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1. Introduction
1.1.What is Theory of Computation or Automata Theory?

Theory of Computation is how efficiently problems can be solved on a model of
computation, using an algorithm.

It is mainly about what kind of things can you really compute mechanically, how fast
and how much space does it take to complete the task.

Ex1: To design a machine that accepts all binary strings ends in 0 and reject all other
that does not ends in 0.

11011010 — Accept
Ex2: To design a machine to accepts all valid ‘C’ codes

Machine will check the binary equivalent of this code and from this binary equivalent
it tells weather it is valid piece of C code or invalid.

Question : Is it possible to design a machine?

Yes — The best example is Compiler.

Ex3: To design a machine that accepts all valid ‘C’ codes and never goes into infinite.
Question : Is it possible to design a machine?

No

Input Machine( Set of rules &
Function)

N&

Figure 1.1. Model of a TOC



Table 1.1 Modelling Languages and Language Acceptor

Language Generator Language Acceptor

Finite Automata
Regular Language T
DFA NFA
/ PDA_
Context Free Language DPDA IFDPD "
Recursive Language Turing Machine

LAYERS AND LEVELS IN THEORY OF COMPUTATION:

* FSM - Finite State Machine — Simplest model of Computation and it has very limited
memory.

Perform low level computation and calculations
* CFL — Context Free Language
Performs some higher level of computation.

*  Turing Machine — Much powerful model perform very high level computation designed
by Alan Turing in 1940.

* Undecidable — Problem cannot be solved mechanically is falls under undecidable layer.
1.2 Basic Units of Regular Language:
Alphabets (3°) : { a, b} or {0,1}
String( w) : Collection of input alphabets
Language (L) : Collection of Strings
Empty Set ]
NULL String :egori
1.3. Finding Language using Conditions:

1. Find L with 0’S and 1’s with odd no. of 1°s
2. =10,1}



w={1,01,10,100,010, 111,1011........ }
w={1,01,10,100,010, 110 ,111,1011........ } --invalid
L = {w/w consists of odd no. of 1’s}
2. Find L with 0’s and 1’s with even no. of 1’s
2.={0,1}
w={A ,11,011,101,110,0110, 1010, ........ }
w ={A ,11,011,101,100, 110,0110, 1010, .....} --invalid
L = {w/w consists of even no. of 1’s}
3. Find L with a’s and b’s with even no. of a’s
2. ={ab}
w ={A ,aa,baa,aba,aab,baab, abba,abab ........ }
w ={A ,aa,baa,aaa,aab,baab, abba,abab ........ } --invalid
L = {w/w consists of even no. of a’s}
4. Find L with a’s and b’s with even no of a’s and b’s.
2. ={abj
w ={A ,aa,bb,aabb,abab,baba,bbaa ........ }
L = {w/w consists of even no. of a’s and b’s}
5. Find L with a’s and b’s having a substring aa
2. ={abj
w ={aa,baa,aab,baab, abaa,aabaa ........ }
L = {w/w consists of a substring aa}
1.4. Regular Language:

e A language is regular if there exits a DFA for that language.
e The language accepted by DFA is RL.

1.5. Regular Expression:

e A Mathematical notation used to describe the regular language.
e This is formed by using 3 Symbols:

(i). [dot operator] — for concatenation

(i) +[Union operator] —at least 1 occurrence

eg) 1* = {1,11,111,------- }
(iii) {*} [Closure Operator ] — Zero or more occurrences

eg) 1* = {A,1,11,111,....}



1.6 Basic Regular Expressions:

@ is a RE and denotes the empty set.

¢ is a RE and denotes the set { € }

Foreach ain ), a is a RE and denotes the set {a}

If r and s are RE that denoting the languages R and S respectively, then,
— (r+s) is a RE that denotes the set (RUS)
— (r.s) is a RE that denotes the set R.S
— (n* is a RE that denotes the set R*

1.7 Problems on RE:

1.

Write the RE for the language of even no. of 1’s.
y={0,1}
W={a,11,011,101,110,1111,1100,....}
RE=(11)*
Write the RE for the language of odd no. of 1’s.
2=10,1}
W={1,10,01,100,111,1110,.....}
RE=(11)*.1
Write the RE for the language of any length including A.(a,b)
y={a,b}
W={a,a,b,aa,ab,aab,baa,aaaa,.....}
RE=(a+b)*
Write the RE with a string starting with a.
2={a,b}
W={a,aa,ab,aaa,abb,.....}
RE=(a).(a+b)*
Write the RE for the language having a substring aa.
2={a,b}
W={aa,baa,aab,baaa,aaaa....}
RE=(atb)*.aa.(a+b)*
Write the RE with a string starting with either a or ab.
2={a,b}



10.

11.

12.

13.

W={a,ab,aa,aba,abb,abbb,....}
RE=(a+ab).(a+b)*
Write RE with a string consists of a’s and b’s ending with abb.
2={a,b}
W={abb,aabb,babb,aaabb,......}
RE=(a+b)*.abb
Write RE with a string consists of a’s and b’s starting with abb.
2={a,b}
W={abb,abbb,abba,abbaa,.....}
RE=abb.(at+b)*
Write the RE for identifiers in ‘C’ Programming.
Letter=(a-z)
Digit=(0-9)
RE=(letter+ ).(letter+_+digit)*
Write the RE with a string that should not start with two 0’s.
2={0,1}
w={0,1,01,011,110,....}
RE=(01+1).(1+0)*
Write RE with a string that begins and ends with double consecutive letters.
2={a,b}
W={aa,bb,aabb,bbaa,aabaa,bbbaa,......}
RE=(aa+bb).(a+b)*.(aa+bb)
Strings of a’s and b’s in which 3rd symbol from right end is ‘a’.
2={a,b}
W={aaa,abb,aabb,bbabb,...}
RE=(at+b)*a.(a+b)(a+b)

Write RE for the strings consisting of atleast 1 ‘a’ followed by strings consisting of
atleast 1 ‘b’ followed by strings consisting of atleast 1 ‘c’.

>={ab,c}
W={abc,aabc,abbc,aabbcc,aaabbc,...}
RE=a".b*.c*



14. Write the RE for the strings over {0,1} of length 6 or less.

>={0,1}

Length 6-{001100,110011,010101,000000,..}
(0+1).(0+1).(0+1).(0+1).(0+1).(0+1)
(0+1+A)°

(0+1)6

(0+1+A)*

15. Write RE for the string(a,b) whose length divisible by 3.

> ={a,b}
W={A,aaa,aba,abb,aab,aabbaa,....}

RE=(aaa+aab+aba+baa+bbb+baa+abb+bab)*

1.8 What is Finite Automata?

Simplest model of a computing device.
Finite automata are used to recognize patterns.
A machine that accepts Regular Language.

It takes the string of symbol as input and changes its state accordingly. When the desired
symbol is found, then the transition occurs.

At the time of transition, the automata can either move to the next state or stay in the
same state.

Finite automata have two states, Accept state or Reject state. When the input string is
processed successfully, and the automata reached its final state, then it will accept.

Applications:

— Compilers
— Text processing

— Hardware design.

Types of Automata:



Finite Automata

Deterministic Non deterministic
Finite Automata (DFA) Finite Automata (NFA)

Figure 1.2 Types of Automata

NFA

Figure 1.3 Difference between DFA and NFA

2. DFA (Deterministic Finite Automata):

* Only one path for specific input from the current state to the next state.
» DFA does not accept the null move.
» Itisused in Lexical Analysis phase in Compilers.

Example: RE=(a+b)*

Figure 1.4 Sample DFA
Definition of DFA:
A finite automaton is a collection of 5-tuple (Q, Y., 8, q0, F), where:
Q: finite set of states
> : finite set of the input symbol
qo: initial state
F: final state

0: Transition function



2.2 Construction of DFA:

1. Construct DFA to accept strings of a’s and b’s having a substring aa.

W={aa,aaa,baa,aab,aabb,abaa.....}

ahb

)

Figure 1.5 State Diagram

DFA Definition

M=(Q, 2.,qo, 5,A)

Q={q0,01,02}

2={a,b}

Jo=q0

A=02

d —Transition Function
0(q0,a)=q1
0(q0,b)=q0
d(ql,a)=q2
o(ql,b)=q0
0(g2,a)=q2
0(g2,b)=q2

2. Construct DFA to accept string of a’s and b’s having exactly 1 ‘a’.

W={a,ab,ba,bba,abb,bbba,....}




Figure 1.6 State Diagram
DFA Definition

M=(Q, 2..90, 3,A)

Q={q0,q1}

2={a,b}

q0 =q0

A=ql

d —Transition Function
d(q0,a)=ql
3(q0,b)=q0
d(ql,a)=null
d(ql,b)=ql

3. Construct DFA to accept strings of a’s and b’s with atleast 1 ‘a’.

W={a,aa,ab,ba,bba,baa,....}

Figure 1.7 State Diagram
DFA Definition
M=(Q, 2..90, 8,A)
Q={q0,q1}
2={a,b}



q0 =q0

A=ql

& —Transition Function
d(q0,a)=ql
3(q0,b)=q0
d(ql,a)=ql
d(ql,b)=ql

4. Construct DFA to accept strings of 0’s and 1’s with substring 01.

W={01,001,010,011,1001,.....}

Figure 1.8 State Diagram
DFA Definition:
M=(Q, 2..40, 5,A)
Q={q0,91,92}
2={0,1}
g0 =q0
A=Q2
o —Transition Function
8(q0,0)=q1
8(q0,1)=q0
d(ql,0)=ql
o(ql,1)=q2
0(q2,0)=q2
8(q2,1)=q2
5. Construct DFA to accept strings of a’s and b' not more than 3 ’a’.

W={A,a,aa,aaa,aba,abb,bbb,aabb,.....}

10



Figure 1.9 State Diagram
DFA Definition
M=(Q, 2,40, 5, A)
Q={00,01,02,03}
2={a,b}
q0 =q0
A ={q0,q1,02,03}
& —Transition Function
3(q0,a)=ql
6(q0,b)=q0
8(ql,a)=q2
d5(ql,b)=q1
0(q2,2)=q3
8(q2,b)=q2
d(g3,a)=null
5(q3,b)=q3
6. Construct DFA to accept strings that end with 011.

w={011,1011,0011,11011,00011,100011.....}001000011,01100011,

Figure 1.10 State Diagram
DFA Definition
M=(Q, 2.,90, 8, A)
Q={q0,91,92,43}

11



2={0,1}

g0 =q0

A=03

& —Transition Function
3(q0,0)=q1
6(q0,1)=q0
d(q1,0)=q1
d(ql,1)=q2
0(g2,0)=q1
0(g2,1)=q3
3(q3,0)=ql
3(q3,1)=q0

7. Construct DFA to accept strings of a’s and b’s with even number of a’s and b’s.

W={A,aa,bb,aabb,abab,baba,aaaabb...}

8. Construct DFA with even number of a’s and odd no. of b’s.

W={b,aab,aba,baa,ababb,aaaab,aababab,....}

M=(Q, >..q0, 6, A)
9. Construct DFA with odd number of a’s and even no. of b’s.

W={a,abb,bba,bab,abbaa,ababa,.....}

12



M=(Q, >..90, 6, A)
10. Construct DFA with odd number of a’s and b’s.
W={ab,ba,babb,ababab,....... }

M=(Q, 2.,90, 5, A)
11. Construct DFA to accept odd and even no’s represented using binary notation.

