Introduction

)

O

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

“www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT -1 - SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

Introduction

UNIT I

INTRODUCTION

1. Program

A program performs a task in the computer. But, in order to be executed, a
program must be written in the machine language of the processor of a computer.
Unfortunately, it is extremely difficult for humans to read or write a machine language
program. This is because a machine language is entirely made up of sequences of bits.
However, high level languages are close to natural languages like English and only use
familiar mathematical characters, operators and expressions. Hence, people prefer to
write programs in high level languages like C, C++, Java, or Python. A high level
program is translated into machine language by translators like compiler or interpreter.

1.1 ABOUT PYTHON

Guido-Van-Rossum

Introduction

Python is a high level programming language that is translated by the python
interpreter. As is known, an interpreter works by translating line-by-line and executing.
It was developed by Guido-Van-Rossum in 1990, at the National Research Institute for
Mathematics and Computer Science in Netherlands. Python doesn’t refer to the snake
but was named after the famous British comedy troupe, Monty Python’s Flying Circus.

The following are some of the features of Python:

> Python is an Open Source: It is freely downloadable, from the link
“http:// python.org/”
» Python is portable: It runs on different operating systems / platforms

A\

Python has automatic memory management

» Python is flexible with both procedural oriented and object oriented
programming

» Python is easy to learn, read and maintain

Itis very flexible with the console program, Graphical User Interface (GUI) applications,
Web related programs etc.

Points to remember while writing a python program :

» Case sensitive : Example - In case of print statement use only lower case and
not upper case, (See the snippet below)

22 print{"hello"> + Walid
hello .
3> Print("hello"> = Invalid

Traceback {most recent call last):

File "“"Cstdim>",. line 1, in <module>

ggmeErrur: name ‘Print’ is not defined
>

Introduction

» Punctuation is not required at end of the statement
> In case of string use single or double quotesi.e. ¢ >or “ 7

» Must use proper indentation: The screen shots given below show, how the value
of “i” behaves with indentation and without indentation.

E_a *fl.py - C/Users/Administrator/AppData/Local/Programs/Python/Python37-32/f1.p... E@
File Edit Format Run Options Window Help

i range(5):

| - < With Indentation

Ln:3 Col: 4
L_é' SyntaxError @
E_&fl.p}-‘-C:_.-'U5Ers_.-'.'ittlministratu:r,.-’itppDc - o || B || ER
File Edit Format Run Options | -:0} expected an indented block
i range (5): -
BEIRE (1)
_
Lm:2 Col:5

Without Indentation

» Special characters like (,), # etc. are used
» () -> Used in opening and closing parameters of functions

» #->The Pound sign is used to comment a line

Introduction

1.2 TWO MODES OF PYTHON PROGRAM

Python Program can be executed in two different modes:

» Interactive mode programming
» Script mode programming

1.2.1 Interactive Mode Programming

It is a command line shell which gives immediate output for each statement, while
keeping previously fed statements in active memory. This mode is used when a user
wishes to run one single line or small block of code. It runs very quickly and gives instant
output. A sample code is executed using interactive mode as below.

F¥ python 3.7 (32-bit) ==

ython 3.7.2 (tags/v3.?.2:%a3ffcB492, Dec 23 2018, 22:28:52> [MSC v.1916 32 bhit .
(Intel>] on win32

ype “"help". “copyright", “credits" or "license" for more information.

>3 myuniv = "Sathyabama t..."

>3 print<{myuniv)

athyabama *...

>

Interactive mode can also be opened using the following ways:

i) From command prompt c :> users\\...>python

Introduction

F® Python 3.7 (32-bit) o B X

ython 3.7.3 (v3.7.3:efdechedl2, Mar 25 2019, 21:26:53)> [MSC v.1%16 32 hit (Inte .
1>1 on win32
>§1}JE "help". “copyright', "creditz" or "license™ for more information. i

The symbol “>>>" in the above screen indicates that the Python environment is
in interactive mode.

ii) From the start menu select Python (As shown below)

L% Snipping Tool

|
i :
o) Paint k
il
- VLC media player k

E Python 3.7 (32-bit)

1.2.2 Script Mode Programming

When the programmer wishes to use more than one line of code or a block of
code, script mode is preferred. The Script mode works the following way:

i) Open the Script mode

Introduction

i) Type the complete program. Comment, edit if required.
iii) Save the program with a valid name.

iv) Run

V) Correct errors, if any, Save and Run until proper output

The above steps are described in detail below:

)} To open script mode, select the menu “IDLE (Python 3.7 32-biz) ” from
start menu

Programs (4)
@ IDLE (Python 3.7 32-bit)
¥ Python 3.7 (32-bit)
7 Python 3.7 Module Docs (32-bit)
% Python 3.7 Manuals (32-bit)

i) After clicking on the menu “IDLE (Python 3.7 32-bit)” , a new
window with the text Python 3.7.3 shell will be opened as shown below:

'La Python 2.7.3 Shell | B) |

|Fi|e Edit Shell Debug Options Window Help
Bython 3.7.3 (v3.7.3:ef4ecéedl2, Mar 25 2019, 21:26:53) [MSC v.1916 32 bit (Inte *
1)] on win3z ‘ ‘

Type "help™, "copyright"™, "credits™ or "license ()" for more information.
>>> |

Ln:3 Col:4

iii) Select File > New, to open editor. Type the complete program.
iv) Select File again; Choose Save.

This will automatically save the file with an extension “.py”.

Introduction

V) Select Run - Run Module or Short Cut Key F5 (As shown in the
screen below)

E__a fl.py - C:/Users/Administrator/AppData/Local/Programs/Python/Python37-32/1.py... E@
File Edit Format Options Window Help

= 5 Python Shell i
b = 2§ Check Module Alt+X -
sTeokE Run Module F5

Ln: 2 Col: 6

The output of the program will be displayed as below:

1.3 VARIABLES >> Sum of aand b is: 30

Variable is the name given to a reserved memory locations to store values. It is also
known as Identifier in python.

Need for variable:

Sometimes certain parameters will take different values at different time. Hence, in order
to know the current value of such parameter we need to have a temporary memory which
is identified by a name that name is called as variable. For example, our surrounding
temperature changes frequently. In order to know the temperature at a particular time,
we need to have a variable.

Naming and Initialization of a variable

A variable name is made up of alphabets (Both upper and lower cases) and digits
No reserved words

Initialize before calling

Multiple variables initialized

Dynamic variable initialization

SANESEE A

Introduction

i. Consist of upper and lower case alphabets, Numbers (0-9). E.g. X2

In the above example, a memory space is assigned to variable X2. The
value of X2 is stored in this space.

X2 = —3 Value

ii. Reserved words should not be used as variables names.

P python 3.7 (32-bit) o[@] =
Python 3.7.2 (tags- v3.7.2:9a3ffc@492, Dec 23 2018, 22:2@:52) [MSC v.1916 32 hit .

(Intel>] on win32
Type "help”, “copyright", “credits" or "license" for more information.

»>»> # Ualid Variahle
533 x2 = 25

>»? print{xZ>

25

>>»> # Invalid variahle

... and = 25
File "¢stdin>", line 2
and = 25 $ "and" is reserved word

SyntaxError: invalid syntax
D

m

In the above example “and” is a reserved word, which leads to Syntax error

10

Introduction

iii. Variables must be initialized before it called , else it reports “is not defined ”
error message as below E.g.: a=5 print(a)

P Python 27 B2-bi) oo =

thon 3.7.2 (ta s/93.7.2:%adffc@d92, Dec 23 2018, 22:28:52) [HSC v.1916 32 hit .
{Intel)] on wind

gge "he]p“, “"copyright"”, "credits" or “license" for more information.

233 print(al

raceback (most pecent call last):
File "{stdin>", line 1, in {module’

aneError: name ‘a’ iz not defined

22?

In the above example “a” is called before it initialized. Hence, the python
interpreter generates the error message: NameError: “a’ is not defined.

iv. Multiple variables can be initialized with a common value. E.g. : x=y=2=25

B python 3.7 (32-bit) =% =l <"
Python 3.7.2 (tags/v3.7.2:9a3ffcB492, Dec 23 20818, 22:28:52) [MEC v.1%16 32 hit .
‘Intel?] on win32

Type "help". “copyright", “credits" or "license" for more information.

>2> printda)d

Tracebhack <(most recent call last):

File "{stdin>", line 1, in {module>

MameError: name ‘a’ is not defined

23 x=y=z2=25

>3 printly)

25

>2r printix)
25

In the above three variables x, y, z is assigned with same value 25.

v. Python also supports dynamic variable initialization. E.g.: x,y,z=1, 2,3

11

Introduction

B Python 3.7 (32-bit) ol o

Python 3.7.2 (tags/v3.7.2:9a3ffcB492, Dec 23 2018, 22:208:52> [MSC v.1916 32 hit .
(Intel>] on win32

Type “help"”, “copyright". “credits" or "license" for more information.

23 w,y,2= 1,23

i)) print{x)

>»» printCy)
2

>3 print(z)
3
>}

Proper spacing should be given
e print (10+20+30) > bad style
e print (20 + 30 + 10) - good style
1.3.1 Expression:

An expression is a combination of variables, operators, values and calls to
functions. Expressions need to be evaluated.

Need for Expression:

Suppose if you wish to calculate area. Area depends on various parameters in
different situations. E.g. Circle, Rectangle and so on...

12

Introduction

el
rcie

(
dld - ™ - N1
Solution For Area =~ “ Rectangle

£ d

)
)
—
O
=
((®]
\TJ

A =omr A =wl
l
T
En w

In order to find area of circle, the expression @ * r * r must be evaluated and for the
rectangle the expression is w * | in case of rectangle. Hence, in this case a variable / value
/ operator are not enough to handle such situation. So expressions are used. Expression
is the combination of variables, values and operations.

A simple example of an expression is 10 + 15. An expression can be broken down into
operators and operands. Few valid examples are given below.

B® Python 3.7 (32-bit) =R RS ==

Python 3.7.2 (tags-v3.7.2:%a3ffcP492, Dec 23 2018, 22:28:52> [M5C v.1916 32 hit
{Intel>] on win32

Type "help'. “copyright'. “credits" or "license" for more information.

>>> # Examplel

m|

33> diameter = 25.8
>>» radious = diameter ~ 2
ig)Sprint (radious?>

>>» # Example2

333 i = 25 = (32> + 5 = 18
2% printdid

87.

>>> # Examplel

535 area = radious »* radious = 3.14
>>» print{areal

490.625

>>> # Exampled

535 5 + 25

38

>>>

13

Introduction

Invalid Expression :

Always values should be assigned in the right hand side of the variable, but in the below
example, the value is given in the left hand side of the variable, which is an invalid syntax
for expression.

P python 3.7 (32-bit) =1 =N S

Python 3.7.2 {tags-v3.7.2:9a3ffcB492, Dec 23 2018, 22:28:52> [MSC v.1916 32 .
CIntel>] on win32

Type "help". “copyright". "ceedits" or “license" for more information.

Pl = x

File "<stdin>", line 1

SyntaxError: can’t assign to literal

K3

Fl 1 b

1.4 Data Types

A Data type indicates which type of value a variable has in a program. However a python
variables can store data of any data type but it is necessary to identify the different types
of data they contain to avoid errors during execution of program. The most common data
types used in python are str(string), int(integer) and float (floating-point).

Strings: Sequence of characters inside single quotes or double quotes.
E.g. myuniv = “Sathyabama !..”
Integers: Whole number values such as 50, 100,-3

Float: Values that use decimal point and therefore may have fractional point E.g.: 3.415,
-5.15

By default when a user gives input it will be stored as string. But strings cannot be used

for performing arithmetic operations. For example while attempting to perform

arithmetic operation add on string values it just concatenates (joins together) the values
14

Introduction

together rather performing addition. For example : ‘25° + 20° = ‘45 (As in the below
Example)

B pythen 37 (32-bit) o[-]

Python 3.7.2 (tags v3.7.2:9a3ffc@492, Dec 23 2018, 22:20:52> [MSC v.1916 32 hit .
(Intel>] on win32

Type “"help”. “copyright", “credits" or “license" for more information.

»»>» x = input{"Enter E'>

Enter H25

»»» y=input{"Enter ¥

Enter Y280

2> E= Xty

>>» print(z)

2528

Eadd

Fortunately python have an option of converting one date type into another data type
(Called as “Casting”) using build in functions in python. The build function int() converts
the string into integer before performing operation to give the right answer. (As in the
below Program)

B python 3.7 32-bit) =n ==
ython 3.7.2 (tags-/v3.7.2:7a3FfcB492, Dec 23 2018, 22:20:52> I[MSC v.1916 32 hit .
{Intel>] on win32

ype "help". “copyright", 'credits" or '"license" for more information.
>>> x = input<{“Enter A">
nter A 25
>>> y=input("Enter B")>
>I;§El‘ 5 Cx2 Cyud empme—— T Cast
=z = int{x> + int<{y Y T wpe Castin
>>> print{"8um is", =) — "] AL 2
um is 27
>>>

1.4.1 Compound Data Types in Python:
i) List

The List is an ordered sequence of data items . It is one of the flexible and very frequently
used data type in Python. All the items in a list are not necessary to be of the same data

type.

15

https://www.programiz.com/python-programming/list

Introduction

Declaring a list is straight forward methods. Items in the list are just separated by commas
and enclosed within brackets [].

>>> listl = [3.141, 100, ‘CSE’, ‘ECE’, ‘IT’, °EEE’]

Methods used in list

Table 1.1 List Method

listl.append(x) To add item x to the end of the list “list1”
listl.reverse() Reverse the order of the element in the list “list1”
listl.sort() To sort elements in the list

listl.reverse() To reverse the order of the elements in list1.

ii) Tuple

Tuple is also an ordered sequence of items of different data types like list. But, in a list
data can be modified even after creation of the list whereas Tuples are immutable and
cannot be modified after creation.

The advantages of tuples is to write-protect data and are usually very fast when compared
to lists as a tuple cannot be changed dynamically.

The elements of the tuples are separated by commas and are enclosed inside open and
closed brackets.

>>> t = (50, 'python', 2+37j)

16

https://www.programiz.com/python-programming/tuple

Introduction

Table : 1.2 List Vs Tuple

List Tuple
>>> |ist1[12,45,27] >>> t1 = (12,45,27)
>>> |istl[1] = 55 >>>t1[1] =55
>>> print(listl) >>> Generates Error Message #
>>> [12,55,27] Because Tuples are immutable

iii) Set

The Set is an unordered collection of unique data items. Items in a set are not ordered,
separated by comma and enclosed inside { } braces. Sets are helpful in performing
operations like union and intersection. However, indexing is not done because sets are
unordered.

Table : 1.3 List Vs Set

List Set
>>> .1 =[1,20,25] >>> S1= {1,20,25,25}
>>> print(L1[1]) >>> print(S1)
>>> 20 >>> {1,20,25}

>>> print(S1[1])

>>> Error , Set object does not support
indexing.

17

https://www.programiz.com/python-programming/set

Introduction

iv) Dictionary

The Python Dictionary is an unordered collection of key-value pairs.Dictionaries is
optimized for retrieving data when there is huge volume of data. They provide the key
to retrieve the value.

In Python, dictionaries are defined within braces {} with each item being a pair in the
form key: value. Key and value can be of any type.

>>> dl = {1:'value', 'key':2}

>>> type(d)

1.5 PYTHON’S BUILT-IN DATA TYPE CONVERSION FUNCTIONS

Table 1.4 : Python Built-in Data Type

Function Description Out Put

int(x) Converts x into integer whole
number >>>3 = int(input("Enter a"))
>>>p = int(input("Enter b"))
>>>c=a+b
>>>print("Sum is ,c)

float(x) Converts x into floating-point|>>>x =5
number >>> print(float(5))
>>>5.0

18

https://www.programiz.com/python-programming/dictionary

Introduction

Converts integer x into an

octal string

Function Description Out Put
str(x) Converts x into a string[>>>x =30
representation >>>y =70
>>> 7 = str(x) + str(y)
>>> print(z)
>>> 3070
chr(x) Converts integer x into a|>>>x =65
character >>> print(chr(x))
>>> A
>>>
hex(x) Converts integer x into a|>>> x=14
hexadecimal string >>> print(hex(x))
>>> Oxe
oct(x) S>> % =9

>>> print(oct(x))
>>> (0oll

However to identify the data type of a variable, an in-built python function “type (
)” is used. (Example Below)

F¥ Python 3.7 (32-bit)

=)

P22 =

“class 'dint’'>

“class 'str'>
e

>22 printCtype(x)?

>>» y = “"good"
>22 printCtypedy)?

I

Python 3.7.2 (tags v3.7.2:9a3ffcB492, Dec 23 2018, 22:2@8:5 .

(Intel>] on win32

Type “"help". “copyright", “credits" or “license" for more
55

19

Introduction

1.5.1 Python Built-in Functions

Table 1.5 : Built-in Functi

ons

Simple Functions

Function Description Output
abs() Return the absolute value of a[>>>a=-10
number. The argument may be an|>>> print(abs(a))
floating point number or a integer. |55 19
max() Returns the largest number from the{>>> max(12,20,30)
list of numbers >>> 30
min() Returns the smallest number from the|>>> min(12,20,30)
list of numbers >>> 12
pow() Returns the power of the given|[>>> pow(5,2)
number >>>25
round() It rounds off the number to the# E.g. 1:
nearest integer. >> round(4.5)
>>5
#Eg2
>> round(4.567,2)
>> 4,57
Mathematical Functions (Using math module)
ceil(x) It rounds x up to its nearest integer|>> math.ceil(2.3)
and returns that integer >> 3
>> math.ceil(-3.3)
>> -3
floor(x) It rounds x down to its nearest|>>math.floor(3.2)

integer and returns that integer

>>3
>> math.floor(-3.4)
>> -4

20

https://docs.python.org/3/library/functions.html#abs

Introduction

Function Description Example
cos(x) Returns the cosine of x , where x|>> math.cos(3.14159/2)
represents angle in radians >>0
>> math.co0s(3.14159)
>> -1
sin(x) Returns the sine of x, where X|>>math.sin(3.14159/2)
represents angle in radians >>1
>> math.sin(3.14159)
>>0
exp(x) Returns the exponential of x to the|>> math.exp(1)
base ‘e’. i.e. e* >> 271828
log(x) Returns the logarithm of x for the|>>> math.log(2.71828)
base e (2.71828) >>> 1
log(x,b) Returns the logarithm of x for the|>>> math.log(100,10)
specified base b. >>> 2
sqrt(x) Returns the square root of x >>> math.sqrt(16)

>>> 4

Note: To include the math module, use the following command:

import math

21

Introduction

1.6 CONDITIONAL STATEMENTS

When there is no condition placed before any set of statements, the program will
be executed in sequential manure. But when some condition is placed before a block of
statements the flow of execution might change depends on the result evaluated by the
condition. This type of statement is also called decision making statements or control
statements. This type of statement may skip some set of statements based on the
condition.

Logical Conditions Supported by Python

Equalto (==) Eg:a==

Not Equal (I=)Eg:al=b

Greater than (>) Eg:a>Db

Greater than or equal to (>=) Eg:a>=Db
Lessthan (<) Eg:a<b

YV V V V VYV V

Less than or equal to (<=) Eg:a<=b
Indentation

To represent a block of statements other programming languages like C, C++
uses “{ ...}” curly — brackets, instead of this curly braces python uses indentation using
white space which defines scope in the code. The example given below shows the
difference between usage of Curly bracket and white space to represent a block of
statement.

