

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-I Python Programming–SCSA1204

SCSA1204- Python Programming

1

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-I Python Programming – SCSA1204

SCSA1204- Python Programming

2

INTRODUCTION

History of Python- Introduction to the IDLE interpreter (shell) -Expressions –

Data Types - Built-in function - Conditional statements - Iterative statements-

Input/output -Compound Data Types - Nested compound statements – Introduction

to Object Oriented Concepts

1. Program

A program performs a task in the computer. But, in order to be

executed, a program must be written in the machine language of the processor

of a computer. Unfortunately, it is extremely difficult for humans to read or

write a machine language program. This is because a machine language is

entirely made up of sequences of bits. However, high level languages are

close to natural languages like English and only use familiar mathematical

characters, operators and expressions. Hence, people prefer to write programs

in high level languages like C, C++, Java, or Python. A high level program is

translated into machine language by translators like compiler or interpreter.

a. About Python

Python is a high level programming language that is translated by the

python interpreter. As is known,an interpreter works by translating line-by-

line and executing. It was developed by Guido-van-rossum in 1990, at the

National Research Institute for Mathematics and Computer Science in

Netherlands. Python doesn’t refer to the snake but was named after the

famous British comedy troupe, Monty Python’s Flying Circus.

The following are some of the features of Python:

 Python is an Open Source: It is freely downloadable, from the link

SCSA1204- Python Programming

3

 “http:// python.org/”

 Python is portable: It runs on different operating systems / platforms3

 Python has automatic memory management

 Python is flexible with both procedural oriented and object oriented

programming

 Python is easy to learn, read and maintain

It is very flexible with the console program, Graphical User Interface (GUI)

applications, Web related programs etc.

POINTS TO REMEMBERWHILE WRITING A PYTHON PROGRAM

 Case sensitive : Example - In case of print statement use only

lower case and not upper case, (See the snippet below)

Fig1. Print Statement

 Punctuation is not required at end of the statement

 In case ofstring use single or double quotes i.e. ‘ ’ or “ ”

 Must use proper indentation:The screen shotsgiven below show, how

the value of “i” behaves with indentation and without indentation.

SCSA1204- Python Programming

4

Fig 2 indentation

 Special characters like (,),# etc.are used

 () ->Used in opening and closing parameters of functions

 #-> The Pound sign is used to comment a line

1.2 TWO MODES OF PYTHON PROGRAM

Python Program can be executed in two different modes:

 Interactive mode programming

 Script mode programming

SCSA1204- Python Programming

5

Interactive Mode Programming

It is a command line shell which gives immediate output for each statement,

while keeping previously fed statements in active memory. This mode is used

when a user wishes to run one single line or small block of code. It runs very

quickly and gives instant output. A sample code is executed using interactive

mode as below.

Fig 4 sample code is executed using interactive mode

 Interactive mode can also be opened using the following ways:

i) From command prompt c :> users\\...>python

SCSA1204- Python Programming

6

Fig 5 interactive mode

The symbol “>>>” in the above screen indicates that the Python environment

is in interactive mode.

ii) From the start menu select Python (As shown below)

Fig 6 steps in opening

SCSA1204- Python Programming

7

Script Mode Programming

When the programmer wishes to use more than one line of code or a block of

code, script mode is preferred. The Script mode works the following way:

i) Open the Script mode

ii) Type the complete program. Comment, edit if required.

iii) Save the program with a valid name.

iv) Run

v) Correct errors, if any,Save and Run until proper output

The above steps are described in detail below:

i) To open script mode, select the menu “IDLE (Python

3.7 32-bit)” from start menu

Fig 7 IDLE (Python 3.7 32-bit)

ii) After clicking on the menu “IDLE (Python 3.7 32-

bit)” , a new window with the text Python 3.7.2 Shell will be

opened as shown below:

SCSA1204- Python Programming

8

Fig 8 Python 3.7.2 Shell

iii) Select File New, to open editor. Type the complete program.

iv) Select File again; Choose Save.

This will automatically save the file with an extension “.py”.

v) Select Run Run Module or Short Cut Key F5 (As shown in

the screen below)

Fig 9. Run Module or Short Cut Key F5

The output of the program will be displayed as below:

SCSA1204- Python Programming

9

VARIABLES:

Variable is the name given to a reserved memory locations to store

values. It is also known as Identifier in python.

Need for variable:

Sometimes certain parameters will take different values at different

time.Hence, in order to know the current value of such parameter we need to

have a temporary memory which is identified by a name that name is called as

variable. For example, our surrounding temperature changesfrequently.In

order to know the temperature at a particular time, we need to have a variable.

Naming and Initialization of a variable

1. A variable name is made up of alphabets (Both upper and

lower cases) and digits

2. No reserved words

3. Initialize before calling

4. Multiple variables initialized

5. Dynamic variable initialization

i.Consist of upper and lower case alphabets,Numbers (0-9).E.g. X2

In the above example, a memory space is assignedto variable

X2. The value of X2 is stored in this space.

>> Sum of a and b is: 30

SCSA1204- Python Programming

10

ii.Reserved words should not be used as variables names.

Fig 10. “and” is a reserved word

In the above example “and” is a reserved word, which leads to Syntax

error

iii. Variables must be initialized before it called , else it reports “is

not defined ” error message as below E.g.: a=5 print(a)

Fig 11 “a” is called before it initialized

SCSA1204- Python Programming

11

In the above example “a” is called before it initialized. Hence, the

python interpreter generates the error message:NameError: ‘a’ is not

defined.

iv. Multiple variables can be initialized with a common value.

E.g.: x=y=z=25

Fig 12 Multiple variables

In the above three variables x,y,z is assigned with same value 25.

v.Python also supports dynamic variable initialization. E.g.: x,y,z=1,2,3

Fig 13 dynamic variable initialization

Proper spacing should be given

SCSA1204- Python Programming

12

print (10+20+30) bad style

print (20 + 30 + 10) good style

Expression:

An expression is a combination ofvariables, operators, values and calls

to functions. Expressions need to be evaluated.

Need for Expression:

Suppose if you wish to calculate area.Area depends on various

parameters in different situations. E.g. Circle, Rectangle and so on…

In order to findarea of circle,the expression π * r * r must be evaluated

and for the rectangle the expression is w * l in case of rectangle. Hence, in this

case a variable / value / operator are not enough to handle such situation. So

expressions are used. Expression is the combination of variables, values and

operations.

A simple example of an expression is 10 + 15. An expression can be

broken down into operators and operands. Few valid examples are given

below.

SCSA1204- Python Programming

13

Fig 14 expression

Fig 15 expression

Invalid Expression:

Always values should be assigned in the right hand side of the variable, but in

the below example ,the value is given in the left hand side of the variable,

which is an invalid syntax for expression.

SCSA1204- Python Programming

14

Fig 16 invalid Expression

Data Types:

A Data type indicates which type of value a variable has in a program.

However a python variables can store data of any data type but it is necessary

to identify the different types of data they contain to avoid errors during

execution of program. The most common data types used in python are

str(string), int(integer) and float (floating-point).

Strings: Sequence of characters inside single quotes or double quotes.

E.g. myuniv = “Sathyabama !..”

Integers: Whole number values such as 50, 100,-3

Float: Values that use decimal point and therefore may have fractional point

E.g.: 3.415, -5.15

By default when a user gives input it will be stored as string. But strings

cannot be used for performing arithmetic operations. For example while

attempting to perform arithmetic operation add on string values it just

SCSA1204- Python Programming

15

concatenates (joins together) the values together rather performing addition.

For example : ‘25’ + ‘20’ = ‘45’ (As in the below Example)

Fig 17 arithmetic operation add on string values

Fortunately python have an option of converting one date type into another

data type (Called as “Casting”) using build in functions in python. The build

function int() converts the string into integer before performing operation to

give the right answer. (As in the below Program)

Fig 18 type casting

SCSA1204- Python Programming

16

Compound Data Types in Python:

i) List

The List is an ordered sequence of data items. It is one of the flexible and very

frequently used data type in Python. All the items in a list are not necessary to

be of the same data type.

Declaring a list is straight forward methods. Items in the list are just separated

by commas and enclosed within brackets [].

>>> list1 =[3.141, 100, ‘CSE’, ‘ECE’, ‘IT’, ‘EEE’]

Table 1 Methods used in list

list1.append(x) To add item x to the end of the list “list1”

list1.reverse() Reverse the order of the element in the list “list1”

list1.sort() To sort elements in the list

list1.reverse() To reverse the order of the elements in list1.

ii) Tuple

Tuple is also an ordered sequence of items of different data types like list. But,

in a list data can be modified even after creation of the list whereas Tuples are

immutable and cannot be modified after creation.

The advantages of tuples is to write-protect data and are usually very fast

when compared to lists as a tuple cannot be changed dynamically.

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple

SCSA1204- Python Programming

17

The elements of the tuples are separated by commas and are enclosed inside

open and closed brackets.

>>> t = (50,'python', 2+3j)

Table 2 Tuple

List Tuple

>>> list1[12,45,27]

>>> list1[1] = 55

>>> print(list1)

>>> [12,55,27]

>>> t1 = (12,45,27)

>>> t1[1] = 55

>>> Generates Error Message

Because Tuples are immutable

i) Set

The Set is an unordered collection of unique data items.Items in a set are not

ordered, separated by comma and enclosed inside { } braces. Sets are helpful

inperforming operations like union and intersection. However, indexing is not

done because sets are unordered.

Table 3 Set

List Set

>>> L1 = [1,20,25]

>>> print(L1[1])

>>> 20

>>> S1= {1,20,25,25}

>>> print(S1)

>>> {1,20,25}

>>> print(S1[1])

https://www.programiz.com/python-programming/set

SCSA1204- Python Programming

18

>>>Error , Set object does not support

indexing.

SCSA1204- Python Programming

19

List Vs Set

ii) Dictionary

The Python Dictionary is an unordered collection of key-value

pairs.Dictionaries are optimized for retrieving data when there is huge volume

of data. They provide the key to retrieve the value.

In Python, dictionaries are defined within braces {} with each item being a

pair in the form key:value. Key and value can be of any type.

>>> d1={1:'value','key':2}

>>> type(d)

Table 4 Python’s built-in data type conversion functions

Function Description Out Put

int(x) Converts x into integer

whole number

>>>a = int(input("Enter a"))

>>>b = int(input("Enter b"))

>>>c = a + b

>>>print("Sum is ",c)

https://www.programiz.com/python-programming/dictionary

SCSA1204- Python Programming

20

Function Description Out Put

float(x) Converts x into floating-

point number

>>> x = 5

>>> print(float(5))

>>> 5.0

str(x) Converts x into a string

representation

>>> x = 30

>>> y = 70

>>> z = str(x) + str(y)

>>> print(z)

>>> 3070

chr(x) Converts integer x into a

character

>>> x = 65

>>> print(chr(x))

>>> A

>>>

hex(x) Converts integer x into a

hexadecimal string

>>> x = 14

>>> print(hex(x))

>>> 0xe

oct(x) Converts integer x into an

octal string

>>> x = 9

>>> print(oct(x))

>>> 0o11

However to identify the data type of a variable, an in-built python

function “type ()” is used. (Example Below)

SCSA1204- Python Programming

21

Fig 19 in-built python function “type ()”

Table5 Python Built-in Functions

Simple Functions

Function Description Output

abs() Return the absolute value of a

number. The argument may be

an floating point number or a

integer.

>>> a = -10

>>> print(abs(a))

>>> 10

max() Returns the largest number from

the list of numbers

>>> max(12,20,30)

>>> 30

min() Returns the smallest number

from the list of numbers

>>> min(12,20,30)

>>> 12

pow() Returns the power of the given

number

>>> pow(5,2)

>>>25

round() It rounds off the number to the

nearest integer.

E.g. 1:

>> round(4.5)

https://docs.python.org/3/library/functions.html#abs

SCSA1204- Python Programming

22

>> 5

Eg 2

>> round(4.567,2)

>> 4.57

Mathematical Functions (Using math module)

ceil(x) It rounds x up to its nearest

integer and returns that integer

>>math.ceil(2.3)

>> 3

>>math.ceil(-3.3)

>> -3

floor(x) It rounds x down to its nearest

integer and returns that integer

>>math.floor(3.2)

>> 3

>>math.floor(-3.4)

>> -4

Function Description Example

cos(x) Returns the cosine of x , where

x represents angle in radians

>> math.cos(3.14159/2)

>> 0

>> math.cos(3.14159)

>> -1

sin(x) Returns the sine of x, where x

represents angle in radians

>> math.sin(3.14159/2)

>> 1

>> math.sin(3.14159)

>> 0

exp(x) Returns the exponential of x to

the base ‘e’. i.e. ex

>> math.exp(1)

>> 2.71828

log(x) Returns the logarithm of x for

the base e (2.71828)

>>> math.log(2.71828)

>>> 1

log(x,b) Returns the logarithm of x for

the specified base b.

>>> math.log(100,10)

>>> 2

sqrt(x) Returns the square root of x >>> math.sqrt(16)

>>> 4

SCSA1204- Python Programming

23

Note:To include the math module, use the following command:

 import math

SCSA1204- Python Programming

24

Conditional Statements

When there is no condition placed before any set of statements , the

program will be executed in sequential manure. But when some condition is

placed before a block of statements the flow of execution might change

depends on the result evaluated by the condition. This type of statement is also

called decision making statements or control statements. This type of

statement may skip some set of statements based on the condition.

Logical Conditions Supported by Python

 Equal to (==) Eg: a == b

 Not Equal (!=)Eg : a != b

 Greater than (>) Eg: a > b

 Greater than or equal to (>=) Eg: a >= b

 Less than (<) Eg: a < b

 Less than or equal to (<=) Eg: a <= b

Table 6 Indentation (Structure of C- Program Vs Python)

C Program Python

x = 500

y = 200

if (x > y)

{

 printf("x is greater than y")

}

else if(x == y)

{

 printf("x and y are equal")

}

else

{

x = 500

y = 200

if x > y:

 print("x is greater than y")

elif x == y:

 print("x and y are equal")

else:

 print("x is less than y")

Indentation (At least one White Space

SCSA1204- Python Programming

25

 printf("x is less than y")

}

instead of curly bracket)

Structure of C- Program Vs Python

 To represent a block of statements other programming languages like

C, C++ uses “{ …}” curly – brackets , instead of this curly braces python uses

indentation using white space which defines scope in the code. The example

given below shows the difference between usage of Curly bracket and white

space to represent a block of statement.

