
(=)

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT — I - Database Management Systems — SCSA1301

I. Introduction to Databases

Databases and Database users — Database system concepts and architecture — Data

modeling using entity Relationship(ER) model — Enhanced ER model- Relational Model -

The Relational Data Model and Relational Database Constraints - The Relational Algebra

and Relational Calculus.

Data means known facts or raw facts. E.g. names, telephone numbers. Information means

processed Data.Database is a collection of related Data. E.g. student table consists of name,

regno, marks.Database management system (DBMS) is collection of programs that enables user

to create and maintain a Database. A general-purpose software system facilitates process of

defining, constructing, and manipulating DB for various applications. Database system includes

Database and DBMS software.

User/Programmers

Application programs/Quries

Software to Process

Queries / Programs

‘
Software to process

Stored Data

A_*

Fig. 1.1 A Simplified Database Environment

Characteristics of DBMS

1. Self-Describing nature of DB:

The Database system contains Data and definition of the Database. The Data definition is

stored on the system catalog, which contains the structure of the files, Data type for each Data

item and various constraints on the Data. The information stored in the catalog is called

MetaData.

2. Insulation between Program, Data, and Data Abstraction:

In the DBMS system, the structure of the file should be stored separately from the access

program so, whenever we modify anything in the DB or access program this will not affect the

original structure. We call this property as program-Data-independence.

In object, oriented DB system the operation becomes a part of DB system. This operation

consists of two parts called interface and implementation. The interface includes operation name

and Data type and implementation represents method of the operation. Thus, the method or the

implementation should be change without affecting the interface is called as program-operation-

independence.

3. Support of multiple views of Data:

The multi-user DBMS can provide a facility for defining a multiple views. The view may

be a subset of the db or it may contain the virtual Data, that it is derived from the original db file

So, depends upon the user specification the DBMS will display a various types of views.

Example: consider the student table,

Table 1.1. Student Table

NAME REGNO ADDRESS PHONENO PERCENTAGE

VIEW! VIEW2

NAME | ADDRESS

REGNO PERCENTAGE

4. Sharing of Data and multi-user transaction processing:

The DBMS allow the multi-user to access the db at the same time. It must support the

concurrency control software that several users trying to update the same Data, the result of the

updates should be correct. E.g.: airline ticketing, on line banking, railway reservation.

Actors on the Scene

The person those who are involved on the project and those who are using the Database

are called actors.

1. Data Base Administrators (DBA):

e The job of DBA is to manage the db resources.

e DBA is responsible for co-ordinating, monitoring and authorizing access to

the db, and to provide whatever hardware, software needed . . Everything

should be monitored by DBA.

Il DB designer:

e Db designers are responsible for identifying the Data to be stored in the db, as

well as they choose the appropriate structure to represent this Data.

e The db designer should communicate with all the users for understanding their

requirements.

Il End Users:

e The end users are the people whose job requires accessing the db for querying,

updating and generating reports.

Types of End-users:

a) Casual End users:

>» They occasionally access the db, but they may need different

information each time.

>» The user sophisticated db query language to specify their

requirements.

>» Ex: queries like “list the trains from Chennai to Delhi?”

b) Parametric or Naive End users:

> Their job is constantly querying and updating the db using standard

types of queries called canned transaction.

> Example: Bank teller, Reservation clerk, etc.

c) Sophisticated End users:

» They have the thorough knowledge about the db.

>» Example: Engineers, Scientist, Business analyst etc. They have

thorough knowledge about the DBMS.

>» They will implement their applications and meet their complex

requirements very easily.

d) Stand-alone End-users:

> Maintain the personal db by using the readymade program packages.

» This program packages will provide easy-to-use, menu or graphic

based interfaces.

IV System analyst and Application programmers:

° System analyst determines the requirements of end users especially parametric end

users.

e They develop a specification for canned transactions that meet their requirements.

e Application programmers translate these requirements into programs then they test,

debug, document and maintain these canned transaction. Such programmer’s are

called s/w engineers.

Workers behind the scene:

» DBMS system designer and implementors.

» Tool developers

>» Operators and maintain personnel.

Advantages of DBMS

1. Controlling Redundancy:-

2)

3)

4)

5)

6)

Redundancy is storing the same Data multiple times The storage space is wasted and

makes the db file becomes inconsistent.

In file processing system, the Data files are stored along with the program files. When a

user is wants to create an application, he has to create and maintain separate Data files

along with the program files. Because of this, much of the Data is stored more than once.

However, in the Database system a single Database is created and stored once and which

can be used by different users.

Restricting unauthorized access:

When multiple users share a Database, some users will not be authorized to access all

information in the db like some users to read the Data only and some users they permitted

to modify the Data also.

Example: Financial Data base like banking Database, military Dataetc are accessed only

by authorized person.

These securities must be provided by Security and authorization subsystem in DBMS.

Providing persistent storage for program objects and Data structure:

Databases can be used to provide permanent storage for program objects and Data

structures.

Providing multiple user interfaces:

Different users have the different knowledge to use a db so, the DBMS should provide a

variety of interfaces such as,

e Query language for casual end users

e Programming language for application programmers

e Forms and commands for parametric end-users

e Menu-driven interfaces for stand-alone end-users.

The forms-commands and menu-driven interfaces are called as Graphical userinterfaces

(GUI).

Permitting inferencing and actions using rules:

Some Data base systems provide capabilities for defining deduction rules for

finding new information from stored Database. Such systems are called deductive

Databases.

Representing complex relationship among Data:

e The Database may include varieties of Data that are related to each other.

e The DBMS has the capability to represent the relationships among these different Data’s.

7) Enforcing Integrity Constraint:

¢ DBMS should specify a set of rules or restrictions for defining the Data in the db.

e Example:

Name must be a string of no more than 30 characters.

The key field should not be null.

8) Providing backup and recovery:

¢ DBMS must provide facilities for recovering from h/w or s/w failures.

e The backup and recovery subsystem of the DBMS is responsible for recovery process.

e Example for updating the complex Data, at the middle computer system fails then the

recovery system is responsible for restoring a state and starts the point at which it was

interrupted.

Database System Concepts and Architecture

Data models:Data model is a collection of concepts that can be used to describe the structure of

Database.

Categories of Data models:

1) High level or conceptual Data model:-

» Conceptual DM provides concepts that explains the different ways to perceive Data and

uses the concepts such as entities, attributes and relationships.

>» Entity represents the real world object, for example employee or project.

>» Attributes represents the properties or the further description of entity. For example

employee name or salary.

> Relationship represents the interaction among the entities. For example works-on

relationship between employee and project.

>» Ex: entity relationship model

2) Low level or Physical DM:-

» This will provide the concept of how the Data is stored in the computer

» The storage format is also specified in this Data Model such as, record format, record

ordering and access path.

3) Representational or Implementation DM:-

» This is the intermediate DM between high level and low level.

» It provides the concepts that may be understood by end users but that are not too far

removed from the way Data is stored in the computer.

>» Ex: relational model, network model, hierarchical model.

Schema or intension:

The description of a Database is called the schema or intension.

Instance or occurrences:

Each row in the Database i.e. a set of related Data’s.

Extension or Database state or snapshot:

The Data in the Database at a particular moment is called Database state or extension,

which is the current set of instances. At initial state of the Database, the Database state is said to

be empty.

Three Schema Architecture

The Three Schema Architecture

= | End Users | ==

—_— a

External External
View View

ee ee ~ wo
~ -

» ™ wae
| External/conceptual | aS Lier
mapping ~ Pe

~ > i

~ y
a —- =< 4

Conceptual Schema

Conceptual/internal

mapping

Internal Scherma

I
Stored

Database

Fig.1.2. Three Schema Architecture

The schemas are defined at three levels

1. Internal level or Physical level or Low level

2. Conceptual level or High level

3. External level or View level

Internal level:

> It has an internal scheme, which describes the physical storage structure of the database by

means of different data structures link list, queue, stack etc.

> It uses a Physical data model.

> Itis useful for computer scientist.

Conceptual Level:

>» It has a conceptual schema, which describes the structure of the whole database.

> It describes data as entities, attributes, & relationships.

> It hides the details of physical storage structures.

» It uses high-level data model or implementation data model.

> It can be understood by end users.

External Level:

» Jt includes a number of external schemas

> It describes the part of the data base that a particular user group is interested in and hides the

rest of the data base from that group

» It uses high-level data model or implementation data model.

> It can be understood by end users.

Most DBMS do not separate the 3 levels completely but support three schema architecture to

some extent. Some DBMS may include internal schema details in the conceptual schema.

Mappings:

The three schemas are only descriptions of database. The data is actually stored in the

database. If a particular user wants to retrieve a data, he has to place a request in the external

level. The DBMS must transform this request specified on the external schema into a request

against the conceptual schema and then into a request on the internal schema for processing over

the stored database. Hence, the retrieved data is reformatted and sent back to the user through the

external view. Thus, the processes of transforming requests and results between levels are called

Mappings.

Data Independence:

It is the capacity to change the schema at one level of a database system without having

to change at the next higher level. There are two types.

1. Logical data independence

2. Physical data independence

Logical data independence:

It is the capacity to change the conceptual schema without having to change the external

schema. Only the mappings between conceptual and external schema need to be changed.

Physical data independence:

It is the capacity to change the internal schema without having to change the conceptual

schema. Only the mappings between conceptual and internal schema need to be changed.

Entity- Relationship Model (E-R Model)

Entity relationship model is a high-level conceptual model, which is useful for end users.

An ER model describes data as

e Entities

e § Attributes

e Relationships

Entities:

An entity is defined as the real world object or thing that is described in the database.

Examples: employee, student, department, project.

Attributes:

Attributes are the properties that describe an entity .For example an employee entity is

described by the employee’s name , age, address, salary.

A particular entity will have a value for each of its attributes.

Types of attributes:

1. composite versus simple:

2. multi-valued versus single valued

3. Stored versus derived.

Composite attributes can be divided into smaller sub parts which represent more basic attributes

with independent meanings.Examples: address, name of an employee

Attributes that are not divisible are called simple or atomic attributes. Ex: age, sex

Multi-valued attributes have set of values for the same entity.Example: college degrees attribute

for a person, phone numbers.

Single valued attributes have single value for a particular entity. Ex: age.

Derived attributes are derived from related entities (stored attribute). Ex: age attribute is derived

from birth date attribute. Age attribute is a derived attribute. And birth date is a stored attribute.

Complex attributes are combination of composite attributes and multi-valued attributes. For

representing use () for composite and { } for multi-valued.

Example: address

{Address (street address, city, state, pin code)}. Assume that a person can have more than one

residence.

Key attributes:

An entity type usually has an attribute whose values are distinct for each individual entity in the

collection. Such an attribute is called a key attribute and its values can be used to identify each

entity uniquely.For example:

Ssn of an employee entity, regno of a student entity, rollno of a student, dno of a department

entity.

An entity types can have more than one key attribute . For student entity regno, rollno both

are key attributes that uniquely identifies a student.

Weak entity:

Entity types that do not have key attributes of their own is called weak entity. Example:

Consider the entity type dependent, which is used to keep track of dependents of each

employee. The attributes of dependent are name, birth date, sex and relationship. Two

dependents of two distinct employees may by chance have the same values for name, birth

date, sex, and relationship. Hence, it is difficult to identify a dependent. so weak entities are

always related to specific entities called as parent entity type . Dependent entity is always

related to employee entity.

Partial key:

A weak entity normally has a partial key, which is the set of attributes that can uniquely

identify weak entities. In our example if we assume that no two dependents of the same

employee ever have the same name the name attribute is the partial key.

Strong entity:

Entities that do have a key attribute is called strong entity. Example: employee,

student, department, project.

Relationships:

Whenever an attribute of one entity type refers to another entity type, some

relationship exists between entities.

Degree of relationship:

The degree of a relationship type is the number of participating entity types. In the

works_for, relationship that associates the employee and department entity the degree of

relationship is two. If the degree is, two it is called as binary relationship and one of degree

three is called ternary.

Constraints on relationships:

Relationship types usually have certain constraints that limit the possible

combinations of entities that may participate in the corresponding relationship set.

There are two main types of relationship constraints:

1. Cardinality ratio:

The cardinality ratio for a binary relationship specifies the number of relationship

instances that an entity can participate in. For examplein the WORKS_FOR binary

relationship type, department: employee is of cardinality ratio 1:N. (N stands for any number

of related entities) means that each department can be related to numerous employees.

The possible cardinality ratios are 1: N, 1:1, M:N.

2. Participation.

There are two types.

1. Total participation: The participation of employee in WORKS_FOR is called total

participation meaning that every entity in the total set of employees must be related to

a department entity via WORKS_FOR relationship.

2. Partial participation:

The participation of employee in manages relationship is called partial

participation meaning that the company do not expect each and every employee must

be related to department entity. Only some or part of the set of employees are related to

department via manages relationship.

Attributes of relationships:

Relationships can have attributes: example: the WORKS_ON relationship, which

relates employee and project, can have hours attribute to record the number of hours per week

that an employee works on a particular project.

In our company database example, we specify the following relationship types:

1. Manages:

A 1:1 relationship between employee and department. Employee participation is

partial.

A 1:N relationship between department and employee. Both participations are

. Works_for:

total.

EMPLOYEE WORKS_FOR DEPARTMENT

r

ey ra d,

&

®; -—_—_ ay > a,
TM,

e4

@s 3 ds

& «— br see
e. Le 7 fy

. Controls:

A 1:N relationship between department and project.

. Works_on:

A M:N relationship between employee and project. Employee participation is

partial.

EMPLOYEE WORKS_ON PROJECT

5. Supervision:

A 1:1 relationship between employee and employee.it is recursive relationship.

EMPLOYEE SUPERVISION

&y =. 3 tl

&3 \ : 1 = fy

=]

"3 a | f£
G4 =} 1 {}——

es ge af
1

6 2 __————— ts
ey 1 =

2 \—

6. Dependents_of:

A 1:1 relationship between employee and dependent.

Notations Used In E-R Diagram

 ENTITY

WEAK ENTITY

ATTRIBUTE —_—c__ >

COMPOSITE ATTRIBUTE oN : Ss

MULTIVALUED ATTRIBUTE

DERIVED ATTRIBUTE

RELATIONSHIP

KEY ATTRIBUTE

PARTIAL KEY ATTRIBUTE

ER diagram for the COMPANY schema, with
all role names included and with structural at)

constraints on relationships spectied using -

allemative notation (min, max) DEPENDENT

Fig.1.3. E—R diagram for the Company Database

Relational Database Design Using ER-To-Relational Mapping

ER to relational mapping provides an algorithm that can map an entity relationship (ER)

schema to the corresponding relational database schema. We will use the company database to

illustrate the steps for ER to relational mapping.

STEP1:

v For each strong entity, create a relation that includes all the simple attributes of strong entity.

¥ For composite attributes include only single component.

¥ Choose one of the key attributes of the entity as primary key of the relation.

v¥ Example: consider the ER model for company database(refer I unit notes)

Strong attributes Composite Key

entities Attributes .
attributes

Employee Ssn, sex, bdate, salary, Name Ssn

address

department Name, number - Name,

Number

Project Name, number, location - Name,

Number

¥ Relational model for company database after step]:

EMPLOYEE

FNAME | LNAME SSN BDATE | ADDRESS | SEX | SALARY

DEPARTMENT

DNAME
DNUMBER

PROJECT

PNAME PLOCATION
PNUMBER

STEP2:

v For each weak entity, create a relation that includes all the simple attributes of strong entity.

¥ For composite attributes include only single component.

v¥ Always a weak entity is associated with an owner entity. Include the primary key of the

owner entity as the foreign key of weak entity

¥ The primary key of the weak entity is the combination of the partial key of the weak entity

and the foreign key.

¥ In our example:

Weak entity: dependent; attributes: dependent _name, sex, bdate, relationship

Owner entity: employee

Primary key of employee is SSN, which is the foreign key of dependent.

Rename it as ESSN to avoid confusions.

Partial key of dependent: dependent _name

Primary key of dependent: dependent _name + ESSN

¥ Relational model for company database after step2:

EMPLOYEE

FNAME | LNAME SSN BDATE | ADDRESS | SEX | SALARY

DEPARTMENT

DNAME
DNUMBER

PROJECT

PNAME PLOCATION
PNUMBER

DEPENDENT

DEPE_NAM | SEX BDATE RELATIONSHIP
STEP3: ESSN

 E
v For each

1:1 relationship, identify the entities (S, T) participating in that relationship.

Choose one entity (assume T), which has total participation in that relationship.

In the T relation include the primary key of S relation as the foreign key.

If the relationship has any attributes include that in the T relation.

S
\
N
 KM

In our example:

MANAGES is a 1:1 relationship. Employee and department are the participating entities.

Department entity has the total participation constraint. Because every department has a

manager. But every employee is not a manager. Hence the employee entity has a partial

participation constraint in that relationship. Include the primary key SSN of employee as

the foreign key of department and rename it as MGRSSN. The relationship has an

attribute MGRSTARTDATE include that in the department relation.

¥ Relational model for company database after step3:

EMPLOYEE

FNAM | LNAM BDAT | ADDRE
SS SEX | SALARY

E E E SS
N

DEPARTMENT

DNAME MGRSTARTDA
DNUMBER | MGRSSN

TE

PROJECT

PNAME PLOCATION
PNUMBER

DEPENDENT

DEPE_NAM

E
ESSN SEX

BDATE

RELATIONSHIP

STEP4:

xq
 For each 1:N relationship, identify the entities (S, T) participating in that relationship.

Foreign key in N side

(Primary keys in 1-side are renamed)

Dno (primary key of department)

Dnum (primary key of department)

Superssn (primary key of employee)

¥ Choose N — side of the relationship (assume T).

¥ Inthe T relation, include the primary key of § relation as the foreign key.

¥ If the relationship has any attributes include that in the T relation.

¥ In our example:

I:N N-sid
aoe . sue -Si e

Relationship Participating entities

WORKS 1 1
Department, employee employee _FOR P ploy’ ploy’

CONTROLS Department, project project

SUPERVISI
0 Employee, employee Employee

IN

¥ Relational model for company database after step4:

EMPLOYEE

FNAM | LNAM BDAT | ADDRE SUPERSS
SS SEX SALARY

E E E Ss N DNO
N

DEPARTMENT

DNAME
DNUMBER | MGRSSN MGRSTARTDATE

PROJECT

PNAME DNUM
PNUMBER_ | PLOCATION

DEPENDENT

DEPE_NAM | SEX BDATE RELATIONSHIP

E
ESSN

STEPS:

v¥ For each M: N relationship, create a new relation.

¥ Both the primary keys of the participating entities are included as foreign key in the new

relation.

¥ Primary key of the new relation is the combination of these two foreign keys.

xq
 If the relationship has any attributes include that in the new relation.

¥ In our example:

WORKS _ON is a M: N relationship. Project and employee are the participating entities.

Include SSN, PNUMBER as the foreign keys in the new relation.the combination of

SSN, The relationship has an attribute HOURS include that in the WORKS _ON relation.

STEP6:

¥ For each multi valued attribute (MA), create a new relation.

¥ This relation includes an attribute corresponding to MA, plus the primary key of the relation

that has this multi valued attribute, as foreign key.

¥ Primary key of the new relation is the combination of foreign key, attribute.