0->0
1->1
2->10
3->11
4->100
5->101
6->110

7->111

8->1000

010

13



Figure 1.11.State Diagram
M=(Q, ¥.,q0, 3, A)
2.2 Extension of 6: 6%
8-> for one input symbol
5=Qx Y ->Q
d*->the state in which FA ends up if it begins in state g and receives a string x of input
symbols
0*(gq,x) ie. 0*: Qx DX *>Q

Recursive Definition of 6*:
Let M=(Q, 3., q0, A , d) be finite automata, we define the function 6*: Q x > *->Q as follows:
(i) forany geQ, 5*(q.N\)=q
(i) foranyyed* ae) and q€Q
6*(q,ya) = 3( 8*(q.y), a)
For strings of of length 1, 6 and 6* can be used interchangeably.
PROBLEMS:
Find 6*(q0,abc)

Figure 1.12 State Diagram

Solution :
0*(q,\)=¢
0*(q,ya) = 6( 6*(q.y), a)
Na=aA=a

14



0*(q0,abc) = 8(8*(q0,ab),c)

= 9(8(6*(q0,a),b).c)

= 8(8(3(6*(q0,A),a),b),c)

= 9(0 0(q0,a),b),c)

=9(3(ql,b).c)

=03(q2,¢)

:q3

2.4 STRING ACCEPTANCE BY FINITE AUTOMATA:
Let M=(Q,>.,q0,A, 6) be an FA. A string x&) * is accepted by M, if
0*( q0,x)eA

2.5 LANGUAGE ACCEPTANCE BY FINITE AUTOMATABY FINITE AUTOMATA:
The language is accepted by M or the language recognized by M is the set,

L(M)={x|x € >* and 8*( q0,x)eA}

3.NON-DETERMINISTIC FINITE AUTOMATA:

Figure 1.13 NFA
* When there exist many paths for specific input from the current state to the next state.
» Every NFA is not DFA, but each NFA can be translated into DFA.
* Types
(i) NFA without A
(i) NFAwith A
Advantages of NFA over DFA:
— DFAs are faster but more complex.
— Build a FA representing the language that is a union, intersection, concatenation
etc. of two (or more) languages easily by using NFA's.

Definition:
NFA has 5 tuples M=(Q,>.,q0,A,5), where
Q: finite set of states

15



> : finite set of the input symbol
qo: initial state
A: final state

o: Transition function
5:Qx Y —2°
3.1 Example:
Obtain an NFA to accept the language L={ w| w ¢ abab" or aba"}

Figure 1.4 NFA State Diagram

Q={00,a1,02,03,04,05}

>={a,b}

q0={q0}

A={q3,03}

o:
6(q0,a)={ql,q4}
3(q0,b)=0
8(ql,a)=0
6(q1,b)={q2}
8(q2,a)={q3}
8(q2,b)= 0
8(q3,a)= 0
6(q3,b)={q3}
d(q4,a)= 0
6(q4.b)={q5}
6(q5,a)={q5}
d(q5,b)=0

16



3.2 Problem: convert NFA to DFA [Subset Construction Method]

a
ah

A

Figure 1.15 NFA State Diagram

Solution:

Mn=( Qn,Y.Nn,00,An,dn) be an NFA.
6n(00,2)={q0,q1)

6n(00,b)={q1)

on(ql,a)=0

on(91,b)={q2)

on(92,2)={02)

n(02,0)={q2)

Mp=( Qb,>.p,00,Ap,dp) be an DFA.

Step 1:
Start state of NFA is the start state of DFA.

Obtain the transitions from this state. State

qo is the start state. q0

dp (q0,a)=0n(q0,a)

=[q0,91]----=>A B

dp (q0,b)=dn(q0,b)
=[q1]---->B

Step: 2 Transition from A:
dp (A,a)=on(A,a)
= 3n([00,91].2)
= 0n(q0,a)U on(gl,a)
={q0,01} U @
=[q0,q1]------ A

op (A,b)=dn(A,b)

17



= n([00,g1],b)

= 3n(q0,b) U dn(qgl,b)
={a1}U{q2}
=[q1,92]------ ->C

w

oD (B,a):
= on([g1].a)
=on(ql,a)
=0

dp (B,b)= 6n(B,b)
= dn([a1],b)
= dn(ql,b)
={q2}---->D

State

qo

S| > > @

O O W ©

O O W >

op (Ca)=

=0n([g1,92],a)
= dn(ql,a)U 8n(g2,)
=pUg2

&b (C,b)= n(C,b)
= dn([g1,92],b)
=3n(q1,b) U dn(q2,b)
={g2}Uq2

Transition from B:
SN(B,a)

Transition from C:
on(C,a)

18



State a b
qo A |B
A A C
B 0) D
C D D
D

Transition from D:
dp (D,a)=6n(D,a)

= dn([02]2)

=0n(g2,a)

=[q2]------ ->D

dp (D,b)= dn(D,b)

= 3n([02],b)

= dn(02,b)

=q2---->D
State a b
qo A |B
A A C
B ) D
C D D
D D D

Step: 3 construct the DFA

Figure 1.16 State Diagram
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The final state g2 of NFA is there in C and D states in DFA. So make C and D as final state.

3.3 STRING ACCEPTANCE BY AN NFA:
Let M=(Q,>.,q0,A,0) be an NFA, the string x&> * is accepted by M, if
d *(q0,x) N A£0

3.4 LANGUAGE ACCEPTANCE BY A NFA:
The language recognized or accepted by M is the set L(M) of all strings accepted by M.
L(M)={x| 8 *(q0,x) N A#D}

3.5 Recursive definition of 6* for an NFA:

Let M=(Q,Y.,q0,A,8) be an NFA, the function 5*:Q x Y*->29 is defined as follows.
i) For any qeQ, 8*(q,A)={q}
i) For any qeQ, yeY * and ag},

é(r,
8 *(qaya):(u rigi)q,y))

Figure 1.17 State Diagram

Problems:
M=(Q,}.,q0,A,5)

Figure 1.18 State Diagram

Determine:

20



i) 8%(q0,11)= (ufggqu )

6 (r1)
rs{qO ql})

=6(q0,1) U d(ql,1)
={00,a1} U {q2}
={q0,01,92}

~11 is not accepted.

- 8 ’1
i) 8*(q0,01)= (UrgS*()q 0))

8 r1)
= Uregqo)

=3(q0,1)
={q0,q1}
~01 is not accepted.
PRI
iii) 8*(q0,111)= (U} 5,05 1)

_10(1)
- Urs{qO,ql,qZ})

=6(q0,1) Ud(ql,1) U 8(q2,1)
={00,q1} U{q2}U{q3}
={q0,91,92,93}

~111is accepted.

. &(r,
iv) 6%(q0,011)= (u,.gg,}gqm))

5(r 1)
re{qO q1})

=0(q0,1) U d(ql,1)
={q0,41} U{q2}
={00,q1,92}
~11 is not accepted.
3.6 THEOREM 1:

Statement:

For any NFA machine M=(Q, Y, q0, 6, A) accepting a language L € }*, there is a DFA
machine M1=(Q, Y, q0, 6, A) that accepts L.
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NFA &%*: DFA &* definition
o v i.  8*(q,A)=q

5*(q. yva) = v &(r.a)

re 5*(q. v) ii. 6*{{1, ?a] = 5{6*{ q,‘f]a a}

Proof by Structural Induction:
Proof:
DFA- Miis defined as follows:
— Q=20
— O1=Qo
- A1={geQ1 |ASQ}
— For,geQ1 and aey,

i (q;a)zureq 6(1-1 El) """" 1

To prove, 817 (q1,X)= 8*(qo,X)
Maccepts the same language as M.
Proof by Structural Induction:

1.Basis Step
Strings of length 0

If X=A,
LHS = 81°(q1,x) = 81" (qu,A\)

= Qp------- (By definition of 81°)
={qo} ------- (By definition of qz)
=87(go,\)------- (By definition of &)
=8"(qo,X) = RHS

2.Induction Hypothesis:

Assume the statement to be proved is true.

X is a string satisfying,

81*((:]1,)(): 5*(q0,X)

3.Induction Step:

To prove, for any aey’, xe) *
317 (g1,xa)= 8"(qo,xa) to be proved

LHS=81"(q1,xa)=81(81"(q1,X),a) ------- (By definition of 81")
= 81(87(qo,x),a) ------- (By Induction Hypothesis)
= Ureitgox) = (BY 1)

=5*(qo,xa) =RHS------- (By definition of §")

Hence Proved.

4. NFA with A transition:

22



e This allows transitions not only input symbols but also on null inputs.

e Aore

e aA=a|oA=0|IA=1

4.1 Definition:NFA-A

NFA-A is a 5 tuple machine M=(Q,> ,q0,A,d), where
Q - is aset of finite states,

> - finite set of input symbols

q0eQ,

Ac Qand

5:Qx(FCU{A})->2°

4.2 Epsilon (NULL) Closure of a state -A(Q):

A(Qq) is a set of states can be defined as follows:

» Itis aset of all states that can be reached from any state on A symbol
« LetM=(Q,>,q0,5, A)beaNFA- A machine and let S be any subset of Q.
* The A(S) is the set defined as follows:
1. Every element of S is in element of A(S)
2. For any g € A(S), every element of 5(q, A) is in A(S)
4.3 Problems on A Closure:
1.

Figure 1.19 State Diagram
A(q0)={q0, g1, g2}
A(q1) ={q1, q0, 92}

A(q2)={q2}

23



Figure 1.20 State Diagram

A(q0)={q0, g1, 92}
A(q1) ={a0, a1, 92}
A(a2)={a2}
4.4. Extended Transition Function of NFA- A (8%):
. o*
— Describes what happens when we start in any state and follow any sequence of
inputs.
— Definition of &*:
Let M= (Q,X,5,q0,A) be a NFA with A .
We define the function 8* : Q x ¥ * {A }—2° as follows:
1. Foranystateqe Q,6* (g, A)=A(q)
2.foranystateqeQ,y &) *,ag ),

8(r,
5%(a y2) = AUpSiay)

Problems on 6* for NFA-A

Figure 1.21 State Diagram
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(i) Find 5*(q0, A)
8*(q0, A) = A({q0})
={q0,p,t}

(i) Find 5*(q0, 0)

8(r,0
8*((10’ AO) - A(UTSS* )(qO,A))

_ 8(r,0)
- A( Urs{qo,p,t})

= A(8(q0,0) U &(p,0)U 8(t,0))
= A(@ U{PFU{u})
= A({p,u})
={p,u}
String not accepted.
(iii)  8*(q0, 01)

8(r1
8*((10, 01) = A(Urgi* )(q0,0))

_ 8(r,1)
- A(U rs{p,u})

= A(S(p,1) U d(u,1))
= A{r}uo)
= A({r})
={r}
String not accepted.
(iv) 6*(q0, 010)

8(r,0
8%(q0, 010) = A(Uy g tg0.01))

— 8(r,0)
- A(Urs{r} )
= A(8(1,0))
= A({s})
={s,u,q0,p,t}
String is accepted.