Without proper Indentation:

x = 500

y = 200

if x > y:

print("x is greater than y")

In the above example there is no proper indentation after if statement which

will lead to Indentation error.

If statement :

The ‘if’ statement is written using “if” keyword, followed by a condition.If

the condition is true the block will be executed. Otherwise, the control will

be transferred to the firststatement after the block.

Syntax:

if<Boolean>:

 <block>

SCSA1204- Python Programming

26

In this statement, the order of execution is purely based on the evaluation of

boolean expression.

SCSA1204- Python Programming

27

Example:

x = 200

y = 100

if x > y:

 print("X is greater than Y")

print(“End”)

Output :

X is greater than Y

End

In the above the value of x is greater than y , hence it executed the print

statement whereas in the below example x is not greater than y hence it is not

executed the first print statement

x = 100

y = 200

if x > y:

 print("X is greater than Y")

print(“End”)

Output :

End

SCSA1204- Python Programming

28

Elif

The elif keyword is useful for checking another condition when one condition

is false.

Example

mark = 55

if (mark >=75):

print("FIRST CLASS")

elif mark >= 50:

print("PASS")

Output :

SCSA1204- Python Programming

29

Fig20 elif keyword

In the above the example, the first condition (mark >=75) is false then the

control is transferred to the next condition (mark >=50), Thus, the keyword

elif will be helpful for having more than one condition.

Else

The else keyword will be used as a default condition. i.e. When there are

many conditions, whentheif-condition is not trueand all elif-conditionsare

also not true, then else part will be executed..

Example

mark = 10

if mark >= 75:

print("FIRST CLASS")

elif mark >= 50:

print("PASS")

else:

print("FAIL")

SCSA1204- Python Programming

30

Fig 21 else keyword

In the example above, condition 1 and condition 2 fail.Noneof the

preceding condition is true. Hence,the else part is executed.

Iterative Statements

Sometimes certain section of the code (block) may need tobe repeated again

and again as long as certain condition remains true. In order to achieve this,

the iterativestatements are used.The number of times the block needs to be

repeated is controlled by the test condition used in that statement. This type

of statement is also called as the “Looping Statement”. Looping statements

add a surprising amount of new power to the program.

Need for Looping / Iterative Statement

Suppose the programmer wishes to display the string “Sathyabama !...” 150

times. For this,one can use the print command 150 times.

150 times

SCSA1204- Python Programming

31

The above method is somewhat difficult and laborious. The same result can

be achieved by a loop using just two lines of code.(As below)

Types of looping statements

1) for loop

2) while loop

The ‘for’ Loop

 The forloop is one of the powerful and efficient statements in

python which is used very often. It specifies how many times the body of

the loops needs to be executed. For this reason it uses control variables

which keep tracks,the count of execution. The general syntax of a ‘for’ loop

looks as below:

for<variable>in range (A,B):

<body of the loop >

print(“Sathyabama
!...”)

print(“Sathyabama
!...”)
…..
…..

print(“Sathyabama
!...”)

for count in
range(1,150) :

print (“Sathyabama
!...”)

SCSA1204- Python Programming

32

Flow Chart:

Fig 22 for Flow Chart

Example 1: To compute the sum of first n numbers (i.e. 1 + 2 + 3 + …….

+ n)

Sum.py

total = 0

n = int (input ("Enter a Positive Number"))

for i in range(1,n+1):

total = total + i

print ("The Sum is ", total)

Note:Why (n+1)? Check in table given below.

SCSA1204- Python Programming

33

Output:

Fig 23statement total = total + i

In the above program, the statement total = total + i is repeated again and

again ‘n’ times. The number of execution count is controlled by the variable

‘i’. The range value is specified earlier before it starts executing the body of

loop. The initial value for the variable i is 1 and final value depends on ‘n’.

You may also specify any constant value.

 The range() Function:

The range() function can be called in three different ways based on the

number of parameters. All parameter values must be integers.

Table 7 range()

Type Example Explanation

SCSA1204- Python Programming

34

range(end) for i in range(5):

 print(i)

Output :

0,1,2,3,4

This is begins at 0.

Increments by 1. End just

before the value of end

parameter.

range(begin,end) for i in range(2,5):

 print(i)

Output :

2,3,4

Starts at begin, End before

end value, Increment by 1

range(begin,end,step) for i in range(2,7,2)

 print(i)

Output :

2,4,6

Starts at begin, End before

end value, increment by

step value

Example:To compute Harmonic Sum (ie: 1 + ½ + 1/3 + ¼ + …..1/n)

harmonic.py

total = 0

n= int(input("Enter a Positive Integer:"))

for i in range(1,n+1):

total+= 1/i

print("The Sum of range 1 to ",n, "is", total)

Output:

SCSA1204- Python Programming

35

Fig 24compute Harmonic Sum

Example:

Factorial of a number "n"

n= int(input("Enter a Number :"))

factorial = 1

Initialize factorial value by 1

Toverify whether the given number is negative / positive / zero

if n < 0:

print("Negative Number , Enter valid Number !...")

elif n == 0:

print("The factorial of 0 is 1")

else:

SCSA1204- Python Programming

36

for i in range(1,n + 1):

factorial = factorial*i

print("The factorial of" ,n, "is", factorial)

Output:

Fig 25factorial

The while Loop

The while loop allows the program to repeat the body of a loop, any

number of times, when some condition is true.The drawback of while loop

is that, if the condition not proper it may lead to infinite looping. So the

user has to carefully choose the condition in such a way that it will

terminate at a particular stage.

SCSA1204- Python Programming

37

Flow Chart:

Fig 26 Flow chart while Loop

Syntax:

while (condition):

 <body of the loop>

SCSA1204- Python Programming

38

In this type of loop, The executionof the loopbody is purely based on the

output of the given condition.As long as the condition is TRUE or in other

words until the condition becomes FALSE the program will repeat the body

of loop.

Table 8 Example

Valid Example Invalid Example

i = 10

while i<15 :

 print(i)

 i = i + 1

Output :

10,11,12,13,14

i = 10

while i<15 :

 print(i)

Output :

10,10,10,10……..

Indeterminate number of times

Example:Program to display Fibonacci Sequence

Program to Display Fibonacci Sequence based on number of terms

n

n = int(input("Enter number ofterms in the sequence you want to

display"))

n1 represents -- > first term and n2 represents --> Second term

n1 = 0

SCSA1204- Python Programming

39

n2 = 1

count = 0

count -- To check number of terms

if n <= 0: # To check whether valid number of terms

print ("Enter a positive integer")

elif n == 1:

print("Fibonacci sequence up to",n,":")

print(n2)

else:

print("Fibonacci sequence of ",n, “ terms :”)

while count < n:

print(n1,end=' , ')

nth = n1 + n2

 n1 = n2

 n2 = nth

count = count + 1

Input / Output Statement:

Programmer often has a need to interact with users, either to get data or to

provide some sort of result.

For Example: In a program to add two numbers, first the program needs to

have an input of two numbers (The numbers which they prefer to add) and

after processing, the output should be displayed. So to get the input of two

SCSA1204- Python Programming

40

numbers, the program need to have an Input Statement and in order to display

the result i.e. the sum of two numbers, it needs to have an Output Statement.

Input Statement: Helpful to take input from the user through input

devices like keyboard.In Python, the standard input function is

‘input()’

The syntax for input function is as follows:

input()

However, to get an input by prompting the user, the following form is

used: input(‘prompt’)

where prompt is the string, which programmer wish to display on the

screen to give more clarity about the input data. It is optional.

Example:

 >>>num = input('Enter a number: ')

The above statement will wait till the user, enters the input value.

Output:

 Enter a number:

 >>>num

 '10' # Input data entered by the user

Output Statement:

SCSA1204- Python Programming

41

The output statement is used to display the output in the standard

output devices like monitor (screen).The standard output function

“print()” is used.

Syntax:

 print(‘prompt’)

where prompt is the string, which programmer wish to display on the

screen

Example 1:

print('Welcome to the Python World !')

Output:

Welcome to the Python World !

Example 2:

X = 5

print ('The value of a is', X)

Output:

The value of X is 5

Example 3:

print(1,2,3,4)

SCSA1204- Python Programming

42

Output: 1 2 3 4

Example 4:

print(100,200,300,4000,sep='*')

Output:

100*200*300*4000

Example 5:

print(1,2,3,4,sep='#',end='&')

Output:

1#2#3#4&

Output formatting

Sometimes we would like to format our output to make it look

attractive. This can be done by using the str.format() method. This

method is visible to any string object.

>>>x = 5; y = 10

>>>print('The value of x is {} and y is {}'.format(x,y))

The value of x is5and y is10

SCSA1204- Python Programming

43

Here, the curly braces {} are used as placeholders. We can specify the order

in which they are printed by using numbers (tuple index).

print('I love {0} and {1}'.format('bread','butter'))

print('I love {1} and {0}'.format('bread','butter'))

Output

I love bread and butter

I love butter and bread

We can even use keyword arguments to format the string.

>>> print('Hello {name}, {greeting}'.format(greeting =

'Goodmorning', name = 'John'))

Hello John, Goodmorning

Object Oriented Programming:

Python supports object oriented programming concepts. The basic

entities in object oriented programming are Class, Objects, and

Methods. It also supports some of the techniques in real world entities

like inheritance, Data hiding, Polymorphism, Encapsulation,

MethodOverloading etc., in programming. Object orientation helps to

utilize GUI environment efficiently. Some of the otherprogramming

languages which support OOPS concepts are C++, JAVA, C#.net,

VB.net etc.

SCSA1204- Python Programming

44

Need for Object Oriented Programming:

 The object oriented programming is having certain advantage

when compared to the normal procedure oriented programming. The

main advantage is to provide access specifiers like Public, Private and

Protected. Oops provide data hiding technique which is more secured

than procedure oriented programming. Code reusability is one of the

key features of OOPs Concept.

Class: It is a template or blue print created by the programmer – which

defines how the object’s data field and methods are represented.

Basically class consists of two parts: data member and function

member (methods).

Object: It is an instance of a Class;Any number objects can be created.

A Class is a template for creating an object.

Python provides a special method, __init__ ,called as initializer, to

initialize a new object when it is created.

Class Name: Student

Data Fields:

 Name,

Mark1,Mark2,Mark3

Methods:

 Average ()

 Rank ()

SCSA1204- Python Programming

45

Example :

class Student:

def __init__(self, name, regno):

 self.name = name

 self.regno = regno

 s1 = Student("John", 36)

print(s1.name)

print(s1.regno)

In the above example “Student” is the class name, name andregno

are the data fields and s1 is the created object,

Note :

__init__ is a method or constructor in Python. This method is

automatically called to allocate memory when a new object/ instance

of a class is created. All classes have the __init__ method.

Output :

>>> John

 36

Let us create a method (Function member) for the above class

class Student:

def __init__(self,name, regno):

https://www.edureka.co/blog/python-programming-language

SCSA1204- Python Programming

46

 self.name = name

self.regno = regno

def display(self):

print("Name of the student is " + self.name)

s1 = Student("James", 43)

s1.display()

In the above example “display” is the method used to display the

student name.

Inheritance:

Inheritance allows to create anew class (Child Class) from the existing

class (Parent Class).

The child class inherits all the attributes of its parent class.

 Parent class is the class, whose properties are being inherited by

subclass. Parent class is also called as Base class or Super Class.

 Child class is the class that inherits properties from another class. The

child class is also called as Sub class or Derived Class.

 Example :

SCSA1204- Python Programming

47

class Person:

def __init__(self, fname, lname):

self.firstname = fname

self.lastname = lname

def printdetails(self):

print(self.firstname, self.lastname)

#Use the Person class to create an object and then execute the

printdetails method:

x = Person("John", "Doe")

x.printdetails()

classEmployee(Person):

pass

y = Employee("Mike", "Olsen")

y.printdetails()

Output :

>>>

 RESTART:

C:/Users/Administrator/AppData/Local/Programs/Python/Python37-

32/f1.py

John Doe

Mike Olsen

>>>

SCSA1204- Python Programming

48

In the above example the base class is Person. The first object “x” is created

through the base class “Person” and the method printdetails() is invoked

with that object which produces an output “John Doe”. Again, another

object “y” is created through derived class “Employee” and the same

method printdetails() (belongs to base class) is invoked to produce the

output “Mike Olsen”. Thus, the derived class is having the ability to invoke

the method from base class just because ofthe inheritance property which

reduces the code length or in other words it is helpful for reusability of

code.

Note: Use the pass keyword when the programmer does not wish to

add any other properties or methods to the derived class.

Example 2:

class Person:

def __init__(self, fname, lname):

self.firstname = fname

self.lastname = lname

def printdetails(self):

print(self.firstname, self.lastname)

#Object For Base Class

x = Person("Paul", "Benjamin")

x.printdetails()

SCSA1204- Python Programming

49

class Employee(Person):

def __init__(self, fname, lname):

 Person.__init__(self, fname, lname)

 self.doj = 2019

defgreetings(self):

print("Welcome", self.firstname, self.lastname, "who joined in the

year ", self.doj)

Object for derived class

y = Employee("Samuel", "Ernest")

y.printdetails()

y.greetings()

In the above example a new method greetings() is included in the derived

class, Thus the derived class object is capable of invoking the method

present inside base class as well as its own methods.

printdetails() -- method present inside base class Person.

greetings() -- method present inside derived class Employee.

The object “y” is able to invoke both the methods printdetails() and

greetings().

