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      Unit-I 

 

Introduction to Data vs Information - Data Structures - Classification – Abstraction - Abstract data 

types (ADT) - Array - characteristics - Storage Representations. Array Order Reversal- Recursion- 

Array operations, Algorithm-complexity – Time and Space trade off. 

 

I. ALGORITHM 

An algorithm is a well-defined computational procedure having well defined steps for solving 

a particular problem. Algorithm is finite set of logic or instructions, written in order for 

accomplishing the certain predefined task.  

Each algorithm must have: 

• Specification: Description of the computational procedure. 

• Pre-conditions: The condition(s) on input.  

• Body of the Algorithm: A sequence of clear and unambiguous instructions. 

• Post-conditions: The condition(s) on output. 

Characteristics of an Algorithm 

An algorithm must follow the mentioned below characteristics: 

• Input: An algorithm must have 0 or well- d e f i n e d  inputs. 

• Output: An algorithm must have 1 or well-defined outputs, and should match with the 

desired output. 

• Feasibility: An algorithm must be terminated after the finite number of steps. 

• Independent: An algorithm must have step-by-step directions which is independent of 

any programming code. 

• Unambiguous: An algorithm must be unambiguous and clear. Each of their steps and 

input/outputs must be clear and lead to only one meaning. 

  The performance of algorithm is measured on the basis of following  properties: 

• Time complexity: It is a way of representing the amount of time needed by a program to 

run to the completion. 

• Space complexity: It is the amount of memory space required by an algorithm, during a 

course of its execution. Space complexity is required in situations when limited memory is 

available and for the multi user system. 
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2.INTRODUCTION TO DATA STRUCTURES 

2.1 Data 

In the modern context, data stands for both singular and plural. Data means a value or set of 

values. Data can be defined as an elementary value or the collection of values, for example, 

student’s name and its id are the data about the student. 

 2.2 Structure 

A building is a structure. A bridge is structure. In general, a structure is made up of 

components. It has a form or shape. It is made up of parts. A structure is an arrangement of and 

relations between parts or elements. 

2.3 Data Structures 

A data structure is an arrangement of data elements. Data Structure can be defined as the group 

of data elements which provides an efficient  way of storing and organizing data in the computer 

so that it can be used efficiently. Some examples of Data Structures are arrays, Linked List, Stack, 

Queue, etc. Data Structures are widely used in almost every aspect of Computer Science i.e. 

Operating System, Compiler Design, Artificial Intelligence, Graphics and many more. 

   2.3.1 Needs 

   As applications are getting complex and amount of data is increasing day by day, the following  

  issues might be araised: 

Processor speed: To handle very large amount of data, high speed processing is required, but as the 

data is growing day by day to the billions of files per entity, processor may fail to deal with that 

much amount of data. 

Data Search: Consider an inventory size of 106 items in a store; if our application needs to 

search for a particular item, it needs to traverse 106 items every time, results in slowing down the 

search process. 

Multiple requests: If thousands of users are searching the data simultaneously in a web server, it 

fails to process the requests. 

In order to solve the above problems, data structures are used. Data  is organized to form 

a data structure in such a way that all items are not required to be searched and required data 

can be searched instantly. 

Data structures are important for the following reasons 

1. Data structures are used in almost every program or software system. 

2. Specific data structures are essential ingredients of many efficient algorithms, and make possible 
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the management of huge amounts of data, such as large integrated collection of databases. 

3. Some programming languages emphasize data structures, rather than algorithms, as the key 

organizing factor in software design. 

Advantages of Data Structures 

Efficiency: Efficiency of a program depends upon the choice of data structures. For example: 

suppose, we have some data and we need to perform the search for a particular record. element. 

Hence, using array may not be very efficient here.  

Reusability: Data structures are reusable, i.e. once we have implemented  a particular data 

structure, we can use it at any other place.  

Abstraction: Data structure is specified by the ADT which provides a level of abstraction. The 

client program uses the data structure through interface only, without getting into the 

implementation details. 

3.Classification of Data Structure  

The data structure is classified into two different types, primitive and non-primitive data structures 

is shown in Fig.1. 

Primitive Data Structures 

Simple data structure can be constructed with the help of primitive data structure. A 

primitive data structure used to represent the standard data types of any one of the computer 

languages. Variables, pointers, structures, unions, etc. are examples of primitive data structures. 

Non Primitive Data Structures 

 Non Primitive Data Structures are classified as linear or non-linear. Arrays, linked lists, 

queues and stacks are linear data structures. Trees  and Graphs are non-linear data structures. 

Except arrays, all other data structures have many variations. Non Primitive data structure can be 

constructed with the help of any one of the primitive data structure and it is having a specific 

functionality. It can be designed by user. 
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Fig. 1 Classification of Data Structure 

Linear Data Structures 

A data structure is called linear if all of its elements are arranged  in the linear order. 

In linear data structures, the elements are stored in non-hierarchical way where each element has 

the successors and predecessors except the first and last element. In linear data structure the 

elements are stored in sequential order. 

Types of Linear Data Structures are given below: 

Arrays: An array is a collection of similar type of data items stored in consecutive memory location 

and is referred by common name; each data item is called an element of the array. The data type 

of the element may  be any valid data type like char, int, float or double. The elements of 

array share the same variable name but each one carries a different index number known as 

subscript.  

Linked List: Linked list is a linear data structure which is used to maintain a list in the memory. 

It can be seen as the collection of nodes  stored at non-contiguous memory locations. Each 

node of the list contains     a pointer to its adjacent node. It is a collection of data of same data 

type      but the data items need not be stored in consecutive.  

Stack: Stack is a linear list in which insertion and deletions are allowed      only at one end, called 

top. It is a Last-In-First-Out linear data structure. 

A stack is an abstract data type (ADT), can be implemented in most of the programming 
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languages. It is named as stack because it behaves like a real-world stack, for example, piles 

of plates or deck of cards etc. 

 

Queue: Queue is a linear list in which elements can be inserted only at one end called rear 

and deleted only at the other end called front. It is a First-In-First-Out Linear data structure. 

It is an abstract data structure, similar to stack. Queue is opened at both end therefore it 

follows First-In-First-Out (FIFO) methodology for storing the data items. 

 

Operations applied on Linear Data Structure 

The following list of operations applied on linear data structures 

• Add an element 

• Delete an element 

• Traverse 

• Sort the list of elements 

• Search for a data element 

 

Non-linear Data Structures 

This data structure does not form a sequence i.e. each item or element  is connected with two or 

more other items in a non-linear arrangement. The data elements are not arranged in sequential 

structure. Elements are stored based on the hierarchical relationship among the data. The following 

are some of the Non-Linear data structures. 

Trees: Trees are multilevel data structures with a hierarchical relationship among its 

elements known as nodes. The bottom most nodes are called leaf node while the top most node 

is called root node. Each node contains pointers to point adjacent nodes. Each node in the tree 

can have more than one child except    the leaf nodes whereas each node can have at most one 

parent except the root node.  

 

Graphs: Graphs can be defined as the pictorial representation of the set          of elements (represented 

by vertices) connected by the links known as edges. A graph is different from tree in the sense 

that a graph can have           cycle while the tree cannot have the one.  
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Operations applied on non-linear data structures 

The following list of operations applied on non-linear data structures. 

1. Add elements 

 

2. Delete elements 

 

3. Display the elements 

 

4. Sort the list of elements 

 

5. Search for a data element 

 

 

4. ABSTRACT DATA TYPES 

Abstract Data Type (ADT) is a type or class for objects whose behaviour is defined by a 

set of value and a set of operations. 

The definition of ADT only mentions what operations are to be performed but not how these 

operations will be implemented. It does not specify how data will be organized in memory and 

what algorithms will         be used for implementing the operations. The process of providing only 

the essentials and hiding the details is known as abstraction is shown in fig,2. 

           

           Fig. 2 Abstract Data Type 

4.1 List ADT 

 

• The data is generally stored in key sequence in a list which has a head structure consisting of 

count, pointers and address of compare function needed to compare the data in the list is 

shown in fig.3. 
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• The data node contains the pointer to a data structure and a self-referential pointer which 

points to the next node in the list. 

 

      Fig.3 List ADT 

 

A list contains elements of the same type arranged in sequential   order and following 

operations can be performed on the list. 

 

• get() – Return an element from the list at any given position. 

 

• insert() – Insert an element at any position of the list. 

 

• remove() – Remove the first occurrence of any element from a non-empty list. 

• removeAt() – Remove the element at a specified location from a non-empty list. 

• replace() – Replace an element at any position by another element. 

• size() – Return the number of elements in the list. 

• isEmpty() – Return true if the list is empty, otherwise return false. 

• isFull() – Return true if the list is full, otherwise return false. 

The List ADT Functions is shown in Fig.4. 

//List ADT Type Definitions 

typedef struct node{ 

void *DataPtr; 

struct node *link; 

} Node; 

typedef struct{ 

int count; 

Node *pos; 

Node *head; 

Node *rear; 

int (*compare) (void *argument1, void *argument2); 

 
} LIST; 
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Fig. 4 List ADT Functions 

 

4.2 Stack ADT 

✱ In Stack ADT Implementation instead of data being stored in each  node, the pointer to data is 

stored. 

✱ The program allocates memory for the data and address is passed   to the stack ADT is shown 

in Fig.5. 

✱ The head node and the data nodes are encapsulated in the ADT.  The calling function can 

only see the pointer to the stack. 

✱ The stack head structure also contains a pointer to top and count of number of entries 

currently in stack. 

✱ A Stack contains elements of the same type arranged in sequential  order. 
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                  Fig. 5 Stack ADT 

All operations take place at a single end that is top of the stack and following  

operations can be performed: 

• push() – Insert an element at one end of the stack called top. 

• pop() – Remove and return the element at the top of the stack, if it is not empty. 

• peek() – Return the element at the top of the stack without removing it, if the stack is not 

empty. 

• size() – Return the number of elements in the stack. 

• isEmpty() – Return true if the stack is empty, otherwise return false. 

• isFull() – Return true if the stack is full, otherwise return false. 

4.3 Queue ADT 

✱ The queue Abstract Data Type (ADT) follows the basic design of   the stack abstract data 

type is shown in fig.6. 

✱ A Queue contains elements of the same type arranged in sequential order. Operations take place at 

both ends, insertion is done at the end and deletion is done at the front. Following operations can 

be performed. 

• enqueue() – Insert an element at the end of the queue. 

• dequeue() – Remove and return the first element of the queue, if the queue is not empty. 

• peek() – Return the element of the queue without removing it, if the queue is not empty. 

• size() – Return the number of elements in the queue. 

• isEmpty() – Return true if the queue is empty, otherwise return false. 

• isFull() – Return true if the queue is full, otherwise return false. 

 

 

//Stack ADT Type Definitions 

typedefstruct node{ 

void *DataPtr; 

struct node *link; 

} StackNode; 

typedefstruct{ 

int count; 

StackNode *top; 

} STACK; 
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    Fig 6. Queue ADT 

6.ARRAYS 

The number of data items chunked together into a unit is known as        data structure. When the 

data structure consists simply a sequence of data items, the data structure of this simple variety 

is referred as an array. 

Definition: Array is a collection of homogenous (same data type) data elements that are stored 

in contiguous memory locations. 

Array Syntax 

Syntax to declare an array: 

✱ dataType [ ] arrayName; 

arrayName= new dataType[n]; //keyword new performs dynamic memory location 

(or) 

✱ dataType [ ] arrayName = new dataType[n]; 

Example: 

int [ ] x; x=new int [10]; (or) 

int [] x=new int [10]; 

 

 

//Queue ADT Type Definitions 

typedefstructnode { 

void*DataPtr; 

structnode *next; 

 

} QueueNode; 

typedefstruct { 

QueueNode *front; 

QueueNode *rear; 

intcount; 

} QUEUE; 
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Array Initialization 

The values of an array can be initialized as follows, 

Example 1: 

int [] j=new int [1]; j[0] =10;(or)int [] j= {25}; 

 

Example 2: 

int [] myarray= {5, 10}; 

 

5.1 Characteristics of an Array 

The following are the characteristics of an array data structure. 

(i) Array stores elements of same data type. 

(ii) The elements of an array are stored in subsequent memory locations. 

 

(iii) The name of array represents the starting address of the elements. 

 

(iv) When data objects are stored in array, individual objects are selected by an index. 

(v) By default an array index starts from 0 and ends with (n-1). Index is also referred as 

subscripts. 

(vi) The size of the array is mentioned at the time of declaring array. 

(vii) While declaring 2D array, number of columns should be specified whereas for 

number of rows there is no such rule. 

(viii) Size of array can’t be changed at run time. 

 

5.2Array Types 

 1.One-Dimensional Array or Linear arrays 
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 2. Multi-Dimensional Array 

 3.Two dimensional (2D) Arrays or Matrix Arrays 

     5.2.1 One-Dimensional Array 

In one dimensional array each element is represented by a single subscript. The elements   

are stored in consecutive memory locations. E.g. A [1], A [2], ......., A [N]. 

5.2.2 Two dimensional (2-D) arrays or Matrix Arrays 

In two dimensional arrays each element is represented by two subscripts. Thus a two 

dimensional m x n array has m rows and n columns and contains m * n elements. It is also 

called matrix array because in this case, the elements form a matrix. For example A [4] 

[3] has 4 rows and 3 columns and 4*3 = 12 elements. 

 

int [] [] A = new int [4] [3]; 

5.2.3 Multi dimensional arrays: 

In it each element is represented by three subscripts. Thus a three dimensional m x n x l 

array contains m * n * l elements. For example A [2] [4] [3] has 2 * 4 * 3 = 24 elements. 

 

6.STORAGE REPRESENTATION 

 

An array is a set of homogeneous elements. Every element is referred by an index. Memory 

storage locations of the elements are not arranged as a rectangular array with rows and columns. 

Instead, they are arranged   in a linear sequence beginning with location 1, 2, 3 and so on. The 

elements are stored either column-by-column or row-by-row. The first one is called column-major 

order and later is referred as row-major order. 
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   6.1 Row Major Order 

  The table 1 shows the linear arrangement of data in row major order. 

       Example 

• Rows : 3 

• Columns : 4 

 

 

 

 

Table 1 Linear  Arrangement of Array A in Row Major Order 

 

 

 

The formula is: 

Location (A [j,k] ) = Base Address of (A) + w [ (N * (j-1)) + (k-1) ] 

Location (A [j, k] ): Location of jth row and kth column 

Base (A)   : Base Address of the Array A 

w   : Bytes required to represent single element of the Array A 

Linear Arrangement of Array A 

Row 1 2 3 

Index 
(1,1

) 

(1,2

) 

(1,3

) 

(1,4

) 

(2,1

) 

(2,2

) 

(2,3

) 

(2,4

) 

(3,1

) 

(3,2

) 

(3,3

) 

(3,4

) 

Memor

y 
100 102 104 106 108 110 112 114 116 118 120 122 

Data 1 2 3 4 5 6 7 8 9 10 11 12 

Data (A): 

1 2 3 4 

5 6 7 8 

9 10 11 12  
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N   : Number of columns in the Array 

j   : Row position of the element 

k   : Column position of the element 

Example 

Suppose to find the address of (3,2)  then 

Base (A) = 100 

w = 2 Bytes (integer type) 

N = 4 

j = 3 

k = 2 

Location ( A [3, 2] ) = 100 + 2 [ (4 * (3-1) + (2-1) ] 

                    = 118 

6.2 Column Major Order 

 The table 2 shows the linear arrangement of data in column major order. 

 

• Rows : 3    

• Columns : 4 

 

Data (A): 

1 2 3 4 

5 6 7 8 

9 10 11 12 
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Table 2 Linear  Arrangement of Array A in Column Major Order 

The formula for column major order is: 

 

Location (A [j, k] ) = Base Address of (A) + w [ (M * (k-1)) + (j-1) ] 

Location (A [j, k] ): Location of jth row and kth column 

Base (A)   : Base Address of the Array A 

w   : Bytes required to represent single element of the Array A 

M   : Number of rows in the Array 

j   : Row position of the element 

k   : Column position of the element 

Example 

Base (A) = 100 

w = 2 Bytes (integer type) 

M = 3 

j = 3 

k = 2 

Linear Arrangement of Array A 

Colum

n 
1 2 3 4 

Index 
(1,1

) 

(2,1

) 

(3,1

) 

(1,2

) 

(2,2

) 

(3,2

) 

(1,3

) 

(2,3

) 

(3,3

) 

(1,4

) 

(2,4

) 

(3,4

) 

Memor

y 
100 102 104 106 108 110 112 114 116 118 120 122 

Data 1 5 9 2 6 10 3 7 11 4 8 12 



17 
 

Location ( A [3, 2] ) = 100 + 2 [ (3 * (2-1) + (3-1) ] 

                     = 110 

7.Array Order Reversal 

Given an array (or string), the task is to reverse the array/string. 

Examples: 

Input : arr[] = {1, 2, 3} Output : arr[] = {3, 2, 1} 

Input : arr[] = {4, 5, 1, 2} Output : arr[] = {2, 1, 5, 4} 

Algorithm 

1) Initialize start and end indexes as start = 0, end = n-1. 

2) In a loop, swap arr[start] with arr[end] and change start and end  as follows : 

start = start +1, end = end – 1 

 

 

 

8.Array Counting 

1. Create a function arraycounting(array, size) 

 

2. Find largest element in array and store it in max 

 

3. Initialize count array with all zeros 

 

4. for j = 0 to size 

 

5. Find the total count of each unique element and 

 

6. Store the count at jth index in count array 
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Example   A={4,2,2,8,3,3,1} 

1. Find out the maximum element (let it be max) from the given array. 

 

 

2. Initialize an array of length max+1 with all elements 0. This array is used for storing 

the count of the elements in the array. 

