

In an operation system there are always multiple tasks. At a time only one task can be executed.

This means that there are other tasks which are waiting their turn to be executed.

Depending upon execution or not a task may be classified into the following three states (Fig

2.2):

Running state - Only one task can actually be using the processor at a given time that task is

said to be the ñrunningò task and its state is ñrunning stateò. No other task can be in that same

state at the same time

Ready state - Tasks that are not currently using the processor but are ready to run are in the

ñreadyò state. There may be a queue of tasks in the ready state.

Waiting state - Tasks that are neither in running nor ready state but that are waiting for some

event external to themselves to occur before the can go for execution on are in the ñwaitingò

state.

Fig 2.2 Task States

A transition of state between the ready and running state occurs whenever the operating system

selects a new task to run.

The task that was previously in running state becomes ready and the new task is promoted to

running state.

34

A task will leave running state only if it needs to wait for some event external to itself to occur

before continuing.

A task's state can be defined as follows:

enum TaskState {Ready, Running, Waiting};

SCHEDULER

The heart and soul of any operating system is its scheduler.

This is the piece of the operating system that decides which of the ready tasks has the right to

use the processor at a given time.

It simple checks to see if the running task is the highest priority ready task. Some of the more

common scheduling algorithms:

First -in-first -out

First-in-first-out (FIFO) scheduling describes an operating system which is not a multitasking

operating system.

Each task runs until it is finished, and only after that is the next task started on a first come

first served basis.

Shortest job first

Shortest job first scheduling uses algorithms that will select always select a task that will

require the least amount of processor time to complete.

Round robin.

Round robin scheduling uses algorithms that allow every task to execute for a fixed amount to

time.

A running task is interrupted an put to a waiting state if its execution time expires.

Scheduling Points

The scheduling points are the set of operating system events that result in an invocation of the

scheduler.

There are three such events: task creation and task deletion. During each of these events a

method is called to select the next task to be run.

A third scheduling point called the clock tick is a periodic event that is triggered by a timer

interrupt. When a timer expires, all of the tasks that are waiting for it to complete are changed

from the waiting state to the ready state.

Ready List

The scheduler uses a data structure called the ready list to track the tasks that are in the ready

state.

The ready list is implemented as an ordinary linked list, ordered by priority. So the head of this

list is always the highest priority task that is ready to run. Idle task

If there are no tasks in the ready state when the scheduler is called, the idle task will be

35

executed.

The idle task looks the same in every operating system. The idle task is always considered to

be in the ready state. Scheduler

The scheduler is an integral part of every RTOS. It controls which task should be

executed at any given point in time. The scheduler may use various types of algorithms

for performing the scheduling of the tasks. Almost all of these algorithms can be

classified into two main types:

¶ Preemptive Scheduling ï this algorithm allows the interruption of a currently running

task, so another one with higher priority can be run.

¶ Non-preemptive Scheduling (C-operative Scheduling) ï once a task is started it

canôt be interrupted, it will run until it decides that it should release the CPU to another

task.

Advantages:

¶ Better Structure and Scalability ï Using an RTOS gives you a well-defined mechanism

for adding and removing software modules.

¶ Timing Constraints -Using RTOS makes it easier to fulfill the timing requirements of

the many modules used in complex embedded systems.

¶ Better Focus ï RTOS allows you to focus on the actual application by offloading the

development of components such as memory management, exception handling, power

management, etc.

¶ Functional Safety ï There are RTOS distributions that are pre-certified for standards

such as IEC 61508 and ISO 26262. This can greatly reduce the development effort in

systems that must comply with such standards.

 Disadvantages:

¶ Learning Curve ï Even the simpler real-time operating systems will require time

for learning their specifics and how to properly use them.

¶ Price and Licensing ï Although there are many free RTOS, their licenses may differ a

lot. If you want to use a free RTOS for commercial products there may be some

limitations or fees.

Popular real-time operating systems are Free RTOS, mBed, TinyOS, Riot, Zephyr,

etc.

36

2.3 Semaphore

Multiple concurrent threads of execution within an application must be able to synchronize

their execution and coordinate mutually exclusive access to shared resources.

To address these requirements, RTOS kernels provide a semaphore object and associated

semaphore management services.

Semaphores

A semaphore (sometimes called a semaphore token) is a kernel object that one or more

threads of execution can acquire or release for the purposes of synchronization or mutual

exclusion.

When a semaphore is first created, the kernel assigns to it an associated semaphore control

block (SCB), a unique ID, a value (binary or a count), and a task-waiting list, as shown in Figure

2.3 .

Fig 2.3 Semaphore

A semaphore is like a key that allows a task to carry out some operation or to access a resource.

If the task can acquire the semaphore, it can carry out the intended operation or access the

resource.

A single semaphore can be acquired a finite number of times.

In this sense, acquiring a semaphore is like acquiring the duplicate of a key from an apartment

manager when the apartment manager runs out of duplicates, the manager can give out no more

keys.

Likewise, when a semaphoreôs limit is reached, it can no longer be acquired until someone

gives a key back or releases the semaphore.

The kernel tracks the number of times a semaphore has been acquired or released by

maintaining a token count, which is initialized to a value when the semaphore is created.

As a task acquires the semaphore, the token count is decremented; as a task releases the

37

semaphore, the count is incremented.

If the token count reaches 0, the semaphore has no tokens left.

A requesting task, therefore, cannot acquire the semaphore, and the task blocks if it chooses to

wait for the semaphore to become available.

The task-waiting list tracks all tasks blocked while waiting on an unavailable semaphore.

These blocked tasks are kept in the task-waiting list in either first in/first out (FIFO) order

or highest priority first order.

When an unavailable semaphore becomes available, the kernel allows the first task in the

task- waiting list to acquire it.

The kernel moves this unblocked task either to the running state, if it is the highest

priority task, or to the ready state, until it becomes the highest priority task and is able to run.

Note that the exact implementation of a task-waiting list can vary from one kernel to

another. A kernel can support many different types of semaphores, including binary,

counting, and mutual-exclusion (mutex) semaphores.

1- Binary Semaphores :-

A binary semaphore can have a value of either 0 or 1.

When a binary semaphoreôs value is 0, the semaphore is considered unavailable (or

empty); when the value is 1, the binary semaphore is considered available (or full).

Note that when a binary semaphore is first created, it can be initialized to either available

or unavailable (1 or 0, respectively).

