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FUNDAMENTALS OF DIGITAL SYSTEMS-SCSA1201 

UNIT – I - NUMBER SYSTEMS, COMPLEMENTS AND CODES 

  



 UNIT I-NUMBER SYSTEMS, COMPLEMENTS AND CODES 

  

Number Systems - Binary Numbers - Number base conversions - Octal and Hexa Decimal Numbers - Complements - Signed 

Binary Numbers - Binary Arithmetic - Binary Codes - Decimal Code - Error Detection code - Gray Code- Reflection and Self 

Complementary codes - BCD number representation - Alphanumeric codes ASCII/EBCDIC - Hamming Code- Generation, Error 

Correction. 
 

 1.1 Number System 

A number system relates quantities and symbols. In digital system how information is represented is key 

and there are different radices, i.e. number bases, which a numbering system can use. 

Digital computer 

Any class of devices capable of solving problems by processing information in discrete form. It operates on 

data, including letters and symbols, which are expressed in binary form i.e using only two digits 0 and 1. 

The block diagram of digital computer is given below: 
 

 

 

 
 

The memory unit stores programs as well as input, output and intermediate data. The processor unit 

performs arithmetic and other data processing tasks as specified by the program.The control unit 

supervises the flow of information between various units. The program and data prepared by the user 

are transferred into the memory unit by means of an input device such as punch card reader (or) tele 

typewriter. An output device, such as printer, receives the result of the computations and the printed 

results are presented to the user. 
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It can have different base values like: binary (base-2), octal (base-8), decimal (base 10) and 

hexadecimal (base 16),here the  base number represents the number of digits used in that numbering 

system. As an example, in  decimal numbering system the digits used  are: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. 

Therefore the digits for binary are: 0 and 1, the digits for octal are: 0, 1, 2, 3, 4, 5, 6 and 7. For the 

hexadecimal numbering system, base 16, the digits are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. 

2. Binary numbers 

Numbers that contain only two digit 0 and 1 are called Binary Numbers. Each 0 or 1 is called a Bit, 

from binary digit. A binary number of 4 bits is called a Nibble. A binary number of 8 bits is called a 

Byte. A binary number of 16 bits is called a Word on some systems, on others a 32-bit number is called 

a Word while a 16-bit number is called a Halfword. 

Using 2 bit 0 and 1 to form 

a binary number of 1 bit,  numbers are 0 and 1 

a binary number of 2 bit,  numbers are 00, 01, 10, 11 

a binary number of 3 bit, such numbers are 000, 001, 010, 011, 100, 101, 110, 111 

a binary number of 4 bit, such numbers are 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 

1001, 1010, 1011, 1100,1101,1110,1111 

Therefore , using n bits there are 2n binary numbers of n bits 

Each digit in a binary number has a value or weight. The LSB has a value of 1. The second from the right 

has a value of 2, the next 4 , etc.,  
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The binary equivalent for some decimal numbers are given below. 

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 

Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 

 

3. Number Base Conversions 
 

3.1 Conversion of decimal number to any number system 
Step 1 convert the integer part by doing successive division using the radix of asked number systems. 
Step 2 convert the fractional part by doing successive multiplication using radix of asked number system  
 
3.2 Conversion of decimal to binary number system  
   The radix of asked number system is 2  

Convert 8710 to (  )2 



  
                                ( 1010111)2 

 

Convert (14.625)10 decimal number to binary number  

(1110)2 

1st Multiplication Iteration 
Multiply 0.625 by 2 
0.625 x 2 = 1.25(Product)         Fractional part=0.25          Carry=1    (MSB) 
 
2nd Multiplication Iteration 
Multiply 0.25 by 2 
     0.25 x 2 = 0.50(Product)         Fractional part = 0.50        Carry = 0    
 
3rd Multiplication Iteration 
Multiply 0.50 by 2 
      0.50 x 2 = 1.00(Product)       Fractional part = 1.00    Carry = 1  (LSB)     
   (101)2 

     The binary number of (16.625)10 is (1110.101)2 

 

3.3 Conversion of decimal to octal number system  
   The radix of asked number system is 8 

Convert (264)10 decimal number to octal number  

 

 
 
 (410)8 

     The octal number of (264)10 is (410)8 

MSB 



Convert (105.589)10 decimal number to octal number  

                  ( 0.4554) 
     The octal number of (105.589)10 is (151.4554)8 

 
3.4 Conversion of decimal to Hexadecimal  number system  
   The radix of asked number system is 16 
Convert (1693)10 decimal number to Hexadecimal number  

1693/16  = 105       Reminder   (13)  D  (LSB) 
105/16  =  6            Reminder            9 
6/16  =     0             Reminder            6   (MSB) 
 
(1693)10  (69D)16 

Convert (1693.0628)10 decimal fraction to hexadecimal fraction (?)16   
1693/16  = 105       Reminder   (13)  D  (LSB) 
105/16  =  6            Reminder            9 
6/16  =     0             Reminder            6   (MSB)  
(69D) 
 

Multiply 0.0628 by 16 
0.0628 x 16 = 1.0048(Product)    Fractional part=0.0048   Carry=1    (MSB) 

Multiply 0.0048 by 16 
   0.0048 x 16 = 0.0768(Product)         Fractional part = 0.0768         Carry = 0  
Multiply 0.0768 by 16 

   0.0768 x 16 = 1.2288(Product)       Fractional part = 0.2288     Carry = 1     

   
Multiply 0.2288 by 16 

    0.2288 x 16 = 3.6608(Product)         Fractional part = 0.6608    Carry = 3 (LSB)  
(.1013) 

 
(1693.0628)10 = (69D.1013)16 

 

3.5 Conversion of any number system to  decimal number system 

1 

LSB                           (151) 

MSB 

MSB 

LSB 



In general the numbers can be represented as  
N= A n-1r n-1  + = A n-2r n-2  +……..+ A1 r

1 + A0 r
0 + A-1 r-

1+ A-2 r-
2+……… 

Where n= number in decimal 
A= digit 
r= radix of  number system 
n= The number of digits in the integer portion of number 
m= the number of digits in the fractional portion of number 
 

3.6 Conversion of binary to decimal number system  
Convert ( 101.101 )2= ( ? )10 
 
 101.101  
= 1 x 22 + 0 x 21 + 1 x 20 .  1 x 2-1 + 0 x 2-2  + 1 x 2-3  
 

= 1 x 4 + 0 x 2 + 1 x 1 .  1 x ( 1 / 2 ) + 0 x ( 1 / 4 )  + 1 x ( 1 / 8 )   
 
=  4 + 0  + 1  .  ( 1 / 2 ) +  0   +  ( 1 / 8 )    
 
= 5  +  0.5  +  0.125 
= 5 . 625 
Therefore  ( 1 0 1 . 1 0 1 )2 =  ( 5.625 )10 
 
3.7 Conversion of octal to decimal number system  

Convert (128)8= ( ? )10 
1238 = 1*82 + 2*81 + 3*80 = 64 + 16 + 3 = 73  

the decimal equivalent of the number 1238 is 7310 
Convert (2 1. 2 1)8= (? )10 
2 1. 2 1 

= 2 x 81 + 1 x 80.  2 x 8-1 + 1 x 8-2   
= 2 x 8 + 1 x 1.  2 x ( 1 / 8 ) + 1 x ( 1 / 64 )   
= 16 +  1  .  (0. 2 5) + (0. 0 1 5 6 2 5)    
= 17 + 0. 265625 
= 17. 265625 

         Therefore (2 1. 2 1)8 = (1 7. 2 6 5 6 2 5)10 

 
3.8 Conversion of hexadecimal to decimal number system 
 
Convert (E F. B 1)16= (?)10 

 

= E x 161 + F x 160.  B x 16-1 + 1 x 16-2   
= 14 x 16 + 15 x 1   .  11 x (1 / 16) + 1 x (1 / 256)   
= 224   +    15 +  (0. 6 8 7 5) + (0. 0 0 3 9 0 6 2 5)    
= 239 + 0. 6914 
= 239. 691406 
Therefore (E F. B 1)16 = (2 3 9.  6 9 1 4 0 6)10 
 
Convert ( 0.9D9 )16= ( ? )10 
 
= 0 x 160.  9 x 16-1 + D x 16-2 + 9 x 16-3 
= 0 x 1.  9 x ( 1 / 16 ) + 13 x ( 1 / 256 )  + 9 x ( 1 / 4096 )  
=  0  .  (0. 5625) + (0. 050781)   + (0. 0021972 )    
= 0.  (0. 6154782 ) 



= 0. 6154782 

 
3.9  Conversion of  binary to octal number system  

Convert  (101101001)2 to (   )8 
Divide the binary  into group of three digits from LSB we will find the following pattern 
101|101|001 Now writing the equivalent decimal number of each group we get 5 | 5 | 1 So the 
equivalent octal number is 5518 

 
Convert 11001100.101 to (   )8 

011|001|100. |101| 
3        1      4   . 5 
So the equivalent octal number is 314.5 
 

3.10 Conversion of  binary to hexadecimal number system 
Convert 111100010 to (   )16 

    Divide the binary  into group of four digits from LSB  
0001|1110|0010 
Now writing the equivalent hexadecimal number of each group  

1|E|2 
So the equivalent Hexa decimal number is 1E216 

     Convert 11000011001.101 to (   )16 
0110|0001|1001|.1010| 
6         1      9       .  A 

       So the equivalent Hexa decimal number is 619.A16 

 
3.11  Conversion of octal number system to hexa decimal number system 

 Convert  ( 25)8    to  (  )16 
First convert octal to binary 
The binary equivalent of 25 is 010101 
Divide the binary into group of four digits from LSB  

          0001|0101 
             1    5 
      So the equivalent Hexa decimal number is 1516 

 

3.12    Conversion of hexa decimal number system to octal number system 
       Convert  ( 1A.2B)16    to  (  )8 

First convert hexadecimal to binary 
The binary equivalent of 1A.2B  is  00011010.00101011 
Divide the binary  into group of Three digits  
011|010|.|001|010|110 
3       2    . 1      2   6  

so the equivalent octal number  is 32.1268   

 

4. COMPLEMENTS 
In digital computers to simplify the subtraction operation and for logical manipulation complements 

are used . There are two types of complements for  each radix system the radix complement and diminished 
radix complement. The first is referred to as the r’s complement and the second as the (r-1)’s complement.  

r’s Complement 
              Given a positive number N in base r with an integer part of n digits, the r’s complement of N is 
defined as rn-N if N≠0 and 0 if N=0 



(r-1)’s Complement 

                Given a positive number N in base r with an integer part of n digits and a fraction part of m 

digits, the (r-1)’s complement of N is defined as rn-r-m-N 

Subtraction with r’s complement 

 The direct method of subtraction uses the borrow concept 

 When subtraction is implemented by means of digital components, this method is found to be 

less efficient. So, instead the following procedure can be followed. 

  The subtraction of two positive numbers (M-N), both of base r, may be done as follows. 

(1) Add the minuend M to the r’s complement of the subtrahend N. 
(2) Inspect the result obtained in step 1 for an end carry. 

 If an end-carry occurs, discard it. 

 If an end-carry does not occurs, take the r’s complement of the number obtained in step 

1 and place a negative sign in front. 

 

  

Subtraction with (r-1)’s Complement 

 The procedure for subtraction with (r-1)’s complement is same as r’s complement except for 
end-around carry. 

 The subtraction of M-N, both positive numbers in base r, may be calculated in the following 

manner. 

1. Add the minuend M to the (r-1)’s complement of the subtrahend N. 
2. Inspect the result obtained in step 1 for an end carry. 

 If an end-carry occurs, add 1 to the least significant digit (end-around carry) 

 If an end-carry does not occur, take the (r-1)’s complement of the number 
obtained in step 1 and place a negative sign in front. 

 
               It is classified into four types they are 1’s complement , 2’s complement , 9’s complement  and  
10’s complement. 
4.1   1’s complement representation: The 1’s complement of a binary number is the number that 
results when we change all 1’s to zeros and the zeros to ones. 
2’s complement representation: 
 The 2’s complement is the binary number that results when we add 1 to the 1’s complement. 
Problems related to 1’s complement and 2’s complement : 



 

 

 
4.2   1’s complement subtraction  

Subtraction of binary numbers can be accomplished by the direct method by using the 1’s complement 
method, which allows to perform subtraction using only addition . for subtraction of two numbers we have 
two cases. 

1. Subtraction of smaller number from larger number and 
2. Subtraction of larger number from smaller number. 

 
1’s complement Subtraction of smaller number from larger number 

 
Method: 

1. Determine the 1’s complement of the smaller number. 
2. Add the 1’s complement to the larger number. 
3. Remove the carry and add it to the result. 

This is called end -around carry. 



 
1’s complement Subtraction of larger number from smaller number 

Method: 

1. Determine the 1’s complement of the larger number. 
2. Add the 1’s complement to the smaller number. 
3. Answer is in 1’s complement form. To get the answer in true form take the 1’s complement and 

assign negative sign to the answer. 

  
Advantages of 1’s complement subtraction : 

1. The 1’s complement subtraction can be accomplished with an binary adder. Therefore , this method 
is useful in arithmetic logic circuits. 

2. The 1’s complement of a number is easily obtained by inverting each bit in the number. 
4.3   2’s complement Subtraction: 

Like 1’s complement subtraction, in 2’s complement subtraction, the subtraction is accomplished 
by only addition.  

2’s complement Subtraction of smaller number from larger number 

Method  

1. Determine the 2’s complement of the smaller number. 
2. Add the 2’s complement to the larger number. 
3. Discard  the carry. 

 
2’s complement Subtraction of larger number from smaller number 

Method: 

 
1. Determine the 2’s complement of the larger number. 
2. Add the 2’s complement to the smaller number. 



3. Answer is in 2’s complement form. To get the answer in true form take the 2’s complement and 
assign negative sign to the answer. 

 
4.4    9's complement and 10's complement 

Before knowing about 9's complement and 10's complement we should know why they are used 
and why their concept came into existence. Addition of signed BCD numbers can be performed by using 
9’s and 10’s complement.  The complements are used to make the arithmetic operations in digital system 
easier. Various topics and related problems we going to see here are 

 
1. 9s complement 
2. 10s complement 
3. 9s complement subtraction 
4. 10s complement subtraction 

 
Now first of all let us know what 9's complement is and how it is done. To obtain the 9,s complement 

of any number we have to subtract the number with (10n - 1) where n = number of digits in the number, or 
in a simpler manner we have to divide each digit of the given decimal number with 9. The table 1.  will 
explain the 9's complement more easily.  

 
Table 1.    9’s complement equivalent for decimalo numbers 

 

Decimal digit 
9s 
complement 

0 9 

1 8 

2 7 

3 6 

4 5 

5 4 

6 3 

7 2 

8 1 

9 0 

 



Now coming to 10's complement, it is relatively easy to find out the 10's complement after finding 
out the 9,s complement of that number. We have to add 1 with the 9,s complement of any number to obtain 
the desired 10's complement of that number. Or if we want to find out the 10's complement directly, we can 
do it by following the formula, (10n - number), where n = number of digits in the number. An example is 
given below to illustrate the concept of obtaining 10’s complement 

 

 A decimal number 456, find  9's complement and 10’s complement of this number  

 
10's complement of that no. is  
 

 
 

In 9’s complement subtraction when 9’s complement of smaller number number is added to the 
larger number carry is generated. It is necessary to add this carry to the result. ( this is called an end around 
carry).when larger number is subtracted from the smaller number, there is no carry, and the result is in 9’s 
compliment form and negative. This is explained with following examples. 

 
Subtraction using 9’s complements: 

 

 
Steps for 9’s complement BCD subtraction 

 
1. Find the 9’s complement of a negative number. 
2. Add two numbers using BCD addition 
3. If carry is generated add carry to the result otherwise find the 9’s complement of the result. 

 



 
Subtraction using 10’s complements: 

The 10’s complement of the decimal is equal to 9’s complement plus 1. The 10’s complement can 
be used to perform subtraction by adding the minuend to the 10’s complement of the subtrahend and 
dropping the carry. This is explained with following examples. 

 

 



Steps for ϭϬ’s ĐoŵpleŵeŶt BCD suďtraĐtioŶ 

1. FiŶd the ϭϬ’s ĐoŵpleŵeŶt of a Ŷegative Ŷuŵďer. 
2. Add two numbers using BCD addition 

3. If Đarry is Ŷot geŶerated fiŶd the ϭϬ’s ĐoŵpleŵeŶt of the result. 
 

5.SIGNED NUMBERS 

 Digital systems like computer, must be able to handle both positive and negative numbers. 

 A signed binary number consists of both sign and magnitude information. 

 The sign indicates whether a number is positive or negative. 

5.1 Representation 

              There are three forms in which the signed integer (whole numbers) can be represented. They 

include, 

1. Sign – Magnitude Form – Rarely used 

2. 1’s Complement Form  
3. 2’s Complement Form – Mostly used 

Note: 

      Sign bit – leftmost bit in a signed binary numbers  

 0 for positive, 1 for negative 

 

5.11   Sign Magnitude Form 

 Here, leftmost bit is the sign bit. 

 Remaining bits are magnitude bits. 

 Magnitude bits are in true binary. 

 
5.12 1’s Complement Form 

 In this Form, positive numbers are represented the same way as positive sign-magnitude 

numbers. 



 Negative numbers, are the 1’s complement of the corresponding positive numbers. 

 (eg) 

              +25 is represented as, 

                     00011001 ĺ same as sign-magnitude form 

              -25 is represented as, 

                     11100110 ĺ 1’s complement of +25 

5.13 2’s Complement Form 

 Positive numbers in 2’s complement form are represented as same as in sign-

magnitude and 1’s Complement Form. 
 Negative numbers are the 2’s  complement of the corresponding positive numbers 

 (eg)  

              +25 is represented as,    

                       00011001 ĺ same as sign-magnitude form 

             -25 is represented as, 

                       11100110 + 

                                      1 
        -------------------------------- 
                       111001112     ĺ 2’s complement of +25 
           -------------------------------          

Decimal value of Signed Numbers  

(1) Sign Magnitude 

 Decimal values of positive and negative numbers in this form are determined by 

summing the weights in all the magnitude – bit positions. 

 The sign is determined by examining the sign bit. 

  

(eg)  1. Determine the decimal value of this signed binary number expressed in sign – 

magnitude. 10010101 

Soln: 

 The seven magnitude bits and their powers of 2 weights are as follows. 

  1 0010101 

Ļ   26252423222120 

Sign bit 

 Summing weights where there are 1’s. 
 ĺ 16+4+1 = 21 

 Since, the sign bit is 1, the decimal number is -21 

  



(2) 1’s Complement 
 Decimal values of positive numbers in this form are determined by summing the 

weights in all bit postions. 

 Decimal values of negative numbers are determined by assigning a negative value to 

the weight of the sign bit, summing all the weights where there are 1’s and adding 1 to 
the result. 

           (eg) Determine the decimal value of the signed binary number expressed in 1’s complement  
11101000 

                   Soln: 

 The bits and their powers- of- two weights are as follows. 

                         Note:  for sign bit, it is -27 (or) -128 

                           1  1  1  0   1   0   0    0 

                          -27 26 25 24 23 22  21  20 

 Summing the weights where there are 1’s  
 

-128+64+32+8 = -24                            ( if +ve, write this as the result) 

 Since, it is a negative number, add 1 to the result 

-24+1 = -23 

(3) 2’s Complement 
 Decimal values of positive and neagative numbers in this form are determined by 

summing the weights in all bit positions. 

 The weight of the sign – bit in a negative number is given a negative value. 

            (eg):  Determine the decimal values of the signed binary numbers expressed in 2’s complement 
from 10101010 

            Soln: 

 The bits and their corresponding powers of -2 weights are as follows 

 

           1    0   1   0   1   0    1   0 

          -27  26  25  24  23  22 21 20 

 Summing weights where there are 1’s 

             -128+32+8+2 = -86 

Range of signed integer numbers that can be Represented 

 Since 8-bit (1byte) grouping is common in most computers, the illustrations are all 8-

bits. With 8-bits, we can represent 256 different numbers. 

 With 16-bits (2 bytes), we can represent 65,536 different numbers. 

 With 32-bits (4 bytes), we can represent 4.295×109 different numbers. 

