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SYLLABUS 

Introduction - Regular Languages and Regular Expressions - Deterministic Finite Automata -  

Non-Deterministic Finite Automata - NFA to DFA Conversion – NFA NULL Construction - 

NFA NULL to NFA Conversion - Kleene’s Theorem Part I & II. 

1. Introduction 

1.1.What is Theory of Computation or Automata Theory? 

• Theory of Computation is how efficiently problems can be solved on a model of 

computation, using an algorithm. 

• It is mainly about what kind of things can you really compute mechanically, how fast 

and how much space does it take to complete the task. 

• Ex1: To design a machine that accepts all binary strings ends in 0 and reject all other 

that does not ends in 0. 

                11011010 – Accept 

• Ex2: To design a machine to accepts all valid ‘C’ codes 

 Machine will check the binary equivalent of this code and from this binary equivalent 

it tells weather it is valid piece of C code or invalid. 

     Question  : Is it possible to design a machine? 

      Yes – The best example is Compiler. 

• Ex3: To design a machine that accepts all valid ‘C’ codes and never goes into infinite. 

  Question  : Is it possible to design a machine? 

    No 

 

 

 

Figure 1.1. Model of a TOC 
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Table 1.1 Modelling Languages and Language Acceptor 

 

LAYERS AND LEVELS IN THEORY OF COMPUTATION: 

• FSM – Finite State Machine – Simplest model of Computation and it has very  limited 

memory. 

     Perform low level computation and calculations 

• CFL – Context Free Language 

    Performs   some higher level of computation. 

• Turing Machine – Much powerful model perform very high level computation designed 

by Alan Turing in 1940. 

• Undecidable – Problem cannot be solved mechanically is falls under undecidable layer. 

1.2 Basic Units of Regular Language: 

Alphabets (∑ ) : { a, b} or {0,1} 

String( w)         : Collection of input alphabets 

Language (L)    : Collection of Strings 

Empty Set        : Ø 

NULL String     : ε or λ 

1.3. Finding Language using Conditions: 

1. Find L with 0’S and 1’s with odd no. of 1’s 

∑ ={ 0,1} 
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w ={ 1,01,10,100,010, 111,1011……..} 

w ={ 1,01,10,100,010, 110 ,111,1011……..} --invalid 

L  = {w/w consists of odd no. of 1’s} 

2. Find L with 0’s and 1’s with even no. of 1’s 

∑ ={ 0,1} 

w ={Λ  ,11,011,101,110,0110, 1010,  ……..} 

w ={Λ  ,11,011,101,100, 110,0110, 1010,  …..} --invalid 

L  = {w/w consists of even no. of 1’s} 

3. Find L with a’s and b’s with even no. of a’s 

∑ ={ a,b} 

w ={Λ  ,aa,baa,aba,aab,baab, abba,abab  ……..} 

w ={Λ ,aa,baa,aaa,aab,baab, abba,abab  ……..} --invalid 

L  = {w/w consists of even no. of a’s} 

4. Find L with a’s and b’s with even no of a’s and b’s. 

∑ ={ a,b} 

w ={Λ  ,aa,bb,aabb,abab,baba,bbaa ……..} 

L  = {w/w consists of even no. of a’s and b’s} 

5. Find L with a’s and b’s having a substring aa 

∑ ={ a,b} 

w ={aa,baa,aab,baab, abaa,aabaa  ……..} 

L  = {w/w consists of a substring aa} 

1.4. Regular Language: 

• A language is regular if there exits a DFA for that language. 

• The language accepted by DFA is RL.  

1.5. Regular Expression: 

• A Mathematical notation used to describe the regular language.  

• This is formed by using 3 Symbols:  

(i). [dot operator] – for concatenation  

(ii) + [Union operator] –at least 1 occurrence  

      eg) 1+ = {1,11,111,-------} 

(iii) {*} [Closure Operator ] – Zero or more occurrences  

     eg) 1* = {Λ ,1,11,111,…..} 
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1.6 Basic Regular Expressions: 

• Ø is a RE and denotes the empty set.  

• ε  is a RE and denotes the set { ε }  

• For each a in ∑, a is a RE and denotes the set {a}  

• If r and s are RE that denoting the languages R and S respectively, then,  

– (r+s) is a RE that denotes the set (RUS)  

– (r.s) is a RE that denotes the set R.S 

–  (r)* is a RE that denotes the set R*  

1.7 Problems on RE: 

1. Write the RE for the language of even no. of 1’s. 

∑={0,1} 

W={ᴧ,11,011,101,110,1111,1100,....} 

RE=(11)* 

2. Write the RE for the language of odd no. of 1’s. 

∑={0,1} 

W={1,10,01,100,111,1110,.....} 

RE=(11)*.1 

3. Write the RE for the language of any length including Ʌ.(a,b) 

∑={a,b} 

W={ᴧ,a,b,aa,ab,aab,baa,aaaa,.....} 

RE=(a+b)* 

4. Write the RE with a string starting with a. 

∑={a,b} 

W={a,aa,ab,aaa,abb,.....} 

RE=(a).(a+b)* 

5. Write the RE for the language having a substring aa. 

∑={a,b} 

W={aa,baa,aab,baaa,aaaa....} 

RE=(a+b)*.aa.(a+b)* 

6. Write the RE with a string starting with either a or ab. 

∑={a,b} 
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W={a,ab,aa,aba,abb,abbb,....} 

RE=(a+ab).(a+b)* 

7. Write RE with a string consists of a’s and b’s ending with abb. 

∑={a,b} 

W={abb,aabb,babb,aaabb,......} 

RE=(a+b)*.abb 

8. Write RE with a string consists of a’s and b’s starting with abb. 

∑={a,b} 

W={abb,abbb,abba,abbaa,.....} 

RE=abb.(a+b)* 

9. Write the  RE for identifiers in ‘C’ Programming. 

Letter=(a-z) 

Digit=(0-9) 

RE=(letter+_).(letter+_+digit)* 

10. Write the RE with a string that should not start with two 0’s. 

∑={0,1} 

W={0,1,01,011,110,....} 

RE=(01+1).(1+0)* 

11. Write  RE with a string that begins and ends with double consecutive letters. 

∑={a,b} 

W={aa,bb,aabb,bbaa,aabaa,bbbaa,......} 

RE=(aa+bb).(a+b)*.(aa+bb) 

12. Strings of a’s and b’s  in which 3rd symbol from right end is ‘a’. 

∑={a,b} 

W={aaa,abb,aabb,bbabb,…} 

RE=(a+b)*a.(a+b)(a+b) 

13. Write RE for the strings consisting of atleast 1 ‘a’ followed by strings consisting of 

atleast 1 ‘b’ followed by strings consisting of atleast 1 ‘c’.  

∑={a,b,c} 

W={abc,aabc,abbc,aabbcc,aaabbc,…} 

RE=a+.b+.c+ 
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14. Write the RE for the strings over {0,1} of length 6 or less. 

∑={0,1} 

Length 6-{001100,110011,010101,000000,..} 

(0+1).(0+1).(0+1).(0+1).(0+1).(0+1) 

(0+1+Ʌ)6 

(0+1)6 

(0+1+Ʌ)* 

15. Write RE for the string(a,b) whose length divisible by 3. 

∑={a,b} 

W={Ʌ,aaa,aba,abb,aab,aabbaa,….} 

RE=(aaa+aab+aba+baa+bbb+baa+abb+bab)* 

1.8 What is Finite Automata? 

• Simplest model of a computing device. 

• Finite automata are used to recognize patterns. 

• A machine that accepts Regular Language. 

• It takes the string of symbol as input and changes its state accordingly. When the desired 

symbol is found, then the transition occurs. 

• At the time of transition, the automata can either move to the next state or stay in the 

same state. 

• Finite automata have two states, Accept state or Reject state. When the input string is 

processed successfully, and the automata reached its final state, then it will accept. 

    Applications: 

– Compilers 

– Text processing 

– Hardware design. 

Types of Automata: 
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Figure 1.2 Types of Automata 

 

Figure 1.3  Difference between DFA and NFA 

 

2. DFA (Deterministic Finite Automata): 

 

• Only one path for specific input from the current state to the next state. 

• DFA does not accept the null move. 

• It is used in Lexical Analysis phase in Compilers. 

Example: RE=(a+b)+ 

 

Figure 1.4 Sample DFA 

Definition of DFA: 

A finite automaton is a collection of 5-tuple (Q, ∑, δ, q0, F), where: 

Q: finite set of states   

∑: finite set of the input symbol   

q0: initial state    

F: final state   

δ: Transition function   
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2.2 Construction of DFA: 

1. Construct DFA to accept strings of a’s and b’s having a substring aa. 

W={aa,aaa,baa,aab,aabb,abaa…..} 

 

 

Figure 1.5 State Diagram 

DFA Definition 

M=(Q, ∑,q0, δ,A) 

Q={q0,q1,q2} 

∑={a,b} 

 q0 =q0 

A = q2 

δ –Transition Function 

δ(q0,a)=q1 

δ(q0,b)=q0 

δ(q1,a)=q2 

δ(q1,b)=q0 

δ(q2,a)=q2 

δ(q2,b)=q2 

2. Construct DFA to accept string of a’s and b’s having exactly 1 ‘a’. 

W={a,ab,ba,bba,abb,bbba,….} 
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Figure 1.6 State Diagram 

DFA Definition 

M=(Q, ∑,q0, δ,A) 

Q={q0,q1} 

∑={a,b} 

q0 =q0 

A = q1 

δ –Transition Function 

δ(q0,a)=q1 

δ(q0,b)=q0 

δ(q1,a)=null 

δ(q1,b)=q1 

 

3. Construct DFA to accept strings of a’s and b’s with atleast 1 ‘a’. 

W={a,aa,ab,ba,bba,baa,….} 

 

Figure 1.7 State Diagram 

DFA Definition 

M=(Q, ∑,q0, δ,A) 

Q={q0,q1} 

∑={a,b} 
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q0 =q0 

A = q1 

δ –Transition Function 

δ(q0,a)=q1 

δ(q0,b)=q0 

δ(q1,a)=q1 

δ(q1,b)=q1 

 

4. Construct DFA to accept strings of 0’s and 1’s with substring 01. 

W={01,001,010,011,1001,…..} 

 

Figure 1.8 State Diagram 

DFA Definition: 

M=(Q, ∑,q0, δ,A) 

Q={q0,q1,q2} 

∑={0,1} 

q0 =q0 

A = q2 

δ –Transition Function 

δ(q0,0)=q1 

δ(q0,1)=q0 

δ(q1,0)=q1 

δ(q1,1)=q2 

δ(q2,0)=q2 

δ(q2,1)=q2 

5. Construct DFA to accept strings of a’s and b' not more than 3 ’a’. 

W={Ʌ,a,aa,aaa,aba,abb,bbb,aabb,…..} 
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Figure 1.9 State Diagram 

DFA Definition 

M=(Q, ∑,q0, δ, A) 

Q={q0,q1,q2,q3} 

∑={a,b} 

q0 =q0 

A = {q0,q1,q2,q3} 

δ –Transition Function 

δ(q0,a)=q1 

δ(q0,b)=q0 

δ(q1,a)=q2 

δ(q1,b)=q1 

δ(q2,a)=q3 

δ(q2,b)=q2 

δ(q3,a)=null 

δ(q3,b)=q3 

6. Construct DFA to accept strings that end with 011. 

W={011,1011,0011,11011,00011,100011…..}001000011,01100011, 

 

Figure 1.10 State Diagram 

DFA Definition 

M=(Q, ∑,q0, δ, A) 

Q={q0,q1,q2,q3} 
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∑={0,1} 

q0 =q0 

A = q3 

δ –Transition Function 

δ(q0,0)=q1 

δ(q0,1)=q0 

δ(q1,0)=q1 

δ(q1,1)=q2 

δ(q2,0)=q1 

δ(q2,1)=q3 

δ(q3,0)=q1 

δ(q3,1)=q0 

 

7. Construct DFA to accept strings of a’s and b’s with even number of a’s and b’s. 

W={Ʌ,aa,bb,aabb,abab,baba,aaaabb…} 

 

8. Construct DFA with even number of a’s and odd no. of b’s. 

W={b,aab,aba,baa,ababb,aaaab,aababab,….} 

 

M=(Q, ∑,q0, δ, A) 

9. Construct DFA with odd number of a’s and even no. of b’s. 

W={a,abb,bba,bab,abbaa,ababa,…..} 
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M=(Q, ∑,q0, δ, A) 

10. Construct DFA with odd number of a’s and b’s. 

W={ab,ba,babb,ababab,…….} 

 

M=(Q, ∑,q0, δ, A) 

11. Construct DFA to accept odd and even no’s represented using binary notation. 

0->0 

1->1 

2->10 

3->11 

4->100 

5->101 

6->110 

7->111 

8->1000 

010 
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Figure 1.11.State Diagram 

  M=(Q, ∑,q0, δ, A) 

2.2 Extension of  δ:  δ* 

δ-> for one input symbol 

 δ=Q x ∑ -> Q 

δ*->the state in which FA ends up if it begins in state q and receives a string x of input 

symbols 

            δ*(q,x)   i.e.  δ*: Q x ∑*->Q 

 

Recursive Definition of δ*: 

Let M=(Q, ∑, q0, A , δ) be finite automata, we define the function δ*: Q x ∑*->Q as follows: 

(i) for any qϵQ,  δ*(q,ꓥ)=q 

(ii) for any y ϵ∑*, a ϵ∑ and q ϵQ 

      δ*(q,ya) = δ( δ*(q,y), a) 

For strings of of length 1, δ and δ* can be used interchangeably. 