The state diagram of a binary semaphore is shown in Figure 2.4

Fig 2.4 Binary Semaphore

Binary semaphores are treated as global resources, which means they are shared among

all tasks that need them.

Making the semaphore a global resource allows any task to release it, even if the task did

not initially acquire it.

38

2- Counting Semaphores :-

A counting semaphore uses a count to allow it to be acquired or released multiple times.

When creating a counting semaphore, assign the semaphore a count that denotes the

number of semaphore tokens it has initially.

If the initial count is 0, the counting semaphore is created in the unavailable state.

If the count is greater than 0, the semaphore is created in the available state, and the number

of tokens it has equals its count, as shown in Figure 2.5

Fig 2.5 Counting Semaphore

One or more tasks can continue to acquire a token from the counting semaphore until no tokens

are left.

When all the tokens are gone, the count equals 0, and the counting semaphore moves from

the available state to the unavailable state.

To move from the unavailable state back to the available state, a semaphore token must

be released by any task.

Note that, as with binary semaphores, counting semaphores are global resources that can

be shared by all tasks that need them.

This feature allows any task to release a counting semaphore token.

Each release operation increments the count by one, even if the task making this call did

not acquire a token in the first place.

Some implementations of counting semaphores might allow the count to be bounded.

A bounded count is a count in which the initial count set for the counting semaphore,

determined when the semaphore was first created, acts as the maximum count for the

semaphore.

39

An unbounded count allows the counting semaphore to count beyond the initial count to the

maximum value that can be held by the countôs data type (Ex :- an unsigned integer or an

unsigned long value).

3- Mutual Exclusion (Mutex) Semaphores :-

A mutual exclusion (mutex) semaphore is a special binary semaphore that supports

ownership, recursive access, task deletion safety, and one or more protocols for avoiding

problems inherent to mutual exclusion.

Figure 2.6 illustrates the state diagram of a mutex.

Fig 2.6 State diagram of a mutex

As opposed to the available and unavailable states in binary and counting semaphores,

the states of a mutex are unlocked or locked (0 or 1, respectively).

A mutex is initially created in the unlocked state, in which it can be acquired by a task. After

being acquired, the mutex moves to the locked state.

Conversely, when the task releases the mutex, the mutex returns to the unlocked state. Note

that some kernels might use the terms lock and unlock for a mutex instead of acquire and

release.

Depending on the implementation, a mutex can support additional features not found in binary

or counting semaphores.

These key differentiating features include ownership, recursive locking, task deletion safety,

and priority inversion avoidance protocols.

Mutex Ownership :-

Ownership of a mutex is gained when a task first locks the mutex by acquiring it. Conversely,

a task loses ownership of the mutex when it unlocks it by releasing it.

When a task owns the mutex, it is not possible for any other task to lock or unlock that mutex.

Contrast this concept with the binary semaphore, which can be released by any task, even a

task that did not originally acquire the semaphore.

40

 Recursive Locking :-

Many mutex implementations also support recursive locking , which allows the task that owns the

mutex to acquire it multiple times in the locked state.

Depending on the implementation, recursion within a mutex can be automatically built into the

mutex, or it might need to be enabled explicitly when the mutex is first created.

The mutex with recursive locking is called a recursive mutex.

This type of mutex is most useful when a task requiring exclusive access to a shared resource calls

one or more routines that also require access to the same resource.

A recursive mutex allows nested attempts to lock the mutex to succeed, rather than cause deadlock

, which is a condition in which two or more tasks are blocked and are waiting on mutually

locked resources.

As shown in the above figure, when a recursive mutex is first locked, the kernel registers the

task that locked it as the owner of the mutex.

On successive attempts, the kernel uses an internal lock count associated with the mutex to track

the number of times that the task currently owning the mutex has recursively acquired it. To

properly unlock the mutex, it must be released the same number of times.

In this example, a lock count tracks the two states of a mutex (0 for unlocked and 1 for locked), as

well as the number of times it has been recursively locked (lock count > 1).

In other implementations, a mutex might maintain two counts: a binary value to track its state,

and a separate lock count to track the number of times it has been acquired in the lock state by

the task that owns it.

Do not confuse the counting facility for a locked mutex with the counting facility for a counting

semaphore.

The count used for the mutex tracks the number of times that the task owning the mutex has

locked or unlocked the mutex.

The count used for the counting semaphore tracks the number of tokens that have been acquired

or released by any task. Additionally, the count for the mutex is always unbounded, which

allows multiple recursive accesses.

Task Deletion Safety :-

Some mutex implementations also have built-in task deletion safety.

Premature task deletion is avoided by using task deletion locks when a task locks and

unlocks a mutex.

Enabling this capability within a mutex ensures that while a task owns the mutex, the

task cannot be deleted.

41

Typically protection from premature deletion is enabled by setting the appropriate

initialization options when creating the mutex.

Priority Inversion Avoidance :-

Priority inversion commonly happens in poorly designed real-time embedded applications.

Priority inversion occurs when a higher priority task is blocked and is waiting for a

resource being used by a lower priority task, which has itself been preempted by an unrelated

medium- priority task.

In this situation, the higher priority taskôs priority level has effectively been inverted to

the lower priority taskôs level.

Enabling certain protocols that are typically built into mutexes can help avoid priority

inversion.

Two common protocols used for avoiding priority inversion include:-

A- Priority Inheritance Protocol :- ensures that the priority level of the lower priority task that

has acquired the mutex is raised to that of the higher priority task that has requested the mutex

when inversion happens. The priority of the raised task is lowered to its original value after the

task releases the mutex that the higher priority task requires.

B- Ceiling Priority Protocol :- ensures that the priority level of the task that acquires the mutex

is automatically set to the highest priority of all possible tasks that might request that mutex

when it is first acquired until it is released.

When the mutex is released, the priority of the task is lowered to its original value.

2.4 Message Queue

A message queue is a buffer-like object through which tasks and ISRs send and receive

messages to communicate and synchronize with data. A message queue is like a pipeline. It

temporarily holds messages from a sender until the intended receiver is ready to read them.

This temporary buffering decouples a sending and receiving task; that is, it frees the tasks from

having to send and receive messages simultaneously.

A message queue has several associated components that the kernel uses to manage the

queue. When a message queue is first created, it is assigned an associated queue control block

(QCB), a message queue name, a unique ID, memory buffers, a queue length, a maximum

message length, and one or more task-waiting lists, as illustrated in Fig 2.7

42

Figure 2.7 : A message queue, its associated parameters, and supporting data

structures.