¥ Relational model for company database after steps 5& 6:

EMPLOYEE

FNAM | LNAM BDAT | ADDRE
SS SEX | SALARY

E E N E Ss

DEPARTMENT DEPT_LOCATIONS

DNUMBE
DNAME DNUMBE MGRSTAR DLOCATIO

MGRSSN R
R TDATE ~~ N

PROJECT WORKS_ON

PLOCATIO ESS
PNAME | PNUMBE PNO | HOURS

N N
R

DEPENDENT

DEPE_NAM | SEX BDATE RELATIONSHIP
ESSN

E

STEP7:

¥ For each n-ary relationship (i.e.degree of relationship > 2), create a new relation.

S
\
N
 KM

Supplier

shame

Supply:

project

Projname

Primary key of the new relation is the combination of these foreign keys.

If the relationship has any attributes include that in the new relation.

For example consider the relationship supply. The degree of relationship is 3

The primary keys of the participating entities are included as foreign key in the new relation.

part

partno

Sname | Projname Quantity

Partno

Relational Model

Relational model is an example of implementation model or representational model. An

implementation model provides concepts that may be understood by end users but that are not

too far removed from the way data is organized within the computer.

The relational model represents database as a collection of relations. A relation is a table

of values, and each row in the table represents a collection of related data values. In the relational

model terminology a row is called a tuple, a column header is called an attribute. The data type

describing the types of values that can appear in each column is called a domain. Example

Consider the RELATION: EMPLOYEE

Relation name attributes

Employ || NAME SSN BDATE ADDRESS | SEX SALARY | DNO

Alex 123 12-07-76 | Chennai M 20000 1

Tupl¢s
Siva 407 03-06-80 | Bangalore M 15000 2

Sruthi 905 01-12-78 | Hyderabad | F 17000 3

NOTA
Gayathri 406 27-01-79 | Chennai F 14000 1

TIONS

USED: | Mani 384 29-12-78 | Chennai M 17000 4

A relation schema R, denoted by R (A1, A2, An), where R is the relation name.

{Al, A2, An} the list of attributes of relation R.

Dom. (Ai) denotes domain of Ai, represents the number of values in the attribute Ai.

Degree of the relation is the number of attributes in the relation and denoted by n.

Each tuple t is a list of values denoted by t = <vl, v2, vn> where each value vi is an element of

dom(Ai) or is a special value null.

a

Null values represent attributes whose values are “unknown” or “value exists but not available”

or “do not exist”.

In our example, relation employee is represented as

Employee (name, ssn, bdate, address, sex, salary, dno)

Degree = 7

Al = name

Dom(A1) = character

First tuple {alex, 123, 12-07-76, M, 20000, 1}

T (Al)=alex

Relational Model Constraints:

Constraints are various restrictions or conditions on data that can be specified on a

relational database. These include

Domain constraints

Key constraints

Entity integrity constraints

Referential integrity constraints.

Domain Constraints:

Domain constraints specify that the value of each attribute A must be an atomic value

from the domain dom(A). Atomic value means that it is not divisible into components. Hence the

composite and multi valued attributes are not allowed. Multi valued attributes must be

represented by separate relations, and composite attributes are represented only by their simple

component attributes.

Key Constraints:

No two tuples can have the same combination of values for all their attributes.

There must be at least one attribute, which identifies each tuple uniquely. That attribute is called

as key attribute. A relation may have more than one key and each of the keys is called a

candidate key and any one of the candidate keys is designated as a primary key.

Entity Integrity Constraints:

The entity integrity constraint states that no primary key value can be null. This is

because the primary key value is used to identify individual tuples in a relation; having null

values for the primary key implies that we cannot identify some tuples. For example, regno field

in the student relation cannot be null.

Referential Integrity Constraint:

The Referential integrity constraint is specified between two relations and is used

to maintain the consistency among tuples of the relations. To define referential integrity more

formally, we first define the concept of a foreign key. The foreign key specifies referential

integrity constraints between the two relation schemas R1 and R2.

Foreign key:

A set of attributes FK in relation schema R1 is a foreign key of R1 that references

relation R2 if it satisfies the following two rules:

1. The attributes of FK of R1, PK of R2 should have the same domain.

2. A value of FK in a tuple tl of R1 should exists as a value of PK for some tuple t2 of R2

R1 is called a referencing relation and R2 is called as referenced relation.

In our example, SSN is the primary key of employee relation and DNO is the primary key of

department relation. The employee relation needs to refer the department relation hence we

designate DNO as foreign key of employee.

The relational model for employee database is given below in that the primary

keys are underlined and referential integrity constraints are represented by, drawing directed arc

from each foreign key to the relation it references. The arrowhead points to the primary key of

referenced relation.

Relational Model for Company Database

Employee

FNAM | LNAM BDAT | ADDRES SALAR | SUPERSS
SEX DNO

E E SSN |E S Y N

Department

DNAME DMGRSSN_ | MGRSTARTDATE
DNUMBER

Dept_Locations

DNUMBER—®DLOCATION

Project

PNAME PLOCATION DNUM
PNUMBER

Works _On

ESSN PNO HOURS

Dependent

ESSN DEPE_NA | SEX BDATE RELATIONSHIP

ME

Insert Operation:

The insert operation provides a list of attribute values for a new tuple t that is to be

inserted into a relation R. insert can violate any of the four types of constraints.

Example: Insert < ’ProductX’, 501, ‘Stafford’, 4> Into Project.

>» If there is a null in the primary key field then that insertion violates entity integrity

constraints.

» This insertion may violate the key constraint if there is another tuple with a same project no.

» This insertion may violate the referential integrity constraint if there is no information

regarding DNO = 4, which is the foreign key.

Delete Operation:

The delete operation is used to delete existing tuples, which satisfy the specified

condition. The deletion operation violates referential integrity consraints.

Example: Delete TheEmployee Tuple WithName= John’

Update Operation:

The update operation is used to change the values of one or more attributes in a tuple of

some relation R. it is necessary to specify a condition on the attributes of the relation to select the

tuple to be modified.

Example: Update TheSalaryOf The Employee Tuple With SSN= °99988777’ To 28000.

Basic Relational Algebra Operations:

A basic set of relational model operations constitutes the relational algebra. These

operations enable the user to specify basic retrieval requests. A sequence of relational algebra

operations forms a relational algebra expression.

Relational algebra includes operations like

1. SELECT

2. PROJECT

3. RENAME

4. SET OPERATIONS LIKE

a) UNION

b) NTERSECTION

c) SET DIFFERENCE

5. JOIN

6. DIVISION

1. Select Operation:

The SELECT operation is used to select a subset of the tuples from a relation that

satisfy a selection condition. I.e. it selects some of the rows from the table.

Syntax: O<selection condition> (R)

Where o (sigma) symbol is used to specify the SELECT operator and the selection

condition is a Boolean expression specified on the attributes of relation R. the result is also a

relation with the same attributes of R. the selection condition is of the form

<Attribute name><comparison op><attribute name/constant>

Comparison operator includes {=, <, >,2, 4 <}.

Example 1: Select the employees with dno 4

Ans.: Odno=4 (EMPOYEE)

Result:

NAME SSN BDATE ADDRESS | SEX SALARY | DNO

Mani 384 29-12-78 Chennai M 17000 4

Example 2: List the employees whose salary is greater than 18000

Ans.: OsaLary>1s000 (EMPOYEE)

Result:

NAME SSN BDATE ADDRESS | SEX SALARY | DNO

Alex 123 12-07-76 Chennai M 20000 1

More than one conditions can be connected by Boolean operators AND, OR, NOT to form a

general selection condition. Example: consider the following query.

Example 3: Select the employees who either work in dno 3 and receives more than 30000 or

work in dno 4 and receives more than 15000.

ANS.: O(dno=3 AND salary>30000) OR (dno=4 AND salary >15000) (EMPO YEE)

Result:

NAME SSN BDATE ADDRESS | SEX SALARY | DNO

Mani 384 29-12-78 Chennai M 17000 4

2. Project Operation:

The PROJECT operation is used to select certain set of attributes from a relation.

Le. it selects some of the columns from the table.

Syntax: Teattribute ist> (R)

Where 2 (pi) symbol is used to specify the PROJECT operator and the attribute list is the

list of attributes of relation R. the result is also a relation with the selected set of attributes of R.

Example 4: List each employee’s name and salary.

Ans.: Tname, salary (EMPOYEE)

Result:

NAME SALARY

Alex 20000

Siva 15000

Sruthi 17000

Gayathri 14000

Mani 17000

Nesting of SELECT, PROJECT operators are allowed in a relational algebra expression.

Example 5: retrieve the name and salary of all employees who works in department number 1.

ADS.: Tname, salary (Gdnoz1 (EMPOYEE))

NAME SALARY

Alex 20000

Gayathri 14000

It is often simpler to break down complex sequence of operations by specifying intermediate

result relations than to write a single relational algebra expression. RENAME operator allows

storing the intermediate results in a new relation.

Example 5 can be expressed as following

Dep1l_emp<—Gano=1 (EMPOYEE)

Result: relation: dep1_emp

NAME SSN BDATE ADDRESS | SEX SALARY | DNO

Alex 123 12-07-76 Chennai M 20000 1

Gayathri 406 27-01-79 | Chennai F 14000 1

Result <—T™Mname, salary(dep 1_emp)

NAME SALARY

Alex 20000

Gayathri 14000

Dep1_emp, Result are temporary relations created automatically.

3. Rename Operation:

The RENAME operation can rename either the relation name or the attribute

names or both.

Syntax: PS (BI, B2....Bn) (R)

Where the symbol p denote the RENAME operator, S denote the new relation, Bl, B2

are new attribute names.

Example 6: change the name of the EMPLOYEE relation as STAFF LIST

Ans.: Pstarriist (EMPLOYEE)

Result: RELATION: STAFFLIST

NAME SSN BDATE ADDRESS | SEX SALARY | DNO

Alex 123 12-07-76 | Chennai 20000 1

Siva 407 03-06-80 | Bangalore 15000 2

Sruthi 905 01-12-78 | Hyderabad | F 17000 3

Gayathri | 406 27-01-79 | Chennai F 14000 1

Mani 384 29-12-78 | Chennai M 17000 4

Example 7: change the name of the column header SSN as EMPCODE

ANS.: (NAME, EMPCODE, BDATE, ADDRESS, SEX, SALARY, DNO) (EMPLOYEE)

Result: RELATION: EMPLOYEE

NAME EMPCODE | BDATE ADDRESS | SEX SALARY | DNO

Alex 123 12-07-76 Chennai M 20000 1

Siva 407 03-06-80 Bangalore 15000

Sruthi 905 01-12-78 Hyderabad 17000

Gayathri | 406 27-01-79 Chennai 14000

Mani 384 29-12-78 Chennai 17000

4. Set Operations:

Set operations are used to merge the elements of two sets in various ways including

UNION, INTERSECTION, and SET DIFFERENCE. The UNION,

INTERSECTION, and SET DIFFERENCE can be applied on two union compatible relations.

three operations

What is a union compatible relation? Two relations are said to be union compatible relation if

they have same degree n (same no of attributes) and that each pair of corresponding attributes

have the same domain.

Consider two union compatible relations.

STUDENT NAME NAME
TEACHER

SUSAN SUSAN

RAMESH JIMMY

JOHNNY MAYA

JIMMY PRIYA

BARBARA PATRICK

FRANCIS RAMESH

ERNEST

Union:

Rw S where R, S are two relations. The result is also a relation that includes all tuples

that are either in R or in S or in both R and S.

Intersection:

ROS where R, S are two relations. The result is also a relation that includes all tuples that are in

both R and S.

Set Difference:

R —S The result is also a relation that includes all tuples that are in R but not in S.

Results:

RwvUS | Name Ras_ | Name R-S | Name

SUSAN SUSAN ERNEST

RAMESH RAMESH FRANCIS

JOHNNY JIMMY JOHNNY

JIMMY BARBARA

BARBARA

FRANCIS

ERNEST

MAYA

PRIYA

PATRICK

4. Cartisian Product:

It is also known as CROSS JOIN or CROSS PRODUCT and denoted by X. like set

operations cross product is also used merge two relations but the relations on which it is applied

need not be union compatible.

Let us consider the relational algebra expression. Q<-RXS.

Where R is a relation with n attributes (Al, A2.An) and S is a relation with m attributes

(B1, B2.Bn) and the resulting relation Q with n+m attributes (Al, A2, An, B1, B2, Bn) in that

order. The resulting relation Q has one tuple for each combination of tuples one from R and one

from S. hence if R has t1 tuples and S has t2 tuples then R X § t1* t2 tuples.

Consider the RELATION: EMPLOYEE

NAME SSN BDATE ADDRESS | SEX SALARY | DNO

Alex 123 12-07-76 | Chennai M 20000 1

Siva 407 03-06-80 | Bangalore M 15000 3

Sruthi 905 01-12-78 | Hyderabad | F 17000 3

Gayathri | 406 27-01-79 | Chennai F 14000 1

Mani 384 29-12-78 | Chennai M 17000 4

And the RELATION: DEPARTMENT

DNAME DNO_ | MGRSSN

Research 1 123

Accounts 3 905

administration | 4 384

Example 8: Retrieve the manager name for each department

The MGRSSN (manager’s social security number) is present in the department relation

and name of the manager is present in the employee relation. MGRSSN is the foreign key of

department relation and SSN is the primary key of employee relation.

Ans.:

Temp! < employee X department

Relation: Temp 1

NAME |SSN |]... |... ... |.) ..| DNAME DNO_ | MGRSSN

Alex 123 Research 1 123

Alex 123 Accounts 3 905

Alex 123 administration | 4 384

Siva 407 Research 1 123

Siva 407 Accounts 3 905

Siva 407 administration | 4 384

Sruthi 905 Research 1 123

Sruthi 905 Accounts 3 905

Sruthi 905 administration | 4 384

Gayathri | 406 Research 1 123

Gayathri | 406 Accounts 3 905

Gayathri | 406 administration | 4 384

Mani 384 Research 1 123

Mani 384 Accounts 3 905

Mani 384 administration | 4 384

The CARTESIAN product creates tuples with the combined attributes of two relations

the operation applied by itself is generally meaning less. It is useful when it is followed by a

SELECT operation that selects only related tuples from two relations according to the selection

condition.

Temp2 <—Ossn = mgrssn(temp 1)

RELATION: TEMP 2

NAME |SSN |]... |... ... |.) ..| DNAME DNO_ | MGRSSN

Alex 123 Research 1 123

Sruthi 905 Accounts 3 905

 Mani 384 administration | 4 384

Managerlist<—Ianame, name (temp2)

Relation: Managerlist

DNAME NAME

Research Alex

Accounts Sruthi

 administration | Mani

. Join Operation:

The CARTESIAN product followed by SELECT is commonly used to select related

tuples from two relations. Hence a special operation called JOIN was created to specify this

sequence as a single operation. Join operation is denoted by

Q<R <join condition> S

Where R (Al, A2, .An), S (B1, B2, Bn) are two relations with degree m, n respectively

and Q is the resulting relation with m + n attributes, has one tuple for each combination of tuples

one from R and one from S —whenever the combination satisfies the join condition. This is the

main difference between CARTESIAN PRODUCT and JOIN: in JOIN, only combinations of

tuples satisfying the join condition appear in the result, whereas in the CARTESIAN PRODUCT

all combinations of tuples are included in the result.

The Join condition is of the form A 1 6Bj, where 9 (theta) is one of the comparison

operators {<, >, 4 2, <, =}. The JOIN operation with such a general join condition is called

THETA JOIN. If the comparison operator used is = then that join is called EQUI JOIN.

Example 8 can be performed using join operation as following

Temp 1 < EMPLOYEE ssN=pMGRssN DEPARTMENT

Managerlist<—Taname, name (temp 1)

Natural Join:

Natural join requires that the two join attributes have the same name in both the relations.

If this is not the case, a renaming operation is applied first

Q<_R*S

Where * denotes the natural join operation, the relations R and S$ must have an attribute

with same name. If there are more than one attribute pair with same name the NATURAL JOIN

operation is performed by equating all attribute pairs that have the same name in both relations.

Example 9: Retrieve the name of the department that GAYATHRI works:

GAYATHRI belongs to DNO 1 and the DNAME information is present in DEPARTMENT

relation. The foreign key DNO is used to find out these related details. Here both primary key

and foreign key are having same name so you can apply natural join

Temp! <- DEPARTMENT * EMPLOYEE

This is equivalent of applying

Temp 1 — EMPLOYEE employee.dno=department.dno DEPARTMENT

Gayathri_dept<—TTaname(ONAME =”GAYATHRI’ (Temp 1))

Left Outer Join

Use this when you only want to return rows that have matching data in the left table, even if

there's no matching rows in the right table.

Example SQL statement

SELECT * FROM Individual AS Ind,Publisher AS Pub

WHERE Ind. Individualld(+)= Pub.Individualld

Source Tables

Left Table-Individual

Id |First Name

1 \Fred

2 |Homer

3 \|Homer

4 Ozzy

5 |Homer

Right Table-Publisher

Individual Id

10

Result

Last Name

Flinstone

Simpson

Brown

Ozzbourne

Gain

User Name

freddo

homey

notsofamous

sabbath

noplacelike

Access Level

Administrator

Contributor

Contributor

Contributor

Administrator

Individualld FirstName LastName UserName — Individualld AccessLevel

1 Fred

2 Homer

3 Homer

4 Ozzy

Flinstone freddo 1 Administrator

Simpson homey 2 Contributor

Brown notsofamous 3 Contributor

Osbourne sabbath 4 Contributor

5 Homer Gain noplacelike NULL NULL

Right Outer Join

Use this when you only want to return rows that have matching data in the right table,

even if there's no matching rows in the left table.

Example SQL statement

SELECT * FROM Individual AS Ind, Publisher AS Pub

WHERE Ind. Individualld = Pub.Individualld(+)

Source Tables

Left Table- Individual

Id_ |FirstName LastName UserName

1 |Fred Flinstone freddo

2 \|Homer Simpson homey

3 |Homer Brown notsofamous

4 \Ozzy Ozzbourne sabbath

5 |Homer Gain noplacelike

Right Table - Publisher

Individualld AccessLevel

1 Administrator

2 Contributor

3 Contributor

4 Contributor

10 Administrator

Result

Individualld FirstName LastName UserName — Individualld AccessLevel

1 Fred Flinstone freddo 1 Administrator

2 Homer Simpson homey 2 Contributor

3 Homer Brown notsofamous 3 Contributor

4 Ozzy Osbourne sabbath 4 Contributor

NULL NULL NULL NULL 10 Administrator

Full Outer Join

Use this when you want to all rows, even if there's no matching rows in the right table.

Example SQL statement

SELECT * FROM Individual AS Ind,Publisher AS Pub WHERE

Ind. Individualld(+) = Pub.Individualld(+)

Source Tables

Left Table- Individual

Id _ |FirstName LastName UserName

1 \Fred Flinstone freddo

2 \|Homer Simpson homey

3 |Homer Brown notsofamous

4 \Ozzy Ozzbourne sabbath

5 |Homer Gain noplacelike

Right Table- Publisher

Individualld AccessLevel

1 Administrator

2 Contributor

3 Contributor

4 Contributor

10 Administrator

Result

Individualld FirstName LastName UserName — Individualld AccessLevel

1 Fred Flinstone freddo 1 Administrator

2 Homer Simpson homey 2 Contributor

3 Homer Brown notsofamous 3 Contributor

4 Ozzy Osbourne sabbath 4 Contributor

5 Homer Gain noplacelike NULL NULL

NULL NULL NULL NULL 10 Administrator

7. Aggregate Functions And Grouping:

Aggregate functions are applied to collection of numeric values include SUM,

AVERAGE, MINIMUM, and MAXIMUM. The COUNT function is used for counting tuples or

values. Grouping is used to group the tuples in a relation by the value of some of their attributes.

