
1

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – I-Data Structures – SCSA1205

2

 Unit-I

Introduction to Data vs Information - Data Structures - Classification – Abstraction - Abstract data

types (ADT) - Array - characteristics - Storage Representations. Array Order Reversal- Recursion-

Array operations, Algorithm-complexity – Time and Space trade off.

I. ALGORITHM

An algorithm is a well-defined computational procedure having well defined steps for solving

a particular problem. Algorithm is finite set of logic or instructions, written in order for

accomplishing the certain predefined task.

Each algorithm must have:

• Specification: Description of the computational procedure.

• Pre-conditions: The condition(s) on input.

• Body of the Algorithm: A sequence of clear and unambiguous instructions.

• Post-conditions: The condition(s) on output.

Characteristics of an Algorithm

An algorithm must follow the mentioned below characteristics:

• Input: An algorithm must have 0 or well- d e f i n e d inputs.

• Output: An algorithm must have 1 or well-defined outputs, and should match with the

desired output.

• Feasibility: An algorithm must be terminated after the finite number of steps.

• Independent: An algorithm must have step-by-step directions which is independent of

any programming code.

• Unambiguous: An algorithm must be unambiguous and clear. Each of their steps and

input/outputs must be clear and lead to only one meaning.

 The performance of algorithm is measured on the basis of following properties:

• Time complexity: It is a way of representing the amount of time needed by a program to

run to the completion.

• Space complexity: It is the amount of memory space required by an algorithm, during a

course of its execution. Space complexity is required in situations when limited memory is

available and for the multi user system.

3

2.INTRODUCTION TO DATA STRUCTURES

2.1 Data

In the modern context, data stands for both singular and plural. Data means a value or set of

values. Data can be defined as an elementary value or the collection of values, for example,

student’s name and its id are the data about the student.

 2.2 Structure

A building is a structure. A bridge is structure. In general, a structure is made up of

components. It has a form or shape. It is made up of parts. A structure is an arrangement of and

relations between parts or elements.

2.3 Data Structures

A data structure is an arrangement of data elements. Data Structure can be defined as the group

of data elements which provides an efficient way of storing and organizing data in the computer

so that it can be used efficiently. Some examples of Data Structures are arrays, Linked List, Stack,

Queue, etc. Data Structures are widely used in almost every aspect of Computer Science i.e.

Operating System, Compiler Design, Artificial Intelligence, Graphics and many more.

 2.3.1 Needs

 As applications are getting complex and amount of data is increasing day by day, the following

 issues might be araised:

Processor speed: To handle very large amount of data, high speed processing is required, but as the

data is growing day by day to the billions of files per entity, processor may fail to deal with that

much amount of data.

Data Search: Consider an inventory size of 106 items in a store; if our application needs to

search for a particular item, it needs to traverse 106 items every time, results in slowing down the

search process.

Multiple requests: If thousands of users are searching the data simultaneously in a web server, it

fails to process the requests.

In order to solve the above problems, data structures are used. Data is organized to form

a data structure in such a way that all items are not required to be searched and required data

can be searched instantly.

Data structures are important for the following reasons

1. Data structures are used in almost every program or software system.

2. Specific data structures are essential ingredients of many efficient algorithms, and make possible

4

the management of huge amounts of data, such as large integrated collection of databases.

3. Some programming languages emphasize data structures, rather than algorithms, as the key

organizing factor in software design.

Advantages of Data Structures

Efficiency: Efficiency of a program depends upon the choice of data structures. For example:

suppose, we have some data and we need to perform the search for a particular record. element.

Hence, using array may not be very efficient here.

Reusability: Data structures are reusable, i.e. once we have implemented a particular data

structure, we can use it at any other place.

Abstraction: Data structure is specified by the ADT which provides a level of abstraction. The

client program uses the data structure through interface only, without getting into the

implementation details.

3.Classification of Data Structure

The data structure is classified into two different types, primitive and non-primitive data structures

is shown in Fig.1.

Primitive Data Structures

Simple data structure can be constructed with the help of primitive data structure. A

primitive data structure used to represent the standard data types of any one of the computer

languages. Variables, pointers, structures, unions, etc. are examples of primitive data structures.

Non Primitive Data Structures

 Non Primitive Data Structures are classified as linear or non-linear. Arrays, linked lists,

queues and stacks are linear data structures. Trees and Graphs are non-linear data structures.

Except arrays, all other data structures have many variations. Non Primitive data structure can be

constructed with the help of any one of the primitive data structure and it is having a specific

functionality. It can be designed by user.

5

Fig. 1 Classification of Data Structure

Linear Data Structures

A data structure is called linear if all of its elements are arranged in the linear order.

In linear data structures, the elements are stored in non-hierarchical way where each element has

the successors and predecessors except the first and last element. In linear data structure the

elements are stored in sequential order.

Types of Linear Data Structures are given below:

Arrays: An array is a collection of similar type of data items stored in consecutive memory location

and is referred by common name; each data item is called an element of the array. The data type

of the element may be any valid data type like char, int, float or double. The elements of

array share the same variable name but each one carries a different index number known as

subscript.

Linked List: Linked list is a linear data structure which is used to maintain a list in the memory.

It can be seen as the collection of nodes stored at non-contiguous memory locations. Each

node of the list contains a pointer to its adjacent node. It is a collection of data of same data

type but the data items need not be stored in consecutive.

Stack: Stack is a linear list in which insertion and deletions are allowed only at one end, called

top. It is a Last-In-First-Out linear data structure.

A stack is an abstract data type (ADT), can be implemented in most of the programming

6

languages. It is named as stack because it behaves like a real-world stack, for example, piles

of plates or deck of cards etc.

Queue: Queue is a linear list in which elements can be inserted only at one end called rear

and deleted only at the other end called front. It is a First-In-First-Out Linear data structure.

It is an abstract data structure, similar to stack. Queue is opened at both end therefore it

follows First-In-First-Out (FIFO) methodology for storing the data items.

Operations applied on Linear Data Structure

The following list of operations applied on linear data structures

• Add an element

• Delete an element

• Traverse

• Sort the list of elements

• Search for a data element

Non-linear Data Structures

This data structure does not form a sequence i.e. each item or element is connected with two or

more other items in a non-linear arrangement. The data elements are not arranged in sequential

structure. Elements are stored based on the hierarchical relationship among the data. The following

are some of the Non-Linear data structures.

Trees: Trees are multilevel data structures with a hierarchical relationship among its

elements known as nodes. The bottom most nodes are called leaf node while the top most node

is called root node. Each node contains pointers to point adjacent nodes. Each node in the tree

can have more than one child except the leaf nodes whereas each node can have at most one

parent except the root node.

Graphs: Graphs can be defined as the pictorial representation of the set of elements (represented

by vertices) connected by the links known as edges. A graph is different from tree in the sense

that a graph can have cycle while the tree cannot have the one.

7

Operations applied on non-linear data structures

The following list of operations applied on non-linear data structures.

1. Add elements

2. Delete elements

3. Display the elements

4. Sort the list of elements

5. Search for a data element

4. ABSTRACT DATA TYPES

Abstract Data Type (ADT) is a type or class for objects whose behaviour is defined by a

set of value and a set of operations.

The definition of ADT only mentions what operations are to be performed but not how these

operations will be implemented. It does not specify how data will be organized in memory and

what algorithms will be used for implementing the operations. The process of providing only

the essentials and hiding the details is known as abstraction is shown in fig,2.

 Fig. 2 Abstract Data Type

4.1 List ADT

• The data is generally stored in key sequence in a list which has a head structure consisting of

count, pointers and address of compare function needed to compare the data in the list is

shown in fig.3.

8

• The data node contains the pointer to a data structure and a self-referential pointer which

points to the next node in the list.

 Fig.3 List ADT

A list contains elements of the same type arranged in sequential order and following

operations can be performed on the list.

• get() – Return an element from the list at any given position.

• insert() – Insert an element at any position of the list.

• remove() – Remove the first occurrence of any element from a non-empty list.

• removeAt() – Remove the element at a specified location from a non-empty list.

• replace() – Replace an element at any position by another element.

• size() – Return the number of elements in the list.

• isEmpty() – Return true if the list is empty, otherwise return false.

• isFull() – Return true if the list is full, otherwise return false.

The List ADT Functions is shown in Fig.4.

//List ADT Type Definitions

typedef struct node{

void *DataPtr;

struct node *link;

} Node;

typedef struct{

int count;

Node *pos;

Node *head;

Node *rear;

int (*compare) (void *argument1, void *argument2);

} LIST;

9

Fig. 4 List ADT Functions

4.2 Stack ADT

✱ In Stack ADT Implementation instead of data being stored in each node, the pointer to data is

stored.

✱ The program allocates memory for the data and address is passed to the stack ADT is shown

in Fig.5.

✱ The head node and the data nodes are encapsulated in the ADT. The calling function can

only see the pointer to the stack.

✱ The stack head structure also contains a pointer to top and count of number of entries

currently in stack.

✱ A Stack contains elements of the same type arranged in sequential order.

10

 Fig. 5 Stack ADT

All operations take place at a single end that is top of the stack and following

operations can be performed:

• push() – Insert an element at one end of the stack called top.

• pop() – Remove and return the element at the top of the stack, if it is not empty.

• peek() – Return the element at the top of the stack without removing it, if the stack is not

empty.

• size() – Return the number of elements in the stack.

• isEmpty() – Return true if the stack is empty, otherwise return false.

• isFull() – Return true if the stack is full, otherwise return false.

4.3 Queue ADT

✱ The queue Abstract Data Type (ADT) follows the basic design of the stack abstract data

type is shown in fig.6.

✱ A Queue contains elements of the same type arranged in sequential order. Operations take place at

both ends, insertion is done at the end and deletion is done at the front. Following operations can

be performed.

• enqueue() – Insert an element at the end of the queue.

• dequeue() – Remove and return the first element of the queue, if the queue is not empty.

• peek() – Return the element of the queue without removing it, if the queue is not empty.

• size() – Return the number of elements in the queue.

• isEmpty() – Return true if the queue is empty, otherwise return false.

• isFull() – Return true if the queue is full, otherwise return false.

//Stack ADT Type Definitions

typedefstruct node{

void *DataPtr;

struct node *link;

} StackNode;

typedefstruct{

int count;

StackNode *top;

} STACK;

11

 Fig 6. Queue ADT

6.ARRAYS

The number of data items chunked together into a unit is known as data structure. When the

data structure consists simply a sequence of data items, the data structure of this simple variety

is referred as an array.

Definition: Array is a collection of homogenous (same data type) data elements that are stored

in contiguous memory locations.

Array Syntax

Syntax to declare an array:

✱ dataType [] arrayName;

arrayName= new dataType[n]; //keyword new performs dynamic memory location

(or)

✱ dataType [] arrayName = new dataType[n];

Example:

int [] x; x=new int [10]; (or)

int [] x=new int [10];

//Queue ADT Type Definitions

typedefstructnode {

void*DataPtr;

structnode *next;

} QueueNode;

typedefstruct {

QueueNode *front;

QueueNode *rear;

intcount;

} QUEUE;

12

Array Initialization

The values of an array can be initialized as follows,

Example 1:

int [] j=new int [1]; j[0] =10;(or)int [] j= {25};

Example 2:

int [] myarray= {5, 10};

5.1 Characteristics of an Array

The following are the characteristics of an array data structure.

(i) Array stores elements of same data type.

(ii) The elements of an array are stored in subsequent memory locations.

(iii) The name of array represents the starting address of the elements.

(iv) When data objects are stored in array, individual objects are selected by an index.

(v) By default an array index starts from 0 and ends with (n-1). Index is also referred as

subscripts.

(vi) The size of the array is mentioned at the time of declaring array.

(vii) While declaring 2D array, number of columns should be specified whereas for

number of rows there is no such rule.

(viii) Size of array can’t be changed at run time.

5.2Array Types

 1.One-Dimensional Array or Linear arrays

13

 2. Multi-Dimensional Array

 3.Two dimensional (2D) Arrays or Matrix Arrays

 5.2.1 One-Dimensional Array

In one dimensional array each element is represented by a single subscript. The elements

are stored in consecutive memory locations. E.g. A [1], A [2],, A [N].

5.2.2 Two dimensional (2-D) arrays or Matrix Arrays

In two dimensional arrays each element is represented by two subscripts. Thus a two

dimensional m x n array has m rows and n columns and contains m * n elements. It is also

called matrix array because in this case, the elements form a matrix. For example A [4]

[3] has 4 rows and 3 columns and 4*3 = 12 elements.

int [] [] A = new int [4] [3];

5.2.3 Multi dimensional arrays:

In it each element is represented by three subscripts. Thus a three dimensional m x n x l

array contains m * n * l elements. For example A [2] [4] [3] has 2 * 4 * 3 = 24 elements.

6.STORAGE REPRESENTATION

An array is a set of homogeneous elements. Every element is referred by an index. Memory

storage locations of the elements are not arranged as a rectangular array with rows and columns.

Instead, they are arranged in a linear sequence beginning with location 1, 2, 3 and so on. The

elements are stored either column-by-column or row-by-row. The first one is called column-major

order and later is referred as row-major order.

14

 6.1 Row Major Order

 The table 1 shows the linear arrangement of data in row major order.

 Example

• Rows : 3

• Columns : 4

Table 1 Linear Arrangement of Array A in Row Major Order

The formula is:

Location (A [j,k]) = Base Address of (A) + w [(N * (j-1)) + (k-1)]

Location (A [j, k]): Location of jth row and kth column

Base (A) : Base Address of the Array A

w : Bytes required to represent single element of the Array A

Linear Arrangement of Array A

Row 1 2 3

Index
(1,1

)

(1,2

)

(1,3

)

(1,4

)

(2,1

)

(2,2

)

(2,3

)

(2,4

)

(3,1

)

(3,2

)

(3,3

)

(3,4

)

Memor

y
100 102 104 106 108 110 112 114 116 118 120 122

Data 1 2 3 4 5 6 7 8 9 10 11 12

Data (A):

1 2 3 4

5 6 7 8

9 10 11 12

15

N : Number of columns in the Array

j : Row position of the element

k : Column position of the element

Example

Suppose to find the address of (3,2) then

Base (A) = 100

w = 2 Bytes (integer type)

N = 4

j = 3

k = 2

Location (A [3, 2]) = 100 + 2 [(4 * (3-1) + (2-1)]

 = 118

6.2 Column Major Order

 The table 2 shows the linear arrangement of data in column major order.

• Rows : 3

• Columns : 4

Data (A):

1 2 3 4

5 6 7 8

9 10 11 12

16

Table 2 Linear Arrangement of Array A in Column Major Order

The formula for column major order is:

Location (A [j, k]) = Base Address of (A) + w [(M * (k-1)) + (j-1)]

Location (A [j, k]): Location of jth row and kth column

Base (A) : Base Address of the Array A

w : Bytes required to represent single element of the Array A

M : Number of rows in the Array

j : Row position of the element

k : Column position of the element

Example

Base (A) = 100

w = 2 Bytes (integer type)

M = 3

j = 3

k = 2

Linear Arrangement of Array A

Colum

n
1 2 3 4

Index
(1,1

)

(2,1

)

(3,1

)

(1,2

)

(2,2

)

(3,2

)

(1,3

)

(2,3

)

(3,3

)

(1,4

)

(2,4

)

(3,4

)

Memor

y
100 102 104 106 108 110 112 114 116 118 120 122

Data 1 5 9 2 6 10 3 7 11 4 8 12

17

Location (A [3, 2]) = 100 + 2 [(3 * (2-1) + (3-1)]

 = 110

7.Array Order Reversal

Given an array (or string), the task is to reverse the array/string.

Examples:

Input : arr[] = {1, 2, 3} Output : arr[] = {3, 2, 1}

Input : arr[] = {4, 5, 1, 2} Output : arr[] = {2, 1, 5, 4}

Algorithm

1) Initialize start and end indexes as start = 0, end = n-1.