4.5 Conversion of NFA-A to an NFA:
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0

D

Figure 1.21 State Diagram
A-closure(A)={A,B,D}
A-closure(B)={B,D}
A-closure(C)={C}
A-closure(D)={D}
(i) *(A,0)= 6*(A,A0)
8(r,0
:A(Urgﬁ*)(A,A))
8(r,0
= A(Ur(sA()A))
8(r,0
= A(Urg {A?B,D})
=A(8(A,0) U (B,0) U 8(D,0))
= A(A,C,D)
={A,B,C,D}
(i)  8*(A,1)=0*(A,A1)
8(r,1
:A(Uris*)(A,A))
8(r,1
= A(Ur(sA()A))
8(r,1
= A(Urg {A,)B,D})
=A(6(A,1) U (B,1) U d(D,1))
= A(9)
=@
(iii)  8*(B,0)= 6*(B,A0)
8(r,0
:A(Urgﬁ*)(B,A))
8(r,
= AU, S ey
8(r,
= A(Urg {g),n})
=A(5(B,0) U 8(D,0))
= A(C,D)
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={C,D}
(iv)  &*(B,1)= 8*(B,Al)

— 8(r1)
_A( U redx* (B,A))

=AUy
=AU 5
—A(8(B,1) U §(D,1))
= A(D)
=0
(V)8*(C,0)= 6*(C,A0)
=A(Ufggf )(C,A))
8(r,
= AUy aey)
8(r,0
= AUpSie)
=A(3(C,0))
= A(Q)
=0
(Vi) 8*%(C,1)=8*(C,Al)
:A(Ufg{: )(C,A))
8(r,
= A(Ur(glt()C))
8(r1
= A(Urg {Ci)
=A(3(C,1))
= A(B)
={B,D}

(vii)  8*(D,0)= 5*(D,A0)
=AU 5. (o)

8(r,

= AU )
8(r,0

= A(Upei)

=A(3(D,0))

= A(D)
={D}
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(viii)  8*(D,1)= 5*(D,Al)

— (1)
_A( Ur£8* (D,A))

— 8(r1)
- A(Ur sA(D))

=AU )
=AG(D.1)
= A(9)

=0

Transition Table:

NFA- A NFA
STATES - 5*(q,0) 8*(q,1)
A 0 1 b h
A {B} |{A} |© {A,B,C,D} @
B {D}y |{C} |0 {C,D} 1)
C )] 0) B} |0 {B.D}
D ? {D} |0 {D} ?
NFA:

Figure 1.22 State Diagram

Note: Final state of NFA and NFA- A are same, moreover if initial state A(A)={A,B,D} has
NFA-A final state then initial state A is also final state.
4.6. Theorem 2

» Equivalence of NFA-A and NFA
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« If L is accepted by an NFA with A transitions then L is accepted by NFA without A
transitions
+ Statement:
For any NFA NULL machine M=(Q, Y, q0,3, A) accepting a language L € }*, there
is a NFA machine M1=(Q, Y, q0, 6, A) that accepts L.
Given:
NFA-A, M=(Q,>.,5,q0,A)
NFA, M1=(Q1,Y.81,q1,A1)
Proof:

+ By Definitions:

Al-{AU{qU}’ if AN({q0})contains a state of final state
- A  otherwise

* For,ae) :
dl(ql,a) = A(Ufgs’:)(c,/\)) (By definition it is true if we pass a single length string)
To Prove: 8:*(ql,x) = 8*(q0,x)

Proof: By Structural Induction
Basis Step:

Take |x|=0 => x=A

LHS: 31*(q1, A) = {q1}

RHS: : 6*(q0, A) = A {q}
So the above statement is not true for |x|=A
Hence we begin the induction with |x|=1
Let, x=a

81*(q1, a) = 8*(q0, A) (By definition it is true if we pass a single length string)

Induction Hypothesis: Assumption:
X is a string satisfying:  817(q1,x)= 8*(qo,X)
Induction Step
— To prove, for any ae), x €3 *
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817(g1,xa)= 8*(qo,xa)

LHS: &:"(q1,xa)

EERTIC:))
_Urs 81+{q1,x}

=U

) ----(By Induction Hypothesis)

81(r,a)

e 8*{q0,x}) &=01 if the length of the string

— (8@a)
_Ure 8*{q0,x})

— 8(r,a) )

8(s,A)
re A(Uss 8*{q0,x})

— 8(s,a)
= A( Uss 8*{q0,x})

= 0%(q, xa)

=RHS Hence the theorem is proved

5.Kleen’s Theorem Part-1:

Theorem Statement:

Any RL can be accepted by a FA.
Or
Let ‘r’ be a RE, then there exists an NFA with A transitions that accepts L(r).
Proof:
By induction on the number of operators in the RE ‘r’ that there is an NFA ‘M’ with A-
transitions having one final state, and no transitions out of this final state, such that L(M)=L(r).
Basis Step: ‘r’ has @ operators
‘r’ must be @, A or a where a&)..

The NFA for ‘r’ are

@ @ Veo——@

=0 r=A r='a

Induction Hypothesis:
Assume that theorem is true for ‘r’ with fewer than ‘i’ operators, i>=1=>1<=n<i
Induction Step:

Let ‘r’ have ‘1’ operators.
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Case 1: r=rl1+r2

Figure 5.1 State Diagram
Let NFA’s machine is M1=(Q1,Y1,61,q1,{f1}) & L(M1)=L(r1)
Let DFA’s machine is M2=(Q2,>2,62,02,{f2}) & L(M2)=L(r2)
Where Q1 and Q2 are disjoint.
g0->new initial state
fO->new final state
Construct M= (Q1UQ2U{q0,f0}, >1U>,6,q0,{f0})
Where 6 is defined by,
i) 8(q0,A)={ql,q2}
i) 8(q,a)=01(qg,a) for q in Q1-{f1} & ain Y1U{A}
i) 8(q,a)=02(qg,a) for qin Q2-{f2} & ain Y2U{A}
iv)  8(f1,A)=0(f2,A)={f0}
Thus all the moves of M1 and M2 are in M.
There is a path labelled x in M from g1 to f1 or a path in M2 from g2 to f2.
Hence L(M)=L(M1) U L(M2)
L(M)={x|x is in L(M1) or x is in L(M2)}
Case2: r=rl1.r2
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M ' 6 (M2
®___L__31». 5, @ @ r

Figure 5.2 State Diagram

Let M1 and M2 be as in case2.
Construct M=(Q1UQ2, > 1U>2, 3, {ql}, {fl})
Where 6 is defined by,
i)  8(q,a2)=01(qg,a) for q in Q1-{f1} & ain Y1U{A}
i) d(fl,A)={q2}

i) 8(q,a)=02(qg,a) for qin Q2-{f2} & ain YoU{A}
Every path in M from g1 to f2 is a path labelled by some string x from glto f1 followed by
the edge from f1 to g2 labelled A followed by a path labelled by some string ‘y’ from g2 to
f2.
Thus L(M)=L(M1) . L(M2)
Case 3:

Figure 5.3 State Diagram
Let M1=(Q1,21,61,01,{f1}) & L(M1)=L(r1)
Construct M= (Q1U{q0,f0}, >'1,61,0,{f0})
Where 6 is defined by
) 3(q0,A)=0(f1,A) = {q1,f0}
i) d(q,a)=01(q,a) for g in Q1-{f1} & ain Y1U{A}
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Any path from g0 to fO consists either of a path from g0 to fO on A or a path from q0 to q1
on A, followed by some number of paths from q1 to f1, then back to q1 on A, each labelled
by a string in L(M1) followed by a path from g1 to f1 on a string in L(M1).

Hence L(M)= L(M1)*

Regular Expressions to NFA-A Kleen’s Theorem Part-1:
For each kind of RE, define an NFA-A
Input: A Regular Expression r over an alphabet >
Output: An NFA-A accepting L(r)
Method:
Step 1: For e

start
— i = f

The NFA-A recognizes {c}
Step 2: Forain ),

start
— A f

The NFA-A recognizes {a}

Step 3: RE=a |b
a
e ! A
start \\E
> 0 N
3 5 —4)
The NFA-A recognizes {a,b}
Step 4: RE=ab
start ] b start a € b
— 0 ——1—2 —0 1 2 Al 3
OR
The NFA-A recognizes {ab}
Step 5: RE=a*
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start £ a

The NFA-A recognizes {¢,a,aa,aaa,.......}
Step 6: RE=a*

=aa*

Follow step 4 for construction.
Problems:

Construct NFA-A for the following regular expression using Thompson’s Construction

method.
a. (alb)*abb
a
start d
—> 0 001
b
start b
—> 2 03
a/b
d
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223

b
€
start €
0 )}—{1 : € a b b
€ /éﬂ
14} > 5
b
"‘\\\_1-7-‘1-7 £

\

—

6)—> 7)1 8)——=9 )—

Figure 5.4 State Diagram of NFA-NULL
6.Kleene’s Theorem Part -11

* Any language accepted by a finite automaton is regular.

NFA

Theorem 2"

NFA-A DFA

¥
Kleege's Thearem-2

Theorem 1

Kleene's
R.E

Theorem-1

Figure 6.1. Finite Automata Conversion
6.1Conversion of DFA to Regular Expression

Formula;

k-1 k-1 — 1+ plk—1
RE=RITY + Ry VR Ry Y

*  Where
* = Start state
* j=Final state

* k= No.of states
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Identity rules tor Regular Expression
1. ®+R=R
2. ®O.R=0D
3. ER=RE=R
4. R+R=R
5. RR*=R*R=R*
6. E+R*=R*
7. &%=t
8. O®*=t
9. (R*)*=R*
10. (PQ)*.P=p(QP)*
11. (P+Q)R=PR+QR
12. R(P+Q)=RP+RQ
13. (P+Q)*=(P*Q*)*=(P*+Q*)*
14. E+RR*=E+R*R=R*

Problem 1: Obtain the regular expression for the finite automata shown below:

1 0,1

0
q0

Figure 6.1 DFA State Diagram

Formula for RE:

(k—1)

k-1 k-1 — 1%
RE =RYTY + Ry VR Ry

Step 1: Rename the states:

1 a1

Figure 6.2 DFA State Diagram

Step 2: Find the values of i,j,k
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i=1 (start state)

J=2 (final state)

k=2 (no. of states)
Substitute 1,j,k in formula:

Find:

1 1 L (1
sz = R:Ez) + R:Ez)(R%E) Ré;
RYD =>i=1, j=2, k=1

0)
1

0 (0
Ri, = R:Ez) + R;E (R?1) R;Eg]
R1,=>i=2, j=2, k=1

0 0 (0
R%Z — Réz) + R§1) (Ri?l) R:Ez)

In:

0 0 + (0
R%E = R:Ez) + R:E1)(R:?1) R:Ez)
0 0 (0
R%Z — Réz) + Rél) (R:?l) R:Ez)
When K=0:
R:Eg) =1+
RLY —o
RS =@
Rgg) =0+ 1+

38
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Substitute in equation 2 and 3:
0 0 + (0
2>k, = R;Ez) T R:[il)(Ri?l) R;Ez)
R1,=0+(1+A)(1+A)*0
=0+(1+A)*0

=NO+1*0 (4140 =1%0

Substitute in equation 3:
—_—
RY, = R + R\ (RY)RY 3

3=>R%, = R + R(Y (R%,)"R'Y

When K=0:

=(0+1+A)+Q(1+A)*0
=(0+1+A)
Substituting in 1:
RZZ :R[1)+R[1)(R ) Rtl) —— 1
=1*0+1*0(0+1+A)*(0+1+A)
=1*0+1*0(0+1+A)"
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=1*0NA+1*0(0+1)*
=1*0(A+((0+1)%)
=1*0.(0+1)*
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CONTEXT FREE LANGUAGES AND NORMAL FORMS

Context-free grammars -More examples -Union, concatenations, and *’s of CFLs-Derivation
trees and ambiguity -Unambiguous CFG for algebraic expressions-Normal Forms — CNF —
GNF

1. Context Free Grammar

Definition — A context-free grammar (CFG) consisting of a finite set of grammar rules is a
quadruple

G=(N,T,P,S)

Where,
— Nisaset of non-terminal symbols (N is also represented as V- the set of variables).
— T isasetof terminals where N N T = NULL.

— Pisasetofrules, P: N — (N U T)*, i.e., the left-hand side of the production rule
P does have any right context or left context.

— Sis the start symbol.

Terminals:
— Defines the basic symbols from which a string in a language are composed.
— Represented in lower case letters.
Non Terminals :
— They are special symbols that are described recursively in terms of each other and
terminals. Represented in upper case letters.
Production rules:
— It Defines the way in which NTs may be built from one another and from terminal.
Start Symbol:
— Itisaspecial NT fromwhich all the other strings are derived. It isalways present inthe first
rule on the LHS.