Views InSql

e A view in SQL is a single table that is derived from other tables.

e These other tables could be base tables or previously defined views

e A view does not exit in a physical form.

e Itis considered as Virtual table.

e View is a way of specifying a table that we need to reference frequently.

For example:

We may frequently issue queries that retrieve the employee name and project names that the

employee works on. Rather than having to specify the join of the employee, works on & project

tables every time we issue that query, we can define a view that is a result of these joins. We then

issue queries on the view.

Specification of Views in SQL:

The command to specify view is:

Syntax:

CREATE VIEW <View name> AS SELECT <Attribute list> FROM <Table list> WHERE

<condition>;

The view is given a table name (view name), a list of attribute name, and a query to specify the

contents of the view.

Example:

CREATE VIEW EMP_ PROJ

AS SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS-ON

WHERE SSN=ESSN AND PNO=PNUMBER;

In this case EMP_PROJ inherits the names of the view attributes from the defining tables

EMPLOYEE, PROJECT, WORKS-ON

EMP_PROJ

FNAME PNAME HOURS
LNAME

Retrieve the first name of all employees who work on ‘Product-X ‘

Q: SELECT FNAME, LNAME FROM EMP_ PROJ WHERE PNAME=’Product-X’;

Advantage: It is simplify the specification of certain queries. It is also used as a security and

authorization mechanism.

e View is always up to date; if we modify the tuple in the base tables on which the view

is defined, the view must automatically reflect these changes.

e If we do not need a view any more we can use the DROP VIEW command to dispose

of it.

DROP VIEW EMP_PROJ;

View Implementation and View Update:

e Updating of views is complicated.

e Anupdate on a view defined on a single table without any aggregate functions can be

mapped to an update on the underlying base table.

° Update the PNAME attribute of ‘John Smith’ from “ProductX’ to ‘ProductY’.

UPDATE EMP_PROJ

SET PNAME=’ProductY’ WHERE FNAME="John’ AND LNAME=’Smith’ AND

PNAME=’ProductX’;

e A view update is feasible when only one update on the base relations can accomplish

the desired update effect on the view.

e Whenever an update on the view can be mapped to more than one tuple on the

underlying base relations, we must have a certain procedure to choose the desired update.

e For choosing the most likely update, A view with a single defining table is updatable

if the view attributes contain the primary key of the base relation, because this maps each

view tuple to a single base relation.

e Views defined on multiple tables using joins are generally not updateable.

e =>. Views defined using grouping and aggregate functions are not updatable.

Tuple Relational Calculus

Relational calculus is a formal query language, where to specify a retrieval request.

A calculus expression specifies what is to be retrieved rather than how to retrieved it.

There fore, the relational calculus is considered to be a non procedural language.

This differs from relational algebra, where we must write a sequence of operations to

specify a retrieval request.

Relational calculus is considered as a procedural way of stating a query.

Expressive power of the 2 languages is identical.

Tuple variable & Range Relation:

Tuple Relational calculus is based on specifying a number of tuple variables.

Each tuple variable usually ranges over a particular database relation.

That is the variable may take as its value any individual tuple from that relation.

A simple tuple relational calculus query is of the form:

{t| COND (t) }

where, t — is a tuple variable & COND(t)- includes Range relation of tuple and selective

condition.

The result of such a query is the set of all tuples t that satisfy COND(t)

Example:

Q1. To find all employees whose salary is above 50,000.

Tuplerelational Expression:

{ t | Employee(t) and t. salary > 50000}

Q2. To retrieve only some of the attributes:

{ t. fname, t. address | Employee(t) and t. salary > 50000}

Information specified in a tuple calculus expression:

e For each tuple variable t, the range relation R of t. this value is specified by a condition of

the form R(t).

e A COND to select particular combinations of tuples.

e A set of attributes to be retrieved, the requested attributes.

Expressions & Formulas in Tuple Relational Calculus:

A general Expression of the Tuple relational calculus

{ t1.Al, 12. A2, . woth. An | COND(t1,t2, see woth, the, see ..stn4m) }

tl.Al, t2. A2,, tr. An are tuple variables, each Aj is an attribute of the relation on which t;

ranges.

¢ COND is made up of atoms is of the form tj. A;OPt;. Bjort;. Ai OP C or

C OP tj. Bj

e Where OP is one of the comparison operators is the set of { =,<,<=,>,>=,!=}and C is

constant.

A Formula is made up of one or more atoms connected via the logical operators and, or ,not.

Example formulas: Fl AND F2, Fl OR F2 , NOT FI

The Existential & Universal Quantifiers:

e Ina formula two additional symbols called Quantifiers: Existential(), universal ()

e A tuple variable t is BOUND if it is quantified or it is FREE.

e Example:

F1: d. dname =’Research’

F2: (d)(d.MGESSN = 987654321)

F3: (t) (t.dname = t.dno)

The tuple variable d is FREE in Fl & F3, d is BOUND in F2. The variable t is BOUND in F3.

e If F is a formula, then so is (t) (F), where t is a tuple variable. The formula (t) (F) is

true if the formula F evaluates to TRUE for some (at least one) tuple assigned of t in F,

otherwise (t) (F) is false.

e If F is a formula, then so is (t) (F), where t is a tuple variable. The formula (t) (F) is

true if the formula F evaluates to TRUE for ever tuple assigned of t in F, otherwise (t)

(F) is false.

Q3: Retrieve the name , address of all employees who work for the research department.

{ t. fname, t. address | Employee(t) and (d)(Department (d) and d.dname =’ Research’ and

d.Dnumber = t. DNO) }

Safe Expression:

e The expression in relational calculus is the one which produce finite tuples as its result,

then that expression is known as Safe Expression or it is known as Unsafe Expression.

e Anexpression is safe if all values in its result are from the domain of the expression.

e Example: { t| not (Employee(t) }

It is unsafe, it produce all tuples in the universe that are not employee tuples, which are

infinite.

Domain Relational Calculus

e The domain relational calculus differs from the tuple relational calculus in the type of

variables used in formula.

e Rather than having domain variables range over tuples, the domain variables ranges over

the domain of attributes.

An expression of the Domain calculus is of the form:

{ x1,x2,.....%) | COND (x1, x2,Xn, Xn, Xn+m)}

x1,x2,.....Xnare domain variables that range over domain(attributes)

Q1: Retrieve the birthdate address of all employees.

{ tu | employee(pqrstuvwxy) }

Ten variables for the employee relation, one to range over the domain of each attribute in

order.

Q2: Retrieve the name of all employees whose salary is >35 000.

{ p | employee(pqrstuvwxy) and w>35000 }

Q3: Retrieve the all employees ssn who are all working in project number.

{a | project (abc) and b=1}

(=)
~~

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT — II - Database Management Systems — SCSA1301

I. Database Design

Overview of the hierarchal Data model- Overview of the Network Data model-Relational
Database Design- Mapping ER Model-QBE-Functional Dependency-Normalization

Data Models

A data model is a conceptual representation of the data structures that are required by a database.

The data structures include the data objects, the associations between data objects, and the rules

which govern operations on the objects. As the name implies, the data model focuses on what

data is required and how it should be organized rather than what operations will be performed on

the data. To use a common analogy, the data model is equivalent to an architect's building plans.

Data models:

A collection of tools for describing Data

Relationship among data

Their semantics and

Constraints

Types of data models:

1. Object based logical data models

2. Record based logical data models.

3. Physical data models.

4. Semi structured data models (XML)

1. Object based logical data models

e Object oriented logical data model

e Object relational data models Ex. E.R. model

2. Record based logical data models.

e Network data model

e Hierarchical data model

e Relational data model.

3. Physical data models.: Used for internal shcema definition.

Record based data models

1. Hierarchical data models:

* Data are organized in a ordered tree manner.

* Relationship between records is parent child type.

* The data base in this model is a collection of disjoint trees.

* Itis a simple and straight forward model & easy to understand.

* Itis used when there is question of hierarchical relationship

* In order to represent link among records pointers are used.

* The relationship among records are physical

* Searching for a record is not easy.

* Represents one to many relationship

* Deletion of an internal node deletion of its leaves.

nse ee
(Root chiseay ———>| Component A] | Components | | Component ¢ |

Level 2 segments

(level 1 chitdren) > }_ Assembly A Assembiy 8 Assembly C

level 2 cuore, —> pona | | Pons | | Ponc | | pono | | Pore |

Hierarchical Data Model

Fig. 2.1 Hierarchical Data Model

Advantages.

e Simple and easy to use

e Data with hierarchical relationship can be mapped on this model.

e Suitable for application such as: Employee Dept.

Disadvantages:

Search for (an element or) a record is difficult.

Insertion, deletion and updation are difficult.

Many — Many relationshipscan not be established.

Data with non-hierarchical relationship cannot be mapped.

The hierarchical relationship is maintained using points which require extra storage.

Changes in relationship require changes in entire structure of the database.

Processing is sequential among branches of the tree so access time is high.

Network data model:

It was formalized by conference on data system language (codasyl)

It is an improvement over hierarchical data model.

It represents many-to-many relationships.

A child can have multiple parents.

Relationship between records is maintained by pointers.

Each record has a pointer field for the record with which it is associated.

Advantages:

Many to many relationship among records can be implemented.

Useful for representing such records which are represented in many to many

relationships.

Searching a record is easy since there are multiple access paths.

e No problem of consistency in case of addition deletion of records.

Disadvantages:

e Implementations of records and relationship are complex.

e Storage space requirement is high because of so many pointers.

Customer Product

Order a

Order-Line j= ‘ Shipment

Fig 2.2. Network Model

Relational data model:

1. In relational data model the relation or a named table is the only construct required to

represent an association among the attributes of an entity set and the relationships among

different entities.

2. Relationship between record is represented by a relation that contains a key for each

record involved in the relation.

3. Many to many relationship can easily be implemented.

4. Relationship implementation is very easy through the use of key and composite key

fields.

5. Relational model is useful for representing most of the real world entities and

relationships among them.

6. Relational model does not maintain physical connection among records.

7. Data is organized logically in the form of rows and columns.

8. A unique indexed key field is used to search for data element.

9. Data integrity is maintained by the process like normalization .

10. Description of data in terms of this model is called a schema.

11. Schema for relation specifies, its name, name of each field. Ex. Student (sid:

Integer, name: string, login: string etc.)

Advantages:

1. Tabular structure is easy to understand simple.

2. Data manipulation is easy.

3. We can apply mathematical operation on tables.

4. Built in query language support such as SQL.

5. Very flexible data organization.

Disadvantages:

1. Size of the data base becomes large.

Example:Oracle, Ingress, Sybase, Unity etc.

e The data represented in this model is in the form of two dimensional table called relation.

e Anentity is represented by a tuple in a row.

e The rows of a table are distinct.

e Ordering of rows is immaterial.

e Each column of the table is assigned distinct heading called name of the attribute.

e Ineach column data item are of similar type.

e The ordering of the columns is immaterial.

e Ifthere are M. columns, it is said to be of degreeim.

e Ifthere are N rows, it is called a N tupple table or cardinality of the table is N.

e Both the rows and columns can be viewed in any sequence at any time without

e affecting the information.

Properties of Relational Data Base Management System (RDBMS)

A telational database management is represented by relational data models.

e Ituses a collection of tables to represent the data and the relationship among them.

e Each table has multiple no of rows and columns

e Supports the concept of null values.

e Does not require the user to understand its physical implementation.

e Provides information about its contents and structure.

Domain and Integrity Constraints:

Domain Constraints:

e Limit the range of domain an attribute values on.

e Specify uniqueness and null ness of attributes.

e Specify default value of an attribute.

Integrity constraints:

Entity integrity: Every tuple is uniquely identified by a unique non null attribute, primary key i.e.

the primary key values can not be null.

Referential integrity: Rows in different tables are correctly related by valid key values (Foreign

keys refers to primary keys\

Basic terminologies of relational data model: (RDBMS)

9.

Entity: A real world object with some properties which can be easily identified iscalled

an entity.

Attributes: An attribute is a descriptive property or a characteristics of an entity.Ex

name, roll marks, etc.

Degree: The no of columns or attributes associated with a table (or a relationamong

them) is called degree of the relation.

Cardinality: The no of rows in a table is called cordinality.

Tuples: A relation consisting of a number of records represented in row wiseinformation

called tuples.

Domain: The set of possible values that can allotted to an attribute is calleddomain of

that attribute. Domain d is a set of atomic values of an attribute.

Entity set: A set of entities representing a real world object. Ex. Student,teacher,

depositor, player etc.

Weak entity: An entity set which may not have sufficient attribute to form aprimary key

then it is called an weak entity.

Strong entity: An entity set which have a key attribute.

10. Key: An attribute that allows us to uniquely identity a record or an entity type.

11. Super key: A set of attributes that collectively allows us to identify an entity is anentity

set.

12. Candidate key: A candidate key is the minimal super key. The super key forwhich no

proper subset is a super key.

13. Primary key: Primary key is the one of the candidate key to identify the entityuniquely.

The primary key is the principal means of identifying an entity.

14. Entity type: The occurrences of an entity set are called entities

15. Composite key: A composite key is a candidate key that consists of two or

moreattributes.

16. Foreign key: A foreign key is an attribute (a group of attributes) that is primarykey to

another relation. A ford on key represents a relationship between two

tables.

Note: Primary key of the strong entity set is not explicitly stored with the weak entity set since

it is implicit in the identifying relationship.

* Single valued attribute: An attribute that holds a single value for each

occurrence of an entity type Ex. Empid, emphasis ok.

* Miultivalued attribute: A multivalue attribute is an attribute that holds

multiplevalues for each occurance of an entity type Ex. Phone numbers, skill of an

employee.

* Derived attribute: Can be computed from other attributes . Ex. Age, for givendate of

birth, year of service, given a date of joining.

* Identifier attribute: An attribute that uniquely identifies a particular entity from anentity

set.

Ex. Empid, personid ,regn. no etc.

Banking E-R Diagram

C Address)

; C) ame | « genes >
a

{ User]

]

 CAs
~ Sevti = ~ Co { Es

Gver-ctratty ~ASeoune

Pertorn=

~ Transaction -

Cress | CPaeza>
Couns >

BF Diecranm of Banking Sverre

Fig. 2.3 ER Diagram of Banking System

Schema:

The database schema of a database is its structure described in a formal language supported by

the database management system (DBMS). The term "schema” refers to the organization of data

as a blueprint of how the database is constructed (divided into database tables in the case of

relational databases).

Schema is of three types: Physical schema, logical schema and view schema

1. Logical Database Schema: This schema defines all the logical constraints that require

tobe applied on the information stored. It defines tables, views, and integrity

constraints.

2. Physical Database Schema: This schema pertains to the particular storage of

informationand it’s kind of storage like files, indices, etc. It defines how the information

will be stored in an exceedingly auxiliary storage.

3. View schema: View schema is outlined because of the style of a database at view

levelthat usually describes end-user interaction with database systems.

Normalaization Techniques

Normalization is a process of organizing the data in database to avoid data redundancy, insertion

anomaly, update anomaly & deletion anomaly.Let’s discuss about anomalies first then we will

discuss normal forms with examples.

Anomalies in DBMS

There are three types of anomalies that occur when the database is not normalized.

1. Insertion Anomaly

2. Update Anomaly

3. Deletion Anomaly

Example: Suppose a manufacturing company stores the employee details in a table named

Table : Employee

Attributes: emp_id, emp_name, emp_address, emp_dept

At some point of time the table looks like this:

emp_id mp_name fmp_address emp_dept

101 Rick Delhi IDOO1

101 Rick Delhi D002

123 Maggie A gra ID890

166 Glenn Chennai ID900

166 Glenn Chennai D004

The above table is not normalized. We will see the problems that we face when a table is

notnormalized.

Update anomaly: In the above table we have two rows for employee Rick as he belongs to

twodepartments of the company. If we want to update the address of Rick then we have to update

the same in two rows or the data will become inconsistent. If somehow, the correct address gets

updated in one department but not in other then as per the database, Rick would be having two

different addresses, which is not correct and would lead to inconsistent data.

Insert anomaly: Suppose a new employee joins the company, who is under training

andcurrently not assigned to any department then we would not be able to insert the data into the

table if emp_dept field doesn’t allow nulls.

Delete anomaly: Suppose, if at a point of time the company closes the department D890

thendeleting the rows that are having emp_dept as D890 would also delete the information of

employee Maggie since she is assigned only to this department.

To overcome these anomalies we need to normalize the data. In the next section we will discuss

about normalization.

Normalization

Here are the most commonly used normal forms:

* First normal form(1NF)

* Second normal form(2NF)

* Third normal form(3NF)

* Boyce &Codd normal form (BCNF)

First normal form (1NF)

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values.

It should hold only atomic values.

Example: Suppose a company wants to store the names and contact details of its employees.

Itcreates a table that looks like this:

lemp_id femp_name femp_address emp_mobile

101 Herschel INew Delhi 8912312390

8812121212

102 Jon Kanpur

9900012222

103 Ron Chennai 7778881212

9990000123

104 Lester Bangalore

8 123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in

the same field as you can see in the table above. This table is not in 1NF as the rule says “each

attribute of a table must have atomic (single) values”, the emp_ mobile values for employees

Jon & Lester violates that rule.

To make the table complies with INF we should have the data like this:

emp_id femp_name femp_address emp_mobile

101 Herschel |New Delhi (8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 17778881212

104 Lester Bangalore [9990000123

104 Lester Bangalore 8123450987

Second normal form (2NF)

A table is said to be in 2NF if both the following conditions hold:

¢ Table is in 1NF (First normal form)

* No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example: Suppose a school wants to store the data of teachers and the subjects they

teach.Theycreate a table that looks like this: Since a teacher can teach more than one subjects,

the table can have multiple rows for a same teacher.

teacher_id _ Bubject teacher_age

111 Maths B8

111 Physics B8

222 Biology B8

333 Physics 40

333 hemistry 0

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values.

However, it is not in 2NF because non prime attribute teacher_age is dependent on teacher_id

alone which is a proper subset of candidate key.

This violates the rule for 2NF as the rule says “no non-prime attribute is dependent on the proper

subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

Teacher id Teacher age

111 38

222 38

333 40

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NP).

Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

* Table must be in 2NF

* Transitive functional dependency of non-prime attribute on any super key should be

removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this:

A table is in 3NF if it is in 2NF and for each functional dependency X-> Y at least one of

the following conditions hold:

* X isa super key of table

* Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee,

theycreate a table named employee_details that looks like this:

lemp_id femp_name emp_zip emp_state emp_city femp_district

1001 John 282005 UP Agra IDayalBagh

1002 Ajeet 222008 ITN Chennai M-City

1006 Lora 282007 ITN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp id, emp name, emp zip}...so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of

anycandidate keys.Here, emp_state, emp_city&emp_district dependent on emp_zip. And,

emp_zip is dependent on emp_id that makes non-prime attributes (emp_state,

emp_city&emp_district) transitively dependent on super key (emp_id). This violates the rule

of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove

the transitive dependency.

employee table:

emp_id emp _name fmp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

lemp_zip emp_state mp_city emp_district

282005 UP Agra DayalBagh

222008 ITN Chennai M-City

282007 ITN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222.999 IMP Gwalior Ratan

Boyce Codd normal form (BCNF)

Boyce-Codd Normal Form (BCNF) is one of the forms of database normalization. A

databasetable is in BCNF if and only if there are no non-trivial functional dependencies of

attributes on anything other than a superset of a candidate key. BCNF is also sometimes referred

to as 3.5NF, or 3.5 Normal Form. It is an advance version of 3NF that’s why it is also referred

as 3.5NF. BCNF is stricter than 3NF. A table complies with BCNF if it is in 3NF and for every

functional dependency X->Y, X should be the super key of the table.

Example: Suppose there is a company wherein employees work in more than one department.

They store the data like this:

lemp_id emp_nationality emp_dept lept_type (dept_no_of_emp

1001 ‘Austrian Production and planning D001 200

1001 ‘Austrian stores D001 250

1002. jAmerican design and technical support [D134 100

1002 American

Purchasing department D134 600

Functional dependencies in the table above:

emp_id ->emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

emp_id emp_nationality

 1001 Austrian

emp_dept table:

lemp_dept Klept_type {dept_no_of_emp

Production and planning D001 200

stores

D001 250

design and technical support ID 134 100

Purchasing department ID 134

600

emp_dept_mapping table:

lemp_id emp_dept

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies:

emp_id ->emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

What are the Advantages of normalization?

1. Data consistency

Data consistency means that the data is always real and it is not ambiguous.

2. Data becomes non redundant

Non-redundant means that only copy original copy of data is available for each user

and for every time. There are no multiple copies of the same data for different

persons. So when data is changed in one file and stay in one file. Then of course data

is consistent and non-redundant. Here redundant is not the same as a backup of data,

both are different things.

3. Reduce insertion, deletion and updating anomalies

Insertion anomaly is an anomaly that occurs when we want to insert data intothe

database but the data is not completely or correctly inserted in the target

attributes. If completely inserted in the database then not correctly entered.

Deletion anomaly is an anomaly that occurs when we want to delete data in

thedatabase but the data is not completely or correctly deleted in the target

attributes.

Updation anomaly is an anomaly that occurs when we want to update data in

thedatabase but the data is not completely or correctly updated in the target

attributes.

4. Database table compaction

When we normalize the database, we convert the large table into a smaller table

that leads to data and table compaction. Compaction means to have the least and

required size.

5. Better performance

6. Fast queries

What are the disadvantages of normalization?

1. Required experienced database designer

2. Difficult and expansive

3. Requires detailed database design

4. As the normal form type progresses, the performance becomes slower and slower.

5. Proper knowledge is required on the various normal forms to execute the normalization

process efficiently. Careless use may lead to terrible design filled with major anomalies

and data inconsistency

(=)
~~

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT — III - Database Management Systems — SCSA1301

III. Query Processing

SQL Queries -Embedded SQL -My SQL: Basics, Queries in MySQL and Algorithms for

Query Processing and Optimization - Introduction to Transaction Processing Concepts and

Theory - Concurrency control techniques.

SQL- Structured Query Language

Introduction

* SQL is an ANSI standard computer language for accessing and manipulating databases.

* The databases covered are: Oracle, DB2, Sybase, Informix, Microsoft SQL

Server, Microsoft Access, and other database systems.

* Like QBE, SQL provides users with a way of querying relational databases.

* SQL was developed under the name SEQUEL at the IBM San Jose research center in

the mid 1970s.

* In 1980, it was renamed SQL (still pronounced as “Sequel”) to avoid confusion with an

unrelated hardware product also called SEQUEL

* SQL stands for Structured Query Language

* SQL allows you to access a database

* SQL is an ANSI standard computer language

* SQL can execute queries against a database

* SQL can retrieve data from a database

* SQL can insert new records in a database

* SQL can delete records from a database

* SQL can update records in a database

* SQL is easy to learn

SQL - Languages

Data Definition Language (DDL) — Consists of commands which are used to define the

database.

Data Manipulation Language (DML) — Consists of commands which are used to manipulate

the data present in the database.

Data Control Language(DCL) — Consists of commands which deal with the user

permissions and controls of the database system.

Transaction Control Language(TCL) — Consist of commands which deal with the

transaction of the database.

SQL Commands:

Data Definition Language Commands (DDL)

e CREATE

e DROP

e TRUNCATE

e ALTER

e BACKUP DATABASE

CREATE Command

To Create User

CREATE USER username

Example

CREATE USER maran;

Grant Permission To The User

GRANT ALL TO maran;

(From root granting DDL,DML commands to user)

CREATE TABLE

This statement is used to create a table.

Syntax

CREATE TABLE TableName(Column1| datatype, Column2 datatype, Column3

datatype, ColumnNdatatype);

Example

CREATE TABLE Employee_Info (EmployeeIDint,

EmployeeNamevarchar(255),

EmergencyContactNamevarchar(255), PhoneNumberint,

Address varchar(255), City varchar(255), Country varchar(255));

CREATE TABLE using another TABLE

Example

CREATE TABLE ExampleTable AS

SELECT EmployeeName, PhoneNumber

FROM Employee_Info;

DROP Command

DROP

This statement is used to drop (delete) an existing table or a database with data.

Syntax

DROP DATABASE Database Name;

Example

DROP DATABASE Employee;

Syntax

DROP TABLE Table Name;

Example

DROP Table Employee_Info

TRUNCATE Command

This command is used to delete the information(records) present in the table but does not

delete the table. So, once you use this command, your information will be lost, but not the

table.

Syntax

TRUNCATE TABLE TableName;

Example

TRUNCATE Table Employee_Info

ALTER_Command

ALTER

This command is used to delete, modify or add constraints or columns in an existing

table.

The ‘ALTER TABLE’ Statement with ADD/DROP COLUMN

Syntax

ALTER TABLE TableName ADD ColumnNameDatatype;

ALTER TABLE TableName DROP COLUMN ColumnName;

Example

ADD Column BloodGroup:

ALTER TABLE Employee_Info ADD BloodGroupvarchar(255);

DROP Column BloodGroup:

ALTER TABLE Employee_Info DROP COLUMN BloodGroup ;

The ‘ALTER TABLE’ Statement with ALTER/MODIFY COLUMN

This statement is used to change the datatype of an existing column in a table.

Syntax

ALTER TABLE TableName ALTER COLUMN ColumnNameDatatype;

Example

Add a column DOB and change the data type to Date.

ALTER TABLE Employee_Info ADD DOB year;

ALTER TABLE Employee_Info ALTER DOB date;

KEYS in the DATABASE

There are mainly 7 types of Keys, that can be considered in a database.

1. Candidate Key — A set of attributes which can uniquely identify a table can be termed

asa Candidate Key. A table can have more than one candidate key, and out of the chosen

candidate keys, one key can be chosen as a Primary Key. In the above example, since

EmployeeID, InsuranceNumber and PanNumber can uniquely identify every tuple, they would

be considered as a Candidate Key.

2. Super Key — The set of attributes which can uniquely identify a tuple is known as

SuperKey. So, a candidate key, primary key, and a unique key is a superkey, but vice-versa

isn’t true.

3. Primary Key — A set of attributes which are used to uniquely identify every tuple is

alsoa primary key. In the above example, since EmployeeID, InsuranceNumber and

PanNumberare candidate keys, any one of them can be chosen as a Primary Key. Here

EmployeeID is chosen as the primary key.

4. Alternate Key — Alternate Keys are the candidate keys, which are not chosen as

aPrimary key. From the above example, the alternate keys are PanNumber and Insurance

Number.

5. Unique Key — The unique key is similar to the primary key, but allows one NULL

valuein the column. Here the Insurance Number and the Pan Number can be considered as

unique keys.

6. Foreign Key — An attribute that can only take the values present as the values of

someother attribute, is the foreign key to the attribute to which it refers. in the above example,

the Employee_ID from the Employee_Information Table is referred to the Employee_ID from

the Employee_Salary Table.

7. Composite Key — A composite key is a combination of two or more columns that

identify each tuple uniquely. Here, the Employee_ID and Month-Year_Of_Salary can be

grouped together to uniquely identify every tuple in the table.

, —— Super Key

' —_— -» ‘4
‘ { j '
| Primary Key : Candidete Key —————J Unique Kay | Alternate Key

! ' a ~ ' ona 4
' a Og a a a |

a ee ee ~“ ™ 4 a
| a, : i so. |

| = EMPLOYEE INFO TABL ——_ FF ———~__ |

01 ' Snanays o1 ' Snmaneve ' Anhinay ORoR7e 01 '
T T T T

? ! Anay 0 ' Anny ' Seurnvs o4291¢ . '

' '

n2 ' rane n> ' Drane | Det 7K n3 '

|

|

j
|

| £ 4

fe ee et uL reo 20ny { buuU

">? feh DO1Q BnOn

EMPLOYEE SALARY TABLE

Fig. 3.1 Keys in the Database

SQL Commands: Constraints Used In Database

Constraints are used in a database to specify the rules for data in a table. The fol lowing are

the different types of constraints:

NOT NULL

PRIMARY KEY

FOREIGN KEY

UNIQUE

CHECK

DEFAULT

INDEX

NOT NULL Constraint

This constraint ensures that a column cannot have a NULL value.

Example

CREATE TABLE Employee_Info(

EmployeeIDint NOT NULL, EmployeeNamevarchar(255) NOT NULL,

Emergency ContactNamevarchar(255), PhoneNumberint NOT NULL,

Address varchar(255), City varchar(255), Country varchar(255));

NOT NULL on ALTER TABLE

ALTER TABLE Employee_Info MODIFY PhoneNumber int NOT NULL;

UNIQUE Constraint

CREATE TABLE Employee_Info (

EmployeeIDint NOT NULL UNIQUE,

City varchar(255), Country varchar(255));

UNIQUE on ALTER TABLE

ALTER TABLE Employee_Info ADD UNIQUE (Employee_ID);

To drop a UNIQUE constraint

ALTER TABLE Employee_Info DROP CONSTRAINT UC_Employee_Info;

PRIMAY KEY constraint

The Primary key constraint uniquely identifies each record in a table, Primary keys must

contain UNIQUE values, and cannot contail NULL values. A table can have only one primary

key, and in the table, this primary key can consist of single or multiple columns (fields). The

following SQL creates a PRIMARY KEY on the “ID” column when the “Persons” table is

created.

CREATE TABLE Persons (ID int NOT NULL PRIMARY KEY, LastNamevarchar(255)

NOT NULL, FirstNamevarchar(255),Age int);

CREATE TABLE Persons (ID int NOT NULL, LastNamevarchar(255) NOT NULL,

FirstNamevarchar(255), Age int, CONSTRAINT PK_Person PRIMARY KEY

(ID,LastName);

ALTER TABLE Persons

ADD PRIMARY KEY (ID);

ALTER TABLE Persons

DROP PRIMARY KEY;

ALTER TABLE Persons

DROP CONSTRAINT PK_Person;

REFERENCES on Primary key and Foreign Key

CREATE TABLE Orders (OrderIDint NOT NULL, OrderNumberint NOT NULL,

PersonIDint, PRIMARY KEY (OrderID), CONSTRAINT FK_PersonOrder FOREIGN

KEY (PersonID) REFERENCES Persons(PersonID)

ALTER TABLE Orders ADD FOREIGN KEY (PersonID) REFERENCES

Persons(PersonID);

ALTER TABLE Orders ADD CONSTRAINT FK_PersonOrder FOREIGN KEY

(PersonID) REFERENCES Persons(PersonID);

ALTER TABLE Orders DROP FOREIGN KEY FK_ PersonOrder;

ALTER TABLE Orders DROP CONSTRAINT FK_PersonOrder;

SQL Date Data Types

SQL comes with the following data types for storing a date or a date/time value in the database:

e = =©DATE - format YYYY-MM-DD

e DATETIME - format: YYYY-MM-DD HH:MI:SS

e = TIMESTAMP - format: YYYY-MM-DD HH:MI:SS

e = =YEAR - format YYYY or YY

SQL View

SQL CREATE VIEW Examples

CREATE VIEW [Brazil Customers] AS SELECT CustomerName, ContactName FROM

Customers WHERE Country = ‘Brazil’;

CREATE VIEW [Products Above AveragePrice] AS SELECT ProductName, Price

FROM Products WHERE Price > (SELECT AVG(Price) FROM Products);

CREATE OR REPLACE VIEW wew_name AS SELECT cotumn1, COLUMNa, ...

FROM T48LE_NAME WHERE cConbiTIon;

CREATE OR REPLACE VIEW [Brazil Customers] AS SELECT CustomerName,

ContactName, City FROM Customers WHERE Country = ‘Brazil’;

DROP VIEW viEW_NAME;

Embedded SQL

Applications are developed using some general purpose languages like C, C++, JAVA, etc.

These languages are used to get UIs, forms etc. SQLs inside the application language like C,

C++, Java etc, and make these applications to communicate with DB.

Structure of Embedded SQL

Structure of embedded SQL defines step by step process of establishing a connection with

DB and executing the code in the DB within the high level language

Connection to DB

This is the first step while writing a query in high level languages.

First connection to the DB that we are accessing needs to be established. This can

be done using the keyword CONNECT. But it has to precede with

“EXEC SQL’ to indicate that it is a SQL statement.

EXEC SQL CONNECT db_name;

EXEC SQL CONNECT HR_USER; //connects to DB HR_USER

Declaration Section

Once connection is established with DB, we can perform DB transactions. Since these

DB transactions are dependent on the values and variables of the host language.

Depending on their values, query will be written and executed.

Similarly, results of DB query will be returned to the host language which will be

captured by the variables of host language.

e Hence we need to declare the variables to pass the value to the query and get the

values from query. There are two types of variables used in the host language

Host Variable :

e These are the variables of host language used to pass the value to the query as well as to

capture the values returned by the query.

e Since SQL is dependent on host language

e We have to use variables of host language and such variables are known as host variable.

But these host variables should be declared within the SQL area or within SQL code.

(i) That means compiler should be able to differentiate it from normal C variables.

(ii) Hence we have to declare host variables within

(iii) © BEGIN DECLARE and END DECLARE section.

(iv) Again, these declare block should be enclosed within EXEC SQL

and ‘;”.

EXEC SQL BEGIN DECLARE SECTION;

int STD_ID;

char STD_NAME [15];

char ADDRESS[20];

EXEC SQL END DECLARE SECTION

(i) We can note here that variables are written inside begin and end block of the SQL, but

they are declared using C code.

(ii) It does not use SQL code to declare the variables. Why?

(iii) | This is because they are host variables C language.

(iv) | Hence we cannot use SQL syntax to declare them. Host language supports almost all the

data types from int, char, long, float, double, pointer, array, string, structures etc

(v) When host variables are used in a SQL query, it should be preceded by colon — *:’ to

indicate that it is a host variable.

(vi) | Hence when pre-compiler compiles SQL code, it substitutes the value of host variable

and compiles.

(vil) EXEC SQL SELECT * FROM STUDENT WHERE STUDENT_ID =:STD_ID;

(viii) In above code, :STD_ID will be replaced by its value when pre-compiler compiles it.

(ix) | Suppose we do not know what should be the datatype of host variables or what is the

datatype in oracle for few of the columns.

04) In such case we can allow the compiler to fetch the datatype of column and assign it to

the host variable. It is done using ‘BASED ON’ clause. But format of declaration will be in host

language.

EXEC SQL BEGIN DECLARE SECTION;

BASED ON STUDENT.STD_ID sid;

BASED ON STUDENT.STD_NAME sname;

BASED ON STUDENT.ADDRESS saddress;

EXEC SQL END DECLARE SECTION;

Execution Section This is the execution section, and it contains all

theSQL queries and statements prefixed by “EXEC SQL’

EXEC SQL SELECT * FROM STUDENT WHERE STUDENT_ID

=:STD_ID; EXEC SQL SELECT STD_NAME INTO :SNAME :IND_SNAME

FROM STUDENT WHERE STUDENT_ID =:STD_ID;

INSERT INTO STUDENT (STD_ID, STD_NAME) VALUES (:SID, :SNAME);

UPDATE STUDENT SET ADDRESS = :STD_ADDR

WHERE STD_ID =:SID;

Consider a simple Pro*C program to illustrate embedded SQL. This program below accepts

student name from the user and queries DB for his student i

#include <stdio.h>

#include <sqlca.h>

int main({

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

BASED ON STUDENT.STD_ID SID; // host variable to store the value returned by

query char *STD_NAME; // host variable to pass the value to the query short ind_sid;//

indicator variable

EXEC SQL END DECLARE SECTION;

//Error handling

EXEC WHENEVER NOT FOUND GOTO error_msg1;

EXEC WHENEVER SQLERROR GOTO error_msg2;

printf("Enter the Student name:");

scanf("%s", STD_Name)

// Executes the query

EXEC SQL SELECT STD_ID INTO: SID INDICATOR ind_sid FROM STUDENT

WHERE STD_NAME =: STD_NAME;

printf("STUDENT ID:%d", STD_ID); // prints the result from

DB exit(Q);

* Error handling

labels error_msg1:

printf("Student Id %d is not found”,

STD_ID); printf("ERROR:%ld", sqlca-

>sqlcode); printf("ERROR State: %s", sqlca-

>sqlstate); exit(0);

error_msg?:

printf("Error has occurred!");

printf("ERROR:%l1d", sqlca->sqlcode);

printf("ERROR State:%s", sqlca-

>sqlstate); exit(0);

MySQL Fundamentals

¢ MySQL is free.

e Very widely used.

e Implements SQL database mangement.

e Linux Red Hat already in cludes MySQL.

e Facebook uses MySQL.

1 Developer / Oracle Corp. (since 2010) Oracle Corp. Microsoft Corp.

Maintainer Sun Microsystems (Since 1977)

(2008-2010)

MySQL AB (before 2008)

2 License General Public License, Proprietary Proprietary

and Proprietary

SQL MySQL

ls a programming language used to issue instructions to a ls an open source relational

relational database management system database management system

Used to store data for

manipulation and retrieval in the

future

Used to issue instructions about how data is to be inserted

manipulated, removed or accessed within the RDBMS

Readily available through
| You need to learn the language to use it dcssilinas cad irabomadhien

Is fixed and not updatable Regularly updated

(i) MySQL is currently the most popular database management system soft ware used

for managing the relational d atabase.

(ii) It is open-source databas e software, which is supported by Oracle Comp any.

(ii) It is fast, scalable, and easy to use database management system in comparison with

Microsoft SQL Server and Oracle Database.

(iii) It is commonly used in conjunction with PHP scripts for creating powerful and dynamic

server-side or web-based enterprise applications.

(iv) | MySQL supports many Operating Systems like Windows, Linux, MacO§, etc. with

C, C++, and Java languages.

(v) MySQL follows the working of Client-Server Architecture.

(vi) | This model is designed for the end-users called clients to access the resources from

a central computer known as a server using network services.

(vii) Here, the clients make requests through a graphical user interface (GUI), and the

server will give the desired output as soon as the instructions are matched.

(viii) The process of MySQL environment is the same as the client-server model.

