
Searching and Sorting Techniques

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND INSTRUMENTAION ENGINEERING

UNIT III – SCSA1206 – C AND DATA STRUCTURES

Searching and Sorting Techniques

2

UNIT – III

SEARCHING AND SORTING TECHNIQUES

SEARCHING:

• Searching algorithms are designed to check whether an element is present or not from

any data structure where it is stored.

• Given, group of elements as and key element to be searched as input, any searching

algorithm technique gives the position of the key element as the output.

• They are categorized into two types,

Fig. 3.1 Categorizes of Searching Algorithm

LINEAR SEARCH:

• Linear search is one of the sequential search algorithms, where the search starts from

one end of the array and the target element is searched by comparing it with all the

elements of array one by one in a sequence.

Working Steps:

1. Traverse the whole array using for loop

2. During every iteration, compare the target value with current value of the array

element

2.1 If the value matches, return the current index of the array.

2.2 If the value doesn’t match, move onto the next array element.

3. If no match is found return -1.

Algorithm linearsearch (arr [], target)

1. declare arr[], target variable.

− The array is traversed

sequentially.

− Eg. Linear Search

− Designed for searching

in sorted arrays.

− Eg. Binary search

Searching and Sorting Techniques

3

2. for i = 0 to n-1

3. if arr[i]==target

4. return i

5. return -1

6. end

Working of Algorithm:

 Example array:

 arr[0] arr[1] arr[2] arr[3] arr[4] arr[5]

55 44 11 22 99 77

 target =99

Table 3.1 Working of Linear Search Algorithm

i arr [i]==target? Condition Satisfied?

0 Check if 55==99 No

1 Check if 44==99 No

2 Check if 11==99 No

3 Check if 22==99 No

4 Check if 99==99 Yes

Advantage:

• Very simple and easy to implement.

Disadvantage:

• Consumes more time and space when compared with other searching algorithms.

Time Complexity:

• O(n) – n no. of comparisons is made to find the nth element.

BINARY SEARCH:

Binary Search is a searching algorithm that is used to search an element in a sorted array.

It consumes less amount of time to search the element when compared with linear search.

Steps:

1. Find the mid element of the array using mid formula.

a. If the target value is equal to middle element of the array return its index.

Searching and Sorting Techniques

4

b. If not compare the mid element with target element.

i. If the target value is greater than the number in middle index, pick elements

from the right-side part of the array and start from step 1

ii. If the target value is less than the number in middle index then pick elements

from the left side part of the array and start from step 1

2. When the match is found, return the index of the corresponding element.

3. If not, return -1.

Algorithm binary search (arr [], target)

1. declare variables low, high, target //low=starting index, high=ending index

2. while low<high

3. mid = (low+high)/2

4. if arr[mid]<target

5. low = mid+1

6. else if arr[mid]>target

7. high = mid-1

8. else

9. return mid

10. return -1

Working of Algorithm:

Example array:

 arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6]

55 44 11 22 99 77 111

target =99

Table 3.2 Working of Binary Search Algorithm

While low<high mid

Compare arr [mid]

and

target

low high

0<6 0+6/2 = 3 55<99 3 6

3<6 3+6/2 = 4 77<99 5 6

5<6 5+6/2 = 5 99==99 5 6

Advantage:

• Very fast and efficient when compared with other searching algorithms.

Searching and Sorting Techniques

5

Disadvantage:

• The array or list taken should already be sorted in order to perform binary search.

Time Complexity:

• O(logn) – since, to find the nth element only less than or equal to n/2 comparisons are

needed.

FIBONACCI SEARCH:

• Fibonacci Search Algorithm is a technique used to search an element in a sorted array.

• Here, array is searched by dividing it in terms of Fibonacci sequence numbers.

Algorithm fibonccisearch (arr [], target, n)

1. f0=0

2. f1=1

3. fm=f0+f1

4. offset=0

5. while fm<n

6. f0=f1

7. f1=fm

8. fm=f0+f1

9. while fm>0

10. i = min(offset+f0,fm)

11. if arr[i]<target

12. fm=f1

13. f1=f0

14. f0=fm-1

15. offset=i

16. else if arr[i]>target

17. fm=f1

18. f1=f0

19. f0=fm-1

20. else

21. return i

Working of Algorithm:

Example array:

 arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7] arr[8] arr[9] arr[10]

11 22 33 44 55 66 77 88 99 111

target =77, n=10, f0=0, f1=1, fm=1 First while loop while fm<n

Table 3.3 Working of Fibonacci Search Algorithm

f0 f1 fm
Condition

Satisfied?

0 1 1 1<10 Yes

Searching and Sorting Techniques

6

Table 3.4 Final Values

of Fibonacci Search Algorithm

f0 f1 fm Offset i
Compare arr [i] and

target

Condition

satisfied?

5 8 13 0 Min (5+0, 10) = 5 55<77 13>0 Yes

3 5 8 5 Min (5+3, 10) = 8 88>77 8>0 Yes

2 3 5 5 Min (5+2, 10) = 7 77==77 Return 7

Steps:

• Initial array’s size is 13. For easy explanation array’s index has been considered to start

from one.

• At the end of first while loop, the array is divided into two parts consisting of five and

eight elements each. (Fibonacci series number)

• And then the target element is compared with the last element of the array’s first part.

If it is lesser then the first array part is divided into two parts (based on Fibonacci

numbers again)

• If the target element is greater than the second part is again divided into two parts.

Whenever the target element and the array element become equal the particular position

is returned.

Advantage:

• Very fast and efficient when compared with other searching algorithms.

Disadvantage:

• The array or list taken should already be sorted in order to perform binary search.

Time Complexity:

• O(logn) – to find the nth element only less than or equal to n/2 comparisons are needed.

1 1 2 2<10 Yes

1 2 3 3<10 Yes

2 3 5 5<10 Yes

3 5 8 8<10 Yes

5 8 13 13<10 No

Searching and Sorting Techniques

7

SORTING:

• A sorting algorithm is used to re arrange a given array or list of elements according to

a comparison operator on the elements.

• The two major categories of sorting algorithms are

o Internal Sorting

▪ All the data that has to be sorted can be adjusted at a time in the main

memory

▪ Eg. Bubble sort, Heap Sort

o External Sorting

▪ Data that has to be sorted cannot be accommodated in the memory

at the same time ans=d some has to be kept in auxiliary memory

such as hard disk.

▪ Eg. External Merge Sort

• They are sub categorized into

Fig. 3.2 Categorizes of Sorting Algorithm

BUBBLE SORT:

• Bubble Sort is the simplest sorting algorithm that involves repeatedly swapping the

adjacent elements if they are not in the required order (ascending/descending)

• By swapping the adjacent elements, this technique bubbles out the largest element to

the end and hence it was named as bubble sort.

Searching and Sorting Techniques

8

Algorithm bubblesort (arr [], n)

1. for i=0 to n-1

2. for j=1 to n-1

3. if arr[j] < arr[j-1]

4. swap arr[j],arr[j-1]

5. return arr[]

Working of Algorithm:

Example array:

 arr[0] arr[1] arr[2] arr[3] arr[4]

Before Sorting

Table 3.5 Working of Bubble Sort Algorithm

i j arr[i] arr[j] Swap?

0 1 50 90 Yes

0 2 80 90 Yes

0 3 10 90 Yes

0 4 30 90 Yes

1 1 80 50 No

1 2 10 80 Yes

1 3 30 80 Yes

1 4 90 80 No

2 1 10 50 Yes

2 2 30 50 Yes

2 3 80 50 No

2 4 90 80 No

3 1 30 10 No

90 50 80 10 30

Searching and Sorting Techniques

9

3 2 50 30 No

3 3 80 50 No

3 4 90 80 No

4 1 30 10 No

4 2 50 30 No

4 3 80 50 No

4 4 90 80 No

 arr[0] arr[1] arr[2] arr[3] arr[4]

After Sorting

Advantage:

• Simplest sorting algorithm and very easy to implement.

Disadvantage:

• Too slow and impractical when array is large.

Time Complexity:

• O(n2) – two for loops runs n*n times totally.

INSERTION SORT:

• Insertion sort is a simple algorithm that builds the final sorted array one by one.

• The lower part of the array is always sorted and any element to be inserted in this sorted

sub array has to find its appropriate place to be inserted. And hence it’s named as

insertion sort.

Algorithm insertionsort (arr[], n, key, hole)

1. for i = 1 to n-1

2. key = arr[i]

3. hole=i

4. while hole>0 and arr[hole-1]>key

5. arr[hole] = arr[hole-1]

6. hole = hole-1

10 30 50 80 90

Searching and Sorting Techniques

10

7. arr[hole] = key

8. return arr[]

Working of Algorithm:

Example array:

 arr[0] arr[1] arr[2] arr[3] arr[4]

Before Sorting

Fig. 3.3 Working of Insertion Sort Algorithm

After Sorting

Advantage:

• Simple implementation and efficient for small datasets.

Disadvantage:

• Much less efficient for large datasets.

90 50 80 10 30

10 30 50 80 90

Searching and Sorting Techniques

11

Complexity:

• O(n2) – two loops run n*n times for n variables.

Divide and Conquer Strategy:

• Divide and Conquer is an algorithm design strategy that works by recursively breaking

down the given problem into two or more sub problems until it becomes to be solved

directly.

• Eg. Quick Sort, Merge Sort.

QUICK SORT:

• Quick Sort is an efficient sorting algorithm that uses divide and conquer technique to

sort the given set of elements in an array.

• It takes first/last element as pivot element and places the pivot element at its right place

by comparing it with other elements.

• It recursively divides the array after pivot element reaches its appropriate place and the

procedure is called again recursively for the remaining part of the array.

Algorithm Partition (arr[], start, end)

1. pivot = end

2. pindex = start

3. for i = start to n-2

4. if arr[i] < arr[pivot]

5. swap arr[i],arr[pindex]

6. pindex = pindex + 1

7. swap(arr[pivot],arr[pindex])

8. return pindex

Algorithm QuickSort (arr[],n,start,end)

1. if start<end

2. pindex = partition(arr[], start, end)

3. QuickSort(arr[], start, pindex-1)

4. QuickSort(arr[], pindex+1, end)

Working of Algorithm: Example array:

 arr[0] arr[1] arr[2] arr[3] arr[4] arr[5]

Before Sorting 55 45 5 75 15 25

Searching and Sorting Techniques

12

Fig. 3.4 Working of Quick Sort Algorithm

After Sorting

5 15 25 45 55 75

Searching and Sorting Techniques

13

• The above tree explains the function call order for the considered example. The shaded

number denotes the value of pindex after calling the partition sub routine.

Advantage:

• It is the most efficient sorting algorithm, when implemented well it can be three times

faster than merge sort.

Disadvantage:

• In worst case, the number of comparisons will be more.

Complexity:

• O(nlogn): with n comparisons in partition algorithm and using divide and conquer

strategy for recursive quicksort subroutine, the whole complexity sums to nlogn.

MERGE SORT:

• Merge Sort is a divide and conquer algorithm that recursively divides the array into sub

arrays, sort those separately and merges together to get the final sorted array.

• It uses two functions, one for dividing and the other for sorting and merging.

