

 SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – I-Data Structures – SCSA1203

UNIT I

INTRODUCTION TO ALGORITHMS 9 Hrs.

Introduction Data Structures - Need - classification - operations –Abstract data types (ADT) -

Array - characteristics - types - storage representations. Array Order Reversal-Array

Counting or Histogram-Finding the maximum Number in a Set, Recursion- Towers of Hanoi-

Fibonacci series-Factorial.

I. ALGORITHM

An algorithm is a well-defined computational procedure having well defined steps for

solving a particular problem. Algorithm is finite set of logic or instructions, written in

order for accomplishing the certain predefined task.

Each algorithm must have:

✱ Specification: Description of the computational procedure.

✱ Pre-conditions: The condition(s) on input.

✱ Body of the Algorithm: A sequence of clear and unambiguous instructions.

✱ Post-conditions: The condition(s) on output.

Characteristics of an Algorithm

An algorithm must follow the mentioned below characteristics:

✱ Input: An algorithm must have 0 or well- d e f i n e d inputs.

✱ Output: An algorithm must have 1 or well-defined outputs, and should match with

the desired output.

✱ Feasibility: An algorithm must be terminated after the finite number of steps.

✱ Independent: An algorithm must have step-by-step directions which is

independent of any programming code.

✱ Unambiguous: An algorithm must be unambiguous and clear. Each of their steps and

input/outputs must be clear and lead to only one meaning.

The performance of algorithm is measured on the basis of following properties:

✱ Time complexity: It is a way of representing the amount of time needed by a program

to run to the completion.

✱ Space complexity: It is the amount of memory space required by an algorithm,

during a course of its execution. Space complexity is required in situations when

limited memory is available and for the multi user system.

 2. INTRODUCTION TO DATA STRUCTURES

2.1 Data

In the modern context, data stands for both singular and plural. Data means a value or set of

values. Data can be defined as an elementary value or the collection of values, for example,

student’s name and its id are the data about the student.

2.2 Structure

A building is a structure. A bridge is structure. In general, a structure is made up of

components. It has a form or shape. It is made up of parts. A structure is an arrangement of

and relations between parts or elements.

2.3 Data Structures

A data structure is an arrangement of data elements. Data Structure can be defined as the

group of data elements which provides an efficient way of storing and organizing data in the

computer so that it can be used efficiently. Some examples of Data Structures are arrays, Linked

List, Stack, Queue, etc. Data Structures are widely used in almost every aspect of Computer

Science i.e. Operating System, Compiler Design, Artificial Intelligence, Graphics and many

more.

 2.3.1 Needs

 As applications are getting complex and amount of data is increasing day by day, the following

 issues might be araised:

Processor speed: To handle very large amount of data, high speed processing is required, but

as the data is growing day by day to the billions of files per entity, processor may fail to

deal with that much amount of data.

Data Search: Consider an inventory size of 106 items in a store; if our application needs

to search for a particular item, it needs to traverse 106 items every time, results in slowing

down the search process.

Multiple requests: If thousands of users are searching the data simultaneously in a web

server, it fails to process the requests.

In order to solve the above problems, data structures are used. Data is organized to

form a data structure in such a way that all items are not required to be searched and

required data can be searched instantly.

Data structures are important for the following reasons

1. Data structures are used in almost every program or software system.

2. Specific data structures are essential ingredients of many efficient algorithms, and make

possible the management of huge amounts of data, such as large integrated collection

of databases.

3. Some programming languages emphasize data structures, rather than algorithms, as

the key organizing factor in software design.

Advantages of Data Structures

Efficiency: Efficiency of a program depends upon the choice of data structures. For example:

suppose, we have some data and we need to perform the search for a particular record.

element. Hence, using array may not be very efficient here.

Reusability: Data structures are reusable, i.e. once we have implemented a part icular data

structure, we can use it at any other place.

Abstraction: Data structure is specified by the ADT which provides a level of abstraction.

The client program uses the data structure through interface only, without getting into the

implementation details.

3.Classification of Data Structure

The data structure is classified into two different types, primitive and non-primitive data

structures is shown in Fig.1.

Primitive Data Structures

Simple data structure can be constructed with the help of primitive data structure. A

primitive data structure used to represent the standard data types of any one of the computer

languages. Variables, pointers, structures, unions, etc. are examples of primitive data

structures.

Non Primitive Data Structures

 Non Primitive Data Structures are classified as linear or non-linear. Arrays, linked

lists, queues and stacks are linear data structures. Trees and Graphs are non-linear data

structures. Except arrays, all other data structures have many variations. Non Primitive data

structure can be constructed with the help of any one of the primitive data structure and it

is having a specific functionality. It can be designed by user.

Fig. 1 Classification of Data Structure

Linear Data Structures

A data structure is called linear if all of its elements are arranged in the linear order.

In linear data structures, the elements are stored in non-hierarchical way where each element has

the successors and predecessors except the first and last element. In linear data structure the

elements are stored in sequential order.

Types of Linear Data Structures are given below:

Arrays: An array is a collection of similar type of data items stored in consecutive memory location

and is referred by common name; each data item is called an element of the array. The data type

of the element may be any valid data type like char, int, float or double. The elements of

array share the same variable name but each one carries a different index number known as

subscript.

Linked List: Linked list is a linear data structure which is used to maintain a list in the memory.

It can be seen as the collection of nodes stored at non-contiguous memory locations. Each

node of the list contains a pointer to its adjacent node. It is a collection of data of same data

type but the data items need not be stored in consecutive.

Stack: Stack is a linear list in which insertion and deletions are allowed only at one end, called

top. It is a Last-In-First-Out linear data structure.

A stack is an abstract data type (ADT), can be implemented in most of the programming

languages. It is named as stack because it behaves like a real-world stack, for example, piles

of plates or deck of cards etc.

Queue: Queue is a linear list in which elements can be inserted only at one end called rear

and deleted only at the other end called front. It is a First-In-First-Out Linear data structure.

It is an abstract data structure, similar to stack. Queue is opened at both end therefore it

follows First-In-First-Out (FIFO) methodology for storing the data items.

Operations applied on Linear Data Structure

The following list of operations applied on linear data structures

 Add an element

 Delete an element

 Traverse

 Sort the list of elements

 Search for a data element

Non-linear Data Structures

This data structure does not form a sequence i.e. each item or element is connected with two or

more other items in a non-linear arrangement. The data elements are not arranged in sequential

structure. Elements are stored based on the hierarchical relationship among the data. The following

are some of the Non-Linear data structures.

Trees: Trees are mult ilevel data structures with a hierarchical relationship among its

elements known as nodes. The bottom most nodes are called leaf node while the top most node

is called root node. Each node contains pointers to point adjacent nodes. Each node in the tree

can have more than one child except the leaf nodes whereas each node can have at most one

parent except the root node.

Graphs: Graphs can be defined as the pictorial representation of the set of elements (represented

by vertices) connected by the links known as edges. A graph is different from tree in the sense

that a graph can have cycle while the tree cannot have the one.

Operations applied on non-linear data structures

The following list of operations applied on non-linear data structures.

1. Add elements

2. Delete elements

3. Display the elements

4. Sort the list of elements

5. Search for a data element

4. ABSTRACT DATA TYPES

Abstract Data Type (ADT) is a type or class for objects whose behaviour is defined by a

set of value and a set of operations.

The definition of ADT only mentions what operations are to be performed but not how these

operations will be implemented. It does not specify how data will be organized in memory and

what algorithms will be used for implementing the operations. The process of providing only

the essentials and hiding the details is known as abstraction is shown in fig,2.

 Fig. 2 Abstract Data Type

4.1 List ADT

✱ The data is generally stored in key sequence in a list which has a head structure

consisting of count, pointers and address of compare function needed to compare the

data in the list is shown in fig.3.

✱ The data node contains the pointer to a data structure and a self-referential pointer which

points to the next node in the list.

 Fig.3 List ADT

✱ A list contains elements of the same type arranged in sequential order and following

operations can be performed on the list.

• get() – Return an element from the list at any given position.

• insert() – Insert an element at any position of the list.

• remove() – Remove the first occurrence of any element from a non-empty

list.

• removeAt() – Remove the element at a specified location from a non-empty list.

• replace() – Replace an element at any position by another element.

• size() – Return the number of elements in the list.

• isEmpty() – Return true if the list is empty, otherwise return false.

• isFull() – Return true if the list is full, otherwise return false.

The List ADT Functions is shown in Fig.4.

//List ADT Type Definitions

typedef struct node{

void *DataPtr;

struct node *link;

} Node;

typedef struct{

int count;

Node *pos;

Node *head;

Node *rear;

int (*compare) (void *argument1, void *argument2);

} LIST;

Fig. 4 List ADT Functions

4.2 Stack ADT

✱ In Stack ADT Implementation instead of data being stored in each node, the pointer

to data is stored.

✱ The program allocates memory for the data and address is passed to the stack ADT

is shown in Fig.5.

✱ The head node and the data nodes are encapsulated in the ADT. The calling

function can only see the pointer to the stack.

✱ The stack head structure also contains a pointer to top and count of number of

entries currently in stack.

✱ A Stack contains elements of the same type arranged in sequential order.

 Fig. 5 Stack ADT

All operations take place at a single end that is top of the stack and following

operations can be performed:

• push() – Insert an element at one end of the stack called top.

• pop() – Remove and return the element at the top of the stack, if it is not

empty.

• peek() – Return the element at the top of the stack without removing it, if the

stack is not empty.

• size() – Return the number of elements in the stack.

• isEmpty() – Return true if the stack is empty, otherwise return false.

• isFull() – Return true if the stack is full, otherwise return false.

4.3 Queue ADT

✱ The queue Abstract Data Type (ADT) follows the basic design of the stack

abstract data type is shown in fig.6.

//Stack ADT Type Definitions

typedefstruct node{

void *DataPtr;

struct node *link;

} StackNode;

typedefstruct{

int count;

StackNode *top;

} STACK;

Fig 6. Queue ADT

✱ A Queue contains elements of the same type arranged in sequential order. Operations

take place at both ends, insertion is done at the end and deletion is done at the front.

Following operations can be performed:

• enqueue() – Insert an element at the end of the queue.

• dequeue() – Remove and return the first element of the queue, if the queue is

not empty.

• peek() – Return the element of the queue without removing it, if the queue is

not empty.

• size() – Return the number of elements in the queue.

• isEmpty() – Return true if the queue is empty, otherwise return false.

• isFull() – Return true if the queue is full, otherwise return false.

6.ARRAYS

The number of data items chunked together into a unit is known as data structure. When

the data structure consists simply a sequence of data items, the data structure of this simple

variety is referred as an array.

Definition: Array is a collection of homogenous (same data type) data elements that are

stored in contiguous memory locations.

Array Syntax

Syntax to declare an array:

//Queue ADT Type Definitions

typedefstructnode {

void*DataPtr;

structnode *next;

} QueueNode;

typedefstruct {

QueueNode *front;

QueueNode *rear;

intcount;

} QUEUE;

✱ dataType [] arrayName;

arrayName= new dataType[n]; //keyword new performs dynamic memory location

(or)

✱ dataType [] arrayName = new dataType[n];

Example:

int [] x; x=new int [10]; (or)

int [] x=new int [10];

Array Initialization

The values of an array can be initialized as follows,

Example 1:

int [] j=new int [1]; j[0] =10;(or)int [] j= {25};

Example 2:

int [] myarray= {5, 10};

5.1 Characteristics of an Array

The following are the characteristics of an array data structure.

(i) Array stores elements of same data type.

(ii) The elements of an array are stored in subsequent memory locations.

(iii) The name of array represents the starting address of the elements.

(iv) When data objects are stored in array, individual objects are selected by an index.

(v) By default an array index starts from 0 and ends with (n-1). Index is also referred

as subscripts.

(vi) The size of the array is mentioned at the time of declaring array.

(vii) While declaring 2D array, number of columns should be specified whereas for

number of rows there is no such rule.

(viii) Size of array can’t be changed at run time.

5.2 Array Types

1.One-Dimensional Array or Linear arrays

2. Multi-Dimensional Array

3.Two dimensional (2D) Arrays or Matrix Arrays

 5.2.1 One-Dimensional Array

In one dimensional array each element is represented by a single subscript. The elements

are stored in consecutive memory locations. E.g. A [1], A [2],, A [N].

5.2.2 Two dimensional (2-D) arrays or Matrix Arrays

In two dimensional arrays each element is represented by two subscripts. Thus a two

dimensional m x n array has m rows and n columns and contains m * n elements. It is also

called matrix array because in this case, the elements form a matrix. For example A [4]

[3] has 4 rows and 3 columns and 4*3 = 12 elements.

int [] [] A = new int [4] [3];

5.2.3 Multi dimensional arrays:

In it each element is represented by three subscripts. Thus a three dimensional m x n x

l array contains m * n * l elements. For example A [2] [4] [3] has 2 * 4 * 3 = 24

elements.

6.STORAGE REPRESENTATION

An array is a set of homogeneous elements. Every element is referred by an index.

Memory storage locations of the elements are not arranged as a rectangular array with

rows and columns. Instead, they are arranged in a linear sequence beginning with location

1, 2, 3 and so on. The elements are stored either column-by-column or row-by-row. The first

one is called column-major order and later is referred as row-major order.

 6.1 Row Major Order

 The table 1 shows the linear arrangement of data in row major order.

 Example

• Rows : 3

• Columns : 4

Table 1 Linear Arrangement of Array A in Row Major Order

The formula is:

Location (A [j,k]) = Base Address of (A) + w [(N * (j-1)) + (k-1)]

Location (A [j, k]): Location of jth row and kth column

Base (A) : Base Address of the Array A

w : Bytes required to represent single element of the Array A

N : Number of columns in the Array

j : Row position of the element

k : Column position of the element

Example

Suppose to find the address of (3,2) then

Base (A) = 100

Linear Arrangement of Array A

Row 1 2 3

Index
(1,1

)

(1,2

)

(1,3

)

(1,4

)

(2,1

)

(2,2

)

(2,3

)

(2,4

)

(3,1

)

(3,2

)

(3,3

)

(3,4

)

Memor

y
100 102 104 106 108 110 112 114 116 118 120 122

Data 1 2 3 4 5 6 7 8 9 10 11 12

Data (A):

1 2 3 4

5 6 7 8

9 10 11 12

w = 2 Bytes (integer type)

N = 4

j = 3

k = 2

Location (A [3, 2]) = 100 + 2 [(4 * (3-1) + (2-1)]

 = 118

6.2 Column Major Order

 The table 2 shows the linear arrangement of data in column major order.

• Rows : 3

• Columns : 4

Table 2 Linear Arrangement of Array A in Column Major Order

The formula for column major order is:

Location (A [j, k]) = Base Address of (A) + w [(M * (k-1)) + (j-1)]

Location (A [j, k]): Location of jth row and kth column

Base (A) : Base Address of the Array A

w : Bytes required to represent single element of the Array A

Linear Arrangement of Array A

Colum

n
1 2 3 4

Index
(1,1

)

(2,1

)

(3,1

)

(1,2

)

(2,2

)

(3,2

)

(1,3

)

(2,3

)

(3,3

)

(1,4

)

(2,4

)

(3,4

)

Memor

y
100 102 104 106 108 110 112 114 116 118 120 122

Data 1 5 9 2 6 10 3 7 11 4 8 12

Data (A):

1 2 3 4

5 6 7 8

9 10 11 12

M : Number of rows in the Array

j : Row position of the element

k : Column position of the element

Example

Base (A) = 100

w = 2 Bytes (integer type)

M = 3

j = 3

k = 2

Location (A [3, 2]) = 100 + 2 [(3 * (2-1) + (3-1)]

 = 110

7. Array Order Reversal

Given an array (or string), the task is to reverse the array/string.

Examples:

Input : arr[] = {1, 2, 3} Output : arr[] = {3, 2, 1}

Input : arr[] = {4, 5, 1, 2} Output : arr[] = {2, 1, 5, 4}

Algorithm

1) Initialize start and end indexes as start = 0, end = n-1.

2) In a loop, swap arr[start] with arr[end] and change start and end as follows :

start = start +1, end = end – 1

8.Array Counting

1. Create a function arraycounting(array, size)

2. Find largest element in array and store it in max

3. Initialize count array with all zeros

4. for j = 0 to size

5. Find the total count of each unique element and

6. Store the count at jth index in count array

Example A={4,2,2,8,3,3,1}

1. Find out the maximum element (let it be max) from the given array.

2. Initialize an array of length max+1 with all elements 0. This array is used for storing

the count of the elements in the array.