1. Request =

— 0
SS 2. Response a 0)

Client Server

Fig 3.2 Client Server Communication

MySQL Features

e¢ Relational Database Management System (RDBMS)

e Easy to use

e It is secure

e Free to download

e It is scalable. It can handle almost any amount of data, up to as much as 50 million

rowsor more.

e Speed

e High Flexibility. MySQL supports a large number of embedded applications, whichmakes

MySQL very flexible.

¢ Compatible on many operating systems

e Memory efficiency

e GUI Support

Disadvantages/Drawback of MySQL

e ROLE, COMMIT, and stored procedure.

¢ MySQL does not support a very large database size as efficiently.

¢ MySQL doesn't handle transactions very efficiently, and it is prone to data corruption.

¢ MySQL is accused that it doesn't have a good developing and debugging tool compared to paid

databases.

¢ MySQL doesn't support SQL check constraints.

Grant Privileges to the MySQL New User

MySQL server provides multiple types of privileges to a new user account. Some of the most commonly

used privileges are given below:

e ALL PRIVILEGES: It permits all privileges to a new user account.

e CREATE: It enables the user account to create databases and tables.

e DROP: It enables the user account to drop databases and tables.

e DELETE: It enables the user account to delete rows from a specific table.

e INSERT: It enables the user account to insert rows into a specific table.

e SELECT: It enables the user account to read a database.

e UPDATE: It enables the user account to update table rows.

Algorithms for Query Processing and Optimization - Introduction to Transaction Processing

Concepts and Theory - Concurrency control techniques.

QUERY PROCESSING

Algorithms for Query Processing and Optimization

Query Processing refers to the range of activities involved in extracting data from adatabase.

The activities include translation of queries in high-level database languages into expressions

that can be used at the physical level of the file system, a variety of query-optimizing

transformations, and actual evaluation of queries.

The steps involved in processing a query are:

* Parsing and translation.

* Optimization.

* Evaluation.

query | parser and relational-algebra

- translator expression

—
query : ; -
output evaluation engine —>~<— execution plan

=,

data statistics

about data

Fig. 3.3 Typical steps when processing a high level query.

* Parsing and translation

Translate the query into its internal form. This is then translated into relational

algebra.Parser checks syntax, verifies relation.

* Optimization

SQL is a very high level language. The users specify what to search for - not how the

search is actually done. The algorithms are chosen automatically by the DBMS. For a given

SQL query there may be many possible execution plans. Amongst all equivalent plans choose

the one with lowest cost. Cost is estimated using statistical information from the database

catalog.

3. Evaluation

The query evaluation engine takes a query evaluation plan, executes that plan

and returns the answer to that query. As an illustration, consider the query:

select salary from instructor where salary < 75000;

This query can be translated into either of the following relational-algebra expressions:

Osalary <75000 (Flaginey (instructor))

(or)

sly (Osalary <75000 (instructor))

Further, each relational-algebra operation can be executed by one of several different

algorithms. For example, to implement the preceding selection, we can search every tuple in

instructor to find tuples with salary less than 75000. If a B* tree index is available on the

attribute salary, we can use the index instead to locate the tuples. To specify fully how to

evaluate a query, providing the relational-algebra expression will not be anought, but also to

annotate it with instructions specifying how to evaluate each operation.

T salary

a salary < 75000

instructor

Figure 3.1.2 A query-evaluation plan

A sequence of primitive operations that can be used to evaluate a query is a query-

execution plan or query-evaluation plan. Figure 3.1.2 illustrates an evaluation plan for our

example query. The query-execution engine takes a query-evaluation plan, executes that plan,

and returns the answers to the query. The different evaluation plans for a given query can

have different costs. It is the responsibility of the system to construct a query evaluation plan

that minimizes the cost of query evaluation; this task is called query optimization. Once the

query plan is chosen, the query is evaluated with that plan, and the result of the query is

output. In order to optimize a query, a query optimizer must know the cost of each operation.

Measures of Query Cost

The cost of query evaluation can be measured in terms of a number of different

resources, including disk accesses, CPU time to execute a query and in a distributed or

parallel database system, the cost of communication.

The response time for a query-evaluation plan could be used as a good measure of

the cost of the plan. In large database systems, however, disk accesses are usually the

most important cost, since disk accesses are slow compared to in-memory operations.

Most people consider the disk accesses cost a reasonable measure of the cost of a query-

evaluation plan.

The number of block transfers from disk is also used as a measure of the actual

cost. It takes more time to write a block to disk than to read a block from disk. For more

accurate measure, find:

e The number of seek operations performed

e The number of blocks read

e The number of blocks written

and then add up these numbers after multiplying them by average seek time, average

transfer time for reading a block and average transfer time for writing a block

respectively.

Using Heuristics in Query Optimization

Query Optimization - Heuristics

Query Trees and Graphs

selectP.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdate from Project as P,

Department as D, Employee as E where P.Dnum=D.Dnumber and

.Mgr_ssn=E.Ssn and P.Plocation='Stafford';

mPnumber, Dnum, Lname, Address, Bdate[[(oPlocation='Stafford'(Project))

™Dnum=Dnumber (Department)] ™Mgr_ssn=Ssn(Employee)]

(a)

Figure 194

Optimizing Them

In actuality the initial translation is simplistic:

From (x

Where o

Select 2

Then optimizations transform the query tree into something more efficient based on

reordering and transforming the extended relational operations. After that the tree is

converted to a query execution plan that chooses the best algorithms to implement the

portions of the tree. ~Pnumber, Dnum, Lname, Address,

Bdate(oP.Dnum=D.DnumberAD.Mgr_ssn=E.SsnA

P-Plocation="Stafford'((Project x Department) x Employee))

Find the last names of employees born after 1957 who work on a project named

* Aquarius’.

select Lname fromEmployee, Works_On, Project where Pname='Aquarius’ and Phumber=Pno

and Essn=Ssn and Bdate> '1957-12-31';

Steps in converting a query tree during heuristic optimization.
(a) Initial (canonical) query tree for SQL query Q.
(b) Moving SELECT operations down the query tree.
(c) Applying the more restrictive SELECT operation first
(d) Replacing CARTESIAN PRODUCT and SELECT with JOIN operations.
(e) Moving PROJECT operations down the query tree.

(a) * tname

© Pname='Aquarius’ AND Pnumber=Pno AND Essn=Ssn AND Bdate>'1957-12-31'

|
a x

x

(b) Lname

° Bdate>'1957-12-31' WORKS _ON

(c) * i name

° Essn=Ssn

aN
© Pnumber=Pno © Bdate>'1 957-12-31'

| |

ae ,

©” Pname='Aquarius' Cworks_ON>

(d) I name
|

me et te

ee Pee Bdate>' 1957-12-31"

(e) * 1 name
b |
Essn=Ssn

®Essn *Ssn, Lname

4 Pnumber=Pno |
"Bdate>'1957-12-31'

*Pnumber * Essn,Pno

© pramesAquatue re

General Transformation Rules

Generally, perform o and a (which tend to reduce the size of the intermediate

tables) before any &bowie; operations (which tend to multiply their sizes). .

1 | Cascade o OC: Ac2 A...Acnh=

0C1(6C2(...6cn(R)))

2 | Commutativityoa(ob(R)) = ob(oa(R))
of o

3 | Cascade ana(ab(...(R))) = ma(R)

4)\ Commute o ma,b,...(oc(R)) = Only if c only depends on the attributes of

with x oc(ma,b,...(R)) T

5 Commutativity R™S=S™R Also true of x

of ™

6 Commuting s | oc(R & S) =(oc(R)) ™ S Only if c involves only the attributes of R.

with & Also applies to x.

0C1 Aca(R & S) = . .
1 Acal) Where ci: and c2 involve the attributes of

6a |Commuting o (oc1(R)) R and §, respectively.

with ™, ™ (oC2(S))

conjunction

version

7 Commutingxz 7 (R mc S)=

with » (wAi,...,An(R))

c(7B1,...,Bm(S))

7a Commutingz «aL (R ™cS)=

aL

[(zAu,...,An,...,Ant+k(R)

with ™, extra)

c(7Bi,...,Bm,...,Bm+p

join attributes — (S))]

version

8 | Commutativity

of set operations

9 | Associativity of | (RxS)xT=Rx(S*

™, x, U,andM = T)

General approach:

So long as the projection attributes L =

{Au,...,An,B:,...,Bm} where A EAttr(R),

B EAttr(S), and the join condition c only

dependes on attributes in L.

Here the projection attributes in L are the

same, but the join condition c depends on

additional attributes from R and S. These

attributes are shown

as An+1...Ant+k and Bm+1...Bmt+p. The

original zL must be wrapped around the

right-side expression to remove those

extra join atttributes one they're

unneeded.

and U are commutative but — is not

Also true for each of the other three

Start with the canonical tree.

Move os as low as possible.

Merge operations when possible (<,o — ™ is classic).

Move as down, but not probably not below os.

Example query optimization

selectFname, Lname, Address

from Employee as E, Department as D

where D.Super_ssn=E.Ssn and D.Dname like 'Plan%’;

Converting Query Trees to Execution Plans

1
Fname, Lname, Address

es Reap pereting

2 a
o Dname='Research' EMPLOYEE

Figure 19.6 |

A query tree for query Q1. DEPARTMENT

If there is an index on Department.Dname, use it for an index search to implement the

oDname='Research'.

If there is an index on Employee.Dno, implement the *Dnumber=Dno

by a J2 (Single-loop join).

Lastly a simple a over those results.

Ideally all these algorithms would be pipelined as a single step

without writing intermediate files.

Using Selectivity and Cost Estimates in Query Optimization

The DBMS attempts to form a good cost model of various query operations as applied to the

current database state, including the attribute value statistics (histogram), nature of indices,

number of block buffers that can be allocated to various pipelines, selectivity of selection

clauses, storage speed, network speed (for distributed databases in particular), and so on.

Access cost to secondary storage

Reading and writing blocks between storage and ram. (time)

Disk storage cost

Cost of temporary intermediate files in storage. (time/space)

Computation cost

Usually slower than storage, but sometimes not, the cpu cost of evaluating the query.

(time)

Memory usage cost

The amount of ram needed by the query. (space)

Communication cost

The cost to transport query data over a network between database nodes. (time)

“Typical” databases emphasize access cost, the usual limiting factor. In-memory databases

minimize computation cost, while distributed databases put increasing emphasis on

communication cost.

Catalog Information Used in Cost Functions

* Basic file data: number of records (r), record size (R), number of blocks (b).

* Primary file organization (heap file, ordered, ordered with index, hashed, overflow?)

* Other indices, if present.

* Number of levels (x) for multilevel indices, top-level block count (bm).

* Number of distinct values (d) of an attribute. If the values are uniformly distributed,

the selectivity (sl) is Oya), and the selection cardinality (s = sl-r). If the attribute values

are skewed this isn't a good estimate, and a more detailed histogram of sl is

appropriate.

Examples of Cost Functions for Select

S1. linear search

On average half the blocks must be accessed for an equality condition on

the key, all the blocks otherwise.

S2. binary search

lg b for the search, plus more if it's nonkey.

S3a. primary index for a single record

One more than the number of index levels.

S3b. hash index for a single record

Average of | or 2 depending on the type of hash.

S4,.ordered index for multiple records

Cs=x+?/2 as a rough estimate.

S5. clustering index for multiple records

x for the index search to get the cluster block, then [s/bfr] file blocks
pointed to by the cluster.

S6. B*-Tree

Tree height + 1 if its key, that plus the selectivity (s) if not.

S7. conjunctive selection

The sum of the costs of the subconditions, if the set intersection fits in memory.

S8,.conjunctive selection with composite index

The same as above for whichever type of index.

Examples of Cost Functions for Join

A join selectivity (js) is the ratio of the number of tuples produced by a join to

the number of tuples produced by a cross product of the underlying relations, or

js = |(R vac $)] /|(Rx$)| = (RK dae $)|/ (RFS).

Multiple Relation Queries and Join Ordering

Figure 19.7 as as

Two left-deep (JOIN) query trees. y * ee *

J" R4 b R

/ \ / \
bd R3 ba R2

f (\ / *
R1 R2 R4 R3

1

(=)
~~

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO GE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT — IV- Database Management Systems — SCSA1301

IV. Recovery Techniques

Database Recovery Techniques - Database Security — Debate on the distributed databases

and Client- Server Architecture with reference to Indian Railway Reservation System.

Database Recovery

Purpose of Database Recovery

To bring the database into the last consistent state, which existed prior to the failure.

To preserve transaction properties (Atomicity, Consistency, Isolation and Durability).

Example:

If the system crashes before a fund transfer transaction completes its execution, then either one

or both accounts may have incorrect value. Thus, the database must be restored to the state

before the transaction modified any of the accounts.

Types of Failure

The database may become unavailable for use due to

Transaction failure: Transactions may fail because of incorrect input, deadlock, incorrect

synchronization.

System failure: System may fail because of addressing error, application error, operating system

fault, RAM failure, etc.

Media failure: Disk head crash, power disruption, etc.

Transaction Log

For recovery from any type of failure data values prior to modification (BFIM BeFore Image)

and the new value after modification (AFIM — AFter Image) are required.

These values and other information is stored in a sequential file called Transaction log.

Data Update

Immediate Update: As soon as a data item is modified in cache, the disk copy is updated.

Deferred Update: All modified data items in the cache is written either after a transaction ends

its execution or after a fixed number of transactions have completed their execution.

Shadow update: The modified version of a data item does not overwrite its disk copy but is

written at a separate disk location.

In-place update: The disk version of the data item is overwritten by the cache version.

Data Caching

Data items to be modified are first stored into database cache by the Cache Manager

(CM) and after modification they are flushed (written) to the disk.

The flushing is controlled by Modified and Pin-Unpin bits.

Pin-Unpin: Instructs the operating system not to flush the data item.

Modified: Indicates the AFIM of the data item.’

Transaction Roll-back (Undo) and Roll-Forward (Redo)

To maintain atomicity, a transaction’s operations are redone or undone.

Undo: Restore all BFIMs on to disk (Remove all AFIMs).

Redo: Restore all AFIMs on to disk.

Database recovery is achieved either by performing only Undos or only Redos or by a

combination of the two. These operations are recorded in the log as they happen. When in-place

update (immediate or deferred) is used then log is necessary for recovery and it must be available

to recovery manager. This is achieved by WriteAhead Logging WAL) protocol. WAL states that

For Undo: Before a data item’s AFIM is flushed to the database disk (overwriting the BFIM) its

BFIM must be written to the log and the log must be saved on a stable store (log disk).

For Redo: Before a transaction executes its commit operation, all its AFIMs must be Written to

the log and the log must be Saved on a stable store.

Checkpointing

Time to time (randomly or under some criteria) the database flushes its buffer to database disk

to minimize the task of recovery. The following steps defines a checkpoint operation:

Suspend execution of transactions temporarily. Force writes modified buffer data to disk.

Write a [checkpoint] record to the log, save the log to disk. Resume normal transaction

execution. During recovery redo or undo is required to transactions appearing after [checkpoint]

record.

Steal/No-Steal and Force/No-Force

Possible ways for flushing database cache to database disk:

Steal: Cache can be flushed before transaction commits.

No-Steal: Cache cannot be flushed before transaction commit.

Force: Cache is immediately flushed (forced) to disk.

No-Force: Cache is deferred until transaction commits

These give rise to four different ways for handling recovery:

Steal/No-Force (Undo/Redo)

Steal/Force (Undo/No-redo)

No-Steal/No-Force (Redo/No-undo)

No-Steal/Force (No-undo/No-redo)

Recovery Scheme

a. Deferred Update (No Undo/Redo)

The data update goes as follows:

A set of transactions records their updates in the log.

At commit point under WAL scheme these updates are saved on database disk.

After reboot from a failure the log is used to redo all the transactions affected by this failure. No

undo is required because no AFIM is flushed to the disk before a transaction commits.

b. Deferred Update with concurrent users

This environment requires some concurrency control mechanism to guarantee isolation

property of transactions. In a system recovery transactions which were recorded in the

log after the last checkpoint were redone. The recovery manager may scan some of the

transactions recorded before the checkpoint to get the AFIMs

Deferred Update with concurrent users.

Two tables are required for implementing this protocol:

Active table: All active transactions are entered in this table.

Commit table: Transactions to be committed are entered in this table.

During recovery, all transactions of the commit table is redone and all transactions of active

tables are ignored since none of their AFIMs reached the database. It is possible that a commit

table transaction may be redone twice but this does not create any inconsistency because of a

redone is “idempotent”, that is, one redone for an AFIM is equivalent to multiple redone for the

same AFIM.

c. Recovery Techniques Based on Immediate Update

Undo/No-redo Algorithm

In this algorithm AFIMs of a transaction are flushed to the database disk under WAL before it

commits. For this reason the recovery manager undoes all transactions during recovery.No

transaction is redone. It is possible that a transaction might have completed execution and ready

to commit but this transaction is also undone.

Undo/Redo Algorithm (Single-user environment)

Recovery schemes of this category apply undo and also redo for recovery. In a single-user

environment no concurrency control is required but a log is maintained under WAL.Note that at

any time there will be one transaction in the system and it will be either in the commit table or in

the active table.

The recovery manager performs:

Undo of a transaction if it is in the active table.

Redo of a transaction if it is in the commit table.

Undo/Redo Algorithm (Concurrent execution)

Recovery schemes of this category applies undo and also redo to recover the database

from failure.

In concurrent execution environment a concurrency control is required and log is maintained

under WAL.

Commit table records transactions to be committed and active table records active

transactions. To minimize the work of the recovery manager check pointing is used.

The recovery performs:

Undo of a transaction if it is in the active table.

Redo of a transaction if it is in the commit table.

d.Shadow Paging

The AFIM does not overwrite its BFIM but recorded at another place on the disk. Thus, at

any time a data item has AFIM and BFIM (Shadow copy of the data item) at two different places

on the disk.

X and Y: Shadow copies of data items

X' and Y’: Current copies of data items

To manage access of data items by concurrent transactions two directories (current

and shadow) are used

The directory arrangement is illustrated below. Here a page is a data item.

Current directory Database disk Shadow directory Figure 19.5

(after updating blocks (pages) (not updated)

pages 2, 5)

1 +——_ | Page 5 (old) —_ | 1

2 . “>| Page 1 Moore | 2

3 eo 1. ro! Page 4 -=- 4 . | 3

4| a Page 2 (old) — 1p 4

5 | ot : >| Page 3 le } * 5

6 et +t -| Page 6 < i. ~SCt~C~*™Y 6
——| Page 2 (new)

| Page 5 (new)

Fig 4.1 Shadow Paging

e. The ARIES Recovery Algorithm

The ARIES Recovery Algorithm is based on:

WAL (Write Ahead Logging) Repeating history during redo:

ARIES will retrace all actions of the database system prior to the crash to reconstruct the

database state when the crash occurred.

Logging changes during undo:

It will prevent ARIES from repeating the completed undo operations if a failure occurs during

recovery, which causes a restart of the recovery process.

The ARIES recovery algorithm consists of three steps:

Analysis: step identifies the dirty (updated) pages in the buffer and the set of transactions active

at the time of crash. The appropriate point in the log where redo is to start is also determined.

Redo: necessary redo operations are applied.

Undo: log is scanned backwards and the operations of transactions active at the time of crash are

undone in reverse order.

