
Introduction

 1

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT – I - SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

Introduction

 2

Why
python?

Introduction

 3

UNIT I

INTRODUCTION

1. Program

A program performs a task in the computer. But, in order to be executed, a

program must be written in the machine language of the processor of a computer.

Unfortunately, it is extremely difficult for humans to read or write a machine language

program. This is because a machine language is entirely made up of sequences of bits.

However, high level languages are close to natural languages like English and only use

familiar mathematical characters, operators and expressions. Hence, people prefer to

write programs in high level languages like C, C++, Java, or Python. A high level

program is translated into machine language by translators like compiler or interpreter.

1.1 ABOUT PYTHON

Guido-Van-Rossum

Introduction

 4

Python is a high level programming language that is translated by the python

interpreter. As is known, an interpreter works by translating line-by-line and executing.

It was developed by Guido-Van-Rossum in 1990, at the National Research Institute for

Mathematics and Computer Science in Netherlands. Python doesn’t refer to the snake

but was named after the famous British comedy troupe, Monty Python’s Flying Circus.

The following are some of the features of Python:

➢ Python is an Open Source: It is freely downloadable, from the link

“http:// python.org/”

➢ Python is portable: It runs on different operating systems / platforms

➢ Python has automatic memory management

➢ Python is flexible with both procedural oriented and object oriented

programming

➢ Python is easy to learn, read and maintain

It is very flexible with the console program, Graphical User Interface (GUI) applications,

Web related programs etc.

Points to remember while writing a python program :

➢ Case sensitive : Example - In case of print statement use only lower case and

not upper case, (See the snippet below)

Introduction

 5

➢ Punctuation is not required at end of the statement

➢ In case of string use single or double quotes i.e. ‘ ’ or “ ”

➢ Must use proper indentation: The screen shots given below show, how the value

of “i” behaves with indentation and without indentation.

➢ Special characters like (,), # etc. are used

➢ () -> Used in opening and closing parameters of functions

➢ # -> The Pound sign is used to comment a line

Introduction

 6

1.2 TWO MODES OF PYTHON PROGRAM

Python Program can be executed in two different modes:

1.2.1 Interactive Mode Programming

It is a command line shell which gives immediate output for each statement, while

keeping previously fed statements in active memory. This mode is used when a user

wishes to run one single line or small block of code. It runs very quickly and gives instant

output. A sample code is executed using interactive mode as below.

 Interactive mode can also be opened using the following ways:

i) From command prompt c :> users\\...>python

➢ Interactive mode programming

➢ Script mode programming

Introduction

 7

The symbol “>>>” in the above screen indicates that the Python environment is

in interactive mode.

ii) From the start menu select Python (As shown below)

1.2.2 Script Mode Programming

When the programmer wishes to use more than one line of code or a block of

code, script mode is preferred. The Script mode works the following way:

i) Open the Script mode

Introduction

 8

ii) Type the complete program. Comment, edit if required.

iii) Save the program with a valid name.

iv) Run

v) Correct errors, if any, Save and Run until proper output

The above steps are described in detail below:

i) To open script mode, select the menu “IDLE (Python 3.7 32-bit)” from

start menu

ii) After clicking on the menu “IDLE (Python 3.7 32-bit)” , a new

window with the text Python 3.7.3 shell will be opened as shown below:

iii) Select File → New, to open editor. Type the complete program.

iv) Select File again; Choose Save.

 This will automatically save the file with an extension “.py”.

Introduction

 9

v) Select Run → Run Module or Short Cut Key F5 (As shown in the

screen below)

The output of the program will be displayed as below:

1.3 VARIABLES

Variable is the name given to a reserved memory locations to store values. It is also

known as Identifier in python.

Need for variable:

Sometimes certain parameters will take different values at different time. Hence, in order

to know the current value of such parameter we need to have a temporary memory which

is identified by a name that name is called as variable. For example, our surrounding

temperature changes frequently. In order to know the temperature at a particular time,

we need to have a variable.

Naming and Initialization of a variable

1. A variable name is made up of alphabets (Both upper and lower cases) and digits

2. No reserved words

3. Initialize before calling

4. Multiple variables initialized

5. Dynamic variable initialization

>> Sum of a and b is: 30

Introduction

 10

i. Consist of upper and lower case alphabets, Numbers (0-9). E.g. X2

In the above example, a memory space is assigned to variable X2. The

value of X2 is stored in this space.

ii. Reserved words should not be used as variables names.

In the above example “and” is a reserved word, which leads to Syntax error

Introduction

 11

iii. Variables must be initialized before it called , else it reports “is not defined ”

error message as below E.g.: a = 5 print(a)

In the above example “a” is called before it initialized. Hence, the python

interpreter generates the error message: NameError: ‘a’ is not defined.

iv. Multiple variables can be initialized with a common value. E.g. : x = y = z = 25

In the above three variables x, y, z is assigned with same value 25.

v. Python also supports dynamic variable initialization. E.g.: x, y, z = 1, 2, 3

Introduction

 12

 Proper spacing should be given

 • print (10+20+30) → bad style

 • print (20 + 30 + 10) → good style

1.3.1 Expression:

An expression is a combination of variables, operators, values and calls to

functions. Expressions need to be evaluated.

 Need for Expression:

 Suppose if you wish to calculate area. Area depends on various parameters in

different situations. E.g. Circle, Rectangle and so on…

Introduction

 13

In order to find area of circle, the expression π * r * r must be evaluated and for the

rectangle the expression is w * l in case of rectangle. Hence, in this case a variable / value

/ operator are not enough to handle such situation. So expressions are used. Expression

is the combination of variables, values and operations.

A simple example of an expression is 10 + 15. An expression can be broken down into

operators and operands. Few valid examples are given below.

Introduction

 14

Invalid Expression :

Always values should be assigned in the right hand side of the variable, but in the below

example, the value is given in the left hand side of the variable, which is an invalid syntax

for expression.

1.4 Data Types

A Data type indicates which type of value a variable has in a program. However a python

variables can store data of any data type but it is necessary to identify the different types

of data they contain to avoid errors during execution of program. The most common data

types used in python are str(string), int(integer) and float (floating-point).

Strings: Sequence of characters inside single quotes or double quotes.

E.g. myuniv = “Sathyabama !..”

Integers: Whole number values such as 50, 100,-3

Float: Values that use decimal point and therefore may have fractional point E.g.: 3.415,

-5.15

By default when a user gives input it will be stored as string. But strings cannot be used

for performing arithmetic operations. For example while attempting to perform

arithmetic operation add on string values it just concatenates (joins together) the values

Introduction

 15

together rather performing addition. For example : ‘25’ + ‘20’ = ‘45’ (As in the below

Example)

Fortunately python have an option of converting one date type into another data type

(Called as “Casting”) using build in functions in python. The build function int() converts

the string into integer before performing operation to give the right answer. (As in the

below Program)

1.4.1 Compound Data Types in Python:

i) List

The List is an ordered sequence of data items . It is one of the flexible and very frequently

used data type in Python. All the items in a list are not necessary to be of the same data

type.

https://www.programiz.com/python-programming/list

Introduction

 16

Declaring a list is straight forward methods. Items in the list are just separated by commas

and enclosed within brackets [].

>>> list1 = [3.141, 100, ‘CSE’, ‘ECE’, ‘IT’, ‘EEE’]

Methods used in list

Table 1.1 List Method

list1.append(x) To add item x to the end of the list “list1”

list1.reverse() Reverse the order of the element in the list “list1”

list1.sort() To sort elements in the list

list1.reverse() To reverse the order of the elements in list1.

ii) Tuple

Tuple is also an ordered sequence of items of different data types like list. But, in a list

data can be modified even after creation of the list whereas Tuples are immutable and

cannot be modified after creation.

The advantages of tuples is to write-protect data and are usually very fast when compared

to lists as a tuple cannot be changed dynamically.

The elements of the tuples are separated by commas and are enclosed inside open and

closed brackets.

>>> t = (50,'python', 2+3j)

https://www.programiz.com/python-programming/tuple

Introduction

 17

Table : 1.2 List Vs Tuple

List Tuple

>>> list1[12,45,27]

>>> list1[1] = 55

>>> print(list1)

>>> [12,55,27]

>>> t1 = (12,45,27)

>>> t1[1] = 55

>>> Generates Error Message #

Because Tuples are immutable

iii) Set

The Set is an unordered collection of unique data items. Items in a set are not ordered,

separated by comma and enclosed inside { } braces. Sets are helpful in performing

operations like union and intersection. However, indexing is not done because sets are

unordered.

Table : 1.3 List Vs Set

List Set

>>> L1 = [1,20,25]

>>> print(L1[1])

>>> 20

>>> S1= {1,20,25,25}

>>> print(S1)

>>> {1,20,25}

>>> print(S1[1])

>>> Error , Set object does not support

indexing.

https://www.programiz.com/python-programming/set

Introduction

 18

iv) Dictionary

The Python Dictionary is an unordered collection of key-value pairs.Dictionaries is

optimized for retrieving data when there is huge volume of data. They provide the key

to retrieve the value.

In Python, dictionaries are defined within braces {} with each item being a pair in the

form key: value. Key and value can be of any type.

>>> d1 = {1:'value','key':2}

>>> type(d)

1.5 PYTHON’S BUILT-IN DATA TYPE CONVERSION FUNCTIONS

Table 1.4 : Python Built-in Data Type

Function Description Out Put

int(x) Converts x into integer whole

number

>>>a = int(input("Enter a"))

>>>b = int(input("Enter b"))

>>>c = a + b

>>>print("Sum is ",c)

float(x) Converts x into floating-point

number

>>> x = 5

>>> print(float(5))

>>> 5.0

https://www.programiz.com/python-programming/dictionary

Introduction

 19

Function Description Out Put

str(x) Converts x into a string

representation

>>> x = 30

>>> y = 70

>>> z = str(x) + str(y)

>>> print(z)

>>> 3070

chr(x) Converts integer x into a

character

>>> x = 65

>>> print(chr(x))

>>> A

>>>

hex(x) Converts integer x into a

hexadecimal string

>>> x = 14

>>> print(hex(x))

>>> 0xe

oct(x)
Converts integer x into an

octal string

>>> x = 9

>>> print(oct(x))

>>> 0o11

However to identify the data type of a variable, an in-built python function “type (

)” is used. (Example Below)

Introduction

 20

1.5.1 Python Built-in Functions

Table 1.5 : Built-in Functions

Simple Functions

Function Description Output

abs() Return the absolute value of a

number. The argument may be an

floating point number or a integer.

>>> a = -10

>>> print(abs(a))

>>> 10

max() Returns the largest number from the

list of numbers

>>> max(12,20,30)

>>> 30

min() Returns the smallest number from the

list of numbers

>>> min(12,20,30)

>>> 12

pow() Returns the power of the given

number

>>> pow(5,2)

>>>25

round() It rounds off the number to the

nearest integer.

E.g. 1:

>> round(4.5)

>> 5

Eg 2

>> round(4.567,2)

>> 4.57

Mathematical Functions (Using math module)

ceil(x) It rounds x up to its nearest integer

and returns that integer

>> math.ceil(2.3)

 >> 3

>> math.ceil(-3.3)

>> -3

floor(x) It rounds x down to its nearest

integer and returns that integer

>>math.floor(3.2)

>> 3

>> math.floor(-3.4)

>> -4

https://docs.python.org/3/library/functions.html#abs

Introduction

 21

Function Description Example

cos(x) Returns the cosine of x , where x

represents angle in radians

>> math.cos(3.14159/2)

>> 0

>> math.cos(3.14159)

>> -1

sin(x) Returns the sine of x, where x

represents angle in radians

>> math.sin(3.14159/2)

>> 1

>> math.sin(3.14159)

>> 0

exp(x) Returns the exponential of x to the

base ‘e’. i.e. ex

>> math.exp(1)

>> 2.71828

log(x) Returns the logarithm of x for the

base e (2.71828)

>>> math.log(2.71828)

>>> 1

log(x,b) Returns the logarithm of x for the

specified base b.

>>> math.log(100,10)

>>> 2

sqrt(x) Returns the square root of x >>> math.sqrt(16)

>>> 4

Note: To include the math module, use the following command:

 import math

Introduction

 22

1.6 CONDITIONAL STATEMENTS

When there is no condition placed before any set of statements, the program will

be executed in sequential manure. But when some condition is placed before a block of

statements the flow of execution might change depends on the result evaluated by the

condition. This type of statement is also called decision making statements or control

statements. This type of statement may skip some set of statements based on the

condition.

Logical Conditions Supported by Python

➢ Equal to (==) Eg : a == b

➢ Not Equal (!=)Eg : a != b

➢ Greater than (>) Eg : a > b

➢ Greater than or equal to (>=) Eg : a >= b

➢ Less than (<) Eg : a < b

➢ Less than or equal to (<=) Eg : a <= b

Indentation

 To represent a block of statements other programming languages like C, C++

uses “{ …}” curly – brackets, instead of this curly braces python uses indentation using

white space which defines scope in the code. The example given below shows the

difference between usage of Curly bracket and white space to represent a block of

statement.

Introduction

 23

Table 1.6 : C- Program Vs Python

 C Program Python

x = 500
y = 200
if (x > y)
{
 printf("x is greater than y")
}
else if(x == y)
{
 printf("x and y are equal")
}
else
{
 printf("x is less than y")
}

x = 500
y = 200
if x > y:
 print("x is greater than y")
elif x == y:
 print("x and y are equal")
else:
 print("x is less than y")

Indentation (At least one White
Space instead of curly bracket)

Without proper Indentation:

x = 500

y = 200

if x > y:

print("x is greater than y")

In the above example there is no proper indentation after if statement which will lead to

Indentation error.

Introduction

 24

1.6.1 If statement:

The ‘if’ statement is written using “if” keyword, followed by a condition. If the

condition is true the block will be executed. Otherwise, the control will be transferred

to the first statement after the block.

Syntax :

if <Boolean>:

 <block>

In this statement, the order of execution is purely based on the evaluation of boolean

expression.

Example:

x = 200

y = 100

if x > y:

 print("X is greater than Y")

print(“End”)

Output:

X is greater than Y

End

In the above the value of x is greater than y , hence it executed the print statement

whereas in the below example x is not greater than y hence it is not executed the first

print statement

Introduction

 25

x = 100

y = 200

if x > y:

 print("X is greater than Y")

print(“End”)

Output:

End

1.6.2 elif

The elif keyword is useful for checking another condition when one condition is false.

