

 SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT- I - Python Programming – SCS1619

1

UNIT I

INTRODUCTION

1.1 INTRODUCTION TO THE IDLE INTERPRETER (SHELL)

Python is a freeware that can be installed on your workstation or laptop.

The current version of is Python 3.8.2. (Release date: Feb 24, 2020).

Python can be downloaded from the https://www.python.org/downloads/

website

Introduction to the IDLE interpreter (shell) -Expressions – Data Types

- Built-in function -Conditional statements - Iterative statements-

Input/output -Compound Data Types - Nested compound statements –

Introduction to Object Oriented Concepts.

2

After installation, shortcut for the python software will be available on the

start menu. Select Start menu -> All Programs -> Python 3.8 -> IDLE Python

3.8 to invoke python IDE (Integrated Development Environment).

IDLE (Integrated Development and Learning Environment) is an IDE for

Python. Python programs can also be executed in Python command line.

3

1.1.2 Program

A program performs a task in the computer. But, in order to be

executed, a program must be written in the machine language of the processor

of a computer. Unfortunately, it is extremely difficult for humans to read or

write a machine language program. This is because a machine language is

entirely made up of sequences of bits. However, high level languages are

close to natural languages like English and only use familiar mathematical

characters, operators and expressions. Hence, people prefer to write programs

in high level languages like C, C++, Java, or Python. A high level program is

translated into machine language by translators like compiler or interpreter.

1.1.3 About Python

Python is a high level programming language that is translated by the

python interpreter. As is known, an interpreter works by translating line-by-

line and executing. It was developed by Guido-van-rossum in 1990, at the

National Research Institute for Mathematics and Computer Science in

4

Netherlands. Python doesn’t refer to the snake but was named after the

famous British comedy troupe, Monty Python’s Flying Circus. Python is

Interpreted: Python is processed at runtime by the interpreter. You do not need

to compile your program before executing it.

Python is Interactive: we can actually sit at a Python prompt and

interact with the interpreter directly to write our programs.

Python is Object-Oriented: Python supports Object-Oriented style or

technique of programming that encapsulates code within objects.

Application of python used in Search engine. In mission critical

projects in Naza, in processing financial transaction at New york stock

Exchange.

The following are some of the features of Python:

 Python is an Open Source: It is freely downloadable, from the link

 “http:// python.org/”

 Python is portable: It runs on different operating systems / platforms3

 Python has automatic memory management

 Python is flexible with both procedural oriented and object oriented

programming

 Python is easy to learn, read and maintain

 Python is Extendable. You can add low-level modules to the Python is

Interpreted. These modules enable programmers to add to or customize

their tools to be more efficient.

5

 Python supports GUI applications that can be created and ported to

many system calls, libraries and windows systems, such as Windows

MFC, Macintosh, and the X Window system of Unix.

 IT supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and

Java.

 It supports functional and structured programming methods as well as

OOP.

It is very flexible with the console program, Graphical User Interface (GUI)

applications, Web related programs etc.

Points to remember while writing a Python program

 Case sensitive : Example - In case of print statement use only

lower case and not upper case, (See the snippet below)

 Punctuation is not required at end of the statement

 In case of string use single or double quotes i.e. ‘ ’ or “ ”

6

 Must use proper indentation. The screen shots given below show, how

the value of “i” behaves with indentation and without indentation.

 Special characters like (,),# etc. are used

 () ->Used in opening and closing parameters of functions

 #-> The Pound sign is used to comment a line

1.1.4 Two Modes of Python Program

Python Program can be executed in two different modes:

7

Interactive Mode Programming

It is a command line shell which gives immediate output for each statement,

while keeping previously fed statements in active memory. This mode is used

when a user wishes to run one single line or small block of code. It runs very

quickly and gives instant output. A sample code is executed using interactive

mode as below.

 Interactive mode can also be opened using the following ways:

i) From command prompt c :> users\\...>python

 Interactive mode programming

 Script mode programming

8

The symbol “>>>” in the above screen indicates that the Python environment

is in interactive mode.

ii) From the start menu select Python (As shown below)

Python interpreter in interactive mode is commonly known as Python

Shell. >>> is the prompt for Python shell. It shows that shell is ready

to accept your commands. Python shell allows you to type Python

9

code and see the result immediately. It is also known as REPL which

stands Read-Eval-Print-Loop. REPL allows you to quickly test code

snippets and see the output immediately. To quit the Python shell in

Python Command line, hit Ctrl+Z followed by the Enter Key. To quit

the Python shell in Idle, press Ctrl+Q.

Script Mode Programming

When the programmer wishes to use more than one line of code or a block of

code, script mode is preferred. The Script mode works the following way:

i) Open the Script mode

ii) Type the complete program. Comment, edit if required.

iii) Save the program with a valid name.

iv) Run

v) Correct errors, if any, Save and Run until proper output

The above steps are described in detail below:

i) To open script mode, select the menu “IDLE (Python

3.7 32-bit)” from start menu

10

ii) After clicking on the menu “IDLE (Python 3.7 32-

bit)” , a new window with the text Python 3.7.2 Shell will be

opened as shown below:

iii) Select File  New, to open editor. Type the complete program.

iv) Select File again; Choose Save.

This will automatically save the file with an extension “.py”.

v) Select Run  Run Module or Short Cut Key F5 (As shown in

the screen below)

11

The output of the program will be displayed as below:

Script mode is used to create, modify and execute Python programs. Script

mode is used for executing a set of statements at any time and any number of

times. The set of statements can be saved in a file with extension .py which

can be executed at later time. The Python Interpreter in Script mode is used to

execute the python code from a file.

1.2 VARIABLES

Variable is the name given to a reserved memory locations to store

values. It is also known as Identifier in python.

Need for variable:

Sometimes certain parameters will take different values at different

time. Hence, in order to know the current value of such parameter we need to

have a temporary memory which is identified by a name that name is called as

>> Sum of a and b is: 30

12

variable. For example, our surrounding temperature changesfrequently.In

order to know the temperature at a particular time, we need to have a variable.

Naming and Initialization of a variable

1. A variable name is made up of alphabets (Both upper and

lower cases) and digits and is case sensitive

2. No reserved words

3. Initialize before calling

4. Multiple variables initialized

5. Dynamic variable initialization

Consist of upper and lower case alphabets,Numbers (0-9).E.g. X2

i. In the above example, a memory space is assignedto variable X2.

The value of X2 is stored in this space.

ii. Reserved words should not be used as variables names.

13

In the above example “and” is a reserved word, which leads to Syntax

error

iii. Variables must be initialized before it called , else it reports “is

not defined ” error message as below E.g.: a=5 print(a)

In the above example “a” is called before it initialized. Hence, the

python interpreter generates the error message: NameError: ‘a’ is not

defined.

iv. Multiple variables can be initialized with a common value.

E.g.: x=y=z=25

In the above three variables x, y, z is assigned with same value 25.

14

v. Python also supports dynamic variable initialization. E.g.:

x,y,z=1,2,3

Proper spacing should be given

print(10+20+30) bad style

print(20 + 30 + 10)  good style

1.2.1 Expression

An expression is a combination of variables, operators, values and calls to

functions. Expressions need to be evaluated.

Need for Expression:

Suppose if you wish to calculate area. Area depends on various parameters in

different situations. E.g. Circle, Rectangle and so on…

In order to find area of circle, the expression π * r * r must be evaluated

and for the rectangle the expression is w * l in case of rectangle. Hence, in this

case a variable / value / operator are not enough to handle such situation. So

15

expressions are used. Expression is the combination of variables, values and

operations.

A simple example of an expression is 10 + 15. An expression can be

broken down into operators and operands. Few valid examples are given

below.

Invalid Expression

16

Always values should be assigned in the right hand side of the variable, but in

the below example, the value is given in the left hand side of the variable,

which is an invalid syntax for expression.

1.3 DATA TYPES

A Data type indicates which type of value a variable has in a program.

However a python variables can store data of any data type but it is necessary

to identify the different types of data they contain to avoid errors during

execution of program. The most common data types used in python are

str(string), int(integer) and float (floating-point).

17

Fig.1.1: Python Data Types

1.3.1 Numeric

Numeric data type means the data will have numeric value.

Numeric value can be integer, floating number or even complex numbers.

• Integers – Int class is used to represent integers which may be a

positive whole number or negative whole number. There is on restriction on

limit for the value of integer. Integers are whole number values such as 50,

100,-3

• Float – Float class is used to represent floating point number which is

a a real number with floating point representation. It is specified by a decimal

point. Float is a value that use decimal point and therefore may have fractional

point E.g.: 3.415, -5.15

18

• Complex Numbers – Complex class is used to represent Complex

number specified as (real part) + (imaginary part)j. For example: 5 + 7j

where 5 is the real part and 7 is the imaginary part.

By default when a user gives input it will be stored as string. But strings

cannot be used for performing arithmetic operations. For example while

attempting to perform arithmetic operation add on string values it just

concatenates (joins together) the values together rather performing addition.

For example : ‘25’ + ‘20’ = ‘45’ (As in the below Example)

Fortunately python have an option of converting one date type into another

data type (Called as “Casting”) using build in functions in python. The build

function int() converts the string into integer before performing operation to

give the right answer. (As in the below Program)

19

PROGRAM:

Python program to demonstrate numeric value

a = 10

print("Type of a: ", type(a))

b = 20.0

print("\nType of b: ", type(b))

c = 5 + 7j

print("\nType of c: ", type(c))

Output:

Type of a: <class 'int'>

Type of b: <class 'float'>

Type of c: <class 'complex'>

20

1.3.2 Boolean

The Boolean data type has two built-in values True or False. It is denoted by

the class bool.

Note – True and False with capital ‘T’ and ‘F’ are valid booleans value.

otherwise python will throw an error.

PROGRAM:

Python program to demonstrate boolean type

print(type(True))

print(type(False))

print(type(true))

Output:

<class 'bool'>

<class 'bool'>

Traceback (most recent call last):

 File "/home/jesu/boolean.py", line 9, in

 print(type(true))

NameError: name 'true' is not defined

1.3.3 Sequence Type

21

A sequence is an ordered collection of similar or different data items. Using

sequence, Multiple values can be stored in the data type in an efficient

manner. There are different types of sequence data type such as

i) Strings

ii) List

iii) Tuple

i) Strings

1.3.3.1 String

String is an array of bytes. Each byte represents a Unicode character. A

string is a collection of one or more characters put in a single quote, double-

quote or triple quote. In python there is no character data type, a character is a

string of length one. It is represented by str class.

Individual characters of a String can be accessed by using the method of

Indexing. Indexing allows negative address references to access characters

from the back of the String, e.g. -1 refers to the last character, -2 refers to the

second last character and so on. Only Integers are allowed to be passed as an

index, float or other types will cause a TypeError.

Updation or deletion of characters from a String is not allowed. This will

cause an error because item assignment or item deletion from a String is not

supported. This is because Strings are immutable, hence elements of a String

cannot be changed once it has been assigned. Only new strings can be

reassigned to the same name.

Strings: Sequence of characters inside single quotes or double quotes.

E.g. myuniv = “Sathyabama !..”

22

PROGRAM:

Python Program for String Manipulation

Creating a String with single Quotes, double quotes, tripple quotes

String1 = 'Welcome'

String2 = "Sathyabama"

String3 = '''CSE'''

Triple Quotes allows multiple lines

String4 = '''Welcome

 To

 Sathyabama'''

print("\nUsing Single quote")

print(String1)

print("\nUsing Double quote")

print(String2)

print("\nUsing Triple quote")

print(String3)

print("\nUsing Triple quote to print multiline")

print(String4)

#printing first character

print("\nPringint First Character")

print(String1[0])

#printing last character

print("\nPringint Last Character")

print(String1[-1])

23

#updating a single character

#String1[2] = 'p'

#Cannot Update because strings are immutable

Deleting a character of the String

#del String1[2]

#Cannot Delete because strings are immutable

Escaping Single Quote

String1 = 'I\'m "Trying"'

print("\nEscaping Single Quote: ")

print(String1)

Escaping Doule Quotes

String1 = "I'm a \"Trying\""

print("\nEscaping Double Quotes: ")

print(String1)

Printing Paths with the

use of Escape Sequences

String1 = "C:\\Python\\programs\\"

print("\nEscaping Backslashes: ")

print(String1)

Output:

Using Single quote

Welcome

24

Using Double quote

Sathyabama

Using Triple quote

CSE

Using Triple quote to print multiline

Welcome

 To

 Sathyabama

Pringint First Character

W

Pringint Last Character

e

Escaping Single Quote:

I'm "Trying"

Escaping Double Quotes:

I'm a "Trying"

Escaping Backslashes:

C:\Python\programs\

>>>

25

1.3.3.2 List

The List is an ordered sequence of data items. It is one of the flexible and very

frequently used data type in Python. All the items in a list are not necessary to

be of the same data type.

Declaring a list is straight forward methods. Items in the list are just separated

by commas and enclosed within brackets [].

>>> list1 =[3.141, 100, ‘CSE’, ‘ECE’, ‘IT’, ‘EEE’]

Methods used in list

list1.append(x) To add item x to the end of the list “list1”

list1.reverse() Reverse the order of the element in the list “list1”

list1.sort() To sort elements in the list

list1.reverse() To reverse the order of the elements in list1.

Lists are similar to arrays but they are homogeneous always which makes it

the most powerful tool in Python. A single list may contain Data Types like

Integers, Strings, as well as Objects. Lists are mutable. Hence, they cannot be

modified once created. Lists are ordered and have definite count. The list

index starts with 0. Duplication of elements is possible in list. The lists are

implemented by list class.