Algorithm MergeSort (arr[], i, j, mid)

1. if i<j

2. mid = i+j/2

3. MergeSort(arr[],i,mid)

4. MergeSort(arr[],mid+1,j)

5. Merge(arr[],i,mid,mid+1,j)

Algorithm Merge(arr[], i1, i2, j1, j2)

1. declare temp[50],i,j,k

2. i=i1,j=j2,k=0

3. while i<=j1 and j<=j2

4. if arr[i]<arr[j]

5. temp[k] = arr[i]

6. k++, i++

7. else

8. temp[k] = arr[j]

9. k++,j++

10. while i<=j1

11. temp[k] = arr[i]

Searching and Sorting Techniques

14

12. k++, i++

13. while j<=j2

14. temp[k] = arr[j]

15. k++, j++

16. move elements from temporary array to arr[i]

Algorithm Working:

Fig. 3.5 Working of Merge Sort Algorithm

Advantage:

• Efficient general-purpose algorithm.

Disadvantage:

• In some cases, its performance is less when compared to quicksort.

Complexity:

• O(nlogn) - with n comparisons in merge algorithm and using divide and conquer

strategy for recursive mergesort subroutine, the whole complexity sums to nlogn.

Searching and Sorting Techniques

15

HEAP SORT:

• Heap Sort is a comparison-based sorting algorithm that uses heap data structure rather

than linear time search to find the maximum.

• Here, the array elements are thought of as binary heap tree (where parent node is the

maximum at all levels of the tree) and elements are sorted by changing places.

Algorithm HeapSort (arr[], n)

1. for i = n/2 – 1 to 0

2. heapify(arr[],i,n)

3. for i = 0 to n-1

4. swap arr[0] and arr[n-1]

5. heapify(arr[],i,0)

Algorithm heapify (arr[], n, i)

1. largest = i

2. left = 2i+1

3. right = 2i+2

4. if left<n and arr[left] > arr[largest]

5. largest = left

6. else if right<n and arr[right] > arr[largest]

7. largest = right

8. if largest != i

9. swap arr[i] and arr[largest]

10. heapify(arr[],n,largest)

Algorithm Working:

Fig. 3.6 Construction of Max Heap

Searching and Sorting Techniques

16

After building max-heap, the elements in the array Arr will be:

Step 1: 8 is swapped with 5.

Step 2: 8 is disconnected from heap as 8 is in correct position now and.

Step 3: Max-heap is created and 7 is swapped with 3.

Step 4: 7 is disconnected from heap.

Step 5: Max heap is created and 5 is swapped with 1.

Step 6: 5 is disconnected from heap.

Step 7: Max heap is created and 4 is swapped with 3.

Step 8: 4 is disconnected from heap.

Step 9: Max heap is created and 3 is swapped with 1.

Step 10: 3 is disconnected.

Fig. 3.7 Working of Heap Sort Algorithm (Step 1 to Step 4)

Searching and Sorting Techniques

17

Fig. 3.6 Working of Heap Sort Algorithm (Step 5 to Step 10)

After all the steps, we will get a sorted array.

Fig. 3.7 Sorted Array of Heap Sort Algorithm

Advantage:

• Very efficient and has a favourable worst-case complexity.

Disadvantages:

• Somewhat slower in practice in most of the machines.

Complexity:

• O(nlogn)

Searching and Sorting Techniques

18

ANALYSIS OF SORTING TECHNIQUES:

• All the Sorting algorithms are used for single objective, to sort the elements in any

sequential order, but still there are so many different algorithms available for sorting.

• This is because of the fact that each sorting algorithm has its own advantage and

disadvantages, to overcome the disadvantage of the previous algorithm technique new

technique is invented each time.

• To measure the efficiency of the sorting algorithms, time and space complexity is

computed for each one separately.

• Time Complexity: total amount of time consumed to run the algorithm.

• Space Complexity: total amount of space computed by the algorithm.

• Since the space consumed might vary from machine to machine due to different

hardwares used, time complexity is usually preferred to check the efficiency of the

algorithm.

• The time complexity can be found for best case (input might be sorted already), average

case (input will have randomly distributed elements) and worst case (input will have

elements in reverse order)

Table 3.6 Analysis of Sorting Algorithms

Sorting Algorithm Best Case Average Case Worst Case

Bubble Sort O(n) O(n2) O(n2)

Insertion Sort O(n) O(n2) O(n2)

Quick Sort O(nlogn) O(nlogn) O(n2)

Merge Sort O(nlogn) O(nlogn) O(nlogn)

Heap Sort O(nlogn) O(nlogn) O(nlogn)

SHELL SORT:

• Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm.

This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to

the far right and has to be moved to the far left.

• This algorithm uses insertion sort on a widely spread elements, first to sort them and then

sorts the less widely spaced elements. This spacing is termed as interval. This interval is

calculated based on Knuth's formula as −

Knuth's Formula

• h = h * 3 + 1where − h is interval with initial alue 1

Searching and Sorting Techniques

19

• This algorithm is quite efficient for medium-sized data sets as its average and worst-case

complexity of this algorithm depends on the gap sequence the best known is Ο(n), where

n is the number of items. And the worst case space complexity is O(n).

Algorithm

• Following is the algorithm for shell sort.

o Step 1 − Initialize the value of h

o Step 2 − Divide the list into smaller sub-list of equal interval h

o Step 3 − Sort these sub-lists using insertion sort

o Step 3 − Repeat until complete list is sorted

Algorithm Working:

• Let us consider the following example to have an idea of how shell sort works. We take

the same array we have used in our previous examples. For our example and ease of

understanding, we take the interval of 4. Make a virtual sub-list of all values located at

the interval of 4 positions. Here these values are {35, 14}, {33, 19}, {42, 27} and {10,

44}

Fig. 3.8 Working of Shell Sort Algorithm

• We compare values in each sub-list and swap them (if necessary) in the original array.

After this step, the new array should look like this −

Searching and Sorting Techniques

20

• Then, we take interval of 1 and this gap generates two sub-lists - {14, 27, 35, 42}, {19,

10, 33, 44}

• We compare and swap the values, if required, in the original array. After this step, the

array should look like this −

• Finally, we sort the rest of the array using interval of value 1. Shell sort uses insertion

sort to sort the array.

• Following is the step-by-step depiction –

Searching and Sorting Techniques

21

• We see that it required only four swaps to sort the rest of the array.

SELECTION SORT:

• Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place

comparison-based algorithm in which the list is divided into two parts, the sorted part at

the left end and the unsorted part at the right end. Initially, the sorted part is empty and

the unsorted part is the entire list.

• The smallest element is selected from the unsorted array and swapped with the leftmost

element, and that element becomes a part of the sorted array. This process continues

moving unsorted array boundary by one element to the right.

• This algorithm is not suitable for large data sets as its average and worst-case

complexities are of Ο(n2), where n is the number of items.

Algorithm

• Step 1 − Set MIN to location 0

• Step 2 − Search the minimum element in the list

• Step 3 − Swap with value at location MIN

• Step 4 − Increment MIN to point to next element

• Step 5 − Repeat until list is sorted

How Selection Sort Works?

• Consider the following depicted array as an example.

Searching and Sorting Techniques

22

• For the first position in the sorted list, the whole list is scanned sequentially. The first

position where 14 is stored presently, we search the whole list and find that 10 is the

lowest value.

• So we replace 14 with 10. After one iteration 10, which happens to be the minimum value

in the list, appears in the first position of the sorted list.

• For the second position, where 33 is residing, we start scanning the rest of the list in a

linear manner.

• We find that 14 is the second lowest value in the list and it should appear at the second

place. We swap these values.

• After two iterations, two least values are positioned at the beginning in a sorted manner.

• The same process is applied to the rest of the items in the array. Following is a pictorial

depiction of the entire sorting process –

Searching and Sorting Techniques

23

Linear Data Structures

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT – IV – SCSA1206 – C AND DATA STRUCTURES

Linear Data Structures

2

UNIT IV

LINEAR DATA STRUCTURES

ABSTRACT DATA TYPES (ADTs)

• The Data Type is basically a type of data that can be used in different computer program.

It signifies the type like integer, float etc, the space like integer will take 4-bytes,

character will take 1-byte of space etc.

• The abstract datatype is special kind of datatype, whose behaviour is defined by a set

of values and set of operations.

• The keyword “Abstract” is used, we can perform different operations. The ADT is made

of with primitive datatypes, but operation logics are hidden.

• Some examples of ADT are Stack, Queue, List etc.

• Let us see some operations of those mentioned ADT −

o Stack −

▪ isFull(), This is used to check whether stack is full or not

▪ isEmpry(), This is used to check whether stack is empty or not

▪ push(x), This is used to push x into the stack

▪ pop(), This is used to delete one element from top of the stack

▪ peek(), This is used to get the top most element of the stack

▪ size(), this function is used to get number of elements present into the stack

o Queue −

▪ isFull(), This is used to check whether queue is full or not

▪ isEmpry(), This is used to check whether queue is empty or not

▪ insert(x), This is used to add x into the queue at the rear end

▪ delete(), This is used to delete one element from the front end of the queue

▪ size(), this function is used to get number of elements present into the queue

o List −

▪ size(), this function is used to get number of elements present into the list

▪ insert(x), this function is used to insert one element into the list

▪ remove(x), this function is used to remove given element from the list

▪ get(i), this function is used to get element at position i

▪ replace(x, y), this function is used to replace x with y value

Linear Data Structures

3

LIST ADT

• The data is generally stored in key sequence in a list which has a head structure

consisting of count, pointers and address of compare function needed to compare the

data in the list.

Fig. 4.1 Structure of a List ADT

• The data node contains the pointer to a data structure and a self-referential

pointer which points to the next node in the list.

//List ADT Type Definitions

typedef struct node

{

 void *DataPtr;

 struct node *link;

} Node;

typedef struct

{

 int count;

 Node *pos;

 Node *head;

 Node *rear;

 int (*compare) (void *argument1, void *argument2)

} LIST;

Linear Data Structures

4

• The List ADT Functions is given below:

o A list contains elements of the same type arranged in sequential order and following

operations can be performed on the list.

▪ get() – Return an element from the list at any given position.

▪ insert() – Insert an element at any position of the list.

▪ remove() – Remove the first occurrence of any element from a non-empty list.

▪ removeAt() – Remove the element at a specified location from a non-empty list.

▪ replace() – Replace an element at any position by another element.

▪ size() – Return the number of elements in the list.

▪ isEmpty() – Return true if the list is empty, otherwise return false.

▪ isFull() – Return true if the list is full, otherwise return false.

Fig. 4.2 Operations of List ADT

Linked List

• A linked list is a sequence of data structures, which are connected together via links.

• Linked List is a sequence of links which contains items. Each link contains a connection

to another link.

Linear Data Structures

5

• Linked list is the second most-used data structure after array.

• Following are the important terms to understand the concept of Linked List.

o Link − Each link of a linked list can store a data called an element.

o Next − Each link of a linked list contains a link to the next link called Next.

o LinkedList − A Linked List contains the connection link to the first link called First.

Linked List Representation

• Linked list can be visualized as a chain of nodes, where every node point to the next

node.

• As per the above illustration, following are the important points to be considered.

o Linked List contains a link element called first.

o Each link carries a data field(s) and a link field called next.

o Each link is linked with its next link using its next link.

o Last link carries a link as null to mark the end of the list.

Types of Linked List

• Following are the various types of linked list.

o Simple Linked List − Item navigation is forward only.

o Doubly Linked List − Items can be navigated forward and backward.

o Circular Linked List − Last item contains link of the first element as next and the first

element has a link to the last element as previous.