22

Introduction

Table 1.6 : C- Program Vs Python

C Program Python

X = 500 x = 500

y = 200 y = 200

if (x > y) if x >y:

{ print("x is greater than y")
printf("x is greater than y") lelif x == y:

} print("x and y are equal")

else if(x == vy) else:

{ print("x is less than y")
printf("x and y are equal")

; 1

else

{ Indentation (At least one White
printf("x is less than y") Space instead of curly bracket)

Without proper Indentation:

x =500
y =200
ifx>y:
print("x is greater than y")

In the above example there is no proper indentation after if statement which will lead to
Indentation error.

o

Introduction

1.6.1 If statement:

The ‘if’ statement is written using “if” keyword, followed by a condition. If the
condition is true the block will be executed. Otherwise, the control will be transferred
to the first statement after the block.

Syntax :
if <Boolean>:
<block>

In this statement, the order of execution is purely based on the evaluation of boolean
expression.

Example:

x =200
y =100
ifx>y:
print("X is greater than Y")
print(“End”)

Output:
X is greater than Y
End

In the above the value of x is greater than y , hence it executed the print statement
whereas in the below example x is not greater than y hence it is not executed the first
print statement

24

Introduction

x =100
y =200
ifx>y:
print("X is greater than Y")
print(“End”)

Output:
End

1.6.2 elif

The elif keyword is useful for checking another condition when one condition is false.

Example :

mark = 55

if (mark >=75):
print("FIRST CLASS")

elif mark >=50:
print("PASS")

{ & Python 3.7.2 Shell [==] =]

File Edit Shell Debug Options Window Help

Python 3.7.2 (tags/v3.7.2:2a3ffc0422, Dec 23 2018, 22:20:52) [M5C s
w.1916 32 kit (Intel)] on win32

Type "help", "copyright", "credits" or "license ()" for more inform
ation.

g g

RESTART: C:/Users/Administrator/AppData/Local/Programs,/Python/Pyt
hon37-32/f1.py

ELSS

g g

Ln:6 Col 4

Output:

25

Introduction

In the above the example, the first condition (mark >=75) is false then the control is
transferred to the next condition (mark >=50), Thus, the keyword elif will be helpful for
having more than one condition.

1.6.3 Else

The else keyword will be used as a default condition. i.e. When there are many
conditions, when the if-condition is not true and all elif-conditions are also not true,
then else part will be executed.

Example:

mark = 10

if mark >=75:
print("FIRST CLASS")

elif mark >= 50:
print("PASS")

else:
print("FAIL")

rbaPﬁMmBJBSMH = | B i

File Edit Shell Debug Options Window Help

Python 3.7.3 (v3.7.3:efdecéedl2, Mar 25 2019, 21:26:53) [MSC v.1916 32 bit (Inte
1)] on win32

Type "help", "copyright", "credits" or "license ()" for more information.

Frr

RESTART: C:/Users/online.SERVER/AppData/Local/Frograms/Python/Python37-32/f1l.py

FAIL
>3 |

Ln:6 Col:4
et/

In the example above, condition 1 and condition 2 fail. None of the preceding
condition is true. Hence, the else part is executed.
26

Introduction

1.7 ITERATIVE STATEMENTS

Sometimes certain section of the code (block) may need to be repeated again and again
as long as certain condition remains true. In order to achieve this, the iterative
statements are used. The number of times the block needs to be repeated is controlled
by the test condition used in that statement. This type of statement is also called as
the “Looping Statement”. Looping statements add a surprising amount of new power
to the program.

Need for Looping / Iterative Statement

Suppose the programmer wishes to display the string “Sathyabama !...” 150 times.
For this, one can use the print command 150 times.

print (“Sathyabama !...”)
print (“Sathyabama !...”)
150 times

print (“Satﬁy./.é.bama 1.7

The above method is somewhat difficult and laborious. The same result can be
achieved by a loop using just two lines of code. (As below)

for count in range (1,150):

print (“Sathyabama !...”)

27

Introduction

Types of looping statements
1) for loop
2) while loop

1.7.1 The ‘for’ Loop

The for loop is one of the powerful and efficient statements in python which
is used very often. It specifies how many times the body of the loops needs to be
executed. For this reason it uses control variables which keep tracks, the count of
execution. The general syntax of a ‘for’ loop looks as below:

for <variable> in range (A,B):

<body of the loop >

item in

for each
lsequence

Last
—~ item
reached?

Ji

. Body
of loop

\
Exit Loop / Next statement

Flow Chart: after body of loop
28

Introduction

Example 1: To compute the sum of first n numbers (i.e. 1+2+3+....... + n)

Sum.py
total =0
n = int (input ("Enter a Positive Number"))
for i in range(1, n+1):
total = total + i
print ("The Sum is ", total)

Note: Why (n+1)? Check in table given below.

Output:
& Python 37.2 Shel ol e)
File Edit Shell Debug Optiocns Window Help
Python 3.7.2 (tags/v3.7.2:9a3ffc0492, Dec 23 2018, 22:20:52) [M3C + =
12186 32 bit (Intel)] on win32
Type "help™, "copvright™, "credits" or "license ()" for more informa
e
RESTART: C:/Users/Administrator/AppData/Local/Programs/Pyvthon/Pyvth
on37-32/fl.py
Enter a Positiwve Numkber 5
The Sum is 15
Fr .
Ln:7 Col: 4

In the above program, the statement total = total + i is repeated again and again ‘n’
times. The number of execution count is controlled by the variable ‘i’. The range value
is specified earlier before it starts executing the body of loop. The initial value for the
variable i is 1 and final value depends on ‘n’. You may also specify any constant
value.

29

Introduction

1.7.2 The range() Function:

The range() function can be called in three different ways based on the number of
parameters. All parameter values must be integers.

Table 1.7: Categories of range function

Type Example Explanation
range(end) for i in range(5): This is begins at 0. Increments
print(i) by 1. End just before the value
Output : of end parameter.
0,1,2,3,4
range(begin, end) for i in range(2,5): Starts at begin, End before end
print(i) value, Increment by 1
Output :
2,34
range(begin,end,step) (for i inrange(2,7,2) Starts at begin, End before end
print(i) value, increment by step value
Output :
2,4,6

Example: To compute Harmonic Sum (ie: 1 + %+ 1/3 + % +1/n)

harmonic.py
total =0
n=int(input("Enter a Positive Integer:"))
for i in range(1,n+1):
total+= 1/i
print("The Sum of range 1 to ",n, "is", total)

30

Introduction

Output:

@ Python 3.7.2 Shell

File Edit Shell Debug Options Window Help

Dec 23 2018,

19a3ffc0492, 22:1201352)

32 bit (Intel)] win3iz2
Type "help™,

s

"ecopyright™, "credits™ or "license ()" for more in

: C:/Users/Administrator/EppData/

Local/Programs/Python

M3

(o] @ s

p

[Fs)

v.1316

formation.

aonai-—

/ BVt

Ln:7 Col: 4

Example:

Factorial of a number “n"

n= int(input("Enter a Number :'))
factorial = 1
Initialize factorial value by 1
To verify whether the given number is negative / positive / zero
ifn<O:

print("Negative Number , Enter valid Number !...")
elifn==0:

print("The factorial of 0 is 1")
else:

foriinrange(1, n + 1):

factorial = factorial*i

print("The factorial of" ,n, "is", factorial)

31

Introduction

Output:
L& Pythen 372 Shell rele /=
File Edit Shell Debug Options Window Help
Python 3.7.2 (tags/v3.7.2:923ffc0492, Dec 23 2018, 22:20:52) [M5C v.1916 32 bit =
Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
B
RESTART: C:/Users/Administrator/AppData/Local/Programs/Python/Python3T-32/f1.py
Enter a Number -1
Negetive Number , Enter valid Numker !...
Frr
RESTART: C:/Users/Administrator/AppData/Local/Programs/PBython/Python37-32/£f1.py
Enter a Numker :10
The factorial of 10 is 3628800
P
Ln:11 Colid

1.7.3 The while Loop

The while loop allows the program to repeat the body of a loop, any number
of times, when some condition is true.

The drawback of while loop is that, if the condition is not proper it may lead
to infinite looping.

So the user has to carefully choose the condition in such a way that it will
terminate at a particular stage.

32

Introduction

Flow Chart:

Loop Entrv

Test False

s Condition

True

N

Body of
Loop

Y
Exit Loop / Next Statment
immediately after loop

Syntax:

while (condition):

<body of the loop>

Introduction

In this type of loop, The execution of the loop body is purely based on the output of
the given condition. As long as the condition is TRUE or in other words until the
condition becomes FALSE the program will repeat the body of loop.

Valid Example Invalid Example
i=10 i=10
while i<15 : while i<15:
print(i) print(i)
i=i+l
Output : Output :
10,11,12,13,14 10,10,10,10........ Indeterminate
number of times

Example: Program to display Fibonacci Sequence

Program to Display Fibonacci Sequence based on number of terms n
n = int(input("Enter number of terms in the sequence you want to display"))
nl represents -- > first term and n2 represents --> Second term

nl=0

n2=1

count=0

count -- To check number of terms

ifn<=0: # To check whether valid number of terms
print ("Enter a positive integer")

elifn==1:
print("Fibonacci sequence up to ", n,":")
print(n2)

else:

print("Fibonacci sequence of ",n, “terms :”)
while count < n:

print(nl, end=",")

nth =nl + n2

nl=n2

34

Introduction

n2 = nth
count = count + 1

1.8 INPUT / OUTPUT STATEMENT:

Programmer often has a need to interact with users, either to get data or to provide some
sort of result.

For Example: In a program to add two numbers, first the program needs to have an input
of two numbers (The numbers which they prefer to add) and after processing, the output
should be displayed. So to get the input of two numbers, the program need to have an
Input Statement and in order to display the result i.e. the sum of two numbers, it needs
to have an Output Statement.

1.8.1 Input Statement:

Helpful to take input from the user through input devices like keyboard. In Python, the
standard input function is ‘input()’

The syntax for input function is as follows:
input()

However, to get an input by prompting the user, the following form is used:
input(‘prompt’)

where prompt is the string, which programmer wish to display on the screen to
give more clarity about the input data. It is optional.

Example:
>>> num = input('Enter a number: ')

The above statement will wait till the user, enters the input value.

35

Introduction

Output:

Enter a number:
>>> num
'10" # Input data entered by the user

1.8.2 Output Statement:

The output statement is used to display the output in the standard output devices
like monitor (screen). The standard output function “print()” is used.

Syntax:
print(‘prompt’)

where prompt is the string, which programmer wish to display on the screen

Example 1:

print("Welcome to the Python World!")

Output:
Welcome to the Python World !

Example 2:

X=5
print ('The value of a is', X)

36

Introduction

Output:
The value of X is 5

Example 3:

print(1,2,3,4)

Output:
1234

Example 4:

print(100,200,300,4000,sep="*")

Output:
100*200*300*4000
Example 5:

print(1,2,3,4, sep="#", end='&")

Output:

1#2#3#H4A&

37

Introduction

1.9 OBJECT ORIENTED PROGRAMMING:

Python supports object oriented programming concepts. The basic entities in
object oriented programming are Class, Objects, and Methods. It also supports some of
the techniques in real world entities like inheritance, Data hiding, Polymorphism,
Encapsulation, Method Overloading etc., in programming. Object orientation helps to
utilize GUI environment efficiently. Some of the other programming languages which
support OOPS concepts are C++, JAVA, C#.net, VB.net etc.

Need for Object Oriented Programming:

The object oriented programming is having certain advantage when compared
to the normal procedure oriented programming. The main advantage is to provide access
specifiers like Public, Private and Protected. Oops provide data hiding technique which
is more secured than procedure oriented programming. Code reusability is one of the key
features of OOPs Concept.

Class: It is a template or blue print created by the programmer — which defines
how the object’s data field and methods are represented. Basically class consists of two
parts: data member and function member (methods).

Object: It is an instance of a Class; Any number objects can be created.

Class Name: Student
Data Fields:
Name, Mark1, Mark2,
Mark3
Methods:
Average ()
Rank ()

38

Introduction

A Class is a template for creating an object.

Python provides a special method, __init__, called as initializer, to initialize a new
object when it is created.

Example :

class Student:
def __init__ (self, name, regno):
self.name = name
self.regno = regno
s1 = Student("John", 36)
print(sl.name)
print(sl.regno)

In the above example “Student” is the class name, name and regno are the
data fields and s1 is the created object,

Note :

__init__is a method or constructor in Python. This method is automatically
called to allocate memory when a new object/ instance of a class is created.
All classes have the __init__ method.

Output :
>>> John

36

39

https://www.edureka.co/blog/python-programming-language

Introduction

Let us create a method (Function member) for the above class

class Student:
def __init__(self, name, regno):
self.name = name
self. regno = regno
def display(self):
print("Name of the student is " + self.name)
s1 = Student("James", 43)
sl.display()

In the above example “display()” is the method used to display the student
name.

1.9.1 Inheritance

Inheritance allows to create a new class (Child Class) from the existing class
(Parent Class).

The child class inherits all the attributes of its parent class.

Parent class is the class, whose properties are being inherited by subclass.
Parent class is also called as Base class or Super Class.

Child class is the class that inherits properties from another class. The child
class is also called as Sub class or Derived Class.

40

Introduction

Example :

class Person:
def _init__ (self, fname, Iname):
self.firsthname = fname
self.lastname = Iname
def printdetails(self):
print(self.firstname, self.lastname)

#Use the Person class to create an object and then execute the printdetails method:

x = Person(""John", "Doe")
X.printdetails()
class Employee(Person):

pass
y = Employee("Mike", "Olsen")
y.printdetails()

Output :

>>>

RESTART:
C:/Users/Administrator/AppData/Local/Programs/Python/Python37-32/f1.py

John Doe
Mike Olsen

>>>

41

Introduction

In the above example the base class is Person. The first object “x™ is created through
the base class “Person” and the method printdetails() is invoked with that object
which produces an output “John Doe”. Again, another object “y” is created through
derived class “Employee” and the same method printdetails() (belongs to base class)
is invoked to produce the output “Mike Olsen”. Thus, the derived class is having the
ability to invoke the method from base class just because of the inheritance property
which reduces the code length or in other words it is helpful for reusability of code.

Note: Use the pass keyword when the programmer does not wish to add any other
properties or methods to the derived class.

Example 2:

class Person:
def _init_ (self, fname, Iname):
self.firstname = fname
self.lastname = Iname
def printdetails(self):
print(self.firstname, self.lastname)
#Object For Base Class
x = Person("Paul", "Benjamin")
X.printdetails()

class Employee(Person):
def __init__ (self, fname, Iname):
Person.__init__(self, fname, Iname)
self.doj = 2019
def greetings(self):
print("Welcome", self.firstname, self.lastname, "who joined in the year ", self.doj)

42

Introduction

Object for derived class
y = Employee("Samuel”, "Ernest")
y.printdetails()

y.greetings()

In the above example a new method greetings() is included in the derived class, Thus
the derived class object is capable of invoking the method present inside base class as
well as its own methods.

printdetails() -- method present inside base class Person.
greetings() -- method present inside derived class Employee.

The object “y” is able to invoke both the methods printdetails() and greetings().

43

Introduction

Questions :

1. Compare a) List and Tuple b) List and Set

2. What is type conversion in Python?

3. Is indentation required in python?

4. Whatis __init__?

5. How can you randomize the items of a list in place in Python?
6. How do you write comments in python?

7. What is a dictionary in Python?

8. Does Python have OOps concepts?

9. Write a program in Python to check if a sequence is a Palindrome.
10. Write a program in Python to check if a number is prime.

11. How to create an empty class in Python?

12. Write a sorting algorithm for a numerical dataset in Python.

44

Files and Exceptions Handling, Modules Packages

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT -1l - SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

43

Files and Exceptions Handling, Modules Packages

UNIT 11

FILES AND EXCEPTIONS HANDLING, MODULES,

PACKAGES

2.1 FILE OPERATIONS

An object that stores data, settings or programming commands in a computer system

is called as a file. There are three major file operations:
® Opening afile
e Performing file operations using Read or Write
e Closing the file

2.1.1. File Open

Method: open()

Purpose: To open a file

Syntax:

File_object=open(filename,Access_mode,buffering)

Attributes:
i. Filename — Name of the file
ii. Access_mode- Mode of Access (Read, Write, Append)

iii. Buffering — 0 (no buffer), 1 (buffer)

44

Files and Exceptions Handling, Modules Packages

Example:

f= open(‘abc.txt’) (or)

f=open(“D:/Mypython/abc.txt”)

2.1.1.1 File Access Modes

File Mode Description
r Read mode
w Write mode
X Create and open a file
a Appending at end of file
t Text mode
b Binary mode
+ Update mode

Example:

f= open(‘abc.txt’, r)

The above statement opens the file ‘abc.txt’ in read mode.

2.1.1.2 Example for File Access modes and Properties

Files and Exceptions Handling, Modules Packages

fo=mopen('aa.txt", "w')

rint("Filename: ", fo.name)
rint("Filemode: ", fo.mode)
rint("File closed: ", fo.closed)
fo.clo=el()

rint("Fileclo=sed: ', fo.clo=sed)

L il

The above code is a sample snippet for understanding the file modes and file properties.
2.1.2.File Reading and Writing

2.1.2.1. File write:

write() method is used to write the contents to a file. The following code is for
writing the contents to the file aa.txt.

fo=open(‘aa.txt’,’w’)
fo.write(“hai \n how are you?’)

fo.close()

Output:

46

Files and Exceptions Handling, Modules Packages

2a - Notepad - oIl

In the above example, the contents of the file can be viewed by opening the file

‘aa.txt’.

2.1.2.2. Reading a file:

read() method is used to read the contents from a file. The following code is for
reading the first 10 bytes of the file ‘aa.txt’.

| J— |]

fo=—open('"aa.Txt', "x")
print ({(fo.read ()})
Fgreading 10 byvte=
fo.read(10)
fo.clo=se ()

| I I]

i i id -

47

Files and Exceptions Handling, Modules Packages

2.1.3. File Positions

To know about the file offset positions in Python, the following methods are used:

o seek()

o tell()
seek():
Syntax: seek(offset, from)

Description: Sets the file's current position at the offset. The offset values are as
follows:

0 : reference (beginning of file(default))

1 : current (current file position)

2 : end (end of file)

tell() :

Description: Prints the current position of file pointer.

2.1.3.1.File Offset

i} i1 i i} i1 [[I B I B I [N I I S B (U B 0 7
h |a h |0 !

0 (1 2 (3|4 (5]6 |7 |& |9(10|11/12/13(24|15|16|17

48

Files and Exceptions Handling, Modules Packages

Ffo—open ("aa.tcxtc", "T="})

print("current posicion',fo.tcell ())
prinmt (fo.read (10))
primnt({"current position', fo.tceldll ())

fo.sesek(2,0) #F to skip first 2
print (fo.read ())

omTEpnaT

current position O
Hai , How

current positiom 10
i . How arese o7

In the above code, initially the position of the file pointer is at 0. After reading the
contents, the position of the file pointer is moved to 10 (from 0 to 9). Now up on giving
the command seek(2,0), the file will be read from the beginning after skipping the first
2 positions.

Detailed Example:

Ff=open("'aa.txt", "x—")
pos=f£f._.tell ()

print (pos)

#owvcpuac :: O

linmne=Ff readline ()
print (line)

#Foucputc: primts first line Hai . How are wyou?
pos=f.tcell ()

print (pos)

#20

linmne=Ff readline ()
print (line)

F

F.=secek (0, 0)
pos=f£f._.tell ()
print (pos)
line=Ff.readline ()

print (line)
pos=f.tell ()
print (po=s)
lime=Ff _ readline ()
print (line)

output

o

Hai , How are wyoum?