Example :

mark = 55

if (mark >=75):

 print("FIRST CLASS")

elif mark >= 50:

 print("PASS")

Output:

Introduction

 26

In the above the example, the first condition (mark >=75) is false then the control is

transferred to the next condition (mark >=50), Thus, the keyword elif will be helpful for

having more than one condition.

1.6.3 Else

The else keyword will be used as a default condition. i.e. When there are many

conditions, when the if-condition is not true and all elif-conditions are also not true,

then else part will be executed.

Example:

mark = 10

if mark >= 75:

 print("FIRST CLASS")

elif mark >= 50:

 print("PASS")

else:

 print("FAIL")

In the example above, condition 1 and condition 2 fail. None of the preceding

condition is true. Hence, the else part is executed.

Introduction

 27

1.7 ITERATIVE STATEMENTS

Sometimes certain section of the code (block) may need to be repeated again and again

as long as certain condition remains true. In order to achieve this, the iterative

statements are used. The number of times the block needs to be repeated is controlled

by the test condition used in that statement. This type of statement is also called as

the “Looping Statement”. Looping statements add a surprising amount of new power

to the program.

Need for Looping / Iterative Statement

Suppose the programmer wishes to display the string “Sathyabama !...” 150 times.

For this, one can use the print command 150 times.

The above method is somewhat difficult and laborious. The same result can be

achieved by a loop using just two lines of code. (As below)

print (“Sathyabama !...”)
print (“Sathyabama !...”)

…..
…..

print (“Sathyabama !...”)

150 times

for count in range (1,150):

print (“Sathyabama !...”)

Introduction

 28

Types of looping statements

1) for loop

2) while loop

1.7.1 The ‘for’ Loop

 The for loop is one of the powerful and efficient statements in python which

is used very often. It specifies how many times the body of the loops needs to be

executed. For this reason it uses control variables which keep tracks, the count of

execution. The general syntax of a ‘for’ loop looks as below:

Flow Chart:

for <variable> in range (A,B):

<body of the loop >

Introduction

 29

Example 1: To compute the sum of first n numbers (i.e. 1 + 2 + 3 + ……. + n)

Sum.py

total = 0

n = int (input ("Enter a Positive Number"))

for i in range(1, n+1):

 total = total + i

print ("The Sum is ", total)

Note: Why (n+1)? Check in table given below.

Output:

In the above program, the statement total = total + i is repeated again and again ‘n’

times. The number of execution count is controlled by the variable ‘i’. The range value

is specified earlier before it starts executing the body of loop. The initial value for the

variable i is 1 and final value depends on ‘n’. You may also specify any constant

value.

Introduction

 30

1.7.2 The range() Function:

The range() function can be called in three different ways based on the number of

parameters. All parameter values must be integers.

Table 1.7: Categories of range function

Type Example Explanation

range(end) for i in range(5):

 print(i)

Output :

0,1,2,3,4

This is begins at 0. Increments

by 1. End just before the value

of end parameter.

range(begin, end) for i in range(2,5):

 print(i)

Output :

2,3,4

Starts at begin, End before end

value, Increment by 1

range(begin,end,step) for i in range(2,7,2)

 print(i)

Output :

 2,4,6

Starts at begin, End before end

value, increment by step value

Example: To compute Harmonic Sum (ie: 1 + ½ + 1/3 + ¼ + …..1/n)

harmonic.py

total = 0

n= int(input("Enter a Positive Integer:"))

for i in range(1,n+1):

 total+= 1/i

print("The Sum of range 1 to ",n, "is", total)

Introduction

 31

Output:

Example:

Factorial of a number “n"

n= int(input("Enter a Number :"))

factorial = 1

Initialize factorial value by 1

To verify whether the given number is negative / positive / zero

if n < 0:

 print("Negative Number , Enter valid Number !...")

elif n == 0:

 print("The factorial of 0 is 1")

else:

 for i in range(1, n + 1):

 factorial = factorial*i

 print("The factorial of" ,n, "is", factorial)

Introduction

 32

Output:

1.7.3 The while Loop

The while loop allows the program to repeat the body of a loop, any number

of times, when some condition is true.

The drawback of while loop is that, if the condition is not proper it may lead

to infinite looping.

So the user has to carefully choose the condition in such a way that it will

terminate at a particular stage.

Introduction

 33

Flow Chart:

Syntax:

while (condition):

 <body of the loop>

Introduction

 34

In this type of loop, The execution of the loop body is purely based on the output of

the given condition. As long as the condition is TRUE or in other words until the

condition becomes FALSE the program will repeat the body of loop.

Valid Example Invalid Example

i = 10

while i<15 :

 print(i)

 i = i + 1

Output :

10,11,12,13,14

i = 10

while i<15 :

 print(i)

Output :

10,10,10,10…….. Indeterminate

number of times

Example: Program to display Fibonacci Sequence

Program to Display Fibonacci Sequence based on number of terms n

n = int(input("Enter number of terms in the sequence you want to display"))

n1 represents -- > first term and n2 represents --> Second term

n1 = 0

n2 = 1

count = 0

count -- To check number of terms

if n <= 0: # To check whether valid number of terms

 print ("Enter a positive integer")

elif n == 1:

 print("Fibonacci sequence up to ", n,":")

 print(n2)

else:

 print("Fibonacci sequence of ",n, “ terms :”)

 while count < n:

 print(n1, end=' , ')

 nth = n1 + n2

 n1 = n2

Introduction

 35

 n2 = nth

 count = count + 1

1.8 INPUT / OUTPUT STATEMENT:

Programmer often has a need to interact with users, either to get data or to provide some

sort of result.

For Example: In a program to add two numbers, first the program needs to have an input

of two numbers (The numbers which they prefer to add) and after processing, the output

should be displayed. So to get the input of two numbers, the program need to have an

Input Statement and in order to display the result i.e. the sum of two numbers, it needs

to have an Output Statement.

1.8.1 Input Statement:

Helpful to take input from the user through input devices like keyboard. In Python, the

standard input function is ‘input()’

The syntax for input function is as follows:

input()

However, to get an input by prompting the user, the following form is used:

 input(‘prompt’)

where prompt is the string, which programmer wish to display on the screen to

give more clarity about the input data. It is optional.

Example:

 >>> num = input('Enter a number: ')

The above statement will wait till the user, enters the input value.

Introduction

 36

Output:

 Enter a number:

 >>> num

 '10' # Input data entered by the user

1.8.2 Output Statement:

The output statement is used to display the output in the standard output devices

like monitor (screen). The standard output function “print()” is used.

Syntax:

print(‘prompt’)

where prompt is the string, which programmer wish to display on the screen

Example 1:

print('Welcome to the Python World!')

Output:

Welcome to the Python World !

Example 2:

X = 5

print ('The value of a is', X)

Introduction

 37

Output:

The value of X is 5

Example 3:

print(1,2,3,4)

Output:

1 2 3 4

Example 4:

print(100,200,300,4000,sep='*')

Output:

100*200*300*4000

Example 5:

print(1,2,3,4, sep='#’, end='&')

Output:

1#2#3#4&

Introduction

 38

1.9 OBJECT ORIENTED PROGRAMMING:

Python supports object oriented programming concepts. The basic entities in

object oriented programming are Class, Objects, and Methods. It also supports some of

the techniques in real world entities like inheritance, Data hiding, Polymorphism,

Encapsulation, Method Overloading etc., in programming. Object orientation helps to

utilize GUI environment efficiently. Some of the other programming languages which

support OOPS concepts are C++, JAVA, C#.net, VB.net etc.

Need for Object Oriented Programming:

The object oriented programming is having certain advantage when compared

to the normal procedure oriented programming. The main advantage is to provide access

specifiers like Public, Private and Protected. Oops provide data hiding technique which

is more secured than procedure oriented programming. Code reusability is one of the key

features of OOPs Concept.

Class: It is a template or blue print created by the programmer – which defines

how the object’s data field and methods are represented. Basically class consists of two

parts: data member and function member (methods).

Object: It is an instance of a Class; Any number objects can be created.

Class Name: Student

Data Fields:

 Name, Mark1, Mark2,

Mark3

Methods:

 Average ()

 Rank ()

Introduction

 39

A Class is a template for creating an object.

Python provides a special method, __init__, called as initializer, to initialize a new

object when it is created.

Example :

class Student:

 def __init__(self, name, regno):

 self.name = name

 self.regno = regno

 s1 = Student("John", 36)

print(s1.name)

print(s1.regno)

In the above example “Student” is the class name, name and regno are the

data fields and s1 is the created object,

Note :

__init__ is a method or constructor in Python. This method is automatically

called to allocate memory when a new object/ instance of a class is created.

All classes have the __init__ method.

Output :

>>> John

 36

https://www.edureka.co/blog/python-programming-language

Introduction

 40

Let us create a method (Function member) for the above class

class Student:

 def __init__(self, name, regno):

 self.name = name

 self. regno = regno

 def display(self):

 print("Name of the student is " + self.name)

s1 = Student("James", 43)

s1.display()

In the above example “display()” is the method used to display the student

name.

1.9.1 Inheritance

Inheritance allows to create a new class (Child Class) from the existing class

(Parent Class).

The child class inherits all the attributes of its parent class.

 Parent class is the class, whose properties are being inherited by subclass.

Parent class is also called as Base class or Super Class.

 Child class is the class that inherits properties from another class. The child

class is also called as Sub class or Derived Class.

Introduction

 41

Example :

class Person:

 def __init__(self, fname, lname):

 self.firstname = fname

 self.lastname = lname

 def printdetails(self):

 print(self.firstname, self.lastname)

#Use the Person class to create an object and then execute the printdetails method:

x = Person("John", "Doe")

x.printdetails()

class Employee(Person):

 pass

y = Employee("Mike", "Olsen")

y.printdetails()

Output :

>>>

 RESTART:

C:/Users/Administrator/AppData/Local/Programs/Python/Python37-32/f1.py

John Doe

Mike Olsen

>>>

Introduction

 42

In the above example the base class is Person. The first object “x” is created through

the base class “Person” and the method printdetails() is invoked with that object

which produces an output “John Doe”. Again, another object “y” is created through

derived class “Employee” and the same method printdetails() (belongs to base class)

is invoked to produce the output “Mike Olsen”. Thus, the derived class is having the

ability to invoke the method from base class just because of the inheritance property

which reduces the code length or in other words it is helpful for reusability of code.

 Note: Use the pass keyword when the programmer does not wish to add any other

properties or methods to the derived class.

Example 2:

class Person:

 def __init__(self, fname, lname):

 self.firstname = fname

 self.lastname = lname

 def printdetails(self):

 print(self.firstname, self.lastname)

#Object For Base Class

x = Person("Paul", "Benjamin")

x.printdetails()

class Employee(Person):

 def __init__(self, fname, lname):

 Person.__init__(self, fname, lname)

 self.doj = 2019

 def greetings(self):

 print("Welcome", self.firstname, self.lastname, "who joined in the year ", self.doj)

Introduction

 43

Object for derived class

y = Employee("Samuel", "Ernest")

y.printdetails()

y.greetings()

In the above example a new method greetings() is included in the derived class, Thus

the derived class object is capable of invoking the method present inside base class as

well as its own methods.

printdetails() -- method present inside base class Person.

greetings() -- method present inside derived class Employee.

The object “y” is able to invoke both the methods printdetails() and greetings().

Introduction

 44

Questions :

1. Compare a) List and Tuple b) List and Set

2. What is type conversion in Python?

3. Is indentation required in python?

4. What is __init__?

5. How can you randomize the items of a list in place in Python?

6. How do you write comments in python?

7. What is a dictionary in Python?

8. Does Python have OOps concepts?

9. Write a program in Python to check if a sequence is a Palindrome.

10. Write a program in Python to check if a number is prime.

11. How to create an empty class in Python?

12. Write a sorting algorithm for a numerical dataset in Python.

Files and Exceptions Handling, Modules Packages

43

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT – II - SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

Files and Exceptions Handling, Modules Packages

44

UNIT II

FILES AND EXCEPTIONS HANDLING, MODULES,

PACKAGES

 2.1 FILE OPERATIONS

An object that stores data, settings or programming commands in a computer system

is called as a file. There are three major file operations:

 Opening a file

 Performing file operations using Read or Write

 Closing the file

2.1.1. File Open

Method: open()

Purpose: To open a file

Syntax:

File_object=open(filename,Access_mode,buffering)

Attributes:

i. Filename – Name of the file

ii. Access_mode- Mode of Access (Read, Write, Append)

iii. Buffering – 0 (no buffer), 1 (buffer)

Files and Exceptions Handling, Modules Packages

45

Example:

f= open(‘abc.txt’) (or)

f=open(“D:/Mypython/abc.txt”)

2.1.1.1 File Access Modes

File Mode Description

r Read mode

w Write mode

x Create and open a file

a Appending at end of file

t Text mode

b Binary mode

+ Update mode

Example:

f= open(‘abc.txt’, r)

The above statement opens the file ‘abc.txt’ in read mode.

2.1.1.2 Example for File Access modes and Properties

Files and Exceptions Handling, Modules Packages

46

The above code is a sample snippet for understanding the file modes and file properties.

2.1.2.File Reading and Writing

2.1.2.1. File write:

write() method is used to write the contents to a file. The following code is for

writing the contents to the file aa.txt.

fo=open(‘aa.txt’,’w’)

fo.write(‘hai \n how are you?’)

fo.close()

Output:

Files and Exceptions Handling, Modules Packages

47

In the above example, the contents of the file can be viewed by opening the file

‘aa.txt’.

2.1.2.2. Reading a file:

read() method is used to read the contents from a file. The following code is for

reading the first 10 bytes of the file ‘aa.txt’.

Files and Exceptions Handling, Modules Packages

48

2.1.3. File Positions

To know about the file offset positions in Python, the following methods are used:

• seek()

• tell()

seek():

Syntax: seek(offset, from)

Description: Sets the file's current position at the offset. The offset values are as

follows:

 0 : reference (beginning of file(default))

 1 : current (current file position)

 2 : end (end of file)

tell() :

Description: Prints the current position of file pointer.