3. Store the count of each element at their respective index in count array. For example: If

the count of element “4” occurs 2 times then 2 is stored in the 4
th

position in the

count array. If element “5” is not present in the array, then 0 is stored in 5
th

8. Finding the maximum Number in a Set

Algorithm

✱ Read the array elements

✱ Initialize first element of the array as max.

✱ Traverse array elements from second and compare every element with current max

✱ Find the largest element in the array and assign it as max

✱ Print the largest element.

Example: A={56,78,34,23,70}

Step 1: Initialize max=0 , n=len(A)

Step 2: Repeat step 3 until n

Step 3: 56>0 yes, Assign max=56

 78>56, yes Assign max=78

 34>78, No

 23>78, No

 70>78, No

Step 4: print Max Output:78

9. RECURSION

Recursion is a programming technique using function or algorithm that calls itself one or more

times until a specified condition is met at which time the rest of each repetition is processed

from the last one called to the first.

A simple recursive algorithm:

✱ Solves the base cases directly.

✱ Recurs with a simpler sub problem or sub problems.

✱ May do some extra work to convert the solution to the simpler sub problem into a

solution to the given problem.

Some Example Algorithms

1. Factorial

2. All permutations

3. Tree traversal

4. Binary Search

5. Quick Sort

6. Towers of Hanoi

9.1 Design Methodology and Implementation of Recursion

✱ The recursive solution for a problem involves a two-way journey:

✱ First we decompose the problem from the top to the bottom

✱ Then we solve the problem from the bottom to the top.

Steps for Designing Recursive Algorithms

✱ Each call of a recursive algorithm either solves one part of the problem or it reduces

the size of the problem.

✱ The general part of the solution is the recursive call. At each recursive call, the size

of the problem is reduced.

✱ The statement that ôsolvesö the problem is known as the base case.

✱ Every recursive algorithm must have a base case.

✱ The rest of the algorithm is known as the general case. The general case contains the

logic needed to reduce the size of the problem.

✱ Once the base case has been reached, the solution begins.We now know one part

of the answer and can return that part to the next, more general statement.

✱ This allows us to solve the next general case.

✱ As we solve each general case in turn, we are able to solve the next-higher general case

until we finally solve the most general case, the original problem.

Rules for Designing a Recursive Algorithm

1. First, determine the base case.

2. Then determine the general case.

3. Combine the base case and the general cases into an algorithm.

4. Each recursive call must reduce the size of the problem and move it toward the

base case.

5. The base case, when reached, must terminate without a call to the recursive

algorithm; that is, it must execute a return.

9.2 Broad Categories of Recursion

Recursion is a technique that is useful for defining relationships, and for designing

algorithms that implement those relationships. It is a natural way to express many algorithms

in an optimized way. Recursive function is defined in terms of itself.

✱ Linear Recursion

✱ Binary Recursion

Linear Recursion:

Linear recursion is by far the most common form of recursion. In this style of recursion, the

function calls itself repeatedly until it hits the termination condition (Base condition).

Binary Recursion

Binary recursion is another popular and powerful method. This form of recursion has the

potential for calling itself twice instead of once as before. This is pretty useful in scenarios

such as binary tree traversal, generating a Fibonacci sequence, etc.

 Tail Recursion

A function call is said to be tail recursive if there is nothing to do after the function

returns except return its value. Since the current recursive instance is done executing at that

point, saving its stack frame is a waste

For example the following C function print () is tail recursive.

// An example of tail recursive function Print (n) {

If (n < 0) return;

Display n;

Print (n-1);

}

10. FIBONACCI SERIES

Fibonacci Series generates subsequent number by adding two previous numbers.

Fibonacci series starts from two numbers F0 & F1. The initial values of F0 & F1 can be

✱ 0 and 1

✱ 1 and 1 respectively.

The Fibonacci series looks like

F8 = 0 1 1 2 3 5 8 13

The algorithm for generating Fibonacci series can be drafted in 2 ways

1. Fibonacci Iterative Algorithm.

2. Fibonacci Recursive Algorithm.

Fibonacci RecursiveAlgorithm

Algorithm Fibo (n)

If n = 0

Return 0 Else If n = 1

Return 1

Else

Fibo (n) = Fibo (n-1) + Fibo (n-2) Return Fibo (n)

11.FACTORIAL

The factorial of a positive number is the product of the integral values from 1 to the

number: Factorial of the given number can be calculated as:

Algorithm

RecursiveFactorial (n) if (N equals 0)

Return 1

else

Return (n*recursiveFactorial (n-1))

end if

end recursiveFactorial

Calling a Recursive Factorial Algorithm with n=3

 Fig.6 shows the steps for calculating the factorial using Recursion for n=3.

 Fig 6. Factorial using Recursion Steps

Output: 6

12. TOWERS OF HANOI

Tower of Hanoi is a mathematical puzzle which consists of three tower (pegs) and more

than one ring; as depicted in Fig.7.

Fig.7 Tower of Hanoi

These rings are of different sizes and stacked upon in ascending order i.e. the smaller

one sits over the larger one. There are other variations of puzzle where the number

of disks increases, but the tower count remains the same.

Disks

Smallest

 Largest

Towers

7.1 Rules

The mission is to move all the disks to some another tower without violating the sequence

of arrangement. The below mentioned are few rules which are to be followed for Tower of

Hanoi

✱ Only one disk can be moved among the towers at any given time.

✱ Only the “top” disk can be removed.

✱ No large disk can sit over a small disk.

Steps for solving the Towers of Hanoi problem

The following steps are to be followed.

Step 1: Move n-1 disks from source to aux.

Step 2: Move nth disk from source to destination Step 3: Move n-1 disks from

aux to destination.

Following F ig . 8 illustrates the step by step movement of the disks to implement

Tower of Hanoi.

Step: 0

Step: 6

Step: 2

 Fig.8 Tower of Hanoi

A recursive algorithm for Tower of Hanoi can be driven as follows START

Procedure Hanoi (disk, source, dest, aux)

IF disk = 0, THEN

Move disk from source to dest ELSE

Hanoi (disk-1, source, aux, dest) //Step1 Move disk from source to dest //Step2 Hanoi (disk-1, aux, dest,

source) //Step3 ENDIF

END

Done!

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT –II

LINKED LISTS

Introduction - Singly linked list - Representation of a linked list in memory - Operations on a singly linked

list - Merging two singly linked lists into one list - Reversing a singly linked list - Applications of singly

linked list to represent polynomial - Advantages and disadvantages of singly linked list - Circular linked

list - Doubly linked list - Circular Doubly Linked List.

INTRODUCTION

Linked lists and arrays are similar since they both store collections of data. Array is the most common data

structure used to store collection of similar elements. Arrays are convenient to declare and provide the easy syntax

to access any element by its index number. Once the array is set up, access to any element is convenient and fast.

But arrays are suffer from the following limitations:

 Arrays have a fixed dimension. Once the size of an array is decided it cannot be increased or decreased

during execution. For example, if we construct an array of 100 elements and then try to stuff more than

100 elements in it, our program may crash. On the other hand, if we use only 10 elements then the space

for balance 90 elements goes waste.

 Array elements are always stored in contiguous memory locations. At times it might so happen that enough

contiguous locations might not be available for the array that we are trying to create. Even though the total

space requirement of the array can be met through a combination of non-contiguous blocks of memory,

we would still not be allowed to create the array.

 Operations like insertion of a new element in an array or deletion of an existing element from the array

are pretty tedious. This is because during insertion or deletion each element after the specified position

has to be shifted one position to the right (in case of insertion) or one position to the left (in case of

deletion).

Linked list overcomes all these disadvantages. A linked list can grow and shrink in size during its lifetime. In

other words, there is no maximum size of a linked list. The second advantage of linked lists is that, as node

(elements) are stored at different memory locations it hardly happens that we fall short of memory when required.

The third advantage is that, unlike arrays, while inserting or deleting the nodes of the linked list, shifting of nodes

is not required.

What is a Linked list?

Linked list is a very common data structure often used to store similar data in memory. While the elements of an

array occupy contiguous memory locations, those of a linked list are not constrained to be stored in adjacent

locations. The individual elements are stored “somewhere” in memory, rather like a family dispersed, but still

bound together. The order of the elements is maintained by explicit links between them. **-

o Linked List can be defined as collection of objects called nodes that are randomly stored in the memory.

o A node contains two fields i.e. data and pointer which contains the address of the next node in the memory.

o Linked list requires more memory compared to array because along with value it stores pointer to next

node.

o Linked list are among the simplest and most common data structures. They can be used to implement

other data structures like stacks,queues and symbolic expressions,etc…

o The last node of the list contains pointer to the null.

o Typically, a linked list, in its simplest form looks like the following

Fig:1 Linked List

Few salient features

• There is a pointer (called header) points the first element (also called node)

• Successive nodes are connected by pointers.

• Last element points to NULL.

• Linked lists have efficient memory utilization. Here, memory is not pre allocated. Memory is

allocated whenever it is required and it is de-allocated (removed) when it is no longer needed.

• Linked lists are dynamic data structures. i.e., It can grow or shrink in size during execution of a

program.

• Insertion and Deletions are easier and efficient. Linked lists provide flexibility in inserting a data

item at a specified position and deletion of the data item from the given position.

• Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists:

1. It consumes more space because every node requires a additional pointer to store address of the next node when

compared to array.

2. Searching a particular element in list is difficult and also time consuming.

Defining a Node of a Linked List

Each structure of the list is called a node, and consists of two fields:

• Item (or) data

• Address or pointer to the next node in the list

How to define a node of a linked list?

Fig: 2 Defining a node

Note:

Such structures which contain a member field pointing to the same structure type are called self-referential

structures.

Initialize the head node

Struct node *head=NULL;

Memory allocation for a node

Struct node *newnode=(struct node *)malloc(sizeof(struct node));

Creation of node

Steps to create node:

1. Defining a structure of a node

2. Allocate memory dynamically.

3. Read the data into data field

4. Assign null value to its next

struct node

{

int data;

struct node *next; //defining node structure

 };

struct node *head=null,*newnode; //initialize the head node

newnode=(struct node *)malloc(sizeof(struct node)) // memory allocation for a newnode

newnode->data =data // Read data

newnode-> next =null;

There are 3 different implementations of Linked List available, they are:

 Singly Linked List

 Doubly Linked List

 Circular Linked List

Fig: 3 Types of linked list

Representation of Linked List in memory

Linked lists can be represented in memory by using two arrays respectively known as data and next contains

information of element and address of next node repectively.

The list also requires a variable name or start which contains address of first node. Pointer field of last node

denoted by NULL which indicates the end of list. Eg. Consider a linked list given below. The linked list can be

represented in memory as

Fig 4: Representation of Linked List

Singly linked list

Singly linked list can be defined as the collection of ordered set of elements. The number of elements may

vary according to need of the program. A node in the singly linked list consist of two parts: data part and link

part. Data part of the node stores actual information that is to be represented by the node while the link part of the

node stores the address of its immediate successor.

One way chain or singly linked list can be traversed only in one direction. In other words, we can say that

each node contains only next pointer, therefore we cannot traverse the list in the reverse direction.

Consider an example where the marks obtained by the student in three subjects are stored in a linked list as shown

in the figure.

Fig:5 Singly Linked List

In the above figure, the arrow represents the links. The data part of every node contains the marks obtained by

the student in the different subject. The last node in the list is identified by the null pointer which is present in the

address part of the last node. We can have as many elements we require, in the data part of the list.

Operations on Singly Linked List

There are various operations which can be performed on singly linked list. A list of all such operations is given

below.

 Traversing the list

 Inserting a node into the list

 Deleting a node from the list

 Merging the linked list with another one to make a larger list

 Searching for an element in the list.

The insertion into a singly linked list can be performed at different positions. Based on the position of the new

node being inserted, the insertion is categorized into the following categories.

Insertion operation in singly linked list

Inserting a node into a single linked list There are various positions where a node can be inserted:

(i) Inserting at the front (as a first element)

(ii) Inserting at the end (as a last element)

(iii) Inserting at any other position.

SN Operation Description

1 Insertion at

beginning

It involves inserting any element at the front of the list. We just need to a few link

adjustments to make the new node as the head of the list.

2 Insertion at end

of the list

It involves insertion at the last of the linked list. The new node can be inserted as the

only node in the list or it can be inserted as the last one. Different logics are

implemented in each scenario.

3 Insertion after

specified node

It involves insertion after the specified node of the linked list. We need to skip the

desired number of nodes in order to reach the node after which the new node will be

inserted. .

Inserting a node at the front of a single linked list

Inserting a new element into a singly linked list at beginning is quite simple. We just need to make a few

adjustments in the node links adjustments to make the new node as the first node of the list. There are the following

steps which need to be followed in order to insert a new node in the list at beginning.

o Allocate the space for the new node and store data into the data part of the node.

o Make the link part of the new node pointing to the existing first node of the list.

o At the last, we need to make the new node as the first node of the list.

Fig:5 Inserting a node at the front of a single linked list

The algorithm lnsertatfront: is used to insert a node at the front of a single linked list.

Algorithm INSERT_FRONT(head,X)

Input: Head is the pointer to the first node and X is the data of the node to be inserted.

Output: A singly linked list with newly inserted node in the front of the list.

1. newnode = create newnode // Create a newnode and store its pointer in newnode

newnode->data =data // Read data

newnode-> next =null;

2. if(head!= NULL)

newnode->next=head

head=newnode

3. endif

4. stop

Inserting a node at the end of a single linked list

o We need to declare a temporary pointer temp in order to traverse through the list. temp is made to point

the first node of the list. At the end of the loop, the temp will be pointing to the last node of the list. Now,

allocate the space for the new node, and assign the item to its data part. Since, the new node is going to be

the last node of the list hence, the next part of this node needs to be pointing to the null. We need to make

the next part of the temp node (which is currently the last node of the list) to null .

Fig:6 Inserting a node at the end of a single linked list

The algorithm Insert_End is used to insert a node at the end of a single linked list

Algorithm INSERT_END(head,X)

Input: Head is the pointer to the first node and X is the data of the node to be inserted.

Output: A singly linked list with newly inserted node at the end of a linked list

1. newnode = create newnode // Create a newnode and store its pointer in newnode

newnode->data =data // Read data

newnode-> next =null

 2. temp = head

 while (temp -> next != NULL) do

 temp = temp -> next

 Endwhile

 temp->next = newnode

 newnode->next=null

 stop

Inserting a node into a single linked list at any position in the list

In order to insert an element after the specified number of nodes into the linked list, we need to skip the desired

number of elements in the list to move the pointer at the position after which the node will be inserted.

Fig: 7 Inserting a node into a single linked list at any position in the list

The algorithm InsertAnyPosition is used to insert a node into a single linked list at any position in the list.

Algorithm INSERT_ANYPOSITION(Head,X,pos)

1. temp=head;

 while(i<pos)

 temp=temp->next;

 i++

 Endwhile

2. newnode = create newnode // Create a newnode and store its pointer in newnode

newnode->data =data // Read data

 newnode->next=temp->next

 temp->next=newnode

Deletion Operation in Singly linked list

The Deletion of a node from a singly linked list can be performed at different positions. Based on the position of

the node being deleted, the operation is categorized into the following categories.

SN Operation Description

1 Deletion at

beginning

It involves deletion of a node from the beginning of the list. This is

the simplest operation among all. It just need a few adjustments in

the node pointers.

2 Deletion at the

end of the list

It involves deleting the last node of the list. The list can either be

empty or full. Different logic is implemented for the different

scenarios.

3 Deletion after

specified node

It involves deleting the node after the specified node in the list. we

need to skip the desired number of nodes to reach the node after

which the node will be deleted. This requires traversing through the

list.

4 Traversing In traversing, we simply visit each node of the list at least once in

order to perform some specific operation on it, for example, printing

data part of each node present in the list.

Deletion in singly linked list at beginning

Deleting a node from the beginning of the list is the simplest operation of all. It just need a few adjustments in

the node pointers. Since the first node of the list is to be deleted, therefore, we just need to make the head, point

to the next of the head. This will be done by using the following statements.

temp=head;

head=head->next;

Now, free the pointer ptr which was pointing to the head node of the list. This will be done by using the following

statement.