2) In a loop, swap arr[start] with arr[end] and change start and end as follows :

start = start +1, end = end – 1

8.Array Counting

1. Create a function arraycounting(array, size)

2. Find largest element in array and store it in max

3. Initialize count array with all zeros

4. for j = 0 to size

5. Find the total count of each unique element and

6. Store the count at jth index in count array

18

Example A={4,2,2,8,3,3,1}

1. Find out the maximum element (let it be max) from the given array.

2. Initialize an array of length max+1 with all elements 0. This array is used for storing

the count of the elements in the array.

3. Store the count of each element at their respective index in count array. For example: If

the count of element “4” occurs 2 times then 2 is stored in the 4
th

position in the

count array. If element “5” is not present in the array, then 0 is stored in 5
th

8. Finding the maximum Number in a Set

Algorithm

✱ Read the array elements

✱ Initialize first element of the array as max.

 ✱ Traverse array elements from second and compare every element with current max

✱ Find the largest element in the array and assign it as max

✱ Print the largest element.

Example: A={56,78,34,23,70}

Step 1: Initialize max=0 , n=len(A)

19

Step 2: Repeat step 3 until n

Step 3: 56>0 yes, Assign max=56

 78>56, yes Assign max=78

 34>78, No

 23>78, No

 70>78, No

Step 4: print Max Output:78

9. RECURSION

Recursion is a programming technique using function or algorithm that calls itself one or more

times until a specified condition is met at which time the rest of each repetition is processed

from the last one called to the first.

A simple recursive algorithm:

✱ Solves the base cases directly.

✱ Recurs with a simpler sub problem or sub problems.

✱ May do some extra work to convert the solution to the simpler sub problem into a solution to

the given problem.

Some Example Algorithms

• Factorial

• All permutations

• Tree traversal

• Binary Search

• Quick Sort

• Towers of Hanoi

9.1 Design Methodology and Implementation of Recursion

✱ The recursive solution for a problem involves a two-way journey:

✱ First we decompose the problem from the top to the bottom

✱ Then we solve the problem from the bottom to the top.

Rules for Designing a Recursive Algorithm

(a) First, determine the base case.

(b) Then determine the general case.

20

(c) Combine the base case and the general cases into an algorithm.

(d) Each recursive call must reduce the size of the problem and move it toward

the base case.

(e) The base case, when reached, must terminate without a call to the recursive

algorithm; that is, it must execute a return.

9.2 Broad Categories of Recursion

Recursion is a technique that is useful for defining relationships, and for designing algorithms

that implement those relationships. It is a natural way to express many algorithms in an optimized

way. Recursive function is defined in terms of itself.

✱ Linear Recursion

✱ Binary Recursion

Linear Recursion:

Linear recursion is by far the most common form of recursion. In this style of recursion, the

function calls itself repeatedly until it hits the termination condition (Base condition).

Binary Recursion

Binary recursion is another popular and powerful method. This form of recursion has the

potential for calling itself twice instead of once as before. This is pretty useful in scenarios

such as binary tree traversal, generating a Fibonacci sequence, etc.

Tail Recursion

A function call is said to be tail recursive if there is nothing to do after the function returns

except return its value. Since the current recursive instance is done executing at that point,

saving its stack frame is a waste

For example the following C function print () is tail recursive.

// An example of tail recursive function Print (n) {

If (n < 0) return;

Display n;

Print (n-1);

}

21

10. FIBONACCI SERIES

Fibonacci Series generates subsequent number by adding two previous numbers. Fibonacci

series starts from two numbers F0 & F1. The initial values of F0 & F1 can be

✱ 0 and 1

✱ 1 and 1 respectively.

The Fibonacci series looks like

F8 = 0 1 1 2 3 5 8 13

The algorithm for generating Fibonacci series can be drafted in 2 ways

1. Fibonacci Iterative Algorithm.

2. Fibonacci Recursive Algorithm.

Fibonacci RecursiveAlgorithm

Algorithm Fibo (n)

If n = 0

Return 0 Else If n = 1

Return 1

Else

Fibo (n) = Fibo (n-1) + Fibo (n-2) Return Fibo (n)

11.FACTORIAL

The factorial of a positive number is the product of the integral values from 1 to the number:

Factorial of the given number can be calculated as

Algorithm

RecursiveFactorial (n) if (N equals 0)

Return 1

else

Return (n*recursiveFactorial (n-1))

end if

22

end recursiveFactorial

Calling a Recursive Factorial Algorithm with n=3

 Fig.6 shows the steps for calculating the factorial using Recursion for n=3.

 Fig 6. Factorial using Recursion Steps

Output: 6

12. TOWERS OF HANOI

Tower of Hanoi is a mathematical puzzle which consists of three tower (pegs) and more than

one ring; as depicted in Fig.7.

Fig.7 Tower of Hanoi

These rings are of different sizes and stacked upon in ascending order i.e. the smaller one sits

over the larger one. There are other variations of puzzle where the number of disks increases,

but the tower count remains the same.

7.1 Rules

The mission is to move all the disks to some another tower without violating the sequence of

arrangement. The below mentioned are few rules which are to be followed for Tower of Hanoi

Disks

Smallest

 Largest

Towers

23

✱ Only one disk can be moved among the towers at any given time.

✱ Only the “top” disk can be removed.

✱ No large disk can sit over a small disk.

Steps for solving the Towers of Hanoi problem

The following steps are to be followed.

Step 1: Move n-1 disks from source to aux.

Step 2: Move nth disk from source to destination

 Step 3: Move n-1 disks from aux to destination.

F i g . 8 illustrates the step by step movement of the disks to implement Tower of Hanoi.

Step: 0

Step: 2

24

Step: 6

25

 Fig.8 Tower of Hanoi

A recursive algorithm for Tower of Hanoi can be driven as follows START

Procedure Hanoi (disk, source, dest, aux)

IF disk = 0, THEN

Move disk from source to dest ELSE

Hanoi (disk-1, source, aux, dest) //Step1 Move disk from source to dest //Step2 Hanoi (disk-1,

aux, dest, source) //Step3 ENDIF

END

Done!

26

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – II-Data Structures – SCSA1205

27

UNIT 2

LINKED LIST

 Array Vs Linked List – Singly linked list - Representation of a linked list in memory -

Operations on a singly linked list - Merging two singly linked lists into one list - Reversing a

singly linked list – Polynomial Manipulation using List - Advantages and disadvantages of

singly linked list - Circular linked list - Doubly linked list - Circular Doubly Linked List.

2.1 Array Vs Linked List

ARRAY LINKED LIST

Array is a collection of elements of similar

data type.

Linked List is an ordered collection of elements of

same type, which are connected to each other using

pointers.

Array supports Random Access, which

means elements can be accessed directly

using their index.

Linked List supports Sequential Access, which

means to access any element/node in a linked list,

we have to sequentially traverse the complete linked

list, up to that element.

In an array, elements are stored

in contiguous memory location or

consecutive manner in the memory.

In a linked list, new elements can be stored

anywhere in the memory. Address of the memory

location allocated to the new element is stored in the

previous node of linked list, hence forming a link

between the two nodes/elements.

In array, Insertion and Deletion operation

takes more time, as the memory locations

are consecutive and fixed.

In case of linked list, a new element is stored at the

first free and available memory location, with only

a single overhead step of storing the address of

memory location in the previous node of linked

list.Insertion and Deletion operations are fast in

linked list.

28

Memory is allocated as soon as the array is

declared, at compile time. It's also known

as Static Memory Allocation.

Memory is allocated at runtime, as and when a new

node is added. It's also known as Dynamic Memory

Allocation.

ARRAY LINKED LIST

In array, each element is independent and

can be accessed using it's index value.

In case of a linked list, each node/element points to

the next, previous, or maybe both nodes.

Array can be single dimensional, two

dimensional or multidimensional.

Linked list can be Linear(Singly) linked

list, Doubly linked list or Circular linked list linked

list.

Size of the array must be specified at time

of array declaration.

Size of a Linked list is variable. It grows at runtime,

as more nodes are added to it.

Array gets memory allocated in

the Stack section.

Whereas, linked list gets memory allocated

in Heap section.

2.2 Linked List

A Linked list is a collection of elements called nodes, each of which stores two items called

data or info and link or pointer field. Info is an element of the list and a link is a pointer to the next

element. The linked list is also called a chain.

The different types of Linked lists are,

• Singly linked list.

• Doubly linked list

• Circular linked list

Singly Linked List

• The first node is the head node and it points to next node in the sequence.

• The last node’s reference is null indicating the end of the list is shown in Fig.2.1

 Fig.2.1 Singly Linked List

Doubly Linked List

29

• Every node has two pointers, one for pointing to next node and the other for pointing to the

previous node.

• The next pointer of the last node and the previous pointer of the first node (head) are null is shown

in Fig 2.2

Fig.2.2 Doubly Linked List

Circular Linked List

• Circular Linked List is very similar to a singly linked list except that, here the last node points to

the first node making it a circular list as shown in fig 2.3

Fig.2.3 Circular Linked List

2.2.1 Singly Linked List

 A singly linked list is a linked list in which each node contains only one link pointing to the

next node in the list.

A Node in a linked list holds the data value and the pointer which points to the location of

the next node in the linked list.

2.2.1.1 Representation of a linked list in memory

A linked list is a linear data structure consisting of a group of nodes where each node points

to the next node by means of a pointer.

Each node is composed of data and a reference to the next node in the sequence. The last node has

a reference to null which indicates the end of the linked list.

Head node is the starting node of the linked list(first node) and it contains the reference to the next

node in the list. The head node will have a null reference when the list is empty. The fig 2.4 gives

you an idea of how a Linked List looks.

https://www.faceprep.in/data-structures/linked-list/

30

A linked list is represented by a pointer to the first node of the linked list. The first node is called

the head. If the linked list is empty, then the value of the head is NULL. In C, we can represent a

node using structures.

 Fig 2.4 Singly Linked List representation

In the picture above we have a linked list, containing 4 nodes, each node has some data(A, B, C

and D) and a pointer which stores the location of the next node.

In a singly linked list, the first node always pointed by a pointer called HEAD. If the link of the

node points to NULL, then that indicates the end of the list.

Operations of Singly Linked List

The operations that are performed on a linear list are,

• Count the number of elements.

• Add an element at the beginning of the list.

• Add an element at the end of the list.

• Insert an element at the specified position in the list.

• Delete an element from the list.

• Search x in the list.

• Display all the elements of the list.

Add an element at the beginning of the list.

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set newNode→next = NULL and head = newNode.

Step 4 - If it is Not Empty then, set newNode→next = head and head = newNode.

31

Algorithm

 Addatbeg()

Begin

 Newnode->data=K

 Newnode->next=NULL

If(Head==NULL)

 Head=Newnode

Else

 Newnode->next=Head

 Head=Newnode

Endif

End

The fig.2.5 shows how a node is added at the beginning of the linked list.

Fig 2.5 Adding node at the beginning of the linked list

Add an element at the end of the list.

Step 1 - Create a newNode with given value and newNode → next as NULL.

32

Step 2 - Check whether list is Empty (head == NULL).

Step 3 - If it is Empty then, set head = newNode.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list

(until temp → next is equal to NULL).

Step 6 - Set temp → next = newNode.

Algorithm

Addatend()

Begin

 Newnode->data=K

 Newnode->next=NULL

If(Head==NULL)

 Head=Newnode

Else

 Temp=Head

 While(temp->next !=NULL)

 temp=temp->next

 endwhile

temp->next=Newnode

Endif

end

The Fig 2.6 shows how the node is added at the end of the list.

33

 Fig 2.6 Node added at the end of the list

Insert an element at the specified position in the list:

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set newNode → next = NULL and head = newNode.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the node after which we

want to insert the newNode (until temp1 → data is equal to location, here location is the

node value after which we want to insert the newNode).

Step 6 - Every time check whether temp is reached to last node or not. If it is reached to last

node then display 'Given node is not found in the list!!! Insertion not possible!!!' and

terminate the function. Otherwise move the temp to next node.

Step 7 - Finally, Set 'newNode → next = temp → next' and 'temp → next = newNode'

34

The operation ‘Insert’ inserts the given element x in the kth position. A temporary pointer Temp is

created and made to point to Head. Now the Temp pointer is moved to the k – 1 th node. A new node

with value x is created and the link of the new node is made to point to the position where the link

of temp is pointing. Then the link of temp is made to point to the new node. Thus the given element

is inserted in the position k is shown in fig.2.7.

Fig 2.7 Inserting node at position

Algorithm

Function insertin_mid()

Begin

Write "Enter the position:"

Read pos;

If head==NULL AND pos=1

then

Insert the node at the beginning

End if

If head->next==NULL AND pos=2

then

insert the node

End if

Else if pos>=2 AND pos<=ct

35

then

prev=head

for I = 2 to pos - 1 step +1

do

prev=prev->link

END FOR

next=prev->link

temp=new node

Write”Enter the data:"

Read temp->data

temp->link=next

prev->link=temp

ct=ct+1

else

Write "Enter a valid position & try again"

End if

End

Deletion

In a single linked list, the deletion operation can be performed in three ways. They are as follows...

• Deleting from Beginning of the list

• Deleting from End of the list

• Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.

Step 4 - Check whether list is having only one node (temp → next == NULL)

Step 5 - If it is TRUE then set head = NULL and delete temp (Setting Empty list

conditions)

Step 6 - If it is FALSE then set head = temp → next, and delete temp.

Deleting from End of the list

We can use the following steps to delete a node from end of the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

36

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.

Step 4 - Check whether list has only one Node (temp1 → next == NULL)

Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate the

function. (Setting Empty list condition)

Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node.

Repeat the same until it reaches to the last node in the list. (until temp1 →

next == NULL)

Step 7 - Finally, Set temp2 → next = NULL and delete temp1.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize

'temp1' with head.

Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the last

node. And every time set 'temp2 = temp1' before moving the 'temp1' to its next node.

Step 5 - If it is reached to the last node then display 'Given node not found in the list!

Deletion not possible!!!'. And terminate the function.

Step 6 - If it is reached to the exact node which we want to delete, then check whether list is

having only one node or not

Step 7 - If list has only one node and that is the node to be deleted, then

set head = NULL and delete temp1 (free(temp1)).

Step 8 - If list contains multiple nodes, then check whether temp1 is the first node in the list

(temp1 == head).

Step 9 - If temp1 is the first node then move the head to the next node (head = head →

next) and delete temp1.

Step 10 - If temp1 is not first node then check whether it is last node in the list (temp1 →

next == NULL).

37

Step 11 - If temp1 is last node then set temp2 → next = NULL and

delete temp1 (free(temp1)).

Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1 →

next and delete temp1 (free(temp1)).

Algorithm

Function del()

Begin

 if(head= NULL)

then

 Write “Empty list"

else

 Write “Enter the position:"

 Read pos

 if(pos==1)

 then

 next=head->link

 head=next

 ct=ct-1

 else

 if((pos>=2)&&(pos<=ct))

 prev=head

 for(int i=2;i<=pos-1;i++)

 Do

 prev=prev->link

 End FOR

 temp=prev->link

 next=temp->link

 prev->link=next

 ct=ct-1

 End if

End If

End

Displaying a Single Linked List

We can use the following steps to display the elements of a single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.

Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to the last

node

38

Step 5 - Finally display temp → data with arrow pointing to NULL (temp → data --->

NULL).

Counting

count()

 begin

int co=0;

do

co++;

c=c->link;

while(c!=NULL);

return co;

 end

Searching

The operation Search(x), searches the given value x in the list. If found returns the node

position where it is found. A temporary pointer Temp is created and made to point to the Head.

Now info part of Temp is compared with the value x. If the value matches the node position number

is returned otherwise Temp pointer is moved to the next node. This is repeated till the end of the list

is reached or till the element to be searched is found.