 

3. Store the count of each element at their respective index in count array. For example: If 

the count of element “4” occurs 2 times then 2 is stored in the 4
th 

position in the 

count array. If element “5” is not present in the array, then 0 is stored in 5
th

 

 

8. Finding the maximum Number in a Set 

Algorithm 

✱ Read the array elements 

✱ Initialize first element of the array as max. 

     ✱ Traverse array elements from second and compare every element with current max 

✱ Find the largest element in the array and assign it as max 

✱ Print the largest element. 

 

Example:  A={56,78,34,23,70} 

 

Step 1: Initialize max=0 , n=len(A) 
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Step 2: Repeat  step 3  until n 

Step 3:  56>0 yes, Assign max=56 

 78>56, yes  Assign max=78 

 34>78, No    

 23>78, No 

 70>78, No     

Step 4:  print Max       Output:78 

9. RECURSION 

Recursion is a programming technique using function or algorithm that calls itself one or more 

times until a specified condition is met at    which time the rest of each repetition is processed 

from the last one called to the first. 

A simple recursive algorithm: 

✱ Solves the base cases directly. 

✱ Recurs with a simpler sub problem or sub problems. 

✱ May do some extra work to convert the solution to the simpler sub problem into a solution to 

the given problem. 

Some Example Algorithms 

• Factorial 

• All permutations 

• Tree traversal 

• Binary Search 

• Quick Sort 

• Towers of Hanoi 

9.1 Design Methodology and Implementation of Recursion 

 

✱ The recursive solution for a problem involves a two-way journey: 

✱ First we decompose the problem from the top to the bottom 

✱ Then we solve the problem from the bottom to the top. 

Rules for Designing a Recursive Algorithm 

(a) First, determine the base case. 

(b) Then determine the general case. 
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(c) Combine the base case and the general cases into an algorithm. 

(d) Each recursive call must reduce the size of the problem and move it toward 

the base case. 

(e) The base case, when reached, must terminate without a call to the recursive 

algorithm; that is, it must execute a return. 

9.2 Broad Categories of Recursion 

Recursion is a technique that is useful for defining relationships, and for designing algorithms 

that implement those relationships. It is a natural way to express many algorithms in an optimized 

way. Recursive function is defined in terms of itself. 

✱ Linear Recursion 

✱ Binary Recursion 

Linear Recursion: 

Linear recursion is by far the most common form of recursion. In this style of recursion, the 

function calls itself repeatedly until it hits the termination condition (Base condition). 

Binary Recursion  

Binary recursion is another popular and powerful method. This form of recursion has the 

potential for calling itself twice instead of once as before. This is pretty useful in scenarios 

such as binary tree traversal, generating a Fibonacci sequence, etc. 

Tail Recursion 

A function call is said to be tail recursive if there is nothing to do after the function returns 

except return its value. Since the current recursive instance is done executing at that point, 

saving its stack frame is a waste 

For example the following C function print () is tail recursive. 

 

// An example of tail recursive function Print (n) { 

If (n < 0) return; 

Display n; 

Print (n-1); 

 

} 
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10. FIBONACCI SERIES 

Fibonacci Series generates subsequent number by adding two previous numbers. Fibonacci 

series starts from two numbers F0 & F1. The initial values of F0 & F1 can be 

✱ 0 and 1 

✱ 1 and 1 respectively. 

 

The Fibonacci series looks like 

F8 = 0 1 1 2 3 5 8 13  

 

The algorithm for generating Fibonacci series can be drafted in 2 ways 

 

1. Fibonacci Iterative Algorithm. 

 

2. Fibonacci Recursive Algorithm. 

 

Fibonacci RecursiveAlgorithm  

 

Algorithm Fibo (n) 

If n = 0 

Return 0 Else If n = 1 

Return 1 

Else 

Fibo (n) = Fibo (n-1) + Fibo (n-2) Return Fibo (n) 

11.FACTORIAL 

The factorial of a positive number is the product of the integral values from 1 to the number: 

Factorial of the given number can be calculated   as 

Algorithm 

RecursiveFactorial (n) if (N equals 0) 

Return 1  

else 

Return (n*recursiveFactorial (n-1))  

end if 
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end recursiveFactorial 

Calling a Recursive Factorial Algorithm with n=3 

   Fig.6 shows the steps for calculating the factorial using Recursion for n=3. 

 

    Fig 6. Factorial using Recursion Steps 

Output: 6 

12. TOWERS OF HANOI 

Tower of Hanoi is a mathematical puzzle which consists of three tower (pegs) and more than 

one ring; as depicted in Fig.7. 

Fig.7 Tower of Hanoi 

These rings are of different sizes and stacked upon in ascending order i.e. the smaller one sits 

over the larger one. There are other variations of puzzle where the number of disks increases, 

but the tower count remains the same. 

7.1 Rules 

The mission is to move all the disks to some another tower without violating the sequence of 

arrangement. The below mentioned are few rules which are to be followed for Tower of Hanoi 

Disks   

Smallest 

 Largest 

Towers 
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✱ Only one disk can be moved among the towers at any given time. 

✱ Only the “top” disk can be removed. 

✱ No large disk can sit over a small disk. 

Steps for solving the Towers of Hanoi problem 

The following steps are to be followed. 

Step 1: Move n-1 disks from source to aux. 

Step 2: Move nth disk from source to destination 

 Step 3: Move n-1 disks from aux to destination. 

F i g . 8  illustrates the step by step movement of the disks to implement Tower of Hanoi. 

 

 

 

 

Step: 0 

 

Step: 2 
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Step: 6 
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                     Fig.8 Tower of Hanoi 

A recursive algorithm for Tower of Hanoi can be driven as follows START 

Procedure Hanoi (disk, source, dest, aux) 

IF disk = 0, THEN 

Move disk from source to dest ELSE 

Hanoi (disk-1, source, aux, dest) //Step1 Move disk from source to dest //Step2 Hanoi (disk-1, 

aux, dest, source) //Step3 ENDIF 

END 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Done! 
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UNIT 2 

LINKED LIST 

 

 Array Vs Linked List – Singly linked list - Representation of a linked list in memory - 

Operations on a singly linked list - Merging two singly linked lists into one list - Reversing a 

singly linked list – Polynomial Manipulation using List - Advantages and disadvantages of 

singly linked list - Circular linked list - Doubly linked list - Circular Doubly Linked List. 

 

2.1 Array Vs Linked List 

 

ARRAY LINKED LIST 

Array is a collection of elements of similar 

data type. 

Linked List is an ordered collection of elements of 

same type, which are connected to each other using 

pointers. 

Array supports Random Access, which 

means elements can be accessed directly 

using their index. 
 

Linked List supports Sequential Access, which 

means to access any element/node in a linked list, 

we have to sequentially traverse the complete linked 

list, up to that element. 

In an array, elements are stored 

in contiguous memory location or 

consecutive manner in the memory. 

In a linked list, new elements can be stored 

anywhere in the memory. Address of the memory 

location allocated to the new element is stored in the 

previous node of linked list, hence forming a link 

between the two nodes/elements. 

In array, Insertion and Deletion operation 

takes more time, as the memory locations 

are consecutive and fixed. 

In case of linked list, a new element is stored at the 

first free and available memory location, with only 

a single overhead step of storing the address of 

memory location in the previous node of linked 

list.Insertion and Deletion operations are fast in 

linked list. 
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Memory is allocated as soon as the array is 

declared, at compile time. It's also known 

as Static Memory Allocation. 

Memory is allocated at runtime, as and when a new 

node is added. It's also known as Dynamic Memory 

Allocation. 

ARRAY LINKED LIST 

In array, each element is independent and 

can be accessed using it's index value. 

In case of a linked list, each node/element points to 

the next, previous, or maybe both nodes. 

Array can be single dimensional, two 

dimensional or multidimensional. 

Linked list can be Linear(Singly) linked 

list, Doubly linked list or Circular linked list linked 

list. 

Size of the array must be specified at time 

of array declaration. 

Size of a Linked list is variable. It grows at runtime, 

as more nodes are added to it. 

Array gets memory allocated in 

the Stack section. 

Whereas, linked list gets memory allocated 

in Heap section. 

 

2.2 Linked List 

A Linked list is a collection of elements called nodes, each of which stores two items called 

data or info and link or pointer field. Info is an element of the list and a link is a pointer to the next 

element. The linked list is also called a chain. 

The different types of Linked lists are, 

• Singly linked list. 

• Doubly linked list 

• Circular linked list 

 

Singly Linked List 

• The first node is the head node and it points to next node in the sequence. 

• The last node’s reference is null indicating the end of the list is shown in Fig.2.1 

 

   Fig.2.1 Singly Linked List 

 

Doubly Linked List 
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• Every node has two pointers, one for pointing to next node and the other for pointing to the 

previous node. 

• The next pointer of the last node and the previous pointer of the first node (head) are null is shown 

in Fig 2.2 

 

Fig.2.2 Doubly Linked List 

Circular Linked List 

 

• Circular Linked List is very similar to a singly linked list except that, here the last node points to 

the first node making it a circular list as shown in fig 2.3 

 

Fig.2.3 Circular Linked List 

 

2.2.1 Singly Linked List 

 A singly linked list is a linked list in which each node contains only one link pointing to the 

next node in the list.   

A Node in a linked list holds the data value and the pointer which points to the location of 

the next node in the linked list. 

2.2.1.1 Representation of a linked list in memory 

A linked list is a linear data structure consisting of a group of nodes where each node points 

to the next node by means of a pointer. 

Each node is composed of data and a reference to the next node in the sequence. The last node has 

a reference to null which indicates the end of the linked list. 

Head node is the starting node of the linked list(first node) and it contains the reference to the next 

node in the list. The head node will have a null reference when the list is empty. The fig 2.4 gives 

you an idea of how a Linked List looks. 

https://www.faceprep.in/data-structures/linked-list/
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A linked list is represented by a pointer to the first node of the linked list. The first node is called 

the head. If the linked list is empty, then the value of the head is NULL. In C, we can represent a 

node using structures. 

 

   Fig 2.4 Singly Linked List representation 

In the picture above we have a linked list, containing 4 nodes, each node has some data(A, B, C 

and D) and a pointer which stores the location of the next node. 

In a singly linked list, the first node always pointed by a pointer called HEAD.  If the link of the 

node points to NULL, then that indicates the end of the list. 

 

Operations of Singly Linked List  

The operations that are performed on a linear list are, 

• Count the number of elements. 

• Add an element at the beginning of the list. 

• Add an element at the end of the list. 

• Insert an element at the specified position in the list. 

• Delete an element from the list. 

• Search x in the list. 

• Display all the elements of the list. 

 

Add an element at the beginning of the list. 

Step 1 - Create a newNode with given value. 

Step 2 - Check whether list is Empty (head == NULL) 

Step 3 - If it is Empty then, set newNode→next = NULL and head = newNode. 

Step 4 - If it is Not Empty then, set newNode→next = head and head = newNode. 
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Algorithm 

 Addatbeg() 

Begin 

   Newnode->data=K 

  Newnode->next=NULL 

If(Head==NULL) 

     Head=Newnode 

Else 

    Newnode->next=Head 

    Head=Newnode 

Endif 

End 

The fig.2.5 shows how a node is added at the beginning of the linked list. 

 

Fig 2.5 Adding node at the beginning of the linked list 

 

Add an element at the end of the list. 

Step 1 - Create a newNode with given value and newNode → next as NULL. 
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Step 2 - Check whether list is Empty (head == NULL). 

Step 3 - If it is Empty then, set head = newNode. 

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head. 

Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list 

(until temp → next is equal to NULL). 

Step 6 - Set temp → next = newNode. 

 

Algorithm 

Addatend() 

Begin 

   Newnode->data=K 

  Newnode->next=NULL 

If(Head==NULL) 

     Head=Newnode 

Else 

 Temp=Head 

 While(temp->next !=NULL) 

   temp=temp->next 

  endwhile      

temp->next=Newnode 

Endif 

end 

The Fig 2.6 shows how the node is added at the end of the list. 
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 Fig 2.6 Node added at the end of the list 

Insert an element at the specified position in the list: 

Step 1 - Create a newNode with given value. 

Step 2 - Check whether list is Empty (head == NULL) 

Step 3 - If it is Empty then, set newNode → next = NULL and head = newNode. 

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head. 

Step 5 - Keep moving the temp to its next node until it reaches to the node after which we 

want to insert the newNode (until temp1 → data is equal to location, here location is the 

node value after which we want to insert the newNode). 

Step 6 - Every time check whether temp is reached to last node or not. If it is reached to last 

node then display 'Given node is not found in the list!!! Insertion not possible!!!' and 

terminate the function. Otherwise move the temp to next node. 

Step 7 - Finally, Set 'newNode → next = temp → next' and 'temp → next = newNode' 
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The operation ‘Insert’ inserts the given element x in the kth position.  A temporary pointer Temp is 

created and made to point to Head.  Now the Temp pointer is moved to the k – 1 th node. A new node 

with value x is created and the link of the new node is made to point to the position where the link 

of temp is pointing.  Then the link of temp is made to point to the new node.  Thus the given element 

is inserted in the position k is shown in fig.2.7. 

 

 
Fig 2.7 Inserting node at position 

 

 

Algorithm 

Function  insertin_mid() 

Begin 

Write    "Enter the position:" 

Read pos; 

If  head==NULL AND pos=1 

then 

Insert the node at the beginning 

End if 

If  head->next==NULL AND pos=2 

then 

insert the node 

End if 

Else if  pos>=2 AND pos<=ct 
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then 

prev=head 

for I = 2 to pos -  1 step +1 

do 

prev=prev->link 

END FOR 

next=prev->link 

temp=new node 

Write”Enter the data:" 

Read temp->data 

temp->link=next 

prev->link=temp 

ct=ct+1 

else 

Write  "Enter a valid position & try again" 

End if 

End 

 

 

Deletion 

In a single linked list, the deletion operation can be performed in three ways. They are as follows... 

• Deleting from Beginning of the list 

• Deleting from End of the list 

• Deleting a Specific Node 

Deleting from Beginning of the list 

 

We can use the following steps to delete a node from beginning of the single linked list... 

Step 1 - Check whether list is Empty (head == NULL) 

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and 

terminate the function. 

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head. 

Step 4 - Check whether list is having only one node (temp → next == NULL) 

Step 5 - If it is TRUE then set head = NULL and delete temp (Setting Empty list 

conditions) 

Step 6 - If it is FALSE then set head = temp → next, and delete temp. 

Deleting from End of the list 

We can use the following steps to delete a node from end of the single linked list... 

Step 1 - Check whether list is Empty (head == NULL) 
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Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and 

terminate the function. 

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and 

initialize 'temp1' with head. 

Step 4 - Check whether list has only one Node (temp1 → next == NULL) 

Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate the 

function. (Setting Empty list condition) 

Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node. 

Repeat the same until it reaches to the last node in the list. (until temp1 → 

next == NULL) 

Step 7 - Finally, Set temp2 → next = NULL and delete temp1. 

Deleting a Specific Node from the list 

 

We can use the following steps to delete a specific node from the single linked list... 

Step 1 - Check whether list is Empty (head == NULL) 

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and 

terminate the function. 

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize 

'temp1' with head. 

Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the last 

node. And every time set 'temp2 = temp1' before moving the 'temp1' to its next node. 

Step 5 - If it is reached to the last node then display 'Given node not found in the list! 

Deletion not possible!!!'. And terminate the function. 

Step 6 - If it is reached to the exact node which we want to delete, then check whether list is 

having only one node or not 

Step 7 - If list has only one node and that is the node to be deleted, then 

set head = NULL and delete temp1 (free(temp1)). 

Step 8 - If list contains multiple nodes, then check whether temp1 is the first node in the list 

(temp1 == head). 

Step 9 - If temp1 is the first node then move the head to the next node (head = head → 

next) and delete temp1. 

Step 10 - If temp1 is not first node then check whether it is last node in the list (temp1 → 

next == NULL). 
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Step 11 - If temp1 is last node then set temp2 → next = NULL and 

delete temp1 (free(temp1)). 

Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1 → 

next and delete temp1 (free(temp1)). 

Algorithm 

Function del() 

Begin 

 if(head= NULL) 

then 

      Write “Empty list" 

else 

      Write “Enter the position:" 

   Read  pos 

      if(pos==1) 

   then 

     next=head->link 

    head=next 

    ct=ct-1 

  else 

   if((pos>=2)&&(pos<=ct)) 

               prev=head 

       for(int i=2;i<=pos-1;i++) 

          Do 

         prev=prev->link 

      End FOR 

                        temp=prev->link   

                        next=temp->link 

               prev->link=next 

      ct=ct-1 

        End if 

End If 

End 

 

 

Displaying a Single Linked List 

 

We can use the following steps to display the elements of a single linked list... 

Step 1 - Check whether list is Empty (head == NULL) 

Step 2 - If it is Empty then, display 'List is Empty!!!' and terminate the function. 

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head. 

Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to the last 

node 
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Step 5 - Finally display temp → data with arrow pointing to NULL (temp → data ---> 

NULL). 

Counting 

count() 

 begin 

int co=0; 

do 

co++; 

c=c->link; 

while(c!=NULL); 

return co; 

 end 

Searching 

The operation Search( x ), searches the given value x in the list.  If found returns the node 

position where it is found.  A temporary pointer Temp is created and made to point to the Head.  