Free(temp)

Fig 8: Deleting a node from the beginning

Algorithm DELETE_FRONT(Head,temp)

o Step 1: IF HEAD = NULL

Write UNDERFLOW

 Go to Step 5

 [END OF IF]

o Step 2: SET TEMP = HEAD

o Step 3: SET HEAD = HEAD -> NEXT

o Step 4: FREE TEMP

o Step 5: EXIT

Deletion in singly linked list at the end

There are two scenarios in which, a node is deleted from the end of the linked list.

1. There is only one node in the list and that needs to be deleted.

2. There are more than one node in the list and the last node of the list will be deleted.

In the first scenario,

the condition head → next = NULL will survive and therefore, the only node head of the list will be

assigned to null. This will be done by using the following statements.

 temp = head

 head = NULL

 free(ptr)

In the second scenario,

The condition head → next = NULL would fail and therefore, we have to traverse the node in order to

reach the last node of the list.

For this purpose, just declare a temporary pointer temp and assign it to head of the list. We also need to

keep track of the second last node of the list. For this purpose, two pointers temp and ptr1 will be used

where temp will point to the last node and ptr1 will point to the second last node of the list.

this all will be done by using the following statements.

 temp = head;

 while(temp->next != NULL)

 {

 ptr1 = temp;

 temp = temp ->next;

 }

Now, we just need to make the pointer ptr1 point to the NULL and the last node of the list that is pointed

by temp will become free. It will be done by using the following statements.

 temp->next = NULL;

 free(ptr);

Fig 9 Deletion in singly linked list at the end

Algorithm DELETE_END(Head,Temp,ptr1)

Step 1: IF HEAD = NULL

Write UNDERFLOW

 Go to Step 8

 [END OF IF]

Step 2: SET TEMP = HEAD

Step 3: Repeat Steps 4 and 5 while TEMP -> NEXT!= NULL

Step 4: SET PRETEMP = TEMP

Step 5: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 6: SET PRETEMP -> NEXT = NULL

Step 7: FREE TEMP

Step 8: EXIT

Deletion in singly linked list after the specified node :

In order to delete the node, which is present after the specified node, we need to skip the desired number of nodes

to reach the node after which the node will be deleted. We need to keep track of the two nodes. The one which is

to be deleted the other one if the node which is present before that node. For this purpose, two pointers are used:

temp and ptr1.

Use the following statements to do so.

temp=head;

 for(i=0;i<loc;i++)

 {

 ptr1 = temp;

 temp = temp->next;

 if(temp == NULL)

 {

 printf("\nThere are less than %d elements in the list..",loc);

 return;

 }

 }

Now, our task is almost done, we just need to make a few pointer adjustments. Make the next of ptr1 (points to

the specified node) point to the next of ptr (the node which is to be deleted).

This will be done by using the following statements.

ptr1 ->next = temp ->next;

 free(temp);

Algorithm DELETE_POS(Head,Temp,Ptr1)

STEP 1: IF HEAD = NULL

WRITE UNDERFLOW

 GOTO STEP 10

 END OF IF

STEP 2: SET TEMP = HEAD

STEP 3: SET I = 0

STEP 4: REPEAT STEP 5 TO 8 UNTIL I

STEP 5: PTR1 = TEMP

STEP 6: TEMP = TEMP → NEXT

STEP 7: IF TEMP = NULL

WRITE "DESIRED NODE NOT PRESENT"

 GOTO STEP 12

 END OF IF

STEP 8: I = I+1

END OF LOOP

STEP 9: PTR1 → NEXT = TEMP → NEXT

STEP 10: FREE TEMP

Traversing in singly linked list

Traversing is the most common operation that is performed in almost every scenario of singly linked list.

Traversing means visiting each node of the list once in order to perform some operation on that. This will be done

by using the following statements.

temp = head;

 while (temp!=NULL)

 {

 temp = temp -> next;

 }

Algorithm TRAVERSING()

STEP 1: SET TEMP = HEAD

STEP 2: IF TEMP = NULL

 WRITE "EMPTY LIST"

 GOTO STEP 7

 END OF IF

STEP 4: REPEAT STEP 5 AND 6 UNTIL TEMP != NULL

STEP 5: PRINT TEMP→ DATA

STEP 6: TEMP = TEMP → NEXT

[END OF LOOP]

STEP 7: EXITMP

STEP 11: EXIT

Consider two singly linked list are sorted in increasing order, and merges the two together into one list which is

in increasing order. SortedMerge() should return the new list. The new list should be made by splicing together

the nodes of the first two lists.

For example: if L1 = 1 -> 3 -> 10 and L2 = 5 -> 6 -> 9 then your program should output the linked list

1 -> 3 -> 5 -> 6 -> 9 -> 10.

Algorithm

The algorithm for this question is quite simple since the two linked lists are already sorted. We create a new linked

list and loop through both lists appending the smaller nodes. We'll be using some code that we used in a previous

linked list interview question.

Algorithm:

(1) Create a new head pointer to an empty linked list.

(2) Check the first value of both linked lists.

(3) Whichever node from L1 or L2 is smaller, append it to the new list and move the pointer to the next node.

(4) Continue this process until you reach the end of a linked list.

Example

L1 = 1 -> 3 -> 10

L2 = 5 -> 6 -> 9

L3 = null

Compare the first two nodes in both linked lists: (1, 5), 1 is smaller so add it to the new linked list and move the

pointer in L1.

L1 = 3 -> 10

L2 = 5 -> 6 -> 9

L3 = 1

Compare the first two nodes in both linked lists: (3, 5), 3 is smaller so add it to the new linked list and move the

pointer in L1.

L1 = 10

L2 = 5 -> 6 -> 9

L3 = 1 -> 3

Compare the first two nodes in both linked lists: (10, 5), 5 is smaller so add it to the new linked list and move the

pointer in L2.

L1 = 10

L2 = 6 -> 9

L3 = 1 -> 3 -> 5

Compare the first two nodes in both linked lists: (10, 6), 6 is smaller so add it to the new linked list and move the

pointer in L2.

L1 = 10

L2 = 9

L3 = 1 -> 3 -> 5 -> 6

Compare the first two nodes in both linked lists: (10, 9), 9 is smaller so add it to the new linked list and move the

pointer in L2.

L1 = 10

L2 = null

L3 = 1 -> 3 -> 5 -> 6 -> 9

Because L2 points to null, simply append the rest of the nodes from L1 and we have our merged linked list.

L3 = 1 -> 3 -> 5 -> 6 -> 9 -> 10

Reverse a Singly Linked List

Algorithm to reverse a Singly Linked List

Begin:

 If (head != NULL) then

 prevNode ← head

 head ← head.next

 curNode ← head

 prevNode.next ← NULL

 While (head != NULL) do

 head ← head.next

 curNode.next ← prevNode

 prevNode ← curNode

 curNode ← head

 End while

 head ← prevNode

 End if

End

Application of singly linked list to represent polynomial

What is Polynomial?

A polynomial p(x) is the expression in variable x which is in the form (axn + bxn-1 + …. + jx+ k), where a, b, c

…., k fall in the category of real numbers and 'n' is non negative integer, which is called the degree of polynomial.

An essential characteristic of the polynomial is that each term in the polynomial expression consists of two parts:

one is the coefficient

other is the exponent

Example

10x2 + 26x, here 10 and 26 are coefficients and 2, 1 is its exponential value.

Points to keep in Mind while working with Polynomials:

1. The sign of each coefficient and exponent is stored within the coefficient and the exponent itself

2. Additional terms having equal exponent is possible one

3. The storage allocation for each term in the polynomial must be done in ascending and descending order

of their exponent

Polynomial can be represented in the various ways. These are:

1. By the use of arrays

2. By the use of Linked List

Polynomial can be represented in the various ways. These are:

 By the use of arrays

 By the use of Linked List

A polynomial can be thought of as an ordered list of non zero terms. Each non zero term is a two-tuple which

holds two pieces of information:

The exponent part

The coefficient part

Given two polynomial numbers represented by a linked list. Write a function that add these lists means add

the coefficients who have same variable powers.

Example:

Input:

 1st number = 5x2 + 4x1 + 2x0

 2nd number = -5x1 - 5x0

Output:

 5x2-1x1-3x0

Input:

 1st number = 5x3 + 4x2 + 2x0

 2nd number = 5x^1 - 5x^0

Output:

 5x3 + 4x2 + 5x1 - 3x0

Doubly linked list

Doubly linked list is a complex type of linked list in which a node contains a pointer to the previous as well as

the next node in the sequence. Therefore, in a doubly linked list, a node consists of three parts: node data, pointer

to the next node in sequence (next pointer), pointer to the previous node (previous pointer). A sample node in a

doubly linked list is shown in the figure.

A doubly linked list containing three nodes having numbers from 1 to 3 in their data part, is shown in the following

image.

Fig: Doubly linked list

In C, structure of a node in doubly linked list can be given as :

struct node

{

 struct node *prev;

 int data;

 struct node *next;

}

The prev part of the first node and the next part of the last node will always contain null indicating end in each

direction.

In a singly linked list, we could traverse only in one direction, because each node contains address of the next

node and it doesn't have any record of its previous nodes. However, doubly linked list overcome this limitation

of singly linked list. Due to the fact that, each node of the list contains the address of its previous node, we can

find all the details about the previous node as well by using the previous address stored inside the previous part

of each node.

Memory Representation of a doubly linked list

Memory Representation of a doubly linked list is shown in the following image. Generally, doubly linked list

consumes more space for every node and therefore, causes more expansive basic operations such as insertion and

deletion. However, we can easily manipulate the elements of the list since the list maintains pointers in both the

directions (forward and backward).

In the following image, the first element of the list that is i.e. 13 stored at address 1. The head pointer points to

the starting address 1. Since this is the first element being added to the list therefore the prev of the list contains

null. The next node of the list resides at address 4 therefore the first node contains 4 in its next pointer.

We can traverse the list in this way until we find any node containing null or -1 in its next part.

Operations on doubly linked list

Node Creation

struct node

{

 struct node *prev;

 int data;

 struct node *next;

};

struct node *head;

All the remaining operations regarding doubly linked list are described in the following table.

SN Operation Description

1 Insertion at beginning Adding the node into the linked list at beginning.

2 Insertion at end Adding the node into the linked list to the end.

3 Insertion after specified

node

Adding the node into the linked list after the specified node.

4 Deletion at beginning Removing the node from beginning of the list

5 Deletion at the end Removing the node from end of the list.

6 Deletion of the node

having given data

Removing the node which is present just after the node

containing the given data.

7 Traversing Visiting each node of the list at least once in order to perform

some specific operation like searching, sorting, display, etc.

Insertion in doubly linked list at beginning

As in doubly linked list, each node of the list contain double pointers therefore we have to maintain more number

of pointers in doubly linked list as compare to singly linked list.

There are two scenarios of inserting any element into doubly linked list. Either the list is empty or it contains at

least one element. Perform the following steps to insert a node in doubly linked list at beginning.

1. Allocate the space for the new node in the memory.

2. Check whether the list is empty or not. The list is empty if the condition head == NULL holds. In that

case, the node will be inserted as the only node of the list and therefore the prev and the next pointer of

the node will point to NULL and the head pointer will point to this node.

 newnode->next = NULL;

 newnode>prev=NULL;

 newnode->data=item;

 head=newnode;

In the second scenario, the condition head == NULL become false and the node will be inserted in beginning.

The next pointer of the node will point to the existing head pointer of the node. The prev pointer of the existing

head will point to the new node being inserted.

This will be done by using the following statements.

newnode->next = head;

 head→prev=newnode;

Since, the node being inserted is the first node of the list and therefore it must contain NULL in its prev pointer.

Hence assign null to its previous part and make the head point to this node.

newnode→prev =NULL

head = newnode

Algorithm :

Step 1: IF NEWNODE = NULL

 Write OVERFLOW

 Go to Step 9

 [END OF IF]

Step 2: SET NEW_NODE = TEMP

Step 3: SET TEMP = TEMP -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> PREV = NULL

Step 6: SET NEW_NODE -> NEXT = START

Step 7: SET head -> PREV = NEW_NODE

Step 8: SET head = NEW_NODE

Step 9: EXIT

Insertion in doubly linked list at the end

In order to insert a node in doubly linked list at the end, we must make sure whether the list is empty or it contains

any element. Use the following steps in order to insert the node in doubly linked list at the end.

1. Allocate the memory for the new node. Make the pointer ptr point to the new node being inserted.

2. Check whether the list is empty or not. The list is empty if the condition head == NULL holds. In that

case, the node will be inserted as the only node of the list and therefore the prev and the next pointer of

the node will point to NULL and the head pointer will point to this node.

 newnode->next = NULL;

 newnode ->prev=NULL;

 newnode ->data=item;

 head= newnode;

In the second scenario, the condition head == NULL become false. The new node will be inserted as the last node

of the list. For this purpose, we have to traverse the whole list in order to reach the last node of the list. Initialize

the pointer temp to head and traverse the list by using this pointer.

Temp = head;

while (temp != NULL)

{

temp = temp → next;

 }

the pointer temp point to the last node at the end of this while loop. Now, we just need to make a few pointer

adjustments to insert the new node ptr to the list. First, make the next pointer of temp point to the new node being

inserted i.e. newnode.

temp→next =newnode;

make the previous pointer of the node ptr point to the existing last node of the list i.e. temp.

newnode → prev = temp;

make the next pointer of the node ptr point to the null as it will be the new last node of the list.

newnode → next = NULL

Algorithm INSERT_END(Head,Temp,Newnode)

Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 11

 [END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> NEXT = NULL

Step 6: SET TEMP = START

Step 7: Repeat Step 8 while TEMP -> NEXT != NULL

Step 8: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 9: SET TEMP -> NEXT = NEW_NODE

Step 10C: SET NEW_NODE -> PREV = TEMP

Step 11: EXIT

Insertion in doubly linked list after Specified node

In order to insert a node after the specified node in the list, we need to skip the required number of nodes in order

to reach the mentioned node and then make the pointer adjustments as required.

Use the following steps for this purpose.

1. Allocate the memory for the new node.

2. Traverse the list by using the pointer temp to skip the required number of nodes in order to reach the

specified node.

temp=head;

 for(i=0;i<loc;i++)

 {

 temp = temp->next;

 if(temp == NULL) //up to mentioned location

 {

 return;

 }

 }

The temp would point to the specified node at the end of the for loop. The new node needs to be inserted after

this node therefore we need to make a few pointer adjustments here. Make the next pointer of ptr point to the next

node of temp.

ptr → next = temp → next;

make the prev of the new node ptr point to temp.

ptr → prev = temp;

make the next pointer of temp point to the new node ptr.

temp → next = ptr;

make the previous pointer of the next node of temp point to the new node.

temp → next → prev = ptr;

Algorithm INSERT_POS()

Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 15

 [END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET TEMP = START

Step 6: SET I = 0

Step 7: REPEAT 8 to 10 until I

Step 8: SET TEMP = TEMP -> NEXT

STEP 9: IF TEMP = NULL

STEP 10: WRITE "LESS THAN DESIRED NO. OF ELEMENTS"

 GOTO STEP 15

 [END OF IF]

 [END OF LOOP]

Step 11: SET NEW_NODE -> NEXT = TEMP -> NEXT

Step 12: SET NEW_NODE -> PREV = TEMP

Step 13 : SET TEMP -> NEXT = NEW_NODE

Step 14: SET TEMP -> NEXT -> PREV = NEW_NODE

Step 15: EXIT

Deletion at beginning

Deletion in doubly linked list at the beginning is the simplest operation. We just need to copy the head pointer to

pointer ptr and shift the head pointer to its next.

 Ptr = head;

 head = head → next;

now make the prev of this new head node point to NULL. This will be done by using the following statements.

head → prev = NULL

Now free the pointer ptr by using the free function.

free(ptr)

Algorithm

STEP 1: IF HEAD = NULL

WRITE UNDERFLOW

GOTO STEP 6

STEP 2: SET PTR = HEAD

STEP 3: SET HEAD = HEAD → NEXT

STEP 4: SET HEAD → PREV = NULL

STEP 5: FREE PTR

STEP 6: EXIT

Deletion in doubly linked list at the end

Deletion of the last node in a doubly linked list needs traversing the list in order to reach the last node of the list

and then make pointer adjustments at that position.

In order to delete the last node of the list, we need to follow the following steps.

If the list is already empty then the condition head == NULL will become true and therefore the operation can

not be carried on.

If there is only one node in the list then the condition head → next == NULL become true. In this case, we just

need to assign the head of the list to NULL and free head in order to completely delete the list.