20

Welcome to Sathyabama

49

Files and Exceptions Handling, Modules Packages

The contents of the file aa.txt is now:

Hai, How are you?
Welcome to Sathyabama
School of Computing

Department of Computer Science & Engineering

2.1.3.2. Reading a file Line by line

In order to read a file till the End of File(EoF), while loop is used.

Ff=open("'f28.txc", "'}

linmne=Ff.readline ()

while line!="":
print (1ine)
lime=Ff.readline ()

F.clo=se ()

'"foutput
kd=skfa

d=safldk

kdafs1j£"""

2.1.3.3. Modifying a file

f=open('aa.txt','a')
f.write('aa bb cc dd')
f.clo=e()
f=open('aa.txt','xr')
print (f.read())

#prints the entire file

#go to 5th position using seek(5)
f.=seek(5,0)

print ('from S5th posn',f.read())
f.seck(30)

line=f.readline ()

#prints posn of line from 30th posn
print('line at 30", line)

f.seck (D)

#print(f.read()) #prints full file

print ('current posn before reading',f.tell())

f.claose ()

output

Hai , How are ¥

Welcome to Sa
School of Compu
Department of Computer Science & Engineeringaa bk cc ddaa bk cc dd
from 5th posn How are wyou

Welcome to Sa

School of Compu
Department of

line at 30 Sathyabama

current posn before reading 0

50

Files and Exceptions Handling, Modules Packages
2.1.4. Alternate way for opening and closing a file:
Syntax:

with open(‘filename’) as file object:

> No need to close the file

open{'aa.cxt'") a=zs f:
for line in £:

print({line)

2.1.5. read() &readline()
e read() — read entire file content from current position
e readline() — read the particular line of file pointer
2.2 ITERATORS

Iterator in Python is a type which could be implemented in
object that returns data one at a time.

for loops. An iterator is an

For example if we have a list A=[1,2,3] , then iterator is used to return the items in the

list one at a time.

51

Files and Exceptions Handling, Modules Packages
There are two special Methods:

= _ iter_ () : returns iterator from list

= next_ (): returns next element in the list
Iterable objects in Python are:

e List

® Tuple

e String

2.2.1. Example Iterator:

mylist=[4,7,0,3]

myiter=iter (mylist)
print (next (myiter))
print (next (myiter))
print (next (myiter))
print (next (myiter))
print (next (myiter))

[]

In the above code the list items of mylist object are retrieved one by one using ‘next()’
method. When the list reaches its end and if next() method is used , it shows error in

the output.

52

Files and Exceptions Handling, Modules Packages

2.2.2. Example for _ _next_ ()

Alternate way for retrieving the items is to use for loop and retrieve the item using
__next__ () inside the for loop. To find the length of the list ‘len()’ method is used.

list=[3,4,5,6]

iterobj=iter(list)

print ()

for i in range(0,len{list})}:
print(iterobj. next (})

1

= on LNl G

2.2.3. Building User defined iterators

We can also build our own iterators. The following code is for implementing user
defined iterators for finding powers of two.

=la=s powa:
#To implement an iterator of powers of two
def _ init_ (self,max=0):
zelf.max=max
def _ dter (self):
self.n=0
- self
def next__ (self):

1 self.n<=self.max:
res=2%%*zelf.n
zelf.n+=1

return res

alse Stoplteration
except StopIteration:
quit (0)
a=powa (4
i=iter(a)
print (next (i))

53

Files and Exceptions Handling, Modules Packages

2.2.4. Python Infinite Iterators:

Ther are two Arguments in infinite iterators:
> Callable Object: A built in function

» Sentinels: The terminating value

The following is an example for infinite iterator. next(inf) will always return 0, since

the sentinel 1 not at all reaches.

>=> int ()

0

»>>» inf=iter(int,1)
»>»> nexXt (inf)

0

»>> next (inf)

0

Similarly , the following code uses while loop to print the odd numbers starting from
1 to infinite number of times. The execution is manually terminated by providing

keyboard interrupt(Ctrl+c).

zla=s=s infin:
def dver (=elf):
self . .num=1
return self
def next (3elf):
num—=self .num
gelf.num+=2
return num
a=iter(infin())
print (nextc (a))

10 Ly

[Te]

54

Files and Exceptions Handling, Modules Packages

2.2.5. Python Generators

Generator functions are alternates for iterators that contain one or more yield()
statements. Methods like __iter__ (), __next_ () are implemented and are iterated using
next() automatically. Local variables are remembered between successive calls. When
function terminates, Stoplterator exception is raised automatically.

2.2.5.1.Example

In the following code, n value is initiated to 1 in the first step. In the second step n is
incremented by two and the value yielded now is 3. In the last step n is incremented by
1 and now the value is 4.

my gen():
n=1
princ{("firsc')
13
n+=2=
print('sccocond")
TL
n+=1
print("last")
13
i my_gemn() :
printc (i)
firstc
zecond
la=st

The following is an example for reversing a String using python Generator. Here the
string ‘hello’ is passed to the function ‘rev()’. Using for loop, the string is yielded from
the last character(len-1) to -1(0" position minus 1) as per the syntax.

55

Files and Exceptions Handling, Modules Packages

rev(mystr) :
lenl=len (my=str)
i range (lenl-1,-1,-1}
mystr[i]

2.2.5.2. Advantages of Generators

e Easy to implement
* Memory efficient
® Represents infinite stream

e Generators can be pipelined
2.3. EXCEPTION HANDLING

Exception is an event that occurs during execution of a Python program disrupting the
normal flow of execution. Exceptions are handled using try and except blocks in
Python. There are built in exception classes for handling common exceptions.
BaseException is the parent class for all built in Exception classes. Fig 2.1 represents
the Standard Exception class hierarchy.

56

Files and Exceptions Handling, Modules Packages

BaseException

Exception

StandardError

*{H

Ar1thmet1cError Env1ronmentError RuntimeError LookupError SyntaxError l
ZeroD1v1s1onError| \ \ Indentat1on£rror|
I0Error | 0SError IndexError | KeyError

Fig 2.1 Standard Exception class hierarchy

2.3.1. Exception Handling Syntax and Examples

While handling exception, keep the suspicious code in try block and following the try
block, include except: statement

suspiciou=s block
except Exceptionl:

#ztatementl
cxcept Exception?:

F=ztatement?2

no exception

57

Files and Exceptions Handling, Modules Packages

The following code raises exception when a run time error occurs upon writing the file
‘aa.txt’. In case of normal program flow, the else clause will be invoked and the
statements in else block will be executed.

fo=open('aa.txt','w")
fo.write('Exception for exception')

mmt TR e
Tl LW ITUOL .

print ('cant write'

print ('written successfully')

foutput :
""" yritten successfully

focontent has been written to file aa.txHT

IOError exception is also invoked when we intend to write a file when it is opened in

‘read’ mode. The following code depicts this case.

fo=open('aa.tcxt","r'")
fao.write ("Exception handling example')
except ICError
print {("cant write in read mode')
print {("written successfually')
#output
' cant write in read mode

2.3.1.1. Except Clause without specifying any exception

In python, we can also have except clause with no specific exception. In this case any
type of exception can be handled. The following is the syntax for except statement with
no specific exception type.

58

Files and Exceptions Handling, Modules Packages

Syntax:
#¥Error code
exXCcept:
#Execute block with Any exception
#Ho exception
Example:

In the following code, except clause is alone given, without mentioning the type of
exception. In the sample runs when the value of ‘b’ is given as 0, exception is caught
and ‘divide by zero error’ is printed. Whereas, in case of normal run, the result obtained
after dividing two numbers, is displayed as the output.

a,b=eval (input {"Enter two nos.')})
c=a/b
except:

print {'divide by zero error')

print {'Hormal execution & the wvalues is',c)

Sample ocutputs:
Runl:

Enter two nos.Z2,0

divide by zero error

Run 2
Enter two nos.3,6
Normal execution & the value iz 0.5

59

Files and Exceptions Handling, Modules Packages

2.3.1.2. Except Clause with Multiple exceptions:

There is another way of specifying multiple exceptions in the single except clause.
When multiple exceptions are thrown, the first exception which is being caught will

alone be handled. The syntax is given as follows.

Syntax:
fError code
except (Exception 1, ExceptionzZ,....)}:
#Execute block with Any exception
#Mo exception
Example:
a=input {'Enter the wvalue of a')

b =input ("Enter the walue of b')
c=a/kb
except (ITypeError, ZeroDivisionError):
if TypeError:
print {"Type error')

Sample output:
Enter the walue of a &
Enter the wvalue aof b a

‘)

60

Files and Exceptions Handling, Modules Packages

2.3.1.3 Optional finally clause

Like other object oriented programming languages, try has optional finally clause. The
statements given in finally block will be executed even after the exceptions are
handled.

f = open("aa.tcxt","')

f.write ('exception handling')
eEXcCept

print| ile write exception')

f.clo=se ()
print {"normal flow')

2.3.2. Raising Exceptions

Exception can be raised from a function:
raise ExceptionClass(‘Something Wrong’)

Example:

ex=RunTimeError(‘Something Wrong”)
raise ex
OR

Raise RunTimeError(‘Something Wrong’)

61

Files and Exceptions Handling, Modules Packages

a = int (input ("Enter a positive integer: "}}
if a<= 0:
raize ValueError{"That i=s not a positive number!™)

except ValueError as er:

print (er)

Sample ocutput:
Enter a positive integer: -7
That i=s not a positive number

2.3.3. Custom Exception/User Defined Exception

In Python custom exception or otherwise called as user defined exception can be
handled by creating a new user defined class which is a derived class from Exception
class.

class custom (Standard Exception):

[

class user_definedexception{customy):

Fig. 2.2: Inheriting the Standard Exception class

In the following example two user defined exception classes are derived from the
parent class Error which inherits the standard Exception class. The number guessed is
10. When any number greater than 10 is given as input ToolLargeErr exception is
thrown and when the number is less than 10, TooSmallErr exception is thrown.

62

Files and Exceptions Handling, Modules Packages

== Error(Exception) :

ooSmallErr (Error) &

m o o=
[t

oolLargeErr (Exrror) :

n=10
x=int(input {'senter a number'})
if =<n:
rai=ze TooSmallErr
=1if =>n:
rai=z=e TooLargeErr
bhreak
except TooSmallErr:
print({'value i= small, try agaim!?!..')
primti()
except TooLargeErr:
princ({'value i= large, try agaim?!..')
print ()
print {("Wow! Guess i= correct! '}
T ogutpuat
23

enter a numberl

valnune is small, try again
enter a numberld
WOt Gue=ss is correct!'t'?

2.4 REGULAREXPRESSIONS

Regular Expressions can also be called as RE/regex/regex patterns .RE’s are
specialized programming languages embedded inside Python. RE’s are available by
importing re module. RE patterns are compiled into a series of bytecodes when
executed by a matching engine written in C language. REs could not perform all string

63

Files and Exceptions Handling, Modules Packages

processing tasks. REs are applicable in Pattern recognition problems. RE module has
to imported for calling re methods like: split(), findall(), search() etc.

Syntax:

import re

2.4.1 RE matching characters

Character matching is very important for identifying patterns and matching them with
the given input. The following table describes some of the important matching
characters used in Python REs.

Table: 2.1 Python Character Matching

Matching Description
Character
[Finding a range of characters [a-z]
\w Alphanumeric character [a-zA-Z0-9]
\W Non alpha numeric characters :” [a-zA-Z0-9]
* Repeating a character [0] or more times
0 Grouping or including
+ 1 or more
? Oorl
{x} Exact number of matches
{a,b} Inrange fromatob
\any_number Matching the group of same number.
\A Only at the start of the string.

64

Files and Exceptions Handling, Modules Packages

\Z Only at the end of the string

\b Empty string only at the beginning or end of a word.

\B Empty string match not at the beginning or end of a word
\d [0-9]

\D ~0-9]

\s Space

\S Non space

2.4.2. RE Methods

2.4.2.1. The search() method

Method: search()

Description: Returns true if the search string is found.

Example:

m =

1MportT re

re.2earch('info', 'information')

if m:

print (m, "i=z found")

print{'not found'})

ULl

- - p— A 5 - T | = | I - - J
ect; span=(0, 4), macch='info'> i=s found

65

Files and Exceptions Handling, Modules Packages

The above code returns the Match object with a span position from 0 to n-1 when the
search information is found.

2.4.2.2. The split() method
Method: split()

Description: For creating space in the string.

Example:
import re
print (re.split{r'(\=3)',"'Thi=z iz a string'))
print ()
print{re.split({r'[a-i]"',"'Thi=z i= a string'})

[

L il e w

In the above code, split() method is applied twice on the string, ‘This is a string’. When
the matching character \s is applied, the spaces in the string are split up. When the
regular expression r’([a-i]) is applied, the string is split ignoring the range of
characters fromato i.

2.4.2.3. The findall () method
Method:findall()

Description: Finds all the matches and returns them as a list of strings.

66

Files and Exceptions Handling, Modules Packages

Example:

import re

n="123% 1234 12345 £3E525 14T78523"
print (re.findall (""d{5, 7", m})

'Y Youtpuat

recturns digits of length from S to 7
["12345", "&36525'", "1478523']

2.4.2.4. The match() method
Method:match()
Description: To match the RE pattern to string with optional flags.

Example:

import re
list=['csea','caeb','cse a and b']
for e in list:
z=re.match(' (c\w+) ', e)
if z:
print(z.groups())

Sample output:

("csea',)
('caeb',)
('cse',)
[}

The first word of the list items matching the letter ¢ is grouped up

67

Files and Exceptions Handling, Modules Packages

2.4.2.5. The finditer() method
Method: finditer()
Description:Generating an iterator.

Example:

import re
str="'welcome to cse dept and it dept of Soc’
for i in re.finditer('dept',str):
localtuple=i.=span ()
print (localtuple)

'Toutput:
returns start index and end index of the =strin
'dept'" which occurs in 2 places:

(15, 1%9)

2.4.2.6. The compile() method
Method:compile()

Description: Compiling a pattern without rewriting it.

68

Files and Exceptions Handling, Modules Packages

Example:

Ie

pattern=re,compile('Python')

result=pattern.findall {'Welcome to Python programming. Python is Cbject Oriented.')
print(result)

result?=pattern.findall('Learning Python is Simple')

print(result2)

['Python', 'Python']

['Bython']

1M1

In the above code the compiled pattern is ‘Python’. The result objects return each and
every occurrence of the matched pattern line by line. Other Regular Expression
methods are given in Table 2.2 and RE Compilation flags are given in Table 2.3.

Table 2.2 Other RE methods

Method/Attribute Purpose

group() Returns the string matched by the RE
start() Returns the starting position of the match
end() Returns the ending position of the match

Returns a tuple containing the starting and ending positions of
span() the match

sub() Replaces the RE pattern and returns the modified string

69

Files and Exceptions Handling, Modules Packages

Table 2.3. RE Compilation Flags

Flag Syntax |Description
ASCII oA Makes several escapes like \w,\b,\s and \d and match
only on ASCII characters

DOTALL re.S Match any character including newline
IGNORECASE |re.l Case insensitive matches
MULTILINE re.M Multiline matching affecting ~ and $
LOCALE re.L Locale aware match(Localization API)
VERBOSE re.X Enables verbose RE
Example:

1mport re

list='"''csea

nseb

tomal arnd RILI
aseal and D

ml=re.findall (r'~\w',list)
m2=re,findall (r'~\w',list, re.MULTILINE)

print (ml)

print{)

print (m2)

['e'] <- returns only the first character of first line

['c', 'mn', 'd'] «<-returns all first characters since it iz multiline

70

Files and Exceptions Handling, Modules Packages

2.4.3. Case Studies on Pattern Matching:

Case Study 1: Phone number verification

import re
ph='412-555-342-4533"

print{'valid phone no'}

glag:"
= =

7]

print{'invalid phone no')
1
gutput:
valid phone no''!

if re.gearch{'\w{3}-\w{3}-\w{3}-\w{4}',ph):

Case Study 2: Validating First name & Last name

import re
name="arthi rathna'

if re.gearch('\w',name):
print{'valid full name')

=

g

print{'invalid name')
LI A]
output:
valid full name'"'"

71

Files and Exceptions Handling, Modules Packages

Case Study 3: Email Address Verification

import re
n='abc@gmail.com, x3@,@abc.com,az2@abc.in’

p:i:tire.findall('jiw._ﬁ—j{ ;20 w.-1{2,20}. [A-Za-z]{2,3}",n))
'""Toutput
returns valid emailaddreszes:

['abcBomail.com', 'az2@abc.in']

Case Study 4: Web Scrapping

import urllib.request

Rail] ort findall
url='http://www.zathyabama.ac.in/sitepagethree.php?mainref=23,"
resp=urllib.request.urlopen(url)
html=resp.read()
htmlstr=html.decode ()
pdata=findall('\d{4}\3- 3 d{3}5-"3"d{4}",htmlstr)
for iterm in pdata:

print (iterm)

putput:

1800 - 425 - 1770

2.5 .PYTHON MODULES
2.5.1. Definition

A module is a library of functions used to provide any service. To incorporate the
service provided by any module, ‘import’ statement should be used in Python. Modules
can be built in or user defined. Modules can be imported in the current program using
the import statement.

72

Files and Exceptions Handling, Modules Packages

Syntax:

importmodule_name

Example: Time module , Math module
2.5.2.Sample Programs on Built in modules

2.5.2.1. The time module

import time

ct_time=time.time ()

print (ct_time))
1559160028 .4655905

2.5.2.2. The math module

import math
print (math.sgrt (9))

LA - iid e o

2.5.3. Building Custom modules by Modularising functions

Files, containing the Python definitions and statements, can be created by the user, and
the same file can be imported on another Python program using import statement. The
following example explains importing a python module(Filel) over another python
code(File 2).

73

Files and Exceptions Handling, Modules Packages
Example:

Let us have two different files Filel & File 2. If we want to import any module of Filel

into File2 , then we need to import Filel module in File2 using ‘import’ statement.

Filel.py

def max(nl,n2):
if n1>n2:
result=n1
else:
result=n2
return result

File 2.py

import Filel
x,y=eval(input(‘enter x and y"))
z=max(x,y)

print("the max is",z)

On running File2.py, we get the maximum of two values as output.
2.6 INTRODUCTION TO PIP

In order to manage and install software packages Python use PIP as Package
Management System. PIP is written in Python and available in PyPI(Python Package
Index). PIP is otherwise known as PiP Installs Python or PIP installs Packages.

74

Files and Exceptions Handling, Modules Packages
2.6.1. Installing Packages via PIP
2.6.1.1 Steps for installing PIP

Step 1: Download get-pip.py and save this folder in the system’s local drive to a folder
on your computer.

Step 2: Open the command prompt and explore the folder containing get-pip.py.
Step 3: Run the command: python get-pip.py.
2.6.1.2. Using online python compiler

Python codes can also be executed online without installing Python IDLE or PIP
packages. One of the weblink used for running python codes online is:
‘https://www.onlinegdb.com/online_python_compiler#'.