Now info part of Temp is compared with the value x.  If the value matches the node position number 

is returned otherwise Temp pointer is moved to the next node.  This is repeated till the end of the list 

is reached or till the element to be searched is found. 

Algorithm 

Function search() 

Begin 

flag=0 

if(head=NULL) 

then 

    Write  “Empty list" 

else 

       Write ”Enter the element to be searched:" 

        Read e 

   cur=head 

   FOR I = 1 to ct Step +1 

 Do 

     if(cur->data= e) 

   then 

 

       pos=I 

          flag++ 

          break 

    

     else 

   

       cur=cur->link 

     End if 

            ENDFOR 

 If (flag =1) 
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then 

        Write "Element found in position:" pos 

   

   else 

   

       Write ”Element not found" 

             End if 

 

 End Search 

2.3 Merging 

Node* MergeLists(Node* list1, Node* list2) 

begin 

    Node* mergedList; 

    if(list1 == null && list2 ==null) 

        return null; 

    if(list1 == null) 

        return list2; 

     

    if(list2 == null){ 

        return list1; 

    } 

    if(list1.data < list2.data){//initialize mergedList pointer to list1 if list1's data is lesser 

        mergedList = list1; 

    }else{//initialize mergedList pointer to list2 if list2's data is lesser or equal 

        mergedList = list2; 

    } 

    while(list1!=null && list2!=null){ 

        if(list1.data < list2.data){ 

            mergedList->next = list1; 

            list1 = list1->next; 

        }else{ 

            mergedList->next = list2; 

            list2 = list2->next; 

        } 

    } 

    if(list1 == null){//remaining nodes of list2 appended to mergedList when list1 has 

reached its end. 

        mergedList->next = list2; 

    }else{//remaining nodes of list1 appended to mergedList when list2 has reached its end 

        mergedList->next = list1; 

    } 

    return mergedList; 

} 
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Traversing 

 

The operation Display( ), displays all the value in each node of the list.  A temporary pointer is 

created and made to point to Head initially.  Now info part of Temp is printed and Temp is moved 

to the next node.  This is repeated till the end of the list is reached. 

Algorithm 

Function display() 

Begin 

  cur=head 

  cout<<"\nNo.of nodes is:"<<ct 

    cout<<"\nThe data is:" 

  while (cur< >NULL) 

  Do 

     Write "["<<cur->data<<"]->" 

     cur=cur->link 

  End while 

End 

 

 

2.4 Reverse the Linked List 

Algorithm 

reverse() 

{ 

struct node *p1,*p2,*p3; 

if(start->link==NULL) 

return; 

p1=start; 

p2=p1->link; 

p3=p2->link; 

p1->link=NULL; 

p2->link=p1; 

while(p3!=NULL) 

{ 

p1=p2; 

p2=p3; 

p3=p3->link; 

p2->link=p1; 

} 

start=p2; 

   } 
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2.5 Polynomial Manipulation using List  

5x2 + 3x1 + 1 

12x3 – 4x1 

5x4 – 8x3 + 2x2 + 4x1 + 9x0 

It is not necessary to write terms of the polynomials in decreasing order of degree. In other words 

the two polynomials 1 + x and x + 1 are equivalent. 

The computer implementation requires implementing polynomials as a list of pairs of coefficient and 

exponent. Each of these pairs will constitute a structure, so a polynomial will be represented as a list 

of structures. A linked list structure that represents polynomials 5x4 – 8x3 + 2x2 + 4x1 + 9x0 

illustrates in fig 2.8 

 
   Fig2.8 Polynomial Manipulation 

Algorithm 

node * getnode() 

{ 

node *tmp; 

tmp =(node *) malloc( sizeof(node) ); 

printf("\n Enter Coefficient : "); 

fflush(stdin); 

scanf("%f",&tmp->coef); 

printf("\n Enter Exponent : "); 

fflush(stdin); 

scanf("%d",&tmp->expo); 

tmp->next = NULL; 

return tmp; 

} 

node * create_poly (node *p ) 

{ 

char ch; 

node *temp,*newnode; 

while( 1 ) 

{ 

printf ("\n Do U Want polynomial node (y/n): "); 

ch = getche(); 

if(ch == 'n') 

break; 

newnode = getnode(); 

if( p == NULL ) 

p= newnode; 

else 
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{ 

temp = p; 

while(temp->next != NULL ) 

temp = temp->next; 

temp->next = newnode; 

} 

} 

return p; 

} 

void display (node *p) 

{ 

node *t = p; 

while (t != NULL) 

{ 

printf("+ %.2f", t -> coef); 

printf("X^ %d", t -> expo); 

t=t -> next; 

} 

} 

 

2.6 Advantages and disadvantages of singly linked list  

Advantages of Singly Linked List 

• it is very easier for the accessibility of a node in the forward direction. 

• the insertion and deletion of a node are very easy. 

• the Requirement will less memory when compared to doubly, circular or doubly 

circular linked list. 

• the Singly linked list is the very easy data structure to implement. 

• During the execution, we can allocate or deallocate memory easily. 

• Insertion and deletion of elements don’t need the movement of all the elements when 

compared to an array. 

Disadvantages of Singly Linked List 

• therefore, Accessing the preceding node of a current node is not possible as there is no 

backward traversal. 

• the Accessing of a node is very time-consuming. 
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2.7 Circular linked list  

Circular Linked List:  Circular linked list is a linked list which consists of collection of nodes each 

of which has two parts, namely the data part and the link part.  The data part holds the value of the 

element and the link part has the address of the next node. The last node of list has the link pointing 

to the first node thus making the circular traversal possible in the list is shown in Fig 2.9 

Logical representation of the circular linked list: 

 

  Fig 2.9 Circular Linked List 

 

The basic operations in a circular single linked list are: 

• Creation. 

• Insertion. 

• Deletion. 

• Traversing. 

Creating a circular single Linked List with ‘n’ number of nodes: 

The following steps are to be followed to create ‘n’ number of nodes: 

• Get the new node using getnode(). 

newnode = getnode(); 

• If the list is empty, assign new node as start. 

start = newnode; 

• If the list is not empty, follow the steps given below: 

temp = start; 

while(temp -> next != NULL) 

temp = temp -> next; 

temp -> next = newnode; 

• Repeat the above steps ‘n’ times. 

• newnode -> next = start; 

Inserting a node at the beginning: 

The following steps are to be followed to insert a new node at the beginning of the 

circular list: 

• Get the new node using getnode(). 

newnode = getnode(); 

• If the list is empty, assign new node as start. 

start = newnode; 
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newnode -> next = start; 

• If the list is not empty, follow the steps given below: 

last = start; 

while(last -> next != start) 

last= last -> next; 

newnode -> next = start; 

start = newnode; 

last -> next = start; 

The function cll_insert_beg(), is used for inserting a node at the beginning. Figure shows inserting a 

node into the circular single linked list at the beginning. 

 

  Fig 2.10 Inserting a node at the beginning 

Inserting a node at the end: 

The following steps are followed to insert a new node at the end of the list: 

• Get the new node using getnode(). 

newnode = getnode(); 

• If the list is empty, assign new node as start. 

start = newnode; 

newnode -> next = start; 

• If the list is not empty follow the steps given below: 

temp = start; 

while(temp -> next != start) 

temp = temp -> next; 

temp -> next = newnode; 

newnode -> next = start; 

The function cll_insert_end(), is used for inserting a node at the end. 

Fig 2.11 shows inserting a node into the circular single linked list at the end. 



45 
 

 
Fig.2.11 Inserting node at the end 

 

Deleting a node at the beginning: 

The following steps are followed, to delete a node at the beginning of the list: 

• If the list is empty, display a message ‘Empty List’. 

• If the list is not empty, follow the steps given below: 

last = temp = start; 

while(last -> next != start) 

last= last -> next; 

start = start -> next; 

last -> next = start; 

• After deleting the node, if the list is empty then start = NULL. 

The function cll_delete_beg(), is used for deleting the first node in the list. Fig 2.12 

shows deleting a node at the beginning of a circular single linked list. 

 
 Fig 2.12 Deleting a node at the beginning 

 

Deleting a node at the end: 

The following steps are followed to delete a node at the end of the list: 

• If the list is empty, display a message ‘Empty List’. 

• If the list is not empty, follow the steps given below: 

temp = start; 

prev = start; 

while(temp -> next != start) 

{ 

prev=temp; 

temp = temp -> next; 

} 

prev -> next = start; 

• After deleting the node, if the list is empty then start = NULL. 

The function cll_delete_last(), is used for deleting the last node in the list.Fig 2.13 shows deleting a 

node at the end of a circular single linked list. 
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 2.13 Deleting the node at the end 

 

Traversing a circular single linked list from left to right: 

 

The following steps are followed, to traverse a list from left to right: 

• If list is empty then display ‘Empty List’ message. 

• If the list is not empty, follow the steps given below: 

temp = start; 

do 

{ 

printf("%d", temp -> data); 

temp = temp -> next; 

} while(temp != start); 

 

2.7 Doubly linked list  

Doubly linked list:  The Doubly linked list is a collection of nodes each of which consists of three 

parts namely the data part, prev pointer and the next pointer.  The data part stores the value of the 

element, the prev pointer has the address of the previous node and the next pointer has the value of 

the next node. 

 

Fig 2.14 Doubly Linked List 

 

In a doubly linked list, the head always points to the first node.  The prev pointer of the first 

node points to NULL and the next pointer of the last node points to NULL shown in Fig.2.14 

 

Operations on a Doubly linked list are, 

• Count the number of elements. 

• Add an element at the beginning of the list. 

• Add an element at the end of the list. 

• Insert an element at the specified position in the list. 

• Delete an element from the list. 

• Display all the elements of the list. 
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Addatbeg(x) 

 The operation Addatbeg(x) adds a given element x at the beginning of the list.  A new node 

R is created and the value x is store in the data part of R.  The prev pointer of R is made to point to 

NULL and the next pointer is made to point to head.  Then the prev pointer of head is made to point 

to R and head is now moved to point to R making it the first node.  Thus the new node is added at 

the beginning of the doubly linked list. 

Algorithm 

 

Function create() 

Begin 

   temp=new node 

   Write"Enter the data:" 

    Read temp->data 

End 

 

Function insert_begin() 

Begin 

 Call  create() 

tmp->flink=head 

head=tmp 

head->blink=NULL 

ct=ct+1 

End 

 

Addatend(x) 

 The Addatend(x) operation adds the given element x at the end of the doubly linked list.  If 

the given list is empty then create a new node R and store the value of x in the data part of R.  Now 

make the prev pointer and the next pointer of R point to NULL.  Then head is pointed to R.  If the 

list already contains some elements then, a temporary pointer is created and made to point to head.  

The temp pointer is now moved to the last node and then a new node R is created.  The value x is 

stored in the data part of R and next pointer of R is made to point to NULL.  The prev pointer of R 

is made to point to temp and next pointer of Temp is made to point to R.  Thus the new node is added 

at the end of the doubly linked list is shown in fig.2.15. 

Algorithm 

Function   append() 

Begin 

 if(head=NULL) 

 then 

 

   insert_begin() 

else 

 create() 
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   temp->flink=NULL 

   prev=head 

   while(prev->flink< >NULL) 

   Do 

     prev=prev->flink 

  End while 

   prev->flink=temp 

 temp->blink=prev 

   ct=ct+1 

End if 

End 

 

 

Fig. 2.15  Add at end 

 

Insert(x, k) 

 The Insert(x) operation inserts a given element x at the specified position k.  A temporary 

pointer is created and made to point to head.  Then it is moved to the k-1th node.  Now a new node 

R is created and the data part is stored with value of x.  The next pointer of R is made to point to 

next(temp) and the prev pointer of next(temp) is made to point to R.  Thus the links on the right side 

of the new node is established.  Now the next of Temp is made to point to R and the prev pointer of 

R is made to point to temp thus establishing the links on the left side of the new node.  Now the new 

node is inserted at the position k is shown in Fig.2.16. 

Algorithm 

Function  insertin_mid() 

Begin 
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   Write    "Enter the position:" 

   Read pos; 

   If  head->flink=NULL AND pos=1 

   then 

   Call   insert_begin() 

   End if 

  If  head->flink==NULL AND pos=2 

  then 

   Call  append() 

 End if 

 Else if  pos>=2 AND pos<=ct 

 then 

  prev=head 

  for I = 2 to pos -  1 step +1 

 do 

              prev=prev->flink 

  END FOR 

  next=prev->link 

  temp=new node 

              Write”Enter the data:" 

  Read temp->data 

  temp->flink=next 

  prev->flink=temp 

  temp->blink=prev; 

  next->blink=temp; 

  ct=ct+1 

  else 

      Write  "Enter a valid position & try again" 

End if 

End 

 

 

 

 

Fig.2.16 Insert at mid 
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Delete(x) 

 

 The Delete(x) operation deletes the element x from the doubly linked list.  A temporary 

pointer is created and made to point to head.  Now the data of temp is compared with x and if it 

matches that is the node to be deleted otherwise move to the next node and again compare.  If the 

node to be deleted is first node, then prev(next(temp)) is made to point to NULL and head is pointed 

to next(temp).  The node pointed by temp is deleted. When the node to be deleted is not the first 

node, then next(prev(temp)) is made to point to next(temp) and prev(next(temp)) is made to point to 

prev(temp).  The node pointed by temp is deleted is shown in Fig.2.17. 

Algorithm 

Function del() 

Begin 

 if(head= NULL) 

then 

   cout<<"Empty list" 

else 

   Write  Enter the position\n" 

 Read   pos 

     pre=head 

     if(pos<1 OR pos>ct) 

           Write  Enter a valid position" 

     else 

      if(pos==1) 

             then 

   pre=pre->flink 

   head=pre 

      Write  "node gets deleted\n" 

   Ct=ct -1 

        else 

       for(i=2;i<pos;i++) 

    pre=pre->flink 

   End For 

    tmp=pre->flink 

    nxt=tmp->flink 

    pre->flink=nxt 

    nxt->blink=pre 

    Write”node gets deleted\n" 

   Ct=ct -1 

    End if 

End if 
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Fig.2.17 Deletion 

 

2.8 Circular Doubly Linked List. 

A circular double linked list has both successor pointer and predecessor pointer in circular 

manner. The objective behind considering circular double linked list is to simplify the insertion and 

deletion operations performed on double linked list. In circular double linked list the right link of 

the right most node points back to the start node and left link of the first node points to the last node. 

A circular double linked list is shown in fig 2.18. 

 
  Fig 2.18 Circular Doubly Linked List 

The basic operations in a circular double linked list are: 

• Creation. 

• Insertion. 
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• Deletion. 

• Traversing. 

 

Create node 

create_node(int info) 

begin 

    new->val = info; 

    new->next = NULL; 

    new->prev = NULL; 

    return new; 

end 

 

Add Node at the end 

Procedure  add_node() 

begin 

    Read info 

     if (first == last && first == NULL) // If list is empty 

     begin 

         first = last = new; 

        first->next = last->next = NULL; 

        first->prev = last->prev = NULL; 

    endif 

    Else // add the new node at the end 

    begin 

        last->next = new; 

        new->prev = last; 

        last = new; 

        last->next = first; 

        first->prev = last; 

    end 

end 

 

 

 INSERTS ELEMENT AT FIRST 

  

insert_at_first() 

begin 

   Read info 

   new = create_node(info); // create the new node 

   if (first == last && first == NULL) // if the list is empty 

    begin 

        first = last = new; 

        first->next = last->next = NULL; 

        first->prev = last->prev = NULL; 

    end 

    else 

    begin 
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        new->next = first; 

        first->prev = new; 

        first = new; 

        first->prev = last; 

        last->next = first; 

    end 

end 

 

INSERTS ELEMNET AT END  

 

insert_at_end() 

begin 

  Read info;     

     new = create_node(info); 

     if (first == last && first == NULL) 

    begin 

         first = last = new; 

        first->next = last->next = NULL;     

        first->prev = last->prev = NULL; 

    endif 

    else 

    begin 

        last->next = new; 

        new->prev = last; 

        last = new; 

        first->prev = last; 

        last->next = first; 

    endif 

end 

 

INSERTS THE ELEMENT AT GIVEN POSITION 

  

insert_at_position() 

     begin 

   Declare info, pos, len = 0, i; 

    Node *prevnode; 

     Read info and pos 

    new = create_node(info); 

     if (first == last && first == NULL) 

    begin 

        if (pos == 1) 

        begin 

            first = last = new; 

            first->next = last->next = NULL;     

            first->prev = last->prev = NULL; 

        endif 

        else 
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            printf " empty linked list you cant insert at that particular position" 

    endif 

    else 

    begin 

        if (number < pos) // total number of node is stored in the variable number 

            print “ node cant be inserted as position is exceeding the linkedlist length" 

         else 

         

            for (ptr = first, i = 1;i <= number;i++) 

            begin 

                prevnode = ptr; 

                ptr = ptr->next; 

                if (i == pos-1) 

                begin 

                    prevnode->next = new; 

                    new->prev = prevnode; 

                    new->next = ptr; 

                    ptr->prev = new; 

                    print "inserted at position is succesfully" 

                    break; 

                end 

end 

end 

end 

end 

Deletion 

delete_node_position() 

begin   

    int pos, count = 0, i; 

    n *temp, *prevnode; 

read  the position which u wanted to delete 

   

    if (first == last && first == NULL) 

        print " empty linked list you cant delete" 

     else 

    begin 

        if (number < pos) 

            print " node cant be deleted at position as it is exceeding the linkedlist length" 

         else 

        begin 

            for (ptr = first,i = 1;i <= number;i++) 

            begin 

                prevnode = ptr; 

                ptr = ptr->next; 

                if (pos == 1) 

                begin     
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                    number--; 

                    last->next = prevnode->next; 

                    ptr->prev = prevnode->prev; 

                    first = ptr; 

                    printf("%d is deleted", prevnode->val); 

                    free(prevnode); 

                    break;         

                end 

                else if (i == pos - 1) 

                begin 

                    number--; 

                    prevnode->next = ptr->next; 

                    ptr->next->prev = prevnode; 

                    printf("%d is deleted", ptr->val); 

                    free(ptr); 

                    break; 

                end 

           end    

       end  

    end    

end 

 

Searching 

 

search() 

begin 

    int count = 0, key, i, f = 0; 

     read the value to be searched in the variable key 

     if (first == last && first == NULL) 

        print "list is empty no elemnets in list to search" 

    else 

        for (ptr = first,i = 0;i < number;i++,ptr = ptr->next) 

        begin 

            count++; 

            if (ptr->val == key) 

            begin 

                Print " the value is found at position  count ” 

                f = 1; 

            end 

           end 

        if (f == 0) 

            print "the value is not found in linkedlist" 

    end 

end 
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DISPLAYING IN BEGINNING 

 Algorithm 

 

display_from_beg() 

begin 

    int i; 

    if (first == last && first == NULL) 

        print "list is empty no elemnts to print" 

    else 

    begin    

        Store total number of node in the variable , number 

        for (ptr = first, i = 0;i < number;i++,ptr = ptr->next) 

            print  ptr->val 

    end 

end 
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Unit:III 

Introduction – Array Representation of a Stack – Linked List Representation of a Stack - Stack 

Operations - Algorithm for Stack Operations - Stack Applications: Tower of Hanoi - Infix to 

postfix Transformation - Evaluating Arithmetic Expressions. Queue – Introduction – Array 

Representation of Queue – Linked List Representation of Queue - Queue Operations - 

Algorithm for Queue Operations - . Queue Applications: Priority Queue. 

