

SCHOOL OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

Unit – I

Introduction to R - History and fundamentals of R, Installation and use of R / R Studio / R Shiny,
Installing R packages, R – Nuts and Bolts -Getting Data In and Out - Control Structures and Functions-

Loop Functions-Data Manipulation- String Operations- Matrix Operations.

Unit-I-R Programming – SCS1621

BASICS OF R

History of R

 R is a programming language and free software environment for statistical

computing and graphics that is supported by the R Foundation for Statistical

Computing.

 R is an implementation of the S programming language combined

with lexical scoping semantics inspired by Scheme.

 S was created by John Chambers in 1976, while at Bell Labs.

 There are some important differences, but much of the code written for S runs

unaltered.[15]

 R was created by Ross Ihaka and Robert Gentleman[16] at the University of

Auckland, New Zealand, and is currently developed by the R Development

Core Team, of which Chambers is a member.

 R is named partly after the first names of the first two R authors and partly as a

play on the name of S.

 The project was conceived in 1992, with an initial version released in 1995 and

a stable beta version in 2000.

Installation of R

1. Download the R installer from https://cran.r-project.org/

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Statistical_computing
https://en.wikipedia.org/wiki/Statistical_computing
https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/Lexical_scoping
https://en.wikipedia.org/wiki/Lexical_scoping
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/John_Chambers_(programmer)
https://en.wikipedia.org/wiki/Bell_Laboratories
https://en.wikipedia.org/wiki/R_(programming_language)#cite_note-15
https://en.wikipedia.org/wiki/Ross_Ihaka
https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://en.wikipedia.org/wiki/University_of_Auckland
https://en.wikipedia.org/wiki/University_of_Auckland
https://en.wikipedia.org/wiki/S_(programming_language)
https://cran.r-project.org/

 Fig 1.1:Installation of R

2.Run the installer. Default settings are fine. If you do not have admin rights on your

laptop, then ask you local IT support. In that case, it is important that you also ask them

to give you full permissions to the R directories. Without this, you will not be able to

install additional packages later.

Installation of R

Studio

1. Download RStudio: https://www.rstudio.com/products/rstudio/download/

https://www.rstudio.com/products/rstudio/download/

Fig 1.2:Installation of R studio

2. Once the installation of R has completed successfully, run the RStudio installer.

3. If you do not have administrative rights on your laptop, step 2 may fail.

Ask your IT Support or download a pre-built zip archive of RStudio which

doesn’t need installing.

4. The link for this is towards the bottom of the download page, highlighted in Image

5. Download the appropriate archive for your system (Windows/Linux only –

the Mac version can be installed into your personal “Applications” folder

without admin rights).

6. Double clicking on the zip archive should automatically unpack it on most

Windows machines.

Installing R packages

There are three options to install packages.

Option 1:

Click on the tab ‘ Packages’ then ‘Install’ as shown in figure 1.3. Click

on Install to install R packages.

Fig 1.3:Install Packages

Option 2:

Tools -> Install packages. As shown in Fig 1.4.

Fig 1.4:Installation of Packages

Option 3:

Use the following command to install packages from R console.

Install.packages(“package name”)

Fig 1.5:Installation of packages

Note: Check that the packages are installed by typing ‘library(<packagename>)’

Nuts and Bolts of R

 R is the most comprehensive statistical analysis package available.It incorporates

all of the standard statistical tests, models, and analyses, as well as providing a

comprehensive language for managing and manipulating data.

o R is a programming language and environment developed for statistical

analysis by practising statisticians and researchers. It reflects well on a

very competent community of computational statisticians.

o The graphical capabilities of R are outstanding, providing a fully

programmable graphics language that surpasses most other statistical and

graphical packages. ˆ

 R is free and open source software, allowing anyone to use and, importantly, to

modify it. R is licensed under the GNU General Public License, with copyright

held by The R Foundation for Statistical Computing.

 R has no license restrictions (other than ensuring our freedom to use it at our own

discretion), and so we can run it anywhere and at any time.

 Anyone can provide new packages, and the wealth of quality packages available

for R is a testament to this approach to software development and sharing.

 R has over 4800 packages available from multiple repositories specializing in

topics like econometrics, data mining, spatial analysis, and bio-informatics.

 R is cross-platform. R runs on many operating systems and different hardware. It

is popularly used on GNU/Linux, Macintosh, and Microsoft Windows, running on

both 32 and 64 bit processors. ˆ

 R plays well with many other tools, importing data, for example, from CSV files,

SAS, and SPSS, or directly from Microsoft Excel, Microsoft Access, Oracle,

MySQL, and SQLite.

 It can also produce graphics output in PDF, JPG, PNG, and SVG formats, and

table output for LATEX and HTML.

 R has active user groups .

Data In and Out

There are a few principal functions reading data into R.

 read.table(), read.csv(): for reading tabular data

 readLines() : for reading lines of a text file

 source ()

 : for reading in R code files (inverse of

dump)

 dget ()

 : for reading in R code files (inverse of

dput)

 load ()

: for reading in saved workspaces

 unserialize () : for reading single R objects in binary form

There are analogous functions for writing data to files

 write.table() : for writing tabular data to text files (i.e. CSV) or connections

 writeLines() : for writing character data line-by-line to a file or connection

 dump() : for dumping a textual representation of multiple R objects

 dput() : for outputting a textual representation of an R object

 save() : for saving an arbitrary number of R objects in binary format

(possibly compressed) to a file.

 Serialize() :for converting an R object into a binary format for outputting to a

connection (or file).

Control Structures in R

Control Structures can be divided into three categories.

1. Conditional

statements. 2.Looping

Statements 3.Jump

Statements

Conditional Statements:

Conditional control structures require the programmer to specify one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true, and

optionally, other statements to be executed if the condition is determined to be false.

Example:If,If-Else,If-ElseIf Ladder,switch

If:

Description: An if statement consists of a Boolean expression followed by one or

more statements.

Syntax: If(condition)

{

Statement

}

Example:Check for Positive Number

Output :

If-Else

Syntax:if(condition)

{

Statement1

}else{

Statement 2

}

Description: An if…else statement contains the same elements as an if statement and

then some extra:

 The keyword else, placed after the first code block

 Second block of code, contained within braces, that has to be carried out if and only if the

result of the condition in the if() statement is FALSE

Example:Check for Odd or Even Number

Output:

If-Else if Ladder

If-Else statements can be chained using If-Else if Ladder

Syntax:if(condition)

{

Statement1

}else if{

Statement 2

}else{

Statement 3

}

Example: Greatest of three numbers

Output:

Switch:

A switch statement allows a variable to be tested for equality against a list of values.

Each value is called a case, and the variable being switched on is checked for each case.

Syntax: switch(Expression, "Option 1", "Option 2", "Option 3" "Option

N")

Example:Print Department names using Switch

Output:

Looping Statements in R

There may be a situation when you need to execute a block of code several number of

times. A loop statement allows us to execute a statement or group of statements multiple

times.

Example:for,while,Repeat

For:

Description: A For loop is a repetition control structure that allows you to efficiently

write a loop that needs to execute a specific number of times.

Syntax: for(value in vector)

{

Statements

}

Example: Printing elements of vector

Output:

While:

Description: The While loop executes the same code again and again until a stop

condition is met.

Syntax:while(condition){

Statement

}

Example: Sum of Series

Output:

Repeat:

Description:The Repeat loop executes the same code again and again until a stop

condition is met.

Syntax:

 repeat

{

Commands

 If(condition)

Break

 }

Example:Printing even numbers till 10

Output:

Jump Statements:

Description: Loop control statements change execution from its normal sequence

Example: break, next

Break:

Terminates the loop statement and transfers execution to the statement immediately

following the loop.

Syntax: break

Example :print numbers till 5

Output:

Next:

Description: The next statement in R programming language is useful when we want

to skip the current iteration of a loop without terminating it. On encountering next, the

R parser skips further evaluation and starts next iteration of the loop.

Syntax:

 next

Example: Print numbers from 1 to 10 except 5

Output:

Functions in R

A function is a set of statements organized together to perform a specific task. R has a

large number of in-built functions and the user can create their own functions.

Syntax:

An R function is created by using the keyword function. The basic syntax of an R

function definition is as follows.

Function name=function(ar1,ar2,……)

{

Function body

}

Function Components:

The different parts of a function are −

 Function Name − This is the actual name of the function. It is stored in R

environment as an object with this name.

 Arguments − An argument is a placeholder. When a function is invoked, you

pass a value to the argument. Arguments are optional; that is, a function may

contain no arguments. Also arguments can have default values.

 Function Body − The function body contains a collection of statements that

defines what the function does.

 Return Value − The return value of a function is the last expression in the

function body to be evaluated.

Built-in Functions

R has many in-built functions which can be directly called in the program

without defining them first.

Eg: sum.seq,abs,round .

Example:

Output:

User Defined Function:

We can create user-defined functions in R. They are specific to what a user wants and

once created they can be used like the built-in functions. Below is an example of how

a function is created and used.

Function without Arguments:

Here the function does not receive any arguments.

Example:

Output:

Function with Arguments:

The arguments to a function call can be supplied in the same sequence as defined in

the function or they can be supplied in a different sequence but assigned to the names

of the arguments.

Example:

Output:

Function with Default Argument

We can define the value of the arguments in the function definition and call the

function without supplying any argument to get the default result. But we can also call

such functions by supplying new values of the argument and get non default result.

Example:

Output:

LOOPING FUNCTIONS IN R

The for, while loops can often be replaced by looping functions:

lapply:

Definition:Loop over a list and evaluate a function on each element Syntax

 : lapply(X, FUN, ...)

X

 =Li

st FUN=A

Function

…. =other arguments

Example:

sapply:

Definition : same as lapply but try to simplify the result .

Syntax : lapply(X, FUN, ...)

X

 =Li

st FUN=A

Function

…. =other arguments

Example:

apply:

Definition: apply a function over the margins of an array

Syntax: apply(X, MARGIN, FUN, ...)

X =An Array

MARGIN =Integer vector indicating which margins should be

“retained”.

FUN =Function to be applied

. . . = other arguments to be passed to FUN

Example: Row wise sum in a given matrix using apply()

mapply:

Definition: Multivariate version of lapply

Syntax: mapply (FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES

= TRUE)

FUN : the function to be applied

. . : arguments to apply over

MoreArgs : a list of other arguments to

SIMPLIFY : logical; whether the result should be simplified to a

vector or matrix.

Example:

Matrices in R

Matrices are the R objects in which the elements are arranged in a two- dimensional

rectangular layout. We use matrices containing numeric elements to be used in

mathematical calculations.

Syntax:

The basic syntax for creating a matrix in R is −

 data is the input vector which becomes the data elements of the matrix.

 nrow is the number of rows to be created.

 ncol is the number of columns to be created.

 byrow is a logical clue. If TRUE then the input vector elements are

arranged by row.

 dimname is the names assigned to the rows and columns.

Matrix Creation:

(i) Arrange elements sequentially by

row. Example:

matrix(data, nrow, ncol, byrow, dimnames)

(ii) Arrange elements sequentially by coloumn.

Accessing Elements of Matrix:

Elements of a matrix can be accessed by using the column and row index of the element

Example:

Matrix Operations:

Various mathematical operations are performed on the matrices using the R operators.

The result of the operation is also a matrix.The dimensions (number of rows and

columns) should be same for the matrices involved in the operation.

Matrix Addition:

Matrix Subtraction

Matrix Multiplication(Elementwise)

Matrix Multiplication(Real)

Matrix Division:

String Operations in R

String:

Any value written within a pair of single quote or double quotes in R is treated as a string.

Example:S=”Hello”

S1=’hai’

String Manipulation:

Concatenating Strings - paste() function:

Many strings in R are combined using the paste() function. It can take any number of

arguments to be combined together.

Syntax:

paste(..., sep = " ", collapse = NULL)

... represents any number of arguments to be combined.

 sep represents any separator between the arguments. It is optional.

collapse is used to eliminate the space in between two strings. But not the space

within two words of one string.

Example

Counting number of characters in a string - nchar() function

This function counts the number of characters including spaces in a string.

Syntax:

The basic syntax for nchar() function is −

Following is the description of the parameters used −

 x is the vector input.

Example:

nchar(x)

Changing the case - toupper() & tolower() functions

These functions change the case of characters of a string.

Syntax

The basic syntax for toupper() & tolower() function is −

Following is the description of the parameters used −

 x is the vector input.