Questions :

1. Compare a) List and Tuple b) List and Set

2. What is type conversion in Python?

SCSA1204- Python Programming

50

3. Is indentation required in python?

4. What is __init__?

5. How can you randomize the items of a list in place in Python?

6. How do you write comments in python?

7. What is a dictionary in Python?

8. Does Python have OOps concepts?

9. Write a program in Python to check if a sequence is a Palindrome.

10. Write a program in Python to check if a number is prime.

11. How to create an empty class in Python?

12. Write a sorting algorithm for a numerical dataset in Python.

SCSA1204- Python Programming

1

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-II Python Programming – SCSA1204

SCSA1204- Python Programming

2

UNIT II

FILES AND EXCEPTIONS HANDLING, MODULES,

PACKAGES

FileOperations–Iterators-Exceptionhandling-RegularExpressions-Creating

Modules-Import Statement-Introduction to PIP-Installing Packages via PIP-

Using Python Packages.

2.1 FILE OPERATIONS

An object that stores data, settings or programming commands in a computer

system is called as a file. There are three major file operations:

 Opening a file

 Performing file operations using Read or Write

 Closing the file

2.1.1. File Open

Method:open()

Purpose: To open a file

Syntax:

File_object=open(filename,Access_mode,buffering)

Attributes:

SCSA1204- Python Programming

3

i.Filename – Name of the file

ii.Access_mode- Mode of Access (Read, Write, Append)

iii.Buffering – 0 (no buffer), 1 (buffer)

Example:

f= open(‘abc.txt’) (or)

f=open(“D:/Mypython/abc.txt”)

2.1.1.1 File Access Modes

 Table 2.1:FileAccess Modes

File Mode Description

r Read mode

w Write mode

x Create and open a file

a Appending at end of file

t Text mode

b Binary mode

+ Update mode

Example:

f= open(‘abc.txt’, r)

The above statement opens the file ‘abc.txt’ in read mode.

SCSA1204- Python Programming

4

2.1.1.2 Example for File Access modes and Properties

The above code is a sample snippet for understanding the file modes and file

properties.

2.1.2.File Reading and Writing

2.1.2.1. File write:

write() method is used to write the contents to a file. The following code is for

writing the contents to the file aa.txt.

fo=open(‘aa.txt’,’w’)

fo.write(‘hai \n how are you?’)

fo.close()

SCSA1204- Python Programming

5

Output:

In the above example, the contents of the file can be viewed by opening the

file ‘aa.txt’.

2.1.2.2. Reading a file:

read() method is used to read the contents from a file. The following code is

for reading the first 10 bytes of the file ‘aa.txt’.

SCSA1204- Python Programming

6

2.1.3. File Positions

To know about the file offset positions in Python, the following methods are

used:

 seek()

 tell()

seek():

Syntax:seek(offset,from)

Description: Sets the file's current position at the offset. The offset values are

as follows:

 0 : reference (beginning of file(default))

 1 : current (current file position)

 2 : end (end of file)

tell() :

Description: Prints the current position of file pointer.

2.1.3.1.File Offset

SCSA1204- Python Programming

7

In the above code, initially the position of the file pointer is at 0. After reading

the contents, the position of the file pointer is moved to 10 (from 0 to 9). Now

up on giving the command seek(2,0), the file will be read from the beginning

after skipping the first 2 positions.

Detailed Example:

SCSA1204- Python Programming

8

The contents of the file aa.txt is now:

Hai , How are you?

Welcome to Sathyabama

School of Computing

Department of Computer Science & Engineering

 2.1.3.2. Reading a file Line by line

In order to read a file till the End of File(EoF), while loop is used.

2.1.3.3. Modifying a file

SCSA1204- Python Programming

9

2.1.4. Alternate way for opening and closing a file:

Syntax:

with open(‘filename’) as file object:

 No need to close the file

2.1.5. read() &readline()

 read() – read entire file content from current position

 readline() – read the particular line of file pointer

2.2 ITERATORS

Iterator in Python is a type which could be implemented in for loops. An

iterator is an object that returns data one at a time.

For example if we have a list A=[1,2,3] , then iterator is used to return the

items in the list one at a time.

There are two special Methods:

 __iter__() : returns iterator from list

SCSA1204- Python Programming

10

 __next__(): returns next element in the list

Iterable objects in Python are:

 List

 Tuple

 String

2.2.1. Example Iterator:

In the above code the list items of mylist object are retrieved one by one using

‘next()’ method. When the list reaches its end and if next() method is used , it

shows error in the output.

2.2.2. Example for _ _next_ _()

Alternate way for retrieving the items is to use for loop and retrieve the item

using __next__() inside the for loop. To find the length of the list ‘len()’

method is used.

SCSA1204- Python Programming

11

2.2.3. Building User defined iterators

We can also build our own iterators. The following code is for implementing

user defined iterators for finding powers of two.

2.2.4. Python Infinite Iterators:

Ther are two Arguments in infinite iterators:

SCSA1204- Python Programming

12

 Callable Object: A built in function

 Sentinels: The terminating value

The following is an example for infinite iterator. next(inf) will always return

0, since the sentinel 1 not at all reaches.

Similarly , the following code uses while loop to print the odd numbers

starting from 1 to infinite number of times. The execution is manually

terminated by providing keyboard interrupt(Ctrl+c).

2.2.5. Python Generators

SCSA1204- Python Programming

13

Generator functions are alternates for iterators that contain one or more yield()

statements. Methods like __iter__(), __next__() are implemented and are

iterated using next() automatically. Local variables are remembered between

successive calls. When function terminates, StopIterator exception is raised

automatically.

2.2.5.1.Example

In the following code, n value is initiated to 1 in the first step. In the second

step n is incremented by two and the value yielded is now 3. In the last step n

is incremented by 1 and now the value is 4.

The following is an example for reversing a String using python Generator.

Here the string ‘hello’ is passed to the function ‘rev()’. Using for loop, the

SCSA1204- Python Programming

14

string is yielded from the last character(len-1) to -1(0thposition minus 1) as

per the syntax.

2.2.5.2. Advantages of Generators

 Easy to implement

 Memory efficient

 Represents infinite stream

 Generators can be pipelined

2.3. EXCEPTION HANDLING

Exception is an event that occurs during execution of a Python program

disrupting the normal flow of execution. Exceptions are handled using try and

except blocks in Python. There are built in exception classes for handling

common exceptions. BaseException is the parent class for all built in

Exception classes. Fig 2.1 represents the Standard Exception class hierarchy.

SCSA1204- Python Programming

15

Fig 2.1 Standard Exception class hierarchy

2.3.1. Exception Handling Syntax and Examples

While handling exception, keep the suspicious code in try block and following

the try block, include except: statement

SCSA1204- Python Programming

16

The following code raises exception when a run time error occurs upon

writing the file ‘aa.txt’. In case of normal program flow, the else clause will

be invoked and the statements in else block will be executed.

IOError exception is also invoked when we intend to write a file when it is

opened in ‘read’ mode. The following code depicts this case.

2.3.1.1. Except Clause without specifying any exception

In python, we can also have except clause with no specific exception. In this

case any type of exception can be handled. The following is the syntax for

except statement with no specific exception type.

SCSA1204- Python Programming

17

Syntax:

Example:

In the following code, except clause is alone given, without mentioning the

type of exception. In the sample runs when the value of ‘b’ is given as 0,

exception is caught and ‘divide by zero error’ is printed. Whereas, in case of

normal run, the output is displayed.

SCSA1204- Python Programming

18

2.3.1.2. Except Clause with Multiple exceptions:

There is another way of specifying multiple exceptions in the single except

clause. When multiple exceptions are thrown, the first exception which is

being caught will alone be handled. The syntax is given as follows.

Syntax:

Example:

2.3.1.3 Optional finally clause

SCSA1204- Python Programming

19

Like other object oriented programming languages, try has optional finally

clause. The statements given in finally block will be executed even after the

exceptions are handled.

2.3.2. Raising Exceptions

Exception can be raised from a function:

raise ExceptionClass(‘Something Wrong’)

Example:

 ex=RunTimeError(‘Something Wrong’)

 raise ex

 OR

Raise RunTimeError(‘Something Wrong’)

SCSA1204- Python Programming

20

2.3.3. Custom Exception/User Defined Exception

In Python custom exception or otherwise called as user defined exception can

be handled by creating a new user defined class which is a derived class from

Exception class.

Fig. 2.2: Inheriting the Standard Exception class

In the following example two user defined exception classes are derived from

the parent class Error which inherits the standard Exception class. The number

guessed is 10. When any number greater than 10 is given as input

TooLargeErr exception is thrown and when the number is less than 10,

TooSmallErr exception is thrown.

SCSA1204- Python Programming

21

2.4 REGULAREXPRESSIONS

Regular Expressions can also be called as RE/regex/regex patterns .RE’s are

specialized programming languages embedded inside Python. RE’s are

available by importing re module. RE patterns are compiled into a series of

bytecodes when executed by a matching engine written in C language. REs

could not perform all string processing tasks. REs are applicable in Pattern

recognition problems. RE module has to imported for calling re methods like:

split(), findall(), search() etc.

Syntax:

import re

SCSA1204- Python Programming

22

2.4.1 RE matching characters

Character matching is very important for identifying patterns and matching

them with the given input. The following table describes some of the

important matching characters used in Python REs.

Table: 2.2 Python Character Matching

Matching Character Description

[] Finding a range of characters [a-z]

\w Alphanumeric character [a-zA-Z0-9]

\W Non alpha numeric characters :^ [a-zA-Z0-9]

* Repeating a character [0] or more times

() Grouping or including

+ 1 or more

? 0 or 1

{x} Exact no. of match

{a,b} In range from a to b

\any_number Matching the group of same number.

\A Only at the start of the string.

\Z Only at the end of the string

\b Empty string only at the beginning or end of a word.

\B Empty string match not at the beginning or end of a

word
\d [0-9]

\D ^[0-9]

\s Space

\S Non space

SCSA1204- Python Programming

23

2.4.2. RE Methods

2.4.2.1. The search() method

Method:search()

Description: Returns true if the search string is found.

Example:

The above code returns the Match object with a span position from 0 to n-1

when the search information is found.

2.4.2.2. The split() method

Method:split()

Description: For creating space in the string.

Example:

SCSA1204- Python Programming

24

In the above code, split() method is applied twice on the string, ‘This is a

string’. When the matching character \s is applied, the spaces in the string are

split up. When the regular expression r’([a-i]) is applied, the string is split

ignoring the range of characters from a to i.

2.4.2.3. The findall () method

Method:findall()

Description: Finds all the matches and returns them as a list of strings.

Example:

2.4.2.4. The match() method

Method:match()

Description:To match the RE pattern to string with optional flags.

SCSA1204- Python Programming

25

Example:

2.4.2.5. The finditer() method

Method: finditer()

Description:Generating an iterator.

Example:

2.4.2.6. The compile() method

Method:compile()

Description: Compiling a pattern without rewriting it.

SCSA1204- Python Programming

26

Example:

In the above code the compiled pattern is ‘Python’. The result objects return

each and every occurrence of the matched pattern line by line. Other Regular

Expression methods are given in Table 2.2 and RE Compilation flags are

given in Table 2.3.

Table 2.3 Other RE methods

Method/Attribute Purpose

group() Returns the string matched by the RE

start() Returns the starting position of the match

end() Returns the ending position of the match

span()
Returns a tuple containing the starting and ending

positions of the match

sub() Replaces the RE pattern and returns the modified string

SCSA1204- Python Programming

27

Table 2.4 RE Compilation Flags

Flag Syntax Description

ASCII re.A
Makes several escapes like \w,\b,\s and \d and match

only on ASCII characters

DOTALL re.S Match any character including newline

IGNORECASE re.I Case insensitive matches

MULTILINE re.M Multiline matching affecting ^ and $

LOCALE re.L Locale aware match(Localization API)

VERBOSE re.X Enables verbose RE

Example:

SCSA1204- Python Programming

28

2.4.3. Case Studies on Pattern Matching:

Case Study 1: Phone number verification

Case Study 2: Validating First name & Last name

Case Study 3: Email Address Verification

SCSA1204- Python Programming

29

Case Study 4: Web Scrapping

2.5 .PYTHON MODULES

2.5.1.Definition

A module is a library of functions used to provide any service. To incorporate

the service provided by any module, ‘import’ statement should be used in

python. Modules can be built in or user defined. Modules can be imported in

the current program using the import statement.

Syntax:

SCSA1204- Python Programming

30

 import module_name

Example: Time module , Math module

2.5.2.Sample Programs on Built in modules

2.5.2.1. The time module

2.5.2.2. The math module

2.5.3. Building Custom modules by Modularising functions

Files, containing the Python definitions and statements, can be created by the

user, and the same file can be imported on another Python program using

import statement. The following example explains importing a python

module(File1) over another python code(File 2).

Example:

SCSA1204- Python Programming

31

Let us have two different files File1 & File 2. If we want to import any

module of File1 into File2, then we need to import File1 module in File2

using ‘import’ statement.

File1.py

def max(n1,n2):

 if n1>n2:

 result=n1

 else:

 result=n2

 return result

File 2.py

import File1

x,y=eval(input('enter x and y'))

z=max(x,y)

print("the max is",z)

On running File2.py, we get the maximum of two values as output.

2.6 IMPORT STATEMENT

Python import statement enables the user to import particular modules in the

corresponding program.Import in Python is similar to #include header file in

C/C++. Python modules can get access to code from another module by

importing the file/function using import. The import statement is the most

SCSA1204- Python Programming

32

common way of invoking the import machinery, but it is not the only way.

Import statement consists of the import keyword along with the name of the

module.

The import statement involves two operations, it searches for a module and

it binds the result of the search to name in local scope. When a module is

imported, Python runs all of the code in the module file and made available

to the importer file.

When a module is imported then interpreter first searches it in sys.modules,

which is the cache of all modules which have been previously imported. If it

is not found then it searches in all built-in modules with that name, if it is

found then interpreter runs all of the code and made available to file. If the

module is not found then it searches for a file with the same name in the list

of directories given by the variable sys.path.

sys.path is a variable containing a list of paths that contains python libraries,

packages, and a directory containing the input script. For example a module

named math is imported then interpreter search it in a built-in modules, if it

is not found then it searches for a file named math.py in list of directories

given by sys.path.It searches for a particular module in its built-in modules

section at first. If it’s not found, it searches those modules in its current

directory.