 



The formula for finding the number of different combinations of n-bits is,  

     

                Total combinations = 2n 

                Range of values for n-bit numbers is, 

 

                      -(2n-1) to + (2n-1 – 1) 

 

So, for 8 bits the range is, 

          -128 to +127 

 

For 16 bits the range is,  

          -32768 to +32767 etc 

5.2 Arithmetic operations with Signed Numbers 

 Here, we use 2’s complement representation  

Addition 

 The two numbers in an addition are the addend and the augend 

 The result is sum. 

 There are four cases that can occur when two signed binary numbers are added. 

(1) Both numbers positive. 

(2) Positive number with  magnitude larger than negative number. 

(3) Negative number with magnitude larger than positive number 

(4) Both numbers negative. 

 

Case 1:  Both numbers +ve 

 



 

Subtraction 

 It is a special case of addition. 

 The two numbers in subtraction are subtrahend and minuend. 

 The result is the difference. 

 To subtract +6 from +9, it is also equivalent to add -6 to +9. 

 So, to subtract two signed numbers, take the 2’s complement of the subtrahend and add. Discard 
any final carry bit. 

 

6.  BINARY ARITHMETIC 
6.1 BINARY ADDITION 

The binary addition table is as follows: 

A+B SUM CARRY 

0+0 0 0 

0+1 1 0 

1+0 1 0 

1+1 0 1 

Illustration 1: 

Add (1010)2 and (0011)2 

1010 (Augend) 
0011 (Addend) 
----------------------- 
1101  (sum) 
----------------------- 

The addition manipulated above as follows. 
Step 1: The least significant bits are added, i.e. 0+1 =1 with a carry of 0 



Step 2: The carry in the previous is added to the next higher significant bits, i.e. 0+1+1= 0 with a carry 1. 
Step 3: The carry in the previous is added to the next higher significant bits, i.e. 1+0+0 =1 with a carry 0. 
Step 4: The preceding carry is added to the most significant bit i.e. 0+1+0 = 1 with a carry 0. 
 Thus the sum is 1101.  
 

6.2 BINARY SUBTRACTION 

The binary subtraction table is as follows: 
 

A-B DIFFERENCE BORROW 

0-0 0 0 

0-1 1 1 

1-0 1 0 

1-1 0 0 

Illustration 1: 

Subtract (0101)2 from (1011)2 
1011 (Minuend) 
0101 (Subtrahend) 
--------------------------- 
0110 (Difference) 
--------------------------- 

The steps are described below 

Step1: the LSB in the first column are 1 and 1. Hence, the difference is 1 - 1 = 0 
Step2: The column, the subtraction is performed as 1 – 0 = 1 
Step3: In the third column, the difference is given by 0 – 1 =1 
Step 4:  In the fourth column (MSB), the difference is given by 0 – 0 = 0 since 1 is borrowed for third 
column.  
 

 

6.3 BINARY MULTIPLICATION 
The binary multiplication table is as follows: 

A *B PRODUCT 

0 * 0 0 

0 * 1 0 

1 * 0 0 

1 * 1 1 

 

 Binary multiplication uses add and shift process 
 Binary multiplication is similar to decimal multiplication. 

Illustration 1: 

Multiplicand * Multiplier 
   10110.1x01001.1 

---------------------------------- 
    101101 
   101101 
    000000  
   000000 
   101101 
   000000 

---------------------------------- 
 011010101.11   (Final product) 

----------------------------------- 
The steps are described below 

Partial Product 



Step 1: The LSB of the multiplier is taken. If multiplier bit is 1, the multiplicand is copied as such and if 
the multiplier bit is 0 zero is placed in all the bit positions. 
Step 2: The next higher significant bit of the multiplier is taken and, the partial product is written with the 
shift to the left, as in step 1. 
Step 3: step 2 is repeated for all other higher significant bits. 
Step 4: The partial product terms are added which gives the actual product of multiplier and the 
multiplicand. 
 

6.4 BINARY DIVISION: 
The binary division table is as follows: 

A÷B Result 

0÷0 Not allowed 

0÷1 0 

1÷0 Not allowed 

1÷1 1 

 
 Binary division uses subtract  and shift process 
 Binary division is similar to decimal division. 
 Division by 0 is meaningless. 

Illustration 1: 

   Dividend ÷ Divisor 

11011.1÷ 101 
    101.1  (QUOTIENT) 

DIVISOR 101 √11011.1 (DIVIDEND)
 

         101 
 -------------- 

     111 
        101 

 -------------- 
     101 

       101 
-------------- 

         0 
 -------------- 

 
 

7.BINARY CODES 
Binary codes are codes which are represented in binary system with modification from the original 

one. The group of symbols is called as a code. The digital data is represented, stored and transmitted as 
group of binary bits. This group is  also called as binary code. The binary code is represented by the 
number as well as alphanumeric letter.  
Advantages of Binary Code  

Following is the list of advantages that binary code offers.  
1. Binary codes are suitable for the computer applications.  
2. Binary codes are suitable for the digital communications.  
3. Binary codes make the analysis and designing of digital circuits if we use the binary codes.  
4. Since only 0 and 1 are being used, implementation becomes easy.  

7.1 Classification of binary codes:The codes are broadly categorized into following four categories.  

 Weighted Codes  

 Non-Weighted Codes  

 Binary Coded Decimal Code  

 Alphanumeric Codes  



 Error Codes 
7.1.1 Weighted codes: Weighted binary codes are those binary codes which obey the positional weight 
principle. Each position of the number represents a specific weight  

Decimal 8421 5421 2421 5211 

0 0000 0000 0000 0000 

1 0001 0001 0001 0001 

2 0010 0010 0010 0011 

3 0011 0011 0011 0101 

4 0100 0100 0100 0111 

5 0101 1000 1011 1000 

6 0110 1001 1100 1010 

7 0111 1010 1101 1100 

8 1000 1011 1110 1110 

9 1001 1100 1111 1111 

 
For example, in 8421BCD code, 1001 the weights of 1, 0, 0, 1 (from left to right) are 8, 4, 2 and 1 
respectively. The codes 8421BCD, 2421BCD, 5211BCD are all weighted codes. 
7.1.2 Non-weighted codes: The non-weighted codes are not positionally weighted. In other words, each 
digit position within the number is not assigned a fixed value (or weight). 
Examples are 

 Excess-3  

 Gray code  
DECIMAL EXCESS - 3 GRAY CODE 

0 0011 0000 

1 0100 0001 

2 0101 0011 

 
6.1.3 EXCESS – 3 CODES:- 

 This is another form of BCD code, in which each decimal digit is coded into a 4-bit binary code. 

 The code for each decimal digit is obtained by adding decimal 3 to the natural BCD code of the 
digit. 

GRAY CONVERSION:- 

 Record the mostsignificant bit add the binary MSB to the next significant bit of the Gray code. 

 Record the result, ignoring carrier continue the process, until the LSB is reached. 
REFLECTIVE CODES: A code is reflective when the code is self-complementing. In otherwords, when the 
code for 9 is the complement the code for 0, 8 for 1, 7 for 2, 6 for 3 and 5 for 4. 2421BCD, 5421BCD and 
Excess-3 code are reflective codes. 
SEQUENTIAL CODES: In sequential codes, each succeeding 'code is one binary number greater than its 
preceding code. This property helps in manipulation of data. 8421 BCD and Excess-3 are sequential codes.  
ALPHANUMERIC CODES: Codes used to represent numbers, alphabetic characters, symbols and various 
instructions necessary for conveying intelligible information. ASCII, EBCDIC, UNICODE are the most-
commonly used alphanumeric codes. 
 

8.Decimal code 
Binary codes for decimal digits require a minimum of four bits. Numerous different codes can be obtained 
by arranging four or more bits in ten distinct possible combinations. A few possibilities are tabulated. 



 
 

9.Error detection code 
In data transmission, Interference and physical defects in the communication medium can cause random bit 
errors. As the signal is transmitted through a media, the signal gets corrupted because of noise and 
distortion. Therefore the media is not reliable. To achieve a reliable communication through this unreliable 
media, there is need for detecting the error in the signal so that suitable mechanism can be devised to take 
corrective actions.  
Error coding is a method of detecting and correcting these errors to ensure information is transferred intact 
from its source to its destination 
The errors can be divided into two types: 
• Single-bit Error: only one bit of given data unit (such as a byte, character, or data unit) is changed from 1 
to 0 or from 0 to 1.  
• Burst Error: two or more bits in the data unit have changed from 0 to 1 or vice-versa. (Here doesn’t 
necessary means that error occurs in consecutive bits) 
Error Detecting Codes: 
Basic approach used for error detection is the use of redundancy, where additional bits are added to 
facilitate detection and correction of errors.  
Popular techniques are:  
• Simple Parity check 
 • Two-dimensional Parity check  
• Checksum  
• Cyclic redundancy check 
Detecting Errors using simple parity check 

Suppose we are transmitting 7-bit ASCII characters. A parity bit is added to each character to make it 8 
bits. Parity can detect all single-bit errors 
 –If even parity is used and a single bit changes, it will change the parity to odd, which will be detected at 
the receiver end  
–The receiver end can detect the error, but cannot correct it because it does not know which bit is erroneous  
Parity can also detect some multiple-bit errors  
Table 1 shows the four bit data word and its corresponding code words 

Decimal value Data block Parity bit Code word 

0 0000 0 00000 

1 0001 1 00011 

2 0010 1 00101 



3 0011 0 00110 

4 0100 1 01001 

5 0101 0 01010 

6 0110 0 01100 

7 0111 1 01111 

8 1000 1 10001 

9 1001 0 10010 

10 1010 0 10100 

11 1011 1 10111 

12 1100 0 11000 

13 1101 1 11011 

14 1110 1 11101 

15 1111 0 11110 

 

10.Gray Code- Reflection and Self Complementary codes 
 Gray Code is a non-weighted code which belongs to a class of codes called minimum change codes. 

 Gray Code is an alternative binary representation, devised such that, between any two adjacent 
numbers, only one bit changes at a time.  

Binary Dec Gray 

00000 0 00000 

00001 1 00001 

00010 2 00011 

00011 3 00010 

00100 4 00110 

00101 5 00111 

00110 6 00101 

00111 7 00100 

01000 8 01100 

01001 9 01101 

01010 10 01111 

01011 11 01110 

01100 12 01010 

01101 13 01011 

01110 14 01001 

01111 15 01000 

 To the left we see three columns of data. These are representations of the same numbers 0-15 in 
different ways. 

o In the middle is the decimal value.  
o On the left is positional notation binary  
o On the right is Gray code. 

 You will notice that, on the right, each adjacent row is different from it's neighbours by no more 
than one bit.  

 The term Gray code is often used to refer to a "reflected" code, or more specifically still, the binary 
reflected Gray code. 

10.1 Self-complementary Code  



• A code is said to be self-complementary if the code for 9’s complement of N i.e. 9-N can be obtained by 
interchanging all 0s and 1s.  
• Decimal 9 is the complement of code for 0, 8 for 1, 7 for 2 and so on.  
• For a code to be self complementing, the sum of all its weights must be 9. digit.8421 and 5421 codes are 
not self complementing codes whereas 5211,2421,3321, 4321 are self complementing. 
 • In general, a code is self-complementary if we produce a code by taking the first complement of the digit 
which is same as 9’s complement of the number. 

10.2 Reflective code 

 Imaged about the centre entries with one bit changed  

 Example ï 9ís complement of a reflected BCD code word is formed by changing only one of its bits 

 In the Gray code example shown below, the MSB bit alone is changing and the remaining bits is 
reflected mirror image about the centre. For clarity, the MSB is removed. 

 Gray code                Reflected property of Gray code 

                       
 

Binary-to-Gray code conversion 

 The MSB in the Gray code is the same as corresponding MSB in the binary number. 

 Going from left to right, add each adjacent pair of binary code bits to get the next Gray code bit. 

 Discard carries. 
       Problem: Convert 10110 to gray code 

  
Gray-to-Binary Conversion  

 The MSB in the binary code is the same as the corresponding bit in the Gray code. 

 Add each binary code bit generated to the Gray code bit in the next adjacent position. 

 Discard carries. 
        Problem: Convert the Gray code word 11011 to binary 

 

 



11.  Binary-Coded Decimal Code 
Although the binary number system is the most natural system for a computer because it is readily 

represented in today’s electronic technology, most people are more accustomed to the decimal system. One 
way to resolve this difference is to convert decimal numbers to binary, perform all arithmetic calculations 
in binary, and then convert the binary results back to decimal. This method requires that we store decimal 
numbers in the computer so that they can be converted to binary. Since the computer can accept only 
binary values, we must represent the decimal digits by means of a code that contains 1’s and 0’s. It is also 
possible to perform the arithmetic operations directly on decimal numbers when they are stored in the 
computer in coded form. 

A binary code will have some unassigned bit combinations if the number of elements in the set is 
not a multiple power of 2. The 10 decimal digits form such a set. A binary code that distinguishes among 
10 elements must contain at least four bits, but 6 out of the 16 possible combinations remain unassigned. 
Different binary codes can be obtained by arranging four bits into 10 distinct combinations. This scheme is 
called binary-coded decimal and is commonly referred to as BCD.  

A number with k decimal digits will require 4k bits in BCD. Decimal 396 is represented in BCD 
with 12 bits as 0011 1001 0110, with each group of 4 bits representing one decimal digit. A decimal 
number in BCD is the same as its equivalent binary number only when the number is between 0 and 9. A 
BCD number greater than 10 looks different from its equivalent binary number, even though both contain 
1’s and 0’s. Note that the BCD code is not self‐complementing. Moreover, the binary combinations 1010 
through 1111 are not used and have no meaning in BCD. Consider decimal 185 and its corresponding value 
in BCD and binary: 
(185)10 = (0001 1000 0101) BCD = (10111001)2 
 

 

Table 1 
In multi digit BCD coding 

 

11.1  BCD addition: 

 The addition of two BCD numbers can be best understood by considering the three cases that occur 
when two BCD digits are added. 
Sum equals 9 or less with carry 0 

Let us consider additions of 3 and 6 in BCD. 



 

Sum greater than 9 with carry 0 

Let us consider addition of 6 and 8 in BCD 

 

The sum 1110 is an invalid BCD number. This has occurred because the sum of the two digits exceeds 9. 
Whenever this occurs this occurs the sum has to be corrected by the addition of six (1110) in the invalid 
BCD number, as shown below 

 

Sum equals 9 or less with carry 1 

Let us consider addition of 8 and 9 in BCD 

 

In this case, result (001 0001) is valid BCD number, but it is incorrect. To get the correct BCD result 
correction factor of 6 has to be added to the least significant digit sum, as shown. 

 

BCD addition procedure 

1. Add two BCD numbers using ordinary binary addition. 
2. If four bit sum is equal to or less than 9, no correction is needed. The sum is in  proper BCD form. 



3. If the four bit sum is greater than 9 or if a carry is generated from the four-bit sum, the sum is 
invalid. 

4. To correct the invalid sum, add 01102 to the four-bit sum. If a carry results from this addition, add it 
to the next higher-order BCD digit. 

 

 

 

 

12.Alphanumeric codes 
Alphanumeric codes are sometimes called character codes due to their certain properties. Now 

these codes are basically binary codes. We can write alphanumeric data, including data, letters of the 
alphabet, numbers, mathematical symbols and punctuation marks by this code which can be easily 
understandable and can be processed by the computers. Input output devices such as keyboards, monitors, 
mouse can be interfaced using these codes. 12-bit Hollerith code is the better known and perhaps the first 
effective code in the days of evolving computers in early days. During this period punch cards were used as 
the inputting and outputting data. But nowadays these codes are termed obsolete as many other modern 
codes have evolved. The most common alphanumeric codes used these days are ASCII code, EBCDIC 

code and Unicode.  
 

12.1 ASCII Character Code 



Many applications of digital computers require the handling not only of numbers, but also of other 
characters or symbols, such as the letters of the alphabet. For instance, consider a high‐tech company with 
thousands of employees. To represent the names and other pertinent information, it is necessary to 
formulate a binary code for the letters of the alphabet. In addition, the same binary code must represent 
numerals and special characters (such as $). An alphanumeric character set is a set of elements that 
includes the 10 decimal digits, the 26 letters of the alphabet, and a number of special characters. Such a set 
contains between 36 and 64 elements if only capital letters are included, or between 64 and 128 elements if 
both uppercase and lowercase letters are included. In the first case, we need a binary code of six bits, and in 
the second, we need a binary code of seven bits. The standard binary code for the alphanumeric characters 
is the American Standard Code for Information Interchange (ASCII), which uses seven bits to code 
128 characters, as shown in Table below. The seven bits of the code are designated by b1 through b7, with 
b7 the most significant bit. The letter A, for example, is represented in ASCII as 1000001 (column 100, row 
0001). The ASCII code also contains 94 graphic characters that can be printed and 34 nonprinting 
characters used for various control functions. 

The graphic characters consist of the 26 uppercase letters (A through Z), the 26 lowercase letters (a 
through z), the 10 numerals (0 through 9), and 32 special printable characters, such as %, *, and 
$.characters. Format effectors are characters that control the layout of printing. They include the familiar 
word processor and typewriter controls such as backspace (BS), horizontal tabulation (HT), and carriage 
return (CR). Information separators are used to separate the data into divisions such as paragraphs and 
pages. They include characters such as record separator (RS) and file separator (FS). The 
communication‐control characters are useful during the transmission of text between remote devices so that 
it can be distinguished from other messages using the same communication channel before it and after it. 
Examples of communication‐control characters are STX (start of text) and ETX (end of text), which are 
used to frame a text message transmitted through a communication channel.  

ASCII is a seven‐bit code, but most computers manipulate an eight‐bit quantity as a single unit 
called a byte. Therefore, ASCII characters most often are stored one per byte. The extra bit is sometimes 
used for other purposes, depending on the application.  

For example, some printers recognize eight‐bit ASCII characters with the most significant bit set to 
0. An additional 128 eight‐bit characters with the most significant bit set to 1 are used for other symbols, 
such as the Greek alphabet or italic type font. 

 

 

 

12.2  EBCDIC 



The EBCDIC stands for Extended Binary Coded Decimal Interchange Code. IBM invented this 
code to extend the Binary Coded Decimal which existed at that time. All the IBM computers and 
peripherals use this code. It is an 8 bit code and therefore can accommodate 256 characters. Below is given 
some characters of EBCDIC code to get familiar with it. 

 

 

 

13.  HAMMING CODE-ERROR DETECTION AND CORRECTION 

 
Hamming code is a set of error-correction code s that can be used to detect and correct bit errors 

that can occur when computer data is moved or stored. 
13.1 Error Detecting Codes 

 Basic approach used for error detection is the use of redundancy, where additional bits are added to 
facilitate detection and correction of errors. Popular techniques are: • Simple Parity check • Two-
dimensional Parity check • Checksum • Cyclic redundancy check 
Simple Parity Checking or One-dimension Parity Check The most common and least expensive mechanism 
for error- detection is the simple parity check. In this technique, a redundant bit called parity bit, is 
appended to every data unit so that the number of 1s in the unit (including the parity becomes even). 
Blocks of data from the source are subjected to a check bit or Parity bit generator form, where a parity of 1 
is added to the block if it contains an odd number of 1’s (ON bits) and 0 is added if it contains an even 
number of 1’s. At the receiving end the parity bit is computed from the received data bits and compared 
with the received parity bit, as shown in Fig 1. This scheme makes the total number of 1’s even, that is why 
it is called even parity checking. Considering a 4-bit word, different combinations of the data words and 
the corresponding code words are given in Table 1. Note that for the sake of simplicity, we are discussing 
here the even-parity checking, where the number of 1’s should be an even number. It is also possible to use 
odd-parity checking, where the number of 1’s should be odd. 



 
Fig 1) Even parity checking scheme 

 
Table 1:Possible 4 bit data words and corresponding code words 

Two-dimension Parity Check  
Performance can be improved by using two-dimensional parity check, which organizes the block of bits in 
the form of a table. Parity check bits are calculated for each row, which is equivalent to a simple parity 
check bit. Parity check bits are also calculated for all columns then both are sent along with the data. At the 
receiving end these are compared with the parity bitcalculated on the received data. This is illustrated in 
Fig. 2. Performance Two- Dimension Parity Checking increases the likelihood of detecting burst errors. As 
we have shown in Fig. 2, that a 2-D Parity check of n bits can detect a burst error of n bits. A burst error of 
more than n bits is also detected by 2-D Parity check with a highprobability. There is, however, one pattern 
of error that remains elusive. If two bits in one data unit are damaged and two bits in exactly same position 
in another data unit are also damaged, the 2-D Parity check checker will not detect an error. For example, if 
two data units: 11001100 and 10101100. If first and second from last bits in each of them is changed, 
making the data units as 01001110 and 00101110, the error cannot be detected by 2-D Parity check. 