It is the kernelôs job to assign a unique ID to a message queue and to create its QCB and

task-waiting list. The kernel also takes developer-supplied parametersðsuch as the length of the

queue and the maximum message lengthðto determine how much memory is required for the

message queue. After the kernel has this information, it allocates memory for the message queue

from either a pool of system memory or some private memory space.

The message queue itself consists of a number of elements, each of which can hold a

single message. The elements holding the first and last messages are called

the head and tail respectively. Some elements of the queue may be empty (not containing a

message). The total number of elements (empty or not) in the queue is the total length of the

queue . The developer specified the queue length when the queue was created.

As fig 2.7 shows, a message queue has two associated task-waiting lists. The receiving task-

waiting list consists of tasks that wait on the queue when it is empty. The sending list consists

of tasks that wait on the queue when it is full.

Message Queue States

As with other kernel objects, message queues follow the logic of a simple FSM, as shown in fig

2.8 When a message queue is first created, the FSM is in the empty state. If a task attempts to

receive messages from this message queue while the queue is empty, the task blocks and, if it

chooses to, is held on the message queue's task-waiting list, in either a FIFO or priority-based

order.

43

Figure 2.8 : The state diagram for a message queue.

In this scenario, if another task sends a message to the message queue, the message is delivered

directly to the blocked task. The blocked task is then removed from the task-waiting list and

moved to either the ready or the running state. The message queue in this case remains empty

because it has successfully delivered the message.

If another message is sent to the same message queue and no tasks are waiting in the message

queue's task-waiting list, the message queue's state becomes not empty.

As additional messages arrive at the queue, the queue eventually fills up until it has exhausted

its free space. At this point, the number of messages in the queue is equal to the queue's length,

and the message queue's state becomes full. While a message queue is in this state, any task

sending messages to it will not be successful unless some other task first requests a message

from that queue, thus freeing a queue element.

In some kernel implementations when a task attempts to send a message to a full message

queue, the sending function returns an error code to that task. Other kernel implementations

allow such a task to block, moving the blocked task into the sending task-waiting list, which is

separate from the receiving task-waiting list (fig. 2.9).

Figure 2.9: Message copying and memory use for sending and receiving messages.

44

Message Queue Content

Message queues can be used to send and receive a variety of data. Some examples include:

Á a temperature value from a sensor,

Á a bitmap to draw on a display,

Á a text message to print to an LCD,

Á a keyboard event, and

Á a data packet to send over the network.

Some of these messages can be quite long and may exceed the maximum message length,

which is determined when the queue is created. (Maximum message length should not be

confused with total queue length, which is the total number of messages the queue can hold.)

One way to overcome the limit on message length is to send a pointer to the data, rather than

the data itself. Even if a long message might fit into the queue, it is sometimes better to send

a pointer instead in order to improve both performance and memory utilization.

When a task sends a message to another task, the message normally is copied twice, as shown

in fig 2.9. The first time, the message is copied when the message is sent from the sending

taskôs memory area to the message queueôs memory area. The second copy occurs when the

message is copied from the message queueôs memory area to the receiving taskôs memory area.

An exception to this situation is if the receiving task is already blocked waiting at the message

queue. Depending on a kernelôs implementation, the message might be copied just once in this

caseðfrom the sending taskôs memory area to the receiving taskôs memory area, bypassing the

copy to the message queueôs memory area.

Because copying data can be expensive in terms of performance and memory requirements,

keep copying to a minimum in a real-time embedded system by keeping messages small or, if

that is not feasible, by using a pointer instead.

Message Queue Storage

Different kernels store message queues in different locations in memory. One kernel might use

a system pool, in which the messages of all queues are stored in one large shared area of

memory. Another kernel might use separate memory areas, called private buffers, for each

message queue.

System Pools

Using a system pool can be advantageous if it is certain that all message queues will never be

filled to capacity at the same time. The advantage occurs because system pools typically save

45

on memory use. The downside is that a message queue with large messages can easily use most

of the pooled memory, not leaving enough memory for other message queues. Indications that

this problem is occurring include a message queue that is not full that starts rejecting messages

sent to it or a full message queue that continues to accept more messages.

Private Buffers

Using private buffers, on the other hand, requires enough reserved memory area for the full

capacity of every message queue that will be created. This approach clearly uses up more

memory; however, it also ensures that messages do not get overwritten and that room is

available for all messages, resulting in better reliability than the pool approach.

Typical Message Queue Operations

Typical message queue operations include the following:

Á creating and deleting message queues,

Á sending and receiving messages, and

Á obtaining message queue information.

Typical Message Queue Use

The following are typical ways to use message queues within an application:

Á non-interlocked, one-way data communication,

Á interlocked, one-way data communication,

Á interlocked, two-way data communication, and

Á broadcast communication.

2.5 Interrupt routines in RTOS environment

ISRs have the higher priorities over the RTOS functions and the tasks. An ISR should not wait

for a semaphore, mailbox message or queue message An ISR should not also wait for mutex

else it has to wait for other critical section code to finish before the critical codes in the ISR

can run. Only the IPC accept function for these events (semaphore, mailbox, queue) can be

used, not the post function

Interrupt Routine Rules

Interrupt routines in RTOS must follow two rules that do not apply to task code:

¶ An interrupt routine must not call any RTOS functions that might block.

¶ could block the highest priority task

¶ might not reset the hardware or allow further interrupts

46

¶ An interrupt routine must not call any RTOS function that might cause the RTOS to

switch tasks

¶ causing a higher priority task to run may cause the interrupt routine to take a very long

time to complete.

Low- and high-level ISRs

Low-level ISR

A low-level interrupt service routine (LISR) executes as a normal ISR, which includes using

the current stack. Nucleus RTOS saves context before calling an LISR and restores context

after the LISR returns. Therefore LISRs may be written in C and may call other C routines.

However, there are only a few Nucleus RTOS services available to an LISR. If the interrupt

processing requires additional Nucleus RTOS services, a high-level interrupt service routine

(HISR) must be activated. Nucleus RTOS supports nesting of multiple LISRs.

High-level ISR

HISRs are created and deleted dynamically. Each HISR has its own stack space and its own

control block. The memory for each is supplied by the application. Of course, the HISR must

be created before it is activated by an LISR. Since an HISR has its own stack and control block,

it can be temporarily blocked if it tries to access a Nucleus RTOS data structure that is already

being accessed.