A module is loaded only once in a particular program, without being

affected by the number of times the module is imported.

SCSA1204- Python Programming

33

Syntax:

import module_name

Example:

import collections

1. Importing class/functions from a module

Example:

fromcollections importOrderedDict

fromos importpath

frommath importpi

print(pi)

Output:

3.141592653589793

2. The import * Statement

All the methods and constants of a particular module can be imported using

import * operator.

frommath import*

print(pi)

print(floor(3.15))

Output:

3.141592653589793

3

SCSA1204- Python Programming

34

3. Python’s import as Statement

The import as statement helps the user provide an alias name to the original

module name.

python import as

importmath as M

print(M.pi)

print(M.floor(3.18))

Output:
3.141592653589793

3

4. Importing user-defined modules

We can import the functions of one program into another using its

name.Initially, we need to create a python code.

test.py:

defsub(a, b):

 returnint(a) -int(b)

deflower_case(str1):

 returnstr(str1).lower()

Then create another python script, wherein we need to import the above create

test.py script.

test2.py

importtest

print(test.sub(5,4))

SCSA1204- Python Programming

35

print(test.lower_case('SafA'))

Output:

1

safa

5. Importing from another directory

The importlib library is used to import a script from another

directory.Initially, we need to create a python script and define functions in it.

test1.py

defsub(a, b):

 returnint(a) -int(b)

deflower_case(str1):

 returnstr(str1).lower()

Then, we will create another python script and save it into another directory

and then import the functionalities from test1.py (which resides into another

directory).

design.py

importimportlib, importlib.util

 defmodule_directory(name_module, path):

 P =importlib.util.spec_from_file_location(name_module, path)

SCSA1204- Python Programming

36

 import_module =importlib.util.module_from_spec(P)

 P.loader.exec_module(import_module)

 returnimport_module

result =module_directory("result", "../inspect_module/test1.py")

print(result.sub(3,2))

print(result.lower_case('SaFa'))

Output:

1

safa

Another alternative way is to add the module directory to the sys.path list.

6. Importing class from another file

tests.py

classEmployee:

 designation =""

 def__init__(self, result):

 self.designation =result

 defshow_designation(self):

 print(self.designation)

classDetails(Employee):

SCSA1204- Python Programming

37

 id=0

 def__init__(self, ID, name):

 Employee.__init__(self, name)

 self.id=name

 defget_Id(self):

 returnself.id

design.py
importimportlib, importlib.util

defmodule_directory(name_module, path):

 P =importlib.util.spec_from_file_location(name_module, path)

 import_module =importlib.util.module_from_spec(P)

 P.loader.exec_module(import_module)

 returnimport_module

result =module_directory("result", "../Hello/tests.py")

a =result.Employee('Project Manager')

a.show_designation()

x =result.Details(4001,'Safa')

x.show_designation()

print(x.get_Id())

Output:
Project Manager

Safa

Safa

SCSA1204- Python Programming

38

2.7 INTRODUCTION TO PIP

In order to mange and install software packages Python use PIP as Package

Management System. PIP is written in Python and available in PyPI(Python

Package Index). PIP is otherwise known as PiP Installs Python or PIP installs

Packages.

2.7.1. Installing Packages via PIP

2.7.1.1 Steps for installing PIP

Step 1: Download get-pip.py and save this folder in the system’s local drive to

a folder on your computer.

Step 2: Open the command prompt and explore the folder containing get-

pip.py.

Step 3: Run the command: python get-pip.py.

2.7.1.2. Using online python compiler

Python codes can also be executed online without installing Python IDLE or

PIP packages. One of the weblink used for running python codes online is:

‘https://www.onlinegdb.com/online_python_compiler#’.

2.8. USING PYTHON PACKAGES FOR ADVANCED

PROGRAMMING

2.8.1. Python editors for Advanced Python Programming

The following are some of the python editors where Python libraries

necessary for advanced scientific programming are almost readily available.

https://www.onlinegdb.com/online_python_compiler

SCSA1204- Python Programming

39

If the Python library is not available then the command ‘pip install

lib_name’, could be given for installing the specific library.

 JuPYter Notebook

 Pycharm Community Edition & Professional Edition

 Wing IDE

 NINJA IDE

 Spyder

 Pyzo

2.8.2. Python Libraries for running real time projects

2.8.2.1.Numpy

Numpy is a package supporting multidimensional arrays and it is designed for

scientific computation purpose. Simple code to create a 3×5 array using

numpy is given as follows:

import numpy as np

a = np.arange(15).reshape(3, 5)

print(a)

print ('type of a', type(a))

#Output:

[[0 1 2 3 4] [5 6 7 8 9]

 [10 11 12 13 14]]

type of a <class 'numpy.ndarray'>

SCSA1204- Python Programming

40

Table 2.5: Universal Functions in Numpy

Function name Purpose Example

np.array() For creating arrays a = np.array([0, 1, 2, 3])

np.arrange() For formatting the array. Start

index, end index, step which are

the optional attributes.

b = np.arange(1, 9, 2)

output: [1,3,5,7]

np.linspace() For array line spacing with

attributes start, end and num-

points.

c = np.linspace(0, 1, 6)

np.reshape() To specify the array dimensions np.reshape(3,5) : forms a

3* 5 array

Table 2.6: Universal Functions in Numpy(Contd…)

Function

name

Purpose Example

np.sqrt() Finding square root of an

array

d=np.array([[100, 144, 256],[144, 4, 81]])

print(np.sqrt(d))

Output:

 [[10. 12. 16.]

 [12. 2. 9.]]

np.exp() Finding exponential power np.exp(2)

np.add() Adding values to an array np.add(a,10)

SCSA1204- Python Programming

41

 [[10 11 12 13 14]

 [15 16 17 18 19]

 [20 21 22 23 24]]

 2.8.2.2. Scipy

Scipy library is used for performing mathematical and scientific calculations.

Scipy can also be used for Engineering applications.

Syntax:

from scipy import module_name

Example:

import scipy

from scipy.constants import pi

print("sciPy - pi = %.16f"%scipy.constants.pi)

Output:

sciPy - pi = 3.1415926535897931

The following are the real time applications which can be implemented using

Scipy:

 Signal Processing

 Image manipulation

 Interpolation

 Optimization and fit

 Statistics and random numbers

 File input/output

 Special Function

SCSA1204- Python Programming

42

 Linear Algebra Operation

 Numerical Integration

 Fast Fourier transforms

 2.8.2.2. matplotlib

Matplotlib library is used for plotting graphs. The basic methods in matplotlib

are:

 Plot()- To plot X, Y axes.

 Show()- To display the plotted graph.

Example:

 Fig.2.3 Output

SCSA1204- Python Programming

79

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-III Python Programming – SCSA1204

SCSA1204- Python Programming

80

GUI PROGRAMMING WITH PYTHON

Conditional statements: Boolean values and operators, conditional (if),

alternative (if-else), chained conditional (if-elif-else); Iterative statements: while,

for, break, continue, pass, Applying for critical conditions.
 Algorithms: square root, gcd, exponentiation, sum an array of numbers, factorial

computation-Sine function computation-Generation of the Fibonacci sequence-

Reversing the digits of an integer.

In python text only programs can be created using Command line

Interface. Graphical user interface(GUI) can be created using tkinter module

in python.

Introduction To GUI Library In Python

Tkinter is a module in the Python standard library which serves as an

interface to Tk (ie) simple toolkit. There are many other toolkits also available

to create GUI.

Tkinter provides the following widgets:

 button

 canvas

 checkbutton

 combobox

SCSA1204- Python Programming

81

 entry

 frame

 label

 listbox

 menu

 message

 progressbar

 radiobutton

 scrollbar

 spinbox

 text

Tkinter also provides three layout managers:

 place - It positions widgets at absolute locations

 grid - It arranges widgets in a grid

 pack - It packs widgets into a cavity

Layout Management

SCSA1204- Python Programming

82

The Layout Managers are used to arrange components in a particular

manner. It is used to organize the conponents. There are three Layout

Management in python:

1. Pack Layout

2. Grid Layout

3. Place Layout

Pack Layout Manager

 It is a simple layout manager. Here widgets can be organized in

horizontal and vertical boxes. It is used to place each widget next to previous

widget. It will be called without any arguments and it will position and size

the widgets in a reasonable way. Whenever the user wants to have a series of

widgets in a vertical or horizontal row, the pack layout manager is fairly

simple to use. The layout is controlled with the fill, expand, and side options.

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True)

l2.pack(fill=X,side=RIGHT)

top.mainloop()

SCSA1204- Python Programming

83

Output:

Explanation: Label l1 has been placed in top position, it is filled in X axis.

Label l2 has been placed in Right Position and it is also filled in X axis. Since

expand attribute has the value True for Label l1,it can be stretched.

Padding Option in Pack Layout:

The pack() manager has four padding options:

1. Internal Padding

2. External padding

3. Padding in X Direction.

4. Padding in Y Direction.

External Padding in Horizontal direction(padx)

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,padx=10)

SCSA1204- Python Programming

84

l2.pack(fill=X,side=TOP,padx=10)

top.mainloop()

Output:

External Padding in Vertical direction (pady)

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,pady=10)

l2.pack(fill=X,side=TOP,pady=10)

top.mainloop()

Output:

SCSA1204- Python Programming

85

Internal Padding in Horizontal direction(ipadx)

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,ipadx=10)

l2.pack(fill=X,side=TOP,ipadx=10)

top.mainloop()

Output:

SCSA1204- Python Programming

86

Internal Padding in Y Direction(ipady):

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,ipadx=10)

l2.pack(fill=X,side=TOP,ipady=10)

top.mainloop()

Output:

SCSA1204- Python Programming

87

Place Layout:

 Place is the most complex manager out of the 3 managers. It uses

absolute positioning, when we choose place lay out in our design, then we

need to specify the position of the widgets using x and y coordinates. The size

and position of the widgets will not be changed when we resize the window.

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.place(x=10,y=50)

l2.place(x=10,y=100)

top.mainloop()

Output:

Explanation:

SCSA1204- Python Programming

88

Here Label1 is placed in the position (10,50) and label2 is placed in the

position (10,100).

Grid Layout

Pack Layout is not easy to understand and it is difficult to change the

existing design. By using place layout, we can control the positioning of

widgets but it is complex than pack. Grid is one of the most versatile layout

manager out of the three layout managers in python. By using Grid layout, the

widgets can be placed in rows and columns.

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l3=Label(top,text="Label2",bg="green")

l1.grid(row=0,column=0)

l2.grid(row=0,column=1)

l3.grid(row=1,column=1)

top.mainloop()

Output:

SCSA1204- Python Programming

89

Explanation:

Here Label 1 is placed in 0th row and 0th column. Label 2 is placed in 0th row

and 1st column and Label 3 is placed in 1st row and 1st column.

FONT

 There are three ways to specify font in python.

 1.By using Font Tuple

 2.By using Font Object

 3.By using XFont

Simple Font Tuple:

 Font can be specified using tuple.Herethe font tuple consists of

threeelements.First element specifies font family ,second element specifies

font size and third element specifies font style.

 Ex: t =(“Arial”,14,”Bold”)

Example:

fromtkinter import *

top=Tk()

b1=Button(text="submit",font=("Arial","16","bold"))

b1.pack()

top.mainloop()

Output:

SCSA1204- Python Programming

90

Explanation:

Text for the Button has been set in the Arial font with size 16 and Bold style.

Font Object

 Font object can be created by importing tkFont module.

Syntax for Font class constructor is:

Import tkFont

Font f1=tkFont.Font(parameters,…..)

Here is the list of parameters:

Family − The font family name as a string.

size − The font height as an integer in points. To get a font n pixels

high, use -n.

weight − "bold" for boldface, "normal" for regular weight.

SCSA1204- Python Programming

91

Slant − "italic" for italic, "roman" for unslanted.

underline − 1 for underlined text, 0 for normal.

Overstrike − 1 for overstruck text, 0 for normal

Example:

fromtkinter import *

fromtkFont import *

top=Tk()

f1=Font(family="Helvetica",size=20,weight="bold",slant="italic",underline=1

,overstrike=1)

l1=Label(top,text="Label1",bg="blue",font=f1)

l1.pack()

top.mainloop()

X Window Fonts:

If you are running under the X Window System, you can use any of the X font

names.

COLORS

Tkinter represents colors with strings. There are two general ways to specify

colors in Tkinter :

SCSA1204- Python Programming

92

 We can use a string specifying the proportion of red, green and blue in

hexadecimal digits. For example,

 "#fff" -- white,

 "#000000" -- black,

 "#000fff000" -- pure green

 "#00ffff" -- pure cyan

 We can also use any locally defined standard following color names.

 "white"

 "black"

 "red"

 "green"

 "blue"

 "cyan"

 "yellow"

 "magenta"

The common color options are :

SCSA1204- Python Programming

93

Active background − Specifies Background color for the widget when the

widget is active.

activeforeground − Specifies Foreground color for the widget when the

widget is active.

background − Specifies Background color for the widget. This can

also be represented as bg.

disabledforeground − Specifies Foreground color for the widget when the

widget is disabled.

foreground − Specifies Foreground color for the widget. This can

also be represented as fg.

highlightbackground − Specifies Background color of the highlight region

when the widget has focus.

highlightcolor − Specifies Foreground color of the highlight region

when the widget has focus.

selectbackground − Specifies Background color for the selected items of

the widget.

selectforeground − Specifies Foreground color for the selected items of

the widget.

Example:

fromtkinter import *

SCSA1204- Python Programming

94

top=Tk()

b1=Button(text="submit",bg="red",fg="white")

b1.pack()

top.mainloop()

Output:

Explanation:

Here the back ground of the button is red in color and foreground color of the

button is white in colour.