Example:

Consider the set of productions
<exp> —<exp>+<exp>
<exp>—><exp>*<exp>
<exp>—>(<exp>)
<exp>—id

We apply productions
repeatedly (id+id)*id



<exp> = <exp>*<exp>
= (<exp>)*<exp>
=  (<exp>t<exp>)*<exp>
= (id+id) *id

Where (id+id) is the word in the language of <exp>

- Use E instead of

<exp>_Productions:

E— E+E

E—

E*E

E—

(E)

E—id

G=({E}.{+*id.(.)}.P.E)

Definition 2: The language generated by a CFG
Let G=(N,T,P,S) be a CFG. The language generated by G is

L(G) = {x€ *|s=>G*x}

Definition 3:
A language L is a CFL if there is a CFG ‘G’ so that L = L(G)

1.1 Problems:

1. Given a CFG, find the language generated by G
Q) G=(N,T,P,S) where N={S}, T={a,b}
P={S—aSb, S—ab}

S=>ab S=>aSh S=>aSh S=>aSh
=>aaShb =>aabb =>aaShb
=>aaabbb =>aaaShbb
=>aaaabbbb

W= { ab, aabb,aaabbb,aaaabbbb,........ }

L(G)={a"b" [n>1}

(ii) G=(P.{€,0,1}P,P}
P:P—0]|1|€ |OPO|1P1
P=>0
P=>1
P=>E
P=>0P0 | P=>0P0 P=>0P0 | P =>0P0



=>010 =>00 =>000 =>00P00

=>00100
P =>1P1 P =>0P0
=>10P01 =>00P00
=>10101 =>001P100
=>0010100

W={A, 0,1,00,010,000, 00100, 0010100, 10101,....}
L(G)={language of palindromes}

1.2 CFG Corresponding To A Language
1.2.3 For the given L(G), design a CFG.
i.Language consisting of even number of 1’s
T={1,€}
W={€,11,1111,111111,....}

P:
S->€
S->1S1
G=({S}{1,€}P,S)
ii. Design a CFG for a language consisting of arithmetic expression.
T={id,+,-*/,(.)}
W={id,id+id,id-id,id*id,id/id, id+id*id,(id-id)/id,...... }
P:S->id

S->S+S

S->S-S

S ->S*S

S ->S/S
(or)

S->id |S+S |S-S|S*S |S/S |(S)

G=({S}.{+,-,*//,id},P,S)

iii. Design a CFG for a language accepting balanced parenthesis
T={{}.[1.0)}
W=(€ ,{}00.0. {03, {13 1,(O).[OTL- -, {310{3,00, {3 05}
P:S->{S}|[S1I(S)ISS|€
G=({S}{ € .[1{}.()}.P.S)



iv. L={a"b™| m >n and n = 0}
T={a,b}
W={Db,bb,bbb,...,abb,abbb,...,aabbb,aaabbbb,...}

n=0, m=1=>b

n=0, m=2=>b, bb, bbb,bbbb,....
n=1, m=2 =>abb,abbb,abbbb,...
n=2, m=3=>aabbb,aaabbbb,....
P:

B->b |bB

S->aSh |B

G=({S,B}, {a,b}, P,S)

v. L={w|we{a,b}*, n,(w) = n,(w)}

W={€ ,ab,ba,aabb,abab,baba,abba,aaabbb,bbaa,baab,....}
P: S-> & |aSb |bSa | SS
G=({S}, {ab, € },P,S)

vi. L={w|we{a,b}*, n,(w) # n,(w)}
The problem is split into 2 cases:

(i) na(w) >n,(w)}
(i) ng(w) <mnp(w)}

L1= n,(w) > n,(w)

W={a, aba, aab ,baa,aaabb,aaa,aa,aaaab,baaa,.....}
P1:

A->3| aA |AbA |AADb |bAA

G1=({A}{a,b},P1A)

L2= n,(w) > n,(w)
W={b,bb,bbb, abb,bab,.......}
p2:

B->b| bB |BaB [BBa [aBB



G2=({B}.{a,b},P2,B}
L=LluL2 n,(w) #n,(w)
P:

S->A|B

A->3| aA |AbA |AAb |bAA
B->b| bB |BaB |BBa |aBB
G=({S,AB}{a,b},P, S}

vii. Construct the CFG for the language having any number of a's followed by any number
of b’s over the set ) = {a}

W={ € ,aaaa,bbbb,aabb,abbb,.....}
a*.b*

x=aabb

P:

S->A.B

A->aAlE

B->bB| €

G=({S,A,B}.{a,b, E}P,S)

1.3 Regular Expression to CFG
i. Find the CFG equivalent to a Regular Expression
RE=ab. (a+bb)*
Generate the production for the language L1={ab}
A->ab
Generate the production for the language L2=a+bb
B->a | bb
Generate the production for the language L2*=(a+bb)*
C->E|BC
RE=ab. (a+bb)*
P:S->A.C

C->€|BC

A->ab



B->a | bb
G=({S,AB,C}, {a,b, E}P,}
ii. Obtain the CFG for RE=(011+1)*(01)*

L1=(011+1)
L2=>(011+1)*
Generate the production for the language L1=(011+1)

A->011[1

Generate the production for the language L2=(011+1)*
B->AB|E

A->011|1
Similarly derive for (01)*
C->DCIE
D->01
Finally generate the concatenation of the 2 languages by adding the production
S->BC
B->ABJE
A->011]1
C->DC|E
D->01
finition 4:

Regular Grammar

A Grammar G=(N,T,P,S) is regular if every production takes one of the following forms:
B—aC
B—a

Where B& Care NT and ‘a’isaT

2.Derivation Trees and Ambiguity

2.1 Derivation: Process of deriving a string using the grammar
 Types:
— Left Most Derivation (LMD)
— Right Most Derivation (RMD)
2.2 Derivation tree is a graphical representation for the derivation. Also called as Parse Tree.
Properties:



* The root node is always a node indicating start symbols.
» Every vertex has a label which isin (N U T U A)
* The leaf node has a label from T (terminal).
» The interior nodes are always the non-terminal nodes.
» Ifavertex is labeled A & if x1,x2,x3,...xn are all children of A from left then
A->x1x2x3....xn be a production in P.
Leftmost derivation & Rightmost Derivation
2.3 Leftmost derivation

In the derivation process, if the leftmost variable is replaced at every step then the derivation is
leftmost derivation.

E->E+E |E*E|(E) |id
String:id+id*id

Imd

E= E+E E->E+E
Imd B
= id+E E->id
Imd |

= id+E*E E->E*E
Imd | B B

= id+id*E E->id
Imd | B B B
= id+id*id E->id




2.4 Rightmost Derivation
Inthe derivation process, ifthe rightmost variable isreplaced at every step then the derivation is
rightmost derivation.
E->E+E |E*E|(E) |id
String:id+id*id

rmd

E — E+E E->E+E
rmd
— E+E*E E->E*E
rmd . .
= E+E*id E->id
rmd L. )
= E+id*id E->id
rmd A A A
= id+id*id E=>id

Definition: Yield of a tree:
Isthe string of symbols obtained by only reading the leaves of the tree from left to right without

considering the (1 symbols called sentinal function.




Yield of the tree=id+id*id

2.5 Problems:

(i)

1.

For the Grammar G defined by

S->AB

B->a|Sb

A->Aa|bB

Give the derivation trees for the following sentential forms

baSb
S=>AB |S->AB

=>bBB | A->bB
=>haB |B->a
=>pbaSb |B->Sb



(i) bAaBbB

S=>AB S->AB
=>bBB A->bB
=>bShB B->Sb

=>bABbhB S->AB
=>pAaBbB A->Aa

3. Ambiguity

Definition: An Ambiguous CFG
A CFG G is ambiguous if there is atleat one string in L(G) having two or more distinct derivation
trees(or equivalently two or more distinct LMD).



i.1s the following grammar ambiguous:

E->E+E |E*E | (E) Jid

Consider the String: id+id*id

Imd

E = E+E | E->E+E
Imd | )
= Id+E |E->id

Imd |
— Id+E*E |E->E*E

Imd A A
= id+id*E |E->id

md . . . .
= id+id*id |E->id

Imd
E = E*E E-> E*E

Imd
— E+E*E E->E+E

Imd | .
= Id+E*E E->id

Imd | .
= id+id*E E->id

Imd
= id+id*id E->id
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There are 2 parse trees or 2 leftmost derivations for the string ‘id+id*id’. So the given grammar is
ambiguous.

ii.Is the following grammar ambiguous:

S->iCtS [iCtSeS |a

C->b
Consider the String: ibtibtaea
Imd
S = iCtS S->iCtS
Imd
= ibtS C->b
Imd A A
= ibt iCtSeS S-> iCtSeS
Imd
= ibtibtSeS C->b
Imd | .
= ibtibtaeS S->a
Imd |
— ibtibtaea S->a

13



Imd
S= ICtSeS
Imd .
—=ibtSeS
Imd_ .

= ibtiCtSeS
Imd_ .

= ibtibtSeS
Imd_ .

= ibtibtaeS

Imd_ .
—ibtibtaea

s

S

7

i C

t

§s
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There are 2 parse trees or 2 leftmost derivations for the string ‘ibtibtaea’. So the given
grammar is ambiguous.

iii. Is the following grammar ambiguous:

S->AB | aaB

A->a | Aa

B->b

String: aab

Imd

S=—= AB S->AB

Imd

= AaB A->Aa

Imd

— aaB A->a

Imd

= aab B->b
A a b
d

Imd

S— aaB S->aaB

Imd

= aab B->b
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a a B

b

There are 2 parse trees or 2 leftmost derivations for the string ‘aab’. So the given grammar is
ambiguous.

An unambiguous CFG for Algebraic expression

Ifa CFG is ambiguous, it is often possible and usually desirable to find an equivalent unambiguous
CFG.

4. Normal Forms:
Chomsky Normal Form(CNF)
Greibach Normal Form(GNF)
4.1Chomsky Normal Form(CNF):

A CFG is in CNF if every production is one of two types
A->BC
A->a
Where A,B and C are Non terminals and ‘a’ is a terminal
4.1.1.Converting a CFG to CNF
i.Let G be the CFG with productions

S->AACD
A->aAb | A\
C->aC |a

D ->aDa | bDb |A

Step 1:
Eliminating A productions
Any production A for which P contains the production A->A is nullable

Nullable variable: A->A D->A
S->AACD | ACD |CD|AACIAC|C

16



A->aAb | ab

C->aC |a

D ->aDa | bDb |aa |bb
Step 2:
Eliminating unit productions S->C
S->AACD | ACD |CD|AACIAC|aC |a
A->aAb | ab
C->aC |a
D ->aDa | bDb |aa |bb

Step 3:Restricting the right sides of the productions to single terminals or strings of two or
more variables(NON TERMINALYS).

S->AACD | ACD |CD|AAC|AC | XaCla
A-> Xa A Xp | Xa Xb

C->XaCla

D -> XaD Xa | Xb D Xp | Xa Xa | Xb Xb
Xa->a

Xp->b

Step 4:

S->AT:|AT, |CD |AT3 |AC | X2 C a
T1->AT?