Lists in Python can be created by just placing the sequence inside the square

brackets[]. Unlike Sets, list doesn’t need a built-in function for creation of list.

https://www.programiz.com/python-programming/list

26

PROGRAM:

Python program to demonstrate List

List = []

print("Intial blank List: ")

print(List)

Creating a List with the use of a String

List = ['Welcome To Sathyabama']

print("\nList with the use of String: ")

print(List)

Creating a List with the use of multiple values

List = ["Welcome", "To", "Sathyabama"]

print("\nList containing multiple values: ")

print(List[0])

print(List[2])

Creating a Multi-Dimensional List (By Nesting a list inside a List)

List = [['Welcome', 'To'], ['Sathyabama']]

print("\nMulti-Dimensional List: ")

print(List)

Addition of Elements

in the List

List.append(1)

List.append(2)

List.append(4)

27

print("\nList after Addition of Three elements: ")

print(List)

Addition of elements in a List

Creating a List

List = []

print("Initial blank List: ")

print(List)

Addition of Elements

in the List

List.append(1)

List.append(2)

List.append(4)

print("\nList after Addition of Three elements: ")

print(List)

Addition of Element at

specific Position

(using Insert Method)

List.insert(3, 12)

List.insert(0, 'Sathyabama')

print("\nList after performing Insert Operation: ")

print(List)

Addition of multiple elements

to the List at the end

28

(using Extend Method)

List.extend([8, 'Sathyabama', 'Always'])

print("\nList after performing Extend Operation: ")

print(List)

Python program to demonstrate

accessing of element from list

Creating a List with

the use of multiple values

List = ["Welcome", "To", "Sathyabama"]

accessing a element from the

list using index number

print("\nAccessing element from the list")

print(List[0])

print(List[2])

accessing a element using

negative indexing

print("\nAccessing element using negative indexing")

print the last element of list

print(List[-1])

print the third last element of list

print(List[-3])

29

List = [1, 2, 3, 4, 5, 6,

 7, 8, 9, 10, 11, 12]

print("\nIntial List: ")

print(List)

Removing elements from List

using Remove() method

List.remove(3)

List.remove(4)

print("\nList after Removal of two elements: ")

print(List)

List.pop()

print("\nList after popping an element: ")

print(List)

Removing element at a

specific location from the

Set using the pop() method

List.pop(2)

print("\nList after popping a specific element: ")

print(List)

OUTPUT:

30

Intial blank List:

[]

List with the use of String:

['Welcome To Sathyabama']

List containing multiple values:

Welcome

Sathyabama

Multi-Dimensional List:

[['Welcome', 'To'], ['Sathyabama']]

List after Addition of Three elements:

[['Welcome', 'To'], ['Sathyabama'], 1, 2, 4]

Initial blank List:

[]

List after Addition of Three elements:

[1, 2, 4]

List after performing Insert Operation:

['Sathyabama', 1, 2, 4, 12]

List after performing Extend Operation:

['Sathyabama', 1, 2, 4, 12, 8, 'Sathyabama', 'Always']

Accessing element from the list

31

Welcome

Sathyabama

Accessing element using negative indexing

Sathyabama

Welcome

Intial List:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

List after Removal of two elements:

[1, 2, 5, 6, 7, 8, 9, 10, 11, 12]

List after popping an element:

[1, 2, 5, 6, 7, 8, 9, 10, 11]

List after popping a specific element:

[1, 2, 6, 7, 8, 9, 10, 11]

>>>

1.3.3.3 Tuple

Tuple is also an ordered sequence of items of different data types like list. But,

in a list data can be modified even after creation of the list whereas Tuples are

immutable and cannot be modified after creation.

The advantages of tuples is to write-protect data and are usually very fast

when compared to lists as a tuple cannot be changed dynamically.

https://www.programiz.com/python-programming/tuple

32

The elements of the tuples are separated by commas and are enclosed inside

open and closed brackets.

>>> t = (50,'python', 2+3j)

List Tuple

>>> list1[12,45,27]

>>> list1[1] = 55

>>> print(list1)

>>> [12,55,27]

>>> t1 = (12,45,27)

>>> t1[1] = 55

>>> Generates Error Message

Because Tuples are immutable

The values stored in a tuple can be of any type, and they are indexed by

integers. The important difference between a list and a tuple is that tuples are

immutable. Tuples are hashable whereas lists are not. It is represented by tuple

class.

In Python, tuples are created by placing sequence of values separated by

‘comma’ with or without the use of parentheses for grouping of data

sequence. Tuples can contain any number of elements and of any datatype

(like strings, integers, list, etc.). Tuples can also be created with a single

element, but it is a bit tricky. Having one element in the parentheses is not

sufficient, there must be a trailing ‘comma’ to make it a tuple.

33

Note – Creation of Python tuple without the use of parentheses is known as

Tuple Packing.

PROGRAM:

Python program to demonstrate Set

Creating an empty tuple

Tuple1 = ()

print("Initial empty Tuple: ")

print (Tuple1)

Creating a Tuple with the use of Strings

Tuple1 = ('Welcome', 'Sathyabama')

print("\nTuple with the use of String: ")

print(Tuple1)

Creating a Tuple with the use of list

list1 = [1, 2, 4, 5, 6]

print("\nTuple using List: ")

print(tuple(list1))

Creating a Tuple with the use of built-in function

Tuple1 = tuple('Sathyabama')

print("\nTuple with the use of function: ")

print(Tuple1)

Creating a Tuple with nested tuples

Tuple1 = (0, 1, 2, 3)

34

Tuple2 = ('python', 'program')

Tuple3 = (Tuple1, Tuple2)

print("\nTuple with nested tuples: ")

print(Tuple3)

demonstrate accessing tuple

tuple1 = tuple([1, 2, 3, 4, 5])

Accessing element using indexing

print("Frist element of tuple")

print(tuple1[0])

Accessing element from last

negative indexing

print("\nLast element of tuple")

print(tuple1[-1])

print("\nThird last element of tuple")

print(tuple1[-3])

demonstrate updation / deletion from a tuple

tuple1 = tuple([1, 2, 3, 4, 5])

print("Initial tuple")

print(tuple1)

Updating an element of a tuple is not possible as it is immutable

#tuple1[0] = -1

35

Deleting an element from a tuple is not possible as it is immutable

#del tuple1[2]

OUTPUT:

Initial empty Tuple:

()

Tuple with the use of String:

('Welcome', 'Sathyabama')

Tuple using List:

(1, 2, 4, 5, 6)

Tuple with the use of function:

('S', 'a', 't', 'h', 'y', 'a', 'b', 'a', 'm', 'a')

Tuple with nested tuples:

((0, 1, 2, 3), ('python', 'program'))

Frist element of tuple

1

Last element of tuple

5

Third last element of tuple

3

36

Initial tuple

(1, 2, 3, 4, 5)

>>>

1.3.3.4 Set

The Set is an unordered collection of unique data items.Items in a set are not

ordered, separated by comma and enclosed inside { } braces. Sets are helpful

inperforming operations like union and intersection. However, indexing is not

done because sets are unordered.

List Set

>>> L1 = [1,20,25]

>>> print(L1[1])

>>> 20

>>> S1= {1,20,25,25}

>>> print(S1)

>>> {1,20,25}

>>> print(S1[1])

>>>Error , Set object does not support

indexing.

It is iterable, mutable and has no duplicate elements. The order of elements in

a set is undefined though it may consist of various elements. The major

advantage of using a set, as opposed to a list, is that it has a highly optimized

method for checking whether a specific element is contained in the set. Type

of elements in a set need not be the same, various mixed-up data type values

can also be passed to the set.

https://www.programiz.com/python-programming/set

37

PROGRAM:

Python program to demonstrate Set in Python

set1 = set()

print("Intial blank Set: ")

print(set1)

Creating a Set with the use of a String

set1 = set("Welcome to Python")

print("\nSet with the use of String: ")

print(set1)

Creating a Set with the use of a List

set1 = set(["Python", "is", "Simple"])

print("\nSet with the use of List: ")

print(set1)

Creating a Set with a mixed type of values

(Having numbers and strings)

set1 = set([1, 2, 'Python', 4, 'is', 6, 'simple'])

print("\nSet with the use of Mixed Values")

print(set1)

Addition of elements in a Set

set1 = set()

print("Intial blank Set: ")

print(set1)

38

Adding element and tuple to the Set

set1.add(8)

set1.add(9)

set1.add((6, 7))

print("\nSet after Addition of Three elements: ")

print(set1)

Addition of elements to the Set using Update function

set1.update([10, 11])

print("\nSet after Addition of elements using Update: ")

print(set1)

Accessing of elements in a set

Creating a set

set1 = set(["Python", "is", "Excellent"])

print("\nInitial set")

print(set1)

Accessing element using for loop

print("\nElements of set: ")

for i in set1:

 print(i, end =" ")

Checking the element using in keyword

print("Great" in set1)

39

Deletion of elements in a Set

Creating a Set

set1 = set([1, 2, 3, 4, 5, 6,

 7, 8, 9, 10, 11, 12])

print("Intial Set: ")

print(set1)

Removing elements from Set using Remove() method

set1.remove(5)

set1.remove(6)

print("\nSet after Removal of two elements: ")

print(set1)

Removing elements from Set using Discard() method

set1.discard(8)

set1.discard(9)

print("\nSet after Discarding two elements: ")

print(set1)

Removing element from the Set using the pop() method

set1.pop()

print("\nSet after popping an element: ")

print(set1)

Removing all the elements from Set using clear() method

set1.clear()

print("\nSet after clearing all the elements: ")

40

print(set1)

OUTPUT:

Intial blank Set:

set()

Set with the use of String:

{'t', ' ', 'h', 'o', 'e', 'm', 'W', 'P', 'c', 'y', 'n', 'l'}

Set with the use of List:

{'Python', 'is', 'Simple'}

Set with the use of Mixed Values

{1, 2, 4, 6, 'is', 'Python', 'simple'}

Intial blank Set:

set()

Set after Addition of Three elements:

{8, 9, (6, 7)}

Set after Addition of elements using Update:

{8, 9, (6, 7), 10, 11}

Initial set

{'Python', 'is', 'Excellent'}

Elements of set:

Python is Excellent False

41

Intial Set:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Set after Removal of two elements:

{1, 2, 3, 4, 7, 8, 9, 10, 11, 12}

Set after Discarding two elements:

{1, 2, 3, 4, 7, 10, 11, 12}

Set after popping an element:

{2, 3, 4, 7, 10, 11, 12}

Set after clearing all the elements:

set()

>>>

1.3.3.5 Dictionary

Dictionary is an unordered collection of data values. It is used to store data

values like a map. Dictionary holds key:value pair. Key-value is provided in

the dictionary to make it more optimized. Each key-value pair is separated by

a colon :, whereas each key is separated by a ‘comma’.

Dictionary can be created by placing a sequence of elements within curly {}

braces, separated by ‘comma’. Dictionary holds a pair of values, one being the

Key and the other corresponding pair element being its Key:value. Values in a

dictionary can be of any datatype and can be duplicated, whereas keys can’t

be repeated and must be immutable.

42

Dictionary can also be created by the built-in function dict(). An empty

dictionary can be created by just placing to curly braces{}.

Note – Dictionary keys are case sensitive, same name but different cases of

Key will be treated distinctly.

Dictionaries are optimized for retrieving data when there is huge volume of

data. They provide the key to retrieve the value.

>>> d1={1:'value','key':2}

>>> type(d)

PROGRAM:

Creating an empty Dictionary

Dict = {}

print("Empty Dictionary: ")

print(Dict)

Creating a Dictionary

with Integer Keys

Dict = {1: 'Python', 2: 'Is', 3: 'Powerful'}

print("\nDictionary with the use of Integer Keys: ")

print(Dict)

Creating a Dictionary

with Mixed keys

Dict = {'Name': 'Python', 1: [1, 2, 3, 4]}

print("\nDictionary with the use of Mixed Keys: ")

43

print(Dict)

Creating a Dictionary

with dict() method

Dict = dict({1: 'Python', 2: 'Is', 3:'Efficient'})

print("\nDictionary with the use of dict(): ")

print(Dict)

Creating a Dictionary

with each item as a Pair

Dict = dict([(1, 'Python'), (2, 'Programming')])

print("\nDictionary with each item as a pair: ")

print(Dict)

Creating an empty Dictionary

Dict = {}

print("Empty Dictionary: ")

print(Dict)

Adding elements one at a time

Dict[0] = 'Python'

Dict[2] = 'Program'

Dict[3] = 1

print("\nDictionary after adding 3 elements: ")

print(Dict)

 # Updating existing Key's Value

Dict[2] = 'Welcome'

print("\nUpdated key value: ")

print(Dict)

Python program to demonstrate

accessing a element from a Dictionary

44

Creating a Dictionary

Dict = {1: 'Python', 'name': 'Is', 3: 'Case-Sensitive'}

 # accessing a element using key

print("Accessing a element using key:")

print(Dict['name'])

accessing a element using get() method

print("Accessing a element using get:")

print(Dict.get(3))

Initial Dictionary

Dict = { 5 : 'Welcome', 6 : 'To', 7 : 'Python',

 'A' : {1 : 'Python', 2 : 'Is', 3 : 'Simple'},

 'B' : {1 : 'Python', 2 : 'Pramming'}}

print("Initial Dictionary: ")

print(Dict)

Deleting a Key value

del Dict[6]

print("\nDeleting a specific key: ")

print(Dict)

Deleting a Key

using pop()

Dict.pop(5)

print("\nPopping specific element: ")

print(Dict)

Deleting an arbitrary Key-value pair using popitem()

Dict.popitem()

print("\nPops an arbitrary key-value pair: ")

45

print(Dict)

Deleting entire Dictionary

Dict.clear()

print("\nDeleting Entire Dictionary: ")

print(Dict)

OUTPUT:

Empty Dictionary:

{}

Dictionary with the use of Integer Keys:

{1: 'Python', 2: 'Is', 3: 'Powerful'}

Dictionary with the use of Mixed Keys:

{'Name': 'Python', 1: [1, 2, 3, 4]}

Dictionary with the use of dict():

{1: 'Python', 2: 'Is', 3: 'Efficient'}

Dictionary with each item as a pair:

{1: 'Python', 2: 'Programming'}

Empty Dictionary:

{}

Dictionary after adding 3 elements:

{0: 'Python', 2: 'Program', 3: 1}

Updated key value:

{0: 'Python', 2: 'Welcome', 3: 1}

Accessing a element using key:

Is

Accessing a element using get:

Case-Sensitive

Initial Dictionary:

46

{5: 'Welcome', 6: 'To', 7: 'Python', 'A': {1: 'Python', 2: 'Is', 3: 'Simple'}, 'B': {1:

'Python', 2: 'Pramming'}}

Deleting a specific key:

{5: 'Welcome', 7: 'Python', 'A': {1: 'Python', 2: 'Is', 3: 'Simple'}, 'B': {1:

'Python', 2: 'Pramming'}}

Popping specific element:

{7: 'Python', 'A': {1: 'Python', 2: 'Is', 3: 'Simple'}, 'B': {1: 'Python', 2:

'Pramming'}}

Pops an arbitrary key-value pair:

{7: 'Python', 'A': {1: 'Python', 2: 'Is', 3: 'Simple'}}

Deleting Entire Dictionary:

{}

>>>

1.4 PYTHON BUILT-IN FUNCTIONS

A function is a group of statements that performs a specific task. Python

provides a library of functions like any other programming language. The

built-in functions such as eval, input, print, and int are always available in the

Python interpreter. You don’t have to import any modules to use these

functions.