 
                                                  Fig 2) Two dimension parity checking 
Example of Hamming Code Generation 

Suppose a binary data 1001101 is to be transmitted. To implement hamming code for this, following steps 
are used: 
 1. Calculating the number of redundancy bits required. Since number of data bits is 7, the value of r is 
calculated as 

2r > m + r + 1 
24 > 7 + 4 + 1 

Therefore no. of redundancy bits = 4 
 2. Determining the positions of various data bits and redundancy bits. The various r bits are placed at the 
position that corresponds to the power of 2 i.e. 1, 2, 4, 8 

 



                               

 
4. Thus data 1 0 0 1 1 1 0 0 1 0 1 with be transmitted. 
13.1 Error Detection & Correction 

Considering a case of above discussed example, if bit number 7 has been changed from 1 to 0.The data will 
be erroneous. 

                               
Data sent: 1 0 0 1 1 1 0 0 1 0 1 
Data received: 1 00 1 0 1 00 1 0 1 (seventh bit changed) 
The receive takes the transmission and recalculates four new VRCs using the same set of bits used by 
sender plus the relevant parity (r) bit for each set as shown in fig. 
Then it assembles the new parity values into a binary number in order of r position (r8, r4, r2, r1). 
In this example, this step gives us the binary number 0111. This corresponds to decimal 7. Therefore bit 
number 7 contains an error. To correct this error, bit 7 is reversed from 0 to 1. 
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UNIT –II- BOOLEAN ALGEBRA AND LOGIC GATES 



 

UNIT II-BOOLEAN ALGEBRA AND LOGIC GATES 

  

 

Axiomatic definitions of Boolean Algebra - Basic Theorems and Properties of Boolean Algebra - 

Boolean Functions- Canonical and Standard forms - Digital Logic Gates- Simplification of Boolean 

Expressions, The map method- SOP and POS - NAND and NOR implementation - Don’t Cares - The 

Tabulation Method - Determination and Selection of Prime Implicants. 

 
2.1 Axiomatic Definition of Boolean algebra 

1. Closure 

a. Closure with respect to (wrt) OR (+) 

b. Closure with respect to AND (·) 

2. Identity 

a. Identity element wrt to OR : 0 

b. Identity element wrt to AND : 1 

3. Commutative Property 

a. Commutative Property wrt to OR : x + y = y + x 

b. Commutative Property wrt to AND : x · y = y · x 

4. Distributive Property 

X · (y + z) = (x·y) + (x·z) 

x + (y·z) = (x + y)(x + z) 

5. Existence of Complement 

x + x’ = 1 

x · x’ = 0 

 
Precedence: 

 
(1) Parentheses (2) NOT (3) AND (4) OR 

 

2. 2Basic Theorems and Properties of Boolean algebra 

Operations with 0 and 1: 
 

 X + 0 = X 

 X • 1 = X 

 X + 1 = 1 

 X • 0 = 0 

Idempotent laws 

 X + X = X 

 X • X = X 



Involution law:  

 ( X' ) ' = X  

Laws of complementarity:  

 X + X' = 1    

 X • X' = 0  

Commutative laws:  

 X + Y = Y + X    

 X • Y = Y • X  

Associative laws:  

 (X + Y) + Z = X + (Y + Z) = X + Y + Z    

  (XY)Z = X(YZ) = XYZ  

Distributive laws: 

 X( Y + Z ) = XY + XZ    

 X + YZ = ( X + Y ) ( X + Z )  

Simplification theorems:  

 X Y + X Y' = X     

  ( X + Y ) ( X + Y' ) = X  

 X + XY = X    

 X ( X + Y ) = X  

  ( X + Y' ) Y = XY    

 XY' + Y = X + Y  

DeMorgan’s laws:  

There are two “de Morgan´s” rules or theorems, 

 Two separate terms NOR´ed together is the same as the two terms inverted (Complement) 

and AND´ed for example, (X+Y)’ = X’.Y’. 

 Two separate terms NAND´ed together is the same as the two terms inverted (Complement) 

and OR´ed for example, (X.Y)’ =X’ +Y’. 

Duality:  

“Every algebraic expression deducible from the postulates of Boolean Algebra remains valid if the 

operations and identity elements are interchanged.” 

 ( X + Y + Z + … ) D = X Y Z …    

  (X Y Z…) D = X + Y + Z + …  

  [ f ( X1, X2, … XN, 0, 1, +, • ) ] D = f ( X1, X2, … XN, 1, 0, •, + ) 

 



3. Boolean Functions 

A simple 2-input AND, OR and  NOT Gates can be represented by 16 possible functions as shown in the 

following table. 

3.1 Laws of Boolean Algebra  

Function  Description Expression 

1. NULL   0 

2. IDENTITY  1 

3. Input    A A 

4. Input    B B 

5. NOT    A A’ 

6. NOT    B B’ 

7. A AND B (AND) A . B 

8. A AND NOT B  A . B’ 

9. NOT A AND B  A’ . B 

10. NOT A AND NOT B (NAND) A’ . B’ 

11. A OR B (OR)  A + B 

12. A OR NOT B  A + B’ 

13. NOT A OR B  A’ + B 

14. NOT OR (NOR) (A + B)’ 

15. Exclusive-OR  A.B’ + A’.B 

16. Exclusive-NOR  A’.B’ + A.B  

 

Example 

Using the above laws, simplify the following expression:  (A + B)(A + C) 

 Q = (A + B).(A + C)   

  A.A + A.C + A.B + B.C – Distributive law 

  A + A.C + A.B + B.C  – Idempotent AND law (A.A = A) 

  A(1 + C) + A.B + B.C  – Distributive law 

  A.1 + A.B + B.C  – Identity OR law (1 + C = 1) 

  A(1 + B) + B.C  – Distributive law 

  A.1 + B.C   – Identity OR law (1 + B = 1) 

Q = A + (B.C)   – Identity AND law (A.1 = A) 

 

Then the expression:  (A + B)(A + C) can be simplified to A + (B.C) as in the Distributive law. 

 

4. Canonical and Standard Forms 

Logical functions are generally expressed in terms of different combinations of logical variables with 

their true forms as well as the complement forms. Binary logic values obtained by the logical functions 

and logic variables are in binary form. An arbitrary logic function can be expressed in the following 

forms. 

(i) Sum of the Products (SOP)  

(ii) Product of the Sums (POS)  

Product Term: 



In Boolean algebra, the logical product of several variables on which a function depends is 

considered to be a product term. In other words, the AND function is referred to as a product term 

or standard product. The variables in a product term can be either in true form or in 

complemented form. For example, ABC′ is a product term.  

 

Sum Term: 

An OR function is referred to as a sum term. The logical sum of several variables on which 

a function depends is considered to be a sum term. Variables in a sum term can also be either in 

true form or in complemented form. For example, A + B + C′ is a sum term.  

 

Sum of Products (SOP): 

 The logical sum of two or more logical product terms is referred to as a sum of products 

expression. It is basically an OR operation on AND operated variables. For example, Y = AB + 

BC + AC or Y = A′B + BC + AC′ are sum of products expressions.  

 

Product of Sums (POS): 

 Similarly, the logical product of two or more logical sum terms is called a product of sums 

expression. It is an AND operation on OR operated variables. For example, Y = (A + B + C)(A + 

B′ + C)(A + B + C′) or Y = (A + B + C)(A′ + B′ + C′) are product of sums expressions.  

 

Standard form: 

The standard form of the Boolean function is when it is expressed in sum of the products 

or product of the sums fashion. The examples stated above, like Y =AB + BC + AC or Y = (A + 

B + C)(A + B′ + C)(A + B + C′) are the standard forms. However, Boolean functions are also 

sometimes expressed in nonstandard forms like F = (AB + CD)(A′B′ + C′D′), which is neither a 

sum of products form nor a product of sums form. However, the same expression can be 

converted to a standard form with help of various Boolean properties, as:  

F = (AB + CD)(A′B′ + C′D′) = A′B′CD + ABC′D′  

 

4.1 Minterm 

 A product term containing all n variables of the function in either true or complemented 

form is called the minterm. Each minterm is obtained by an AND operation of the variables in 

their true form or complemented form. For a two-variable function, four different combinations 

are possible, such as, A′B′, A′B, AB′, and AB. These product terms are called the fundamental 

products or standard products or minterms. In the minterm, a variable will possess the value 1 if it 

is in true or uncomplemented form, whereas, it contains the value 0 if it is in complemented form. 

For three variables function, eight minterms are possible as listed in the following table 

 

A B C Minterm 

0 0 0 A’B’C’ 

0 0 1 A’B’C 



0 1 0 A’BC’ 

0 1 1 A’BC 

1 0 0 AB’C’ 

1 0 1 AB’C 

1 1 0 ABC’ 

1 1 1 ABC 

 

 

So, if the number of variables is n, then the possible number of minterms is 2n. The main property 

of a minterm is that it possesses the value of 1 for only one combination of n input variables and 

the rest of the 2n – 1 combinations have the logic value of 0. This means, for the above three 

variables example, if A = 0, B = 1, C = 1 i.e., for input combination of 011, there is only one 

combination A′BC that has the value 1, the rest of the seven combinations have the value 0.  

 

Canonical Sum of Product Expression: 

When a Boolean function is expressed as the logical sum of all the minterms from the rows 

of a truth table, for which the value of the function is 1, it is referred to as the canonical sum of 

product expression. The same can be expressed in a compact form by listing the corresponding 

decimal-equivalent codes of the minterms containing a function value of 1.  

For example, if the canonical sum of product form of a three-variable logic function F has 

the minterms A′BC, AB′C, and ABC′, this can be expressed as the sum of the decimal codes 

corresponding to these minterms as below.  

F (A,B,C) = (3,5,6) 

 = m3 + m5 + m6  

= A′BC + AB′C + ABC′  

where Σ (3,5,6) represents the summation of minterms corresponding to decimal codes 3, 5, and 

6. The canonical sum of products form of a logic function can be obtained by using the following 

procedure:  

1. Check each term in the given logic function. Retain if it is a minterm, continue to examine the 

next term in the same manner. 

 

2. Examine for the variables that are missing in each product which is not a minterm. If the 

missing variable in the minterm is X, multiply that minterm with (X+X′). 

 

2. Multiply all the products and discard the redundant terms. 

4.2 Maxterm 

 

A sum term containing all n variables of the function in either true or complemented form 

is called the maxterm. Each maxterm is obtained by an OR operation of the variables in their true 

form or complemented form. Four different combinations are possible for a two-variable function, 

such as, A′ + B′, A′ + B, A + B′, and A + B. These sum terms are called the standard sums or 

maxterms. Note that, in the maxterm, a variable will possess the value 0, if it is in true or 

uncomplemented form, whereas, it contains the value 1, if it is in complemented form. Like 

minterms, for a three-variable function, eight maxterms are also possible as listed in the following 

table 



 

A B C Maxterm 

0 0 0 A+B+C 

0 0 1 A+B+C’ 

0 1 0 A+B’+C 

0 1 1 A+B’+C’ 

1 0 0 A’+B+C 

1 0 1 A’+B+C’ 

1 1 0 A’+B’+C 

1 1 1 A’+B’+C’ 

 

So, if the number of variables is n, then the possible number of maxterms is 2n. The main 

property of a maxterm is that it possesses the value of 0 for only one combination of n input 

variables and the rest of the 2n –1 combinations have the logic value of 1. This means, for the 

above three variables example, if A = 1, B = 1, C = 0 i.e., for input combination of 110, there is 

only one combination A′ + B′ + C that has the value 0, the rest of the seven combinations have 

the value 1.  

Canonical Product of Sum Expression: 

When a Boolean function is expressed as the logical product of all the  maxterms from the rows of 

a truth table, for which the value of the function is 0, it is referred to as the canonical product of 

sum expression. The same can be expressed in a compact form by listing the corresponding 

decimal equivalent codes of the maxterms containing a function value of 0. For example, if the 

canonical product of sums form of a three-variable logic function F has the maxterms A + B + C, 

A + B′ + C, and A′ + B + C′, this can be expressed as the product of the decimal codes 

corresponding to thesemaxterms as below, 

 F (A,B,C) = Π (0,2,5) 

    = M0 M2 M5 

    = (A + B + C) (A + B′ + C) (A′ + B + C′)  

where Π (0,2,5) represents the product of maxterms corresponding to decimal codes 0, 2, and 5. 

The canonical product of sums form of a logic function can be obtained by using the following 

procedure.  

1. Check each term in the given logic function. Retain it if it is a maxterm, continue to examine 

the next term in the same manner. 

2. Examine for the variables that are missing in each sum term that is not a maxterm. If the 

missing variable in the maxterm is X, add that maxterm with (X.X′).  

3. Expand the expression using the properties and postulates as described earlier and discard the 

redundant terms. Some examples are given here to explain the above procedure. 

 

5. Boolean Function 



 

         Boolean algebra deals with binary variables and logic operation. A Boolean Function is described by an 

algebraic expression called Boolean expression which consists of binary variables, the constants 0 and 1, and the 

logic operation symbols. Consider the following example 

  

 
5.1 Truth Table Formation 
 
A truth table represents a table having all combinations of inputs and their corresponding result. 

 

It is possible to convert the switching equation into a truth table. For example, consider the following 
 
switching equation. 
 

 

The output will be high (1) if A = 1 or BC = 1 or both are 1. The truth table for this equation is shown by Table (a). 

The number of rows in the truth table is 2
n
where n is the number of input variables (n=3 for the given equation). 

Hence there are 2
3
 = 8 possible input combination of inputs. 

 

 

 

 

 

 

 

 

  

 

6. DIGITAL LOGIC GATES 
 

A large number of electronic circuits (in computers, control units, and so on) are made up of logic 

gates.Digital systems are said to be constructed by using logic gates. These process signals which represent true 

or false. The basic gates are the AND, OR, NOT gates. The most common symbols used to represent logic gates are 

shown below. 

 

AND gate: 

 
 

 

 

 



The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are high. A dot (.) is 

used to show the AND operation i.e. A.B. Bear in mind that this dot is sometimes omitted i.e. AB. 
 
OR gate: 

 

 

 

 

 

 

 

 
The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are high. A 

plus (+) is used to show the OR operation. 

 

NOT gate: 

 

 

 
 
 
 
 
 

7. Simplification of Boolean Expressions 

 
Minimization of Boolean functions is an approach where a given Boolean expression can be transformed 

from one form to another equivalent form by applying Boolean Theorems. By minimizing the expressions the 
individual components used in electrical circuits can be minimized or reduced. This allows designers to make use 
of fewer components, thus reducing the cost of a particular system. It should be noted that there are no fixed 
rules that can be used to minimize a given expression. It is left to an individual’s ability to apply Boolean 
Theorems in order to minimize a function. 
 

Examples: 

 
Example 1: 

 
Using Boolean algebra techniques, simplify the expression X . Y + X (Y + Z) + Y (Y + Z) 

 
Solution: 

 
Given: X . Y + X (Y + Z) + Y (Y + Z).  
Applying distributive property, we get 
  
X . Y + X (Y + Z) + Y (Y + Z) = X . Y + X . Y + X . Z + Y . Y + Y . Z 

 
We know B . B = B  
= X . Y + X . Y + X . Z + Y + Y . Z 

 
We know A . B + A . B = A . B  
= X . Y + X . Z + Y + Y . Z  
= X . Y + X . Z + Y [We know (B + BC = B)]  
= Y + XZ  
 



 

Example 2: 

 
Using Boolean algebra techniques, simplify this expression: AB + A(B + C) + B(B + C) 

 
Solution  
Apply the distributive law to the second and third terms in the expression, as follows: 
 
 
AB + A(B + C) + B(B + C)=AB + AB + AC + BB + BC =AB + AB + AC + B + BC 

[BB = B] =AB + AC + B + BC [AB + AB = AB] =AB + AC + B [B 
+ BC = B] =B+AC 

       [AB + B = B] 
 
Example 3: 

 
Using Boolean algebra techniques, simplify this expression A.B’ + A.B + B.C 

 
Solution 

 
A.B’ + A.B + B.C= A. (B’ + B) + B.C 

= A.1 + B.C   
= A + B.C  

 
Example 4: 

 
Using Boolean algebra techniques, simplify this expression A’.B.C + A.B’.C + A.B.C’ + A.B.C 

 
Solution: 
 
A’.B.C + A.B’.C + A.B.C’ + A.B.C = A’.B.C + A.B’.C + A.B.C’ + A.B.C + A.B.C + A.B.C  

= (A’.B.C + A.B.C) + (A.B’.C + A.B.C) + (A.B.C’ + A.B.C)   
= (A’ + A). B.C + (B’ + B). C.A + (C’ + C). A.B   
= B.C + C.A + A.B  

 

 
7.1 STANDARD FORMS OF BOOLEAN EXPRESSIONS 
  

All Boolean expressions, regardless of their form, can be converted into either of two standard forms: the 
sum-of-products form or the product-of-sums form. 

  
Standardization makes the evaluation, simplification, and implementation of Boolean expressions much 

more systematic and easier. 
 

7.1.1 The Sum-of-Products (SOP) Form 
  

When two or more product terms are summed by Boolean addition, the resulting expression is a sum-of-
products (SOP). Some examples are:  

AB + ABC 
ABC + C’DE + B’CD’ 
AB + BCD + AC 

Also, an SOP expression can contain a single-variable term, as in 
A + ABC’ + BCD’. 

 
In an SOP expression a single over bar cannot extend over more than one variable. 

 
Example 



Convert each of the following Boolean expressions to SOP form: 
(a) AB + B(CD + EF)  
(b) (A + B)(B + C + D)  
(c) *(A + B)’ + C+’  

 

The Standard SOP Form 

 
So far, you have seen SOP expressions in which some of the product terms do not contain all of the 

variables in the domain of the expression.  
For example, the expression A’BC’ + AB’D + ABC’D’ has a domain made up of the variables A, B, C. and D. 

However, notice that the complete set of variables in the domain is not represented in the first two terms of the 
expression; that is, D or D’ is missing from the first term and C or C’ is missing from the second term.  

A standard SOP expression is one in which all the variables in the domain appear in each product term in 
the expression. For example, A’BCD’ + ABC’D+ AB’CD are a standard SOP expression. 

 
Converting Product Terms to Standard SOP: 

 
Each product term in an SOP expression that does not contain all the variables in the domain can be 

expanded to standard SOP to include all variables in the domain and their complements. As stated in the 

following steps, a nonstandard SOP expression is converted into standard form using Boolean algebra rule 


 (A + 
A’ = 1) i.e., A variable added to its complement equals 1. 

  
Step 1: Multiply each nonstandard product term by a term made up of the sum of a missing variable and 

its complement. This results in two product terms. As you know, you can multiply anything by 1 without changing 
its Value. 

  
Step 2: Repeat Step 1 until all resulting product terms contain all variables in the domain in either 

complemented or uncomplemented form. In converting a product term to standard form, the number of product 
terms is doubled for each missing variable. 
 
Example 
Convert the following Boolean expression into standard SOP form: AB’C + A’B’ + ABC’D 

 
Solution 

 
The domain of this SOP expression A, B, C, D. Take one term at a time. 

  
The first term, ABC, is missing variable D or D’, so multiply the first term by(D + D) as follows: AB’C = 

AB’C(D + D’) = AB’CD + AB’CD’  
In this case, two standard product terms are the result. 

 
The second term, A’B’; is missing variables C or C’ and D or D’, so first multiply the second term by C + C’ as 
follows:  

A’B’ = A’B’(C + C’) = A’B’C + A’B’C’ 

  
The two resulting terms are missing variable D or D’, so multiply both terms by (D + D) as follows 
                       A’B’C(D + D’) + A’B’C’(D + D’)= A’B’CD + A’B’CD’ + A’B’C’D + A’B’C’D’ 
  
In this case, four standard product terms are the result. 

 
The third term, ABC’D, is already in standard form. The complete standard SOP form of the original expression is 
as follows:  

AB’C + A’B’ + ABC’D = AB’CD + AB’CD ‘+ A’ B’CD + A’B’CD’ + A’B’C’D +A’B’C’D’ + ABC’D 

 
7.1.2 The Product-of-Sums (POS) Form 

 
A sum term was defined before as a term consisting of the sum (Boolean addition) of literals (variables or 



their complements). When two or more sum terms are multiplied, the resulting expression is a product-of-sums 
(POS). Some examples are 

  
(A’ + B)(A + B’ + C)  
(A + B’ + C’)( C + D’ + E)(B + C + D) (A + 
B’)(A + B’ + C)(A + C)  

A POS expression can contain a single-variable term, as inA(A + B + C)(B + C + D). 