Algorithm

Function search()

Begin

flag=0

if(head=NULL)

then

 Write “Empty list"

else

 Write ”Enter the element to be searched:"

 Read e

 cur=head

 FOR I = 1 to ct Step +1

 Do

 if(cur->data= e)

 then

 pos=I

 flag++

 break

 else

 cur=cur->link

 End if

 ENDFOR

 If (flag =1)

39

then

 Write "Element found in position:" pos

 else

 Write ”Element not found"

 End if

 End Search

2.3 Merging

Node* MergeLists(Node* list1, Node* list2)

begin

 Node* mergedList;

 if(list1 == null && list2 ==null)

 return null;

 if(list1 == null)

 return list2;

 if(list2 == null){

 return list1;

 }

 if(list1.data < list2.data){//initialize mergedList pointer to list1 if list1's data is lesser

 mergedList = list1;

 }else{//initialize mergedList pointer to list2 if list2's data is lesser or equal

 mergedList = list2;

 }

 while(list1!=null && list2!=null){

 if(list1.data < list2.data){

 mergedList->next = list1;

 list1 = list1->next;

 }else{

 mergedList->next = list2;

 list2 = list2->next;

 }

 }

 if(list1 == null){//remaining nodes of list2 appended to mergedList when list1 has

reached its end.

 mergedList->next = list2;

 }else{//remaining nodes of list1 appended to mergedList when list2 has reached its end

 mergedList->next = list1;

 }

 return mergedList;

}

40

Traversing

The operation Display(), displays all the value in each node of the list. A temporary pointer is

created and made to point to Head initially. Now info part of Temp is printed and Temp is moved

to the next node. This is repeated till the end of the list is reached.

Algorithm

Function display()

Begin

 cur=head

 cout<<"\nNo.of nodes is:"<<ct

 cout<<"\nThe data is:"

 while (cur< >NULL)

 Do

 Write "["<<cur->data<<"]->"

 cur=cur->link

 End while

End

2.4 Reverse the Linked List

Algorithm

reverse()

{

struct node *p1,*p2,*p3;

if(start->link==NULL)

return;

p1=start;

p2=p1->link;

p3=p2->link;

p1->link=NULL;

p2->link=p1;

while(p3!=NULL)

{

p1=p2;

p2=p3;

p3=p3->link;

p2->link=p1;

}

start=p2;

 }

41

2.5 Polynomial Manipulation using List

5x2 + 3x1 + 1

12x3 – 4x1

5x4 – 8x3 + 2x2 + 4x1 + 9x0

It is not necessary to write terms of the polynomials in decreasing order of degree. In other words

the two polynomials 1 + x and x + 1 are equivalent.

The computer implementation requires implementing polynomials as a list of pairs of coefficient and

exponent. Each of these pairs will constitute a structure, so a polynomial will be represented as a list

of structures. A linked list structure that represents polynomials 5x4 – 8x3 + 2x2 + 4x1 + 9x0

illustrates in fig 2.8

 Fig2.8 Polynomial Manipulation

Algorithm

node * getnode()

{

node *tmp;

tmp =(node *) malloc(sizeof(node));

printf("\n Enter Coefficient : ");

fflush(stdin);

scanf("%f",&tmp->coef);

printf("\n Enter Exponent : ");

fflush(stdin);

scanf("%d",&tmp->expo);

tmp->next = NULL;

return tmp;

}

node * create_poly (node *p)

{

char ch;

node *temp,*newnode;

while(1)

{

printf ("\n Do U Want polynomial node (y/n): ");

ch = getche();

if(ch == 'n')

break;

newnode = getnode();

if(p == NULL)

p= newnode;

else

42

{

temp = p;

while(temp->next != NULL)

temp = temp->next;

temp->next = newnode;

}

}

return p;

}

void display (node *p)

{

node *t = p;

while (t != NULL)

{

printf("+ %.2f", t -> coef);

printf("X^ %d", t -> expo);

t=t -> next;

}

}

2.6 Advantages and disadvantages of singly linked list

Advantages of Singly Linked List

• it is very easier for the accessibility of a node in the forward direction.

• the insertion and deletion of a node are very easy.

• the Requirement will less memory when compared to doubly, circular or doubly

circular linked list.

• the Singly linked list is the very easy data structure to implement.

• During the execution, we can allocate or deallocate memory easily.

• Insertion and deletion of elements don’t need the movement of all the elements when

compared to an array.

Disadvantages of Singly Linked List

• therefore, Accessing the preceding node of a current node is not possible as there is no

backward traversal.

• the Accessing of a node is very time-consuming.

43

2.7 Circular linked list

Circular Linked List: Circular linked list is a linked list which consists of collection of nodes each

of which has two parts, namely the data part and the link part. The data part holds the value of the

element and the link part has the address of the next node. The last node of list has the link pointing

to the first node thus making the circular traversal possible in the list is shown in Fig 2.9

Logical representation of the circular linked list:

 Fig 2.9 Circular Linked List

The basic operations in a circular single linked list are:

• Creation.

• Insertion.

• Deletion.

• Traversing.

Creating a circular single Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

• Get the new node using getnode().

newnode = getnode();

• If the list is empty, assign new node as start.

start = newnode;

• If the list is not empty, follow the steps given below:

temp = start;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newnode;

• Repeat the above steps ‘n’ times.

• newnode -> next = start;

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the

circular list:

• Get the new node using getnode().

newnode = getnode();

• If the list is empty, assign new node as start.

start = newnode;

44

newnode -> next = start;

• If the list is not empty, follow the steps given below:

last = start;

while(last -> next != start)

last= last -> next;

newnode -> next = start;

start = newnode;

last -> next = start;

The function cll_insert_beg(), is used for inserting a node at the beginning. Figure shows inserting a

node into the circular single linked list at the beginning.

 Fig 2.10 Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

• Get the new node using getnode().

newnode = getnode();

• If the list is empty, assign new node as start.

start = newnode;

newnode -> next = start;

• If the list is not empty follow the steps given below:

temp = start;

while(temp -> next != start)

temp = temp -> next;

temp -> next = newnode;

newnode -> next = start;

The function cll_insert_end(), is used for inserting a node at the end.

Fig 2.11 shows inserting a node into the circular single linked list at the end.

45

Fig.2.11 Inserting node at the end

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

• If the list is empty, display a message ‘Empty List’.

• If the list is not empty, follow the steps given below:

last = temp = start;

while(last -> next != start)

last= last -> next;

start = start -> next;

last -> next = start;

• After deleting the node, if the list is empty then start = NULL.

The function cll_delete_beg(), is used for deleting the first node in the list. Fig 2.12

shows deleting a node at the beginning of a circular single linked list.

 Fig 2.12 Deleting a node at the beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

• If the list is empty, display a message ‘Empty List’.

• If the list is not empty, follow the steps given below:

temp = start;

prev = start;

while(temp -> next != start)

{

prev=temp;

temp = temp -> next;

}

prev -> next = start;

• After deleting the node, if the list is empty then start = NULL.

The function cll_delete_last(), is used for deleting the last node in the list.Fig 2.13 shows deleting a

node at the end of a circular single linked list.

46

 2.13 Deleting the node at the end

Traversing a circular single linked list from left to right:

The following steps are followed, to traverse a list from left to right:

• If list is empty then display ‘Empty List’ message.

• If the list is not empty, follow the steps given below:

temp = start;

do

{

printf("%d", temp -> data);

temp = temp -> next;

} while(temp != start);

2.7 Doubly linked list

Doubly linked list: The Doubly linked list is a collection of nodes each of which consists of three

parts namely the data part, prev pointer and the next pointer. The data part stores the value of the

element, the prev pointer has the address of the previous node and the next pointer has the value of

the next node.

Fig 2.14 Doubly Linked List

In a doubly linked list, the head always points to the first node. The prev pointer of the first

node points to NULL and the next pointer of the last node points to NULL shown in Fig.2.14

Operations on a Doubly linked list are,

• Count the number of elements.

• Add an element at the beginning of the list.

• Add an element at the end of the list.

• Insert an element at the specified position in the list.

• Delete an element from the list.

• Display all the elements of the list.

47

Addatbeg(x)

 The operation Addatbeg(x) adds a given element x at the beginning of the list. A new node

R is created and the value x is store in the data part of R. The prev pointer of R is made to point to

NULL and the next pointer is made to point to head. Then the prev pointer of head is made to point

to R and head is now moved to point to R making it the first node. Thus the new node is added at

the beginning of the doubly linked list.

Algorithm

Function create()

Begin

 temp=new node

 Write"Enter the data:"

 Read temp->data

End

Function insert_begin()

Begin

 Call create()

tmp->flink=head

head=tmp

head->blink=NULL

ct=ct+1

End

Addatend(x)

 The Addatend(x) operation adds the given element x at the end of the doubly linked list. If

the given list is empty then create a new node R and store the value of x in the data part of R. Now

make the prev pointer and the next pointer of R point to NULL. Then head is pointed to R. If the

list already contains some elements then, a temporary pointer is created and made to point to head.

The temp pointer is now moved to the last node and then a new node R is created. The value x is

stored in the data part of R and next pointer of R is made to point to NULL. The prev pointer of R

is made to point to temp and next pointer of Temp is made to point to R. Thus the new node is added

at the end of the doubly linked list is shown in fig.2.15.

Algorithm

Function append()

Begin

 if(head=NULL)

 then

 insert_begin()

else

 create()

48

 temp->flink=NULL

 prev=head

 while(prev->flink< >NULL)

 Do

 prev=prev->flink

 End while

 prev->flink=temp

 temp->blink=prev

 ct=ct+1

End if

End

Fig. 2.15 Add at end

Insert(x, k)

 The Insert(x) operation inserts a given element x at the specified position k. A temporary

pointer is created and made to point to head. Then it is moved to the k-1th node. Now a new node

R is created and the data part is stored with value of x. The next pointer of R is made to point to

next(temp) and the prev pointer of next(temp) is made to point to R. Thus the links on the right side

of the new node is established. Now the next of Temp is made to point to R and the prev pointer of

R is made to point to temp thus establishing the links on the left side of the new node. Now the new

node is inserted at the position k is shown in Fig.2.16.

Algorithm

Function insertin_mid()

Begin

49

 Write "Enter the position:"

 Read pos;

 If head->flink=NULL AND pos=1

 then

 Call insert_begin()

 End if

 If head->flink==NULL AND pos=2

 then

 Call append()

 End if

 Else if pos>=2 AND pos<=ct

 then

 prev=head

 for I = 2 to pos - 1 step +1

 do

 prev=prev->flink

 END FOR

 next=prev->link

 temp=new node

 Write”Enter the data:"

 Read temp->data

 temp->flink=next

 prev->flink=temp

 temp->blink=prev;

 next->blink=temp;

 ct=ct+1

 else

 Write "Enter a valid position & try again"

End if

End

Fig.2.16 Insert at mid

50

Delete(x)

 The Delete(x) operation deletes the element x from the doubly linked list. A temporary

pointer is created and made to point to head. Now the data of temp is compared with x and if it

matches that is the node to be deleted otherwise move to the next node and again compare. If the

node to be deleted is first node, then prev(next(temp)) is made to point to NULL and head is pointed

to next(temp). The node pointed by temp is deleted. When the node to be deleted is not the first

node, then next(prev(temp)) is made to point to next(temp) and prev(next(temp)) is made to point to

prev(temp). The node pointed by temp is deleted is shown in Fig.2.17.

Algorithm

Function del()

Begin

 if(head= NULL)

then

 cout<<"Empty list"

else

 Write Enter the position\n"

 Read pos

 pre=head

 if(pos<1 OR pos>ct)

 Write Enter a valid position"

 else

 if(pos==1)

 then

 pre=pre->flink

 head=pre

 Write "node gets deleted\n"

 Ct=ct -1

 else

 for(i=2;i<pos;i++)

 pre=pre->flink

 End For

 tmp=pre->flink

 nxt=tmp->flink

 pre->flink=nxt

 nxt->blink=pre

 Write”node gets deleted\n"

 Ct=ct -1

 End if

End if

51

Fig.2.17 Deletion

2.8 Circular Doubly Linked List.

A circular double linked list has both successor pointer and predecessor pointer in circular

manner. The objective behind considering circular double linked list is to simplify the insertion and

deletion operations performed on double linked list. In circular double linked list the right link of

the right most node points back to the start node and left link of the first node points to the last node.

A circular double linked list is shown in fig 2.18.

 Fig 2.18 Circular Doubly Linked List

The basic operations in a circular double linked list are:

• Creation.

• Insertion.

52

• Deletion.

• Traversing.

Create node

create_node(int info)

begin

 new->val = info;

 new->next = NULL;

 new->prev = NULL;

 return new;

end

Add Node at the end

Procedure add_node()

begin

 Read info

 if (first == last && first == NULL) // If list is empty

 begin

 first = last = new;

 first->next = last->next = NULL;

 first->prev = last->prev = NULL;

 endif

 Else // add the new node at the end

 begin

 last->next = new;

 new->prev = last;

 last = new;

 last->next = first;

 first->prev = last;

 end

end

 INSERTS ELEMENT AT FIRST

insert_at_first()

begin

 Read info

 new = create_node(info); // create the new node

 if (first == last && first == NULL) // if the list is empty

 begin

 first = last = new;

 first->next = last->next = NULL;

 first->prev = last->prev = NULL;

 end

 else

 begin

53

 new->next = first;

 first->prev = new;

 first = new;

 first->prev = last;

 last->next = first;

 end

end

INSERTS ELEMNET AT END

insert_at_end()

begin

 Read info;

 new = create_node(info);

 if (first == last && first == NULL)

 begin

 first = last = new;

 first->next = last->next = NULL;

 first->prev = last->prev = NULL;

 endif

 else

 begin

 last->next = new;

 new->prev = last;

 last = new;

 first->prev = last;

 last->next = first;

 endif

end

INSERTS THE ELEMENT AT GIVEN POSITION

insert_at_position()

 begin

 Declare info, pos, len = 0, i;

 Node *prevnode;

 Read info and pos

 new = create_node(info);

 if (first == last && first == NULL)

 begin

 if (pos == 1)

 begin

 first = last = new;

 first->next = last->next = NULL;

 first->prev = last->prev = NULL;

 endif

 else

54

 printf " empty linked list you cant insert at that particular position"

 endif

 else

 begin

 if (number < pos) // total number of node is stored in the variable number

 print “ node cant be inserted as position is exceeding the linkedlist length"

 else

 for (ptr = first, i = 1;i <= number;i++)

 begin

 prevnode = ptr;

 ptr = ptr->next;

 if (i == pos-1)

 begin

 prevnode->next = new;

 new->prev = prevnode;

 new->next = ptr;

 ptr->prev = new;

 print "inserted at position is succesfully"

 break;

 end

end

end

end

end

Deletion

delete_node_position()

begin

 int pos, count = 0, i;

 n *temp, *prevnode;

read the position which u wanted to delete

 if (first == last && first == NULL)

 print " empty linked list you cant delete"

 else

 begin

 if (number < pos)

 print " node cant be deleted at position as it is exceeding the linkedlist length"

 else

 begin

 for (ptr = first,i = 1;i <= number;i++)

 begin

 prevnode = ptr;

 ptr = ptr->next;

 if (pos == 1)

 begin

55

 number--;

 last->next = prevnode->next;

 ptr->prev = prevnode->prev;

 first = ptr;

 printf("%d is deleted", prevnode->val);

 free(prevnode);

 break;

 end

 else if (i == pos - 1)

 begin

 number--;

 prevnode->next = ptr->next;

 ptr->next->prev = prevnode;

 printf("%d is deleted", ptr->val);

 free(ptr);

 break;

 end

 end

 end

 end

end

Searching

search()

begin

 int count = 0, key, i, f = 0;

 read the value to be searched in the variable key

 if (first == last && first == NULL)

 print "list is empty no elemnets in list to search"

 else

 for (ptr = first,i = 0;i < number;i++,ptr = ptr->next)

 begin

 count++;

 if (ptr->val == key)

 begin

 Print " the value is found at position count ”

 f = 1;

 end

 end

 if (f == 0)

 print "the value is not found in linkedlist"

 end

end

56

DISPLAYING IN BEGINNING

 Algorithm

display_from_beg()

begin

 int i;

 if (first == last && first == NULL)

 print "list is empty no elemnts to print"

 else

 begin

 Store total number of node in the variable , number

 for (ptr = first, i = 0;i < number;i++,ptr = ptr->next)

 print ptr->val

 end

end

57

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERIN

UNIT – III-Data Structures – SCSA1205

58

Unit:III

Introduction – Array Representation of a Stack – Linked List Representation of a Stack - Stack

Operations - Algorithm for Stack Operations - Stack Applications: Tower of Hanoi - Infix to

postfix Transformation - Evaluating Arithmetic Expressions. Queue – Introduction – Array

Representation of Queue – Linked List Representation of Queue - Queue Operations -

Algorithm for Queue Operations - . Queue Applications: Priority Queue.