PROBLEMS: 

Find  δ*(q0,abc) 

 

Figure 1.12 State Diagram 

Solution : 

δ*(q,ꓥ)=q 

δ*(q,ya) = δ( δ*(q,y), a) 

ꓥa=aꓥ=a 
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δ*(q0,abc) = δ(δ*(q0,ab),c) 

= δ(δ(δ*(q0,a),b),c) 

= δ(δ(δ(δ*(q0,Ʌ),a),b),c) 

= δ(δ δ(q0,a),b),c) 

= δ(δ(q1,b),c) 

= δ(q2,c) 

 =q3 

2.4 STRING ACCEPTANCE BY FINITE AUTOMATA: 

Let M=(Q,∑,q0,A, δ) be an FA. A string xε∑* is accepted by M, if 

δ*( q0,x)ϵA 

 

2.5 LANGUAGE ACCEPTANCE BY FINITE AUTOMATA BY FINITE AUTOMATA: 

The language is accepted by M or the language recognized by M is the set, 

L(M)= {x | x ϵ ∑* and δ*( q0,x)ϵA} 

 

3.NON-DETERMINISTIC FINITE AUTOMATA: 

 

Figure 1.13 NFA 

• When there exist many paths for specific input from the current state to the next state. 

• Every NFA is not DFA, but each NFA can be translated into DFA. 

•  Types  

(i) NFA without Λ 

(ii) NFA with  Λ 

Advantages of NFA over DFA: 

–  DFAs are faster but more complex. 

–  Build a FA representing the language that is a union, intersection, concatenation 

etc. of two (or more) languages easily by using NFA's. 

Definition: 

NFA has 5 tuples M=(Q,∑,q0,A,δ), where  

Q: finite set of states   
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∑: finite set of the input symbol   

q0: initial state    

A: final state   

δ: Transition function   

           δ: Q x ∑ →2Q 

3.1 Example: 

Obtain an NFA to accept the language L={ w| w ε ababn or aban} 

 

 

Figure 1.4 NFA State Diagram 

Q={q0,q1,q2,q3,q4,q5} 

∑={a,b} 

q0={q0} 

A={q3,q3} 

δ: 

δ(q0,a)={q1,q4} 

δ(q0,b)= ∅ 

δ(q1,a)= ∅ 

δ(q1,b)={q2} 

δ(q2,a)={q3} 

δ(q2,b)= ∅ 

δ(q3,a)= ∅ 

δ(q3,b)={q3} 

δ(q4,a)= ∅ 

δ(q4,b)={q5} 

δ(q5,a)={q5} 

δ(q5,b)= ∅ 
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3.2 Problem: convert NFA to DFA [Subset Construction Method] 

 

Figure 1.15 NFA State Diagram 

 

Solution: 

MN=( QN,∑N,q0,AN,δN) be an NFA. 

δN(q0,a)={q0,q1) 

δN(q0,b)={q1) 

δN(q1,a)= ∅ 

δN(q1,b)={q2) 

δN(q2,a)={q2) 

δN(q2,b)={q2) 

MD=( QD,∑D,q0,AD,δD) be an DFA. 

Step 1: 

Start state of NFA is the start state of DFA. 

Obtain the transitions from this state. 

q0 is the start state. 

δD (q0,a)=δN(q0,a) 

=[q0,q1]----→A 

δD (q0,b)=δN(q0,b) 

=[q1]----→B 

 

Step: 2  Transition from A: 

δD (A,a)= δN(A,a) 

 = δN([q0,q1],a)  

 = δN(q0,a)U δN(q1,a) 

 ={q0,q1} U ∅ 

 =[q0,q1]------→A 

 

δD (A,b)= δN(A,b)                                                     

State a b 

q0 A B 

A   

B   
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 = δN([q0,q1],b)  

 = δN(q0,b) U δN(q1,b)  

 ={q1}U{q2} 

 =[q1,q2]------→C 

 

 

 

 

Transition from B: 

δD (B,a)= δN(B,a) 

 = δN([q1],a)               

 = δN(q1,a)       

 =∅ 

 

δD (B,b)= δN(B,b) 

 = δN([q1],b) 

 = δN(q1,b) 

 ={q2}---→D 

  

 

 

 

 

Transition from C: 

δD (C,a)= δN(C,a) 

 = δN([q1,q2],a) 

 = δN(q1,a)U δN(q2,a) 

 =∅Uq2 

 =[q2]------→D 

 

δD (C,b)= δN(C,b) 

 = δN([q1,q2],b) 

 = δN(q1,b) U δN(q2,b) 

 ={q2}Uq2 

State a b 

q0 A B 

A A C 

B   

C   

State a b 

q0 A B 

A A C 

B ∅ D 

C   

D   
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 =[q2]------→D 

 

 

 

 

 

 

 

Transition from D: 

δD (D,a)= δN(D,a) 

 = δN([q2],a) 

 = δN(q2,a) 

 =[q2]------→D 

δD (D,b)= δN(D,b) 

 = δN([q2],b) 

 = δN(q2,b) 

 =q2---→D 

 

 

 

 

 

 

 

Step: 3 construct the DFA 

 

 

Figure 1.16 State Diagram 

State a b 

q0 A B 

A A C 

B ∅ D 

C D D 

D   

State a b 

q0 A B 

A A C 

B ∅ D 

C D D 

D D D 



20 
 

The final state q2 of NFA is there in C and D states in DFA. So make C and D as final state. 

 

3.3 STRING ACCEPTANCE BY AN NFA: 

Let M=(Q,∑,q0,A,δ) be an NFA, the string xε∑* is accepted by M, if  

δ *(q0,x) ∩ A≠∅ 

 

3.4 LANGUAGE ACCEPTANCE BY A NFA: 

The language recognized or accepted by M is the set L(M) of all strings accepted by M. 

L(M)={x| δ *(q0,x) ∩ A≠∅} 

 

3.5 Recursive definition of δ* for an NFA: 

Let M=(Q,∑,q0,A,δ) be an NFA, the function δ*:Q x ∑*->2Q  is defined as follows. 

i) For any qεQ, δ*(q,Ʌ)={q} 

ii) For any qεQ, yε∑* and aε∑, 

           δ *(q,ya)=(⋃ )
𝛿(𝑟,𝑎)
𝑟 𝛿∗(𝑞,𝑦)  

 

 

Figure 1.17 State Diagram 

 Problems: 

M=(Q,∑,q0,A,δ) 

 

Figure 1.18 State Diagram 

 

Determine: 
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i) δ*(q0,11)= (⋃ )
𝜹(𝒓,𝟏)
𝒓𝜺𝜹∗(𝒒,𝟏)  

= ⋃ )
𝜹(𝒓,𝟏)
𝒓𝜺{𝒒𝟎,𝒒𝟏}  

= δ(q0,1) U δ(q1,1) 

={q0,q1} U {q2} 

={q0,q1,q2} 

∴11 is not accepted. 

ii) δ*(q0,01)= (⋃ )
𝜹(𝒓,𝟏)
𝒓𝜺𝜹∗(𝒒,𝟎)  

    = ⋃ )
𝜹(𝒓,𝟏)
𝒓𝜺{𝒒𝟎}  

                            = δ(q0,1)  

                       ={q0,q1} 

∴01 is not accepted. 

iii) δ*(q0,111)= (⋃ )
𝜹(𝒓,𝟏)
𝒓𝜺𝜹∗(𝒒,𝟏𝟏)  

      = ⋃ )
𝜹(𝒓,𝟏)
𝒓𝜺{𝒒𝟎,𝒒𝟏,𝒒𝟐}  

                              = δ(q0,1) U δ(q1,1) U δ(q2,1) 

      ={q0,q1} U{q2}U{q3}  

      ={q0,q1,q2,q3} 

∴111 is  accepted. 

 

iv) δ*(q0,011)= (⋃ )
𝜹(𝒓,𝟏)
𝒓𝜺𝜹∗(𝒒,𝟎𝟏)  

     = ⋃ )
𝜹(𝒓,𝟏)
𝒓𝜺{𝒒𝟎,𝒒𝟏}  

                             = δ(q0,1) U δ(q1,1) 

     ={q0,q1} U{q2}  

     ={q0,q1,q2} 

∴11 is not accepted. 

3.6 THEOREM 1: 

Statement:  

For any NFA machine  M=(Q, ∑, q0, δ ,  A) accepting a language L ⊆  ∑*, there  is a DFA 

machine M1= (Q, ∑, q0, δ ,  A) that accepts L. 
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Proof by Structural Induction:     

Proof: 

DFA- M1is defined as follows: 

– Q1=2Q 

– q1=q0 

– A1={qϵQ1 |A⊆Q} 

– For,qϵQ1 and aϵ∑, 

 
 

To prove, δ1
*(q1,x)= δ*(q0,x) 

M1accepts the same language as M. 

Proof by Structural Induction: 

1.Basis Step 

Strings of length 0 

If x=ꓥ, 

  LHS = δ1
*(q1,x) = δ1

*(q1,ꓥ) 

           = q1------- (By definition of δ1
*) 

                      = {q0}  ------- (By definition of q1) 

           = δ*(q0,ꓥ)------- (By definition of δ*) 

                      = δ*(q0,x) = RHS 

2.Induction Hypothesis:  

Assume the statement to be proved is true. 

x is a string satisfying,  

 
3.Induction Step:  

To prove, for any aϵ∑, xϵ∑* 

                           δ1
*(q1,xa)= δ*(q0,xa)  to be proved 

 

LHS=δ1
*(q1,xa)=δ1(δ1

*(q1,x),a)    ------- (By definition of δ1
*) 

    = δ1(δ
*(q0,x),a)  -------(By Induction Hypothesis) 

    =   ⋃ )
𝜹(𝒓,𝒂)
𝒓𝜺δ∗{𝒒𝟎,𝒙}  ------(By  1) 

    =δ*(q0,xa) =RHS------- (By definition of δ*) 

Hence Proved.     

 

4.NFA with Ʌ transition: 
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• This allows transitions not only input symbols but also on null inputs. 

• Ʌ or ε 

• aɅ=a | oɅ=0 |1Ʌ = 1 

o*    

 

4.1 Definition:NFA-Ʌ 

NFA-Ʌ is a 5 tuple machine M=(Q,∑,q0,A,δ), where  

Q -  is a set of finite states, 

∑ - finite set of input symbols 

q0εQ,  

A ⊆ Q and  

δ:Qx(∑U{Ʌ})->2Q 

 

4.2 Epsilon (NULL) Closure of a state -Λ(q): 

Λ(q) is a set of states can be defined as follows: 

• It is a set of all states that can be reached from any state on Λ symbol 

• Let M=(Q, ∑, q0, δ ,  A) be a NFA- Λ machine and let S be any subset of Q. 

• The Λ(S) is the set defined as follows: 

 1. Every element of S is in element of Λ(S) 

 2. For any q 𝞮 Λ(S), every element of δ(q, Λ) is in Λ(S) 

4.3 Problems on Ʌ Closure: 

1.  

 

Figure 1.19 State Diagram 

 Ʌ(q0)={q0, q1, q2} 

Ʌ(q1) ={q1, q0, q2} 

       Ʌ(q2)={q2} 
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2.  

 

 

 

Figure 1.20 State Diagram 

 

Ʌ(q0)={q0, q1, q2} 

Ʌ(q1) ={q0, q1, q2} 

Ʌ(q2)={q2} 

4.4. Extended Transition Function of NFA- Λ  (δ*): 

• δ* 

– Describes what happens when we start in  any state and follow any sequence of 

inputs. 

– Definition of δ*: 

  Let M= (Q,Σ,δ,q0,A) be a NFA with Λ .  

We define the function δ* : Q x ∑ * {Λ }→2Q  as follows: 

 1. For any state q 𝞮 Q , δ* (q, Λ ) = Λ (q) 

 2. for any state q 𝞮 Q , y 𝞮∑ *, a 𝞮 ∑ 

   

                        δ*(q, ya)  = Ʌ(⋃ )
𝛅(𝐫,𝐚)
𝒓𝜺𝛅∗ (𝐪,𝐲)  

 

Problems on δ* for NFA-Ʌ 

 

Figure 1.21 State Diagram 
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(i) Find δ*(q0, Ʌ) 

             δ*(q0, Ʌ) = Ʌ({q0}) 

                   ={q0,p,t} 

(ii) Find δ*(q0, 0)  

 δ*(q0, Ʌ0) = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺𝛅∗ (𝐪𝟎,Ʌ)   

                   = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺{𝒒𝟎,𝒑,𝒕}  

                   = Ʌ(δ(q0,0) U δ(p,0)U δ(t,0)) 

        = Ʌ(∅ U{P}U{u}) 

        = Ʌ({p,u}) 

        ={p,u}   

String not accepted. 

(iii) δ*(q0, 01)  

 δ*(q0, 01) = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺𝛅∗ (𝐪𝟎,𝟎)   

                  = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺{𝒑,𝒖}  

       = Ʌ(δ(p,1) U δ(u,1)) 

      = Ʌ({r}U∅) 

      = Ʌ({r}) 

      ={r} 

String not accepted. 

(iv) δ*(q0, 010)  

 δ*(q0, 010) = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺𝛅∗ (𝐪𝟎,𝟎𝟏)   

         = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺{𝒓}  

                    = Ʌ(δ(r,0))   

         = Ʌ({s}) 

   ={s,u,q0,p,t} 

String is accepted. 