  
In a POS expression, a single over bar cannot extend over more than one variable; however, more than 

one variable in a term can have an over-bar. For example, a POS expression can have the term A’ + B’ + C’ but not 
*A + B + C+’. 

 
Implementation of a POS Expression simply requires ANDing the outputs of two or more OR gates. A sum 

term is produced by an OR operation and the product of two or more sum terms is produced by an AND 
operation. 

 
The Standard POS Form 

 
So far, you have seen POS expressions in which some of the sum terms do not contain all of the variables 

in the domain of the expression. 
  
For example, the expression(A’ + B + C) (A + B + D’) (A + B’ + C’ + D)has a domain made up of the variables 

A, B, C, and D. Notice that the complete set of variables in the domain is not represented in e first two terms of 
the expression; that is, D or D’ is missing from the first term and C or C’ is missing from the second term. 

  
A standard POS expression is one in which all the variables in the domainappear in each sum term in the 

expression. For example,(A’ + B’ + C + D)(A + B’ + C + D)(A + B + C + D)is a standard POS expression. 
 
Converting a Sum Term to Standard POS 

 
Each sum term in a POS expression that does not contain all the variables in the domain can be expanded 

to standard form to include all variables in the domain and their complements. As stated in the following steps, a 

Nonstandard POS expression is converted into standard form using Boolean algebra rule


 (A’. A = 0) i.e., A 

variable multiplied to its complement equals 0. 
 

Step 1. Add to each nonstandard product term a term made up of the product of the missing variable and 
its complement. This results in two sum terms. As you know, you can add 0 to anything without changing its 
value. 

 
Step 2. Apply rule A + BC = (A + B)(A + C). 

  
Step 3. Repeat Step 1 until all resulting sum terms contain all variables in the domain in either 

complemented or non-complemented form. 
 
Example 

 
Convert the following Boolean expression into standard POS form:(A’ + B + C)(B’ + C + D’)(A + B’ + C’ + D) 

 
Solution 

The domain of this POS expression is A, B, C, D. Take one term at a time. 

  
The first term, A + B + C, is missing variable D or D’, so add D’D and apply rule as follows: A’ + B + 

C = A’ + B + C + D’D  
= (A’ + B + C + D’)(A’ + B + C + D) 

  
The second term, B’ + C + D’, is missing variable A or A’, so add A’A andapply rule as follows: B’ + C + 

D’ = B’ + C + D’ + A’A  



= (A’ + B’ + C + D’)(A + B’ + C + D’) 
  
The third term, A + B’ + C’ + D, is already in standard form. The standardPOS form of the original 

expression is as follows:  
     (A’ + B + C)(B’ + C + D’)(A + B’ + C’ + D) = (A’ + B + C + D’)(A’ + B + C +D) (A’ + B’ + C + D’)(A + B’ + C + D’) (A + B’ + 
C’ + D) 
 
7.2 CANONICAL FORMS OF BOOLEAN EXPRESSIONS  

With one variable x & x.  
With two variables x y, x y, x y and x y.  
With three variables x’ y’ z’, x’ y’ z, x’ y z’, x’ y z, x y’ z’, x y’ z, x y z’ & x y z. 

 
These eight AND terms are called Minterms. 
 

 

 

 

 

1 0 0 XY’Z’ m4 

1 0 1 XY’Z m5 

1 1 0 XYZ’ m6 

1 1 1 XYZ m7 

 
Maxterm is the complement of its corresponding minterm and vice versa 
 

X Y  Z MAXTERMS DESIGNATION 

0  0 0 X+Y+Z M0 

0  0 1 X+Y+Z’ M1 

0  1 0 X+Y’+Z M2 

0  1 1 X+Y’+Z’ M3 

1  0 0 X’+Y+Z M4 

1  0 1 X’+Y+Z’ M5 

1  1 0 X’+Y’+Z M6 

1  1 1 X’+Y’+Z’ M7 
 
For example the function F (for minterms) 
 

x y z F 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1  
 
F = x’ y’ z + x y’ z’ + x y z F = m1 + m4 + m7  

Any Boolean function can be expressed as a sum of minterms (sum of products SOP) or product of maxterms 
(product of sums POS). 
For example the function F (for maxterms) 

 
F’ = x’ y’ z’ + x’ y z’ + x’ y z + x y’ z + x y z’  
The complement of F’ = (F’)’= F  

X Y  Z MINTERM DESIGNATION 

0  0 0 X’Y’Z’ m0 

0  0 1 X’Y’Z m1 

0  1 0 X’YZ’ m2 

0  1 1 X’YZ m3 



F = (x + y + z) (x + y’ + z) (x + y’ + z’) (x’ + y + z’) (x’ + y’ + z)  
F = M0M2M3M5M6 
 
Example 1 
Express the Boolean function F = A + B’C in a sum of minterms (SOP). 
Solution 

The term A is missing two variables because the domain of F is (A, B, C) 
A = A(B + B’) = AB + AB’ because B + B’ = 1  

BC missing A, so  
B’C(A + A’) = ABC + A’B’C  
AB(C + C’) = ABC + ABC’  
AB’(C + C’) = AB’C + AB’C’ 
F = ABC + ABC’ + AB’C + AB’C’ + ABC + A’B’C 
Because A + A = A  
F = ABC + ABC’ + AB’C + AB’C’ + A’B’C  
F = m7 + m6 + m5 + m4 + m1  
In short notation  
F(A, B, C) = Σ(1, 4, 5, 6, 7)  
F’ (A, B, C) = Σ(0, 2, 3) 

 
 The complement of a function expressed as the sum of minterms equalto the sum of minterms missing 

from the original function. 

 
Truth table for F = A + B’C 

 A B C B’ B’C F 

0 0 0 0 1 0 0 

1 0 0 1 1 1 1 

2 0 1 0 0 0 0 

3 0 1 1 0 0 0 

4 1 0 0 1 0 1 

5 1 0 1 1 1 1 

6 1 1 0 0 0 1 

7 1 1 1 0 0 1 
 
Example 2 
Express F = xy + x’z in a product of maxterms form. 

 
Solution  
F = xy + x’z = (xy + x’)(xy + z) = (x + x’)(y + x’)(x + z)(y + z) remember x + x’ = 
1  
F = (y + x’)(x + z)(y + z)  
F = (x’ + y + zz’)(x + yy’ + z )(xx’ + y + z)  
F = (x ‘+ y + z)(x’ + y + z’)(x + y + z)(x + y’ + z)(x + y +z)(x’ + y + z) F = (x’ + y + z)(x’ + 
y + z’)(x + y + z)(x + y’ + z)  
F = M4 M5M0M2 F(x, y, z) = Π(0, 2, 4, 5) 
F(x, y, z) = Π(1, 3, 6, 7)  
The complement of a function expressed as the product of maxterms equal to the product of 
maxterms missing from the original function. 
To convert from one canonical form to another, interchange the symbols Σ,Π and list those numbers missing 
from the original form. 
  

F = M4 M5M0M2 = m1 + m3 + m6 + m7 
F(x, y, z) = Π(0, 2, 4, 5) = Σ(1, 3, 6, 7) 
 

8. Karnaugh Map 



 

Karnaugh map method gives us a systematic approach for simplifying a Boolean expression. 

Karnaugh map method was first proposed by Veitch and modified by Karnaugh, hence it is known as 

Karnaugh Map or K-map. 
 

K-map contains boxes called cells. Each of the cell represents one of the 2
n
 possible products that 

can be formed from n variables. A two variable mzp contains 2
2
 =4 cells, a three variable contains 2

3
 =8 

cells and four variable contains 2
4
 =16 cells. The following figure shows the outline of 1, 2, 3 and 4 

variable  
maps. 

 

 

The product term(minterm) assigned to the cells of K-map by labelling each row and column is 

shown in 1, 2, 3 and 4 variable map and the product term(minterm) corresponding to each cell is shown 

in the below figure (a),(b),(c) and (d). 

 

 
 

 

 

The labelling of the rows and columns of a 1, 2, 3 and 4 variable K-map using Gray code and the 



product terms(minterm) corresponding to each cell is shown in the figure(a) (b) (c) and  
(d). 

 
 

 

 
 

The sum term(maxterm) assigned to the cells of K-map by labelling each row and column is 

shown in 1, 2, 3 and 4 variable map and the sum term(maxterm) corresponding to each cell is shown in 

the below figure (a),(b),(c) and (d). 

 



 

The labelling of the rows and columns of a 1, 2, 3 and 4 variable K-map using Gray code and the 
sum terms(maxterm) corresponding to each cell is shown in the figure(a) (b) (c) and (d) 

 

 

 

8.1 Plotting a Karnaugh Map 
 

Representation of truth table on K-map 

 



The representation of a two variable truth table on a Karnaugh map is shown below. 

 

The representation of a three variable truth table on a Karnaugh map is shown below 

 

 

 The representation of a four variable truth table on a Karnaugh map is shown below 
 



 
 

Representation standard SOP on K-map 

Example 1: 

Plot Boolean expression Y=ABC
’
 +ABC+A

’
B

’
C on the Karnaugh map 

 

Example 2: 
 

Plot Boolean expression Y=A
’
BC

’
D

’
 + AB’CD

’
+A

’
BCD

’
+AB

’
CD+ABC

’
D on the karnaugh map. 

 
 

 

 

 

 

 

 



 

Grouping Cells for Simplification 
 

1. Grouping Two adjacent Pairs  & Grouping Four adjacent ones (Quad) 

 

 

 

 

 



 

 

 

2. Grouping Eight adjacent ones (Octet) 
 

 

 

 



 

 
Simplification of Sum of Products Expression (SOP) 
 
Example 1: 
 
Minimize the Boolean expression Y=A’BC’D’+ A’BC’D +ABC’D’+ ABC’D +AB’C’D + A’B’CD’ on Karnaugh map 
 
 
 

 



 

 

 

 

 

 

 



 

Y=A
’
B

’
CD

’
+AC’D+BC

’
 

 

Example 2: 

 

Simplify the logic function specified by the truth table using Karnaugh map method. Y is 
the output variable and A,B,C are the input variable 
 
 
 

 

 



 

 

 

 

 

Y=B
’
C

’
+BC 

 

 

9. DON’T CARE CONDITIONS 

 An output condition that can be regarded as either high or low 

The logical sum of the minterms associated with a Boolean function specifies the conditions under 

which the function is equal to 1. The function is equal to 0 for the rest of the minterms. This pair of 

conditions assumes that all the combinations of the values for the variables of the function are valid. In 

practice, in some applications the function is not specified for certain combinations of the variables. As an 

example, the four-bit binary code for the decimal digits has six combinations that are not used and 

consequently are considered to be unspecified. Functions that have unspecified outputs for some input 

combinations are called incompletely specified functions. In most applications, we simply don’t care what 

value is assumed by the function for the unspecified minterms. For this reason, it is customary to call the 

unspecified minterm of a function don’t care conditions. These don’t care conditions can be used on a 

map to provide further simplification of the Boolean expression. 

 A don’t care minterm is a combination of variables whose logical value is not specified. Such a 

minterm cannot be marked with a 1 in the map, because it would require that the function always be a 1 

for such a combination. Likewise putting a 0 on the square requires the function to be 0. To distinguish 

don’t care condition from 1’s or the 0’s an X is used. Thus an X inside a square in the map indicates that 

we don’t care whether the value of 0 or 1 is assigned to F for the particular minterm. 



 In choosing the adjacent squares to simplify the function in a map the don’t care minterms may be 

assumed to be either 0 0r 1. When simplifying the function, we can choose to include each don’t care 

minterm with either the 1’s or the 0’s depending on which combination gives the simplest expression. 

Example Problem:  

Simplify the Boolean function F(w,x,y,z) = ∑(1,3,7,11,15) which has the don’t care conditions 

d(w,x,y,z) = ∑(0,2,5). 

Solution  

The minterms of F are the variable combinations that make the function equal to 1. The minterms 

of “d” are don’t care minterms that may be assigned either 0 or 1. The map simplification is shown in fig. 

the minterms of F are marked by 1’s. Those of d are marked by X’s and remaining squares are filled with 

0’s. 

 To get simplified expression in sum-of- product form we must include all five 1’s in the map but 

we may 

 

 

 

In the part of the diagram, don’t care minterm 0 and 2 is included the units 1’s and the simplified function 

is now   

F = yz+w’x’ 

 

In the second don’t care minterm 5 is included with the 1’s , and the simplified function is now  

F = yz + w’z 

9.1 NAND AND NOR IMPLIMENTATION 



Digital circuits are frequently constructed with NAND and NOR gates rather than with AND and 

OR gates. NAND and NOR gates are easier to fabricate. So rules and procedures have been developed for 

the conversion from Boolean functions given in terms of AND, OR and NOT into equivalent NAND and 

NOR logic diagrams. 

Two level NAND- NAND implementation 

 To facilitate the conversion to NAND logic, it is convenient to define an alternative graphic 

symbol for the gate. The alternate representation of NAND gate is shown in fig. according to De 

Morgan’s theorem  

Steps to be followed  

1. Simplify the given logic expression and convert it in the SOP form 

2. Draw the logic circuit using AND,OR and NOT gate  

3. Replace every AND gate by a NAND gate, Every OR gate by a bubbled OR gate and NOT gate 

by a NAND inverter. 

4. Replace bubbled-OR gate by NAND gate. 

 

Example Problem: 

 Implement the following Boolean equation using only NAND gatesY=AB+CDE+F 

Solution 

Step 1: realization using basic gates 

 

Step 2: replace 

AND  →NAND 

OR  →bubbled – OR 

NOT →NAND inverter 

 



Step 3: draw the logic circuit using only NAND gates 

 

9.2 Multilevel NAND circuits  

The standard form of expressing Boolean function results in a two-level implementation. If has 

digital system three or more levels then the most common procedure in the design of multilevel circuits is 

to express the Boolean function in terms of AND, OR and compliments operations. 

 The general procedure for converting multilevel AND – OR logic diagram into an all NAND logic 

diagram is as follows 

1. Convert all AND gates to NAND gates with AND – invert graphic symbols 

2. Convert all OR gates to NAND gates with invert –OR graphic symbol. 

3. Check all the bubbles in the diagram. For every bubble that is not compensated by other small 

circle along the same line insert an inverter or compliment the input literal. 

Example Problem: 

Implement the following Boolean expression using NAND gates onlyF=A(CD+B)+BC 

Solution: 

Step 1: Draw logic diagram using AND,OR and NOT gate as shown in the fig. 

 

 

 

 



 

9.3 NOR IMPLEMENTATION 

The NOR operation is the dual of the AND operation. Therefore all procedures and rules for NOR 

logic are the dual for the corresponding procedures and rules developed for NAND logic. The NOR gate 

is another universal gate that can be used to implement any Boolean function. The alternative 

representation of NOR gate according to demorgan’s theorem is shown below. 

Steps to be followed  

1. Simply the given logic expression and convert it into product of sum (POS) form. 

2. Draw the AND – OR-NOT realization. 

3. Replace every OR gate by NOR, every AND gate by a bubbled AND gate and ever inerter by a 

NOR inverter. 

4. Draw the final circuit using only the NOR gates. 

Example Problem: 

Implement the following function by using NOR gates Y=(A’+B+C)(A+B)D 

Solution: 

Step 1: Implement the given Boolean function by usingAND, ORandNOTgate as shown below. 

 

Step 2: 

Replace  OR  → NOR 

AND  → invert AND 

NOT → NOR invert 



 

Step 3: Replace invert AND gate by NOR gate shown in fig. 

 

9.4 MULTILEVEL NOR IMPLEMENTATION 

The procedure for converting a multilevel AND-OR diagram to an all NOR diagram is similar to 

multilevel NAND implements. The following steps are followed for multilevel-NOR implementation 

Step 1.impliment the logic function using AND, OR and NOT gate. 

Step 2.convert all AND gates to NOR gates with invert-AND graphic symbol. 

Step 3.convert all OR gates with OR invert graphic symbols. 

Step 4.Check all the bubbles in the diagram. For every bubble that is not compensated by another small 

circle along the same line, insert an inverter or compliment the input literal. 

Example Problem: 

 Implement the following Boolean function using NOR gatesY=(AB’+A’B)(C+D’) 

Solution 

Step 1: Implement the Boolean function using AND,OR and NOT gate as shown in fig. 

 

Step 2:  

Replace  



AND → invert-AND symbol 

OR  → NOR gate 

 

 

Step 3:Check each line has even number of bubbles. If any line does not have even number of bubbles 

the insert bubble (i.e. input A, B’,A’, Bhas odd number of bubbles. Therefore apply the inverted inputs to 

make even numbers of bubbles) 

 

 

 

10. QUINE-MC CLUSKEY (OR) TABULATION METHOD 

11.  

Definition: It is used to simplify the Boolean expression for more variables. 

 The map methodf implication is convenient method as long as the numbers of variables do not 

exceed fivevariables. If the number of variable increases, it is difficult to make the simplification of 

expression. F the number of variables increases it is difficult to make the simplification of expression. To 

avoid this complex and to meet this need W.V. Quine and E.J. McCluskey developed an exact tabulation 

method to simplify the Boolean expression. This method is called as tabulation method or Quine 

McCluskey method. 

The summary steps are as follows to simplify the Boolean expression. 

Step 1. List all minterms in the binary form. 

Step 2. Separate the number of groups according to the number of 1’s. 

Step 3. Compare each binary number with every group in the adjacent next highest category 

group and they differ only one bit position. Put check mark if comparison is possible (-) and copy 



remaining term in the next column. Put (√) mark for every comparison.The essential prime 

implicants are identified if they have no tick mark. 

Step 4. Apply the same process described in step 3 for the resultant column and continue the 

cycles until a single pass through cycle yieldsfurther elimination of literals. 

Step 5. From prime implicant chart 

(a) The prime implicants should be represented in rowsand each minterm of the function in a column. 

(b) Crosses (X) should be placed in each row to show the composition of minterm that makes the 

prime implicants. 

(c) A completed prime implicants table should be inspected for columns containing only a single 

cross in their columns are called essential prime implicants. 

Step 6. Getting the simplified expression after the above step 

Example Problem: Simplify the Boolean function by using tabulation method. 

F(a,b,c,d)=∑m(0,1,2,5,6,7,8,9,10,14) 

Solution 

Group 
Column I Column II Column III 

abcd abcd abcd 

Group 0 0 0000√ 0,1 000√ 0,1,8,9-00- 

Group 1 

Number of 1’s one 

1 0001√ 0,2 00-0√ 0,2,8,10-0-0 

2 0010√ 0,8 -000√ 0,8,1,-00- 

8 1000√ 1,5 0-01√ 0,8,2,10-0-0 

Group 2 

Number of 1’s two 

5 0101√ 1,9 -001√ 2,6,10,14-10 

6 0110√ 2,6 0-10√ 2,10,6,14-10 

9 1001√ 2,10 -0-10√ 
 

10 1010√ 8,9 100√  

Group 3 

Number of 1’s three 

7 0111√ 8,10 10-0√  

14 1110√ 5,7 01-1  
 

 6,7 011-  

  6,14 =110√  

 
 

10,14 1-10√  

 

Table: Prime implicant table 

Prime implicants minterms 

 0 1 2 5 6 7 8 9 10 14 

1,5 d’c’d  X  X       

5,7 a’bd    X  X     

6,7 a’bc     X X     

0,1,8,9* b’c’ X X     X X   

0,2,8,10 b’d’ X  X    X  X  

2,10,6,14* cd’   X  X    X X 

         √  √ 

 Note that the cells (5,7), (1,5), (6,7),(0,1,8,9),(0,2,8,10) and (2,10,6,14)are prime implicants. The 

prime implicants table can be plotted as shown in table above. All the unticked terms in the above 

simplification are given as prime implicant of this Boolean expression, these prime implicants chart is 



shown in table. In the chart all the specified implicants form columns a cross is put in the row of each 

prime implicant under the columns of the implicants which it covers. 

 A tick mark is placed against every essential prime implicant (which column contains a single 

cross(X). the sum of essential prime implicantsF = b’c’ + cd’ 

 The prime implicants which covers the minterms 0,1,8,9 and 2,10,6,14 therefore in order to cover 

the remaining minterms, the reduced prime implicants chart is formed as follows. 