Example:

Extracting parts of a string - substring() function

This function extracts parts of a String.

 Syntax

The basic syntax for substring() function is −

Following is the description of the parameters used −

 x is the character vector input.

 first is the position of the first character to be extracted.

toupper(x)
tolower(x)

substring(x,first,last)

 last is the position of the last character to be extracted.

Replacement Functions:sub() and gsub()

These are replacement functions, which replaces the occurrence of a substring with other

substring.

 sub() Function in R replaces the first instance of a substring

 gsub() function in R replaces all the instances of a substring

Syntax for sub() and gsub() function in R:

Example:

Pattern Matching Function:Grep() function Syntax:

 grep(value = FALSE) returns an integer vector of the indices of the elements of x that

yielded a match .

grep(value = TRUE) returns a character vector containing the selected elements of x.

Example:

1. sub(old, new, string)

2. gsub(old, new, string)

http://www.datasciencemadesimple.com/substring-function-in-r/
http://www.datasciencemadesimple.com/substring-function-in-r/
http://www.datasciencemadesimple.com/substring-function-in-r/

SCHOOL OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

R Data interfaces - CSV Files, XML files, Web Data- Data Preprocessing: Missing Values, Principle
Component Analysis - Data Visualization – Charts & Graphs-Pie Chart, Bar Chart, Box plot, Histogram,

Line graph, Scatter Plot.

Unit-II-R programming – SCS1621

R DATA INTERFACES

we can read data from files stored outside the R environment. We can also write data into files which will be

stored and accessed by the operating system. R can read and write into various file formats like csv, excel, xml

etc.

Getting and Setting the Working Directory
You can check which directory the R workspace is pointing to using the getwd() function.

You can also set a new working directory using setwd()function.

Example:

CSV Files

Input as CSV

The csv file is a text file in which the values in the columns are separated by a comma. Let's consider the

following data present in the file named input.csv.Create this file using windows notepad by copying

and pasting this data. Save the file as input.csv using the save As All files(*.*) option in notepad.

read.csv() function is used to read a CSV file available in your current working directory .

Example:

Reading a CSV File

Analysing CSV file:

By default the read.csv() function gives the output as a data frame. Once we read data in a data frame, we can

apply all the functions applicable to data frames.

2. Get the details of the person with max salary

1.Get maximum salary.

3. Get all the people working in IT department

4. Get the persons in IT department whose salary is greater than 600

R can create csv file form existing data frame. The write.csv() function is used to create the csv file. This

file gets created in the working directory.

Writing into a CSV File

XML is a file format which shares both the file format and the data on the World Wide Web, intranets, and

elsewhere using standard ASCII text. It stands for Extensible Markup Language (XML). Similar to HTML

it contains markup tags. But unlike HTML where the markup tag describes structure of the page, in xml the

markup tags describe the meaning of the data contained into he file.

Read a xml file in R using the "XML" package. This package can be installed using following command.

Install.packages(“XML”)

XML files

Input Data

Create a XMl file by copying the below data into a text editor like notepad. Save the file with a .xml extension

and choosing the file type as all files(*.*).

Reading XML File

The xml file is read by R using the function xmlParse(). It is stored as a list in R.

Get Number of Nodes Present in XML File

Details of the First Node

Get Different Elements of a Node

XML to Data Frame

To handle the data effectively in large files we read the data in the xml file as a data frame. Then process

the data frame for data analysis.

 WEB DATA

Many websites provide data for consumption by its users. For example the World Health

Organization(WHO) provides reports on health and medical information in the form of CSV, txt and XML

files. Using R programs, we can programmatically extract specific data from such websites. Some packages

in R which are used to scrap data form the web are − "RCurl",XML", and "stringr". They are used to

connect to the URL’s, identify required links for the files and download them to the local environment.

Install R Packages

The following packages are required for processing the URL’s and links to the files. If they are not

available in your R Environment, you can install them using following commands.

install.packages("RCurl") install.packages("XML") install.packages("stringr") install.packages("plyr")

Input Data

We will visit the URL weather data and download the CSV files using R for the year 2015.

Example

We will use the function getHTMLLinks() to gather the URLs of the files. Then we will use the

function download.file() to save the files to the local system. As we will be applying the same code again

and again for multiple files, we will create a function to be called multiple times. The filenames are passed

as parameters in form of a R list object to this function.

Read the URL.

url <- "http://www.geos.ed.ac.uk/~weather/jcmb_ws/"

http://www.geos.ed.ac.uk/~weather/jcmb_ws/
http://www.geos.ed.ac.uk/~weather/jcmb_ws/
http://www.geos.ed.ac.uk/~weather/jcmb_ws/

Gather the html links present in the webpage. links <- getHTMLLinks(url)

Identify only the links which point to the JCMB 2015 files. filenames <- links[str_detect(links,

"JCMB_2015")]

Store the file names as a list. filenames_list <- as.list(filenames)

Create a function to download the files by passing the URL and filename list.

downloadcsv <- function (mainurl,filename) { filedetails <- str_c(mainurl,filename)

download.file(filedetails,filename)

}

Now apply the lapply function and save the files into the current R working directory.

lapply(filenames,downloadcsv,mainurl= "http://www.geos.ed.ac.uk/~weather/jcmb_ws/")

Verify the File Download

After running the above code, you can locate the following files in the current R working

directory.

"JCMB_2015.csv" "JCMB_2015_Apr.csv" "JCMB_2015_Feb.csv"

"JCMB_2015_Jan.csv" "JCMB_2015_Mar.csv"

http://www.geos.ed.ac.uk/~weather/jcmb_ws/
http://www.geos.ed.ac.uk/~weather/jcmb_ws/

R Charts and Graphs

R Programming language has numerous libraries to create charts and graphs.

Pie Chart

A pie-chart is a representation of values as slices of a circle with different colors. The slices are labeled and

the numbers corresponding to each slice is also represented in the chart.

In R the pie chart is created using the pie() function which takes positive numbers as a vector input. The

additional parameters are used to control labels, color, title etc.

syntax

The basic syntax for creating a pie-chart using the R is −

Following is the description of the parameters used −

 x is a vector containing the numeric values used in the pie chart.

 labels is used to give description to the slices.

 radius indicates the radius of the circle of the pie chart.(value between

−1 and +1).

 main indicates the title of the chart.

 col indicates the color palette.

 clockwise is a logical value indicating if the slices are drawn clockwise or anti

clockwise.

Example:

pie(x, labels, radius, main, col, clockwise)

Output:

Slice Percentages and Chart Legend

We can add slice percentage and a chart legend by creating additional chart variables.

Example:

Output:

3D Pie Chart

A pie chart with 3 dimensions can be drawn using additional packages. The package plotrix has a function

called pie3D() that is used for this.

Example:

Output:

BAR CHART

A bar chart represents data in rectangular bars with length of the bar proportional to the value of the

variable. R uses the function barplot() to create bar charts. R can draw both vertical and horizontal bars in

the bar chart. In bar chart each of the bars can be given different colors.

Syntax

The basic syntax to create a bar-chart in R is −

Following is the description of the parameters used −

 H is a vector or matrix containing numeric values used in bar chart.

 xlab is the label for x axis.

 ylab is the label for y axis.

 main is the title of the bar chart.

 names.arg is a vector of names appearing under each bar.

 col is used to give colors to the bars in the graph.

barplot(H, xlab, ylab, main, names.arg, col)

Example:

The following script will create and save the bar chart in the current R working directory.

Output:

Group Bar Chart and Stacked Bar Chart

We can create bar chart with groups of bars and stacks in each bar by using a matrix as input values.

More than two variables are represented as a matrix which is used to create the group bar chart and stacked bar

chart.

Example:

Output:

HISTOGRAM

A histogram represents the frequencies of values of a variable bucketed into ranges. Histogram is similar to

bar chat but the difference is it groups the values into continuous ranges. Each bar in histogram represents

the height of the number of values present in that range.

R creates histogram using hist() function. This function takes a vector as an input and uses some more

parameters to plot histograms.

Syntax

The basic syntax for creating a histogram using R is –

Following is the description of the parameters used −

 v is a vector containing numeric values used in histogram.

 main indicates title of the chart.

 col is used to set color of the bars.

 border is used to set border color of each bar.

 xlab is used to give description of x-axis.

 xlim is used to specify the range of values on the x-axis.

 ylim is used to specify the range of values on the y-axis.

 breaks is used to mention the width of each bar.

Example

A simple histogram is created using input vector, label, col and border parameters.

The script given below will create and save the histogram in the current R working directory.

hist(v,main,xlab,xlim,ylim,breaks,col,border)

Output:

Range of X and Y values

To specify the range of values allowed in X axis and Y axis, we can use the xlim and ylim parameters.

The width of each of the bar can be decided by using breaks.

Example:

Output:

LINE GRAPH

A line chart is a graph that connects a series of points by drawing line segments between them. These points

are ordered in one of their coordinate (usually the x-coordinate) value. Line charts are usually used in

identifying the trends in data.

The plot() function in R is used to create the line graph.

Syntax

The basic syntax to create a line chart in R is −

Following is the description of the parameters used −

 v is a vector containing the numeric values.

 type takes the value "p" to draw only the points, "l" to draw only the lines and "o"

to draw both points and lines.

plot(v,type,col,xlab,ylab)

 xlab is the label for x axis.

 ylab is the label for y axis.

 main is the Title of the chart.

 col is used to give colors to both the points and lines.

Example

A simple line chart is created using the input vector and the type parameter as "O". The below

script will create and save a line chart in the current R working directory. The features of the

line chart has been expanded by using additional parameters. We add color to the points and

lines, give a title to the chart and add labels to the axes.

Output:

Multiple Lines in a Line Chart

More than one line can be drawn on the same chart by using

the lines()function.

After the first line is plotted, the lines() function can use an additional vector as input to draw the

second line in the chart,

Example:

Output:

Scattar Plots

Scatterplots show many points plotted in the Cartesian plane. Each point represents the values of two

variables. One variable is chosen in the horizontal axis and another in the vertical axis.

The simple scatterplot is created using the plot() function.

Syntax

The basic syntax for creating scatterplot in R is –

Following is the description of the parameters used −

 x is the data set whose values are the horizontal coordinates.

 y is the data set whose values are the vertical coordinates.

 main is the tile of the graph.

 xlab is the label in the horizontal axis.

 ylab is the label in the vertical axis.

 xlim is the limits of the values of x used for plotting.

 ylim is the limits of the values of y used for plotting.

 axes indicates whether both axes should be drawn on the plot.

Example

We use the data set "iris" available in the R environment to create a basic scatter plot. Let's use the

columns "Sepal length" and "Sepal Width" in iris.

Creating the Scatterplot

The below script will create a scatterplot graph for the relation between "Sepal length" and "Sepal

Width" in iris dataset.

Example:

plot(x, y, main, xlab, ylab, xlim, ylim, axes)

Output:

Scatterplot Matrices

When we have more than two variables and we want to find the correlation between one variable versus

the remaining ones we use scatterplot matrix. We use pairs() function to create matrices of

scatterplots.

Syntax

The basic syntax for creating scatterplot matrices in R is −

Following is the description of the parameters used −

 formula represents the series of variables used in pairs.

 data represents the data set from which the variables will be taken.

Example

Each variable is paired up with each of the remaining variable. A scatterplot is plotted for each pair.

pairs(formula, data)

Output:

Box Plot

Boxplots are a measure of how well distributed is the data in a data set. It divides the data set into three

quartiles. This graph represents the minimum, maximum, median, first quartile and third quartile in the data

set. It is also useful in comparing the distribution of data across data sets by drawing boxplots for each of

them.

Boxplots are created in R by using the boxplot() function.

Syntax

The basic syntax to create a boxplot in R is −

boxplot(x, data, notch, varwidth, names, main)

Following is the description of the parameters used –

 x is a vector or a formula.

 data is the data frame.

 notch is a logical value. Set as TRUE to draw a notch.

 varwidth is a logical value. Set as true to draw width of the box proportionate to the

sample size.

 names are the group labels which will be printed under each boxplot.

 main is used to give a title to the graph.



Example 1:

Output:

Example 2: boxplot(iris$Petal.Length,iris$Petal.Width) Output:

SCHOOL OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

Statistical Modeling in R - Descriptive statistics-R Packages: Regression (MASS package) -

Distribution (STATS package) - ANOVA - Time Series Analysis

Unit-III-R Programming – SCS1621

Statistical Modeling in R

 A statistical model is a mathematical model that embodies a set of statistical

assumptions concerning the generation of some sample data and similar data from a

larger population. A statistical model represents, often in considerably idealized form, the data-

generating process.