T.->CD

T3->AC

A->XaTs | Xa X

Ta-> A Xp

C->XaCla

D->XaT5 | XpTe| Xa Xa | Xb Xp

Ts->D Xa

Te-> D Xp

Xa->a

17



Xo->b
4.3 Greibach Normal Form (GNF)

Let G=(N, T, P, S) be a CFG. The CFG ‘G’ is said to be in GNF, if all the production are of the
form:

A->aa
Where a € T and o € N*
A non-terminal generating a terminal which is followed by any number of non-terminals.
For example, A — a.
S — aASB.
Step 1: Convert the grammar into CNF.
Step 2: Rename the non-terminals to A1, A2, A3,...
Step 3: In the grammar, convert the given production rule into GNF form.
Problem 1:
S->AB1|0S | ¢
A->00A | B
B-> 1A1
Step 1: Eliminate null productions.
S>¢
S->AB1|0S |0
A->00A |B
B->1Al1
Step 2: Eliminate unit productions
A->B is the unit production.
S->AB1 [0S |0
A->00A [1A1
B->1A1

Step 3: Restricting right hand side production with single terminal symbol or two or more
non terminals.

X->0

18



Y->1

S->ABY | XS |0

A->XXA |YAY

B->YAY

Step 4: Final CNF

X->0 Y->1

S->AT1 TI1->BY

S->XS |0

A->XT2 T2->XA  A->YT3 T3->AY
B->YT3

Step 5: Rename Non terminal as A1, A2, A3,........

S=Al, A= A2, B=A3, X=A4, Y=A5, T1=A6, T2=A7, T3=A8
X->0 Y->1

S->AT1 T1->BY

S->XS |0

A->XT2 T2->XA A->YT3 T3->AY

B->YT3

Ad4->0  A5->1

Al->A2A6 | AAA1 |0

A2->A4AT7 | ASA8

A3->A5A8

A6->A3A5

A7->A4A2

A8->A2A5

Step 6: Obtain productions to the form A->aa,

Final CFG is

A4->0 A5->1

A2->0A7 |1A8

A3->1A8

A7->0A2

A8->0A7A5 | 1A8A5
AG->1A8A5

Al->0A7A6 | 1A8AG | 0AL |0
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PUSH DOWN AUTOMATA (PDA)

Pushdown automata - Introduction - Definition - Deterministic pushdown automata - PDA
corresponding to a given context-free grammar — Context-free Grammar corresponding to PDA
- Pumping Lemma for CFG

1. Push Down Automata
1.1. Drawback of Finite Automata
e can remember only a finite amount of information
e No memory isused in FA
2. Introduction
» PDA can remember an infinite amount of information.
*  Memory used — Stack
« A PDA is more powerful than FA.
« Any language which can be acceptable by FA can also be acceptable by PDA.
« PDA also accepts a class of languages which cannot be accepted by FA.
« PDA recognizes CFL.
FA + stack = PDA
3. Definition
The PDA can be defined as a collection of 7 tuples:
M=(Q, >, T, qo, Zo, F, d)
Q: the finite set of states
> : the input set
I': a stack symbol which can be pushed and popped from the stack o:
the initial state
Zo: a start symbol which is in I
F: a set of final states.
d: Transition function which is used for moving from current state to next state.
:Qx{ZueglxI'->QxTI*
(i.e) 8(q,a,x)=(p,0)



from state ‘q’ for an input symbol ‘a’, and stack symbol ‘x’, goto state ‘p’ and x is replaced by
string ‘o’.

3.1. Instantaneous Description (I1D)

« Aninstantaneous description is a triple ID

(@, w, o)
Where:

e Q describes the current state.

e w describes the remaining input.

e ¢ describes the stack contents, top at the left.
Example Derivation: (p, b, T) F (q, w, o)
3.2. Definition: Acceptance by a PDA

1. Acceptance by Final State:
IfM=(Q, >, T,0,q0, Z, F) is a PDA and the language L(M) accepted by the final state is
given by: xe> * and x is accepted by M if,
L(M) ={x] (90, X, Zo) -* (q,A ,0)}
Where qe Aol

2. Acceptance by Empty Stack:
For each PDA, M=(Q, Y., T, 8, q0, Z, F) the language accepted by empty stack is given by
L(M) ={x] (a0, x, Zo) F* (q.A , A)}
For any state qEA and xe) *

Language Acceptance:
A language L S * is said to be accepted by M, if L is precisely the set of string accepted by
M

L:-L(M)
4. Construction of PDA
1. Design a PDA for accepting a language {a"b"| n>=1}.
Solution:

1. Decide the nature of the language b’s followed by ‘a’.
2. Execution procedure using stack:
e Pushall a’s on to stack.
e For every ‘b’ pop out an ‘a’.
3. Define the states
e (0 - pushall a’s on to the stack.
e (l—whena ‘b’ encounters, pop ‘a’ from stack.
e (2 — accepting state.

PDA Diagram



a,z0;az0 b,a:A
b,a;A
qo0
Transition Table:
Move No. State Input Top of stack Moves
Symbol
1 o a Z0 (70,a20)
2 do a a (qo,aa)
3 o b a (9.A)
4 o} b a (ql’A)
5 01 A Z0 (92,20)
All other combinations  None
Trace the moves: a®b® => aaabbb
Move No. Resulting state Input Stack
- Jdo aaabbb Zo
1 Jo aabbb azo
2 Jo abbb aazo
2 Jo bbb aaazo
3 (o[ bb aazo
4 0 b aZo
4 g A Zo
5 g2 A 2y
Accepted
Trace the moves: a?b=> aab
Move No. Resulting state Input Stack
- Jo aab Zy
1 Jo ab azo
2 Qo b aaZo
3 0[] A azo
Rejected

Instantaneous Description (ID)

(9o, aabb, zo) |- (qo, abb, azo)

|- (qo, bb, aazo)




|-(q1, b, azo)
-(a1.A, 2o)
-(G2, A, 2o)
String Accepted

2. Construct PDA for the language L={XCx"| x € {a,b}*}
Solution

1. Nature of the language:
A string ‘x’ followed by constant ‘C’ followed by reversed string.

2. Execution procedure:

e Push the string ‘x’ into the stack until ‘C’ is encountered.

e When ‘C’ is encountered, don’t do any operation.

e After that, pop out each element from the stack for the string x".
3. Define the states:

e (0 - Push all input symbols until ‘C”.

e (1l —when ‘C’ is encountered, Pop.

e (2 — accepting state.

PDA

b,a;: ba

b, bbb

a,b;ab

a,a; aa

b, =0 ; bz0O b, b oA

a,zl;azl0 a. a M
Z  z0 z0O
Z . b b

C  a;a M -
&]u] . L z0: z0

Transition Table

Move No. State Input Symbol Top of stack Moves
1 Jo a Zo (9o,azo)
2 do b Zo (90,bzo)
3 do a a (Qo,aa)
4 Jo a b (qo,ab)
5 Jo b b (Go,bb)
6 Jo b a (Qo,ba)
7 Jo C a (q1,a)
8 Jo C b (q1,b)
9 do C Zo (91,20)




10 1 a a (Q,A)
11 Q1 b b (a1, A)
12 01 A Zo (02,20)
All other combinations - No moves
Trace the moves: abCha
Move No. Resulting state Input Stack
- Jo abCha Lo
1 Jo bCha azo
6 Jo Cba bazg
8 J1 ba bazo
11 01 a azo
10 g1 A Zo
12 02 A Zo
Accept
Trace the moves: abCa
Move No. Resulting state Input Stack
- Jo abCa Zo
1 Jo bCa azo
6 Jo Ca baz,
3 g1 a bazo
Rejected

3. Consider the CFG

S->[S] [ {S} [ A

Generate the CFL and PDA.

Solution

1. Nature of the language

CFL = {A, [0, {3, [U L A3 TG 3L

Open parenthesis followed by symbols and then closed parenthesis.

2. Define the states:
g0 — When all the open parenthesis are encountered.
gl — when all the closed parenthesis are encountered
g2 — accepting state.




Transition Table:

Move No. State Input Symbol Top of stack Moves
1 Qo [ Zo (Go,[20)
2 do { Zo (90,{20)
3 do [ [ (Go.[D)
4 do [ { (90.[{)
5 do { { (Go.{{)
6 do { [ (9o.{D)
7 do 1 { (q1, A)
8 do ] [ (q1, A)
9 02 1 { (01, A)
10 01 ] [ (Qu, A)
11 g1 A 2y (02,20)
12 Jo A Zo (92,20)

All other combinations ~ No moves
Trace the moves: {[{}]}

Move No. Resulting state Input Stack
- o {[{31} Zo
2 o {3} 120
4 Qo {313 [{z0
6 do H} {l[{zo
7 01 I [{zo
10 01 } {20




9 g1 A Zo
11 g2 A Zo
Accept

Trace the moves: {[{]

Move No. Resulting state Input Stack
- Qo {[{l Zo
2 Jo [{] {20
4 Jo {1 [{zo
6 do ] {[{zo
No Move
Rejected
4,
5. Parsing:

e To derive a string using the production rules for a grammar.
e Itisused to check whether or not a string is syntactically correct.
e Parser takes the inputs and builds a parse tree.

5.1. Types of parser

Top down Parser- Parsing starts from the top with the start symbol and derives a string using
a parse tree.

Bottom up parser- Starts from the bottom with the string and comes to the start symbol using
a parse tree.

5.2. Design of Top down parser

1. Push the start symbol onto the stack.

2. If the top of the stack contains a NT, pop it out of the stack and push its right hand
side of the production.

3. If the top of the stack matches with input symbol being read, pop it.

4. Ifthe input string is fully read and the stack is empty go to final state.

5.3. PDA Corresponding to CFG

In 2 ways, PDA can simulate a derivation in the grammar.
e Top Down Parsing - LMD
e Bottom Up Parsing-RMD

5.3.1. Top Down Parsing: PDA corresponding to CFG:
Left Most Derivation is used

Statement:



Let G=(N,T,P,S) be a Context Free G, then there is a push down automata M, so that
L(M)=L(G)

Define ‘M’ as:
M=(Q,>., T, 3, qo, Zo, F)

Where, Q={do,q1,92}
I'=NUY U{z}
A={g2}
a) 8(qo,A\,z0)={(01,520)}
b) for every AeN, & (q1,A,A)={(qz, o) | A->a is a production in G}

) foreverya€y, d(ql,a, a)={(q, A)}

d) 6 (q1,A,z0)={(q2,20)}

Q={q0,91,92}
A={q2}

5.3.2. Construction of PDA

1. Construct PDA for the language
L={xe{a,b}*|na(x)>nu(X)}}

S->a | aS | bSS | SSb| SbS

Solution:
Let M=(Q, >, T’, 9, q0, Z, F)

Q={q0,91,92}
> =1a,b}
I'={S,a,b,z0}
F={q2}



= o
) o o
0 o

A S SbS
A S SSb
A S bSS

A5 as

D(D h,zD;Szg\A A,zo;zﬂ
) w

Transition Table:

State Input Stack Moves
Symbol

q0 A Z0 (91,Sz0)

Q1 A S (91,a),(q1,aS),(g1,bSS),(q1,SSh),(q1,SbS)
Q1 a a (ql, A)

Q1 b b (ql, A)

Q1 A Z0 (92,20)

All other combination none

S->a | aS | bSS | SSb| SbS

Example: abbaaa
S->a | aS | bSS | SSb| SbS

S=>SbS S->ShS
=>abS S->a
=>abbSS S->bSS
=>abba$S S->a
=>abbaaS S->aS
=>abbaaa S->a

Sequence of moves: parsing
(q0, A abbaaa,z0) -| (ql, A abbaaa ,SZ0)

-| ( ql, A abbaaa, SbSZ0)
(g1, abbaaa, abSZz0)
(g1, bbaaa, bSz0)

(g1, baaa, Sz0)
( 91, baaa, bSSz0)
(g1, aaa, SSz0)
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(91, aaa, aSz0)
(gl,aa, Sz0)
(gl,aa, aSz0)
(gl.a, Sz0)
(gl,a, az0)
(ql, A, 20)
(92)

2. Construct PDA

S->S+X | X
X->X*Y | Y
Y->S) | id
String: id+id*id

Solution:

Let M=(Q, >, T, 6, q0, Z0, F)
Q={q0,q1,92}
>={+%id,()}
I'={20,S,X,Y, +,*,id,(,)}
A={q2}

Figure 3.6 State Diagram

String: id*id+id

S=>S+X S->S+X
=>X+X S->X
=SXEX4AX X->X*X
=>Y*X+X X->Y
-> jd*X+X Y->id
=>id*Y+X X->Y
=>id*id+X Y->id

11



=>id*id+Y X->Y

=>jid*id+id Y->id

(Qo,id*id+id,zo) -| (Qo,id*id+id,Szo)

(ga,id*id+id, S+X)

(g1, id*id+id, X+X)
(g1, id*id+id, X*X+X)
(g1, id*id+id, Y*X+X)
(g1, id*id+id, id*X+X)
(g1, *id+id, *X+X) (q1,
id+id, X+X) (qz,id+id,
Y+X)
(g1, id+id, id+X)
(G1, +id, +X)
(qz, id, X)
(1, id, Y)
(g1, id, id)

5.3.4. Bottom-Up PDA
. Right Most Derivation in reverse is used.

Steps:

Push the current input symbol onto the stack.