3.1 Introduction

A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is

named stack as it behaves like a real-world stack, for example – a deck of cards or a pile of plates,

etc.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which

is placed (inserted or added) last, is accessed first. In stack terminology, insertion operation is

called PUSH operation and removal operation is called POP operation.

Stack Representation

The following fig 3.1 depicts a stack and its operations −

Fig 3.1 Stack Representation

3.2 Array representation of a Stack

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can

either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to implement

stack using arrays, which makes it a fixed size stack implementation. First we have to allocate a

59

memory block of sufficient size to accommodate the full capacity of the stack. Then, starting from

the first location of the memory block, the items of the stack can be stored in a sequential fashion.

 Fig 3.2 Representation of a stack

In Fig 3.2 a, Itemi denotes the ith item in the stack; l and u denote the index range of

the array in use; usually the values of these indices are 1 and SIZE respectively. TOP is a

pointer to point the position of the array up to which it is filled with the items of the stack.

3.3 Linked List Representation of Stacks

Although array representation of stacks is very easy and convenient but it allows the

representation of only fixed sized stacks. In several applications, the size of the stack may

vary during program execution. An obvious solution to this problem is to represent a stack

using a linked list. A single linked list structure is sufficient to represent any stack. Here,

the DATA field is for the ITEM, and the LINK field is, as usual, to point to the next' item.

Above Figure b depicts such a stack using a single linked list. In the linked list

representation, the first node on the list is the current item that is the item at the top of the

stack and the last node is the node containing the bottom-most item. Thus, a PUSH

operation will add a new node in the front and a POP operation will remove a node from

the front of the list is shown in Fig 3.2 b.

3.4 Stack Operations

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart

from these basic stuffs, a stack is used for the following two primary operations −

• push() − Pushing (storing) an element on the stack.

• pop() − Removing (accessing) an element from the stack.

60

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same purpose, the

following functionality is added to stacks −

• peek() − get the top data element of the stack, without removing it.

• isFull() − check if stack is full.

• isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer always

represents the top of the stack, hence named top. The top pointer provides top value of the stack

without actually removing it.

3.5 Algorithm for Stack Operations

Push Operation

The process of putting a new data element onto stack is known as a Push Operation is shown in

fig.3.3. Push operation involves a series of steps −

Step 1 − Checks if the stack is full.

Step 2 − If the stack is full, produces an error and exit.

Step 3 − If the stack is not full, increments top to point next empty space.

Step 4 − Adds data element to the stack location, where top is pointing.

Step 5 − Returns success.

Fig 3.3 Push Operation

If the linked list is used to implement the stack, then in step 3, we need to allocate space dynamically.

Algorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows −

procedure push

 if stack is full

 return null

 endif

 top ← top + 1

 stack[top] ← data

end procedure

61

Pop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation. In an array

implementation of pop() operation, the data element is not actually removed, instead top is

decremented to a lower position in the stack to point to the next value. But in linked-list

implementation, pop() actually removes data element and deallocates memory space is shown in

Fig.3.4.

A Pop operation may involve the following steps −

Step 1 − Checks if the stack is empty.

Step 2 − If the stack is empty, produces an error and exit.

Step 3 − If the stack is not empty, accesses the data element at which top is pointing.

Step 4 − Decreases the value of top by 1.

Step 5 − Returns success.

 Fig 3.4 Pop Operation

Algorithm for Pop Operation

procedure pop: stack

 if stack is empty

 return null

 endif

 data ← stack[top]

 top ← top - 1

 return data

Displays the elements of a Stack

We can use the following steps to display the elements of a stack...

Step 1 - Check whether stack is EMPTY. (top == -1)

Step 2 - If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

Step 3 - If it is NOT EMPTY, then define a variable 'i' and initialize with top.

Display stack[i] value and decrement i value by one (i--).

Step 3 - Repeat above step until i value becomes '0'.

62

3.6 Stack Using Linked List

In linked list implementation of a stack, every new element is inserted as 'top' element. That

means every newly inserted element is pointed by 'top'. Whenever we want to remove an element

from the stack, simply remove the node which is pointed by 'top' by moving 'top' to its previous

node in the list. The next field of the first element must be always NULL.

Example

Fig 3.5 Linked List Representation

In the above Fig 3.5, the last inserted node is 99 and the first inserted node is 25. The order of

elements inserted is 25, 32,50 and 99.

Stack Operations using Linked List

push(value) - Inserting an element into the Stack

We can use the following steps to insert a new node into the stack...

Step 1 - Create a newNode with given value.

Step 2 - Check whether stack is Empty (top == NULL)

Step 3 - If it is Empty, then set newNode → next = NULL.

Step 4 - If it is Not Empty, then set newNode → next = top.

Step 5 - Finally, set top = newNode.

63

Algorithm

push(int value)

begin

 newNode->data = value;

 if(top == NULL)

 newNode->next = NULL;

 else

 newNode->next = top;

 top = newNode;

 end

pop() - Deleting an Element from a Stack

We can use the following steps to delete a node from the stack...

Step 1 - Check whether stack is Empty (top == NULL).

Step 2 - If it is Empty, then display "Stack is Empty!!! Deletion is not

possible!!!" and terminate the function

Step 3 - If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'.

Step 4 - Then set 'top = top → next'.

Step 5 - Finally, delete 'temp'. (free(temp)).

64

Algorithm

void pop()

 begin

 if(top == NULL)

 print("\nStack is Empty!!!\n");

 else

 print("\nDeleted element: %d", temp->data);

 top = temp->next;

 free(temp);

 endif

end

display() - Displaying stack of elements

We can use the following steps to display the elements (nodes) of a stack...

Step 1 - Check whether stack is Empty (top == NULL).

Step 2 - If it is Empty, then display 'Stack is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty, then define a Node pointer 'temp' and initialize with top.

Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same

until temp reaches to the first node in the stack. (temp → next != NULL).

Step 5 - Finally! Display 'temp → data ---> NULL'.

65

Algorithm

void display()

begin

 if(top == NULL)

 print("\nStack is Empty!!!\n");

 else{

 struct Node *temp = top;

 while(temp->next != NULL)

 begin

 print("%d--->",temp->data);

 temp = temp -> next;

 end

 print("%d--->NULL",temp->data);

 end

3.7 Stack Applications

3.7.1Tower of Hanoi

Tower of Hanoi is a mathematical puzzle which consists of three tower (pegs) and more than

one ring; as depicted in Fig.3.6.

Fig.3.6 Tower of Hanoi

These rings are of different sizes and stacked upon in ascending order i.e. the smaller one sits

over the larger one. There are other variations of puzzle where the number of disks increases,

but the tower count remains the same.

Rules

The mission is to move all the disks to some another tower without violating the sequence of

Disks

Smallest

 Largest

Towers

66

arrangement. The below mentioned are few rules which are to be followed for Tower of Hanoi

• Only one disk can be moved among the towers at any given time.

• Only the “top” disk can be removed.

• No large disk can sit over a small disk.

Steps for solving the Towers of Hanoi problem

The following steps are to be followed.

Step 1: Move n-1 disks from source to aux.

Step 2: Move nth disk from source to destination

 Step 3: Move n-1 disks from aux to destination.

F i g . 3 . 7 , illustrates the step by step movement of the disks to implement Tower of Hanoi.

 Fig 3.7 Tower of Hanoi

Step: 0

Step: 2

67

Fig 3.7 Tower of Hanoi

Step: 6

68

 Fig.3.7 Tower of Hanoi

A recursive algorithm for Tower of Hanoi can be driven as follows START

Procedure Hanoi (disk, source, dest, aux)

IF disk = 0, THEN

Move disk from source to dest ELSE

Hanoi (disk-1, source, aux, dest) //Step1 Move disk from source to dest //Step2 Hanoi

(disk-1, aux, dest, source) //Step3 ENDIF

END

3.7.2 Infix to postfix Transformation

There is an algorithm to convert an infix expression into a postfix expression. It uses a stack;

but in this case, the stack is used to hold operators rather than numbers. The purpose of the stack is

to reverse the order of the operators in the expression. It also serves as a storage structure, since no

operator can be printed until both of its operands have appeared.

In this algorithm, all operands are printed (or sent to output) when they are read. There are

more complicated rules to handle operators and parentheses.

Example:

1. A * B + C becomes A B * C +

The order in which the operators appear is not reversed. When the '+' is read, it has lower precedence

than the '*', so the '*' must be printed first.

We will show this in a table with three columns. The first will show the symbol currently being read.

The second will show what is on the stack and the third will show the current contents of the postfix

string. The stack will be written from left to right with the 'bottom' of the stack to the left.

Done!

69

 current symbol operator stack postfix string

1 A A

2 * * A

3 B * A B

4 + + A B * {pop and print the '*' before pushing the '+'}

5 C + A B * C

6 A B * C +

The rule used in lines 1, 3 and 5 is to print an operand when it is read. The rule for line 2 is to push

an operator onto the stack if it is empty. The rule for line 4 is if the operator on the top of the stack

has higher precedence than the one being read, pop and print the one on top and then push the new

operator on. The rule for line 6 is that when the end of the expression has been reached, pop the

operators on the stack one at a time and print them.

2. A + B * C becomes A B C * +

Here the order of the operators must be reversed. The stack is suitable for this, since operators will

be popped off in the reverse order from that in which they were pushed.

 current symbol operator stack postfix string

1 A A

2 + + A

3 B + A B

4 * + * A B

5 C + * A B C

6 A B C * +

In line 4, the '*' sign is pushed onto the stack because it has higher precedence than the '+' sign which

is already there. Then when the are both popped off in lines 6 and 7, their order will be reversed.

70

3. A * (B + C) becomes A B C + *

A subexpression in parentheses must be done before the rest of the expression.

 current symbol operator stack postfix string

1 A A

2 * * A

3 (* (A B

4 B * (A B

5 + * (+ A B

6 C * (+ A B C

7) * A B C +

8 A B C + *

Since expressions in parentheses must be done first, everything on the stack is saved and the left

parenthesis is pushed to provide a marker. When the next operator is read, the stack is treated as

though it were empty and the new operator (here the '+' sign) is pushed on. Then when the right

parenthesis is read, the stack is popped until the corresponding left parenthesis is found. Since postfix

expressions have no parentheses, the parentheses are not printed.

4. A - B + C becomes A B - C +

When operators have the same precedence, we must consider association. Left to right association

means that the operator on the stack must be done first, while right to left association means the

reverse.

 current symbol operator stack postfix string

1 A A

2 - - A

3 B - A B

71

4 + + A B -

5 C + A B - C

6 A B - C +

In line 4, the '-' will be popped and printed before the '+' is pushed onto the stack. Both operators

have the same precedence level, so left to right association tells us to do the first one found before

the second.

5. A * B ^ C + D becomes A B C ^ * D +

Here both the exponentiation and the multiplication must be done before the addition.

 current symbol operator stack postfix string

1 A A

2 * * A

3 B * A B

4 ^ * ^ A B

5 C * ^ A B C

6 + + A B C ^ *

7 D + A B C ^ * D

8 A B C ^ * D +

When the '+' is encountered in line 6, it is first compared to the '^' on top of the stack. Since it has

lower precedence, the '^' is popped and printed. But instead of pushing the '+' sign onto the stack

now, we must compare it with the new top of the stack, the '*'. Since the operator also has higher

precedence than the '+', it also must be popped and printed. Now the stack is empty, so the '+' can be

pushed onto the stack.

72

6. A * (B + C * D) + E becomes A B C D * + * E +

 current symbol operator stack postfix string

1 A A

2 * * A

3 (* (A

4 B * (A B

5 + * (+ A B

6 C * (+ A B C

7 * * (+ * A B C

8 D * (+ * A B C D

9) * A B C D * +

10 + + A B C D * + *

11 E + A B C D * + * E

12 A B C D * + * E +

A summary of the rules follows:

1. Print operands as they arrive.

2. If the stack is empty or contains a left parenthesis on top, push the incoming operator onto

the stack.

3. If the incoming symbol is a left parenthesis, push it on the stack.

4. If the incoming symbol is a right parenthesis, pop the stack and print the operators until

you see a left parenthesis. Discard the pair of parentheses.

5. If the incoming symbol has higher precedence than the top of the stack, push it on the

stack.

6. If the incoming symbol has equal precedence with the top of the stack, use association. If

the association is left to right, pop and print the top of the stack and then push the incoming

operator. If the association is right to left, push the incoming operator.

73

7. If the incoming symbol has lower precedence than the symbol on the top of the stack, pop

the stack and print the top operator. Then test the incoming operator against the new top of

stack.

8. At the end of the expression, pop and print all operators on the stack. (No parentheses

should remain.)

Algorithm

int top = -1;

Infixtopostfix()

begin

print("\n\nRead the Infix Expression ? ");

 Read infx

 push('#');

 while ((ch = infx[i++]) != '\0')

 begin

 if (ch == '(')

 push(ch);

 else if (isalnum(ch))

 pofx[k++] = ch;

 else if (ch == ')')

 begin

 while (s[top] != '(')

 begin

 pofx[k++] = pop();

 elem = pop(); /* Remove (*/

 end

else

 while (pr(s[top]) >= pr(ch))

 pofx[k++] = pop();

 push(ch);

 end

 end

3.7.3 Evaluating Arithmetic Expressions

The stack organization is very effective in evaluating arithmetic expressions. Expressions are

usually represented in what is known as Infix notation, in which each operator is written between

two operands (i.e., A + B). With this notation, we must distinguish between (A + B)*C and A + (

B * C) by using either parentheses or some operator-precedence convention. Thus, the order of

74

operators and operands in an arithmetic expression does not uniquely determine the order in which

the operations are to be performed.

1. Polish notation (prefix notation) –

It refers to the notation in which the operator is placed before its two operands . Here no

parentheses are required, i.e., +AB

The procedure for getting the result is:

1. Convert the expression in Reverse Polish notation(post-fix notation).

2. Push the operands into the stack in the order they are appear.

3. When any operator encounter then pop two topmost operands for executing the operation.

4. After execution push the result obtained into the stack.

5. After the complete execution of expression the final result remains on the top of the stack.

For example –

Infix notation: (2+4) * (4+6)

Post-fix notation: 2 4 + 4 6 + *

Result: 60

6. The stack operations for this expression evaluation is shown below:

Fig 3.8 Arithmetic Expressions

3.8 Queue

3.8.1 Introduction

 Queue is also an abstract data type or a linear data structure, just like stack data structure, in

which the first element is inserted from one end called the REAR(also called tail), and the removal

75

of existing element takes place from the other end called as FRONT (also called head). This makes

queue as FIFO (First in First Out) data structure, which means that element inserted first will be

removed first. The process to add an element into queue is called Enqueue and the process of

removal of an element from queue is called Dequeue.

3.8.2 Array Representation of Queue

If queue is implemented using arrays, the size of the array should be fixed maximum allowing the

queue to expand or shrink.

Operations on a Queue

There are two common operations one in a queue. They are addition of an element to the

queue and deletion of an element from the queue. Two variables front and rear are used to point to

the ends of the queue. The front points to the front end of the queue where deletion takes place and

rear points to the rear end of the queue, where the addition of elements takes place. Initially, when

the queue is full, the front and rear is equal to -1.