Basic Operations

• Following are the basic operations supported by a list.

o Insertion − Adds an element at the beginning of the list.

o Deletion − Deletes an element at the beginning of the list.

o Display − Displays the complete list.

o Search − Searches an element using the given key.

o Delete − Deletes an element using the given key.

Insertion Operation

• Adding a new node in linked list is a more than one step activity. We shall learn this

Linear Data Structures

6

with diagrams here. First, create a node using the same structure and find the location

where it has to be inserted.

• Imagine that we are inserting a node B (NewNode), between A (LeftNode)

and C (RightNode). Then point B.next to C −

• NewNode.next −> RightNode;

• It should look like this −

• Now, the next node at the left should point to the new node.

• LeftNode.next −> NewNode;

• This will put the new node in the middle of the two. The new list should look like this

−

Linear Data Structures

7

• Similar steps should be taken if the node is being inserted at the beginning of the list.

While inserting it at the end, the second last node of the list should point to the new

node and the new node will point to NULL.

Deletion Operation

• Deletion is also a more than one step process. We shall learn with pictorial

representation. First, locate the target node to be removed, by using searching

algorithms.

• The left (previous) node of the target node now should point to the next node of the

target node

• LeftNode.next −> TargetNode.next;

• This will remove the link that was pointing to the target node. Now, using the following

code, we will remove what the target node is pointing at.

• TargetNode.next −> NULL;

• We need to use the deleted node. We can keep that in memory otherwise we can simply

deallocate memory and wipe off the target node completely.

Linear Data Structures

8

Reverse Operation

• This operation is a thorough one. We need to make the last node to be pointed by the

head node and reverse the whole linked list.

• First, we traverse to the end of the list. It should be pointing to NULL. Now, we shall

make it point to its previous node −

• We have to make sure that the last node is not the last node. So we'll have some temp

node, which looks like the head node pointing to the last node. Now, we shall make all

left side nodes point to their previous nodes one by one.

• Except the node (first node) pointed by the head node, all nodes should point to their

predecessor, making them their new successor. The first node will point to NULL.

• We'll make the head node point to the new first node by using the temp node.

Linear Data Structures

9

Arrays

• Array is a container which can hold a fix number of items and these items should be of

the same type. Most of the data structures make use of arrays to implement their

algorithms.

• Following are the important terms to understand the concept of Array.

o Element − Each item stored in an array is called an element.

o Index − Each location of an element in an array has a numerical index,

which is used to identify the element.

Array Representation

• Arrays can be declared in various ways in different languages. For illustration, let's take

C array declaration.

• As per the above illustration, following are the important points to be considered.

o Index starts with 0.

o Array length is 10 which means it can store 10 elements.

o Each element can be accessed via its index. For example, we can fetch an

element at index 6 as 9.

Basic Operations

Following are the basic operations supported by an array.

• Traverse − print all the array elements one by one.

• Insertion − Adds an element at the given index.

Linear Data Structures

10

• Deletion − Deletes an element at the given index.

• Search − Searches an element using the given index or by the value.

• Update − Updates an element at the given index.

IMPLEMENTATION OF AN ADT

• The first step in the implementation is the choice of the data structure to represent the

ADT’s data.

• This choice of the data structure depends mainly on details of the ADT’s operations and

the context in which the operations will be used.

• The first step in implementing an ADT is choosing a data structure such as arrays,

records, etc. to represent the ADT.

• Each operation associated with the ADT is implemented by one or more subroutines.

• Two standard implementations for the list ADT that we will be discussing are

o Array-based implementation

o Linked list-based implementation.

ARRAY IMPLEMENTATION OF ADT LIST

• The simplest method to implement a List ADT is to use an array that is a “linear list”

or a “contiguous list” where elements are stored in contiguous array positions.

• The implementation specifies an array of a particular maximum length, and all storage

is allocated before run-time. It is a sequence of n-elements where the items in the array

are stored with the index of the array related to the position of the item in the list.

• In array implementation, elements are stored in contiguous array positions (Figure 4.3).

An array is a viable choice for storing list elements when the elements are sequential,

because it is a commonly available data type and in general algorithm development is

easy.

Fig. 4.3 Array Implementation of List ADT

• List is a sequence of zero or more elements of a given type A0, A1, ..., An-1

• n → length of the list

• A0 → first element of the list

• An-1 → last element of the list

Linear Data Structures

11

• If n = 0, the list is empty.

• Elements can be linearly ordered according to their position in the list

Fig. 4.4 Internal of List ADT - Array Implementation

• We say ai precedes ai + 1, ai + 1 follows ai, and ai is at position i

• Let us assume the following:

• L → list of objects of type element

• x → an object of this type

• p → of type position

• END (L) → a function that returns the position following the last position in the list L

Operations:

1. Insert (x, p, L)

Insert x at position p in list L

If p = END(L), insert x at the end

If L does not have position p, result is undefined

• Simplest Case: Insert to the end of array

• Other Insertions:

o Some items in the list needs to be shifted

o Worst case: Inserting at the head of array

Fig. 4.5 Insertion of an element in List

Linear Data Structures

12

2. Locate (x, L)

returns position of x on L

returns END(L) if x does not appear

3. Retrieve (p, L)

returns element at position p on L

undefined if p does not exist or p = END(L)

4. Delete (p, L)

delete element at position p in L

undefined if p = END(L) or does not exist

• Simplest Case: Delete item from the end of array

• Other deletions:

o Items needs to be shifted

o Worst Case: Deleting at the head of array

Fig. 4.6 Deletion of an element in List

5. Next (p, L)

returns the position immediately following position p

6. Prev (p, L)

returns the position previous to p

7. Makenull (L)

 causes L to become an empty list and returns position END(L)

8. First (L)

returns the first position on L

9. Printlist (L)

print the elements of L in order of occurrence

Linear Data Structures

13

Advantages of Array-Based Implementation of Lists

Some of the major advantages of using array implementation of lists are:

• Array is a natural way to implement lists

• Arrays allow fast, random access of elements

• Array based implementation is memory efficient since very little memory is

required other than that needed to store the actual contents

Some of the disadvantages of using arrays to implement lists are:

• The size of the list must be known when the array is created and is fixed (static)

• Array implementations of lists use a static data structure. Often defined at compile-

time. This means the array size or structure cannot be altered while program is

running. This requires an accurate estimate of the size of the array.

• This fixing of the size beforehand usually results in overestimation of size which

means we tend to usually waste space rather than have program run out.

• The deletion and insertion of elements into the list is slow since it involves shifting

of elements. It also means that data must be added to the end of the list for insertion

and deletion to be efficient. If insertion and deletion is towards the front of the list,

all other elements must shuffle down. This is slow and inefficient. This inefficiency

is even more pronounced when the size of the list is large.

C Program to implement List ADT using Arrays.........

#include<stdio.h>

#include<conio.h>

#define MAX 10

void create();

void insert();

void deletion();

void search();

void display();

int a,b[20], n, p, e, f, i, pos;

void main()

{

//clrscr();

int ch;

http://saravanaultimatepds1lab.blogspot.com/2014/03/c-program-to-implement-list-adt-using_9531.html

Linear Data Structures

14

char g='y';

do

{

printf("\n main Menu");

printf("\n 1.Create \n 2.Delete \n 3.Search \n 4.Insert \n 5.Display\n 6.Exit \n");

printf("\n Enter your Choice");

scanf("%d", &ch);

switch(ch)

{

case 1:

create();

break;

case 2:

deletion();

break;

case 3:

search();

break;

case 4:

insert();

break;

case 5:

display();

break;

case 6:

exit();

break;

default:

printf("\n Enter the correct choice:");

}

printf("\n Do u want to continue:::");

scanf("\n%c", &g);

Linear Data Structures

15

}

while(g=='y'||g=='Y');

getch();

}

void create()

{

printf("\n Enter the number of nodes");

scanf("%d", &n);

for(i=0;i<n;i++)

{

printf("\n Enter the Element:",i+1);

scanf("%d", &b[i]);

}

}

void deletion()

{

printf("\n Enter the position u want to delete::");

scanf("%d", &pos);

if(pos>=n)

{

printf("\n Invalid Location::");

}

else

{

for(i=pos+1;i<n;i++)

{

b[i-1]=b[i];

}

n--;

}

printf("\n The Elements after deletion");

for(i=0;i<n;i++)

Linear Data Structures

16

{

printf("\t%d", b[i]);

}

}

void search()

{

printf("\n Enter the Element to be searched:");

scanf("%d", &e);

for(i=0;i<n;i++)

{

if(b[i]==e)

{

printf("Value is in the %d Position", i);

}

else

{

printf("Value %d is not in the list::", e);

continue;

}

}

}

void insert()

{

printf("\n Enter the position u need to insert::");

scanf("%d", &pos);

if(pos>=n)

 {

 printf("\n invalid Location::");

 }

 else

 {

Linear Data Structures

17

 for(i=MAX-1;i>=pos-1;i--)

 {

 b[i+1]=b[i];

 }

 printf("\n Enter the element to insert::\n");

 scanf("%d",&p);

 b[pos]=p;

 n++;

 }

 printf("\n The list after insertion::\n");

display();

}

void display()

{

printf("\n The Elements of The list ADT are:");

for(i=0;i<n;i++)

{

printf("\n\n%d", b[i]);

}

}

IMPLEMENTATION OF LIST ADT USING LINKED LIST

Pointer Based Linked List:

• Allow elements to be non-contiguous in memory

• Order the elements by associating each with its neighbour(s) through pointers

Fig. 4.7 Linked List Implementation of List ADT

Linear Data Structures

18

A single node in the Linked List

Fig. 4.8 Structure of a Node

• List of four items < a1, a2, a3, a4 >

Fig. 4.9 Representation of List Elements in Linked List

• We need:

o Head pointer to indicate the first node

o Other nodes are accessed by "hopping" through the next pointer

o Size for the number of items in the linked list

• Linked list implementation is more complicated: Need to handle a number of scenarios

separately.