The Log and Log Sequence Number (LSN)

A log record is written for:

e data update

¢ transaction commit

e transaction abort

¢ undo

¢ transaction end

In the case of undo a compensating log record is written. The Log and Log Sequence Number

(LSN) (contd.). A unique LSN is associated with every log record. LSN increases

monotonically and indicates the disk address of the log record it is associated with.

In addition, each data page stores the LSN of the latest log record corresponding to a change for

that page.

A log record stores

(a) the previous LSN of that transaction

(b) the transaction ID

A log record stores:

Previous LSN of that transaction: It links the log record of each transaction. It is like a back

pointer points to the previous record of the same transaction , Transaction ID , Type of log

record. For a write operation the following additional information is logged:

Page ID for the page that includes the item

Length of the updated item

Its offset from the beginning of the page

BFIM of the item

AFIM of the item

The Transaction table and the Dirty Page table

For efficient recovery following tables are also stored in the log during check pointing:

Transaction table: Contains an entry for each active transaction, with information such as

transaction ID, transaction status and the LSN of the most recent log record for the transaction.

Dirty Page table: Contains an entry for each dirty page in the buffer, which includes the page ID

and the LSN corresponding to the earliest update to that page.

e. Checkpointing

A checkpointing does the following:

Writes a begin checkpoint record in the log Writes an end checkpoint record in the log. With this

record the contents of transaction table and dirty page table are appended to the end of the

log.Writes the LSN of the begin_checkpoint record to a special file. This special file is accessed

during recovery to locate the last checkpoint information. To reduce the cost of checkpointing

and allow the system to continue to execute transactions, ARIES uses “fuzzy checkpointing”.

The following steps are performed for recovery

Analysis phase: Start at the begin_checkpoint record and proceed to the end_checkpoint

record. Access transaction table and dirty page table are appended to the end of the log. Note that

during this phase some other log records may be written to the log and transaction table may be

modified. The analysis phase compiles the set of redo and undoes to be performed and ends.

Redo phase: Starts from the point in the log up to where all dirty pages have been flushed, and

move forward to the end of the log. Any change that appears in the dirty page table is redone.

Undo phase: Starts from the end of the log and proceeds backward while performing appropriate

undo. For each undo it writes a compensating record in the log. The recovery

completes at the end of undo phase.

«) | tsn | Last_isn | Tania | Type | Pageic | Other_intormation
1 °o 7, spdate c

2 | ° r | ipdate | 8B

3 | 1 | | |

4 begin checks t

nd checkpoint
6 ° T. spdate A

7 | T. spdate

8 T.

TRANSACTION TABLE DIRTY PAGE TABLE
(b) Transaction_id | Last_ien | Status | Page id | isn

c

in progress a

TRANSACTION TABLE DIRTY PAGE TABLE
«© Transaction id] Last_isn Status Page id Lan

7 « 1

7

Figure 19.6

Fig

4.2 Aries Algorithm

f. Recovery in multidatabase system

A multi database system is a special distributed database system where one node may be

running relational database system under UNIX, another may be running object-oriented system

under Windows and so on.

A transaction may run in a distributed fashion at multiple nodes. In this execution scenario the

transaction commits only when all these multiple nodes agree to commit individually the part of

the transaction they were executing.

This commit scheme is referred to as “two-phase commit” (2PC). If any one of these nodes fails

or cannot commit the part of the transaction, then the transaction is aborted.Each node recovers

the transaction under its own recovery protocol.

Distributed Database:

Distributed databases bring the advantages of distributed computing to the database management

domain. A distributed computing system consists of a number of processing elements, not

necessarily homogeneous, that are interconnected by a computer network, and that cooperate in

performing certain assigned tasks.

A distributed database (DDB) is a collection of multiple, logically interrelated databases

distributed over a computer network « A distributed database management system (DDBMS) is

the software that manages the DDB and provides an access mechanism that makes this

distribution transparent to the users.

Data stored at a number of sites each site logically consists of a single processor at different sites

are interconnected by a computer network (we do not consider multiprocessors in DDBMS, cf.

Parallel systems). DDBS is a database, not a collection of files (cf. relational data

model).Placement and query of data is impacted by the access patterns of the user DDBMS is a

collections of DBMSs (not a remote file system).

EeePC CCl Si eier Cates
ok eee

Distributed System

Fig 4.3 Distributed System

e Example: Database consists of 3 relations employees, projects, and

assignment which are partitioned and stored at different sites (fragmentation).

Bosten employ ves
Hoston 2engnment,

 Paris projects
Bostom projects New York projects
New York employces vith budget > 200000
New York projacts Montreal <uployees New York assignments \foutces! ansiyynsents

Distributed Databases

Fig 4.4 Distributed Databases

Applications of Distributed Databases:

Manufacturing

Military command and control

Airlines

Hotel Chains

Any organization which has a decentralized organization structure

Advantages of Distributed Databases

1.

Distribution or network transparency: This refers to freedom for the user from the operational

details of the network. It may be divided into location transparency and naming transparency.

Location transparency refers to the fact that the command used to perform a task is independent

of the location of data and the location of the system where the command was issued. Naming

transparency implies that once a name is specified, the named objects can be accessed

Management of distributed data with different levels of transparency:

unambiguously without additional specification.

2. Replication transparency:

Copies of data may be stored at multiple sites for better availability, performance, and reliability.

Replication transparency makes the user unaware of the existence of copies.

3. Fragmentation transparency:

Two types of fragmentation are possible.

Horizontal fragmentation distributes a relation into sets of tuples (rows).

Vertical fragmentation distributes a relation into subrelations where each subrelation is defined

by a subset of the columns of the original relation. A global query by the user must be

transformed into several fragment queries. Fragmentation transparency makes the user unaware

of the existence of fragments.

4. Increased reliability and availability:

These are two of the most common potential advantages cited for distributed databases.

Reliability is broadly defined as the probability that a system is running (not down) at a certain

time point, whereas availability is the probability that the 1 Page 658 of 893 system is

continuously available during a time interval. When the data and DBMS software are distributed

over several sites, one site may fail while other sites continue to operate. Only the data and

software that exist at the failed site cannot be accessed. This improves both reliability and

availability.

5. Improved performance:

6. Easier expansion: In a distributed environment, expansion of the system in terms of

adding more data, increasing database sizes, or adding more processors is much easier.

Data Fragmentation

Split a relation into logically related and correct parts. A relation can be fragmented in two ways:

Horizontal Fragmentation

Vertical Fragmentation

Horizontal fragmentation:

It is a horizontal subset of a relation which contains those of tuples which satisfy selection

conditions. Consider the Employee relation with selection condition (DNO = 5). All tuples

satisfy this condition will create a subset which will be a horizontal fragment of Employee

relation. A selection condition may be composed of several conditions connected by AND or

OR. Derived horizontal fragmentation: It is the partitioning of a primary relation to other

secondary relations which are related with foreign keys.

Vertical fragmentation

It is a subset of a relation which is created by a subset of columns. Thus a vertical fragment of a

relation will contain values of selected columns. There is no selection condition used in vertical

fragmentation. Consider the Employee relation. A vertical fragment of can be created by keeping

the values of Name, Bdate, Sex, and Address. Because there is no condition for creating a

vertical fragment, each fragment

must include the primary key attribute of the parent relation Employee. In this way all vertical

fragments of a relation are connected.

Fragmentation Representation

Horizontal fragmentation

1. Each horizontal fragment on a relation can be specified by a sCi(R) operation in the relational

algebra.

2. Complete horizontal fragmentation

3. A set of horizontal fragments whose conditions C1, C2, ..., Cn include all the tuples in R- that

is, every tuple in R satisfies (C1 OR C2 OR ... OR Cn).

4. Disjoint complete horizontal fragmentation: No tuple in R

satisfies (Ci AND Cj) where i $ j.

5. To reconstruct R from horizontal fragments a UNION is applied.

Vertical fragmentation

1. A vertical fragment on a relation can be specified by a PLi(R) operation in the relational

algebra.

2. Complete vertical fragmentation

3. A set of vertical fragments whose projection lists L1, L2, ..., Ln include all the attributes in R

but share only the primary key of R. In this case the projection lists satisfy the following two

conditions:

4.L1 »L2»...» Ln = ATTRS (R)

5. Li « Lj = PK(R) for any 1 j, where ATTRS (R) is the set of attributes of R and PK(R) is the

primary key of R.

6. To reconstruct R from complete vertical fragments a OUTER UNION is applied.

Mixed (Hybrid) fragmentation

1. A combination of Vertical fragmentation and Horizontal fragmentation.

2. This is achieved by SELECT-PROJECT operations which is represented by PLi(sCi (R)).

3. If C = True (Select all tuples) and L # ATTRS(R), we get a vertical fragment, and if C # True

and L # ATTRS(R), we get a mixed fragment.

4. If C = True and L = ATTRS(R), then R can be considered a fragment

Fragmentation schema

A definition of a set of fragments (horizontal or vertical or horizontal and vertical) that includes

all attributes and tuples in the database that satisfies the condition that the whole database can be

reconstructed from the fragments by applying some sequence of UNION (or OUTER JOIN) and

UNION operations.

Allocation schema

It describes the distribution of fragments to sites of distributed databases. It can be fully or

partially replicated or can be partitioned

Data Replication

Database is replicated to all sites. In full replication the entire database is replicated and in partial

replication some selected part is replicated to some of the sites. Data replication is achieved

through a replication schema. Data Distribution (Data Allocation) is relevant only in the case of

partial replication or partition.The selected portion of the database is distributed to the database

sites.

Types of Distributed Database Systems

Homogeneous

1)All sites of the database system have identical setup, i.e., same database system software.

2)The underlying operating system may be different.

For example, all sites run Oracle or DB2, or Sybase or some other database system.

The underlying operating systems can be a mixture of Linux, Window, Unix, etc.

Window ——
 Site 5 f 7] Unix —

Oracle | Site 1 ne

| 4 Oracle

Window =f ~ ~ _

Site 4 Communications SD

"network 7
-

Oracle

Site 3 on Site 2 —f7]

Linux Oracle Lin€k Oracle

Homogeneous System

Fig 4.5. Homogeneous System

Heterogeneous System

1) Federated: Each site may run different database system but the data access is managed

through a single conceptual schema. This implies that the degree of local autonomy is minimum.

Each site must adhere to a centralized access policy. There may be a global schema.

2) Multidatabase: There is no one conceptual global schema. For data access a schema is

constructed dynamically as needed by the application software.

Object Unix Relational

Oriented Site 5—1__ Unix —
Site 1 B

a Hierarchical
Window st a

Site 4——_¢ Communications

| NN network _7~J

[J Network
< Ibject DBMS _—_

Guiented Site 3} _{—_] Site 2-—{__] Relational
Linux —- Linux a

Heterogencous System

Fig 4.6 Hetrogeneous System

Query processing in Distributed Databases:

Issues:

1) Cost of transferring data (files and results) over the network. This cost is usually high so some

optimization is necessary. Example relations:

Employee at site 1 and Department at Site 2

Example: Employee at site 1. 10,000 rows. Row size = 100 bytes. Table size = 106 bytes.

 SSN Fname i sam Bdate !Address ISex !Salary |Superssn lc

Department at Site 2. 100 rows. Row size = 35 bytes. Table size = 3,500 bytes.

For each employee, retrieve employee name and department name Where the employee works.

A: PFname, Lname, Dname (Employee Dno = Dnumber Department)

The result of this query will have 10,000 tuples, assuming that every employee is related to a

department. Suppose each result tuple is 40 bytes long. The query is submitted at site 3 and the

result is sent to this site.

Problem: Employee and Department relations are not present at site 3.

Strategies:

1. Transfer Employee and Department to site 3. Total transfer bytes = 1,000,000 + 3500 =

1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send the result to site 3 Query result size

= 40 * 10,000 = 400,000 bytes. Total transfer size = 400,000 + 1,000,000 = 1,400,000 bytes.

3. Transfer Department relation to site 1, executes the join at site 1, and sends the result to

site 3.

Total bytes transferred = 400,000 + 3500 = 403,500 bytes. Optimization criteria: minimizing

data transfer.

Preferred approach: strategy 3.

Concurrency Control and Recovery

Distributed Databases encounter a number of concurrency control and recovery problems which

are not present in centralized databases. Some of them are listed below.

1) Dealing with multiple copies of data items

The concurrency control must maintain global consistency. Likewise the recovery mechanism

must recover all copies and maintain consistency after recovery.

2) Failure of individual sites

Database availability must not be affected due to the failure of one or two sites and the recovery

scheme must recover them before they are available for use

3) Communication link failure

This failure may create network partition which would affect database availability even though

all database sites may be running

4) Distributed commit

A transaction may be fragmented and they may be executed by a number of sites. This require a

two or three-phase commit approach for transaction commit

1) Distributed deadlock

Since transactions are processed at multiple sites, two or more sites may get involved in

deadlock. This must be resolved in a distributed manner.

Concurrency Control and Recovery

Distributed Concurrency control based on a distributed copy of a data item

Primary site technique: A single site is designated as a primary site which serves as a coordinator

for transaction management

Prisssatry site

Site s<- {]
Site 1 {]

Site +4 { <“Sprassrtssicarioms mereork)

(3 | | |

Site 3 { Site 2 {]

Primary site technics

Fig 4.7 Primary Site Technique

Transaction management:

Concurrency control and commit are managed by this site.In two phase locking, this site

manages locking and releasing data items. If all transactions follow two-phase policy at all sites,

then serializability is guaranteed

Primary Copy Technique:

In this approach, instead of a site, a data item partition is designated as primary copy. To lock a

data item just the primary copy of the data item is locked.

Advantages:

Since primary copies are distributed at various sites, a single site is not overloaded with locking

and unlocking requests.

Disadvantages:

Identification of a primary copy is complex. A distributed directory must be maintained, possibly

at all sites.

Recovery from a coordinator failure

In both approaches a coordinator site or copy may become unavailable. This will require the

selectionof a new coordinator.

Primary site approach with no backup site

Aborts and restarts all active transactions at all sites. Elects a new coordinator and initiates

transaction processing.

Primary site approach with backup site:

Suspends all active transactions, designates the backup site as the primary site and identifies a

new back up site. Primary site receives all transaction management information to resume

processing.

Primary and backup sites fail or no backup site:

Use election process to select a new coordinator site.

Concurrency control based on voting:

There is no primary copy of coordinator.Send lock request to sites that have data item. If

majority of sites grant lock then the requesting transaction gets the data item.Locking

information (grant or denied) is sent to all these sites.

To avoid unacceptably long wait, a time-out period is defined. If the requesting transaction does

not get any vote information then the transaction is aborted.

Architectural Models

Some of the common architectural models are —

* Client - Server Architecture for DDBMS

* Peer - to - Peer Architecture for DDBMS

* Multi - DBMS Architecture

Client - Server Architecture for DDBMS

This is a two-level architecture where the functionality is divided into servers and clients. The

server functions primarily encompass data management, query processing, optimization and

transaction management. Client functions include mainly user interface. However, they have

some functions like consistency checking and transaction management.

The two different clients - server architecture are —

* Single Server Multiple Client

* Multiple Server Multiple Client (shown in the following diagram)

Client 1 Client N

Application Programs Application Programs

Client Services — SS tet SS oe Client Services

Communications Communications

Manager Manager

+ >

Communication

Link Communications Communications

Manager Manager

Database ™ ~ ~ Database
Services Services

Server 1 | Server M

Databas Databas

Fig 4.8 Client — Server Model

Peer- to-Peer Architecture for DDBMS

In these systems, each peer acts both as a client and a server for imparting database services. The

peers share their resource with other peers and co-ordinate their activities.

This architecture generally has four levels of schemas —

* Global Conceptual Schema — Depicts the global logical view of data.

* Local Conceptual Schema — Depicts logical data organization at each site.

* Local Internal Schema — Depicts physical data organization at each site.

* External Schema — Depicts user view of data.

External External External

Schema 1 Schema 2 ane - . . we = . . Schema ™

[Global Conceptual Schema

—————

Local Local Local

Conceptual Conceptual Conceptual

Schema 1 Schema 2 Schema N

Local Local Local

Internal Internat ot “ ot an os ‘ Internal

Schema 1 Schema 2 Schema ™N

Fig 4. 9 Peer to Peer Architecture

Multi - DBMS Architectures

This is an integrated database system formed by a collection of two or more autonomous

database systems.

Multi-DBMS can be expressed through six levels of schemas —

* Multi-database View Level — Depicts multiple user views comprising of subsets of the

integrated distributed database.

* Multi-database Conceptual Level — Depicts integrated multi-database that comprises of global

logical multi-database structure definitions.

* Multi-database Internal Level — Depicts the data distribution across different sites and multi-

database to local data mapping.

* Local database View Level — Depicts public view of local data.

* Local database Conceptual Level — Depicts local data organization at each site.

* Local database Internal Level — Depicts physical data organization at each site.

There are two design alternatives for multi-DBMS —

* Model with multi-database conceptual level.

* Model without multi-database conceptual level.

Model with Multi-database Conceptual Level

Multi-database Multi-database
View 1 Hh tee : View N

Multi-database

Internal Schema
 Multi-database Conceptual Schema

Local Local
View 11 View M1

ne, Local DB Local DB

Conceptual ; Conceptual

~ Schema 1 ES Schema M ~

Local DB Local DB

Internal Wecati ge ye BE ap Internal
Local Schema 1 Schema M Local

View 1P View MQ

Fig 4.10 Multi DBMS Architecture

Database Security

Types of Security

— Legal and ethical issues

— Policy issues

— System-related issues

The need to identify multiple security levels

A DBMS typically includes a database security and authorization subsystem that is responsible

for ensuring the security portions of a database against unauthorized access.

Two types of database security mechanisms:

Discretionary security mechanisms

The typical method of enforcing discretionary access control in a database system is based on the

granting and revoking privileges.

Mandatory security mechanisms

In many applications, and additional security policy is needed that classifies data and users based

on security classes. This approach as mandatory access control, would typically be combined

with the discretionary access control mechanisms.

Security Issues in Databases

* The security mechanism of a DBMS must include provisions for restricting access to the

database as a whole; this function is called access control and is handled by creating user

accounts and passwords to control login process by the DBMS.

* The security problem associated with databases is that of controlling the access to a statistical

database, which is used to provide statistical information or summaries of values based on

various criteria.

¢ The counter measures to statistical database security problem is called inference control

measures.

* Another security is that of flow control, which prevents information from flowing in such a

way that it reaches unauthorized users.

¢ Channels that are pathways for information to flow implicitly in ways that violate the security

policy of an organization are called covert channels.

¢ A final security issue is data encryption, which is used to protect sensitive data (such as credit

card numbers) that is being transmitted via some type communication network.

* The data is encoded using some coding algorithm. An unauthorized user who access encoded

data will have difficulty deciphering it, but authorized users are given decoding or decrypting

algorithms (or keys) to decipher data.

Database Security and the DBA

The database administrator (DBA) is the central authority for managing a database system. The

DBA’s responsibilities include granting privileges to users who need to use the system and

classifying users and data in accordance with the policy of the organization. The DBA has a

DBA account in the DBMS, sometimes called a

system or superuser account, which provides powerful capabilities :

1. Account creation

2. Privilege granting

3. Privilege revocation

4. Security level assignment

The DBA is responsible for the overall security of the database system. Action | is access

control, whereas 2 and 3 are discretionary and 4 is used to control mandatory authorization.

Whenever a person or group of person s need to access a database system, the individual or

group must first apply for a user account. The DBA will then create a new account number and

password for the user if there is a legitimate need to access the database.