2.6 Memory Management

A kernel manages program code within an embedded system via tasks. The kernel must also

have some system of loading and executing tasks within the system, since the CPU only

executes task code that is in cache or RAM. With multiple tasks sharing the same memory

space, an OS needs a security system mechanism to protect task code from other independent

tasks. Also, since an OS must reside in the same memory space as the tasks it is managing, the

protection mechanism needs to include managing its own code in memory and protecting it

from the task code it is managing. It is these functions, and more, that are the responsibility

of the memory management components of an OS. In general, a kernelôs memory management

responsibilities include:

¶ Managing the mapping between logical (physical) memory and task memory references.

¶ Determining which processes to load into the available memory space.

¶ Allocating and deallocating of memory for processes that make up the system.

47

¶ Supporting memory allocation and deallocation of code requests (within a process),

¶ such as the C language ñallocò and ñdeallocò functions, or specific buffer allocation and

¶ deallocation routines.

¶ Tracking the memory usage of system components.

¶ Ensuring cache coherency (for systems with cache).

¶ Ensuring process memory protection.

Physical memory is composed of two-dimensional arrays made up of cells addressed by

a unique row and column, in which each cell can store 1 bit.

Again, the OS treats memory as one large one-dimensional array, called a memory map .

Either a hardware component integrated in the master CPU or on the board does the

conversion between logical and physical addresses (such as a memory management unit

(MMU)), or it must be handled via the OS.

How OSs manage the logical memory space differs from OS to OS, but kernels generally run

kernel code in a separate memory space from processes running higher level code (i.e.,

middleware and application layer code). Each of these memory spaces (kernel containing kernel

code and user containing the higher-level processes) is managed differently. In fact, most OS

processes typically run in one of two modes: kernel mode and user mode , depending on the

routines being executed. Kernel routines run in kernel mode (also referred to as supervisor

mode), in a different memory space and level than higher layers of software such as middleware

or applications. Typically, these higher layers of software run in user mode , and can only access

anything running in kernel mode via system calls , the higher-level interfaces to the kernelôs

subroutines. The kernel manages memory for both itself and user processes.

User Memory Space

Because multiple processes are sharing the same physical memory when being loaded

into RAM for processing, there also must be some protection mechanism so processes cannot

inadvertently affect each other when being swapped in and out of a single physical memory

space. These issues are typically resolved by the OS through memory ñswapping,ò where

partitions of memory are swapped in and out of memory at runtime. The most common

partitions of memory used in swapping are segments (fragmentation of processes from within)

and pages (fragmentation of logical memory as a whole). Segmentation and paging not only

simplify the swapping ï memory allocation and deallocation ï of tasks in memory, but allow

for code reuse and memory protection, as well as providing the foundation for virtual memory .

Virtual memory is a mechanism managed by the OS to allow a deviceôs limited memory space

to be shared by multiple competing ñuserò tasks, in essence enlarging the deviceôs actual

48

physical memory space into a larger ñvirtualò memory space.

User Memory Space

Because multiple processes are sharing the same physical memory when being loaded

into RAM for processing, there also must be some protection mechanism so processes cannot

inadvertently affect each other when being swapped in and out of a single physical memory

space. These issues are typically resolved by the OS through memory ñswapping,ò where

partitions of memory are swapped in and out of memory at runtime. The most common

partitions of memory used in swapping are segments (fragmentation of processes from within)

and pages (fragmentation of logical memory as a whole). Segmentation and paging not only

simplify the swapping ï memory allocation and deallocation ï of tasks in memory, but allow

for code reuse and memory protection, as well as providing the foundation for virtual memory

. Virtual memory is a mechanism managed by the OS to allow a deviceôs limited memory space

to be shared by multiple competing ñuserò tasks, in essence enlarging the deviceôs actual

physical memory space into a largerñ virtualò memory space.

Segmentation

A process encapsulates all the information that is involved in executing a program, including

source code, stack, and data. All of the different types of information within a process are

divided into ñlogicalò memory units of variable sizes, called segments. A segment is a set of

logical addresses containing the same type of information. Segment addresses are logical

addresses that start at 0, and are made up of a segment number, which indicates the base address

of the segment, and a segment offset, which defines the actual physical memory address.

Segments are independently protected, meaning they have assigned accessibility

characteristics, such as shared (where other processes can access that segment), read-only, or

read/write.

Most OSs typically allow processes to have all or some combination of five types of

information within segments: text (or code) segment, data segment, BSS (block started by

symbol) segment, stack segment, and the heap segment. A text segment is a memory space

containing the source code. A data segment is a memory space containing the source codeôs

initialized variables (data). A BSS segment is a statically allocated memory space containing

the source codeôs un-initialized variable (data). The data, text, and BSS segments are all fixed

in size at compile time, and are as such static segments; it is these three segments that typically

are part of the executable file.

49

Executable files can differ in what segments they are composed of, but in general they contain

a header, and different sections that represent the types of segments, including name,

permissions, etc., where a segment can be made up of one or more sections.

The OS creates a taskôs image by memory mapping the contents of the executable file, meaning

loading and interpreting the segments(sections) reflected in the executable into memory. There

are several executable file formats supported by embedded OSs, the most common including:

2.7 Basic Design Using RTOS

Most operating systems are put together based on kernel designs. Kernel design has been used

for almost 4 decades because it separates the operating system from the different applications

running on it. The different applications are allocated in different memory locations. The OS

processes utilize kernel functionality through conducting system calls. System calls are

software interrupts that allow users to switch from the operating system to applications and

vice versa. Therefore, the kernel must install an interrupt handler that tackles different modes

of operation in order to ensure effective switches. The interrupt handler is enabled in the

program status (i.e., the supervisor mode and user mode). As such, protection is conducted on

the modern system on a chip (SoCs) at the peripheral side. However, some processor registers

can be changed if the CPU indicates a particular execution mode like master mode through

additional HW signals.

All processes outside the operating system are implemented within the user mode and cannot

execute any instructions availed in supervisor mode only. Meaning that user mode instructions

hold a non-critical subset of instructions under the supervisor mode. During a process runtime,

the supervisor mode under the PSW is disabled and only gets enabled once an interrupt like

external interrupt or system call occurs. The OS activates the user mode once the user process

is activated. Note that, a user process contains a virtual memory address space that separates

it from the kernel entirely. However, this feature is only available to embedded

microcontrollers that constitute a memory management unit that allows the use of virtual

memory. Virtual memory usage must be upheld without other unbound memory accesses such

as swapping on an external disk or changing (TLB) translation lookaside buffer entries by

examining a dynamically sized page table.