3.1 Introduction 

A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is 

named stack as it behaves like a real-world stack, for example – a deck of cards or a pile of plates, 

etc. 

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which 

is placed (inserted or added) last, is accessed first. In stack terminology, insertion operation is 

called PUSH operation and removal operation is called POP operation. 

 

Stack Representation 

The following fig 3.1 depicts a stack and its operations − 

 

Fig 3.1  Stack Representation 

3.2 Array representation of a Stack 

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can 

either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to implement 

stack using arrays, which makes it a fixed size stack implementation. First we have to allocate a 
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memory block of sufficient size to accommodate the full capacity of the stack. Then, starting from 

the first location of the memory block, the items of the stack can be stored in a sequential fashion. 

 

   Fig 3.2 Representation of a stack 

 

In Fig 3.2 a, Itemi denotes the ith item in the stack; l and u denote the index range of 

the array in use; usually the values of these indices are 1 and SIZE respectively. TOP is a 

pointer to point the position of the array up to which it is filled with the items of the stack.  

3.3 Linked List Representation of Stacks 

Although array representation of stacks is very easy and convenient but it allows the 

representation of only fixed sized stacks. In several applications, the size of the stack may 

vary during program execution. An obvious solution to this problem is to represent a stack 

using a linked list. A single linked list structure is sufficient to represent any stack. Here, 

the DATA field is for the ITEM, and the LINK field is, as usual, to point to the next' item. 

Above Figure b depicts such a stack using a single linked list. In the linked list 

representation, the first node on the list is the current item that is the item at the top of the 

stack and the last node is the node containing the bottom-most item. Thus, a PUSH 

operation will add a new node in the front and a POP operation will remove a node from 

the front of the list is shown in Fig 3.2 b. 

3.4 Stack Operations 

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart 

from these basic stuffs, a stack is used for the following two primary operations − 

• push() − Pushing (storing) an element on the stack. 

• pop() − Removing (accessing) an element from the stack. 
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When data is PUSHed onto stack. 

To use a stack efficiently, we need to check the status of stack as well. For the same purpose, the 

following functionality is added to stacks − 

• peek() − get the top data element of the stack, without removing it. 

• isFull() − check if stack is full. 

• isEmpty() − check if stack is empty. 

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer always 

represents the top of the stack, hence named top. The top pointer provides top value of the stack 

without actually removing it. 

3.5 Algorithm for Stack Operations 

Push Operation 

The process of putting a new data element onto stack is known as a Push Operation is shown in 

fig.3.3. Push operation involves a series of steps − 

Step 1 − Checks if the stack is full. 

Step 2 − If the stack is full, produces an error and exit. 

Step 3 − If the stack is not full, increments top to point next empty space. 

Step 4 − Adds data element to the stack location, where top is pointing. 

Step 5 − Returns success. 

 

Fig 3.3 Push Operation 

If the linked list is used to implement the stack, then in step 3, we need to allocate space dynamically. 

Algorithm for PUSH Operation 

A simple algorithm for Push operation can be derived as follows − 

procedure push 

 

   if stack is full 

      return null 

   endif 

   top ← top + 1 

   stack[top] ← data 

end procedure 
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Pop Operation 

Accessing the content while removing it from the stack, is known as a Pop Operation. In an array 

implementation of pop() operation, the data element is not actually removed, instead top is 

decremented to a lower position in the stack to point to the next value. But in linked-list 

implementation, pop() actually removes data element and deallocates memory space is shown in 

Fig.3.4. 

A Pop operation may involve the following steps − 

Step 1 − Checks if the stack is empty. 

Step 2 − If the stack is empty, produces an error and exit. 

Step 3 − If the stack is not empty, accesses the data element at which top is pointing. 

Step 4 − Decreases the value of top by 1. 

Step 5 − Returns success. 

 

  Fig 3.4 Pop Operation 

Algorithm for Pop Operation 

procedure pop: stack 

 

   if stack is empty 

      return null 

   endif 

   data ← stack[top] 

   top ← top - 1 

   return data 

Displays the elements of a Stack 

We can use the following steps to display the elements of a stack... 

Step 1 - Check whether stack is EMPTY. (top == -1) 

Step 2 - If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function. 

Step 3 - If it is NOT EMPTY, then define a variable 'i' and initialize with top. 

Display stack[i] value and decrement i value by one (i--). 

Step 3 - Repeat above step until i value becomes '0'. 
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3.6 Stack Using Linked List 

In linked list implementation of a stack, every new element is inserted as 'top' element. That 

means every newly inserted element is pointed by 'top'. Whenever we want to remove an element 

from the stack, simply remove the node which is pointed by 'top' by moving 'top' to its previous 

node in the list. The next field of the first element must be always NULL. 

Example 

 

Fig 3.5 Linked List Representation 

In the above Fig 3.5, the last inserted node is 99 and the first inserted node is 25. The order of 

elements inserted is 25, 32,50 and 99. 

Stack Operations using Linked List 

push(value) - Inserting an element into the Stack 

We can use the following steps to insert a new node into the stack... 

Step 1 - Create a newNode with given value. 

Step 2 - Check whether stack is Empty (top == NULL) 

Step 3 - If it is Empty, then set newNode → next = NULL. 

Step 4 - If it is Not Empty, then set newNode → next = top. 

Step 5 - Finally, set top = newNode. 
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Algorithm 

push(int value) 

begin 

   newNode->data = value; 

   if(top == NULL) 

      newNode->next = NULL; 

   else 

      newNode->next = top; 

   top = newNode; 

  end 

pop() - Deleting an Element from a Stack 

We can use the following steps to delete a node from the stack... 

Step 1 - Check whether stack is Empty (top == NULL). 

Step 2 - If it is Empty, then display "Stack is Empty!!! Deletion is not 

possible!!!" and terminate the function 

Step 3 - If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'. 

Step 4 - Then set 'top = top → next'. 

Step 5 - Finally, delete 'temp'. (free(temp)). 
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Algorithm 

void pop() 

       begin 

   if(top == NULL) 

      print("\nStack is Empty!!!\n"); 

   else 

      print("\nDeleted element: %d", temp->data); 

      top = temp->next; 

      free(temp); 

   endif 

end 

display() - Displaying stack of elements 

We can use the following steps to display the elements (nodes) of a stack... 

Step 1 - Check whether stack is Empty (top == NULL). 

Step 2 - If it is Empty, then display 'Stack is Empty!!!' and terminate the function. 

Step 3 - If it is Not Empty, then define a Node pointer 'temp' and initialize with top. 

Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same 

until temp reaches to the first node in the stack. (temp → next != NULL). 

Step 5 - Finally! Display 'temp → data ---> NULL'. 
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Algorithm 

void display() 

begin 

   if(top == NULL) 

      print("\nStack is Empty!!!\n"); 

   else{ 

      struct Node *temp = top; 

      while(temp->next != NULL) 

       begin 

  print("%d--->",temp->data); 

  temp = temp -> next; 

      end 

      print("%d--->NULL",temp->data); 

   end 

3.7 Stack Applications 

3.7.1Tower of Hanoi 

Tower of Hanoi is a mathematical puzzle which consists of three tower (pegs) and more than 

one ring; as depicted in Fig.3.6. 

Fig.3.6 Tower of Hanoi 

These rings are of different sizes and stacked upon in ascending order i.e. the smaller one sits 

over the larger one. There are other variations of puzzle where the number of disks increases, 

but the tower count remains the same. 

Rules 

The mission is to move all the disks to some another tower without violating the sequence of 

Disks   

Smallest 

 Largest 

Towers 
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arrangement. The below mentioned are few rules which are to be followed for Tower of Hanoi 

• Only one disk can be moved among the towers at any given time. 

• Only the “top” disk can be removed. 

• No large disk can sit over a small disk. 

Steps for solving the Towers of Hanoi problem 

The following steps are to be followed. 

Step 1: Move n-1 disks from source to aux. 

Step 2: Move nth disk from source to destination 

 Step 3: Move n-1 disks from aux to destination. 

F i g . 3 . 7 ,  illustrates the step by step movement of the disks to implement Tower of Hanoi. 

 

 

 

    Fig 3.7 Tower of Hanoi 

Step: 0 

 

Step: 2 
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Fig 3.7 Tower of Hanoi

 

 

 

Step: 6 
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                     Fig.3.7 Tower of Hanoi 

A recursive algorithm for Tower of Hanoi can be driven as follows  START 

Procedure Hanoi (disk, source, dest, aux) 

IF disk = 0, THEN 

Move disk from source to dest ELSE 

Hanoi (disk-1, source, aux, dest) //Step1 Move disk from source to dest //Step2 Hanoi 

(disk-1, aux, dest, source) //Step3 ENDIF 

END 

3.7.2 Infix to postfix Transformation 

There is an algorithm to convert an infix expression into a postfix expression. It uses a stack; 

but in this case, the stack is used to hold operators rather than numbers. The purpose of the stack is 

to reverse the order of the operators in the expression. It also serves as a storage structure, since no 

operator can be printed until both of its operands have appeared. 

In this algorithm, all operands are printed (or sent to output) when they are read. There are 

more complicated rules to handle operators and parentheses. 

Example: 

 

1. A * B + C becomes A B * C + 

 

The order in which the operators appear is not reversed. When the '+' is read, it has lower precedence 

than the '*', so the '*' must be printed first. 

We will show this in a table with three columns. The first will show the symbol currently being read. 

The second will show what is on the stack and the third will show the current contents of the postfix 

string. The stack will be written from left to right with the 'bottom' of the stack to the left. 

 

 

 

Done! 



69 
 

  current symbol operator stack postfix string 

 
      

1 A   A 

2 * * A 

3 B * A B 

4 + + A B * {pop and print the '*' before pushing the '+'} 

5 C + A B * C 

6     A B * C + 

The rule used in lines 1, 3 and 5 is to print an operand when it is read. The rule for line 2 is to push 

an operator onto the stack if it is empty. The rule for line 4 is if the operator on the top of the stack 

has higher precedence than the one being read, pop and print the one on top and then push the new 

operator on. The rule for line 6 is that when the end of the expression has been reached, pop the 

operators on the stack one at a time and print them. 

2. A + B * C becomes A B C * + 

Here the order of the operators must be reversed. The stack is suitable for this, since operators will 

be popped off in the reverse order from that in which they were pushed. 

  current symbol operator stack postfix string 

        

1 A   A 

2 + + A 

3 B + A B 

4 * + * A B 

5 C + * A B C 

6     A B C * + 

In line 4, the '*' sign is pushed onto the stack because it has higher precedence than the '+' sign which 

is already there. Then when the are both popped off in lines 6 and 7, their order will be reversed. 
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3. A * (B + C) becomes A B C + * 

A subexpression in parentheses must be done before the rest of the expression. 

   current symbol operator stack postfix string 

1 A   A 

2 * * A 

3 ( * ( A B 

4 B * ( A B 

5 + * ( + A B 

6 C * ( + A B C 

7 ) * A B C + 

8     A B C + * 

Since expressions in parentheses must be done first, everything on the stack is saved and the left 

parenthesis is pushed to provide a marker. When the next operator is read, the stack is treated as 

though it were empty and the new operator (here the '+' sign) is pushed on. Then when the right 

parenthesis is read, the stack is popped until the corresponding left parenthesis is found. Since postfix 

expressions have no parentheses, the parentheses are not printed. 

4. A - B + C becomes A B - C + 

When operators have the same precedence, we must consider association. Left to right association 

means that the operator on the stack must be done first, while right to left association means the 

reverse. 

  current symbol operator stack postfix string 

        

1 A   A 

2 - - A 

3 B - A B 
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4 + + A B - 

5 C + A B - C 

6     A B - C + 

In line 4, the '-' will be popped and printed before the '+' is pushed onto the stack. Both operators 

have the same precedence level, so left to right association tells us to do the first one found before 

the second. 

5. A * B ^ C + D becomes A B C ^ * D + 

Here both the exponentiation and the multiplication must be done before the addition. 

  current symbol operator stack postfix string 

1 A   A 

2 * * A 

3 B * A B 

4 ^ * ^ A B 

5 C * ^ A B C 

6 + + A B C ^ * 

7 D + A B C ^ * D 

8     A B C ^ * D + 

When the '+' is encountered in line 6, it is first compared to the '^' on top of the stack. Since it has 

lower precedence, the '^' is popped and printed. But instead of pushing the '+' sign onto the stack 

now, we must compare it with the new top of the stack, the '*'. Since the operator also has higher 

precedence than the '+', it also must be popped and printed. Now the stack is empty, so the '+' can be 

pushed onto the stack. 

 

 

 

 

 

 



72 
 

6. A * (B + C * D) + E becomes A B C D * + * E + 

  current symbol operator stack postfix string 

 
      

1 A   A 

2 * * A 

3 ( * ( A 

4 B * ( A B 

5 + * ( + A B 

6 C * ( + A B C 

7 * * ( + * A B C 

8 D * ( + * A B C D 

9 ) * A B C D * + 

10 + + A B C D * + * 

11 E + A B C D * + * E 

12     A B C D * + * E + 

A summary of the rules follows: 

1. Print operands as they arrive. 

2. If the stack is empty or contains a left parenthesis on top, push the incoming operator onto 

the stack. 

3. If the incoming symbol is a left parenthesis, push it on the stack. 

4. If the incoming symbol is a right parenthesis, pop the stack and print the operators until 

you see a left parenthesis. Discard the pair of parentheses. 

5. If the incoming symbol has higher precedence than the top of the stack, push it on the 

stack. 

6. If the incoming symbol has equal precedence with the top of the stack, use association. If 

the association is left to right, pop and print the top of the stack and then push the incoming 

operator. If the association is right to left, push the incoming operator. 
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7. If the incoming symbol has lower precedence than the symbol on the top of the stack, pop 

the stack and print the top operator. Then test the incoming operator against the new top of 

stack. 

8. At the end of the expression, pop and print all operators on the stack. (No parentheses 

should remain.) 

 

Algorithm 

int top = -1; 

Infixtopostfix() 

begin 

print("\n\nRead the Infix Expression ? "); 

 Read infx 

 push('#'); 

 while ((ch = infx[i++]) != '\0')  

  begin 

   if (ch == '(') 

     push(ch); 

   else if (isalnum(ch)) 

     pofx[k++] = ch; 

          else if (ch == ')')  

  begin 

     while (s[top] != '(') 

  begin 

       pofx[k++] = pop(); 

       elem = pop(); /* Remove ( */ 

    end 

else  

     while (pr(s[top]) >= pr(ch)) 

       pofx[k++] = pop(); 

     push(ch); 

    end 

  end 

 

3.7.3 Evaluating Arithmetic Expressions 

The stack organization is very effective in evaluating arithmetic expressions. Expressions are 

usually represented in what is known as Infix notation, in which each operator is written between 

two operands (i.e., A + B). With this notation, we must distinguish between ( A + B )*C and A + ( 

B * C ) by using either parentheses or some operator-precedence convention. Thus, the order of 
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operators and operands in an arithmetic expression does not uniquely determine the order in which 

the operations are to be performed. 