 There are several standard statistical models to fit the data using R. The key to modeling in R is

the formula object, which provides a shorthand method to describe the exact model to be fit to

the data. Modeling functions in R typically require a formula object as an argument. The

modeling functions return a model object that contains all the information about the fit

 Statistical analysis in R is performed by using many in-built functions. st of these functions are

part of the R base package. These functions take R vector as an input along with the arguments

and give the result.

Descriptive Statistics

 Descriptive statistics are brief descriptive coefficients that summarize a given data set, which can

be either a representation of the entire population or a sample of it. Descriptive statistics are broken

down into measures of central tendency and measures of variability, or spread. Measures of central

tendency include the mean, median and mode, while measures of variability include the standard

deviation or variance, the minimum and maximum variables.

 Measures of central tendency describe the center position of a distribution for a data set. A

person analyzes the frequency of each data point in the distribution and describes it using the

mean, median or mode, which measure the most common patterns of the data set being analyzed.

 Measures of variability, or the measures of spread, aid in analyzing how spread-out the distribution

is for a set of data. For example, while the measures of central tendency may give a person the

average of a data set, it doesn't describe how the data is distributed within the set. So, while the

average of the data may be 65 out of 100, there can still be data points at both 1 and 100.

Measures of variability help communicate this by describing the shape and spread of the data set.

Range, quartiles, absolute deviation and variance are all examples of measures of variability.

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Statistical_assumptions
https://en.wikipedia.org/wiki/Statistical_assumptions
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Statistical_population
https://www.investopedia.com/terms/v/variability.asp
https://www.investopedia.com/terms/s/standarddeviation.asp
https://www.investopedia.com/terms/s/standarddeviation.asp
https://www.investopedia.com/terms/v/variance.asp
https://www.investopedia.com/terms/q/quartile.asp

Mean

It is calculated by taking the sum of the values and dividing with the number of values in a data

series.

The function mean () is used to calculate this in R. Syntax

The basic syntax for calculating mean in R is ,

 mean (x, trim = 0, na.rm = FALSE, ...)

 x -> is the input vector.

 trim ->is used to drop some observations from both end of the sorted vector.

 na.rm ->is used to remove the missing values from the input vector.

Median

 The middle most value in a data series is called the median. The median()function is used in R

to calculate this value.

The basic syntax for calculating median in R is

 median(x, na.rm = FALSE)

 x ->is the input vector.

 na.rm ->is used to remove the missing values from the input vector.

Maximum:

It represents maximum value in the given data set.

The basic syntax for calculating Maximum in R is −

 max(x, na.rm = FALSE)

 x->is the input vector.

 na.rm ->is used to remove the missing values from the input vector.

Minimum:

It represents minimum value in the given data set. The basic syntax for calculating Minimum in R

 max(x, na.rm = FALSE)

 x ->is the input vector.

 na.rm ->is used to remove the missing values from the input vector.

Range:

The difference between the maximum and minimum data entries in the set.

Range = (Max. data entry) – (Min. data entry) The basic syntax for calculating Range in R is −

 range(x, na.rm = FALSE)

 x ->is the input vector.

 na.rm ->is used to remove the missing values from the input vector.

The standard deviation

It measures variability and consistency of the sample or population. In most real-world

applications, consistency is a great advantage. In statistical data analysis, less variation is often

better.

The basic syntax for calculating Range in R is –

 sd(x, na.rm = FALSE)

 x->is the input vector.

 na.rm ->is used to remove the missing values from the input vector.

Example:

Create a vector.

x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

Find Mean.

 print("Mean :",mean(x)

) # Find Median

print("Median :",median(x))

Find Standard Deviation.

print("Standard Deviation",sd(x))

 # Find Maximum. print("Maximum value:",max(x))

Find Minimum print("minimum Value:",min(x))

Find range.

print("Range :",range(x))

Output:

Regression

 Linear Regression

 Regression analysis is a very widely used statistical tool to establish a relationship

model between two variables. One of these variable is called predictor variable

whose value is gathered through experiments. The other variable is called response

variable whose value is derived from the predictor variable.

 In Linear Regression these two variables are related through an equation, where

exponent (power) of both these variables is 1. Mathematically a linear

relationship represents a straight line when plotted as a graph. A non-linear

relationship where the exponent of any variable is not equal to 1 creates a curve.

The general mathematical equation for a linear regression is −

Following is the description of the parameters used −

o y is the response variable.

o x is the predictor variable.

o a and b are constants which are called the coefficients.

Steps to Establish a Regression

A simple example of regression is predicting weight of a person when his height

is known. To do this we need to have the relationship between height and weight of

a person.

The steps to create the relationship is −

o Carry out the experiment of gathering a sample of observed values

of height and corresponding weight.

y = ax + b

o Create a relationship model using the lm() functions in R.

o Find the coefficients from the model created and create the

mathematical equation using these

o Get a summary of the relationship model to know the average

error in prediction. Also called residuals.

o To predict the weight of new persons, use the predict() function in R.

Input Data

Below is the sample data representing the observations −

lm() Function

This function creates the relationship model between the predictor and the

response variable. Syntax

The basic syntax for lm() function in linear regression is −

Following is the description of the parameters used −

o formula is a symbol presenting the relation between x and y.

o data is the vector on which the formula will be applied.

Create Relationship Model & get the Coefficients

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Values of height
151, 174, 138, 186, 128, 136, 179, 163, 152, 131

Values of weight.

63, 81, 56, 91, 47, 57, 76, 72, 62, 48

lm(formula,data)

Apply the lm() function

. relation <- lm(y~x) print(relation)

When we execute the above code, it produces the following result −

Get the Summary of the Relationship

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the lm() function.

 relation <- lm(y~x)

print(summary(relation))

When we execute the above code, it produces the following result −

Output:

Call:

lm(formula = y

~ x)
Coefficien

ts:

(Intercept
)

-

38.4551

x

0.67

46

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-6.3002 -1.6629 0.0412 1.8944 3.9775

Coefficients:

Estimate Std. Error t value

Pr(>|t|) (Intercept) -38.45509

 8.04901 -4.778

0.00139 **
x 0.67461 0.05191 12.997 1.16e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

predict() Function Syntax

The basic syntax for predict() in linear regression is –

 predict(object, newdata)

Following is the description of the parameters used −

o object is the formula which is already created using the lm() function.

o newdata is the vector containing the new value for predictor variable.

Predict the weight of new persons

The predictor vector.

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

The resposne vector.

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the lm() function.

relation <- lm(y~x)

Find weight of a person with height 170

a <- data.frame(x = 170)

result <- predict(relation,a)

 print(result)

Residual standard error: 3.253 on 8 degrees of

freedom Multiple R-squared: 0.9548,
 Adjusted R-squared:

0.9491

F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06

When we execute the above code, it produces the following result −

Visualize the Regression Graphically

Create the predictor and response variable.

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

relation <- lm(y~x)

Give the chart file a name.

png(file = "linearregression.png")

 # Plot the chart.

plot(y,x,col = "blue",main = "Height & Weight Regression",

abline(lm(x~y)), cex = 1.3,pch = 16,xlab = "Weight in Kg",ylab = "Height in cm")

 # Save the file.

dev.off()

When we execute the above code, it produces the following result −

1
76.22869

R - Multiple Regression

Multiple regression is an extension of linear regression into relationship between

more than two variables. In simple linear relation we have one predictor and one

response variable, but in multiple regression we have more than one predictor

variable and one response variable.

The general mathematical equation for multiple regression is −

Following is the description of the parameters used −

o y is the response variable.

o a, b1, b2...bn are the coefficients.

o x1, x2, ...xn are the predictor variables.

 We create the regression model using the lm() function in R. The model determines

the value of the coefficients using the input data. Next we can predict the value of

the response variable for a given set of predictor variables using these coefficients.

lm() Function

This function creates the relationship model between the predictor and the response variable.

Syntax

The basic syntax for lm() function in multiple regression is −

Following is the description of the parameters used −

 formula is a symbol presenting the relation between the response variable

and predictor variables.

 data is the vector on which the formula will be applied.

y = a + b1x1 + b2x2 +...bnxn

lm(y ~ x1+x2+x3...,data)

Example:

 Consider the data set "mtcars" available in the R environment. It gives a comparison between

 different car models in terms of mileage per gallon (mpg), cylinder

displacement("disp"), horse power("hp"), weight of the car("wt") and some more

parameters.The goal of the model is to establish the relationship between "mpg" as

a response variable with "disp","hp" and "wt" as predictor variables. We create a

subset of these variables from the mtcars data set for this purpose.

input <- cars[,c("mpg","disp","hp","wt")]

 Create Relationship Model & get the Coefficients

input <- mtcars[,c("mpg","disp","hp","wt")]

Create the relationship model.

model <- lm(mpg~disp+hp+wt, data = input)

Show the model.

print(model)

Get the Intercept and coefficients as vector elements.

When we execute the above code, it produces the following result −

Call:

lm(formula = mpg ~ disp + hp + wt,

data = input)
Coefficien

ts:

(Intercept

)
37.10550

5

dis
p

h
p

w
t -0.000937 -0.031157 -

3.800891

Create Equation for Regression Model

Based on the above intercept and coefficient values, we create the mathematical equation.

Apply Equation for predicting New Values

We can use the regression equation created above to predict the mileage when a new set of

values for displacement, horse power and weight is provided.

For a car with disp = 221, hp = 102 and wt = 2.91 the predicted mileage is

R - Logistic Regression

 The Logistic Regression is a regression model in which the response variable (dependent variable)

has categorical values such as True/False or 0/1. It actually measures the probability of a binary

response as the value of response variable based on the mathematical equation relating it with the

predictor variables.

The general mathematical equation for logistic regression is −

Following is the description of the parameters used −

o y is the response variable.

o x is the predictor variable.

o a and b are the coefficients which are numeric constants.

The function used to create the regression model is the glm() function.

The basic syntax for glm() function in logistic regression is −

Y = a+Xdisp.x1+Xhp.x2+Xwt.x3 or
Y = 37.15+(-0.000937)*x1+(-0.0311)*x2+(-3.8008)*x3

Y = 37.15+(-0.000937)*221+(-0.0311)*102+(-3.8008)*2.91 = 22.7104

y = 1/(1+e^-(a+b1x1+b2x2+b3x3+...))

Following is the description of the parameters used −

o formula is the symbol presenting the relationship between the variables.

o data is the data set giving the values of these variables.

o family is R object to specify the details of the model. It's value is

binomial for logistic regression.

Example

The in-built data set "mtcars" describes different models of a car with their various

engine specifications. In "mtcars" data set, the transmission mode (automatic or

manual) is described by the column am which is a binary value (0 or 1). We can

create a logistic regression model between the columns "am" and 3 other columns -

hp, wt and cyl.

Create Regression Model

We use the glm() function to create the regression model and get its summary for analysis.

input <- mtcars[,c("am","cyl","hp","wt")]

am.data = glm(formula = am ~ cyl + hp + wt, data = input, family = binomial)

print(summary(am.data))

glm(formula,data,family)

Select some columns form mtcars. input

<- mtcars[,c("am","cyl","hp","wt")]

Call:

glm(formula = am ~ cyl + hp + wt, family =

binomial, data = input)

Deviance Residuals: Min

-

2.172

72

1
Q

Media
n

3
Q

Ma
x -0.14907 -0.01464

 0.14116
1.27641 Coefficien

ts:

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’

0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for

binomial family taken to be 1)

Null deviance: 43.2297 on 31 degrees of

freedom Residual deviance: 9.8415 on 28

degrees of freedom AIC: 17.841

Number of Fisher Scoring iterations: 8

When we execute the above code, it produces the following result −

Estimate Std. Error z value Pr(>|z|)

(Intercept)
19.70288

8.11637 2.428 0.0152 *

cyl 0.48760 1.07162 0.455 0.6491

hp 0.03259 0.01886 1.728 0.0840 .

wt -9.14947 4.15332 -2.203 0.0276 *

Conclusion

In the summary as the p-value in the last column is more than 0.05 for the variables

"cyl" and "hp", we consider them to be insignificant in contributing to the value

of the variable "am". Only weight (wt) impacts the "am" value in this regression

model.

DISTRIBUTION

Normal Distribution:

The normal distribution is the most widely known and used of all distributions.

Because the normal distribution approximates many natural phenomena so well, it

has developed into a standard of reference for many probability problems.