Linked List Insertion: General

• List ADT provides the insert () method to add an item:

o The new item itself is given

Linear Data Structures

19

o The index [1…size+1] of the new item is given

• Due to the nature of linked list, there are several possible scenarios:

o Item is added to an empty linked list

o Item is added to the head (first item) of the linked list

o Item is added to the last position of the linked list

o Item is added to the other positions of the linked list

Linked List Insertion: Preliminary

• The List object stores: Head pointer and the current size of linked list

• For all valid cases, we need to construct a new linked list node to store the new item

Insertion: Empty Liked List

Fig. 4.10 Insertion: Empty Liked List

Linear Data Structures

20

Insertion: Head of Linked List

Fig. 4.11 Insertion: Head of Linked List

Fig. 4.12 Insert into head of linked list (possibly empty)

• Since we only keep the head pointer, list traversal is needed to reach other positions

Linear Data Structures

21

Fig. 4.13 List Traversal

Insertion: End of Linked List

Fig. 4.14 Insertion: End of Linked List

Insertion: Kth Position of Linked List (Middle)

Fig. 4.15 Insertion: Kth of Linked List (Middle)

Linear Data Structures

22

Linked List Deletion: General

• For Linked List deletion, the cases can be simplified similar to:

o Deletion of head node (1st Node in list)

o Deletion of other node (including middle or end of list)

Deletion: Head of Linked List

Fig. 4.16 Deletion: Head of Linked List

Deletion: Kth Position of Linked List (Middle)

Fig. 4.17 Deletion: Kth Position of Linked List (Middle)

Linear Data Structures

23

C Program to implement List ADT using Linked Lisgt

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

struct node {

 int data;

 int key;

 struct node *next;

};

struct node *head = NULL;

struct node *current = NULL;

//display the list

void printList() {

 struct node *ptr = head;

 printf("\n[");

 //start from the beginning

 while(ptr != NULL) {

 printf("(%d,%d) ",ptr->key,ptr->data);

 ptr = ptr->next;

 }

 printf("]");

}

//insert link at the first location

void insertFirst(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 //point it to old first node

 link->next = head;

 //point first to new first node

http://saravanaultimatepds1lab.blogspot.com/2014/03/c-program-to-implement-list-adt-using_9531.html

Linear Data Structures

24

 head = link;

}

//delete first item

struct node* deleteFirst() {

 //save reference to first link

 struct node *tempLink = head;

 //mark next to first link as first

 head = head->next;

 //return the deleted link

 return tempLink;

}

//is list empty

bool isEmpty() {

 return head == NULL;

}

int length() {

 int length = 0;

 struct node *current;

 for(current = head; current != NULL; current = current->next) {

 length++;

 }

 return length;

}

struct node* find(int key) { //find a link with given key

 struct node* current = head; //start from the first link

 if(head == NULL) { //if list is empty

 return NULL;

 }

 //navigate through list

 while(current->key != key) {

 //if it is last node

 if(current->next == NULL) {

Linear Data Structures

25

 return NULL;

 } else {

 //go to next link

 current = current->next;

 }

 }

 //if data found, return the current Link

 return current;

}

//delete a link with given key

struct node* delete(int key) {

 //start from the first link

 struct node* current = head;

 struct node* previous = NULL;

 //if list is empty

 if(head == NULL) {

 return NULL;

 }

 //navigate through list

 while(current->key != key) {

 //if it is last node

 if(current->next == NULL) {

 return NULL;

 } else {

 //store reference to current link

 previous = current;

 //move to next link

 current = current->next;

 }

 }

 //found a match, update the link

 if(current == head) {

Linear Data Structures

26

 //change first to point to next link

 head = head->next;

 } else {

 //bypass the current link

 previous->next = current->next;

 }

 return current;

}

void sort() {

 int i, j, k, tempKey, tempData;

 struct node *current;

 struct node *next;

 int size = length();

 k = size ;

 for (i = 0 ; i < size - 1 ; i++, k--) {

 current = head;

 next = head->next;

 for (j = 1 ; j < k ; j++) {

 if (current->data > next->data) {

 tempData = current->data;

 current->data = next->data;

 next->data = tempData;

 tempKey = current->key;

 current->key = next->key;

 next->key = tempKey;

 }

 current = current->next;

 next = next->next;

 }

 }

}

void reverse(struct node** head_ref) {

Linear Data Structures

27

 struct node* prev = NULL;

 struct node* current = *head_ref;

 struct node* next;

 while (current != NULL) {

 next = current->next;

 current->next = prev;

 prev = current;

 current = next;

 }

 *head_ref = prev;

}

void main() {

 insertFirst(1,10);

 insertFirst(2,20);

 insertFirst(3,30);

 insertFirst(4,1);

 insertFirst(5,40);

 insertFirst(6,56);

 printf("Original List: ");

 //print list

 printList();

 while(!isEmpty()) {

 struct node *temp = deleteFirst();

 printf("\nDeleted value:");

 printf("(%d,%d) ",temp->key,temp->data);

 }

 printf("\nList after deleting all items: ");

 printList();

 insertFirst(1,10);

 insertFirst(2,20);

 insertFirst(3,30);

 insertFirst(4,1);

Linear Data Structures

28

 insertFirst(5,40);

 insertFirst(6,56);

 printf("\nRestored List: ");

 printList();

 printf("\n");

 struct node *foundLink = find(4);

 if(foundLink != NULL) {

 printf("Element found: ");

 printf("(%d,%d) ",foundLink->key,foundLink->data);

 printf("\n");

 } else {

 printf("Element not found.");

 }

 delete(4);

 printf("List after deleting an item: ");

 printList();

 printf("\n");

 foundLink = find(4);

 if(foundLink != NULL) {

 printf("Element found: ");

 printf("(%d,%d) ",foundLink->key,foundLink->data);

 printf("\n");

 } else {

 printf("Element not found.");

 }

 printf("\n");

 sort();

 printf("List after sorting the data: ");

 printList();

 reverse(&head);

 printf("\nList after reversing the data: ");

 printList(); }

Linear Data Structures

29

STACK ADT

• A stack is an Abstract Data Type (ADT), commonly used in most programming

languages.

• It is named stack as it behaves like a real-world stack, for example – a deck of cards or

a pile of plates, etc.

Fig. 4.18 Examples of Stack

• A real-world stack allows operations at one end only. For example, we can place or

remove a card or plate from the top of the stack only.

• Likewise, Stack ADT allows all data operations at one end only. At any given time, we

can only access the top element of a stack.

• This feature makes it LIFO data structure. LIFO stands for Last-in-first-out.

• Here, the element which is placed (inserted or added) last, is accessed first. In stack

terminology, insertion operation is called PUSH operation and removal operation is

called POP operation.

Stack Representation

• The following diagram depicts a stack and its operations −

Fig. 4.19 Stack Operations

• A stack can be implemented by means of Array, Structure, Pointer, and Linked List.

Linear Data Structures

30

• Stack can either be a fixed size one or it may have a sense of dynamic resizing.

• Here, we are going to implement stack using arrays, which makes it a fixed size stack

implementation.

Basic Operations

• Stack operations may involve initializing the stack, using it and then de-initializing it.

• Apart from these basic stuffs, a stack is used for the following two primary operations

• push() − Pushing (storing) an element on the stack.

• pop() − Removing (accessing) an element from the stack.

• When data is PUSHed onto stack, To use a stack efficiently, we need to check the status

of stack as well.

• For the same purpose, the following functionality is added to stacks −

• peek() − get the top data element of the stack, without removing it.

• isFull() − check if stack is full.

• isEmpty() − check if stack is empty.

• At all times, we maintain a pointer to the last PUSHed data on the stack.

• As this pointer always represents the top of the stack, hence named top.

• The top pointer provides top value of the stack without actually removing it.

• First we should learn about procedures to support stack functions −

peek()

Algorithm of peek() function −

begin procedure peek

 return stack[top]

end procedure

Implementation of peek() function in C programming language −

int peek() {

 return stack[top];

}

isfull()

Algorithm of isfull() function −

begin procedure isfull

 if top equals to MAXSIZE

 return true

Linear Data Structures

31

 else

 return false

 endif

end procedure

Implementation of isfull() function in C programming language −

bool isfull() {

 if(top == MAXSIZE)

 return true;

 else

 return false;

}

isempty()

Algorithm of isempty() function −

begin procedure isempty

 if top less than 1

 return true

 else

 return false

 endif

end procedure

• Implementation of isempty() function in C programming language is slightly different.

We initialize top at -1, as the index in array starts from 0. So we check if the top is

below zero or -1 to determine if the stack is empty. Here's the code −

bool isempty() {

 if(top == -1)

 return true;

 else

 return false;

}

Push Operation

• The process of putting a new data element onto stack is known as a Push Operation.

Push operation involves a series of steps −

Linear Data Structures

32

• Step 1 − Checks if the stack is full.

• Step 2 − If the stack is full, produces an error and exit.

• Step 3 − If the stack is not full, increments top to point next empty space.

• Step 4 − Adds data element to the stack location, where top is pointing.

• Step 5 − Returns success.

Fig. 4. 20 PUSH Operation in Stack

• If the linked list is used to implement the stack, then in step 3, we need to allocate space

dynamically.

Algorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows −

begin procedure push: stack, data

 if stack is full

 return null

 endif

 top ← top + 1

 stack[top] ← data

end procedure

Implementation of this algorithm in C, is very easy. See the following code −

void push(int data) {

 if(!isFull()) {

 top = top + 1;

 stack[top] = data;

 } else {

Linear Data Structures

33

 printf("Could not insert data, Stack is full.\n");

 }

}

Pop Operation

• Accessing the content while removing it from the stack, is known as a Pop Operation.

• In an array implementation of pop() operation, the data element is not actually removed,

instead top is decremented to a lower position in the stack to point to the next value.

• But in linked-list implementation, pop() actually removes data element and deallocates

memory space.

• A Pop operation may involve the following steps −

• Step 1 − Checks if the stack is empty.

• Step 2 − If the stack is empty, produces an error and exit.

• Step 3 − If the stack is not empty, accesses the data element at which top is pointing.

• Step 4 − Decreases the value of top by 1.

• Step 5 − Returns success.

Fig. 4. 21 POP Operation in Stack

Algorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows −

begin procedure pop: stack

 if stack is empty

 return null

 endif

 data ← stack[top]

Linear Data Structures

34

 top ← top - 1

 return data

end procedure

Implementation of this algorithm in C, is as follows −

int pop(int data) {

 if(!isempty()) {

 data = stack[top];

 top = top - 1;

 return data;

 } else {

 printf("Could not retrieve data, Stack is empty.\n");

 }

}

C Program for Stack ADT implementation using Array ……..

#include<stdio.h>

#include<conio.h>

int stack[100],choice,n,top,x,i;

void push(void);

void pop(void);

void display(void);

int main()

{

 clrscr();

 top=-1;

 printf("\n Enter the size of STACK[MAX=100]:");

 scanf("%d",&n);

 printf("\n\t STACK OPERATIONS USING ARRAY");

 printf("\n\t--------------------------------");

 printf("\n\t 1.PUSH\n\t 2.POP\n\t 3.DISPLAY\n\t 4.EXIT");

 do

 {

 printf("\n Enter the Choice:");

Linear Data Structures

35

 scanf("%d",&choice);

 switch(choice)

 {

 case 1:

 {

 push();

 break;

 }

 case 2:

 {

 pop();

 break;

 }

 case 3:

 {

 display();

 break;

 }

 case 4:

 {

 printf("\n\t EXIT POINT ");

 break;

 }

 default:

 {

 printf ("\n\t Please Enter a Valid Choice(1/2/3/4)");

 }

 }

 } while(choice!=4);

 getch();

 return 0; }

void push()

Linear Data Structures

36

{

 if(top>=n-1)

 {

 printf("\n\tSTACK is over flow");

 }

 else

 {

 printf(" Enter a value to be pushed:");

 scanf("%d",&x);

 top++;

 stack[top]=x;

 }

}

void pop()

{

 if(top<=-1)

 {

 printf("\n\t Stack is under flow");

 }

 else

 {

 printf("\n\t The popped elements is %d",stack[top]);

 top--;

 }

}

void display()

{

 if(top>=0)

 {

 printf("\n The elements in STACK \n");

 for(i=top; i>=0; i--)

 printf("\n%d",stack[i]);

Linear Data Structures

37

 printf("\n Press Next Choice");

 }

 else

 {

 printf("\n The STACK is empty");

 }

 }

C Program for Stack ADT implementation using Linked List ……..