Add(x)

 An element can be added to the queue only at the rear end of the queue. Before adding an

element in the queue, it is checked whether queue is full. If the queue is full, then addition cannot

take place. Otherwise, the element is added to the end of the list at the rear side.

ADDQ(x)

If rear = MAX – 1

Then

 Print “Queue is full”

 Return

Else

 Rear = rear + 1

 A[rear] = x

 If front = -1

 Then

 Front = 0

 End if

End if

End ADDQ()

76

Del()

 The del() operation deletes the element from the front of the queue. Before deleting and

element, it is checked if the queue is empty. If not the element pointed by front is deleted from the

queue and front is now made to point to the next element in the queue.

DELQ()

If front = -1

Then

 Print “Queue is Empty”

 Return

Else

 Item = A[front]

 A[front] = 0

 If front = rear

 Then

 Front = rear = -1

 Else

 Front = front + 1

 End if

 Return item

End if

End DELQ()

3.8.3 Linked List Representation of Queue

Queue can be represented using a linked list. Linked lists do not have any restrictions on the

number of elements it can hold. Space for the elements in a linked list is allocated dynamically;

hence it can grow as long as there is enough memory available for dynamic allocation. The queue

represented using linked list would be represented as shown. The front pointer points to the front of

the queue and rear pointer points to the rear of the queue is shown in Fig 3.9.

77

Fig 3.9 Linked List

Addq(x)

 In linked list representation of queue, the addition of new element to the queue takes place at

the rear end. It is the normal operation of adding a node at the end of a list.

ADDQ(x)

If front = NULL

Then

 Rear = front = temp

 Return

End if

Link(rear) = temp

Rear = link(rear)

End ADDQ()

Delq()

 The delq() operation deletes the first element from the front end of the queue. Initially it is

checked, if the queue is empty. If it is not empty, then return the value in the node pointed by front,

and moves the front pointer to the next node.

DELQ()

If front = NULL

 Print “Queue is empty”

 Return

Else

 While front ≠ NULL

 Temp = front

 Front = link(front)

 Delete temp

 End while

End if

End DELQ()

78

3.8.5 Queue Applications

3.8.5.1 Priority Queue

Priority Queue is more specialized data structure than Queue. Like ordinary queue, priority

queue has same method but with a major difference. In Priority queue items are ordered by key value

so that item with the lowest value of key is at front and item with the highest value of key is at rear

or vice versa is shown in Fig.3.10.

Basic Operations

• insert / enqueue − add an item to the rear of the queue.

• remove / dequeue − remove an item from the front of the queue.

Priority Queue Representation

Fig 3.10 Priority Queue

There is few more operations supported by queue which are following.

• Peek − get the element at front of the queue.

• isFull − check if queue is full.

• isEmpty − check if queue is empty.

Insert / Enqueue Operation

Whenever an element is inserted into queue, priority queue inserts the item according to its order.

Here we're assuming that data with high value has low priority is shown in Fig 3.11.

Fig 3.11 Insert/Enqueue operation

79

void insert(int data){

 int i = 0;

 if(!isFull()){

 // if queue is empty, insert the data

 if(itemCount == 0){

 intArray[itemCount++] = data;

 }else{

 // start from the right end of the queue

 for(i = itemCount - 1; i >= 0; i--){

 // if data is larger, shift existing item to right end

 if(data > intArray[i]){

 intArray[i+1] = intArray[i];

 }else{

 break;

 }

 }

 // insert the data

 intArray[i+1] = data;

 itemCount++;

 }

 }

}

Remove / Dequeue Operation

Whenever an element is to be removed from queue, queue get the element using item count. Once

element is removed. Item count is reduced by one.

int removeData(){

 return intArray[--itemCount];

}

80

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – IV-Data Structures – SCSA1205

81

UNIT IV

 Preliminaries of Tree ADT - Binary Trees - The Search Tree ADT–Binary Search Trees - AVL

Trees - Tree Traversals - B-Trees - Heap Tree – Preliminaries of Graph ADT - Representation of

Graph – Graph Traversal - BFS – DFS – Applications of Graph – Shortest - Path Algorithms –

Dijkstra’s Algorithm Minimum Spanning Tree – Prims Algorithm

4.1 PRELIMINARIES OF TREE ADT

A tree is a collection of nodes (Fig 4.1). The collection can be empty or it consists of

a) a distinguished node r called the root and

b) zero or more nonempty subtree, each of whose roots are connected by a directed edge from r.

c) subtrees must not connect together. Every node in the tree is the root of some subtree.

d) There are N-1 edges in a tree with N nodes.

e) Normally the root is drawn at the top.

Degree of a node = number of subtrees of the node

Degree (A) = 3, degree (F) = 0

Degree of tree = max
𝑛𝑜𝑑𝑒∈𝑡𝑟𝑒𝑒

{𝑑𝑒𝑔𝑟𝑒𝑒(𝑛𝑜𝑑𝑒)}

Degree of tree =3

Parent = node that has subtrees

Children = the roots of the subtrees of parent

 Fig 4.1 Tree Structure

Siblings = children of the same parent

Leaf (terminal node) = a node with degree 0 (no children)

Path from n1 to nk = a unique sequence of nodes from n1, n2, …,nk

Length of path = number of edges on the path

Depth of n = length of the unique path from root to ni, Depth (root) = 0

Height of n = length of longest path from ni to leaf. Height (D) =2

Height of tree =height(root)=depth(deepest leaf)

Ancestors of node= all nodes along the path from node upto the root

Descendants of node = all nodes in its subtrees

4.2 Binary Trees

82

A binary tree is a tree in which no node can have more than two children. Each node can have 0, 1

or 2 children is shown Fig 4.2.

Fig 1.2 Binary tree and list representation

In this tree, node 1,2 and 3 contains two points i.e, left and right pointer pointing to the left and right

node respectively. Similarly nodes 3, 5 and 6 are the leaf nodes so these nodes have NULL pointer

on both left and right parts.

Properties of Binary Tree

a) At each level of i, the maximum number of nodes is 2i.

b) The height of tree is defines as the longest path from the root node to the leaf node. Her example

has height 3 and the maximum number of nodes at height 3 is (1+2+4+8)=15.

c) The minimum number of nodes possible at height h is equal to h+1.

d) If the number of nodes is minimum, then the height of the tree would be maximum. Similarly, if

the number of nodes is maximum, then the height of the tree would be minimum.

Complete Binary Tree

The complete binary tree is a tree in which all the nodes are completely filled except the last level.

In the last level, all the nodes must be as left as possible. In a complete binary tree, the nodes should

be added from the left shown in Fig.4.3.

Properties of Complete Binary Tree

▪ The maximum number of nodes in complete binary tree is 2h+1-1.

▪ The minimum number of nodes in complete binary tree is 2h.

▪ The minimum height of a complete binary tree is log2(n+1) -1.

1

2 3

5 6

1

2 3

8

4

5 6 7

83

Fig 4.3 complete binary tree

Perfect Binary Tree

A tree is a perfect binary tree if all the internal nodes have 2 children, and all the leaf nodes are at

the same level. All perfect binary trees are the complete binary binary trees but it’s not true for vice

versa, i.e., all complete binary trees cannot be the perfect binary trees is shown in Fig 4.4.

4.3 BINARY SEARCH TREE

 Binary Search Tree is a node-based binary tree data structure which has the following properties

➢ The left subtree of a node contains only nodes with keys lesser than the node’s key.

➢ The right subtree of a node contains only nodes with keys greater than the node’s key.

➢ The left and right subtree each must also be a binary search tree.

➢ Left_subtree (keys) < node(key) ≤ right_subtree(keys) is shown in Fig 4.5.

Fig 4.4 Perfect Binary tree

84

Fig 4.5Binary search tree

Basic Operations

1. Search

2. Insert

3. Pre-order Traversal

4. In-order Traversal

5. Post-order Traversal

1. Search Operation

Whenever an element is to be searched, start searching from the root node. If the data is less than

the key value, then search for the element in the left subtree. Otherwise, search for the element in

the right subtree. Fig 4.6 shows the example of search operation.

Fig 4.6 Search operation in Binary search tree

Min and Max Values

Another operation similar to a search that can be performed on a binary search tree is finding the

minimum or maximum key values. From the definition of the binary search tree, we know the

minimum value is either in the root or in a node to its left is shown in fig 4.7.

85

Fig 4.7 Find Min and max values

2. Insertion Operation

When a binary search tree is constructed, the keys are added one at a time. As the keys are inserted,

a new node is created for each key and linked into its proper position within the tree. Suppose we

want to build a binary search tree from the key list [60, 25, 100, 35, 17, 80] by inserting the keys in

the order they are listed is shown in Fig 4.8.

Fig 4.8 Insert operation in binary search tree

3. Deletions

To remove an element from a binary search tree is a bit more complicated than searching for an

element or inserting a new element into the tree. A deletion involves searching for the node that

contains the target key and then unlinking the node to remove it from the tree. When a node is

removed, the remaining nodes must preserve the search tree property. There are three cases to

consider once the node has been located:

1. The node is a leaf.

2. The node has a single child.

3. The node has two children.

Example:

✓ Removing leaf node from binary search tree

86

Fig 4.9 Removing leaf node

✓ Removing an interior node with one child shown in Fig 4.10.

Fig 4.10 removing interior node with one child

87

✓ Removing an interior node with two children is shown in Fig 4.11.

For node 12, its predecessor is node 4 and its successor is node 23. For removing an interior node

with two children requires three steps:

1. Find the logical successor, S, of the node to be deleted, N.

2. Copy the key from node S to node N.

3. Remove node S from the tree.

Fig 4.11 removing interior node with two children

4.4 AVL TREES

The AVL tree, which was invented by G. M. Adel’son-Velskii and Y. M. Landis in 1962, improves

on the binary search tree by always guaranteeing the tree is height balanced, which allows for more

efficient operations. A binary tree is balanced if the heights of the left and right subtrees of every

node differ by at most is shown in Fig 4.12.

Fig 4.12 AVL tree model

88

With each node in an AVL tree, we associate a balance factor, which indicates the height

difference between the left and right branch. The balance factor can be one of three states:

left high (>): When the left subtree is higher than the right subtree.

equal high (=): When the two subtrees have equal height.

right high (<): When the right subtree is higher than the left subtree

Insertions

Inserting a key into an AVL tree begins with the same process used with a binary search tree. We

search for the new key in the tree and add a new node at the child link where we fall off the tree.

When a new key is inserted into an AVL tree, the balance property of the tree must be maintained.

If the insertion of the new key causes any of the subtrees to become unbalanced, they will have to

be rebalanced is shown in Fig.4.13.

Fig.4.13 Insertion in AVL tree

Rotations

Multiple subtrees can become unbalanced after inserting a new key, all of which have roots along

the insertion path. But only one will have to be rebalanced: the one deepest in the tree and closest

to the new node. After inserting the key, the balance factors are adjusted during the unwinding of

the recursion. The first subtree encountered that is out of balance has to be rebalanced. The root

node of this subtree is known as the pivot node. An AVL subtree is rebalanced by performing a

rotation around the pivot node. This involves rearranging the links of the pivot node, its children,

and possibly one of its grandchildren. There are four possible cases is shown in Fig 4.14.

Fig.4.14 Rotation in AVL tree

89

i) Case 1: When the balance factor of the pivot node (P) is left high before the insertion and the new

key is inserted into the left child (C) of the pivot node. To rebalance the subtree, the pivot node has

to be rotated right over its left child. The rotation is accomplished by changing the links such that P

becomes the right child of C and the right child of C becomes the left child of P is shown in Fig 4.15.

Fig 4.15 Case 1

ii) Case 2: the pivot (P), the left child of the pivot (C), and the right child (G) of C. For this case to

occur, the balance factor of the pivot is left high before the insertion and the new key is inserted into

either the right subtree of C. Node C has to be rotated left over node V and the pivot node has to be

rotated right over its left child. The right child of G as the new left child of the pivot node, changing

the left child of G to become the right child of C, and setting C to be the new left child of G is shown

in Fig 4.16.

Fig 4.16 Case 2

iii) Case 3 and 4: The third case is a mirror image of the first case and the fourth case is a mirror

image of the second case. The difference is the new key is inserted in the right subtree of the pivot

node or a descendant of its right subtree is shown in Fig.4.17.

Fig 4.17 Case 3

90

Deletions

When an entry is removed from an AVL tree, we must ensure the balance property is maintained.

For example, suppose we want to remove key 17 from the AVL tree in Figure 14.21(a). After

removing the leaf node, the subtree rooted at node 25 is out of balance, as shown below. A left

rotation has to be performed pivoting on node 25 to correct the imbalance is shown in Fig 4.18.

Fig 4.18 Deletion in AVL Tree

In the insertion operation, at most one subtree can become unbalanced. After the appropriate

rotation is performed on the subtree, the balance factors of the node’s ancestors do not change.

Thus, it restores the height-balance property both locally at the subtree and globally for the entire

tree. This is not the case with a deletion. When a subtree is rebalanced due to a deletion, it can

cause the ancestors of the subtree to then become unbalanced. This effect can ripple up all the way

to the root node. So, all of the nodes along the path have to be evaluated and rebalanced if

necessary.

4.5 Tree Traversal

 There are three standard ways of traversing a binary tree T with root R. They are:

 (i) Preorder Traversal

 (ii) Inorder Traversal

 (iii) Postorder Traversal

Preorder Traversal:

(1) Process the root R.

(2) Traverse the left subtree of R in preorder.

(3) Traverse the right subtree of R in preorder.

Inorder Traversal:

(1) Traverse the left subtree of R in inorder.

(2) Process the root R.

(3) Traverse the right subtree of R in inorder.

Postorder Traversal:

(1) Traverse the left subtree of R in postorder.

(2) Traverse the right subtree of R in postorder.

91

(3) Process the root R.

Observe that each algorithm contains the same three steps, and that the left subtree of R is

always traversed before the right subtree. The difference between the algorithms is the time at which

the root R is processed. The three algorithms are sometimes called, respectively, the node-left-right

(NLR) traversal, the left-node-right (LNR) traversal and the left-right-node (LRN) traversal.

Traversal algorithms

Preorder Traversal

 Consider the following case where we have 6 nodes in the tree A, B, C, D, E, F. The traversal

always starts from the root of the tree. The node A is the root and hence it is visited first. The value

at this node is processed. Now we check if there exists any left child for this node if so apply the

preorder procedure on the left subtree. Now check if there is any right subtree for the node A, the

preorder procedure is applied on the right subtree.

 Since there exists a left subtree for node A, B is now considered as the root of the left subtree

of A and preorder procedure is applied. Hence we find that B is processed next and then it is checked

if B has a left subtree is shown in Fig. 4.19

Fig. 4.19 Preorder Traversal

92

The algorithm for the above method is presented in the pseudo-code form below:

Algorithm

PREORDER(ROOT)

Temp = ROOT

If temp = NULL

 Return

End if

Print info(temp)

If left(temp) ≠ NULL

 PREORDER(left(temp))

End if

If right(temp) ≠ NULL

 PREORDER(right(temp))

End if

End PREORDER

Inorder Traversal

In the Inorder traversal method, the left subtree of the current node is visited first and then

the current node is processed and at last the right subtree of the current node is visited. In the

following example, the traversal starts with the root of the binary tree. The node A is the root and it

is checked if it has the left subtree. Then the inorder traversal procedure is applied on the left subtree

of the node A. Now we find that node D does not have left subtree. Hence the node D is processed

and then it is checked if there is a right subtree for node D. Since there is no right subtree, the control

returns back to the previous function which was applied on B. Since left of B is already visited, now

B is processed. It is checked if B has the right subtree. If so apply the inorder traversal method on

the right subtree of the node B. This recursive procedure is followed till all the nodes are visited is

shown in Fig.4.20.