2.7. USING PYTHON PACKAGES FOR ADVANCED PROGRAMMING
2.7.1. Python editors for Advanced Python Programming

The following are some of the python editors where Python libraries necessary for
advanced scientific programming are almost readily available. If the Python library
is not available then the command ‘pip install lib_name’, could be given for
installing the specific library.

e JuPYter Notebook
e Pycharm Community Edition & Professional Edition

e Wing IDE
e NINJA IDE
e Spyder

e Pyz0

75

https://www.onlinegdb.com/online_python_compiler

Files and Exceptions Handling, Modules Packages

2.7.2. Python Libraries for running real time projects
2.7.2.1.Numpy

Numpy is a package supporting multidimensional arrays and it is designed for
scientific computation purpose. Simple code to create a 3x5 array using numpy is given

as follows:

import NumPy as np

a = np.arange(15).reshape(3, 5)

print(a)

print ('type of a', type(a))

#Output:

[[e 1 2 3 4]
[5 6 7 8 9]

13 14]] type of a <class 'numpy.ndarray'>

[10 11 12

76

Files and Exceptions Handling, Modules Packages

Table 2.4: Universal Functions in Numpy

Function name

Purpose

Example

np.array()

For creating arrays

a=np.array([0, 1, 2, 3])

np.arrange()

For formatting the array. Start index,
end index, step which are the optional

attributes.

b

np.arange(1, 9, 2)
output: [1,3,5,7]

np.linspace()

For array line spacing with attributes

start, end and num-points.

¢ = np.linspace(0, 1, 6)

np.reshape()

To specify the array dimensions

np.reshape(3,5) : forms a 3*
5 array

Table 2.4: Universal Functions in Numpy(Contd...)

Function |Purpose |Example
name
np.sqrt() [Finding d=np.array([[100, 144, 256],[144, 4, 81]])

square root|print(np.sqrt(d))

of an array Output:

[[10. 12. 16.] [12. 2. 9. 1]

np.exp() |Finding np.exp(2)

exponential

power
np.add() |Adding np.add(a,10)

;’fr':es toan| 11101112 13 14]

Y [20 21 22 23 24]]

77

Files and Exceptions Handling, Modules Packages

2.7.2.2.

SciPy

Scipy library is used for performing mathematical and scientific calculations. Scipy
can also be used for Engineering applications.

Syntax:

Exampl

from scipy import module_name

e:

import SciPy
fromscipy.constants import pi

print("sciPy - pi = %.16f"%scipy.constants.pi)

Output:

sciPy - pi = 3.1415926535897931

The following are the real time applications which can be implemented using Scipy:

Signal Processing
Image manipulation
Interpolation
Optimization and fit

Statistics and random numbers

78

Files and Exceptions Handling, Modules Packages

o File input/output

e Special Function

e Linear Algebra Operation
e Numerical Integration

e Fast Fourier transforms

2.7.2.2. Matplotlib

Matplotlib library is used for plotting graphs. The basic methods in matplotlib are:
e Plot()- To plot X, Y axes.
e Show()- To display the plotted graph.

Example:

%matplotlib inline

Import matplotlib.pyplot as myplt
myplt.plot([1,2,3,4])
myplt.ylabel('numbers"')

myplt.show()

79

Files and Exceptions Handling, Modules Packages

Output:

4.0 1

3.5

3.0 q

numbers

2.5

2.0 q

1.5

1.0 4

2.8. EXERCISES

1. What is the output of the following code?

fi1=
i range (3):
open ("data.cxt™, "w") fl:

i > 2:

print (fl.closed)

2. Write a Python code to read a String, character by character and print the String
as a whole using iterators.

3. Write a Python program that matches any string that has an a followed by one or
more t's.

4. Write a Python program to insert spaces between words starting with capital
letters.

5. Write a Python program to remove the parenthesis area in a string using REs.
Sample data : ["abc (.com)”, "w3schools", "google (.com)"]
Expected Output:
abc
w3schools
google

80

https://www.w3resource.com/python-exercises/re/#EDITOR

Files and Exceptions Handling, Modules Packages

6.

7.

w

Write a Python program to do a case-insensitive string replacement.
Write a Python code to print the given list in reverse order.

What is the output of the snippet of code shown below?

numpy np
a = np.array([[1, 2, 3],[4,5,6]1,[7.8,911)
print{al[l])

Write a Python code to append a file ‘aa.txt’ and then read and display the contents
of the file line by line.

10. Check whether the methods today() and now() of datetime library are same or not.

Prove the same using a Python code.

REFERENCES:

1. Timothy A.Budd, Exploring Python, Tata McGraw Hill Education Private
Limited, New Delhi, 2011.

2. Python basics: https://www.tutorialspoint.com/python , Accessed on May 2019.

3. Y. Daniel Liang, Introduction to Programming Using Python, Pearson, 2013.

4. Python Libraries: http://cs231n.github.io/python-numpy-tutorial/, Accessed on
May 20109.

5. Scipy: https://www.guru99.com/scipy-tutorial.html, Accessed on May 2019.

6. Python Exercises: https://www.w3resource.com/python-exercises/re/ , Accessed
on May 2019.

7. Python Modules: https://www.sanfoundry.com/python-questions-answers-

datetime-module-2/, Accessed on May 2019.

81

https://www.tutorialspoint.com/python
http://cs231n.github.io/python-numpy-tutorial/
https://www.guru99.com/scipy-tutorial.html
https://www.w3resource.com/python-exercises/re/
https://www.sanfoundry.com/python-questions-answers-datetime-module-2/
https://www.sanfoundry.com/python-questions-answers-datetime-module-2/

GUI Programming with Python

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT — 111 - SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

(GUI PROGRAMMING WITH PYTHON)

GUI Programming with Python

UNIT I
GUI PROGRAMMING WITHPYTHON

In python text only programs can be created using Command line
Interface. Graphical user interface(GUI) can be created using tkinter module
in python.

3.1 Introduction To GUI Library In Python

Tkinter is a module in the Python standard library which serves as an
interface to Tk (ie) simple toolkit. There are many other toolkits also available
to create GUI.

Tkinter provides the following widgets:

e button

e canvas

e checkbutton
e combobox

e entry

e frame

e label

e listbox

e menu

e message

e progresshar

GUI Programming with Python

o radiobutton

e scrollbar
e spinbox
o text

Tkinter also provides three layout managers:

o place - It positions widgets at absolute locations
e grid- Itarranges widgets in a grid
e pack - It packs widgets into a cavity

3.2 Layout Management

The Layout Managers are used to arrange components in a particular
manner. It is used to organize the conponents. There are three Layout
Management in python:

1. Pack Layout
2. Grid Layout
3. Place Layout

3.2.1 Pack Layout Manager
It is a simple layout manager. Here widgets can be organized in

horizontal and vertical boxes. It is used to place each widget next to previous
widget. It will be called without any arguments and it will position and size the
widgets in a reasonable way. Whenever the user wants to have a series of

GUI Programming with Python

widgets in a vertical or horizontal row, the pack layout manager is fairly simple
to use. The layout is controlled with the fill, expand, and side options.

Example:

from tkinter import *

top=Tk()
I1=Label(top,text="Label1",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True)
12.pack(fill=X,side=RIGHT)
top.mainloop()

Output:

The output is shown in Fig 3.1.

GUI Programming with Python

Explanation: Label 11 has been placed in top position, it is filled in X axis.
Label 12 has been placed in Right Position and it is also filled in X axis. Since
expand attribute has the value True for Label I1,it can be stretched.

GUI Programming with Python

Padding Option in Pack Layout:
The pack() manager has four padding options:

1. Internal Padding
2. External padding
3. Padding in X Direction.
4. Padding in Y Direction.
External Padding in Horizontal direction (padx)

Example:

from tkinter import *

top=Tk()

I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True,padx=10)
12.pack(fill=X,side=TOP,padx=10)

top.mainloop()

Output:

The output is shown in Fig 3.2.

GUI Programming with Python

Fig 3.2

External Padding in Vertical direction (pady)
Example:

from tkinter import *

top=Tk()

I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True,pady=10)
12.pack(fill=X,side=TOP,pady=10)
top.mainloop()

Output:

The output is shown in Fig 3.3.

GUI Programming with Python

=2

Fig 3.3
Internal Padding in Horizontal direction(ipadx)
Example:
from tkinter import *
top=Tk()
I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True,ipadx=10)
12.pack(fill=X,side=TOP,ipadx=10)
top.mainloop()
Output:

The output is shown in Fig 3.4.

GUI Programming with Python

Fig 3.4

Internal Padding in Y Direction(ipady):
Example:

from tkinter import *

top=Tk()

I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True,ipadx=10)
12.pack(fill=X,side=TOP,ipady=10)
top.mainloop()

Output:
The output is shown in Fig 3.5.

GUI Programming with Python

Fig 3.5

3.2.2 Place Layout:

Place is the most complex manager out of the 3 managers. It uses
absolute positioning, when we choose place lay out in our design, then we need
to specify the position of the widgets using x and y coordinates. The size and
position of the widgets will not be changed when we resize the window.

Example:

from tkinter import *

top=Tk()
I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.place(x=10,y=50)
12.place(x=10,y=100)

top.mainloop()
Output:

The output is shown in Fig 3.6.
10

GUI Programming with Python

Fig 3.6

Explanation:

Here Labell is placed in the position (10,50) and label2 is placed in
the position (10,100).

3.2.3 Grid Layout

Pack Layout is not easy to understand and it is difficult to change the
existing design. By using place layout, we can control the positioning of
widgets but it is complex than pack. Grid is one of the most versatile layout
manager out of the three layout managers in python. By using Grid layout, the
widgets can be placed in rows and columns.

11

GUI Programming with Python

Example:

from tkinter import *

top=Tk()
I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
I3=Label(top,text="Label2",bg="green™)
11.grid(row=0,column=0)
12.grid(row=0,column=1)
13.grid(row=1,column=1)

top.mainloop()

Output:

The output is shown in Fig 3.7.

Fig 3.7

12

GUI Programming with Python

Explanation:

Here Label 1 is placed in 0" row and 0™ column. Label 2 is placed in 0" row
and 1% column and Label 3 is placed in 1% row and 1% column.

3.3 FONT
There are three ways to specify font in python.
1.By using Font Tuple
2.By using Font Object
3.By using XFont
3.3.1 Simple Font Tuple:

Font can be specified using tuple.Herethe font tuple consists of
threeelements.First element specifies font family ,second element specifies font
size and third element specifies font style.

Ex: t =(“Arial”,14,”Bold”)
Example:

from tkinter import *

top=Tk()

b1=Button(text="submit" font=("Arial","16","bold"))
b1.pack()

top.mainloop()
13

GUI Programming with Python

Output:

The output is shown in Fig 3.8.

Fig 3.8

Explanation:
Text for the Button has been set in the Arial font with size 16 and Bold style.
3.3.2 Font Object
Font object can be created by importing tkFont module.
Syntax for Font class constructor is:
Import tkFont

Font f1=tkFont.Font(parameters,.....)

14

GUI Programming with Python

Here is the list of parameters:

Family — The font family name as a string.

size — The font height as an integer in points. To get a font n pixels
high, use -n.

weight — "bold" for boldface, "normal" for regular weight.

Slant — "jtalic" for italic, "roman" for unslanted.

underline — 1 for underlined text, 0 for normal.

Overstrike — 1 for overstruck text, 0 for normal

Example:

from tkinter import *

from tkFont import *

top=Tk()

f1=Font(family="Helvetica",size=20,weight="bold" slant="italic",underline=1
,overstrike=1)

I1=Label(top,text="Label1",bg="blue",font=f1)

11.pack()

top.mainloop()

15

GUI Programming with Python
3.3.3 X Window Fonts:

If you are running under the X Window System, you can use any of the X font
names.

34 COLORS

TKinter represents colors with strings. There are two general ways to specify
colors in Tkinter :

e We can use a string specifying the proportion of red, green and blue in
hexadecimal digits. For example,

o Hff" -- White,

e "#000000" -- black,

e "#00Offf000" -- pure green

o "#OOFFFf" -- pure cyan

e We can also use any locally defined standard following color names.

= "white"
= "black"
= "red”
= "green"
= "blue"

16

GUI Programming with Python

- lICyanll
= "yellow"
= "magenta”

The common color options are :

Active background

activeforeground

background

disabledforeground

foreground

highlightbackground

highlightcolor

Specifies Background color for the widget when the
widget is active.

Specifies Foreground color for the widget when the
widget is active.

Specifies Background color for the widget. This can
also be represented as bg.

Specifies Foreground color for the widget when the
widget is disabled.

Specifies Foreground color for the widget. This can
also be represented as fg.

Specifies Background color of the highlight region
when the widget has focus.

Specifies Foreground color of the highlight region
when the widget has focus.

17

GUI Programming with Python

selectbackground — Specifies Background color for the selected items of
the widget.

selectforeground — Specifies Foreground color for the selected items of
the widget.

Example:

from tkinter import *

top=Tk()
b1=Button(text="submit",bg="red",fg="white")
b1.pack()

top.mainloop()

Output:

The output is shown in Fig 3.9.

submit

18

GUI Programming with Python

Fig 3.9
Explanation:

Here the back ground of the button is red in color and foreground color of the
button is white in colour.

3.5 CANVAS

The Canvas is a rectangular area used for drawing pictures or other
complex layouts. Graphics, text, widgets or frames can be placed on a Canvas.

Syntax:
w = Canvas (top, option=value, ...)
top — It represents the parent window.

Options — commonly used options for this widget. These options can be
used as key-value pairs separated by commas.

Commonly used Options are:

bd - Border Width of the canvas

bg - Background color of the canvas

cursor - Cursor used in the canvas like circle,arrow and dot.
relief - Type of the border

width - Width of the canvas

Items supported by canvas:

1.Arc
19

GUI Programming with Python

2.lmage
3.Line
4.0val
5.Polygon

351 ARC
Creates an arc item, which can be a chord or a simple arc.

Syntax:

create_arc(x0, y0, x1, y1, options.....)

x0,y0,x1,y1-Top Left and Bottom Right coordinates of Bounding Rectangle
Commonly used Options:

start,extend-Specifies which section to draw

Example:

from tkinter import *
root=Tk()
w = Canvas(root, width=500, height=500)
coord = 10, 50, 240, 210
arc = w.create_arc(coord, start=0, extent=150, fill="blue")
w.pack()
20

GUI Programming with Python

Output:

The output is shown in Fig 3.10.

7 (===

<4

Fig 3.10

Explanation:

Here Arc is drawn with blue color and within the bounded rectangle with top
left(10,50)position and bottom right(240,210) position and started from angle
0 and extended till 150 degree.

3.5.2 Image
Creates an image , which can be an instance of either the Bitmaplmage or the

Photolmage classes.

21

GUI Programming with Python
Syntax:
Create image(x,y,options....)
X,y-Specifies the position of the image
commonly used options:

anchor=Where to place the image relative to the given position.
Default is CENTER.

image=image object
Example:
from tkinter import *
root=TKk()
w = Canvas(root, width=500, height=500)
w.create_image("F:\img2",50,50)
w.pack()

root.mainloop()

3.5.3 Line
Creates a line item.

Syntax:

22

GUI Programming with Python
canvas.create_line(x0, y0, x1, y1, ...,xn, yn, options)
x0,y0,x1,y1->coordinates of line
Commonly used options:
activefill-Color of the line when it is active
width -Width of the line
Example:

from tkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)
w.create_line(10,10,100,100,activefill="red")
w.pack()

root.mainloop()

Output:

The output is shown in Fig 3.11.

23

GUI Programming with Python

Fig 3.11

3.54 OVAL

Creates a circle or an ellipse at the given coordinates. It takes two pairs of
coordinates; the top left and bottom right corners of the bounding rectangle for
the oval.

Syntax:
canvas.create_oval(x0, y0, x1, y1, options)

X0, y0, x1, y1- the top left and bottom right corners of the bounding
rectangle

Options:
24

GUI Programming with Python

activefill-Color of the oval when it is active
width -Width of the line
Example:

from tkinter import *

root=TKk()

w = Canvas(root, width=500, height=500)
w.create_oval(10,10,100,100,activefill="red")
w.pack()

root.mainloop()

Output:

The output is shown in Fig 3.12.

Fig 3.12

25

GUI Programming with Python
3.5.5 Polygon
Creates a polygon item that must have at least three vertices.
Syntax:
canvas.create_polygon(x0, y0, x1, y1,...xn, yn, options)
X0, y0, x1, y1,...xn, yn-Coordinates of polygon
Options:
Activefill-Color of the oval when it is active

width -Width of the line

Example

from tkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)
w.create_polygon(50,50,20,20,100,100,activefill="red")
w.pack()

root.mainloop()

26

GUI Programming with Python

3.6 WIDGETS INPYTHON

Widgets are standard graphical user interface (GUI) elements, like different
kinds of buttons and menus.

3.6.1 Label

A Label widget shows text to the user about other widgets used in the
application. The widget can be updated programmatically.

Syntax to create Label:
w=Label (root ,options)
root - Parent Window

List of commonly used options are given in Table 3.1.

Table 3.1

Option Description

anchor |It specifies the exact position of the text within the size provided to
the widget. The default value is CENTER, which is used to center
the text within the specified space.

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

27

GUI Programming with Python

cursor |Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget

height [Height of the widget

width |Width of the widget

image |Specifies image to be displayed in the widget
padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

undeline |Underline the label text

Example:

from tkinter import *

root=Tk()

I1=Label(root,text="Enter User Name",bg="green",fg="white")

11.pack()

root,mainloop()

Output:

The output is shown in Fig 3.13.

28

GUI Programming with Python

—¢ 0O x

Enter User Mame

Fig 3.13

Explanation:

Here Label has been created with green background color and white foreground

color with the text “Enter User Name”.
3.6.2 ENTRY

The Entry widget is used to create the single line text-box to the user to accept
a value from the user. It can accept the text strings from the user. It can receive
one line of text from the user. For multiple lines of text, the text widget will be
used.

Syntax for creating Entry Widget:
w=Entry(root, options)

root-Main Window
29

GUI Programming with Python

List of commonly used options are given in Table 3.2

Table 3.2

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget
image Specifies image to be displayed in the widget
padx Horizontal padding of text
pady Vertical padding of text
relief Specifies type of border
text Text to be displayed in the widget
undeline Underline the label text

selectbackground

Background color of the selected text

selectforeground

Foreground color of the selected text

show

Specifies the character used to mask characters in the text
box

30

GUI Programming with Python

Example:

from tkinter import *

root=Tk()

I1=Label(root,text="Enter User Name",bg="green",fg="white")
el=Entry(root,show="*")

11.pack(side=LEFT)

el.pack(side=RIGHT)

root.mainloop()

Output:

The output is shown in Fig 3.14.

itk — O ®

Enter User Name |iiitiiii |

Fig 3.14

31

GUI Programming with Python

Explanation:

Here Label and entry widgets are created.Since the show attribute value is *,the
characters entered in the text box appeared as “*”.

3.6.3 Button

Button Widget is used to create various kinds of buttons.The user can interact
with the button.They can contain text or images.

Syntax for creating Button:
b=Button(root,options)
root-main window

List of commonly used options are given in Table 3.3

Table 3.3
Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget

32

GUI Programming with Python

Option Description
image Specifies image to be displayed in the widget
padx Horizontal padding of text
pady Vertical padding of text
relief Specifies type of border
text Text to be displayed in the widget
underline Underline the label text
command It is set to function name which will be called the button is
clicked
Example:

from tkinter import *

root=Tk()

b1=Button(root,text="Submit" ,bg="blue",fg="white")
b1.pack()

root.mainloop()

Output:

The output is shown in Fig 3.15.

33

GUI Programming with Python

—f§ O ¥

Fig 3.15

3.6.4 Checkbutton

The Checkbutton is used to track the user's choices provided to the application.
Checkbutton is used to implement the on/off selections. TheCheckbutton can
contain the or images or text. The Checkbutton is mostly used to provide many
choices to the user among which, the user needs to choose the one.

Syntax for creating Check Button:
b=CheckButton(root,options)

root-main window

List of commonly used options are given in Table 3.2

Table 3.2
34

GUI Programming with Python

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

command It is set to function name whicjh will be called the button is
clicked

offvalue Set value to the control variable if the button is checked.Default
Value is 1

onvalue Set value to the control variable if the button is
unchecked.Default VValue is 0

selectcolor |Set color of the check button when it is checked.

selectimage |Set the image to be shown when it is checked.