CANVAS

The Canvas is a rectangular area used for drawing pictures or other

complex layouts. Graphics, text, widgets or frames can be placed on a Canvas.

Syntax:

w = Canvas (top, option=value, ...)

top – It represents the parent window.

Options − commonly used options for this widget. These options can be

used as key-value pairs separated by commas.

Commonly used Options are:

SCSA1204- Python Programming

95

bd - Border Width of the canvas

bg - Background color of the canvas

cursor - Cursor used in the canvas like circle,arrow and dot.

relief - Type of the border

width - Width of the canvas

Items supported by canvas:

 1.Arc

 2.Image

 3.Line

 4.Oval

 5.Polygon

 ARC

 Creates an arc item, which can be a chord or a simple arc.

Syntax:

create_arc(x0, y0, x1, y1, options…..)

x0,y0,x1,y1-Top Left and Bottom Right coordinates of Bounding Rectangle

 Commonly used Options:

 start,extend-Specifies which section to draw

SCSA1204- Python Programming

96

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

coord = 10, 50, 240, 210

arc = w.create_arc(coord, start=0, extent=150, fill="blue")

w.pack()

Output:

Explanation:

SCSA1204- Python Programming

97

Here Arc is drawn with blue color and within the bounded rectangle with top

left(10,50)position and bottom right(240,210) position and started from angle

0 and extended till 150 degree.

IMAGE

 Creates an image , which can be an instance of either the BitmapImage or the

PhotoImage classes.

Syntax:

 Create_image(x,y,options….)

 x,y-Specifies the position of the image

 commonly used options:

 anchor=Where to place the image relative to the given position.

Default is CENTER.

 image=image object

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_image("F:\img2",50,50)

w.pack()

SCSA1204- Python Programming

98

root.mainloop()

LINE

 Creates a line item.

Syntax:

 canvas.create_line(x0, y0, x1, y1, ...,xn, yn, options)

 x0,y0,x1,y1->coordinates of line

 Commonly used options:

 activefill-Color of the line when it is active

 width -Width of the line

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_line(10,10,100,100,activefill="red")

w.pack()

root.mainloop()

Output:

SCSA1204- Python Programming

99

OVAL

Creates a circle or an ellipse at the given coordinates. It takes two pairs of

coordinates; the top left and bottom right corners of the bounding rectangle for

the oval.

Syntax:

 canvas.create_oval(x0, y0, x1, y1, options)

 x0, y0, x1, y1- the top left and bottom right corners of the bounding

rectangle

 Options:

 activefill-Color of the oval when it is active

 width -Width of the line

SCSA1204- Python Programming

100

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_oval(10,10,100,100,activefill="red")

w.pack()

root.mainloop()

Output:

POLYGON

Creates a polygon item that must have at least three vertices.

Syntax:

 canvas.create_polygon(x0, y0, x1, y1,...xn, yn, options)

SCSA1204- Python Programming

101

 x0, y0, x1, y1,...xn, yn-Coordinates of polygon

 Options:

 Activefill-Color of the oval when it is active

 width -Width of the line

Example

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_polygon(50,50,20,20,100,100,activefill="red")

w.pack()

root.mainloop()

WIDGETS IN PYTHON

Widgets are standard graphical user interface (GUI) elements, like different

kinds of buttons and menus.

LABEL

SCSA1204- Python Programming

102

A Label widget shows text to the user about other widgets used in the

application. The widget can be updated programmatically.

Syntax to create Label:

w=Label (root ,options)

root - Parent Window

List of commonly used options are given below:

Option Description

anchor It specifies the exact position of the text within the size provided to

the widget. The default value is CENTER, which is used to center

the text within the specified space.

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

SCSA1204- Python Programming

103

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

 Table 1:Widget

Example:

fromtkinter import *

root=Tk()

l1=Label(root,text="Enter User Name",bg="green",fg="white")

l1.pack()

root,mainloop()

Output:

Explanation:

SCSA1204- Python Programming

104

Here Label has been created with green background color and white

foreground color with the text “Enter User Name”.

ENTRY

The Entry widget is used to create the single line text-box to the user to

accept a value from the user. It can accept the text strings from the user. It can

receive one line of text from the user. For multiple lines of text, the text

widget will be used.

Syntax for creating Entry Widget:

 w=Entry(root, options)

root-Main Window

List of commonly used options are given below:

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

SCSA1204- Python Programming

105

Option Description

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

selectbackground Background color of the selected text

selectforeground Foreground color of the selected text

show Specifies the character used to mask characters in the

text box

Table 2: Widget

Example:

fromtkinter import *

root=Tk()

l1=Label(root,text="Enter User Name",bg="green",fg="white")

e1=Entry(root,show="*")

l1.pack(side=LEFT)

SCSA1204- Python Programming

106

e1.pack(side=RIGHT)

root.mainloop()

Output:

Explanation:

Here Label and entry widgets are created.Since the show attribute value is

,the characters entered in the text box appeared as “”.

BUTTON

Button Widget is used to create various kinds of buttons.The user can interact

with the button.They can contain text or images.

Syntax for creating Button:

SCSA1204- Python Programming

107

b=Button(root,options)

root-main window

List of commonly used options are given below:

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

underline Underline the label text

command It is set to function name which will be called the button is

clicked

 Table 3: Budget Widget

SCSA1204- Python Programming

108

Example:

fromtkinter import *

root=Tk()

b1=Button(root,text="Submit",bg="blue",fg="white")

b1.pack()

root.mainloop()

Output:

Checkbutton

The Checkbutton is used to track the user's choices provided to the

application. Checkbutton is used to implement the on/off

selections.TheCheckbutton can contain the or images or text. The

Checkbutton is mostly used to provide many choices to the user among which,

the user needs to choose the one.

Syntax for creating Check Button:

SCSA1204- Python Programming

109

b=CheckButton(root,options)

root-main window

List of possible options are given below:

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

command It is set to function name whicjh will be called the button is

clicked

offvalue Set value to the control variable if the button is

checked.Default Value is 1

onvalue Set value to the control variable if the button is

unchecked.Default Value is 0

selectcolor Set color of the check button when it is checked.

selectimage Set the image to be shown when it is checked.

SCSA1204- Python Programming

110

Example:

fromtkinter import *

root=Tk()

c1 = Checkbutton(root, text = "C", onvalue = 1, offvalue = 0, height = 2,

width = 10)

c2 = Checkbutton(root, text = "C++", onvalue = 1, offvalue = 0, height = 2,

width = 10)

c3 = Checkbutton(root, text = "JAVA", onvalue = 1, offvalue = 0, height = 2,

width = 10)

c1.pack()

c2.pack()

c3.pack()

root.mainloop()

Output:

SCSA1204- Python Programming

111

Radiobutton

The Radiobutton widget is used to implement one-of-many selection. It shows

multiple options to the user out of which, the user can select only one option.

It is possible to display the multiple line text or images on the radiobuttons.

To keep track the user's selection ,theradiobutton is associated with a single

variable.EachRadio button displays a single value for that particular variable.

Syntax for creating Radio Button:

b=RadioButton(root,options)

root-main window

List of possible options are given below:

SCSA1204- Python Programming

112

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

underline Underline the label text

command It is set to function name whicjh will be called the button

is clicked

value Set value to the control variable if the button is selected.

selectcolor Set color of the check button when it is checked.

selectimage Set the image to be shown when it is checked.

variable It is used to keep track of user choices.

SCSA1204- Python Programming

113

Example:

fromtkinter import *

root=Tk()

r1 = Radiobutton(root, text = "C", value = 1, height = 2, width = 10)

r2 = Radiobutton(root, text = "C++", value = 2, height = 2, width = 10)

r3 = Radiobutton(root, text = "JAVA",value = 3, height = 2, width = 10)

r1.pack()

r2.pack()

r3.pack()

root.mainloop()

Output:

SCSA1204- Python Programming

114

LISTBOX

The Listbox widget is used to display the list items to the user.The user can

choose one or more items from the list depending upon the configuration.

Syntax for creatingListBox:

b=Listbox(root,options)

root-main window

List of possible options are given below:

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

SCSA1204- Python Programming

115

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

value Set value to the control variable if the button is selected.

selectbackground Set back ground color of the selected text.

xscrollcommand User can scroll the list box horizontally

yscrollcommand User can scroll the list box vertically

Example:

fromtkinter import *

top = Tk()

lbl = Label(top,text = "A list of favourite countries...")

listbox = Listbox(top)

listbox.insert(1,"India")

SCSA1204- Python Programming

116

listbox.insert(2, "USA")

listbox.insert(3, "Japan")

listbox.insert(4, "Austrelia")

lbl.pack()

listbox.pack()

top.mainloop()

SCSA1204- Python Programming

117

Output:

MESSAGE

Its functionality is very similar to Label widget, except that it can

automatically wrap the text, maintaining a given width.

Syntax for creating Message:

m=Message(root,options)

root-main window

List of possible options are given below:

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

SCSA1204- Python Programming

118

Option Description

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

Example:

fromtkinter import *

top = Tk()

msg = Message(top, text = "Welcome to Javatpoint")

msg.pack()

top.mainloop()

SCSA1204- Python Programming

119

SCSA1204- Python Programming

120

Output:

TEXT

Tkinter provides us the Entry widget which is used to implement the single

line text box. Text widget provides advanced capabilities that allow us to edit

a multiline text and format the way it has to be displayed, such as changing its

color and font. We can also use the structures like tabs and marks to locate

specific sections of the text, and apply changes to those areas.

Syntax for creating Message:

T=Text(root,options)

root-main window

List of possible options are given below:

SCSA1204- Python Programming

121

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

xscrollcommand User can scroll the text widget horizontally

yscrollcommand User can scroll the text widget vertically

selectbackground Background color of the selected text

General Methods:

Method Description

delete(startindex,

endindex)

This method is used to delete the characters of the

specified range

get(startindex,endindex) It returns the characters present in the specified

SCSA1204- Python Programming

122

range.

insert(index, string) It is used to insert the specified string at the given

index.

Mark Handling Methods:

Marks are used to bookmark the specified position between the characters of

the associated text.List of Mark handling methods are given below:

Method Description

mark_set(mark,index) It is used to create mark at the specified index.

mark_unset(mark) It is used to clear the given mark

mark_names() It is used to return names of all the marks

Tag Handling Methods:

The tags are the names given to the specific areas of the text. The tags are

used to configure the different areas of the text separately. The list of tag-

handling methods are given below:

Method Description

tag_add(tagname, startindex,

endindex)

It is used to tag the characters in the

given range

tag_config() It is used to configure the tag properties

tag_delete(tagname) It is used to delete the given tag

SCSA1204- Python Programming

123

tag_remove(tagname, startindex,

endindex)

It is used to remove the tag from the

specified range

Table :Tag Handling

Example:

fromtkinter import *

top = Tk()

text = Text(top)

text.insert(INSERT, "Name.....")

text.insert(END, "Salary.....")

text.pack()

text.tag_add("Write Here", "1.0", "1.4")

text.tag_add("Click Here", "1.8", "1.13")

text.tag_config("Write Here", background="yellow", foreground="black")

text.tag_config("Click Here", background="black", foreground="white")

Output:

SCSA1204- Python Programming

124

Explanation:

The tag “Write Here” tags the characters from the index 0 to 4.The tag “Click

Here” tags the characters from the index 8 to 13.These tags are configured

using the method tag_config().

SPINBOX

The Spinbox control is an alternative to the Entry control. It provides the

range of values to the user, out of which, the user can select only one value.It

is used in the case where a user is given some fixed number of values to

choose from.

Syntax for creating Message:

S=Spinbox(root,options)

root-main window

List of possible options are given below:

SCSA1204- Python Programming

125

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

xscrollcommand User can scroll the text widget horizontally

from_ It is used to show the starting range of the widget.

to It specify the maximum limit of the widget value. The

other is specified by the from_ option.

values It represents the tuple containing the values for this

widget.

 Table :Spinbox

Example:

fromtkinter import *

top = Tk()

spin = Spinbox(top, from_= 0, to = 25)

spin.pack()

SCSA1204- Python Programming

126

top.mainloop()

Output:

FRAME

Frame widget is used to organize the group of widgets. It acts like a container

which can be used to hold the other widgets. The rectangular areas of the

screen are used to organize the widgets to the python application.

Syntax for creating Frame:

S=Frame(root,options)

root-main window

List of possible options are given below:

SCSA1204- Python Programming

127

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

height Height of the widget

width Width of the widget

Relief Specifies type of border

Table: Frame Widget

Example:

fromtkinter import *

top = Tk()

Topframe = Frame(top)

Topframe.pack(side = TOP)

Bottomframe = Frame(top)

Bottomframe.pack(side =BOTTOM)

btn1 = Button(Topframe, text="Submit", fg="red",activebackground = "red")

btn1.pack(side = LEFT)

btn2 = Button(Topframe, text="Remove", fg="brown", activebackground =

"brown")

btn2.pack(side = RIGHT)

SCSA1204- Python Programming

128

btn3 = Button(Bottomframe, text="Add", fg="blue", activebackground =

"blue")

btn3.pack(side = LEFT)

btn4 = Button(Bottomframe, text="Modify", fg="black", activebackground =

"white")

btn4.pack(side = RIGHT)

top.mainloop()

Output:

Explanation:

Here two frames (Top Frame and Bottom Frame) have been

created.Topframe contains submit and remove buttons and Bottom frame

contains Add and modify buttons .

EVENTS AND BINDINGS IN PYTHON

SCSA1204- Python Programming

129

Binding function is used to deal with the events. We can bind Python’s

Functions and methods to an event as well as we can bind these functions to

any particular widget. Events can come from various sources, including key

presses and mouse operations by the user. Tkinter provides a powerful

mechanism to let you deal with events yourself. For each widget, you

can bind Python functions and methods to events.

 widget.bind(event, handler)

If an event matching the event description occurs in the widget, the

given handler is called with an object describing the event.