Otherwise, just traverse the list to reach the last node of the list. This will be done by using the following

statements.

ptr = head;

 if(ptr->next != NULL)

 {

 ptr = ptr -> next;

 }

The ptr would point to the last node of the ist at the end of the for loop. Just make the next pointer of the previous

node of ptr to NULL.

ptr → prev → next = NULL

free the pointer as this the node which is to be deleted.

free(ptr)

Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 7

[END OF IF]

Step 2: SET TEMP = HEAD

Step 3: REPEAT STEP 4 WHILE TEMP->NEXT != NULL

Step 4: SET TEMP = TEMP->NEXT

[END OF LOOP]

Step 5: SET TEMP ->PREV-> NEXT = NULL

Step 6: FREE TEMP

Step 7: EXIT

Deletion in doubly linked list after the specified node

In order to delete the node after the specified data, we need to perform the following steps.

Copy the head pointer into a temporary pointer temp.

temp = head

Traverse the list until we find the desired data value.

while(temp -> data != val)

temp = temp -> next;

Check if this is the last node of the list. If it is so then we can't perform deletion.

if(temp -> next == NULL)

 {

return;

 }

Check if the node which is to be deleted, is the last node of the list, if it so then we have to make the next pointer

of this node point to null so that it can be the new last node of the list.

if(temp -> next -> next == NULL)

 {

 temp ->next = NULL;

 }

Otherwise, make the pointer ptr point to the node which is to be deleted. Make the next of temp point to the next

of ptr. Make the previous of next node of ptr point to temp. free the ptr.

ptr = temp -> next;

 temp -> next = ptr -> next;

 ptr -> next -> prev = temp;

 free(ptr);

Algorithm

Step 1: IF HEAD = NULL

 Write UNDERFLOW

 Go to Step 9

 [END OF IF]

Step 2: SET TEMP = HEAD

Step 3: Repeat Step 4 while TEMP -> DATA != ITEM

Step 4: SET TEMP = TEMP -> NEXT

 [END OF LOOP]

Step 5: SET PTR = TEMP -> NEXT

Step 6: SET TEMP -> NEXT = PTR -> NEXT

Step 7: SET PTR -> NEXT -> PREV = TEMP

Step 8: FREE PTR

Step 9: EXIT Traversing in doubly linked list

Traversing is the most common operation in case of each data structure. For this purpose, copy the head pointer

in any of the temporary pointer ptr.

Ptr = head

then, traverse through the list by using while loop. Keep shifting value of pointer variable ptr until we find the

last node. The last node contains null in its next part.

while(ptr != NULL)

 {

 printf("%d\n",ptr->data);

 ptr=ptr->next;

 }

Although, traversing means visiting each node of the list once to perform some specific operation. Here, we are

printing the data associated with each node of the list.

Algorithm

Step 1: IF HEAD == NULL

 WRITE "UNDERFLOW"

 GOTO STEP 6

 [END OF IF]

Step 2: Set PTR = HEAD

Step 3: Repeat step 4 and 5 while PTR != NULL

Step 4: Write PTR → data

Step 5: PTR = PTR → next

Step 6: Exit

Circular Singly Linked List

In a circular Singly linked list, the last node of the list contains a pointer to the first node of the list. We can have

circular singly linked list as well as circular doubly linked list.

We traverse a circular singly linked list until we reach the same node where we started. The circular singly liked

list has no beginning and no ending. There is no null value present in the next part of any of the nodes.

The following image shows a circular singly linked list.

Circular Singly Linked List

Circular linked list are mostly used in task maintenance in operating systems. There are many examples where

circular linked list are being used in computer science including browser surfing where a record of pages visited

in the past by the user, is maintained in the form of circular linked lists and can be accessed again on clicking the

previous button.

Memory Representation of circular linked list:

In the following image, memory representation of a circular linked list containing marks of a student in 4 subjects.

However, the image shows a glimpse of how the circular list is being stored in the memory. The start or head of

the list is pointing to the element with the index 1 and containing 13 marks in the data part and 4 in the next part.

Which means that it is linked with the node that is being stored at 4th index of the list.

However, due to the fact that we are considering circular linked list in the memory therefore the last node of the

list contains the address of the first node of the list.

Circular Singly Linked List

We can also have more than one number of linked list in the memory with the different start pointers pointing to

the different start nodes in the list. The last node is identified by its next part which contains the address of the

start node of the list. We must be able to identify the last node of any linked list so that we can find out the number

of iterations which need to be performed while traversing the list.

Operations on Circular Singly linked list:

Insertion

SN Operation Description

1 Insertion at

beginning

Adding a node into circular singly linked list at the

beginning.

2 Insertion at the end Adding a node into circular singly linked list at the end.

Insertion into circular singly linked list at beginning

There are two scenario in which a node can be inserted in circular singly linked list at beginning. Either the node

will be inserted in an empty list or the node is to be inserted in an already filled list.

Firstly, allocate the memory space for the new node

In the first scenario, the condition head == NULL will be true. Since, the list in which, we are inserting the node

is a circular singly linked list, therefore the only node of the list (which is just inserted into the list) will point to

itself only. We also need to make the head pointer point to this node. This will be done by using the following

statements.

if(head == NULL)

 {

 head = ptr;

 ptr -> next = head;

 }

In the second scenario, the condition head == NULL will become false which means that the list contains at least

one node. In this case, we need to traverse the list in order to reach the last node of the list. This will be done by

using the following statement.

temp = head;

 while(temp->next != head)

 temp = temp->next;

At the end of the loop, the pointer temp would point to the last node of the list. Since, in a circular singly linked

list, the last node of the list contains a pointer to the first node of the list. Therefore, we need to make the next

pointer of the last node point to the head node of the list and the new node which is being inserted into the list

will be the new head node of the list therefore the next pointer of temp will point to the new node ptr.

This will be done by using the following statements.

temp -> next = ptr;

the next pointer of temp will point to the existing head node of the list.

ptr->next = head;

Now, make the new node ptr, the new head node of the circular singly linked list.

head = ptr;

in this way, the node ptr has been inserted into the circular singly linked list at beginning.

Algorithm

Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 11

 [END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET TEMP = HEAD

Step 6: Repeat Step 8 while TEMP -> NEXT != HEAD

Step 7: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 8: SET NEW_NODE -> NEXT = HEAD

Step 9: SET TEMP → NEXT = NEW_NODE

Step 10: SET HEAD = NEW_NODE

Step 11: EXIT

Insertion into circular singly linked list at the end

There are two scenario in which a node can be inserted in circular singly linked list at beginning. Either the node

will be inserted in an empty list or the node is to be inserted in an already filled list.

Algorithm

Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 1

 [END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> NEXT = HEAD

Step 6: SET TEMP = HEAD

Step 7: Repeat Step 8 while TEMP -> NEXT != HEAD

Step 8: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 9: SET TEMP -> NEXT = NEW_NODE

Step 10: EXIT

Deletion & Traversing

N Operation Description

1 Deletion at

beginning

Removing the node from circular singly linked list at the beginning.

2 Deletion at the end Removing the node from circular singly linked list at the end.

4 Traversing Visiting each element of the list at least once in order to perform some

specific operation.

Deletion in circular singly linked list at beginning

In order to delete a node in circular singly linked list, we need to make a few pointer adjustments.

There are three scenarios of deleting a node from circular singly linked list at beginning.

Scenario 1: (The list is Empty)

If the list is empty then the condition head == NULL will become true, in this case, we just need to print underflow

on the screen and make exit.

if(head == NULL)

 {

 printf("\nUNDERFLOW");

 return;

 }

Scenario 2: (The list contains single node)

If the list contains single node then, the condition head → next == head will become true. In this case, we need

to delete the entire list and make the head pointer free. This will be done by using the following statements.

if(head->next == head)

{

 head = NULL;

 free(head);

}

Scenario 3: (The list contains more than one node)

If the list contains more than one node then, in that case, we need to traverse the list by using the pointer ptr to

reach the last node of the list. This will be done by using the following statements.

 ptr = head;

 while(ptr -> next != head)

 ptr = ptr -> next;

At the end of the loop, the pointer ptr point to the last node of the list. Since, the last node of the list points to the

head node of the list. Therefore this will be changed as now, the last node of the list will point to the next of the

head node.

ptr->next = head->next;

Now, free the head pointer by using the free() method in C language.

free(head);

Make the node pointed by the next of the last node, the new head of the list.

head = ptr->next;

In this way, the node will be deleted from the circular singly linked list from the beginning.

Algorithm

Step 1: IF HEAD = NULL

Write UNDERFLOW

 Go to Step 8

 [END OF IF]

Step 2: SET PTR = HEAD

Step 3: Repeat Step 4 while PTR → NEXT != HEAD

Step 4: SET PTR = PTR → next

[END OF LOOP]

Step 5: SET PTR → NEXT = HEAD → NEXT

Step 6: FREE HEAD

Step 7: SET HEAD = PTR → NEXT

Step 8: EXIT

Deletion in Circular singly linked list at the end

There are three scenarios of deleting a node in circular singly linked list at the end.

Scenario 1 (the list is empty)

If the list is empty then the condition head == NULL will become true, in this case, we just need to print underflow

on the screen and make exit.

if(head == NULL)

 {

 printf("\nUNDERFLOW");

 return;

 }

Scenario 2(the list contains single element)

If the list contains single node then, the condition head → next == head will become true. In this case, we need

to delete the entire list and make the head pointer free. This will be done by using the following statements.

if(head->next == head)

{

 head = NULL;

 free(head);

}

Scenario 3(the list contains more than one element)

If the list contains more than one element, then in order to delete the last element, we need to reach the last node.

We also need to keep track of the second last node of the list. For this purpose, the two pointers ptr and preptr are

defined. The following sequence of code is used for this purpose.

ptr = head;

 while(ptr ->next != head)

 {

 preptr=ptr;

 ptr = ptr->next;

 }

now, we need to make just one more pointer adjustment. We need to make the next pointer of preptr point to the

next of ptr (i.e. head) and then make pointer ptr free.

preptr->next = ptr -> next;

 free(ptr);

Algorithm

Step 1: IF HEAD = NULL

 Write UNDERFLOW

 Go to Step 8

 [END OF IF]

Step 2: SET PTR = HEAD

Step 3: Repeat Steps 4 and 5 while PTR -> NEXT != HEAD

Step 4: SET PREPTR = PTR

Step 5: SET PTR = PTR -> NEXT

[END OF LOOP]

Step 6: SET PREPTR -> NEXT = HEAD

Step 7: FREE PTR

Step 8: EXIT

Traversing in Circular Singly linked list

Traversing in circular singly linked list can be done through a loop. Initialize the temporary pointer variable temp

to head pointer and run the while loop until the next pointer of temp becomes head. The algorithm and the c

function implementing the algorithm is described as follows.

Algorithm

STEP 1: SET PTR = HEAD

STEP 2: IF PTR = NULL

WRITE "EMPTY LIST"

GOTO STEP 8

END OF IF

STEP 4: REPEAT STEP 5 AND 6 UNTIL PTR → NEXT != HEAD

STEP 5: PRINT PTR → DATA

STEP 6: PTR = PTR → NEXT

[END OF LOOP]

STEP 7: PRINT PTR→ DATA

STEP 8: EXIT

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – III -Data Structures – SCSA1203

UNIT -III

 UNIT 3 STACKS 9 Hrs.

Basic Stack Operations - Representation of a Stack using Arrays - Algorithm for Stack Operations

- Stack Applications: Reversing list - Factorial Calculation - Infix to postfix Transformation -

Evaluating Arithmetic Expressions

3. STACK

3.1 INTRODUCTION

Stack is a linear data structure which follows a particular order in which the operations are

performed. In stack, insertion and deletion of elements happen only at one end, i.e., the most

recently inserted element is the one deleted first from the set.

This could be explained using a simple analogy, a pile of plates, where one plate is placed on the

top of another. Now, when a plate is to be removed, the topmost one is removed. Hence

insertion/removal of a plate is done at the topmost position. Few real world examples are given as:

 Stack of plates in a buffet table. The plate inserted at last will be the first one to be

removed out of stack.

 Stack of Compact Discs

 Stack of Moulded chairs

 Bangles on Women’s Hand

 Books piled on top of each other

These above examples state, stack as a linear list where all insertion and deletion are done only at

one end of the list called Top. i.e., Stack implements Last-in, First-out (LIFO)policy. Stack can

be implemented as an Array or Linked list.

3.2 STACK

Fig. 3.2.1 Representation of stack as Array

Where does the stack concept implemented in computers? Though there are various applications,

simple answer is in function calls. Consider the below example:

In order to keep track of returning point of each active function, a special stack named

System stack is used.

Fig. 3.2.2 Function calls with Stack

when A calls function B, A is pushed onto system stack. Similarly when B calls C,B is

pushed onto stack and so on. Once the execution of function C is complete, the control will remove

C from the stack. Thus system stack ensures proper execution order of functions.

The below diagram (Figure 3.3) depicts expansion and shrinking of a stack, initially stack

is empty

Fig. 3.2.3 Operations on Stack

In Stack, all operations take place at the “top” .Push(x) operation adds an item x at the top

of stack and the Pop() operation removes an item from the top of stack.

3.2.1 Stack as an ADT (Abstract Data Type):

Stack can be represented using an array. A one dimensional array is used to hold the

elements of the stack and a variable “top” is used for representing the index of the top most

element. Formally defined as:

type def struct stack

{

int data[size]; // size is constant, represents maximum

int top; // number of elements that can be stored.

} S;

3.2.2 Basic Stack Operations

 isEmpty: Returns true if stack is empty, else false.

 Push: Adds an item in the stack. If the stack is full, then it is said to be an Overflow

condition.

 Pop: Removes an item from the stack. The items are popped in the reversed order in

which they are pushed. If the stack is empty, then it is said to be an Underflow

condition.

Fig.3.2.4.1 Push and Pop Operation of Stack

Fig.3.2.4.2 Push and Pop Operation of Stack

The fundamental operations in stack are given as follows:

STACK_EMPTY(S)

if S.top == 0

return TRUE

else

return FALSE

PUSH (S.x)

S.top = S.top+1

S[S.top] = x

POP(S)

if STACK_EMPTY(S)

error “underflow”

else

x = S[S.top]

S.top = S.top-1

return x

When S.top = 0, the stack contains no elements and is empty. In that case an attempt to pop

an element from empty stack is named stack underflow, which is normally reported as error. If

S.top exceeds size, then stack overflows. In pseudo code implementation stack overflow is not

represented. Each of the above three stack operations takes O(1) time.

3.2.3 ARRAY REPRESENTATION OF STACK

Stack is represented as a linear array. In an array-based implementation the following fields

are maintained: an array S of a default Size (≥ 1), the variable top that refers to the top element in

the stack and the size that refers to the array size. The variable top changes from -1 to Size-1.

Stack is called empty when top = -1, and the stack is full when top = Size-1.Consider an example

stack with size=10.

10 20 30 40

0 1 2 Top=3 4 5 6 7 8 9

Fig.3.2.3.1 Array Representation of Stack

The variable Top represents the topmost element of the stack. In the above example six more

elements could be stored.

OPERATIONS ON STACK

The two basic operations of stack are push and pop. Let’s first discuss about array

representation of these operations.

Push Operation

The push operation is used to insert an element into the stack. The element is added always

at the topmost position of stack. Since the size of array is fixed at the time of declaration, before

inserting the value, check if top=Size-1, if so stack is full and no more insertion is possible. In case

of an attempt to insert a value in full stack, an OVERFLOW message gets displayed.

Consider the below example: Size=10

A B C D E

0 1 2 3 Top=4 5 6 7 8 9

Fig.3.2.3.2 Array Representation of Stack, Push(E)

To insert a new element F, first check if Top==Size-1. If the condition fails, then increment

the Top and store the value. Thus the updated stack is:

A B C D E F

0 1 2 3 4 Top=5 6 7 8 9

Fig.3.2.3.3 Array Representation of Stack, Push(F)

Algorithm:

Push(X)

if Top == Size-1

Write “Stack Overflow”

else

End

Pop Operation

return

Top = Top + 1 // St represents an Array with maximum limit as Size

St[Top] = X // X element to be inserted

The pop operation is used to remove the topmost element from the stack. In this case, first

check the presence of element, if top == -1 (indicates no array elements), then it indicates empty

stack and thereby deletion not possible. In case of an attempt to delete a value in an empty stack,

an UNDERFLOW message gets displayed.