93

Fig 4.20 Inorder Traversal

Algorithm

INORDER(ROOT)

Temp = ROOT

If temp = NULL

 Return

End if

If left(temp) ≠ NULL

 INORDER(left(temp))

End if

Print info(temp)

If right(temp) ≠ NULL

 INORDER(right(temp))

End if

End INORDER

94

Postorder Traversal

 In the postorder traversal method the left subtree is visited first, then the right subtree and at

last the current node is processed. In the following example, A is the root node. Since A has the left

subtree the postorder traversal method is applied recursively on the left subtree of A. Then when

left subtree of A is completely is processed, the postorder traversal method is recursively applied on

the right subtree of the node A. If right subtree is completely processed, then the current node A is

processed is shown in Fig 4.21.

 Fig 4.21 Postorder Traversal

Algorithm

POSTORDER(ROOT)

Temp = ROOT

If temp = NULL

 Return

End if

If left(temp) ≠ NULL

 POSTORDER(left(temp))

End if

If right(temp) ≠ NULL

 POSTORDER(right(temp))

End if

Print info(temp)

End POSTORDER

95

4.6 B TREES

An extension of a multiway search tree of order m is a B-tree of order m. This type of tree will be

used when the data to be accessed / stored is located on secondary storage devices because they allow

for large amounts of data to be stored in a node. A B-tree of order m is a multiway search tree in

which:

1. The root has at least two subtrees unless it is the only node in the tree.

2. Each nonroot and each nonleaf node have at most m nonempty children and at least m/2 nonempty

children.

3. The number of keys in each nonroot and each nonleaf node is one less than the number of its

nonempty children.

4. All leaves are on the same level.

Searching

An algorithm for finding a key in B-tree is simple. Start at the root and determine which pointer to

follow based on a comparison between the search value and key fields in the root node. Follow the

appropriate pointer to a child node. Examine the key fields in the child node and continue to follow

the appropriate pointers until the search value is found or a leaf node is reached that doesn't contain

the desired search value.

Insertion

The condition that all leaves must be on the same level forces a characteristic behavior of Btrees,

namely that B-trees are not allowed to grow at the their leaves; instead they are forced to grow at the

root. When inserting into a B-tree, a value is inserted directly into a leaf is shown in Fig 4.22 and

Fig.4.23. This leads to three common situations that can occur:

1. A key is placed into a leaf that still has room.

2. The leaf in which a key is to be placed is full.

3. The root of the B-tree is full.

Fig 4.22 B-tree Insertion

96

Fig 4.23 steps in B-tree insertion operation

97

Deletion

The deletion process will basically be a reversal of the insertion process - rather than splitting nodes,

it's possible that nodes will be merged so that B-tree properties, namely the requirement that a node

must be at least half full, can be maintained is shown in Fig 4.24 ,Fig 4.25 and Fig 4.26.

There are two main cases to be considered:

1. Deletion from a leaf

2. Deletion from a non-leaf

Fig 4.24 Deletion

98

Fig 4.25 Deletion

99

Fig 4.26 steps in B Tree deletion operation

4.7 HEAP TREE

Heap is a special case of balanced binary tree data structure where the root-node key is compared

with its children and arranged accordingly. A heap is a complete binary tree in which the nodes are

organized based on their data entry values. There are two variants of the heap structure. A max-heap

has the property, known as the heap order property, that for each non-leaf node V, the value in V is

greater than the value of its two children. The largest value in a max-heap will always be stored in

the root while the smallest values will be stored in the leaf nodes. The min-heap has the opposite

property. For each non-leaf node V, the value in V is smaller than the value of its two children is

shown in Fig.4.27 and Fig.4.28.

Fig 4.27 Min and Max heap

100

Example

Fig 4.28 Heap tree insertion

101

4.8 PRELIMINARIES OF GRAPH ADT

Graph is a non linear data structure; A map is a well-known example of a graph. In a map various

connections are made between the cities. The cities are connected via roads, railway lines and aerial

network. We can assume that the graph is the interconnection of cities by roads. A graph contains a

set of points known as nodes (or vertices) and set of links known as edges (or Arcs) which connects

the vertices.

A graph is defined as Graph is a collection of vertices and arcs which connects vertices in the graph.

A graph G is represented as G = (V , E), where V is set of vertices and E is set of edges.

Example: graph G can be defined as G=(V,E) Where V={A,B,C,D,E} and E=

{(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}. This is a graph with 5 vertices and 6 edges is shown

in Fig.4.29.

Figure 4.29 A Graph

Graph Terminology

1. Vertex : An individual data element of a graph is called as Vertex. Vertex is also known as node. In

above example graph, A, B, C, D & E are known as vertices.

2. Edge : An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is

represented as (starting Vertex, ending Vertex).

In above graph, the link between vertices A and B is represented as (A,B).

Edges are three types:

1. Undirected Edge - An undirected edge is a bidirectional edge. If there is an undirected edge

between vertices A and B then edge (A , B) is equal to edge (B , A).

2. Directed Edge - A directed edge is a unidirectional edge. If there is a directed edge between

vertices A and B then edge (A , B) is not equal to edge (B , A).

3. Weighted Edge - A weighted edge is an edge with cost on it.

Types of Graphs

1. Undirected Graph

A graph with only undirected edges is said to be undirected graph.

2. Directed Graph

A graph with only directed edges is said to be directed graph.

3. Complete Graph

102

A graph in which any V node is adjacent to all other nodes present in the graph is known as a

complete graph. An undirected graph contains the edges that are equal to edges = n(n-1)/2 where n

is the number of vertices present in the graph. The following figure shows a complete graph.

4. Regular Graph

Regular graph is the graph in which nodes are adjacent to each other, i.e., each node is accessible

from any other node.

5. Cycle Graph

A graph having cycle is called cycle graph. In this case the first and last nodes are the same. A closed

simple path is a cycle.

6. Acyclic Graph

A graph without cycle is called acyclic graphs.

7. Weighted Graph

A graph is said to be weighted if there are some non negative value assigned to each edges of the

graph. The value is equal to the length between two vertices. Weighted graph is also called a network.

Outgoing Edge

A directed edge is said to be outgoing edge on its orign vertex.

Incoming Edge

A directed edge is said to be incoming edge on its destination vertex.

Degree

Total number of edges connected to a vertex is said to be degree of that vertex.

Indegree

Total number of incoming edges connected to a vertex is said to be indegree of that vertex.

Outdegree

Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex.

Parallel edges or Multiple edges

If there are two undirected edges to have the same end vertices, and for two directed edges to have

the same origin and the same destination. Such edges are called parallel edges or multiple edges.

Self-loop

An edge (undirected or directed) is a self-loop if its two endpoints coincide.

Simple Graph

A graph is said to be simple if there are no parallel and self-loop edges.

Adjacent nodes

When there is an edge from one node to another then these nodes are called adjacent nodes.

103

Incidence

In an undirected graph the edge between v1 and v2 is incident on node v1 and v2.

Walk

A walk is defined as a finite alternating sequence of vertices and edges, beginning and ending with

vertices, such that each edge is incident with the vertices preceding and following it.

Closed walk

A walk which is to begin and end at the same vertex is called close walk. Otherwise it is an open

walk. If e1,e2,e3,and e4 be the edges of pair of vertices (v1,v2),(v2,v4),(v4,v3) and (v3,v1)

respectively ,then v1 e1 v2 e2 v4 e3 v3 e4 v1 be its closed walk or circuit.

Path

A open walk in which no vertex appears more than once is called a path. If e1 and e2 be the two

edges between the pair of vertices (v1,v3) and (v1,v2) respectively, then v3 e1 v1 e2 v2 be its path.

Length of a path

The number of edges in a path is called the length of that path. In the following, the length of the

path is 3.

Circuit

A closed walk in which no vertex (except the initial and the final vertex) appears more than once is

called a circuit. A circuit having three vertices and three edges.

Sub Graph

A graph S is said to be a sub graph of a graph G if all the vertices and all the edges of S are in G, and

each edge of  V(G) and E(G’) S has the same end vertices in S as in G. A subgraph of G is a

graph G’ such that V(G’) E(G)

Connected Graph

A graph G is said to be connected if there is at least one path between every pair of vertices in G.

Otherwise, G is disconnected. This graph is disconnected because the vertex v1 is not connected

with the other vertices of the graph.

Degree

In an undirected graph, the number of edges connected to a node is called the degree of that node or

the degree of a node is the number of edges incident on it. In the above graph, degree of vertex v1 is

1, degree of vertex v2 is 3, degree of v3 and v4 is 2 in a connected graph.

104

Indegree

The indegree of a node is the number of edges connecting to that node or in other words edges

incident to it.

Outdegree

The outdegree of a node (or vertex) is the number of edges going outside from that node.

4.9 Graph Representations

Graph data structure is represented using following representations

1. Adjacency Matrix

2. Adjacency List

3. Adjacency Multilists

1.Adjacency Matrix

In this representation, graph can be represented using a matrix of size total number of vertices

by total number of vertices; means if a graph with 4 vertices can be represented using a matrix of

4X4 size. In this matrix, rows and columns both represent vertices. This matrix is filled with either

1 or 0. Here, 1 represents there is an edge from row vertex to column vertex and 0 represents there

is no edge from row vertex to column vertex.

Adjacency Matrix: let G = (V, E) with n vertices, n≥1. The adjacency matrix of G is a 2-dimensional

n x n matrix, A, A(i, j) = 1 iff (vi vj)ϵE(G) (<vi, vj> for a diagraph), A(i, j) = 0 otherwise.

example : for undirected graph

For a Directed graph

The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a

digraph need not be symmetric. The space needed to represent a graph using adjacency matrix is n2

bits. To identify the edges in a graph, adjacency matrices will require at least O(n2) time.

• Adjacency List

In this representation, every vertex of graph contains list of its adjacent vertices. The n rows of the

adjacency matrix are represented as n chains. The nodes in chain I represent the vertices that are

adjacent to vertex i.

It can be represented in two forms. In one form, array is used to store n vertices and chain is used to

store its adjacencies.

105

So that we can access the adjacency list for any vertex in O(1) time. Adjlist[i] is a pointer to to first

node in the adjacency list for vertex i. example: consider the following directed graph representation

implemented using linked list

 This representation can also be implemented using array

• Adjacency Multilists

In the adjacency-list representation of an undirected graph each edge (u, v) is represented by two

entries one on the list for u and the other on that list for v. This can be accomplished easily if the

adjacency lists are actually maintained as multilists (i.e., lists in which nodes may be shared among

several lists). For each edge there will be exactly one node but this node will be in two lists (i.e. the

adjacency lists for each of the two nodes to which it is incident).

• Weighted edges

In many applications the edges of a graph have weights assigned to them. These weights may

represent the distance from one vertex to another or the cost of going from one; vertex to an adjacent

vertex In these applications the adjacency matrix entries A [i][j] would keep this information too.

When adjacency lists are used the weight information may be kept in the list nodes by including an

additional field weight. A graph with weighted edges is called a network.

Fig 27 Weighted Graph - Adjacency Matrix representation

4.10 GRAPH TRAVERSAL

BREADTH FIRST SEARCH (BFS) TRAVERSAL FOR A GRAPH

Breadth First Traversal (or Search) for a graph is similar to Breadth First Traversal of a tree The only

catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To

avoid processing a node more than once, we use a boolean visited array.

106

For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0,

we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited

vertices, then 2 will be processed again and it will become a non-terminating process. Breadth First

Traversal of the following graph is 2, 0, 3, 1.

Fig 28 BFS Traversal graph

Applications of Breadth First Traversal

1) Shortest Path and Minimum Spanning Tree for unweighted graph In unweighted graph, the

shortest path is the path with least number of edges. With Breadth First, we always reach a vertex

from given source using minimum number of edges. Also, in case of unweighted graphs, any

spanning tree is Minimum Spanning Tree and we can use either Depth or Breadth first traversal for

finding a spanning tree.

2) Peer to Peer Networks. In Peer to Peer Networks like BitTorrent, Breadth First Search is used to

find all neighbor nodes.

3) Crawlers in Search Engines: Crawlers build index using Bread First. The idea is to start from

source page and follow all links from source and keep doing same. Depth First Traversal can also

107

be used for crawlers, but the advantage with Breadth First Traversal is, depth or levels of built tree

can be limited.

4) Social Networking Websites: In social networks, we can find people within a given distance ‘k’

from a person using Breadth First Search till ‘k’ levels.

5) GPS Navigation systems: Breadth First Search is used to find all neighboring locations.

6) Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search to

reach all nodes.

7) In Garbage Collection: Breadth First Search is used in copying garbage collection using

Cheney’s algorithm.

8) Cycle detection in undirected graph: In undirected graphs, either Breadth First Search or Depth

First Search can be used to detect cycle. In directed graph, only depth first search can be used.

9) Ford–Fulkerson algorithm In Ford-Fulkerson algorithm, we can either use Breadth First or

Depth First Traversal to find the maximum flow. Breadth First Traversal is preferred as it reduces

worst case time complexity to O(VE2).

10) To test if a graph is Bipartite We can either use Breadth First or Depth First Traversal.

11) Path Finding We can either use Breadth First or Depth First Traversal to find if there is a path

between two vertices.

12) Finding all nodes within one connected component: We can either use Breadth First or Depth

First Traversal to find all nodes reachable from a given node.

DEPTH FIRST TRAVERSAL FOR A GRAPH

Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The only

catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To

avoid processing a node more than once, we use a boolean visited array. For example, in the

following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent

vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited vertices, then 2 will be

processed again and it will become a non-terminating process. Depth First Traversal of the 103

following graph is 2, 0, 1, 3

Fig 29 DFS Traversal Graph

Algorithm Depth-First Search

108

The DFS forms a depth-first forest comprised of more than one depth-first trees. Each tree is made

of edges (u, v) such that u is gray and v is white when edge (u, v) is explored. The following

pseudocode for DFS uses a global timestamp time.

Applications of Depth First Search

1) For an unweighted graph, DFS traversal of the graph produces the minimum spanning tree and all

pair shortest path tree.

2) Detecting cycle in a graph A graph has cycle if and only if we see a back edge during DFS. So we

can run DFS for the graph and check for back edges.

3) Path Finding We can specialize the DFS algorithm to find a path between two given vertices u

and z.

i) Call DFS(G, u) with u as the start vertex.

ii) Use a stack S to keep track of the path between the start vertex and the current vertex.

iii) As soon as destination vertex z is encountered, return the path as the contents of the stack

4) Topological Sorting

5) To test if a graph is bipartite We can augment either BFS or DFS when we first discover a new

vertex, color it opposite its parents, and for each other edge, check it doesn’t link two vertices of the

same color. The first vertex in any connected component can be red or black! See this for details.

6) Finding Strongly Connected Components of a graph A directed graph is called strongly connected

if there is a path from each vertex in the graph to every other vertex.

109

4.11 SHORTEST PATH ALGORITHM

Given a graph where edges are labeled with weights (or distances) and a source vertex, what is the

shortest path between the source and some other vertex? Problems requiring us to answer such

queries are broadly known as shortest-paths problems. Shortest-paths problem come in several

flavors. For example, the single-source shortest path problem requires finding the shortest paths

between a given source and all other vertices; the single-pair shortest path problem requires finding

the shortest path between given a source and a given destination vertex; the all-pairs shortest path

problem requires finding the shortest paths between all pairs of vertices.

4.11.1 DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm is an iterative algorithm that provides us with the shortest path from one

particular starting mode to all other nodes in the graph. To keep track of the total cost from the start

node to each destination we will make use of the distance instance variable in the vertex class. The

distance instance variable will contain the current total weight of the smallest weight path from the

start to the vertex. Dijkstra’s algorithm finds the shortest path in a weighted graph containing only

positive edge weights from a single source. It uses a priority based dictionary or a queue to select a

node / vertex nearest to the source that has not been edge relaxed. Time complexity of Dijkstra’s

algorithm is O((E+V) Log(V)) for an adjacency list implementation of a graph. V is the number of

vertices and E is the number of edges in a graph.

Fig 30 Example for Dijkstra's algorithm

Step 1: Step 2: Step 3:

On repeating the above steps until the set contains all vertices of given graph. Then we get the

following Shortest Path.