The normal distribution is defined by the following probability density function,

where μ is the population mean

 σ is the standard Deviation

Properties of a normal distribution

o The mean, mode and median are all equal.

o The curve is symmetric at the center (i.e. around the mean, μ).

o Exactly half of the values are to the left of center and exactly half

the values are to the right.

o The total area under the curve is 1.

Standard Normal Distribution

In particular, the normal distribution with μ = 0 and σ = 1 is called the standard

normal distribution, and is denoted as N (0,1). It can be graphed as follows.

http://www.r-tutor.com/node/35
http://www.statisticshowto.com/probability-and-statistics/statistics-definitions/mean-median-mode/

Examples of data which follows a Normal Distribution:

 heights of people

 size of things produced by machines

 errors in measurements

 blood pressure

 marks on a test

R has four in built functions to generate normal distribution. They are described below.

dnorm(x, mean, sd)
pnorm(x, mean, sd)
qnorm(p, mean, sd)
rnorm(n, mean, sd)

Following is the description of the parameters used in above functions −

 x is a vector of numbers.

 p is a vector of probabilities.

 n is number of observations(sample size).

 mean is the mean value of the sample data. It's default value is zero.

 sd is the standard deviation. It's default value is 1.

dnorm()

This function gives height of the probability distribution at each point for a given mean and

standard deviation.

Example and Output:

pnorm()

This function gives the probability of a normally distributed random number to be less that the

value of a given number. It is also called "Cumulative Distribution Function".

Example and Output:

qnorm()

This function takes the probability value and gives a number whose cumulative value matches

the probability value.

Example and Output:

rnorm()

This function is used to generate random numbers whose distribution is normal. It

takes the sample size as input and generates that many random numbers. We draw

a histogram to show the distribution of the generated numbers.

Example and Output:

BINOMIAL DISTRIBUTION

 A binomial distribution can be thought of as simply the probability of a

SUCCESS or FAILURE outcome in an experiment or survey that is repeated

multiple times. The binomial is a type of distribution that has two possible

outcomes (the prefix “bi” means two, or twice). For example, a coin toss has only

two possible outcomes: heads or tails and taking a test could have two possible

outcomes: pass or fail.

Characteristics of Binomial Distribution

The number of observations or trials is fixed. In other words, you can only

figure out the probability of something happening if you do it a certain number of

times. This is common sense — if you toss a coin once, your probability of

getting a tails is 50%. If you toss a coin a 20 times, your probability of getting a

tails is very, very close to 100%.

Each observation or trial is independent. In other words, none of your trials have

an effect on the probability of the next trial.

The probability of success (tails, heads, fail or pass) is exactly the same from one

trial to another.

The binomial distribution formula is:

 b(x; n, P) = nCx * Px * (1 – P)n – x

Where :

b=binomial probability

x=total number of “successes” (pass or fail, heads or tails etc.)

http://www.statisticshowto.com/probability-and-statistics/probability-main-index/
http://www.statisticshowto.com/how-to-tell-if-an-event-is-dependent-or-independent/

P=probability of a success on an individual trial

n= number of trials

Example:

A coin is tossed 10 times. What is the probability of getting exactly 6 heads?

 b(x; n, P) = nCx * Px * (1 – P)n – x

The number of trials (n) = 10
The odds of success (p) = 0.5 q = 0.5

x = 6

P(x=6) = 10C6 * 0.5^6 * 0.5^4 = 210 * 0.015625 * 0.0625 = 0.205078125

R has four in-built functions to generate binomial distribution. They are described below.

Following is the description of the parameters used −

 x is a vector of numbers.

 p is a vector of probabilities.

 n is number of observations.

 size is the number of trials.

 prob is the probability of success of each trial.

dbinom(x, size, prob)

pbinom(x, size, prob)

qbinom(p, size, prob)

rbinom(n, size, prob)

dbinom()

This function gives the probability density distribution at each point.

Example and Output:

pbinom()

This function gives the cumulative probability of an event. It is a single value

representing the probability.

Example and Output:

qbinom()

This function takes the probability value and gives a number whose cumulative

value matches the probability value.

Example and output:

rbinom()

This function generates required number of random values of given probability

from a given sample.

Time series Analysis

Time series is a series of data points in which each data point is associated with a

timestamp. A simple example is the price of a stock in the stock market at different

points of time on a given day. Another example is the amount of rainfall in a

region at different months of the year. R language uses many functions to create,

manipulate and plot the time series data. The data for the time series is stored in an

R object called time-series object. It is also a R data object like a vector or data

frame.The time series object is created by using the ts() function.

Syntax

The basic syntax for ts() function in time series analysis is −

Following is the description of the parameters used −

 data is a vector or matrix containing the values used in the time series.

 start specifies the start time for the first observation in time series.

 end specifies the end time for the last observation in time series.

 frequency specifies the number of observations per unit time.

Except the parameter "data" all other parameters are optional.

Example:

Consider the annual rainfall details at a place starting from January 2012. We create an R time

series object for a period of 12 months and plot it.

timeseries.object.name <- ts(data, start, end, frequency)

Multiple Time Series

We can plot multiple time series in one chart by combining both the series into a matrix.

ANOVA

 One Way Anova:

 We are often interested in determining whether the means from more than two

populations or groups are equal or not. To test whether the difference in means

is statistically significant we can perform analysis of variance (ANOVA) using the

R function aov(). If the ANOVA F-test shows there is a significant difference in

means between the groups we may want to perform multiple comparisons between

all pair-wise means to determine how they differ.

Analysis of Variance

 The first step in our analysis is to graphically compare the means of the variable

of interest across groups. It is possible to create side-by-side boxplots of

measurements organized in groups using the function plot(). Simply type

 plot(response ~ factor, data=data_name)

 response -> name of the response variable

 factor->the variable that separates the data into groups.

Both variables should be contained in a data frame called data_name.

Example:

 A drug company tested three formulations of a pain relief medicine for migraine

headache sufferers. For the experiment 27 volunteers were selected and 9 were

randomly assigned to one of three drug formulations. The subjects were instructed

to take the drug during their next migraine headache episode and to report their

pain on a scale of 1 to 10 (10 being most pain).

Drug A 4 5 4 3 2 4 3 4 4

Drug B 6 8 4 5 4 6 5 8 6

Drug C 6 7 6 6 7 5 6 5 5

To make side-by-side boxplots of the variable pain grouped by the variable drug we must first read in the

data into the appropriate format.

> pain = c(4, 5, 4, 3, 2, 4, 3, 4, 4, 6, 8, 4, 5, 4, 6, 5, 8, 6, 6, 7, 6, 6, 7, 5, 6, 5, 5)

> drug = c(rep("A",9), rep("B",9), rep("C",9))

>migraine = data.frame(pain,drug)

Note the command rep("A",9) constructs a list of nine A‟s in a row. The variable drug is therefore a list of

length 27 consisting of nine A‟s followed by nine B‟s followed by nine C‟s.If we print the data frame

migraine we can see the format the data should be on in order to make side-by-side boxplots and perform

ANOVA (note the output is cut-off between observations 6- 25 for space purposes).

We can now make the boxplots by typing:

> plot(pain ~ drug, data=migraine)

The output of this program is shown below:

 A B C

 From the boxplots it appears that the mean pain for drug A is lower than that for drugs B and C.Next, the

R function aov() can be used for fitting ANOVA models. The general form is

 aov(response ~ factor, data=data_name)

 8

7

 6

p
a

in

5

 4

 3

2

 Once the ANOVA model is fit, one can look at the results using the summary() function. This

 P roduces the standard ANOVA table.

Ex. Drug company example continued.

>results = aov(pain ~ drug, data=migraine)

>summary(results)

Df Sum Sq Mean
Sq

F
value

Pr(>F)

drug 2 28.22

2

14.1111 11.906 0.0002559 ***

Residuals 24 28.44

4

1.1852

Signif.
codes:

 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1

 Studying the output of the ANOVA table above we see that the F-statistic is 11.91 with a p-

value equal to 0.0003. We clearly reject the null hypothesis of equal means for all three drug

groups.

SCHOOL OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

Machine Learning in R - Classification: Decision Trees, Random Forest, SVM – Clustering - Association Rule
Mining - Outlier Detection.

Unit-IV-R Programming – SCS1621

Machine learning

Machine learning is an application of artificial intelligence (AI) that provides systems the ability

to automatically learn and improve from experience without being explicitly programmed.

Machine learning focuses on the development of computer programs that can access data and

use it learn for themselves.

The process of learning begins with observations or data, such as examples, direct experience,

or instruction, in order to look for patterns in data and make better decisions in the future based

on the examples that we provide. The primary aim is to allow the computers learn

automatically without human intervention or assistance and adjust actions accordingly.

Some machine learning methods

Machine learning algorithms are often categorized as supervised or unsupervised.

Supervised machine learning algorithms can apply what has been learned in the past to new

data using labeled examples to predict future events. Starting from the analysis of a known

training dataset, the learning algorithm produces an inferred function to make predictions about

the output values. The system is able to provide targets for any new input after sufficient

training. The learning algorithm can also compare its output with the correct, intended output

and find errors in order to modify the model accordingly.

In contrast, unsupervised machine learning algorithms are used when the information used to

train is neither classified nor labeled. Unsupervised learning studies how systems can infer a

function to describe a hidden structure from unlabeled data. The system doesn’t figure out the

right output, but it explores the data and can draw inferences from datasets to describe hidden

structures from unlabeled data.

Semi-supervised machine learning algorithms fall somewhere in between supervised and

unsupervised learning, since they use both labeled and unlabeled data for training – typically a

small amount of labeled data and a large amount of unlabeled data. The systems that use this

method are able to considerably improve learning accuracy. Usually, semi- supervised learning

is chosen when the acquired labeled data requires skilled and relevant resources in order to train

it / learn from it. Otherwise, acquiringunlabeled data generally doesn’t require additional

resources.

Reinforcement machine learning algorithms is a learning method that interacts with its

environment by producing actions and discovers errors or rewards. Trial and error search and

delayed reward are the most relevant characteristics of reinforcement learning. This method

allows machines and software agents to automatically determine the ideal behavior within a

specific context in order to maximize its performance. Simple reward feedback is required for

the agent to learn which action is best; this is known as the reinforcement signal.

 Classification

Classification is a data mining function that assigns items in a collection to target categories or

classes. The goal of classification is to accurately predict the target class for each case in the

data. For example, a classification model could be used to identify loan applicants as low,

medium, or high credit risks.

Following are the examples of cases where the data analysis task is

Classification −

 A bank loan officer wants to analyze the data in order to know which customer (loan

applicant) are risky or which are safe.

 A marketing manager at a company needs to analyze a customer with a given profile,

who will buy a new computer.

In both of the above examples, a model or classifier is constructed to predict the categorical

labels. These labels are risky or safe for loan application data and yes or no for marketing data.

How Does Classification Works?

With the help of the bank loan application that we have discussed above, let us understand the

working of classification. The Data Classification process includes two steps −

 Building the Classifier or Model

 Using Classifier for Classification

Building the Classifier or Model

 This step is the learning step or the learning phase.

 In this step the classification algorithms build the classifier.

 The classifier is built from the training set made up of database tuples and their

associated class labels.

 Each tuple that constitutes the training set is referred to as a category or class. These

tuples can also be referred to as sample, object or data points.

Using Classifier for Classification

In this step, the classifier is used for classification. Here the test data is used to estimate the

accuracy of classification rules. The classification rules can be applied to the new data tuples if

the accuracy is considered acceptable.

 Decision Tree

A decision tree is a structure that includes a root node, branches, and leaf nodes. Each internal

node denotes a test on an attribute, each branch denotes the outcome of a test, and each leaf

node holds a class label. The topmost node in the tree is the root node.

The following decision tree is for the concept buy_computer that indicates whether a customer

at a company is likely to buy a computer or not. Each internal node represents a test on an

attribute. Each leaf node represents a class.

The benefits of having a decision tree are as follows −

 It does not require any domain knowledge.

 It is easy to comprehend.

 The learning and classification steps of a decision tree are simple and fast.

The R package "party" is used to create decision trees.

Implementation of Decision Tree in R

Install R Package

Use the below command in R console to install the package. You also have to install the

dependent packages if any.

The package "party" has the function ctree() which is used to create and analyze decision tree.

Syntax

The basic syntax for creating a decision tree in R is −

Following is the description of the parameters used −

 formula is a formula describing the predictor and response variables.

 data is the name of the data set used.