4.5 Conversion of NFA-Ʌ to an NFA: 
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Figure 1.21 State Diagram 

Ʌ-closure(A)={A,B,D} 

Ʌ-closure(B)={B,D} 

Ʌ-closure(C)={C} 

Ʌ-closure(D)={D} 

(i) δ*(A,0)= δ*(A,Ʌ0) 

                       =Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺𝛅∗ (𝐀,Ʌ)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓 𝜺 Ʌ(𝐀)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺 {𝑨,𝑩,𝑫}  

            =Ʌ(δ(A,0) U δ(B,0) U δ(D,0)) 

            = Ʌ(A,C,D) 

            ={A,B,C,D} 

(ii) δ*(A,1)= δ*(A,Ʌ1) 

                       =Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺𝛅∗ (𝐀,Ʌ)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓 𝜺 Ʌ(𝐀)  

             = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺 {𝑨,𝑩,𝑫}  

  =Ʌ(δ(A,1) U δ(B,1) U δ(D,1)) 

             = Ʌ(∅) 

   =∅ 

(iii) δ*(B,0)= δ*(B,Ʌ0) 

                       =Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺𝛅∗ (𝐁,Ʌ)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓 𝜺 Ʌ(𝐁)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺 {𝑩,𝑫}  

  =Ʌ(δ(B,0) U δ(D,0)) 

  = Ʌ(C,D) 
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   ={C,D} 

(iv) δ*(B,1)= δ*(B,Ʌ1) 

                       =Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺𝛅∗ (𝐁,Ʌ)  

           = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓 𝜺 Ʌ(𝐁)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺 {𝑩,𝑫}  

  =Ʌ(δ(B,1) U δ(D,1)) 

  = Ʌ(∅) 

   =∅ 

(v) δ*(C,0)= δ*(C,Ʌ0) 

                       =Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺𝛅∗ (𝐂,Ʌ)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓 𝜺 Ʌ(𝐂)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺 {𝑪}  

  =Ʌ(δ(C,0)) 

   = Ʌ(∅) 

    =∅ 

(vi) δ*(C,1)= δ*(C,Ʌ1) 

                       =Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺𝛅∗ (𝐂,Ʌ)  

  = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓 𝜺 Ʌ(𝐂)  

             = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺 {𝑪}  

             =Ʌ(δ(C,1)) 

  = Ʌ(B) 

  ={B,D} 

    

(vii) δ*(D,0)= δ*(D,Ʌ0) 

                       =Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺𝛅∗ (𝐃,Ʌ)  

      = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓 𝜺 Ʌ(𝐃)  

                 = Ʌ(⋃ )
𝛅(𝐫,𝟎)
𝒓𝜺 {𝑫}  

       =Ʌ(δ(D,0)) 

        = Ʌ(D) 

       ={D} 
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(viii) δ*(D,1)= δ*(D,Ʌ1) 

                       =Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺𝛅∗ (𝐃,Ʌ)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓 𝜺 Ʌ(𝐃)  

            = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺 {𝑫}  

            =Ʌ(δ(D,1)) 

            = Ʌ(∅) 

  =∅ 

 

Transition Table: 

NFA- Ʌ NFA 

STATES 
∑ 

δ*(q,0) δ*(q,1) 
Ʌ 0 1 

A {B} {A} ∅ {A,B,C,D} ∅ 

B {D} {C} ∅ {C,D} ∅ 

C ∅ ∅ {B} ∅ {B,D} 

D ∅ {D} ∅ {D} ∅ 

 

NFA: 

 

 

Figure 1.22 State Diagram 

 

Note: Final state of NFA and NFA- Ʌ are same, moreover if initial state Ʌ(A)={A,B,D} has 

NFA-Ʌ final state then initial state A is also final state. 

4.6.Theorem 2 

• Equivalence of NFA-ꓥ and NFA 
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• If L is accepted by an NFA with ꓥ transitions then L is accepted by NFA without ꓥ 

transitions 

• Statement:  

For any NFA NULL machine  M=(Q, ∑, q0, δ ,  A) accepting a language L ⊆  ∑*, there  

is a NFA machine M1= (Q, ∑, q0, δ ,  A) that accepts L. 

Given: 

NFA-ꓥ,  M=(Q,∑,δ,q0,A) 

NFA, M1=(Q1,∑,δ1,q1,A1) 

Proof:                                                             

• By Definitions: 

 

• For, aϵ∑ :     

δ1(q1,a) = Ʌ(⋃ )
𝛅(𝐫,𝟏)
𝒓𝜺𝛅∗ (𝐂,Ʌ)    (By definition it is true if we pass a single length string) 

To Prove: δ1*(q1,x) = δ*(q0,x)  

     

Proof: By Structural Induction 

Basis Step: 

             Take  |x|=0  =>  x= Ʌ 

LHS: δ1*(q1, Ʌ) = {q1} 

            RHS: : δ*(q0, Ʌ) = Ʌ {q} 

So the above statement is not true for |x|=ꓥ 

Hence we begin the induction with |x|=1 

Let, x=a 

δ1*(q1, a) = δ*(q0, Ʌ)           (By definition it is true if we pass a single length string) 

 

Induction Hypothesis: Assumption: 

 x is a string satisfying:    δ1
*(q1,x)= δ*(q0,x) 

Induction Step 

– To prove, for any aϵ∑, x ϵ∑* 
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 δ1
*(q1,xa)= δ*(q0,xa) 

LHS:   δ1
*(q1,xa) 

 =⋃ )
𝛅(𝐫,𝐚)
𝒓𝜺 δ1∗{𝒒𝟏,𝒙}    ----(By Induction Hypothesis) 

             = ⋃ )
𝛅𝟏(𝐫,𝐚)
𝒓𝜺 δ∗{𝒒𝟎,𝒙}     δ=δ1 if the length of the string   

          =⋃ )
𝛅(𝐫,𝐚)
𝒓𝜺 δ∗{𝒒𝟎,𝒙}   

         =⋃ )
𝛅(𝐫,𝐚)

𝒓𝜺 Ʌ(⋃ )
𝛅(𝐬,Ʌ)
𝒔𝜺 δ∗{𝒒𝟎,𝒙}

 

         = Ʌ(⋃ )
𝛅(𝐬,𝐚)
𝒔𝜺 δ∗{𝒒𝟎,𝒙}  

                                                                 

       =  δ*(q, xa)                            

        =RHS  Hence the theorem is proved 

 

5.Kleen’s Theorem Part-I: 

Theorem Statement: 

Any RL can be accepted by a FA. 

Or 

Let ‘r’ be a RE, then there exists an NFA with Ʌ transitions that accepts L(r). 

Proof: 

By induction on the number of operators in the RE ‘r’ that there is an NFA ‘M’ with Ʌ-

transitions having one final state, and no transitions out of this final state, such that L(M)=L(r). 

Basis Step: ‘r’ has ∅ operators  

 ‘r’ must be ∅, Ʌ or a where aℰ∑. 

The NFA for ‘r’ are 

 

      r=Φ                            r=Ʌ                            r=’a’ 

Induction Hypothesis: 

Assume that theorem is true for ‘r’ with fewer than ‘i’ operators, i>=1=>1<=n<i 

Induction Step: 

Let ‘r’ have ‘i’ operators. 
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Case 1: r=r1+r2 

 

Figure 5.1 State Diagram 

Let NFA’s machine is M1=(Q1,∑1,δ1,q1,{f1}) & L(M1)=L(r1) 

Let DFA’s machine is M2=(Q2,∑2,δ2,q2,{f2}) & L(M2)=L(r2) 

Where Q1 and Q2 are disjoint. 

            q0->new initial state 

      f0->new final state 

Construct M= (Q1UQ2U{q0,f0}, ∑1U∑2,δ,q0,{f0}) 

Where δ is defined by, 

i) δ(q0,Ʌ)={q1,q2} 

ii) δ(q,a)=δ1(q,a) for q in Q1-{f1} & a in ∑1U{Ʌ} 

iii) δ(q,a)=δ2(q,a) for q in Q2-{f2} & a in ∑2U{Ʌ} 

iv) δ(f1,Ʌ)=δ(f2,Ʌ)={f0} 

Thus all the moves of M1 and M2 are in M. 

There is a path labelled x in M from q1 to f1 or a path in M2 from q2 to f2. 

Hence L(M)=L(M1) U L(M2) 

L(M)={x|x is in L(M1) or x is in L(M2)} 

Case 2: r=r1 . r2 
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Figure 5.2 State Diagram 

 

Let M1 and M2 be as in case2. 

Construct M=(Q1UQ2, ∑1U∑2, δ, {q1}, {f1}) 

Where δ is defined by, 

i) δ(q,a)=δ1(q,a) for q in Q1-{f1} & a in ∑1U{Ʌ} 

ii) δ(f1,Ʌ)={q2} 

 

iii) δ(q,a)=δ2(q,a) for q in Q2-{f2} & a in ∑2U{Ʌ} 

Every path in M from q1 to f2 is a path labelled by some string x from q1to f1 followed by 

the edge from f1 to q2 labelled Ʌ followed by a path labelled by some string ‘y’ from q2 to 

f2.  

Thus L(M)=L(M1) . L(M2) 

Case 3: 

 

Figure 5.3 State Diagram 

Let M1=(Q1,∑1,δ1,q1,{f1}) & L(M1)=L(r1) 

Construct M= (Q1U{q0,f0}, ∑1,δ1,q0,{f0}) 

Where δ is defined by 

i) δ(q0,Ʌ)=δ(f1,Ʌ) = {q1,f0} 

ii) δ(q,a)=δ1(q,a) for q in Q1-{f1} & a in ∑1U{Ʌ} 
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Any path from q0 to f0 consists either of a path from q0 to f0 on Ʌ or a path from q0 to q1 

on Ʌ, followed by some number of paths from q1 to f1, then back to q1 on Ʌ, each labelled 

by a string in L(M1) followed by a path from q1 to f1 on a string in L(M1). 

Hence L(M)= L(M1)* 

 

Regular Expressions to NFA-Ʌ Kleen’s Theorem Part-I: 

For each kind of RE, define an NFA-Ʌ 

Input:  A Regular Expression r over an alphabet ∑  

Output: An NFA-Ʌ   accepting L(r) 

Method: 

Step 1: For      

            

  The NFA-Ʌ recognizes {} 

Step 2: For a in ∑  

 

  The NFA-Ʌ recognizes {a} 

Step 3: RE=a |b 

 

The NFA-Ʌ recognizes {a,b} 

Step 4: RE=ab 

            OR      

The NFA-Ʌ recognizes {ab} 

Step 5: RE=a* 
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The NFA-Ʌ recognizes {ε,a,aa,aaa,.......} 

Step 6: RE= a+ 

       = a.a* 

     Follow step 4 for construction. 

Problems: 

Construct NFA-Ʌ for the following regular expression using Thompson’s Construction 

method. 

a. (a|b)*abb 

a 

b  

 

a/b  
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Figure 5.4 State Diagram of NFA-NULL 

6.Kleene’s Theorem Part -II 

• Any language accepted by a finite automaton is regular.  

 

Figure 6.1. Finite Automata Conversion 

6.1Conversion of DFA to Regular Expression 

• Formula: 

 

• Where  

• i= Start state 

• j = Final state 

• k = No.of states 
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Problem 1: Obtain the regular expression for the finite automata shown below: 

 

 

Figure 6.1 DFA State Diagram 

Formula for RE: 

 

Step 1: Rename the states: 

 

Figure 6.2 DFA State Diagram 

Step 2: Find the values of i,j,k 
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i=1 (start state) 

j=2 (final state) 

k=2 (no. of states) 

Substitute I,j,k in formula: 

Find: 

 

 

 

 

 

In: 

 

 

When K=0: 
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Substitute in equation 2 and 3: 

 

 

 

   

 

Substitute in equation 3:  

 

 

When K=0: 

 

 

Substituting in 1: 
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CONTEXT FREE LANGUAGES AND NORMAL FORMS 

Context-free grammars -More examples -Union, concatenations, and *’s of CFLs-Derivation 

trees and ambiguity -Unambiguous CFG for algebraic expressions-Normal Forms – CNF – 

GNF 

 

1. Context Free Grammar 

Definition − A context-free grammar (CFG) consisting of a finite set of grammar rules is a 

quadruple 

     G= (N, T, P, S)  

     Where, 

– N is a set of non-terminal symbols (N is also represented as V- the set of variables). 

– T is a set of terminals where N ∩ T = NULL. 

– P is a set of rules, P: N → (N ∪ T)*, i.e., the left-hand side of the production rule 

P does have any right context or left context. 

– S is the start symbol. 

 

Terminals: 

– Defines the basic symbols from which a string in a language are composed. 

– Represented in lower case letters. 

Non Terminals : 

– They are special symbols that are described recursively in terms of each other and 

terminals. Represented in upper case letters. 

Production rules: 

– It Defines the way in which NTs may be built from one another and from terminal. 

Start Symbol: 

– It is a special NT from which all the other strings are derived. It is always present in the first 

rule on the LHS. 

 

Example: 

     Consider the set of productions 

<exp> →<exp>+<exp> 

<exp>→<exp>*<exp> 

<exp>→(<exp>) 

<exp>→id 

 

We apply productions 

repeatedly (id+id)*id 



<exp>  ⇒ <exp>*<exp> 

⇒ (<exp>)*<exp> 

⇒ (<exp>+<exp>)*<exp> 

⇒ (id+id) * id 
Where (id+id) is the word in the language of <exp> 

- Use E instead of 

<exp> Productions: 

E→ E+E 

E→ 

E*E 

E→

(E) 

E→id 

G=({E},{+,*,id,(,)},P,E) 

 

Definition 2: The language generated by a CFG 

Let G=(N,T,P,S) be a CFG. The language generated by G is 

L(G) = {x∈ Σ∗|s⇒G∗x} 

Definition 3: 

A language L is a CFL if there is a CFG ‘G’ so that L = L(G) 

 

1.1 Problems: 

1. Given a CFG, find the language generated by G 

(i) G=(N,T,P,S) where N={S}, T={a,b} 

P={S→aSb, S→ab} 

S=>ab    S=>aSb    S=>aSb    S=>aSb 

           =>aaSbb                  =>aabb     =>aaSbb 

=>aaabbb        =>aaaSbbb                                               

=>aaaabbbb                              

 W= { ab, aabb,aaabbb,aaaabbbb,……..}     

             L(G)={anbn |n≥1} 

 

(ii) G=(P,{Ꜫ ,0,1},P,P} 

P: P→0 | 1 | Ꜫ  |0P0 |1P1 

P=>0 

P=>1 

P=>Ꜫ  

P=>0P0      P=>0P0    P=>0P0      P =>0P0 



    =>010        =>00        =>000           =>00P00 

                 =>00100   

P =>1P1                       P =>0P0 

    =>10P01      =>00P00 

    =>10101      =>001P100 

        =>0010100 

W={ꓥ, 0,1,00,010,000, 00100, 0010100,   10101,….} 

L(G)={language of palindromes} 

 

1.2 CFG Corresponding To A Language 

1.2.3 For the given L(G), design a CFG. 

i.Language consisting of even number of 1’s 

T={1,Ꜫ } 

        W={Ꜫ ,11,1111,111111,….} 

P: 

S -> Ꜫ  

S -> 1S1   

     

G=({S},{1,Ꜫ },P,S) 

ii. Design a CFG for a language consisting of arithmetic expression. 