Consider the below example: Size=10

A B C D E

0 1 2 3 Top=4 5 6 7 8 9

Fig.3.2.3.4 Array Representation of Stack, Pop()

To delete the topmost element, first check if Top== -1. If the condition fails, then

decrement the Top.Thus the updated stack is:

A B C D

0 1 2 Top=3 4 5 6 7 8 9

Fig.3.2.3.5 Array Representation of Stack, Pop()

Algorithm:

Pop()

if Top == -1

Write “Stack Underflow”

return

else

X = St[Top] // St represents an Array with maximum limit as Size

Top = Top-1 // X represents element removed

return X

End

Peek Operation

The peek operation returns the topmost element of the stack. Here if stack is not empty, the

top element is displayed.

Consider the below example: Size=10

A B C D E

0 1 2 3 Top=4 5 6 7 8 9

Fig.3.2.3.6 Array Representation of Stack, Peek()

Here, the peek operation will return E, as it’s the topmost element.

Algorithm:

Peek()

if Top == -1

Write “Stack Underflow”

else

return St[Top] // St represents an Array with maximum limit as Size
End

Implementation of stack operations using arrays in Python

class Stack:

Constructor

def _init (self):

self.stack = list()

self.maxSize = 5

self.top = 0

Add element to the Stack def

push(self,data):

if self.top>=self.maxSize:

return ("Stack Full!")

self.stack.append(data)

self.top += 1

return "element inserted"

Remove element from the stack

def pop(self):

if self.top<=0:

return ("Stack Empty!")

item = self.stack.pop()

self.top -= 1

return item

Size of the stack

def size(self):

return self.top

s = Stack()

print("Push : ",s.push(1))

print("Push : ",s.push(2))

print("Push : ",s.push(3))

print("Push : ",s.push(4))

print("Size of Array :",s.size())

print("Element Popped :",s.pop())

print("Element Popped :",s.pop())

print("Element Popped :",s.pop())

print("Element Popped :",s.pop())

print("Element Popped :",s.pop())

Pros:-

 Easier to use.Array elements could be accessed randomly using the array index.

 Less memory allocation, no need to track the next node.

 Data elements are stored in contiguous locations in memory.

Cons:-

 Fixed size – cannot increase or decrease the total number of elements.

3.2.4 LINKED REPRESENTATION OF STACK

Stack using arrays was discussed in the previous section, the drawback of the above

concept is that the array must be pre-declared i.e., size of array is fixed. If array size cannot be

determined in advance, i.e., in case of dynamic storage,Linked List representation could be

implemented.

In a linked list, every node has two parts, one that stores data and the other represents

address of next node. The head pointer is given as Top, all insertions and deletions occur at the

node pointed by Top.

1000 10 2040 3050 20 4000 45 NULL

x
)

Top

Fig.3.2.4.1 Array Representation of Stack

OPERATIONS ON STACK

Linked List representation supports the two basic operations of stack, push and pop.

Push operation

Initially, when the stack is empty the pointer top points NULL. When an element is

added using the push operation, top is made to point to the latest element whichever is added.

Stack Empty

 To

p

NULL

Push

(20)

Top

Push (5) Top

Algorithm:
Push (10)

PUSH(

Allocate memory for a new node and name it as Temp

Temp->data = x

Temp->link = Top

Top = Temp

End

Pop operation

The data in the topmost node of the stack, which is to be removed, is stored in a variable

called item. Then a temporary pointer is created to point to top. The top is now safely moved to

the next node below it in the stack. Temp node is then deleted and the item is returned.

Top 10 2040 NULL 20

2040 NULL 20

NULL 20

1000

1000 10 2040 3050 20 4000 45 NULL

Top

Element to be removed

Temp

Top

 1000 10

2040 3050 20 4000 45 NULL

Pop()

Fig.3.2.4.1 Linked List Representation of Stack

Algorithm:

POP()

if Top == NULL print

“Underflow”

return

else

Temp = Top

Item = Temp->data

Top = Top->link

delete Temp

return Item

End

Implementation of stack operations using linked lists in Python

class Node:

def init (self,data):

self.data = data

self.next = None

class Stack: # default value of head is NULL

def init (self):

self.head = None

def isempty(self): # Checks if stack is empty

Top

2040 NULL 4000 45 3050 20

if self.head == None:

return True

else:

return False

Method to add data to the stack

def push(self,data):

if self.head == None:

self.head=Node(data)

else:

newnode = Node(data)

newnode.next = self.head

self.head = newnode

Remove element that is the current head (start of the stack) def

pop(self):

if self.isempty():

return None

else:

temp = self.head

self.head = self.head.next

temp.next = None

return temp.data

Returns the head node data

def peek(self):

if self.isempty():

return None

else:

return self.head.data

Prints out the stack

def display(self):

temp = self.head

if self.isempty():

print("Stack Underflow")

else:

while(temp != None):

print(temp.data,"->",end = " ")

temp = temp.next

print("NULL")

return

Driver code

St = Stack()

St.push(11)

St.push(22)

St.push(33)

St.push(44)

Display stack elements

print("\nElements in Stack : ")

St.display()

Print top elementof stack

print("\nTop element is ",St.peek())

Delete top elements of stack

St.pop()

St.pop()

Display stack elements

print("\nElements in Stack : ")

St.display()

Print top elementof stack

print("\nTop element is ",St.peek())

Output:

Pros:-

Cons:-

 No fixed size declaration.

 New elements can be stored anywhere and a reference is created for the new

element using pointers.

 Requires extra memory to keep details about next node.

 Random accessing is not possible in linked lists. The elements will have to be

accessed sequentially.

Difference between an Array and Stack ADT

Stack:

 Size of the stack keeps on changing with insertion/deletionoperation.

 Stack can store elements of different data types [Heterogeneous].

Array:

 Size of the array is fixed at the time of declaration itself

 Array stores elements of similar data type [Homogeneous].

3.3 APPLICATIONS OF STACK

In this section, simple applications of stack that are extensively used in computer applications

are discussed. Few applications of Stack are listed as below:

 Stack - undo\redo operation in word processors.

 Expression evaluation and syntax parsing.

 Many virtual machines like JVM are stack oriented.

 DFS Algorithm - Depth First Search.

 Graph Connectivity.

 LIFO scheduling policy of CPU.

 When a processor receives an interrupt, it completes its execution of the current

instruction, then pushes the process’s PCB to the stack and then perform the ISR

(Interrupt Service Routine)

 When a process calls a function inside a function - like recursion, it pushes the

current data like local variables onto the stack to be retrieved once the control is

returned.

 Reverse polish AKA postfix notations.

 Used in IDEs to check for proper parenthesis matching.

 Browser back-forth button.

 Another application is an "undo" mechanism in text editors; this operation is

accomplished by keeping all text changes in a stack

 Backtracking. This is a process when you need to access the most recent data

element in a series of elements. Think of a labyrinth or maze - how do you find a

way from an entrance to an exit?

Once you reach a dead end, you must backtrack. But backtrack to where?,the previous

choice point. Therefore, at each choice point you store on a stack all possible choices. Then

backtracking simply means popping a next choice from the stack.

3.3.1 Reversing a list

A list of numbers are reversed with a stack by just pushing all elements one by one into the

stack and then elements are popped one by one and stored back starting from the first index of the

list.

Fig.3.3.1 Reversing a list using Stack

The logic behind for implementing reverse of a string:

 Read a string.

 Push all characters until NULL is not found - Characters will be stored in stack

variable.

 Pop all characters until NULL is not found - Stack is a LIFO technique, so last

character will be pushed first and finally will get reversed string in a variable in

which input string is stored.

Implementation in Python

class Stack:

def init (self):

self.items = []

def is_empty(self):

Output

:

return self.items == []

def push(self, data):

self.items.append(data)

def pop(self):

return self.items.pop()

def display(self):

for data in reversed(self.items):

print(data,end=" ")

def insert_at_bottom(s, data):

if s.is_empty():

s.push(data)

else:

popped = s.pop()

insert_at_bottom(s, data)

s.push(popped)

def reverse_stack(s):

if not s.is_empty():

popped = s.pop()

reverse_stack(s)

insert_at_bottom(s, popped)

s = Stack()

data_list = input('Enter the elements to push : \n').split()

for data in data_list:

s.push(int(data))

print('The elements in stack :')

s.display()

reverse_stack(s)

print('\nAfter reversing : ')

s.display()

Enter the elements to push :

10 15 20 25 30 35

The elements in stack :

35 30 25 20 15 10

After reversing :

10 15 20 25 30 35

3.3.2 Recursion

All recursive functions are examples of implicit application of Stack ADT.A recursive

function is defined as a function that calls itself again to complete a smaller version of task until a

final call, which does not require a call to itself is met. Therefore recursion is implemented for

solving complex problems in terms of smaller and easily solvable problems.

To understand recursive functions, let’s consider the simplest example of calculating

factorial of a number.

Factorial Calculation using Recursive Approach

To calculate n!, multiply the given number with factorial of that number less than one. i.e., n! = n

ˣ (n-1) !

Fig.3.3.2 Factorial Calculation using Stack

Consider an example 5!

5! = 5 ˣ (4)! , where 4! = 4 ˣ (3)! , where 3! = 3 ˣ (2)! ,where 2! = 2 ˣ(1)!,where 1!=1;

i.e., 5! = 5 ˣ 4ˣ 3ˣ 2ˣ 1

= 120

Python Code:

def factorial(n):

if(n <= 1):

return 1

else:

return(n*factorial(n-1))

n = int(input("Enter number :"))

print("Factorial :",factorial(n))

Output:

3.3.3 Conversion of Infix Expression to Postfix Expression

The stacks are frequently used in evaluation of arithmetic expressions. An arithmetic

expression consists of operands and operators. The operands can be numeric values or numeric

variables. The operators used in an arithmetic expression represent the operations like addition,

subtraction, multiplication, division and exponentiation.

The arithmetic expression expressed in its normal form is said to be Infix notation, as

shown: A * B

The above expression in prefix form would be represented as follows:* AB

The same expression in postfix form would be represented as follows:AB *

Hence the given expression in infix form is first converted to postfix form and then

evaluated to obtain the results. Postfix expressions are represented as Reverse Polish notation. To

understand the conversion of Infix to Postfix expression, knowledge about operator precedence is

important.

Operator Precedence:

The Precedence of the operators takes a crucial place while evaluating expressions. The top

operator in the table has the highest precedence. As per the precedence, the operators will be

pushed to the stack.

Table.3.3.3 Operator Precedence

S.N

o

Operat

or

Associativit

y

S.N

o

Operat

or

Associativit

y

S.N

o

Operat

or

Associativit

y

1

()

Left to

Right

11

&

Right to

Left

21

|

Left to

Right

2

[]

Left to

Right

12

sizeof

Right to

Left

22

&&

Left to

Right

3

.

Left to

Right

13

* / %

Left to

Right

23

| |

Left to

Right

4

->

Left to

Right

14

+ -

Left to

Right

24

? :

Right to

Left

5

++ --

Left to

Right

15

<< >>

Left to

Right

25

=

Right to

Left

6

++ --

Right to

Left

16

< <=

Left to

Right

26

+= -=

Right to

Left

7

+ -

Right to

Left

17

> >=

Left to

Right

27

*= /=

Right to

Left

8

! ~

Right to

Left

18

== !=

Left to

Right

28

%= &=

Right to

Left

9

(type)

Right to

Left

19

&

Left to

Right

29

^= |=

Right to

Left

10

*

Right to

Left

20

^

Left to

Right

30

<<=

>>=

Right to

Left

The function to convert an expression from infix to postfix consists following steps:

1. Every character of the expression string is scanned in a while loop until the end of the

expression is reached.

2. Following steps are performed depending on the type of character scanned.

(a) If the character scanned happens to be a space then that character is skipped.

(b) If the character scanned is a digit or an alphabet, it is added to the target string

pointed to by t.

(c) If the character scanned is a closing parenthesis then it is added to the stack by

calling push() function.

(d) If the character scanned happens to be an operator, then firstly, the topmost element

from the stack is retrieved. Through a while loop, the priorities of the character

scanned and the character popped ‘opr’ are compared. Then following steps are

performed as per the precedence rule.

i. If ‘opr’ has higher or same priority as the character scanned, then opr is

added to the target string.

ii. If opr has lower precedence than the character scanned, then the loop is

terminated. Opr is pushed back to the stack. Then, the character scanned is

also added to the stack.

(e) If the character scanned happens to be an opening parenthesis, then the operators

present in the stack are retrieved through a loop. The loop continues till it does not

encounter a closing parenthesis. The operators popped, are added to the target string

pointed to by t.

3. Now the string pointed by t is the required postfix expression.

Example: Convert A * (B + C) * D to postfix notation.

Step No Input Stack Output

1 A Empty A

2 * * A

3 ((* A

4 B (* A B

5 + +(* A B

6 C +(* A B C

7) * A B C +

8 * * A B C + *

9 D * A B C + * D

10 END Empty A B C + * D *

Notes:

 In this table, the stack grows toward the left. Thus, the top of the stack is the leftmost

symbol.

 Step No.3, the left parenthesis was pushed without popping the * because * had a lower

priority then "(".

 Step No.5, "+" was pushed without popping "(" because you never pop a left parenthesis

until you get an incoming right parenthesis. In other words, there is a distinction between

incoming priority, which is very high for a "(", and instack priority, which is lower than

any operator.

 Step No.7, the incoming right parenthesis caused the "+" and "(" to be popped but only

the "+" as written out.

 Step.No.8, the current "*" had equal priority to the "*" on the stack. So the "*" on the

stack was popped, and the incoming "*" was pushed onto the stack.

Pseudo-code:

CONVERSION(INFIX)
Begin

Read infix

L=Length(infix)

J=1

For i=1 to L

Do

C=infix(i)
If C is a number OR Alphabet Then

Postfix[j]= c

j=j+1

if C= ‘(‘ Then

Push (C)
if C= ‘*’ ||’ /’|| ‘+ ‘||’ –‘ ||’ % ‘

If top = 0 then

Push(C)

Else If Priority (C)< Priority (Stack[top]) then

Postfix[j]= pop()

J=j+1
Push(C)

Else
Push (C)

if C= ‘) ‘

Repeat

postfix[j]=pop()

j=j+1

Until (stk[top]<>'(')

pop()
End if

End For

Repeat

j=j+1

postfix[j]=pop()

Until (top > = 0)

Write postfix # Print the resultant postfix string

END CONVERSION(INFIX)

FUNCTION PRIORITY(CHAR CH)

Begin
if (ch=='*'||ch=='/'||ch=='%') then

return 2

else if(ch=='+'||ch=='-') then

return 1

else
return 0

END FUNCTION PRIORITY

EXAMPLE:

A+(B*C-(D/E – F)*G)*H

Step No Input Stack Output

1 A+(B*C-(D/E-F)*G)*H Empty -

2 +(B*C-(D/E-F)*G)*H Empty A

3 (B*C-(D/E-F)*G)*H + A

4 B*C-(D/E-F)*G)*H +(A

5 *C-(D/E-F)*G)*H +(AB

6 C-(D/E-F)*G)*H +(* AB

7 -(D/E-F)*G)*H +(* ABC

8 (D/E-F)*G)*H +(- ABC*

9 D/E-F)*G)*H +(-(ABC*

10 /E-F)*G)*H +(-(ABC*D

11 E-F)*G)*H +(-(/ ABC*D

12 -F)*G)*H +(-(/ ABC*DE

13 F)*G)*H +(-(- ABC*DE/

14 F)*G)*H +(-(- ABC*DE/

15)*G)*H +(-(- ABC*DE/F

16 *G)*H +(- ABC*DE/F-

17 G)*H +(-* ABC*DE/F-

18)*H +(-* ABC*DE/F-G

19 *H + ABC*DE/F-G*-

20 H +* ABC*DE/F-G*-

21 End +* ABC*DE/F-G*-H

22 End Empty ABC*DE/F-G*-H*+

Python code for converting a given expression from Infix to Postfix notation:

class Conversion:

Constructor to initialize the class variables

def init (self, capacity):

self.top = -1

self.capacity = capacity

self.array = []

self.output = []

self.precedence = {'+':1, '-':1, '*':2, '/':2, '^':3}

check if the stack is empty
def isEmpty(self):

if self.top == -1:
return True

else :

return False

Return the value of the top of the stack

def peek(self):

return self.array[-1]

Pop the element from the stack

def pop(self):

if not self.isEmpty():

self.top -= 1

return self.array.pop()

else:

return "$"

Push the element to the stack

def push(self, op):

self.top += 1

self.array.append(op)

A utility function to check is the given character is operand
def isOperand(self, ch):

return ch.isalpha()

Check if the precedence of operator is strictly less than top of stack or not

def notGreater(self, i):

try:

a = self.precedence[i]
b = self.precedence[self.peek()]

if a <= b :

return True

else :

return False

except KeyError:

return False

Function that converts given infix expression to postfix expression def

infixToPostfix(self, exp):

for i in exp:

If the character is an operand,

add it to output

if self.isOperand(i):

self.output.append(i)

If the character is an '(', push it to stack elif
i == '(':

self.push(i)

If the scanned character is an ')', pop and #

output from the stack until and '(' is found

elif i == ')':

while((not self.isEmpty()) and self.peek() != '('):

a = self.pop()

self.output.append(a)

if (not self.isEmpty() and self.peek() != '('):
return -1

else:

self.pop()

An operator is encountered

else:

while(not self.isEmpty() and self.notGreater(i)):

self.output.append(self.pop())

self.push(i)

pop all the operator from the stack

print("\nPostfix Notation : ")

while not self.isEmpty():

self.output.append(self.pop())

print("".join(self.output))

Program to test above function

exp = "a+b*(c^d-e)^(f+g*h)-i"

print("\n\nInfix Notation :",exp)

obj = Conversion(len(exp))

obj.infixToPostfix(exp)

Output :

Infix Notation : a+b*(c^d-e)^(f+g*h)-i

Postfix Notation :

abcd^e-fgh*+^*+i-

3.3.4 Evaluation of Expression given in Postfix form:

The program takes the input expression in postfix form. This expression is scanned

character by character. If the character scanned is an operand, then first it is converted to a digit

form and then it is pushed onto the stack. If the character scanned is a blank space, then it is skipped.