#include <stdio.h>

#include <stdlib.h>

 struct node

{

 int info;

 struct node *ptr;

}*top,*top1,*temp;

int topelement();

void push(int data);

void pop();

void empty();

void display();

void destroy();

void stack_count();

void create();

int count = 0;

void main()

{

 int no, ch, e;

 printf("\n 1 - Push");

 printf("\n 2 - Pop");

 printf("\n 3 - Top");

 printf("\n 4 - Empty");

 printf("\n 5 - Exit");

Linear Data Structures

38

 printf("\n 6 - Dipslay");

 printf("\n 7 - Stack Count");

 printf("\n 8 - Destroy stack");

 create();

 while (1)

 {

 printf("\n Enter choice : ");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 printf("Enter data : ");

 scanf("%d", &no);

 push(no);

 break;

 case 2:

 pop();

 break;

 case 3:

 if (top == NULL)

 printf("No elements in stack");

 else

 {

 e = topelement();

 printf("\n Top element : %d", e);

 }

 break;

 case 4:

 empty();

 break;

 case 5:

 exit(0);

Linear Data Structures

39

 case 6:

 display();

 break;

 case 7:

 stack_count();

 break;

 case 8:

 destroy();

 break;

 default :

 printf(" Wrong choice, Please enter correct choice ");

 break;

 }

 }

}

 /* Create empty stack */

void create()

{

 top = NULL;

}

 /* Count stack elements */

void stack_count()

{

 printf("\n No. of elements in stack : %d", count);

}

 /* Push data into stack */

void push(int data)

{

 if (top == NULL)

 {

 top =(struct node *)malloc(1*sizeof(struct node));

 top->ptr = NULL;

Linear Data Structures

40

 top->info = data;

 }

 else

 {

 temp =(struct node *)malloc(1*sizeof(struct node));

 temp->ptr = top;

 temp->info = data;

 top = temp;

 }

 count++;

}

 /* Display stack elements */

void display()

{

 top1 = top;

 if (top1 == NULL)

 {

 printf("Stack is empty");

 return;

 }

 while (top1 != NULL)

 {

 printf("%d ", top1->info);

 top1 = top1->ptr;

 }

 }

 /* Pop Operation on stack */

void pop()

{

 top1 = top;

 if (top1 == NULL)

Linear Data Structures

41

 {

 printf("\n Error : Trying to pop from empty stack");

 return;

 }

 else

 top1 = top1->ptr;

 printf("\n Popped value : %d", top->info);

 free(top);

 top = top1;

 count--;

}

 /* Return top element */

int topelement()

{

 return(top->info);

}

/* Check if stack is empty or not */

void empty()

{

 if (top == NULL)

 printf("\n Stack is empty");

 else

 printf("\n Stack is not empty with %d elements", count);

}

 /* Destroy entire stack */

void destroy()

{

 top1 = top;

 while (top1 != NULL)

 {

 top1 = top->ptr;

 free(top);

Linear Data Structures

42

 top = top1;

 top1 = top1->ptr;

 }

 free(top1);

 top = NULL;

 printf("\n All stack elements destroyed");

 count = 0;

}

QUEUE ADT

• Queue is an abstract data structure, somewhat similar to Stacks.

• Unlike stacks, a queue is open at both its ends. One end is always used to insert data

(enqueue) and the other is used to remove data (dequeue).

• Queue follows First-In-First-Out methodology, i.e., the data item stored first will be

accessed first.

Fig. 4.22 Queue Example

• A real-world example of queue can be a single-lane one-way road, where the vehicle enters

first, exits first. More real-world examples can be seen as queues at the ticket windows and

bus-stops.

Queue Representation

• As we now understand that in queue, we access both ends for different reasons. The

following diagram given below tries to explain queue representation as data structure −

Fig. 4.23 Representation of Queue

Linear Data Structures

43

• As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and

Structures. For the sake of simplicity, we shall implement queues using one-dimensional

array.

Basic Operations

• Queue operations may involve initializing or defining the queue, utilizing it, and then

completely erasing it from the memory.

• Here we shall try to understand the basic operations associated with queues −

• enqueue() − add (store) an item to the queue.

• dequeue() − remove (access) an item from the queue.

• Few more functions are required to make the above-mentioned queue operation efficient.

These are −

• peek() − Gets the element at the front of the queue without removing it.

• isfull() − Checks if the queue is full.

• isempty() − Checks if the queue is empty.

• In queue, we always dequeue (or access) data, pointed by front pointer and while enqueuing

(or storing) data in the queue we take help of rear pointer.

The following are the supportive functions of a queue −

peek()

• This function helps to see the data at the front of the queue. The algorithm of peek() function

is as follows −

begin procedure peek

 return queue[front]

end procedure

Implementation of peek() function in C programming language −

int peek()

{

 return queue[front];

}

isfull()

• As we are using single dimension array to implement queue, we just check for the rear

pointer to reach at MAXSIZE to determine that the queue is full.

• In case we maintain the queue in a circular linked-list, the algorithm will differ.

Linear Data Structures

44

Algorithm of isfull() function −

begin procedure isfull

 if rear equals to MAXSIZE

 return true

 else

 return false

 endif

end procedure

Implementation of isfull() function in C programming language −

bool isfull() {

 if(rear == MAXSIZE - 1)

 return true;

 else

 return false;

}

isempty()

Algorithm of isempty() function −

begin procedure isempty

 if front is less than MIN OR front is greater than rear

 return true

 else

 return false

 endif

 end procedure

• If the value of front is less than MIN or 0, it tells that the queue is not yet initialized, hence

empty. Here's the C programming code −

bool isempty() {

 if(front < 0 || front > rear)

 return true;

 else

 return false;

}

Linear Data Structures

45

Enqueue Operation

• Queues maintain two data pointers, front and rear. Therefore, its operations are

comparatively difficult to implement than that of stacks.

• The following steps should be taken to enqueue (insert) data into a queue −

• Step 1 − Check if the queue is full.

• Step 2 − If the queue is full, produce overflow error and exit.

• Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

• Step 4 − Add data element to the queue location, where the rear is pointing.

• Step 5 − return success.

Fig. 4.24 Enqueue Operation

• Sometimes, we also check to see if a queue is initialized or not, to handle any unforeseen

situations.

Algorithm for enqueue operation

procedure enqueue(data)

 if queue is full

 return overflow

 endif

 rear ← rear + 1

 queue[rear] ← data

 return true

end procedure

Linear Data Structures

46

Implementation of enqueue () in C programming language −

int enqueue (int data)

 if(isfull())

 return 0;

 rear = rear + 1;

 queue[rear] = data;

 return 1;

end procedure

Dequeue Operation

• Accessing data from the queue is a process of two tasks − access the data where front is

pointing and remove the data after access.

• The following steps are taken to perform dequeue operation −

• Step 1 − Check if the queue is empty.

• Step 2 − If the queue is empty, produce underflow error and exit.

• Step 3 − If the queue is not empty, access the data where front is pointing.

• Step 4 − Increment front pointer to point to the next available data element.

• Step 5 − Return success.

Fig. 4.25 Dequeue Operation

Algorithm for dequeue operation

procedure dequeue

 if queue is empty

Linear Data Structures

47

 return underflow

 end if

 data = queue[front]

 front ← front + 1

 return true

end procedure

Implementation of dequeue () in C programming language −

int dequeue () {

 if(isempty())

 return 0;

 int data = queue[front];

 front = front + 1;

 return data;

}

C Program for the implementation of Queue ADT using Array ………

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

#define MAX 6

int intArray[MAX];

int front = 0;

int rear = -1;

int itemCount = 0;

int peek() {

 return intArray[front];

}

int isEmpty() {

 return itemCount == 0;

}

int isFull() {

 return itemCount == MAX;

Linear Data Structures

48

}

int size() {

 return itemCount;

}

void insert(int data) {

 if(!isFull()) {

 if(rear == MAX-1) {

 rear = -1;

 }

 intArray[++rear] = data;

 itemCount++;

 }

}

int removeData() {

 int data = intArray[front++];

 if(front == MAX) {

 front = 0;

 }

 itemCount--;

 return data;

}

int main() {

 int num;

 /* insert 5 items */

 insert(3);

 insert(5);

 insert(9);

 insert(1);

 insert(12);

 // front : 0

 // rear : 4

 // ------------------

Linear Data Structures

49

 // index : 0 1 2 3 4

 // ------------------

 // queue : 3 5 9 1 12

 insert(15);

 // front : 0

 // rear : 5

 // ---------------------

 // index : 0 1 2 3 4 5

 // ---------------------

 // queue : 3 5 9 1 12 15

 if(isFull()) {

 printf("Queue is full!\n");

 }

 // remove one item

 num = removeData();

 printf("Element removed: %d\n",num);

 // front : 1

 // rear : 5

 // -------------------

 // index : 1 2 3 4 5

 // -------------------

 // queue : 5 9 1 12 15

 // insert more items

 insert(16);

 // front : 1

 // rear : -1

 // ----------------------

 // index : 0 1 2 3 4 5

 // ----------------------

 // queue : 5 9 1 12 15 16

 // As queue is full, elements will not be inserted.

 insert(17);

Linear Data Structures

50

 insert(18);

 // ----------------------

 // index : 0 1 2 3 4 5

 // ----------------------

 // queue : 5 9 1 12 15 16

 printf("Element at front: %d\n",peek());

 printf("----------------------\n");

 printf("index : 5 4 3 2 1 0\n");

 printf("----------------------\n");

 printf("Queue: ");

 while(!isEmpty()) {

 int n = removeData();

 printf("%d ",n);

}

getch();

return(0);

}

C Program for the implementation of Queue ADT using Linked List ………

#include <stdio.h>

#include <stdlib.h>

 struct node

{

 int info;

 struct node *ptr;

}*front,*rear,*temp,*front1;

 int frontelement();

void enq(int data);

void deq();

void empty();

void display();

void create();

void queuesize();

Linear Data Structures

51

 int count = 0;

 void main()

{

 int no, ch, e;

 printf("\n 1 - Enque");

 printf("\n 2 - Deque");

 printf("\n 3 - Front element");

 printf("\n 4 - Empty");

 printf("\n 5 - Exit");

 printf("\n 6 - Display");

 printf("\n 7 - Queue size");

 create();

 while (1)

 {

 printf("\n Enter choice : ");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 printf("Enter data : ");

 scanf("%d", &no);

 enq(no);

 break;

 case 2:

 deq();

 break;

 case 3:

 e = frontelement();

 if (e != 0)

 printf("Front element : %d", e);

 else

 printf("\n No front element in Queue as queue is empty");

Linear Data Structures

52

 break;

 case 4:

 empty();

 break;

 case 5:

 exit(0);

 case 6:

 display();

 break;

 case 7:

 queuesize();

 break;

 default:

 printf("Wrong choice, Please enter correct choice ");

 break;

 }

 }

}

 /* Create an empty queue */

void create()

{

 front = rear = NULL;

}

 /* Returns queue size */

void queuesize()

{

 printf("\n Queue size : %d", count);

}

 /* Enqueing the queue */

void enq(int data)

{

 if (rear == NULL)

Linear Data Structures

53

 {

 rear = (struct node *)malloc(1*sizeof(struct node));

 rear->ptr = NULL;

 rear->info = data;

 front = rear;

 }

 else

 {

 temp=(struct node *)malloc(1*sizeof(struct node));

 rear->ptr = temp;

 temp->info = data;

 temp->ptr = NULL;

 rear = temp;

 }

 count++;

}

 /* Displaying the queue elements */

void display()

{

 front1 = front;

 if ((front1 == NULL) && (rear == NULL))

 {

 printf("Queue is empty");

 return;

 }

 while (front1 != rear)

 {

 printf("%d ", front1->info);

 front1 = front1->ptr;

 }

 if (front1 == rear)

 printf("%d", front1->info);

Linear Data Structures

54

}

 /* Dequeing the queue */

void deq()

{

 front1 = front;

 if (front1 == NULL)

 {

 printf("\n Error: Trying to display elements from empty queue");

 return;

 }

 else

 if (front1->ptr != NULL)

 {

 front1 = front1->ptr;

 printf("\n Dequed value : %d", front->info);

 free(front);

 front = front1;

 }

 else

 {

 printf("\n Dequed value : %d", front->info);

 free(front);

 front = NULL;

 rear = NULL;

 }

 count--;

}

 /* Returns the front element of queue */

int frontelement()

{

 if ((front != NULL) && (rear != NULL))

 return(front->info);

Linear Data Structures

55

 else

 return 0;

}

 /* Display if queue is empty or not */

void empty()

{

 if ((front == NULL) && (rear == NULL))

 printf("\n Queue empty");

 else

 printf("Queue not empty");

}

Non-Linear Data Structures

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT – V – SCSA1206 – C AND DATA STRUCTURES

Non-Linear Data Structures

2

UNIT V

NON-LINEAR DATA STRUCTURES

LINEAR DATA STRUCTURE:

• Data structure where data elements are arranged sequentially or linearly where the

elements are attached to its previous and next adjacent in what is called a linear data

structure.