To utilize the functionality offered by the OS kernel design, you must identify an interface that

allows applications to run effectively while using it. The interface is known as the application

binary interface (ABI). ABI delineates a registered usage convention, a set of system calls, a

stack layout and facilitates binary compatibility. On the other hand, an API (application

programming interface) facilitates source code compatibility by defining a set of function

signatures that offer a fixed interface for calling the required functions. The kernel can have

50

many designs, but it must provide basic activities like; process communication, process

synchronization, process management and interrupt handling.

Process management ensures that process termination, creation, dispatching, scheduling, and

switching context among other related activities run as required. In a real-time operating

system, interrupt handling differs from the standardized implementation of a regular operating

system. Interrupts in regular operating systems can preempt all running processes unexpectedly.

This leads to unbound delays that are intolerable in a real-time operating system. As such,

handling of interruptions is assimilated into the scheduler so that it is scheduled along with other

important processes and feasibility is guaranteed even when interruption requests are made.

Part A

1.Define task and Task state.

2.Define Task Control Block

3.Define Inter process communication

4.Define Semaphore.

5.Interpret Priority inversion?

 6.Define Message Queue.

7.List the functions of a kernel.

8.What is a thread?

9.What are the problems of semaphore?

10.What is memory management in embedded system?

11.What is ISR?

Part B

1.Explain in detail about semaphores and its applications.
2.What is IPC? Mention the two methods available for it.
 3.Explain in detail about message queues.

4.Discuss in detail about the following. A) Timer function events. B) Memory

management functions.

5.Elaborate in detail about task and task state with suitable diagram

TEXT/ REFEENCE BOOKS

1.David E.Simon, ñAn Embedded Software Primerò, Pearson

Education,2001

2. Frank Vahid and Tony Gwargie, ñ Embedded System Designò, John

Wiley & Sons,2002

3. Steve Heath, ñEmbedded System Designò, Elsevier, Second

Edition,2004.

51

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT -3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERAL

52

UNIT 3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERAL

Custom single purpose processors: Hardware Combination Sequence Processor design RT

level design optimizing software: Basic Architecture Operation Programmers view

Development Environment ASIP Processor Design Peripherals Timers, counters and watch

dog timers UART Pulse width modulator LCD controllers Key pad controllers Stepper motor

controllers A/D converters Real time clock.

3.1 Custom single-purpose processors: Hardware

A single-purpose processor is a digital system intended to solve a specific computation

task. While a manufacturer builds a standard single-purpose processor for use in a variety

of applications, we build a custom single- purpose processor to execute a specific task

within our embedded system. An embedded system designer choosing to use a custom

single-purpose, rather than a general-purpose, processor to implement part of a systemôs

functionality may achieve several benefits.

First, performance may be fast, due to fewer clock cycles resulting from a customized data

path, and due to shorter clock cycles resulting from simpler functional units, less

multiplexors, or simpler control logic. Second, size may be small, due to a simpler data path

and no program memory. In fact, the processor may be faster and smaller than a standard

one implementing the same functionality, since we can optimize the implementation for

our particular task.

However, because we probably won't manufacture as many of the custom processor as a

standard processor, we may not be able to invest as much NRE, unless the embedded system

we are building will be sold in large quantities or does not have tight cost constraints. This

fact could actually penalize performance and size.

Combinational logic design

A transistor is the basic electrical component of digital systems. Combinations of transistors

form more abstract components called logic gates, which designers primarily use when

53

building digital systems. Thus, we begin with a short description of transistors before

discussing logic design.

A transistor acts as a simple on/off switch. One type of transistor (CMOS -- Complementary

Metal Oxide Semiconductor) is shown in Figure 3.1(a). The gate

 (not to be confused with logic gate) controls whether or not current flows from the source to

the drain. When a high voltage (typically +5 Volts, which we'll refer to as logic 1) is applied

to the gate, the transistor conducts, so current flows. When low voltage (which we'll refer to

as logic 0, typically ground, which is drawn as several horizontal lines of decreasing width) is

applied to the gate, the transistor does not conduct. We can also build a transistor with the

opposite functionality, illustrated in in Figure 3.1(b). When logic 0 is applied to the gate, the

transistor conducts, and when logic 1 is applied, the transistor does not conduct. Given these

two basic transistors, we can easily build a circuit whose output inverts its gate input, as shown

in in Figure 3.1(c). When the input x is logic 0, the top transistor conducts (and the bottom

does not), so logic 1 appears at the output F. We can also easily build a circuit whose output

is logic 1 when at least one of its inputs is logic 0, as shown in Figure 3.1(d). When at least

one of the inputs x and y is logic 0, then at least one of the top transistors conducts (and the

bottom transistors do not), so logic 1 appears at F. If both inputs are logic 1, then neither of

the top transistors conducts, but both of the bottom ones do, so logic 0 appears at F. Likewise,

we can easily build a circuit whose output is logic 1 when both of its inputs are logic 0, as

illustrated in Figure 3.1(e). The three circuits shown implement three basic logic gates: an

inverter, a NAND gate, and a NOR gate.

Figure 3.1: CMOS transistor implementations of some basic logic gates: (a) nMOS
transistor, (b) pMOS transistor, (c) inverter, (d) NAND gate, (e) NOR gate.

source

Conducts

if gate=+5V

+5V +5V +5V

gate

x y x

gate

drain
(a)

source

Conducts

x F = xô
F = (xy)ô y

x F = (x+y)ô

y
if gate=0V

drain

(b)

x y

(c) (d) (e)

54

Figure 3.2: Basic logic gates

x
x

y

x

y

x

y

F = x

Driver

x

0

1

F

0

1

F = x y

AND

F = x + y

OR

F = x Ä y

XOR

x
x

y

F = xô

Inverter

x

0

1

F

1

0

x

y

x

y

F = (x y)ô

NAND
F = (x+y)ô

NOR

F = x ¿ y

XNOR

Digital system designers usually work with logic gates, not transistors. Figure 3.2 describes 8

basic logic gates. Each gate is represented symbolically, with a Boolean equation, and with a

truth table. The truth table has inputs on the left, and output on the right. The AND gate outputs

1 if and only if both inputs are 1. The OR gate outputs 1 if and only if at least one of the inputs

is 1. The XOR (exclusive-OR) gate outputs 1 if and only if exactly one of its two inputs is 1.