 To cover the minterms the prime implicants (6,7) and (0,2,8,10) can be selected in additionto the 

essential prime implicants for obtaining the minimal Boolean expression is given 

F = b’c’+cd’+a’bc+b’d’ 

Reduced prime implicant table 

Prime implicants 
Minterms 

 0 1 2 5 6 7 8 9 10 14 

1,5 a’c’d  X  X       

5,7 a’bd    X  X     

6,7 a’bc     X X     

0,2,8,10* b’d’ X  X    X  X  

  √  √  √  √  √  
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UNIT III- COMBINATIONAL LOGIC 

  

 
Design Procedure - Adder - Subtracter - Code Conversion - Analysis Procedure - Multilevel NAND/NOR 

circuits - Exclusive OR functions - Binary adder and subtractor- Decimal adder - BCD adder - Magnitude 

Comparator - Decoders - Demultiplexer - Encoder – Multiplexers. 

 
 

 

Half Adder 

 

3.1. Design Procedure - Adder - Subtracter - Code Conversion 

Half adder is a combinational logic circuit with two inputs and two outputs. The half adder circuit is designed to add two 

single bit binary number A and B. It is the basic building block for addition of two single bit numbers. This circuit has two 

outputs carry and sum. 

 

Block diagram Truth Table 

 

Circuit Diagram 

 

 
Full Adder 

Full adder is developed to overcome the drawback of Half Adder circuit. It can add two one-bit numbers A and B, and 

carry c. The full adder is a three input and two output combinational circuit. 

 

Block diagram 



 

 

 

    Truth Table                                                       Circuit Diagram 

              

Half Subtractors 

Half subtractor is a combination circuit with two inputs and two outputs (difference and borrow). It produces the 

difference between the two binary bits at the input and also produces an output (Borrow) to indicate if a 1 has been 

borrowed. In the subtraction (A-B), A is called as Minuend bit and B is called as Subtrahend bit. 

    Truth Table                                                         Circuit Diagram 

                

 

Full Subtractors 

The disadvantage of a half subtractor is overcome by full subtractor. The full subtractor is a combinational circuit with 

three inputs A,B,C and two output D and C'. A is the 'minuend', B is 'subtrahend', C is the 'borrow' produced by the 

previous stage, D is the difference output and C' is the borrow output. 

Truth Table                                                                Circuit Diagram 



 

 

          

4 Bit Parallel Adder 

In the block diagram, A0 and B0 represent the LSB of the four bit words A and B. Hence Full Adder-0 is the lowest stage. 

Hence its Cin has been permanently made 0. The rest of the connections are exactly same as those of n-bit parallel adder is 

shown in fig. The four bit parallel adder is a very common logic circuit. 

Block diagram 

 

Serial Adder 

If speed is not of great importance, a cost-effective option is to use a serial adder 

Serial adder: bits are added a pair at a time (in one clock cycle) 

 



 

 

 

4 Bit Adder/ Subtractor 

 

The circuit for subtracting A - B consists of an adder with inverters placed between each data input B and the 

corresponding input of the full adder. The input carry C0 must be equal to 1 when subtraction is performed. The operation 

thus performed becomes A, plus the 1’s complement of B, plus 1. This is equal to A plus the 2’s complement of B. 

 

 

 

 

 

 

 

 

 

Code conversion 

 



 

 



 

 



 

 

 
 

 

2. Analysis Procedure - Multilevel NAND/NOR circuits 

 

Multi-Level Gate Circuits 

Two-level circuits consisting of AND and OR gates can easily be converted to networks that can be realized only NAND and 

NOR gates – A two-level AND-OR (SOP) circuit can be realized (directly) as a two-level NAND-NAND circuit – A two-level 

OR-AND (POS) circuit can be realized (directly) as a two-level NOR-NOR circuit . The same approach can be used for 

multilevel networks. 

 

 

 

AND – OR to NAND- NAND example 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR –AND to NAND-NAND example 



 

 

 

 

 

3. Exclusive OR functions - Binary adder and subtractor- Decimal adder - BCD 

adder 

 

Exclusive OR functions: 

The XOR function operates such that when both inputs are the same the output is zero. The output is only positive 

if one of the inputs is on. As a Boolean equivalency, this rule may be helpful in simplifying some Boolean 

expressions. Any expression following the AB’ + A’B form (two AND gates and an OR gate) may be replaced by 

a single Exclusive-OR gate. 



 

 

 

Binary Adder (Asynchronous Ripple-Carry Adder): 

 A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers.  A binary adder can be 

constructed with full adders connected in cascade with the output carry form each full adder connected to the input 

carry of the next full adder in the chain.  The four-bit adder is a typical example of a standard component .It can be 

used in many application involving arithmetic operations. 

 

The input carry to the adder is c0 and it ripples through the full adders to the output carry c4.  

n -bit binary adder requires n full adders. 



 

 

 

The addition of A+B binary numbers in parallel implies that all the bits of A and B are available for computation 

at the same time.  As in any combinational circuit, the signal must propagate through the gates before the correct 

output sum is available.  The output will not be correct unless the signals are given enough time to propagate 

through the gates connected form the input to the output.  The longest propagation delay time in an adder is the 

time it takes the carry to propagate through the full adders. 

 

 

The signal form the carry input Ci to the output carry Ci+1 propagates through an AND gate and an OR gate, which 

equals 2 gate levels.  

 If there are 4 full adders in the binary adder, the output carry C4would have 2×4=8 gate levels, form C0 to C4 

For an n-bit adder, 2n gate levels for the carry to propagate form input to output are required.  

 

The carry propagation time is an important attribute of the adder because it limits the speed with which two 

numbers are added.  

To reduce the carry propagation delay time:  

1) Employ faster gates with reduced delays.  

2) Employ the principle of Carry Lookahead Logic  

 

Proof: (using carry lookahead logic)  

Pi = Ai ⊕Bi 

  Gi = AiBi  



 

 
The output sum and carry are:  

Si =Pi ⊕ Ci 

Ci +1 = Gi + PiCi 

Gi is known as the carry generate, and it produces a carry of 1 when both Ai and Bi are 1.  

 Pi called a carry propagate, it determines whether a carry into stage i will propagate into stage i+1 .  

Computing the values of P
i 
and G

i 
only depend on the input operand bits (A

i 
& B

i
) as clear from the Figure and 

equations.  

Thus, these signals settle to their steady-state value after the propagation through their respective gates.  

Computed values of all the P
i
’s are valid one XOR-gate delay after the operands A and B are made valid.  

Computed values of all the G
i
’s are valid one AND-gate delay after the operands A and B are made valid. 

The Boolean function for the carry outputs of each stage and substitute the value of each Ci from the previous 

equations:  

C0= input carry 

C1 = G0 + P0C0  

C2 = G1 + P1C1 = G1 + P1 (G0 + P0C0) = G1 + P1G0 + P1P0C0 

 C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0  

Each carry signal is expressed as a direct SOP function of C
0 

rather than its preceding carry signal.  

Since the Boolean expression for each output carry is expressed in SOP form, it can be implemented in two-level 

circuits.  

The 2-level implementation of the carry signals has a propagation delay of 2 gates, i.e., 2τ.  

 

 
 

 

The 4-bit carry look-ahead (CLA) adder consists of 3 levels of logic: 

 



 

 

 

First level: Generates all the P & G signals. Four sets of P & G logic (each consists of an XOR gate and an AND gate). 

Output signals of this level (P’s & G’s) will be valid after 1τ.  

Second level: The Carry Look-Ahead (CLA) logic block which consists of four 2-level implementation logic circuits. 

It generates the carry signals (C
0
, C

1
, C

2
, and C

3
) as defined by the above expressions. Output signals of this level (C

0
, 

C
1
, C

2
, and C

3
) will be valid after 3τ.  

Third level: Four XOR gates which generate the sum signals (S
i
) (S

i 
= P

i 
⊕ C

i
). Output signals of this level (S

0
, S

1
, S

2
, 

and S
3
) will be valid after 4τ.  

Thus, the 4 Sum signals (S
0
, S

1
, S

2 
& S

3
) will all be valid after a total delay of 4τ compared to a delay of (2n+1)τ for 

Ripple Carry adders.  

For a 4-bit adder (n = 4), the Ripple Carry adder delay is 9τ.  

The disadvantage of the CLA adders is that the carry expressions (and hence logic) become quite complex for more 

than 4 bits.  

Thus, CLA adders are usually implemented as 4-bit modules that are used to build larger size adders. 

 

Binary Subtractor  
 

To perform the subtraction, we can use the 2's complements, so the subtraction can be converted to addition.  

2's complement can be obtained by talking the 1’s complement and adding 1 to the LSD bit.  

1) 1’s complement can be implemented with inverters.  

2) 1 can be added to the sum through the input carry.  

The circuit for subtracting A-B consists of an adder with inverters placed between each data input B and the 

corresponding input of the full adder. The input carry C0 must be equal to 1.  

 

Binary Parallel Adder/Subtractor:  
The addition and subtraction operations can be done using an Adder-Subtractor circuit. The figure shows the logic 

diagram of a 4-bit Adder-Subtractor circuit. 



 

 

 

The circuit has a mode control signal M which determines if the circuit is to operate as an adder or a subtractor.  
Each XOR gate receives input M and one of the inputs of B, i.e., B

i
. To understand the behavior of XOR gate consider 

its truth table given below.  

 

If one input of XOR gate is zero then the output of XOR will be same as the second input. While if one input of XOR 

gate is one then the output of XOR will be complement of the second input. 

So when M = 0, the output of XOR gate will be B
i 
⊕ 0 = B

i
. If the full adders receive the value of B, and the input 

carry C
0 

is 0, the circuit performs A plus B.  

When M = 1, the output of XOR gate will be B
i 
⊕ 1 = B

i

’

. If the full adders receive the value of B’, and the input carry 

C
0 
is 1, the circuit performs A plus 1’s complement of B plus 1, which is equal to A minus B. 

BCD ADDER: 

Computers or calculators that perform arithmetic operations directly in the decimal number system represent 

decimal numbers in binary coded form. 

An adder for such a computer must employ arithmetic circuits that accept coded decimal numbers and present 

results in the same code. For binary addition, it is sufficient to consider a pair of significant bits together with a 



 

 
previous carry. A decimal adder requires a minimum of nine inputs and five outputs, since four bits are required to 

code each decimal digit and the circuit must have an input and output carry 

(1 digit requires 4-bit  

 Input: 2 digits + 1-bit carry  

 Output: 1 digit + 1-bit carry) 

Since each input digit does not exceed 9, the output sum cannot be greater than 9 + 9 + 1 = 19, the 1 in the sum 

being an input carry.  

Suppose we apply two BCD digits to a four-bit binary adder. The adder will form the sum in binary and produce a 

result that ranges from 0 through 19. 

 These binary numbers are labeled by symbols K, Z8, Z4, Z2, and Z1. K is the carry, and the subscripts under the 

letter Z represent the weights 8, 4, 2, and 1 that can be assigned to the four bits in the BCD code. 

 

When the binary sum is equal to or less than 1001b  

 BCD Sum = Binary Sum  

 C = 0 ; 

 When the binary sum is greater than 1001b  

 BCD Sum = Binary Sum + 0110b  

 C = 1 

The condition for a correction and an output carry can be expressed by the Boolean function 

 C = K + Z8.Z4 + Z8.Z2  



 

 

 

When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the next stage. 

 

 

4. Magnitude Comparator - Decoders - Demultiplexer - Encoder – Multiplexers. 

 
MAGNITUDE COMPARATOR: 

 

A digital comparator or magnitude comparator is a hardware electronic device that takes two numbers as input in binary 

form and determines whether one number is greater than, less than or equal to the other number. Comparators are used in 

central processing unit s (CPUs) and microcontrollers (MCUs). 

 

Magnitude Comparator is a combinational circuit capable of comparing the relative magnitude of two binary numbers. It is 
one of the two types of digital comparator. 



 

 

 

Block diagram of n-bit comparator 

Figure(a) shows the block diagram of n-bit magnitude comparator. It accepts two n-bit binary numbers, say A and B as 
inputs and produces one of the outputs: A>B, A=B and A<B. 

One of the outputs will be high depending upon the relative magnitude. That is, output A>B will be high if A is greater than 
B, output A=B will be high if A and B are equal, and output A<B will be high if A is less than B. 

Its logic behaviour is same as adder. It does not return sum or carry. 

Magnitude comparators are used in central processing units and microcontrollers. 

This basic circuit for a magnitude comparator can be extended for any number of bits. 

Four bit magnitude comparators are very popular circuits and are commercially available. 

Examples: 74HC85 and CMOS 4063. These are four bit magnitude comparators. 

 

 

 

XNOR 
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DECODERS  

 

A decoder is a combinational circuit that converts binary information 

from n input lines to an 2n  unique output lines. 

 

Some Applications: 

• Microprocessor memory system: selecting different banks of memory. 

• Microprocessor I/O: Selecting different devices. 

• Memory: Decoding memory addresses (e.g. in ROM). 

• In our lab… decoding the binary input to activate the LED segments so 



 

 
that the decimal number can be displayed. 



 3-to-8-line DECODER  
 

 

 

 

 

Binary Inputs 

 

                      Outputs 

D0 D1 D2 D3 D4 D5 D6 D7 

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 

 

 

If the input corresponds to minterm mi then the decoder ouputi 

will be the single asserted output. 

 

3-to-8-line DECODER 

 



 3-to-8-line DECODER  
 

 



2-to-4-line DECODER with  Enable  
 

The decoder is enabled when E = 0. The output whose value = 0 

represents the minterm is selected by inputs A and B. 

The decoder is inactive when E = 1€ D0  … D3 = 1 

A Decoder with enable input is called a decoder/ demultiplexer. 

Demultiplexer receives information from a single line and directs it 

to the output lines. 

 

 

Complemented outputs 

 

 

 

 

 

 

 

 

 

 A 4 x 16 DECODER  

 

• When w = 0, the top decoder is enabled and the bottom 

is disabled. Top decoder generates 8 minterms 0000 to 

0111, while the bottom decoder outputs are 0’s. 

• When w = 1, the top decoder is disabled and the bottom 

is enabled. Bottom decoder generates 8 minterms 1000 to 

1111, while the top decoder outputs are 0’s. 



Full-Adder  using Decoder  
 

 

 

 

 

(x, y, z)  (1,2,4,7) 

 

 

 

 

( x, y, z )  (3,5,6,7) 

 

 

 

 

 

 

                MULTIPLEXERS/DATA  SELECTORS 

A multiplexer is a combinational circuit that selects one of many input 

lines (2n) and steers it to its single output line.  There 

are (2n) and n selection lines whose bit combinations determine 

which input is selected. 

 



4-to-1LINE  MULTIPLEXER DESIGN 
 

 

In general, a 2n–to–1- line multiplexer is constructed from an 

n–to 2n  decoder by adding to it 2n  lines, one to each AND gate. 
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 QUADRUPLE  4-to-1LINE MULTIPLEXER  
 

 

 
 

 

                 Function  implementation  using multiplexers  

Function with n variables and multiplexer with n – 1 selection 

F (x, y, z)  (1,2,6,7) 

Input variables x, y: Selection lines, S1  and S0 

Variable z: Date line 0 

Data lines 1,2,3: z', 0,1  

OR gates 

are 

included 



Function  implementation  using 4x1multiplexer  
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Function  implementation  using 8x1multiplexer  

F ( A, B,C, D)  (1,3,4,11,12,13,14,15) 

 

 

1. Complete the truth table from the SOP. 

2. The first n – 1 variables in the table are applied to the 

selection inputs of the multiplexer. 

3. For each combination of the selection variables, we evaluate the 

output as a function of the last variable. 

4. Apply these values to the data input in proper order. 
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note the order of input 

lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three State Gates  

A three-state gate is a digital circuit that exhibits three states: 0, 1 and a 

high- impedance (high z state). The high impedance state behaves as an 

open circuit. 

 

 

 

Because of this feature (high z state), a large number of three-state gate 

outputs can be connected to form a common line without endangering 

load effects. 
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The data distributor, known more commonly as a Demultiplexer or “Demux” for short, is the exact opposite of 

the Multiplexer 

 

 

 

 

 
 

The demultiplexer takes one single input data line and then switches it to any one of a number of individual output lines 

one at a time. The demultiplexer converts a serial data signal at the input to a parallel data at its output lines as shown 

below. 

1-to-4 Channel De-multiplexer 

 
  

Output Select 

Data Output 

Selected 

b a 

0 0 A 

0 1 B 
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1 0 C 

1 1 D 

 

 

The Boolean expression for this 1-to-4 Demultiplexer above with outputs A to D and data select lines a, b is given as: 

F = abA + abB + abC + abD 

The function of the Demultiplexer is to switch one common data input line to any one of the 4 output data 

lines A to D in our example above. As with the multiplexer the individual solid state switches are selected by the binary 

input address code on the output select pins “a” and “b” as shown. 

Demultiplexer Output Line Selection 

 

As with the previous multiplexer circuit, adding more address line inputs it is possible to switch more outputs giving a 

1-to-2
n
 data line outputs. 

Some standard demultiplexer IC´s also have an additional “enable output” pin which disables or prevents the input from 

being passed to the selected output. Also some have latches built into their outputs to maintain the output logic level 

after the address inputs have been changed. However, in standard decoder type circuits the address input will determine 

which single data output will have the same value as the data input with all other data outputs having the value of logic 

“0”. 

The implementation of the Boolean expression above using individual logic gates would require the use of six 

individual gates consisting of AND and NOT gates as shown. 
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4 Channel Demultiplexer using Logic Gates 

 
  

The symbol used in logic diagrams to identify a demultiplexer is as follows. 

The Demultiplexer Symbol 

 
  

Again, as with the previous multiplexer example, we can also use the demultiplexer to digitally control the gain of an 

operational amplifier as shown. 

Applications of Demultiplexer: 

1. Demultiplexer  is used to connect a single source to multiple destinations. The main application area of 

demultiplexer is communication system where multiplexer are used. Most of the communication system are 

bidirectional  i.e. they function in both ways (transmitting and receiving signals). Hence, for most of the 

applications, the multiplexer and demultiplexer work in sync. Demultiplexer are also used for reconstruction  of 

parallel data and ALU circuits. 

2. Communication System – Communication system use multiplexer to carry multiple data like audio, video and 

other form of data using a single line for transmission. This process make the transmission easier.  The 

demultiplexer receive the output signals of the multiplexer and converts them back to the original form of the 
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data at the receiving end. The multiplexer and demultiplexer work together to carry out the process of 

transmission and reception of data in communication system. 

3. ALU (Arithmetic Logic Unit) – In an ALU circuit, the output of ALU can be stored in multiple registers or storage 

units with the help of demultiplexer. The output of ALU is fed as the data input to the demultiplexer. Each output 

of demultiplexer is connected to multiple register which can be stored in the registers. 

4. Serial to parallel converter – A serial to parallel converter is used for reconstructing parallel data from incoming 

serial data stream.  In this technique, serial data from the incoming serial data stream is given as data input to 

the demultiplexer at the regular intervals. A counter is attach to the control input of the demultiplexer. This 

counter directs the data signal to the output of the demultiplexer where these data signals are stored. When all 

data signals have been stored, the output of the demultiplexer can be retrieved and read out in parallel. 

 

Encoder

 

An encoder is a circuit that changes a set of signals into a code. Let’s 

begin making a 2-to-1 line encoder truth table by reversing the 1-to-2 decoder 

truth table. 

 

This truth table is a little short. A complete truth table would be 

 

One question we need to answer is what to do with those other inputs? Do 

we ignore them? Do we have them generate an additional error output? In many 

circuits this problem is solved by adding sequential logic in order to know not 

just what input is active but also which order the inputs became active. 

 

 

A more useful application of combinational encoder design is a binary to 

7-segment encoder. The seven segments are given according 
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Our truth table is: 

 

Deciding what to do with the remaining six entries of the truth table is 

easier with this circuit. This circuit should not be expected to encode an 

undefined combination of inputs, so we can leave them as “don’t care” when we 

design the circuit. The equations were simplified with karnaugh maps. 
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The collection of equations is summarised here: 
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The circuit is: 
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UNIT IV- SYNCHRONOUS SEQUENTIAL LOGIC 

  

 
Flip Flops - Analysis of clocked sequential circuit -Flip flop excitation tables - Design Procedure - Design 

of counters - Registers - Shift registers - Synchronous Counters - Timing sequences- Algorithmic State 

Machines - ASM chart - timing considerations - control implementation 

4.1. FLIP-FLOP 

 

In electronics, a flip-flop or latch is a circuit that has two stable states and 

can be used to store state information. Flip-flops and latches are used as data 

storage elements. A flip-flop stores a single bit (binary digit) of data; one of its two 

states represents a "one" and the other represents a "zero". Such data storage can be 

used for storage of state, and such a circuit is described as sequential logic. When 

used in a finite-state machine, the output and next state depend not only on its 

current input, but also on its current state (and hence, previous inputs). It can also 

be used for counting of pulses, and for synchronizing variably-timed input signals 

to some reference timing signal. 
 