Table.1.1: Simple Python Built-in Functions

Function Description Example

abs(x) Returns the absolute value for

x

abs(-2) is 2

47

max(x1, x2, ...) Returns the largest among x1,

x2, ...

max(1, 5, 2) is 5

min(x1, x2, ...) Returns the smallest among

x1, x2, ...

min(1, 5, 2) is 1

pow(a, b) Returns ab. Same as a ** b. pow(2, 3) is 8

round(x) Returns an integer nearest to

x. If x is equally close to two

integers, the even one is

returned.

round(5.4) is 5

round(5.5) is 6

round(4.5) is 4

round(x, n) Returns the float value

rounded to n digits after the

decimal point.

round(5.466, 2) is 5.47

round(5.463, 2) is 5.46

Table 1.2: Mathematical Functions

Function Description Example

fabs(x) Returns the absolute value for x as a

float.

fabs(-2) is 2.0

ceil(x) Rounds x up to its nearest integer and

returns that integer.

ceil(2.1) is 3

ceil(-2.1) is -2

floor(x) Rounds x down to its nearest integer

and returns that integer.

floor(2.1) is 2

floor(-2.1) is -3

exp(x) Returns the exponential function of x

(ex).

exp(1) is 2.71828

log(x) Returns the natural logarithm of x. log(2.71828) is 1.0

log(x, base) Returns the logarithm of x for the

specified base.

log(100, 10) is 2.0

sqrt(x) Returns the square root of x. sqrt(4.0) is 2

48

sin(x) Returns the sine of x. x represents an

angle in radians.

sin(3.14159 / 2) is 1

sin(3.14159) is 0

asin(x) Returns the angle in radians for the

inverse of sine.

asin(1.0) is 1.57

asin(0.5) is

0.523599

cos(x) Returns the cosine of x. x represents an

angle in radians.

cos(3.14159 / 2) is

0

cos(3.14159) is -1

acos(x) Returns the angle in radians for the

inverse of cosine.

acos(1.0) is 0

acos(0.5) is 1.0472

tan(x) Returns the tangent of x. x represents

an angle in radians.

tan(3.14159 / 4) is 1

tan(0.0) is 0

degrees(x) Converts angle x from radians to

degrees.

degrees(1.57) is 90

radians(x) Converts angle x from degrees to

radians.

radians(90) is 1.57

PROGRAM:

import math # import math module to use the math functions

Test algebraic functions

print("exp(1.0) =", math.exp(1))

print("log(2.78) =", math.log(math.e))

print("log10(10, 10) =", math.log(10, 10))

print("sqrt(4.0) =", math.sqrt(4.0))

Test trigonometric functions

print("sin(PI / 2) =", math.sin(math.pi / 2))

print("cos(PI / 2) =", math.cos(math.pi / 2))

49

print("tan(PI / 2) =", math.tan(math.pi / 2))

print("degrees(1.57) =", math.degrees(1.57))

print("radians(90) =", math.radians(90))

OUTPUT:

exp(1.0) = 2.718281828459045

log(2.78) = 1.0

log10(10, 10) = 1.0

sqrt(4.0) = 2.0

sin(PI / 2) = 1.0

cos(PI / 2) = 6.123233995736766e-17

tan(PI / 2) = 1.633123935319537e+16

degrees(1.57) = 89.95437383553924

radians(90) = 1.5707963267948966

>>>

Table 1.3: String Functions

Method Description

capitalize() Converts the first character to upper case

casefold() Converts string into lower case

center() Returns a centered string

count()

Returns the number of times a specified value occurs

in a string

encode() Returns an encoded version of the string

endswith() Returns true if the string ends with the specified value

50

expandtabs() Sets the tab size of the string

find()

Searches the string for a specified value and returns

the position of where it was found

format() Formats specified values in a string

format_map() Formats specified values in a string

index()

Searches the string for a specified value and returns

the position of where it was found

isalnum()

Returns True if all characters in the string are

alphanumeric

isalpha()

Returns True if all characters in the string are in the

alphabet

isdecimal() Returns True if all characters in the string are decimals

isdigit() Returns True if all characters in the string are digits

isidentifier() Returns True if the string is an identifier

islower()

Returns True if all characters in the string are lower

case

isnumeric() Returns True if all characters in the string are numeric

isprintable() Returns True if all characters in the string are printable

isspace()

Returns True if all characters in the string are

whitespaces

istitle() Returns True if the string follows the rules of a title

isupper()

Returns True if all characters in the string are upper

case

join()

Joins the elements of an iterable to the end of the

string

ljust() Returns a left justified version of the string

lower() Converts a string into lower case

51

lstrip() Returns a left trim version of the string

maketrans() Returns a translation table to be used in translations

partition()

Returns a tuple where the string is parted into three

parts

replace()

Returns a string where a specified value is replaced

with a specified value

rfind()

Searches the string for a specified value and returns

the last position of where it was found

rindex()

Searches the string for a specified value and returns

the last position of where it was found

rjust() Returns a right justified version of the string

rpartition()

Returns a tuple where the string is parted into three

parts

rsplit()

Splits the string at the specified separator, and returns

a list

rstrip() Returns a right trim version of the string

split()

Splits the string at the specified separator, and returns

a list

splitlines() Splits the string at line breaks and returns a list

startswith() Returns true if the string starts with the specified value

strip() Returns a trimmed version of the string

swapcase()

Swaps cases, lower case becomes upper case and vice

versa

title() Converts the first character of each word to upper case

translate() Returns a translated string

upper() Converts a string into upper case

52

zfill()

Fills the string with a specified number of 0 values at

the beginning

1.5 CONDITIONAL STATEMENTS

When there is no condition placed before any set of statements , the

program will be executed in sequential manure. But when some condition is

placed before a block of statements the flow of execution might change

depends on the result evaluated by the condition. This type of statement is also

called decision making statements or control statements. This type of

statement may skip some set of statements based on the condition.

Logical Conditions Supported by Python

 Equal to (==) Eg: a == b

 Not Equal (!=)Eg : a != b

 Greater than (>) Eg: a > b

 Greater than or equal to (>=) Eg: a >= b

 Less than (<) Eg: a < b

 Less than or equal to (<=) Eg: a <= b

Indentation

C Program Python

x = 500

y = 200

if (x > y)

{

 printf("x is greater than y")

}

else if(x == y)

{

x = 500

y = 200

if x > y:

 print("x is greater than y")

elif x == y:

 print("x and y are equal")

else:

 print("x is less than y")

53

 printf("x and y are equal")

}

else

{

 printf("x is less than y")

}

Indentation (At least one White Space

instead of curly bracket)

Structure of C- Program Vs Python

 To represent a block of statements other programming languages like

C, C++ uses “{ …}” curly – brackets , instead of this curly braces python uses

indentation using white space which defines scope in the code. The example

given below shows the difference between usage of Curly bracket and white

space to represent a block of statement.

Without proper Indentation:

x = 500

y = 200

if x > y:

print("x is greater than y")

In the above example there is no proper indentation after if statement which

will lead to Indentation error.

1.5.1 If Statement

The ‘if’ statement is written using “if” keyword, followed by a condition.If

the condition is true the block will be executed. Otherwise, the control will

be transferred to the firststatement after the block.

Syntax:

54

if<Boolean>:

 <block>

Fig.1.3: if statement

In this statement, the order of execution is purely based on the evaluation of

boolean expression.

Example:

x = 200

y = 100

if x > y:

 print("X is greater than Y")

print(“End”)

55

Output :

X is greater than Y

End

In the above the value of x is greater than y , hence it executed the print

statement whereas in the below example x is not greater than y hence it is not

executed the first print statement

x = 100

y = 200

if x > y:

 print("X is greater than Y")

print(“End”)

Output :

End

Elif

The elif keyword is useful for checking another condition when one condition

is false.

56

Example

mark = 55

if (mark >=75):

print("FIRST CLASS")

elif mark >= 50:

print("PASS")

Output :

In the above the example, the first condition (mark >=75) is false then the

control is transferred to the next condition (mark >=50), Thus, the keyword

elif will be helpful for having more than one condition.

Else

57

The else keyword will be used as a default condition. i.e. When there are

many conditions, whentheif-condition is not trueand all elif-conditionsare

also not true, then else part will be executed..

Fig.1.4: if-eslse statement

Example

mark = 10

if mark >= 75:

print("FIRST CLASS")

elif mark >= 50:

print("PASS")

else:

print("FAIL")

58

In the example above, condition 1 and condition 2 fail.Noneof the

preceding condition is true. Hence,the else part is executed.

1.5.2 Iterative Statements

Sometimes certain section of the code (block) may need tobe repeated again

and again as long as certain condition remains true. In order to achieve this,

the iterativestatements are used.The number of times the block needs to be

repeated is controlled by the test condition used in that statement. This type

of statement is also called as the “Looping Statement”. Looping statements

add a surprising amount of new power to the program.

Need for Looping / Iterative Statement

Suppose the programmer wishes to display the string “Sathyabama !...” 150

times. For this,one can use the print command 150 times.

150 times

59

The above method is somewhat difficult and laborious. The same result can

be achieved by a loop using just two lines of code.(As below)

Types of looping statements

1) for loop

2) while loop

1.5.2.1 The ‘for’ Loop

 The forloop is one of the powerful and efficient statements in

python which is used very often. It specifies how many times the body of

the loops needs to be executed. For this reason it uses control variables

which keep tracks,the count of execution. The general syntax of a ‘for’ loop

looks as below:

for<variable>in range (A,B):

<body of the loop >

print(“Sathyabama
!...”)

print(“Sathyabama
!...”)
…..
…..

print(“Sathyabama
!...”)

for count in
range(1,150) :

print (“Sathyabama
!...”)

60

Flow Chart:

Fig.1.5: for loop

Example 1: To compute the sum of first n numbers (i.e. 1 + 2 + 3 + …….

+ n)

Sum.py

total = 0

n = int (input ("Enter a Positive Number"))

for i in range(1,n+1):

total = total + i

print ("The Sum is ", total)

Note:Why (n+1)? Check in table given below.

61

Output:

In the above program, the statement total = total + i is repeated again and

again ‘n’ times. The number of execution count is controlled by the variable

‘i’. The range value is specified earlier before it starts executing the body of

loop. The initial value for the variable i is 1 and final value depends on ‘n’.

You may also specify any constant value.

 The range() Function:

The range() function can be called in three different ways based on the

number of parameters. All parameter values must be integers.

62

Type Example Explanation

range(end) for i in range(5):

 print(i)

Output :

0,1,2,3,4

This is begins at 0.

Increments by 1. End just

before the value of end

parameter.

range(begin,end) for i in range(2,5):

 print(i)

Output :

2,3,4

Starts at begin, End before

end value, Increment by 1

range(begin,end,step) for i in range(2,7,2)

 print(i)

Output :

2,4,6

Starts at begin, End before

end value, increment by

step value

Example:To compute Harmonic Sum (ie: 1 + ½ + 1/3 + ¼ + …..1/n)

harmonic.py

total = 0

n= int(input("Enter a Positive Integer:"))

for i in range(1,n+1):

total+= 1/i

63

print("The Sum of range 1 to ",n, "is", total)

Output:

Example:

Factorial of a number "n"

n= int(input("Enter a Number :"))

factorial = 1

Initialize factorial value by 1

Toverify whether the given number is negative / positive / zero

if n < 0:

print("Negative Number , Enter valid Number !...")

elif n == 0:

64

print("The factorial of 0 is 1")

else:

for i in range(1,n + 1):

factorial = factorial*i

print("The factorial of" ,n, "is", factorial)

Output:

1.5.2.2 The while Loop

The while loop allows the program to repeat the body of a loop, any

number of times, when some condition is true.The drawback of while loop

65

is that, if the condition not proper it may lead to infinite looping. So the

user has to carefully choose the condition in such a way that it will

terminate at a particular stage.

Flow Chart:

Fig.1.6: while loop

Syntax:

66

In this type of loop, The execution of the loop body is purely based on the

output of the given condition. As long as the condition is TRUE or in other

words until the condition becomes FALSE the program will repeat the body

of loop.

Valid Example Invalid Example

i = 10

while i<15 :

 print(i)

 i = i + 1

Output :

10,11,12,13,14

i = 10

while i<15 :

 print(i)

Output :

10,10,10,10……..

Indeterminate number of times

Example: Program to display Fibonacci Sequence

Program to Display Fibonacci Sequence based on number of terms

n

n = int(input("Enter number of terms in the sequence you want to

display"))

while (condition):

 <body of the loop>

67

n1 represents -- > first term and n2 represents --> Second term

n1 = 0

n2 = 1

count = 0

count -- To check number of terms

if n <= 0: # To check whether valid number of terms

print ("Enter a positive integer")

elif n == 1:

print("Fibonacci sequence up to",n,":")

print(n2)

else:

print("Fibonacci sequence of ",n, “ terms :”)

while count < n:

print(n1,end=' , ')

nth = n1 + n2

 n1 = n2

 n2 = nth

count = count + 1

1.6 INPUT / OUTPUT STATEMENT

Programmer often has a need to interact with users, either to get data or to

provide some sort of result.

68

For Example: In a program to add two numbers, first the program needs to

have an input of two numbers (The numbers which they prefer to add) and

after processing, the output should be displayed. So to get the input of two

numbers, the program need to have an Input Statement and in order to display

the result i.e. the sum of two numbers, it needs to have an Output Statement.

1.6.1 Input Statement

Helpful to take input from the user through input devices like keyboard.In

Python, the standard input function is ‘input()’

The syntax for input function is as follows:

 input()

However, to get an input by prompting the user, the following form is used:

 input(‘prompt’)

where prompt is the string, which programmer wish to display on the screen

to give more clarity about the input data. It is optional.

Example:

 >>>num = input('Enter a number: ')

The above statement will wait till the user, enters the input value.