• In linear data structure, single level is involved. Therefore, we can traverse all the

elements in single run only.

• Linear data structures are easy to implement because computer memory is arranged in

a linear way. Its examples are array, stack, queue, linked list, etc.

NON-LINEAR DATA STRUCTURE:

• Data structures where data elements are not arranged sequentially or linearly are

called non-linear data structures.

• In a non-linear data structure, single level is not involved. Therefore, we can’t traverse

all the elements in single run only.

• Non-linear data structures are not easy to implement in comparison to linear data

structure.

• It utilizes computer memory efficiently in comparison to a linear data structure. Its

examples are trees and graphs.

Fig. 5.1 Categorizes of Data Structures

https://www.geeksforgeeks.org/overview-of-data-structures-set-1-linear-data-structures/
https://www.geeksforgeeks.org/array-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/overview-of-data-structures-set-2-binary-tree-bst-heap-and-hash/
https://www.geeksforgeeks.org/data-structures/
https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/

Non-Linear Data Structures

3

Difference between Linear and Non-linear Data Structures:

Table 5.1 Difference between Linear and Non-Linear Data Structures

Sr.

No.
Key Linear Data Structures

Non-linear Data

Structures

1
Data Element

Arrangement

In linear data structure,

data elements are

sequentially connected and

each element is traversable

through a single run.

In non-linear data

structure, data elements

are hierarchically

connected and are

present at various levels.

2 Levels

In linear data structure, all

data elements are present at

a single level.

In non-linear data

structure, data elements

are present at multiple

levels.

3
Implementation

complexity

Linear data structures are

easier to implement.

Non-linear data

structures are difficult to

understand and

implement as compared

to linear data structures.

4 Traversal

Linear data structures can

be traversed completely in

a single run.

Non-linear data

structures are not easy to

traverse and needs

multiple runs to be

traversed completely.

5
Memory

utilization

Linear data structures are

not very memory friendly

and are not utilizing

memory efficiently.

Non-linear data

structures uses memory

very efficiently.

Non-Linear Data Structures

4

Sr.

No.
Key Linear Data Structures

Non-linear Data

Structures

6
Time

Complexity

Time complexity of linear

data structure often

increases with increase in

size.

Time complexity of non-

linear data structure often

remain with increase in

size.

7 Examples Array, List, Queue, Stack. Graph, Map, Tree.

TREES

• A tree is a non-linear data structure that is used to represents hierarchical relationships

between individual data items.

Fig. 5.2 Structure of Tree ADT

• Tree: A tree is a finite set of one or more nodes such that, there is a specially designated

node called root. The remaining nodes are partitioned into n>=0 disjoint sets T1, T2,

…...Tn, where each of these set is a tree T1, …..…Tn are called the subtrees of the root.

• Branch: Branch is the link between the parent and its child.

• Leaf: A node with no children is called a leaf.

• Subtree: A Subtree is a subset of a tree that is itself a tree.

Non-Linear Data Structures

5

• Degree: The number of subtrees of a node is called the degree of the node. Hence nodes

that have degree zero are called leaf or terminal nodes. The other nodes are referred as

non-terminal nodes.

• Children: The nodes branching from a particular node X are called children of X and

X is called its parent.

• Siblings: Children of the same parent are said to be siblings.

• Degree of tree: Degree of the tree is the maximum of the degree of the nodes in the

tree.

• Ancestors: Ancestors of a node are all the nodes along the path from root to that node.

Hence root is ancestor of all the nodes in the tree.

• Level: Level of a node is defined by letting root at level one. If a node is at level L,

then its children are at level L + 1.

• Height or depth: The height or depth of a tree is defined to be the maximum level of

any node in the tree.

• Climbing: The process of traversing the tree from the leaf to the root is called climbing

the tree.

• Descending: The process of traversing the tree from the root to the leaf is called

descending the tree.

TREE TRAVERSAL

• Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node.

• We cannot randomly access a node in a tree. There are three ways which we use to

traverse a tree −

o In-order Traversal

o Pre-order Traversal

o Post-order Traversal

• Generally, we traverse a tree to search or locate a given item or key in the tree or to

print all the values it contains.

In-order Traversal

• In this traversal method, the left subtree is visited first, then the root and later the right

Non-Linear Data Structures

6

sub-tree. We should always remember that every node may represent a subtree itself.

• If a binary tree is traversed in-order, the output will produce sorted key values in an

ascending order.

Fig. 5.3 In-order Traversal

• We start from A, and following in-order traversal, we move to its left subtree B. B is

also traversed in-order. The process goes on until all the nodes are visited.

• The output of inorder traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm

Until all nodes are traversed −

• Step 1 − Recursively traverse left subtree.

• Step 2 − Visit root node.

• Step 3 − Recursively traverse right subtree.

Pre-order Traversal

• In this traversal method, the root node is visited first, then the left subtree and finally

the right subtree.

Non-Linear Data Structures

7

Fig. 5.4 Pre-order Traversal

• We start from A, and following pre-order traversal, we first visit A itself and then move

to its left subtree B. B is also traversed pre-order. The process goes on until all the nodes

are visited.

• The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm

Until all nodes are traversed −

• Step 1 − Visit root node.

• Step 2 − Recursively traverse left subtree.

• Step 3 − Recursively traverse right subtree.

Post-order Traversal

• In this traversal method, the root node is visited last, hence the name. First, we traverse

the left subtree, then the right subtree and finally the root node.

• We start from A, and following Post-order traversal, we first visit the left subtree B. B is

also traversed post-order. The process goes on until all the nodes are visited.

• The output of post-order traversal of this tree will be −

D → E → B → F → G → C → A

Algorithm

Until all nodes are traversed −

• Step 1 − Recursively traverse left subtree.

• Step 2 − Recursively traverse right subtree.

Non-Linear Data Structures

8

• Step 3 − Visit root node.

Fig. 5.5 Post-order Traversal

BINARY TREE

• Binary tree has nodes each of which has no more than two child nodes.

• Binary tree: A binary tree is a finite set of nodes that either is empty or consists of a

root and two disjoint binary trees called the left subtree and right subtree.

• Left child: The node present to the left of the parent node is called the left child.

• Right child: The node present to the right of the parent node is called the right child.

Fig. 5.6 Binary Tree

• Skewed Binary tree: If the new nodes in the tree are added only to one side of the

binary tree then it is a skewed binary tree.

Non-Linear Data Structures

9

Fig. 5.7 Left and Right Skewed Binary Tree

• Strictly binary tree: If the binary tree has each node consisting of either two nodes or

no nodes at all, then it is called a strictly binary tree.

Fig. 5.8 Strictly Binary Tree

• Complete binary tree: If all the nodes of a binary tree consist of two nodes each and

the nodes at the last level does not consist any nodes, then that type of binary tree is

called a complete binary tree.

Fig. 5.9 Complete Binary Tree

Non-Linear Data Structures

10

• It can be observed that the maximum number of nodes on level i of a binary tree is 2i -

1, where i >= 1. The maximum number of nodes in a binary tree of depth k is 2k – 1,

where k >= 1.

Representation of binary trees

• There are two ways in which a binary tree can be represented. They are:

o Array representation of binary trees.

o Linked representation of binary trees.

Array representation of binary trees

• When arrays are used to represent the binary trees, then an array of size 2k is declared

where, k is the depth of the tree. For example, if the depth of the binary tree is 3, then

maximum 23 - 1 = 7 elements will be present in the node and hence the array size will

be 8.

• This is because the elements are stored from position one leaving the position 0 vacant.

But generally, an array of bigger size is declared so that later new nodes can be added

to the existing tree.

• The root element is always stored in position 1. The left child of node i is stored in

position 2i and right child of node is stored in position 2i + 1. Hence the following

formulae can be used to identify the parent, left child and right child of a particular

node.

• Parent (i) = i / 2, if i 1 1. If i = 1 then i is the root node and root does not have parent.

• Left child (i) = 2i, if 2i 2 n, where n is the maximum number of elements in the tree. If

2i > n, then i has no left child.

• Right child (i) = 2i + 1, if 2i + 1 2 n. If 2i + 1 > n, then i has no right child.

• The following binary tree can be represented using arrays as shown.

Fig. 5.10 Array Representation of Binary Tree

Non-Linear Data Structures

11

• The empty positions in the tree where no node is connected are represented in the array

using -1, indicating absence of a node.

• Using the formula, we can see that for a node 3, the parent is 3/ 2 →1. Referring to the

array locations, we find that 50 is the parent of 40. The left child of node 3 is 2*3 → 6.

But the position 6 consists of -1 indicating that the left child does not exist for the node

3. Hence 50 does not have a left child. The right child of node 3 is 2*3 + 1 → 7. The

position 7 in the array consists of 20. Hence, 20 is the right child of 40.

Linked representation of binary trees

• In linked representation of binary trees, instead of arrays, pointers are used to connect

the various nodes of the tree.

• Hence each node of the binary tree consists of three parts namely, the info, left and

right. The info part stores the data, left part stores the address of the left child and the

right part stores the address of the right child.

• Logically the binary tree in linked form can be represented as shown.

Fig. 5.11 Linked List Representation of Binary Tree

• The pointers storing NULL value indicates that there is no node attached to it.

Traversing through this type of representation is very easy.

• The left child of a particular node can be accessed by following the left link of that node

and the right child of a particular node can be accessed by following the right link of

that node.

BINARY TREE TRAVERSALS

• There are three standard ways of traversing a binary tree T with root R. They are:

o Preorder Traversal

o Inorder Traversal

Non-Linear Data Structures

12

o Postorder Traversal

Preorder Traversal:

1. Process the root R.

2. Traverse the left subtree of R in preorder.

3. Traverse the right subtree of R in preorder.

Inorder Traversal:

1. Traverse the left subtree of R in inorder.

2. Process the root R.

3. Traverse the right subtree of R in inorder.

Postorder Traversal:

1. Traverse the left subtree of R in postorder.

2. Traverse the right subtree of R in postorder.

3. Process the root R.

• Observe that each algorithm contains the same three steps, and that the left subtree of

R is always traversed before the right subtree.

• The difference between the algorithms is the time at which the root R is processed.