The NAND, NOR, and XNOR gates output the complement of AND, OR, and XOR,

respectively. As you might have noticed from our transistor implementations, the NAND and

NOR gates are actually simpler to build than AND and OR gates.

A combinational circuit is a digital circuit whose output is purely a function of its current

inputs; such a circuit has no memory of past inputs. We can apply a simple technique to design

a combinational circuit using our basic logic gates, as illustrated in Figure 3.3. We start with

a problem description, which describes the outputs in terms of the inputs. We translate that

description to a truth table, with all possible combinations of input values on the left, and

desired output values on the right. For each output column, we can derive an output equation,

with one term per row. However, we often want to minimize the logic gates in the circuit. We

can minimize the output equations by algebraically manipulating the equations. Alternatively,

we can use Karnaugh maps, as shown in the figure. Once weôve obtained the desired

output equations (minimized or not), we can draw the circuit diagram.

x y F
0 0 0
0 1 0

1 0 0

1 1 1

x y F
0 0 0
0 1 1

1 0 1

1 1 1

x y F
0 0 0
0 1 1

1 0 1

1 1 0

x y F
0 0 1
0 1 1
1 0 1

1 1 0

x y F
0 0 1

0 1 0

1 0 0

1 1 0

x y F
0 0 1

0 1 0
1 0 0

1 1 1

55

a
b
c

 y

z

Figure 3.3: Combinational logic design.

(d) Minimized output equations

y
bc 00

a
01 11 10

0

1

(b) Truth table y = a + bc

z

a
bc 00 01 11 10

0

1

z = ab + bôc + bcô

1 1 1 0

1 0 1 0

(c) Output equations

y = a'bc + ab'c' + ab'c + abc' +

abc

z = a'b'c + a'bc' + ab'c + abc' +

abc

(a) Problem description

y is 1 if a is equal to 1, or b and c is

equal to 1. z is 1 if b or c is equal

to 1, but not both.

0 0 1 0

 1 1 1 1

Although we can design all combinational circuits in the above manner, large circuits would

be very complex to design. For example, a circuit with 16 inputs would have 216, or 64K, rows

in its truth table. One way to reduce the complexity is to use components that are more abstract

than logic gates. Figure 3.4 shows several such combinational components. We now describe

each briefly.

A multiplexor, sometimes called a selector, allows only one of its data inputs Im to pass

through to the output O. Thus, a multiplexor acts much like a railroad switch, allowing only

one of multiple input tracks to connect to a single outputtrack. If there are m data inputs,

then there are log2(m) select lines S, and we call this an m-by-1 multiplexor (m data inputs,

one data output). The binary value of S determines which data input passes through; 00...00

means I0 may pass, 00...01 means I1 may pass, 00...10 means I2 may pass, and so on. For

a
Inputs

b

c
Outputs

y z
0 0 0 0 0
0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 1 0
1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

56

example, an 8x1 multiplexor has 8 data inputs and thus 3 select lines. If those three select lines

have values of 110, then I6 will pass through to the output. So if I6 is 1, then the output would

be 1; if I6 is 0, then the output would be 0. We commonly use a more complex device called

an n-bit multiplexor, in which each data input, as well as the output, consists of n lines.

Suppose the previous example used a 4-bit 8x1 multiplexor. Thus, if I6 is 0110, then the output

would be 0110. Note that n does not affect the number of select lines.

A decoder converts its binary input I into a one-hot output O. "One-hot" means that exactly

one of the output lines can be 1 at a given time. Thus, if there are n outputs, then there must

be log2(n) inputs. We call this a log2(n)xn decoder. For example, a 3x8 decoder has 3 inputs

and 8 outputs. If the input is 000, then the output O0 will be 1. If the input is 001, then the

output O1 would be 1, and so on. A common feature on a decoder is an extra input called

enable. When enable is 0, all outputs are 0. When enable is 1, the decoder functions as before.

An adder adds two n-bit binary inputs A and B, generating an n-bit output sum along with an

output carry. For example, a 4-bit adder would have a 4-bit A input, a 4-bit B input, a 4-bit

sum output, and a 1-bit carry output. If A is 1010 and B is 1001, then sum would be 0011 and

carry would be 1.

A comparator compares two n-bit binary inputs A and B, generating outputs that indicate

whether A is less than, equal to, or greater than B. If A is 1010 and B is 1001, then less would

be 0, equal would be 0, and greater would be 1.

An ALU (arithmetic-logic unit) can perform a variety of arithmetic and logic functions on its

n-bit inputs A and B. The select lines S choose the current function;

if there are m possible functions, then there must be at least log2(m) select lines.

Common functions include addition, subtraction, AND, and OR.

STANDARD SINGLE-PURPOSE PROCESSORS: PERIPHERALS

Introduction

A single-purpose processor is a digital system intended to solve a specific computation task.

The processor may be a standard one, intended for use in a wide variety of applications in

which the same task must be performed. The manufacturer of such an off-the-shelf processor

57

sells the device in large quantities. On the other hand, the processor may be a custom one,

built by a designer to implement a task specific to a particular application. An embedded

system designer choosing to use a standard single- purpose, rather than a general-purpose,

processor to implement part of a systemôs functionality may achieve several benefits.

First, performance may be fast, since the processor is customized for the particular task at

hand. Not only might the task execute in fewer clock cycles, but also those cycles themselves

may be shorter. Fewer clock cycles may result from many data path components operating in

parallel, from data path components passing data directly to one another without the need for

intermediate registers (chaining), or from elimination of program memory fetches. Shorter

cycles may result from simpler functional units, less multiplexors, or simpler control logic.

For standard single-purpose processors, manufacturers may spread NRE cost over many

units. Thus, the processor's clock cycle may be further reduced by the use of custom IC

technology, leading-edge IC's, and expert designers, just as is the case with general-purpose

processors.

Second, size may be small. A single-purpose processor does not require a program

memory. Also, since it does not need to support a large instruction set, it may have a simpler

data path and controller.

Third, a standard single-purpose processor may have low unit cost, due to the manufacturer

spreading NRE cost over many units. Likewise, NRE cost may be low, since the embedded

system designer need not design a standard single- purpose processor, and may not even

need to program it.

Timers, counters, and watchdog timers

A timer is a device that generates a signal pulse at specified time intervals. A time interval

is a "real-time" measure of time, such as 3 milliseconds. These devices are extremely useful

in systems in which a particular action, such as sampling an input signal or generating an

output signal, must be performed every X time units.