If any tampering with the database is suspected, a database audit is performed, which consists of

reviewing the log to examine all accesses and operations applied to the database during a certain

time period.

A database log that is used mainly for security purposes is sometimes called an audit trail.

Types of Discretionary Privileges

The account level: At this level, the DBA specifies the particular privileges that each account

holds independently of the relations in the database. The privileges at the account level apply to

the capabilities provided to the account itself and can include the CREATE SCHEMA or

CREATE TABLE privilege, to create a schema or base relation; the ALTER privilege, To apply

schema changes such adding or removing attributes from relations; the DROP privilege, to delete

relations or views; the MODIFY privilege, to insert, delete, or update tuples; and the SELECT

privilege, to retrieve information from the database by using a SELECT query.

The relation (or table level): At this level, the DBA can control the privilege to access each

individual relation or view in the database. To control the granting and revoking of relation

privileges, each relation R in a database is assigned an owner account, which is typically the

account that was used when the relation was created in the first place. The owner of a relation is

given all privileges on that relation. In SQL2, the DBA can assign an owner to a whole schema

by creating the schema and associating the appropriate authorization identifier with that schema,

using the CREATE SCHEMA command. The owner account holder can pass privileges on any

of the owned relation to other users by granting privileges to their accounts.

In SQL the following types of privileges can be granted on each individual relation R:

¢ SELECT (retrieval or read) privilege on R: Gives the account retrieval privilege. In SQL this

gives the account the privilege to use the SELECT statement to retrieve tuples from R.

* MODIFY privileges on R: This gives the account the capability to modify tuples of R. In SQL

this privilege is further divided into UPDATE, DELETE, and INSERT privileges to apply the

corresponding SQL command to R. In addition, both the INSERT and UPDATE privileges can

specify that only certain attributes can be updated by the account.

** Note that to create a view, the account must have SELECT privilege on all relations involved

in the view definition. The mechanism of views is an important discretionary authorization

mechanism in its own right.

For example, if the owner A of a relation R wants another account B to be able to retrieve only

some fields of R, then A can create a view V of R that includes only those attributes and then

grant SELECT on V to B. The same applies to limiting B to retrieving only certain tuples of R; a

view V’ can be created by defining the view by means of a query that selects only those tuples

from R that A wants to allow B to access.

Revoking Privileges

For example, the owner of a relation may want to grant the SELECT privilege to a user for a

specific task and then revoke that privilege once the task is completed. Hence, a mechanism for

revoking privileges is needed.

In SQL, a REVOKE command is included for the purpose of canceling privileges.

Example of Grant and Revoke Commands in SQL Suppose that the DBA creates four accounts --

Al, A2, A3, and A4-- and wants only A1 to be able to create base

relations; then the DBA must issue the following GRANT command in SQL:

GRANT CREATETAB TO AI;

In SQL2 the same effect can be accomplished by having the DBA issue a CREATE SCHEMA

command as follows:

CREATE SCHEMA EXAMPLE AUTHORIZATION A1;

GRANT privilege_name ON object_name

TO {user_name [PUBLIC |role_name} [WITH GRANT OPTION];

For eg:

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION;

GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2

The REVOKE command removes user access rights or privileges to the database objects.

The Syntax for the REVOKE command is:

REVOKE privilege_name ON object_name

FROM {user_name [PUBLIC |role_name}

REVOKE SELECT ON EMPLOYEE FROM A3

Privilege for Views

Suppose that Al wants to give back to A3 a limited capability to SELECT from the EMPLOYEE

relation and wants to allow A3 to be able to propagate the privilege. The limitation is to retrieve

only the NAME, BDATE, and ADDRESS attributes and only for the tuples with DNO=5.

Al then create the view:

CREATE VIEW A3EMPLOYEE AS

SELECT NAME, BDATE, ADDRESS

FROM EMPLOYEE

WHERE DNO = 5;

After the view is created, Al can grant SELECT on the view AZEMPLO YEE to A3 as follows:

GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

Mandatory Access Control and Role-Based Access Control for Multilevel Security

** The discretionary access control techniques of granting and revoking privileges on relations

has traditionally been the main security mechanism for relational database systems.

This is an all-or-nothing method: A user either has or does not have a certain privilege.

In many applications, and additional security policy is needed that classifies data and users based

on security classes. This approach as mandatory access control, would typically be combined

with the discretionary access control mechanisms.

Typical security classes are

Top secret (TS), secret (S), confidential (C), and unclassified (U), where TS is the highest level

and U the lowest:

TS2S2ceu

The commonly used model for multilevel security, known as the Bell-LaPadula model.

Classifies each subject (user, account, program) and object (relation, tuple, column, view,

operation) into one of the security classifications, T, S$, C, or U. Clearance (classification) of a

subject S as class(S) and to the classification of an object O as class(O).

Two restrictions are enforced on data access based on the subject/object classifications:

1. A subject S is not allowed read access to an object O unless class(S) = class(O). This is

known as the simple security property.

2. A subject S is not allowed to write an object O unless class(S) < class(O). This known as the

star property (or * property).

3. To incorporate multilevel security notions into the relational database model, it is common to

consider attribute values and tuples as data objects. Hence, each attribute A is associated with a

classification attribute C in the schema, and each attribute value in a tuple is associated with a

corresponding security classification.

4. In addition, in some models, a tuple classification attribute TC is added to the relation

attributes to provide a classification for each tuple as a whole. Hence, a multilevel relation

schema R with n attributes would be represented as R(A1,C1,A2,C2, ..., An,Cn,TC)

where each Ci represents the classification attribute associated with attribute Ai.

The value of the TC attribute in each tuple t — which is the highest of all attribute classification

values within t — provides a general classification for the tuple itself, whereas each Ci provides a

finer security classification for each attribute value within the tuple.

A multilevel relation will appear to contain different data to subjects (users) with different

clearance levels.

In some cases, it is possible to store a single tuple in the relation at a higher classification level

and produce the corresponding tuples at a lower-level classification through a process known as

filtering.

In general, the entity integrity rule for multilevel relations states that all attributes that are

members of the apparent key must not be null and must have the same security classification

within each individual tuple.

Comparing Discretionary Access Control and Mandatory Access Control

* Discretionary Access Control (DAC) policies are characterized by a high degree of flexibility,

which makes them suitable for a large variety of application domains.

¢ The main drawback of DAC models is their vulnerability to malicious attacks, such as Trojan

horses embedded in application programs.

¢ By contrast, mandatory policies ensure a high degree of protection in a way, they prevent any

illegal flow of information.

* Mandatory policies have the drawback of being too rigid and they are only applicable in limited

environments.

* In many practical situations, discretionary policies are preferred because they offer a better

trade-off between security and applicability.

Role-Based Access Control

Role-based access control (RBAC) emerged rapidly in the 1990s as a proven technology for

managing and enforcing security in large-scale enterprisewide systems. Its basic notion is that

permissions are associated with roles, and users are assigned to appropriate roles. Roles can be

created using the CREATE ROLE and DESTROY ROLE commands.

The GRANT and REVOKE commands discussed under DAC can then be used to assign and

revoke privileges from roles.

CREATE ROLE role_name [WITH ADMIN {CURRENT_USER | CURRENT_ROLE}]

With the above syntax, a role with role_name is created and immediately assigned to the current

user or the currently active role is passed on to other users. The default usage is WITH ADMIN

CURRENT_USER.

* RBAC appears to be a viable alternative to traditional discretionary and mandatory access

controls; it ensures that only authorized users are given access to certain data or resources.

* Many DBMSs have allowed the concept of roles, where privileges can be assigned to roles.

* Role hierarchy in RBAC is a natural way of organizing roles to reflect the organization’s lines

of authority and responsibility.

¢ Another important consideration in RBAC systems is the possible temporal constraints that

may exist on roles, such as time and duration of role activations, and timed triggering of a role by

an activation of another role.

¢ Using an RBAC model is highly desirable goal for addressing the key security requirements of

Web-based applications.

In contrast, discretionary access control (DAC) and mandatory access control (MAC) models

lack capabilities needed to support the security requirements emerging enterprises and Web-

based applications.

An Overview of Three-Tier Client/Server Architecture

Division of DBMS functionality among the three tiers can vary

tteer intertace or presentation tier

(VVeb browser, HTML, JavaScript, Visual Basic,

+

HTT Protocol

+
Application server

>

Client

)

APPHCATION (business) logic tier

{Application program, JAVA, C/C++, CH, .

x

ODdDBacC, IDSC, SAaLY/CLI, SQL

¥
Database server

Query and transaction processing tier

(Database access, SQL, PSM, XML... -)

Fig 4.11 Three Tier Client Server Architecture

Case Study/Debate — Railway

Reservation System

RAILWAY RESEVATION SYSTEM

PROBLEM STATEMENT

A software has to be developed for automating the manual railway
reservation system, ‘The system should have distributed fiunctionalities as
described below: -

1. RESERVE SEAT. A passenger should be able to reserve # seat in the train

specified by him if available. For this he has to fill a reservation form with the
details about his journey. The clerk checks for the avnilability of the seat in the
train and if the seat is available then he makes entries regarding train name,
train number, date of journey, boarding station, destination. The passenger is
the asked to pay the fair After making payment the passenger can collect the
ticket from the clerk.

2. CANCEL RESERVATION -There may arise a case when the
passenger warts to cancel his reservation .For this he has to fill a
cancellation form providing all the details about the ticket reserved by
his. The clerk then checks for the entnes from the database and cancels
the reservation finally returning the ticket amount with <ome deduction

3. UPDATE TRAIN INFORMATION &® REPORT GENERATION :- Only
the Administrator has the right to make changes in train details(train
mame, traim mo. ete.).The system should also be able to generate report
when needed in the form of reservation charts , train schedule charts ete.

4. LOGIN Only the user with specified login id & password can get
mcecess to the system. This provides sccurity from unauthonzed necess.

s. VIEW RESERVATION STATUS & TRAIN SCHEDULE AIl the users
should be able to see the information about the reservation status & train
schedule. train name, train number ete.

2e20t 333

 Check Availability

Cancel Ticket

Fig 4.12 Customer Activities

Wweins

en hee ae ree rye

N

Customers Tews tee beter
Mana ae me ne Min ren epee reve rt

Raltlway Ticket
Reservation

System

Booking ss enre
Mie re oe ree ne Management

Btotions
PUL en ren pen rename

| Zere Level OFfpo . KRallway Ticket KReservation System |

Fig. 4.13(a). DFD - Railway Reservation System

| Admin [>

y

Manage Train Details

Manage Booking Details

Forgot
Paesaword

 Manage Cancelled Train Detalis

Manage Payment Details

Manage Train Shedule Details

Manage Report |

seasape nyenim nreias | Tinsegs naman aeueax | [seomspe tear raraearen'|

 | Second Level DFD - Railway Reservation System |

Fig. 4.13(b). DFD - Railway Reservation System

(=)
~~

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT — V- Database Management Systems — SCSA1301

IV. Object Database and Current Trends

Concepts for Object Database - Emerging Database Technologies and Application -

Introduction to Data warehousing & Data mining —Applications of Data mining.

Object Oriented DBMS Concepts

Relational DBMSs support a small, fixed collection of data types (e.g. integer, dates, string,

etc.) which has proven adequate for traditional application domains such as administrative

and business data processing. RDBMSs support very high-level queries, query optimization,

transactions, backup and crash recovery, etc.

However, many other application domains need complex kinds of data such as CAD/CAM,

multimedia repositories, and document management. To support such applications, DBMSs

must support complex data types.

Object-oriented strongly influenced efforts to enhance database support for complex data and

led to the development of object- database systems.

Object-database systems have developed along two distinct paths:

Object-Oriented Database Systems. The approach is heavily influenced by OO

programming languages and can be understood as an attempt to add DBMS functionality to a

programming language environment. The Object Database Management Group (ODMG) has

developed a standard Object Data Model (ODM) and Object Query Language (OQL), which

are the equivalent of the SQL standard for relational database systems.

Object-Relational Database Systems. ORDB systems can be thought of as an attempt to

extend relational database systems with the functionality necessary to support a broader class

of application domains, provide a bridge between the relational and object-oriented

paradigms. This approach attempts to get the best of both

Object and Class

A conceptual entity is anything that exists and can be distinctly identified.

F.g. a person, an employee, a car, a part

In an OO system, all conceptual entities are modeled as objects.

= An object has structural properties defined by a finite set of attributes and behavioural

properties defined by a finite set of methods.

Each object is associated with a logical non-reusable and unique object identifier

(OID).

The OID of an object is independent of the values of its attributes.

All objects with the same set of attributes and methods are grouped into a class, and

form instances of that class.

Classes are classified as lexical classes and non-lexical classes.

A lexical class contains objects that can be directly represented by their values.

E.g. integer, string.

A non-lexical class contains objects, each of which is represented by a

set of attributes and methods.

Instances of a non-lexical class are referred to by their OIDs.

E.g. PERSON, EMPLOYEE, PART are non-lexical

classes.

In some OO systems, a class is treated as an object also, and therefore processes its own

attributes and methods. These properties are called class attributes and class

methods.(Similar to static fields or class variables in Java)

Aclass EMPLOYEE can have class attributes called NO_of_ EMPLOYEES which

holds a count of the number of employee instances in the class, and NEXT_ENO

which holds the employee number of the next new employee.

The class EMPLOYEE can have a class method called NEW which is used to construct

new instances of the class.

Attribute

The domain of an attribute of a non-lexical class A can be one of the following:

Case (a): a lexical class such as integer, string. An attribute with this domain is called a data-

valued attribute.

Case (b): a non-lexical class B. An attribute with this domain is called an entity-valued

attribute.

v¥ Note the recursive nature of this definition.

v¥ There is an implicit binary relationship between attributes A andB.

¥ The value of the attribute A is the OID of an instance of B, which must exist before it

can be assigned to the attribute.This provides referential integrity.

Case (c): a set, set(E), where E is either a lexical class or a non-lexical class. An attribute

with this domain is called a set-valued attribute.

¥ If E is lexical, values from E are stored in the set.

Y If E is non-lexical, members of the set can either be an instance of E or its

subclasses. In this case, the set comprises instances from possibly heterogeneous

classes. Only OID of each instance is stored in the set.

Method

A method of an object is invoked by sending a message (which is normally the method

name) to the object. Sucha message-passing mechanism represents a binary

interaction between the sender of the message and the recipient.

¥ A method’s specification is represented by a method signature, which

provides the method name and information on the types of the method’s

input parameters and its results.

¥ The implementation of the method is separated from the specification. This

provide some degrees of data independence.

Methods play an important role in defining object semantics.

E.g.When an employee is fired, we need to delete the employee information from the

employee file, delete the employee from the employee-project file, and insert the

employee information into a history file, etc.

One methd called “Fire-employee” can be defined that incorporates this sequence of

actions.

Class Hierarchy

Given 2 classes X and Y, X ISA Y means that each instance of X is also an instance of Y. We

call X a subclass of Y and Y a superclass of X.

E.g. Manger isa Employee

A class hierarchy provides an inheritance mechanism which allows a class to inherit

properties (attributes and methods) from its superclasses.

In single inheritance systems, a class can have at most one direct superclass and therefore

can only inherit from that superclass.

The class hierarchy forms a tree.

In multiple inheritance systems, a class can have more than one direct

superclass.

The class hierarchy is a lattice.

Note: In multiple inheritance systems, a class may inherit properties and methods from

different super classes and therefore may have inheritance conflicts.

Extensibility

Extensibility is another important feature of the OO paradigm. It allows the creation of new

data types, i.e. user-defined types, and operations on these new data types from built-in atomic

data types and user defined data types using the type constructor.

A type constructor is a mechanism for building new domains.

A complex object is built using type constructors such as sets, tuples, lists and nested

combinations.

A combination of an user-defined type and its associated methods is called an abstract data type

(ADT).

Object Oriented Concepts

v¥ Abstract Data Types

o Class definition, provides extension to complex attribute types

¥ Encapsulation

© Implementation of operations and object structure hidden

v Inheritance

o Sharing of data within hierarchy scope, supports code reusability

¥ Polymorphism

o Operator overloading

Encapsulation of Operations, Methods, and Persistence

= Specifying Object Behavior via Class Operations:

¥ The main idea is to define the behavior of a type of object based on the operations

that can be externally applied to objects of that type.

¥ In general, the implementation of an operation can be specified in a general-

purpose programming language that provides flexibility and power in defining the

operations.

¥ For database applications, the requirement that all objects be completely

encapsulated is too stringent.

Specifying Object Persistence via Narning

and Reachability:

Naming Mechanism:
ASSIGN an object & unique persistent name

threugh which it can be retrieved by this and

other programs.

Reachability Mechanism:

Make the object reachable from sore

persistent object.

An abject B is said to be reachable from an

ohject Kifa sequence of references in the

object graph lead from object 4 to object B.

Type and Class Hierarchies and Inheritance

Type (class) Hierarchy

A type in its simplest form can be defined by giving it a type name and then listing the names

of its visible (public) functions

When specifying a type in this section, we use the following format, which does not specify

arguments of functions, to simplify the discussion:

TYPE_NAME: function, function, ..., function

Example:

PERSON: Name, Address, Birthdate, Age, SSN

Subtype:

When the designer or user must create a new type that is similar but not identical to an

already defined type

Supertype:

It inherits all the functions of the subtype

Example (1):

PERSON: Name, Address, Birthdate, Age, P-ID

EMPLOYEE: Name, Address, Birthdate, Age, P-ID, Salary, HireDate, Seniority

STUDENT: Name, Address, Birthdate, Age, P-ID, Major, GPA

OR:

EMPLOYEE subtype-of PERSON: Salary, HireDate, Seniority

STUDENT subtype-of PERSON: Major, GPA

Manufacturer | Item Person Facility

ee | |

Employee Warehouse Store

Manager Clerk Secretary Cashier Stocker

Fig. 5.1 Class Hierarchy For The EDLP Retail Corporation

Type and Class Hierarchies and Inheritance

Extents:

In most OO databases, the collection of objects in an extent has the same type or class.

However, since the majority of OO databases support types, we assume that extents are

collections of objects of the same type for the remainder of this section.

Persistent Collection:

This holds a collection of objects that is stored permanently in the database and hence can

be accessed and shared by multiple programs

Transient Collection:

This exists temporarily during the execution of a program but is not kept when the program

terminates

Other Objected-Oriented Concepts

¢ Polymorphism (Operator Overloading):

e This concept allows the same operator name or symbol to be bound to two or

more different implementations of the operator, depending on the type of

objects to which the operator is applied

e For example + can be:

e Addition in integers

e Concatenation in strings (of characters)

Complex Objects

© Unstructured complex object:

e These is provided by a DBMS and permits the storage and retrieval of large objects

that are needed by the database application.

e Typical examples of such objects are bitmap images and long text strings (such as

documents); they are also known as binary large objects, or BLOBs for short.

e This has been the standard way by which Relational DBMSs have dealt with

supporting complex objects, leaving the operations on those objects outside the

RDBMS.

Structured complex object:

This differs from an unstructured complex object in that the object’s structure is defined by

repeated application of the type constructors provided by the OODBMS. Hence, the object

structure is defined and known to the OODBMS.The OODBMS also defines methods or

operations on it.