Flip-flops can be either simple (transparent or opaque) or clocked (synchronous or 

edge-triggered). Although the term flip-flop has historically referred generically to 

both simple and clocked circuits, in modern usage it is common to reserve the term 

flip-flop exclusively for discussing clocked circuits; the simple ones are commonly 

called latches. 
 

Using this terminology, a latch is level-sensitive, whereas a flip-flop is edge- 

sensitive. That is, when a latch is enabled it becomes transparent, while a flip flop's 

output only changes on a single type (positive going or negative going) of clock 

edge. 
 

4.2 Flip-flop types 
 

Flip-flops can be divided into common types 

1. SR ("set-reset") 

2. D ("data" or "delay"[12]) 



3.  T ("toggle") 

4. JK types are the common ones. 

2. Analysis of clocked sequential circuit 

Sequential Logic Circuits 

Unlike Combinational Logic circuits that change state depending upon the actual 

signals being applied to their inputs at that time, Sequential Logic circuits have 

some form of inherent “Memory” built in to them as they are able to take into 

account their previous input state as well as those actually present, a sort 

of “before” and “after” effect is involved with sequential logic circuits. 

 
 

In other words, the output state of a “sequential logic circuit” is a function of 

the following three states, the “present input”, the “past input” and/or the “past 

output”. Sequential Logic circuits remember these conditions and stay fixed in 

their current state until the next clock signal changes one of the states, giving 

sequential logic circuits “Memory”. 

Sequential logic circuits are generally termed as two state or Bistable 

devices which can have their output or outputs set in one of two basic states, a 

logic level “1” or a logic level “0” and will remain “latched” (hence the name 

latch) indefinitely in this current state or condition until some other input trigger 

pulse or signal is applied which will cause the bistable to change its state once 

again. 

The word “Sequential” means that things happen in a “sequence”, one after 

another and in Sequential Logic circuits, the actual clock signal determines when 



things will happen next. Simple sequential logic circuits can be constructed from 

standard Bistable circuits such as: Flip-flops, Latches and Counters and which 

themselves can be made by simply connecting together universal NAND Gates 

and/or NOR Gates in a particular combinational way to produce the required 

sequential circuit 

 

3. Flip flop excitation tables - Flip flop excitation tables 

- Design Procedure of SR, Jk, D T flipflops 

SR Flip-Flop 

The SR flip-flop, also known as a SR Latch, can be considered as one of the 

most basic sequential logic circuit possible. This simple flip-flop is basically a one-

bit memory bistable device that has two inputs, one which will “SET” the device 

(meaning the output = “1”), and is labelled S and another which will “RESET” the 

device (meaning the output = “0”), labelled R. 

Then the SR description stands for “Set-Reset”. The reset input resets the 

flip-flop back to its original state with an output Q that will be either at a logic 

level “1” or logic “0” depending upon this set/reset condition. 

A basic NAND gate SR flip-flop circuit provides feedback from both of its 

outputs back to its opposing inputs and is commonly used in memory circuits to 

store a single data bit. Then the SR flip-flop actually has three inputs, Set, Reset 

and its current output Q relating to it’s current state or history. The term “Flip-

flop” relates to the actual operation of the device, as it can be “flipped” into one 

logic Set state or “flopped” back into the opposing logic Reset state. 

The Basic SR Flip-flop 

 



The Set State 

Consider the circuit shown above. If the input R is at logic level “0” (R = 0) 

and input S is at logic level “1” (S = 1), the NAND gate Y  has at least one of its 

inputs at logic “0” therefore, its output Q must be at a logic level “1” (NAND Gate 

principles). Output Q is also fed back to input “A” and so both inputs to NAND 

gate X are at logic level “1”, and therefore its output Q must be at logic level “0”. 

Again NAND gate principals. If the reset input R changes state, and goes 

HIGH to logic “1” with S remaining HIGH also at logic level “1”, NAND gate Y 

inputs are now R = “1” and B = “0”. Since one of its inputs is still at logic level “0” 

the output at Q still remains HIGH at logic level “1” and there is no change of 

state. Therefore, the flip-flop circuit is said to be “Latched” or “Set” with Q = “1” 

and Q = “0”. 

Reset State 

In this second stable state, Q is at logic level “0”, (not Q = “0”) its inverse 

output at Q is at logic level “1”, (Q = “1”), and is given by R = “1” and S = “0”. As 

gate X has one of its inputs at logic “0” its output Q must equal logic level “1” 

(again NAND gate principles). Output Q is fed back to input “B”, so both inputs to 

NAND gate Y are at logic “1”, therefore, Q = “0”. 

If the set input, S now changes state to logic “1” with input R remaining at 

logic “1”, output Q still remains LOW at logic level “0” and there is no change of 

state. Therefore, the flip-flop circuits “Reset” state has also been latched and we 

can define this “set/reset” action in the following truth table. 

Truth Table for this Set-Reset Function 

 



It can be seen that when both inputs S = “1” and R = “1” the outputs Q and 

Q can be at either logic level “1” or “0”, depending upon the state of the inputs S 

or R BEFORE this input condition existed. Therefore the condition of S = R = “1” 

does not change the state of the outputs Q and Q. 

However, the input state of S = “0” and R = “0” is an undesirable or invalid 

condition and must be avoided. The condition of S = R = “0” causes both outputs 

Q and Q to be HIGH together at logic level “1” when we would normally want Q 

to be the inverse of Q. The result is that the flip-flop looses control of Q and Q, and 

if the two inputs are now switched “HIGH” again after this condition to logic “1”, 

the flip-flop becomes unstable and switches to an unknown data state based upon 

the unbalance as shown in the following switching diagram. 

S-R Flip-flop Switching Diagram 

 

  

This unbalance can cause one of the outputs to switch faster than the other 

resulting in the flip-flop switching to one state or the other which may not be the 

required state and data corruption will exist. This unstable condition is generally 

known as its Meta-stable state. 

Then, a simple NAND gate SR flip-flop or NAND gate SR latch can be set 

by applying a logic “0”, (LOW) condition to its Set input and reset again by then 

applying a logic “0” to its Reset input. The SR flip-flop is said to be in an “invalid” 

condition (Meta-stable) if both the set and reset inputs are activated 

simultaneously. 



Latch Flip Flop 

The R-S (Reset Set) flip flop is the simplest flip flop of all and easiest to 

understand. It is basically a device which has two outputs one output being the 

inverse or complement of the other, and two inputs. A pulse on one of the inputs to 

take on a particular logical state. The outputs will then remain in this state until a 

similar pulse is applied to the other input. The two inputs are called the Set and 

Reset input (sometimes called the preset and clear inputs). 

Such flip flop can be made simply by cross coupling two inverting gates 

either NAND or NOR gate could be used Figure 1(a) shows on RS flip flop using 

NAND gate and Figure 1(b) sh ows the same circuit using NOR gate. 

 

Figure 1: Latch R-S Flip Flop Using NAND and NOR Gates 

To describe the circuit of Figure 1(a), assume that initially both R and S are 

at the logic 1 state and that output is at the logic 0 state. 

Now, if Q = 0 and R = 1, then these are the states of inputs of gate B, 

therefore the outputs of gate B is at 1 (making it the inverse of Q i.e. 0). The output 

of gate B is connected to an input of gate A so if S = 1, both inputs of gate A are at 

the logic 1 state. This means that the output of gate A must be 0 (as was originally 

specified). In other words, the 0 state at Q is continuously disabling gate B so that 



any change in R has no effect. Also the 1 state at  is continuously enabling gate A 

so that any change S will be transmitted through to Q. The above conditions 

constitute one of the stable states of the device referred to as the Reset state since 

Q = 0. 

Now suppose that the R-S flip flop in the Reset state, the S input goes to 0. 

The output of gate A i.e. Q will go to 1 and with Q = 1 and R = 1, the output of 

gates B ( ) will go to 0 with  now 0 gate A is disabled keeping Q at 1. 

Consequently, when S returns to the 1 state it has no effect on the flip flop whereas 

a change in R will cause a change in the output of gate B. The above conditions 

constitute the other stable state of the device, called the Set state since Q = 1. Note 

that the change of the state of S from 1 to 0 has caused the flip flop to change from 

the Reset state to the Set state. 

There is another input condition which has not yet been considered. That is 

when both the R and S inputs are taken to the logic state 0. When this happens both 

Q and  will be forced to 1 and will remain so far as long as R and S are kept at 0. 

However when both inputs return to 1 there is no way of knowing whether the flip 

flop will latch in the Reset state or the Set state. The condition is said to be 

indeterminate because of this indeterminate state great care must be taken when 

using R-S flip flop to ensure that both inputs are not instructed simultaneously. 

Table 1: The truth table for the NAND R-S flip flop 

 

Table 2: Simple NAND R-S Flip Flop Truth Table 



 

Table 3: NOR Gate R-S Flip Flop Truth Table 

 

Clocked RS Flip Flop 

The RS latch flip flop required the direct input but no clock. It is very use 

full to add clock to control precisely the time at which the flip flop changes the 

state of its output. 

In the clocked R-S flip flop the appropriate levels applied to their inputs are 

blocked till the receipt of a pulse from an other source called clock. The flip flop 

changes state only when clock pulse is applied depending upon the inputs. The 

basic circuit is shown in Figure 2. This circuit is formed by adding two AND gates 

at inputs to the R-S flip flop. In addition to control inputs Set (S) and Reset (R), 

there is a clock input (C) also. 

 

Figure 2: Clocked RS Flip Flop 



Table 4: The truth table for the Clocked R-S flip flop 

 

Table 5: Excitation table for R-S Flip Flop 

 

D Flip Flop 

A D type (Data or delay flip flop) has a single data input in addition to the 

clock input as shown in Figure 3. 

 

Figure 3: D Flip Flop 



Basically, such type of flip flop is a modification of clocked RS flip flop 

gates from a basic Latch flip flop and NOR gates modify it in to a clock RS flip 

flop. The D input goes directly to S input and its complement through NOT gate, is 

applied to the R input. 

This kind of flip flop prevents the value of D from reaching the output until 

a clock pulse occurs. The action of circuit is straight forward as follows. 

When the clock is low, both AND gates are disabled, there fore D can 

change values with out affecting the value of Q. On the other hand, when the clock 

is high, both AND gates are enabled. In this case, Q is forced equal to D when the 

clock again goes low, Q retains or stores the last value of D. The truth table for 

such a flip flop is as given below in table 6. 

Table 6: Truth table for D Flip Flop 

 

Table 7: Excitation table for D Flip Flop 

 

JK Flip Flop 

One of the most useful and versatile flip flop is the JK flip flop the unique features 

of a JK flip flop are: 

1. If the J and K input are both at 1 and the clock pulse is applied, then the 

output will change state, regardless of its previous condition. 

2. If both J and K inputs are at 0 and the clock pulse is applied there will be no 

change in the output. There is no indeterminate condition, in the operation of 

JK flip flop i.e. it has no ambiguous state. The circuit diagram for a JK flip 

flop is shown in Figure 4. 



 

Figure 4: JK Flip Flop 

When J = 0 and K = 0 

These J and K inputs disable the NAND gates, therefore clock pulse have no effect 

on the flip flop. In other words, Q returns it last value. 

When J = 0 and K = 1, 

The upper NAND gate is disabled the lower NAND gate is enabled if Q is 1 

therefore, flip flop will be reset (Q = 0 ,  =1)if not already in that state. 

When J = 1 and K = 0 

The lower NAND gate is disabled and the upper NAND gate is enabled if  is at 1, 

As a result we will be able to set the flip flop ( Q = 1,  = 0) if not already set 

When J = 1 and K = 1 

If Q = 0 the lower NAND gate is disabled the upper NAND gate is enabled. This 

will set the flip flop and hence Q will be 1. On the other hand if Q = 1, the lower 

NAND gate is enabled and flip flop will be reset and hence Q will be 0. In other 

words , when J and K are both high, the clock pulses cause the JK flip flop to 

toggle. Truth table for JK flip flop is shown in table 8. 

Table 8: The truth table for the JK flip flop 

 



Table 6: Excitation table for JK Flip Flop 

 

T Flip Flop 

A method of avoiding the indeterminate state found in the working of RS 

flip flop is to provide only one input ( the T input ) such, flip flop acts as a toggle 

switch. Toggle means to change in the previous stage i.e. switch to opposite state. 

It can be constructed from clocked RS flip flop be incorporating feedback from 

output to input as shown in Figure 5. 

 

Figure 5: T Flip Flop 

Such a flip flop is also called toggle flip flop. In such a flip flop a train of 

extremely narrow triggers drives the T input each time one of these triggers, the 

output of the flip flop changes stage. For instance Q equals 0 just before the 

trigger. Then the upper AND gate is enable and the lower AND gate is disabled. 

When the trigger arrives, it results in a high S input. 

This sets the Q output to 1. When the next trigger appears at the point T, the 

lower AND gate is enabled and the trigger passes through to the R input this forces 

the flip flop to reset. 

Since each incoming trigger is alternately changed into the set and reset 

inputs the flip flop toggles. It takes two triggers to produce one cycle of the output 

waveform. This means the output has half the frequency of the input stated another 

way, a T flip flop divides the input frequency by two. Thus such a circuit is also 

called a divide by two circuit. 



A disadvantage of the toggle flip flop is that the state of the flip flop after a 

trigger pulse has been applied is only known if the previous state is known. The 

truth table for a T flip flop is as given table 7. 

Table 7: Truth table for T Flip Flop 

 
Table 8: Excitation table for T Flip Flop 

 

Generally T flip flop ICs are not available. It can be constructed using JK, RS or D 

flip flop. Figure 6 shows the relation of T flip flop using JK flip flop. 

 

A D-type flip flop may be modified by external connection as a T-type stage 

as shown in Figure 7. Since the Q logic is used as D-input the opposite of the Q 



output is transferred into the stage each clock pulse. Thus the stage having Q - 0 

transistors  = 1, Providing a toggle action, if the stage had Q = 1 the clock pulse 

would result in Q = 0 being transferred, again providing the toggle operation. The 

D-type flip flop connected as in Figure 6 will thus operate as a T-type stage, 

complementing each clock pulse. 

Master Slave Flip Flop 

Figure 8 shows the schematic diagram of master sloave J-K flip flop 

 

Figure 8: Master Slave JK Flip Flop 

A master slave flip flop contains two clocked flip flops. The first is called 

master and the second slave. When the clock is high the master is active. The 

output of the master is set or reset according to the state of the input. As the slave 

is inactive during this period its output remains in the previous state. When clock 

becomes low the output of the slave flip flop changes because it become active 

during low clock period. The final output of master slave flip flop is the output of 

the slave flip flop. So the output of master slave flip flop is available at the end of a 

clock pulse. 

4. Design of counters 

Counter is a sequential circuit. A digital circuit which is used for a counting pulses 

is known counter. Counter is the widest application of flip-flops. It is a group of 

flip-flops with a clock signal applied. Counters are of two types. 

 Asynchronous or ripple counters. 

 Synchronous counters 

5. Registers 

 Flip-flop is a 1 bit memory cell which can be used for storing the digital 

data. To increase the storage capacity in terms of number of bits, we have to use a 

group of flip-flop. Such a group of flip-flop is known as a Register. The n-bit 



register will consist of n number of flip-flop and it is capable of storing an n-bit 

word. 

 

6. Shift Register 

  The Shift Register is another type of sequential logic circuit that can be used 

for the storage or the transfer of data in the form of binary numbers. This 

sequential device loads the data present on its inputs and then moves or “shifts” it 

to its output once every clock cycle, hence the name “shift register”. 

 A shift register basically consists of several single bit “D-Type Data Latches”, one 

for each data bit, either a logic “0” or a “1”, connected together in a serial type 

daisy-chain arrangement so that the output from one data latch becomes the input 

of the next latch and so on. 

Data bits may be fed in or out of a shift register serially, that is one after the other 

from either the left or the right direction, or all together at the same time in a 

parallel configuration. 

The number of individual data latches required to make up a single Shift 

Register device is usually determined by the number of bits to be stored with the 

most common being 8-bits (one byte) wide constructed from eight individual data 

latches. 

Shift Registers are used for data storage or for the movement of data and are 

therefore commonly used inside calculators or computers to store data such as two 

binary numbers before they are added together, or to convert the data from either a 

serial to parallel or parallel to serial format. The individual data latches that make 

up a single shift register are all driven by a common clock ( Clk ) signal making 

them synchronous devices. 

Shift register IC’s are generally provided with a clear or reset connection so that 

they can be “SET” or “RESET” as required. Generally, shift registers operate in 

one of four different modes with the basic movement of data through a shift 

register being: 

  Serial-in to Parallel-out (SIPO)  -  the register is loaded with serial data, one bit 

at a time, with the stored data being available at the output in parallel form. 



  Serial-in to Serial-out (SISO)  -  the data is shifted serially “IN” and “OUT” of 

the register, one bit at a time in either a left or right direction under clock control. 

  Parallel-in to Serial-out (PISO)  -  the parallel data is loaded into the register 

simultaneously and is shifted out of the register serially one bit at a time under 

clock control. 

  Parallel-in to Parallel-out (PIPO)  -  the parallel data is loaded simultaneously 

into the register, and transferred together to their respective outputs by the same 

clock pulse. 

The effect of data movement from left to right through a shift register can be 

presented graphically as: 

 
  

Also, the directional movement of the data through a shift register can be either to 

the left, (left shifting) to the right, (right shifting) left-in but right-out, (rotation) or 

both left and right shifting within the same register thereby making it bidirectional. 

In this tutorial it is assumed that all the data shifts to the right, (right shifting). 

4-bit Serial-in to Parallel-out Shift Register 



 
  

The operation is as follows. Lets assume that all the flip-flops ( FFA to FFD ) have 

just been RESET ( CLEAR input ) and that all the outputs QA to QD are at logic 

level “0” ie, no parallel data output. 

If a logic “1” is connected to the DATA input pin of FFA then on the first clock 

pulse the output of FFA and therefore the resulting QA will be set HIGH to logic 

“1” with all the other outputs still remaining LOW at logic “0”. Assume now that 

the DATA input pin of FFA has returned LOW again to logic “0” giving us one 

data pulse or 0-1-0. 

The second clock pulse will change the output of FFA to logic “0” and the output 

of FFB and QB HIGH to logic “1” as its input D has the logic “1” level on it 

from QA. The logic “1” has now moved or been “shifted” one place along the 

register to the right as it is now atQA. 

When the third clock pulse arrives this logic “1” value moves to the output 

of FFC ( QC ) and so on until the arrival of the fifth clock pulse which sets all the 

outputs QA to QD back again to logic level “0” because the input to FFA has 

remained constant at logic level “0”. 

The effect of each clock pulse is to shift the data contents of each stage one place 

to the right, and this is shown in the following table until the complete data value 

of  0-0-0-1 is stored in the register. This data value can now be read directly from 

the outputs of QA to QD. 



Then the data has been converted from a serial data input signal to a parallel data 

output. The truth table and following waveforms show the propagation of the logic 

“1” through the register from left to right as follows. 

Basic Data Movement Through A Shift Register 

Clock 

Pulse 

No 

QA QB QC QD 

0 0 0 0 0 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 0 0 0 1 

5 0 0 0 0 

  



 
  

Note that after the fourth clock pulse has ended the 4-bits of data ( 0-0-0-1 ) are 

stored in the register and will remain there provided clocking of the register has 

stopped. In practice the input data to the register may consist of various 

combinations of logic “1” and “0”. Commonly available SIPO IC’s include the 

standard 8-bit 74LS164 or the 74LS594. 

Serial-in to Serial-out (SISO) Shift Register 

This shift register is very similar to the SIPO above, except were before the 

data was read directly in a parallel form from the outputs QA to QD, this time the 

data is allowed to flow straight through the register and out of the other end. Since 

there is only one output, the DATA leaves the shift register one bit at a time in a 

serial pattern, hence the name Serial-in to Serial-Out Shift Register or SISO. 