1. Polish notation (prefix notation) – 

It refers to the notation in which the operator is placed before its two operands . Here no 

parentheses are required, i.e., +AB 

The procedure for getting the result is: 

1. Convert the expression in Reverse Polish notation( post-fix notation). 

2. Push the operands into the stack in the order they are appear. 

3. When any operator encounter then pop two topmost operands for executing the operation. 

4. After execution push the result obtained into the stack. 

5. After the complete execution of expression the final result remains on the top of the stack. 

For example – 

Infix notation: (2+4) * (4+6) 

Post-fix notation: 2 4 + 4 6 + * 

Result: 60  

6. The stack operations for this expression evaluation is shown below: 

 

Fig 3.8 Arithmetic Expressions 

 

 

3.8 Queue 

3.8.1 Introduction  

 Queue is also an abstract data type or a linear data structure, just like stack data structure, in 

which the first element is inserted from one end called the REAR(also called tail), and the removal 
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of existing element takes place from the other end called as FRONT (also called head). This makes 

queue as FIFO (First in First Out) data structure, which means that element inserted first will be 

removed first. The process to add an element into queue is called Enqueue and the process of 

removal of an element from queue is called Dequeue. 

 

3.8.2 Array Representation of Queue  

If queue is implemented using arrays, the size of the array should be fixed maximum allowing the 

queue to expand or shrink.    

Operations on a Queue 

There are two common operations one in a queue.  They are addition of an element to the 

queue and deletion of an element from the queue.  Two variables front and rear are used to point to 

the ends of the queue.  The front points to the front end of the queue where deletion takes place and 

rear points to the rear end of the queue, where the addition of elements takes place.  Initially, when 

the queue is full, the front and rear is equal to -1. 

Add(x) 

 An element can be added to the queue only at the rear end of the queue.  Before adding an 

element in the queue, it is checked whether queue is full.  If the queue is full, then addition cannot 

take place.  Otherwise, the element is added to the end of the list at the rear side. 

 

ADDQ(x) 

If rear = MAX – 1 

Then 

 Print “Queue is full” 

 Return 

Else 

 Rear = rear + 1 

 A[rear] = x 

 If front = -1 

 Then 

  Front = 0 

 End if 

End if 

End ADDQ( ) 
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Del( ) 

 The del( ) operation deletes the element from the front of the queue.  Before deleting and 

element, it is checked if the queue is empty.  If not the element pointed by front is deleted from the 

queue and front is now made to point to the next element in the queue. 

 

DELQ( ) 

 

If front = -1 

Then 

 Print “Queue is Empty” 

 Return 

Else 

 Item = A[front] 

 A[front] = 0 

 If front = rear 

 Then 

  Front = rear = -1 

 Else 

  Front = front + 1 

 End if 

 Return item 

End if 

End DELQ( ) 

 

3.8.3 Linked List Representation of Queue  

 

Queue can be represented using a linked list.  Linked lists do not have any restrictions on the 

number of elements it can hold.  Space for the elements in a linked list is allocated dynamically; 

hence it can grow as long as there is enough memory available for dynamic allocation.  The queue 

represented using linked list would be represented as shown.  The front pointer points to the front of 

the queue and rear pointer points to the rear of the queue is shown in Fig 3.9. 
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Fig 3.9 Linked List 

Addq(x) 

 In linked list representation of queue, the addition of new element to the queue takes place at 

the rear end.  It is the normal operation of adding a node at the end of a list. 

 

ADDQ(x) 

If front = NULL 

Then 

 Rear = front = temp 

 Return 

End if 

Link(rear) = temp 

Rear = link(rear) 

End ADDQ( ) 

Delq( ) 

 The delq( ) operation deletes the first element from the front end of the queue.  Initially it is 

checked, if the queue is empty.  If it is not empty, then return the value in the node pointed by front, 

and moves the front pointer to the next node. 

DELQ( ) 

If front = NULL 

 Print “Queue is empty” 

 Return 

Else 

 While front ≠ NULL 

  Temp = front 

  Front = link(front) 

  Delete temp 

 End while 

End if 

End DELQ( ) 
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3.8.5 Queue Applications 

3.8.5.1 Priority Queue 

Priority Queue is more specialized data structure than Queue. Like ordinary queue, priority 

queue has same method but with a major difference. In Priority queue items are ordered by key value 

so that item with the lowest value of key is at front and item with the highest value of key is at rear 

or vice versa is shown in Fig.3.10.  

Basic Operations 

• insert / enqueue − add an item to the rear of the queue. 

• remove / dequeue − remove an item from the front of the queue. 

Priority Queue Representation 

 

Fig 3.10 Priority Queue 

There is few more operations supported by queue which are following. 

• Peek − get the element at front of the queue. 

• isFull − check if queue is full. 

• isEmpty − check if queue is empty. 

Insert / Enqueue Operation 

Whenever an element is inserted into queue, priority queue inserts the item according to its order. 

Here we're assuming that data with high value has low priority is shown in Fig 3.11. 

 

Fig 3.11 Insert/Enqueue operation 
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void insert(int data){ 

   int i = 0; 

   if(!isFull()){ 

      // if queue is empty, insert the data   

      if(itemCount == 0){ 

         intArray[itemCount++] = data;         

      }else{ 

         // start from the right end of the queue  

         for(i = itemCount - 1; i >= 0; i-- ){ 

            // if data is larger, shift existing item to right end  

            if(data > intArray[i]){ 

               intArray[i+1] = intArray[i]; 

            }else{ 

               break; 

            }             

         }    

         // insert the data  

         intArray[i+1] = data; 

         itemCount++; 

      } 

   } 

} 

Remove / Dequeue Operation 

Whenever an element is to be removed from queue, queue get the element using item count. Once 

element is removed. Item count is reduced by one. 

 

int removeData(){ 

   return intArray[--itemCount];  

} 
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UNIT IV 

 Preliminaries of Tree ADT - Binary Trees - The Search Tree ADT–Binary Search Trees - AVL 

Trees - Tree Traversals - B-Trees - Heap Tree – Preliminaries of Graph ADT - Representation of 

Graph – Graph Traversal - BFS – DFS – Applications of Graph – Shortest - Path Algorithms – 

Dijkstra’s Algorithm Minimum Spanning Tree – Prims Algorithm  

 

4.1 PRELIMINARIES OF TREE ADT 

A tree is a collection of nodes (Fig 4.1). The collection can be empty or it consists of  

a) a distinguished node r called the root and  

b) zero or more nonempty subtree, each of whose roots are connected by a directed edge from r. 

c) subtrees must not connect together. Every node in the tree is the root of some subtree. 

d) There are N-1 edges in a tree with N nodes. 

e) Normally the root is drawn at the top. 

Degree of a node = number of subtrees of the node 

Degree (A) = 3, degree (F) = 0 

Degree of tree = max
𝑛𝑜𝑑𝑒∈𝑡𝑟𝑒𝑒

{𝑑𝑒𝑔𝑟𝑒𝑒(𝑛𝑜𝑑𝑒)} 

Degree of tree =3 

Parent = node that has subtrees 

Children = the roots of the subtrees of parent 

 

 Fig 4.1 Tree Structure 

Siblings = children of the same parent 

Leaf (terminal node) = a node with degree 0 (no children) 

Path from n1 to nk = a unique sequence of nodes from n1, n2, …,nk 

Length of path = number of edges on the path 

Depth of n = length of the unique path from root to ni, Depth (root) = 0 

Height of n = length of longest path from ni to leaf. Height (D) =2 

Height of tree =height(root)=depth(deepest leaf) 

Ancestors of node= all nodes along the path from node upto the root 

Descendants of node = all nodes in its subtrees 

 

 

4.2 Binary Trees 
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A binary tree is a tree in which no node can have more than two children. Each node can have 0, 1 

or 2 children is shown Fig 4.2.       

 

 

 

 

 

 

Fig 1.2 Binary tree and list representation 

 

In this tree, node 1,2 and 3 contains two points i.e, left and right pointer pointing to the left and right 

node respectively.  Similarly nodes 3, 5 and 6 are the leaf nodes so these nodes have NULL pointer 

on both left and right parts. 

Properties of Binary Tree 

a) At each level of i, the maximum number of nodes is 2i. 

b) The height of tree is defines as the longest path from the root node to the leaf node. Her example 

has height 3 and the maximum number of nodes at height 3 is (1+2+4+8)=15. 

c) The minimum number of nodes possible at height h is equal to h+1. 

d) If the number of nodes is minimum, then the height of the tree would be maximum. Similarly, if 

the number of nodes is maximum, then the height of the tree would be minimum. 

 

Complete Binary Tree 

The complete binary tree is a tree in which all the nodes are completely filled except the last level. 

In the last level, all the nodes must be as left as possible. In a complete binary tree, the nodes should 

be added from the left shown in Fig.4.3. 

Properties of Complete Binary Tree 

▪ The maximum number of nodes in complete binary tree is 2h+1-1. 

▪ The minimum number of nodes in complete binary tree is 2h. 

▪ The minimum height of a complete binary tree is log2(n+1) -1. 
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Fig 4.3 complete binary tree 

Perfect Binary Tree 

A tree is a perfect binary tree if all the internal nodes have 2 children, and all the leaf nodes are at 

the same level. All perfect binary trees are the complete binary binary trees but it’s not true for vice 

versa, i.e., all complete binary trees cannot be the perfect binary trees is shown in Fig 4.4. 

 

 

 

4.3 BINARY SEARCH TREE 

 Binary Search Tree is a node-based binary tree data structure which has the following properties 

➢ The left subtree of a node contains only nodes with keys lesser than the node’s key. 

➢ The right subtree of a node contains only nodes with keys greater than the node’s key. 

➢ The left and right subtree each must also be a binary search tree. 

➢ Left_subtree (keys) < node(key) ≤ right_subtree(keys) is shown in Fig 4.5. 

Fig 4.4 Perfect Binary tree 
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Fig 4.5Binary search tree 

Basic Operations 

1. Search 

2. Insert 

3. Pre-order Traversal 

4. In-order Traversal 

5. Post-order Traversal 

1. Search Operation 

Whenever an element is to be searched, start searching from the root node. If the data is less than 

the key value, then search for the element in the left subtree. Otherwise, search for the element in 

the right subtree. Fig 4.6 shows the example of search operation. 

                                                  

Fig 4.6 Search operation in Binary search tree 

Min and Max Values 

Another operation similar to a search that can be performed on a binary search tree is finding the 

minimum or maximum key values. From the definition of the binary search tree, we know the 

minimum value is either in the root or in a node to its left is shown in fig 4.7. 
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Fig 4.7 Find Min and max values 

2. Insertion Operation 

When a binary search tree is constructed, the keys are added one at a time. As the keys are inserted, 

a new node is created for each key and linked into its proper position within the tree. Suppose we 

want to build a binary search tree from the key list [60, 25, 100, 35, 17, 80] by inserting the keys in 

the order they are listed is shown in Fig 4.8. 

 

Fig 4.8 Insert operation in binary search tree 

3. Deletions 

To remove an element from a binary search tree is a bit more complicated than searching for an 

element or inserting a new element into the tree. A deletion involves searching for the node that 

contains the target key and then unlinking the node to remove it from the tree. When a node is 

removed, the remaining nodes must preserve the search tree property. There are three cases to 

consider once the node has been located:  

1. The node is a leaf.  

2. The node has a single child. 

3. The node has two children. 

Example: 

✓ Removing leaf node from binary search tree 
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Fig 4.9 Removing leaf node 

✓ Removing an interior node with one child shown in Fig 4.10. 

 

 

 

 

 

Fig 4.10 removing interior node with one child 
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✓ Removing an interior node with two children is shown in Fig 4.11. 

For node 12, its predecessor is node 4 and its successor is node 23. For removing an interior node 

with two children requires three steps:  

1. Find the logical successor, S, of the node to be deleted, N.  

2. Copy the key from node S to node N.  

3. Remove node S from the tree. 

 

Fig 4.11 removing interior node with two children 

4.4 AVL TREES 

The AVL tree, which was invented by G. M. Adel’son-Velskii and Y. M. Landis in 1962, improves 

on the binary search tree by always guaranteeing the tree is height balanced, which allows for more 

efficient operations. A binary tree is balanced if the heights of the left and right subtrees of every 

node differ by at most is shown in Fig 4.12. 

 

Fig 4.12 AVL tree model 
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With each node in an AVL tree, we associate a balance factor, which indicates the height 

difference between the left and right branch. The balance factor can be one of three states:  

left high (>): When the left subtree is higher than the right subtree.  

equal high (=): When the two subtrees have equal height.  

right high (<): When the right subtree is higher than the left subtree 

Insertions 

Inserting a key into an AVL tree begins with the same process used with a binary search tree. We 

search for the new key in the tree and add a new node at the child link where we fall off the tree. 

When a new key is inserted into an AVL tree, the balance property of the tree must be maintained. 

If the insertion of the new key causes any of the subtrees to become unbalanced, they will have to 

be rebalanced is shown in Fig.4.13. 

 

Fig.4.13 Insertion in AVL tree 

Rotations 

Multiple subtrees can become unbalanced after inserting a new key, all of which have roots along 

the insertion path. But only one will have to be rebalanced: the one deepest in the tree and closest 

to the new node. After inserting the key, the balance factors are adjusted during the unwinding of 

the recursion. The first subtree encountered that is out of balance has to be rebalanced. The root 

node of this subtree is known as the pivot node. An AVL subtree is rebalanced by performing a 

rotation around the pivot node. This involves rearranging the links of the pivot node, its children, 

and possibly one of its grandchildren. There are four possible cases is shown in Fig 4.14. 

 

Fig.4.14 Rotation in AVL tree 
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i) Case 1: When the balance factor of the pivot node (P) is left high before the insertion and the new 

key is inserted into the left child (C) of the pivot node. To rebalance the subtree, the pivot node has 

to be rotated right over its left child. The rotation is accomplished by changing the links such that P 

becomes the right child of C and the right child of C becomes the left child of P is shown in Fig 4.15. 

 
Fig 4.15 Case 1 

 

ii) Case 2: the pivot (P), the left child of the pivot (C), and the right child (G) of C. For this case to 

occur, the balance factor of the pivot is left high before the insertion and the new key is inserted into 

either the right subtree of C. Node C has to be rotated left over node V and the pivot node has to be 

rotated right over its left child. The right child of G as the new left child of the pivot node, changing 

the left child of G to become the right child of C, and setting C to be the new left child of G is shown 

in Fig 4.16. 

 
Fig 4.16 Case 2 

iii) Case 3 and 4: The third case is a mirror image of the first case and the fourth case is a mirror 

image of the second case. The difference is the new key is inserted in the right subtree of the pivot 

node or a descendant of its right subtree is shown in Fig.4.17. 

 
Fig 4.17 Case 3 
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Deletions 

When an entry is removed from an AVL tree, we must ensure the balance property is maintained. 

For example, suppose we want to remove key 17 from the AVL tree in Figure 14.21(a). After 

removing the leaf node, the subtree rooted at node 25 is out of balance, as shown below. A left 

rotation has to be performed pivoting on node 25 to correct the imbalance is shown in Fig 4.18. 

 

Fig 4.18 Deletion in AVL Tree 

In the insertion operation, at most one subtree can become unbalanced. After the appropriate 

rotation is performed on the subtree, the balance factors of the node’s ancestors do not change. 

Thus, it restores the height-balance property both locally at the subtree and globally for the entire 

tree. This is not the case with a deletion. When a subtree is rebalanced due to a deletion, it can 

cause the ancestors of the subtree to then become unbalanced. This effect can ripple up all the way 

to the root node. So, all of the nodes along the path have to be evaluated and rebalanced if 

necessary. 

4.5 Tree Traversal 

 There are three standard ways of traversing a binary tree T with root R.  They are: 

 ( i )  Preorder Traversal 

 (ii )  Inorder Traversal 

 (iii)  Postorder Traversal 

Preorder Traversal: 

(1) Process the root R. 

(2) Traverse the left subtree of R in preorder. 

(3) Traverse the right subtree of R in preorder. 

Inorder Traversal: 

(1) Traverse the left subtree of R in inorder. 

(2) Process the root R. 

(3) Traverse the right subtree of R in inorder. 

Postorder Traversal: 

(1) Traverse the left subtree of R in postorder. 

(2) Traverse the right subtree of R in postorder. 
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(3) Process the root R. 

Observe that each algorithm contains the same three steps, and that the left subtree of R is 

always traversed before the right subtree.  The difference between the algorithms is the time at which 

the root R is processed.  The three algorithms are sometimes called, respectively, the node-left-right 

(NLR) traversal, the left-node-right (LNR) traversal and the left-right-node (LRN) traversal. 

Traversal algorithms  

Preorder Traversal 

 Consider the following case where we have 6 nodes in the tree A, B, C, D, E, F.   The traversal 

always starts from the root of the tree.  The node A is the root and hence it is visited first.  The value 

at this node is processed.  Now we check if there exists any left child for this node if so apply the 

preorder procedure on the left subtree.  Now check if there is any right subtree for the node A, the 

preorder procedure is applied on the right subtree.   