Example:

35

GUI Programming with Python

from tkinter import *

root=Tk()

cl = Checkbutton(root, text = "C", onvalue = 1, offvalue = 0, height = 2, width
=10)

c2 = Checkbutton(root, text = "C++", onvalue = 1, offvalue = 0, height = 2,
width = 10)

c3 = Checkbutton(root, text = "JAVA", onvalue = 1, offvalue = 0, height = 2,
width = 10)

cl.pack()

c2.pack()

c3.pack()

root.mainloop()

Output:

The output is shown in Fig 3.16.

— O bt

[C++

[JAavA

Fig 3.16
36

GUI Programming with Python

3.6.5 Radiobutton

The Radiobutton widget is used to implement one-of-many selection. It shows
multiple options to the user out of which, the user can select only one option.
It is possible to display the multiple line text or images on the radiobuttons. To
keep track the user's selection ,theradiobutton is associated with a single
variable.EachRadio button displays a single value for that particular variable.

Syntax for creating Radio Button:
b=RadioButton(root,options)
root-main window

List of commonly used options are given in Table 3.3

Table 3.3

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget

37

GUI Programming with Python

Option Description
image Specifies image to be displayed in the widget
padx Horizontal padding of text
pady Vertical padding of text
relief Specifies type of border
text Text to be displayed in the widget
underline Underline the label text
command It is set to function name whicjh will be called the button
is clicked
value Set value to the control variable if the button is selected.
selectcolor Set color of the check button when it is checked.
selectimage Set the image to be shown when it is checked.
variable It is used to keep track of user choices.
Example:

from tkinter import *

root=Tk()

rl = Radiobutton(root, text = "C", value = 1, height = 2, width = 10)
r2 = Radiobutton(root, text = "C++", value = 2, height = 2, width = 10)
r3 = Radiobutton(root, text = "JAVA",value = 3, height = 2, width = 10)

rl.pack()

38

GUI Programming with Python

r2.pack()
r3.pack()
root.mainloop()
Output:

The output is shown in Fig 3.17.

tk — O =

(* C++

" JAVA

Fig 3.17
3.6.6 Listbox

The Listbox widget is used to display the list items to the user. The user can
choose one or more items from the list depending upon the configuration.

Syntax for creatingListBox:

b=Listbox(root,options)
39

GUI Programming with Python

root-main window

List of commonly used options are given in Table 3.4.

Table 3.4

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget
image Specifies image to be displayed in the widget
padx Horizontal padding of text
pady Vertical padding of text
relief Specifies type of border
value Set value to the control variable if the button is selected.

selectbackground

Set back ground color of the selected text.

xscrollcommand

User can scroll the list box horizontally

40

GUI Programming with Python

yscrollcommand

User can scroll the list box vertically

41

GUI Programming with Python

Example:

from tkinter import *

top = Tk()

Ibl = Label(top,text = "A list of favourite countries...")
listbox = Listbox(top)
listbox.insert(1,"India")
listbox.insert(2, "USA")
listbox.insert(3, "Japan")
listbox.insert(4, "Austrelia™)
Ibl.pack()

listbox.pack()
top.mainloop()

Output:
The output is shown in Fig 3.18.

F tk — O

A list of favourite countries...

India
ISA
Japan
HAustrelia

42

GUI Programming with Python
Fig 3.18

3.6.7 Message

Its functionality is very similar to Label widget, except that it can
automatically wrap the text, maintaining a given width.

Syntax for creating Message:
m=Message(root,options)
root-main window

List of commonly used options are given in Table 3.5.

Table 3.5
Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget

43

GUI Programming with Python

Option Description
image Specifies image to be displayed in the widget
padx Horizontal padding of text
pady Vertical padding of text
relief Specifies type of border
Example:

from tkinter import *

top = Tk()

msg = Message(top, text = "Welcome to Javatpoint™)

msg.pack()

top.mainloop()

Output:

The output is shown in Fig 3.19.

44

GUI Programming with Python
#F tk — (. =
Welcome

to
Jawatpoint

Fig 3.19
3.6.8 Text

TKinter provides us the Entry widget which is used to implement the single line
text box. Text widget provides advanced capabilities that allow us to edit a
multiline text and format the way it has to be displayed, such as changing its
color and font. We can also use the structures like tabs and marks to locate
specific sections of the text, and apply changes to those areas.

Syntax for creating Message:

T=Text(root,options)

root-main window

List of commonly used options are given in Table 3.6.
Table 3.6

45

GUI Programming with Python

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget
padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

xscrollcommand

User can scroll the text widget horizontally

yscrollcommand

User can scroll the text widget vertically

selectbackground

Background color of the selected text

General Methods are given in Table 3.7.

Table 3.7

Method

Description

46

GUI Programming with Python

delete(startindex, This method is used to delete the characters of the
endindex) specified range

get(startindex,endindex) It returns the characters present in the specified range.

insert(index, string) It is used to insert the specified string at the given
index.

Mark Handling Methods :

Marks are used to bookmark the specified position between the characters of
the associated text.List of Mark handling methods are given in Table 3.8.

47

GUI Programming with Python

Table 3.8

Method Description

mark_set(mark,index) |It is used to create mark at the specified index.

mark_unset(mark) It is used to clear the given mark

mark_names() It is used to return names of all the marks

Tag Handling Methods:

The tags are the names given to the specific areas of the text. The tags are used
to configure the different areas of the text separately. The list of tag-handling

methods are given in Table 3.9.

Table 3.9

Method

Description

tag_add(tagname, startindex,
endindex)

It is used to tag the characters in the given
range

tag_config()

It is used to configure the tag properties

tag_delete(tagname)

It is used to delete the given tag

tag_remove(tagname, startindex,
endindex)

It is used to remove the tag from the
specified range

48

GUI Programming with Python

Example:

from tkinter import *

top = Tk()

text = Text(top)

text.insert(INSERT, "Name.....")

text.insert(END, "Salary.....")

text.pack()

text.tag_add("Write Here", "1.0", "1.4")

text.tag_add("Click Here", "1.8", "1.13")

text.tag_config("Write Here", background="yellow", foreground="black")
text.tag_config("Click Here", background="black", foreground="white")
Output:

The output is shown in Fig 3.20.

49

GUI Programming with Python

F otk — [} b

Name . .. PEEEE

Fig 3.20
Explanation:

The tag “Write Here” tags the characters from the index 0 to 4.The tag “Click
Here” tags the characters from the index 8 to 13.These tags are configured
using the method tag_config().

3.6.9 SPINBOX

The Spinbox control is an alternative to the Entry control. It provides the
range of values to the user, out of which, the user can select only one value.lIt
is used in the case where a user is given some fixed number of values to
choose from.

Syntax for creating Message:
S=Spinbox(root,options)

root-main window

50

GUI Programming with Python

List of commonly used options are given in Table 3.10

Table 3.10

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget
padx Horizontal padding of text
pady Vertical padding of text
relief Specifies type of border

xscrollcommand

User can scroll the text widget horizontally

from_ It is used to show the starting range of the widget.

to It specify the maximum limit of the widget value. The
other is specified by the from_ option.

values It represents the tuple containing the values for this

widget.

51

GUI Programming with Python

Example:

from tkinter import *

top = Tk()

spin = Spinbox(top, from_= 0, to = 25)
spin.pack()

top.mainloop()

Output:

The output is shown in Fig 3.21.

tk — O
0

Fig 3.21

52

GUI Programming with Python

3.6.10 Frame

Frame widget is used to organize the group of widgets. It acts like a container
which can be used to hold the other widgets. The rectangular areas of the screen
are used to organize the widgets to the python application.

Syntax for creating Frame:
S=Frame(root,options)
root-main window

List of commonly used options are given in Table 3.11.

Table 3.11

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
height Height of the widget
width Width of the widget
Relief Specifies type of border

Example:
53

GUI Programming with Python

from tkinter import *

top = Tk()

Topframe = Frame(top)

Topframe.pack(side = TOP)

Bottomframe = Frame(top)

Bottomframe.pack(side =BOTTOM)

btnl = Button(Topframe, text="Submit", fg="red" activebackground = "red")
btnl.pack(side = LEFT)

btn2 = Button(Topframe, text="Remove", fg="brown", activebackground
"brown")

btn2.pack(side = RIGHT)

btn3 = Button(Bottomframe, text="Add", fg="blue", activebackground
"blue™)

btn3.pack(side = LEFT)

btn4 = Button(Bottomframe, text="Modify", fg="black", activebackground
"white")

btn4.pack(side = RIGHT)

top.mainloop()

Output:

The output is shown in Fig 3.23.

54

GUI Programming with Python

l? the C=riE g
Submit | Rermove

Add | Modify

Fig 3.23

Explanation:

Here two frames (Top Frame and Bottom Frame) have been created. Topframe
contains submit and remove buttons and Bottom frame contains Add and
modify buttons .

55

GUI Programming with Python
3.7 EVENTS AND BINDINGS IN PYTHON

Binding function is used to deal with the events. We can bind Python’s
Functions and methods to an event as well as we can bind these functions to
any particular widget. Events can come from various sources, including key
presses and mouse operations by the user. Tkinter provides a powerful
mechanism to let you deal with events yourself. For each widget, you
can bind Python functions and methods to events.

widget.bind(event, handler)

If an event matching the event description occurs in the widget, the
given handler is called with an object describing the event.

3.7.1 Handling Mouse Button event in Python

Example:

from tkinter import *

from tkinter.ttk import *

creates tkinter window or root window

root = Tk()

function to be called when button-2 of mouse is pressed

def pressed2(event):

print('Button-2 pressed at X = % d, y = % d'%(event.x, event.y))
function to be called when button-3 of mouse is pressed

def pressed3(event):

print('Button-3 pressed at X = % d, y = % d'%(event.x, event.y))

56

GUI Programming with Python

function to be called when button-1 is double clocked
defdouble_click(event):

print('Double clicked at x = % d, y = % d'%(event.x, event.y))
framel = Frame(root, height = 100, width = 200)

Binding mouse buttons with the Frame widget
framel.bind('<Button-2>", pressed?)
framel.bind('<Button-3>', pressed3)

framel.bind('<Double 1>', double_click)

framel.pack()

root.mainloop()

Output:

The output is shown in Fig 3.24.

57

GUI Programming with Python

[PEVSTEET g - - . a . -
L m" ‘k Devug_Optic i

=RE; lIN/AppData/Local/Programs/Python/Python36-32/image.py =

=Rl lIN/AppData/Local/Programs/Python/Python36-32/image.py =

5>

= RESTARTGrusersrAaomIN/AppData/Local/Programs/Python/Python36-32/image.py =
= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/image.py =
z>F.TESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python38-32/image.py =
= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/image.py =

>>>

= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/image.py =
5>

= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/frame.py =

RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/mouseevent.py
>5>

RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Pythen36-32/button.py
Button-3 pressed atx = 50,y = 23
Button-3 pressed atx = 50,y = 22
Button-3 pressed atx = 50,y = 22

W NN A E A AEEEY S o2 M

Fig 3.24
3.7.2 Handling Key Press Event in Python
Example:

from tkinter import *
from tkinter.ttk import *

function to be called when
keyboard buttons are pressed
defkey_press(event):

key = event.char

print(key, 'is pressed’)

58

GUI Programming with Python

creates tkinter window or root window
root = Tk()
root.geometry('200x100")

here we are binding keyboard
with the main window

root.bind('<Key>', lambda a : key_press(a))

mainloop()
Output:

The output is shown in Fig 3.25.

59

GUI Programming with Python

[& *Python 363 Shell”

- T e =
ow Help
MIN/AppData/Local/Programs/Python/Python36-32/image.py =
MIN/AppData/Local/Programs/Python/Python36-32/image.py =
= RESTART: C:/Users/ADMIN/AppData/L ocal/Programs/Python/Python36-32/image.py =
>>>
= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/frame.py =
RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/mouseevent.py
>>>
RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/button.py
Button-3 pressed atx = 50,y = 23
Button-3 pressed atx = 50,y = 22
Button-3 pressed at x = 50,y = 22
== RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/KEY .py ==
is pressed
is pressed
is pressed E
is pressed
is pressed
is pressed
LHIZE (o\;

Bl 4 9 € @& 03]

60

GUI Programming with Python

QUESTIONS
1. Write the Pyhton Program to create simple window.
2. Write a Python Program to create label, entry and button components
and arrange the components using Grid Layout.
3. Write a Python Program to validate user name and password.
4. Write a Python Program to display the basic shapes.
5. Write a Python program to create a following GUI design
—f O X
| male
| female
6. Write the GUI program to create List Box for shopping cart.
7. Write a pyhton Program to create simple calculator.
8. Write a Python Program to add image on the button.
9. Write a Python progam to create simple application form.
10. Wrtite a Pyhton program to create check button for selecting multiple

hobbies.

61

Database and Network

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

“www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT - IV- SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

(Database and Network)

Database and Network

UNIT IV

DATABASE AND NETWORK

Data is very important for any organization to continue its operations. The data
may be related to employees in the organization or the operational data like products
information, raw material prices, sales information, profits and losses. Without data,
no organization will survive. Hence, data is very important and it should never be lost.

4.1 DATABASE MANAGEMENT SYSTEM (DBMS)

To store data, a file or database can be used. A file stores data in the secondary storage
device like hard disk, either in the text format or binary format.

A database represents collection of data. Data is stored in the database. Once the data
is stored in the database, various operations can be performed on the data. For example,
modifying the existing data, deleting the unwanted data, or retrieving the data from the
database and etc. To perform such operations, a database comes with software. This is
called a database management system.

DBMS= Database + Software to manage the data
Example DBMS are MySQL, Oracle, Sybase,, SQL server etc.
Types of databases used with Python
1. Database support
e SQL

e NoSQL

Database and Network

As more and more data become available as unstructured or semi-structured, the
need of managing them through NoSql database increases. Python can also interact
with NoSQL databases in a similar way as it interacts with Relational databases. In this

chapter we will use python to interact with MongoDB as a NoSQL database.

4.2 MONGO DB

MongoDB stores data in JSON-like documents, which makes the database very

flexible and scalable.

Where to Use MongoDB?

Big Data

Content Management and Delivery
Mobile and Social Infrastructure
User Data Management

Data Hub

download a free MongoDB database at https://www.mongodb.com.

4.2.1 PyMongo

Python needs a MongoDB driver to access the MongoDB database.

In this tutorial we will use the MongoDB driver "PyMongo".

We recommend that you use PIP to install "PyMongo".

PIP is most likely already installed in your Python environment.

Navigate your command line to the location of PIP, and type the following:

https://www.mongodb.com/

Database and Network

Download and install "PyMongo":

C:\Users\Your Name\AppData\Local\Programs\Python\Python36-32\Scripts>python -
m pip install pymongo

Now you have downloaded and installed a mongoDB driver.

Where to Use MongoDB?

. Big Data

. Content Management and Delivery
. Mobile and Social Infrastructure

) User Data Management

. Data Hub

Test PyMongo

To test if the installation was successful, or if you already have "pymongo" installed,
create a Python page with the following content:

demo_mongodb_test.py:
import pymongo
Creating a Database

To create a database in MongoDB, start by creating a MongoClient object, then specify
a connection URL with the correct ip address and the name of the database you want
to create.

Database and Network

MongoDB will create the database if it does not exist, and make a connection to it.
Example

Create a database called mydatabase

Program

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

MongoDB waits until you have created a collection (table), with at least one document
(record) before it actually creates the database (and collection).

4.3 CREATING A COLLECTION

To create a collection in MongoDB, use database object and specify the name of the
collection you want to create.

MongoDB will create the collection if it does not exist.

Database and Network

Program

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

MongoDB waits until you have inserted a document before it actually creates the
collection.

4.3.1 Python MongoDB Insert Document

Insert Into Collection

To insert a record, or document as it is called in MongoDB, into a collection, we use
the insert_one() method.

The first parameter of the insert_one() method is a dictionary containing the name(s)
and value(s) of each field in the document you want to insert.

Example
Insert a record in the “Customers” Collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]

mycol = mydb["customers"]

Database and Network

mydict = { "name": "John", "address": "Highway 37" }
x = mycol.insert_one(mydict)

Insert Multiple Documents

To insert multiple documents into a collection in MongoDB, we use
theinsert_many() method.

The first parameter of the insert_many() method is a list containing dictionaries with
the data you want to insert:

import pymongo

myclient = pymongo.MongoClient(**'mongodb://localhost:27017/*")
mydb = myclient["'mydatabase"']

mycol = mydb["'customers"'’]

mylist = [
{"name": "Amy", "address": ""Apple st 652"},
{"name': "Hannah", "address": ""Mountain 21"},
{""name’: "Michael™, ""address"": ""Valley 345"},
{"name": ""Sandy"", ""address'": ""Ocean blvd 2"},
{""name"": "Betty"", ""address'": ""Green Grass 1"},
{"name": "Richard", "address': ""Sky st 331"},
{""name": ""Susan", ""address'": ""One way 98"},
{"name’: "Vicky", "address": ""Yellow Garden 2"},
{"name’: "Ben", "address": ""Park Lane 38"},

{"name": "William", "address": ""Central st 954''},
7

Database and Network

{"name": "Chuck"", "address'": ""Main Road 989"},
{"name’: "Viola", "address': "'Sideway 1633"}

]
X = mycol.insert_many(mylist)

4.3.2 Python MongoDB Find
In MongoDB we use the find and findOne methods to find data in a collection.
Just like the SELECT statement is used to find data in a table in a MySQL database.
Find One
To select data from a collection in MongoDB, we can use the find_one()method.
The find_one() method returns the first occurrence in the selection.
Example
Find the first document in the customers collection:

import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]

mycol = mydb["customers"]

x = mycol.find_one()

Database and Network

print(x)
Output
{"_id": 1, 'name': 'John’, 'address': ‘Highway37'}
Find All
To select data from a table in MongoDB, we can also use the find() method.
The find() method returns all occurrences in the selection.

The first parameter of the find() method is a query object. In this example we use an
empty query object, which selects all documents in the collection.

Example
Return all documents in the "customers" collection, and print each document:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

for x in mycol.find():

print(x)

Database and Network

{"_id": 1, '‘name’: 'John’, ‘address': "Highway37'}
{"_id": 2, 'name': "Peter", 'address": 'Lowstreet 27'}
{"_id": 3, 'name': "Amy", 'address": 'Apple st 652'}
{"_id": 4, 'name’: "Hannah’, ‘address': ‘Mountain 21}
{"_id": 5, 'name': 'Michael', 'address": 'Valley 345"}
{"_id": 6, 'name’: "'Sandy', "address': 'Ocean blvd 2'}
{'_id": 7, 'name': "Betty’, "address': 'Green Grass 1'}

{"_id": 8, 'name': 'Richard’, ‘address': "Sky st 331'}
{"_id": 9, 'name': 'Susan', "address': 'One way 98'}
{"_id": 10, 'name": 'Vicky', ‘address': 'Yellow Garden 2'}
{"_id": 11, 'name’: 'Ben’, 'address": 'Park Lane 38'}
{"_id": 12, 'name": "William', "address': "Central st 954'}
{"_id": 13, 'name": "Chuck’, 'address': "Main Road 989'}
{"_id": 14, 'name": "Viola', 'address': 'Sideway 1633'}

4.3.3. Filter the Result

When finding documents in a collection, you can filter the result by using a query
object.