Output:

 Enter a number:

 >>>num

69

 '10' # Input data entered by the user

1.6.2 Output Statement

The output statement is used to display the output in the standard output

devices like monitor (screen).The standard output function “print()” is used.

Syntax:

print(‘prompt’)

where prompt is the string, which programmer wish to display on the screen

Example 1:

print('Welcome to the Python World !')

Output:

Welcome to the Python World !

Example 2:

X = 5

print ('The value of a is', X)

Output:

The value of X is 5

Example 3:

70

print(1,2,3,4)

Output: 1 2 3 4

Example 4:

print(100,200,300,4000,sep='*')

Output:

100*200*300*4000

Example 5:

print(1,2,3,4,sep='#',end='&')

Output:

1#2#3#4&

1.7 OBJECT ORIENTED PROGRAMMING

Python supports object oriented programming concepts. The basic entities in

object oriented programming are Class, Objects, and Methods. It also supports

some of the techniques in real world entities like inheritance, Data hiding,

Polymorphism, Encapsulation, MethodOverloading etc., in programming.

Object orientation helps to utilize GUI environment efficiently. Some of the

otherprogramming languages which support OOPS concepts are C++, JAVA,

C#.net, VB.net etc.

71

Need for Object Oriented Programming

The object oriented programming is having certain advantage when

compared to the normal procedure oriented programming. The main

advantage is to provide access specifiers like Public, Private and Protected.

Oops provide data hiding technique which is more secured than procedure

oriented programming. Code reusability is one of the key features of OOPs

Concept.

 Class

 It is a template or blue print created by the programmer – which defines how

the object’s data field and methods are represented. Basically class consists of

two parts: data member and function member (methods).

Object

 It is an instance of a Class;Any number objects can be created.

Class Name: Student

Data Fields:

 Name,

Mark1,Mark2,Mark3

Methods:

 Average ()

 Rank ()

72

A Class is a template for creating an object. Python provides a special

method, __init__ ,called as initializer, to initialize a new object when it is

created.

Example :

class Student:

def __init__(self, name, regno):

 self.name = name

 self.regno = regno

 s1 = Student("John", 36)

print(s1.name)

print(s1.regno)

In the above example “Student” is the class name, name andregno are the

data fields and s1 is the created object,

Note :

__init__ is a method or constructor in Python. This method is

automatically called to allocate memory when a new object/ instance

of a class is created. All classes have the __init__ method.

Output :

>>> John

 36

Let us create a method (Function member) for the above class

https://www.edureka.co/blog/python-programming-language

73

class Student:

def __init__(self,name, regno):

 self.name = name

self.regno = regno

def display(self):

print("Name of the student is " + self.name)

s1 = Student("James", 43)

s1.display()

In the above example “display” is the method used to display the student

name.

1.7.1 Inheritance

Inheritance allows to create anew class (Child Class) from the existing class

(Parent Class).The child class inherits all the attributes of its parent class.

Parent class is the class, whose properties are being inherited by subclass.

Parent class is also called as Base class or Super Class.

Child class is the class that inherits properties from another class. The child

class is also called as Sub class or Derived Class.

 Example :

class Person:

def __init__(self, fname, lname):

74

self.firstname = fname

self.lastname = lname

def printdetails(self):

print(self.firstname, self.lastname)

#Use the Person class to create an object and then execute the

printdetails method:

x = Person("John", "Doe")

x.printdetails()

classEmployee(Person):

pass

y = Employee("Mike", "Olsen")

y.printdetails()

Output :

>>>

 RESTART:

C:/Users/Administrator/AppData/Local/Programs/Python/Python37-

32/f1.py

John Doe

Mike Olsen

>>>

75

In the above example the base class is Person. The first object “x” is created

through the base class “Person” and the method printdetails() is invoked

with that object which produces an output “John Doe”. Again, another

object “y” is created through derived class “Employee” and the same

method printdetails() (belongs to base class) is invoked to produce the

output “Mike Olsen”. Thus, the derived class is having the ability to invoke

the method from base class just because of the inheritance property which

reduces the code length or in other words it is helpful for reusability of

code.

Note: Use the pass keyword when the programmer does not wish to add any

other properties or methods to the derived class.

Example 2:

class Person:

def __init__(self, fname, lname):

self.firstname = fname

self.lastname = lname

def printdetails(self):

print(self.firstname, self.lastname)

#Object For Base Class

x = Person("Paul", "Benjamin")

x.printdetails()

76

class Employee(Person):

def __init__(self, fname, lname):

 Person.__init__(self, fname, lname)

 self.doj = 2019

defgreetings(self):

print("Welcome", self.firstname, self.lastname, "who joined in the

year ", self.doj)

Object for derived class

y = Employee("Samuel", "Ernest")

y.printdetails()

y.greetings()

In the above example a new method greetings() is included in the derived

class, Thus the derived class object is capable of invoking the method

present inside base class as well as its own methods.

printdetails() -- method present inside base class Person.

greetings() -- method present inside derived class Employee.

The object “y” is able to invoke both the methods printdetails() and

greetings().

77

Questions :

1. Compare a) List and Tuple b) List and Set

2. What is type conversion in Python?

3. Is indentation required in python?

4. What is __init__?

5. How can you randomize the items of a list in place in Python?

6. How do you write comments in python?

7. What is a dictionary in Python?

8. Does Python have OOPs concepts?

9. Write a program in Python to check if a sequence is a Palindrome.

78

10. Write a program in Python to check if a number is prime.

11. How to create an empty class in Python?

12. Write a sorting algorithm for a numerical dataset in Python.

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-II - Python Programming – SCS1619

1

UNIT II

FILE HANDLING

File Operations –Iterators - Exception handling - Regular Expressions

2.1 FILE OPERATIONS

An object that stores data, settings or programming commands in a computer

system is called as a file. The data’s used in a program is temporary. The data

is lost when the program terminates. A file is used to store data permanently.

There are three major file operations:

 Opening a file

 Performing file operations using Read or Write

 Closing the file

2.1.1. File Open

To open a file create a file object and use the open() function. The open

function returns a file object for the filename. The access mode specifies how

the file is used

Method:open()

Purpose: To open a file

2

Syntax:

File_object=open(filename,Access_mode,buffering)

Attributes:

i. Filename – Name of the file

ii. Access_mode- Mode of Access (Read, Write, Append)

iii. Buffering – 0 (no buffer), 1 (buffer)

Example:

f= open(‘abc.txt’) (or)

f=open(“D:/Mypython/abc.txt”)

3

2.1.1.1 File Access Modes

Table 2.1: File Access Modes

File Mode Description

r Read mode

w Write mode

x Create and open a file

a Appending at end of file

t Text mode

b Binary mode

+ Update mode

Example:

f= open(‘abc.txt’, r)

The above statement opens the file ‘abc.txt’ in read mode.

4

2.1.1.2 Example for File Access modes and Properties

The above code is a sample snippet for understanding the file modes and file

properties.

(e.g)

To open a file in current directory

obj = open (“abc.txt”, “r”)

To open a file in specified directory

obj = open (r”c:\python\abc.txt”, “r”)

(Here, the prefix r represents that the string is a raw string where the backslash

characters are treated as literal backslashes

5

(or)

obj = open (“c:\\python\\abc.txt”, “r”)

2.1.2. File Reading and Writing

2.1.2.1. File write:

write() method is used to write the contents to a file. The following code is for

writing the contents to the file aa.txt.

fo=open(‘aa.txt’,’w’)

fo.write(‘hai \n how are you?’)

fo.close()

Output:

6

In the above example, the contents of the file can be viewed by opening the

file ‘aa.txt’.

Example

Python code to create a file

file = open('good.txt','w')

file.write("This is the write command")

file.write("It allows us to write in a particular file")

file.close(

2.1.2.2. Reading a file:

read() method is used to read the contents from a file. The following code is

for reading the first 10 bytes of the file ‘aa.txt’.

7

There is more than one way to read a file in Python. If you need to extract a

string that contains all characters in the file then we can use file.read().

Python code to illustrate read() mode

file = open("file.text", "r")

print file.read()

Another way to read a file is to call a certain number of characters like in the

following code ,the interpreter will read the first five characters of stored data

and return it as a string:

Python code to illustrate read() mode character wise

file = open("file.txt", "r")

print file.read(5)

2.1.3. File Positions

To know about the file offset positions in Python, the following methods are

used:

 seek()

 tell()

8

seek():

Syntax:seek(offset,from)

Description: Sets the file's current position at the offset. The offset values are

as follows:

 0 : reference (beginning of file(default))

 1 : current (current file position)

 2 : end (end of file)

tell() :

Description: Prints the current position of file pointer.

2.1.3.1.File Offset

9

In the above code, initially the position of the file pointer is at 0. After reading

the contents, the position of the file pointer is moved to 10 (from 0 to 9). Now

up on giving the command seek(2,0), the file will be read from the beginning

after skipping the first 2 positions.

Detailed Example:

10

The contents of the file aa.txt is now:

Hai , How are you?

Welcome to Sathyabama

School of Computing

Department of Computer Science & Engineering

 2.1.3.2. Reading a file Line by line

In order to read a file till the End of File(EoF), while loop is used.

2.1.3.3. Modifying a file

11

2.1.4. Alternate way for opening and closing a file:

Syntax:

with open(‘filename’) as file object:

 No need to close the file

2.1.5. read() &readline()

 read() – read entire file content from current position

 readline() – read the particular line of file pointer

To read data from a file read() function is used.

 read specifies the number of bytes to be read

Syntax

 fileobject.read (count)

12

Syntax

 seek (offset, from)

offset – number of bytes to be moved

from – specifies the reference position from where the bytes are to be

moved

 0 – use beginning of file as reference position

 1 – use current position as reference position

 2 – end of file as reference position

(e.g)

f = open (“abc.txt”, “r”) str = f.read(10)

print (“The string is”, str) # current position pos = fo.tell()

print (“The current file position is”, pos) #Reposition at beginning

pos = fo.seek(0,0) str = f.read(10)

print (“The string read again is”, str) f.close()

Output

The string is : Python is

The current file position is : 10

The string read again is : Python is

2.1.6. Appending Data to an existing file

append() used to append data to an existing file

Python code to illustrate append() mode

file = open('geek.txt','a')

13

file.write("This will add this line")

file.close()

2.1.7. Closing a File

The close() function is used to close a file

Syntax

fileobject.close()

2.2 ITERATORS

Iterator in python is any python type that can be used with a 'for in loop'.

Python lists, tuples, dicts and sets are all examples of inbuilt iterators.

An iterator is an object that can be iterated upon, meaning that you can

traverse through all the values. Iterators are objects that can be iterated upon.

They are implemented within for loops, generators etc. but hidden in plain

sight

 The iterator object must implement two special methods __iter__() and

__next__() collectively called iterator protocol. The iter() function returns

an iterator. The next() function is used to manually iterate through all the

items of an iterator.

14

Technically, in Python, an iterator is an object which implements the iterator

protocol, which consist of the methods __iter__() and __next__().

Return an iterator from a tuple, and print each value:

mytuple = ("apple", "banana", "cherry")

myit = iter(mytuple)

print(next(myit))

print(next(myit))

print(next(myit))

Output

Iterate the values of a tuple:

mytuple = ("apple", "banana", "cherry")

for x in mytuple:

 print(x)

15

Iterate the characters of a string:

mystr=”banana” =

for x in mystr:

 print(x)

List as iterator:

for i in [1, 2, 3, 4]:

 print(i)

Iterator in Python is a type which could be implemented in for loops. An

iterator is an object that returns data one at a time.

16

For example if we have a list A=[1,2,3] , then iterator is used to return the

items in the list one at a time.

There are two special Methods:

 __iter__() : returns iterator from list

 __next__(): returns next element in the list

Iterable objects in Python are:

 List

 Tuple

 String

2.2.1. Example Iterator:

17

In the above code the list items of mylist object are retrieved one by one using

‘next()’ method. When the list reaches its end and if next() method is used , it

shows error in the output.

2.2.2. Example for _ _next_ _()

Alternate way for retrieving the items is to use for loop and retrieve the item

using __next__() inside the for loop. To find the length of the list ‘len()’

method is used.

2.2.3. Building User defined iterators

We can also build our own iterators. The following code is for implementing

user defined iterators for finding powers of two.

18

2.2.4. Python Infinite Iterators:

Ther are two Arguments in infinite iterators:

 Callable Object: A built in function

 Sentinels: The terminating value

The following is an example for infinite iterator. next(inf) will always return

0, since the sentinel 1 not at all reaches.

19

Similarly , the following code uses while loop to print the odd numbers

starting from 1 to infinite number of times. The execution is manually

terminated by providing keyboard interrupt(Ctrl+c).

2.2.5. Python Generators

Generator functions are alternates for iterators that contain one or more yield()

statements. Methods like __iter__(), __next__() are implemented and are

iterated using next() automatically. Local variables are remembered between

successive calls. When function terminates, StopIterator exception is raised

automatically.

20

2.2.5.1.Example

In the following code, n value is initiated to 1 in the first step. In the second

step n is incremented by two and the value yielded is now 3. In the last step n

is incremented by 1 and now the value is 4.

The following is an example for reversing a String using python Generator.

Here the string ‘hello’ is passed to the function ‘rev()’. Using for loop, the

string is yielded from the last character(len-1) to -1(0th position minus 1) as

per the syntax.

21

2.2.5.2. Advantages of Generators

 Easy to implement

 Memory efficient

 Represents infinite stream

 Generators can be pipelined

2.3. EXCEPTION HANDLING

Exception is an event that occurs during execution of a Python program

disrupting the normal flow of execution. Exceptions are handled using try and

except blocks in Python. There are built in exception classes for handling

common exceptions. BaseException is the parent class for all built in

Exception classes. Fig 2.1 represents the Standard Exception class hierarchy.

22

An error that occurs at runtime is called an exception. It enables a program to

deal with exceptions and continue its normal execution. The try block lets

you test a block of code for errors. The except block lets you handle the error.

The finally block lets you execute code, regardless of the result of the try- and

except blocks.

Fig 2.1 Standard Exception class hierarchy

2.3.1. Exception Handling Syntax and Examples

While handling exception, keep the suspicious code in try block and following

the try block, include except: statement

23

The following code raises exception when a run time error occurs upon

writing the file ‘aa.txt’. In case of normal program flow, the else clause will

be invoked and the statements in else block will be executed.