2.1.3.1.File Offset

Files and Exceptions Handling, Modules Packages

49

In the above code, initially the position of the file pointer is at 0. After reading the

contents, the position of the file pointer is moved to 10 (from 0 to 9). Now up on giving

the command seek(2,0), the file will be read from the beginning after skipping the first

2 positions.

Detailed Example:

Files and Exceptions Handling, Modules Packages

50

The contents of the file aa.txt is now:

Hai , How are you?

Welcome to Sathyabama

School of Computing

Department of Computer Science & Engineering

 2.1.3.2. Reading a file Line by line

In order to read a file till the End of File(EoF), while loop is used.

2.1.3.3. Modifying a file

Files and Exceptions Handling, Modules Packages

51

2.1.4. Alternate way for opening and closing a file:

Syntax:

with open(‘filename’) as file object:

➢ No need to close the file

2.1.5. read() &readline()

 read() – read entire file content from current position

 readline() – read the particular line of file pointer

2.2 ITERATORS

Iterator in Python is a type which could be implemented in for loops. An iterator is an

object that returns data one at a time.

For example if we have a list A=[1,2,3] , then iterator is used to return the items in the

list one at a time.

Files and Exceptions Handling, Modules Packages

52

There are two special Methods:

▪ __iter__() : returns iterator from list

▪ __next__(): returns next element in the list

Iterable objects in Python are:

 List

 Tuple

 String

2.2.1. Example Iterator:

In the above code the list items of mylist object are retrieved one by one using ‘next()’

method. When the list reaches its end and if next() method is used , it shows error in

the output.

Files and Exceptions Handling, Modules Packages

53

2.2.2. Example for _ _next_ _()

Alternate way for retrieving the items is to use for loop and retrieve the item using

__next__() inside the for loop. To find the length of the list ‘len()’ method is used.

2.2.3. Building User defined iterators

We can also build our own iterators. The following code is for implementing user

defined iterators for finding powers of two.

Files and Exceptions Handling, Modules Packages

54

2.2.4. Python Infinite Iterators:

Ther are two Arguments in infinite iterators:

➢ Callable Object: A built in function

➢ Sentinels: The terminating value

The following is an example for infinite iterator. next(inf) will always return 0, since

the sentinel 1 not at all reaches.

Similarly , the following code uses while loop to print the odd numbers starting from

1 to infinite number of times. The execution is manually terminated by providing

keyboard interrupt(Ctrl+c).

Files and Exceptions Handling, Modules Packages

55

2.2.5. Python Generators

Generator functions are alternates for iterators that contain one or more yield()

statements. Methods like __iter__(), __next__() are implemented and are iterated using

next() automatically. Local variables are remembered between successive calls. When

function terminates, StopIterator exception is raised automatically.

2.2.5.1.Example

In the following code, n value is initiated to 1 in the first step. In the second step n is

incremented by two and the value yielded now is 3. In the last step n is incremented by

1 and now the value is 4.

The following is an example for reversing a String using python Generator. Here the

string ‘hello’ is passed to the function ‘rev()’. Using for loop, the string is yielded from

the last character(len-1) to -1(0th position minus 1) as per the syntax.

Files and Exceptions Handling, Modules Packages

56

2.2.5.2. Advantages of Generators

 Easy to implement

 Memory efficient

 Represents infinite stream

 Generators can be pipelined

2.3. EXCEPTION HANDLING

Exception is an event that occurs during execution of a Python program disrupting the

normal flow of execution. Exceptions are handled using try and except blocks in

Python. There are built in exception classes for handling common exceptions.

BaseException is the parent class for all built in Exception classes. Fig 2.1 represents

the Standard Exception class hierarchy.

Files and Exceptions Handling, Modules Packages

57

Fig 2.1 Standard Exception class hierarchy

2.3.1. Exception Handling Syntax and Examples

While handling exception, keep the suspicious code in try block and following the try

block, include except: statement

Files and Exceptions Handling, Modules Packages

58

The following code raises exception when a run time error occurs upon writing the file

‘aa.txt’. In case of normal program flow, the else clause will be invoked and the

statements in else block will be executed.

IOError exception is also invoked when we intend to write a file when it is opened in

‘read’ mode. The following code depicts this case.

2.3.1.1. Except Clause without specifying any exception

In python, we can also have except clause with no specific exception. In this case any

type of exception can be handled. The following is the syntax for except statement with

no specific exception type.

Files and Exceptions Handling, Modules Packages

59

Syntax:

Example:

In the following code, except clause is alone given, without mentioning the type of

exception. In the sample runs when the value of ‘b’ is given as 0, exception is caught

and ‘divide by zero error’ is printed. Whereas, in case of normal run, the result obtained

after dividing two numbers, is displayed as the output.

Files and Exceptions Handling, Modules Packages

60

2.3.1.2. Except Clause with Multiple exceptions:

There is another way of specifying multiple exceptions in the single except clause.

When multiple exceptions are thrown, the first exception which is being caught will

alone be handled. The syntax is given as follows.

Syntax:

Example:

Files and Exceptions Handling, Modules Packages

61

2.3.1.3 Optional finally clause

Like other object oriented programming languages, try has optional finally clause. The

statements given in finally block will be executed even after the exceptions are

handled.

2.3.2. Raising Exceptions

Exception can be raised from a function:

raise ExceptionClass(‘Something Wrong’)

Example:

ex=RunTimeError(‘Something Wrong’)

raise ex

 OR

Raise RunTimeError(‘Something Wrong’)

Files and Exceptions Handling, Modules Packages

62

2.3.3. Custom Exception/User Defined Exception

In Python custom exception or otherwise called as user defined exception can be

handled by creating a new user defined class which is a derived class from Exception

class.

Fig. 2.2: Inheriting the Standard Exception class

In the following example two user defined exception classes are derived from the

parent class Error which inherits the standard Exception class. The number guessed is

10. When any number greater than 10 is given as input TooLargeErr exception is

thrown and when the number is less than 10, TooSmallErr exception is thrown.

Files and Exceptions Handling, Modules Packages

63

2.4 REGULAREXPRESSIONS

Regular Expressions can also be called as RE/regex/regex patterns .RE’s are

specialized programming languages embedded inside Python. RE’s are available by

importing re module. RE patterns are compiled into a series of bytecodes when

executed by a matching engine written in C language. REs could not perform all string

Files and Exceptions Handling, Modules Packages

64

processing tasks. REs are applicable in Pattern recognition problems. RE module has

to imported for calling re methods like: split(), findall(), search() etc.

Syntax:

import re

2.4.1 RE matching characters

Character matching is very important for identifying patterns and matching them with

the given input. The following table describes some of the important matching

characters used in Python REs.

Table: 2.1 Python Character Matching

Matching

Character

Description

[] Finding a range of characters [a-z]

\w Alphanumeric character [a-zA-Z0-9]

\W Non alpha numeric characters :^ [a-zA-Z0-9]

* Repeating a character [0] or more times

() Grouping or including

+ 1 or more

? 0 or 1

{x} Exact number of matches

{a,b} In range from a to b

\any_number Matching the group of same number.

\A Only at the start of the string.

Files and Exceptions Handling, Modules Packages

65

\Z Only at the end of the string

\b Empty string only at the beginning or end of a word.

\B Empty string match not at the beginning or end of a word

\d [0-9]

\D ^[0-9]

\s Space

\S Non space

2.4.2. RE Methods

2.4.2.1. The search() method

Method: search()

Description: Returns true if the search string is found.

Example:

Files and Exceptions Handling, Modules Packages

66

The above code returns the Match object with a span position from 0 to n-1 when the

search information is found.

2.4.2.2. The split() method

Method: split()

Description: For creating space in the string.

Example:

In the above code, split() method is applied twice on the string, ‘This is a string’. When

the matching character \s is applied, the spaces in the string are split up. When the

regular expression r’([a-i]) is applied, the string is split ignoring the range of

characters from a to i.

2.4.2.3. The findall () method

Method:findall()

Description: Finds all the matches and returns them as a list of strings.

Files and Exceptions Handling, Modules Packages

67

Example:

2.4.2.4. The match() method

Method:match()

Description:To match the RE pattern to string with optional flags.

Example:

Files and Exceptions Handling, Modules Packages

68

2.4.2.5. The finditer() method

Method: finditer()

Description:Generating an iterator.

Example:

2.4.2.6. The compile() method

Method:compile()

Description: Compiling a pattern without rewriting it.

Files and Exceptions Handling, Modules Packages

69

Example:

In the above code the compiled pattern is ‘Python’. The result objects return each and

every occurrence of the matched pattern line by line. Other Regular Expression

methods are given in Table 2.2 and RE Compilation flags are given in Table 2.3.

Table 2.2 Other RE methods

Method/Attribute Purpose

group() Returns the string matched by the RE

start() Returns the starting position of the match

end() Returns the ending position of the match

span()

Returns a tuple containing the starting and ending positions of

the match

sub() Replaces the RE pattern and returns the modified string

Files and Exceptions Handling, Modules Packages

70

Table 2.3. RE Compilation Flags

Flag Syntax Description

ASCII re.A
Makes several escapes like \w,\b,\s and \d and match

only on ASCII characters

DOTALL re.S Match any character including newline

IGNORECASE re.I Case insensitive matches

MULTILINE re.M Multiline matching affecting ^ and $

LOCALE re.L Locale aware match(Localization API)

VERBOSE re.X Enables verbose RE

Example:

Files and Exceptions Handling, Modules Packages

71

2.4.3. Case Studies on Pattern Matching:

Case Study 1: Phone number verification

Case Study 2: Validating First name & Last name

Files and Exceptions Handling, Modules Packages

72

Case Study 3: Email Address Verification

Case Study 4: Web Scrapping

2.5 .PYTHON MODULES

2.5.1. Definition

A module is a library of functions used to provide any service. To incorporate the

service provided by any module, ‘import’ statement should be used in Python. Modules

can be built in or user defined. Modules can be imported in the current program using

the import statement.

Files and Exceptions Handling, Modules Packages

73

Syntax:

 importmodule_name

Example: Time module , Math module

2.5.2.Sample Programs on Built in modules

2.5.2.1. The time module

2.5.2.2. The math module

2.5.3. Building Custom modules by Modularising functions

Files, containing the Python definitions and statements, can be created by the user, and

the same file can be imported on another Python program using import statement. The

following example explains importing a python module(File1) over another python

code(File 2).

Files and Exceptions Handling, Modules Packages

74

Example:

Let us have two different files File1 & File 2. If we want to import any module of File1

into File2 , then we need to import File1 module in File2 using ‘import’ statement.

File1.py

def max(n1,n2):

 if n1>n2:

 result=n1

 else:

 result=n2

 return result

File 2.py

import File1

x,y=eval(input('enter x and y'))

z=max(x,y)

print("the max is",z)

On running File2.py, we get the maximum of two values as output.

2.6 INTRODUCTION TO PIP

In order to manage and install software packages Python use PIP as Package

Management System. PIP is written in Python and available in PyPI(Python Package

Index). PIP is otherwise known as PiP Installs Python or PIP installs Packages.

Files and Exceptions Handling, Modules Packages

75

2.6.1. Installing Packages via PIP

2.6.1.1 Steps for installing PIP

Step 1: Download get-pip.py and save this folder in the system’s local drive to a folder

on your computer.

Step 2: Open the command prompt and explore the folder containing get-pip.py.

Step 3: Run the command: python get-pip.py.

2.6.1.2. Using online python compiler

Python codes can also be executed online without installing Python IDLE or PIP

packages. One of the weblink used for running python codes online is:

‘https://www.onlinegdb.com/online_python_compiler#’.

2.7. USING PYTHON PACKAGES FOR ADVANCED PROGRAMMING

2.7.1. Python editors for Advanced Python Programming

The following are some of the python editors where Python libraries necessary for

advanced scientific programming are almost readily available. If the Python library

is not available then the command ‘pip install lib_name’, could be given for

installing the specific library.

 JuPYter Notebook

 Pycharm Community Edition & Professional Edition

 Wing IDE

 NINJA IDE

 Spyder

 Pyzo

https://www.onlinegdb.com/online_python_compiler

Files and Exceptions Handling, Modules Packages

76

2.7.2. Python Libraries for running real time projects

2.7.2.1.Numpy

Numpy is a package supporting multidimensional arrays and it is designed for

scientific computation purpose. Simple code to create a 3×5 array using numpy is given

as follows:

import NumPy as np

a = np.arange(15).reshape(3, 5)

print(a)

print ('type of a', type(a))

#Output:

[[0 1 2 3 4]

 [5 6 7 8 9]

 [10 11 12

13 14]] type of a <class 'numpy.ndarray'>

Files and Exceptions Handling, Modules Packages

77

Table 2.4: Universal Functions in Numpy

Function name Purpose Example

np.array() For creating arrays a = np.array([0, 1, 2, 3])

np.arrange() For formatting the array. Start index,

end index, step which are the optional

attributes.

b = np.arange(1, 9, 2)

output: [1,3,5,7]

np.linspace() For array line spacing with attributes

start, end and num-points.

c = np.linspace(0, 1, 6)

np.reshape() To specify the array dimensions np.reshape(3,5) : forms a 3*

5 array

Table 2.4: Universal Functions in Numpy(Contd…)

Function

name

Purpose Example

np.sqrt() Finding

square root

of an array

d=np.array([[100, 144, 256],[144, 4, 81]])

print(np.sqrt(d))

Output:

[[10. 12. 16.] [12. 2. 9.]]

np.exp() Finding

exponential

power

np.exp(2)

np.add() Adding

values to an

array

np.add(a,10)

 [[10 11 12 13 14]

 [20 21 22 23 24]]

Files and Exceptions Handling, Modules Packages

78

 2.7.2.2. SciPy

Scipy library is used for performing mathematical and scientific calculations. Scipy

can also be used for Engineering applications.

Syntax:

from scipy import module_name

Example:

import SciPy

fromscipy.constants import pi

print("sciPy - pi = %.16f"%scipy.constants.pi)

Output:

sciPy - pi = 3.1415926535897931

The following are the real time applications which can be implemented using Scipy:

• Signal Processing

• Image manipulation

• Interpolation

• Optimization and fit

• Statistics and random numbers

Files and Exceptions Handling, Modules Packages

79

• File input/output

• Special Function

• Linear Algebra Operation

• Numerical Integration

• Fast Fourier transforms

 2.7.2.2. Matplotlib

Matplotlib library is used for plotting graphs. The basic methods in matplotlib are:

• Plot()- To plot X, Y axes.