Internally, a simple timer may consist of a register, counter, and an extremely simple

controller. The register holds a count value representing the number of clock cycles that equals

the desired real-time value. This number can be computed using the simple formula:

Number of clock cycles = Desired real-time value / Clock cycle

58

For example, to obtain a duration of 3 milliseconds from a clock cycle of 10

nanoseconds (100 MHz), we must count (3x10-6 s / 10x10-9 s/cycle) = 300 cycles. The counter

is initially loaded with the count value, and then counts down on every clock cycle until 0 is

reached, at which point an output signal is generated, the count value is reloaded, and the

process repeats itself.

To use a timer, we must configure it (write to its registers), and respond to its output

signal. When we use a timer in conjunction with a general-purpose processor, we typically

respond to the timer signal by assigning it to an interrupt, so we include the desired action in

an interrupt service routine. Many microcontrollers that include built-in timers will have

special interrupts just for its timers, distinct from external interrupts.

Note that we could use a general-purpose processor to implement a timer. Knowing

the number of cycles that each instruction requires, we could write a loop that executed the

desired number of instructions; when this loop completes, we know that the desired time

passed. This implementation of a timer on a dedicated general-purpose processor is

obviously quite inefficient in terms of size. One could alternatively incorporate the timer

functionality into a main program, but the timer functionality then occupies much of the

programôs run time, leaving little time for other computations. Thus, the benefit of assigning

timer functionality to a special-purpose processor becomes evident.

A counter is nearly identical to a timer, except that instead of counting clock cycles

(pulses on the clock signal), a counter counts pulses on some other input signal.

A watchdog timer can be thought of as having the inverse functionality than that of a

regular timer. We configure a watchdog timer with a real-time value, just as with a regular

timer. However, instead of the timer generating a signal for us every X time units, we must

generate a signal for the timer every X time units. If we fail to generate this signal in time, then

the timer generates a signal indicating that we failed. We often connect this signal to the reset

or interrupt signal of a general-purpose processor. Thus, a watchdog timer provides a

mechanism of ensuring that our software is working properly; every so often in the software,

we include a statement that generates a signal to the watchdog timer (in particular, that resets

the timer). If something undesired happens in the software (e.g., we enter an undesired infinite

59

loop, we wait for an input signal that never arrives, a part fails, etc.), the watchdog generates a

signal that we can use to restart or test parts of the system. Using an interrupt service routine,

we may record information as to the number of failures and the causes of each, so that a service

technician may later evaluate this information to determine if a particular part requires

replacement. Note that an embedded system often must recover from failures whenever

possible, as the user may not have the means to reboot the system in the same manner that

he/she might reboot a desktop system.

UART

A UART (Universal Asynchronous Receiver/Transmitter) receives serial data and stores

it as parallel data (usually one byte), and takes parallel data and transmits it as serial data.

Such serial communication is beneficial when we need to communicate bytes of data

between devices separated by long distances, or when we simply have few available I/O pins.

We must be aware that we must set the transmission and reception rate, called the baud rate,

which indicates the frequency that the signal changes. Common rates include 2400, 4800,

9600, and 19.2k. We must also be aware that an extra bit may be added to each data word,

called parity, to detect transmission errors -- the parity bit is set to high or low to indicate if

the word has an even or odd number of bits.

Internally, a simple UART may possess a baud-rate configuration register, and two

independently operating processors, one for receiving and the other for transmitting. The

transmitter may possess a register, often called a transmit buffer, that holds data to be sent.

This register is a shift register, so the data can be transmitted one bit at a time by shifting at

the appropriate rate. Likewise, the receiver receives data into a shift register and then this

data can be read in parallel. Note that in order to shift at the appropriate rate based on the

configuration register, a UART requires a timer.

To use a UART, we must configure its baud rate by writing to the configuration register,

and then we must write data to the transmit register and/or read data from the received register.

Unfortunately, configuring the baud rate is usually not as simple as writing the desired rate

(e.g., 4800) to a register. For example, to configure the UART of an 8051, we must use the

following equation:

60

smod corresponds to 2 bits in a special-function register,

oscfreq is the frequency of the oscillator, and

TH1 is an 8-bit rate register of a built-in timer.

Note that we could use a general-purpose processor to implement a UART completely

in software. If we used a dedicated general-processor, the implementation would be

inefficient in terms of size. We could alternatively integrate the transmit and receive

functionality with our main program. This would require creating a routine to send data

serially over an I/O port, making use of a timer to control the rate. It would also require using

an interrupt service routine to capture serial data coming from another I/O port whenever

such data begins arriving. However, as with the timer functionality, adding send and receive

functionality can detract from time for other computations.

Knowing the number of cycles that each instruction requires, we could

write a loop that executed the desired number of instructions; when this loop completes, we

know that the desired time passed. This implementation of a timer on a dedicated general-

purpose processor is obviously quite inefficient in terms of size. One could alternatively

incorporate the timer functionality into a main program, but the timer functionality then

occupies much of the programôs run time, leaving little time for other computations. Thus,

the benefit of assigning timer functionality to a special- purpose processor becomes evident.

Pulse width modulator

A pulse-width modulator (PWM) generates an output signal that repeatedly switches

between high and low. We control the duration of the high value and of the low value by

indicating the desired period, and the desired duty cycle, which is the percentage of time the

signal is high compared to the signalôs period. A square wave has a duty cycle of 50%. The

pulseôs width corresponds to the pulseôs time high.

Again, PWM functionality could be implemented on a dedicated general- purpose

processor, or integrated with another programôs functionality, but the single-purpose

processor approach has the benefits of efficiency and simplicity.

One common use of a PWM is to control the average current or voltage input to a

device. For example, a DC motor rotates when power is applied, and this power can be

turned on and off by setting an input high or low. To control the speed, we can adjust the

61

input voltage, but this requires a conversion of our high/low digital signals to an analog

signal. Fortunately, we can also adjust the speed simply by modifying the duty cycle of the

motors on/off input, an approach which adjusts the average voltage. This approach works

because a DC motor does not come to an immediate stop when power is turned off, but rather

it coasts, much like a bicycle coasts when we stop pedaling. Increasing the duty cycle

increases the motor speed, and decreasing the duty cycle decreases the speed. This duty cycle

adjustment principle applies to the control other types of electric devices, such as dimmer

lights.

Another use of a PWM is to encode control commands in a single signal for use by

another device. For example, we may control a radio-controlled car by sending pulses of

different widths. Perhaps a 1 ms width corresponds to a turn left command, a 4 ms width to

turn right, and 8 ms to forward.