110

Step 4: Step 5:

4.11.2 PRIM’S ALGORITHM

Prim’s algorithm is also a greedy algorithm technique. It starts with an empty spanning tree. The

idea is to maintain two sets of vertices:

• Contain vertices already included in minimum spanning tree

• Contain vertices not yet included

At every step, it considers all the edges and picks the minimum weight edge. After picking the

edge, it moves the other endpoint of edge to set containing MST.

Steps for finding MST using Prim's Algorithm:

1. Create MST set that keeps track of vertices already included in MST.

2. Assign key values to all vertices in the input graph. Initialize all key values as INFINITE (∞).

Assign key values like 0 for the first vertex so that it is picked first.

3. While MST set doesn't include all vertices.

a. Pick vertex u which is not is MST set and has minimum key value. Include 'u'to MST set.

b. Update the key value of all adjacent vertices of u. To update, iterate through all adjacent vertices.

For every adjacent vertex v, if the weight of edge u.v less than the previous key value of v, update

key value as a weight of u.v.

Example:

Fig 31 Example for Prim's algorithm

111

Step 1: Step 2: Step 3:

 Step 4: Step 5:

112

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT V

UNIT – V-Data Structures – SCSA1205

113

 Divide and Conquer Strategy – Greedy Algorithm – Dynamic Programming – Backtracking

Strategy - List Searches using Linear Search - Binary Search - Fibonacci Search - Sorting Techniques

- Insertion sort - Heap sort - Bubble sort - Quick sort - Merge sort - Analysis of sorting techniques.

5.1 DIVIDE AND CONQUER STRATEGY

Divide and conquer is an algorithmic paradigm. A typical Divide and Conquer algorithm solves a

problem using following three steps:

1. Divide: This step involves breaking the problem into smaller sub-problems. Sub-problems should

represent a part of the original problem. This step generally takes a recursive approach to divide the

problem until no sub-problem is further divisible. At this stage, sub-problems become atomic in

nature but still represent some part of the actual problem.

2. Conquer: This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the

problems are considered ‘solved’ on their own.

3. Merge/Combine: When the smaller sub-problems are solved, this stage recursively combines them

until they formulate a solution of the original problem. This algorithmic approach works recursively

and conquer & merge steps works so close that they appear as one.

The some examples of Divide and conquer problem based algorithms are

• Merge Sort

• Quick Sort

• Binary Search

• Master Theorem

• Fibonacci Search

• Strassen’s Matrix multiplication

• Karatsuba Algorithm

Advantages of Divide and Conquer algorithm

• The complexity for the multiplication of two matrices using the naïve method is O(n3), whereas

using the divide and conquer approach. This approach also simplifies other problems, such as

the Tower of Hanoi.

• This approach is suitable for multiprocessing systems.

• It makes efficient use of memory caches.

5.2 GREEDY ALGORITHM

114

A greedy algorithm is an approach for solving a problem by selecting the best option

available at the moment, without worrying about the future result it would bring. In other words, the

locally best choices aim at producing globally best results. This algorithm may not be the best option

for all the problems. It may produce wrong results in some cases. This algorithm never goes back to

reverse the decision made.

A greedy algorithm is designed to achieve optimum solution for a given problem. In greedy

algorithm approach, decisions are made from the given solution domain. As being greedy, the closest

solution that seems to provide an optimum solution is chosen. Greedy algorithms try to find a

localized optimum solution, which may eventually lead to globally optimized solutions. However,

generally greedy algorithms do not provide globally optimized solutions. This algorithm works in a

top-down approach.

The main advantage of greedy algorithm is:

1. The algorithm is easier to describe

2. This algorithm can perform better than other algorithms.

Steps involved in greedy algorithm

• To begin with, the solution set is empty.

• At each step, an item is added into the solution set.

• If the solution set is feasible, the current item is kept.

• Else, the item is rejected and never considered again.

Some examples of networking algorithms using the greedy approach are

• Travelling salesman problem

• Prim’s Minimal Spanning Tree Algorithm

• Kruskal’s Minimal Spanning Tree Algorithm

• Dijkstra’s Minimal Spanning Tree Algorithm

• Graph – Map coloring

• Graph – vertex cover

• Knapsack Problem

• Job Scheduling Problem

• Huffman Coding

5.3 DYNAMIC PROGRAMMING

115

Dynamic programming approach is similar to divide and conquer in breaking down the problem into

smaller and yet smaller possible sub-problems. But, unlike, divide and conquer, these sub-problems

are not solved independently. Here the results of these smaller sub-problems are remembered and

used for similar or overlapping sub-problems.

Some problems that use dynamic programming approach

➢ Fibonacci number series

➢ Knapsack problem

➢ Tower of Hanoi

➢ All pair shortest path by Floyd-Warshall

➢ Shortest path by Dijkstra

➢ Project scheduling

5.4 BACKTRACKING ALGORITHM

A backtracking algorithm is a problem-solving algorithm that uses a brute force

approach for finding the desired output. The Brute force approach tries out all the possible solutions

and chooses the desired/best solutions. The term backtracking suggests that if the current solution is

not suitable, then backtrack and try other solutions. Thus, recursion is used in this approach. This

approach is used to solve problems that have multiple solutions. If you want an optimal solution, you

must go for dynamic programming. Backtracking is a technique based on algorithm to solve

problem. It uses recursive calling to find the solution by building a solution step by step increasing

values with time. It removes the solutions that doesn't give rise to the solution of the problem based

on the constraints given to solve the problem.

Backtracking algorithm is applied to some specific types of problems,

• Decision problem used to find a feasible solution of the problem.

• Optimisation problem used to find the best solution that can be applied.

• Enumeration problem used to find the set of all feasible solutions of the problem.

In backtracking problem, the algorithm tries to find a sequence path to the solution which has some

small checkpoints from where the problem can backtrack if no feasible solution is found for the

problem.

Example:

116

Fig 5.1 Backtracking algorithm method

In fig 5.1, Green is the start point, blue is the intermediate point, red are points with no feasible

solution, dark green is end solution. Here, when the algorithm propagates to an end to check if it is

a solution or not, if it is then returns the solution otherwise backtracks to the point one step behind it

to find track to the next point to find solution.

Algorithm

Backtrack(x)

 if x is not a solution

 return false

 if x is a new solution

 add to list of solutions

 backtrack(expand x)

Let’s use this backtracking problem to find the solution to N-Queen Problem.

In N-Queen problem, we are given an NxN chessboard and we have to place n queens on the board

in such a way that no two queens attack each other. A queen will attack another queen if it is placed

in horizontal, vertical or diagonal points in its way. Here, we will do 4-Queen problem is shown in

Fig 5.2.

Here, the solution is −

117

Fig 5.2 N Queens Problem

Here, the binary output for n queen problem with 1’s as queens to the positions are placed.

{0 , 1 , 0 , 0}

{0 , 0 , 0 , 1}

{1 , 0 , 0 , 0}

{0 , 0 , 1 , 0}

For solving n queens problem, we will try placing queen into different positions of one row. And

checks if it clashes with other queens. If current positioning of queens if there are any two queens

attacking each other. If they are attacking, we will backtrack to previous location of the queen and

change its positions. And check clash of queen again.

State Space Tree

A space state tree is a tree representing all the possible states (solution or non-solution) of the

problem from the root as an initial state to the leaf as a terminal state .

5.4 Linear Search

Linear search is the simplest method of searching. In this method, the element to be found

is sequentially searched in the list (Hence also called sequential search). This method can be applied

to a sorted or an unsorted list. Hence, it is used when the records are not stored in order.

118

Algorithm :

ALGORITHM LINEARSEARCH(K, N, X)

// K is the array containing the list of data items

// N is the number of data items in the list

// X is the data item to be searched

Repeat For I = 0 to N -1 Step 1

 If K(I) = X

 Then

 WRITE(“ELEMENT IS PRESENT AT LOCATION ” I)

 RETURN

 End If

End Repeat

 WRITE(“ELEMENT NOT PRESENT IN THE COLLECTION”)

End LINEARSEARCH

In the above algorithm, K is the list of data items containing N data items. X is the data item,

which is to be searched in K. If the data item to be searched is found then the position where it is

found will be displayed. If the data item to be searched is not found then the appropriate message

will be displayed to indicate the user, that the data item is not found.

The data item X is compared with each and every element in the list K During this

comparison, if X matches with a data item in K, then the position where the data item was found will

gets displayed and the control comes out of the loop and the procedure comes to an end. If X does

not match with any of the data items in K, then finally the element not found will be displayed.

Example:

X → Number to be searched : 40

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

45 56 15 76 43 92 35 40 28 65

 X  K[0]

119

45 56 15 76 43 92 35 40 28 65

 X  K[1]

45 56 15 76 43 92 35 40 28 65

 X  K[2]

45 56 15 76 43 92 35 40 28 65

 X  K[3]

45 56 15 76 43 92 35 40 28 65

 X  K[4]

45 56 15 76 43 92 35 40 28 65

 X  K[5]

45 56 15 76 43 92 35 40 28 65

 X  K[6]

45 56 15 76 43 92 35 40 28 65

 X = K[7] → I = 7 : Number found at location 7 i.e., as a 8th element

The search() function gets the number to be searched in the variable ‘x’ as a argument and compares

it with each and every element in the array K. If the number ‘x’ is found in the array, then the

position ‘i’, where it is found will gets printed. If the number is not found in the entire list, then the

function will display the “not found message” to the user.

 In the main() function receives the n values from the user and stored in the array K. The user

is prompted to enter the number to be searched and is passed to the search() function as a argument.

The search which receives the value x will give the appropriate message.

Advantages:

1. Simple and straight forward method.

2. Can be applied on both sorted and unsorted list.

120

Disadvantages:

1. Inefficient when the number of data items in the list increases.

Analysis

Worst Case :O(n)

Best Case:Ω(1)

Average Case:Ө(n)

5.5 BINARY SEARCH

 Binary search method is very fast and efficient. This method requires that the list of elements

be in sorted order. Binary search cannot be applied on an unsorted list.

Principle: The data item to be searched is compared with the approximate middle entry of the list.

If it matches with the middle entry, then the position will be displayed. If the data item to be searched

is lesser than the middle entry, then it is compared with the middle entry of the first half of the list

and procedure is repeated on the first half until the required item is found. If the data item is greater

than the middle entry, then it is compared with the middle entry of the second half of the list and

procedure is repeated on the second half until the required item is found. This process continues

until the desired number is found or the search interval becomes empty.

Algorithm:

ALGORITHM BINARYSEARCH(K, N, X)

// K is the array containing the list of data items

// N is the number of data items in the list

// X is the data item to be searched

Lower  0, Upper  N – 1

While Lower  Upper

Mid  (Lower + Upper) / 2

 If (X < K[Mid])Then

 Upper  Mid -1

 Else If (X>K[Mid]) Then

 Lower  Mid + 1

 Else

 Write(“ELEMENT FOUND AT”, MID)

121

 Quit

 End If

 End If

End While

 Write(“ELEMENT NOT PRESENT IN THE COLLECTION”)

End BINARYSEARCH

In Binary Search algorithm given above, K is the list of data items containing N data items.

X is the data item, which is to be searched in K. If the data item to be searched is found then the

position where it is found will be printed. If the data item to be searched is not found then “Element

Not Found” message will be printed, which will indicate the user, that the data item is not found.

Initially lower is assumed 0 to point the first element in the list and upper is assumed as N-1

to point the last element in the list because the range of any array is 0 to N-1. The mid position of

the list is calculated by finding the average between lower and upper and X is compared with K[mid].

If X is found equal to K[mid] then the value mid will gets printed, the control comes out of the loop

and the procedure comes to an end. If X is found lesser than K[mid], then upper is assigned mid –

1, to search only in the first half of the list. If X is found greater than K[mid], then lower is assigned

mid + 1, to search only in the second half of the list. This process is continued until the element

searched is found or the collection becomes becomes empty.

Example:

X → Number to be searched : 40

U → Upper

L → Lower=N-1

M→ Mid

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

1 22 35 40 43 56 75 83 90 98

L = 0 M = (0+9)/2 =4 U = 9

X< K[4] → U = 4 – 1 = 3

1 22 35 40 43 56 75 83 90 98

L = 0 M = (0+3)/2=1 U = 3

X > K[1] → L = 1 + 1 = 2

122

1 22 35 40 43 56 75 83 90 98

 L, M = 2 U = 3

K > A [2] → L = 2 + 1 = 3

1 22 35 40 43 56 75 83 90 98

 L, M, U = 3

K = A[3] → P = 3 : Number found at position 3

The binarysearch() function gets the element to be searched in the variable X. Initially lower

is assigned 0 and upper is assumed N – 1. The mid position is calculated and if K[mid] is found

equal to X, then mid position will gets displayed. If X is less than K[mid] upper is assigned mid – 1

to search only in first half of the list else lower is assigned mid + 1 to search only in the second half

of the list. This is process is continued until lower is less than or equal to upper. If the element is

not found even after the loop is completed, then the Not Found Message will be displayed to the

user indicating that the element is not found.

Advantages:

1. Searches several times faster than the linear search.

2. In each iteration, it reduces the number of elements to be searched from n to n/2.

Disadvantages:

1. Binary search can be applied only on a sorted list.

Analysis of Binary Search

Bestcase :O(1)

Worst Case: O(log2 𝑛)

Average Case: O(log2 𝑛)

5.6 FIBONACCI SEARCH

Fibonacci Search is a comparison-based technique that uses Fibonacci numbers to search an

element in a sorted array. Fibonacci search has some similarities and differences when compared

to the binary search.

Similarities:

1. Works for sorted arrays

123

2. A Divide and Conquer Algorithm.

3. Has Log n time complexity.

Differences:

1. Fibonacci Search divides given array into unequal parts

2. Binary Search uses a division operator to divide range. Fibonacci Search doesn’t use /, but uses

+ and -. The division operator may be costly on some CPUs.

3. Fibonacci Search examines relatively closer elements in subsequent steps. So when the input

array is big that cannot fit in CPU cache or even in RAM, Fibonacci Search can be useful.

Fibonacci Numbers are recursively defined as F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1. First

few Fibonacci Numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,…

Observations:

Below observation is used for range elimination, and hence for the O(log(n)) complexity.

1. F(n - 2) ≈ (1/3)*F(n) and

2. F(n - 1) ≈ (2/3)*F(n).

Algorithm:

1. Find the smallest Fibonacci Number greater than or equal to n. Let this number be fibM [m’th

Fibonacci Number]. Let the two Fibonacci numbers preceding it be fibMm1 [(m-1)’th

Fibonacci Number] and fibMm2 [(m-2)’th Fibonacci Number].

2. While the array has elements to be inspected:

1. Compare x with the last element of the range covered by fibMm2

2. If x matches, return index

3. Else if x is less than the element, move the three Fibonacci variables two Fibonacci down,

indicating elimination of approximately rear two-third of the remaining array.

4. Else x is greater than the element, move the three Fibonacci variables one Fibonacci down.

Reset offset to index. Together these indicate the elimination of approximately front one-third

of the remaining array.

3. Since there might be a single element remaining for comparison, check if fibMm1 is 1. If Yes,

compare x with that remaining element. If match, return index.

Analysis

• The complexity of Fibonacci search is O(log2n).

• The performance of Fibonacci search is poor than binary search.

124

• However, binary search involves division operation, where as in Fibonacci search only addition

and subtraction operation is involved. Average performance of Fibonacci search may be better

than binary search where division is more time consuming than addition or subtraction.

5.7 Sorting

 Sorting is an operation of arranging data, in some given order, such as ascending or descending

with numerical data, or alphabetically with character data.

Let A be a list of n elements A1, A2,…An in memory. Sorting A refers to the operation of rearranging

the contents of A so that they are increasing in order (numerically or lexicographically), that is, A1

 A2  A3 ….An

Sorting methods can be characterized into two broad categories:

• Internal Sorting

• External Sorting

Internal Sorting : Internal sorting methods are the methods that can be used when the list to be

sorted is small enough so that the entire sort can be carried out in main memory.

 The key principle of internal sorting is that all the data items to be sorted are retained in the

main memory and random access in this memory space can be effectively used to sort the data items.