Input Data

We will use the R in-built data set named readingSkills to create a decision tree. It describes

the score of someone's readingSkills if we know the variables "age","shoesize","score" and

whether the person is a native speaker or not.

> print(head(readingSkills))

nativeSpeaker age shoeSize score

1 yes 5 24.83189 32.29385

2 yes 6 25.95238 36.63105

3 no 11 30.42170 49.60593

4 yes 7 28.66450 40.28456

5 yes 11 31.88207 55.46085
6 yes 10 30.07843 52.83124

> dim(readingSkills) [1]

200 4

install.packages("party")

ctree(formula, data)

Constructing Decision Tree Model in R

> pred=predict(dtree,test)

> pred

[1] yes yes yes yes no no no no yes no yes

[12] no no no no yes yes yes no no no no

[23] yes yes no no no no yes no yes yes no

[34] yes yes yes no yes yes no no yes no yes

[45] yes yes no yes yes yes no yes yes yes yes

[56] no yes yes no yes

Levels: no yes

Output Decision Tree Structure:

Prediction Using Test data:

> table(pred)

pred

no yes

27 33

Checking Accracy of Constrcted Model:

> acc=addmargins(table(pred,test$nativeSpeaker))

> acc

pred no yes Sum no 27

 0 27

yes 3 30 33

Sum 30 30 60

Accuracy=Total number of correctly classified observation/Total Observation

> value=57/60

> value

[1] 0.95

Conclusion:

Constructed Decision Tree 95% accurate

 Random Forest

In the random forest approach, a large number of decision trees are created. Every observation

is fed into every decision tree. The most common outcome for each observation is used as the

final output. A new observation is fed into all the trees and taking a majority vote for each

classification model.

An error estimate is made for the cases which were not used while building the tree. That is

called an OOB (Out-of-bag) error estimate which is mentioned as a percentage.

The R package "randomForest" is used to create random forests.

Install R Package

Use the below command in R console to install the package. You also have to install the

dependent packages if any.

The package "randomForest" has the function randomForest() which is used to create and

analyze random forests.

Syntax

The basic syntax for creating a random forest in R is −

Following is the description of the parameters used −

 formula is a formula describing the predictor and response variables.

 data is the name of the data set used.

Input Data

We will use the R in-built data set named reading Skills to create a decision tree. It describes the

score of someone's reading Skills if we know the variables "age", "shoesize", "score" and

whether the person is a native speaker.

install.packages("randomForest)

randomForest(formula, data)

Construct Random Forest Model:

> pred

1 2 4 5 8 9 10 23 27 30 35 39 42 43 44 46 47 48 57 60 61 62

yes yes yes yes yes yes no no yes yes yes yes no no no yes yes no yes no yes no 68 70

71 72 76 77 79 84 86 89 96 100 101 105 107 109 120 129 131 132 133 141

no yes yes no yes yes no no yes yes no yes yes no yes no no yes no no yes no 142 147

152 154 166 170 173 174 187 188 190 191 193 194 197 200

Prediction using Constructed Random Forest Model using Test Data:

> pred=predict(RForest,test)

Conclusion: Hence the constructed model is 98% Accurate.

no yes yes yes no no yes no yes yes yes no no no yes no

Levels: no yes

> table(pred)

pred

no yes

27 33

Checking Accuracy of the constructed Model

> acc=addmargins(table(pred,test$nativeSpeaker))

> acc

pred no yes Sum no 27

 0 27

yes 1 32 33

Sum 28 32 60

Calculate Accuracy Value from the above table:

> accvalue=(27+32)/60

> accvalue [1]

0.9833333

 Support Vector Machine

“Support Vector Machine” (SVM) is a supervised machine learning algorithm which can be

used for both classification or regression challenges. However, it is mostly used in classification

problems. In this algorithm, we plot each data item as a point in n-dimensional space (where n

is number of features you have) with the value of each feature being the value of a particular

coordinate. Then, we perform classification by finding the hyper- plane that differentiate the

two classes very well (look at the below snapshot).

Support Vectors are simply the co-ordinates of individual observation. Support Vector Machine

is a frontier which best segregates the two classes (hyper-plane/ line).

Identify the right hyper-plane (Scenario-1): Here, we have three hyper-planes (A, B and C).

Now, identify the right hyper-plane to classify star and circle.

“Select the hyper-plane which segregates the two classes better”. In this

scenario, hyper-plane “B” has excellently performed this job.

Identify the right hyper-plane (Scenario-2): Here, we have three hyper-planes (A, B and C)

and all are segregating the classes well. Now, How can we identify the right hyper-plane?

Here, maximizing the distances between nearest data point (either class) and hyper-plane will

help us to decide the right hyper-plane. This distance is called as Margin. Consider

the below snapshot:

In the above figure, margin for hyper-plane C is high as compared to both A and B. Hence, we

name the right hyper-plane as C. Another lightning reason for selecting the hyper-plane with

higher margin is robustness. If we select a hyper-plane having low margin then there is high

chance of miss- classification.

Can we classify two classes (Scenario-3): In below figure , It is unable to segregate the two

classes using a straight line, as one of star lies in the territory of other(circle) class as an outlier.

Here one star at other end is like an outlier for star class. SVM has a feature to ignore outliers

and find the hyper-plane that has maximum margin. Hence, we can say, SVM is robust to

outliers.

Find the hyper-plane to segregate to classes (Scenario-4): In the scenario below, we

can’t have linear hyper-plane between the two classes, so how does SVM classify these two

classes? Till now, we have only\looked at the linear hyper-plane.

When we look at the hyper-plane in original input space it looks like a circle:

Support Vector Implementation in R

Install the required package e1071 for SVM implementation. Syntax:

Install the pakage e1071.

>install.packages(“e1071”)

>library(e1071)

> pred=predict(svm_model,test)
> table(pred) pred

setosa versicolor virginica
15 19 12

> addmargins(table(pred,test$Species))

 pred setos

a
versicolor virginica Sum

setosa 15 0 0 15
versicolor 0 16 3 19
virginica 0 0 12 12

Sum 15 16 15 46

> AccValue=(15+16+12)/46
> AccValue [1]

0.9347826

Checking Accuracy of the constrcted Model:

SVM Model Construction for iris dataset and it’s output:

Predicting values for test data using constrcted model:

Calculating Accuracy value from the above table:

Cluster is a group of objects that belongs to the same class. In other words, similar objects are

grouped in one cluster and dissimilar objects are grouped in another cluster.

What is Clustering?

Clustering is the process of making a group of abstract objects into classes of similar objects.

 A cluster of data objects can be treated as one group.

 While doing cluster analysis, we first partition the set of data into groups based on data

similarity and then assign the labels to the groups.

 The main advantage of clustering over classification is that, it is adaptable to changes

and helps single out useful features that distinguish different groups.

Applications of Cluster Analysis

 Clustering analysis is broadly used in many applications such as market research, pattern

recognition, data analysis, and image processing.

 Clustering can also help marketers discover distinct groups in their customer base. And

they can characterize their customer groups based on the purchasing patterns.

 In the field of biology, it can be used to derive plant and animal taxonomies, categorize

genes with similar functionalities and gain insight into structures inherent to populations.

 Clustering also helps in identification of areas of similar land use in an earth observation

database. It also helps in the identification of groups of houses in a city according to

house type, value, and geographic location.

 Clustering also helps in classifying documents on the web for information discovery.

Conclusion:

The Constructed model is 93% Accurate.

 Clustering

 Clustering is also used in outlier detection applications such as detection of credit card

fraud.

 As a data mining function, cluster analysis serves as a tool to gain insight into the

distribution of data to observe characteristics of each cluster.

Requirements of Clustering in Data Mining

The following points throw light on why clustering is required in data mining

 Scalability − We need highly scalable clustering algorithms to deal with large

databases.

 Ability to deal with different kinds of attributes − Algorithms should be capable to be

applied on any kind of data such as interval-based (numerical) data, categorical, and

binary data.

 Discovery of clusters with attribute shape − The clustering algorithm should be

capable of detecting clusters of arbitrary shape. They should not be bounded to only

distance measures that tend to find spherical cluster of small sizes.

 High dimensionality − The clustering algorithm should not only be able to

handle low-dimensional data but also the high dimensional space.

 Ability to deal with noisy data − Databases contain noisy, missing or erroneous data.

Some algorithms are sensitive to such data and may lead to poor quality clusters.

 Interpretability − The clustering results should be interpretable,

comprehensible, and usable.

Clustering Methods

Clustering methods can be classified into the following categories −

 Partitioning Method

 Hierarchical Method

 Density-based Method

 Grid-Based Method

 Model-Based Method

 Constraint-based Method

Partitioning Method

Suppose we are given a database of ‘n’ objects and the partitioning method constructs ‘k’ partition of

data. Each partition will represent a cluster and k

≤ n. It means that it will classify the data into k groups, which satisfy the following

requirements −

 Each group contains at least one object.

 Each object must belong to exactly one group.

Hierarchical Methods

This method creates a hierarchical decomposition of the given set of data objects. We can

classify hierarchical methods on the basis of how the hierarchical decomposition is formed.

There are two approaches here −

 Agglomerative Approach

 Divisive Approach

Agglomerative Approach

This approach is also known as the bottom-up approach. In this, we start with each object

forming a separate group. It keeps on merging the objects or groups that are close to one

another. It keep on doing so until all of the groups are merged into one or until the termination

condition holds.

Divisive Approach

This approach is also known as the top-down approach. In this, we start with all of the objects in

the same cluster. In the continuous iteration, a cluster is split up into smaller clusters. It is down

until each object in one cluster or the termination condition holds. This method is rigid, i.e.,

once a merging or splitting is done, it can never be undone.

Approaches to Improve Quality of Hierarchical Clustering

Here are the two approaches that are used to improve the quality of

hierarchical clustering −

 Perform careful analysis of object linkages at each hierarchical partitioning.

 Integrate hierarchical agglomeration by first using a hierarchical agglomerative

algorithm to group objects into micro-clusters, and then performing macro- clustering on

the micro-clusters.

Density-based Method

This method is based on the notion of density. The basic idea is to continue growing the given

cluster as long as the density in the neighborhood exceeds some threshold, i.e., for each data

point within a given cluster, the radius of a given cluster has to contain at least a minimum

number of points.

Grid-based Method

In this, the objects together form a grid. The object space is quantized into finite number of cells

that form a grid structure.

Advantage

 The major advantage of this method is fast processing time.

 It is dependent only on the number of cells in each dimension in the quantized space.

Model-based methods

In this method, a model is hypothesized for each cluster to find the best fit of data for a given

model. This method locates the clusters by clustering the density function. It reflects spatial

distribution of the data points.

This method also provides a way to automatically determine the number of clusters based on

standard statistics, taking outlier or noise into account. It therefore yields robust clustering

methods.

Constraint-based Method

In this method, the clustering is performed by the incorporation of user or application-oriented

constraints. A constraint refers to the user expectation or the properties of desired clustering

results. Constraints provide us with an interactive way of communication with the clustering

process. Constraints can be specified by the user or the application requirement.

K-Means Clustering

We are given a data set of items, with certain features, and values for these features (like a

vector). The task is to categorize those items into groups. To achieve this, we will use the k

Means algorithm; an unsupervised learning algorithm.

(It will help if you think of items as points in an n-dimensional space). The algorithm will

categorize the items into k groups of similarity. To calculate that similarity, we will use the

euclidean distance as measurement.

The algorithm works as follows:

1. First we initialize k points, called means, randomly.

2. We categorize each item to its closest mean and we update the mean’s coordinates, which

are the averages of the items categorized in that mean so far.

3. We repeat the process for a given number of iterations and at the end, we have our clusters.

The “points” mentioned above are called means, because they hold the mean values of the items

categorized in it. To initialize these means, we have a lot of options. An intuitive method is to

initialize the means at random items in the data set. Another method is to initialize the means at

random values between the boundaries of the data set .

K Means Clustering Implementaion in R.

Example:Cluster the iris data set using K mean clustering algorithm.

One method to validate the number of clusters is the elbow method. The

Idea of the elbow method is to run k-means clustering on the dataset for a range of values of k

(say, k from 1 to 10 in the examples above), and for each value of k calculate the sum of squared

errors (SSE).