IOError exception is also invoked when we intend to write a file when it is

opened in ‘read’ mode. The following code depicts this case.

24

2.3.1.1. Except Clause without specifying any exception

In python, we can also have except clause with no specific exception. In this

case any type of exception can be handled. The following is the syntax for

except statement with no specific exception type.

Syntax:

Example:

In the following code, except clause is alone given, without mentioning the

type of exception. In the sample runs when the value of ‘b’ is given as 0,

25

exception is caught and ‘divide by zero error’ is printed. Whereas, in case of

normal run, the output is displayed.

26

2.3.1.2. Except Clause with Multiple exceptions:

There is another way of specifying multiple exceptions in the single except

clause. When multiple exceptions are thrown, the first exception which is

being caught will alone be handled. The syntax is given as follows.

Syntax:

Example:

27

2.3.1.3 Optional finally clause

Like other object oriented programming languages, try has optional finally

clause. The statements given in finally block will be executed even after the

exceptions are handled.

2.3.2. Raising Exceptions

Exception can be raised from a function:

raise ExceptionClass(‘Something Wrong’)

Example:

ex=RunTimeError(‘Something Wrong’)

raise ex

28

 OR

Raise RunTimeError(‘Something Wrong’)

2.3.3. Custom Exception/User Defined Exception

In Python custom exception or otherwise called as user defined exception can

be handled by creating a new user defined class which is a derived class from

Exception class.

Fig. 2.2: Inheriting the Standard Exception class

29

In the following example two user defined exception classes are derived from

the parent class Error which inherits the standard Exception class. The number

guessed is 10. When any number greater than 10 is given as input

TooLargeErr exception is thrown and when the number is less than 10,

TooSmallErr exception is thrown.

30

2.4 REGULAR EXPRESSIONS

Regular Expressions can also be called as RE/regex/regex patterns .RE’s are

specialized programming languages embedded inside Python. RE’s are

available by importing re module. RE patterns are compiled into a series of

bytecodes when executed by a matching engine written in C language. REs

could not perform all string processing tasks. REs are applicable in Pattern

recognition problems. RE module has to imported for calling re methods like:

split(), findall(), search() etc.

Syntax:

import re

2.4.1 RE matching characters

Character matching is very important for identifying patterns and matching

them with the given input. The following table describes some of the

important matching characters used in Python REs.

Table: 2.2 Python Character Matching

Matching

Character

Description

[] Finding a range of characters [a-z]

\w Alphanumeric character [a-zA-Z0-9]

31

\W Non alpha numeric characters :^ [a-zA-Z0-9]

* Repeating a character [0] or more times

() Grouping or including

+ 1 or more

? 0 or 1

{x} Exact no. of match

{a,b} In range from a to b

\any_number Matching the group of same number.

\A Only at the start of the string.

\Z Only at the end of the string

\b Empty string only at the beginning or end of a word.

\B Empty string match not at the beginning or end of a word

\d [0-9]

\D ^[0-9]

\s Space

\S Non space

2.4.2. RE Methods

2.4.2.1. The search() method

32

Method:search()

Description: Returns true if the search string is found.

Example:

The above code returns the Match object with a span position from 0 to n-1

when the search information is found.

2.4.2.2. The split() method

Method:split()

Description: For creating space in the string.

Example:

33

In the above code, split() method is applied twice on the string, ‘This is a

string’. When the matching character \s is applied, the spaces in the string are

split up. When the regular expression r’([a-i]) is applied, the string is split

ignoring the range of characters from a to i.

2.4.2.3. The findall () method

Method:findall()

Description: Finds all the matches and returns them as a list of strings.

Example:

34

2.4.2.4. The match() method

Method:match()

Description:To match the RE pattern to string with optional flags.

Example:

35

2.4.2.5. The finditer() method

Method: finditer()

Description:Generating an iterator.

Example:

2.4.2.6. The compile() method

Method:compile()

Description: Compiling a pattern without rewriting it.

Example:

36

In the above code the compiled pattern is ‘Python’. The result objects return

each and every occurrence of the matched pattern line by line. Other Regular

Expression methods are given in Table 2.2 and RE Compilation flags are

given in Table 2.3.

Table 2.3: Other RE methods

Method/Attribute Purpose

group() Returns the string matched by the RE

start() Returns the starting position of the match

end() Returns the ending position of the match

37

span()

Returns a tuple containing the starting and ending

positions of the match

sub() Replaces the RE pattern and returns the modified string

Table 2.4: RE Compilation Flags

Flag Syntax Description

ASCII re.A
Makes several escapes like \w,\b,\s and \d and

match only on ASCII characters

DOTALL re.S Match any character including newline

IGNORECASE re.I Case insensitive matches

MULTILINE re.M Multiline matching affecting ^ and $

LOCALE re.L Locale aware match(Localization API)

VERBOSE re.X Enables verbose RE

38

Example:

39

2.4.3. Case Studies on Pattern Matching:

Case Study 1: Phone number verification

Case Study 2: Validating First name & Last name

40

Case Study 3: Email Address Verification

Case Study 4: Web Scrapping

41

2.8. EXERCISES

1. What is the output of the following code?

2. Write a Python code to read a String, character by character and print the

String as a whole using iterators.

3. Write a Python program that matches any string that has an a followed by

one or more t's.

4. Write a Python program to insert spaces between words starting with

capital letters.

5. Write a Python program to remove the parenthesis area in a

string usingREs.

Sample data : ["abc (.com)", "w3schools", "google (.com)"]

Expected Output:

abc

w3schools

google

6. Write a Python program to do a case-insensitive string replacement.

7. Write a Python code to print the given list in reverse order.

8. What is the output of the snippet of code shown below?

https://www.w3resource.com/python-exercises/re/#EDITOR

42

9. Write a Python code to append a file ‘aa.txt’ and then read and display the

contents of the file line by line.

10. Check whether the methods today() and now() of datetime library are

same or not. Prove the same using a Python code.

REFERENCES:

1. Timothy A.Budd, Exploring Python, Tata McGraw Hill Education Private

Limited, New Delhi, 2011.

2. Python basics: https://www.tutorialspoint.com/python , Accessed on May

2019.

3. Y. Daniel Liang, Introduction to Programming Using Python, Pearson,

2013.

4. Python Libraries: http://cs231n.github.io/python-numpy-tutorial/,

Accessed on May 2019.

5. Scipy: https://www.guru99.com/scipy-tutorial.html, Accessed on May

2019.

6. Python Excercises: https://www.w3resource.com/python-exercises/re/ ,

Accessed on May 2019.

https://www.tutorialspoint.com/python
http://cs231n.github.io/python-numpy-tutorial/
https://www.guru99.com/scipy-tutorial.html
https://www.w3resource.com/python-exercises/re/

 SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-III Python - Programming – SCS1619

1

UNIT III

GUI PROGRAMMING WITH PYTHON

GUI Programming in Python - Introduction to GUI library - Layout

management - Events and bindings - Fonts – Colors - Canvas - Widgets

(frame, label, button, check box, entry, list box, message, radio button,

text, spin box).

In python text only programs can be created using Command line

Interface. Graphical user interface(GUI) can be created using tkinter module

in python.

3.1 INTRODUCTION TO GUI LIBRARY IN PYTHON

Tkinter is a module in the Python standard library which serves as an

interface to Tk (ie) simple toolkit. There are many other toolkits also available

to create GUI.

Tkinter provides the following widgets:

 button

 canvas

 checkbutton

 combobox

 entry

 frame

 label

2

 listbox

 menu

 message

 progressbar

 radiobutton

 scrollbar

 spinbox

 text

Tkinter also provides three layout managers:

 place - It positions widgets at absolute locations

 grid - It arranges widgets in a grid

 pack - It packs widgets into a cavity

3.2 LAYOUT MANAGEMENT

The Layout Managers are used to arrange components in a particular

manner. It is used to organize the conponents. There are three Layout

Management in python:

1. Pack Layout

2. Grid Layout

3. Place Layout

3.2.1 Pack Layout Manager

3

 It is a simple layout manager. Here widgets can be organized in

horizontal and vertical boxes. It is used to place each widget next to previous

widget. It will be called without any arguments and it will position and size

the widgets in a reasonable way. Whenever the user wants to have a series of

widgets in a vertical or horizontal row, the pack layout manager is fairly

simple to use. The layout is controlled with the fill, expand, and side options.

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True)

l2.pack(fill=X,side=RIGHT)

top.mainloop()

Output:

Explanation: Label l1 has been placed in top position, it is filled in X axis.

Label l2 has been placed in Right Position and it is also filled in X axis. Since

expand attribute has the value True for Label l1,it can be stretched.

4

Padding Option in Pack Layout:

The pack() manager has four padding options:

1. Internal Padding

2. External padding

3. Padding in X Direction.

4. Padding in Y Direction.

External Padding in Horizontal direction(padx)

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,padx=10)

l2.pack(fill=X,side=TOP,padx=10)

top.mainloop()

Output:

5

External Padding in Vertical direction (pady)

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,pady=10)

l2.pack(fill=X,side=TOP,pady=10)

top.mainloop()

Output:

6

Internal Padding in Horizontal direction(ipadx)

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,ipadx=10)

l2.pack(fill=X,side=TOP,ipadx=10)

top.mainloop()

Output:

Internal Padding in Y Direction(ipady):

Example:

fromtkinter import *

7

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l1.pack(fill=X,side=TOP,expand=True,ipadx=10)

l2.pack(fill=X,side=TOP,ipady=10)

top.mainloop()

Output:

3.2.2. Place Layout

 Place is the most complex manager out of the 3 managers. It uses

absolute positioning, when we choose place lay out in our design, then we

need to specify the position of the widgets using x and y coordinates. The size

and position of the widgets will not be changed when we resize the window.

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

8

l2=Label(top,text="Label2",bg="red")

l1.place(x=10,y=50)

l2.place(x=10,y=100)

top.mainloop()

Output:

Explanation:

 Here Label1 is placed in the position (10,50) and label2 is placed in

the position (10,100).

3.2.3 Grid Layout

Pack Layout is not easy to understand and it is difficult to change the

existing design. By using place layout, we can control the positioning of

9

widgets but it is complex than pack. Grid is one of the most versatile layout

manager out of the three layout managers in python. By using Grid layout, the

widgets can be placed in rows and columns.

Example:

fromtkinter import *

top=Tk()

l1=Label(top,text="Label1",bg="blue")

l2=Label(top,text="Label2",bg="red")

l3=Label(top,text="Label2",bg="green")

l1.grid(row=0,column=0)

l2.grid(row=0,column=1)

l3.grid(row=1,column=1)

top.mainloop()

Output:

10

Explanation:

Here Label 1 is placed in 0th row and 0th column. Label 2 is placed in 0th row

and 1st column and Label 3 is placed in 1st row and 1st column.

3.3 FONT

 There are three ways to specify font in python.

 1.By using Font Tuple

 2.By using Font Object

 3.By using XFont

3.3.1 Simple Font Tuple

11

 Font can be specified using tuple.Herethe font tuple consists of

threeelements.First element specifies font family ,second element specifies

font size and third element specifies font style.

 Ex: t =(“Arial”,14,”Bold”)

Example:

fromtkinter import *

top=Tk()

b1=Button(text="submit",font=("Arial","16","bold"))

b1.pack()

top.mainloop()

Output:

Explanation:

Text for the Button has been set in the Arial font with size 16 and Bold style.

3.3.2 Font Object

 Font object can be created by importing tkFont module.

12

Syntax for Font class constructor is:

Import tkFont

Font f1=tkFont.Font(parameters,…..)

Here is the list of parameters:

Family − The font family name as a string.

size − The font height as an integer in points. To get a font n pixels

high, use -n.

weight − "bold" for boldface, "normal" for regular weight.

Slant − "italic" for italic, "roman" for unslanted.

underline − 1 for underlined text, 0 for normal.

Overstrike − 1 for overstruck text, 0 for normal

Example:

fromtkinter import *

fromtkFont import *

top=Tk()

13

f1=Font(family="Helvetica",size=20,weight="bold",slant="italic",underline=1

,overstrike=1)

l1=Label(top,text="Label1",bg="blue",font=f1)

l1.pack()

top.mainloop()

X Window Fonts:

If you are running under the X Window System, you can use any of the X font

names.

3.4 COLORS

Tkinter represents colors with strings. There are two general ways to specify

colors in Tkinter :

 We can use a string specifying the proportion of red, green and blue in

hexadecimal digits. For example,

 "#fff" -- white,

 "#000000" -- black,

 "#000fff000" -- pure green

 "#00ffff" -- pure cyan

 We can also use any locally defined standard following color names.

 "white"

 "black"

14

 "red"

 "green"

 "blue"

 "cyan"

 "yellow"

 "magenta"

The common color options are :

Active background − Specifies Background color for the widget when the

widget is active.

activeforeground − Specifies Foreground color for the widget when the

widget is active.

background − Specifies Background color for the widget. This can

also be represented as bg.

disabledforeground − Specifies Foreground color for the widget when the

widget is disabled.

foreground − Specifies Foreground color for the widget. This can

also be represented as fg.

15

highlightbackground − Specifies Background color of the highlight region

when the widget has focus.

highlightcolor − Specifies Foreground color of the highlight region

when the widget has focus.

selectbackground − Specifies Background color for the selected items of

the widget.

selectforeground − Specifies Foreground color for the selected items of

the widget.

Example:

fromtkinter import *

top=Tk()

b1=Button(text="submit",bg="red",fg="white")

b1.pack()

top.mainloop()

Output:

Explanation:

16

Here the back ground of the button is red in color and foreground color of the

button is white in colour.

3.5 CANVAS

The Canvas is a rectangular area used for drawing pictures or other

complex layouts. Graphics, text, widgets or frames can be placed on a Canvas.

Syntax:

w = Canvas (top, option=value, ...)

top – It represents the parent window.

Options − commonly used options for this widget. These options can be

used as key-value pairs separated by commas.

Commonly used Options are:

bd - Border Width of the canvas

bg - Background color of the canvas

cursor - Cursor used in the canvas like circle,arrow and dot.

relief - Type of the border

width - Width of the canvas

Items supported by canvas:

 1.Arc

 2.Image

 3.Line

 4.Oval

17

 5.Polygon

 ARC

 Creates an arc item, which can be a chord or a simple arc.