HANDLING MOUSE BUTTON EVENT IN PYTHON

Example:

fromtkinter import *

fromtkinter.ttk import *

creates tkinter window or root window

root = Tk()

function to be called when button-2 of mouse is pressed

def pressed2(event):

print('Button-2 pressed at x = % d, y = % d'%(event.x, event.y))

function to be called when button-3 of mouse is pressed

def pressed3(event):

print('Button-3 pressed at x = % d, y = % d'%(event.x, event.y))

 ## function to be called when button-1 is double clocked

SCSA1204- Python Programming

130

defdouble_click(event):

print('Double clicked at x = % d, y = % d'%(event.x, event.y))

frame1 = Frame(root, height = 100, width = 200)

Binding mouse buttons with the Frame widget

frame1.bind('<Button-2>', pressed2)

frame1.bind('<Button-3>', pressed3)

frame1.bind('<Double 1>', double_click)

frame1.pack()

root.mainloop()

Output:

HANDLING KEY PRESS EVENT IN PYTHON

SCSA1204- Python Programming

131

Example:

fromtkinter import *

fromtkinter.ttk import *

 # function to be called when

keyboard buttons are pressed

defkey_press(event):

 key = event.char

 print(key, 'is pressed')

 # creates tkinter window or root window

root = Tk()

root.geometry('200x100')

 # here we are binding keyboard

with the main window

root.bind('<Key>', lambda a : key_press(a))

 mainloop()

Output:

SCSA1204- Python Programming

132

SCSA1204- Python Programming

133

QUESTIONS

1. Write the Pyhton Program to create simple window.

2. Write a Python Program to create label, entry and button components

and arrange the components using Grid Layout.

3. Write a Python Program to validate user name and password.

4. Write a Python Program to display the basic shapes.

5. Write a Python program to create a following GUI design

6. Write the GUI program to create List Box for shopping cart.

7. Write a pyhton Program to create simple calculator.

8. Write a Python Program to add image on the button.

9. Write a Python progam to create simple application form.

10. Wrtite a Pyhton program to create check button for selecting multiple

hobbies.

SCSA1204- Python Programming

129

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-IV Python Programming – SCSA1204

SCSA1204- Python Programming

130

DATABASE AND NETWORK

Database(usingNoSQL):ConnectorModule–Cursor–Statements-

Exceptionsin database.Networkconnectivity:Socketmodule-

Client–Server–Email–URLAccess.

 Data is very important for any organization to continue its operations.

The data may be related to employees in the organization or the operational

data like products information, raw material prices, sales information, profits

and losses. Without data, no organization will survive. Hence, data is very

important and it should never be lost.

DBMS

To store data, a file or database can be used. A file stores data in the

secondary storage device like hard disk, either in the text format or binary

format.

A database represents collection of data. Data can be stores in the database.

Once the data is stored in the database, various operations can be performed

on the data. For example, modifying the existing data, deleting the unwanted

data, or retrieving the data from the database and etc. To perform such

operations, a database comes with software. This is called a database

management system.

DBMS= Database + Software to manage the data

SCSA1204- Python Programming

131

Example DBMS are MySQL, Oracle, Sybase,, SQL server etc.

Types of databases used with Python

1. Databasesupport

 SQL

 NoSQL

As more and more data become available as unstructured or semi-

structured, the need of managing them through NoSql database increases.

Python can also interact with NoSQL databases in a similar way as is interacts

with Relational databases. In this chapter we will use python to interact with

MongoDB as a NoSQL database.

MongoDB

MongoDB stores data in JSON-like documents, which makes the database

very flexible and scalable.

Where to Use MongoDB?

 Big Data

 Content Management and Delivery

 Mobile and Social Infrastructure

 User Data Management

 Data Hub

download a free MongoDB database at https://www.mongodb.com.

https://www.mongodb.com/

SCSA1204- Python Programming

132

PyMongo

Python needs a MongoDB driver to access the MongoDB database.

In this tutorial we will use the MongoDB driver "PyMongo".

We recommend that you use PIP to install "PyMongo".

PIP is most likely already installed in your Python environment.

Navigate your command line to the location of PIP, and type the following:

Download and install "PyMongo":

C:\Users\Your Name\AppData\Local\Programs\Python\Python36-

32\Scripts>python -m pip install pymongo

Now you have downloaded and installed a mongoDB driver.

Where to Use MongoDB?

 Big Data

 Content Management and Delivery

 Mobile and Social Infrastructure

 User Data Management

 Data Hub

Test PyMongo

To test if the installation was successful, or if you already have "pymongo"

installed, create a Python page with the following content:

SCSA1204- Python Programming

133

demo_mongodb_test.py:

import pymongo

Creating a Database

To create a database in MongoDB, start by creating a MongoClient object,

then specify a connection URL with the correct ip address and the name of the

database you want to create.

MongoDB will create the database if it does not exist, and make a connection

to it.

Example

Create a database called mydatabase

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

MongoDB waits until you have created a collection (table), with at least one

document (record) before it actually creates the database (and collection).

Creating a Collection

To create a collection in MongoDB, use database object and specify the name

of the collection you want to create.

SCSA1204- Python Programming

134

MongoDB will create the collection if it does not exist.

Program

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

MongoDB waits until you have inserted a document before it actually

creates the collection.

Python MongoDB Insert Document

Insert Into Collection

To insert a record, or document as it is called in MongoDB, into a collection,

we use the insert_one() method.

The first parameter of the insert_one() method is a dictionary containing the

name(s) and value(s) of each field in the document you want to insert.

Example

Insert a record in the “Customers” Collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

SCSA1204- Python Programming

135

mycol = mydb["customers"]

mydict = { "name": "John", "address": "Highway 37" }

x = mycol.insert_one(mydict)

Insert Multiple Documents

To insert multiple documents into a collection in MongoDB, we use

theinsert_many() method.

The first parameter of the insert_many() method is a list containing

dictionaries with the data you want to insert:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mylist = [

 { "name": "Amy", "address": "Apple st 652"},

 { "name": "Hannah", "address": "Mountain 21"},

 { "name": "Michael", "address": "Valley 345"},

 { "name": "Sandy", "address": "Ocean blvd 2"},

 { "name": "Betty", "address": "Green Grass 1"},

 { "name": "Richard", "address": "Sky st 331"},

 { "name": "Susan", "address": "One way 98"},

 { "name": "Vicky", "address": "Yellow Garden 2"},

SCSA1204- Python Programming

136

 { "name": "Ben", "address": "Park Lane 38"},

 { "name": "William", "address": "Central st 954"},

 { "name": "Chuck", "address": "Main Road 989"},

 { "name": "Viola", "address": "Sideway 1633"}

]

x = mycol.insert_many(mylist)

Python MongoDB Find

In MongoDB we use the find and findOne methods to find data in a

collection.

Just like the SELECT statement is used to find data in a table in a MySQL

database.

Find One

To select data from a collection in MongoDB, we can use

the find_one()method.

The find_one() method returns the first occurrence in the selection.

Example

Find the first document in the customers collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

SCSA1204- Python Programming

137

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

x = mycol.find_one()

print(x)

Output

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

Find All

To select data from a table in MongoDB, we can also use the find() method.

The find() method returns all occurrences in the selection.

The first parameter of the find() method is a query object. In this example we

use an empty query object, which selects all documents in the collection.

Example

Return all documents in the "customers" collection, and print each document:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

SCSA1204- Python Programming

138

for x in mycol.find():

print(x)

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

Filter the Result

When finding documents in a collection, you can filter the result by using a

query object.

The first argument of the find() method is a query object, and is used to limit

the search.

Example

Find document(s) with the address "Park Lane 38":

SCSA1204- Python Programming

139

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": "Park Lane 38" }

mydoc = mycol.find(myquery)

for x in mydoc:

 print(x)

output

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

Example

Find documents where the address starts with the letter "S" or higher:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": { "$gt": "S" } }

SCSA1204- Python Programming

140

mydoc = mycol.find(myquery)

for x in mydoc:

 print(x)

Output

{'_id': 5, 'name': 'Michael', 'address': 'Valley

345'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st

331'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow

Garden 2'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway

1633'}

Fig No 1

Return Only Some Fields

The second parameter of the find() method is an object describing which

fields to include in the result.

This parameter is optional, and if omitted, all fields will be included in the

result.

Example

Return only the names and addresses, not the _ids:

SCSA1204- Python Programming

141

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

for x in mycol.find({},{ "_id": 0, "name": 1, "address": 1}):

 print(x)

Output

{'name': 'John', 'address': 'Highway37'}

{'name': 'Peter', 'address': 'Lowstreet 27'}

{'name': 'Amy', 'address': 'Apple st 652'}

{'name': 'Hannah', 'address': 'Mountain 21'}

{'name': 'Michael', 'address': 'Valley 345'}

{'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'name': 'Betty', 'address': 'Green Grass 1'}

{'name': 'Richard', 'address': 'Sky st 331'}

{'name': 'Susan', 'address': 'One way 98'}

{'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'name': 'Ben', 'address': 'Park Lane 38'}

{'name': 'William', 'address': 'Central st 954'}

{'name': 'Chuck', 'address': 'Main Road 989'}

{'name': 'Viola', 'address': 'Sideway 1633'}

Sort the Result

Use the sort() method to sort the result in ascending or descending order.

SCSA1204- Python Programming

142

The sort() method takes one parameter for "fieldname" and one parameter for

"direction" (ascending is the default direction).

Example

Sort the result alphabetically by name:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mydoc = mycol.find().sort("name")

for x in mydoc:

 print(x)

OUTPUT

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

SCSA1204- Python Programming

143

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

Sort Descending

Use the value -1 as the second parameter to sort descending.

sort("name", 1) #ascending

sort("name", -1) #descending

Example

Sort the result reverse alphabetically by name:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mydoc = mycol.find().sort("name", -1)

for x in mydoc:

 print(x)

Output

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

SCSA1204- Python Programming

144

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

Python MongoDB Delete Document

To delete one document, we use the delete_one() method.

The first parameter of the delete_one() method is a query object defining

which document to delete.

Note: If the query finds more than one document, only the first occurrence is

deleted.

Example

Delete the document with the address "Mountain 21":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

SCSA1204- Python Programming

145

myquery = { "address": "Mountain 21" }

mycol.delete_one(myquery)

Delete Many Documents

To delete more than one document, use the delete_many() method.

The first parameter of the delete_many() method is a query object defining

which documents to delete.

Example

Delete all documents were the address starts with the letter S:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": {"$regex": "^S"} }

x = mycol.delete_many(myquery)

print(x.deleted_count, " documents deleted.")

output

2 documents deleted.

SCSA1204- Python Programming

146

Delete All Documents in a Collection

To delete all documents in a collection, pass an empty query object to

the delete_many() method:

Example

Delete all documents in the "customers" collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

x = mycol.delete_many({})

print(x.deleted_count, " documents deleted.")

Output:

11 documents deleted

Python MongoDB Drop Collection

Delete Collection

You can delete a table, or collection as it is called in MongoDB, by using

the drop() method.

SCSA1204- Python Programming

147

Example

Delete the "customers" collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mycol.drop()

The drop() method returns true if the collection was dropped successfully, and

false if the collection does not exist.

Python MongoDB Update

You can update a record, or document as it is called in MongoDB, by using

the update_one() method.

The first parameter of the update_one() method is a query object defining

which document to update.

Note: If the query finds more than one record, only the first occurrence is

updated.

Example

Change the address from "Valley 345" to "Canyon 123":

SCSA1204- Python Programming

148

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": "Valley 345" }

newvalues = { "$set": { "address": "Canyon 123" } }

mycol.update_one(myquery, newvalues)

#print "customers" after the update:

for x in mycol.find():

 print(x)

SCSA1204- Python Programming

149

OUTPUT

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Canyon 123'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway}

Update Many

To update all documents that meets the criteria of the query, use

the update_many() method.

Example

Update all documents where the address starts with the letter "S":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

SCSA1204- Python Programming

150

myquery = { "address": { "$regex": "^S" } }

newvalues = { "$set": { "name": "Minnie" } }

x = mycol.update_many(myquery, newvalues)

print(x.modified_count, "documents updated.")

Output

2 documents updated.

Python MongoDB Limit

o limit the result in MongoDB, we use the limit() method.

The limit() method takes one parameter, a number defining how many

documents to return.

Consider you have a "customers" collection:

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

SCSA1204- Python Programming

151

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway}

Example

Limit the result to only return 5 documents:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myresult = mycol.find().limit(5)

#print the result:

for x in myresult:

 print(x)

OUTPUT

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

SCSA1204- Python Programming

152

Cursor Class

To work with MySQL in python, connector sub module of mysql module.

 import mysql.connector;

to establish connection with MySQL database, we use the connect() method of

mysql.connector module as:

conn=mysql.connector.connect(host=’localhost’,database=’university’,user=’r

oot’, password=’***’)

The connect() method returns MySQLConnection class object ‘conn’.

The next step is to create cursor class object by calling the cursor() method on

‘conn’ object as:

 cursor=con.cursor()

Cursor object is useful to execute SQL commands on the database.

it is done by execute() method of cursor object.

 cursor.execute(sql querry)

 example: cursor.execute(“select * from emptab”)

The resultant rows retirieved from the table are stored in cursor object. the

result can be fetched using fetchone() or fetchall() methods.

 example: row = cursor.fetchone() # get 1 row

 row = cursor.fetchall() # get all rows

SCSA1204- Python Programming

153

Finally, the connection with MySQL can be closed by closing the cursor and

connection objects as:

cursor.close()

conn.close()

Program: A python program to retrieve and display all rows from the student

table:

import mysql.connector;

conn=mysql.connector.connect(host=’localhost’,database=’university’,user=’r

oot’, password=’***’)

cursor=con.cursor()

cursor.execute(“select * from stutab”)

row = cursor.fetchone()

while row is not None:

 print(row)

 row=cursor.fetchone()

cursor.close()

conn.close()

SCSA1204- Python Programming

154

Output:

(1001, ‘Ajay’, 8.5)

(1002, ‘Alan’, 7.5)

(1001, ‘Joe’, 9.00)

Exceptions Classes

Interacting with a database is an error prone process, so we must always

implement some mechanism to handle errors.