Then, plot a line chart of the SSE for each value of k. If the line chart looks like an arm, then the

"elbow" on the arm is the value of k that is the best. The idea is that we want a small SSE, but

that the SSE tends to decrease toward 0 as we increase k (the SSE is 0 when k is equal to the

number of data points in the dataset, because then each data point is its own cluster, and there is

no error between it and the center of its cluster). So our goal is to choose a small value of k that

still has a low SSE, and the elbow usually represents where we start to have diminishing returns

by increasing k.

Optimal number of clusters in the above example is 3.

Find Optimal Number of clusters using Elbow Method:

Plotting cluster output:

Install the package cluster and use the function clus plot()to visualize clustering results.

Association Rule Mining

Association rule learning is a popular and well researched method for discovering interesting

relations between variables in large databases. It is the way of analyzing and presenting strong

rules discovered in databases using different measures of interestingness. Based on the concept

of strong rules, discover regularities between products in large-scale transaction data recorded by

point-of-sale (POS) systems in supermarkets. For example, the

The most famous algorithm for association rule learning is Apriori. It was

proposed by Agrawal and Srikant in 1994. The input of the algorithm is a dataset of transactions

where each transaction is a set of items. The output is a collection of association rules for which

support and confidence are greater than some specified threshold. The name comes from the

Latin phrase a priori (literally, "from what is before") because of one smart observation behind

the algorithm: if the item set is infrequent, then we can be sure in advance that all its subsets are

also infrequent.

You can implement Apriori with the following steps:

1. Count the support of all item sets of length 1, or calculate the frequency of every item

in the dataset.

2. Drop the item sets that have support lower than the threshold.

3. Store all the remaining item sets.

4. Extend each stored item set by one element with all possible extensions. This step is

known as candidate generation.

rule found in the sales data of a

supermarket would indicate that if a customer buys onions and potatoes together, he or she is

likely to also buy hamburger meat. Such information can be used as the basis for decisions about

marketing activities such as, e.g., promotional pricing or product placements. In addition to the

above example from market basket analysis association rules are employed today in many

application areas including Web usage mining, intrusion detection and bioinformatics. As

opposed to sequence mining, association rule learning typically does not consider the order of

items either within a transaction or across transactions.

Apriori Algorithm

5. Calculate the support value of each candidate.

6. Drop all candidates below the threshold.

7. Drop all stored items from step 3 that have the same support as their extensions.

8. Add all the remaining candidates to storage.

9. Repeat steps 4 to step 8 until there are no more extensions with support greater than the

threshold.

This is not a very efficient algorithm if you have a lot of data, but mobile applications are not

recommended for use with big data anyway. This algorithm was influential in its time, and is

also elegant and easy to understand today.

Implementation of Apriori Algorithm in R import the package and use the package arules:

>install.packages(“arules”)

>library(arules)

Load the data set

Market _Basket_Optimaisation data set should be downloaded from the below website.

www.superdatascience/machinelearing

Convert the dataset into sparse Matrix:

>dataset=read.transactions('E:\\Market_Basket_Optimisation.csv',sep=",",rm.dup licates=TRUE)
 distribution of transactions with duplicates: 15

> dataset
 transactions in sparse format with 7501 transactions (rows) and 119 items (columns)

Get the Summary of the given data set:

> summary(dataset)
 transactions as itemMatrix in sparse format with 7501 rows
(elements/itemsets/transactions) and119 columns (items) and a density of 0.03288973

 most frequent items:
 mineral water eggs spaghetti french fries

1788 1348 1306 1282
chocolate (Other)

1229 22405

element (itemset/transaction) length distribution:

sizes

1 2 3 4 5 6 7 8 9 10 1
1

12 1
3

1
7
5
4

1358
1044

8
1
6

6
6
7

4
9
3

3
9
1

3
2
4

2
5
9

139 1
0
2

67 4
0

1
4

15 16 1
8

1
9

2
0

2
2

17 4 1 2 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.000 3.000 3.914 5.000 20.000

includes extended item information - examples: labels
1 almonds
2 antioxydant juice
3 asparagus

Plot ten items with Highest frequency :

> itemFrequencyPlot(dataset,topN=10)

Generate Association Rules with support =0.003 and

confidence=0.8

>rules=apriori(data=dataset,parameter=list(support=0.003,confiden ce=0.8))

Parameter specification:
confidence minval smax arem aval originalSupport maxtime support

0.8 0.1 1 none FALSE TRUE 5 0.003
minlen maxlen target ext

1 10 rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 22

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[119 item(s), 7501 transaction(s)] done [0.00s]. sorting and
recoding items ... [115 item(s)] done [0.00s].
creating transaction tree ... done [0.00s]. checking subsets
of size 1 2 3 4 5 done [0.00s].

writing ... [0 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

Generate Association Rules with support =0.003 and

confidence=0.4

>
rules=apriori(data=dataset,parameter=list(support=0.003,confiden ce=0.4))
Apriori

Parameter specification:
confidence minval smax arem aval originalSupport maxtime support

0.4 0.1 1 none FALSE TRUE 5 0.003
minlen maxlen target ext

1 10 rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 22

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[119 item(s), 7501 transaction(s)] done [0.00s]. sorting and
recoding items ... [115 item(s)] done [0.00s].
creating transaction tree ... done [0.00s]. checking subsets
of size 1 2 3 4 5 done [0.00s].

writing ... [281 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

Print the top 10 rules

Outlier:

An outlier is a data object that deviates significantly from the rest of the objects, as if it were

generated by a different mechanism. Data objects that are not outliers as “normal” or expected

data. Similarly, we may refer to outliers as “abnormal” data.

Outlier Analysis:

The outliers may be of particular interest, such as in the case of fraud detection, where outliers

may indicate fraudulent activity. Thus, outlier detection and analysis is an interesting data

mining task, referred to as outlier mining or outlier analysis.

Implementation of Outlier Analysis in R

Outlier Analysis

The LOF algorithm

LOF (Local Outlier Factor) is an algorithm for identifying density-based local outliers [Breunig

et al., 2000]. With LOF, the local density of a point is compared with that of its neighbors. If the

former is signi.cantly lower than the latter (with an LOF value greater than one), the point is in a

sparser region than its neighbors, which suggests it be an outlier.

Function lofactor(data, k) in packages DMwR and dprep calculates local outlier factors using the

LOF algorithm, where k is the number of neighbors used in the calculation of the local outlier

factors.

Print the top 5 outliers:

Visualize Outliers with Plots

Next, we show outliers with a biplot of the first two principal components.

SCHOOL OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

Overview of R Shiny - R Hadoop - Case Study - Hypothesis Generation, Importing Data set and Basic Data Exploration,

Feature Engineering, Model Building.

Unit-V- R Programming – SCS1621

Writing codes for plotting graphs in R time & again can get very tiring. Also, it is very

difficult to create an interactive visualization for story narration using above packages. These

problems can be resolved by dynamically creating interactive plots in R using Shiny with

minimal effort.

If you use R, chances are that you might have come across Shiny. It is an open package

from RStudio, used to build interactive web pages with R. It provides a very powerful way to

share your analysis in an interactive manner with the community.

Shiny is an open package from RStudio, which provides a web application framework to

create interactive web applications (visualization) called “Shiny apps”. The ease of working with

Shiny has what popularized it among R users. These web applications seamlessly display R

objects (like plots, tables etc.) and can also be made live to allow access to anyone.

Shiny provides automatic reactive binding between inputs and outputs which we will be

discussing in the later parts of this article. It also provides extensive pre-built widgets which

make it possible to build elegant and powerful applications with minimal effort.

Components of R Shiny

1.UI.R: This file creates the user interface in a shiny application. It provides interactivity to the

shiny app by taking the input from the user and dynamically displaying the generated output on

the screen.

Overview of R Shiny

2. Server.R: This file contains the series of steps to convert the input given by user into the

desired output to be displayed.

 Writing “ui.R”

Creation of Simple Creating simple RShiny Application

If you are creating a shiny application, the best way to ensure that the application interface runs

smoothly on different devices with different screen resolutions is to create it using fluid page.

This ensures that the page is laid out dynamically based on the resolution of each device.

The user interface can be broadly divided into three categories:

 Title Panel: The content in the title panel is displayed as metadata, as in top left corner of

above image which generally provides name of the application and some other relevant

information.

 Sidebar Layout: Sidebar layout takes input from the user in various forms like text

input, checkbox input, radio button input, drop down input, etc. It is represented in dark

background in left section of the above image.

 Main Panel: It is part of screen where the output(s) generated as a result of performing a

set of operations on input(s) at the server.R is / are displayed.

Let’s understand UI.R and Server.R with an example:

#UI.R

#loading shiny library

library(shiny)

shinyUI(fluidPage(

#fluid page for dynamically adapting to screens of different resolutions.

titlePanel("Iris Dataset"),

sidebarLayout(

sidebarPanel (

#implementing radio buttons

radioButtons("p", "Select column of iris dataset:",

list("Sepal.Length"='a', "Sepal.Width"='b', "Petal.Length"='c', "Petal.Width"='d')),

#slider input for bins of histogram

sliderInput("bins", "Number of bins:", min = 1, max = 50, value = 30)

),

mainPanel(plotOutput("distPlot")))

))

Writing SERVER.R

This acts as the brain of web application. The server.R is written in the form of a function which

maps input(s) to the output(s) by some set of logical operations. The inputs taken in ui.R file are

accessed using $ operator (input$InputName). The outputs are also referred using the $ operator

(output$OutputName). We will be discussing a few examples of server.R in the coming sections

of the article for better understanding.

#SERVER.R

library(shiny)

#writing server function

shinyServer(function(input, output) {

#referring output distPlot in ui.r as output$distPlot

output$distPlot <- renderPlot({

#referring input p in ui.r as input$p

if(input$p=='a'){

i<-1

}

if(input$p=='b'){

i<-2

}

if(input$p=='c'){

i<-3

}

if(input$p=='d'){

i<-4

}

x <- iris[, i]

#referring input bins in ui.r as input$bins

bins <- seq(min(x), max(x), length.out = input$bins + 1)

#producing histogram as output

hist(x, breaks = bins, col = 'darkgray', border = 'white')

})

})

Output:

Deploying the Shiny app on the Web

The shiny apps which you have created can be accessed and used by anyone only if, it is

deployed on the web. You can host your shiny application on “Shinyapps.io”. It provides free of

cost platform as a service [PaaS] for deployment of shiny apps, with some restrictions though

like only 25 hours of usage in a month, limited memory space, etc. You can also use your own

server for deploying shiny apps.

Steps for using shiny cloud:

Step 1: Sign up on shinyapps.io

Step 2: Go to Tools in R Studio.

Step 3: Open global options.

Step 4: Open publishing tab

Step 5: Manage your account(s).

Shiny App for displaying summary of the given data set:

 Server.R

library(shiny)

library(datasets)

Define server logic required to summarize and view the selected dataset

shinyServer(function(input, output) {

Return the requested dataset

datasetInput <- reactive({

switch(input$dataset,

"rock" = rock,

"pressure" = pressure,

"cars" = cars)

})

Generate a summary of the dataset

output$summary <- renderPrint({

dataset <- datasetInput()

summary(dataset)

})

Show the first "n" observations

output$view <- renderTable({

head(datasetInput(), n = input$obs)

})

})

ui.R

library(shiny)

Define UI for dataset viewer application

shinyUI(fluidPage(

Application title

titlePanel("Shiny Text"),

Sidebar with controls to select a dataset and specify the number

of observations to view

sidebarLayout(

sidebarPanel(

selectInput("dataset", "Choose a dataset:",

choices = c("rock", "pressure", "cars")),

numericInput("obs", "Number of observations to view:", 10)

),

Show a summary of the dataset and an HTML table with the requested

number of observations

mainPanel(

verbatimTextOutput("summary"),

tableOutput("view")

)

)

))

Output:

R is an amazing data science programming tool to run statistical data analysis on models and

translating the results of analysis into colourful graphics. There is no doubt that R is the most

preferred programming tool for statisticians, data scientists, data analysts and data architects but

it falls short when working with large datasets. One major drawback with R programming

language is that all objects are loaded into the main memory of a single machine. Large datasets

of size petabytes cannot be loaded into the RAM memory; this is when Hadoop integrated with R

language, is an ideal solution. To adapt to the in-memory, single machine limitation of R

programming language, data scientists have to limit their data analysis to a sample of data from

the large data set. This limitation of R programming language comes as a major hindrance when

dealing with big data. Since, R is not very scalable, the core R engine can process only limited

amount of data.To the contrary, distributed processing frameworks like Hadoop are scalable for

complex operations and tasks on large datasets (petabyte range) but do not have strong statistical

analytical capabilities. As Hadoop is a popular framework for big data processing, integrating R

with Hadoop is the next logical step. Using R on Hadoop will provide highly scalable data

analytics platform which can be scaled depending on the size of the dataset. Integrating Hadoop

with R lets data scientists run R in parallel on large dataset as none of the data science libraries in

R language will work on a dataset that is larger than its memory. Big Data analytics with R and

Hadoop competes with the cost value return offered by commodity hardware cluster for vertical

scaling.