If the character scanned is an operator, then the top two elements from the stack are retrieved. An

arithmetic operation is performed between the two operands. The type of arithmetic operation

depends on the operator scanned from the string s. The result is then pushed back onto the stack.

These steps are repeated as long as the string s is not exhausted. Finally the value in the stack is

the required result.

In the first example, the conversion of infix to postfix notation is discussed; nextherethe

evaluationof postfix notation to obtain the resultant value is discussed.

Example:

Infix Notation :A * (B + C) * DPostfix Notation :A B C + * D *

Let’s assume the values of A,B,C,D as 2,3,4,5 respectively.

Evaluate the postfix expression 2 3 4 + * 5 * to obtain the resultant value.

Step No Input Stack (grows toward left)

1 2 2

2 3 3 2

3 4 4 3 2

4 + 7 2

5 * 14

6 5 5 14

7 * 70

Notes:

 Step No 4: an operator is encountered, so 4 and 3 are popped, summed, then pushed back

onto stack.

 Step No 5: operator * is current token, so 7 and 2 are popped, multiplied, pushed back

onto stack.

 Step No 7: stack top holds correct value.

 Notice that the postfix notation has been created to properly reflect operator precedence.

Thus, postfix expressions never need parentheses.

Pseudo-code:

EVALUATION (POSTFIX)

Begin

Read postfix

L=Length(postfix)

For i=1 to L

Do

C=infix(i)

If C is a number or Alphabet then

Get the value of C and store it in the stack Read

n

Push(n)

Else if C= ‘*’ ||’ /’|| ‘+ ‘||’ –‘ ||’ % ‘
Then

Call EVAL(c)
End if

End for

Result = pop() # Print the result

Write Result

End

EVAL(CHAR C)

Begin
x=pop()

y=pop()

Switch(C)

Begin

case '+': z=x+y

case '-': z=x-y

case '*': z=x*y

case '/': z=x/y

case '%': z=x%y

End Switch

push(z)

End EVAL

Python code for evaluating Postfix notation:

class Evaluate:

def init (self, capacity):

self.top = -1

self.capacity = capacity

self.array = []

def isEmpty(self):

if self.top == -1:

return True

else:

return False

def peek(self):

return self.array[-1]

def pop(self):

if not self.isEmpty():

self.top -= 1

return self.array.pop()

else:

return "$"

def push(self, op):

self.top += 1

self.array.append(op)

def evaluatePostfix(self, exp):

for i in exp:

if i.isdigit():

self.push(i)

else:

val1 = self.pop()

val2 = self.pop()

self.push(str(eval(val2 + i + val1)))

return int(self.pop())

Program to test above function

exp = "231*+9-"

print ("\nPostfix Notation : ",exp)

obj = Evaluate(len(exp))

print ("Postfix Evaluation : ",obj.evaluatePostfix(exp))

Output:

Examples

Postfix Notation : 231*+9-

Postfix Evaluation : 2

Infix Expression Prefix Expression Postfix Expression

(A + B) * C * + A B C A B + C *

A + B * C + D + + A * B C D A B C * + D +

(A + B) * (C + D) * + A B + C D A B + C D + *

A * B + C * D + * A B * C D A B * C D * +

A + B + C + D + + + A B C D A B + C + D +

Points to Remember

 A stack is a data structure in which addition of new element or deletion of an existing

element always takes place at the same end. This end is often known as top of stack. When

an item is added to a stack, the operation is called push, and when an item is removed from

the stack the operation is called pop. Stack is also called as Last-In-First- Out (LIFO) list.

 Stacks are implemented using Arrays or Linked Lists.

 The storage requirements of linked representation of stack with n elements is O(n) and the

time required for all stack operations is given as O(1).

 All Recursive function calls are implemented using System Stack.

Exercises

1. Check if given expression is balanced expression or not. For example,

Input : ((()))Output: 1Input : ()((Output : -1

2. Find duplicate parenthesis in an expression : ((a+b)+((c+d)))

3. Evaluate given postfix expression : A B C * + D +

4. Decode the given sequence to construct minimum number without repeated digits.

5. Explain how to implement two stacks in one array A[1…n] in such a way that neither stack

overflows unless the total number of elements in both stacks together is n. The PUSH and

POP operations should run in O(1) time.

Stack Implementation using Linked List.

6. Design a stack which returns minimum element without using auxiliary stack.

7. Reverse a string without using recursion.

8. Reverse a string using stack data structure.

9. In order Tree Traversal | Iterative & Recursive.

10. Preorder Tree Traversal | Iterative & Recursive.

11. Post order Tree Traversal | Iterative & Recursive.

12. Check if two given binary trees are identical or not | Iterative & Recursive.

13. Reverse Level Order Traversal of Binary Tree.

14. Reverse given text without reversing the individual words.

15. Find all binary strings that can be formed from given wildcard pattern.

16. Depth First Search (DFS) | Iterative & Recursive Implementation.

17. Invert given Binary Tree | Recursive and Iterative solution.

18. Longest Increasing Subsequence.

19. Implement Queue using Stacks.

20. Design a stack with operations on middle element.

21. The Stock Span Problem.

22. Check for balanced parentheses in an expression.

23. Next Greater Frequency Element.

24. Number of NGEs to the right.

25. Maximum product of indexes of next greater on left and right.

26. The Celebrity Problem.

27. Iterative Tower of Hanoi.

28. Sorting array using Stacks.

Check your Understanding:

1. What is the best case time complexity of deleting a node in Singly Linked list?

a) O (n)

b) O (n2)

c) O (nlogn)

d) O (1)

2. Recursion follows divide and conquer technique to solve problems. State True or False.

3. Consider you have a stack whose elements in it are as follows.

5 4 3 2 << top

Where the top element is 2.

You need to get the following stack

6 5 4 3 2 << top

The operations that needed to be performed are (You can perform only push and pop):

a) Push(pop()), push(6), push(pop())

b) Push(pop()), push(6)

https://www.geeksforgeeks.org/queue-using-stacks/
https://www.geeksforgeeks.org/design-a-stack-with-find-middle-operation/
https://www.geeksforgeeks.org/the-stock-span-problem/
https://www.geeksforgeeks.org/check-for-balanced-parentheses-in-an-expression/
https://www.geeksforgeeks.org/next-greater-frequency-element/
https://www.geeksforgeeks.org/number-nges-right/
https://www.geeksforgeeks.org/maximum-product-of-indexes-of-next-greater-on-left-and-right/
https://www.geeksforgeeks.org/the-celebrity-problem/
https://www.geeksforgeeks.org/iterative-tower-of-hanoi/
https://www.geeksforgeeks.org/sorting-array-using-stacks/

c) Push(pop()), push(pop()), push(6)

d) Push(6)

4. What does ‘stack overflow’ refer to?

a) accessing item from an undefined stack

b) adding items to a full stack

c) removing items from an empty stack

d) index out of bounds exception

5. Which of the following statement is incorrect with respect to evaluation of infix

expression algorithm?

a) Operand is pushed on to the stack

b) If the precedence of operator is higher, pop two operands and evaluate

c) If the precedence of operator is lower, pop two operands and evaluate

d) The result is pushed on to the operand stack

6. The process of accessing data stored in a serial access memory is similar to manipulating

data on a :

a) n-ary tree

b) queue

c) Stack

d) Array

7. Representation of data structure in memory is known as :

a) Storage Structure

b) File Structure

c) Record Structure d)

Abstract Data Type

8. The data structure required to check whether an expression contains balanced parenthesis

is :

a) n-ary tree

b) queue

c) Stack

d) Array

9. Which of the following data structures can be used for parentheses matching?

a) n-ary tree

b) queue

c) priority queue

d) stack

10. What will be the output after performing these sequence of operations : push(20);

push(4);

pop();pop();push(5);top();

a) 20

b) 4

c) stack underflow

d) 5

11. Which of the following real world scenarios would you associate with a stack data

structure?

a) piling up of chairs one above the other

b) people standing in a line to be serviced at a counter

c) offer services based on the priority of the customer

d) tatkal Ticket Booking in IRCTC

12. What is the time complexity of pop() operation when the stack is implemented using an

array?

a) O(1)

b) O(n)

c) O(logn)

d) O(nlogn)

13. Array implementation of Stack is not dynamic, which of the following statements

supports this argument?

a) space allocation for array is fixed and cannot be changed during run-time

b) user unable to give the input for stack operations

c) a runtime exception halts execution d)

improper program compilation

14. Evaluation of infix expression is done based on precedence of operators.

a) True

b) False

15. Of the following choices, which operator has the lowest precedence?

a) ^

b) +

c) /

d) #

16. From the given expression tree, identify the infix expression, evaluate it and choose the

correct result.

a) 5

b) 10

c) 12

d) 16

17. What is the result of the following operation : Top (Push (S, X))

a. X

b. Null

c. S

d. None of the above

18. Evaluate the following statement using infix evaluation algorithm and choose the correct

answer. 1+2*3-2

a) 3

b) 6

c) 5

d) 4

19. Convert the Expression ((a + B) * C - (d - E) ^ (f + G)) To Equivalent Prefix and Postfix

Notations?

20. Evaluate the following infix expression using algorithm and choose the correct answer.

a+b*c-d/e^f where a=1, b=2, c=3, d=4, e=2, f=2.

21. Convert the infix to postfix for A-(B+C)*(D/E)

a.ABC+DE/*-

b.ABC-DE/*-

c.ABC-DE*/-

d.None of the above

Answers:

1. D

2. True

3. A

4. B

a) 6 b) 8 c) 9 d)

7

5. B

6. C

7. D

8. C

9. D

10. D

11. A

12. A

13. A

14. A

15. B

16. C

17. A

18. C

19. Prefix Notation: ^ – * +ABC – DE + FG

Postfix Notation: AB + C * DE – – FG + ^

20. A

21. A

Case Study:

I. Design a stack that supports push, pop, top, and retrieving the minimum element in constant

time. push(x) -- Push element x onto stack.• pop() -- Removes the element

on top of the stack. top() -- Get the top element. getMin() -- Retrieve the minimum element

in the stack.

II. Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input

string is valid.An input string is valid if:

1. Open brackets must be closed by the same type of brackets.

2. Open brackets must be closed in the correct order.

Note that an empty string is also considered valid.

1. Input: "()"Output: true

2. Input: "()[]{}" Output: true

3. Input: "(]" Output: false

4. Input: "([)]" Output: false

5. Input: "{[]}" Output: true

III. Given an array, print the Next Greater Element (NGE) for every element. The Next greater

Element for an element x is the first greater element on the right side of x in array. Elements

for which no greater element exist, consider next greater element as -1.

Examples:

a. For any array, rightmost element always has next greater element as -1.

b. For an array which is sorted in decreasing order, all elements have next greater

element as -1.

c. For the input array [4, 5, 2, 25], the next greater elements for each element are as

follows :

Element Next Greater

4 5

5 25

2 25

25 -1

IV. Find the largest rectangular area possible in a given histogram where the largest rectangle

can be made of a number of contiguous bars. For simplicity, assume that all bars have same

width and the width is 1 unit.

For example, consider the following histogram with 7 bars of heights {6, 2, 5, 4, 5, 1, 6}.

The largest possible rectangle possible is 12 (see the below figure, the max area rectangle

is highlighted in red).

V. Given a set of time intervals in any order, merge all overlapping intervals into one and

output the result which should have only mutually exclusive intervals. Let the intervals be

represented as pairs of integers for simplicity.

For example, let the given set of intervals be {{1,3}, {2,4}, {5,7}, {6,8} }. The intervals

{1,3} and {2,4} overlap with each other, so they should be merged and become {1, 4}.

Similarly {5, 7} and {6, 8} should be merged and become {5, 8}.

VI. Length of the longest valid substring

Given a string consisting of opening and closing parenthesis, find length of the longest

valid parenthesis substring.

Examples:

Input : ((()

Output : 2

Explanation : ()

Input:)()())

Output : 4

Explanation: ()()

Input: ()(()))))
Output: 6

Explanation: ()(())

VII. Given n non-negative integers representing an elevation map where the width of each bar

is 1, compute how much water it is able to trap after raining.The above elevation map is

represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue

section) are being trapped.

Example: Input: [0,1,0,2,1,0,1,3,2,1,2,1]

Output: 6.

VIII. The Stock Span Problem

The stock span problem is a financial problem where we have a series of n daily

price quotes for a stock and we need to calculate span of stock’s price for all n days. The

span Si of the stock’s price on a given day i is defined as the maximum number

of consecutive days just before the given day, for which the price of the stock

on the current day is less than or equal to its price on the given day. For

example, if an array of 7 days prices is given as {100, 80, 60, 70, 60, 75, 85},

then the span values for corresponding 7

days are {1, 1, 1, 2, 1, 4, 6}

IX. The Celebrity Problem

In a party of N people, only one person is known to everyone. Such a

person may be present in the party, if yes, (s)he doesn’t know anyone in the

party. We can only ask questions like “does A know B? “. Find the stranger

(celebrity) in minimum number of questions. We can describe the problem

input as an array of numbers/characters representing persons in the party. We

also have a hypothetical function HaveAcquaintance(A, B) which returns true

if A knows B, false otherwise. How can we solve the problem?

MATRIX = [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 1, 0]]

+

3.1

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – IV -Data Structures – SCSA1203

3.2

UNIT-IV

Basic Queue Operations - Representation of a Queue using array - Applications of Queues - Round robin

Algorithm - Enqueue - Dequeue - Circular Queues - Priority Queues

4.0 QUEUE

A Queue is a linear structure which follows a particular order in which the operations are performed. It is an

abstract data structure similar to stack.

Queue is consisting of two ends such as,

i)Enqueue – Using this we can insert the data

ii)Dequeue – Using this we can delete the data

It follows two methodology consists of FIFO – First In First Out and LILO – Last In Last Out

It maintains two pointers consists of FRONT and REAR

Fig 4.1 Structure of a queue

4.1 EXAMPLES

 A queue of people at ticket-window: The person who comes first gets the ticket first. The person who is

coming last is getting the tickets in last. Therefore, it follows first-in-first-out (FIFO) strategy of queue.

 Luggage checking machine: Luggage checking machine checks the luggage first that comes first.

Therefore, it follows FIFO principle of queue.

 Patients waiting outside the doctor's clinic: The patient who comes first visits the doctor first, and the

patient who comes last visits the doctor last. Therefore, it follows the first-in-first-out (FIFO) strategy of

queue.