The first argument of the find() method is a query object, and is used to limit the search.
Example
Find document(s) with the address "Park Lane 38":

import pymongo
myclient = pymongo.MongoClient(*mongodb://localhost:27017/*)
mydb = myclient["mydatabase"]
mycol = mydb["customers"]
myquery = { "address": "Park Lane 38" }
mydoc = mycol.find(myquery)
10

Database and Network

for x in mydoc:
print(x)

output

{"_id": 11, 'name’: 'Ben’, 'address': 'Park Lane 38}
Example
Find documents where the address starts with the letter "S" or higher:

import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]
myquery = { "address": { "$gt": "S" } }
mydoc = mycol.find(myquery)
for x in mydoc:
print(x)

Output

{'_id": 5, 'name": 'Michael'’, 'address': 'Valley 345"}
{'_id": 8, 'name’: 'Richard’, 'address": 'Sky st 331"}
{'_id": 10, 'name": 'Vicky', 'address": 'Yellow
Garden 2'}

{'_id": 14, 'name": 'Viola', 'address': 'Sideway
1633'}

11

Database and Network

Return Only Some Fields

The second parameter of the find() method is an object describing which fields to
include in the result.

This parameter is optional, and if omitted, all fields will be included in the result.
Example
Return only the names and addresses, not the _ids:

import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]

mycol = mydb["customers"]

for x in mycol.find({},{ "_id": 0, "name": 1, "address™: 1}):
print(x)

Output

{'name’: 'John', 'address": 'Highway37'}
{'name': 'Peter’, 'address": 'Lowstreet 27'}
{'name’: 'Amy’, 'address': 'Apple st 652'}
{'name': '"Hannah', 'address': 'Mountain 21'}
{'name’: 'Michael', 'address': 'Valley 345'}
{'name": 'Sandy', 'address': 'Ocean blvd 2'}
{'name’: 'Betty', 'address': 'Green Grass 1'}
{'name': 'Richard’, 'address': 'Sky st 331'}
{'name’: 'Susan’, 'address': 'One way 98'}

12

Database and Network

{'name’: 'Vicky', 'address": 'Yellow Garden 2'}
{'name': 'Ben’, 'address': 'Park Lane 38'}
{'name’: 'William', 'address': 'Central st 954'}
{'name": 'Chuck’, 'address': 'Main Road 989'}
{'name': 'Viola', 'address': 'Sideway 1633'}

4.3.4. Sort the Result
Use the sort() method to sort the result in ascending or descending order.

The sort() method takes one parameter for “fieldname” and one parameter for
"direction" (ascending is the default direction).

Example
Sort the result alphabetically by name:
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mydoc = mycol.find().sort("name")

for x in mydoc:
print(x)

OUTPUT
13

Database and Network

{_id"
_id":
{_id":
_id":
{_id":
{_id":
{_id":
{_id"
{_id"
{_id"
{_id"
{_id"
{_id"
{_id"

3, 'name': 'Amy', 'address': 'Apple st 652'}

11, 'name': 'Ben’, 'address': 'Park Lane 38'}

7, 'name': 'Betty’, 'address': 'Green Grass 1'}
13, 'name": 'Chuck’, 'address': 'Main Road 989'}
4, 'name': 'Hannah', 'address': 'Mountain 21'}
1, 'name": 'John', 'address': 'Highway37'}

5, 'name': 'Michael', 'address': 'Valley 345'}

2, 'name': 'Peter’, 'address': 'Lowstreet 27'}

8, 'name’: 'Richard’, 'address': 'Sky st 331'}

6, 'name’: 'Sandy', 'address': 'Ocean blvd 2'}

9, 'name’: 'Susan’, 'address': 'One way 98'}

10, 'name": 'Vicky', 'address': 'Yellow Garden 2'}
14, 'name': 'Viola', 'address': 'Sideway 1633'}
12, 'name': 'William', 'address': 'Central st 954'}

Sort Descending

Use the value -1 as the second parameter to sort descending.

sort(""'name", 1) #ascending
sort(""'name", -1) #descending

Example

Sort the result reverse alphabetically by name:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

14

Database and Network

mydoc = mycol.find().sort("name", -1)

for x in mydoc:
print(x)

Output

{'_id": 12, 'name’: 'William', 'address': 'Central st 954'}
{'_id": 14, 'name': 'Viola', 'address': 'Sideway 1633'}
{'_id": 10, 'name’: 'Vicky', 'address': 'Yellow Garden 2'}
{'_id": 9, 'name": 'Susan’, 'address': 'One way 98'}
{'_id": 6, 'name': 'Sandy’, 'address': 'Ocean blvd 2'}
{'_id": 8, 'name': 'Richard’, 'address': 'Sky st 331'}
{'_id": 2, 'name': 'Peter’, 'address': 'Lowstreet 27'}
{'_id": 5, 'name': 'Michael', 'address': 'Valley 345'}
{"_id": 1, 'name": 'John', 'address': '"Highway37'}

{"_id": 4, 'name": 'Hannah', 'address': 'Mountain 21'}
{'_id": 13, 'name’: 'Chuck’, 'address': 'Main Road 989'}
{'_id": 7, 'name': 'Betty’, 'address': 'Green Grass 1'}
{'_id": 11, 'name": 'Ben’, 'address": 'Park Lane 38'}
{'_id": 3, 'name': 'Amy’', 'address': 'Apple st 652'}

4.3.5 Python MongoDB Delete Document
To delete one document, we use the delete_one() method.

The first parameter of the delete_one() method is a query object defining which
document to delete.

Note: If the query finds more than one document, only the first occurrence is deleted.

15

Database and Network

Example
Delete the document with the address "Mountain 21"
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

myquery = { "address™: "Mountain 21" }

mycol.delete_one(myquery)

Delete Many Documents

To delete more than one document, use the delete_many() method.

The first parameter of the delete_many() method is a query object defining which
documents to delete.

Example
Delete all documents were the address starts with the letter S:
import pymongo

myclient = pymongo.MongoClient(*mongodb://localhost:27017/*)
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

16

Database and Network

myquery = { "address": {"$regex": "S"} }

x = mycol.delete_many(myquery)
print(x.deleted_count, " documents deleted.")
output

2 documents deleted.

Delete All Documents in a Collection

To delete all documents in a collection, pass an empty query object to
the delete_many() method:

Example
Delete all documents in the "customers" collection:
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]
x = mycol.delete_many({})

print(x.deleted_count, " documents deleted.")

17

Database and Network

Output:

11 documents deleted

4.3.6 Python MongoDB Drop Collection

Delete Collection

You can delete a table, or collection as it is called in MongoDB, by using
the drop() method.

Example
Delete the "customers™ collection:
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mycol.drop()

The drop() method returns true if the collection was dropped successfully, and false if
the collection does not exist.

18

Database and Network

4.3.7 Python MongoDB Update

You can update a record, or document as it is called in MongoDB, by using
the update_one() method.

The first parameter of the update_one() method is a query object defining which
document to update.

Note: If the query finds more than one record, only the first occurrence is updated.
Example
Change the address from "Valley 345" to "Canyon 123":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

myquery = { "address": "Valley 345" }
newvalues = { "$set": { "address": "Canyon 123" } }

mycol.update_one(myquery, newvalues)
#print "customers" after the update:

for x in mycol.find():
print(x)

Database and Network

OUTPUT

{_id":
{_id":
{_id"
{_id"
{_id"
{_id"
{_id"
{_id"
{_id"
{_id"
{_id"
{_id"
{_id"
{_id"

1, 'name’
2, 'name’

3, 'name":
4, 'name":
5, 'name":
6, 'name':
7, 'name":
8, 'name":

9, 'name’

: 'John', 'address': 'Highway37'}

: 'Peter’, 'address': 'Lowstreet 27'}
'Amy', 'address': 'Apple st 652'}
'Hannah’, 'address': 'Mountain 21'}
'Michael’, 'address': 'Canyon 123'}
'Sandy', 'address': 'Ocean blvd 2'}
'Betty', 'address': 'Green Grass 1'}
'Richard’, 'address': 'Sky st 331'}

: 'Susan’, 'address': 'One way 98'}

10, 'name": 'Vicky', 'address': 'Yellow Garden 2'}
11, 'name': 'Ben’, 'address': 'Park Lane 38'}

12, 'name": 'William', 'address': 'Central st 954'}
13, 'name": 'Chuck’, 'address': 'Main Road 989'}
14, 'name": 'Viola', 'address'I'Sidewayﬂ

Update Many

To update all documents that meets the criteria of the query, use
the update_many() method.

Example

Update all documents where the address starts with the letter "S":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb
mycol

= myclient["mydatabase"]
= mydb["customers"]

20

Database and Network

myquery = { "address": { "$regex": ""S" } }
newvalues = { "$set": { "name": "Minnie" } }

X = mycol.update_many(myquery, newvalues)

print(x.modified_count, "documents updated.")

Output

2 documents updated.

4.3.8 Python MongoDB Limit

To limit the result in MongoDB, we use the limit() method.

The limit() method takes one parameter, a number defining how many documents to
return.

Consider you have a "customers" collection:

{"_id": 1, 'name": 'John', 'address': '"Highway37'}
{'_id": 2, 'name": 'Peter’, 'address': 'Lowstreet 27'}
{'_id": 3, 'name': 'Amy"', 'address': 'Apple st 652'}
{'_id": 4, 'name': '"Hannah', 'address': 'Mountain 21'}
{'_id": 5, 'name': 'Michael', 'address': 'Valley 345'}
{'_id": 6, 'name": 'Sandy', 'address": 'Ocean bivd 2'}
{"_id": 7, 'name": 'Betty', 'address': 'Green Grass 1'}
{'_id": 8, 'name": 'Richard’, 'address": 'Sky st 331'}
{"_id": 9, 'name": 'Susan’, 'address': 'One way 98'}
{'_id": 10, 'name": 'Vicky', 'address': 'Yellow Garden 2'}
{'_id": 11, 'name": 'Ben’, 'address': 'Park Lane 38'}

21

Database and Network

{'_id": 12, 'name": 'William', 'address': 'Central st 954'}
{'_id": 13, 'name": 'Chuck’, 'address': 'Main Road 989'}
{'_id": 14, 'name": 'Viola', 'address': 'Sideway

Example
Limit the result to only return 5 documents:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

myresult = mycol.find().limit(5)

#print the result:
for x in myresult:
print(x)

OUTPUT
{"_id": 1, 'name": 'John', 'address': 'Highway37'}
{'_id": 2, 'name": 'Peter’, 'address': 'Lowstreet 27'}
{'_id": 3, 'name": 'Amy', 'address': 'Apple st 652'}
{'_id": 4, 'name': '"Hannah', 'address': 'Mountain 21'}
{'_id": 5, 'name': 'Michael', 'address': 'Valley 345'}

22

Database and Network

4.4 CURSOR CLASS
To work with MySQL in python, connector sub module of mysgl module.
import mysqgl.connector;

to establish connection with MySQL database, we use the connect() method of
mysql.connector module as:

conn=mysql.connector.connect(host="localhost’,database="university’ ,user="root’,

password="***")
The connect() method returns MySQLConnection class object ‘conn’.

The next step is to create cursor class object by calling the cursor() method on ‘conn’
object as:

cursor=con.cursor()
Cursor object is useful to execute SQL commands on the database.
it is done by execute() method of cursor object.

cursor.execute(sql querry)

example: cursor.execute(“select * from emptab”)

The resultant rows retirieved from the table are stored in cursor object. the result
can be fetched using fetchone() or fetchall() methods.

example: row = cursor.fetchone() # get 1 row

23

Database and Network

row = cursor.fetchall() # get all rows

Finally, the connection with MySQL can be closed by closing the cursor and
connection objects as:

cursor.close()
conn.close()

Program: A python program to retrieve and display all rows from the student
table:

import mysqgl.connector;

conn=mysql.connector.connect(host="localhost’,database="university’ ,user="root’,

password="***")
cursor=con.cursor()
cursor.execute(“select * from stutab™)
row = cursor.fetchone()
while row is not None:
print(row)

row=cursor.fetchone()
cursor.close()
conn.close()

24

Database and Network

Output:
(1001, ‘Ajay’, 8.5)
(1002, ‘Alan’, 7.5)

(1001, “Joe’, 9.00)

4.5 EXCEPTIONS CLASSES

Interacting with a database is an error prone process, so we must always implement
some mechanism to handle errors.

Built in Exceptions

Exception Description
Warning Used for non-fatal issues. Must subclass StandardError.
Error

Base class for errors. Must subclass StandardError.

InterfaceError Used for errors in the database module, not the database
itself. Must subclass Error.

DatabaseError Used for errors in the database. Must subclass Error.
DataError Subclass of DatabaseError that refers to errors in the data.
OperationalError Subclass of DatabaseError that refers to errors such as the

loss of a connection to the database. These errors are
generally outside of the control of the Python scripter.

Exception Description

25

Database and Network

IntegrityError Subclass of DatabaseError for situations that would
damage the relational integrity, such as uniqueness
constraints or foreign keys.

InternalError Subclass of DatabaseError that refers to errors internal to
the database module, such as a cursor no longer being
active.

ProgrammingError |Subclass of DatabaseError that refers to errors such as a
bad table name and other things that can safely be blamed
on you.

4.6 NETWORKING

For a specific purpose if things are connected together, are referred as
a NETWORK. A network can be of many types, like a telephone network, television
network, computer network or even a people network.

Similarly, a COMPUTER NETWORK is also a kind of setup, where it connects
two or more devices to share a range of services and information in the form of e-mails
and messages, databases, documents, web-sites, audios and videoes, Telephone calls
and video conferences etc among them.

A PROTOCOL is nothing but set of defined rules, which has to be followed by
every connected devices across a network to communicate and share information
among them. To facilitates End to End communication, a number of protocols worked
together to form a Protocol Suites or Stacks.

Some basic Protocols are:
26

Database and Network

IP : Internet Protocol

FTP : File Transfer Protocol

SMTP : Simple Mail Transfer Protocol

HTTP : Hyper Text Transfer Protocol

The Network reference models were developed to allow products from different
manufacturers to interoperate on a network. A network reference model serves as a
blueprint, detailing standards for how protocol communication should occur.
The most widely recognized reference models are, the Open Systems
Interconnect (OSI) Model and Department of Defense (DoD, also known
as TCP/IP) model.

Network Types are often categorized by their size and functionality. According to the
size, the network can be commonly categorized into Three types.

e LANS (Local Area Networks)
e MANSs (Metropolitan Area Networks)
e WANSs (Wide Area Networks)

An Internetwork is a general term describing multiple networks connected together.
The Internet is the largest and most well-known internetwork.

Some networks are categorized by their function, as opposed to their size.
For example:
e SAN (Storage Area Network): A SAN provides systems with high-speed,

lossless access to high-capacity storage devices.

27

https://www.geeksforgeeks.org/layers-osi-model/
https://www.geeksforgeeks.org/computer-network-tcpip-model/
https://www.geeksforgeeks.org/computer-network-types-area-networks-lan-man-wan/
https://www.geeksforgeeks.org/computer-networks-internetworking/
https://www.geeksforgeeks.org/storage-area-networks/

Database and Network

e VPN (Virtual Private Network): A VPN allows for information to be securely
sent across a public or unsecure network, such as the Internet. Common uses of a
VPN are to connect branch offices or remote users to a main office.

In a network, any connected device is called as host. A host can serve as following
ways:

e Ahost can acts as a Client, when he is requesting information.
e A host can acts as a Server, when he provides information.

e A host can also request and provide information, is called Peer.

4.7 SOCKET MODULE
What Are Sockets?

A socket is a link between two applications that can communicate with one another
(either locally on a single machine or remotely between two machines in separate
locations).

Basically, sockets act as a communication link between two entities, i.e. a server and a
client. A server will give out information being requested by a client. For example,
when you visited this page, the browser created a socket and connected to the server.

The socket Module

In order to create a socket, you use the socket.socket() function, and the syntax is as
simple as:

28

https://www.geeksforgeeks.org/virtual-private-network-vpn-introduction/

Database and Network

import socket
s= socket.socket (socket_family, socket_type, protocol=0)
Here is the description of the arguments:

o socket_family: Represents the address (and protocol) family. It can be either
AF_UNIX or AF_INET.

o socket_type: Represents the socket type, and can be either SOCK_STREAM
or SOCK_DGRAM.

e protocol: This is an optional argument, and it usually defaults to 0.

After obtaining your socket object, you can then create a server or client as desired
using the methods available in the socket module.

o s.recv() —It receives TCPmessage

o s.send() — It transmits TCP message

o s.recvfrom() — It receives UDPmessage
o s.sendto() — It transmits UDP message
o s.close() — It closes socket

o socket.gethostname() — It returns thehostname

29

Database and Network

4.8 CREATE A SIMPLE CLIENT

Before we get started, let's look at the client socket methods available in Python.
s= socket.socket(socket. AF_INET, socket.sock_STREAM)

s.connect()Initiates a TCP server connection.

To create a new socket, you first import the socket method of the socket class.

import socket

Next, we'll create a stream (TCP) socket as follows:

stream_socket = socket.socket(socket. AF_INET, socket.SOCK_STREAM)

The AF_INET argument indicates that you're requesting an Internet Protocol (IP)
socket, specifically IPv4. The second argument is the transport protocol type
SOCK_STREAM for TCP sockets. Additionally, you can also create an IPv6 socket
by specifying the socket AF_INET6 argument.

Specify the server.

server = "localhost"

Specify the port we want to communicate with.

port =80

Connect the socket to the port where the server is listening.
server_address = ((host, port))

30

Database and Network

stream_socket.connect(server_address)

It's important to note that the host and port must be a tuple.
Send a data request to the server:

message = 'message’

stream_socket.sendall(message)

Get the response from the server:

data = sock.recv(10)

print data

To close a connected socket, you use the close method:
stream_socket.close()

Below is the full code for the Client/Server.

import socket

import sys

Create a TCP/IP socket

stream_socket = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
Define host

host = 'localhost’

31

Database and Network

define the communication port

port = 8080

Connect the socket to the port where the server is listening
server_address = ((host, port))

print "connecting"
stream_socket.connect(server_address)
Send data

message = 'message’
stream_socket.sendall(message)

response

data = stream_socket.recv(10)

print data

print 'socket closed'
stream_socket.close()

4.9 BUILD A SIMPLE SERVER

Now let's take a look at a simple Python server. The following are the socket server
methods available in Python.

32

Database and Network

s = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
s.bind(): Binds address (hosthame, port number) to socket.
s.listen(): Sets up and starts TCP listener.
s.accept(): Accepts TCP client connection.
We will follow the following steps:
o Create a socket.
e Bind the socket to a port.
o Start accepting connections on the socket.
Here is the server program.
import socket
import sys
Create a TCP/IP socket
sock = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
Define host
host = 'localhost'
define the communication port

port = 8080

33

Database and Network

Bind the socket to the port
sock.bind((host, port))
Listen for incoming connections
sock.listen(1)
Wait for a connection
print 'waiting for a connection'
connection, client = sock.accept()
print client, ‘connected'
Receive the data in small chunks and retransmit it
data = connection.recv(16)
print 'received "%s"' % data
if data:

connection.sendall(data)
else:

print 'no data from’, client
Close the connection

connection.close()

34

Database and Network

The server is now ready for incoming connections.

Now run the client and server programs in separate terminal windows, so they can
communicate with each other.

Server Output
$ python server.py

waiting for a connection
('127.0.0.1", 47050) connected
received "message”

Client Output
$ python client.py
connecting
message
socket closed

410 SENDING EMAIL USING SMTP

Simple Mail Transfer Protocol (SMTP) is a protocol, which handles sending e-mail
and routing e-mail between mail servers.

35

Database and Network

Python provides smtplib module, which defines an SMTP client session object that
can be used to send mail to any Internet machine with an SMTP or ESMTP listener
daemon.