• Show()- To display the plotted graph.

Example:

%matplotlib inline

Import matplotlib.pyplot as myplt

myplt.plot([1,2,3,4])

myplt.ylabel('numbers')

myplt.show()

Files and Exceptions Handling, Modules Packages

80

Output:

2.8. EXERCISES

1. What is the output of the following code?

2. Write a Python code to read a String, character by character and print the String

as a whole using iterators.

3. Write a Python program that matches any string that has an a followed by one or

more t's.

4. Write a Python program to insert spaces between words starting with capital

letters.

5. Write a Python program to remove the parenthesis area in a string using REs.

Sample data : ["abc (.com)", "w3schools", "google (.com)"]

Expected Output:

abc

w3schools

google

https://www.w3resource.com/python-exercises/re/#EDITOR

Files and Exceptions Handling, Modules Packages

81

6. Write a Python program to do a case-insensitive string replacement.

7. Write a Python code to print the given list in reverse order.

8. What is the output of the snippet of code shown below?

9. Write a Python code to append a file ‘aa.txt’ and then read and display the contents

of the file line by line.

10. Check whether the methods today() and now() of datetime library are same or not.

Prove the same using a Python code.

REFERENCES:

1. Timothy A.Budd, Exploring Python, Tata McGraw Hill Education Private

Limited, New Delhi, 2011.

2. Python basics: https://www.tutorialspoint.com/python , Accessed on May 2019.

3. Y. Daniel Liang, Introduction to Programming Using Python, Pearson, 2013.

4. Python Libraries: http://cs231n.github.io/python-numpy-tutorial/, Accessed on

May 2019.

5. Scipy: https://www.guru99.com/scipy-tutorial.html, Accessed on May 2019.

6. Python Exercises: https://www.w3resource.com/python-exercises/re/ , Accessed

on May 2019.

7. Python Modules: https://www.sanfoundry.com/python-questions-answers-

datetime-module-2/, Accessed on May 2019.

https://www.tutorialspoint.com/python
http://cs231n.github.io/python-numpy-tutorial/
https://www.guru99.com/scipy-tutorial.html
https://www.w3resource.com/python-exercises/re/
https://www.sanfoundry.com/python-questions-answers-datetime-module-2/
https://www.sanfoundry.com/python-questions-answers-datetime-module-2/

GUI Programming with Python

1

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT – III - SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

(GUI PROGRAMMING WITH PYTHON)

)

GUI Programming with Python

2

UNIT III

GUI PROGRAMMING WITH PYTHON

In python text only programs can be created using Command line

Interface. Graphical user interface(GUI) can be created using tkinter module

in python.

3.1 Introduction To GUI Library In Python

Tkinter is a module in the Python standard library which serves as an

interface to Tk (ie) simple toolkit. There are many other toolkits also available

to create GUI.

Tkinter provides the following widgets:

• button

• canvas

• checkbutton

• combobox

• entry

• frame

• label

• listbox

• menu

• message

• progressbar

GUI Programming with Python

3

• radiobutton

• scrollbar

• spinbox

• text

Tkinter also provides three layout managers:

• place - It positions widgets at absolute locations

• grid - It arranges widgets in a grid

• pack - It packs widgets into a cavity

3.2 Layout Management

The Layout Managers are used to arrange components in a particular

manner. It is used to organize the conponents. There are three Layout

Management in python:

1. Pack Layout

2. Grid Layout

3. Place Layout

3.2.1 Pack Layout Manager

 It is a simple layout manager. Here widgets can be organized in

horizontal and vertical boxes. It is used to place each widget next to previous

widget. It will be called without any arguments and it will position and size the

widgets in a reasonable way. Whenever the user wants to have a series of

GUI Programming with Python

4

widgets in a vertical or horizontal row, the pack layout manager is fairly simple

to use. The layout is controlled with the fill, expand, and side options.

Example:

from tkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True)

l2.pack(fill=X,side=RIGHT)

top.mainloop()

Output:

The output is shown in Fig 3.1.

Fig 3.1

GUI Programming with Python

5

Explanation: Label l1 has been placed in top position, it is filled in X axis.

Label l2 has been placed in Right Position and it is also filled in X axis. Since

expand attribute has the value True for Label l1,it can be stretched.

GUI Programming with Python

6

Padding Option in Pack Layout:

The pack() manager has four padding options:

1. Internal Padding

2. External padding

3. Padding in X Direction.

4. Padding in Y Direction.

External Padding in Horizontal direction (padx)

Example:

from tkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,padx=10)

l2.pack(fill=X,side=TOP,padx=10)

top.mainloop()

Output:

The output is shown in Fig 3.2.

GUI Programming with Python

7

Fig 3.2

External Padding in Vertical direction (pady)

Example:

from tkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,pady=10)

l2.pack(fill=X,side=TOP,pady=10)

top.mainloop()

Output:

The output is shown in Fig 3.3.

GUI Programming with Python

8

Fig 3.3

Internal Padding in Horizontal direction(ipadx)

Example:

from tkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,ipadx=10)

l2.pack(fill=X,side=TOP,ipadx=10)

top.mainloop()

Output:

The output is shown in Fig 3.4.

GUI Programming with Python

9

Fig 3.4

Internal Padding in Y Direction(ipady):

Example:

from tkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,ipadx=10)

l2.pack(fill=X,side=TOP,ipady=10)

top.mainloop()

Output:

The output is shown in Fig 3.5.

GUI Programming with Python

10

Fig 3.5

3.2.2 Place Layout:

 Place is the most complex manager out of the 3 managers. It uses

absolute positioning, when we choose place lay out in our design, then we need

to specify the position of the widgets using x and y coordinates. The size and

position of the widgets will not be changed when we resize the window.

Example:

from tkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.place(x=10,y=50)

l2.place(x=10,y=100)

top.mainloop()

Output:

The output is shown in Fig 3.6.

GUI Programming with Python

11

 Fig 3.6

Explanation:

 Here Label1 is placed in the position (10,50) and label2 is placed in

the position (10,100).

3.2.3 Grid Layout

Pack Layout is not easy to understand and it is difficult to change the

existing design. By using place layout, we can control the positioning of

widgets but it is complex than pack. Grid is one of the most versatile layout

manager out of the three layout managers in python. By using Grid layout, the

widgets can be placed in rows and columns.

GUI Programming with Python

12

Example:

from tkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l3=Label(top,text="Label2",bg="green")

l1.grid(row=0,column=0)

l2.grid(row=0,column=1)

l3.grid(row=1,column=1)

top.mainloop()

Output:

The output is shown in Fig 3.7.

Fig 3.7

GUI Programming with Python

13

Explanation:

Here Label 1 is placed in 0th row and 0th column. Label 2 is placed in 0th row

and 1st column and Label 3 is placed in 1st row and 1st column.

3.3 FONT

 There are three ways to specify font in python.

 1.By using Font Tuple

 2.By using Font Object

 3.By using XFont

3.3.1 Simple Font Tuple:

 Font can be specified using tuple.Herethe font tuple consists of

threeelements.First element specifies font family ,second element specifies font

size and third element specifies font style.

 Ex: t =(“Arial”,14,”Bold”)

Example:

from tkinter import *

top=Tk()

b1=Button(text="submit",font=("Arial","16","bold"))

b1.pack()

top.mainloop()

GUI Programming with Python

14

Output:

The output is shown in Fig 3.8.

Fig 3.8

Explanation:

Text for the Button has been set in the Arial font with size 16 and Bold style.

3.3.2 Font Object

 Font object can be created by importing tkFont module.

Syntax for Font class constructor is:

Import tkFont

Font f1=tkFont.Font(parameters,…..)

GUI Programming with Python

15

Here is the list of parameters:

Family − The font family name as a string.

size − The font height as an integer in points. To get a font n pixels

high, use -n.

weight − "bold" for boldface, "normal" for regular weight.

Slant − "italic" for italic, "roman" for unslanted.

underline − 1 for underlined text, 0 for normal.

Overstrike − 1 for overstruck text, 0 for normal

Example:

from tkinter import *

from tkFont import *

top=Tk()

f1=Font(family="Helvetica",size=20,weight="bold",slant="italic",underline=1

,overstrike=1)

l1=Label(top,text="Label1",bg="blue",font=f1)

l1.pack()

top.mainloop()

GUI Programming with Python

16

3.3.3 X Window Fonts:

If you are running under the X Window System, you can use any of the X font

names.

3.4 COLORS

Tkinter represents colors with strings. There are two general ways to specify

colors in Tkinter :

• We can use a string specifying the proportion of red, green and blue in

hexadecimal digits. For example,

• "#fff" -- white,

• "#000000" -- black,

• "#000fff000" -- pure green

• "#00ffff" -- pure cyan

• We can also use any locally defined standard following color names.

▪ "white"

▪ "black"

▪ "red"

▪ "green"

▪ "blue"

GUI Programming with Python

17

▪ "cyan"

▪ "yellow"

▪ "magenta"

The common color options are :

Active background − Specifies Background color for the widget when the

widget is active.

activeforeground − Specifies Foreground color for the widget when the

widget is active.

background − Specifies Background color for the widget. This can

also be represented as bg.

disabledforeground − Specifies Foreground color for the widget when the

widget is disabled.

foreground − Specifies Foreground color for the widget. This can

also be represented as fg.

highlightbackground − Specifies Background color of the highlight region

when the widget has focus.

highlightcolor − Specifies Foreground color of the highlight region

when the widget has focus.

GUI Programming with Python

18

selectbackground − Specifies Background color for the selected items of

the widget.

selectforeground − Specifies Foreground color for the selected items of

the widget.

Example:

from tkinter import *

top=Tk()

b1=Button(text="submit",bg="red",fg="white")

b1.pack()

top.mainloop()

Output:

The output is shown in Fig 3.9.

GUI Programming with Python

19

Fig 3.9

Explanation:

Here the back ground of the button is red in color and foreground color of the

button is white in colour.

3.5 CANVAS

The Canvas is a rectangular area used for drawing pictures or other

complex layouts. Graphics, text, widgets or frames can be placed on a Canvas.

Syntax:

w = Canvas (top, option=value, ...)

top – It represents the parent window.

Options − commonly used options for this widget. These options can be

used as key-value pairs separated by commas.

Commonly used Options are:

bd - Border Width of the canvas

bg - Background color of the canvas

cursor - Cursor used in the canvas like circle,arrow and dot.

relief - Type of the border

width - Width of the canvas

Items supported by canvas:

 1.Arc

GUI Programming with Python

20

 2.Image

 3.Line

 4.Oval

 5.Polygon

3.5.1 ARC

 Creates an arc item, which can be a chord or a simple arc.

Syntax:

create_arc(x0, y0, x1, y1, options…..)

x0,y0,x1,y1-Top Left and Bottom Right coordinates of Bounding Rectangle

 Commonly used Options:

 start,extend-Specifies which section to draw

Example:

from tkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

coord = 10, 50, 240, 210

arc = w.create_arc(coord, start=0, extent=150, fill="blue")

w.pack()

GUI Programming with Python

21

Output:

The output is shown in Fig 3.10.

Fig 3.10

Explanation:

Here Arc is drawn with blue color and within the bounded rectangle with top

left(10,50)position and bottom right(240,210) position and started from angle

0 and extended till 150 degree.

3.5.2 Image

 Creates an image , which can be an instance of either the BitmapImage or the

PhotoImage classes.

GUI Programming with Python

22

Syntax:

 Create_image(x,y,options….)

 x,y-Specifies the position of the image

 commonly used options:

 anchor=Where to place the image relative to the given position.

Default is CENTER.

 image=image object

Example:

from tkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_image("F:\img2",50,50)

w.pack()

root.mainloop()

3.5.3 Line

 Creates a line item.

Syntax:

GUI Programming with Python

23

 canvas.create_line(x0, y0, x1, y1, ...,xn, yn, options)

 x0,y0,x1,y1->coordinates of line

 Commonly used options:

 activefill-Color of the line when it is active

 width -Width of the line

Example:

from tkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_line(10,10,100,100,activefill="red")

w.pack()

root.mainloop()

Output:

The output is shown in Fig 3.11.

GUI Programming with Python

24

Fig 3.11

3.5.4 OVAL

Creates a circle or an ellipse at the given coordinates. It takes two pairs of

coordinates; the top left and bottom right corners of the bounding rectangle for

the oval.

Syntax:

 canvas.create_oval(x0, y0, x1, y1, options)

 x0, y0, x1, y1- the top left and bottom right corners of the bounding

rectangle

 Options:

GUI Programming with Python

25

 activefill-Color of the oval when it is active

 width -Width of the line

Example:

from tkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_oval(10,10,100,100,activefill="red")

w.pack()

root.mainloop()

Output:

The output is shown in Fig 3.12.

Fig 3.12

GUI Programming with Python

26

3.5.5 Polygon

Creates a polygon item that must have at least three vertices.

Syntax:

 canvas.create_polygon(x0, y0, x1, y1,...xn, yn, options)

 x0, y0, x1, y1,...xn, yn-Coordinates of polygon

 Options:

 Activefill-Color of the oval when it is active

 width -Width of the line

Example

from tkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_polygon(50,50,20,20,100,100,activefill="red")

w.pack()

root.mainloop()

GUI Programming with Python

27

3.6 WIDGETS IN PYTHON

Widgets are standard graphical user interface (GUI) elements, like different

kinds of buttons and menus.

3.6.1 Label

A Label widget shows text to the user about other widgets used in the

application. The widget can be updated programmatically.

Syntax to create Label:

w=Label (root ,options)

root - Parent Window

List of commonly used options are given in Table 3.1.

Table 3.1

Option Description

anchor It specifies the exact position of the text within the size provided to

the widget. The default value is CENTER, which is used to center

the text within the specified space.

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

GUI Programming with Python

28

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

Example:

from tkinter import *

root=Tk()

l1=Label(root,text="Enter User Name",bg="green",fg="white")

l1.pack()

root,mainloop()

Output:

The output is shown in Fig 3.13.