The various internal sorting methods are:

• Bubble Sort

• Selection Sort

• Insertion Sort

• Quick Sort

• Merge Sort

• Heap Sort

External Sorting : External sorting methods are the methods to be used when the list to be sorted

is large and cannot be accommodated entirely in the main memory. In this case some of the data is

present in the main memory and some is kept in auxiliary memory such as hard disk, floppy disk,

tape, etc.

Objectives involved in design of sorting algorithms.

The main objectives involved in the design of sorting algorithm are:

1. Minimum number of exchanges

2. Large volume of data block movement

This implies that the designed and desired sorting algorithm must employ minimum number of

exchanges and the data should be moved in large blocks, which in turn increase the efficiency of the

sorting algorithm.

125

5.7.1 INSERTION SORT

 The main idea behind the insertion sort is to insert the ith element in its correct place in the ith

pass. Suppose an array K with n elements K[1], K[2],…K[N] is in memory. The insertion sort

algorithm scans K from K[0] to K[N-1], inserting each element K[I] into its proper position in the

previously sorted subarray K[0], K[1],..K[I-1].

Principle: In Insertion Sort algorithm, each element K[I] in the list is compared with all the elements

before it (K[1] to K[I-1]). If any element K[J] is found to be greater than K[I] then K[J] is inserted

in the place of K[J}. This process is repeated till all the elements are sorted.

Algorithm:

ALGORITHM INSERTIONSORT(K, N)

// K is the array containing the list of data items

// N is the number of data items in the list

Repeat For I = 1 to N-1

 Repeat For J = 0 to I – 1

 If (K[I] < K[J])Then

 Temp  K[I]

 Repeat For L = I-1 to J

 K[L +1]  K[L]

 End Repeat

 K[J]  Temp

 End If

 End Repeat

End Repeat

End INSERTIONSORT

 In Insertion Sort algorithm, N represents the total number of elements in the array K. I is

made to point to the second element in the list. In every pass the J is incremented to point to the next

element and is continued till it reaches the last element. During each pass K[I] is compared all

elements before it. If K[I] is lesser than K[J] in the list, then K[I] is inserted in position J. Finally,

a sorted list is obtained.

 For performing the insertion operation, a variable temp is used to safely store K[I] in it and

then shift right elements starting from K[J] to K[I-1].

126

Example:

N = 10 → Number of elements in the list

L → Last

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

 I=1 K[I] < K[0] → Insert K[I] at 0 L=9

23 42 74 11 65 58 94 36 99 87

 I=2 L=9

K[I] is greater than all elements before it. Hence No Change

23 42 74 11 65 58 94 36 99 87

 I=3 K[I] < K[0] → Insert K[I] at 0 L=9

11 23 42 74 65 58 94 36 99 87

 I=4 L=9

K[I] < K[3] → Insert K[I] at 3

11 23 42 65 74 58 94 36 99 87

 I=5 L=9

K[I] < K[3] → Insert K[I] at 3

11 23 42 58 65 74 94 36 99 87

 I=6 L=9

K[I] is greater than all elements before it. Hence No Change

127

11 23 42 58 65 74 94 36 99 87

 I=7 L=9

K[I] < K[2] → Insert K[I] at 2

11 23 36 42 58 65 74 94 99 87

 I=8 L=9

K[I] is greater than all elements before it. Hence No Change

11 23 36 42 58 65 74 94 99 87

 I, L=9

K[I] < K[7] → Insert K[I] at 7

Sorted List:

11 23 36 42 58 65 74 87 94 99

Advantages:

• Sorts the list faster when the list has less number of elements.

• Efficient in cases where a new element has to be inserted into a sorted list.

Disadvantages:

• Very slow for large values of n.

• Poor performance if the list is in almost reverse order.

4.7.2 QUICK SORT

 Quick sort is a very popular sorting method. The name comes from the fact that, in general,

quick sort can sort a list of data elements significantly faster than any of the common sorting

algorithms. This algorithm is based on the fact that it is faster and easier to sort two small lists than

one larger one. The basic strategy of quick sort is to divide and conquer. Quick sort is also known

as partition exchange sort.

The purpose of the quick sort is to move a data item in the correct direction just enough for

it to reach its final place in the array. The method, therefore, reduces unnecessary swaps, and moves

an item a great distance in one move.

128

Principle: A pivotal item near the middle of the list is chosen, and then items on either side are

moved so that the data items on one side of the pivot element are smaller than the pivot element,

whereas those on the other side are larger. The middle or the pivot element is now in its correct

position. This procedure is then applied recursively to the 2 parts of the list, on either side of the

pivot element, until the whole list is sorted.

Algorithm:

ALGORITHM QUICKSORT(K, Lower, Upper)

// K is the array containing the list of data items

// Lower is the lower bound of the array

// Upper is the upper bound of the array

If (Lower < Upper) Then

BEGIN

I Lower

J  Upper

pivotK[Lower]

If (lower < Upper)

then

 While (I < J)

 Begin

 While (K[I] <= pivot)

 I  I + 1

 End While

 While (K[J] > pivot)

 J  J – 1

 End While

 If (I < J)Then

 K[I]  K[J]

 End If

End While

K[J]  K[Lower]

129

QUICKSORT(K, Lower, J – 1)

QUICKSORT(K, J + 1, Upper)

End If

End QUICKSORT

 In Quick sort algorithm, Lower points to the first element in the list and the Upper points to

the last element in the list. Now I is made to point to the next location of Lower and J is made to

point to the Upper. K[Lower] is considered as the pivot element and at the end of the pass, the

correct position of the pivot element will be decided. Keep on incrementing I and stop when K[I] >

Key. When I stops, start decrementing J and stop when K[J] < Key. Now check if I < J. If so, swap

K[I] and K[J] and continue moving I and J in the same way. When I meets J the control comes out

of the loop and K[J] and K[Lower] are swapped. Now the element at position J is at correct position

and hence split the list into two partitions: (K{Lower] to K[J-1] and K[J+1] to K[Upper]). Apply

the Quick sort algorithm recursively on these individual lists. Finally, a sorted list is obtained.

Example:

N = 10 → Number of elements in the list

U → Upper

L → Lower

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

L=0 I=0 U, J=9

Initially I=L+1 and J=U, Key=K[L]=42 is the pivot element.

42 23 74 11 65 58 94 36 99 87

L=0 I=2 J=7 U=9

K[2] > Key hence I stops at 2. K[7] < Key hence J stops at 7

Since I < J → Swap K[2] and A[7]

130

42 23 36 11 65 58 94 74 99 87

L=0 J=3 I=4 U=9

K[4] > Key hence I stops at 4. K[3] < Key hence J stops at 3

Since I > J → Swap K[3] and K[0]. Thus 42 go to correct position.

The list is partitioned into two lists as shown. The same process is applied to these lists individually

as shown.

 List 1 →  List 2 →

11 23 36 42 65 58 94 74 99 87

L=0, I=1 J,U=2

(applying quicksort to list 1)

11 23 36 42 65 58 94 74 99 87

L=0, I=1 U=2 J=0 Since I>0 K[L] &K[J] gets swapped i.e., K[0] gets swapped with same

element because L,J=0

11 23 36 42 65 58 94 74 99 87

 L=4 J=5 I=6 U=9

 (applying quicksort to list 2)

 (after swapping 58 & 65)

11 23 36 42 58 65 94 74 99 87

 L=6 I=8 U, J=9

11 23 36 42 58 65 94 74 87 99

 L=6 J=8 U, I=9

11 23 36 42 58 65 87 74 94 99

 L=6 U, I, J=7

Sorted List:

11 23 36 42 58 65 74 87 94 99

131

Advantages:

1. Faster than any other commonly used sorting algorithms.

2. It has a best average case behavior.

Disadvantages:

1. As it uses recursion, stack space consumption is high.

5.7.3 MERGE SORT

Principle: The given list is divided into two roughly equal parts called the left and the right subfiles.

These subfiles are sorted using the algorithm recursively and then the two subfiles are merged together

to obtain the sorted file. Given a sequence of N elements K[0],K[1] ….K[N-1], the general idea is to

imagine them split into various subtables of size is equal to 1. So each set will have a individually

sorted items with it, then the resulting sorted sequences are merged to produce a single sorted sequence

of N elements. Thus this sorting method follows Divide and Conquer strategy. The problem gets

divided into various subproblems and by providing the solutions to the subproblems the solution for the

original problem will be provided.

Algorithm:

ALGORITHM MERGE(K, low, mid, high)

// K is the array containing the list of data items

// Low is the lower bound of the collection

//high is the upper bound of the collection

//mid is the upper bound for the first collection

I  low, J  mid+1, L  0

While (I ≤ mid) and (J ≤ high)

 If (K[I] < K[J]) Then

 Temp[L]  K[I]

 I  I + 1

 L  L+1

 Else

 Temp[L]  K[J]

 J  J + 1

132

 L  L + 1

 End If

End While

If (I > mid) Then

 While (J ≤ high)

 Temp[L]  K[J]

 J  J + 1

 L  L + 1

 End While

Else

 While (I ≤ mid)

 Temp[L]  K[I]

 L  L + 1

 I  I + 1

 End While

End If

Repeat for m = 0 to L step 1

 K[Low+m]  Temp[m]

End Repeat

End MERGE

ALGORITHM MERGESORT(A, low, high)

// K is the array containing the list of data items

If (low < high) Then

 mid  (low + high)/2

 MERGESORT(low, mid)

 MERGESORT(mid + 1, high)

 MERGE(low, mid, high)

End If

End MERGESORT

133

The first algorithm MERGE can be applied on two sorted lists to merge them. Initially, the

index variable I points to low and J points to mid + 1. K[I] is compared with K[J] and if K[I] found

to be lesser than K[J] then K[I] is stored in a temporary array and I is incremented otherwise K[J] is

stored in the temporary array and J is incremented. This comparison is continued till either I crosses

mid or J crosses high. If I crosses the mid first then that implies that all the elements in first list is

accommodated in the temporary array and hence the remaining elements in the second list can be

put into the temporary array as it is. If J crosses the high first then the remaining elements of first

list is put as it is in the temporary array. After this process we get a single sorted list. Since this

method merges 2 lists at a time, this is called 2-way merge sort.

In the MERGESORT algorithm, the given unsorted list is first split into N number of lists,

each list consisting of only 1 element. Then the MERGE algorithm is applied for first 2 lists to get

a single sorted list. Then the same thing is done on the next two lists and so on. This process is

continued till a single sorted list is obtained.

Example:

Let L → low, M→ mid, H → high

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

U M H

In each pass the mid value is calculated and based on that the list is split into two. This is done

recursively and at last N number of lists each having only one element is produced as shown.

Now merging operation is called on first two lists to produce a single sorted list, then the same

thing is done on the next two lists and so on. Finally a single sorted list is obtained.

134

5.7.4 HEAP SORT

Heap: A Heap is a compete binary tree with the property that the value at each node is at least as

large as the values of its children (if they exist). If the value at the parent node is larger than the

values on its children then it is called a Max heap and if the value at the parent node is smaller than

the values on its children then it is called the Min heap.

 Heap Sort is the sorting technique based on the interpretation of the given sequence of

elements as a binary tree. For interpretation the principle given below has to be used.

➢ If a given node is in position I then the position of the left child and the right child can be calculated

using Left (L) = 2I and Right (R) = 2I + 1.

➢ To check whether the right child exists or not, use the condition R ≤ N. If true, Right child exists

otherwise not.

➢ The last node of the tree is N/2. After this position tree has only leaves.

Principle: The Max heap has the greatest element in the root. Hence the element in the root node is

pushed to the last position in the array and the remaining elements are converted into a max heap.

The root node of this new max heap will be the second largest element and hence pushed to the last

but one position in the array. This process is repeated till all the elements get sorted.

HEAPSORT ALGORITHM:

FUNCTION HEAPSORT()

BEGIN

CALL BUILDHEAP(A)

FOR I=HEAPSIZE DOWN TO 2

 DO

(*SWAP BETWEEN A[1] AND A[I]*)

A[1]↔A[I]

135

HEAPSIZE=HEAPSIZE-1

CALL HEAPIFY(A,1)

END FOR

END FUNCTION HEAPSORT

FUNCTION BUILDHEAP(A)

BEGIN

 N=HEAPSIZE

FOR I= N/2 DOWN TO 1 STEP -1

CALL HEAPIFY(A,I)

 END FOR

END BUILDHEAP

FUNCTION HEAPIFY(A,I)

L=2 *I

R=L+1

IF L<=HEAPSIZE AND A[L]>A[I]

THEN

 LARGE=L

ELSE

LARGE=I

END IF

IF R<=HEAPSIZE AND A[R]>A[LARGE]

THEN

 LARGE=R

END IF

IF I<>LARGE

THEN

(*SWAP A[I] AND A[LARGE]*)

A[I] ↔A[LARGE]

136

CALL HEAPIFY(A,LARGE)

END IF

END HEAPIFY

Example:

Given a list A with 8 elements:

42 23 74 11 65 58 94 36

The given list is first converted into a binary tree as shown.

HEAP : (A Complete Binary tree)

Phase 1:

The rearranged tree elements after the first phase is

Max heap is constructed.

137

Phase 2:

138

5.7.5 BUBBLE SORT

Bubble sort is a simple sorting algorithm where number of comparisons and number of swaps are

more.

Algorithm

Function Bubble sort()

Read n

For I= 0 to n-1

 Read a[I]

End for

//sort

For I=0 to n-2

 For J=I+1 to n-1

 If a[I]>a[J]

 Then

 T=a[I]

 a[I]=a[J]

 a[J]=T

139

 End If

 End For J

End For I

 //print the sorted array

For I=0 to n-1

 Write a[I]

End For

End bubble sort

Example:

N = 10 → Number of elements in the list

L → Points to last element (Last)

Pass 1

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

Out of order → Swap L=9

23 42 74 11 65 58 94 36 99 87

Out of order → Swap L=9

23 42 11 74 65 58 94 36 99 87

Out of order → Swap L=9

23 42 11 65 74 58 94 36 99 87

Out of order → Swap L=9

23 42 11 65 58 74 94 36 99 87

Out of order → Swap L=9

140

23 42 11 65 58 74 36 94 99 87

Out of order → Swap L=9

Pass 2

23 42 11 65 58 74 36 94 87 99

Out of order → Swap L=8

23 11 42 65 58 74 36 94 87 99

Out of order → Swap L=8

23 11 42 58 65 74 36 94 87 99

Out of order → Swap L=8

23 11 42 58 65 36 74 94 87 99

Out of order → Swap L=8

Pass 3

23 11 42 58 65 36 74 87 94 99

Out of order → Swap L=7

23 11 42 58 65 36 74 87 94 99

Out of order → Swap L=7

Pass 4

23 11 42 58 36 65 74 87 94 99

141

Out of order → Swap L=6

11 23 42 58 36 65 74 87 94 99

Out of order → Swap L=6

Pass 5

11 23 42 36 58 65 74 87 94 99

Out of order → Swap L=5

Pass 6

Adjacent numbers are compared up to L=4. But no swapping takes place. As there was no swapping

taken place in this pass, the procedure comes to an end and we get a sorted list:

11 23 36 42 58 65 74 87 94 99

Advantages:

1. Simple and works well for list with less number of elements.

Disadvantages:

1. Inefficient when the list has large number of elements.

Requires more number of exchanges for every pass.

5.8 Analysis of Sorting Techniques

ALGORITHM ALGORITHMIC

TECHNIQUE

ORDER OF GROWTH

BUBBLE SORT BRUTE FORCE

TECHNIQUE

O(n2)

INSERTION SORT INSERTION TECHNIQUE O(n2)

142

QUICK SORT DIVIDE AND CONQUER

TECHNIQUE

O(n log n)

MERGE SORT DIVIDE AND CONQUER

TECHNIQUE

O(n log n)

HEAP SORT TREE SORTING (selection

technique)

O(n log n)

SELECTION SORT SELECTION O(n2)