Here is a simple syntax to create one SMTP object, which can later be used to send
an e-mail —

import smtplib
smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])
Here is the detail of the parameters —

e host — This is the host running your SMTP server. You can specify IP address
of the host or a domain name like tutorialspoint.com. This is optional
argument.

e port — If you are providing host argument, then you need to specify a port,
where SMTP server is listening. Usually this port would be 25.

e local_hostname — If your SMTP server is running on your local machine,
then you can specify just localhost as of this option.

An SMTP object has an instance method called sendmail, which is typically used to
do the work of mailing a message. It takes three parameters —

e The sender — A string with the address of the sender.

e The receivers — A list of strings, one for each recipient.

36

Database and Network
e The message — A message as a string formatted as specified in the various
RFCs.
Example
Here is a simple way to send one e-mail using Python script. Try it once —
import smtplib
sender = ‘from@fromdomain.com'
receivers = ['to@todomain.com’]

message = """'From: From Person from@fromdomain.com

To: To Person to@todomain.com

Subject: SMTP e-mail test

This is a test e-mail message.

try:
smtpObj = smtplib.SMTP('localhost’)
smtpObj.sendmail(sender, receivers, message)
print "Successfully sent email"

except SMTPException:

37

mailto:from@fromdomain.com
mailto:to@todomain.com

Database and Network

Here, you have placed a basic e-mail in message, using a triple quote, taking care
to format the headers correctly. An e-mail requires a
From, To, and Subject header, separated from the body of the e-mail with a blank
line.

To send the mail you use smtpObj to connect to the SMTP server on the local
machine and then use the sendmail method along with the message,
the from address, and the destination address as parameters (even though the
from and to addresses are within the e-mail itself, these aren't always used to route
mail).

If you are not running an SMTP server on your local machine, you can
use smtplib client to communicate with a remote SMTP server. Unless you are using
a webmail service (such as Hotmail or Yahoo! Mail), your e-mail provider must have
provided you with outgoing mail server details that you can supply them, as follows
—smtplib.SMTP('mail.your-domain.com’, 25)

4.11 URL ACCESS

URL(Uniform REsource Locator)

e urlib is the module used for fetching URLSs

urllib is a Python module that can be used for opening URLS. It defines functions and
classes to help in URL actions.

With Python we can also access and retrieve data from the internet like XML,
HTML, JSON, etc. We can also use Python to work with this data directly.

38

Database and Network

#Used to make requests
import urllib.request
x= urllib.request.urlopen('https://www.google.com/")

print(x.read())

39

http://www.google.com/%27)
http://www.google.com/%27)

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

‘www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT -V - SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

(Case Study)

UNIT v

CASE STUDY

5.1 WEB PROGRAMMING USING PYTHON

Python is one of the most suitable language for web application development
for its efficiency and readability. There are different frameworks supported by python.
A framework is a bundle of packages and modules that allow us to create web
application very easily without having to handle low-level activities such as thread
management, process management and protocol management. We can build our
application very effectively with the help of frameworks.

Given below are some of the popular web frameworks in python
1. Django

Django is a popular python web framework and is used for larger applications.
It contains everything needed for web development bundled with the framework itself.
Users have no need to handle database administration, routing and authentication.
Django works well with all important databases like Oracle, MySQL, PostgreSQL,
SQLite,etc.

Features

1. Fast- Django is designed to handle the applications from beginning to end as
quickly as possible.

2. Fully loaded — Django framework handle all services required for a web
application like user authentication, context administration, site maps and many
more.

3. Security- It helps the developer to avoid common security mistakes such as
SQL injection, cross-site scripting and cross site request forgery.

4. Scalability- It handles the heaviest traffic demands.
2. Flask

Flask is a micro framework for python and good choice for building smaller
applications and web services. It implements the commonly used core components of a
web application framework such as URL routing, request and response objects and
templates. However, built-in functions like Database access, form generation and
validation are not supported in Flask.

3. Pyramid

Pyramid is the most flexible python framework and is used for mid-high scale
applications. Anyone can start to work with Pyramid without any prior knowledge about
it. It comes with only some important tools which are needed for developing application.
It is a finishing framework with the ability to start small application and allow us to
code a solid foundation for our solution and to scale up as needed.

5.1.1 Developing simple application using Django

The Django web framework provides tools and libraries to simplify the task of
web development operations. It solves the issues and it will make our work a lot easier.
Django web framework helps in building clean and maintainable web applications very
quickly.

5.1.2 Django Architecture
It follows MVVC-MVT architecture. MVC stands for Model View Controller. It is

used for developing the web applications. It consists of three segments like model, view
and controller. The fig 5.1 given below shows the MV C architecture.

e Model: It is used for storing and maintaining our data. It is the backend where
our database is defined.

o Views: views are in html. Whatever user is seeing, it is defined as view.

o Controller: Controller is business logic that interacts with the model and the
view.

View
Controller

Model

Fig 5.1 MVC Architecture
5.1.3 Django MVT pattern

MVT stands for Model View Template. In MVT, predefined template is used for user
interface. User has no need to rewrite the code again by using template. Django will
acts as controller in this part. Template is our front end which interacts with the view
and the model will be used as the backend. View will access both the model and
templates and maps them to a URL. Fig 5.2 describes the MVT pattern.

-~

Django Model

-
C

URL View

\ Template

Fig 5.2 MVT Pattern

5.1.4 Django Installation

Step 1: Go to the link: https://www.djangoproject.com/download/. It is described in fig
5.3.

Step 2: Select the command prompt from the start menu, right click and choose the
option “run as administrator”. Now the screen displays the command prompt shown in
fig 4.

Step 3: Type the pip command on command prompt as follows.

Pip install Django == 1.11.4

https://www.djangoproject.com/download/

Step 4: This creates a project folder in the python environment .The folder name is
“myproject”

Step 5: To build a web application, enter into the “myproject” folder. Type the
following in command terminal

Django-admin startproject myproject
[Jit5)] ‘ G pytho ‘e! Djang ﬂ De X e! Instru ‘ ! Buid ‘ * Settin |(-)G Tuitte ‘u Twite ‘E Down ‘ @ Socil " Twitte ‘M Tnbox ‘ New Tab ‘SF Down |ﬂ Thank ‘ + @@M

C @ https//wwwdjangoproject.com/download/ k'S ° :

w Apps I@: Ttjobs in US| Jobs i.. 7] Kalvi Selvam-Seithi., M ear & 1BM: Inviting Applic.. @ Download PuTTY: la. M agriculture patent -, Q Most recent papers...

]
dlango OVERVIEW DOCUMENTATION NEWS COMMUNITY CODE ABOUT ¥ DONATE

Download

How to get Django Support iengo!

Diango is available open-source under the BSD license, We recommend using the latest version idcha Adikarydonted o the

of Python 3. The last version to support Python 2.7 is Diango 1.11 LTS, See the FAQ for the * Django Software Foundation to support
Django development. Donate today!

Python versions supported by each version of Django. Here's how to get it

Option 1: Get the latest official version Forhempetent

+ Latest release: Django-2.2.1.4ar.gz
Checksums: Django-2.2.1.checksum.brt
Release notes: Online documentation

The latest official vession i5 2.2.1. Read the 2.2.1 release notes, then install it with pip:
pip install Django==2.2.1
Which version s better?

Option 2: Get the latest development version

We improve Django almost every day and are pretty good

d0OULKEENING tE COQE STANiE, |11 NA1E @
=

Fig 5.3 Django Website

In this example, we used Django==1.11.4 version.

B G x el wonl | @] 1 & culd) | [Setin: | 06 Twi i © Sedsl | W Twitie | M Int s '
C @ hitps//www.google.com v O
Aoy nUS | Jobst.) KaiiS pars
Google python django web devel

Django Tutorials = R
hitps /irealpython

in web development in Pyl

nplesnyprojectded .

Simple Django Web)|

mpleded .

hitps:/iwww.codementor
pip install Django=
n Very praciici
application using the Djan

c
Build Your First Pyt
nttps://scotch.io » Tutorial
112, 2016 - If not, Pythor
going to be using Django td

People a
What can | do with Python Django? v
How Python is used in Web development? ~
How does Django work with Python? v

Is Djanga good for web development?

NS5 ¢ [[

-
=]

Fig 5.4 Installation of Django

| Program Files
). ProgramData

| Python2?
) Users 2
N myproject
3 File folder
Date modified: 5/28/2019 10:53 AM

®v\ 0 » Computer » Local Disk(C) » Python2l » «[4][Search pyhonzz B
Organize v 5 Open Includeinlibrary v Sharewith v Bum New folder o e
[Links ~ | Name . Date modified Type Size
i mobogenicpasp 1 Dlls 8/31/2018 1148 AM File folder
f x :::{'“"ﬁ 1! poc /3120181149 AM File folder
R 1l include 8/31/20181148 AM File folder
" Ui Lib 5/28/20191243PM File folder
3y videos L libs /3120181149 AM File folder
|, opera autoupdate -
e [1] myproject 5/28/201910:53 AM_ File folder
. sample 5/28/201910:55 AM File folder
8 searches U seripts 5/28/20191251 PM File folder
ahc:;::“ W 8/31/20181149 AM File folder
& Lok) i Tools /31/20181149 AM File folder
- [License 6/30/2014405PM Text Document ETS
ﬁ z:‘:":;.m [news 6/30/2014338PM Text Document 380 KB
o L numpy-wininst 8/31/20181200 M Text Document 958
- Pillow-wininst 5/26/2019252PM Text Document 208
ﬁ :;1"'5 @ python 6/30/2014403PM Application KB
2 pythomy 6/30/2014 404PM Application 278
U jos152 [} README 6/30/2014337PM Tet Document 538
ﬁ zls::c:m:] Removenumpy 8/31/20181200 PM Application 192K8
Ol perioge 3 RemovePillow 5/26/2019252PM Application 192K8
1 wxpopen 6/30/2014402PM Application ke
) plugins
@ progam

Fig 5.5 Folder Creation in Python Environment

[

@Q-\ » Computer » Local Disk(C) » Python2Z » mypraject » myproject

Organize v Includein ibrary =
Links
mobogenicP2sp
My Documents
i My Music
& My Pictures

Share with v

Bum New folder

“ Name

A _init_
settings
2 urls

2 wsgi

Date modified

5/28/201910:53 AM
5/28/201910:53 AM
5/28/201910:53 AM
5/28/201910:53 AM

Type
Python File
Python File
Python File
Python File

0KB
4KB
1k8
1ke

o = 5]

=Y 0 @

B My Videos
opera autoupdate
1 Saved Games
i Searches
workspace
4 Computer
&, Local Disk (C)
binary
Config.Msi
ESD
features
files
jdk13.0 152
MSOCache
Output
Perflogs
plugins

B

program
Program Files
ProgramData
Python2?

Users -

4 items

S ulole®

el TaT e]~ =] S|

Fig 5.6 Files in Directory

(=

Fig 5.5 and 5.6 describes the folder creation and list of files in directory. Our project is
created now. We will see the list of files in directory. Let’s discuss about the following
files.

manage.py- It is a command line utility

myproject —It is actual python package in our project.

init.py-Python package

A wopoE

settings.py- It manages all the settings of our project

10

5. urls.py-Main controller which maps it to our web site.

6. wsgi.py- It acts as an entry point for WSGI (Web Server Gateway Interface)
compatible web servers

Step 6: Create our web application and make sure that we are in the same directory as
mangae.py and type the following command in the command terminal

python manage.py startappwebapp

Now webapp is added in our project folder also few other elements are added in web
app like view, test and model. It is shown in fig 5.7.

11

lofle e

@Uv\ » Computer b Local Disk (C) » Python2] b myproject » «[49 |[Search myproject p|
Ongonize 5 Open Incldeinlibury Sharewithw Bum Newfolder v A @
Links 4 Name ‘ Datemodfied | Type Size
mobogenie2sp
- myproject S/B/AMI23LPM File older
| My Documents
'J"M"M webapp S//019231 M Fle folder
: M"P““ # manage S/ 1053AM Python Fle 1K8
£] My Pictures
& My Videos

opera autoupdate
B Saved Games
[Searches
workspace
4 Computer
& Local Disk (C)
binary
ConfigMsi
ESD
features
files
jk1.8.0_152
MSQCache
Output
PerfLogs
pluging

B

program
Progrem Files
ProgramData
Python2]
Users ~
webapp
File folder
Date modified: 5/28/2019 2:31 PM

i
B © olale/@ =l .mE]- =]

Fig 5.7 Creation of Web App

Step 7: Now open our myproject/myproject/settings.py The following fig 5.8 shows
the settings file.

Step 8: In setting.py file, we add the “web app” line in the first statement. By above
insertion, we have added our web app.

12

L€

T30+ Computer v LocolDisk(G) » Pythend? » mypreject » myproject

£
Organize ¥ ™. Open » Bum Newfolder ~ 0l @
Links 4 Name b Date modified Type size
;ﬂhﬂawﬂkﬂ 2 init_ 5/28/201910:53 AM Python File oke
) MYS:“’""‘“ B _int_ 5/28/20192:31 PM__ Compiled Python 1¢8
“ MYD “(“ [[# settings 5/28/201910:53 AM__Python File aval
LTS [sentings 528/ PM Compiled Python| OPem
B My Videos B url AM Python File Edit with IDLE
4 :n!rz eGutuumt! B wegi Python File © Scanwith ByteFence Anti-Malware.
aved Games Show how to open this file
§7 Searches L Scan selected items for viruses
workspace Open with...
mzulm\;:'km W TeraCopy...
ocal Disk (C:
B Add to archive
binary B Addto " settings.rar’
ConfigMsi B Compress and email..
£5D B Compress to "settings.rar’ and email
features
A b | Send by Bluetooth to
jliel 8.0_152 Restore previous versions.
& MsOCache Send to
Output
Perflogs Cut
plugins Copy
program Create shortcut
Program Files Delete
ProgramDats Rename
Python2?
Users i Properies
setings Date modified: 5/28/2019 1053 AM
A, Pythonfilc Size: 314 KB

Date created: 5/28/201910:53 AM

s © dlele]

e] A T

Fig 5.8 Settings File

. z3em | |
5/28/2010 |

INSTALLED_APPS = [

‘webapp',
'django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages’,

'django.contrib.staticfiles’,

13

Step 9: Once we have added our app, a new file view.py is automatically added in the
web app that is shown in fig 5.9. Open our webapp/views.py and enter the following
code.

fromdjango.shortcuts import render
fromdjango.http import HttpResponse
def index(request):

return HttpResponse("'<H2>! Welcome to Sathyabama! </H2>")

[E=E R =)

) [0 Compuer » Loca Dk €9+ Pyhond? » myprcct » webapp » ey | searhnsoase 2]

Organize w % Open v Bum Newfolder = e [@

fles
et 80,152
i MsOcache

Output

Properties

L P =]TV?MH

EIER FNr A T

Fig 5.9 View File

Step 10: We have created a view that returns http response and map this view to a URL.
We need to create a “url.py” inside our web app and enter the following code.

14

fromdjango.conf.urls import url

from .import views

urlpatterns = [

url(r'~$', views.index, name='index"),

]

Step 11: Point the root URLconf at the webapp.urls module. Open our
myproject/urls.py file and write the following code.
From django.conf.urls import include, url

From django.contrib import admin

url patterns = [

url(r'*admin/', include(admin.site.urls)),
url(r'*webapp/', include(‘webapp.urls)),

]

Step 12: Now start the server by type the following command
Python manage.py runserver

After running the server, goto http://localhost:8000/webapp/ in our browser and see the
“Welcome to Sathyabama” message which we defined in the index view.

5.2 Image Processing

Image processing involves representation, processing and information extraction from
images. It can increase the readability of the image and enhance the quality of the image.

15

http://localhost:8000/webapp/

Image processing is a part of computer vision. Computer vision is an important field in
the area of artificial intelligence.

1.

By representation we mean converting an image into digital form.

By processing we mean performing operation like smoothing, sharpening,
contrasting and stretching on image to get an enhanced image.

Information extraction refers to applying techniques for deriving useful
information like tumor detection, remote sensing, weather forecasting etc.

Python supports lot of libraries for image processing, including

Open-CV- It is mainly focused on real time computer vision with variety of
applications such as two dimensional and three dimensional Open-CV is an
open source computer vision library for real time image and video processing.
It supports a lot of algorithms related to computer vision. It supports a variety
of languages like C++, Python and Java. It is available on different platforms
including Windows, Linux, Android and iOS.

Numpy and Scipy libraries- Numpy is a optimized library for numerical
operations. Open-CV array structures are converted to Numpy arrays. Both are
used for image manipulation and processing.

Python Imaging Library (PIL) — It is mainly used for performing basic
operations such as resize, rotation and converts between different file formats.

Matplotlib- It is an optional choice for displaying frames from images or
videos.

The following Python packages are needed to be downloaded and installed to their
default locations.

16

° Python3.7
. Numpy
. Matplotlib

Steps for installation of packages:

1. https://www.python.org/downloads/ and download the installer.

2. After installation , open Python IDE and enter the following two commands
>>>python —m pip install numpy
>>>python —m pip install opencv-python

3. Open Python IDE and type the following codes in python terminal for
verifying the installation of opencv and numpy libraries.

>>>import cv2

>>>print cv2._version_
5.2.1 Gray Scale Image

Below are the some of the examples for demonstrating the use of libraries for image
processing. The given program shows the image in gray scale. Import the all the
libraries and read the image using imread function. Fig 5.10 shows the image in gray
scale.

Code:
import cv2

import numpy as np

17

https://www.python.org/downloads/

from matplotlib import pyplot as plt

im = cv2.imread('boat.jpg’,cv2.IMREAD_GRAYSCALE)
cv2.imshow('image’,im)

cv2.waitKey(0)

cv2.destroyAllWindows()

Output:

Fig 5.10 Gray scale Image

18

To read the original image, simply call the imread function of the cv2module, passing
as input the path to the image, as a string. We used imshow function for receiving the
first argument as input string and as second argument the image to show. We used
waitkey function for including the delay in the key board event.

5.2.2 Geo metric Transformation of Image
5.2.2.1 Resize Image

Scaling is just resizing of the image. The size of the image can be specified manually
or specify with scaling factor. It helps in reducing the number of pixels from an image.
We need to either resize the image shrink it or scale up to meet the size requirements.

The following syntax specifies the resize function.
cv2.resize(src,dsize, Interpolation)

where src specifies source image

dsize specifies destination image

Interpolation represents the different function such as cv.INTER_AREA for
shrinking and cv.INTER_CUBIC for zooming operation.

Fig 5.11 shows the output of scaling.
Code:
import cv2

img = cv2.imread(‘boat.jpg’, cv2.IMREAD_UNCHANGED)

19

print('Original Dimensions : ',img.shape)

scale_percent = 60 # percent of original size

width = int(img.shape[1] * scale_percent / 100)

height = int(img.shape[0] * scale_percent / 100)

dim = (width, height)

resize image

resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
print('Resized Dimensions : ',resized.shape)

cv2.imshow("Resized image", resized)

cv2.waitKey(0)

cv2.destroyAllWindows()

20

{& "Python 2715 Shell* (BEE
File Edit Shell Debug Options Windows Help

Python 2.7.15 (v2.7.15:ca079%a3ea3, Apr 30 2018, 16:22:17) [MSC v.1500 32 bit (Intel)] on win32 j
Type "copyright", "credits" or "license()" for more information.