The SISO shift register is one of the simplest of the four configurations as it 

has only three connections, the serial input (SI) which determines what enters the 

left hand flip-flop, the serial output (SO) which is taken from the output of the 

right hand flip-flop and the sequencing clock signal (Clk). The logic circuit 

diagram below shows a generalized serial-in serial-out shift register. 

 



4-bit Serial-in to Serial-out Shift Register 

 
  

You may think what the point of a SISO shift register is if the output data is 

exactly the same as the input data. Well this type of Shift Register also acts as a 

temporary storage device or it can act as a time delay device for the data, with the 

amount of time delay being controlled by the number of stages in the register, 4, 8, 

16 etc or by varying the application of the clock pulses. Commonly available IC’s 

include the 74HC595 8-bit Serial-in to Serial-out Shift Register all with 3-state 

outputs. 

Parallel-in to Serial-out (PISO) Shift Register 

The Parallel-in to Serial-out shift register acts in the opposite way to the 

serial-in to parallel-out one above. The data is loaded into the register in a parallel 

format in which all the data bits enter their inputs simultaneously, to the parallel 

input pins PA to PD of the register. The data is then read out sequentially in the 

normal shift-right mode from the register at Q representing the data present 

at PA to PD. 

This data is outputted one bit at a time on each clock cycle in a serial format. 

It is important to note that with this type of data register a clock pulse is not 

required to parallel load the register as it is already present, but four clock pulses 

are required to unload the data. 

 

 

 



4-bit Parallel-in to Serial-out Shift Register 

 
  

As this type of shift register converts parallel data, such as an 8-bit data 

word into serial format, it can be used to multiplex many different input lines into a 

single serial DATA stream which can be sent directly to a computer or transmitted 

over a communications line. Commonly available IC’s include the 74HC166 8-bit 

Parallel-in/Serial-out Shift Registers. 

Parallel-in to Parallel-out (PIPO) Shift Register 

The final mode of operation is the Parallel-in to Parallel-out Shift Register. 

This type of shift register also acts as a temporary storage device or as a time delay 

device similar to the SISO configuration above. The data is presented in a parallel 

format to the parallel input pins PA to PD and then transferred together directly to 

their respective output pins QA to QA by the same clock pulse. Then one clock 

pulse loads and unloads the register. This arrangement for parallel loading and 

unloading is shown below. 

4-bit Parallel-in to Parallel-out Shift Register 

 



 The PIPO shift register is the simplest of the four configurations as it has only 

three connections, the parallel input (PI) which determines what enters the flip-

flop, the parallel output (PO) and the sequencing clock signal (Clk). 

Similar to the Serial-in to Serial-out shift register, this type of register also 

acts as a temporary storage device or as a time delay device, with the amount of 

time delay being varied by the frequency of the clock pulses. Also, in this type of 

register there are no interconnections between the individual flip-flops since no 

serial shifting of the data is required. 

Universal Shift Register 

Today, there are many high speed bi-directional “universal” type Shift 

Registers available such as the TTL 74LS194, 74LS195 or the CMOS 4035 which 

are available as 4-bit multi-function devices that can be used in either serial-to-

serial, left shifting, right shifting, serial-to-parallel, parallel-to-serial, or as a 

parallel-to-parallel multifunction data register, hence the name “Universal”. 

These universal shift registers can perform any combination of parallel and 

serial input to output operations but require additional inputs to specify desired 

function and to pre-load and reset the device. A commonly used universal shift 

register is the TTL 74LS194 as shown below. 

4-bit Universal Shift Register 74LS194 

 



  Universal shift registers are very useful digital devices. They can be 

configured to respond to operations that require some form of temporary memory 

storage or for the delay of information such as the SISO or PIPO configuration 

modes or transfer data from one point to another in either a serial or parallel 

format. Universal shift registers are frequently used in arithmetic operations to 

shift data to the left or right for multiplication or division. 

 

 

 

7. Binary Synchronous Counter 

In Asynchronous binary counter , the output of one counter stage is 

connected directly to the clock input of the next counter stage and so on along the 

chain, and as a result the asynchronous counter suffers from what is known as 

“Propagation Delay” in which the timing signal is delayed a fraction through each 

flip-flop.However, with the Synchronous Counter, the external clock signal is 

connected to the clock input of EVERY individual flip-flop within the counter so 

that all of the flip-flops are clocked together simultaneously (in parallel) at the 

same time giving a fixed time relationship. In other words, changes in the output 

occur in “synchronisation” with the clock signal. 

The result of this synchronisation is that all the individual output bits 

changing state at exactly the same time in response to the common clock signal 

with no ripple effect and therefore, no propagation delay. 

 

 

 

 



Binary 4-bit Synchronous Up Counter 

 

It can be seen above, that the external clock pulses (pulses to be counted) are 

fed directly to each of the J-K flip-flops in the counter chain and that both 

the J and K inputs are all tied together in toggle mode, but only in the first flip-

flop, flip-flop FFA(LSB) are they connected HIGH, logic “1” allowing the flip-

flop to toggle on every clock pulse. Then the synchronous counter follows a 

predetermined sequence of states in response to the common clock signal, 

advancing one state for each pulse.The J and K inputs of flip-flop FFB are 

connected directly to the output QA of flip-flopFFA, but the J and K inputs of flip-

flops FFC and FFD are driven from separate AND gates which are also supplied 

with signals from the input and output of the previous stage. These 

additional AND gates generate the required logic for the JK inputs of the next 

stage.If we enable each JK flip-flop to toggle based on whether or not all preceding 

flip-flop outputs (Q) are “HIGH” we can obtain the same counting sequence as 

with the asynchronous circuit but without the ripple effect, since each flip-flop in 

this circuit will be clocked at exactly the same time.Then as there is no inherent 

propagation delay in synchronous counters, because all the counter stages are 

triggered in parallel at the same time, the maximum operating frequency of this 

type of frequency counter is much higher than that for a similar asynchronous 

counter circuit. 

 

 



8. Timing sequence 

4-bit Synchronous Counter Waveform Timing Diagram. 

 

 

Because this 4-bit synchronous counter counts sequentially on every clock 

pulse the resulting outputs count upwards from 0 ( 0000 ) to 15 ( 1111 ). Therefore, 

this type of counter is also known as a 4-bit Synchronous Up Counter. 

However, we can easily construct a 4-bit Synchronous Down Counter by 

connecting the AND gates to the Q output of the flip-flops as shown to produce a 

waveform timing diagram the reverse of the above. Here the counter starts with all 

of its outputs HIGH ( 1111 ) and it counts down on the application of each clock 

pulse to zero, ( 0000 ) before repeating again. 

 

 

 

 

 



Binary 4-bit Synchronous Down Counter 

 

 

As synchronous counters are formed by connecting flip-flops together and 

any number of flip-flops can be connected or “cascaded” together to form a 

“divide-by-n” binary counter, the modulo’s or “MOD” number still applies as it 

does for asynchronous counters so a Decade counter or BCD counter with counts 

from 0 to 2
n
-1 can be built along with truncated sequences. All we need to increase 

the MOD count of an up or down synchronous counter is an additional flip-flop 

and AND gate across it. 

Decade 4-bit Synchronous Counter 

A 4-bit decade synchronous counter can also be built using synchronous 

binary counters to produce a count sequence from 0 to 9. A standard binary counter 

can be converted to a decade (decimal 10) counter with the aid of some additional 

logic to implement the desired state sequence. After reaching the count of “1001”, 

the counter recycles back to “0000”. We now have a decade or Modulo-

10 counter. 

 

 

 



Decade 4-bit Synchronous Counter 

 

 

The additional AND gates detect when the counting sequence reaches 

“1001”, (Binary 10) and causes flip-flop FF3 to toggle on the next clock pulse. 

Flip-flop FF0 toggles on every clock pulse. Thus, the count is reset and starts over 

again at “0000” producing a synchronous decade counter. 

We could quite easily re-arrange the additional AND gates in the above 

counter circuit to produce other count numbers such as a Mod-12 counter which 

counts 12 states from”0000″ to “1011” (0 to 11) and then repeats making them 

suitable for clocks, etc. 

Triggering A Synchronous Counter 

Synchronous Counters use edge-triggered flip-flops that change states on 

either the “positive-edge” (rising edge) or the “negative-edge” (falling edge) of the 

clock pulse on the control input resulting in one single count when the clock input 

changes state. 

Generally, synchronous counters count on the rising-edge which is the low 

to high transition of the clock signal and asynchronous ripple counters count on the 

falling-edge which is the high to low transition of the clock signal. 



 

It may seem unusual that ripple counters use the falling-edge of the clock 

cycle to change state, but this makes it easier to link counters together because the 

most significant bit (MSB) of one counter can drive the clock input of the 

next.This works because the next bit must change state when the previous bit 

changes from high to low – the point at which a carry must occur to the next bit. 

Synchronous counters usually have a carry-out and a carry-in pin for linking 

counters together without introducing any propagation delays. 

4-bit Ring Counter 

 
  

The synchronous Ring Counter example above is preset so that exactly one 

data bit in the register is set to logic “1” with all the other bits reset to “0”. To 

achieve this, a “CLEAR” signal is firstly applied to all the flip-flops together in 

order to “RESET” their outputs to a logic “0” level and then a “PRESET” pulse is 

applied to the input of the first flip-flop ( FFA ) before the clock pulses are applied. 

This then places a single logic “1” value into the circuit of the ring counter. 

So on each successive clock pulse, the counter circulates the same data bit 

between the four flip-flops over and over again around the “ring” every fourth 



clock cycle. But in order to cycle the data correctly around the counter we must 

first “load” the counter with a suitable data pattern as all logic “0’s” or all logic 

“1’s” outputted at each clock cycle would make the ring counter invalid. 

This type of data movement is called “rotation”, and like the previous shift 

register, the effect of the movement of the data bit from left to right through a ring 

counter can be presented graphically as follows along with its timing diagram: 

Rotational Movement of a Ring Counter 

 
  

 
  

Since the ring counter example shown above has four distinct states, it is 

also known as a “modulo-4” or “mod-4” counter with each flip-flop output having 

a frequency value equal to one-fourth or a quarter (1/4) that of the main clock 

frequency. 



The “MODULO” or “MODULUS” of a counter is the number of states the 

counter counts or sequences through before repeating itself and a ring counter can 

be made to output any modulo number. A “mod-n” ring counter will require “n” 

number of flip-flops connected together to circulate a single data bit providing “n” 

different output states. 

For example, a mod-8 ring counter requires eight flip-flops and a mod-16 

ring counter would require sixteen flip-flops. However, as in our example above, 

only four of the possible sixteen states are used, making ring counters very 

inefficient in terms of their output state usage. 

Johnson Ring Counter 

The Johnson Ring Counter or “Twisted Ring Counters”, is another shift 

register with feedback exactly the same as the standard Ring Counter above, except 

that this time the inverted output Q of the last flip-flop is now connected back to 

the input D of the first flip-flop as shown below. 

The main advantage of this type of ring counter is that it only needs half the 

number of flip-flops compared to the standard ring counter then its modulo number 

is halved. So a “n-stage” Johnson counter will circulate a single data bit giving 

sequence of 2ndifferent states and can therefore be considered as a “mod-2n 

counter”. 

4-bit Johnson Ring Counter 

 

 



  This inversion of Q before it is fed back to input D causes the counter to 

“count” in a different way. Instead of counting through a fixed set of patterns like 

the normal ring counter such as for a 4-bit counter, “0001”(1), “0010”(2), 

“0100”(4), “1000”(8) and repeat, the Johnson counter counts up and then down as 

the initial logic “1” passes through it to the right replacing the preceding logic “0”. 

A 4-bit Johnson ring counter passes blocks of four logic “0” and then four 

logic “1” thereby producing an 8-bit pattern. As the inverted output Q is connected 

to the input D this 8-bit pattern continually repeats. For example, “1000”, “1100”, 

“1110”, “1111”, “0111”, “0011”, “0001”, “0000” and this is demonstrated in the 

following table below. 

Truth Table for a 4-bit Johnson Ring Counter 

Clock Pulse 

No 
FFA FFB FFC FFD 

0 0 0 0 0 

1 1 0 0 0 

2 1 1 0 0 

3 1 1 1 0 

4 1 1 1 1 



5 0 1 1 1 

6 0 0 1 1 

7 0 0 0 1 

As well as counting or rotating data around a continuous loop, ring counters 

can also be used to detect or recognize various patterns or number values within a 

set of data. By connecting simple logic gates such as the AND or the OR gates to 

the outputs of the flip-flops the circuit can be made to detect a set number or value. 

Standard 2, 3 or 4-stage Johnson Ring Counters can also be used to divide 

the frequency of the clock signal by varying their feedback connections and divide-

by-3 or divide-by-5 outputs are also available. 

For example, a 3-stage Johnson Ring Counter could be used as a 3-phase, 

120 degree phase shift square wave generator by connecting to the data outputs 

at A, B and NOT-B. 

The standard 5-stage Johnson counter such as the commonly available 

CD4017 is generally used as a synchronous decade counter/divider circuit. 

Other combinations such as the smaller 2-stage circuit which is also called a 

“Quadrature” (sine/cosine) Oscillator or Generator can be used to produce four 

individual outputs that are each 90 degrees “out-of-phase” with respect to each 

other to produce a 4-phase timing signal as shown below. 

 

 

 

 



9. Algorithmic State Machines 

 

Algorithm State Machines(ASM) ASM stands for 'Algorithm State Machine 'or 

simply state machine is the another name given to sequential network is used to 

control a digital system which carries out a step by a step –by step procedure .It 

should be noted that ASM charts represent physical hardware and offers several 

advantages.  

1. Operation of a digital system can be easily understand by inspection of the SM 

chart . 

 2. ASM charts represent physical hardware. 

 3. The ASM chart are equivalent to a state graph, and it leads directly to a 

hardware realization . 4. ASM charts can be described the operation of both 

combinational and sequential circuits . 

 5. ASM charts are easier to understand and can be converted several equivalent 

form.  

6. The ASM chart may be equivalently expressed as a state and output table .  

10. ASM chart 

Principal Component Of An ASM Chart 

•State Box.  

The state of the system is represented by a state box .It is a rectangular box .At the 

top left hand corner the name of state is shown ,which at the top right hand corner 

the state assignment is given .Within the state box ,the output signals are listed . 



 

• Decision box .It a diamond –shaped box with true false branches .Boolean 

condition is placed in the box and the decision is made from the value of one or 

more input signals .The decision box must follow and be associated with a state 

 

Conditional output box .A condition output box is shown in Fig. is a rectangular 

box with curved ends .It contain conditional output list .The conditional output 

depends on both the state of the system and the inputs .Therefore the conditional 

output signals are sometimes known as Mealy output .A condition output must 

follow a decision box 

 



Equivalent ASM charts ASM charts are not unique, it may have more than one 

equivalent form Fig. shown three equivalent ASM charts for combinational 

network Z=A(B+C). 

 

11.  control implementation 

Conversion Of State Diagram To An ASM Chart  

ASM chart can be derived derived an ASM from state diagram of machine ,but 

certain rules must be followed when constructing an ASM block. First for every 

valid combination of input, there must be exactly one exit path defined .Second ,no 

internal feedback within an SM block is allowed.  

Mealy Machine. 

 In case of Mealy machine, output is a function of both present state and input . For 

construction of ASM chart from Mealy state diagram, we should follow the 

following steps.  

1. Represent each state by state boxes. 

2. Put input in decision box after each state box. 



3. The Mealy output appears in conditional output boxes since they depend on both 

the state and input. 

4. Mealy circuit output written only when it is equal to '1' i.e. true.  

5. Depending on value of input connect the path to next state box. 

 



 

Moore Machine. In case of Moore machine, output is a function of the present state 

only . For construction of ASM chart from Moore state diagram, we should follow 

the following steps 

1. Represent each states by state boxes.  

2. The Moore output are placed in the state boxes since they do not depend on the 

input . 

 3. After each state box put the input in decision box. 

 4. Depending on value of input connect the path to next state box. 

Example3 Convert the state diagram of Fig. below to ASM chart. 



 

 

 

 

 

 

 



12. Constructing an ASM Chart from a Timing Diagram 
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UNIT –V- ASYNCHRONOUS SEQUENTIAL LOGIC AND MEMORY UNIT 



 

 UNIT V-  

 

Circuits with Latches - Analysis procedure and Design Procedure - Reduction of state and Flow tables - Race 

- Free State Assignment 
 

   5.1 SR LATCH 
 

The SR latch is a digital circuit with two inputs s and R and two cross-coupled NOR gates or two cross-coupled 

NAND gates. 

SR Latch with NOR: 

The cross-coupled NOR gate circuit is shown in Fig. (a) This circuit and its truth table are taken from Fig (b) In 

order to analyze the circuit by the transition-table method , it is redrawn as fig(c). To see the feedback: path 

from the output of gate I to the input of gate 2. The output Q is equivalent to the excitation variable Y and the 

secondary variable y, The Boolean function for the output is 

Y = [(s + y)' + RI'] (S +y )R' = SR' + R'y 



 

 

Plotting Y  in  the Fig. (d). we obtain the transitio n table for table circuit 

The state with SR = 10 is a stable stale because Y = y = I; likewise. the state with SR = 0 1 is a sta - ble state. 

because Y = y = 0. With SR = 10. the output Q = Y = I and the latch is said to be set. Changing S to 0 leaves the 

circuit in the set state . With SR =01 . the output Q = Y = 0 and the latch is said to be reset. A change of R back 

to 0 leaves the circuit in the reset state. These conditions are also listed in the truth table. The circuit exhibits 

some difficulty when both S and R are equal to  1.  From the truth table, we see that both Q and Q' are equal to 

0. a condition that violates the requirement that these two  outputs be the complement of each other. Moreover, 

from the transition table. we note that going from SR = 1 1 and SR = 00 produces an unpredictable result. If S 

goes to 0 first. the output remains at 0. but if R goes to 0 first. the output goes to 1. This condition can be 

expressed by the Boolean function SR = O. which states that the ANDing of S and R must always result in a 0. 

 Coming back to the excitation function. we note that when we OR the Boolean expression , SR' with SR. the 

result is the single variable S: 

SR' + SR = S(R' + R) = S 

we infer that SR' = S when SR = 0 

Y = SR' + R'y 

reduced excitation function Y=S + R'y when SR =0 

1.3 SR Latch with NAND: 

The NAND latch operates wi th both inputs normally at 1. unless the state of the latch has to be changed . The 

application of 0 to R causes the out put Q to goto 0, thus putting the latch in the reset state. After the R input 

returns to 1, a change of S to 0 causes a change to the set state. The condition to be avoided here is that both S 

and R not be 0 simultaneously. This condition is satisfied when S 'R' =0. The excitation function for the circuit 

in Fig.(c1) is  

Y - [S(Ry)']' = S' + Ry 

Comparing this with the excitation function of the NOR latch. we note that S has been replaced with S' and R' 

with R.Hence, the input variables for the NAND latch require the complemented values of those used in the 

NOR latch. For this reason. the NAND latch is sometimes referred to as an S'R' latch (or S- R latch). 



 

( a1) Cross coupled circuit 

 

(b1)Truth Table 

 

(c1)Circuit with showing feedback 

 

(d1)Transition table 

 

2. Analysis procedure and Design Procedure 

2.1 Analysis Procedure : 

Procedure to analyze an asynchronous sequential circuits with SR latches: 

1. Label each latch output with Yi and its external feedback path (if any) with yi 

2. Derive the Boolean functions for each Si and Ri 

3. Check whether SR=0 (NOR latch) or S’R’=0 (NAND latch) is satisfied 

4. Evaluate Y=S+R’y (NOR latch) or Y=S’+Ry (NAND latch) 

5. Construct the transition table for Y=Y1Y2…Yk 

6. Circle all stable states where Y=y 

Analysis Example: 



Asynchronous sequential circuits can be constructed with the use of SR latches with or without external 

feedback paths . There is always a feedb ack loop within the latch itself.Th e analysis of a circ uit with latches 

will be demonstrated by means of a specific example from which it will be possible to generalize the proced 

ural steps necessary to analyze other similar circuits. 

 The following circuit  figure 2 shown here has two SR latches with outputs Y1 and Y2. 