Table No 1

Built in Exceptions

Exception Description

Warning Used for non-fatal issues. Must subclass

StandardError.

Error

Base class for errors. Must subclass

StandardError.

InterfaceError Used for errors in the database module, not the

database itself. Must subclass Error.

DatabaseError Used for errors in the database. Must subclass

Error.

DataError Subclass of DatabaseError that refers to errors in

SCSA1204- Python Programming

155

the data.

OperationalError Subclass of DatabaseError that refers to errors

such as the loss of a connection to the database.

These errors are generally outside of the control of

the Python scripter.

Exception Description

IntegrityError Subclass of DatabaseError for situations that

would damage the relational integrity, such as

uniqueness constraints or foreign keys.

InternalError Subclass of DatabaseError that refers to errors

internal to the database module, such as a cursor

no longer being active.

ProgrammingError Subclass of DatabaseError that refers to errors

such as a bad table name and other things that can

safely be blamed on you.

NETWORKING

For a specific purpose if things are connected together, are referred as

a NETWORK. A network can be of many types, like a telephone network,

television network, computer network or even a people network.

Similarly, a COMPUTER NETWORK is also a kind of setup, where it

connects two or more devices to share a range of services and information in

the form of e-mails and messages, databases, documents, web-sites, audios

and videoes, Telephone calls and video conferences etc among them.

SCSA1204- Python Programming

156

A PROTOCOL is nothing but set of defined rules, which has to be followed

by every connected devices across a network to communicate and share

information among them. To facilitates End to End communication, a number

of protocols worked together to form a Protocol Suites or Stacks.

Some basic Protocols are:

 IP : Internet Protocol

 FTP : File Transfer Protocol

 SMTP : Simple Mail Transfer Protocol

 HTTP : Hyper Text Transfer Protocol

The Network reference models were developed to allow products from

different manufacturers to interoperate on a network. A network reference

model serves as a blueprint, detailing standards for how protocol

communication should occur.

The most widely recognized reference models are, the Open Systems

Interconnect (OSI) Model and Department of Defense (DoD, also known

as TCP/IP) model.

Network Types are often categorized by their size and functionality.

According to the size, the network can be commonly categorized

into Three types.

 LANs (Local Area Networks)

 MANs (Metropolitan Area Networks)

 WANs (Wide Area Networks)

https://www.geeksforgeeks.org/layers-osi-model/
https://www.geeksforgeeks.org/computer-network-tcpip-model/
https://www.geeksforgeeks.org/computer-network-types-area-networks-lan-man-wan/

SCSA1204- Python Programming

157

An Internetwork is a general term describing multiple networks connected

together. The Internet is the largest and most well-known internetwork.

Some networks are categorized by their function, as opposed to their size.

For example:

 SAN (Storage Area Network): A SAN provides systems with high-

speed, lossless access to high-capacity storage devices.

 VPN (Virtual Private Network): A VPN allows for information to be

securely sent across a public or unsecure network, such as the Internet.

Common uses of a VPN are to connect branch offices or remote users to

a main office.

In a network, any connected device is called as host. A host can serve as

following ways:

 A host can acts as a Client, when he is requesting information.

 A host can acts as a Server, when he provides information.

 A host can also request and provide information, is called Peer.

What Are Sockets?

A socket is a link between two applications that can communicate with one

another (either locally on a single machine or remotely between two machines

in separate locations).

https://www.geeksforgeeks.org/computer-networks-internetworking/
https://www.geeksforgeeks.org/storage-area-networks/
https://www.geeksforgeeks.org/virtual-private-network-vpn-introduction/

SCSA1204- Python Programming

158

Basically, sockets act as a communication link between two entities, i.e. a

server and a client. A server will give out information being requested by a

client. For example, when you visited this page, the browser created a socket

and connected to the server.

The socket Module

In order to create a socket, you use the socket.socket() function, and the

syntax is as simple as:

import socket

s= socket.socket (socket_family, socket_type, protocol=0)

Here is the description of the arguments:

 socket_family: Represents the address (and protocol) family. It can be

either AF_UNIX or AF_INET.

 socket_type: Represents the socket type, and can be either

SOCK_STREAM or SOCK_DGRAM.

 protocol: This is an optional argument, and it usually defaults to 0.

After obtaining your socket object, you can then create a server or client as

desired using the methods available in the socket module.

o s.recv() –It receives TCPmessage

o s.send() – It transmits TCP message

o s.recvfrom() – It receives UDPmessage

o s.sendto() – It transmits UDP message

SCSA1204- Python Programming

159

o s.close() – It closes socket

o socket.gethostname() – It returns thehostname

Create a Simple Client

Before we get started, let's look at the client socket methods available in

Python.

s= socket.socket(socket.AF_INET, socket.sock_STREAM)

s.connect()Initiates a TCP server connection.

To create a new socket, you first import the socket method of the socket class.

import socket

Next, we'll create a stream (TCP) socket as follows:

stream_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

The AF_INET argument indicates that you're requesting an Internet Protocol

(IP) socket, specifically IPv4. The second argument is the transport protocol

type SOCK_STREAM for TCP sockets. Additionally, you can also create an

IPv6 socket by specifying the socket AF_INET6 argument.

Specify the server.

server = "localhost"

Specify the port we want to communicate with.

port =80

SCSA1204- Python Programming

160

Connect the socket to the port where the server is listening.

server_address = ((host, port))

stream_socket.connect(server_address)

It's important to note that the host and port must be a tuple.

Send a data request to the server:

message = 'message'

stream_socket.sendall(message)

Get the response from the server:

data = sock.recv(10)

print data

To close a connected socket, you use the close method:

stream_socket.close()

Below is the full code for the Client/Server.

import socket

import sys

 # Create a TCP/IP socket

stream_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

SCSA1204- Python Programming

161

 # Define host

host = 'localhost'

 # define the communication port

port = 8080

 # Connect the socket to the port where the server is listening

server_address = ((host, port))

print "connecting"

stream_socket.connect(server_address)

 # Send data

message = 'message'

stream_socket.sendall(message)

response

data = stream_socket.recv(10)

print data

print 'socket closed'

stream_socket.close()

SCSA1204- Python Programming

162

Build a Simple Server

Now let's take a look at a simple Python server. The following are the socket

server methods available in Python.

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind(): Binds address (hostname, port number) to socket.

s.listen(): Sets up and starts TCP listener.

s.accept(): Accepts TCP client connection.

We will follow the following steps:

 Create a socket.

 Bind the socket to a port.

 Start accepting connections on the socket.

Here is the server program.

import socket

import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # Define host

host = 'localhost'

SCSA1204- Python Programming

163

 # define the communication port

port = 8080

 # Bind the socket to the port

sock.bind((host, port))

Listen for incoming connections

sock.listen(1)

Wait for a connection

print 'waiting for a connection'

connection, client = sock.accept()

print client, 'connected'

Receive the data in small chunks and retransmit it

data = connection.recv(16)

print 'received "%s"' % data

if data:

 connection.sendall(data)

else:

 print 'no data from', client

SCSA1204- Python Programming

164

 # Close the connection

connection.close()

The server is now ready for incoming connections.

Now run the client and server programs in separate terminal windows, so they

can communicate with each other.

Server Output

$ python server.py

waiting for a connection

('127.0.0.1', 47050) connected

received "message"

Client Output

$ python client.py

connecting

message

socket closed

Sending Email using SMTP

SCSA1204- Python Programming

165

Simple Mail Transfer Protocol (SMTP) is a protocol, which handles sending

e-mail and routing e-mail between mail servers.

Python provides smtplib module, which defines an SMTP client session

object that can be used to send mail to any Internet machine with an SMTP

or ESMTP listener daemon.

Here is a simple syntax to create one SMTP object, which can later be used

to send an e-mail –

import smtplib

smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])

Here is the detail of the parameters −

 host − This is the host running your SMTP server. You can specify IP

address of the host or a domain name like tutorialspoint.com. This is

optional argument.

 port − If you are providing host argument, then you need to specify a

port, where SMTP server is listening. Usually this port would be 25.

 local_hostname − If your SMTP server is running on your local

machine, then you can specify just localhost as of this option.

An SMTP object has an instance method called sendmail, which is typically

used to do the work of mailing a message. It takes three parameters −

 The sender − A string with the address of the sender.

SCSA1204- Python Programming

166

 The receivers − A list of strings, one for each recipient.

 The message − A message as a string formatted as specified in the

various RFCs.

Example

Here is a simple way to send one e-mail using Python script. Try it once −

import smtplib

sender = 'from@fromdomain.com'

receivers = ['to@todomain.com']

message = """From: From Person from@fromdomain.com

To: To Person to@todomain.com

Subject: SMTP e-mail test

This is a test e-mail message.

"""

try:

 smtpObj = smtplib.SMTP('localhost')

 smtpObj.sendmail(sender, receivers, message)

 print "Successfully sent email"

except SMTPException:

mailto:from@fromdomain.com
mailto:to@todomain.com

SCSA1204- Python Programming

167

Here, you have placed a basic e-mail in message, using a triple quote, taking

care to format the headers correctly. An e-mail requires a From, To,

and Subject header, separated from the body of the e-mail with a blank line.

To send the mail you use smtpObj to connect to the SMTP server on the local

machine and then use the sendmail method along with the message, the from

address, and the destination address as parameters (even though the from and

to addresses are within the e-mail itself, these aren't always used to route

mail).

If you are not running an SMTP server on your local machine, you can

use smtplib client to communicate with a remote SMTP server. Unless you

are using a webmail service (such as Hotmail or Yahoo! Mail), your e-mail

provider must have provided you with outgoing mail server details that you

can supply them, as follows − smtplib.SMTP('mail.your-domain.com', 25)

SCSA1204- Python Programming

1

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-V Python Programming – SCSA1204

SCSA1204- Python Programming

2

What is sentiment analysis?

Sentiment analysis is one of the best modern branches of machine learning, which is mainly

used to analyze the data in order to know one’s own idea, nowadays it is used by many

companies to their own feedback from customers.

Why should we use sentiment analysis?

 Invaluable Marketing:

Using sentiment analysis companies and product owners use can use sentiment analysis to

know the demand and supply of their products through comments and feedback from the

customers.

 Identifying key emotional triggers:

In psychology and other medical treatment institutions, sentiment analysis can be used to

detect whether the individuals’ emotion is normal or abnormal, and based on the data

record they can decide person health.

 Politics:

In the political field, candidates to be elected can use sentiment analysis to predict their

political status, to measure people’s acceptance. It can also be used to predict election

results for electoral board commissions.

 Education:

Universities and other higher institutes like colleges can use sentiment analysis to know

their student’s feedback and comment, therefore they can take consideration to revise or

improve their education curriculum.

Installations in Anaconda

NLTK:is used for understanding of human natural language.

Installation Using conda command.

conda install -c anaconda nltk

 Installation Using pip.

pip install nltk

Case Study: Web Programming using Python. Image Processing –

Facebook Analysis – Twitter Analysis

SCSA1204- Python Programming

3

NumPy: is a python package used for scientific and computional methods in python.

Installation Using conda.

conda install -c conda-forge numpy

Using pip.

pip install numpy

Pandas: is a python module used for data preprocessing and analysis .

Installation Using conda

conda install -c anaconda pandas

Installation Using pip.

pip install pandas

Matplotlib: is a python module used for data visulalization and and 2D plotting for

representation of data.

Installation Using conda.

conda install -c conda-forge matplotlib

Installation Using pip.

pip install matplotlib

Authentication

There are many ways to fetch Facebook comments those are:

 Facebook graph API

 Direct download from Facebook

 Downloading from another dataset provider sites

Among the above methods, we used downloading the Facebook comment dataset from the

Kaggle website which is the best dataset provider. For the code we already

used kindle.txt for analysis of kindle amazon facebook comment, you can use your own

Facebook comment using this code to analyze your own comments or create a file in text

format and try it for simplification.

SCSA1204- Python Programming

4

Below is the implementation.

importtime

importpandas as pd

importnumpy as np

importmatplotlib.pyplot as plt

importnltk

importio

importunicodedata

importnumpy as np

importre

importstring

fromnumpyimportlinalg

fromnltk.sentiment.vaderimportSentimentIntensityAnalyzer

fromnltk.tokenizeimportsent_tokenize, word_tokenize

fromnltk.tokenizeimportPunktSentenceTokenizer

fromnltk.tokenizeimportPunktSentenceTokenizer

fromnltk.corpusimportwebtext

fromnltk.stem.porterimportPorterStemmer

fromnltk.stem.wordnetimportWordNetLemmatizer

 with open('kindle.txt', encoding ='ISO-8859-2') as f:

 text =f.read()

 sent_tokenizer=PunktSentenceTokenizer(text)

sents=sent_tokenizer.tokenize(text)

 print(word_tokenize(text))

print(sent_tokenize(text))

 porter_stemmer=PorterStemmer()

 nltk_tokens=nltk.word_tokenize(text)

 forwinnltk_tokens:

 print("Actual: % s Stem: % s"%(w, porter_stemmer.stem(w)))

wordnet_lemmatizer=WordNetLemmatizer()

nltk_tokens=nltk.word_tokenize(text)

SCSA1204- Python Programming

5

 forwinnltk_tokens:

 print("Actual: % s Lemma: % s"%(w, wordnet_lemmatizer.lemmatize(w)))

 text =nltk.word_tokenize(text)

print(nltk.pos_tag(text))

 sid=SentimentIntensityAnalyzer()

tokenizer =nltk.data.load('tokenizers / punkt / english.pickle')

 with open('kindle.txt', encoding ='ISO-8859-2') as f:

 fortextinf.read().split('\n'):

 print(text)

 scores =sid.polarity_scores(text)

 forkeyinsorted(scores):

 print('{0}: {1}, '.format(key, scores[key]), end ='')

 print()

Output:

here is the sample output of the code:

['i', 'love', 'my', 'kindle']

['i love my kindle']

Actual: i Stem: i

Actual: love Stem: love

Actual: my Stem: my

Actual: kindle Stem: kindl

Actual: i Lemma: i

Actual: love Lemma: love

Actual: my Lemma: my

Actual: kindle Lemma: kindle

[('i', 'NN'), ('love', 'VBP'), ('my', 'PRP$'), ('kindle', 'NN')]

i love my kindle

compound: 0.6369, neg: 0.0, neu: 0.323, pos: 0.677,

We follow these major steps in our program:

 Downloading(fetching) facebook comment from Kaggle site and save it as text format.