Syntax:

create_arc(x0, y0, x1, y1, options…..)

x0,y0,x1,y1-Top Left and Bottom Right coordinates of Bounding Rectangle

 Commonly used Options:

 start,extend-Specifies which section to draw

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

coord = 10, 50, 240, 210

arc = w.create_arc(coord, start=0, extent=150, fill="blue")

w.pack()

Output:

18

Explanation:

Here Arc is drawn with blue color and within the bounded rectangle with top

left(10,50)position and bottom right(240,210) position and started from angle

0 and extended till 150 degree.

3.5.1 Image

 Creates an image , which can be an instance of either the BitmapImage or the

PhotoImage classes.

Syntax:

 Create_image(x,y,options….)

 x,y-Specifies the position of the image

 commonly used options:

19

 anchor=Where to place the image relative to the given position.

Default is CENTER.

 image=image object

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_image("F:\img2",50,50)

w.pack()

root.mainloop()

3.5.2 Line

 Creates a line item.

Syntax:

 canvas.create_line(x0, y0, x1, y1, ...,xn, yn, options)

 x0,y0,x1,y1->coordinates of line

 Commonly used options:

 activefill-Color of the line when it is active

 width -Width of the line

20

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_line(10,10,100,100,activefill="red")

w.pack()

root.mainloop()

Output:

3.5.3 Oval

21

Creates a circle or an ellipse at the given coordinates. It takes two pairs of

coordinates; the top left and bottom right corners of the bounding rectangle for

the oval.

Syntax:

 canvas.create_oval(x0, y0, x1, y1, options)

 x0, y0, x1, y1- the top left and bottom right corners of the bounding

rectangle

 Options:

 activefill-Color of the oval when it is active

 width -Width of the line

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_oval(10,10,100,100,activefill="red")

w.pack()

root.mainloop()

22

Output:

3.5.4 Polygon

Creates a polygon item that must have at least three vertices.

Syntax:

 canvas.create_polygon(x0, y0, x1, y1,...xn, yn, options)

 x0, y0, x1, y1,...xn, yn-Coordinates of polygon

 Options:

 Activefill-Color of the oval when it is active

 width -Width of the line

Example

fromtkinter import *

23

root=Tk()

w = Canvas(root, width=500, height=500)

w.create_polygon(50,50,20,20,100,100,activefill="red")

w.pack()

root.mainloop()

3.6 WIDGETS IN PYTHON

Widgets are standard graphical user interface (GUI) elements, like different

kinds of buttons and menus.

3.6.1 Label

A Label widget shows text to the user about other widgets used in the

application. The widget can be updated programmatically.

Syntax to create Label:

w=Label (root ,options)

root - Parent Window

24

List of commonly used options are given below:

Table 3.1: Options for Label Widget

Option Description

anchor It specifies the exact position of the text within the size provided to

the widget. The default value is CENTER, which is used to center

the text within the specified space.

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor. eg: dot, arrow, circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

underline Underline the label text

25

Example:

fromtkinter import *

root=Tk()

l1=Label(root,text="Enter User Name",bg="green",fg="white")

l1.pack()

root,mainloop()

Output:

Explanation:

Here Label has been created with green background color and white

foreground color with the text “Enter User Name”.

26

ENTRY

The Entry widget is used to create the single line text-box to the user to

accept a value from the user. It can accept the text strings from the user. It can

receive one line of text from the user. For multiple lines of text, the text

widget will be used.

Syntax for creating Entry Widget:

 w=Entry(root, options)

root-Main Window

Table 3.2: List of commonly used options for Entry Widget

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

27

Option Description

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

selectbackground Background color of the selected text

selectforeground Foreground color of the selected text

show Specifies the character used to mask characters in the

text box

Example:

fromtkinter import *

root=Tk()

l1=Label(root,text="Enter User Name",bg="green",fg="white")

e1=Entry(root,show="*")

l1.pack(side=LEFT)

e1.pack(side=RIGHT)

root.mainloop()

Output:

28

Explanation:

Here Label and entry widgets are created.Since the show attribute value is

,the characters entered in the text box appeared as “”.

3.6.2 Button

Button Widget is used to create various kinds of buttons.The user can interact

with the button.They can contain text or images.

Syntax for creating Button:

b=Button(root,options)

root-main window

29

Table 3.3: List of commonly used options for Button

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

underline Underline the label text

command It is set to function name which will be called the button is

clicked

Example:

fromtkinter import *

root=Tk()

30

b1=Button(root,text="Submit",bg="blue",fg="white")

b1.pack()

root.mainloop()

Output:

3.6.3 Checkbutton

The Checkbutton is used to track the user's choices provided to the

application. Checkbutton is used to implement the on/off

selections.TheCheckbutton can contain the or images or text. The

Checkbutton is mostly used to provide many choices to the user among which,

the user needs to choose the one.

Syntax for creating Check Button:

b=CheckButton(root,options)

root-main window

31

Table 3.4: List of possible options for Checkbutton

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

command It is set to function name whicjh will be called the button is

clicked

offvalue Set value to the control variable if the button is

checked.Default Value is 1

onvalue Set value to the control variable if the button is

unchecked.Default Value is 0

selectcolor Set color of the check button when it is checked.

selectimage Set the image to be shown when it is checked.

Example:

fromtkinter import *

32

root=Tk()

c1 = Checkbutton(root, text = "C", onvalue = 1, offvalue = 0, height = 2,

width = 10)

c2 = Checkbutton(root, text = "C++", onvalue = 1, offvalue = 0, height = 2,

width = 10)

c3 = Checkbutton(root, text = "JAVA", onvalue = 1, offvalue = 0, height = 2,

width = 10)

c1.pack()

c2.pack()

c3.pack()

root.mainloop()

Output:

33

3.6.4 Radiobutton

The Radiobutton widget is used to implement one-of-many selection. It shows

multiple options to the user out of which, the user can select only one option.

It is possible to display the multiple line text or images on the radiobuttons.

To keep track the user's selection ,theradiobutton is associated with a single

variable.EachRadio button displays a single value for that particular variable.

Syntax for creating Radio Button:

b=RadioButton(root,options)

root-main window

34

Table 3.5: List of possible options for Radiobutton

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

underline Underline the label text

command It is set to function name whicjh will be called the button

is clicked

value Set value to the control variable if the button is selected.

selectcolor Set color of the check button when it is checked.

selectimage Set the image to be shown when it is checked.

variable It is used to keep track of user choices.

35

Example:

fromtkinter import *

root=Tk()

r1 = Radiobutton(root, text = "C", value = 1, height = 2, width = 10)

r2 = Radiobutton(root, text = "C++", value = 2, height = 2, width = 10)

r3 = Radiobutton(root, text = "JAVA",value = 3, height = 2, width = 10)

r1.pack()

r2.pack()

r3.pack()

root.mainloop()

Output:

36

3.6.5 Listbox

The Listbox widget is used to display the list items to the user.The user can

choose one or more items from the list depending upon the configuration.

Syntax for creatingListBox:

b=Listbox(root,options)

root-main window

Table 3.6: List of possible options foe Listbox

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

37

relief Specifies type of border

value Set value to the control variable if the button is selected.

selectbackground Set back ground color of the selected text.

xscrollcommand User can scroll the list box horizontally

yscrollcommand User can scroll the list box vertically

Example:

fromtkinter import *

top = Tk()

lbl = Label(top,text = "A list of favourite countries...")

listbox = Listbox(top)

listbox.insert(1,"India")

listbox.insert(2, "USA")

listbox.insert(3, "Japan")

listbox.insert(4, "Austrelia")

lbl.pack()

listbox.pack()

top.mainloop()

38

Output:

3.6.6 Message

Its functionality is very similar to Label widget, except that it can

automatically wrap the text, maintaining a given width.

Syntax for creating Message:

m=Message(root,options)

root-main window

Table 3.7: List of possible options for Message

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

39

Option Description

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

Example:

fromtkinter import *

top = Tk()

msg = Message(top, text = "Welcome to Javatpoint")

msg.pack()

top.mainloop()

Output:

40

3.6.7 Text

Tkinter provides us the Entry widget which is used to implement the single

line text box. Text widget provides advanced capabilities that allow us to edit

a multiline text and format the way it has to be displayed, such as changing its

color and font. We can also use the structures like tabs and marks to locate

specific sections of the text, and apply changes to those areas.

Syntax for creating Message:

T=Text(root,options)

root-main window

Table 3.8: List of possible options for Text

Option Description

bg Specifies background color of the widget

41

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

xscrollcommand User can scroll the text widget horizontally

yscrollcommand User can scroll the text widget vertically

selectbackground Background color of the selected text

Table 3.9: General Methods

Method

Description

delete(startindex,

endindex)

This method is used to delete the characters of the

specified range

get(startindex,endindex) It returns the characters present in the specified

range.

insert(index, string) It is used to insert the specified string at the given

42

index.

Mark Handling Methods:

Marks are used to bookmark the specified position between the characters of

the associated text.

Table 3.10: List of Mark handling methods

Method Description

mark_set(mark,index) It is used to create mark at the specified index.

mark_unset(mark) It is used to clear the given mark

mark_names() It is used to return names of all the marks

Tag Handling Methods:

The tags are the names given to the specific areas of the text. The tags are

used to configure the different areas of the text separately.

Table 3.11: The list of tag-handling methods

Method Description

tag_add(tagname, startindex,

endindex)

It is used to tag the characters in the

given range

tag_config() It is used to configure the tag properties

43

tag_delete(tagname) It is used to delete the given tag

tag_remove(tagname, startindex,

endindex)

It is used to remove the tag from the

specified range

Example:

fromtkinter import *

top = Tk()

text = Text(top)

text.insert(INSERT, "Name.....")

text.insert(END, "Salary.....")

text.pack()

text.tag_add("Write Here", "1.0", "1.4")

text.tag_add("Click Here", "1.8", "1.13")

text.tag_config("Write Here", background="yellow", foreground="black")

text.tag_config("Click Here", background="black", foreground="white")

Output:

44

Explanation:

The tag “Write Here” tags the characters from the index 0 to 4.The tag “Click

Here” tags the characters from the index 8 to 13.These tags are configured

using the method tag_config().

3.6.8 Spinbox

The Spinbox widget is a variant of the standard Tkinter Entry widget, which

can be used to select from a fixed number of values.

Syntax:

w = Spinbox(master, option, ...)

Parameters

 master − This represents the parent window.

 options − Here is the list of most commonly used options for this

widget. These options can be used as key-value pairs separated by

commas.

45

 The Spinbox control is an alternative to the Entry control. It provides

the range of values to the user, out of which, the user can select only

one value.It is used in the case where a user is given some fixed

number of values to choose from.

 Syntax for creating Message:

 S=Spinbox(root,options)

 root-main window

Table 3.12: List of options for Spinbox

Sr.No. Option & Description

1
activebackground

The color of the slider and arrowheads when the mouse is over

them.

2
bg

The color of the slider and arrowheads when the mouse is not over

them.

3
bd

The width of the 3-d borders around the entire perimeter of the

trough, and also the width of the 3-d effects on the arrowheads and

slider. Default is no border around the trough, and a 2-pixel border

around the arrowheads and slider.

46

4
command

A procedure to be called whenever the scrollbar is moved.

5
cursor

The cursor that appears when the mouse is over the scrollbar.

6
disabledbackground

The background color to use when the widget is disabled.

7
disabledforeground

The text color to use when the widget is disabled.

8
fg

Text color.

9
font

The font to use in this widget.

10
format

Format string. No default value.

47

11
from_

The minimum value. Used together with to to limit the spinbox

range.

12
justify

Default is LEFT

13
relief

Default is SUNKEN.

14
repeatdelay

Together with repeatinterval, this option controls button auto-

repeat. Both values are given in milliseconds.

15
repeatinterval

See repeatdelay.

16
state

One of NORMAL, DISABLED, or "readonly". Default is

NORMAL.

17
textvariable

48

No default value.

18
to

See from.

19
validate

Validation mode. Default is NONE.

20
validatecommand

Validation callback. No default value.

21
values

A tuple containing valid values for this widget. Overrides

from/to/increment.

22
vcmd

Same as validatecommand.

23
width

Widget width, in character units. Default is 20.

49

24
wrap

If true, the up and down buttons will wrap around.

25
xscrollcommand

Used to connect a spinbox field to a horizontal scrollbar. This

option should be set to the set method of the corresponding

scrollbar.

Methods

Table 3.13: Methods of Spinbox objects

Sr.No. Methods & Description

1
delete(startindex [,endindex])

This method deletes a specific character or a range of text.

2
get(startindex [,endindex])

This method returns a specific character or a range of text.

3
identify(x, y)

50

Identifies the widget element at the given location.

4
index(index)

Returns the absolute value of an index based on the given index.

5
insert(index [,string]...)

This method inserts strings at the specified index location.

6
invoke(element)

Invokes a spinbox button.

Example

Try the following example yourself −

from Tkinter import *

master = Tk()

51

w = Spinbox(master, from_=0, to=10)

w.pack()

mainloop()

When the above code is executed, it produces the following result −

Example:

fromtkinter import *

top = Tk()

spin = Spinbox(top, from_= 0, to = 25)

spin.pack()

top.mainloop()

Output:

52

3.7 FRAME

Frame widget is used to organize the group of widgets. It acts like a container

which can be used to hold the other widgets. The rectangular areas of the

screen are used to organize the widgets to the python application.

Syntax for creating Frame:

S=Frame(root,options)

root-main window

Table 3.14: List of possible options for Frame

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

53

cursor Specifies type of cursor.eg:dot,arrow,circle

height Height of the widget

width Width of the widget

Relief Specifies type of border

Example:

fromtkinter import *

top = Tk()

Topframe = Frame(top)

Topframe.pack(side = TOP)

Bottomframe = Frame(top)

Bottomframe.pack(side =BOTTOM)

btn1 = Button(Topframe, text="Submit", fg="red",activebackground = "red")

btn1.pack(side = LEFT)

btn2 = Button(Topframe, text="Remove", fg="brown", activebackground =

"brown")

btn2.pack(side = RIGHT)

btn3 = Button(Bottomframe, text="Add", fg="blue", activebackground =

"blue")

btn3.pack(side = LEFT)

54

btn4 = Button(Bottomframe, text="Modify", fg="black", activebackground =

"white")

btn4.pack(side = RIGHT)

top.mainloop()

Output:

Explanation:

Here two frames (Top Frame and Bottom Frame) have been

created.Topframe contains submit and remove buttons and Bottom frame

contains Add and modify buttons .