GUI Programming with Python

29

Fig 3.13

Explanation:

Here Label has been created with green background color and white foreground

color with the text “Enter User Name”.

3.6.2 ENTRY

The Entry widget is used to create the single line text-box to the user to accept

a value from the user. It can accept the text strings from the user. It can receive

one line of text from the user. For multiple lines of text, the text widget will be

used.

Syntax for creating Entry Widget:

 w=Entry(root, options)

root-Main Window

GUI Programming with Python

30

List of commonly used options are given in Table 3.2

Table 3.2

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

selectbackground Background color of the selected text

selectforeground Foreground color of the selected text

show Specifies the character used to mask characters in the text

box

GUI Programming with Python

31

Example:

from tkinter import *

root=Tk()

l1=Label(root,text="Enter User Name",bg="green",fg="white")

e1=Entry(root,show="*")

l1.pack(side=LEFT)

e1.pack(side=RIGHT)

root.mainloop()

Output:

The output is shown in Fig 3.14.

Fig 3.14

GUI Programming with Python

32

Explanation:

Here Label and entry widgets are created.Since the show attribute value is *,the

characters entered in the text box appeared as “*”.

3.6.3 Button

Button Widget is used to create various kinds of buttons.The user can interact

with the button.They can contain text or images.

Syntax for creating Button:

b=Button(root,options)

root-main window

List of commonly used options are given in Table 3.3

Table 3.3

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

GUI Programming with Python

33

Option Description

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

underline Underline the label text

command It is set to function name which will be called the button is

clicked

Example:

from tkinter import *

root=Tk()

b1=Button(root,text="Submit",bg="blue",fg="white")

b1.pack()

root.mainloop()

Output:

The output is shown in Fig 3.15.

GUI Programming with Python

34

Fig 3.15

3.6.4 Checkbutton

The Checkbutton is used to track the user's choices provided to the application.

Checkbutton is used to implement the on/off selections. TheCheckbutton can

contain the or images or text. The Checkbutton is mostly used to provide many

choices to the user among which, the user needs to choose the one.

Syntax for creating Check Button:

b=CheckButton(root,options)

root-main window

List of commonly used options are given in Table 3.2

Table 3.2

GUI Programming with Python

35

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

command It is set to function name whicjh will be called the button is

clicked

offvalue Set value to the control variable if the button is checked.Default

Value is 1

onvalue Set value to the control variable if the button is

unchecked.Default Value is 0

selectcolor Set color of the check button when it is checked.

selectimage Set the image to be shown when it is checked.

Example:

GUI Programming with Python

36

from tkinter import *

root=Tk()

c1 = Checkbutton(root, text = "C", onvalue = 1, offvalue = 0, height = 2, width

= 10)

c2 = Checkbutton(root, text = "C++", onvalue = 1, offvalue = 0, height = 2,

width = 10)

c3 = Checkbutton(root, text = "JAVA", onvalue = 1, offvalue = 0, height = 2,

width = 10)

c1.pack()

c2.pack()

c3.pack()

root.mainloop()

Output:

The output is shown in Fig 3.16.

Fig 3.16

GUI Programming with Python

37

3.6.5 Radiobutton

The Radiobutton widget is used to implement one-of-many selection. It shows

multiple options to the user out of which, the user can select only one option.

It is possible to display the multiple line text or images on the radiobuttons. To

keep track the user's selection ,theradiobutton is associated with a single

variable.EachRadio button displays a single value for that particular variable.

Syntax for creating Radio Button:

b=RadioButton(root,options)

root-main window

List of commonly used options are given in Table 3.3

Table 3.3

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

GUI Programming with Python

38

Option Description

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

underline Underline the label text

command It is set to function name whicjh will be called the button

is clicked

value Set value to the control variable if the button is selected.

selectcolor Set color of the check button when it is checked.

selectimage Set the image to be shown when it is checked.

variable It is used to keep track of user choices.

Example:

from tkinter import *

root=Tk()

r1 = Radiobutton(root, text = "C", value = 1, height = 2, width = 10)

r2 = Radiobutton(root, text = "C++", value = 2, height = 2, width = 10)

r3 = Radiobutton(root, text = "JAVA",value = 3, height = 2, width = 10)

r1.pack()

GUI Programming with Python

39

r2.pack()

r3.pack()

root.mainloop()

Output:

The output is shown in Fig 3.17.

Fig 3.17

3.6.6 Listbox

The Listbox widget is used to display the list items to the user. The user can

choose one or more items from the list depending upon the configuration.

Syntax for creatingListBox:

b=Listbox(root,options)

GUI Programming with Python

40

root-main window

List of commonly used options are given in Table 3.4.

Table 3.4

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

value Set value to the control variable if the button is selected.

selectbackground Set back ground color of the selected text.

xscrollcommand User can scroll the list box horizontally

GUI Programming with Python

41

yscrollcommand User can scroll the list box vertically

GUI Programming with Python

42

Example:

from tkinter import *

top = Tk()

lbl = Label(top,text = "A list of favourite countries...")

listbox = Listbox(top)

listbox.insert(1,"India")

listbox.insert(2, "USA")

listbox.insert(3, "Japan")

listbox.insert(4, "Austrelia")

lbl.pack()

listbox.pack()

top.mainloop()

Output:

The output is shown in Fig 3.18.

GUI Programming with Python

43

Fig 3.18

3.6.7 Message

Its functionality is very similar to Label widget, except that it can

automatically wrap the text, maintaining a given width.

Syntax for creating Message:

m=Message(root,options)

root-main window

List of commonly used options are given in Table 3.5.

Table 3.5

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

GUI Programming with Python

44

Option Description

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

Example:

from tkinter import *

top = Tk()

msg = Message(top, text = "Welcome to Javatpoint")

msg.pack()

top.mainloop()

Output:

The output is shown in Fig 3.19.

GUI Programming with Python

45

Fig 3.19

3.6.8 Text

Tkinter provides us the Entry widget which is used to implement the single line

text box. Text widget provides advanced capabilities that allow us to edit a

multiline text and format the way it has to be displayed, such as changing its

color and font. We can also use the structures like tabs and marks to locate

specific sections of the text, and apply changes to those areas.

Syntax for creating Message:

T=Text(root,options)

root-main window

List of commonly used options are given in Table 3.6.

Table 3.6

GUI Programming with Python

46

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

xscrollcommand User can scroll the text widget horizontally

yscrollcommand User can scroll the text widget vertically

selectbackground Background color of the selected text

General Methods are given in Table 3.7.

Table 3.7

Method Description

GUI Programming with Python

47

delete(startindex,

endindex)

This method is used to delete the characters of the

specified range

get(startindex,endindex) It returns the characters present in the specified range.

insert(index, string) It is used to insert the specified string at the given

index.

Mark Handling Methods :

Marks are used to bookmark the specified position between the characters of

the associated text.List of Mark handling methods are given in Table 3.8.

GUI Programming with Python

48

Table 3.8

Method Description

mark_set(mark,index) It is used to create mark at the specified index.

mark_unset(mark) It is used to clear the given mark

mark_names() It is used to return names of all the marks

Tag Handling Methods:

The tags are the names given to the specific areas of the text. The tags are used

to configure the different areas of the text separately. The list of tag-handling

methods are given in Table 3.9.

Table 3.9

Method Description

tag_add(tagname, startindex,

endindex)

It is used to tag the characters in the given

range

tag_config() It is used to configure the tag properties

tag_delete(tagname) It is used to delete the given tag

tag_remove(tagname, startindex,

endindex)

It is used to remove the tag from the

specified range

GUI Programming with Python

49

Example:

from tkinter import *

top = Tk()

text = Text(top)

text.insert(INSERT, "Name.....")

text.insert(END, "Salary.....")

text.pack()

text.tag_add("Write Here", "1.0", "1.4")

text.tag_add("Click Here", "1.8", "1.13")

text.tag_config("Write Here", background="yellow", foreground="black")

text.tag_config("Click Here", background="black", foreground="white")

Output:

The output is shown in Fig 3.20.

GUI Programming with Python

50

Fig 3.20

Explanation:

The tag “Write Here” tags the characters from the index 0 to 4.The tag “Click

Here” tags the characters from the index 8 to 13.These tags are configured

using the method tag_config().

3.6.9 SPINBOX

The Spinbox control is an alternative to the Entry control. It provides the

range of values to the user, out of which, the user can select only one value.It

is used in the case where a user is given some fixed number of values to

choose from.

Syntax for creating Message:

S=Spinbox(root,options)

root-main window

GUI Programming with Python

51

List of commonly used options are given in Table 3.10

Table 3.10

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

xscrollcommand User can scroll the text widget horizontally

from_ It is used to show the starting range of the widget.

to It specify the maximum limit of the widget value. The

other is specified by the from_ option.

values It represents the tuple containing the values for this

widget.

GUI Programming with Python

52

Example:

from tkinter import *

top = Tk()

spin = Spinbox(top, from_= 0, to = 25)

spin.pack()

top.mainloop()

Output:

The output is shown in Fig 3.21.

Fig 3.21

GUI Programming with Python

53

3.6.10 Frame

Frame widget is used to organize the group of widgets. It acts like a container

which can be used to hold the other widgets. The rectangular areas of the screen

are used to organize the widgets to the python application.

Syntax for creating Frame:

S=Frame(root,options)

root-main window

List of commonly used options are given in Table 3.11.

Table 3.11

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

height Height of the widget

width Width of the widget

Relief Specifies type of border

Example:

GUI Programming with Python

54

from tkinter import *

top = Tk()

Topframe = Frame(top)

Topframe.pack(side = TOP)

Bottomframe = Frame(top)

Bottomframe.pack(side =BOTTOM)

btn1 = Button(Topframe, text="Submit", fg="red",activebackground = "red")

btn1.pack(side = LEFT)

btn2 = Button(Topframe, text="Remove", fg="brown", activebackground =

"brown")

btn2.pack(side = RIGHT)

btn3 = Button(Bottomframe, text="Add", fg="blue", activebackground =

"blue")

btn3.pack(side = LEFT)

btn4 = Button(Bottomframe, text="Modify", fg="black", activebackground =

"white")

btn4.pack(side = RIGHT)

top.mainloop()

Output:

The output is shown in Fig 3.23.

GUI Programming with Python

55

Fig 3.23

Explanation:

Here two frames (Top Frame and Bottom Frame) have been created.Topframe

contains submit and remove buttons and Bottom frame contains Add and

modify buttons .

GUI Programming with Python

56

3.7 EVENTS AND BINDINGS IN PYTHON

Binding function is used to deal with the events. We can bind Python’s

Functions and methods to an event as well as we can bind these functions to

any particular widget. Events can come from various sources, including key

presses and mouse operations by the user. Tkinter provides a powerful

mechanism to let you deal with events yourself. For each widget, you

can bind Python functions and methods to events.

 widget.bind(event, handler)

If an event matching the event description occurs in the widget, the

given handler is called with an object describing the event.

3.7.1 Handling Mouse Button event in Python

Example:

from tkinter import *

from tkinter.ttk import *

creates tkinter window or root window

root = Tk()

function to be called when button-2 of mouse is pressed

def pressed2(event):

print('Button-2 pressed at x = % d, y = % d'%(event.x, event.y))

function to be called when button-3 of mouse is pressed

def pressed3(event):

print('Button-3 pressed at x = % d, y = % d'%(event.x, event.y))

GUI Programming with Python

57

 ## function to be called when button-1 is double clocked

defdouble_click(event):

print('Double clicked at x = % d, y = % d'%(event.x, event.y))

frame1 = Frame(root, height = 100, width = 200)

Binding mouse buttons with the Frame widget

frame1.bind('<Button-2>', pressed2)

frame1.bind('<Button-3>', pressed3)

frame1.bind('<Double 1>', double_click)

frame1.pack()

root.mainloop()

Output:

The output is shown in Fig 3.24.

GUI Programming with Python

58

Fig 3.24

3.7.2 Handling Key Press Event in Python

Example:

from tkinter import *

from tkinter.ttk import *

function to be called when

keyboard buttons are pressed

defkey_press(event):

 key = event.char

 print(key, 'is pressed')

GUI Programming with Python

59

creates tkinter window or root window

root = Tk()

root.geometry('200x100')

here we are binding keyboard

with the main window

root.bind('<Key>', lambda a : key_press(a))

mainloop()

Output:

The output is shown in Fig 3.25.

GUI Programming with Python

60

Fig 3.25

GUI Programming with Python

61

QUESTIONS

1. Write the Pyhton Program to create simple window.

2. Write a Python Program to create label, entry and button components

and arrange the components using Grid Layout.

3. Write a Python Program to validate user name and password.

4. Write a Python Program to display the basic shapes.

5. Write a Python program to create a following GUI design

6. Write the GUI program to create List Box for shopping cart.

7. Write a pyhton Program to create simple calculator.

8. Write a Python Program to add image on the button.

9. Write a Python progam to create simple application form.

10. Wrtite a Pyhton program to create check button for selecting multiple

hobbies.

Database and Network

1

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT – IV- SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

(Database and Network)

Database and Network

2

UNIT IV

DATABASE AND NETWORK

 Data is very important for any organization to continue its operations. The data

may be related to employees in the organization or the operational data like products

information, raw material prices, sales information, profits and losses. Without data,

no organization will survive. Hence, data is very important and it should never be lost.

4.1 DATABASE MANAGEMENT SYSTEM (DBMS)

To store data, a file or database can be used. A file stores data in the secondary storage

device like hard disk, either in the text format or binary format.

A database represents collection of data. Data is stored in the database. Once the data

is stored in the database, various operations can be performed on the data. For example,

modifying the existing data, deleting the unwanted data, or retrieving the data from the

database and etc. To perform such operations, a database comes with software. This is

called a database management system.

DBMS= Database + Software to manage the data

Example DBMS are MySQL, Oracle, Sybase,, SQL server etc.

Types of databases used with Python

1. Database support

• SQL

• NoSQL

Database and Network

3

As more and more data become available as unstructured or semi-structured, the

need of managing them through NoSql database increases. Python can also interact

with NoSQL databases in a similar way as it interacts with Relational databases. In this

chapter we will use python to interact with MongoDB as a NoSQL database.

4.2 MONGO DB

MongoDB stores data in JSON-like documents, which makes the database very

flexible and scalable.