 Since there exists a left subtree for node A, B is now considered as the root of the left subtree 

of A and preorder procedure is applied.  Hence we find that B is processed next and then it is checked 

if B has a left subtree is shown in Fig. 4.19 

  

   

   

Fig. 4.19 Preorder Traversal 
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The algorithm for the above method is presented in the pseudo-code form below: 

Algorithm 

PREORDER( ROOT ) 

Temp = ROOT 

If temp = NULL 

 Return 

End if 

Print info(temp) 

If left(temp) ≠ NULL  

 PREORDER( left(temp)) 

End if 

If right(temp) ≠ NULL 

 PREORDER(right(temp)) 

End if 

End PREORDER 

Inorder Traversal 

In the Inorder traversal method, the left subtree of the current node is visited first and then 

the current node is processed and at last the right subtree of the current node is visited.  In the 

following example, the traversal starts with the root of the binary tree.  The node A is the root and it 

is checked if it has the left subtree.  Then the inorder traversal procedure is applied on the left subtree 

of the node A.  Now we find that node D does not have left subtree.  Hence the node D is processed 

and then it is checked if there is a right subtree for node D.  Since there is no right subtree, the control 

returns back to the previous function which was applied on B.  Since left of B is already visited, now 

B is processed.  It is checked if B has the right subtree.  If so apply the inorder traversal method on 

the right subtree of the node B.  This recursive procedure is followed till all the nodes are visited is 

shown in Fig.4.20. 
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Fig 4.20 Inorder Traversal 

Algorithm 

INORDER( ROOT ) 

Temp = ROOT 

If temp = NULL 

 Return 

End if 

If left(temp) ≠ NULL 

 INORDER(left(temp)) 

End if 

Print info(temp) 

If right(temp) ≠ NULL 

 INORDER(right(temp)) 

End if 

End INORDER 
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Postorder Traversal 

 In the postorder traversal method the left subtree is visited first, then the right subtree and at 

last the current node is processed.  In the following example, A is the root node.  Since A has the left 

subtree the postorder traversal method is applied recursively on the left subtree of A.  Then when 

left subtree of A is completely is processed, the postorder traversal method is recursively applied on 

the right subtree of the node A.  If right subtree is completely processed, then the current node A is 

processed is shown in Fig 4.21. 

  

   

   

   Fig 4.21 Postorder Traversal 

Algorithm 

POSTORDER( ROOT ) 

Temp = ROOT 

If temp = NULL 

 Return 

End if 

If left(temp) ≠ NULL 

 POSTORDER(left(temp)) 

End if 

If right(temp) ≠ NULL 

 POSTORDER(right(temp)) 

End if 

Print info(temp) 

End POSTORDER 
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4.6 B TREES 

An extension of a multiway search tree of order m is a B-tree of order m. This type of tree will be 

used when the data to be accessed / stored is located on secondary storage devices because they allow 

for large amounts of data to be stored in a node. A B-tree of order m is a multiway search tree in 

which:  

1. The root has at least two subtrees unless it is the only node in the tree.  

2. Each nonroot and each nonleaf node have at most m nonempty children and at least m/2 nonempty 

children.  

3. The number of keys in each nonroot and each nonleaf node is one less than the number of its 

nonempty children.  

4. All leaves are on the same level. 

Searching  

An algorithm for finding a key in B-tree is simple. Start at the root and determine which pointer to 

follow based on a comparison between the search value and key fields in the root node. Follow the 

appropriate pointer to a child node. Examine the key fields in the child node and continue to follow 

the appropriate pointers until the search value is found or a leaf node is reached that doesn't contain 

the desired search value.  

Insertion  

The condition that all leaves must be on the same level forces a characteristic behavior of Btrees, 

namely that B-trees are not allowed to grow at the their leaves; instead they are forced to grow at the 

root. When inserting into a B-tree, a value is inserted directly into a leaf is shown in Fig 4.22 and 

Fig.4.23. This leads to three common situations that can occur:  

1. A key is placed into a leaf that still has room.  

2. The leaf in which a key is to be placed is full.  

3. The root of the B-tree is full. 

 

Fig 4.22 B-tree Insertion 
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Fig 4.23 steps in B-tree insertion operation 
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Deletion 

The deletion process will basically be a reversal of the insertion process - rather than splitting nodes, 

it's possible that nodes will be merged so that B-tree properties, namely the requirement that a node 

must be at least half full, can be maintained is shown in Fig 4.24 ,Fig 4.25 and Fig 4.26. 

There are two main cases to be considered:  

1. Deletion from a leaf  

2. Deletion from a non-leaf 

 

 

 

 

 

Fig 4.24 Deletion 
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Fig 4.25 Deletion 
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Fig 4.26 steps in B Tree deletion operation 

4.7 HEAP TREE 

Heap is a special case of balanced binary tree data structure where the root-node key is compared 

with its children and arranged accordingly. A heap is a complete binary tree in which the nodes are 

organized based on their data entry values. There are two variants of the heap structure. A max-heap 

has the property, known as the heap order property, that for each non-leaf node V, the value in V is 

greater than the value of its two children. The largest value in a max-heap will always be stored in 

the root while the smallest values will be stored in the leaf nodes. The min-heap has the opposite 

property. For each non-leaf node V, the value in V is smaller than the value of its two children is 

shown in Fig.4.27 and Fig.4.28. 

 

Fig 4.27  Min and Max heap 
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Example 

 

 

 

Fig 4.28 Heap tree insertion 
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4.8 PRELIMINARIES OF GRAPH ADT 

Graph is a non linear data structure; A map is a well-known example of a graph. In a map various 

connections are made between the cities. The cities are connected via roads, railway lines and aerial 

network. We can assume that the graph is the interconnection of cities by roads. A graph contains a 

set of points known as nodes (or vertices) and set of links known as edges (or Arcs) which connects 

the vertices.  

A graph is defined as Graph is a collection of vertices and arcs which connects vertices in the graph. 

A graph G is represented as G = ( V , E ), where V is set of vertices and E is set of edges.  

Example: graph G can be defined as G=(V,E) Where V={A,B,C,D,E} and E= 

{(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}. This is a graph with 5 vertices and 6 edges is shown 

in Fig.4.29. 

 

 

Figure 4.29 A Graph 

Graph Terminology  

1. Vertex : An individual data element of a graph is called as Vertex. Vertex is also known as node. In 

above example graph, A, B, C, D & E are known as vertices.  

2. Edge : An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is 

represented as (starting Vertex, ending Vertex).  

In above graph, the link between vertices A and B is represented as (A,B).  

Edges are three types:  

1. Undirected Edge - An undirected edge is a bidirectional edge. If there is an undirected edge 

between vertices A and B then edge (A , B) is equal to edge (B , A).  

2. Directed Edge - A directed edge is a unidirectional edge. If there is a directed edge between 

vertices A and B then edge (A , B) is not equal to edge (B , A).  

3. Weighted Edge - A weighted edge is an edge with cost on it.  

Types of Graphs  

1. Undirected Graph  

A graph with only undirected edges is said to be undirected graph.  

 

2. Directed Graph  

A graph with only directed edges is said to be directed graph.  

 

3. Complete Graph  
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A graph in which any V node is adjacent to all other nodes present in the graph is known as a 

complete graph. An undirected graph contains the edges that are equal to edges = n(n-1)/2 where n 

is the number of vertices present in the graph. The following figure shows a complete graph.  

 

4. Regular Graph  

Regular graph is the graph in which nodes are adjacent to each other, i.e., each node is accessible 

from any other node.  

 

5. Cycle Graph  

A graph having cycle is called cycle graph. In this case the first and last nodes are the same. A closed 

simple path is a cycle.  

 

6. Acyclic Graph  

A graph without cycle is called acyclic graphs.  

 

7. Weighted Graph  

A graph is said to be weighted if there are some non negative value assigned to each edges of the 

graph. The value is equal to the length between two vertices. Weighted graph is also called a network.  

 

Outgoing Edge  

A directed edge is said to be outgoing edge on its orign vertex.  

Incoming Edge  

A directed edge is said to be incoming edge on its destination vertex.  

Degree  

Total number of edges connected to a vertex is said to be degree of that vertex.  

Indegree  

Total number of incoming edges connected to a vertex is said to be indegree of that vertex.  

Outdegree  

Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex.  

Parallel edges or Multiple edges  

If there are two undirected edges to have the same end vertices, and for two directed edges to have 

the same origin and the same destination. Such edges are called parallel edges or multiple edges.  

Self-loop  

An edge (undirected or directed) is a self-loop if its two endpoints coincide.  

Simple Graph  

A graph is said to be simple if there are no parallel and self-loop edges.  

Adjacent nodes  

When there is an edge from one node to another then these nodes are called adjacent nodes.  
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Incidence  

In an undirected graph the edge between v1 and v2 is incident on node v1 and v2.  

Walk  

A walk is defined as a finite alternating sequence of vertices and edges, beginning and ending with 

vertices, such that each edge is incident with the vertices preceding and following it.  

Closed walk  

A walk which is to begin and end at the same vertex is called close walk. Otherwise it is an open 

walk. If e1,e2,e3,and e4 be the edges of pair of vertices (v1,v2),(v2,v4),(v4,v3) and (v3,v1) 

respectively ,then v1 e1 v2 e2 v4 e3 v3 e4 v1 be its closed walk or circuit.  

 

Path  

A open walk in which no vertex appears more than once is called a path. If e1 and e2 be the two 

edges between the pair of vertices (v1,v3) and (v1,v2) respectively, then v3 e1 v1 e2 v2 be its path.  

 

Length of a path  

The number of edges in a path is called the length of that path. In the following, the length of the 

path is 3. 

 

Circuit  

A closed walk in which no vertex (except the initial and the final vertex) appears more than once is 

called a circuit. A circuit having three vertices and three edges.  

Sub Graph  

A graph S is said to be a sub graph of a graph G if all the vertices and all the edges of S are in G, and 

each edge of  V(G) and E(G’) S has the same end vertices in S as in G. A subgraph of G is a 

graph G’ such that V(G’)  E(G)  

 

Connected Graph  

A graph G is said to be connected if there is at least one path between every pair of vertices in G. 

Otherwise, G is disconnected. This graph is disconnected because the vertex v1 is not connected 

with the other vertices of the graph.  

 

Degree  

In an undirected graph, the number of edges connected to a node is called the degree of that node or 

the degree of a node is the number of edges incident on it. In the above graph, degree of vertex v1 is 

1, degree of vertex v2 is 3, degree of v3 and v4 is 2 in a connected graph.  
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Indegree  

The indegree of a node is the number of edges connecting to that node or in other words edges 

incident to it.  

Outdegree  

The outdegree of a node (or vertex) is the number of edges going outside from that node. 

 

4.9 Graph Representations  

Graph data structure is represented using following representations  

1. Adjacency Matrix  

2. Adjacency List  

3. Adjacency Multilists  

1.Adjacency Matrix  

In this representation, graph can be represented using a matrix of size total number of vertices 

by total number of vertices; means if a graph with 4 vertices can be represented using a matrix of 

4X4 size. In this matrix, rows and columns both represent vertices. This matrix is filled with either 

1 or 0. Here, 1 represents there is an edge from row vertex to column vertex and 0 represents there 

is no edge from row vertex to column vertex.  

Adjacency Matrix: let G = (V, E) with n vertices, n≥1. The adjacency matrix of G is a 2-dimensional 

n x n matrix, A, A(i, j) = 1 iff (vi vj)ϵE(G) (<vi, vj>  for a diagraph), A(i, j) = 0 otherwise. 

example : for undirected graph  

 
For a Directed graph  

 
The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a 

digraph need not be symmetric. The space needed to represent a graph using adjacency matrix is n2 

bits. To identify the edges in a graph, adjacency matrices will require at least O(n2 ) time.  

• Adjacency List  

In this representation, every vertex of graph contains list of its adjacent vertices. The n rows of the 

adjacency matrix are represented as n chains. The nodes in chain I represent the vertices that are 

adjacent to vertex i.  

It can be represented in two forms. In one form, array is used to store n vertices and chain is used to 

store its adjacencies.  
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So that we can access the adjacency list for any vertex in O(1) time. Adjlist[i] is a pointer to to first 

node in the adjacency list for vertex i. example: consider the following directed graph representation 

implemented using linked list  

 
 This representation can also be implemented using array  

 
• Adjacency Multilists  

In the adjacency-list representation of an undirected graph each edge (u, v) is represented by two 

entries one on the list for u and the other on that list for v. This can be accomplished easily if the 

adjacency lists are actually maintained as multilists (i.e., lists in which nodes may be shared among 

several lists). For each edge there will be exactly one node but this node will be in two lists (i.e. the 

adjacency lists for each of the two nodes to which it is incident). 

• Weighted edges  

In many applications the edges of a graph have weights assigned to them. These weights may 

represent the distance from one vertex to another or the cost of going from one; vertex to an adjacent 

vertex In these applications the adjacency matrix entries A [i][j] would keep this information too. 

When adjacency lists are used the weight information may be kept in the list nodes by including an 

additional field weight. A graph with weighted edges is called a network. 

 

Fig 27 Weighted Graph - Adjacency Matrix representation 

4.10 GRAPH TRAVERSAL 

BREADTH FIRST SEARCH (BFS) TRAVERSAL FOR A GRAPH 

Breadth First Traversal (or Search) for a graph is similar to Breadth First Traversal of a tree The only 

catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To 

avoid processing a node more than once, we use a boolean visited array. 
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For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, 

we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited 

vertices, then 2 will be processed again and it will become a non-terminating process. Breadth First 

Traversal of the following graph is 2, 0, 3, 1. 

 

Fig 28 BFS Traversal graph 

 

Applications of Breadth First Traversal  

1) Shortest Path and Minimum Spanning Tree for unweighted graph In unweighted graph, the 

shortest path is the path with least number of edges. With Breadth First, we always reach a vertex 

from given source using minimum number of edges. Also, in case of unweighted graphs, any 

spanning tree is Minimum Spanning Tree and we can use either Depth or Breadth first traversal for 

finding a spanning tree.  

2) Peer to Peer Networks. In Peer to Peer Networks like BitTorrent, Breadth First Search is used to 

find all neighbor nodes.  

3) Crawlers in Search Engines: Crawlers build index using Bread First. The idea is to start from 

source page and follow all links from source and keep doing same. Depth First Traversal can also 
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be used for crawlers, but the advantage with Breadth First Traversal is, depth or levels of built tree 

can be limited.  

4) Social Networking Websites: In social networks, we can find people within a given distance ‘k’ 

from a person using Breadth First Search till ‘k’ levels.  

5) GPS Navigation systems: Breadth First Search is used to find all neighboring locations.  

6) Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search to 

reach all nodes.  

7) In Garbage Collection: Breadth First Search is used in copying garbage collection using 

Cheney’s algorithm.  

8) Cycle detection in undirected graph: In undirected graphs, either Breadth First Search or Depth 

First Search can be used to detect cycle. In directed graph, only depth first search can be used.  

9) Ford–Fulkerson algorithm In Ford-Fulkerson algorithm, we can either use Breadth First or 

Depth First Traversal to find the maximum flow. Breadth First Traversal is preferred as it reduces 

worst case time complexity to O(VE2 ).  

10) To test if a graph is Bipartite We can either use Breadth First or Depth First Traversal.  

11) Path Finding We can either use Breadth First or Depth First Traversal to find if there is a path 

between two vertices.  

12) Finding all nodes within one connected component: We can either use Breadth First or Depth 

First Traversal to find all nodes reachable from a given node.  

 

DEPTH FIRST TRAVERSAL FOR A GRAPH  

Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The only 

catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To 

avoid processing a node more than once, we use a boolean visited array. For example, in the 

following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent 

vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited vertices, then 2 will be 

processed again and it will become a non-terminating process. Depth First Traversal of the 103 

following graph is 2, 0, 1, 3 

 

Fig 29 DFS Traversal Graph 

Algorithm Depth-First Search 
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The DFS forms a depth-first forest comprised of more than one depth-first trees. Each tree is made 

of edges (u, v) such that u is gray and v is white when edge (u, v) is explored. The following 

pseudocode for DFS uses a global timestamp time. 

 

Applications of Depth First Search  

1) For an unweighted graph, DFS traversal of the graph produces the minimum spanning tree and all 

pair shortest path tree.  

2) Detecting cycle in a graph A graph has cycle if and only if we see a back edge during DFS. So we 

can run DFS for the graph and check for back edges.  

3) Path Finding We can specialize the DFS algorithm to find a path between two given vertices u 

and z.  

i) Call DFS(G, u) with u as the start vertex.  

ii) Use a stack S to keep track of the path between the start vertex and the current vertex.  

iii) As soon as destination vertex z is encountered, return the path as the contents of the stack  

4) Topological Sorting  

5) To test if a graph is bipartite We can augment either BFS or DFS when we first discover a new 

vertex, color it opposite its parents, and for each other edge, check it doesn’t link two vertices of the 

same color. The first vertex in any connected component can be red or black! See this for details.  

6) Finding Strongly Connected Components of a graph A directed graph is called strongly connected 

if there is a path from each vertex in the graph to every other vertex. 
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4.11 SHORTEST PATH ALGORITHM 

Given a graph where edges are labeled with weights (or distances) and a source vertex, what is the 

shortest path between the source and some other vertex? Problems requiring us to answer such 

queries are broadly known as shortest-paths problems. Shortest-paths problem come in several 

flavors. For example, the single-source shortest path problem requires finding the shortest paths 

between a given source and all other vertices; the single-pair shortest path problem requires finding 

the shortest path between given a source and a given destination vertex; the all-pairs shortest path 

problem requires finding the shortest paths between all pairs of vertices. 

 

4.11.1 DIJKSTRA’S ALGORITHM 

Dijkstra’s algorithm is an iterative algorithm that provides us with the shortest path from one 

particular starting mode to all other nodes in the graph. To keep track of the total cost from the start 

node to each destination we will make use of the distance instance variable in the vertex class. The 

distance instance variable will contain the current total weight of the smallest weight path from the 

start to the vertex. Dijkstra’s algorithm finds the shortest path in a weighted graph containing only 

positive edge weights from a single source. It uses a priority based dictionary or a queue to select a 

node / vertex nearest to the source that has not been edge relaxed. Time complexity of Dijkstra’s 

algorithm is O((E+V) Log(V)) for an adjacency list implementation of a graph. V is the number of 

vertices and E is the number of edges in a graph. 