Fig 4.2 Schematic representation of a queue

4.2 IMPLEMENTATION OF QUEUE

3.3

The queue will be implemented in two ways,

i) Array

ii) Linked list

iii) Stack

BASIC OPERATIONS IN QUEUE

i) peek() – Front

ii) isfull() – Check queue is full or not

iii) isempty() – Check queue is empty or not

iv) Enqueue – Add at rear position

v) Dequeue – Add at front position

1. Peek()

It helps to access or view front element of the queue.

Algorithm peek (front, queue[])

1. If front = -1

2. Return 0

3. Else

4. Return queue[front]

3.4

 Fig. 4.3 Example for Peek() operation

2. Isfull()

It is used to check whether the queue is full or not.

Fig. 4.4 Example for IsFull() operation

3. Isempty()

It helps to check whether the queue is empty or not.

Algorithm isfull (rear, queue[])
1. If rear = MAX_SIZE

2. Return TRUE

3. Else

4. Return FALSE

Algorithm isempty (queue[], front)

1. If front <=-1

2. Return TRUE

3. Else

4. Return FALSE

3.5

 Fig. 4.5 Example for IsEmpty() operation

4. Enqueue:

The operation of inserting an element inside the queue at rear position called enqueue.

Fig. 4.6 Example for Enqueue() operation

Algorithm enqueue (data, front, rear, queue[])

1. If isfull (queue[])

2. Return OVERFLOW

3. Else

4. Rear = Rear + 1

5. queue[Rear] = data

3.6

5. Dequeue:

The operation of deleting an element from the queue at front position called dequeue.

 Fig. 4.7 Example for Dequeue() operation

4.3 REPRESENTATION OF QUEUE USING ARRAY

Queue can be implemented using array by restricting the array to follow First In First Out while inserting, deleting

and displaying an element.

(For enqueue and dequeue refer previous topic)

4.3.1 Display

The operation is used to display all the element present in the queue.

Algorithm dequeue (data, front, rear, queue[])
1. If isempty (queue[])

2. Return UNDERFLOW

3. Else

4. Data = queue[front]

5. Front = Front + 1

Algorithm display (queue[], front, rear)

1. If rear == -1

2. Return 0

3. Else

4. For i = front to rear

5. Print queue[i]

3.7

 Fig. 4.8 Example for Display() operation

4.4 APPLICATION OF QUEUES

Queue, as the name suggests is used whenever we need to manage any group of objects in an order in which the

first one coming in, also gets out first while the others wait for their turn, like in the following scenarios:

1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

2. In real life scenario, Call Center phone systems uses Queues to hold people calling them in an order, until

a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the same order as they arrive i.e

First come first served.

4. In recognizing palindrome.

5. In shared resources management.

6. Keyboard buffer.

4.5 ROUND ROBIN ALGORITHM: (For algorithm circular queue)

Round robin algorithm is a CPU scheduling algorithm that is effectively used to schedule or order the processes

inside the queue. The process residing in CPU may be in one of the five states given below,

1. Stack – Process creation

2. Ready – Process in ready queue

3. Running – Process running currently

4. Waiting – Process in waiting queue

5. Terminate – Process completed

In Round robin algorithm each process can reside in the CPU for only particular amount of time called time

quantum.

Each process after completing its burst time fully will come out of the queue, until that it will be lined inside the

3.8

queue again and again in a circular manner.

Round Robin algorithm is an application for circular queue.

Example: Given are the processes with arrival time and burst time. Find the waiting time and turnaround

time.

Time quantum = 2 seconds

PROCESS ARRIVAL TIME BURST TIME

P1 0 4

P2 1 5

P3 2 2

P4 3 3

P5 4 1

4.5.1 SOLUTION:

PROCESS

NO.

ARRIVAL

TIME(AT)

BURST

TIME(BT)

REMAINING

BURST

TIME(RBT)

COMPLETION

TIME(CT)

WAITING

TIME(WT)

(CT-BT)

TURN

ARROUND

TIME

(TAT)

(CT-AT)

P1 0 4 2 2 0 11 7 11

P2 1 5 2 2 1 15 10 14

P3 2 2 2 0 0 6 4 4

3.9

P4 3 3 2 1 0 14 11 11

P5 4 1 1 0 0 9 8 5

4.5.2 Grant Chart:

P1 P2 P3 P4 P5 P1 P2 P4 P2

Where 0,2,4,6,8,9,11,13,14,15 represents the time taking for each process under the condition of time

quantum = 2 sec.

4.6 CIRCULAR QUEUE

It is a linear data structure in which the operation are performed based on FIFO principle. In circular queue the

last position is connected back to the first position to make circle. It is also called as ring buffer.

Fig. 4.9 Representation of a circular queue

Fig. 4.10 Inserting an element into a circular queue

 0 2 4 6 8 9 11 13 14

15

3.1

0

In normal queue we can insert element at rear position until queue becomes full. But cannot able to insert

in front if the queue is full but front position having space. To overcome this shown in above diagram

circular queue is implemented.

4.6.1 Operation on circular queue

1. Front: Get the Front item from queue.

2. Rear: Get the Rear item form queue.

3. Enqueue: (value)

It is used to insert an element into the circular queue at rear position.

Algorithm Enqueue_circularqueue (enqueue [], rear, front)
1. If rear >= size – 1 and fron = 0

2. Return OVERFLOW

3. Else if rear == -1 and front == -1

4. Front = 0

5. Rear = 0

6. Else if rear == sixe -1 and front !=0

7. Rear = 0

8. Else

9. Rear = Rear + 1

10. Enqueue [rear] = x

3.1

1

Fig. 4.11 Operations into a circular queue

Fig. 4.12 Insertion in a circular queue

4. Dequeue:

This function is used to delete an element from the circular queue at front position.

Algorithm Dequeue_circularqueue (dequeue [], rear, front)

1. If front == -1

2. Return UNDERFLOW

3. Else

4. Return dequeue[front]

5. If front == rear

6. Front = -1

7. Rear = -1

8. Else

3.1

2

3.1

3

Fig. 4.13 Deletion in a circular queue

4.7 PRIORITY QUEUE

Priority queue is an extension of queue data structure where each element has a priority associated with it. An

element with high priority is dequeued before an element with low priority. If two elements have same priority,

they are dequeued according to their order in the queue.

Algorithm enqueue (pqueue[], front, rear, X)

1. If rear >= SIZE -1

2. Return OVERFLOW

3. If front == -1 and rear ==-1

4. Front ++

5. Rear ++

6. Pqueue [rear]=x

7. Else

8. Call check (x)

9. Rear ++

Algorithm check (x, pqueue [], front, rear)

1. For I =0 to rear

2. If data >= pqueue [i]

3. For j=rear + 1 to 0

4. Pqueue [j] = pqueue [j-1]

5. Pqueue[i]=x

6. Break

7. Pqueue[i] = x

3.1

4

Algorithm pdqueue (pqueue[], front, rear, X)

1. If front == -1 and rear == -1

2. Return UNDERFLOW

3. For I = 0 to rear

4. If data == pqueue [i]

5. For j=I to rear

6. Pqueue[j]=pqueue[j+1]

7. Rear – –

3.1

5

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – V -Data Structures – SCSA1203

3.1

6

UNIT-V

UNIT 5 SEARCHING AND SORTING TECHNIQUES

Basic concepts - List Searches using Linear Search - Binary Search - Fibonacci

Search - Sorting Techniques - Insertion sort - Heap sort - Bubble sort - Quick sort

- Merge sort - Analysis of sorting techniques.

 SEARCHING

Searching and sorting are fundamental operations in computer science. Searching

refers to the operation of finding the location of a given item in a collection of items.

Sorting refers to the operations of arranging data in some given order, such as increasing

or decreasing, with numerical data, or alphabetically, with character data.

The two standard searching techniques are:

 Linear search

 Binary search.

LINEAR SEARCH

Linear search is the simplest method of searching. In this method, the element to

be found is sequentially searched in the list (Hence also called sequential search). This

method can be applied to a sorted or an unsorted list. Hence, it is used when the records

are not stored in order.

Searching : Searching is an operation which finds the location of a given element

in a list. The search is said to be successful or unsuccessful depending on

whether the element that is to be searched is found or not.

Principle : The algorithm starts its search with the first available record and
proceeds to the next available record repeatedly until the required data item to

be searched for is found or the end of the list is reached.

3.1

7

Algorithm :

Procedure LINEARSEARCH(A, N, K, P)

// A is the array containing the list of data items
// N is the number of data items in the list

// K is the data item to be searched

// P is the position where the data item is found

P € -1

Repeat For I = 0 to N -1

Step 1 If A(I) = K

Then

P € I

Exit

Loop

End

If End

Repeat
End LINEARSEARCH

3.1

8

In the above algorithm, A is the list of data items containing N data items. K is

the data item, which is to be searched in A. P is a variable used to indicate, at what

position the data item is found. If the data item to be searched is found then the position

where it is found is stored in P. If the data item to be searched is not found then -1 is

stored in P, which will indicate the user, that the data item is not found.

Initially P is assumed -1. The data item K is compared with each and every

element in the list A. During this comparison, if K matches with a data item in A, then

the position where the data item was found is stored in P and the control comes out of

the loop and the procedure comes to an end. If K does not match with any of the data

items in A, then P value is not changed at all. Hence at the end of the loop, if P is -1,

then the number is not found.

Example:

K €Number to be searched : 40

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

45 56 15 76 43 92 35 40 28 65

K ≠ A[0]

45 56 15 76 43 92 35 40 28 65

K ≠ A[1]

45 56 15 76 43 92 35 40 28 65

K ≠ A[2]

45 56 15 76 43 92 35 40 28 65

K ≠ A[3]

45 56 15 76 43 92 35 40 28 65

K ≠ A[4]

45 56 15 76 43 92 35 40 28 65

K ≠ A[5]

45 56 15 76 43 92 35 40 28 65

K ≠ A[6]

45 56 15 76 43 92 35 40 28 65

K = A[7] € P = 7 : Number found at position 7

3.1

9

Advantages:
1. Simple and straight forward method.

2. Can be applied on both sorted and unsorted list.

Disadvantages:
1. Inefficient when the number of data items in the list increases.

BINARY SEARCH

Binary search method is very fast and efficient. This method requires that the

list of elements be in sorted order. Binary search cannot be applied on an unsorted list.

Principle: The data item to be searched is compared with the approximate
middle entry of the list. If it matches with the middle entry, then the position
is returned. If the data item to be searched is lesser than the middle entry,
then it is compared with the middle entry of the first half of the list and
procedure is repeated on the first half until the required item is found. If the
data item is greater than the middle entry, then it is compared with the middle
entry of the second half of the list and procedure is repeated on the second half
until the required item is found. This process continues until the desired

3.2

0

Algorithm:

Procedure BINARYSEARCH(A, N, K, P)

// A is the array containing the list of data items
// N is the number of data items in the list
// K is the data item to be searched

// P is the position where the data item

is found Lower € 0, Upper € N – 1, P

€ -1

While Lower ≤ Upper

Mid € (Lower + Upper)

/ 2 If K = A[Mid]
Then

P € Mid

Exit Loop
Else

If K <

A[Mid] Then
Upper €Upper -1

Else
Lower €Lower + 1

End If

End If

End While

End BINARYSEARCH

3.2

1

In Binary Search algorithm given above, A is the list of data items containing N

data items. K is the data item, which is to be searched in A. P is a variable used to

indicate, at what position the data item is found. If the data item to be searched is found

then the position where it is found is stored in P. If the data item to be searched is not

found then -1 is stored in P, which will indicate the user, that the data item is not found.

Initially P is assumed -1, lower is assumed 0 to point the first element in the list

and upper is assumed as upper -1 to point the last element in the list. The mid position of

the list is calculated and K is compared with A[mid]. If K is found equal to A[mid] then

the value mid is assigned to P, the control comes out of the loop and the procedure comes

to an end. If K is found lesser than A[mid], then upper is assigned mid – 1, to search

only in the first half of the list. If K is found greater than A[mid], then lower is assigned

mid + 1, to search only in the second half of the list. This process is continued until the

element searched is found or the search interval becomes empty.

Example:

K €Number to be searched : 40

U € Upper

L € Lower

M€ Mid

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

1 22 35 40 43 56 75 83 90 98

L = 0 M = 4 U = 9

K < A[4] € U = 4 – 1 = 3

1 22 35 40 43 56 75 83 90 98

L = 0 M = 1 U = 3

K > A[1] € L = 1 + 1 = 2

1 22 35 40 43 56 75 83 90 98

L, M = 2 U = 3

K > A [2] € L = 2 + 1 = 3

1 22 35 40 43 56 75 83 90 98

L, M, U = 3

K = A[3] € P = 3 : Number found at position 3

Advantages:
1. Searches several times faster than the linear search.

2. In each iteration, it reduces the number of elements to be searched from n to n/2.

3.2

2

Disadvantages:
1. Binary search can be applied only on a sorted list.

Fibonacci Search

Given a sorted array arr[] of size n and an element x to be searched in it. Return

index of x if it is present in array else return -1.

Fibonacci Search is a comparison-based technique that uses Fibonacci numbers

to search an element in a sorted array.

Similarities with Binary Search:

 Works for sorted arrays

 A Divide and Conquer Algorithm.

 Has Log n time complexity.

Differences with Binary Search:

 Fibonacci Search divides given array into unequal parts

 Binary Search uses a division operator to divide range. Fibonacci Search

doesn’t use /, but uses + and -. The division operator may be costly on

some CPUs.

 Fibonacci Search examines relatively closer elements in subsequent

steps. So when the input array is big that cannot fit in CPU cache or even

in RAM, Fibonacci Search can be useful.

Algorithm:

Let the searched element be x. The idea is to first find the smallest Fibonacci number

that is greater than or equal to the length of the given array. Let the found Fibonacci

number be fib (m’th Fibonacci number). We use (m-2)’th Fibonacci number as the index

(If it is a valid index). Let (m-2)’th Fibonacci Number be i, we compare arr[i] with x, if

x is same, we return i. Else if x is greater, we recur for sub array after i, else we recur for

sub array before i. Below is the complete algorithm. Let arr[0..n-1] be the input array

and the element to be searched be x.

1. Find the smallest Fibonacci Number greater than or equal to n. Let this number

be fibM [m’th Fibonacci Number]. Let the two Fibonacci numbers preceding it

be fibMm1 [(m-1)’th Fibonacci Number] and fibMm2 [(m-2)’th Fibonacci

Number].

2. While the array has elements to be inspected:
1. Compare x with the last element of the range covered by fibMm2
2. If x matches, return index

3. Else If x is less than the element, move the three Fibonacci variables

two Fibonacci down, indicating elimination of approximately rear

two- third of the remaining array.

4. Else x is greater than the element, move the three Fibonacci variables

one Fibonacci down. Reset offset to index. Together these indicate the

elimination of approximately front one-third of the remaining array.

3. Since there might be a single element remaining for comparison, check if

fibMm1 is 1. If Yes, compare x with that remaining element. If match, return

index.

 SORTING

Practically, all data processing activities require data to be in some order.

Ordering or sorting data in an increasing or decreasing fashion according to some linear

relationship among data items is of fundamental importance.

Sorting : Sorting is an operation of arranging data, in some given order,

such as increasing or decreasing with numerical data, or alphabetically

with character data.

3.
6

3.7

Let A be a list of n elements A1, A2,…An in memory. Sorting A refers to the operation

of rearranging the contents of A so that they are increasing in order (numerically or

lexicographically), that is,

A1 ≤ A2 ≤ A3 ≤….≤An

Sorting methods can be characterized into two broad categories:

 Internal Sorting

 External Sorting

3.8

The key principle of internal sorting is that all the data items to be sorted are

retained in the main memory and random access in this memory space can be effectively

used to sort the data items.

The various internal sorting methods are:

1. Bubble Sort
2. Selection Sort
3. Insertion Sort

4. Quick Sort

5. Merge Sort
6. Heap Sort

The key principle of external sorting is to move data from secondary storage to

main memory in large blocks for ordering the data.

✓ Criteria for the selection of a sorting method.

The important criteria for the selection of a sorting method for the given set of data items

are as follows:

1. Programming time of the sorting algorithm
2. Execution time of the program

3. Memory space needed for the programming environment

✓ Objectives involved in design of sorting algorithms.

The main objectives involved in the design of sorting algorithm are:

1. Minimum number of exchanges
2. Large volume of data block movement

This implies that the designed and desired sorting algorithm must employ minimum

number of exchanges and the data should be moved in large blocks, which in turn

increase the efficiency of the sorting algorithm.