Where to Use MongoDB?

• Big Data

• Content Management and Delivery

• Mobile and Social Infrastructure

• User Data Management

• Data Hub

download a free MongoDB database at https://www.mongodb.com.

4.2.1 PyMongo

Python needs a MongoDB driver to access the MongoDB database.

In this tutorial we will use the MongoDB driver "PyMongo".

We recommend that you use PIP to install "PyMongo".

PIP is most likely already installed in your Python environment.

Navigate your command line to the location of PIP, and type the following:

https://www.mongodb.com/

Database and Network

4

Download and install "PyMongo":

C:\Users\Your Name\AppData\Local\Programs\Python\Python36-32\Scripts>python -

m pip install pymongo

Now you have downloaded and installed a mongoDB driver.

Where to Use MongoDB?

• Big Data

• Content Management and Delivery

• Mobile and Social Infrastructure

• User Data Management

• Data Hub

Test PyMongo

To test if the installation was successful, or if you already have "pymongo" installed,

create a Python page with the following content:

demo_mongodb_test.py:

import pymongo

Creating a Database

To create a database in MongoDB, start by creating a MongoClient object, then specify

a connection URL with the correct ip address and the name of the database you want

to create.

Database and Network

5

MongoDB will create the database if it does not exist, and make a connection to it.

Example

Create a database called mydatabase

Program

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

MongoDB waits until you have created a collection (table), with at least one document

(record) before it actually creates the database (and collection).

4.3 CREATING A COLLECTION

To create a collection in MongoDB, use database object and specify the name of the

collection you want to create.

MongoDB will create the collection if it does not exist.

Database and Network

6

Program

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

MongoDB waits until you have inserted a document before it actually creates the

collection.

4.3.1 Python MongoDB Insert Document

Insert Into Collection

To insert a record, or document as it is called in MongoDB, into a collection, we use

the insert_one() method.

The first parameter of the insert_one() method is a dictionary containing the name(s)

and value(s) of each field in the document you want to insert.

Example

Insert a record in the “Customers” Collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

Database and Network

7

mydict = { "name": "John", "address": "Highway 37" }

x = mycol.insert_one(mydict)

Insert Multiple Documents

To insert multiple documents into a collection in MongoDB, we use

theinsert_many() method.

The first parameter of the insert_many() method is a list containing dictionaries with

the data you want to insert:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mylist = [

 { "name": "Amy", "address": "Apple st 652"},

 { "name": "Hannah", "address": "Mountain 21"},

 { "name": "Michael", "address": "Valley 345"},

 { "name": "Sandy", "address": "Ocean blvd 2"},

 { "name": "Betty", "address": "Green Grass 1"},

 { "name": "Richard", "address": "Sky st 331"},

 { "name": "Susan", "address": "One way 98"},

 { "name": "Vicky", "address": "Yellow Garden 2"},

 { "name": "Ben", "address": "Park Lane 38"},

 { "name": "William", "address": "Central st 954"},

Database and Network

8

 { "name": "Chuck", "address": "Main Road 989"},

 { "name": "Viola", "address": "Sideway 1633"}

]

x = mycol.insert_many(mylist)

4.3.2 Python MongoDB Find

In MongoDB we use the find and findOne methods to find data in a collection.

Just like the SELECT statement is used to find data in a table in a MySQL database.

Find One

To select data from a collection in MongoDB, we can use the find_one()method.

The find_one() method returns the first occurrence in the selection.

Example

Find the first document in the customers collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

x = mycol.find_one()

Database and Network

9

print(x)

Output

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

Find All

To select data from a table in MongoDB, we can also use the find() method.

The find() method returns all occurrences in the selection.

The first parameter of the find() method is a query object. In this example we use an

empty query object, which selects all documents in the collection.

Example

Return all documents in the "customers" collection, and print each document:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

for x in mycol.find():

print(x)

Database and Network

10

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

4.3.3. Filter the Result

When finding documents in a collection, you can filter the result by using a query

object.

The first argument of the find() method is a query object, and is used to limit the search.

Example

Find document(s) with the address "Park Lane 38":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": "Park Lane 38" }

mydoc = mycol.find(myquery)

Database and Network

11

for x in mydoc:

 print(x)

output

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

Example

Find documents where the address starts with the letter "S" or higher:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": { "$gt": "S" } }

mydoc = mycol.find(myquery)

for x in mydoc:

 print(x)

Output

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow

Garden 2'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway

1633'}

Database and Network

12

Return Only Some Fields

The second parameter of the find() method is an object describing which fields to

include in the result.

This parameter is optional, and if omitted, all fields will be included in the result.

Example

Return only the names and addresses, not the _ids:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

for x in mycol.find({},{ "_id": 0, "name": 1, "address": 1}):

 print(x)

Output

{'name': 'John', 'address': 'Highway37'}

{'name': 'Peter', 'address': 'Lowstreet 27'}

{'name': 'Amy', 'address': 'Apple st 652'}

{'name': 'Hannah', 'address': 'Mountain 21'}

{'name': 'Michael', 'address': 'Valley 345'}

{'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'name': 'Betty', 'address': 'Green Grass 1'}

{'name': 'Richard', 'address': 'Sky st 331'}

{'name': 'Susan', 'address': 'One way 98'}

Database and Network

13

{'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'name': 'Ben', 'address': 'Park Lane 38'}

{'name': 'William', 'address': 'Central st 954'}

{'name': 'Chuck', 'address': 'Main Road 989'}

{'name': 'Viola', 'address': 'Sideway 1633'}

4.3.4. Sort the Result

Use the sort() method to sort the result in ascending or descending order.

The sort() method takes one parameter for "fieldname" and one parameter for

"direction" (ascending is the default direction).

Example

Sort the result alphabetically by name:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mydoc = mycol.find().sort("name")

for x in mydoc:

 print(x)

OUTPUT

Database and Network

14

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

Sort Descending

Use the value -1 as the second parameter to sort descending.

sort("name", 1) #ascending

sort("name", -1) #descending

Example

Sort the result reverse alphabetically by name:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

Database and Network

15

mydoc = mycol.find().sort("name", -1)

for x in mydoc:

 print(x)

Output

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}
{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}
{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}
{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}
{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}
{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}
{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}
{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}
{'_id': 1, 'name': 'John', 'address': 'Highway37'}
{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}
{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}
{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}
{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}
{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

4.3.5 Python MongoDB Delete Document

To delete one document, we use the delete_one() method.

The first parameter of the delete_one() method is a query object defining which

document to delete.

Note: If the query finds more than one document, only the first occurrence is deleted.

Database and Network

16

Example

Delete the document with the address "Mountain 21":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": "Mountain 21" }

mycol.delete_one(myquery)

Delete Many Documents

To delete more than one document, use the delete_many() method.

The first parameter of the delete_many() method is a query object defining which

documents to delete.

Example

Delete all documents were the address starts with the letter S:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

Database and Network

17

myquery = { "address": {"$regex": "^S"} }

x = mycol.delete_many(myquery)

print(x.deleted_count, " documents deleted.")

output

2 documents deleted.

Delete All Documents in a Collection

To delete all documents in a collection, pass an empty query object to

the delete_many() method:

Example

Delete all documents in the "customers" collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

x = mycol.delete_many({})

print(x.deleted_count, " documents deleted.")

Database and Network

18

Output:

11 documents deleted

4.3.6 Python MongoDB Drop Collection

Delete Collection

You can delete a table, or collection as it is called in MongoDB, by using

the drop() method.

Example

Delete the "customers" collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mycol.drop()

The drop() method returns true if the collection was dropped successfully, and false if

the collection does not exist.

Database and Network

19

4.3.7 Python MongoDB Update

You can update a record, or document as it is called in MongoDB, by using

the update_one() method.

The first parameter of the update_one() method is a query object defining which

document to update.

Note: If the query finds more than one record, only the first occurrence is updated.

Example

Change the address from "Valley 345" to "Canyon 123":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": "Valley 345" }

newvalues = { "$set": { "address": "Canyon 123" } }

mycol.update_one(myquery, newvalues)

#print "customers" after the update:

for x in mycol.find():

 print(x)

Database and Network

20

OUTPUT

{'_id': 1, 'name': 'John', 'address': 'Highway37'}
{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}
{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}
{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}
{'_id': 5, 'name': 'Michael', 'address': 'Canyon 123'}
{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}
{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}
{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}
{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}
{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}
{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}
{'_id': 12, 'name': 'William', 'address': 'Central st 954'}
{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}
{'_id': 14, 'name': 'Viola', 'address': 'Sideway}

Update Many

To update all documents that meets the criteria of the query, use

the update_many() method.

Example

Update all documents where the address starts with the letter "S":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

Database and Network

21

myquery = { "address": { "$regex": "^S" } }

newvalues = { "$set": { "name": "Minnie" } }

x = mycol.update_many(myquery, newvalues)

print(x.modified_count, "documents updated.")

Output

2 documents updated.

4.3.8 Python MongoDB Limit

To limit the result in MongoDB, we use the limit() method.

The limit() method takes one parameter, a number defining how many documents to

return.

Consider you have a "customers" collection:

{'_id': 1, 'name': 'John', 'address': 'Highway37'}
{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}
{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}
{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}
{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}
{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}
{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}
{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}
{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}
{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}
{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

Database and Network

22

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}
{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}
{'_id': 14, 'name': 'Viola', 'address': 'Sideway}

Example

Limit the result to only return 5 documents:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myresult = mycol.find().limit(5)

#print the result:

for x in myresult:

 print(x)

OUTPUT
{'_id': 1, 'name': 'John', 'address': 'Highway37'}
{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}
{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}
{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}
{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

Database and Network

23

4.4 CURSOR CLASS

To work with MySQL in python, connector sub module of mysql module.

 import mysql.connector;

to establish connection with MySQL database, we use the connect() method of

mysql.connector module as:

conn=mysql.connector.connect(host=’localhost’,database=’university’,user=’root’,

password=’***’)

The connect() method returns MySQLConnection class object ‘conn’.

The next step is to create cursor class object by calling the cursor() method on ‘conn’

object as:

 cursor=con.cursor()

Cursor object is useful to execute SQL commands on the database.

it is done by execute() method of cursor object.

 cursor.execute(sql querry)

 example: cursor.execute(“select * from emptab”)

The resultant rows retirieved from the table are stored in cursor object. the result

can be fetched using fetchone() or fetchall() methods.

 example: row = cursor.fetchone() # get 1 row

Database and Network

24

 row = cursor.fetchall() # get all rows

Finally, the connection with MySQL can be closed by closing the cursor and

connection objects as:

cursor.close()

conn.close()

Program: A python program to retrieve and display all rows from the student

table:

import mysql.connector;

conn=mysql.connector.connect(host=’localhost’,database=’university’,user=’root’,

password=’***’)

cursor=con.cursor()

cursor.execute(“select * from stutab”)

row = cursor.fetchone()

while row is not None:

 print(row)

 row=cursor.fetchone()

cursor.close()

conn.close()

Database and Network

25

Output:

(1001, ‘Ajay’, 8.5)

(1002, ‘Alan’, 7.5)

(1001, ‘Joe’, 9.00)

4.5 EXCEPTIONS CLASSES

Interacting with a database is an error prone process, so we must always implement

some mechanism to handle errors.

Built in Exceptions

Exception Description

Warning Used for non-fatal issues. Must subclass StandardError.

Error

Base class for errors. Must subclass StandardError.

InterfaceError Used for errors in the database module, not the database

itself. Must subclass Error.

DatabaseError Used for errors in the database. Must subclass Error.

DataError Subclass of DatabaseError that refers to errors in the data.

OperationalError Subclass of DatabaseError that refers to errors such as the

loss of a connection to the database. These errors are

generally outside of the control of the Python scripter.

Exception Description

Database and Network

26

IntegrityError Subclass of DatabaseError for situations that would

damage the relational integrity, such as uniqueness

constraints or foreign keys.

InternalError Subclass of DatabaseError that refers to errors internal to

the database module, such as a cursor no longer being

active.

ProgrammingError Subclass of DatabaseError that refers to errors such as a

bad table name and other things that can safely be blamed

on you.

4.6 NETWORKING

For a specific purpose if things are connected together, are referred as

a NETWORK. A network can be of many types, like a telephone network, television

network, computer network or even a people network.

Similarly, a COMPUTER NETWORK is also a kind of setup, where it connects

two or more devices to share a range of services and information in the form of e-mails

and messages, databases, documents, web-sites, audios and videoes, Telephone calls

and video conferences etc among them.

A PROTOCOL is nothing but set of defined rules, which has to be followed by

every connected devices across a network to communicate and share information

among them. To facilitates End to End communication, a number of protocols worked

together to form a Protocol Suites or Stacks.

Some basic Protocols are:

Database and Network

27

• IP : Internet Protocol

• FTP : File Transfer Protocol

• SMTP : Simple Mail Transfer Protocol

• HTTP : Hyper Text Transfer Protocol

The Network reference models were developed to allow products from different

manufacturers to interoperate on a network. A network reference model serves as a

blueprint, detailing standards for how protocol communication should occur.

The most widely recognized reference models are, the Open Systems

Interconnect (OSI) Model and Department of Defense (DoD, also known

as TCP/IP) model.

Network Types are often categorized by their size and functionality. According to the

size, the network can be commonly categorized into Three types.

• LANs (Local Area Networks)

• MANs (Metropolitan Area Networks)

• WANs (Wide Area Networks)

An Internetwork is a general term describing multiple networks connected together.

The Internet is the largest and most well-known internetwork.

Some networks are categorized by their function, as opposed to their size.

For example:

• SAN (Storage Area Network): A SAN provides systems with high-speed,

lossless access to high-capacity storage devices.

https://www.geeksforgeeks.org/layers-osi-model/
https://www.geeksforgeeks.org/computer-network-tcpip-model/
https://www.geeksforgeeks.org/computer-network-types-area-networks-lan-man-wan/
https://www.geeksforgeeks.org/computer-networks-internetworking/
https://www.geeksforgeeks.org/storage-area-networks/

Database and Network

28

• VPN (Virtual Private Network): A VPN allows for information to be securely

sent across a public or unsecure network, such as the Internet. Common uses of a

VPN are to connect branch offices or remote users to a main office.