 

Fig 30 Example for Dijkstra's algorithm 

Step 1:     Step 2:     Step 3:    

                   
  

On repeating the above steps until the set contains all vertices of given graph. Then we get the 

following Shortest Path. 
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Step 4:        Step 5:      

    

 

4.11.2 PRIM’S ALGORITHM 

Prim’s algorithm is also a greedy algorithm technique. It starts with an empty spanning tree. The 

idea is to maintain two sets of vertices: 

• Contain vertices already included in minimum spanning tree 

• Contain vertices not yet included 

At every step, it considers all the edges and picks the minimum weight edge. After picking the 

edge, it moves the other endpoint of edge to set containing MST. 

Steps for finding MST using Prim's Algorithm: 

1. Create MST set that keeps track of vertices already included in MST. 

2. Assign key values to all vertices in the input graph. Initialize all key values as INFINITE (∞). 

Assign key values like 0 for the first vertex so that it is picked first. 

3. While MST set doesn't include all vertices. 

a. Pick vertex u which is not is MST set and has minimum key value. Include 'u'to MST set. 

b. Update the key value of all adjacent vertices of u. To update, iterate through all adjacent vertices. 

For every adjacent vertex v, if the weight of edge u.v less than the previous key value of v, update 

key value as a weight of u.v. 

Example: 

 

Fig 31 Example for Prim's algorithm 
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Step 1:     Step 2:    Step 3:  

     

  Step 4:      Step 5: 
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 Divide and Conquer Strategy – Greedy Algorithm – Dynamic Programming – Backtracking 

Strategy - List Searches using Linear Search - Binary Search - Fibonacci Search - Sorting Techniques 

- Insertion sort - Heap sort - Bubble sort - Quick sort - Merge sort - Analysis of sorting techniques. 

5.1 DIVIDE AND CONQUER STRATEGY 

Divide and conquer is an algorithmic paradigm. A typical Divide and Conquer algorithm solves a 

problem using following three steps: 

1. Divide: This step involves breaking the problem into smaller sub-problems. Sub-problems should 

represent a part of the original problem. This step generally takes a recursive approach to divide the 

problem until no sub-problem is further divisible. At this stage, sub-problems become atomic in 

nature but still represent some part of the actual problem. 

2. Conquer: This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the 

problems are considered ‘solved’ on their own. 

3. Merge/Combine: When the smaller sub-problems are solved, this stage recursively combines them 

until they formulate a solution of the original problem. This algorithmic approach works recursively 

and conquer & merge steps works so close that they appear as one. 

The some examples of Divide and conquer problem based algorithms are 

• Merge Sort 

• Quick Sort 

• Binary Search 

• Master Theorem 

• Fibonacci Search 

• Strassen’s Matrix multiplication 

• Karatsuba Algorithm 

 

Advantages of Divide and Conquer algorithm 

• The complexity for the multiplication of two matrices using the naïve method is O(n3), whereas 

using the divide and conquer approach. This approach also simplifies other problems, such as 

the Tower of Hanoi. 

• This approach is suitable for multiprocessing systems. 

• It makes efficient use of memory caches. 

5.2 GREEDY ALGORITHM 
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A greedy algorithm is an approach for solving a problem by selecting the best option 

available at the moment, without worrying about the future result it would bring. In other words, the 

locally best choices aim at producing globally best results. This algorithm may not be the best option 

for all the problems. It may produce wrong results in some cases. This algorithm never goes back to 

reverse the decision made.  

A greedy algorithm is designed to achieve optimum solution for a given problem. In greedy 

algorithm approach, decisions are made from the given solution domain. As being greedy, the closest 

solution that seems to provide an optimum solution is chosen. Greedy algorithms try to find a 

localized optimum solution, which may eventually lead to globally optimized solutions. However, 

generally greedy algorithms do not provide globally optimized solutions. This algorithm works in a 

top-down approach.  

The main advantage of greedy algorithm is: 

1. The algorithm is easier to describe 

2. This algorithm can perform better than other algorithms. 

Steps involved in greedy algorithm 

• To begin with, the solution set is empty. 

• At each step, an item is added into the solution set. 

• If the solution set is feasible, the current item is kept. 

• Else, the item is rejected and never considered again. 

Some examples of networking algorithms using the greedy approach are 

• Travelling salesman problem 

• Prim’s Minimal Spanning Tree Algorithm 

• Kruskal’s Minimal Spanning Tree Algorithm 

• Dijkstra’s Minimal Spanning Tree Algorithm 

• Graph – Map coloring 

• Graph – vertex cover 

• Knapsack Problem 

• Job Scheduling Problem 

• Huffman Coding 

5.3 DYNAMIC PROGRAMMING 
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Dynamic programming approach is similar to divide and conquer in breaking down the problem into 

smaller and yet smaller possible sub-problems. But, unlike, divide and conquer, these sub-problems 

are not solved independently. Here the results of these smaller sub-problems are remembered and 

used for similar or overlapping sub-problems. 

Some problems that use dynamic programming approach 

➢ Fibonacci number series 

➢ Knapsack problem 

➢ Tower of Hanoi 

➢ All pair shortest path by Floyd-Warshall 

➢ Shortest path by Dijkstra 

➢ Project scheduling 

5.4 BACKTRACKING ALGORITHM 

A backtracking algorithm is a problem-solving algorithm that uses a brute force 

approach for finding the desired output. The Brute force approach tries out all the possible solutions 

and chooses the desired/best solutions. The term backtracking suggests that if the current solution is 

not suitable, then backtrack and try other solutions. Thus, recursion is used in this approach. This 

approach is used to solve problems that have multiple solutions. If you want an optimal solution, you 

must go for dynamic programming. Backtracking is a technique based on algorithm to solve 

problem. It uses recursive calling to find the solution by building a solution step by step increasing 

values with time. It removes the solutions that doesn't give rise to the solution of the problem based 

on the constraints given to solve the problem. 

Backtracking algorithm is applied to some specific types of problems, 

• Decision problem used to find a feasible solution of the problem. 

• Optimisation problem used to find the best solution that can be applied. 

• Enumeration problem used to find the set of all feasible solutions of the problem. 

In backtracking problem, the algorithm tries to find a sequence path to the solution which has some 

small checkpoints from where the problem can backtrack if no feasible solution is found for the 

problem. 

Example: 
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Fig 5.1 Backtracking algorithm method 

In fig 5.1, Green is the start point, blue is the intermediate point, red are points with no feasible 

solution, dark green is end solution. Here, when the algorithm propagates to an end to check if it is 

a solution or not, if it is then returns the solution otherwise backtracks to the point one step behind it 

to find track to the next point to find solution. 

Algorithm 

Backtrack(x) 

    if x is not a solution 

        return false 

    if x is a new solution 

        add to list of solutions 

    backtrack(expand x) 

Let’s use this backtracking problem to find the solution to N-Queen Problem. 

In N-Queen problem, we are given an NxN chessboard and we have to place n queens on the board 

in such a way that no two queens attack each other. A queen will attack another queen if it is placed 

in horizontal, vertical or diagonal points in its way. Here, we will do 4-Queen problem is shown in 

Fig 5.2. 

Here, the solution is − 
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Fig 5.2 N Queens Problem 

Here, the binary output for n queen problem with 1’s as queens to the positions are placed. 

{0 , 1 , 0 , 0} 

{0 , 0 , 0 , 1} 

{1 , 0 , 0 , 0} 

{0 , 0 , 1 , 0} 

For solving n queens problem, we will try placing queen into different positions of one row. And 

checks if it clashes with other queens. If current positioning of queens if there are any two queens 

attacking each other. If they are attacking, we will backtrack to previous location of the queen and 

change its positions. And check clash of queen again. 

State Space Tree 

A space state tree is a tree representing all the possible states (solution or non-solution) of the 

problem from the root as an initial state to the leaf as a terminal state . 

 

5.4 Linear Search  

 

Linear search is the simplest method of searching.  In this method, the element to be found 

is sequentially searched in the list (Hence also called sequential search).  This method can be applied 

to a sorted or an unsorted list.  Hence, it is used when the records are not stored in order. 
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Algorithm :   

 

ALGORITHM LINEARSEARCH(K, N, X ) 

// K is the array containing the list of data items 

// N is the number of data items in the list 

// X is the data item to be searched 

Repeat For I = 0 to N -1 Step 1 

 If K( I ) = X 

 Then 

  WRITE(“ELEMENT IS PRESENT AT LOCATION ” I) 

  RETURN 

 End If 

End Repeat 

  WRITE(“ELEMENT NOT PRESENT IN THE COLLECTION”) 

End LINEARSEARCH 

 

In the above algorithm, K is the list of data items containing N data items.  X is the data item, 

which is to be searched in K.  If the data item to be searched is found then the position where it is 

found will be displayed.  If the data item to be searched is not found then the appropriate message 

will be displayed to indicate the user, that the data item is not found. 

 

The data item X is compared with each and every element in the list K  During this 

comparison, if X matches with a data item in K, then the position where the data item was found will 

gets displayed and the control comes out of the loop and the procedure comes to an end.  If X does 

not match with any of the data items in K, then finally the element not found will be displayed. 

 

Example: 

 

X → Number to be searched : 40 

 

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 

 

45 56 15 76 43 92 35 40 28 65 

  X   K[0] 
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45 56 15 76 43 92 35 40 28 65 

  X   K[1] 

 

45 56 15 76 43 92 35 40 28 65 

  X   K[2] 

 

45 56 15 76 43 92 35 40 28 65 

  X   K[3] 

 

45 56 15 76 43 92 35 40 28 65 

  X   K[4] 

 

45 56 15 76 43 92 35 40 28 65 

  X   K[5] 

 

45 56 15 76 43 92 35 40 28 65 

  X   K[6] 

 

45 56 15 76 43 92 35 40 28 65 

  X =  K[7] → I = 7 :  Number found at location 7 i.e., as a 8th element 

The search( ) function gets the number to be searched in the variable ‘x’ as a argument  and compares 

it with each and every element in the array K.  If the number ‘x’ is found in the array, then the 

position ‘i’, where it is found will gets printed.  If the number is not found in the entire list, then the 

function will display the “not found message” to the user. 

 In the main( ) function receives the n values from the user and stored in the array K. The user 

is prompted to enter the number to be searched and is passed to the search( ) function as a argument. 

The search which receives the value x will give the appropriate message. 

 

Advantages: 

1. Simple and straight forward method. 

2. Can be applied on both sorted and unsorted list. 
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Disadvantages: 

1. Inefficient when the number of data items in the list increases. 

Analysis 

Worst Case :O(n) 

Best Case:Ω(1) 

Average Case:Ө(n) 

5.5 BINARY SEARCH 

 Binary search method is very fast and efficient.  This method requires that the list of elements 

be in sorted order.  Binary search cannot be applied on an unsorted list. 

 

Principle:  The data item to be searched is compared with the approximate middle entry of the list.  

If it matches with the middle entry, then the position will be displayed.  If the data item to be searched 

is lesser than the middle entry, then it is compared with the middle entry of the first half of the list 

and procedure is repeated on the first half until the required item is found.  If the data item is greater 

than the middle entry, then it is compared with the middle entry of the second half of the list and 

procedure is repeated on the second half until the required item is found.  This process continues 

until the desired number is found or the search interval becomes empty. 

 

Algorithm:   

ALGORITHM BINARYSEARCH(K, N, X) 

// K is the array containing the list of data items 

// N is the number of data items in the list 

// X is the data item to be searched 

Lower  0, Upper  N – 1 

While Lower  Upper 

Mid  ( Lower + Upper ) / 2 

 If (X < K[Mid])Then 

   Upper  Mid -1 

  Else If (X>K[Mid]) Then 

   Lower  Mid + 1 

  Else 

   Write(“ELEMENT FOUND AT”, MID) 



121 
 

   Quit 

  End If 

 End If 

End While 

 Write(“ELEMENT NOT PRESENT IN THE COLLECTION”) 

End BINARYSEARCH 

 

In Binary Search algorithm given above, K is the list of data items containing N data items.  

X is the data item, which is to be searched in K. If the data item to be searched is found then the 

position where it is found will be printed. If the data item to be searched is not found then  “Element 

Not Found” message will be printed, which will indicate the user, that the data item is not found. 

Initially lower is assumed 0 to point the first element in the list and upper is assumed as N-1 

to point the last element in the list because the range of any array is 0 to N-1. The mid position of 

the list is calculated by finding the average between lower and upper and X is compared with K[mid].  

If X is found equal to K[mid] then the value mid will gets printed, the control comes out of the loop 

and the procedure comes to an end.  If X is found lesser than K[mid], then upper is assigned mid – 

1, to search only in the first half of the list.  If X is found greater than K[mid], then lower is assigned 

mid + 1, to search only in the second half of the list.  This process is continued until the element 

searched is found or the collection becomes becomes empty. 

Example: 

X → Number to be searched : 40 

U → Upper 

L → Lower=N-1 

M→ Mid 

 

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 

 

1 22 35 40 43 56 75 83 90 98 

L = 0                      M = (0+9)/2 =4             U = 9   

X< K[4] → U = 4 – 1 = 3 

                                                                                                                            

1 22 35 40 43 56 75 83 90 98 

L = 0  M = (0+3)/2=1 U = 3 

X > K[1] → L = 1 + 1 = 2 
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1 22 35 40 43 56 75 83 90 98 

           L, M = 2   U = 3 

K > A [2] → L = 2 + 1 = 3 

 

1 22 35 40 43 56 75 83 90 98 

           L, M, U = 3 

K = A[3] → P = 3 :  Number found at position 3 

 

The binarysearch( ) function gets the element to be searched in the variable X.  Initially lower 

is assigned 0 and upper is assumed N – 1.  The mid position is calculated and if K[mid] is found 

equal to X, then mid position will gets displayed.  If X is less than K[mid] upper is assigned mid – 1 

to search only in first half of the list else lower is assigned mid + 1 to search only in the second half 

of the list.  This is process is continued until lower is less than or equal to upper.  If the element is 

not found even after the loop is completed, then  the Not Found Message will be displayed to the 

user indicating that the element is not found. 

  

Advantages: 

1. Searches several times faster than the linear search. 

2. In each iteration, it reduces the number of elements to be searched from n to n/2. 

 

Disadvantages: 

1. Binary search can be applied only on a sorted list. 

Analysis of Binary Search 

Bestcase :O(1) 

Worst Case: O(log2 𝑛) 

Average Case: O(log2 𝑛) 

 

5.6 FIBONACCI SEARCH 

Fibonacci Search is a comparison-based technique that uses Fibonacci numbers to search an 

element in a sorted array. Fibonacci search has some similarities and differences when compared 

to the binary search. 

Similarities: 

1. Works for sorted arrays 
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2. A Divide and Conquer Algorithm. 

3. Has Log n time complexity. 

Differences: 

1. Fibonacci Search divides given array into unequal parts 

2. Binary Search uses a division operator to divide range. Fibonacci Search doesn’t use /, but uses 

+ and -. The division operator may be costly on some CPUs. 

3. Fibonacci Search examines relatively closer elements in subsequent steps. So when the input 

array is big that cannot fit in CPU cache or even in RAM, Fibonacci Search can be useful.  

Fibonacci Numbers are recursively defined as F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1. First 

few Fibonacci Numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,… 

Observations:  

Below observation is used for range elimination, and hence for the O(log(n)) complexity.    

1. F(n - 2) &approx; (1/3)*F(n) and  

2. F(n - 1) &approx; (2/3)*F(n). 

Algorithm: 

1. Find the smallest Fibonacci Number greater than or equal to n. Let this number be fibM [m’th 

Fibonacci Number]. Let the two Fibonacci numbers preceding it be fibMm1 [(m-1)’th 

Fibonacci Number] and fibMm2 [(m-2)’th Fibonacci Number]. 

2. While the array has elements to be inspected:  

1. Compare x with the last element of the range covered by fibMm2 

2. If x matches, return index 

3. Else if x is less than the element, move the three Fibonacci variables two Fibonacci down, 

indicating elimination of approximately rear two-third of the remaining array. 

4. Else x is greater than the element, move the three Fibonacci variables one Fibonacci down. 

Reset offset to index. Together these indicate the elimination of approximately front one-third 

of the remaining array. 

3. Since there might be a single element remaining for comparison, check if fibMm1 is 1. If Yes, 

compare x with that remaining element. If match, return index. 

Analysis 

• The complexity of Fibonacci search is O(log2n). 

• The performance of Fibonacci search is poor than binary search. 
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• However, binary search involves division operation, where as in Fibonacci search only addition 

and subtraction operation is involved. Average performance of Fibonacci search may be better 

than binary search where division is more time consuming than addition or subtraction. 

 

5.7 Sorting  

  Sorting is an operation of arranging data, in some given order, such as ascending or descending 

with numerical data, or alphabetically with character data. 

Let A be a list of n elements A1, A2,…An in memory.  Sorting A refers to the operation of rearranging 

the contents of A so that they are increasing in order (numerically or lexicographically), that is, A1 

 A2  A3 ….An 

Sorting methods can be characterized into two broad categories: 

• Internal Sorting 

• External Sorting 

Internal Sorting :  Internal sorting methods are the methods that can be used when the list to be 

sorted is small enough so that the entire sort can be carried out in main memory. 

 The key principle of internal sorting is that all the data items to be sorted are retained in the 

main memory and random access in this memory space can be effectively used to sort the data items. 