3.8 EVENTS AND BINDINGS IN PYTHON

Binding function is used to deal with the events. We can bind Python’s

Functions and methods to an event as well as we can bind these functions to

any particular widget. Events can come from various sources, including key

presses and mouse operations by the user. Tkinter provides a powerful

55

mechanism to let you deal with events yourself. For each widget, you

can bind Python functions and methods to events.

 widget.bind(event, handler)

If an event matching the event description occurs in the widget, the

given handler is called with an object describing the event.

A Tkinter application spends most of its time inside an event loop (entered via

the mainloop method). Events can come from various sources, including key

presses and mouse operations by the user, and redraw events from the window

manager.

 Tkinter provides a powerful mechanism to deal with events. For each

widget, you can bind Python functions and methods to events.

 widget.bind(event, handler)

If an event matching the event description occurs in the widget, the

given handler is called with an object describing the event.

Here’s a simple example:

Example Program1:Capturing clicks in a window

from tkinter import *

window = Tk()

def callback(event):

 print ("clicked at", event.x, event.y)

frame = Frame(window, width=100, height=100)

frame.bind("<Button-1>", callback)

frame.pack()

window.mainloop()

56

In this example, the bind method of the frame widget is used to bind a

callback function to an event called <Button-1>. Run this program and click

in the window that appears. Each time you click, a message like “clicked at

44 63” is printed to the console window.

Keyboard events are sent to the widget that currently owns the keyboard

focus. The focus_set method can be used to move focus to a widget:

Example Program2:Capturing keyboard events

from tkinter import *

window = Tk()

def key(event):

 print("pressed", repr(event.char))

def callback(event):

 frame.focus_set()

 print("clicked at", event.x, event.y)

frame = Frame(window, width=100, height=100)

frame.bind("<Key>", key)

frame.bind("<Button-1>", callback)

frame.pack()

window.mainloop()

If you run this script, you’ll find that you have to click in the frame before it

starts receiving any keyboard events.

Some of the commonly used events and some event properties are listed

below:

57

Table 3.15: Events

Event Description

<Bi-Motion> An event occurs when a mouse button is moved while

being held down on the widget.

<Button-i> Button-1, Button-2, and Button-3 identify the left,

middle, and right buttons. When a mouse buttonis

pressed over the widget, Tkinter automatically grabs

the mouse pointer’s location. ButtonPressed-

iissynonymous with Button-i.

<ButtonReleased-

i>

An event occurs when a mouse button is released.

<Double-Button-i> An event occurs when a mouse button is double-

clicked.

<Enter> An event occurs when a mouse pointer enters the

widget.

<Key> An event occurs when a key is pressed.

<Leave> An event occurs when a mouse pointer leaves the

widget.

<Return> An event occurs when the Enter key is pressed. You

can bind any key such as A, B, Up, Down, Left, Right

in the keyboard with an event.

<Shift+A> An event occurs when the Shift+Akeys are pressed.

You can combine Alt, Shift, and Control with other

keys.

<Triple-Button-i> An event occurs when a mouse button is triple-clicked.

58

Table 3.16: Event Properties

Event Property Description

char The character entered from the keyboard for key events.

keycode The key code (i.e., Unicode) for the key entered from

the keyboard for key events.

keysym The key symbol (i.e., character) for the key entered

from the keyboard for key events.

num The button number (1, 2, 3) indicates which mouse

button was clicked.

widget The widget object that fires this event.

x and y The current mouse location in the widget in pixels.

x_ _root and

y_root

The current mouse position relative to the upper-left

corner of the screen, in pixels.

The program MouseKeyEventDemo processes mouse and key events. It

displays the window asshown in Figure 1a. The mouse and key events are

processed and the processing informationis displayed in the command

window, as shown in Figure 1 b.

59

Example Program3 : MouseKeyEventDemo

from tkinter import * # Import all definitions from tkinter

class MouseKeyEventDemo:

 def __init__(self):

 window = Tk() # Create a window

window.title("Event Demo") # Set a title

 canvas = Canvas(window, bg = "white", width = 200, height = 100)

canvas.pack()

 # Bind with <Button-1> event

canvas.bind("<Button-1>", self.processMouseEvent)

 # Bind with <Key> event

canvas.bind("<Key>", self.processKeyEvent)

canvas.focus_set()

window.mainloop() # Create an event loop

 def processMouseEvent(self, event):

 print("clicked at", event.x, event.y)

 print("Position in the screen", event.x_root, event.y_root)

 print("Which button is clicked? ", event.num)

 def processKeyEvent(self, event):

 print("keysym? ", event.keysym)

 print("char? ", event.char)

 print("keycode? ", event.keycode)

MouseKeyEventDemo() # Create GUI

60

Figure 1 bOutput of Program3 for mouseclick and keypress

The program creates a canvas and binds a mouse event <Button-1>with the

callbackfunction processMouseEventon the canvas. Nothing is drawn on the

canvas.So it is blank as shown in Figure 1a. When the left mouse button is

clicked on the canvas,an event is created. The processMouseEventis invoked

to process an event that displaysthe mouse pointer’s location on the canvas, on

Figure 1 a Output Window of Program3

61

the screen, and which mousebutton is clicked.The Canvas widget is also the

source for the key event. The program binds a key eventwith the callback

function processKeyEventon the canvas and sets the focus onthe canvas so

that the canvas will receive input from the keyboard.

The example Program EnlargeShrinkCircledisplays a circle on the canvas.

The circle radius is increased with a left mouseclick and decreased with a

right mouse click, as shown in Figure 2 a,2 b, 2c.

62

Example Program4 : EnlargeShrinkCircle

from tkinter import * # Import all definitions from tkinter

class EnlargeShrinkCircle:

 def __init__(self):

self.radius = 50

 window = Tk() # Create a window

window.title("Control Circle Demo") # Set a title

self.canvas = Canvas(window, bg = "white",width = 200, height = 200)

self.canvas.pack()

self.canvas.create_oval(100 - self.radius, 100 - self.radius,100 + self.radius,

100 + self.radius, tags = "oval")

 # Bind canvas with mouse events

self.canvas.bind("<Button-1>", self.increaseCircle)

self.canvas.bind("<Button-3>", self.decreaseCircle)

window.mainloop() # Create an event loop

 def increaseCircle(self, event):

self.canvas.delete("oval")

 if self.radius< 100:

self.radius += 2

self.canvas.create_oval(100 - self.radius, 100 - self.radius,100 + self.radius,

100 + self.radius, tags = "oval")

 def decreaseCircle(self, event):

self.canvas.delete("oval")

 if self.radius> 2:

self.radius -= 2

self.canvas.create_oval(100 - self.radius, 100 - self.radius,100 + self.radius,

100 + self.radius, tags = "oval")

EnlargeShrinkCircle() # Create GUI

63

Figure 2 b Circle Radius Enlarged using Left Mouse Click

of Program4

Figure 2 a Output Window of Program4

64

The program creates a canvas and displays a circle on the canvas with an

initialradius of 50. The canvas is bound to a mouse event <Button-1>with

thehandler increaseCircleand to a mouse event <Button-3>with the

handlerdecreaseCircle. When the left mouse button is pressed, the

increaseCirclefunction is invoked to increase the radius and redisplay the

circle.When the right mouse button is pressed, the decreaseCirclefunction is

invoked todecrease the radius and redisplay the circle.

Another simple example is given below that shows how to use the motion

event, i.e. if the mouse is moved inside of a widget:

Figure 2 c Circle Radius Shrinked using Right Mouse Click

of Program4

65

Example Program5 : MouseMove

from tkinter import *

def motion(event):

 print("Mouse position: (%s %s)" % (event.x, event.y))

 return

window = Tk()

display_message = "Python Programming and Machine Learning"

msg = Message(window, text = display_message)

msg.config(bg='lightgreen', font=('times', 24, 'italic'))

msg.bind('<Motion>',motion)

msg.pack()

mainloop()

Every time the mouse is moved in the Message widget, the position of the

mouse pointer will be printed.

3.8.1 Handling Mouse Button Event in Python

Example:

fromtkinter import *

fromtkinter.ttk import *

creates tkinter window or root window

root = Tk()

function to be called when button-2 of mouse is pressed

def pressed2(event):

print('Button-2 pressed at x = % d, y = % d'%(event.x, event.y))

function to be called when button-3 of mouse is pressed

66

def pressed3(event):

print('Button-3 pressed at x = % d, y = % d'%(event.x, event.y))

 ## function to be called when button-1 is double clocked

defdouble_click(event):

print('Double clicked at x = % d, y = % d'%(event.x, event.y))

frame1 = Frame(root, height = 100, width = 200)

Binding mouse buttons with the Frame widget

frame1.bind('<Button-2>', pressed2)

frame1.bind('<Button-3>', pressed3)

frame1.bind('<Double 1>', double_click)

frame1.pack()

root.mainloop()

Output:

67

3.8.2 Handling Key Press Event In Python

Example:

fromtkinter import *

fromtkinter.ttk import *

function to be called when

keyboard buttons are pressed

defkey_press(event):

 key = event.char

 print(key, 'is pressed')

creates tkinter window or root window

root = Tk()

root.geometry('200x100')

here we are binding keyboard

with the main window

68

root.bind('<Key>', lambda a : key_press(a))

mainloop()

Output:

69

QUESTIONS

1. Write the Pyhton Program to create simple window.

2. Write a Python Program to create label, entry and button components

and arrange the components using Grid Layout.

3. Write a Python Program to validate user name and password.

4. Write a Python Program to display the basic shapes.

5. Write a Python program to create a following GUI design

6. Write the GUI program to create List Box for shopping cart.

7. Write a pyhton Program to create simple calculator.

8. Write a Python Program to add image on the button.

9. Write a Python progam to create simple application form.

10. Wrtite a Pyhton program to create check button for selecting multiple

hobbies.

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-IV - Python Programming – SCS1619

1

UNIT IV

DATABASE AND NETWORK

Database (using NoSQL): Connector Module –Cursor – Statements -

Exceptions in database.

Network connectivity: Socket module - Client – Server – Email – URL

Access

 Data is very important for any organization to continue its operations.

The data may be related to employees in the organization or the operational

data like products information, raw material prices, sales information, profits

and losses. Without data, no organization will survive. Hence, data is very

important and it should never be lost.

DBMS

To store data, a file or database can be used. A file stores data in the

secondary storage device like hard disk, either in the text format or binary

format.

A database represents collection of data. Data can be stores in the database.

Once the data is stored in the database, various operations can be performed

on the data. For example, modifying the existing data, deleting the unwanted

data, or retrieving the data from the database and etc. To perform such

2

operations, a database comes with software. This is called a database

management system.

DBMS= Database + Software to manage the data

Example DBMS are MySQL, Oracle, Sybase,, SQL server etc.

Types of databases used with Python

4.1 DATABASE SUPPORT

 SQL

 NoSQL

As more and more data become available as unstructured or semi-

structured, the need of managing them through NoSql database increases.

Python can also interact with NoSQL databases in a similar way as is interacts

with Relational databases. In this chapter we will use python to interact with

MongoDB as a NoSQL database.

4.1.1 MongoDB

MongoDB stores data in JSON-like documents, which makes the database

very flexible and scalable.

Where to Use MongoDB?

 Big Data

 Content Management and Delivery

3

 Mobile and Social Infrastructure

 User Data Management

 Data Hub

download a free MongoDB database at https://www.mongodb.com.

PyMongo

Python needs a MongoDB driver to access the MongoDB database.

In this tutorial we will use the MongoDB driver "PyMongo".

We recommend that you use PIP to install "PyMongo".

PIP is most likely already installed in your Python environment.

Navigate your command line to the location of PIP, and type the following:

Download and install "PyMongo":

C:\Users\Your Name\AppData\Local\Programs\Python\Python36-

32\Scripts>python -m pip install pymongo

Now you have downloaded and installed a mongoDB driver.

Where to Use MongoDB?

 Big Data

 Content Management and Delivery

 Mobile and Social Infrastructure

 User Data Management

https://www.mongodb.com/

4

 Data Hub

Test PyMongo

To test if the installation was successful, or if you already have "pymongo"

installed, create a Python page with the following content:

demo_mongodb_test.py:

import pymongo

Creating a Database

To create a database in MongoDB, start by creating a MongoClient object,

then specify a connection URL with the correct ip address and the name of the

database you want to create.

MongoDB will create the database if it does not exist, and make a connection

to it.

Example

Create a database called mydatabase

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

5

MongoDB waits until you have created a collection (table), with at least one

document (record) before it actually creates the database (and collection).

Creating a Collection

To create a collection in MongoDB, use database object and specify the name

of the collection you want to create.

MongoDB will create the collection if it does not exist.

Program

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

MongoDB waits until you have inserted a document before it actually

creates the collection.

Python MongoDB Insert Document

Insert Into Collection

To insert a record, or document as it is called in MongoDB, into a collection,

we use the insert_one() method.

The first parameter of the insert_one() method is a dictionary containing the

name(s) and value(s) of each field in the document you want to insert.

6

Example

Insert a record in the “Customers” Collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mydict = { "name": "John", "address": "Highway 37" }

x = mycol.insert_one(mydict)

Insert Multiple Documents

To insert multiple documents into a collection in MongoDB, we use

theinsert_many() method.

The first parameter of the insert_many() method is a list containing

dictionaries with the data you want to insert:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mylist = [

7

 { "name": "Amy", "address": "Apple st 652"},

 { "name": "Hannah", "address": "Mountain 21"},

 { "name": "Michael", "address": "Valley 345"},

 { "name": "Sandy", "address": "Ocean blvd 2"},

 { "name": "Betty", "address": "Green Grass 1"},

 { "name": "Richard", "address": "Sky st 331"},

 { "name": "Susan", "address": "One way 98"},

 { "name": "Vicky", "address": "Yellow Garden 2"},

 { "name": "Ben", "address": "Park Lane 38"},

 { "name": "William", "address": "Central st 954"},

 { "name": "Chuck", "address": "Main Road 989"},

 { "name": "Viola", "address": "Sideway 1633"}

]

x = mycol.insert_many(mylist)

Python MongoDB Find

In MongoDB we use the find and findOne methods to find data in a

collection.