In a network, any connected device is called as host. A host can serve as following

ways:

• A host can acts as a Client, when he is requesting information.

• A host can acts as a Server, when he provides information.

• A host can also request and provide information, is called Peer.

4.7 SOCKET MODULE

What Are Sockets?

A socket is a link between two applications that can communicate with one another

(either locally on a single machine or remotely between two machines in separate

locations).

Basically, sockets act as a communication link between two entities, i.e. a server and a

client. A server will give out information being requested by a client. For example,

when you visited this page, the browser created a socket and connected to the server.

The socket Module

In order to create a socket, you use the socket.socket() function, and the syntax is as

simple as:

https://www.geeksforgeeks.org/virtual-private-network-vpn-introduction/

Database and Network

29

import socket

s= socket.socket (socket_family, socket_type, protocol=0)

Here is the description of the arguments:

• socket_family: Represents the address (and protocol) family. It can be either

AF_UNIX or AF_INET.

• socket_type: Represents the socket type, and can be either SOCK_STREAM

or SOCK_DGRAM.

• protocol: This is an optional argument, and it usually defaults to 0.

After obtaining your socket object, you can then create a server or client as desired

using the methods available in the socket module.

o s.recv() –It receives TCPmessage

o s.send() – It transmits TCP message

o s.recvfrom() – It receives UDPmessage

o s.sendto() – It transmits UDP message

o s.close() – It closes socket

o socket.gethostname() – It returns thehostname

Database and Network

30

4.8 CREATE A SIMPLE CLIENT

Before we get started, let's look at the client socket methods available in Python.

s= socket.socket(socket.AF_INET, socket.sock_STREAM)

s.connect()Initiates a TCP server connection.

To create a new socket, you first import the socket method of the socket class.

import socket

Next, we'll create a stream (TCP) socket as follows:

stream_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

The AF_INET argument indicates that you're requesting an Internet Protocol (IP)

socket, specifically IPv4. The second argument is the transport protocol type

SOCK_STREAM for TCP sockets. Additionally, you can also create an IPv6 socket

by specifying the socket AF_INET6 argument.

Specify the server.

server = "localhost"

Specify the port we want to communicate with.

port =80

Connect the socket to the port where the server is listening.

server_address = ((host, port))

Database and Network

31

stream_socket.connect(server_address)

It's important to note that the host and port must be a tuple.

Send a data request to the server:

message = 'message'

stream_socket.sendall(message)

Get the response from the server:

data = sock.recv(10)

print data

To close a connected socket, you use the close method:

stream_socket.close()

Below is the full code for the Client/Server.

import socket

import sys

 # Create a TCP/IP socket

stream_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # Define host

host = 'localhost'

Database and Network

32

 # define the communication port

port = 8080

 # Connect the socket to the port where the server is listening

server_address = ((host, port))

print "connecting"

stream_socket.connect(server_address)

 # Send data

message = 'message'

stream_socket.sendall(message)

response

data = stream_socket.recv(10)

print data

print 'socket closed'

stream_socket.close()

4.9 BUILD A SIMPLE SERVER

Now let's take a look at a simple Python server. The following are the socket server

methods available in Python.

Database and Network

33

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind(): Binds address (hostname, port number) to socket.

s.listen(): Sets up and starts TCP listener.

s.accept(): Accepts TCP client connection.

We will follow the following steps:

• Create a socket.

• Bind the socket to a port.

• Start accepting connections on the socket.

Here is the server program.

import socket

import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # Define host

host = 'localhost'

 # define the communication port

port = 8080

Database and Network

34

 # Bind the socket to the port

sock.bind((host, port))

Listen for incoming connections

sock.listen(1)

Wait for a connection

print 'waiting for a connection'

connection, client = sock.accept()

print client, 'connected'

Receive the data in small chunks and retransmit it

data = connection.recv(16)

print 'received "%s"' % data

if data:

 connection.sendall(data)

else:

 print 'no data from', client

 # Close the connection

connection.close()

Database and Network

35

The server is now ready for incoming connections.

Now run the client and server programs in separate terminal windows, so they can

communicate with each other.

Server Output

$ python server.py

waiting for a connection

('127.0.0.1', 47050) connected

received "message"

Client Output

$ python client.py

connecting

message

socket closed

4.10 SENDING EMAIL USING SMTP

Simple Mail Transfer Protocol (SMTP) is a protocol, which handles sending e-mail

and routing e-mail between mail servers.

Database and Network

36

Python provides smtplib module, which defines an SMTP client session object that

can be used to send mail to any Internet machine with an SMTP or ESMTP listener

daemon.

Here is a simple syntax to create one SMTP object, which can later be used to send

an e-mail –

import smtplib

smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])

Here is the detail of the parameters −

• host − This is the host running your SMTP server. You can specify IP address

of the host or a domain name like tutorialspoint.com. This is optional

argument.

• port − If you are providing host argument, then you need to specify a port,

where SMTP server is listening. Usually this port would be 25.

• local_hostname − If your SMTP server is running on your local machine,

then you can specify just localhost as of this option.

An SMTP object has an instance method called sendmail, which is typically used to

do the work of mailing a message. It takes three parameters −

• The sender − A string with the address of the sender.

• The receivers − A list of strings, one for each recipient.

Database and Network

37

• The message − A message as a string formatted as specified in the various

RFCs.

Example

Here is a simple way to send one e-mail using Python script. Try it once −

import smtplib

sender = 'from@fromdomain.com'

receivers = ['to@todomain.com']

message = """From: From Person from@fromdomain.com

To: To Person to@todomain.com

Subject: SMTP e-mail test

This is a test e-mail message.

"""

try:

 smtpObj = smtplib.SMTP('localhost')

 smtpObj.sendmail(sender, receivers, message)

 print "Successfully sent email"

except SMTPException:

mailto:from@fromdomain.com
mailto:to@todomain.com

Database and Network

38

Here, you have placed a basic e-mail in message, using a triple quote, taking care

to format the headers correctly. An e-mail requires a

From, To, and Subject header, separated from the body of the e-mail with a blank

line.

To send the mail you use smtpObj to connect to the SMTP server on the local

machine and then use the sendmail method along with the message,

the from address, and the destination address as parameters (even though the

from and to addresses are within the e-mail itself, these aren't always used to route

mail).

If you are not running an SMTP server on your local machine, you can

use smtplib client to communicate with a remote SMTP server. Unless you are using

a webmail service (such as Hotmail or Yahoo! Mail), your e-mail provider must have

provided you with outgoing mail server details that you can supply them, as follows

−smtplib.SMTP('mail.your-domain.com', 25)

4.11 URL ACCESS

URL(Uniform REsource Locator)

• urlib is the module used for fetching URLs

urllib is a Python module that can be used for opening URLs. It defines functions and

classes to help in URL actions.

With Python we can also access and retrieve data from the internet like XML,

HTML, JSON, etc. We can also use Python to work with this data directly.

Database and Network

39

#Used to make requests

 import urllib.request

x= urllib.request.urlopen('https://www.google.com/')

 print(x.read())

http://www.google.com/%27)
http://www.google.com/%27)

1

SCHOOL OF BIO AND CHEMICAL ENGINEERING

Common to : Biotech, BioMed, Chemical, EEE

UNIT – V - SCSA1102 - FUNDAMENTALS OF PYTHON PROGRAMMMING

(Case Study)

2

UNIT V

CASE STUDY

5.1 WEB PROGRAMMING USING PYTHON

Python is one of the most suitable language for web application development

for its efficiency and readability. There are different frameworks supported by python.

A framework is a bundle of packages and modules that allow us to create web

application very easily without having to handle low-level activities such as thread

management, process management and protocol management. We can build our

application very effectively with the help of frameworks.

Given below are some of the popular web frameworks in python

1. Django

Django is a popular python web framework and is used for larger applications.

It contains everything needed for web development bundled with the framework itself.

Users have no need to handle database administration, routing and authentication.

Django works well with all important databases like Oracle, MySQL, PostgreSQL,

SQLite,etc.

Features

1. Fast- Django is designed to handle the applications from beginning to end as

quickly as possible.

3

2. Fully loaded – Django framework handle all services required for a web

application like user authentication, context administration, site maps and many

more.

3. Security- It helps the developer to avoid common security mistakes such as

SQL injection, cross-site scripting and cross site request forgery.

4. Scalability- It handles the heaviest traffic demands.

2. Flask

Flask is a micro framework for python and good choice for building smaller

applications and web services. It implements the commonly used core components of a

web application framework such as URL routing, request and response objects and

templates. However, built-in functions like Database access, form generation and

validation are not supported in Flask.

3. Pyramid

Pyramid is the most flexible python framework and is used for mid-high scale

applications. Anyone can start to work with Pyramid without any prior knowledge about

it. It comes with only some important tools which are needed for developing application.

It is a finishing framework with the ability to start small application and allow us to

code a solid foundation for our solution and to scale up as needed.

5.1.1 Developing simple application using Django

The Django web framework provides tools and libraries to simplify the task of

web development operations. It solves the issues and it will make our work a lot easier.

Django web framework helps in building clean and maintainable web applications very

quickly.

4

5.1.2 Django Architecture

It follows MVC-MVT architecture. MVC stands for Model View Controller. It is

used for developing the web applications. It consists of three segments like model, view

and controller. The fig 5.1 given below shows the MVC architecture.

• Model: It is used for storing and maintaining our data. It is the backend where

our database is defined.

• Views: views are in html. Whatever user is seeing, it is defined as view.

• Controller: Controller is business logic that interacts with the model and the

view.

Fig 5.1 MVC Architecture

5.1.3 Django MVT pattern

MVT stands for Model View Template. In MVT, predefined template is used for user

interface. User has no need to rewrite the code again by using template. Django will

acts as controller in this part. Template is our front end which interacts with the view

and the model will be used as the backend. View will access both the model and

templates and maps them to a URL. Fig 5.2 describes the MVT pattern.

View

Model

Controller

5

Fig 5.2 MVT Pattern

5.1.4 Django Installation

Step 1: Go to the link: https://www.djangoproject.com/download/. It is described in fig

5.3.

Step 2: Select the command prompt from the start menu, right click and choose the

option “run as administrator”. Now the screen displays the command prompt shown in

fig 4.

Step 3: Type the pip command on command prompt as follows.

Pip install Django == 1.11.4

 User
Django

URL View

Template

Model

https://www.djangoproject.com/download/

6

Step 4: This creates a project folder in the python environment .The folder name is

“myproject”

Step 5: To build a web application, enter into the “myproject” folder. Type the

following in command terminal

7

Django-admin startproject myproject

Fig 5.3 Django Website

In this example, we used Django==1.11.4 version.

8

Fig 5.4 Installation of Django

9

Fig 5.5 Folder Creation in Python Environment

10

Fig 5.6 Files in Directory

Fig 5.5 and 5.6 describes the folder creation and list of files in directory. Our project is

created now. We will see the list of files in directory. Let’s discuss about the following

files.

1. manage.py- It is a command line utility

2. myproject –It is actual python package in our project.

3. init.py-Python package

4. settings.py- It manages all the settings of our project

11

5. urls.py-Main controller which maps it to our web site.

6. wsgi.py- It acts as an entry point for WSGI (Web Server Gateway Interface)

compatible web servers

Step 6: Create our web application and make sure that we are in the same directory as

mangae.py and type the following command in the command terminal

python manage.py startappwebapp

Now webapp is added in our project folder also few other elements are added in web

app like view, test and model. It is shown in fig 5.7.

12

Fig 5.7 Creation of Web App

Step 7: Now open our myproject/myproject/settings.py The following fig 5.8 shows

the settings file.

Step 8: In setting.py file, we add the “web app” line in the first statement. By above

insertion, we have added our web app.

13

Fig 5.8 Settings File

INSTALLED_APPS = [

 'webapp',

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

]

14

Step 9: Once we have added our app, a new file view.py is automatically added in the

web app that is shown in fig 5.9. Open our webapp/views.py and enter the following

code.

fromdjango.shortcuts import render

fromdjango.http import HttpResponse

def index(request):

return HttpResponse("<H2>! Welcome to Sathyabama! </H2>")

Fig 5.9 View File

Step 10: We have created a view that returns http response and map this view to a URL.

We need to create a “url.py” inside our web app and enter the following code.

15

fromdjango.conf.urls import url

from .import views

urlpatterns = [

url(r'^$', views.index, name='index'),

]

Step 11: Point the root URLconf at the webapp.urls module. Open our

myproject/urls.py file and write the following code.

From django.conf.urls import include, url

From django.contrib import admin

url patterns = [

url(r'^admin/', include(admin.site.urls)),

url(r'^webapp/', include('webapp.urls')),

]

Step 12: Now start the server by type the following command

Python manage.py runserver

After running the server, goto http://localhost:8000/webapp/ in our browser and see the

“Welcome to Sathyabama” message which we defined in the index view.

5.2 Image Processing

Image processing involves representation, processing and information extraction from

images. It can increase the readability of the image and enhance the quality of the image.

http://localhost:8000/webapp/

16

Image processing is a part of computer vision. Computer vision is an important field in

the area of artificial intelligence.

1. By representation we mean converting an image into digital form.

2. By processing we mean performing operation like smoothing, sharpening,

contrasting and stretching on image to get an enhanced image.

3. Information extraction refers to applying techniques for deriving useful

information like tumor detection, remote sensing, weather forecasting etc.

Python supports lot of libraries for image processing, including

• Open-CV- It is mainly focused on real time computer vision with variety of

applications such as two dimensional and three dimensional Open-CV is an

open source computer vision library for real time image and video processing.

It supports a lot of algorithms related to computer vision. It supports a variety

of languages like C++, Python and Java. It is available on different platforms

including Windows, Linux, Android and iOS.

• Numpy and Scipy libraries- Numpy is a optimized library for numerical

operations. Open-CV array structures are converted to Numpy arrays. Both are

used for image manipulation and processing.

• Python Imaging Library (PIL) – It is mainly used for performing basic

operations such as resize, rotation and converts between different file formats.

• Matplotlib- It is an optional choice for displaying frames from images or

videos.

The following Python packages are needed to be downloaded and installed to their

default locations.

17

• Python3.7

• Numpy

• Matplotlib

Steps for installation of packages:

1. https://www.python.org/downloads/ and download the installer.