Replace the right-hand side of a production at the top of the stack with its left-
hand side.

If the top of the stack element matches with the current input symbol, pop it.
If the input string is fully read and only if the start symbol ‘S’ remains in the
stack, pop it and go to the final state ‘F’.

Problem 1:
P: S->S+T
S->T
T->T*a
T->a
String: a+a*a
Right Most Derivation:

S=>S+T [S->S+T]

=>S+T*a [T->T*a]

=>S+a*a [T->a]

=>T+a*a [S->T]

=>a+a*a [T->a]
Move Production Stack Unread Input

- Zy at+a*a

shift - aZo +a*a
Reduce T->a TZo +a*a
Reduce S->T SZo +a*a
Shift - +SZo a*a
Shift - a+SZo *3

12



Reduce T->a T+SZo *a

Shift - *T+SZ A

Shift - a*T+SZo -

Reduce T->T*a T+SZo -

Reduce S->S+T S 2o -
Accept

6. Deterministic Push down automata

Let M=(Q,>., I', 3, q0, Z, F) be a PDA, M is deterministic if there is no configuration for
which M has a choice of more than one move.
If M is deterministic it satisfies the following condition:

i) ForeverygeQ,a€ U{A}andx €T then the set
d(q, a, X) has at most one element

ii) ForanyqgeQ,xeT,ifd(q, A, X) # ¢ then
d(q, a, X) = for everya € Y.

Problem :
Construct DPDA for the language

L={x€{a,b}*[na(x)>nu(X)}
solution
DPDA with Null transition :

W= {a, aa, aaa, aab, aba,....., baa, bbaaa, aabba, aaab,...}

13



, baa, bbaaa, aabba, aaab,...}

Move No. State Input Symbol Top of stack [Moves
1 qo a Z0 (91,az0)
2 qo a a (91,aa)
3 qo A a (gl,a)
4 qo b Z0 (90,bz0)
5 q0 b b (90,bb)
6 qo a b (q0, A)
7 qo b a (q0, A)
8 gl a a (91,aa)
9 gl b a (q0, A)
All other combinations ~ None

DPDA without A

W= {a, aa, aaa, aab, aba,....., baa, bbaaa, aabba, aaab,...}

Transition Table:

Move No. State Input Symbol Top of stack Moves
1 Jo b Zo (Go,b Zo)
2 Jo a b (Go.A)
3 Go b b (Go,bb)
4 Jo a Zo (a1, Zo)
5 G b a (Q1, A)

14




6 g1 a Zo (91,a20)
7 01 a a [(GHEEY
8 Ju b Zo (9o, Zo)

All other combinations  None

Trace the moves: aaaba

Move No. Resulting state Input Stack
- qo aaaba Z0

4 Q1 aaba Z0

6 Q1 aba Az0
7 Q1 ba Aaz0
5 Q1 a Az0
7 Q1 - Aaz0

Accept

7. Pumping Lemma

CFL- We can always find two pieces of any sufficiently long string to pump in tandem .i.e. if
we repeat each of the two pieces the same number of times, we get another string of the
language.

Pumping Lemma is used to prove that a language is not CFL.
It should never be used to show a language is regular.

For any language L, we break its strings into five parts and pump second and fourth substring.

Let ‘L’ be any CFL. Then there is a constant ‘n’ depending on L, such that if ‘Z’ is in L and
|z|>=n, then we may write,

Z=Uuvwxy
uviWXiy ¢ L, For all >0,
[vx|>=1

[Vwx|<=n

7.1. Procedure

Assume that L is context free.

15



e It has to have a pumping length(say n)
e Find a string ‘z’ in L such that |z]>=n.
e Divide z into uvwxy.

e Show that uv'wx'y ¢ L

Problem 1
L={a"b"c", n>=0} is not a CFL.

Solution:

1. Assume ‘L’ is a CFL.

.

Let ‘n’ be a natural number obtained by using pumping lemma.
Let z=a"b"c" |z|=n+n+n=3n

Split z into uvwxy such that |vx|>=1, [vwx|<=n
Assume z=a"a'b"I*pibkc"
u=a" v=al w=b"K  x=pl y=bkc"
for i=2

=> uv?wx?y =>a"'a'a'b™Kplbibkc"
=>an+ibn+jcn ¢ L

EQ) n=4

Z=a*h*c*=>aaaabbbbccce

u=a v=aa w=abbbbc x=c y=cc

Let i=2

uviwx'ly =>uviwx2y=>aaaaaabbbbccccc=>a®b*c ¢L
Therefore the given language is not CFL.

Problem 2:

L={0|p is prime is not CFL.

Solution:
I Assume ‘L’ isa CFL.
i. Let ‘n’ be a natural number obtained by using pumping lemma.
i Let P be a prime no. such that p>=n

Z=0Pc L |z|=p>=n
. Split z into uvwxy such that [vx|>=1, |vwx|<=n
Let v=0K x=0" such that k+I>=1 and <=n

Hence |uwy|=p-k-I

If we pump v and x p+1 times

Juvwxy|=|uwy|+vP* ) x P
=p-k-l+k(p+1)+l(p+1)
=p-k-I1+pk+k+pl+I
=p+pk+pl
=p(k+1+1)

Which is not prime.
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TURING MACHINE

Turing machines - Models of computation and the Turing thesis - Definition of TM and TM as
language acceptor - Non-deterministic TM and Deterministic TM — Universal TM

1. Introduction

1.1.  Need for Turing Machine
Describe an abstract machine™ that is widely accepted as a general model of computation

Model of Computation

EX: a"b"c"- this kind of computation PDA needs 2 or 3 stacks

But Turing machine can handle this type of computation using queue (Tape)

Ex: L={SS|S € {ab}*}

-Compare the first half of the string to the 2" half then queue is more appropriate than stack.
- TM is powerful than PDA

- Recognizes all types of languages like RL, CFL, CSL

1.2, Church Turing thesis

-By Alonzo church

“Any algorithmic procedure that can be carried out by a human, a team of humans or a
computer- can be carried out by some Turing machine”

1.3.  Turing machine proposal

Tape of infinite length
A

ces B x4 X2 X2 X5 B
Tape M N\ —__R/W head

Finite
Control

Figure 4.1 Tape



e Tape head is centered on one of the squares of the tape.
e Tape head reads the symbol in the current square(Fig 4.1)
e Moving the tape head one square to the
Left | Right | Stationary =>1|R|S
2. Definition of TM
A TM can be formally described as a 7-tuple abstract machine
(Q,T,>,6,qo, B, F)
where —
Q- Finite set of states
I" — Finite set of allowable tape symbol
> - Set of input symbol
B — Symbol of I - blank symbol(A)
g0 — Start state
F — Final state
§:QXI'>QXI'X{LR, S}

EX:8(ql, x)=(q2,y, D)

DD

Figure 4.2 Sample Transition

e From state g1 with x, replace X |Y , go to state q1, and move the tape head either D = {
L,R, SHFig 4.2)

Turing machine can

() Crash: If in this situation D=L but the tape head is scanning square 0, the leftmost
square, the tape head is not allowed to move.

(i) Halt: r=h, the move causes the turing machine to halt.

3



Turing Machine can be represented by

1. Transition Table

2. Instantaneous Description

3. Transition Diagram
2.1.  Instantaneous Description (ID)
Instantaneous Description of a turing machine is given by axqa>
where, g- is the current state of M, qeQ

ay, a2 € ['* - the contents of the tape upto the rightmost non blank symbol.

Initial ID: go az02
Final ID: 010208
Turing Machine can do one of the following things:

() Halt and accept by entering into the final state.

(i) Halt and reject (8 is not defined)

(ii)) Turing machine will never halt and enters into an infinite loop.

Definition: Language acceptance by Turing Machine

Let M=(Q, I', >, 8, qo, B, F) be a turing machine. The language L(M) accepted by M is
defined as :

LM)={ w | qOw F* a1azp }

Where, we) *, PeF, awa2 € I'*

The language accepted by the turing machine is REL( Recursively Enumerable Language)
2.2. construction of Turing Machines

1. Obtain TM to accept the language

L={0"1"|n>=1}

Solution:

W = {01,0011,000111,...... }



Execution Procedure:
AOO11A
AQ0011A
AXOQO11A
BX011B
BX0Y1B
BX0Y1B
BX0Y1B
BXXY1B
BXXY1B
BXXYYB
BXXYYB
BXXYYB
BXXYYB

BXXYYB




Define Tuples

qs-start state

Q={as,00,q1,q2,93,h}

F={h}
2={0,1}

I'={0,1,.X,Y,B}

0 : Transition table :

state 0 1 X Y B

Qs - - - (q0,B,R)
q0 (@L.X.R) (@3.y.R)

ql (q1,0,R) (92,Y,L) (qLY,R)

q2 (92,0,L) (90,X,R) (92,Y,L)

g3 @y.R) | (hBS)

Sequence of Moves: 0011 (ID)

(q0,B0011B)|-(ql, B0O11B)

-(92,BX011B)




-(92,BX011B)
- (93, B X0 Y 1B)
- (93, BX0Y 1B)
-(q1,BX0Y 1B)
- (92, BX XY 1B)
- (92, BXX Y1 B)
- (93, BX X Y Y B)
- (93, BX XY YB)
- (q1,B X X Y Y B)
- (94, BX XYY B)
- (94, BXXYYB)

- (g5, BXXYYB)

2. Construct a Turing Machine to accept palindrome over {a,b}
e Even palindrome - abba
e Odd palindrome- aba
e Not a palindrome -abb

Even Palindrome: abba

A a b b a A A A |

Odd Palindrome: aba

A a b a A A A A A .