• The three algorithms are sometimes called, respectively, the node-left-right (NLR)

traversal, the left-node-right (LNR) traversal and the left-right-node (LRN) traversal.

Traversal algorithms using recursive approach

Preorder Traversal

• In the preorder traversal the node element is visited first and then the right subtree of

the node and then the right subtree of the node is visited.

• Consider the following case where we have 6 nodes in the tree A, B, C, D, E, F. The

traversal always starts from the root of the tree. The node A is the root and hence it is

visited first. The value at this node is processed. The processing can be doing some

computation over it or just printing its value. Now we check if there exists any left child

for this node if so, apply the preorder procedure on the left subtree. Now check if there

is any right subtree for the node A, the preorder procedure is applied on the right subtree.

• Since there exists a left subtree for node A, B is now considered as the root of the left

subtree of A and preorder procedure is applied. Hence, we find that B is processed next

and then it is checked if B has a left subtree.

• This recursive method is continued until all the nodes are visited.

Non-Linear Data Structures

13

• The algorithm for the above method is presented in the pseudo-code given below:

PREORDER (ROOT)

Temp =ROOT

If temp = NULL

Return

End if

Print info(temp)

If left(temp) != NULL

PREORDER (left(temp))

End if

If right(temp) != NULL

Non-Linear Data Structures

14

PREORDER (right(temp))

End if

End PREORDER

Inorder Traversal

• In the Inorder traversal method, the left subtree of the current node is visited first and

then the current node is processed and at last the right subtree of the current node is

visited.

• In the following example, the traversal starts with the root of the binary tree.

• The node A is the root and it is checked if it has the left subtree. Then the inorder

traversal procedure is applied on the left subtree of the node A.

• Now we find that node D does not have left subtree. Hence the node D is processed

and then it is checked if there is a right subtree for node D.

• Since there is no right subtree, the control returns back to the previous function which

was applied on B. Since left of B is already visited, now B is processed. It is checked

if B has the right subtree. If so, apply the inorder traversal method on the right subtree

of the node B.

• This recursive procedure is followed till all the nodes are visited.

Non-Linear Data Structures

15

INORDER (ROOT)

Temp = ROOT

If temp = NULL

Return

End if

If left(temp) != NULL

INORDER (left(temp))

End if

Print info(temp)

If right(temp) != NULL

INORDER (right(temp))

End if

End INORDER

Postorder Traversal

• In the postorder traversal method the left subtree is visited first, then the right subtree

and at last the current node is processed.

• In the following example, A is the root node. Since A has the left subtree the postorder

traversal method is applied recursively on the left subtree of A.

• Then when left subtree of A is completely is processed, the postorder traversal method

is recursively applied on the right subtree of the node A.

• If right subtree is completely processed, then the current node A is processed.

Non-Linear Data Structures

16

POSTORDER (ROOT)

Temp = ROOT

If temp = NULL

Return

End if

Non-Linear Data Structures

17

If left(temp) != NULL

POSTORDER (left(temp))

End if

If right(temp) != NULL

POSTORDER (right(temp))

End if

Print info(temp)

End POSTORDER

Binary Tree Traversal Using Iterative Approach

Preorder Traversal

• In the iterative method a stack is used to implement the traversal methods. Initially

the stack is stored with a NULL value.

• The root node is taken for processing first. A pointer temp is made to point to this root

node.

• If there exists a right node for the current node, then push that node into the stack. If

there exists a left subtree for the current node then temp is made to the left child of

the current node.

• If the left child does not exist, then a value is popped from the stack and temp is made

to point to that node which is popped and the same process is repeated. This is done

till the NULL value is popped from the stack.

Non-Linear Data Structures

18

PREORDER (ROOT)

Temp = ROOT, push (NULL) While temp 1 NULL

Print info(temp)

If right(temp) != NULL

Push(right(temp))

End if

If left(temp) != NULL

Temp = left(temp)

Else

Temp = pop ()

End if

End while

End PREORDER

Inorder Traversal

• In the Inorder traversal method, the traversal starts at the root node. A pointer Temp

is made to point to root node.

• Initially, the stack is stored with a NULL value and a flag RIGHTEXISTS is made

equal to 1. Now for the current node, if the flag RIGHTEXISTS = 1, then immediately

Non-Linear Data Structures

19

it is made 0, and the node pointed by temp is pushed to the stack.

• The temp pointer is moved to the left child of the node if the left child exists. Every

time the temp is moved to a new node, the node is pushed into the stack and temp is

moved to its left child. This is continued till temp reaches a NULL value.

• After this one by one, the nodes in the stack are popped and are pointed by temp. The

node is processed and if the node has right child, then the flag RIGHTEXISTS is set

to 1 and the process describe above starts from the beginning. Thus, the process stops

when the NULL value from the stack is popped.

Non-Linear Data Structures

20

INORDER (ROOT)

Temp = ROOT, push (NULL), RIGHTEXISTS = 1

While RIGHTEXISTS = 1

RIGHTEXISTS = 0

While temp != NULL

Push(temp)

Temp = left(temp)

End while

While (TRUE)

Temp = pop ()

If temp = NULL

Break

End if

Print info(temp)

If right(temp) != NULL

Temp = right(temp)

RIGHTEXISTS = 1

Break

End if

End while

End while

End INORDER

Postorder Traversal

• In the postorder traversal method, a stack is initially stored with a NULL value.

Non-Linear Data Structures

21

• A pointer temp is made to point to the root node. A flag RIGHTEXISTS is set to 1.

A loop is started and continued until this flag is 1.

• The current node is pushed into the stack and it is checked if it has a right child. If so,

the negative of value of that node is pushed into the stack and the temp is moved to

its left child if it exists.

• This process is repeated till the temp reached a NULL value.

• Now the values in the stack are popped one by one and are pointed by temp. If the

value popped is positive then that node is processed. If the value popped is negative,

then the value is negated and pointed by temp.

• The flag RIGHTEXISTS is set to 1 and the same above process repeats. This

continues till the NULL value from the stack is popped.

Non-Linear Data Structures

22

POSTORDER (ROOT)

Temp = ROOT, push (NULL), RIGHTEXISTS = 1

While RIGHTEXISTS = 1

RIGHTEXISTS = 0

While temp != NULL

Push (temp)

If right(temp) != NULL

Push (- right(temp))

End if

Temp =left(temp)

End while

Do

Temp = pop ()

If temp > 0

Print info(temp)

End if

If temp < 0

Temp = -temp

RIGHTEXISTS = 1

Break

End if

While temp != NULL

End while

End POSTORDER

Non-Linear Data Structures

23

EXPRESSION TREE

• The expression tree is a binary tree in which each internal node corresponds to the

operator and each leaf node corresponds to the operand so for example expression tree

for 3 + ((5+9) * 2) would be:

Fig. 5.12 Expression Tree

• Inorder traversal of expression tree produces infix version of given postfix expression

(same with preorder traversal it gives prefix expression)

• Evaluating the expression represented by an expression tree:

Let t be the expression tree

If t is not null then

 If t.value is operand then

 Return t.value

 A = solve(t.left)

 B = solve(t.right)

 // calculate applies operator 't.value'

 // on A and B, and returns value

 Return calculate (A, B, t.value)

• Construction of Expression Tree:

• Now for constructing an expression tree we use a stack. We loop through input

expression and do the following for every character.

o If a character is an operand push that into the stack

Non-Linear Data Structures

24

o If a character is an operator pop two values from the stack make them its

child and push the current node again.

• In the end, the only element of the stack will be the root of an expression tree.

APPLICATION OF BINARY TREES

• Manipulation of arithmetic expression

• Construction of symbol table

• Analysis of Syntax

• Writing Grammar

• Creation of Expression Tree

BINARY SEARCH TREES

• Binary Search Tree: A Binary tree T is a Binary Search Tree (BST), if each node N of

T has the following property: The value at N is greater than every value in the left

subtree of N and is less than every value in the right subtree of N.

• Consider the following tree. The root node 60 is greater than all the elements (54, 23,

58) in its left subtree and is less than all elements in its right subtree (78, 95). Similarly,

54 is greater than its left child 23 and lesser than its right child 58. Hence each and every

node in a binary search tree satisfies this property.

• The reason why we go for a Binary Search tree is to improve the searching efficiency.

The average case time complexity of the search operation in a binary search tree is O

(log n).

• Consider the following list of numbers. A binary tree can be constructed using this list

of numbers, as shown.

• 38 14 8 23 18 20 56 45 82 70

• Initially 38 is taken and placed as the root node. The next number 14 is taken and

compared with 38. As 14 is lesser than 38, it is placed as the left child of 38. Now the

third number 8 is taken and compared starting from the root node 38. Since is 8 is less

Non-Linear Data Structures

25

than 38 moves towards left of 38. Now 8 is compared with 14, and as it is less that 14

and also 14 does not have any child, 8 is attached as the left child of 14. This process is

repeated until all the numbers are inserted into the tree. Remember that if a number to

be inserted is greater than a particular node element, then we move towards the right of

the node and start comparing again.

 Search Operation in a Binary Search Tree

• The search operation on a BST returns the address of the node where the element is

found. The pointer LOC is used to store the address of the node where the element is

found. The pointer PAR is used to point to the parent of LOC. Initially the pointer

TEMP is made to point to the root node. Let us search for a value 70 in the following

BST. Let k = 70. The k value is compared with 38. As k is greater than 38, move to the

right child of 38, i.e., 56. k is greater than 56 and hence we move to the right child of

56, which is 82. Now since k is lesser than 82, temp is moved to the left child of 82.

The k value matches here and hence the address of this node is stored in the pointer

LOC.

• Every time the temp pointer is moved to the next node, the current node is made pointed

by PAR. Hence, we get the address of that node where the k value is found, and also

the address of its parent node though PAR.

Non-Linear Data Structures

26

SEARCH (ROOT, k)

Temp = ROOT, par = NULL, loc = NULL

While temp != NULL

If k = info(temp)

Loc = temp Break

End if

If k < info(temp)

Par = temp

Temp = left(temp)

Else

Par = temp

Temp = right(temp)

End if

End while

End SEARCH

 Insert Operation in a Binary Search Tree

• The BST itself is constructed using the insert operation described below. Consider the

following list of numbers. A binary tree can be constructed using this list of numbers

using the insert operation, as shown.

• 39 14 8 23 18 20 56 45 82 70

• Initially 38 is taken and placed as the root node. The next number 14 is taken and

compared with 38. As 14 is lesser than 38, it is placed as the left child of 38. Now the

third number 8 is taken and compared starting from the root node 38. Since is 8 is less

than 38 moves towards left of 38. Now 8 is compared with 14, and as it is less than 14

and also 14 does not have any child, 8 is attached as the left child of 14. This process is

repeated until all the numbers are inserted into the tree.

Non-Linear Data Structures

27

• Remember that if a number to be inserted is greater than a particular node element, then

we move towards the right of the node and start comparing again.

Non-Linear Data Structures

28

INSERT (ROOT, k)

Temp = ROOT, par = NULL

While temp != NULL

If k = info(temp)

Print “Item already exists!” Return

End if

If k < info(temp)

Par = temp

Temp = left(temp)

Else

Par = temp

Temp = right(temp)

End if

End while

Info(R) = k, left(R) = NULL, right(R) = NULL

If par = NULL

ROOT = R

End if

If k < info(par)

Left(par) = R

Else

Right(par) = R

Non-Linear Data Structures

29

End if

End INSERT

Delete Operation in a Binary Search Tree

• The delete operation in a Binary search tree follows two cases. In case A, the node to

be deleted has no children or it has only one child. In case B, the node to be deleted has

both left child and the right child. It is taken care that, even after deletion the binary

search tree property holds for all the nodes in the BST.