T={id,+,-,*,/,(,)} 

W={id,id+id,id-id,id*id,id/id, id+id*id,(id-id)/id,……} 

P: S -> id 

     S -> S+S 

     S -> S-S 

    S ->S*S 

    S ->S/S 

(or) 

S->id |S+S |S-S|S*S |S/S |(S) 

G=({S},{+,-,*,/,id},P,S) 

iii. Design a CFG for a language accepting balanced  parenthesis 

T={{,},[,],(,)} 

W=(Ꜫ ,{},[],(), {()},([]),{{}},(()),[[()]],….,{}[]{},()(),{}(),….} 

P: S->{ S} |[S ] |(S ) |SS | Ꜫ  

      G=({S},{ Ꜫ  ,[,],{,},(,)},P,S) 



 

iv. L={𝒂𝒏𝒃𝒎| 𝒎 > 𝒏  𝒂𝒏𝒅 𝒏 ≥ 𝟎} 

T={a,b} 

W={b,bb,bbb,…,abb,abbb,…,aabbb,aaabbbb,…} 

 

n=0, m=1=> b 

n=0, m=2=>b, bb, bbb,bbbb,…. 

n=1, m=2 =>abb,abbb,abbbb,… 

n=2, m=3=>aabbb,aaabbbb,…. 

P: 

B->b |bB 

S->aSb |B 

G=({S,B}, {a,b} , P,S) 

 

v. L={w|wϵ{a,b}*, 𝒏𝒂(𝒘) = 𝒏𝒃(𝒘)} 

W={Ꜫ ,ab,ba,aabb,abab,baba,abba,aaabbb,bbaa,baab,….} 

P: S-> Ꜫ  |aSb |bSa  | SS 

G=({S}, {a,b, Ꜫ  } , P,S) 

 

vi. L={w|wϵ{a,b}*, 𝒏𝒂(𝒘) ≠ 𝒏𝒃(𝒘)}  

The problem is split into 2 cases: 

(i) 𝑛𝑎(𝑤) > 𝑛𝑏(𝑤)} 

(ii) 𝑛𝑎(𝑤) < 𝑛𝑏(𝑤)}  

 L1=   𝑛𝑎(𝑤) > 𝑛𝑏(𝑤) 

W={a, aba, aab ,baa,aaabb,aaa,aa,aaaab,baaa,…..} 

P1: 

A->a| aA |AbA |AAb |bAA 

G1=({A},{a,b},P1,A) 

 

 L2=    𝑛𝑏(𝑤) > 𝑛𝑎(𝑤)  

W={b,bb,bbb, abb,bab,…….} 

P2: 

B->b| bB |BaB |BBa |aBB 



G2=({B},{a,b},P2,B} 

L=L1ᴜ L2      𝑛𝑎(𝑤) ≠ 𝑛𝑏(𝑤) 

P: 

S->A|B 

A->a| aA |AbA |AAb |bAA 

B->b| bB |BaB |BBa |aBB 

G=({S,A,B},{a,b},P, S} 

 

vii. Construct the CFG for the language having any number of a's followed by any number 

of b’s over the set ∑= {a} 

W={ Ꜫ ,aaaa,bbbb,aabb,abbb,…..}  

a*.b* 

x=aabb 

P: 

S->A.B 

A->aA|Ꜫ  

B->bB| Ꜫ  

 

G=({S,A,B},{a,b, Ꜫ },P,S) 

1.3 Regular Expression to CFG 

i. Find the CFG equivalent to a Regular Expression 

RE=ab. (a+bb)* 

Generate the production for the language L1={ab} 

A->ab 

Generate the production for the language L2=a+bb 

B->a | bb 

Generate the production for the language L2*=(a+bb)* 

C->Ꜫ |BC 

RE=ab. (a+bb)* 

P: S->A.C 

      C->Ꜫ |BC 

      A->ab 



     B->a | bb 

G=({S,A,B,C}, {a,b, Ꜫ },P, } 

ii. Obtain the CFG for RE=(011+1)*(01)* 

L1=(011+1) 

L2=>(011+1)* 

Generate the production for the language L1=(011+1) 

A->011|1 

 Generate the production for the language L2=(011+1)* 

   B->AB|Ꜫ  

A->011|1 

Similarly derive for (01)* 

C->DC|Ꜫ  

D->01 

Finally generate the concatenation of the 2 languages by adding the production 

S->BC 

B->AB|Ꜫ  

A->011|1 

C->DC|Ꜫ  

D->01 

Definition 4: 

Regular Grammar 

A Grammar G=(N,T,P,S) is regular if every production takes one of the following forms: 

B→aC 

B→a 

Where B & C are NT and ‘a’ is a T 

 

 

2.Derivation Trees and Ambiguity 

2.1 Derivation: Process of deriving a string using the grammar 

• Types : 

– Left Most Derivation (LMD) 

– Right Most Derivation (RMD) 

2.2 Derivation tree is a graphical representation for the derivation. Also called as Parse Tree. 

Properties: 



• The root node is always a node indicating start symbols. 

• Every vertex has a label which is in (N U T U Ʌ) 

• The leaf node has a label from T (terminal). 

• The interior nodes are always the non-terminal nodes.  

• If a vertex is labeled A & if x1,x2,x3,…xn are all children of A from left then 

A->x1x2x3….xn be a production in P. 

Leftmost derivation & Rightmost Derivation 

2.3 Leftmost derivation 

In the derivation process, if the leftmost variable is replaced at every step then the derivation is 

leftmost derivation. 

 

E->E+E  | E*E | ( E ) |id 

String:id+id*id 

E
𝒍𝒎𝒅
⇒    E+E               E->E+E    

  
𝒍𝒎𝒅
⇒    id+E              E->id       

  
𝒍𝒎𝒅
⇒   id+E*E           E->E*E 

  
𝒍𝒎𝒅
⇒   id+id*E          E->id  

 
𝒍𝒎𝒅
⇒    id+id*id         E->id  

 

 
 

 

 

 

 

 



 

2.4 Rightmost Derivation 

In the derivation process, if the rightmost variable is replaced at every step then the derivation is 

rightmost derivation. 

E->E+E  | E*E | ( E ) |id 

String:id+id*id 

E  
𝒓𝒎𝒅
⇒    E+E               E->E+E   

    
𝒓𝒎𝒅
⇒   E+E*E            E->E*E 

    
𝒓𝒎𝒅
⇒     E+E*id         E->id 

    
𝒓𝒎𝒅
⇒   E+id*id          E->id 

   
𝒓𝒎𝒅
⇒     id+id*id        E=>id 

 

 

 

Definition: Yield of a tree: 

Is the string of symbols obtained by only reading the leaves of the tree from left to right without 

considering the  symbols called sentinal function. 

 



 

Yield of the tree=id+id*id 

 

2.5 Problems: 

1. For the Grammar G defined by 

S->AB 

B->a|Sb 

A->Aa|bB 

Give the derivation trees for the following sentential forms 

(i) baSb 

S=>AB   | S->AB 

=>bBB    | A->bB 

=>baB     | B->a 

=>baSb    | B->Sb 

 



 

 (ii) bAaBbB 

 

S=>AB                 S->AB 

=>bBB                A->bB 

=>bSbB             B->Sb 

=>bABbB          S->AB 

=>bAaBbB        A->Aa 

 

3. Ambiguity 

Definition: An Ambiguous CFG 

A CFG G is ambiguous if there is atleat one string in L(G) having two or more distinct derivation 

trees(or equivalently two or more distinct LMD). 
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i.Is the following grammar  ambiguous: 

E->E+E  | E*E | ( E ) |id 

 

Consider the String: id+id*id 

  E  
𝑙𝑚𝑑
⇒    E+E           | E->E+E                               

      
𝑙𝑚𝑑
⇒    id+E           |E->id                             

     
𝑙𝑚𝑑
⇒     id+E*E      |E->E*E        

     
𝑙𝑚𝑑
⇒     id+id*E      |E->id                                        

     
𝑙𝑚𝑑
⇒     id+id*id     |E->id 

 

 

 

 

 

    

 

 

 

 

E   
𝑙𝑚𝑑
⇒     E*E              E-> E*E                               

     
𝑙𝑚𝑑
⇒     E+E*E          E->E+E                         

     
𝑙𝑚𝑑
⇒     id+E*E         E->id                         

     
𝑙𝑚𝑑
⇒     id+id*E        E->id                      

    
𝑙𝑚𝑑
⇒      id+id*id       E->id 
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There are 2 parse trees or 2 leftmost derivations for the string ‘id+id*id’. So the given grammar is 

ambiguous. 

ii.Is the following grammar  ambiguous: 

S->iCtS |iCtSeS |a 

C->b 

Consider the String: ibtibtaea 

S 
𝒍𝒎𝒅
⇒   iCtS                            S->iCtS 

   
𝒍𝒎𝒅
⇒     ibtS                           C->b  

  
𝒍𝒎𝒅
⇒     ibt iCtSeS                  S-> iCtSeS 

  
𝒍𝒎𝒅
⇒     ibtibtSeS                   C->b 

  
𝒍𝒎𝒅
⇒     ibtibtaeS                   S->a 

          
𝒍𝒎𝒅
⇒     ibtibtaea                   S->a 
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S
𝒍𝒎𝒅
⇒   iCtSeS 
𝒍𝒎𝒅
⇒  ibtSeS 
𝒍𝒎𝒅
⇒  ibtiCtSeS 
𝒍𝒎𝒅
⇒  ibtibtSeS 
𝒍𝒎𝒅
⇒  ibtibtaeS 
𝒍𝒎𝒅
⇒  ibtibtaea 
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There are 2 parse trees or 2 leftmost derivations for the string ‘ibtibtaea’. So the given 

grammar is ambiguous. 

iii. Is the following grammar  ambiguous: 

S->AB | aaB 

A->a | Aa 

B->b 

String: aab 

S 
𝒍𝒎𝒅
⇒      AB        S->AB       

  
𝒍𝒎𝒅
⇒     AaB        A->Aa 

  
𝒍𝒎𝒅
⇒     aaB         A->a 

  
𝒍𝒎𝒅
⇒     aab         B->b 

 

 
 

 

 

 

 

 

 

S
𝒍𝒎𝒅
⇒   aaB            S->aaB 

  
𝒍𝒎𝒅
⇒   aab              B->b 
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There are 2 parse trees or 2 leftmost derivations for the string ‘aab’. So the given grammar is 

ambiguous. 

An unambiguous CFG for Algebraic expression 

If a CFG is ambiguous , it is often possible and usually desirable to find an equivalent unambiguous 

CFG. 

4. Normal Forms: 

Chomsky Normal Form(CNF) 

Greibach Normal Form(GNF) 

4.1Chomsky Normal Form(CNF): 

A CFG is in CNF if every production is one of two types 

A->BC 

A->a 

Where A,B and C are Non terminals and ‘a’ is a terminal 

4.1.1.Converting a CFG to CNF 

i.Let G be the CFG with productions 

S->AACD 

A->aAb | ꓥ 

C->aC |a 

D ->aDa | bDb |ꓥ 

Step 1: 

Eliminating ꓥ productions 

Any production A for which P contains the production A->ꓥ is nullable 

Nullable variable: A->ꓥ   D->ꓥ 

S->AACD | ACD  |CD | AAC |AC |C 
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     A->aAb | ab 

C->aC |a 

D ->aDa | bDb |aa |bb 

Step 2: 

Eliminating unit productions S->C 

S->AACD | ACD  |CD | AAC |AC | aC |a 

A->aAb | ab 

C->aC |a 

D ->aDa | bDb |aa |bb 

Step 3:Restricting the right sides of the productions to single terminals or strings of two or 

more variables(NON TERMINALS). 

S->AACD | ACD  |CD | AAC |AC | Xa C |a 

A-> Xa A Xb | Xa Xb 

C-> Xa C |a 

D -> XaD Xa | Xb D Xb | Xa Xa  | Xb Xb 

Xa->a 

Xb->b 

Step 4: 

S->AT1 |AT2 |CD |AT3 |AC | Xa C |a 

T1->AT2 

T2->CD 

T3->AC 

A-> XaT4  |  Xa Xb 

T4-> A Xb 

C-> Xa C |a 

D->XaT5 | XbT6| Xa Xa  | Xb Xb 

T5->D Xa 

T6-> D Xb 

Xa->a 
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Xb->b 

4.3 Greibach Normal Form (GNF) 

Let G=(N, T, P, S) be a CFG. The CFG ‘G’ is said to be in GNF, if all the production are of the 

form: 

A->aα 

Where a ↋ T and α ↋ N* 

 A non-terminal generating a terminal which is followed by any number of non-terminals.  

For example, A → a. 

                         S → aASB. 

Step 1: Convert the grammar into CNF. 

Step 2: Rename the non-terminals to A1, A2, A3,… 

Step 3: In the grammar, convert the given production rule into GNF form.  

Problem 1: 

S-> AB1 |0S | ε 

A->00A | B 

B-> 1A1 

Step 1: Eliminate null productions. 

S-> ε 

S->AB1 | 0S | 0 

A->00A |B 

B->1A1 

Step 2: Eliminate unit productions 

A->B  is the unit production. 