Not a Plalindrome: abb

A a b b A A A




Define Tuples

0 : Transition table :

qs-start state

Q={0s,00,01,42,93,q4,95,h }

F={h}
>={a,b}
I'={abA}

state a b A

gs - - (a0, ARR)
qo (g1, AR) (04, AR) (h, AR)
gl (9l,a,R) (a1,b,R) (92,B,L)
q2 (43,AL) (h, AR)
g3 (g3,a,L) (a3,b,L) -

g4 (04,a,R) (04,b,R) (06, A,L)
g5 - (93, AL) (h, AR)




Instantaneous Description:

String: aba

Sequence of Moves for aba

(gs, AabaA)F(q0,AabaA)
F(ql,AAbaA)
F(ql,AAbaA)
F(ql,AAbaA)
F(q2, AA b aA)
F(q3, A A bAA)
F(q3, A A bAA)
F(q0, A A bAA)
F(g4, A A AAA)
F(q5, A A AAA)
F(h, A A AAA)

Accepted

3.L={x €{a,b} *| x contains the sub string aba }




4. L={x={a,b}* | x ends with an abb}

R.E=(atb)*abb

5.Construct a Turing machine to copy a string

Input Tape:

A

a

Output Tape:

AabaAAAA
AgbaAAAA
AARaAAAA
AAbaAAAA
AAbaAAAA
AAbaAAAA
AAbajaAA
AAbgAaAA
AApaAaAA
AAbaAaAA
AApaAaAA
AABaAaAA
AABaAaAA
AABaAAaAA

AABaAaAAA



AABaAgbAA
AABaAabAA
AAB@AabAA
AABaAabAA
AAB@AabAA
AABAAabAA
AABAA@bAA
AABAAapAA
AABAAabAA
AABAAapaA
AABAAabaA
AABAAabaA
AABAAabaA
AABAAabaA
AABAAabaA
AABaAabaA
AAbaAabaA
AabaAabaA
AAbaAaAA
AABaAabA
AABAAaba

AabaAaba

11



Define Tuples
gs-start state
Q={as,90.91,02,93,04,05,96,97,98,h}}
F={(h}
2={a,b}
I'={ a,b,A.B,A}

0 : Transition table :

States a b A

q0 : : :

(ql, A,R)

12




ql (02,A\R) (93,B,R) - (g8, A,L)
q2 (92,a,R) (92,b,R) - (g4, A,R)
q3 (g3,a,R) (g3,b,R) - (g5, A,R)
q4 (94.a,R) (94,b,R) - (g6,a,L)
a5 (g5,a,R) (g5,b,R) - (q6,b,L)
a6 (g6,a,L) (g6,b,L) - (q7, AL)
q7 (97,a,L) (q7,b,L) (91,AR) (q1,B,R)

q8 - - (g8,a,L) (98,b,L)

Trace the moves: aba

(g0, Aaba A A A A A) |-(q1, AabaAAAAA)

(92, AAbaA A AA)  |-(2, AAba AAAAA)
l-(q2, AAba AAAAA)  |-(g4, AAba AAAA)
|-(q6, AAba Aa AA)  |-(q7, AAba Aa AA)
|-(q7, AAba Aa AA) |-(q7, AAba Aa AA)
|-(g1, AAba Aa AA) |-(g3, AABa Aa AA)
|-(q3, AABa A a AA) |-(q5, AABa AaAA)
l-(g5, AABa AaAA) |-(q6, AABa AabA)
|-(q6, AABa AabA) |-(q7, AABa AabA)
|-(q7, AABa AabA) |-(ql,AABa AabA)
l-(q2, AABA AabA) |-(g4, AABA AabA)
l-(q4, AABA AabA) |-(g4, AABA AabA)
|-(g6, AABA Aaba) |-(g6, AABA Aaba)
|-(g6, AABA Aaba) |-(q7, AABA Aaba)

[-(ql, AABA Aaba) |-(g8, AABA Aaba)

13




|-(q8, AABaAaba)|-(q8, AAbaAaba)

|-(g8, AabaAaba)|-(hAabaAaba)

6. Turing machine to construct n mod 2 where n=|x|.

Even:

A 1 1 1 1 A A A A |l
Odd:

A 1 1 1 A A A A A

Define Tuple:

(Q,T.,3,6,q0B, F)
where —
Q-{00,01,92,3,g4,h}
I'—{A1}

> -{1}

A — blank symbol

g0 — Start state

h — Final state

14



STATES 1 A
q0 - (q1,A,R)
ql (@L1,R) | (q2,A.L)
q2 (@3.AL) | (hA,S)
g3 - (q4,A.R)
q4 - (h,1,9)

7. Construct a Turing machine to delete a symbol

Input: ababba

A a b a b B a A
A a b A b b a A A
A a b b b a A A |lA A A AL

Execution Logic:

Abab A
A_bab A
AAabA
AAabA
AAabA
AAabA

AAaAA
AAbAA
abAA-HALT

15




Define Tuple:
(Q.I,%,8,q.B,F)
where —
Q-{10,91,02,93,94,h}
- {A1}
> -{1}

A — blank symbol

g0 — Start state

h — Final state

16



Transition Table: 0

STATES a b A
qo (ql,A,R) | (q1,A,R) | (q1,A,R)
ql (91,a,R) | (q1,b,R) | (q2,A,L)
g2 (qa,A,L) | (gb,A,L) | (hA,S)
ga (ga,a,L) | (gb,aL) | (haS)
gb (ga,b,L) | (gb,b,L) | (h,b,S)

Trace the moves:

(q0, Aaba A) |- (ql, Aaba A)
l-(q2, AAbaA)
l-(q2,AAbaA)
l-(q2, AAbaA)
l-(q3,AAbaA)
l-(q4, AADAA)
l-(q5, AAaAA)

- (q6, AbaAA)-HALT

8. Construct a Turing machine for the language , L={SS | Se{a,b}*}
The problem is divided into 2 parts:
(0 Finding and marking the middle of the string

(i) Comparing the 2 halves.

A a b b a b b A A A

17



AabbabbA
AAbbabbA
AAbbabBA
AABbabBA
AABbabBA
AABbaBBAA
ABbaBBAAA
BBaBBAAA
BBABBA

A ABB ABB A - Mid point

AabbABBA-Mid point
AAbbABBA

A AbbABBA

A ABbA AB A

A ABBAAA A
AABBAAA A

18



Define Tuple:

(Q,I,>,6,q0B, F)

where —

Q' { q01q11q21q31q41q51q61q7!q8’q9’q10}

[ - {A,a,b,A,B}
> -{1}

A — blank symbol
g0 — Start state
q10- Final state

Transition Table: o

STATES a b A B A
q0 - - (qL,A,R)
ql (91,AR) | (q1.B.R) | (@5,AL) | (a5,B,L) | (q10,A.S)
q2 (92,a,R) |(g2.b.R) | (q3,AL) | (43,B,L) | (q3,AL)
q3 (g4,AL) | (g4B,L)
g4 (@4al) | (g4al) | (ALAR) | (41BR)
g5 - - @.al) | (@5bL) | (46.AR)
q6 (q7,AR) | (98,B,R)
q/ (@7,aR) | (a7.b,R) | (@9,AL) (97,A,R)
q8 (@8,a,R) | (a8,b,R) (99,A,L) | (a8,AR)
q9 (@.aL) | (@9bL) | (a6,AR) | (a6,B,R) | (49.A,L)

Trace the given string : abbabb
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9. Construct a turing machine for subtraction

f(m,n) = m-n, m>n
0, m<n
Case 1: m>n
Input tape:
A 0 0 0 1 0 0 A
Output Tape:
A A A A 0 A A A

Case 2: m<=n

Input tape:

A 0 0 1 0 0 0 A A
Output Tape:

A A A A A A A A

20



3.Variations of Turing Machine

1. Multiple track Turing Machine:
e A k-tack Turing machine(for some k>0) has k-tracks and one R/W head that reads and
writes all of them one by one.

e A k-track Turing Machine can be simulated by a single track Turing machine
a b a b

b c a a

a a a a

FC

2. Two-way infinite Tape Turing Machine:
A two way infinite tape turing machine is a turing machine with it’s a input tape infinite in both
directions, the other components being the same as that of the basic model.
e Infinite tape of two-way infinite tape Turing machine is unbounded in both directions left
and right.
e Two-way infinite tape Turing machine can be simulated by one-way infinite Turing
machine (standard Turing machine).

|

FC

3. Multi-tape Single-head Turing Machine:
e It has multiple tapes and controlled by a single head.

e The tape head scans the same position on all tapes.

21




4. Multi-tape Multi-head Turing Machine:

M N

¥

b a | w . (o o

e The multi-tape Turing machine has multiple tapes and multiple heads
e Each tape controlled by separate head

e Multi-Tape Multi-head Turing machine can be simulated by standard Turing

5. Multi-head Turing Machine:
e A multi-head Turing machine contain two or more heads to read the symbols on the same
tape.
e In one step all the heads sense the scanned symbols and move or write independently.

e Multi-head Turing machine can be simulated by single head Turing machine.

6. Non-deterministic Turing Machine:
¢ A non-deterministic Turing machine has a single, one way infinite tape.
e For a given state and input symbol has atleast one choice to move (finite number of choices
for the next move), each choice several choices of path that it might follow for a given
input string.

¢ A non-deterministic Turing machine is equivalent to deterministic Turing machine.

0:QxT'=>P@QxT x {L,R})

7. Offline Turing Machine

e [tisa multitape turing machine whose input tape is read only (writing is not allowed).

22



e An offline Turing machine can simulate any turing machine A by adding one more tape
than Turing machine A. The reason for using an extra tape is that the offline Turing machine
makes a copy of its own input into the extra tape and it then simulates Turing machine A as if

the extra tape were A’s input.

4.Universal Turing Machine
A UTM is a specified Turing machine that can simulate the behavior of any TM.
A UTM is capable of running any algorithm.
It is a Turing Machine whose input consists of 2 parts:
e A string specifying some special purpose Turing Machine, T1.
e Astring Z that isan input to T1.
The Turing Machine, Tu then simulates the processing of Z by T1.
4.1. Construction of Tu: > ={0,1}
Step 1: Formulate a notational system
e For each tape symbol (including A) as string of 0’s
e For each state (including h)

e 3 directions >

e For beginning of string and ending of string — 11
e For comma, encoding is 1

e - encoding function

Tu — represents the Universal Turing Machine

T1 —represents the name of the special Turing machine

Tu=¢e(T1).e(2)

4.2. Constuct a UTM for the given Turing Machine

23



Encoding:
For I/P symbols:
A-0
a-00
b -000
For each state:
h-0
qo - 00
gl - 000
g2— 0000
For directions
S-0
L-00
R -000
Transition Function
0(q0,A)=(q1,A,R)
00101000101000
d(q1,b)=(q1,b,R)
0001000100010001000
d(ql,a)=(q2,b,L)

24



000100100001000100
d(ql,A)=(q2, A,L)
000101000010100
3(q2,b)=(q2,b,L)
00001000100001000100
3(q2,A)=(h,A,S)

00001001010

e(T1)=
001010001010001100010001000100010001100010010000100010011000101000010100

11000010001000010001001100001001010

Z=bba

e(2)=0001000100
Tu=e(T1).e(2)

=1100101000101000110001000100010001000110001001000010001001100010100001
010011000010001000010001001100001001010.11000100010011

For any input string Tu will halt if and only if T halts on input Z.

Output from Tu is in the encoded form of the output produced by T on input Z.
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RECURSIVE LANGUAGES AND UNDECIDABILITY
Recursively enumerable and recursive languages — Properties of Recursively enumerable and
recursive languages - Enumerating a language. Introduction to Undecidability- Halting problem-
Undecidability of Post correspondence problem (PCP)-Modified PCP -Rice Theorem.

1. Recursively Enumerable (REL) & Recursive Languages (RL)

Recursive Language:

YES{1) {accepts the string w and halts)

Input string —®
(v} (T} \ MO{0) (Rejects the string w and halts)

Recursively Enumerable Language:

¥YES({1) {accepts the string w and halts)

Input string ——M
{w) (T) \ NO(0) {does not halt and goes into an infinite loop)

Theorem1:
Every recursive language is Recursively enumerable.

1 Yes Yes (Accepts astring and halts)
> —
Input string y M ™
(x) 0 No No (Rejects and halts in an infinte loop)

If Tis TMrecognizing L(RL) then we can geta TM thataccepts the language L by modifying T so that
when the output is O it does not enter the reject state but enters into an infinite loop.



Theorem 2:
Every REL is not recursive.