 Methods of Integrating R and Hadoop Together

Data analysts or data scientists working with Hadoop might have R packages or R scripts that

they use for data processing. To use these R scripts or R packages with Hadoop, they need to

rewrite these R scripts in Java programming language or any other language that implements

Hadoop MapReduce. This is a burdensome process and could lead to unwanted errors. To

integrate Hadoop with R programming language, we need to use a software that already is

written for R language with the data being stored on the distributed storage Hadoop. There are

many solutions for using R language to perform large computations but all these solutions

require that the data be loaded into the memory before it is distributed to the computing nodes.

This is not an ideal solution for large datasets. Here are some commonly used methods to

integrate Hadoop with R to make the best use of the analytical capabilities of R for large

R HADOOP

datasets-

1) RHADOOP –Install R on Workstations and Connect to Data in Hadoop

The most commonly used open source analytics solution to integrate R programming language

with Hadoop is RHadoop. RHadoop developed by Revolution Analytics lets users directly ingest

data from HBase database subsystems and HDFS file systems. Rhadoop package is the ‘go-to’

solution for using R on Hadoop because of its simplicity and cost advantage. Rhadoop is a

collection of 5 different packages which allows Hadoop users to manage and analyse data using

R programming language. RHadoop package is compatible with open source Hadoop and as well

with popular Hadoop distributions- Cloudera, Hortonworks and MapR.

rhbase – rhbase package provides database management functions for HBase within R using

Thrift server. This package needs to be installed on the node that will run R client. Using rhbase,

data engineers and data scientists can read, write and modify data stored in HBase tables from

within R.

rhdfs –rhdfs package provides R programmers with connectivity to the Hadoop distributed file

system so that they read, write or modify the data stored in Hadoop HDFS.

plyrmr – This package supports data manipulation operations on large datasets managed by

Hadoop. Plyrmr (plyr for MapReduce) provides data manipulation operations present in popular

packages like reshape2 and plyr. This package depends on Hadoop MapReduce to perform

operations but abstracts most of the MapReduce details.

ravro –This package lets users read and write Avro files from local and HDFS file systems.

rmr2 (Execute R inside Hadoop MapReduce) – Using this package, R programmers can perform

statistical analysis on the data stored in a Hadoop cluster. Using rmr2 might be a cumbersome

process to integrate R with Hadoop but many R programmers find using rmr2 much easier than

depending on Java based Hadoop mappers and reducers. rmr2 might be a little tedious but it

eliminates data movement and helps parallelize computation to handle large datasets.

2) RHIPE – Execute R inside Hadoop Map Reduce

RHIPE (“R and Hadoop Integrated Programming Environment”) is an R library that allows

users to run Hadoop MapReduce jobs within R programming language. R programmers just have

to write R map and R reduce functions and the RHIPE library will transfer them and invoke the

corresponding Hadoop Map and Hadoop Reduce tasks. RHIPE uses a protocol buffer encoding

scheme to transfer the map and reduce inputs. The advantage of using RHIPE over other parallel

R packages is, that it integrates well with Hadoop and provides a data distribution scheme

using HDFS across a cluster of machines - which provides fault tolerance and optimizes

processor usage.

3) R and Hadoop Streaming

Hadoop Streaming API allows users to run Hadoop MapReduce jobs with any executable script

that reads data from standard input and writes data to standard output as mapper or reducer.

Thus, Hadoop Streaming API can be used along R programming scripts in the map or reduce

phases. This method to integrate R, Hadoop does not require any client side integration because

streaming jobs are launched through Hadoop command line. MapReduce jobs submitted undergo

data transformation through UNIX standard streams and serialization to ensure Java complaint

input to Hadoop, irrespective of the language of the input script provided by the programmer.

4) RHIVE –Install R on Workstations and Connect to Data in Hadoop

If you want your Hive queries to be launched from R interface then RHIVE is the go-to package

with functions for retrieving metadata like database names, column names, and table names from

Apache Hive. RHIVE provides rich statistical libraries and algorithms available in R

programming language to the data stored in Hadoop by extending HiveQL with R language

functions. RHIVE functions allow users to apply R statistical learning models to the data stored

in Hadoop cluster that has been catalogued using Apache Hive. The advantage of using RHIVE

for Hadoop R integration is that it parallelizes operations and avoids data movement because

data operations are pushed down into Hadoop.

5) ORCH – Oracle Connector for Hadoop

ORCH can be used on non-oracle Hadoop clusters or on any other Oracle big appliance.

Mappers and Reducers are written in R programming language and MapReduce jobs are

executed from the R environments through a high level interface. With ORCH for R Hadoop

integration, R programmers do not have to learn a new programming language like Java for

https://www.dezyre.com/hadoop-course/hdfs

getting into the details of Hadoop environment like Hadoop Cluster hardware or software.

ORCH connector also allows users to test the ability of Map Reduce programs locally, through

the same function call, much before they are deployed to the Hadoop cluster.

The number of open source options for performing big data analytics with R and Hadoop is

continuously expanding but for simple Hadoop MapReduce jobs, R and Hadoop Streaming still

proves to be the best solution. The combination of R and Hadoop together is a must have toolkit

for professionals working with big data to create fast, predictive analytics combined with

performance, scalability and flexibility you need.

Most Hadoop users claim that the advantage of using R programming language is its exhaustive

list of data science libraries for statistics and data visualization. However, the data science

libraries in R language are non-distributed in nature which makes data retrieval a time

consuming affair. However, this is an in-built limitation of R programming language, but if we

just ignore it, then R and Hadoop together can make big data analytics an ecstasy!

Case Study

 Data set used: https://archive.ics.uci.edu/ml/machine-learning- databases/00275/

Step 1. Hypothesis Generation

Before exploring the data to understand the relationship between variables, I’d recommend you

to focus on hypothesis generation first. Now, this might sound counter-intuitive for solving a

data science problem. Before exploring data, think about the business problem, gain the domain

knowledge.

How does it help? This practice usually helps you form better features later on, which are not

biased by the data available in the dataset. At this stage, you are expected to posses structured

thinking i.e. a thinking process which takes into consideration all the possible aspects of a

particular problem.

Here are some of the hypothesis which I thought could influence the demand of bikes:

https://www.dezyre.com/hadoop-course/mapreduce
https://archive.ics.uci.edu/ml/machine-learning-databases/00275/
https://archive.ics.uci.edu/ml/machine-learning-databases/00275/
https://www.analyticsvidhya.com/blog/2014/02/tools-structured-thinking/
https://www.analyticsvidhya.com/blog/2014/02/tools-structured-thinking/

Hourly trend: There must be high demand during office timings. Early morning and late

evening can have different trend (cyclist) and low demand during 10:00 pm to 4:00 am.

Daily Trend: Registered users demand more bike on weekdays as compared to weekend or

holiday.

Rain: The demand of bikes will be lower on a rainy day as compared to a sunny day. Similarly,

higher humidity will cause to lower the demand and vice versa.

Temperature: In India, temperature has negative correlation with bike demand. But,

after looking at Washington’s temperature graph, I presume it may have positive correlation.

Pollution: If the pollution level in a city starts soaring, people may start using Bike (it may be

influenced by government / company policies or increased awareness).

Time: Total demand should have higher contribution of registered user as compared to casual

because registered user base would increase over time.

Traffic: It can be positively correlated with Bike demand. Higher traffic may force people to use

bike as compared to other road transport medium like car, taxi etc

Step 2. Understanding the Data Set

The dataset shows hourly rental data for two years (2011 and 2012). The training data set is for

the first 19 days of each month. The test dataset is from 20th day to month’s end. We are

required to predict the total count of bikes rented during each hour covered by the test set.

In the training data set, they have separately given bike demand by registered, casual users and

sum of both is given as count.

Training data set has 12 variables (see below) and Test has 9 (excluding registered, casual and

count).

Independent Variables

datetime: date and hour in "mm/dd/yyyy hh:mm" format

season: Four categories-> 1 = spring, 2 = summer, 3 = fall, 4 = winter

holiday: whether the day is a holiday or not (1/0)

workingday: whether the day is neither a weekend nor holiday (1/0)

weather: Four Categories of weather

1- > Clear, Few clouds, Partly cloudy, Partly cloudy

2- > Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

3- > Light Snow and Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered

clouds

4- > Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

temp: hourly temperature in Celsius

atemp: "feels like" temperature in Celsius

humidity: relative humidity

windspeed: wind speed

Dependent Variables

registered: number of registered user

casual: number of non-registered user

count: number of total rentals (registered + casual)

3. Importing Data set and Basic Data Exploration

For this solution, R (R Studio 0.99.442) in Windows Environment has been used.

Below are the steps to import and perform data exploration.

1. Import Train and Test Data Set

setwd("E:/kaggle data/bike sharing")

train=read.csv("train_bike.csv")

test=read.csv("test_bike.csv")

2. Combine both Train and Test Data set (to understand the distribution of

independent variable together).

test$registered=0

test$casual=0

test$count=0

data=rbind(train,test)

Before combing test and train data set, I have made the structure similar for both.

3. Variable Type Identification

str(data)

'data.frame': 17379 obs. of 12 variables:

$ datetime : Factor w/ 17379 levels "2011-01-01 00:00:00",..: 1 2 3 4 5 6 7 8 9 10

...

$ season : int 1 1 1 1 1 1 1 1 1 1 ...

$ holiday : int 0 0 0 0 0 0 0 0 0 0 ...

$ workingday: int 0 0 0 0 0 0 0 0 0 0 ...

$ weather : int 1 1 1 1 1 2 1 1 1 1 ...

$ temp : num 9.84 9.02 9.02 9.84 9.84 ...

$ atemp : num 14.4 13.6 13.6 14.4 14.4 ...

$ humidity : int 81 80 80 75 75 75 80 86 75 76 ...

$ windspeed : num 0 0 0 0 0 ...

$ casual : num 3 8 5 3 0 0 2 1 1 8 ...

$ registered: num 13 32 27 10 1 1 0 2 7 6 ...

$ count : num 16 40 32 13 1 1 2 3 8 14 ...

Find missing values in data set if any.

 table(is.na(data))

FALSE

208548

From Above you can see that it has returned no missing values in the data frame.

4. Understand the distribution of numerical variables and generate a frequency table

for numeric variables. plot a histogram for each numerical variables and analyze

the distribution.

par(mfrow=c(4,2))

par(mar = rep(2, 4))

hist(data$season)

hist(data$weather)

hist(data$humidity)

hist(data$holiday)

hist(data$workingday)

hist(data$temp)

hist(data$atemp)

hist(data$windspeed)

Few inferences can be drawn by looking at the these histograms:

o Season has four categories of almost equal distribution

o Weather 1 has higher contribution i.e. mostly clear weather.

prop.table(table(data$weather))

1 2 3 4

0.66 0.26 0.08 0.00

As expected, mostly working days and variable holiday is also showing a similar inference. You

can use the code above to look at the distribution in detail. Here you can generate a variable for

weekday using holiday and working day. Incase, if both have zero values, then it must be a working

day.Variables temp, atemp, humidity and windspeed looks naturally distributed.

Convert discrete variables into factor (season, weather, holiday, workingday)

data$season=as.factor(data$season)

data$weather=as.factor(data$weather)

data$holiday=as.factor(data$holiday)

data$workingday=as.factor(data$workingday)

4. Hypothesis Testing (using multivariate analysis)

Till now, we have got a fair understanding of the data set. Now, let’s test the hypothesis which

we had generated earlier. Here I have added some additional hypothesis from the dataset. Let’s

test them one by one:

 Hourly trend: We don’t have the variable ‘hour’ with us right now. But we can extract it

using the datetime column.

data$hour=substr(data$datetime,12,13)

data$hour=as.factor(data$hour)

Let’s plot the hourly trend of count over hours and check if our hypothesis is correct or

not. We will separate train and test data set from combined one.

train=data[as.integer(substr(data$datetime,9,10))<20,]

test=data[as.integer(substr(data$datetime,9,10))>19,]

boxplot(train$count~train$hour,xlab="hour", ylab="count of users")

Above, you can see the trend of bike demand over hours. Quickly, I’ll segregate the bike demand

in three categories:

High : 7-9 and 17-19 hours

Average : 10-16 hours

Low : 0-6 and 20-24 hours

Here we have analyzed the distribution of total bike demand. Let’s look at the distribution of

registered and casual users separately.