S->AB1 |0S |0 

A->00A |1A1 

B->1A1 

Step 3: Restricting right hand side production with single terminal symbol or two or more 

non terminals. 

X->0 
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Y->1 

S->ABY | XS |0 

A->XXA |YAY 

B->YAY  

Step 4: Final CNF 

X->0     Y->1 

S->AT1      T1->BY 

S->XS | 0 

A->XT2    T2->XA       A->YT3      T3->AY 

B->YT3 

Step 5: Rename Non terminal as A1, A2, A3,…….. 

S=A1, A= A2, B=A3, X=A4, Y=A5, T1=A6, T2=A7, T3=A8 

X->0     Y->1 

S->AT1      T1->BY 

S->XS | 0 

A->XT2    T2->XA       A->YT3      T3->AY 

B->YT3 

 

A4->0       A5->1 

A1->A2A6 | A4A1 | 0 

A2->A4A7 | A5A8 

A3->A5A8 

A6->A3A5 

A7->A4A2 

A8->A2A5 

 Step 6: Obtain productions to the form A->aα 

Final CFG is 

A4->0     A5->1 

A2->0A7 |1A8 

A3->1A8 

A7->0A2 

A8->0A7A5 | 1A8A5 

A6->1A8A5 

A1->0A7A6 | 1A8A6 | 0A1 |0 
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PUSH DOWN AUTOMATA (PDA) 

Pushdown automata - Introduction - Definition - Deterministic pushdown automata - PDA 

corresponding to a given context-free grammar – Context-free Grammar corresponding to PDA 

- Pumping Lemma for CFG 

1. Push Down Automata 

1.1. Drawback of Finite Automata 

 can remember only a finite amount of information 

 No memory is used in FA 

2. Introduction 

• PDA can remember an infinite amount of information. 

• Memory used – Stack 

• A PDA is more powerful than FA. 

• Any language which can be acceptable by FA can also be acceptable by PDA. 

• PDA also accepts a class of languages which cannot be accepted by FA. 

• PDA recognizes CFL. 

FA + stack = PDA 

3. Definition 

The PDA can be defined as a collection of 7 tuples: 

M=( Q, ∑, Γ, q0, Z0, F, δ ) 

Q: the finite set of states 

∑: the input set 

Γ: a stack symbol which can be pushed and popped from the stack q0: 

the initial state 

Z0: a start symbol which is in Γ. 

F: a set of final states. 

δ: Transition function which is used for moving from current state to next state. 

δ: Q x {Σ ∪ ε} x Γ -> Q x Γ* 

(i.e) δ(q,a,x)=(p,α) 
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from state ‘q’ for an input symbol ‘a’, and stack symbol ‘x’, goto state ‘p’ and x is replaced by 

string ‘α’. 

3.1. Instantaneous Description (ID) 

• An instantaneous description is a triple ID 

(q, w, α) 

Where:  
 Q describes the current state. 

 w describes the remaining input. 

 α describes the stack contents, top at the left. 

Example Derivation: (p, b, T) ⊢ (q, w, α) 

3.2. Definition: Acceptance by a PDA 

1. Acceptance by Final State: 

If M =(Q, ∑, Γ, δ, q0, Z, F) is a PDA and the language L(M) accepted by the final state is 

given by: x∈∑* and x is accepted by M if, 

L(M) = {x | (q0, x, Z0) ⊢* (q,Ʌ ,α)} 

Where q∈Aα∈Γ* 

 
2. Acceptance by Empty Stack: 

For each PDA, M=(Q, ∑, Γ, δ, q0, Z, F) the language accepted by empty stack is given by 

L(M) = {x | (q0, x, Z0) ⊢* (q,Ʌ , Ʌ)} 

For any state q∈A and x∈∑* 

 
Language Acceptance: 

A language L ⊆∑* is said to be accepted by M, if L is precisely the set of string accepted by 

M. 

L=L(M) 

4. Construction of PDA 

1. Design a PDA for accepting a language {anbn | n>=1}. 

Solution: 

1. Decide the nature of the language b’s followed by ‘a’. 

2. Execution procedure using stack: 

 Push all a’s on to stack. 

 For every ‘b’ pop out an ‘a’. 

3. Define the states 

 q0 – push all a’s on to the stack. 

 q1 – when a ‘b’ encounters, pop ‘a’ from stack. 

 q2 – accepting state. 

PDA Diagram 
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Transition Table: 
 

Move No. State Input 
Symbol 

Top of stack Moves 

1 q0 a Z0 (q0,az0) 

2 q0 a a (q0,aa) 

3 q0 b a (q1,Ʌ) 

4 q1 b a (q1,Ʌ) 

5 q1 Ʌ Z0 (q2,z0) 

All other combinations None 

 
Trace the moves: a3b3 => aaabbb 

Move No. Resulting state Input Stack 

- q0 aaabbb Z0 

1 q0 aabbb az0 

2 q0 abbb aaz0 

2 q0 bbb aaaz0 

3 q1 bb aaz0 

4 q1 b az0 

4 q1 Ʌ Z0 

5 q2 Ʌ Z0 

Accepted 

 

Trace the moves: a2b=> aab 

Move No. Resulting state Input Stack 

- q0 aab Z0 

1 q0 ab az0 

2 q0 b aaz0 

3 q1 Ʌ az0 

Rejected 

 
Instantaneous Description (ID) 

(q0, aabb,z0) |- (q0, abb, az0) 

|- (q0, bb, aaz0) 
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|-(q1, b, az0) 

|-(q1,Ʌ, z0) 

|-(q2, Ʌ, z0) 

String Accepted 

 

 
2. Construct PDA for the language L={xCxr | x ↋ {a,b}*} 

Solution 

1. Nature of the language: 

A string ‘x’ followed by constant ‘C’ followed by reversed string. 

2. Execution procedure: 

 Push the string ‘x’ into the stack until ‘C’ is encountered. 

 When ‘C’ is encountered, don’t do any operation. 

 After that, pop out each element from the stack for the string xr. 

3. Define the states: 

 q0 - Push all input symbols until ‘C’. 

 q1 – when ‘C’ is encountered, Pop. 

 q2 – accepting state. 

PDA 
 
 

 
 

Transition Table 
 

Move No. State Input Symbol Top of stack Moves 

1 q0 a Z0 (q0,az0) 

2 q0 b Z0 (q0,bz0) 

3 q0 a a (q0,aa) 

4 q0 a b (q0,ab) 

5 q0 b b (q0,bb) 

6 q0 b a (q0,ba) 

7 q0 C a (q1,a) 

8 q0 C b (q1,b) 

9 q0 C Z0 (q1,z0) 



6 
 

10 q1 a a (q1,Ʌ) 

11 q1 b b (q1, Ʌ) 

12 q1 Ʌ Z0 (q2,z0) 

All other combinations  - No moves 
 

Trace the moves: abCba 
 

Move No. Resulting state Input Stack 

- q0 abCba Z0 

1 q0 bCba az0 

6 q0 Cba baz0 

8 q1 ba baz0 

11 q1 a az0 

10 q1 Ʌ Z0 

12 q2 Ʌ Z0 

Accept 

 
Trace the moves: abCa 

 

Move No. Resulting state Input Stack 

- q0 abCa Z0 

1 q0 bCa az0 

6 q0 Ca baz0 

8 q1 a baz0 

    

Rejected 

 

3. Consider the CFG 

S->[S] | {S} | Ʌ 

Generate the CFL and PDA. 

Solution 

1. Nature of the language 

CFL = {Ʌ, [], {}, [{}], {[]}, [{{}}],….} 

Open parenthesis followed by symbols and then closed parenthesis. 

2. Define the states: 

q0 – When all the open parenthesis are encountered. 

q1 – when all the closed parenthesis are encountered 

q2 – accepting state. 
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Transition Table: 
 

Move No. State Input Symbol Top of stack Moves 

1 q0 [ Z0 (q0,[z0) 

2 q0 { Z0 (q0,{z0) 

3 q0 [ [ (q0,[[) 

4 q0 [ { (q0,[{) 

5 q0 { { (q0,{{) 

6 q0 { [ (q0,{[) 

7 q0 } { (q1, Ʌ) 

8 q0 ] [ (q1, Ʌ) 

9 q1 } { (q1, Ʌ) 

10 q1 ] [ (q1, Ʌ) 

11 q1 Ʌ Z0 (q2,z0) 

12 q0 Ʌ Z0 (q2,z0) 

All other combinations No moves 

 

 

 

 

 

 
Trace the moves: {[{}]} 

 

Move No. Resulting state Input Stack 

- q0 {[{}]} Z0 

2 q0 [{}]} {z0 

4 q0 {}]} [{z0 

6 q0 }]} {[{z0 

7 q1 ]} [{z0 

10 q1 } {z0 



8 
 

9 q1 Ʌ Z0 

11 q2 Ʌ Z0 

Accept 
 

Trace the moves: {[{] 
 

Move No. Resulting state Input Stack 

- q0 {[{] Z0 

2 q0 [{] {z0 

4 q0 {] [{z0 

6 q0 ] {[{z0 

 No Move   

Rejected 

 

4. 

5. Parsing: 

 To derive a string using the production rules for a grammar. 

 It is used to check whether or not a string is syntactically correct. 

 Parser takes the inputs and builds a parse tree. 

5.1. Types of parser 

Top down Parser- Parsing starts from the top with the start symbol and derives a string using 

a parse tree. 

Bottom up parser- Starts from the bottom with the string and comes to the start symbol using 

a parse tree. 

5.2. Design of Top down parser 

1. Push the start symbol onto the stack. 

2. If the top of the stack contains a NT, pop it out of the stack and push its right hand 

side of the production. 

3. If the top of the stack matches with input symbol being read, pop it. 

4. If the input string is fully read and the stack is empty go to final state. 

 
5.3. PDA Corresponding to CFG 

 
In 2 ways, PDA can simulate a derivation in the grammar. 

 Top Down Parsing - LMD 

 Bottom Up Parsing– RMD 

 
5.3.1. Top Down Parsing: PDA corresponding to CFG: 

 
Left Most Derivation is used 

Statement: 



9 
 

Let G=(N,T,P,S) be a Context Free G, then there is a push down automata M, so that 

L(M)=L(G) 

Define ‘M’ as: 

M=(Q,∑ , Γ, δ, q0, Z0, F) 
 

Where, Q={q0,q1,q2} 

Γ = N U ∑ U {z0} 
A = {q2} 

 
a) δ(q0,Ʌ,z0)={(q1,Sz0)} 

 
b) for every A∈N, δ (q1,Ʌ,A)={(q1, α) | A->α is a production in G} 

 
c) for every a∈∑, δ (q1,a, a)={(q, Ʌ)} 

 
d) δ (q1,Ʌ,z0)={(q2,z0)} 

 

 

 
 

 

 

Q={q0,q1,q2} 

A={q2} 

 
5.3.2. Construction of PDA 

 

1. Construct PDA for the language 

L={x∈{a,b}*|na(x)>nb(x)}}  

S->a | aS | bSS | SSb| SbS 

Solution: 

Let M=(Q, ∑, Γ, δ, q0, Z, F) 

 
Q={q0,q1,q2} 

∑={a,b} 

Γ={S,a,b,z0} 

F={q2} 
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Transition Table: 

State Input Stack 
Symbol 

Moves 

q0 Ʌ Z0 (q1,Sz0) 

Q1 Ʌ S (q1,a),(q1,aS),(q1,bSS),(q1,SSb),(q1,SbS) 

Q1 a a (q1, Ʌ) 

Q1 b b (q1, Ʌ) 

Q1 Ʌ Z0 (q2,z0) 

All other combination none 

 

S->a | aS | bSS | SSb| SbS 

 
Example: abbaaa 

S->a | aS | bSS | SSb| SbS 
 

S=>SbS 

=>abS 

=>abbSS 

=>abbaS 

=>abbaaS 

=>abbaaa 

S->SbS 

S->a 

S->bSS 

S->a 

S->aS 

S->a 

 

 

Sequence of moves: parsing 

(q0, Ʌ abbaaa,z0) -| ( q1, Ʌ abbaaa ,SZ0) 

 
-| ( q1, Ʌ abbaaa, SbSZ0) 

(q1, abbaaa, abSZ0) 

(q1, bbaaa, bSz0) 

(q1, baaa, Sz0) 

( q1, baaa, bSSz0) 

(q1, aaa, SSz0) 
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(q1, aaa, aSz0) 

(q1,aa, Sz0) 

(q1,aa, aSz0) 

(q1.a, Sz0) 

(q1,a , az0) 

(q1, Ʌ, z0) 

(q2) 

 
 

2. Construct PDA 

S->S+X | X 

X->X*Y | Y 

Y->(S) | id 

String: id+id*id 

Solution: 

Let M=(Q, ∑, Γ, δ, q0, Z0, F) 

Q={q0,q1,q2} 

∑={ +,*,id,(,)} 

Γ={ z0,S,X,Y, +,*,id,(,)} 

A={q2} 

 

Figure 3.6 State Diagram 

 

 
String: id*id+id 

 
S=>S+X S->S+X 

=>X+X S->X 

=>X*X+X X->X*X 

=>Y*X+X X->Y 

-> id*X+X Y->id 

=>id*Y+X X-> Y 

=>id*id+X Y->id 
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=>id*id+Y X->Y 

=>id*id+id Y->id 

(q0,id*id+id,z0) -| (q0,id*id+id,Sz0) 

(q1,id*id+id, S+X) 

(q1, id*id+id, X+X) 

(q1, id*id+id, X*X+X) 

(q1, id*id+id, Y*X+X) 

(q1, id*id+id, id*X+X) 

(q1, *id+id, *X+X) (q1, 

id+id, X+X) (q1,id+id, 

Y+X) 

(q1, id+id, id+X) 

(q1, +id, +X) 
(q1, id, X) 

(q1, id, Y) 

(q1, id, id) 

 
5.3.4. Bottom-Up PDA 

• Right Most Derivation in reverse is used. 