U[REL] T[RL]
Input string Yes Yes (Accepts and Halts)
() R |
—
T ™
Rejects and
goes into an infinite loop{ we cannot modify U to make the haltie. It
may or may not halt)
Theorem 3:
The complement of a RL is recursive (or) If L is recursive, sois L’
M1
¥ Y
M Y
W > L
e
M

Let L be a Recursive Language and M be the TM that halts on all inputs and accepts L.
e Construct M1 for L".
e M accepts and halts for Yes, then M’ rejects and halts.
e M rejects and halts for N, then M’ accepts and halts.

Theorem 4:
i.  Union of two recursive languages is recursive.
ii.  Union of two recursively enumerable languages is REL.
ii.  Intersection of two recursively enumerable languagesis REL.

i) Union of two recursive languages is recursive.

{n
LY
Yes
W >y
o M: M- — |
v Mo - -
|—; T— N




Let L1 and L2 be the Recursive languages accepted by TMs M1 and M2.

Construct M:
It first simulates M1,1f Yes than M accepts.
If M1 rejects, then M simulates M2 and accepts ifand only if M2 accepts.

i.e) M accepts L1 U L2.

ii ) Union of two Recursively Enumerable Languages is REL.
W

Wy

Y

"1

M2

L/

Let L1and L2 be the Recursive Enumerable languages accepted by TMs M1 and M2.

M simultaneously simulates M1 and M2.
If either accepts, then M accepts. i.e. M accepts L1 U L2.

iii) Intersection of two recursively enumerable languages is REL.

W

W

1

¥

h

M2

¥ (accepts)

-
|

N (rejects | never halts & goes into aninfinite loop)

-

Let L1and L2 be the Recursive Enumerable languages accepted by TMs M1 and M2.

M halts if both M1 and M2 halts.

M will never halt if either M1 or M2 enter into infinite loop.
(i.e.)Maccepts L1 [J L2.



Theorem 5:
IfaLanguage L and itscomplement L"are both Recursively Enumerable, then L and hence L' are

recursive.
M

V1 — Y —— Y

Y

W

M2 o N

)
-
|

e Let M1 and M2 be the TMs accepting L1 and L2 respectively.
e Msimultaneously simulates M1 and M2.
e M1 accepts L and M2 accepts L’

2. An Unsolvable Decision Problem:
A Turing Machine can solve decision problems.
Eg: Givenx € {a, b}", Is x an element of Palindrome ?

Instance of a problem
- Itis aparticular string x , so that when the string is provided as input to the TM, the

answer is “YES “or “NO”
- For more complicated problems to be solved by a TM, instances may need to be encoded
over the input alphabet of the machine.

How TM solves a decision problem P :

. . ™ > Yes-instance of P
i/pstring x — )

—No-instance of P

Definition 1: Self Accepting Language (SA)

SA ={w £ {0,1}" | w=e(T) for some TM T and w £ L(T) }
Where w is any string
e( T ) is the encoding function
-Ifthesame inputisgivento itself (TM) andifoutputis 1, the TMacceptsitsowninput. (i.e)
TM accepts its own encodings e(T).



Definition 2: Non-Self Accepting Language (NSA)
NSA ={we { 0,1} | w=e(T) for some TM T and w £ L(T) }.

Definition 3 : Solvable Problem

A Decision problem is solvable, if there is a algorithm capable of deciding every instance.
Recursive language yields solvable DP.

Definition 4: Unsolvable Problem

ADecisionproblemisunsolvable, ifthereisno algorithmcapable ofdeciding every instance. Non-
Recursive language yields solvable DP.

Theorem 1:
The language NSA is not recursively enumerable.

Proof by contradiction:

Assume NSA is REL.

Then, letLbeaNSAand TheaTMaccepting L.

Then, L(T)=NSAand weL(T)

But w ¢ L(T), since is not of the form e(T).

Thenwe NSA, isnot possible, which implies our assumption is false. Hence,
NSA isnot REL.

Theorem 2:
The language SA is Recursively Enumerable but not Recursive

Proof:

W.K.T:
1.1fLisrecursive,thenL’is also recursive.
2. EveryRL isalso REL.
3. NSA is not REL.

-1f SA is recursive, then NSA is also recursive, then NSA is also REL.
-But by 3, NSA is not REL.

-Then, NSA is not recursive and not REL.

-Let T simulate processing w=e(T).

-T halts if w=e(T) & T loops forever if w ¢ e(T).

-To conclude, SA is REL but not Recursive.



Definition 5: Reducing One Decision Problem to Another

Suppose Pland P2 are decision problems. We say P1is reducible to P2 (P1<P2)if thereisan
algorithmthat finds, for an arbitrary instance 1 of P1, an instance F (1) of P2, such that for every 1, the
answers for the two instances are the same, or 1 isayes-instance of P1 ifand only if F (1) is a yes-
instance of P2.

Definition 6: Reducing One Language to Another

IfL1and L2 are languages over alphabets Y 1and ) », respectively, we say L1 isreducibleto L2 (L1<L2)
if there isa Turing-computable functionf: Y 1— > suchthat for every xe*1,x€ Llifand only if f (x)
eL2.

Theorem 3:
Show that the Accepts problem is unsolvable.

In order to show Accepts is unsolvable it is sufficient to show Self-Accepting < Accepts An instance
of Self-Accepting isa TM T . Areduction to Accepts means finding apair F (T) =(T1,y) such that T
acceptse(T ) ifand only if

T1lacceptsy. Letting T1=T and y=¢e(T) gives ussuchapair,and F (T ) = (T, e(T)) can be obtained
algorithmicallyfromT ;therefore, FisareductionfromSelf-Acceptingto Accepts.

Theorem 4:
Show that Halting Problem is unsolvable.

Inorderto provethat Haltsisunsolvable, it is sufficient to showthat Accepts <Halts. Withan arbitrary
instance (T, X) of Acceptswhere T isaTMand xisastring. Thepair (T,x)=(T1,y),an instance of Halts
suchthatthetwoanswersarethe same: Tacceptsxifandonlyif T1haltson inputy. T1shouldsomehow
be defined interms of T .y should be defined interms of x.

Let y to be x. TM T1 is defined such that for every x, T accepts x if and only if T1 halts on x. A
reformulation of this statement is: (i) if T accepts X, then T1 halts on x, and (ii) if T doesn’t accept
X, then T1 doesn’t halt on x.

The Post Correspondence Problem (PCP)

Definition 7 :
An instance of Post’s correspondence problem (PCP) isa set {(al, B1), (02, B2), ..., (an, fn)} of pairs,
where n>1and the ai’s and Bi’s are all non-null strings over an alphabet .

Thedecision problem:

Givenan instance of thistype, does there exist a positive integer k and a sequence of integersil, i2, ...,ik
with each ij satisfying 1 <ij<n, satisfying



ailai2 ...aik = BilPi2 ...Bik

The PCP decision problem isa combinatorial problem involving pairs of strings not related to Turing
machines. The figure below shows a sample instance. Each of the five rectangles in the Figure iscalled
adomino, and assume thatthere isanunlimited supply ofeach ofthe five.

10 01 0 100 1

101 100 10 0 010

The question is whether it is possible to make a horizontal line of one or more dominoes with
duplicates allowed, so that the string obtained by reading across the top halves matches the one
obtained by reading across the bottom.

Solution:
10 1 01 0 100 100 0 100
101 010 100 10 0 0 10 0
Definition 8:

An instance of the modified Post correspondence problem (MPCP) looks exactly like an instance of PCP,
but now the sequence of integers is required to start with 1. The question can be formulated this
way:

Does there exist a positive integer k and a sequence i2, i3, ..., ik such that Instances of PCP and MPCPare
calledcorrespondencesystemsandmodified correspondencesystems, respectively.

For an instance of either type, if it is a yes-instance we will say that there is a match for the instance,
or that the sequence of subscripts isa match, or that the string formed by the aij ’s represents a match.

alai2 ...aik = B1Pi2 ...fik



More Unsolvable Problems

1. AssumingLisarecursivelyenumerablelanguage): Accepts L:GivenaTMT,isL(T)=L?

2. Accepts something: Givena TM T, is there at least one string in L(T )?\

3. Acceptstwoormore:GivenaTM T, does L(T ) have at least two elements?

4. Acceptsfinite: GivenaTM T, is L(T ) finite? 5. Accepts Recursive: GivenaTM T, isL(T)
(which by definition is recursively enumerable) recursive.

5. MPCP <PCP.

6. Accepts <MPCP.

Halting Problem:

In the theory of computability, the problem of halting is the question of deciding, from an arbitrary
computer program description and an input, whether the program will finish running or continue to
run indefinitely. In 1936, Alan Turing proved that there could not be a general algorithm for all
possible program-input pairs to solve the halting problem.

Given a program and an input to the program, determine if the program will eventually halt when it
is given that input.

Loop

Program

Input

= Halt

Halting problem is unsolvable

Proof by Contradiction
1. Assume the statement is true.
2. Solve the problem.
3. Check if there is a contradiction.
Proof:
1. Assume it is possible to solve the halting problem.
Assume it is possible to construct a machine H that solves the halting problem.
H receives 2 inputs:
P- program
| — input to the program P
H machine gives an answer ‘yes’ if program P halts on input L.
If it goes into an infinite loop, H gives answer no.



P r——) - Y €S

2. Create a new machine using machine H as basis.
Let the machine be X.
Add a condition at the end of machine H such that:
-If it outputs a “Yes’ answer it will loop.
- If it outputs a ‘No’ answer it will halt.

Input——p{ P —pYes |, Loop

| o]
prugram—Lb —N — Halt

If we give the program of machine X to itself along with the given set of inputs which has already
been generated.

el P —Yes |_, Loop

X i
—* Halt

If the output of the machine H inside X is ‘Yes’, it means X will loop which contradicts the result

of machine H.
“Yes means it will halt but it didn’t”
In the same way, if the result of machine H is ‘No’, it means X will halt which again contradicts the

result of H.
“No means it will not halt but it halted”

This machine H does exist and the halting problem is unsolved.



Rice Theorem

Rice theorem states that any non-trivial semantic property of a language which is recognized by a
Turing machine is undecidable. A property, P, is the language of all Turing machines that satisfy
that property.

Definition 9

If P is a non-trivial property, and the language holding the property, Lp , is recognized by Turing
machine M, then Lp = {<M> | L(M) € P} is undecidable.

Properties

« Property of languages, P, is simply a set of languages. If any language belongs to P (L € P),
it is said that L satisfies the property P.

e A property is called to be trivial if either it is not satisfied by any recursively enumerable
languages, or if it is satisfied by all recursively enumerable languages.

e A non-trivial property is satisfied by some recursively enumerable languages and are not
satisfied by others. Formally speaking, in a non-trivial property, where L € P, both the
following properties hold:

o Property 1 — There exists Turing Machines, M1 and M2 that recognize the same
language, i.e. either (<M1>, <M2> € L) or (<M1><M2> ¢ L)

o Property 2 — There exists Turing Machines M1 and M2, where M1 recognizes the
language while M2 does not, i.e. <M1> € L and <M2> ¢ L

Proof:

Suppose, a property P is non-trivial and ¢ € P.

Since, P is non-trivial, at least one language satisfies P, i.e., L(MO) € P, 3 Turing Machine MO.
Let, w be an input in a particular instant and N is a Turing Machine which follows —

On input X

e RunMonw
e If M does not accept (or doesn't halt), then do not accept x (or do not halt)
e If M accepts w then run MO0 on x. If MO accepts x, then accept x.

A function that maps an instance ATM = {<M,w>| M accepts input w} to a N such that

e If M accepts w and N accepts the same language as MO, Then L(M) = L(MOQ) € p
e IfM does not accept w and N accepts ¢, Then L(N) =¢ € p

Since ATM is undecidable and it can be reduced to Lp, Lp is also undecidable.
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