Internal Sorting : Internal sorting methods are the methods that can be used
when the list to be sorted is small enough so that the entire sort can be carried

out in main memory.

External Sorting : External sorting methods are the methods to be used when

the list to be sorted is large and cannot be accommodated entirely in the main
memory. In this case some of the data is present in the main memory and some
is kept in auxiliary memory such as hard disk, floppy disk, tape, etc.

3.9

 INTERNAL SORTING

There are different types of internal sorting methods. The methods discussed here

sort the data in ascending order. With a minor change we can sort the data in descending

order.

 BUBBLE SORT

This is the most commonly used sorting method. The bubble sort derives its

name from the fact that the smallest data item bubbles up to the top of the sorted array.

Internal Sorting: These are the methods which are applied on the list of data

items, which are small enough to be accommodated in the main memory.

Principle : The bubble sort method compares the two adjacent elements

starting from the start of the list and swaps the two if they are out of order.
This is continued up to the last element in the list and after each pass, a check
is made to determine whether any interchanges were made during the pass. If

no interchanges occurred, then the list must be sorted and no further passes
are required.

3.10

Algorithm:

Procedure BUBBLESORT(A, N)

// A is the array containing the list of data items

// N is the number of data items in

the list Last € N– 1

While Last > 0
Exch € 0

Repeat For I = 0 to Last

Step 1 If A[I] >

A[I+1]
Then

A[I] ↔ A[I+1]
Exch € 1

End

If End

Repeat

If Exch = 1

Then
Exit Loop

Else
Last € Last – 1

End

If End

While

End BUBBLESORT

3.11

In Bubble sort algorithm, initially Last is made to point the last element of the list

and Exch flag is assumed 0. Starting from the first element, the adjacent elements in the

list are compared. If they are found out of order then they are swapped immediately and

Exch flag is set to 1. This comparison is continued until the last two elements are

compared. After this pass, the Exch flag is checked to determine whether any exchange

has taken place. If no exchange has taken place then the control comes out of the loop

and the procedure comes to an end as the list is sorted. If any exchange has taken place

during the pass, the last pointer is decremented by 1 and the next pass is continued. This

process continues until list is sorted.

Example:

N = 10 € Number of elements in the list

L €Points to last element (Last)

Pass 1

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

Out of order €Swap L=9

23 42 74 11 65 58 94 36 99 87

Out of order €Swap L=9

23 42 11 74 65 58 94 36 99 87

Out of order € Swap L=9

23 42 11 65 74 58 94 36 99 87

Out of order €Swap L=9

23 42 11 65 58 74 94 36 99 87

Out of order €Swap L=9

23 42 11 65 58 74 36 94 99 87

Out of order €Swap

Pass 2

 L=9

23 42 11 65 58 74 36 94 87 99

Out of order €Swap L=8

23 11 42 65 58 74 36 94 87 99

42 23 74 11 65 58 94 36 99 87

3.12

Out of order €Swap L=8

3.13

Out of order €Swap

L=8

23 11 42 58 65 36 74 94 87 99

Out of order €Swap L=8

Pass 3

23 11 42 58 65 36 74 87 94 99

Out of order €Swap L=7

23 11 42 58 65 36 74 87 94 99

Out of order €Swap L=7

Pass 4

23 11 42 58 36 65 74 87 94 99

Out of order €Swap L=6

11 23 42 58 36 65 74 87 94 99

Out of order €Swap L=6

Pass 5

11 23 42 36 58 65 74 87 94 99

Out of order €Swap

Pass 6

 L=5

Adjacent numbers are compared up to L=4. But no swapping takes place. As there was

no swapping taken place in this pass, the procedure comes to an end and we get a sorted

list:

11 23 36 42 58 65 74 87 94 99

Advantages:
1. Simple and works well for list with less number of elements.

Disadvantages:

1. Inefficient when the list has large number of elements.

2. Requires more number of exchanges for every pass.

23 11 42 58 65 74 36 94 87 99

3.14

 INSERTION SORT

The main idea behind the insertion sort is to insert the ith element in its correct

place in the ith pass. Suppose an array A with n elements A[1], A[2],…A[N] is in

memory. The insertion sort algorithm scans A from A[1] to A[N], inserting each element

A[K] into its proper position in the previously sorted subarray A[1], A[2],..A[K-1].

Algorithm:

In Insertion Sort algorithm, Last is made to point to the last element in the list and
Pass is made to point to the second element in the list. In every pass the Pass is

Principle: In Insertion Sort algorithm, each element A[K] in the list is compared
with all the elements before it (A[1] to A[K-1]). If any element A[I] is found to
be greater than A[K] then A[K] is inserted in the place of A[I}. This process is
repeated till all the elements are sorted.

Procedure INSERTIONSORT(A, N)

// A is the array containing the list of data items

// N is the number of data items in

the list Last € N– 1

Repeat For Pass = 1 to Last Step 1

Repeat For I = 0 to Pass – 1

Step 1 If A[Pass] <

A[I]
Then

Temp € A[Pass]

Repeat For J = Pass -1 to I

Step -1 A[J +1] € A[J]

End Repeat

A[I] €Temp

End

If End

Repeat

End Repeat

End INSERTIONSORT

3.15

incremented to point to the next element and is continued till it reaches the last element.

During each pass A[Pass] is compared all elements before it. If A[Pass] is lesser than

A[I] in the list, then A[Pass] is inserted in position I. Finally, a sorted list is obtained.

For performing the insertion operation, a variable temp is used to safely store

A[Pass] in it and then shift right elements starting from A[I] to A[Pass-1].

Example:

N = 10 € Number of elements in the list

L € Last

P €Pass

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

P=1 A[P] < A[0] €Insert A[P] at 0 L=9

23 42 74 11 65 58 94 36 99 87

P=2 L=9

A[P] is greater than all elements before it. Hence No Change

23 42 74 11 65 58 94 36 99 87

P=3 A[P] < A[0] € Insert A[P] at 0 L=9

11 23 42 74 65 58 94 36 99 87

P=4 L=9

A[P] < A[3] € Insert A[P] at 3

11 23 42 65 74 58 94 36 99 87

P=5 L=9

A[P] < A[3] € Insert A[P] at 3

11 23 42 58 65 74 94 36 99 87

P=6 L=9
A[P] is greater than all elements before it. Hence No Change

11 23 42 58 65 74 94 36 99 87

P=7 L=9
A[P] < A[2] € Insert A[P] at 2

3.16

11 23 36 42 58 65 74 94 99 87

P=8 L=9
A[P] is greater than all elements before it. Hence No Change

11 23 36 42 58 65 74 94 99 87

P, L=9
A[P] < A[7] € Insert A[P] at 7

Sorted List:

11 23 36 42 58 65 74 87 94 99

Advantages:
1. Sorts the list faster when the list has less number of elements.

2. Efficient in cases where a new element has to be inserted into a sorted list.

Disadvantages:
1. Very slow for large values of n.

2. Poor performance if the list is in almost reverse order.

3.17

 QUICK SORT

Quick sort is a very popular sorting method. The name comes from the fact that,

in general, quick sort can sort a list of data elements significantly faster than any of the

common sorting algorithms. This algorithm is based on the fact that it is faster and easier

to sort two small lists than one larger one. The basic strategy of quick sort is to divide

and conquer. Quick sort is also known as partition exchange sort.

The purpose of the quick sort is to move a data item in the correct direction just

enough for it to reach its final place in the array. The method, therefore, reduces

unnecessary swaps, and moves an item a great distance in one move.

Principle: A pivotal item near the middle of the list is chosen, and then items on
either side are moved so that the data items on one side of the pivot element

are smaller than the pivot element, whereas those on the other side are larger.
The middle or the pivot element is now in its correct position. This procedure is
then applied recursively to the 2 parts of the list, on either side of the pivot

element, until the whole list is sorted.

3.18

Algorithm:

Procedure QUICKSORT(A, Lower, Upper)

// A is the array containing the list of data items

// Lower is the lower bound of the array

// Upper is the upper bound of the array

If Lower ≥

Upper Then
Return

End If

I = Lower +

1 J = Upper

+ 1

While I < J

While A[I] <

A[Lower] I €

I + 1

End While

While A[J] >

A[Lower] J €

J – 1

End While

If I < J
Then

A[I] ↔ A[J]

End

If End

While

A[J] ↔ A[Lower]

3.19

In Quick sort algorithm, Lower points to the first element in the list and the Upper

points to the last element in the list. Now I is made to point to the next location of Lower

and J is made to point to the Upper. A[Lower] is considered as the pivot element and at

the end of the pass, the correct position of the pivot element is fixed. Keep incrementing

I and stop when A[I] > A[Lower]. When I stops, start decrementing J and stop when

A[J] < A[Lower]. Now check if I < J. If so, swap A[I] and A[J] and continue moving I

and J in the same way. When I meets J the control comes out of the loop and A[J] and

A[Lower] are swapped. Now the element at position J is at correct position and hence

split the list into two partitions: (A{Lower] to A[J-1] and A[J+1] to A[Upper]). Apply

the Quick sort algorithm recursively on these individual lists. Finally, a sorted list is

obtained.

Example:

N = 10 € Number of elements in the list

U € Upper

L€Lower

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

L=0 I=0 U, J=9
Initially I=L+1 and J=U, A[L]=42 is the pivot element.

42 23 74 11 65 58 94 36 99 87

L=0 I=2 J=7 U=9
A[2] > A[L] hence I stops at 2. A[7] < A[L] hence J stops at

7 I < J € Swap A[I] and A[J]

42 23 36 11 65 58 94 74 99 87

L=0 J=3 I=4 U=9

A[4] > A[L] hence I stops at 4. A[3] < A[L] hence J stops at

3 I > J € Swap A[J] and A[L]. Thus 42 go to correct position.

The list is partitioned into two lists as shown. The same process is applied to these lists

individually as shown.

€ List 1 € € List 2 €

11 23 36 42 65 58 94 74 99 87

L, J=0 I=1 U=2

QUICKSORT(A, Lower, J

– 1) QUICKSORT(A, J +

1, Upper)

End QUICKSORT

3.20

(applying quicksort to list 1)

3.21

11 23 36 42 65 58 94 74 99 87

L, J=1 U, I=2

11 23 36 42 65 58 94 74 99 87

L=4 J=5 I=6 U=9

(applying quicksort to list 2)

11 23 36 42 58 65 94 74 99 87

 L=6 I=8 U, J=9

11 23 36 42 58 65 94 74 87 99

 L=6 J=8 U, I=9

11 23 36 42 58 65 87 74 94 99

 L=6 U, I, J=7

Sorted List:

11 23 36 42 58 65 74 87 94 99

Advantages:
1. Faster than any other commonly used sorting algorithms.

2. It has a best average case behavior.

Disadvantages:
1. As it uses recursion, stack space consumption is high.

 MERGE SORT

Given a sequence of n elements A[1], ….A[N], the general idea is to imagine

them split into two sets A[1],…A[N/2] and A[(N/2) + 1],…A[N]. Each set is

individually sorted, and the resulting sorted sequences are merged to produce a single

sorted sequence of N elements. Thus this sorting method follows Divide and Conquer

strategy.

Algorithm:

Principle: The given list is divided into two roughly equal parts called the left

and the right subfiles. These subfiles are sorted using the algorithm recursively

and then the two subfiles are merged together to obtain the sorted file.

3.22

Procedure MERGE(A, low, mid, high)

// A is the array containing the list of

data items I € low, J € mid+1, K € low
While I Y mid and J Y high

If A[I] < A[J]
Then

Temp[K]

€A[I] I €I + 1
K € K+1

Else

Temp[K]

€A[J] J €J +

1
K €K + 1

End

If End

While

3.23

The first algorithm MERGE can be applied on two sorted lists to merge them.

Initially, the index variable I points to low and J points to mid + 1. A[I] is compared with

A[J] and if A[I] found to be lesser than A[J] then A[I] is stored in a temporary array and

I is incremented otherwise A[J] is stored in the temporary array and J is incremented.

This comparison is continued until either I crosses mid or J crosses high. If I crosses the

mid first then that implies that all the elements in first list is accommodated in the

temporary array and hence the remaining elements in the second list can be put into the

temporary array as it is. If J crosses the high first then the remaining elements of first

list is put as it is in the temporary array. After this process we get a single sorted list.

Since this method merges 2 lists at a time, this is called 2-way merge sort.

If I > mid

Then

While J Y high

Temp[K]

€A[J] K € K

+ 1
J €J + 1

End While
Else

While I Y mid

Temp[K]

€A[I] K € K +

1
I €I + 1

End While
End If

Repeat for K = low to high step

1 A[K] € Temp[K]

End

Repeat

End

MERGE
Procedure MERGESORT(A, low, high)

// A is the array containing the list of

data items If low < high

Then

mid € (low + high)/2

MERGESORT(low, high)

MERGESORT(mid + 1, high)

MERGE(low, mid, high)
End If

End MERGESORT

3.24

In the MERGESORT algorithm, the given unsorted list is first split into N number

of lists, each list consisting of only 1 element. Then the MERGE algorithm is applied for

first 2 lists to get a single sorted list. Then the same thing is done on the next two lists

and so on. This process is continued till a single sorted list is obtained.

Example:

Let L € low, M€ mid, H € high

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

U M H

In each pass the mid value is calculated and based on that the list is split into two. This

is done recursively and at last N number of lists each having only one element is

produced as shown.

Now merging operation is called on first two lists to produce a single sorted list, then

the same thing is done on the next two lists and so on. Finally a single sorted list is

obtained.

Advantages:

1. Very useful for sorting bigger lists.
2. Applicable for external sorting also.

Disadvantages:

1. Needs a temporary array every time, for storing the new sorted list.

 HEAP SORT

➢ If a given node is in position I then the position of the left child and the right
child can be calculated using Left (L) = 2I and Right (R) = 2I + 1.

➢ To check whether the right child exists or not, use the condition R = N. If
true, Right child exists otherwise not.

➢ The last node of the tree is N/2. After this position tree has only leaves.

Principle: The Max heap has the greatest element in the root. Hence the element in the

root node is pushed to the last position in the array and the remaining elements are

converted into a max heap. The root node of this new max heap will be the second

largest element and hence pushed to the last but one position in the array. This process

is repeated till all the elements get sorted.

Algorithm:

Heap: A Heap is a compete binary tree with the property that the value at each
node is at least as large as (or as small as) the values at its children (if they
exist). If the value at the parent node is larger than the values on its children
then it is called a Max heap and if the value at the parent node is smaller than
the values on its children then it is called the Min heap.

Procedure WALKDOWN(A, I, N)

// A is the list of unsorted elements
// N is the number of elements in the array

// I is the position of the node where the walkdown procedure is to

be applied.

While I Y N/2

Then

Else

End If
If A[R] > A[M] and R Y N

Then

Then

A[I] ↔ A[M]

Else
Return

End If

End
3.2
1

3.22

Procedure HEAPSORT(A, N)

// A is the list of unsorted elements
// N is the number of elements in the array

Repeat For I = N/2 to 2 step -1

WALKDOWN(A, I, N)

End Repeat

Repeat For J = N to 2

Step -1

WALKDOWN(A, 1,

J) A[1] ↔ A[J]
End Repeat

End HEAPSORT

3.23

The WALKDOWN procedure is used to convert a subtree into a heap. If this algorithm

is applied on a node of the tree, then the subtree starting from that node will be converted

into a max heap. In the above given WALKDOWN algorithm, the element at the given

node is compared with its left and right child and is swapped with the maximum of that.

During this process the element at the given node may walkdown to its correct position

in the subtree. The procedure stops if the element at I reaches a leaf or it reaches its

correct position.

In the HEAPSORT algorithm there are two phases. In the first phase the

walkdown procedure is applied on each node starting from the last node at N/2 to node

at position 2. The root node is not disturbed. During this first phase, the subtrees below

the root satisfy the max heap property.

In the second phase of the sorting algorithm, the walkdown procedure is applied

on the root node. After this pass the entire tree becomes a heap. The root node element

and the last element are swapped and the last element is now not considered for the next

pass. Thus the tree size reduces by one in the next pass. This process is repeated till we

obtain a sorted list.

Example:

Given a list A with 8 elements:

42 23 74 11 65 58 94 36

The given list is first converted into a binary tree as shown.

Binary tree

3.24

Phase 1:

The rearranged tree elements after the first phase is

Phase 2:

25

ANALYSIS OF SORTING TECHNIQUES