Steps: 

– Push the current input symbol onto the stack. 

– Replace the right-hand side of a production at the top of the stack with its left- 

hand side. 

– If the top of the stack element matches with the current input symbol, pop it. 

– If the input string is fully read and only if the start symbol ‘S’ remains in the 

stack, pop it and go to the final state ‘F’. 

Problem 1:  
P: S->S+T 

S->T 

T->T*a 

T->a 

String: a+a*a 

Right Most Derivation: 

S=>S+T [S->S+T] 

=>S+T*a [T->T*a] 

=>S+a*a [T->a] 

=>T+a*a [S->T] 

=>a+a*a [T->a] 

 
Move Production Stack Unread Input 

- - Z0 a+a*a 

shift - aZ0 +a*a 

Reduce T->a TZ0 +a*a 

Reduce S->T SZ0 +a*a 

Shift - +SZ0 a*a 

Shift - a+SZ0 *a 
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Reduce T->a T+SZ0 *a 

Shift - *T+SZ0 A 

Shift - a*T+SZ0 - 

Reduce T->T*a T+SZ0 - 

Reduce S->S+T S Z0 - 

Accept 
 

 

6. Deterministic Push down automata 

 
Let M=(Q,∑ , Γ, δ, q0, Z, F) be a PDA, M is deterministic if there is no configuration for 

which M has a choice of more than one move. 

If M is deterministic it satisfies the following condition: 

 
i) For every q ∈ Q, a ∈ ∑ U { Ʌ } and x ∈ Γ then the set 

δ(q, a, x) has at most one element 

 
ii) For any q ∈ Q, x ∈ Γ, if δ(q, Ʌ, x) ≠ φ then 

δ(q, a, x) = φ for every a ∈ ∑. 

 
Problem : 

Construct DPDA for the language 

 
L={x∈{a,b}*|na(x)>nb(x)} 

solution 

DPDA with Null transition : 

 
W= {a, aa, aaa, aab, aba,....., baa, bbaaa, aabba, aaab,...} 
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W= {a, aa, aaa, aab, aba,....., baa, bbaaa, aabba, aaab,...} 
 

 
 

Move No. State Input Symbol Top of stack Moves 

1 q0 a Z0 (q1,az0) 

2 q0 a a (q1,aa) 

3 q0 Ʌ a (q1,a) 

4 q0 b Z0 (q0,bz0) 

5 q0 b b (q0,bb) 

6 q0 a b (q0, Ʌ) 

7 q0 b a (q0, Ʌ) 

8 q1 a a (q1,aa) 

9 q1 b a (q0, Ʌ) 

All other combinations None 
 

DPDA without Ʌ 

W= {a, aa, aaa, aab, aba,....., baa, bbaaa, aabba, aaab,...} 
 

 

 

 

 

 

 

 
Transition Table: 

 

Move No. State Input Symbol Top of stack Moves 

1 q0 b Z0 (q0,b Z0) 

2 q0 a b (q0,Ʌ) 

3 q0 b b (q0,bb) 

4 q0 a Z0 (q1, Z0) 

5 q1 b a (q1, Ʌ) 
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6 q1 a Z0 (q1,aZ0) 

7 q1 a a (q1,aa) 

8 q1 b Z0 (q0, Z0) 

All other combinations None 

 

Trace the moves: aaaba 
 

Move No. Resulting state Input Stack 

- q0 aaaba Z0 

4 Q1 aaba Z0 

6 Q1 aba Az0 

7 Q1 ba Aaz0 

5 Q1 a Az0 

7 Q1 - Aaz0 

Accept 

 

7. Pumping Lemma 

CFL- We can always find two pieces of any sufficiently long string to pump in tandem .i.e. if 

we repeat each of the two pieces the same number of times, we get another string of the 

language. 

 Pumping Lemma is used to prove that a language is not CFL. 

 It should never be used to show a language is regular. 

 
For any language L, we break its strings into five parts and pump second and fourth substring. 

 

Let ‘L’ be any CFL. Then there is a constant ‘n’ depending on L, such that if ‘Z’ is in L and  

|z|>=n, then we may write, 

Z=uvwxy 

uviwxiy ↋ L, For all i>0, 

|vx|>=1 

|vwx|<=n 

7.1. Procedure 

 Assume that L is context free. 
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 It has to have a pumping length(say n) 

 Find a string ‘z’ in L such that |z]>=n. 

 Divide z into uvwxy. 

 Show that uviwxiy ∉ L 

 

 
Problem 1 

L={anbncn, n>=0} is not a CFL. 

Solution: 

i. Assume ‘L’ is a CFL. 

i. Let ‘n’ be a natural number obtained by using pumping lemma. 

ii. Let z= anbncn |z|=n+n+n=3n 

iv.  Split z into uvwxy such that |vx|>=1, |vwx|<=n 

Assume z=an-iaibn-j-kbjbkcn
 

u=an-i v=ai    w=bn-j-k x=bj y=bkcn 

for i=2 

=> uv2wx2y =>an-iaiaibn-j-kbjbjbkcn
 

=>an+ibn+jcn ∉ L 

 
Eg) n=4 

Z=a4b4c4=>aaaabbbbcccc 

u=a v=aa  w=abbbbc x=c y=cc 

Let i=2 

uviwxiy =>uv2wx2y=>aaaaaabbbbccccc=>a6b4c5∉L 

Therefore the given language is not CFL. 

 
Problem 2: 

L={0p|p is prime is not CFL. 

Solution: 

i. Assume ‘L’ is a CFL. 

ii. Let ‘n’ be a natural number obtained by using pumping lemma. 

iii. Let P be a prime no. such that p>=n 

Z=0pϵ L |z|=p>=n 

iv. Split z into uvwxy such that |vx|>=1, |vwx|<=n 

Let v=0k x=0l such that k+l>=1 and <=n 

Hence |uwy|=p-k-l 

If we pump v and x p+1 times 

|uvwxy|=|uwy|+|v(p+1).x(p+1)| 

=p-k-l+k(p+1)+l(p+1) 

=p-k-l+pk+k+pl+l 

=p+pk+pl 

=p(k+l+1) 

Which is not prime. 
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TURING MACHINE 

Turing machines - Models of computation and the Turing thesis - Definition of TM and TM as 

language acceptor - Non-deterministic TM and Deterministic TM – Universal TM 

1. Introduction 
 

1.1. Need for Turing Machine 

Describe an abstract machine™ that is widely accepted as a general model of computation 
 

Model of Computation 

EX: an bn cn- this kind of computation PDA needs 2 or 3 stacks 

But Turing machine can handle this type of computation using queue (Tape) 
 

Ex: L = {SS | S ∈ {a,b}* } 

-Compare the first half of the string to the 2nd half then queue is more appropriate than stack. 

- TM is powerful than PDA 
 

- Recognizes all types of languages like RL, CFL, CSL 
 

1.2. Church Turing thesis 
 

-By Alonzo church 
 

“Any algorithmic procedure that can be carried out by a human, a team of humans or a 

computer- can be carried out by some Turing machine” 

1.3. Turing machine proposal 
 

 
 

 

Figure 4.1 Tape 
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 Tape head is centered on one of the squares of the tape. 

 Tape head reads the symbol in the current square(Fig 4.1) 

 Moving the tape head one square to the 

Left | Right | Stationary => I | R | S 

2. Definition of TM 
 

A TM can be formally described as a 7-tuple abstract machine 

(Q, Γ, ∑, δ, q0, B, F) 

where – 
 

Q- Finite set of states 
 

Γ – Finite set of allowable tape symbol 
 

∑ - Set of input symbol 
 

B – Symbol of Γ - blank symbol(∆) 

q0 – Start state 

F – Final state 
 

δ : Q X Γ  Q X Γ X {L, R, S} 

EX: δ ( q1, x) = (q2, y, D) 

 

 

Figure 4.2 Sample Transition 
 

 From state q1 with x, replace X |Y , go to state q1, and move the tape head either D = { 

L,R, S}(Fig 4.2) 

Turing machine can 
 

(i) Crash: If in this situation D=L but the tape head is scanning square 0, the leftmost 

square, the tape head is not allowed to move. 

(ii) Halt: r=h, the move causes the turing machine to halt. 

q1 X |Y,D q2 



4 

 

Turing Machine can be represented by 
 

1. Transition Table 
 

2. Instantaneous Description 
 

3. Transition Diagram 
 

2.1. Instantaneous Description (ID) 
 

Instantaneous Description of a turing machine is given by α1qα2 

 

where, q- is the current state of M, qϵQ 
 

α1, α2 ϵ Γ* - the contents of the tape upto the rightmost non blank symbol. 
 

Initial ID: q0 α1α2 

Final ID: α1α2qB 

Turing Machine can do one of the following things: 
 

(i) Halt and accept by entering into the final state. 
 

(ii) Halt and reject (δ is not defined) 
 

(iii) Turing machine will never halt and enters into an infinite loop. 
 

Definition: Language acceptance by Turing Machine 
 

Let M=(Q, Γ, ∑, δ, q0, B, F) be a turing machine. The language L(M) accepted by M is 

defined as : 

L(M)={ w | q0w Ⱶ* α1α2p } 

Where, wϵ∑*, PϵF, α1α2 ϵ Γ* 

The language accepted by the turing machine is REL( Recursively Enumerable Language) 
 

2.2. construction of Turing Machines 
 

1. Obtain TM to accept the language 

L = { 0n 1n |n >= 1} 

Solution: 
 

W = {01,0011,000111,……} 
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∆ 0 0 1 1 ∆ ∆ ∆ ∆ ∆ ∆ 

 
 

Execution Procedure: 
 

∆0 0 1 1 ∆ 
 

∆ 0 0 1 1 ∆ 
 

∆ X 0 1 1 ∆ 
 

B X 0 1 1 B 
 

B X 0 Y 1 B 
 

B X 0 Y 1 B 
 

B X 0 Y 1 B 

B X X Y 1 B 

B X X Y 1 B 

B X X Y Y B 

B X X Y Y B 

B X X Y Y B 

B X X Y Y B 

B X X Y Y B 
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Define Tuples 
 

qs-start state 

Q={qs,qo,q1,q2,q3,h} 

F={h} 

∑={0,1} 

Γ={0,1,X,Y,B} 

δ : Transition table : 
 

state 0 1 X Y B 

Qs - - -  (q0,B,R) 

q0 (q1,X,R)   (q3,y,R)  

q1 (q1,0,R) (q2,Y,L)  (q1,Y,R)  

q2 (q2,0,L)  (q0,X,R) (q2,Y,L)  

q3    (q3,y,R) (h,B,S) 

 
 

Sequence of Moves: 0011 (ID) 
 

(q0, B 0 0 1 1 B) |- (q1, B 0 0 1 1B) 
 

|- (q2, B X 0 1 1 B) 
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|- ( q2, B X 0 1 1 B) 
 

|- (q3, B X 0 Y 1 B) 
 

|- (q3, B X 0 Y 1 B ) 
 

|- ( q1, B X 0 Y 1 B) 
 

|- ( q2, B X X Y 1 B) 
 

|- (q2, B X X Y 1 B) 
 

|- (q3, B X X Y Y B) 
 

|- (q3, B X X Y Y B ) 
 

|- ( q1,B X X Y Y B) 
 

|- (q4, B X X Y Y B) 
 

|- ( q4, B X x Y Y B ) 
 

|- ( q5, B X X Y Y B ) 
 

 
 

2. Construct a Turing Machine to accept palindrome over {a,b} 
 

 Even palindrome - abba 

 Odd palindrome- aba 

 Not a palindrome -abb 

Even Palindrome: abba 
 

Δ a b b a Δ Δ Δ …….. 

Odd Palindrome: aba 
 

∆ a b a ∆ ∆ ∆ ∆ ∆ ……….. 

Not a Plalindrome: abb 
 

Δ a b b Δ Δ Δ  …… 
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Define Tuples 
 

qs-start state 

Q={qs,q0,q1,q2,q3,q4,q5,h } 

F={h } 

∑={a,b} 
 

Γ={ a,b,∆} 
 

δ : Transition table : 
 

state a b Δ 

qs - - (q0, Δ,R) 

q0 (q1, Δ,R) (q4, Δ,R) (h, Δ,R) 

q1 (q1,a,R) (q1,b,R) (q2,B,L) 

q2 (q3, Δ,L)  (h, Δ,R) 

q3 (q3,a,L) (q3,b,L) - 

q4 (q4,a,R) (q4,b,R) (q6, Δ,L) 

q5 - (q3, Δ,L) (h, Δ,R) 
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Instantaneous Description: 
 

String: aba 
 

Sequence of Moves for aba 
 

(qs, ∆ aba ∆) Ⱶ (q0, ∆ a b a ∆) 
 

Ⱶ (q1, ∆ ∆ b a ∆) 

Ⱶ(q1, ∆ ∆ b a ∆) 

Ⱶ(q1, ∆ ∆ b a ∆) 

Ⱶ(q2, ∆ ∆ b a∆) 

Ⱶ(q3, ∆ ∆ b∆∆) 

Ⱶ(q3, ∆ ∆ b∆∆) 

Ⱶ(q0, ∆ ∆ b∆∆) 

Ⱶ(q4, ∆ ∆ ∆∆∆) 

Ⱶ(q5, ∆ ∆ ∆∆∆) 

Ⱶ(h, ∆ ∆ ∆∆∆) 

Accepted 

3. L= { x ∈ {a,b} * | x contains the sub string aba } 
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4. L={x={a,b}* | x ends with an abb} 
 

R.E=(a+b)*abb 
 

5. Construct a Turing machine to copy a string 

Input Tape: 

 

∆ a b a ∆ ∆ ∆ ∆ ∆ ……. 

Output Tape: 
 

 
 

∆ a b a ∆ a b a ∆ ……. 