> RESTART

>>

Traceback (;

in <module>

>»> pip

SyntaxError: inval
>>> RESTART
>>>

>> RESTART
>>>

53> memmmm=mm=m=m=mmsmmsms=s=e=e= RESTART
>>>

35> S RESTART
>>>

5>y mesmmsmsmsmsmsmsmsmsmemsmsmeasas RESTART
>>>

(*Original Dimensions : ', (500, 500, 3)
('Resized Dimensions : ', (300, 300, 3)

[Ln: 22/Cok:0

B © 0 gle/@jolB]u]=]a]m] -l

Fig 5.11 Scaling

5.2.2.2 Translation

Translation is the shifting of object’s location from one point to another i.e (x,y) to
(X1,y1).

The transformation matrix M is represented as follows:

wl=[1+5] ®

21

Code:

Import numpy as np

import cv2 as cv

img = cv.imread('boat.jpg’,0)

rows,cols = img.shape

M = np.float32([[1,0,100],[0,1,50]])

dst = cv.warpAffine(img,M,(cols,rows))
cv.imshow('img',dst)

cv.waitKey(0)

cv.destroyAllWindows()

Fig 5.12 and 5.13 describes the original image and translation result. In code, tx, ty
values are the X and Y translation values. The image will be moved x units towards
the right and by Y units downwards. cv.warpaffine function specifies size of the output
image. It refers the number of rows and columns in the resulting image.

22

L@ *Python 2715 Shell*
File Edt Shell Debug Options Windows Help
Python 2.

S (v2.7.15:ca07%a3ea3, Apr 30 2018,
Type "copyright", "credits® or "license()" for more information.
>>

16:22:17) [MSC v.1500 32 bic (Intel)] on win32

> RESTART
>>>
>>> RESTART
>>>
>>> RESTART
>>>
>>>

7= v&ﬁ—]

=lof

Ln:10/Col:0

BEE © 0la]c]

) O =]

Fig 5.12 Original Image

23

© agleslel@lilO
Fig 5.13 Translation
5.2.3 Thresholding

Thresholding is a simplest method for converting a gray scale image into a binary
image. If a pixel is greater than a threshold value, it is assigned with one value(White),
else it is assigned another value (Black). The algorithm is described as below:

IfIl,]=1 Il-,j>6
Elseli,j=0 Ii,j 29 (2)
The threshold function is described as below:

Cv2.threshold (src, thresh, maxval, type[, dst])

24

This function is used to get a binary image out of a grayscale image for removing a

noise.

1.
2.

@

e

o ®

e.

src- Input array. This is the source image.
thresh-threshold value which is used for classifying the pixel.

maxval- Maxval which represents the value to given if pixel is more than the
threshold value.

Type- Thresholding type. Different types are mentioned as below:
cv2.THRESH_BINARY (Threshold Binary)
cv2.THRESH_BINARY_INVY (Threshold Binary Inverted)
cv2.THRESH_TRUNCY (Truncate)

cv2.THRESH_TOZEROY (Threshold to Zero)
cv2.THRESH_TOZERO_INVY(Threshold to Zero Inverted)

The following fig 5.14 shows the outputs for different threshold functions.

Code:

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('bloodcells.jpg',0)

ret,threshl = cv2.threshold(img,127,255,cv2. THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2. THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2. THRESH_TRUNC)

25

ret,thresh4 = cv2.threshold(img,127,255,cv2. THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,127,255,cv2. THRESH_TOZERO_INV)

titles = ['Original
Image', BINARY"','BINARY_INV', TRUNC', TOZERO', TOZERO_INV']

images = [img, threshl, thresh2, thresh3, thresh4, thresh5]
fori in xrange(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray")
plt.title(titles[i])

plt.xticks([]),plt.yticks([])
plt.show()

26

1 *Python 2715 Shell
File Edit Shell Debug Options Windows Help

Python 2.7.15 (v2.7.15:cal7%3ea3, Apr 30 2018, 16:22:17) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright”, "credits" or "license()" for more information.

> RESTART
pood

@F\gurel E@
Original Image BINARY BINARY_INV
% %
(a? o?
by Y
0%, 0%,
TRUNC TOZERO TOZERO _INV
e O
B
ai'”i
\ 1/ .)
[~ ..\03}
A€ $Q=

12

Ln:5|Col:0

i
.

o ¢ 0|

I

Fig 5.14 Thresholding

The different simple thresholding techniques are :

cv2. THRESH_BINARY: If pixel intensity is greater than the set threshold, value is
set to 255, else set to 0 (black).

27

cv2. BINARY_INV: Inverted or Opposite case of of cv2. THRESH_BINARY.

cv2.THRESH_TRUNC: If pixel intensity value is greater than threshold, it is
truncated to the threshold. The pixel values are set to be same as the threshold. All
other values remain same.

Cv2. THRESH_TOZERO: Pixel intensity is set to 0, all the pixels intensity, less than
the threshold value.

Cv2. THRESH_TOZERO_INV: Opposite case of cv2. THRESH_TOZERO.

Matplotlib is a visualization library in python for 2D plots of the array. It is a data
visualization library built on Numpy arrays. It consists of several plots like line, scatter
etc. Ticks are the values used to show specific points on the coordinate axis. Whenever
we plot a graph, the axes adjust and take the default ticks.

5.2.4 Image Blurring (Image Smoothing)

Image blurring is achieved by removing the outlier pixels in the image. It removes high
frequency content from the image resulting in edges being blurred when the filter is
applied. Here the following section describes the examples of blurring techniques.

5.2.4.1 Averaging

It takes the average of all the pixels under kernel area and replaces the central
element with this average. This is achieved by using cv2.blur(). A 3x3 filter is

) 1 1 1
described as below:K = S 11 3)
1 1 1

28

Code:

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('bloodcells.jpg")

blur = cv2.blur(img,(5,5))
plt.subplot(121),plt.imshow(img),plt.title('Original’)
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur),plt.title('Blurred")
plt.xticks([]), plt.yticks([])

plt.show()

Fig 15 shows the image averaging output.

29

0|
ol
B

B

% Figure1 =5

Original

#/ €2/ +a/= B
G © o(a/¢]/@(=]0[2/0]E]-] :

Fig 5.15 Image Averaging
5.2.5 Canny Edge Detection

It is a popular edge detection algorithm and consists of multiple numbers of stages such
noise reduction, finding intensity gradient of the image, Non-maximum suppression
and hysteresis threshold. In noise reduction, remove the noise from the image. It allows
us to find the gradient of the gray scale image to find the edge regions in the x axis and
y axis directions. After getting the magnitude and direction, a full scanning is
performed to remove unwanted pixels in the edges. In hysteresis thresholding, we
decides which are the edges are really edges or not by using two threshold values
minval and maxval. Any edges with intensity gradient are more than maxval are

30

considered as edges and those below minval are considered as non edged and also
discarded. The following fig 5.16 shows the result of canny edge detection.

Code

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('noise.jpg’,0)

edges = cv2.Canny(img,100,200)
plt.subplot(121),plt.imshow(img,cmap = 'gray")
plt.title('Original Image"), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image"), plt.xticks([]), plt.yticks([])
plt.show()

31

Eé *Python 2715 Shell” (BEES
File Edit Shel Debug Options Windows Help

Python 2.7.15 (v2.7.15:ca079%a3ea3, Apr 30 2018, 16:22:17) [MSC v.1500 32 bit (Intel)] on win32 J
Type "copyright", "credits" or "license()" for more information.

555

55> | i Figure1 (=1 Ea

>»>
2>

33>
555
Original Image

Edge Image

aes sz ®
LnJﬁCUﬁ
Bl © 0(cl¢/Blol0S[0lEk] :

Fig 5.16 Canny Edge Detection

5.3 FACE BOOK DATA ANALYSIS

Face book provides an extensive API to interact with its platform and fetch the required
information for analysis. Python is used for extract data from face book. We need to
register as developer on face book. Here the steps are listed below.

1. Go to the link developers.facebook.com and create an account there.
2. Go to the link developers.facebook.com/tools/explorer.

3. Go to Myapps drop down in the top right corner and select add a new app.
Choose the display name and category and then create APP ID.

32

4. Again, go to the link developers.facebook.com/tools/explorer. We will see
“Graph API Explorer below “Myapps” in the top right corner. From “Graph
API Explorer” drop down, select our App.

5. Select “Get Token”. From this menu select “Get user access Token ““. Select
permissions from the menu that appears and then select “Get access Token”

We can download datasets from other Face book pages and get these statuses for
each post:

. Number of likes
o Number of shares
. Number of comments

Then we can analyze this data using Excel or Tableau or Python or any software used
for data analysis. Fig 17 shows the login access in face book developer account. App
creation details are described in fig 5.18, 5.19 and 5.20.

33

el Diang | B Buid) | 96 Twitte | W Twitte | M manu: | M Status | G facebe | @ Twirts | B How

B & x B Devel | 5, Facet | @ Minin | (B
& c

© Basic| | @ Faceb | @ Intem | + =] =]
* 0
PuTTY: I2

M agriculture patent -.. @ Most recent papers.

& https//developersfacebook.com/apps,

Apps b Itjobsin US| Jobsi..) Kahi Selvam-Sei

M ear €3 BM: Initing A

facebook for de

Q. Search developers.facebook.com Get Started

@ Register @ verify (3) First App About You

Welcome to Facebook for Developers

Let’s get started with your first app

Sivafs first app

siva_sangarizk1 @yahooscoin

Facebook Platform Policy ok Data Policy

Fig 5.17 Login in face book developer’s account

34

€« c

T Apps b Itjobs in US| Jobs i..

€l Djorc | B Build | 0 Tuite | 9 Twit | M mane | M Stato | G tocet | @l Twie, | Il How | somp I3 = x | [E Devel | cia Focet | @3 Minic | CB) Basle | @ Focet | @ e | + lola| &)
@ https;//developersfacebook.com/apps/353476831974943 /scenarios v @
T] Kalviseham:Seithi. M ear @3 [8M:Inviting Applic.. g Download PUTTY: la..] agriculture patent ~.. @R Most racent papers..

facebook f;

B sempie

Dashboard
£ Settings
A Roles

& Alents

© Apo Review

PRODUCTS @

s | » §2|

Status: In Development | " View Analytics @ Help

APP ID: 353476831974943

Select a Scenario

Select one of the following scenarios to get product-specific help content as you build your app. If you already have your project mapped out
and are ready 1o build, feel free to skip this step.

Examples

« Target audiences strategically by automatically creating
Implement Marketing AP| g vy Y o
different ads permutations
« Manage and optimize ads in real time with rules-based ads
management

Get programmatic access 1o the Facebooks ads platform to automate
ads management, creale data-based audiences and more.

Get Started with the Ads Insights API « Provides a single, consistent Interface to retrieve ad
Get programmatic access to Facebooks Ads Insights statistics

Integrate Facebook Login
9 9 - Create accounts without having to set a password

. ool to ~raate accainte and 5

ore © o ©

Lo O

P
5202019 |

Fig 5.18 Creation of App

35

86 Twitt: | W Twitt | M manc | M Statw | G facet | @ Twitt | Bl How | same B3 = x [Deve | 5y Facel | i Minic | BB Basic | @ Facel | @ Inter | + lol@l =]

el Djanc | B Buid

¢« G @ hups book com/apps/35347683197494: i w @

Apps b Ttjobsin US|Jobsi.. 7] KalviSelvam-Seithi.. I ear ¢ 18M:Imviting Applic.. g Download PuTTV:la.. M agriculture patent-.. @) Most recent papers..

Tools Support My Apps Q Search developers.facebook.com

sample - APP ID: 353476831974943 Status: In Development A View Analytics @ Help

facebook for developers

Dashboard
Dashboa Application-Level Rate Limit User-Level Rate Limit
£ settings »
F) Roles »
el » sample
& Aerts 4 n App ID: 353476831974943
@ App Review » 0
Users throtfled
PRODUCTS (&) 0% of Limit Used View Details
. 100% Remaining
AP Stats

Calls Erors Average Request Time

ﬂ No data is available. l
s & 0 &2 6 ‘
A X — 5/29/2019

Fig 5.19 App Dashboard

(o)

36

@l Dier | @ Buic | 06 Twiti | @ Twit | I man | M Stat | & face: | @ Twi [Hor] Acce B35 x [somi | e Face | W3 Gror | @3 Min | 5 Bosic | @ Face | @ mnter | + l=l@]

C @ hips//developersiacebook.com/ic bug, ken/?a {{How to use F: ythonl Jibtnhh5Kir439AUNGBD6a0K7ZAXG5C XTekPY * @
$H Apps B Itjobs in US | Jobs i] Kalvi Selvam-Seithi.. | ear @ 1BM: Inviting Ay P Download PuTTY: la., M agriculture patent -.. @) Most recent paper
facebook for developers Products Docs More ¥ My Apps ¥ Q
Access Token Debugger
Dobugger Batch Invalidator Access Token AP1verson (71 v3.3 +
EAAQIIMW2ACYBAL BQOgEATKEE: a TeKPYL721pENORPAHYDWOAIVZEQXEIOLQGBEGRIFWR 1 1ZAMAWD m
Access Token Info
App 1D 1156441861293510 - sample
Type User
2491018400916481 - Siva Sangarl
Issued
Expires 1 about 21
Data Access Expires 3443 (in about 3 months)
Valid True
Origin Unknown
Scopes public_profile
— —
& = T~ 7 429 PM.
= r=y @ ; I’
R © c 2|6 |80 |- S|

Fig 5.20 Access Token Details

The graph API is called social graph. It is a representation of information in face
book. It consists of the following elements.

o Nodes- Individual objects such as user, photo ,page or comment

o Edges- Connection between a collection of objects and a single
object such as photos or comments on a photo.

o Fields- Data about an object such as birthday or a page’s name.

We can use nodes to get data about a specific object, use edges to get collections of
objects on a single object and fields to get about a single object or each object in a
collection. Graph APl is HTTP based and works with any language.

Google graph API provides us a way by which we can get data from face book. We
can put our data in face book platform. It is a REST based API and used to query data,

37

manage our ads on face book, upload photos, videos and post our new stories to face
book automatically. We can this API to get our own face book account data. But, we
need to get other users data for this we need to take several permissions from users.
We need to implement oAuth protocol to implement this operation. Anyone can
authenticate and grant our permissions. Fig 5.21 and 5.22 show the face book graph
API and node information.

w @ :
| 53]
EBEE © 0 @6 ®mlL_]o=] e |

Fig 5.21 Face book Graph API

38

pythe | G how! | G facet | T 6Ine | @ ()L |10, How | @ sent | How | . Facet | @ Foce: | I Poge | & 2M1 | @ A, | IR Acce: | D Acce: | B Acce: BB G X+ leldl = |

me%3Fields aDid%2CnameRiversion=y3 & @

B Apps S Itjobs inUS|Jobsi.] KaviSelvam-Seithi. M ear @ IBMiInviting Appic.. g Download PuTTY: ., M agriculture patent -.. @) Mostrecent papers

T | a 8]

ﬂ A beta version of the new Graph Explorer is available. Try it out now! ‘

<« C & nttps//developersfacebook.com/tools/ method= GET&,

Graph APl Explorer

mple
Moces: EAAQa3kWzdcY XZA0TDXK51ZA5 DI v TSYKWZCFaJZAYZBIQ8Hc2ZAY EJwS4YECI4C2TAcroWiBAZ % Get Token v
(|| GET+ — /y33 -/ mefields=id,name [> submi |
Node: {
id :
¥
) name

s S 0 06 @ o0 m[alEE @]]P]

Fig 5.22 Node Information
Code
Import json
Import facebook
def main():

token =
"{EAAQa3kWzdcYBAKdzunCHWEiXLKLVvLSb5Ind80hs5Jh6zBefMCgOP
PJdYg4mTvkpgl15y1th6 XpRSO5pxInijQSCZAHShENSPO6xtF4AWZAADO
CPFq988ZBdZAZAG8Nnx0DrTZAvIZBcfsYskP3JXsg7GN973Q39XwhKO

39

RIMxXR5kZA5GYN3ZCyNM3uL3waUh3dm91HruwWM63ZAtYQZDZD}

Token value get it from access token details in fig 5.20.
graph = facebook.GraphAPI(token)
page_name = raw_input("Enter a page name: ")
list of required fields
fields = ['id','name’,'about’,'likes']
fields =",".join(fields)
page = graph.get_object(page_name, fields=fields)
print(json.dumps(page,indent=4))
if _name_ ==' main_"

main()

Output:
Enter page name
Smith

Name: Smith

40

Id: 13456234578
Likes: 23
54 TWITTER ANALYSIS

Twitter is a good resource to collect data. Unlike other social platforms almost
every user’s tweets are completely public. Twitter’s API allows us to do complex
gueries like pulling every tweet about a particular topic. The pre processing of the text
data is an essential step as it makes the raw text ready for mining. The main objective
is to clean noise those are less relevant to find the sentiment tweets such as punctuation,
characters and terms.

API stands for application programming interface. APl is a tool that makes the
interaction with computer programs and web services. Twitter streaming API is used
to download tweets related to the key words that we specified in the coding.

Installation:

Before we start coding, we need to register for the Twitter API
https://apps.twitter.com/. Here we need to register an app to generate various keys
associated with our API. The following keys are used for authentication.

o APl key

e APl secret Key

e Access Token

e Access Token Secret

41

After creating the app we need to install the following commands.
pip install tweepy
pip install textblob

Tweepy is an easy way to use python library for accessing twitter API. We will extract
tweets from twitter stream. TextBlob is used for processing textual data. It provides a
simple API for dividing into common natural language processing tasks. Next create a
new file called twitter.py and type the following code into it. Make sure to enter your
credentials into access_token, access_token_secret, consumer key (APl Key) and
consumer secret (API secret key). In this code, we will download the scripts related
python, java and java script.

Code:

from tweepy.streaming import StreamL.istener

from tweepy import OAuthHandler

from tweepy import Stream

#Variables that contains the user credentials to access Twitter API
access_token = "ENTER YOUR ACCESS TOKEN"
access_token_secret = "ENTER YOUR ACCESS TOKEN SECRET"
consumer_key = "ENTER YOUR APl KEY"

consumer_secret = "ENTER YOUR API SECRET"

42

#This is a basic listener that just prints received tweets to stdout.
class StdOutL.istener (Stream Listener):
def on_data(self, data):
print data
return True
def on_error(self, status):
print status
if _name_ ==' main_"
This handles Twitter authentication and the connection to Twitter Streaming API
| = StdOutL.istener()
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

stream = Stream(auth, 1)

#This line filter Twitter Streams to capture data by the keywords: 'python’, ‘java,
'javascript'

stream.filter(track=['python’, ‘java’, 'javascript')

43

Next, we run the program in the command terminal using the command
python twitter.py.

If we want to capture this data into a file for future analysis, we can do piping the
output to a file using the following command

python twitter.py > twitterdata.txt.

Here, the data we stored twitterdata.txt is a JSON (Java Script Object Notation).This
format makes it easy to humans to read the data, and for machines to parse it. We will
type the below code for printing the number of tweets.

import json

import pandas as pd

import matplotlib.pyplot as pl

tweets_data_path = 'C:python3/scripts/twitter_data.txt'
tweets_data =]

tweets_file = open(tweets_data_path, "r")

for line in tweets_file:

try:

44

tweet = json.loads(line)

tweets_data.append(tweet)
except:

continue

print len(tweets_data)

QUESTION BANK

List out the frame works of python in web programming.

Mention the libraries for image processing.

Explain different types of threshold function types?

Illustrate about canny edge detection algorithm?

How do you find the intensity distribution of the image?

Describe about the parameters of histogram function?

Evaluate the procedure for getting access token in Face Book data analysis?

Illustrate the implementation of Django web framework?

© © N o g &~ w DR

Elaborate about the method for removing noise from the image?
10. Assess the methods used in geo metric transformation of the image?
11. Analyze the steps involved in face book data analysis?

12. Elaborate about twitter data analysis?

45