Above you can see that registered users have similar trend as count. Whereas, casual users have

different trend. Thus, we can say that ‘hour’ is significant variable and our hypothesis is ‘true’.

You might have noticed that there are a lot of outliers while plotting the count of registered and

casual users. These values are not generated due to error, so we consider them as natural outliers.

They might be a result of groups of people taking up cycling (who are not registered). To treat such

outliers, we will use logarithm transformation. Let’s look at the similar plot after log

transformation.

Daily Trend: Like Hour, we will generate a variable for day from datetime variable and after

that we’ll plot it.

date=substr(data$datetime,1,10)

days<-weekdays(as.Date(date))

data$day=days

Plot shows registered and casual users’ demand over days.

boxplot(log(train$count)~train$hour,xlab="hour",ylab="log(count)")

While looking at the plot, I can say that the demand of causal users increases over weekend.

Rain: We don’t have the ‘rain’ variable with us but have ‘weather’ which is sufficient to test our

hypothesis. As per variable description, weather 3 represents light rain and weather 4 represents

heavy rain. Take a look at the plot: It is clearly satisfying our hypothesis.

Temperature, Windspeed and Humidity: These are continuous variables so we can look at the

correlation factor to validate hypothesis.

sub=data.frame(train$registered,train$casual,train$count,train$temp,train$humidity,train

$atemp,train$windspeed)

cor(sub)

Here are a few inferences you can draw by looking at the above histograms:

 Variable temp is positively correlated with dependent

variables (casual is more compare to registered)

 Variable atemp is highly correlated with temp.

 Wind speed has lower correlation as compared to temp and humidity

Time: Let’s extract year of each observation from the date time column and see the trend

of bike demand over year.

data$year=substr(data$datetime,1,4) data$year=as.factor(data$year)

train=data[as.integer(substr(data$datetime,9,10))<20,]

test=data[as.integer(substr(data$datetime,9,10))>19,]

boxplot(train$count~train$year,xlab="year", ylab="count")

We can see that 2012 has higher bike demand as compared to 2011.

Pollution & Traffic: We don’t have the variable related with these metrics in

our data set so we cannot test this hypothesis.

5. Feature Engineering

In addition to existing independent variables, we will create new variables to

improve the prediction power of model. Initially, you must have noticed that

we generated new variables like hour, month, day and year.

Here we will create more variables, let’s look at the some of these:

Hour Bins: Initially, we have broadly categorize the hour into three

categories. Let’s create bins for the hour variable separately for casual and

registered users. Here we will use decision tree to find the accurate bins.

train$hour=as.integer(train$hour) # convert hour to

integer test$hour=as.integer(test$hour) # modifying in

both train and test data set

 We use the library rpart for decision tree algorithm.

library(rpart)

library(rattle) #these libraries will be used to get a good visual

plot for the decision tree model.

library(rpart.plot) library(RColorBrewer)

d=rpart(registered~hour,data=train)

 fancyRpartPlot(d)

Now, looking at the nodes we can create different hour bucket for registered users.

https://www.analyticsvidhya.com/blog/2015/01/decision-tree-simplified/

data=rbind(train,test)

data$dp_reg=0

data$dp_reg[data$hour<8]=1

data$dp_reg[data$hour>=22]=2

data$dp_reg[data$hour>9 &

data$hour<18]=3

data$dp_reg[data$hour==8]=4

data$dp_reg[data$hour==9]=5 data$dp_reg[data$hour==20 |

data$hour==21]=6 data$dp_reg[data$hour==19 | data$hour==18]=7

Similarly, we can create day_part for casual users also (dp_cas).

Temp Bins: Using similar methods, we have created bins for temperature for

both registered and casuals users. Variables created are (temp_reg and

temp_cas).

Year Bins: We had a hypothesis that bike demand will increase over time and

we have proved it also. Here I have created 8 bins (quarterly) for two years.

Jan-Mar 2011 as 1.Oct-Dec2012 as 8.

data$year_part[data$year=='2011']=1

data$year_part[data$year=='2011' &

data$month>3]=2

data$year_part[data$year=='2011' &

data$month>6]=3

data$year_part[data$year=='2011' &

data$month>9]=4

data$year_part[data$year=='2012']=5

data$year_part[data$year=='2012' &

data$month>3]=6

data$year_part[data$year=='2012' &

data$month>6]=7

data$year_part[data$year=='2012' &

data$month>9]=8 table(data$year_part)

Day Type: Created a variable having categories like “weekday”, “weekend” and “holiday”.

data$day_type=""

data$day_type[data$holiday==0 & data$workingday==0]="weekend"

data$day_type[data$holiday==1]="holiday"

data$day_type[data$holiday==0 &

data$workingday==1]="working day"

Weekend: Created a separate variable

for weekend (0/1)

data$weekend=0

data$weekend[data$day=="Sunday" | data$day=="Saturday"]=1

6. Model Building

Before executing the random forest model code, I have followed following steps:

 Convert discrete variables into factor (weather, season, hour,

holiday, working day, month, day)

train$hour=as.factor(train$hour)

test$hour=as.factor(test$hour)

 As we know that dependent variables have natural outliers so we will predict log of

dependent variables.

 Predict bike demand registered and casual users separately.

 y1=log(casual+1) and y2=log(registered+1),

Here we have added 1 to deal with zero values in the casual and registered columns.

 #predicting the log of registered users. set.seed(415)

fit1 <- randomForest(logreg ~ hour +workingday+day+holiday+ day_type

+temp_reg+humidity+atemp+windspeed+season+weather+dp_reg+weekend+yea

r+year_part, data=train,importance=TRUE, ntree=250)

pred1=predict(fit1,test)

test$logreg=pred1

#predicting the log of casual users. set.seed(415)

fit2 <- randomForest(logcas ~hour +

day_type+day+humidity+atemp+temp_cas+windspeed+season+weather+holiday

+workingday+dp_cas+weekend+year+year_part, data=train,importance=TRUE,

ntree=250)

pred2=predict(fit2,test)

test$logcas=pred2

Re-transforming the predicted variables and then writing the output of count to the file submit.csv

test$registered=exp(test$logreg)-1

test$casual=exp(test$logcas)-1

test$count=test$casual+test$registered

s<-data.frame(datetime=test$datetime,count=test$count)

write.csv(s,file="submit.csv",row.names=FALSE)

	Unit – I
	Introduction to R - History and fundamentals of R, Installation and use of R / R Studio / R Shiny, Installing R packages, R – Nuts and Bolts -Getting Data In and Out - Control Structures and Functions- Loop Functions-Data Manipulation- String Operatio...
	History of R
	Installation of R
	Installation of R Studio
	Nuts and Bolts of R
	Data In and Out
	Control Structures in R
	Conditional Statements:
	If-Else
	If-Else if Ladder
	Switch:
	For:
	While:
	Output:
	Jump Statements:
	Break:

	Functions in R
	Function with Arguments:
	Function with Default Argument

	LOOPING FUNCTIONS IN R
	sapply:
	apply:
	mapply:
	Syntax:
	Matrix Operations:
	Matrix Addition:
	Matrix Multiplication(Elementwise)

	String Operations in R
	Counting number of characters in a string - nchar() function
	Syntax:
	Changing the case - toupper() & tolower() functions
	Syntax
	Example:
	Syntax (1)

	Replacement Functions:sub() and gsub()
	Syntax for sub() and gsub() function in R:
	Example:
	R Data interfaces - CSV Files, XML files, Web Data- Data Preprocessing: Missing Values, Principle Component Analysis - Data Visualization – Charts & Graphs-Pie Chart, Bar Chart, Box plot, Histogram, Line graph, Scatter Plot.
	Input Data
	Reading XML File
	Get Number of Nodes Present in XML File
	Get Different Elements of a Node

	WEB DATA
	Install R Packages
	Example
	Verify the File Download
	R Charts and Graphs
	syntax
	Slice Percentages and Chart Legend
	3D Pie Chart
	BAR CHART
	Syntax
	Group Bar Chart and Stacked Bar Chart

	HISTOGRAM
	Syntax
	Example
	Range of X and Y values
	Syntax (1)
	Example (1)
	Multiple Lines in a Line Chart
	Creating the Scatterplot
	Output:
	Example (2)

	Box Plot
	Syntax
	Example 1:

	Statistical Modeling in R
	Descriptive Statistics
	Mean
	Median
	Maximum:
	Minimum:
	Range:
	The standard deviation

	Regression
	Linear Regression
	Steps to Establish a Regression
	The steps to create the relationship is −
	Input Data
	lm() Function
	Create Relationship Model & get the Coefficients
	Get the Summary of the Relationship
	predict() Function Syntax
	Predict the weight of new persons
	Visualize the Regression Graphically
	R - Multiple Regression
	lm() Function (1)
	Create Equation for Regression Model
	R - Logistic Regression
	Example
	Create Regression Model
	Conclusion

	DISTRIBUTION
	Normal Distribution:
	Properties of a normal distribution
	Standard Normal Distribution
	dnorm()
	Example and Output:
	Example and Output: (1)
	Example and Output: (2)
	Example and Output: (3)
	Characteristics of Binomial Distribution
	The binomial distribution formula is:
	Example:

	Time series Analysis
	Syntax
	Example:
	Multiple Time Series

	ANOVA
	One Way Anova:
	Analysis of Variance
	Machine Learning in R - Classification: Decision Trees, Random Forest, SVM – Clustering - Association Rule Mining - Outlier Detection.
	Machine learning
	Some machine learning methods

	Classification
	How Does Classification Works?
	Building the Classifier or Model
	Using Classifier for Classification

	Decision Tree
	Install R Package
	Syntax
	Input Data
	Constructing Decision Tree Model in R
	Checking Accracy of Constrcted Model:
	Accuracy=Total number of correctly classified observation/Total Observation
	Conclusion:
	Install R Package (1)
	Syntax (1)
	Input Data (1)
	Construct Random Forest Model:
	Checking Accuracy of the constructed Model
	Calculate Accuracy Value from the above table:
	What is Clustering?
	Applications of Cluster Analysis
	Requirements of Clustering in Data Mining
	Partitioning Method
	Hierarchical Methods
	Agglomerative Approach
	Divisive Approach
	Approaches to Improve Quality of Hierarchical Clustering
	Density-based Method
	Grid-based Method
	Advantage
	Model-based methods
	Constraint-based Method
	K-Means Clustering
	Plotting cluster output:
	Implementation of Apriori Algorithm in R import the package and use the package arules:
	Load the data set
	Convert the dataset into sparse Matrix:
	Get the Summary of the given data set:
	Plot ten items with Highest frequency :
	Generate Association Rules with support =0.003 and confidence=0.4
	Print the top 10 rules
	Outlier Analysis:
	Implementation of Outlier Analysis in R
	Print the top 5 outliers:
	Overview of R Shiny - R Hadoop - Case Study - Hypothesis Generation, Importing Data set and Basic Data Exploration,
	Feature Engineering, Model Building.

	Components of R Shiny
	Writing “ui.R”
	Writing SERVER.R
	Output:

	Shiny App for displaying summary of the given data set:
	Server.R
	ui.R
	Output:

	Methods of Integrating R and Hadoop Together
	1) RHADOOP –Install R on Workstations and Connect to Data in Hadoop
	2) RHIPE – Execute R inside Hadoop Map Reduce
	3) R and Hadoop Streaming
	4) RHIVE –Install R on Workstations and Connect to Data in Hadoop
	5) ORCH – Oracle Connector for Hadoop

	Case Study
	Step 1. Hypothesis Generation
	Step 2. Understanding the Data Set
	Independent Variables
	Dependent Variables
	3. Importing Data set and Basic Data Exploration
	2. Combine both Train and Test Data set (to understand the distribution of independent variable together).
	3. Variable Type Identification
	4. Understand the distribution of numerical variables and generate a frequency table for numeric variables. plot a histogram for each numerical variables and analyze the distribution.
	prop.table(table(data$weather))
	Convert discrete variables into factor (season, weather, holiday, workingday)
	4. Hypothesis Testing (using multivariate analysis)
	We can see that 2012 has higher bike demand as compared to 2011.
	5. Feature Engineering
	6. Model Building