 

 

 
∆aba∆∆∆∆ 

 

∆aba∆∆∆∆ 
 

∆Aba∆∆∆∆ 
 

∆Aba∆∆∆∆ 
 

∆Aba∆∆∆∆ 
 

∆Aba∆∆∆∆ 
 

∆Aba∆a∆∆ 
 

∆Aba∆a∆∆ 
 

∆Aba∆a∆∆ 
 

∆Aba∆a∆∆ 
 

∆Aba∆a∆∆ 
 

∆ABa∆a∆∆ 
 

∆ABa∆a∆∆ 
 

∆ABa∆∆a∆∆ 
 

∆ABa∆a∆∆∆ 
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∆ABa∆ab∆∆ 
 

∆ABa∆ab∆∆ 
 

∆ABa∆ab∆∆ 
 

∆ABa∆ab∆∆ 
 

∆ABa∆ab∆∆ 
 

∆ABA∆ab∆∆ 
 

∆ABA∆ab∆∆ 
 

∆ABA∆ab∆∆ 
 

∆ABA∆ab∆∆ 
 

∆ABA∆aba∆ 
 

∆ABA∆aba∆ 
 

∆ABA∆aba∆ 
 

∆ABA∆aba∆ 
 

∆ABA∆aba∆ 
 

∆ABA∆aba∆ 
 

∆ABa∆aba∆ 
 

∆Aba∆aba∆ 
 

∆aba∆aba∆ 
 

∆Aba∆a∆∆ 
 

∆ABa∆ab∆ 
 

∆ABA∆aba 
 

∆aba∆aba 
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Define Tuples 
 

qs-start state 

Q={qs,q0,q1,q2,q3,q4,q5,q6,q7,q8,h}} 

F={h } 

∑={a,b} 
 

Γ={ a,b,A.B,∆} 
 

δ : Transition table : 
 

States a b A B Δ 

q0 - - - - (q1, Δ,R) 
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q1 (q2,A,R) (q3,B,R) - - (q8, Δ,L) 

q2 (q2,a,R) (q2,b,R) - - (q4, Δ,R) 

q3 (q3,a,R) (q3,b,R) - - (q5, Δ,R) 

q4 (q4,a,R) (q4,b,R) - - (q6,a,L) 

q5 (q5,a,R) (q5,b,R) - - (q6,b,L) 

q6 (q6,a,L) (q6,b,L) - - (q7, Δ,L) 

q7 (q7,a,L) (q7,b,L) (q1,A,R) (q1,B,R) - 

q8 - - (q8,a,L) (q8,b,L) - 

 
 

Trace the moves: aba 
 

(q0, Δaba Δ Δ Δ Δ Δ) |-(q1, ΔabaΔΔΔΔΔ) 

(q2, ΔAba Δ Δ Δ Δ) |-(q2, ΔAba ΔΔΔΔΔ) 

|-(q2, ΔAba ΔΔΔΔΔ) |-(q4, ΔAba  ΔΔΔΔ) 
 

|-(q6, ΔAba Δa ΔΔ) |-(q7, ΔAba  Δa ΔΔ ) 
 

|-(q7, ΔAba  Δa ΔΔ ) |-(q7, ΔAba  Δa ΔΔ ) 
 

|-(q1, ΔAba  Δa ΔΔ )   |-(q3, ΔABa  Δa ΔΔ ) 
 

|-(q3, ΔABa Δ a ΔΔ ) |-(q5, ΔABa Δ a ΔΔ ) 
 

|-(q5, ΔABa  Δ a Δ Δ )   |-(q6, ΔABa  Δ a b Δ ) 
 

|-(q6, ΔABa  Δ a b Δ )  |-(q7, ΔAB a  Δ a b Δ ) 
 

|-(q7, ΔAB a  Δ a b Δ )  |-(q1, ΔAB a  Δ a b Δ ) 
 

|-(q2, ΔAB A  Δ a b Δ )  |-(q4, ΔAB A  Δ a b Δ ) 
 

|-(q4, ΔAB A  Δ a b Δ )  |-(q4, ΔAB A  Δ a b Δ ) 
 

|-(q6, ΔAB A  Δ a b a )  |-(q6, ΔAB A  Δ a b a ) 
 

|-(q6, ΔAB A  Δ a b a )  |-(q7, ΔAB A  Δ a b a ) 
 

|-(q1, ΔAB A  Δ a b a )  |-(q8, ΔAB A  Δ a b a ) 
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|-(q8, ΔAB a Δ a b a ) |-(q8, ΔAb a Δ a b a ) 
 

|-(q8, Δ ab a Δ a b a ) |-(h, Δ ab a Δ a b a ) 

 

 

6. Turing machine to construct n mod 2 where n=|x|. 

Even: 

∆ 1 1 1 1 ∆ ∆ ∆ ∆ ……. 

Odd: 
 

∆ 1 1 1 ∆ ∆ ∆ ∆ ∆ ……. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Define Tuple: 

 

 

 

(Q, Γ, ∑, δ, q0, B, F) 
 

where – 
 

Q- { q0,q1,q2,q3,q4,h} 

Γ – {∆,1} 

∑ - {1} 
 

∆ – blank symbol 

q0 – Start state 

h – Final state 
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δ: 

STATES 1 ∆ 

q0 - (q1,∆,R) 

q1 (q1,1,R) (q2,∆,L) 

q2 (q3,∆,L) (h,∆,S) 

q3 - (q4,∆,R) 

q4 - (h,1,S) 

 

 
7. Construct a Turing machine to delete a symbol 

Input: ababba 

∆ a b a b B a ∆ ∆ ∆ ∆ ∆ ….. 

 

 

∆ a b ∆ b b a ∆ ∆ ∆ ∆ ∆ ∆ ….. 

 

 

∆ a b b b a ∆ ∆ ∆ ∆ ∆ ∆ …… 

 

Execution Logic: 
 

Δ bab Δ 

Δ bab Δ 

Δ Δ a b Δ 

Δ Δ a b Δ 

Δ Δ a b Δ 

Δ Δ a b Δ 

Δ Δ a Δ Δ 

Δ Δ b Δ Δ 

a b Δ Δ - HALT 
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Define Tuple: 
 

(Q, Γ, ∑, δ, q0, B, F) 
 

where – 
 

Q- { q0,q1,q2,q3,q4,h} 

Γ – {∆,1} 

∑ - {1} 
 

∆ – blank symbol 

q0 – Start state 

h – Final state 
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Transition Table: δ 
 

 

 
 

STATES a b ∆ 

q0 (q1,∆,R) (q1,∆,R) (q1,∆,R) 

q1 (q1,a,R) (q1,b,R) (q2,∆,L) 

q2 (qa,∆,L) (qb,∆,L) (h,∆,S) 

qa (qa,a,L) (qb,a,L) (h,a,S) 

qb (qa,b,L) (qb,b,L) (h,b,S) 

 

 
 

Trace the moves: 
 

(q0, Δ aba Δ) |- (q1, Δ aba Δ ) 
 

|- (q2, Δ Δ b a Δ ) 
 

|- (q2, Δ Δ b a Δ ) 
 

|- (q2, Δ Δ b a Δ ) 
 

|- (q3, Δ Δ b a Δ ) 
 

|- (q4, Δ Δ b Δ Δ ) 
 

|- (q5, Δ Δ a Δ Δ ) 
 

|- (q6, Δ b a Δ Δ ) - HALT 

 

 

8. Construct a Turing machine for the language , L={SS | Sϵ{a,b}*} 
 

The problem is divided into 2 parts: 
 

(i) Finding and marking the middle of the string 
 

(ii) Comparing the 2 halves. 
 

∆ a b b a b b ∆ ∆ ∆ ∆ ∆ ….. 
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∆ a b b a b b ∆ ∆ ∆ ∆ ∆ ….. 

 

 

∆ a b b A B B ∆ ∆ ∆ ∆ ∆ ….. 

 

 

Δ a b b a b b Δ 

Δ A b b a b b Δ 

Δ A b b a b B Δ 

Δ A B b a b B Δ 

Δ A B b a b B Δ 

Δ A B b a B B Δ Δ 

A B b a B B Δ Δ A 

B B a B B Δ Δ A 

B B A B B Δ 

Δ A B B A B B Δ – Mid point 

Δ a b b A B B Δ – Mid point 

Δ A b b A B B Δ 

Δ  A b b Δ B B Δ 

Δ  A B b Δ  Δ B Δ 

Δ  A B B Δ  Δ Δ  Δ 

Δ  A B B Δ  Δ Δ  Δ 
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Define Tuple: 
 

(Q, Γ, ∑, δ, q0, B, F) 
 

where – 
 

Q- { q0,q1,q2,q3,q4,q5,q6,q7,q8,q9,q10} 

Γ – {∆,a,b,A,B} 

∑ - {1} 
 

∆ – blank symbol 

q0 – Start state 

q10– Final state 

Transition Table: δ 
 

 

 
 

STATES a b A B ∆ 

q0 - - - - (q1,∆,R) 

q1 (q1,A.R) (q1.B.R) (q5,A,L) (q5,B,L) (q10,∆.S) 

q2 (q2,a,R) (q2.b.R) (q3,A,L) (q3,B,L) (q3,∆,L) 

q3 (q4,A,L) (q4,B,L) - - - 

q4 (q4,a,L) (q4,a,L) (q1,A,R) (q1,B,R)  

q5 - - (q5,a,L) (q5,b,L) (q6,∆,R) 

q6 (q7,A,R) (q8,B,R) - - - 

q7 (q7,a,R) (q7,b,R) (q9,∆,L)  (q7,∆,R) 

q8 (q8,a,R) (q8,b,R) - (q9,∆,L) (q8,∆,R) 

q9 (q9,a,L) (q9,b,L) (q6,A,R) (q6,B,R) (q9,∆,L) 

 

Trace the given string : abbabb 
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9. Construct a turing machine for subtraction 

f(m,n) = m-n , m>n 

0 , m≤n 
 

Case 1: m>n 
 

Input tape: 
 

Δ 0 0 0 1 0 0 Δ ….. 

Output Tape: 
 

Δ Δ Δ Δ 0 Δ Δ Δ ….. 

 

Case 2: m<=n 
 

Input tape: 
 

Δ 0 0 1 0 0 0 Δ Δ ….. 

Output Tape: 
 

Δ Δ Δ Δ Δ Δ Δ Δ ….. 
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3.Variations of Turing Machine 
 

1. Multiple track Turing Machine: 

 A k-tack Turing machine(for some k>0) has k-tracks and one R/W head that reads and 

writes all of them one by one. 

 A k-track Turing Machine can be simulated by a single track Turing machine 
 

a b a b … 

b c a a … 

a a a a …. 

 
 

 

2. Two-way infinite Tape Turing Machine: 

A two way infinite tape turing machine is a turing machine with it’s a input tape infinite in both 

directions, the other components being the same as that of the basic model. 

 Infinite tape of two-way infinite tape Turing machine is unbounded in both directions left 

and right. 

 Two-way infinite tape Turing machine can be simulated by one-way infinite Turing 

machine (standard Turing machine). 

 
 

………        …… 

 

 
 

3. Multi-tape Single-head Turing Machine: 

 It has multiple tapes and controlled by a single head. 

 The tape head scans the same position on all tapes. 
 

      

 
 

        

FC 

FC 
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4. Multi-tape Multi-head Turing Machine: 
 

 
 

 

 The multi-tape Turing machine has multiple tapes and multiple heads 

 Each tape controlled by separate head 

 Multi-Tape Multi-head Turing machine can be simulated by standard Turing 

 

5. Multi-head Turing Machine: 

 A multi-head Turing machine contain two or more heads to read the symbols on the same 

tape. 

 In one step all the heads sense the scanned symbols and move or write independently. 

 Multi-head Turing machine can be simulated by single head Turing machine. 
 

          

 
6. Non-deterministic Turing Machine: 

 A non-deterministic Turing machine has a single, one way infinite tape. 

 For a given state and input symbol has atleast one choice to move (finite number of choices 

for the next move), each choice several choices of path that it might follow for  a given 

input string. 

 A non-deterministic Turing machine is equivalent to deterministic Turing machine. 

 

 
7. Offline Turing Machine 

 It is a multitape turing machine whose input tape is read only (writing is not allowed). 
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 An offline Turing machine can simulate any turing machine A by adding one more tape 

than Turing machine A. The reason for using an extra tape is that the offline Turing machine 

makes a copy of its own input into the extra tape and it then simulates Turing machine A as if 

the extra tape were A’s input. 

 
4. Universal Turing Machine 

 

A UTM is a specified Turing machine that can simulate the behavior of any TM. 

A UTM is capable of running any algorithm. 

It is a Turing Machine whose input consists of 2 parts: 
 

 A string specifying some special purpose Turing Machine, T1. 

 A string Z that is an input to T1. 

The Turing Machine, Tu then simulates the processing of Z by T1. 
 

4.1. Construction of Tu:  ∑={0,1} 

Step 1: Formulate a notational system 

 For each tape symbol (including ∆) as string of 0’s 

 For each state (including h) 

 3 directions 

 For beginning of string and ending of string – 11 

 For comma, encoding is 1 

e - encoding function 

Tu – represents the Universal Turing Machine 
 

T1 – represents the name of the special Turing machine 
 
 

 

 
4.2. Constuct a UTM for the given Turing Machine 

Tu=e(T1).e(Z) 
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Encoding: 
 

For I/P symbols: 
 

∆ - 0 
 

a -00 
 

b -000 
 

For each state: 

h - 0 
 

q0 - 00 
 

q1 - 000 
 

q2– 0000 
 

For directions 
 

S-0 

L-00 

R -000 
 

Transition Function 

δ(q0,∆)=(q1,∆,R) 

00101000101000 

δ(q1,b)=(q1,b,R) 

0001000100010001000 

δ(q1,a)=(q2,b,L) 
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e(T1)= 

 

 
 

Z=bba 

000100100001000100 
 

δ(q1,∆)=(q2, ∆,L) 

000101000010100 

δ(q2,b)=(q2,b,L) 

00001000100001000100 

δ(q2,∆)=(h,∆,S) 

00001001010 

 
001010001010001100010001000100010001100010010000100010011000101000010100 

11000010001000010001001100001001010 

 

e(Z)=0001000100 

Tu=e(T1).e(Z) 

=1100101000101000110001000100010001000110001001000010001001100010100001 

010011000010001000010001001100001001010.11000100010011 

For any input string Tu will halt if and only if T halts on input Z. 
 