SCSA1204- Python Programming

6

 Preprocessing the data through SkLearn and nltk libraries .we first tokenize the data and

then after tokenizing we stemize and lemmatize.

 Parse the comments using Vader library . Classify each comment as positive, negative

or neutral.

Now, let us try to understand the above piece of code:

 First we open a file named kindle which is downloaded from Kaggle site and saved in

local disk.

with open(‘kindle.txt’, encoding=’ISO-8859-2′) as f:

 After we open a file we preprocess the text through tokenize, stemize and then

lemmatize:

 Tokenize the text, i.e split words from text.

sent_tokenizer = PunktSentenceTokenizer(text)

sents = sent_tokenizer.tokenize(text)

print(word_tokenize(text))

print(sent_tokenize(text))

 Stemize and lematize the text for normalization of the text:

1) For stemize we use PorterStemmer() function:

from nltk.stem.porter import PorterStemmer

porter_stemmer = PorterStemmer()

nltk_tokens = nltk.word_tokenize(text)

for w in nltk_tokens:

 print (“Actual: %s Stem: %s” % (w, porter_stemmer.stem(w)))

2) For lematize we use WordNetLemmatizer() function :

from nltk.stem.wordnet import WordNetLemmatizer

wordnet_lemmatizer = WordNetLemmatizer()

nltk_tokens = nltk.word_tokenize(text)

for w in nltk_tokens:

 print (“Actual: %s Lemma: %s” % (w, wordnet_lemmatizer.lemmatize(w)))

 POS(5t of speech) tagging of the tokens and select only significant features/tokens like

adjectives, adverbs, and verbs, etc.

text = nltk.word_tokenize(text)

SCSA1204- Python Programming

7

print(nltk.pos_tag(text))

 Pass the tokens to a sentiment intensity analyzer which classifies the Facebook

comments as positive, negative or neutral.

Here is how vader sentiment analyzer works:

 VADER uses a combination of A sentiment lexicon which is a list of lexical features

(e.g., words) which are generally labeled according to their semantic orientation as

either positive or negative.

 sentiment analyzer not only tells about the Positivity and Negativity score but also tells

us about how positive or negative a sentiment is.

 Then, We used the polarity_scores() method to obtain the polarity indices for the given

sentence.

Then, we build the comment intensity and polarity as:

sid = SentimentIntensityAnalyzer()

tokenizer = nltk.data.load(‘tokenizers/punkt/english.pickle’)

with open(‘kindle.txt’, encoding=’ISO-8859-2′) as f:

 for text in f.read().split(‘\n’):

 print(text)

 scores = sid.polarity_scores(text)

 for key in sorted(scores):

 print(‘{0}: {1}, ‘.format(key, scores[key]), end=”)

 print()

Let us to understand what the sentiment code is and how VADER performs on the output of

the above code:

i love my kindle

compound: 0.6369, neg: 0.0, neu: 0.323, pos: 0.677

 The Positive(pos), Negative(neg) and Neutral(neu) scores represent the proportion of

text that falls in these categories. This means our sentence was rated as 67% Positive,

32% Neutral and 0% Negative. Hence all these should add up to 1.

 The Compound score is a metric that calculates the sum of all the lexicon ratings which

have been normalized between -1(extreme negative) and +1 (extreme positive).

 Finally, sentiment scores of comments are returned.

SCSA1204- Python Programming

8

TWITTER SENTIMENT ANALYSIS

Tweepy: tweepy is the python client for the official Twitter API.

Install it using following pip command:

pip install tweepy

TextBlob: textblob is the python library for processing textual data.

Install it using following pip command:

pip install textblob.

Also, we need to install some NLTK corpora using following command:

python -m textblob.download_corpora

(Corpora is nothing but a large and structured set of texts.)

Authentication:

In order to fetch tweets through Twitter API, one needs to register an App through their

twitter account. Follow these steps for the same:

 Log in to twitter and click the button: ‘Create New App’

 Fill the application details. You can leave the callback url field empty.

 Once the app is created, you will be redirected to the app page.

 Open the ‘Keys and Access Tokens’ tab.

 Copy ‘Consumer Key’, ‘Consumer Secret’, ‘Access token’ and ‘Access Token

Secret’.

Implementation:

importre

importtweepy

fromtweepyimportOAuthHandler

fromtextblobimportTextBlob

 classTwitterClient(object):

 '''

 Generic Twitter Class for sentiment analysis.

 '''

SCSA1204- Python Programming

9

 def__init__(self):

 '''

 Class constructor or initialization method.

 '''

 # keys and tokens from the Twitter Dev Console

 consumer_key='XXXXXXXXXXXXXXXXXXXXXXXX'

 consumer_secret='XXXXXXXXXXXXXXXXXXXXXXXXXXXX'

 access_token='XXXXXXXXXXXXXXXXXXXXXXXXXXXX'

 access_token_secret='XXXXXXXXXXXXXXXXXXXXXXXXX'

 # attempt authentication

 try:

 # create OAuthHandler object

 self.auth=OAuthHandler(consumer_key, consumer_secret)

 # set access token and secret

 self.auth.set_access_token(access_token, access_token_secret)

 # create tweepy API object to fetch tweets

 self.api=tweepy.API(self.auth)

 except:

 print("Error: Authentication Failed")

 defclean_tweet(self, tweet):

 '''

 Utility function to clean tweet text by removing links, special characters

 using simple regex statements.

 '''

 return' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])

 |(\w+:\/\/\S+)", "", tweet).split())

 defget_tweet_sentiment(self, tweet):

 '''

 Utility function to classify sentiment of passed tweet

SCSA1204- Python Programming

10

 using textblob's sentiment method

 '''

 # create TextBlob object of passed tweet text

 analysis =TextBlob(self.clean_tweet(tweet))

 # set sentiment

 ifanalysis.sentiment.polarity>0:

 return'positive'

 elifanalysis.sentiment.polarity==0:

 return'neutral'

 else:

 return'negative'

 defget_tweets(self, query, count =10):

 '''

 Main function to fetch tweets and parse them.

 '''

 # empty list to store parsed tweets

 tweets =[]

 try:

 # call twitter api to fetch tweets

 fetched_tweets=self.api.search(q =query, count =count)

 # parsing tweets one by one

 fortweetinfetched_tweets:

 # empty dictionary to store required params of a tweet

 parsed_tweet={}

 # saving text of tweet

 parsed_tweet['text'] =tweet.text

 # saving sentiment of tweet

 parsed_tweet['sentiment'] =self.get_tweet_sentiment(tweet.text)

SCSA1204- Python Programming

11

 # appending parsed tweet to tweets list

 iftweet.retweet_count>0:

 # if tweet has retweets, ensure that it is appended only once

 ifparsed_tweetnotintweets:

 tweets.append(parsed_tweet)

 else:

 tweets.append(parsed_tweet)

 # return parsed tweets

 returntweets

 excepttweepy.TweepError as e:

 # print error (if any)

 print("Error : "+str(e))

defmain():

 # creating object of TwitterClient Class

 api=TwitterClient()

 # calling function to get tweets

 tweets =api.get_tweets(query ='Donald Trump', count =200)

 # picking positive tweets from tweets

 ptweets=[tweet fortweetintweetsiftweet['sentiment'] =='positive']

 # percentage of positive tweets

 print("Positive tweets percentage: {} %".format(100*len(ptweets)/len(tweets)))

 # picking negative tweets from tweets

 ntweets=[tweet fortweetintweetsiftweet['sentiment'] =='negative']

 # percentage of negative tweets

 print("Negative tweets percentage: {} %".format(100*len(ntweets)/len(tweets)))

 # percentage of neutral tweets

 print("Neutral tweets percentage: {} %\

 ".format(100*(len(tweets) -(len(ntweets)+len(ptweets)))/len(tweets)))

SCSA1204- Python Programming

12

 # printing first 5 positive tweets

 print("\n\nPositive tweets:")

 fortweetinptweets[:10]:

 print(tweet['text'])

 # printing first 5 negative tweets

 print("\n\nNegative tweets:")

 fortweetinntweets[:10]:

 print(tweet['text'])

if__name__ =="__main__":

 # calling main function

 main()

Here is how a sample output looks like when above program is run:

Positive tweets percentage: 22 %

Negative tweets percentage: 15 %

Positive tweets:

RT @JohnGGalt: Amazing—after years of attacking Donald Trump the media managed

to turn #InaugurationDay into all about themselves.

#MakeAme…

RT @vooda1: CNN Declines to Air White House Press Conference Live YES!

THANK YOU @CNN FOR NOT LEGITIMI…

RT @Muheeb_Shawwa: Donald J. Trump's speech sounded eerily familiar...

POTUS plans new deal for UK as Theresa May to be first foreign leader to meet new

president since inauguration

.@realdonaldtrump #Syria #Mexico #Russia & now #Afghanistan.

Another #DearDonaldTrump Letter worth a read @AJEnglish

Negative tweets:

SCSA1204- Python Programming

13

RT @Slate: Donald Trump’s administration: “Government by the worst men.”

RT @RVAwonk: Trump, Sean Spicer, et al. lie for a reason.

Their lies are not just lies. Their lies are authoritarian propaganda.

RT @KomptonMusic: Me: I hate corn

Donald Trump: I hate corn too

Me: https://t.co/GPgy8R8HB5

It's ridiculous that people are more annoyed at this than Donald Trump's sexism.

RT @tony_broach: Chris Wallace on Fox news right now talking crap

about Donald Trump news conference it seems he can't face the truth eithe…

RT @fravel: With False Claims, Donald Trump Attacks Media on Crowd Turnout

Aziz Ansari Just Hit Donald Trump Hard In An Epic Saturday NIght Live Monologue

We follow these 3 major steps in our program:

 Authorize twitter API client.

 Make a GET request to Twitter API to fetch tweets for a particular query.

 Parse the tweets. Classify each tweet as positive, negative or neutral.

Now, let us try to understand the above piece of code:

 First of all, we create a TwitterClient class. This class contains all the methods to

interact with Twitter API and parsing tweets. We use __init__ function to handle the

authentication of API client.

 In get_tweets function, we use:

fetched_tweets = self.api.search(q = query, count = count)

to call the Twitter API to fetch tweets.

 In get_tweet_sentiment we use textblob module.

analysis = TextBlob(self.clean_tweet(tweet))

TextBlob is actually a high level library built over top of NLTK library. First we

call clean_tweet method to remove links, special characters, etc. from the tweet using some

simple regex.

Then, as we pass tweet to create a TextBlob object, following processing is done over text

by textblob library:

SCSA1204- Python Programming

14

Tokenize the tweet ,i.e split words from body of text.

Remove stopwords from the tokens.(stopwords are the commonly used words which are

irrelevant in text analysis like I, am, you, are, etc.)

Do POS(part of speech) tagging of the tokens and select only significant features/tokens

like adjectives, adverbs, etc.

Pass the tokns to a sentiment classifier which classifies the tweet sentiment as positive,

negative or neutral by assigning it a polarity between -1.0 to 1.0 .

Here is how sentiment classifier is created:

TextBlob uses a Movies Reviews dataset in which reviews have already been labelled as

positive or negative.

Positive and negative features are extracted from each positive and negative review

respectively.

Training data now consists of labelled positive and negative features. This data is trained on

a Naive Bayes Classifier.

Then, we use sentiment.polarity method of TextBlob class to get the polarity of tweet

between -1 to 1.

Then, we classify polarity as:

if analysis.sentiment.polarity> 0:

 return 'positive'

elifanalysis.sentiment.polarity == 0:

 return 'neutral'

else:

 return 'negative'

Finally, parsed tweets are returned. Then, we can do various type of statistical analysis on

the tweets. For example, in above program, we tried to find the percentage of positive,

negative and neutral tweets about a query.

SCSA1204- Python Programming

15

	SCHOOL OF COMPUTING
	If statement :
	Elif
	Example

	Else
	Example

	UNIT II
	1. Importing class/functions from a module
	2. The import * Statement
	3. Python’s import as Statement
	4. Importing user-defined modules
	5. Importing from another directory
	6. Importing class from another file

	GUI PROGRAMMING WITH PYTHON
	DATABASE AND NETWORK
	1. Databasesupport
	MongoDB
	Where to Use MongoDB?
	PyMongo
	Where to Use MongoDB? (1)
	Test PyMongo
	Creating a Database
	Creating a Collection
	MongoDB waits until you have inserted a document before it actually creates the collection.

	Python MongoDB Insert Document
	Insert Into Collection
	Insert Multiple Documents

	import pymongo myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["mydatabase"] mycol = mydb["customers"] mylist = [{ "name": "Amy", "address": "Apple st 652"}, { "name": "Hannah", "address": "Mountain 21"}, { "name"...
	Find One
	Example

	Find All
	Example

	Filter the Result
	Example
	Example (1)

	Fig No 1
	Return Only Some Fields
	Example

	Sort the Result
	Example

	Sort Descending
	Example

	Python MongoDB Delete Document
	Example
	Delete Many Documents
	Example

	Delete All Documents in a Collection
	Example

	Python MongoDB Drop Collection
	Delete Collection
	Example

	Python MongoDB Update
	Example
	Update Many
	Example

	Python MongoDB Limit
	Example
	What Are Sockets?
	The socket Module

	Build a Simple Server
	Server Output
	Client Output

	Sending Email using SMTP
	Example

	What is sentiment analysis?
	Why should we use sentiment analysis?
	Installations in Anaconda
	NLTK:is used for understanding of human natural language. Installation Using conda command.
	Authentication