2. After installation , open Python IDE and enter the following two commands

>>>python –m pip install numpy

>>>python –m pip install opencv-python

3. Open Python IDE and type the following codes in python terminal for

verifying the installation of opencv and numpy libraries.

>>>import cv2

>>>print cv2._version_

5.2.1 Gray Scale Image

Below are the some of the examples for demonstrating the use of libraries for image

processing. The given program shows the image in gray scale. Import the all the

libraries and read the image using imread function. Fig 5.10 shows the image in gray

scale.

Code:

import cv2

import numpy as np

https://www.python.org/downloads/

18

from matplotlib import pyplot as plt

im = cv2.imread('boat.jpg',cv2.IMREAD_GRAYSCALE)

cv2.imshow('image',im)

cv2.waitKey(0)

cv2.destroyAllWindows()

Output:

Fig 5.10 Gray scale Image

19

To read the original image, simply call the imread function of the cv2module, passing

as input the path to the image, as a string. We used imshow function for receiving the

first argument as input string and as second argument the image to show. We used

waitkey function for including the delay in the key board event.

5.2.2 Geo metric Transformation of Image

5.2.2.1 Resize Image

Scaling is just resizing of the image. The size of the image can be specified manually

or specify with scaling factor. It helps in reducing the number of pixels from an image.

We need to either resize the image shrink it or scale up to meet the size requirements.

The following syntax specifies the resize function.

cv2.resize(src,dsize, Interpolation)

where src specifies source image

dsize specifies destination image

Interpolation represents the different function such as cv.INTER_AREA for

shrinking and cv.INTER_CUBIC for zooming operation.

Fig 5.11 shows the output of scaling.

 Code:

import cv2

img = cv2.imread('boat.jpg', cv2.IMREAD_UNCHANGED)

20

print('Original Dimensions : ',img.shape)

scale_percent = 60 # percent of original size

width = int(img.shape[1] * scale_percent / 100)

height = int(img.shape[0] * scale_percent / 100)

dim = (width, height)

resize image

resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)

print('Resized Dimensions : ',resized.shape)

cv2.imshow("Resized image", resized)

cv2.waitKey(0)

cv2.destroyAllWindows()

21

Fig 5.11 Scaling

5.2.2.2 Translation

Translation is the shifting of object’s location from one point to another i.e (x,y) to

(x1,y1).

The transformation matrix M is represented as follows:

[
𝑥1

𝑦1
] = [

𝑥
𝑦] + [

𝑡𝑥

𝑡𝑦
] (1)

22

Code:

Import numpy as np

import cv2 as cv

img = cv.imread('boat.jpg',0)

rows,cols = img.shape

M = np.float32([[1,0,100],[0,1,50]])

dst = cv.warpAffine(img,M,(cols,rows))

cv.imshow('img',dst)

cv.waitKey(0)

cv.destroyAllWindows()

Fig 5.12 and 5.13 describes the original image and translation result. In code, tx, ty

values are the X and Y translation values. The image will be moved x units towards

the right and by Y units downwards. cv.warpaffine function specifies size of the output

image. It refers the number of rows and columns in the resulting image.

23

Fig 5.12 Original Image

24

Fig 5.13 Translation

5.2.3 Thresholding

Thresholding is a simplest method for converting a gray scale image into a binary

image. If a pixel is greater than a threshold value, it is assigned with one value(White),

else it is assigned another value (Black). The algorithm is described as below:

 𝐼𝑓 𝐼𝑖,𝑗 = 1 𝐼𝑖,𝑗 > Ө

 𝐸𝑙𝑠𝑒 𝐼𝑖,𝑗 = 0 𝐼𝑖,𝑗 ≥ Ө (2)

The threshold function is described as below:

Cv2.threshold (src, thresh, maxval, type[, dst])

25

This function is used to get a binary image out of a grayscale image for removing a

noise.

1. src- Input array. This is the source image.

2. thresh-threshold value which is used for classifying the pixel.

3. maxval- Maxval which represents the value to given if pixel is more than the

threshold value.

4. Type- Thresholding type. Different types are mentioned as below:

a. cv2.THRESH_BINARY (Threshold Binary)

b. cv2.THRESH_BINARY_INVY (Threshold Binary Inverted)

c. cv2.THRESH_TRUNCY (Truncate)

d. cv2.THRESH_TOZEROY (Threshold to Zero)

e. cv2.THRESH_TOZERO_INVY(Threshold to Zero Inverted)

The following fig 5.14 shows the outputs for different threshold functions.

Code:

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('bloodcells.jpg',0)

ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)

ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)

ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)

26

ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)

ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)

titles = ['Original

Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']

images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

fori in xrange(6):

plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')

plt.title(titles[i])

plt.xticks([]),plt.yticks([])

plt.show()

27

Fig 5.14 Thresholding

The different simple thresholding techniques are :

cv2. THRESH_BINARY: If pixel intensity is greater than the set threshold, value is

set to 255, else set to 0 (black).

28

cv2. _BINARY_INV: Inverted or Opposite case of of cv2.THRESH_BINARY.

cv2.THRESH_TRUNC: If pixel intensity value is greater than threshold, it is

truncated to the threshold. The pixel values are set to be same as the threshold. All

other values remain same.

Cv2. THRESH_TOZERO: Pixel intensity is set to 0, all the pixels intensity, less than

the threshold value.

Cv2. THRESH_TOZERO_INV: Opposite case of cv2. THRESH_TOZERO.

Matplotlib is a visualization library in python for 2D plots of the array. It is a data

visualization library built on Numpy arrays. It consists of several plots like line, scatter

etc. Ticks are the values used to show specific points on the coordinate axis. Whenever

we plot a graph, the axes adjust and take the default ticks.

5.2.4 Image Blurring (Image Smoothing)

Image blurring is achieved by removing the outlier pixels in the image. It removes high

frequency content from the image resulting in edges being blurred when the filter is

applied. Here the following section describes the examples of blurring techniques.

5.2.4.1 Averaging

It takes the average of all the pixels under kernel area and replaces the central

element with this average. This is achieved by using cv2.blur(). A 3×3 filter is

described as below:𝐾 =
1

9
 [

1 1 1
1 1 1
1 1 1

] (3)

29

Code:

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('bloodcells.jpg')

blur = cv2.blur(img,(5,5))

plt.subplot(121),plt.imshow(img),plt.title('Original')

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(blur),plt.title('Blurred')

plt.xticks([]), plt.yticks([])

plt.show()

Fig 15 shows the image averaging output.

30

Fig 5.15 Image Averaging

5.2.5 Canny Edge Detection

It is a popular edge detection algorithm and consists of multiple numbers of stages such

noise reduction, finding intensity gradient of the image, Non-maximum suppression

and hysteresis threshold. In noise reduction, remove the noise from the image. It allows

us to find the gradient of the gray scale image to find the edge regions in the x axis and

y axis directions. After getting the magnitude and direction, a full scanning is

performed to remove unwanted pixels in the edges. In hysteresis thresholding, we

decides which are the edges are really edges or not by using two threshold values

minval and maxval. Any edges with intensity gradient are more than maxval are

31

considered as edges and those below minval are considered as non edged and also

discarded. The following fig 5.16 shows the result of canny edge detection.

Code

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('noise.jpg',0)

edges = cv2.Canny(img,100,200)

plt.subplot(121),plt.imshow(img,cmap = 'gray')

plt.title('Original Image'), plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(edges,cmap = 'gray')

plt.title('Edge Image'), plt.xticks([]), plt.yticks([])

plt.show()

32

Fig 5.16 Canny Edge Detection

5.3 FACE BOOK DATA ANALYSIS

Face book provides an extensive API to interact with its platform and fetch the required

information for analysis. Python is used for extract data from face book. We need to

register as developer on face book. Here the steps are listed below.

1. Go to the link developers.facebook.com and create an account there.

2. Go to the link developers.facebook.com/tools/explorer.

3. Go to Myapps drop down in the top right corner and select add a new app.

Choose the display name and category and then create APP ID.

33

4. Again, go to the link developers.facebook.com/tools/explorer. We will see

“Graph API Explorer below “Myapps” in the top right corner. From “Graph

API Explorer” drop down, select our App.

5. Select “Get Token”. From this menu select “Get user access Token “. Select

permissions from the menu that appears and then select “Get access Token”

We can download datasets from other Face book pages and get these statuses for

each post:

• Number of likes

• Number of shares

• Number of comments

Then we can analyze this data using Excel or Tableau or Python or any software used

for data analysis. Fig 17 shows the login access in face book developer account. App

creation details are described in fig 5.18, 5.19 and 5.20.

34

Fig 5.17 Login in face book developer’s account

35

Fig 5.18 Creation of App

36

Fig 5.19 App Dashboard

37

Fig 5.20 Access Token Details

The graph API is called social graph. It is a representation of information in face

book. It consists of the following elements.

• Nodes- Individual objects such as user, photo ,page or comment

• Edges- Connection between a collection of objects and a single

object such as photos or comments on a photo.

• Fields- Data about an object such as birthday or a page’s name.

We can use nodes to get data about a specific object, use edges to get collections of

objects on a single object and fields to get about a single object or each object in a

collection. Graph API is HTTP based and works with any language.

Google graph API provides us a way by which we can get data from face book. We

can put our data in face book platform. It is a REST based API and used to query data,

38

manage our ads on face book, upload photos, videos and post our new stories to face

book automatically. We can this API to get our own face book account data. But, we

need to get other users data for this we need to take several permissions from users.

We need to implement oAuth protocol to implement this operation. Anyone can

authenticate and grant our permissions. Fig 5.21 and 5.22 show the face book graph

API and node information.

Fig 5.21 Face book Graph API

39

Fig 5.22 Node Information

Code

Import json

Import facebook

def main():

 token =

"{EAAQa3kWzdcYBAKdzunCHWEixLKLvLSb5lnd8Ohs5Jh6zBefMCgOP

PJdYq4mTvkpgl15y1th6XpRSO5pxlnijQSCZAHShENSP06xtF4WZAAD0

CPFq988ZBdZAZAG8nx0DrTZAvIZBcfsYskP3JXsg7GN973Q39XwhKO

40

RlmxxR5kZA5GYN3ZCyNM3uL3waUh3dm91HruwWM63ZAtYQZDZD}

"

Token value get it from access token details in fig 5.20.

 graph = facebook.GraphAPI(token)

 page_name = raw_input("Enter a page name: ")

 # list of required fields

 fields = ['id','name','about','likes']

 fields = ','.join(fields)

 page = graph.get_object(page_name, fields=fields)

 print(json.dumps(page,indent=4))

if __name__ == '__main__':

 main()

Output:

Enter page name

Smith

Name: Smith

41

Id: 13456234578

Likes: 23

5.4 TWITTER ANALYSIS

Twitter is a good resource to collect data. Unlike other social platforms almost

every user’s tweets are completely public. Twitter’s API allows us to do complex

queries like pulling every tweet about a particular topic. The pre processing of the text

data is an essential step as it makes the raw text ready for mining. The main objective

is to clean noise those are less relevant to find the sentiment tweets such as punctuation,

characters and terms.

API stands for application programming interface. API is a tool that makes the

interaction with computer programs and web services. Twitter streaming API is used

to download tweets related to the key words that we specified in the coding.

Installation:

Before we start coding, we need to register for the Twitter API

https://apps.twitter.com/. Here we need to register an app to generate various keys

associated with our API. The following keys are used for authentication.

• API key

• API secret Key

• Access Token

• Access Token Secret

42

After creating the app we need to install the following commands.

 pip install tweepy

 pip install textblob

Tweepy is an easy way to use python library for accessing twitter API. We will extract

tweets from twitter stream. TextBlob is used for processing textual data. It provides a

simple API for dividing into common natural language processing tasks. Next create a

new file called twitter.py and type the following code into it. Make sure to enter your

credentials into access_token, access_token_secret, consumer key (API Key) and

consumer secret (API secret key). In this code, we will download the scripts related

python, java and java script.

Code:

from tweepy.streaming import StreamListener

from tweepy import OAuthHandler

from tweepy import Stream

#Variables that contains the user credentials to access Twitter API

access_token = "ENTER YOUR ACCESS TOKEN"

access_token_secret = "ENTER YOUR ACCESS TOKEN SECRET"

consumer_key = "ENTER YOUR API KEY"

consumer_secret = "ENTER YOUR API SECRET"

43

#This is a basic listener that just prints received tweets to stdout.

class StdOutListener (Stream Listener):

 def on_data(self, data):

 print data

 return True

 def on_error(self, status):

 print status

if __name__ == '__main__':

 # This handles Twitter authentication and the connection to Twitter Streaming API

 l = StdOutListener()

 auth = OAuthHandler(consumer_key, consumer_secret)

 auth.set_access_token(access_token, access_token_secret)

 stream = Stream(auth, l)

 #This line filter Twitter Streams to capture data by the keywords: 'python', 'java',

'javascript'

 stream.filter(track=['python', 'java', 'javascript'])

44

Next, we run the program in the command terminal using the command

python twitter.py.

If we want to capture this data into a file for future analysis, we can do piping the

output to a file using the following command

python twitter.py > twitterdata.txt.

Here, the data we stored twitterdata.txt is a JSON (Java Script Object Notation).This

format makes it easy to humans to read the data, and for machines to parse it. We will

type the below code for printing the number of tweets.

import json

import pandas as pd

import matplotlib.pyplot as pl

tweets_data_path = 'C:python3/scripts/twitter_data.txt'

tweets_data = []

tweets_file = open(tweets_data_path, "r")

for line in tweets_file:

 try:

45

 tweet = json.loads(line)

 tweets_data.append(tweet)

 except:

 continue

 print len(tweets_data)

QUESTION BANK

1. List out the frame works of python in web programming.

2. Mention the libraries for image processing.

3. Explain different types of threshold function types?

4. Illustrate about canny edge detection algorithm?

5. How do you find the intensity distribution of the image?

6. Describe about the parameters of histogram function?

7. Evaluate the procedure for getting access token in Face Book data analysis?

8. Illustrate the implementation of Django web framework?

9. Elaborate about the method for removing noise from the image?

10. Assess the methods used in geo metric transformation of the image?

11. Analyze the steps involved in face book data analysis?

12. Elaborate about twitter data analysis?