COMPLEX OBJECT

map object

tuple object

Primitive objec

set object

Fig. 5.2 Complex Object

What is Object Oriented Database? (OODB)

e A database system that incorporates all the important object-oriented concepts

e Some additional features

® Unique Object identifiers

e Persistent object handling

Advantages

e Designer can specify the structure of objects and their behavior (methods)

e Better interaction with object-oriented languages such as Java and C++

e Definition of complex and user-defined types

e Encapsulation of operations and user-defined methods

Disadvantages

e Lack of theoretical foundation.

e Lack of standard ad hoc query language.

e Lack of business data design and management tools.

e Lack of resources.

Object Query Language(OQL)

e Declarative query language

e Not computationally complete

e Syntax based on SQL (select, from, where)

e Additional flexibility (queries with user defined operators and types)

The following is a sample query

“what are the names of the black product?”

Select distinct p.name

From products p

Where p.color = “black”

e Valid in both SQL and OQL, but results are different

Product no Name Color

Pl Ford Mustang Black

P2 Toyota Celica Green

P3 Mercedes SLK Black

Result of the query(SQL-Returns table with rows)

Name

Ford Mustang

Mercedes SLK

Result-OQL

i
}
—
.

String String

Ford Mustang Mercedes SLK

- The statement queries a

object-oriented database

=> Returns a collection of

objects.

OOL SOL

Object

Tuple

Collection of objects |Table

Emerging Database Technologies and Application

e Mobile Databases

e Multimedia Databases

¢ Geographic Information Systems

¢ GENOME Data Management

1. Mobile Databases

¥ Recent advances in portable and wireless technology led to mobile computing, a new

dimension in data communication and processing.

¥ Portable computing devices coupled with wireless communications allow clients to

access data from virtually anywhere and at any time.

¥ There are a number of hardware and software problems that must be resolved before

the capabilities of mobile computing can be fully utilized.

¥ Some of the software problems — which may involve data management, transaction

management, and database recovery — have their origins in distributed database

systems.

In mobile computing, the problems are more difficult, mainly:

¥ The limited and intermittent connectivity afforded by wireless communications.

¥ The limited life of the power supply (battery).

v¥ The changing topology of the network.

¥ In addition, mobile computing introduces new architectural possibilities and

challenges.

e-

® Bh © |: , e ‘S” @%e

| vos ‘

Higheepeed wired network

=

=| hia

e * @. % =
e°,

Figure 5.3 Mobile Computing Architecture

2. Multimedia Databases

In the years ahead multimedia information systems are expected to dominate our daily

lives.

¥ Our houses will be wired for bandwidth to handle interactive multimedia

applications.

¥ Our high-definition TV/computer workstations will have access to a large

number of databases, including digital libraries, image and video databases

that will distribute vast amounts of multisource multimedia content.

Types of multimedia data are available in current systems

¥ Text: May be formatted or unformatted. For ease of parsing structured documents,

standards like SGML and variations such as HTML are being used.

¥ Graphics: Examples include drawings and illustrations that are encoded using some

descriptive standards (e.g. CGM, PICT, postscript).

xq
 Images: Includes drawings, photographs, and so forth, encoded in standard formats

such as bitmap, JPEG, and MPEG. Compression is built into JPEG and MPEG.

o These images are not subdivided into components. Hence querying them by

content (e.g., find all images containing circles) is nontrivial.

¥ Animations: Temporal sequences of image or graphic data.

¥ Video: A set of temporally sequenced photographic data for presentation at specified

rates— for example, 30 frames per second.

¥ Structured audio: A sequence of audio components comprising note, tone,

duration, and so forth

¥ Composite or mixed multimedia data: A combination of multimedia data types

such as audio and video which may be physically mixed to yield a new storage

format or logically mixed while retaining original types and formats. Composite data

also contains additional control information describing how the information should

be rendered

 sir) i
A del.icio.us ©" Rloaaer

Fig 5.4 Multimedia Data

Structured Data Unstructured Data

0103 0.176 0387 0300 0379

O333 0384 0564 OS87 0857
s

O421 0309 0454 0729 0228 i} al

0266 0750 1.056 0.936 0911

O225 0326 0643 9337 0721

0.187 OS586 0529 O30 0829

0.153 0485 0560 0428 0628

Fig 5.5 Structured and Unstructured Data

Applications based on their data management characteristics:

¥ Repository applications: A large amount of multimedia data as well as

metadata is stored for retrieval purposes. Examples include repositories of

satellite images, engineering drawings and designs, space photographs, and

radiology scanned pictures.

¥ Presentation applications: A large amount of applications involve delivery

of multimedia data subject to temporal constraints; simple multimedia

viewing of video data, for example, requires a system to simulate VCR-like

functionality.

¥ Collaborative work using multimedia information: This is a new category

of applications in which engineers may execute a complex design task by

merging drawings, fitting subjects to design constraints, and generating new

documentation, change notifications, and so forth. Intelligent healthcare

networks as well as telemedicine will involve doctors collaborating among

themselves, analyzing multimedia patient data and information in real time as

it is generated.

Multimedia Database Applications

¥ Large-scale applications of multimedia databases can be expected

encompasses a large number of disciplines and enhance existing

capabilities.

¥ Documents and records management

¥ Knowledge dissemination

¥ Education and training

¥ Marketing, advertising, retailing, entertainment, and travel

¥ Real-time control and monitoring

3. Geographic Information System

The scope of GIS broadly encompasses two types of data:

¥ Spatial data, originating from maps, digital images, administrative and

political boundaries, roads, transportation networks, physical data, such

as rivers, soil characteristics, climatic regions, land elevations, and

¥ Non-spatial data, such as socio-economic data (like census counts),

economic data, and sales or marketing information. GIS is a rapidly

developing domain that offers highly innovative approaches to meet

some challenging technical demands.

aU ely
GEOGRAPHIC INFORMATION SYSTEMS

Pa)

CSN ee

SOFTWARE SATELLITES

Fig 5.6 GIS

Categorization of GIS:

¢ Cartographic applications

e Digital terrain modelling applications

¢ Geographic objects applications

| Network Analysis

Incident Mapping Spatial Measurement

Watershed

Site Selection Analysis

Topographic Analysis

Fig 5.6 GIS Applications

GIS Applications

Digital Terrain Modeling Geographic Objects

Cartographic Applications Applications

Imigation t+———. Car navigation
Earth systems

Crop yield |: Geographic
analysis Civil engineering and market analysis
Land military evaluation

Evaluation . -—— Utility
Planning and Soil Surveys distribution and

Facilities Air and water consumption

management pollution studies Consumer product
Landscape and services —
studies | ____- Floed Control economic analysis

| ___—Traffic pattern Water resource
analysis management

Data Warehousing

Introduction

A data warehouse is constructed by integrating data from multiple heterogeneous

sources. It supports analytical reporting, structured and/or ad hoc queries and decision

making. This tutorial adopts a step-by-step approach to explain all the necessary

concepts of data warehousing. The term "Data Warehouse” was first coined by Bill

Inmon in 1990.

According to Inmon, a data warehouse is a subject oriented, integrated, time-variant, and

non- volatile collection of data. This data helps analysts to take informed decisions in an

organization. An operational database undergoes frequent changes on a daily basis on

account of the transactions that take place. Suppose a business executive wants to

analyze previous feedback on any data such as a product, a supplier, or any consumer

data, then the executive will have no data available to analyze because the previous data

has been updated due to transactions. A data warehouses provides us generalized and

consolidated data in multidimensional view. Along with generalized and consolidated

view of data, a data warehouses also provides us Online Analytical Processing (OLAP)

tools. These tools help us in interactive and effective analysis of data in a

multidimensional space. This analysis results in data generalization and data mining.

Data mining functions such as association, clustering, classification, prediction can be

integrated with OLAP operations to enhance the interactive mining of knowledge at

multiple level of abstraction. That's why data warehouse has now become an important

platform for data analysis and online analytical processing.

Understanding a Data Warehouse

e A data warehouse is a database, which is kept separate from the organization's

operational database.

e There is no frequent updating done in a data warehouse.

e It possesses consolidated historical data, which helps the organization to analyze

its business.

e A data warehouse helps executives to organize, understand, and use their data to

take strategicdecisions.

e Data warehouse systems help in the integration of diversity of application systems.

e A data warehouse system helps in consolidated historical data analysis.

Why a Data Warehouse is Separated from Operational Databases

A data warehouses is kept separate from operational databases due to the following

reasons:

e An operational database is constructed for well-known tasks and workloads such

as searching particular records, indexing, etc. In contract, data warehouse queries

are often complex and they present a general form of data.

e Operational databases support concurrent processing of multiple transactions.

Concurrency control and recovery mechanisms are required for operational

databases to ensure robustness and consistency of the database.

e An operational database query allows to read and modify operations, while an

OLAP query needs only read only access of stored data.

e An operational database maintains current data. On the other hand, a data

warehouse maintains historical data.

Data Warehouse Features

The key features of a data warehouse are discussed below:

e Subject Oriented - A data warehouse is subject oriented because it provides

information around a subject rather than the organization’s ongoing operations.

These subjects can be product, customers, suppliers, sales, revenue, etc. A data

warehouse does not focus on the ongoing operations; rather it focuses on

modelling and analysis of data for decision making.

e Integrated - A data warehouse is constructed by integrating data from

heterogeneous sources such as relational databases, flat files, etc. This integration

enhances the effective analysis of data.

e Time Variant - The data collected in a data warehouse is identified with a

particular time period. The data in a data warehouse provides information from

the historical point of view.

Non-volatile - Non-volatile means the previous data is not erased when new data is

added to it. A data warehouse is kept separate from the operational database and

therefore frequent changes in operational database is not reflected in the data warehouse.

Note: A data warehouse does not require transaction processing, recovery, and

concurrency controls, because it is physically stored and separate from the operational

database.

Data Warehouse Applications - As discussed before, a data warehouse helps business

executives to organize, analyze, and use their data for decision making. A data warehouse

serves as a sole part of a plan-execute-assess "closed-loop" feedback system for the

enterprise management. Data warehouses are widely used in the following fields:

|e

—.

Financial services

Banking services

Consumer goods

Retail sectors

Controlled manufacturing

Types of Data Warehouse

ehouse applications that are discussed below:

i processing, analytical processing, and data mining are the three types of data

Information Processing - A data warehouse allows to process the data stored in it.

The data can be processed by means of querying, basic statistical analysis,

reporting using crosstabs, tables, charts, or graphs.

Analytical Processing - A data warehouse supports analytical processing of the

information stored in it. The data can be analyzed by means of basic OLAP

operations, including slice-and-dice, drill down, drill up, and pivoting.

Data Mining - Data mining supports knowledge discovery by finding hidden

patterns and associations, constructing analytical models, performing classification

and prediction. These mining results can be presented using the visualization tools.

No. [Data Warehouse (OLAP) |Operational Database(OLTP)

It involves historical processing of
1 |i. :

information.
It involves day-to-day processing.

OLAP systems are used by knowledge
ee sae -JOLTP systems are used by clerks, DBAs, or

2 |lworkers such as executives, managers,
database professionals.

and analysts.

3 [tt is used to analyze the business. {It is used to run the business. |

4 [tt focuses on Information out. {It focuses on Data in.

It is based on Star Schema, Snowflake
5 |[Schema, and Fact Constellation}[t is based on Entity Relationship Model.

Schema.

(6 Itt focuses on Information out. [It is application oriented. |

7 [It contains historical data. [It contains current data. |

It provides = summarized —_and aia caer aay.
8 acuta dati, It provides primitive and highly detailed data.

9 i ; peayiee seman oo It provides detailed and flat relational view of data.
multidimensional view of data.

(10 [[The number of users is in hundreds. |The number of users is in thousands. |

ll pe sate OF OEE: ACSIA: 38 The number of records accessed is in tens.
millions.

12. [pe database size is from 1O0GB t0 100) The database size is from 100 MB to 100 GB.

(13 [[These are highly flexible. [It provides high performance. |

Data Mining

Data mining (sometimes called data or knowledge discovery) is the process of analyzing

data from different perspectives and summarizing it into useful information - information

that can be used to increase revenue, cuts costs, or both. Data mining software is one of a

number of analytical tools for analyzing data. It allows users to analyze data from many

different dimensions or angles, categorize it, and summarize the relationships identified.

Technically, data mining is the process of finding correlations or patterns among dozens

of fields in large relational databases.

Data Mining is defined as extracting information from huge sets of data. In other words,

we can say that data mining is the procedure of mining knowledge from data. The

information or knowledge extracted so can be used for any of the following applications —

Market Analysis

Fraud Detection

Customer Retention

Production Control

a
40

0
4

4

Science Exploration

Data Mining Applications

Data mining is highly useful in the following domains —

[| Market Analysis and Management

[| Corporate Analysis &Risk Management

[1 FraudDetection

Apart from these, data mining can also be used in the areas of production control, customer

retention, science exploration, sports, astrology, and Internet Web Surf- Aid.

Market Analysis and Management

Listed below are the various fields of market where data mining is used —

[| Customer Profiling — Data mining helps determine what kind of people buy what

kind ofproducts.

[| Identifying Customer Requirements — Data mining helps in identifying the best

products for different customers. It uses prediction to find the factors that may

attract new customers.

[| Cross Market Analysis — Data mining performs association/correlations between

productsales.

[| Target Marketing — Data mining helps to find clusters of model customers who

share the same characteristics such as interests, spending habits, income,etc.

| Determining Customer purchasing pattern — Data mining helps in determining

customer purchasingpattern.

[| Providing Summary Information -— Data mining provides us various

multidimensional summaryreports.

Corporate Analysis and RiskManagement

Data mining is used in the following fields of the Corporate Sector—

[| Finance Planning and Asset Evaluation — It involves cash flow analysis and

prediction, contingent claim analysis to evaluate assets.

[| Resource Planning — It involves summarizing and comparing the resources and

spending.

(|) Competition — It involves monitoring competitors and marketdirections.

Fraud Detection

Data mining is also used in the fields of credit card services and telecommunication to

detect frauds. In fraud telephone calls, it helps to find the destination of the call, duration of

the call, time of the day or week, etc. It also analyzes the patterns that deviate from

expected norms.

Knowledge discovery in databases (KDD)

Knowledge discovery in databases (KDD) is the process of discovering useful knowledge

from a collection of data. This widely used data mining technique is a process that includes

data preparation and selection, data cleansing, incorporating prior knowledge on data sets

and interpreting accurate solutions from the observed results.

Here is the list of steps involved in the knowledge discovery process —

’

Evaluation ; nn
Y ans +

' & Presentation SLRS

Data

Mining a

' Lt iii a ¢ UT
Selection & ox pattem

Transformation)
‘

: -

oe “4 ”
Chaning & dats A

Integration wazelouse

\ d |

dat bases

Fig. 5.7 Data Mining as a process of knowledge discovery

Data Cleaning — In this step, the noise and inconsistent data isremoved.

[| Data Integration — In this step, multiple data sources arecombined.

(| Data Selection — In this step, data relevant to the analysis task are retrieved

from the database.

(| Data Transformation — In this step, data is transformed or consolidated

intoforms appropriate for mining by performing summary or

aggregationoperations.

[| Data Mining — Inthis step, intelligent methods are applied in order to

extract data patterns.

O Pattern Evaluation — In this step, data patterns areevaluated.

[| Knowledge Presentation — Inthis step, knowledge isrepresented.

Data Mining Applications

Here is the list of areas where data mining is widely used —

e Financial Data Analysis

e Retail Industry

e Telecommunication Industry

e Biological Data Analysis

e Other Scientific Applications

e Intrusion Detection

Financial Data Analysis

The financial data in banking and financial industry is generally reliable and of high quality

which facilitates systematic data analysis and data mining. Some of the typical cases are as

follows —

e Design and construction of data warehouses for multidimensional data analysis and

data mining.

e Loan payment prediction and customer credit policy analysis.

e Classification and clustering of customers for targeted marketing.

e Detection of money laundering and other financial crimes.

Retail Industry

Data Mining has its great application in Retail Industry because it collects large amount of

data from on sales, customer purchasing history, goods transportation, consumption and

services. It is natural that the quantity of data collected will continue to expand rapidly

because of the increasing ease, availability and popularity of the web.

Data mining in retail industry helps in identifying customer buying patterns and trends that

lead to improved quality of customer service and good customer retention and satisfaction.

Here is the list of examples of data mining in the retail industry

e Design and Construction of data warehouses based on the benefits of data mining.

e Multidimensional analysis of sales, customers, products, time and region.

e Analysis of effectiveness of sales campaigns.

e Customer Retention.

e Product recommendation and cross-referencing of items.

Telecommunication Industry

Today the telecommunication industry is one of the most emerging industries providing

various services such as fax, pager, cellular phone, internet messenger, images, e-mail, web

data transmission, etc. Due to the development of new computer and communication

technologies, the telecommunication industry is rapidly expanding. This is the reason why

data mining is become very important to help and understand the business.

Data mining in telecommunication industry helps in identifying the telecommunication

patterns, catch fraudulent activities, make better use of resource, and improve quality of

service. Here is the list of examples for which data mining improves telecommunication

services —

e Multidimensional Analysis of Telecommunication data.

e Fraudulent pattern analysis.

e Identification of unusual patterns.

e Multidimensional association and sequential patterns analysis.

e Mobile Telecommunication services.

e Use of visualization tools in telecommunication data analysis.

Biological Data Analysis

In recent times, we have seen a tremendous growth in the field of biology such as

genomics, proteomics, functional Genomics and biomedical research. Biological data

mining is a very important part of Bioinformatics. Following are the aspects in which data

mining contributes for biological data analysis —

e Semantic integration of heterogeneous, distributed genomic and proteomic

databases.

e Alignment, indexing, similarity search and comparative analysis multiple nucleotide

sequences.

e Discovery of structural patterns and analysis of genetic networks and protein

pathways.

e Association and path analysis.

e Visualization tools in genetic data analysis.

Other Scientific Applications

The applications discussed above tend to handle relatively small and homogeneous data

sets for which the statistical techniques are appropriate. Huge amount of data have been

collected from scientific domains such as geosciences, astronomy, etc. A large amount of

data sets is being generated because of the fast numerical simulations in various fields such

as climate and ecosystem modeling, chemical engineering, fluid dynamics, etc. Following

are the applications of data mining in the field of Scientific Applications —

e Data Warehouses and data preprocessing.

e Graph-based mining.

e Visualization and domain specific knowledge.

Intrusion Detection

Intrusion refers to any kind of action that threatens integrity, confidentiality, or the

availability of network resources. In this world of connectivity, security has become the

major issue. With increased usage of internet and availability of the tools and tricks for

intruding and attacking network prompted intrusion detection to become a critical

component of network administration. Here is the list of areas in which data mining

technology may be applied for intrusion detection —

e Development of data mining algorithm for intrusion detection.

e Association and correlation analysis, aggregation to help select and build

discriminating attributes.

e Analysis of Stream data.

e Distributed data mining.

e Visualization and query tools.

Trends in Data Mining

Data mining concepts are still evolving and here are the latest trends that we get to see in

this field —

e Application Exploration.

e Scalable and interactive data mining methods.

e Integration of data mining with database systems, data warehouse systems and web

database systems.

e Standardization of data mining query language.

Visual data mining.

New methods for mining complex types of data.

Biological data mining.

Data mining and software engineering.

Web mining.

Distributed data mining.

Real time data mining.

Multi database data mining.

Privacy protection and information security in data mining.