DELETE (ROOT, k)

SEARCH (ROOT, k)

If Loc = NULL

Print “Item not found” Return

End if

If right (Loc) != NULL and left (Loc) != NULL

CASEA (Loc, par)

Else

CASEB (Loc, par)

End if

End DELETE

Case A:

• The search is operation is performed for the key value that has to be deleted.

• The search operation, returns the address of the node to be deleted in the pointer LOC

and its parents’ address is returned in a pointer PAR.

• If the node to be deleted has no children then, it is checked whether the node pointed

by LOC is left child of PAR or is it the right child of PAR.

• If it is the left child of PAR, then left of PAR is made NULL else right of PAR is made

NULL.

• The sequence of steps followed for deleting 20 from the tree is as shown.

Non-Linear Data Structures

30

• If the node to be deleted has one child, then a new pointer CHILD is made to point to

the child of LOC. If LOC is left child of PAR then left of PAR is pointed to CHILD. If

LOC is right child of PAR then right of PAR is pointed to CHILD.

• The sequence of steps for deleting the node 23 is shown.

Non-Linear Data Structures

31

Case B:

• In this case, the node to be deleted has both the left child and the right child. Here we

introduce two new pointers SUC and PARSUC. The inorder successor of the node to

be deleted is found out and is pointed by SUC and its parent node is pointed by the

PARSUC. In the following example the node to be deleted is 56 which has both the left

child and the right child. The inorder successor of 56 is 70 and hence it is pointed by

SUC. Now the SUC replaces 56 as shown in the following sequence of steps.

Non-Linear Data Structures

32

Non-Linear Data Structures

33

CASEA (Loc, par)

Temp = Loc

If left(temp) = NULL and right(temp) = NULL Child = NULL

Else

If left(temp) != NULL

Child = left(temp)

Else

Child = right(temp)

End if

End if

If par != NULL

If temp = left(temp)

Left(par) = child

Else

Right(par) = child

End if

Else

ROOT = child

End if

End CASEA

CASEB (Loc, par)

Temp = right (Loc)

Save = Loc

While left(temp) != NULL

Non-Linear Data Structures

34

Save = temp

Temp = left(temp)

End while

Suc = temp

Parsuc = save

CASEA (suc, parsuc)

If par != NULL

If Loc = left(par)

Left(par) = suc

Else

Right(par) = suc

End if

Else

ROOT = suc

End if

Left(suc) = left (Loc)

Right(suc) = right (Loc)

End CASEB

GRAPHS

• Graph: A graph G is a defined as a set of objects called nodes and edges.

• G = (V, E)

• A graph G consists of two things:

o A set V of elements called nodes (or points or vertices)

o A set E of edges such that each edge e in E is identified with a unique pair

[u,v] of nodes in V, denoted by e = [u,v]

• Node: A node is a data element of the graph.

• Edge: An edge is a path between two nodes.

• There are two types of graph. They are

o Undirected graph

o Directed graph

• Undirected graph: An undirected graph is a graph in which the edges are directionally

oriented towards a node.

Non-Linear Data Structures

35

• Directed graph: A Directed graph or a Digraph is a graph in which the edges are not

directionally oriented towards any node.

Fig. 5.13 Types of Graph

• Arc: The directed edge in a directed graph is called an arc.

• Strongly connected graph: A Directed graph is called a strongly connected graph if

for any two nodes I and J, there is a directed path from I to J and also from J to I.

• Weakly connected graph: A Directed graph is called a weakly connected graph if for

any two nodes I and J, there is a directed path from I to J or from J to I.

• Outdegree: The number of arcs exiting from the node is called outdegree of that node.

• Indegree: The number of arcs entering the node is called indegree of that node.

• Source node: A node where the indegree is 0 but has a positive value for outdegree is

called a source node. That is there are only outgoing arcs to the node and no incoming

arcs to the node.

• Sink node: A node where the outdegree is 0 and has a positive value for indegree is

called the sink node. That is there is only incoming arcs to the node and no outgoing

arcs the node.

• Cycle: A cycle in a directed graph is a directed path that originates and terminates at

the same node.

• Length of the path: The length of the path between node I and K is the number of

edges between them in a path from I to K.

• Degree of a node: In an undirected graph, the degree of a node is the number of edges

connected directly to the node.

Non-Linear Data Structures

36

For example,

• In the directed graph shown above, the outdegree of A is 3. The indegree of B is 1. The

node A is the source node. The node D is the Sink node. The length of the path between

A to D is 2.

• Degree: The degree of the node B in the undirected graph shown above is 3.

Representation of Graphs

• The graphs can be represented using Adjacency matrix or otherwise called the Incidence

matrix.

• The adjacency matrix is a N X N matrix where N is the number of nodes in the graph.

Each entry (I, J) in the matrix has either 1 or 0. An entry 1 indicates that there is a direct

connection from I to J. An entry 0 indicates that there is no direct connection from I to

J.

• If an adjacency matrix is written for the above directed graph as shown:

Graph Traversals

• There are two methods for traversing through the nodes of the graph. They are:

o Breadth First Search Traversal (BFS)

o Depth First Search Traversal (DFS)

 Breadth First Search Traversal (BFS)

• As the name implies, this method traverses the nodes of the graph by searching through

the nodes breadth-wise. Initially let the first node of the graph be visited. This node is

now considered as node u. Now find out all the nodes which are adjacent to this node.

Let all the adjacent nodes be called as w. Add the node u to a queue. Now every time

an adjacent node w is visited, it is added to the queue. One by one all the adjacent nodes

w are visited and added to the queue. When all the unvisited adjacent nodes are visited,

then the node u is deleted from the queue and hence the next element in the queue now

becomes the new node u. The process is repeated on this new node u. This is continued

till all the nodes are visited.

Non-Linear Data Structures

37

• The Breadth First Traversal (BFT) algorithm calls the BFS algorithm on all the nodes.

• Algorithm1

BFT (G, n)

Repeat for i = 1 to n

Visited[i] = 0

End Repeat

Repeat for i = 1 to n

If visited[i] = 0

BFS(i)

End if

End Repeat

• Algorithm2

BFS (v)

u = v

visited[v] = 1

Repeat while(true)

Repeat for all vertices w adjacent from u If visited[w] = 0

Add w to queue

Visited[w] = 1

End if

End Repeat

If queue is empty

Return

End if

Delete u from queue

End while

End BFS

Non-Linear Data Structures

38

Non-Linear Data Structures

39

• Now the following diagrams illustrates the BFS on a directed graph.

Depth First Search Traversal (DFS)

• In the Depth First Search Traversal, as the name implies the nodes of the graph are

traversed by searching through all the nodes by first going to the depth of the graph.

• The first node is visited first. Let this be node u. Find out all the adjacent nodes of u.

Let that be w.

• Apply the DFS on the first adjacent node recursively. Since a recursive approach is

followed, the nodes are traversed by going to the depth of the graph first.

• The DFT algorithm calls the DFS algorithm repeatedly for all the nodes in the graph.

• Algorithm1

DFT (G, n)

Non-Linear Data Structures

40

Repeat for i = 1 to n

Visited[i] = 0

End Repeat

Repeat for i = 1 to n

If visited[i] = 0

DFS(i)

End if

End Repeat

• Algorithm2

DFS(v)

Visited[v] = 1

Repeat for each vertex w adjacent from v

If visited[w] = 0

DFS(w)

End if

End for

Non-Linear Data Structures

41

• Now the following diagrams illustrates the DFS on a directed graph.

TOPOLOGICAL SORT

• Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices

such that for every directed edge u v, vertex u comes before v in the ordering.

Topological Sorting for a graph is not possible if the graph is not a DAG.

• For example, a topological sorting of the following graph is “5 4 2 3 1 0”. There can be

more than one topological sorting for a graph. For example, another topological sorting

of the following graph is “4 5 2 3 1 0”.

• The first vertex in topological sorting is always a vertex with in-degree as 0 (a vertex

with no incoming edges).

Non-Linear Data Structures

42

Topological Sorting vs Depth First Traversal (DFS):

• In DFS, we print a vertex and then recursively call DFS for its adjacent vertices.

• In topological sorting, we need to print a vertex before its adjacent vertices.

• For example, in the given graph, the vertex ‘5’ should be printed before vertex ‘0’, but

unlike DFS, the vertex ‘4’ should also be printed before vertex ‘0’.

• So Topological sorting is different from DFS.

• For example, a DFS of the shown graph is “5 2 3 1 0 4”, but it is not a topological

sorting.

Algorithm to find Topological Sorting:

• We can modify DFS to find Topological Sorting of a graph.

• In DFS, we start from a vertex, we first print it and then recursively call DFS for its

adjacent vertices.

• In topological sorting, we use a temporary stack. We don’t print the vertex immediately,

we first recursively call topological sorting for all its adjacent vertices, then push it to a

stack. Finally, print contents of the stack.

• Note that a vertex is pushed to stack only when all of its adjacent vertices (and their

adjacent vertices and so on) are already in the stack.

• Steps in Topological Sorting

L ← Empty list that will contain the sorted elements

S ← Set of all nodes with no incoming edge

while S is not empty do

 remove a node n from S

 add n to L

 for each node m with an edge e from n to m do

 remove edge e from the graph

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://media.geeksforgeeks.org/wp-content/cdn-uploads/graph.png

Non-Linear Data Structures

43

 if m has no other incoming edges then

 insert m into S

if graph has edges then

 return error (graph has at least one cycle)

else

 return L (a topologically sorted order)

• Algorithm

topoSort (u, visited, stack)

Input − The start vertex u, an array to keep track of which node is visited or not. A

stack to store nodes.

Output − Sorting the vertices in topological sequence in the stack.

Begin

 mark u as visited

 for all vertices v which is adjacent with u, do

 if v is not visited, then

 topoSort(c, visited, stack)

 done

 push u into a stack

End

performTopologicalSorting (Graph)

Input − The given directed acyclic graph.

Output − Sequence of nodes.

Begin

 initially mark all nodes as unvisited

 for all nodes v of the graph, do

 if v is not visited, then

 topoSort(i, visited, stack)

 done

 pop and print all elements from the stack

End.

Non-Linear Data Structures

44

• The graph shown above has many valid topological sorts, including:

o 5, 7, 3, 11, 8, 2, 9, 10 (visual top-to-bottom, left-to-right)

o 3, 5, 7, 8, 11, 2, 9, 10 (smallest-numbered available vertex first)

o 5, 7, 3, 8, 11, 10, 9, 2 (fewest edges first)

o 7, 5, 11, 3, 10, 8, 9, 2 (largest-numbered available vertex first)

o 5, 7, 11, 2, 3, 8, 9, 10 (attempting top-to-bottom, left-to-right)

o 3, 7, 8, 5, 11, 10, 2, 9 (arbitrary)

• Applications:

o Topological Sorting is mainly used for scheduling jobs from the given

dependencies among jobs.

o In computer science, applications of this type arise in instruction scheduling,

ordering of formula cell evaluation when recomputing formula values in

spreadsheets, logic synthesis, determining the order of compilation tasks to

perform in make files, data serialization, and resolving symbol

dependencies in linkers