The various internal sorting methods are: 

• Bubble Sort 

• Selection Sort 

• Insertion Sort 

• Quick Sort 

• Merge Sort 

• Heap Sort 

 

External Sorting :  External sorting methods are the methods to be used when the list to be sorted 

is large and cannot be accommodated entirely in the main memory.   In this case some of the data is 

present in the main memory and some is kept in auxiliary memory such as hard disk, floppy disk, 

tape, etc. 

Objectives involved in design of sorting algorithms. 

The main objectives involved in the design of sorting algorithm are: 

1. Minimum number of exchanges 

2. Large volume of data block movement 

 

This implies that the designed and desired sorting algorithm must employ minimum number of 

exchanges and the data should be moved in large blocks, which in turn increase the efficiency of the 

sorting algorithm. 
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5.7.1 INSERTION SORT 

 

 The main idea behind the insertion sort is to insert the ith element in its correct place in the ith 

pass.  Suppose an array K with n elements K[1], K[2],…K[N] is in memory.  The insertion sort 

algorithm scans K from K[0] to K[N-1], inserting each element K[I] into its proper position in the 

previously sorted subarray K[0], K[1],..K[I-1]. 

Principle:  In Insertion Sort algorithm, each element K[I] in the list is compared with all the elements 

before it ( K[1] to K[I-1]).  If any element K[J] is found to be greater than K[I] then K[J] is inserted 

in the place of K[J}.  This process is repeated till all the elements are sorted. 

Algorithm: 

ALGORITHM INSERTIONSORT(K, N) 

// K is the array containing the list of data items 

// N is the number of data items in the list 

Repeat For I = 1 to N-1 

 Repeat For J = 0 to I – 1  

  If (K[I] < K[J])Then 

   Temp  K[I] 

   Repeat For L = I-1 to J  

    K[L +1]  K[L] 

   End Repeat 

   K[J]  Temp 

  End If 

 End Repeat 

End Repeat 

End INSERTIONSORT 

 

 In Insertion Sort algorithm, N represents the total number of elements in the array K. I is 

made to point to the second element in the list.  In every pass the J is incremented to point to the next 

element and is continued till it reaches the last element.  During each pass K[I] is compared all 

elements before it.  If K[I] is lesser than K[J] in the list, then K[I] is inserted in position J.  Finally, 

a sorted list is obtained. 

 For performing the insertion operation, a variable temp is used to safely store K[I] in it and 

then shift right elements starting from K[J] to K[I-1]. 
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Example: 

N = 10 → Number of elements in the list 

L → Last 

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 

 

42 23 74 11 65 58 94 36 99 87 

 I=1  K[I] < K[0] → Insert K[I] at 0  L=9 

 

23 42 74 11 65 58 94 36 99 87 

  I=2       L=9 

K[I] is greater than all elements before it.  Hence No Change 

 

23 42 74 11 65 58 94 36 99 87 

   I=3  K[I] < K[0] → Insert K[I] at 0 L=9 

 

11 23 42 74 65 58 94 36 99 87 

    I=4     L=9 

K[I] < K[3] → Insert K[I] at 3 

 

11 23 42 65 74 58 94 36 99 87 

     I=5    L=9 

K[I] < K[3] → Insert K[I] at 3 

 

 

11 23 42 58 65 74 94 36 99 87 

      I=6   L=9 

K[I] is greater than all elements before it.  Hence No Change 
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11 23 42 58 65 74 94 36 99 87 

       I=7  L=9 

K[I] < K[2] → Insert K[I] at 2 

 

11 23 36 42 58 65 74 94 99 87 

        I=8 L=9 

K[I] is greater than all elements before it.  Hence No Change 

11 23 36 42 58 65 74 94 99 87 

         I, L=9 

K[I] < K[7] → Insert K[I] at 7 

 

Sorted List: 

 

11 23 36 42 58 65 74 87 94 99 

Advantages: 

• Sorts the list faster when the list has less number of elements. 

• Efficient in cases where a new element has to be inserted into a sorted list. 

 

Disadvantages: 

• Very slow for large values of n. 

• Poor performance if the list is in almost reverse order. 

 

4.7.2 QUICK SORT 

 Quick sort is a very popular sorting method.  The name comes from the fact that, in general, 

quick sort can sort a list of data elements significantly faster than any of the common sorting 

algorithms.  This algorithm is based on the fact that it is faster and easier to sort two small lists than 

one larger one.  The basic strategy of quick sort is to divide and conquer.  Quick sort is also known 

as partition exchange sort. 

The purpose of the quick sort is to move a data item in the correct direction just enough for 

it to reach its final place in the array.  The method, therefore, reduces unnecessary swaps, and moves 

an item a great distance in one move. 
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Principle:  A pivotal item near the middle of the list is chosen, and then items on either side are 

moved so that the data items on one side of the pivot element are smaller than the pivot element, 

whereas those on the other side are larger.  The middle or the pivot element is now in its correct 

position.  This procedure is then applied recursively to the 2 parts of the list, on either side of the 

pivot element, until the whole list is sorted. 

 

Algorithm: 

ALGORITHM QUICKSORT(K, Lower, Upper) 

// K is the array containing the list of data items 

// Lower is the lower bound of the array 

// Upper is the upper bound of the array 

If (Lower < Upper) Then  

BEGIN 

I Lower  

J  Upper  

pivotK[Lower] 

If  (lower < Upper) 

then 

 While (I < J) 

 Begin  

                       While (K[I] <= pivot) 

   I  I + 1 

  End While 

  While (K[J] > pivot) 

   J  J – 1 

  End While 

  If (I < J)Then 

   K[I]  K[J] 

    

  End If 

End While 

K[J]  K[Lower]  
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QUICKSORT(K, Lower, J – 1) 

QUICKSORT(K, J + 1, Upper) 

End If 

End QUICKSORT 

 In Quick sort algorithm, Lower points to the first element in the list and the Upper points to 

the last element in the list.  Now I is made to point to the next location of Lower and J is made to 

point to the Upper.  K[Lower] is considered as the pivot element and at the end of the pass, the 

correct position of the pivot element will be decided.  Keep on incrementing I and stop when K[I] > 

Key.  When I stops, start decrementing J and stop when K[J] < Key.  Now check if I < J.  If so, swap 

K[I] and K[J] and continue moving I and J in the same way.  When I meets J the control comes out 

of the loop and K[J] and K[Lower] are swapped.  Now the element at position J is at correct position 

and hence split the list into two partitions: (K{Lower] to K[J-1] and K[J+1] to K[Upper] ).  Apply 

the Quick sort algorithm recursively on these individual lists.  Finally, a sorted list is obtained.  

 

Example: 

 

N = 10 → Number of elements in the list 

U → Upper 

L → Lower 

 

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 

 

42 23 74 11 65 58 94 36 99 87 

L=0 I=0        U, J=9 

Initially I=L+1 and J=U, Key=K[L]=42 is the pivot element. 

 

42 23 74 11 65 58 94 36 99 87 

L=0  I=2     J=7  U=9 

K[2] > Key hence I stops at 2.  K[7] < Key hence J stops at 7 

Since I < J → Swap K[2] and A[7] 
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42 23 36 11 65 58 94 74 99 87 

L=0   J=3 I=4     U=9 

K[4] > Key hence I stops at 4.  K[3] < Key hence J stops at 3 

Since I > J → Swap K[3] and K[0].  Thus 42 go to correct position. 

 

The list is partitioned into two lists as shown.  The same process is applied to these lists individually 

as shown. 

 

         List 1       →                                 List 2                                → 

11 23 36 42 65 58 94 74 99 87 

L=0,      I=1   J,U=2 

(applying quicksort to list 1) 

 

11 23 36 42 65 58 94 74 99 87 

L=0,   I=1    U=2  J=0   Since I>0 K[L] &K[J] gets swapped i.e., K[0] gets swapped with same 

element because L,J=0 

   

11 23 36 42 65 58 94 74 99 87 

    L=4 J=5 I=6   U=9 

    (applying quicksort to list 2) 

    (after swapping 58 & 65) 

11 23 36 42 58 65 94 74 99 87 

      L=6  I=8 U, J=9 

 

11 23 36 42 58 65 94 74 87 99 

      L=6  J=8 U, I=9 

 

11 23 36 42 58 65 87 74 94 99 

      L=6    U, I, J=7 

Sorted List: 

11 23 36 42 58 65 74 87 94 99 
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Advantages: 

1. Faster than any other commonly used sorting algorithms. 

2. It has a best average case behavior. 

 

Disadvantages: 

1. As it uses recursion, stack space consumption is high. 

 

5.7.3 MERGE SORT 

 

Principle:  The given list is divided into two roughly equal parts called the left and the right subfiles.  

These subfiles are sorted using the algorithm recursively and then the two subfiles are merged together 

to obtain the sorted file.  Given a sequence of N elements K[0],K[1] ….K[N-1], the general idea is to 

imagine them split into various subtables of size is equal to 1. So each set will have a individually 

sorted items with it, then the resulting sorted sequences are merged to produce a single sorted sequence 

of N elements.  Thus this sorting method follows Divide and Conquer strategy. The problem gets 

divided into various subproblems and by providing the solutions to the subproblems the solution for the 

original problem will be provided.   

 

Algorithm: 

 

ALGORITHM MERGE(K, low, mid, high) 

// K is the array containing the list of data items 

// Low is the lower bound of the collection 

//high is the upper bound of the collection  

//mid is the upper bound for the first collection 

I  low, J  mid+1, L  0 

While (I ≤ mid) and (J ≤ high) 

 If (K[I] < K[J]) Then 

  Temp[L]  K[I] 

  I  I + 1 

  L  L+1 

 Else 

  Temp[L]  K[J] 

  J  J + 1 
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  L  L + 1 

 End If 

End While 

 

If (I > mid) Then 

 While (J ≤ high) 

  Temp[L]  K[J] 

  J  J + 1 

  L  L + 1 

 End While 

Else 

 While (I ≤ mid) 

  Temp[L]  K[I] 

  L  L + 1 

  I  I + 1 

 End While 

End If 

Repeat for m = 0 to L step 1 

 K[Low+m]  Temp[m] 

End Repeat 

End MERGE 

 

ALGORITHM MERGESORT(A, low, high) 

// K is the array containing the list of data items 

If (low < high) Then  

 mid  (low + high)/2 

 MERGESORT(low, mid) 

 MERGESORT(mid + 1, high) 

 MERGE(low, mid, high) 

End If 

End MERGESORT 
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The first algorithm MERGE can be applied on two sorted lists to merge them.  Initially, the 

index variable I points to low and J points to mid + 1.  K[I] is compared with K[J] and if K[I] found 

to be lesser than K[J] then K[I] is stored in a temporary array and I is incremented otherwise K[J] is 

stored in the temporary array and J is incremented.  This comparison is continued till either I crosses 

mid or J crosses high.  If I crosses the mid first then that implies that all the elements in first list is 

accommodated in the temporary array and hence the remaining elements in the second list can be 

put into the temporary array as it is.  If J crosses the high first then the remaining elements of first 

list is put as it is in the temporary array.  After this process we get a single sorted list.  Since this 

method merges 2 lists at a time, this is called 2-way merge sort. 

In the MERGESORT algorithm, the given unsorted list is first split into N number of lists, 

each list consisting of only 1 element.  Then the MERGE algorithm is applied for first 2 lists to get 

a single sorted list.  Then the same thing is done on the next two lists and so on.  This process is 

continued till a single sorted list is obtained. 

 

Example: 

Let L → low, M→ mid, H → high 

 

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 

 

42 23 74 11 65 58 94 36 99 87 

U    M     H 

 

In each pass the mid value is calculated and based on that the list is split into two.  This is done 

recursively and at last N number of lists each having only one element is produced as shown. 

 

 

Now merging operation is called on first two lists to produce a single sorted list, then the same 

thing is done on the next two lists and so on.  Finally a single sorted list is obtained. 
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5.7.4 HEAP SORT 

Heap:  A Heap is a compete binary tree with the property that the value at each node is at least as 

large as the values of its children (if they exist).  If the value at the parent node is larger than the 

values on its children then it is called a Max heap and if the value at the parent node is smaller than 

the values on its children then it is called the Min heap. 

   

 Heap Sort is the sorting technique based on the interpretation of the given sequence of 

elements as a binary tree. For interpretation the principle given below has to be used. 

➢ If a given node is in position I then the position of the left child and the right child can be calculated 

using Left (L) = 2I and Right (R) = 2I + 1.   

➢ To check whether the right child exists or not, use the condition R ≤ N.  If true, Right child exists 

otherwise not. 

➢ The last node of the tree is N/2.  After this position tree has only leaves. 

 

Principle:  The Max heap has the greatest element in the root.  Hence the element in the root node is 

pushed to the last position in the array and the remaining elements are converted into a max heap.  

The root node of this new max heap will be the second largest element and hence pushed to the last 

but one position in the array.  This process is repeated till all the elements get sorted. 

HEAPSORT   ALGORITHM: 

FUNCTION  HEAPSORT() 

BEGIN 

CALL  BUILDHEAP(A) 

FOR I=HEAPSIZE DOWN TO 2 

 DO 

(*SWAP BETWEEN A[1] AND A[I]*)  

A[1]↔A[I] 
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HEAPSIZE=HEAPSIZE-1 

CALL  HEAPIFY(A,1) 

END FOR  

END FUNCTION HEAPSORT 

 

 

FUNCTION BUILDHEAP(A) 

BEGIN 

 N=HEAPSIZE 

FOR    I= N/2 DOWN TO 1 STEP -1 

CALL HEAPIFY(A,I) 

 END FOR 

END BUILDHEAP 

 

FUNCTION    HEAPIFY(A,I) 

L=2 *I 

R=L+1 

IF L<=HEAPSIZE    AND A[L]>A[I]  

THEN 

 LARGE=L 

ELSE  

LARGE=I 

END IF 

IF R<=HEAPSIZE AND A[R]>A[LARGE] 

THEN 

 LARGE=R 

END IF 

IF  I<>LARGE 

THEN 

(*SWAP A[I] AND A[LARGE]*) 

A[I] ↔A[LARGE] 
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CALL  HEAPIFY(A,LARGE) 

END IF 

END HEAPIFY 

 

Example: 

Given a list A with 8 elements: 

 

42 23 74 11 65 58 94 36 

 

The given list is first converted into a binary tree as shown. 

 

 

 

 

HEAP  : (A Complete Binary tree) 

 

Phase 1: 

The rearranged tree elements after the first phase is 

Max heap is constructed. 
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Phase 2: 
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5.7.5 BUBBLE SORT 

Bubble sort is a simple sorting algorithm where number of comparisons and number of swaps are 

more. 

Algorithm 

Function Bubble sort( ) 

Read n 

For I= 0 to n-1 

 Read a[I] 

End for 

//sort 

For I=0 to n-2 

 For J=I+1 to n-1 

  If a[I]>a[J] 

  Then 

   T=a[I] 

   a[I]=a[J] 

   a[J]=T 
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  End If 

 End For J 

End For I 

 //print the sorted array 

For I=0 to n-1 

 Write a[I] 

End For 

End bubble sort 

 

Example: 

N = 10 → Number of elements in the list 

L → Points to last element ( Last ) 

 

Pass 1 

 

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 

 

42 23 74 11 65 58 94 36 99 87 

Out of order → Swap       L=9 

 

23 42 74 11 65 58 94 36 99 87 

Out of order → Swap       L=9 

 

23 42 11 74 65 58 94 36 99 87 

Out of order → Swap       L=9 

 

23 42 11 65 74 58 94 36 99 87 

Out of order → Swap       L=9 

 

23 42 11 65 58 74 94 36 99 87 

Out of order → Swap       L=9 
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23 42 11 65 58 74 36 94 99 87 

Out of order → Swap       L=9 

 

Pass 2 

 

23 42 11 65 58 74 36 94 87 99 

Out of order → Swap      L=8 

 

23 11 42 65 58 74 36 94 87 99 

Out of order → Swap      L=8 

 

 

23 11 42 58 65 74 36 94 87 99 

Out of order → Swap      L=8 

 

23 11 42 58 65 36 74 94 87 99 

Out of order → Swap      L=8 

 

Pass 3 

 

23 11 42 58 65 36 74 87 94 99 

Out of order → Swap     L=7 

 

23 11 42 58 65 36 74 87 94 99 

Out of order → Swap     L=7 

 

Pass 4 

 

23 11 42 58 36 65 74 87 94 99 
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Out of order → Swap    L=6 

 

11 23 42 58 36 65 74 87 94 99 

Out of order → Swap    L=6 

 

Pass 5 

 

11 23 42 36 58 65 74 87 94 99 

Out of order → Swap   L=5 

 

Pass 6 

 

Adjacent numbers are compared up to L=4. But no swapping takes place.  As there was no swapping 

taken place in this pass, the procedure comes to an end and we get a sorted list: 

 

11 23 36 42 58 65 74 87 94 99 

 

Advantages: 

1. Simple and works well for list with less number of elements. 

 

Disadvantages: 

1. Inefficient when the list has large number of elements. 

Requires more number of exchanges for every pass. 

 

5.8 Analysis of Sorting Techniques 

 

ALGORITHM ALGORITHMIC 

TECHNIQUE 

ORDER OF GROWTH 

BUBBLE SORT BRUTE FORCE 

TECHNIQUE 

O(n2) 

INSERTION SORT INSERTION TECHNIQUE O(n2) 
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QUICK SORT DIVIDE AND CONQUER 

TECHNIQUE 

O(n log n) 

MERGE SORT DIVIDE AND CONQUER 

TECHNIQUE 

O(n log n) 

HEAP SORT TREE SORTING (selection 

technique) 

O(n log n) 

SELECTION SORT SELECTION O(n2) 

 

 