Output from Tu is in the encoded form of the output produced by T on input Z. 
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RECURSIVE LANGUAGES AND UNDECIDABILITY 
Recursively enumerable and recursive languages – Properties of Recursively enumerable and 

recursive languages - Enumerating a language. Introduction to Undecidability- Halting problem-

Undecidability of Post correspondence problem (PCP)-Modified PCP -Rice Theorem. 

 

1. Recursively Enumerable (REL) & Recursive Languages (RL) 

 

Recursive Language: 

 

 

 

Recursively Enumerable Language: 

 

 

 

 

Theorem1: 

Every recursive language is Recursively enumerable. 

 

 

 

 

If T is TM recognizing L(RL) then we can get a TM that accepts the language L by modifying T so that 

when the output is 0 it does not enter the reject state but enters into an infinite loop. 

 

 

 

 



 

 

Theorem 2: 

Every REL is not recursive. 

 

 

 

Theorem 3: 

The complement of a RL is recursive (or) If L is recursive, so is L ′. 

 

 

Let L be a Recursive Language and M be the TM that halts on all inputs and accepts L. 

 Construct M1 for L′. 

 M accepts and halts for Yes, then M′ rejects and halts. 

 M rejects and halts for N, then M′ accepts and halts. 

 

Theorem 4: 

i. Union of two recursive languages is recursive. 

ii. Union of two recursively enumerable languages is REL. 

iii. Intersection of two recursively enumerable languages is REL. 

 

i) Union of two recursive languages is recursive. 

 

 



 

Let L1 and L2 be the Recursive languages accepted by TMs M1 and M2. 

 

Construct M: 

 It first simulates M1,If Yes than M accepts. 

 If M1 rejects, then M simulates M2 and accepts if and only if M2 accepts. 

 i.e) M accepts L1 U L2. 

 

ii ) Union of two Recursively Enumerable Languages is REL. 

 
 

 

 Let L1 and L2 be the Recursive Enumerable languages accepted by TMs M1 and M2. 

 M simultaneously simulates M1 and M2. 

 If either accepts, then M accepts. i.e. M accepts L1 U L2. 

 

iii) Intersection of two recursively enumerable languages is REL. 

 

 

 

 Let L1 and L2 be the Recursive Enumerable languages accepted by TMs M1 and M2. 

 M halts if both M1 and M2 halts. 

 M will never halt if either M1 or M2 enter into infinite loop. 

 ( i.e.) M accepts L1  L2. 

 

 

 

 

 

 



 

 

Theorem 5: 

If a Language L and its complement L′ are both Recursively Enumerable, then L and hence L′ are 

recursive. 

 
 

 

 Let M1 and M2 be the TMs accepting L1 and L2 respectively. 

 M simultaneously simulates M1 and M2. 

 M1 accepts L and M2 accepts L′ 

 

2. An Unsolvable Decision Problem: 

 

A Turing Machine can solve decision problems. 

 

Eg: Given x ε {a, b}* , Is x an element of Palindrome ? 

 

Instance of a problem 

- It is a particular string x , so that when the string is provided as input to the TM, the 

answer is “YES “ or “NO” 

- For more complicated problems to be solved by a TM, instances may need to be encoded 

over the input alphabet of the machine. 

 

How TM solves a decision problem P : 

 

 

i/p string  x 
 Yes-instance of P    

No-instance of P 

Definition 1: Self Accepting Language (SA ) 

 

SA = {w ε {0,1}* | w= e(T) for some TM T and w ε L(T) } 

Where w is any string 

e( T ) is the encoding function 

-If the same input is given to itself (TM) and if output is 1, the TM accepts its own input. (i.e) 

TM accepts its own encodings e(T). 

 

TM 



Definition 2: Non-Self Accepting Language (NSA) 

NSA = {w ε { 0,1}* | w= e(T) for some TM T and w ε L(T) }. 

 

Definition 3 : Solvable Problem 

 

A Decision problem is solvable, if there is a algorithm capable of deciding every instance. 

Recursive language yields solvable DP. 

 

 

Definition 4: Unsolvable Problem 

 

A Decision problem is unsolvable, if there is no algorithm capable of deciding every instance. Non-

Recursive language yields solvable DP. 

 

Theorem 1 : 

The language NSA is not recursively enumerable. 

 

Proof by contradiction: 

Assume NSA is REL. 

Then, let L be a NSA and T be a TM accepting L. 

Then, L(T) = NSA and w ε L(T) 

But w ε L(T), since is not of the form e(T). 

Then w ε NSA, is not possible, which implies our assumption is false. Hence, 

NSA is not REL. 

 

Theorem 2: 

The language SA is Recursively Enumerable but not Recursive 

 

Proof: 

W.K.T: 

1. If L is recursive, then L’ is  also  recursive. 

2. Every RL is also REL. 

3. NSA is not REL. 

 

-If SA is recursive, then NSA is also recursive, then NSA is also REL. 

-But by 3, NSA is not REL. 

-Then, NSA is not recursive and not REL. 

-Let T simulate processing w=e(T). 

-T halts if w=e(T) & T loops forever if w ε e(T). 

-To conclude, SA is REL but not Recursive. 

 

 

 

 

 



 

Definition 5: Reducing One Decision Problem to Another 

 

Suppose   P1 and P2 are decision problems. We say P1 is reducible to P2 (P1 ≤ P2) if there is an 

algorithm that finds, for an arbitrary instance I of P1, an instance F (I ) of P2, such that for every I , the 

answers for the two instances are  the same, or  I is a yes-instance of P1 if and only if F (I ) is a yes-

instance of P2. 

Definition 6: Reducing One Language to Another 

 

If L1 and L2 are languages over alphabets ∑1 and ∑2, respectively, we say L1 is reducible to L2 (L1 ≤ L2) 

if there is a Turing-computable function f : ∑1→ ∑2
*, such that  for  every  x ∈ ∗ 1 , x ∈ L   1  if and only if f (x) 

∈ L2 . 

Theorem 3: 

Show that the Accepts problem is unsolvable. 

 

In order to show Accepts is unsolvable it is sufficient to show Self-Accepting ≤ Accepts An instance 

of Self-Accepting is a TM T . A reduction to Accepts means finding a pair F (T ) = (T1, y) such that T 

accepts e(T ) if and only if 

T1 accepts y. Letting T1 = T and y = e(T ) gives us such a pair, and F (T ) = (T , e(T )) can be obtained 

algorithmically from T ; therefore, F is a reduction from Self-Accepting to Accepts. 

Theorem 4: 

Show that Halting Problem is unsolvable. 

 

In order to prove that Halts is unsolvable, it is sufficient to show that Accepts ≤ Halts . With an arbitrary 

instance (T, x) of Accepts where T is a TM and x is a string. The pair (T , x) = (T1, y), an instance of Halts 

such that the two answers are the same: T accepts x if and only if T1 halts on input y. T1 should somehow 

be defined in terms of T .y should be defined in terms of x . 

Let y to be x. TM T1 is defined such that for every x, T accepts x if and only if T1 halts on x. A 

reformulation of this statement is: (i) if T accepts x, then T1 halts on x, and (ii) if T doesn’t accept 

x, then T1 doesn’t halt on x. 

The Post Correspondence Problem (PCP) 

 

Definition 7 : 

An instance of Post’s correspondence problem (PCP) is a set {(α1, β1), (α2, β2), . . . , (αn, βn)} of pairs, 

where n ≥ 1 and the αi’s and βi’s are all non-null strings over an alphabet . 

The decision problem: 

 Given an instance of this type, does there exist a positive integer k and a sequence of integers i1, i2, ...,ik 

with each ij satisfying 1 ≤ ij ≤ n, satisfying 



αi1αi2 ...αik = βi1βi2 ...βik 

 

 

The PCP decision problem is a combinatorial problem involving pairs of strings not related to Turing 

machines. The figure below shows a sample instance. Each of the five rectangles in the Figure is called 

a domino, and assume that there is an unlimited supply of each of the five. 

 

 

 

The question is whether it is possible to make a horizontal line of one or more dominoes with 

duplicates allowed, so that the string obtained by reading across the top halves matches the one 

obtained by reading across the bottom. 

Solution: 

 

 

10 1 01 0 100 100 0 100 

101 010 100 10 0 0 10 0 

 

 

Definition 8: 

 

An instance of the modified Post correspondence problem (MPCP) looks exactly like an instance of PCP, 

but now the sequence of integers is required to start with 1. The question can be formulated this 

way: 

Does there exist a positive integer k and a sequence i2, i3, ... , ik such that Instances of PCP and MPCP are 

called correspondence systems and modified correspondence systems, respectively. 

For an instance of either type, if it is a yes-instance we will say that there is a match for the instance, 

or that the sequence of subscripts is a match, or that the string formed by the αij ’s represents a match. 

α1αi2 ...αik = β1βi2 ...βik 

 

 

 

 

 

 

 

101 

10 

 

100 

01 

 

10 

 

 

100 

 

010 

 



More Unsolvable Problems 

 

1. Assuming L is a recursively enumerable language): Accepts L: Given a TM T , is L(T ) = L? 

 

2. Accepts something: Given a TM T, is there at least one string in L(T )?\ 

 

 

3.  Accepts two or more : Given a TM T , does L(T ) have at least two elements? 

 

4. Accepts finite: Given a TM T, is L(T ) finite? 5. Accepts Recursive: Given a TM T, is L(T )    

(which by definition is recursively enumerable) recursive. 

5. MPCP ≤ PCP. 

 

6. Accepts ≤ MPCP. 

 

 

 

Halting Problem: 

In the theory of computability, the problem of halting is the question of deciding, from an arbitrary 

computer program description and an input, whether the program will finish running or continue to 

run indefinitely. In 1936, Alan Turing proved that there could not be a general algorithm for all 

possible program-input pairs to solve the halting problem. 

 

Given a program and an input to the program, determine if the program will eventually halt when it 

is given that input. 

    

 

                                                                                           Loop 

                              Input                                                       

                                                                                            Halt    

 

 

Halting problem is unsolvable 

 

Proof by Contradiction 

1. Assume the statement is true. 

2. Solve the problem. 

3. Check if there is a contradiction. 

Proof: 

1. Assume it is possible to solve the halting problem. 

Assume it is possible to construct a machine H that solves the halting problem. 

H receives 2 inputs: 

 P- program 

 I – input to the program P 

           H machine gives an answer ‘yes’ if program P halts on input I. 

           If it goes into an infinite loop, H gives answer no.        

 

 

 

 

   Program 



                        

 

      

                              P                                                        Yes 
   

                               I                                           No 

 

 

 

 

 

2. Create a new machine using machine H as basis. 

      Let the machine be X. 

      Add a condition at the end of machine H such that: 

-If it outputs a ‘Yes’ answer it will loop. 

- If it outputs a ‘No’ answer it will halt. 

 

 
 

 

If we give the program of machine X to itself along with the given set of inputs which has already 

been generated. 

 

 
 

If the output of the machine H inside X is ‘Yes’, it means X will loop which contradicts the result 

of machine H. 

“Yes means it will halt but it didn’t”  

In the same way, if the result of machine H is ‘No’, it means X will halt which again contradicts the 

result of H. 

“No means it will not halt but it halted” 

This machine H does exist and the halting problem is unsolved. 

 

 

 

 

 

 

         H 



Rice Theorem 

Rice theorem states that any non-trivial semantic property of a language which is recognized by a 

Turing machine is undecidable. A property, P, is the language of all Turing machines that satisfy 

that property. 

Definition 9 

If P is a non-trivial property, and the language holding the property, Lp , is recognized by Turing 

machine M, then Lp = {<M> | L(M) ∈ P} is undecidable. 

 

 

 

Properties 

 Property of languages, P, is simply a set of languages. If any language belongs to P (L ∈ P), 

it is said that L satisfies the property P. 

 A property is called to be trivial if either it is not satisfied by any recursively enumerable 

languages, or if it is satisfied by all recursively enumerable languages. 

 A non-trivial property is satisfied by some recursively enumerable languages and are not 

satisfied by others. Formally speaking, in a non-trivial property, where L ∈ P, both the 

following properties hold: 

o Property 1 − There exists Turing Machines, M1 and M2 that recognize the same 

language, i.e. either ( <M1>, <M2> ∈ L ) or ( <M1>,<M2> ∉ L ) 

o Property 2 − There exists Turing Machines M1 and M2, where M1 recognizes the 

language while M2 does not, i.e. <M1> ∈ L and <M2> ∉ L 

Proof: 

Suppose, a property P is non-trivial and φ ∈ P. 

Since, P is non-trivial, at least one language satisfies P, i.e., L(M0) ∈ P , ∋ Turing Machine M0. 

Let, w be an input in a particular instant and N is a Turing Machine which follows − 

On input x 

 Run M on w 

 If M does not accept (or doesn't halt), then do not accept x (or do not halt) 

 If M accepts w then run M0 on x. If M0 accepts x, then accept x. 

A function that maps an instance ATM = {<M,w>| M accepts input w} to a N such that 

 If M accepts w and N accepts the same language as M0, Then L(M) = L(M0) ∈ p 

 If M does not accept w and N accepts φ, Then L(N) = φ ∉ p 

Since ATM is undecidable and it can be reduced to Lp, Lp is also undecidable. 
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