 

Fig 2. Example of a circuit with Srlatches 

There are two input  x1 and x2. and two external feedback loops giving rise to the secondary varia bles. y1  and 

y2,then firs t obtain the Boolean function for the S and R inputs in each latch 

 
 

We then check whether the condition SR = 0 is satisfied to ensure proper operation of the circuit. 

 
 

The transition table is given below in figure  3 

 



 
Fig.3  Transition table 

 

The result is 0 because x1x1’=x2x2’=0 

 

The next step is to derive the transition tab le of the circuit. Remember that thetransition table specifies the 

value of Y as a funct ion of y and x. The excitation functions are derived from the relation Y = S + R'y.  

 

 
 

2.2 Design Procedure: 

 
1.Obtain a primitive flow table from the given de sign specifications. This is the most difficult pan of the design 
, because it is necessary to use intuition and experience to arrive at the correct interpretation of the problem 
specifications.  
2.Reduce the flow table by merging rows in the primitive table.   
3.Assign binary state variables to eac h row of the reduced flow table to obtain the transition table.  

4.Assign outp ut value s to the dashes associ ated with the unstable states to obtain the output maps.  
 
5.Simplify the Boolean functions of the excitation and output variables and draw the logic diagram. 

Design Example: 

Primitive table: 

It is necessary to design a gated latch circuit with two inputs G (gate) and D (data) and one out-put Q. Binary 

information present at the D input is transferred to the Q output when G is equal to I. The Q output will follow 

the D input as long as G = 1. When G goes to 0, the information that was present at the D input at the time the 

transition occurred is retained at the Qoutput. The gated latch is a memory element that accepts the value of D 

when G = I and retains this value after G goes to 0. Once G = 0, a change in D does not change the value of the 

output Q. The Gated-latch total states is given in Table 1. 

2.3 Derive transition table and flow table: 

 no simultaneous transitions of two variables 

 state a: after inputs DG=01 

 state b: after inputs DG=11  

 only one stable state in each row 

 



 
Table1 . Gated-latch total states 

 

The primitive flow table  for the gated latch is shown in Table 2 . It has one row for each state and one column 

for each input combination. First. we fill in one square in each row belonging to the stable state in that row. 

These entries are determined from Table 1. For example, State a  is stable and the output is 0 when the input is 0 

1. This infomation is entered into the flow table in the first row and second column . Similarly. the other five 

stable states together with their output are entered into the corresponding input columns. 

we can enter dash marks in each row that differs in two or more variables from the input variables associated 

with the stable state.For example, the first row in the flow table shows a stable state with an input of 0 1. Since 

only one input can change at any given time. it can change to 00 or 11. but not to 10 . Therefore. we enter two 

dashes in the 10 column of row a.. This will eventually result in a don' t-care condition for the next state and 

output in this square . Following the same procedure, we fill in a second square in each row of the primitive 

flow table. 

 
Table 2.Primitive Flow table 

 
2.4 Reduction of the Primitive Flow Table: 

 Two or more rows in the primitive flow table can be merged if there are nonconflicting states and outputs in 

each of columns.  

– Primitive flow table is separated into two parts of three rows each in shown in fig 5. 



 
 

Fig 5. State that are canditates for merging 

 

 
Fig 6 Reduced table(two alternatives) 

 
Each part shows three stable states that can be merged because there are no conflicting entries in each o f the 

four columns. The first column shows state c in all the rows and 0 or a dash for the output. Since a dash 

represents a don' t-care condition, it can be associated with any state or output. The two dashes in the first 

column can be taken to be 0 output to make all three rows identical to a stable state c with a 0 output. The 

second column shows that the dashes can be assigned to correspond to a stable state a with a 0 output. Note that 

if a state is circled in one of the rows, it is also circled in the merged row. Similarly. the third column can be 

merged into an unstable state b with a don't-care output, and the fourth column can be merged into stable state d 

and a 0 output. Thus, the three rows a, c and d can be merged into one row with three stable states and one 

unstable stale, as shown in the first row of Fig.6.  

  
2.5 Transition Table and Logic Diagram: 

In order to obtain the circuit described by the reduced flow table, it is necessary to assign a distinct binary value 

to each state. This assignment converts the flow table into a transi-tion table. In the general case, a binary state 

assignment must be made to ensure that the circuit will be free of critical races. Assigning 0 to sta te a and 1 to 

state b in the reduced flow table of Fig. 6, we obtain the transition table of Fig.7 . The transition table is, in 

effect, a map for the excitation variable Y. The simplified Boolean function for Y is then ob-tai ned from the 

map as 

Y = DC  + C 'y 

 
Fig 7. Transition Table Y = DC  + C 'y 

 

 



There are two don' t-care outputs in the final reduced flow table. If we assign values to the output as shown in 

Fig. 8, it is possible to make output Q identical to the map of the excitation function Y.Tthe logic diagram of the 

gated latch is as shown in Fig. 9 

 
Fig 8. Output map for gated latch Q=Y 

 
Fig 9. Logic diagram of the gated latch 

 
2.6 Assign Outputs to Unstable States: 

 

The stable states in a flow table have specific output values associated with them. The unstable states have 

unspecified output entries designated by a dash. The output values for the unstable states must be chosen so that 

no momentary false outputs occur when the circuit switches between stable states. The Flow table and     

Output Assignment are shown in fig 10(a) and (b) respectively. 

•the unstable states have unspecified output values 

•no momentary false outputs occur when circuit switches between stable states 

0→0 ==0 : assign 0 if the transient state between two 0 stable states 

 1→1 = 1 : assign 1 if the transient state between two 1 stable states  

0→1, 1→0 = don’t care: assign don’t care if the transient state between two different stable states 

       
Fig 10(a). Flow table    (b)Output Assignment 

 

 

 



 

3. Reduction of state and Flow tables 

Sequential circuits. 

The combinational circuit does not use any memory. Hence the previous state of input does not have any effect 

on the present state of the circuit. But sequential circuit has memory so output can vary based on input. This 

type of circuits uses previous input, output, clock and a memory element. 

 

Figure 1:  Representation of a Sequential circuit. 

 In this model the effect of all previous inputs on the outputs is represented by a state of the circuit. Thus, the 

output of the circuit at any time depends upon its current state and the input. These also determine the next state 

of the circuit. The relationship that exists among the inputs, outputs, present states and next states can be 

specified by either the state table or the state diagram. 

3.1 State Table 

The state table representation of a sequential circuit consists of three sections labelled present state, next 
state and output. The present state designates the state of flip-flops before the occurrence of a clock pulse. The next 
state shows the states of flip-flops after the clock pulse, and the output section lists the value of the output variables 
during the present state. 

3.2 State Diagram 

In addition to graphical symbols, tables or equations, flip-flops can also be represented graphically by a state diagram. In 
this diagram, a state is represented by a circle, and the transition between states is indicated by directed lines (or arcs) 
connecting the circles. An example of a state diagram is shown in Figure 2 below. 



 

Figure 2: An example of a state diagram 

The binary number inside each circle identifies the state the circle represents. The directed lines are labelled with two 
binary numbers separated by a slash (/). The input value that causes the state transition is labelled first. The number 
after the slash symbol / gives the value of the output. For example, the directed line from state 00 to 01 is labelled 1/0, 
meaning that, if the sequential circuit is in a present state and the input is 1, then the next state is 01 and the output is 
0. If it is in a present state 00 and the input is 0, it will remain in that state. A directed line connecting a circle with itself 
indicates that no change of state occurs. The state diagram provides exactly the same information as the state table and 
is obtained directly from the state table. 

3.3 State Reduction:  

The reduction of the number of flip-flops in a sequential circuit is referred to as the state reduction problem. State-
reduction algorithms are concerned with procedures for reducing the number of states in a state table, while keeping 
the external input-output requirements unchanged. Since (N) flip-flops produce (2N) states, a reduction in the number 
of states may (or may not) result in a reduction in the number of flip-flops. An unpredictable effect in reducing the 
number of flip-flops is that sometimes the equivalent circuit (with fewer flip-flops) may require more combinational 
gates. We will illustrate the state reduction procedure with an example. We start with a sequential circuit whose 
specification is given in the state diagram shown in Figure 3. In this example, only the input-output sequences are 
important; the internal states are used merely to provide the required sequences. For this reason, the states marked 
inside the circles are denoted by letter symbols instead of their binary values. This is in constant to a binary counter, 
where the binary value sequence of the state themselves is taken as the outputs. 



 

Figure 3: State diagram 

There are an infinite number of input sequences that may be applied to the circuit; each results in a unique 

output sequence. As an example, consider the input sequence [01010110100] starting from the initial state (a). 

Each input of 0 or 1 produces an output of 0 or 1 and causes the circuit to go to the next state. the output and 

state sequence for the given input sequence as follows: With the circuit in initial state (a), an input of 0 produces 

an output of 0 and the circuit remains in state (a). With present state (a) and input of 1, the output is 0 and the 

next state is (b). With present state (b) and input of 0, the output is 0 and next state is (c). Continuing this 

process, we find the complete sequence to be as follows: 

 

In each column, we have the present state, input value, and output value. The next state is written on top of the 

next column. It is important to realize that in this circuit, the states themselves are of secondary importance 

because we are interested only in output sequences caused by input sequences. Now let us assume that we have 

found a sequential circuit whose state diagram has less than seven states and we wish to compare it with the 

circuit whose state diagram is given by Figure 3. If identical input sequences are applied to the two circuits and 

identical outputs occur for all input sequences, then the two circuits are said to be equivalent (as far as the input-

output is concerned) and one may be replaced by the other. The problem of state reduction is to find ways of 

reducing the number of states in a sequential circuit without altering the input-output relationships. We now 

proceed to reduce the number of states for this example. First, we need the state table; it is more convenient to 

apply procedures for state reduction using a table rather than a diagram. The state table of the circuit is listed in 

Table 1 and is obtained directly from the state diagram. 

 

 

 

 

 

 

 

 

 



Table 1: State table 

 

An algorithm for the state reduction of a completely specified state table is given here without proof:"Two 

states are said to be equivalent if, for each member of the set of inputs, they give exactly the same output and 

send the circuit either to the same state or to an equivalent state." When two states are equivalent, one of them 

can be removed without altering the input-output relationships. Now apply this algorithm to Table 1. Going 

through the state table, we look for two present states that go to the same next state and have the same output 

for both input combinations. States (g) and (e) are two such states: one of these states can be removed. The 

procedure of removing a state and replacing it by its equivalent is demonstrated in Table 2. The row with 

present state (g) is removed and state (g) is replaced by state (e) each time it occurs in the next-state columns. 

Table 2: Reducing the  State table 

 

Table 3: Reduced State table 

 



 

Figure 4: Reduced State diagram 

Present state (f) now has next states (e and f) and outputs 0 and 1 for x=0 and x=1, respectively. The same next 

states and outputs appear in the row with present (d). Therefore, states (f and d) are equivalent and state (f) can 

be removed and replaced by (d). The final reduced table is shown in Table 3. The state diagram for the reduced 

table consists of only five states and is shown in Figure 4. This state diagram satisfies the original input-output 

specifications and will produce the required output sequence for any given input sequence. The following list 

derived from the state diagram of Figure 4 is for the input sequence used previously (note that the same output 

sequence results, although the state sequence is different): 

 

Infact, this sequence is exactly the same as that obtained for Figure 3, if we replace (g by e and f by d). 

Checking each pair of states for possible equivalency can be done systematically by means of a procedure that 

employs an implication table. The implication table consists of squares, one for every suspected pair of possible 

equivalent states. By judicious use of the table, it is possible to determine all pairs of equivalent states in a state 

table. The use of the implication table for reducing the number of states in a state table is demonstrated in the 

next section. The sequential circuit of this example was reduced from seven to five state. In general, reducing 

the number of states in a state table may result in a circuit with less equipment. However, the fact that a state 

table has been reduced to fewer state doesn't guarantee a saving in the number of flip-flops or the number of 

gates. 

Example 1: Consider a sequential circuit shown in Figure 5. It has one input x, one output Z and two state 

variables Q1Q2 (thus having four possible present states 00, 01, 10, 11). 



 

Figure 5: A sequential circuit 

The behaviour of the circuit is determined by the following Boolean expressions: 

       Z = x*Q1 

    D1 = x' + Q1 

    D2 = x*Q2' + x'*Q1' 

These equations can be used to form the state table. Suppose the present state (i.e. Q1Q2) = 00 and input x = 0. 

Under these conditions, we get Z = 0, D1 = 1, and D2 = 1. Thus the next state of the circuit D1D2 = 11, and this 

will be the present state after the clock pulse has been applied. The output of the circuit corresponding to the 

present state Q1Q2 = 00 and x = 1 is Z = 0. This data is entered into the state table as shown in Table 4. 

 

Table 4: State table for the sequential circuit in Figure 5. 

 

The state diagram for the sequential circuit in Figure 5 is shown in Figure 6. 



 

Figure 6: State Diagram of circuit in Figure 5. 

3.4 Implication Table: 

 The state-reduction procedure for completely specified state tables is based on the algorithm that two states in a 

state table can be combined into one if they can be shown to be equivalent. Two states are equivalent if for each 

possible input, they give exactly the same output and go to the same next states or to equivalent next state. 

Consider for example, the state table shown in Table 5. The present states (a) and (b) have the same output for 

the same input. Their next states are (c and d) for x=0 and (b and a) for x=1. If we can show that the pair of 

states (c, d) are equivalent, then the pair of states (a, b) will also be equivalent because they will have the same 

or equivalent next states. When this relationship exists, we say that (a, b) imply (c, d). Similarly, from the last 

two rows of Table 5, we find that the pair of states (c, d) imply the pair of states (a, b). The characteristic of 

equivalent states is that if (a, b) imply (c, d) and (c, d) imply (a, b), then both pairs of states are equivalent; that 

is, (a and b) are equivalent as well as (c and d). As a consequence, the four rows of Table 5 can be reduced to 

two rows by combining (a and b) into one state and (c and d) into a second state. 

 The checking of each pair of states for possible equivalence in a table with a large number of states can 

be done systematically by means of an implication table. The implication table is a chart that consists of 

squares, one for every possible pair of states, that provide spaces for listing any possible implied states. By 

judicious use of the table, it is possible to determine all pairs of equivalent states. The state table of Table 6 will 

be used to illustrate this procedure. The implication table is shown in Figure 7. On the left side along the 

vertical are listed all the states defined in the state table except the first, and across the bottom horizontally are 

listed all the states expect the last. The result is a display of all possible combinations of two states with a square 

placed in the intersection of a row and a column where the two states can be tested for equivalence. Two states 

that are not equivalent are marked with a cross (x) in the corresponding square, whereas their equivalence 

recorded with a check mark (√). Some of the squares have entries of implied states that must be further 

investigated to determine whether they are equivalent or not. The step-by-step procedure of filling in the 

squares is as follows. First, we place a cross in any square corresponding to a pair of states whose outputs are 

not equal for every input. In this case, state (c) has a different output than any other state, so a cross is placed in 

the two squares of row (c) and the four squares of column (c). There are nine other squares in this category in 

the implication table. 

 

 

 

 

 

 

 



Table 5: State Table to Demonstrate Equivalent States. 

 
Next, we enter in the remaining squares the pairs of states that are implied by the pair of states representing the 

squares. We do that starting from the top square in the left column and going down and then proceeding with 

the next column to the right. From the state table, we see that pair (a,b) imply (d,e), so (d,e) is recorded in the 

square defined by column (a and row b). We proceed in this manner until the entire table is completed. Note 

that states (d,e) are equivalent because they go to the same next state and have the some output. Therefore, a 

check mark is recorded in the square defined by column (d and row e), indicating that the two states are 

equivalent and independent of any implied pair. The next step is to make successive passes through the table to 

determine whether any additional squares should be marked with a cross. A square in the table is crossed out if 

it contains at least one implied pair that is not equivalent. For example, the square defined by (a) and (f) is 

marked with a cross next to (c,d) because the pair (c,d) defines a square that contains a cross. This procedure is 

repeated until no additional squares can be crossed out. 

Finally, all the squares that have no crosses are recorded with check marks. These squares define pairs of 

equivalent states. In this example, the equivalent states are: (a,b) (d,e) (d,g) (e,g). 

 

Table 6: State Table to be Reduced. 

 

 

Figure 7: Implication table. 

We now combine pairs of states into larger groups of equivalent states. The last three pairs can be combined 

into a set of three equivalent states (d,e,g) because each one of the states in the group is equivalent to the other 



two. The final partition of the states consists of the equivalent states found from the implication table, together 

with all the remaining states in the state table that are not equivalent to any other state. (a,b) (c) (d,e,g) (f) This 

means that Table 6 can be reduced from seven states to four states, one for each member of the above partition. 

The reduced table is obtained by replacing state (b by a and states e and g by d). 

Table 7: Reduced state table 

 

3.5 Merger Diagram:  

Having found all the compatible pairs, the next step is to find larger sets of states that are compatible. The 

maximal compatible is a group of compatibles that contains all the possible combinations of compatible states. 

The maximal compatible can be obtained from a merger diagram, as shown in Figure 8. The merger diagram is 

a graph in which each state is represented by a dot placed along the circumference of a circle. Lines are drawn 

between any two corresponding dots that form a compatible pair. All possible compatibles can be obtained from 

the merger diagram by observing the geometrical patterns in which states are connected to each other. An 

isolated dot represents a state that is not compatible to any other state. A line represents a compatible pair. A 

triangle constitutes a compatible with three states. An nstate compatible is represented in the merger diagram by 

an n-state polygon with all its diagonals connected. The merger diagram of Figure 8 is obtained from the list of 

compatible pairs derived from the implication table. There are seven straight lines connecting the dots, one for 

each compatible pair. The lines from a geometrical pattern consisting of two triangles connecting (a, c, d) and 

(b, e, f) and a line (a, b). The maximal compatibles are: (a,b) (a,c,d) (b,e,f) Figure 8b shows the merger diagram 

of an 8-state. The geometrical patterns are a rectangle with its two diagonals connected to form the 4-state 

compatible (a, b, e, f), a triangle (b, c, h), a line (c, d), and a single state (g) that is not compatible to any other 

state. The maximal compatibles are: 

(a,b,e,f) (b,c,h) (c,d) (g) 

 

Figure 8: Merger Diagram 



3.6 Reduction of flow table 

Reduction of primitive flow table has two functions:  Elimination of redundant stable states, Merging those 

stable states which are distinguishable by input states. 

Let 00 = a; 01 = b; 11 = c; 01 = d  

 00 = a  

 01 = b  

 11 = c 

 01 = d  

The resulting flow table is 

 

4. Race‐Free State Assignment 
A race condition is caused when two or more binary state variables change value due to change in an input 

variable  

 Unequal delays may cause state variables to change in unpredictable manner  

  Race condition may be (i) non- critical, or (ii) critical 

(i) Non critical race 

 

 

 



Possible transitions 

00->11 

00->01->11 

00->10->11 

(ii) Critical race 

 

Possible transitions 

00->11 

00->01 

00->10 

Once a reduced flow table has been derived, the next step in the design is to assign binary variables to each 

stable state. The main objective in choosing a proper binary state assignment is the prevention of critical races. 

Adjacent Binary Values: 2 binary values are said to be adjacent if they differ in only one  variable ( e.g. 010 and 

011 are adjacent). 

 2‐Row Flow‐Table: The assignment of a single variable to a flow table with two rows does not impose 

critical race problems. [two adjacent adjacent values 0 and 1] 

 3‐Row Flow‐Table : 

Example: A flow table with 3 states requires an assignment of 2 variables. • We have the following 

transitions: a -> b, a -> c, b -> a, b -> c & c -> a (see the transition diagram in figure 9. 

 

 

Figure 9: (a)Flow table   (b) Transition diagram 

 

If we take the following assignment: 



 

This assignment will cause a critical race during the transition from a to c (2 changes in the binary state ), and 

also from c to a. 

A race‐free assignment can be obtained by adding an extra row to the original flow table :  The use of an extra 

row will not increase the number of binary state variables (2 variables), but it allows the formation of cycles 

between two stable states. The added row (d) is assigned the binary value (10), which is adjacent to both a & c. 

The transition from a to c must go through d, thus avoiding a critical race. The two squares with dashes in row d 

represent unspecified states (don’t care). These squares must not be assigned to 01 in order to avoid the 

possibility of stable state being established in the 4th row. Then the corresponding flow table and transition 

diagram will be shown in figure 10. 

 

Figure 10: (a) Flow table  (b) Transition diagram 

The new flow table is converted to a transition table to complete the design process 

 

Figure 11: (a) Flow table    (b) Transition table 

 