LCD controller

An LCD (Liquid crystal display) is a low-cost, low-power device capable of displaying

text and images. LCDs are extremely common in embedded systems, since such systems often

do not have video monitorôs standard for desktop systems. LCDs can be found in numerous

common devices like watches, fax and copy machines, and calculators.

The basic principle of one type of LCD (reflective) works as follows. First, incoming

light passes through a polarizing plate. Next, that polarized light encounters liquid crystal

material. If we excite a region of this material, we cause the materialôs molecules to align,

which in turn causes the polarized light to pass through the material. Otherwise, the light does

not pass through. Finally, light that has passed through hits a mirror and reflects back, so the

excited region appears to light up. Another type of LCD (absorption) works similarly, but uses

a black surface instead of a mirror. The surface below the excited region absorbs light, thus

appearing darker than the other regions.

One of the simplest LCDs is 7-segment LCD. Each of the 7 segments can be activated to

display any digit character or one of several letters and symbols. Such an LCD may have 7

inputs, each corresponding to a segment, or it may have only 4 inputs to represent the numbers

0 through 9. An LCD driver converts these inputs to the electrical signals necessary to excite

the appropriate LCD segments.

A dot-matrix LCD consists of a matrix of dots that can display alphanumeric characters

(letters and digits) as well as other symbols. A common dot-matrix LCD has 5 columns and 8

62

rows of dots for one character. An LCD driver converts input data into the appropriate

electrical signals necessary to excite the appropriate LCD bits.

Each type of LCD may be able to display multiple characters. In addition, each

character may be displayed in normal or inverted fashion. The LCD may permit a character to

be blinking (cycling through normal and inverted display) or may permit display of a cursor

(such as a blinking underscore) indicating the "current" character. This functionality would be

difficult for us to implement using software. Thus, we use an LCD controller to provide us

with a simple interface, perhaps 8 data inputs and one enable input. To send a byte to the LCD,

we provide a value to the 8 inputs and pulse the enable. This byte may be a control word, which

instructs the LCD controller to initialize the LCD, clear the display, select the position of the

cursor, brighten the display, and so on. Alternatively, this byte may be a data word, such as an

ASCII character, instructing the LCD to display the character at the currently-selected display

position.

Keypad controller

A keypad consists of a set of buttons that may be pressed to provide input to an

embedded system. Again, keypads are extremely common in embedded systems, since such

systems may lack the keyboard that comes standard with desktop systems.

A simple keypad has buttons arranged in an N-column by M-row grid. The device has N

outputs, each output corresponding to a column, and another M outputs, each output

corresponding to a row. When we press a button, one column output and one row output go

high, uniquely identifying the pressed button. To read such a keypad from software, we must

scan the column and row outputs.

The scanning may instead be performed by a keypad controller (actually, such a device

decodes rather than controls, but weôll call it a controller for consistency with the other

peripherals discussed). A simple form of such a controller scans the column and row outputs

of the keypad. When the controller detects a button press, it stores a code corresponding to

that button into a register and sets an output high, indicating that a button has been pressed.

Our software may poll this output every 100 milliseconds or so, and read the register when

the output is high. Alternatively, this output can generate an interrupt on our general-purpose

processor, eliminating the need for polling.

63

Stepper motor controller

A stepper motor is an electric motor that rotates a fixed number of degrees

whenever we apply a "step" signal. In contrast, a regular electric motor rotates

continuously whenever power is applied, coasting to a stop when power is removed. We

specify a stepper motor either by the number of degrees in a single step, such as 1.8 degree,

or by the number of steps required to move 360 degree, such as 200 steps. Stepper motors

obviously abound in embedded systems with moving parts, such as disk drives, printers,

photocopy and fax machines, robots, camcorders, VCRs, etc.

Internally, a stepper motor typically has four coils. To rotate the motor one step, we

pass current through one or two of the coils; the particular coils depend on the present

orientation of the motor. Thus, rotating the motor 360 degree requires applying current to

the coils in a specified sequence. Applying the sequence in reverse causes reversed rotation.

In some cases, the stepper motor comes with four inputs corresponding to the four coils,

and with documentation that includes a table indicating the proper input sequence. To control

the motor from software, we must maintain this table in software, and write a step routine

that applies high values to the inputs based on the table values that follow the previously-

applied values.

In other cases, the stepper motor comes with a built-in controller (i.e., a special- purpose

processor) implementing this sequence. Thus, we merely create a pulse on an input signal of

the motor, causing the controller to generate the appropriate high signals to the coils that

will cause the motor to rotate one step.

Analog-digital converters

An analog-to-digital converter (ADC, A/D or A2D) converts an analog signal to a digital

signal, and a digital-to-analog converter (DAC, D/A or D2A) does the opposite. Such

conversions are necessary because, while embedded systems deal with digital values, an

embedded systemôs surroundings typically involve many analog signals. Analog refers to

continuously-valued signal, such as temperature or speed represented by a voltage between

0 and 100, with infinite possible values in between. "Digital" refers to discretely-valued

signals, such as integers, and in computing systems, these signals are encoded in binary. By

converting between analog and digital signals, we can use digital processors in an analog

environment.

64

For example, consider the analog signal of Figure 3.1(a). The analog input voltage varies

over time from 1 to 4 Volts. We sample the signal at successive time units, and encode the

current voltage into a 4-bit binary number. Conversely, consider Figure 3.1(b). We want to

generate an analog output voltage for the given binary numbers over time. We generate the

analog signal shown.

We can compute the digital values from the analog values, and vice-versa, using the

following ratio:

Vmax is the maximum voltage that the analog signal can assume, n is the number of bits available

for the digital encoding, d is the present digital encoding, and e is the present analog voltage.

This proportionality of the voltage and digital encoding is shown graphically in Figure 3.1(c).

In our example of Figure 3.1, suppose Vmax is 7.5V. Then for e = 5V, we have the

following ratio: 5/7.5 = d/15, resulting in d = 1010 (ten), as shown in Figure 3.1(c). The

resolution of a DAC or ADC is defined as Vmax/(2
n-1), representing the number of volts

between successive digital encodings. The above discussion assumes a minimum voltage of

0V.

Internally, DACs possess simpler designs than ADCs. A DAC has n inputs for the digital

encoding d, a Vmax analog input, and an analog output e. A fairly straightforward circuit

(involving resistors and an op-amp) can be used to convert d to e.