Just like the SELECT statement is used to find data in a table in a MySQL

database.

Find One

To select data from a collection in MongoDB, we can use

the find_one()method.

8

The find_one() method returns the first occurrence in the selection.

Example

Find the first document in the customers collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

x = mycol.find_one()

print(x)

Output

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

Find All

To select data from a table in MongoDB, we can also use the find() method.

The find() method returns all occurrences in the selection.

The first parameter of the find() method is a query object. In this example we

use an empty query object, which selects all documents in the collection.

9

Example

Return all documents in the "customers" collection, and print each document:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

for x in mycol.find():

print(x)

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

10

Filter the Result

When finding documents in a collection, you can filter the result by using a

query object.

The first argument of the find() method is a query object, and is used to limit

the search.

Example

Find document(s) with the address "Park Lane 38":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": "Park Lane 38" }

mydoc = mycol.find(myquery)

for x in mydoc:

 print(x)

output

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

11

Example

Find documents where the address starts with the letter "S" or higher:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": { "$gt": "S" } }

mydoc = mycol.find(myquery)

for x in mydoc:

 print(x)

Output

{'_id': 5, 'name': 'Michael', 'address': 'Valley

345'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st

331'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow

Garden 2'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway

1633'}

12

Return Only Some Fields

The second parameter of the find() method is an object describing which

fields to include in the result.

This parameter is optional, and if omitted, all fields will be included in the

result.

Example

Return only the names and addresses, not the _ids:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

for x in mycol.find({},{ "_id": 0, "name": 1, "address": 1}):

 print(x)

Output

{'name': 'John', 'address': 'Highway37'}

{'name': 'Peter', 'address': 'Lowstreet 27'}

{'name': 'Amy', 'address': 'Apple st 652'}

{'name': 'Hannah', 'address': 'Mountain 21'}

{'name': 'Michael', 'address': 'Valley 345'}

13

{'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'name': 'Betty', 'address': 'Green Grass 1'}

{'name': 'Richard', 'address': 'Sky st 331'}

{'name': 'Susan', 'address': 'One way 98'}

{'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'name': 'Ben', 'address': 'Park Lane 38'}

{'name': 'William', 'address': 'Central st 954'}

{'name': 'Chuck', 'address': 'Main Road 989'}

{'name': 'Viola', 'address': 'Sideway 1633'}

Sort the Result

Use the sort() method to sort the result in ascending or descending order.

The sort() method takes one parameter for "fieldname" and one parameter for

"direction" (ascending is the default direction).

Example

Sort the result alphabetically by name:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mydoc = mycol.find().sort("name")

14

for x in mydoc:

 print(x)

OUTPUT

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

Sort Descending

Use the value -1 as the second parameter to sort descending.

sort("name", 1) #ascending

sort("name", -1) #descending

Example

Sort the result reverse alphabetically by name:

15

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mydoc = mycol.find().sort("name", -1)

for x in mydoc:

 print(x)

Output

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

Python MongoDB Delete Document

To delete one document, we use the delete_one() method.

16

The first parameter of the delete_one() method is a query object defining

which document to delete.

Note: If the query finds more than one document, only the first occurrence is

deleted.

Example

Delete the document with the address "Mountain 21":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": "Mountain 21" }

mycol.delete_one(myquery)

Delete Many Documents

To delete more than one document, use the delete_many() method.

The first parameter of the delete_many() method is a query object defining

which documents to delete.

Example

Delete all documents were the address starts with the letter S:

17

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": {"$regex": "^S"} }

x = mycol.delete_many(myquery)

print(x.deleted_count, " documents deleted.")

output

2 documents deleted.

Delete All Documents in a Collection

To delete all documents in a collection, pass an empty query object to

the delete_many() method:

Example

Delete all documents in the "customers" collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

18

x = mycol.delete_many({})

print(x.deleted_count, " documents deleted.")

Output:

11 documents deleted

Python MongoDB Drop Collection

Delete Collection

You can delete a table, or collection as it is called in MongoDB, by using

the drop() method.

Example

Delete the "customers" collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

mycol.drop()

The drop() method returns true if the collection was dropped successfully, and

false if the collection does not exist.

19

Python MongoDB Update

You can update a record, or document as it is called in MongoDB, by using

the update_one() method.

The first parameter of the update_one() method is a query object defining

which document to update.

Note: If the query finds more than one record, only the first occurrence is

updated.

Example

Change the address from "Valley 345" to "Canyon 123":

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": "Valley 345" }

newvalues = { "$set": { "address": "Canyon 123" } }

mycol.update_one(myquery, newvalues)

#print "customers" after the update:

20

for x in mycol.find():

 print(x)

OUTPUT

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Canyon 123'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway}

Update Many

To update all documents that meets the criteria of the query, use

the update_many() method.

Example

Update all documents where the address starts with the letter "S":

import pymongo

21

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": { "$regex": "^S" } }

newvalues = { "$set": { "name": "Minnie" } }

x = mycol.update_many(myquery, newvalues)

print(x.modified_count, "documents updated.")

Output

2 documents updated.

Python MongoDB Limit

o limit the result in MongoDB, we use the limit() method.

The limit() method takes one parameter, a number defining how many

documents to return.

Consider you have a "customers" collection:

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

22

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway}

Example

Limit the result to only return 5 documents:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myresult = mycol.find().limit(5)

#print the result:

for x in myresult:

 print(x)

OUTPUT

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

23

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

4.2 CURSOR CLASS

To work with MySQL in python, connector sub module of mysql module.

 import mysql.connector;

to establish connection with MySQL database, we use the connect() method of

mysql.connector module as:

conn=mysql.connector.connect(host=’localhost’,database=’university’,user=’r

oot’, password=’***’)

The connect() method returns MySQLConnection class object ‘conn’.

The next step is to create cursor class object by calling the cursor() method on

‘conn’ object as:

 cursor=con.cursor()

Cursor object is useful to execute SQL commands on the database.

it is done by execute() method of cursor object.

 cursor.execute(sql querry)

24

 example: cursor.execute(“select * from emptab”)

The resultant rows retirieved from the table are stored in cursor object. the

result can be fetched using fetchone() or fetchall() methods.

 example: row = cursor.fetchone() # get 1 row

 row = cursor.fetchall() # get all rows

Finally, the connection with MySQL can be closed by closing the cursor and

connection objects as:

cursor.close()

conn.close()

Program: A python program to retrieve and display all rows from the student

table:

import mysql.connector;

conn=mysql.connector.connect(host=’localhost’,database=’university’,user=’r

oot’, password=’***’)

cursor=con.cursor()

cursor.execute(“select * from stutab”)

row = cursor.fetchone()

while row is not None:

25

 print(row)

 row=cursor.fetchone()

cursor.close()

conn.close()

Output:

(1001, ‘Ajay’, 8.5)

(1002, ‘Alan’, 7.5)

(1001, ‘Joe’, 9.00)

4.3 EXCEPTIONS CLASSES

Interacting with a database is an error prone process, so we must always

implement some mechanism to handle errors.

Built in Exceptions

Table 4.1: Types of Exceptions

Exception Description

Warning Used for non-fatal issues. Must subclass

26

StandardError.

Error

Base class for errors. Must subclass

StandardError.

InterfaceError Used for errors in the database module, not the

database itself. Must subclass Error.

DatabaseError Used for errors in the database. Must subclass

Error.

DataError Subclass of DatabaseError that refers to errors in

the data.

OperationalError Subclass of DatabaseError that refers to errors

such as the loss of a connection to the database.

These errors are generally outside of the control of

the Python scripter.

Exception Description

IntegrityError Subclass of DatabaseError for situations that

would damage the relational integrity, such as

uniqueness constraints or foreign keys.

InternalError Subclass of DatabaseError that refers to errors

internal to the database module, such as a cursor

no longer being active.

ProgrammingError Subclass of DatabaseError that refers to errors

such as a bad table name and other things that can

safely be blamed on you.

27

4.4 NETWORKING

For a specific purpose if things are connected together, are referred as

a NETWORK. A network can be of many types, like a telephone network,

television network, computer network or even a people network.

Similarly, a COMPUTER NETWORK is also a kind of setup, where it

connects two or more devices to share a range of services and information in

the form of e-mails and messages, databases, documents, web-sites, audios

and videoes, Telephone calls and video conferences etc among them.

A PROTOCOL is nothing but set of defined rules, which has to be followed

by every connected devices across a network to communicate and share

information among them. To facilitates End to End communication, a number

of protocols worked together to form a Protocol Suites or Stacks.

Some basic Protocols are:

 IP : Internet Protocol

 FTP : File Transfer Protocol

 SMTP : Simple Mail Transfer Protocol

 HTTP : Hyper Text Transfer Protocol

The Network reference models were developed to allow products from

different manufacturers to interoperate on a network. A network reference

model serves as a blueprint, detailing standards for how protocol

communication should occur.

28

The most widely recognized reference models are, the Open Systems

Interconnect (OSI) Model and Department of Defense (DoD, also known

as TCP/IP) model.

Network Types are often categorized by their size and functionality.

According to the size, the network can be commonly categorized

into Three types.

 LANs (Local Area Networks)

 MANs (Metropolitan Area Networks)

 WANs (Wide Area Networks)

An Internetwork is a general term describing multiple networks connected

together. The Internet is the largest and most well-known internetwork.

Some networks are categorized by their function, as opposed to their size.

For example:

 SAN (Storage Area Network): A SAN provides systems with high-

speed, lossless access to high-capacity storage devices.

 VPN (Virtual Private Network): A VPN allows for information to be

securely sent across a public or unsecure network, such as the Internet.

Common uses of a VPN are to connect branch offices or remote users to

a main office.

https://www.geeksforgeeks.org/layers-osi-model/
https://www.geeksforgeeks.org/computer-network-tcpip-model/
https://www.geeksforgeeks.org/computer-network-types-area-networks-lan-man-wan/
https://www.geeksforgeeks.org/computer-networks-internetworking/
https://www.geeksforgeeks.org/storage-area-networks/
https://www.geeksforgeeks.org/virtual-private-network-vpn-introduction/

29

In a network, any connected device is called as host. A host can serve as

following ways:

 A host can acts as a Client, when he is requesting information.

 A host can acts as a Server, when he provides information.

 A host can also request and provide information, is called Peer.

4.5 SOCKET MODULE

What Are Sockets?

A socket is a link between two applications that can communicate with one

another (either locally on a single machine or remotely between two machines

in separate locations).

Basically, sockets act as a communication link between two entities, i.e. a

server and a client. A server will give out information being requested by a

client. For example, when you visited this page, the browser created a socket

and connected to the server.

The socket Module

In order to create a socket, you use the socket.socket() function, and the

syntax is as simple as:

import socket

s= socket.socket (socket_family, socket_type, protocol=0)

30

Here is the description of the arguments:

 socket_family: Represents the address (and protocol) family. It can be

either AF_UNIX or AF_INET.

 socket_type: Represents the socket type, and can be either

SOCK_STREAM or SOCK_DGRAM.

 protocol: This is an optional argument, and it usually defaults to 0.

After obtaining your socket object, you can then create a server or client as

desired using the methods available in the socket module.

o s.recv() –It receives TCPmessage

o s.send() – It transmits TCP message

o s.recvfrom() – It receives UDPmessage

o s.sendto() – It transmits UDP message

o s.close() – It closes socket

o socket.gethostname() – It returns thehostname

4.6 Create a Simple CLIENT

Before we get started, let's look at the client socket methods available in

Python.

s= socket.socket(socket.AF_INET, socket.sock_STREAM)

s.connect()Initiates a TCP server connection.

To create a new socket, you first import the socket method of the socket class.

31

import socket

Next, we'll create a stream (TCP) socket as follows:

stream_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

The AF_INET argument indicates that you're requesting an Internet Protocol

(IP) socket, specifically IPv4. The second argument is the transport protocol

type SOCK_STREAM for TCP sockets. Additionally, you can also create an

IPv6 socket by specifying the socket AF_INET6 argument.

Specify the server.

server = "localhost"

Specify the port we want to communicate with.

port =80

Connect the socket to the port where the server is listening.

server_address = ((host, port))

stream_socket.connect(server_address)

It's important to note that the host and port must be a tuple.

Send a data request to the server:

message = 'message'

stream_socket.sendall(message)

32

Get the response from the server:

data = sock.recv(10)

print data

To close a connected socket, you use the close method:

stream_socket.close()

Below is the full code for the Client/Server.

import socket

import sys

 # Create a TCP/IP socket

stream_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # Define host

host = 'localhost'

 # define the communication port

port = 8080

 # Connect the socket to the port where the server is listening

server_address = ((host, port))

print "connecting"

33

stream_socket.connect(server_address)

 # Send data

message = 'message'

stream_socket.sendall(message)

response

data = stream_socket.recv(10)

print data

print 'socket closed'

stream_socket.close()

4.7 BUILD A SIMPLE SERVER

Now let's take a look at a simple Python server. The following are the socket

server methods available in Python.

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind(): Binds address (hostname, port number) to socket.

s.listen(): Sets up and starts TCP listener.

s.accept(): Accepts TCP client connection.

We will follow the following steps:

34

 Create a socket.

 Bind the socket to a port.

 Start accepting connections on the socket.

Here is the server program.

import socket

import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # Define host

host = 'localhost'

 # define the communication port

port = 8080

 # Bind the socket to the port

sock.bind((host, port))

Listen for incoming connections

sock.listen(1)

Wait for a connection

35

print 'waiting for a connection'

connection, client = sock.accept()

print client, 'connected'

Receive the data in small chunks and retransmit it

data = connection.recv(16)

print 'received "%s"' % data

if data:

 connection.sendall(data)

else:

 print 'no data from', client

 # Close the connection

connection.close()

The server is now ready for incoming connections.

Now run the client and server programs in separate terminal windows, so they

can communicate with each other.

Server Output

$ python server.py

36

waiting for a connection

('127.0.0.1', 47050) connected

received "message"

Client Output

$ python client.py

connecting

message

socket closed

4.8 SENDING EMAIL USING SMTP

Simple Mail Transfer Protocol (SMTP) is a protocol, which handles sending

e-mail and routing e-mail between mail servers.

Python provides smtplib module, which defines an SMTP client session

object that can be used to send mail to any Internet machine with an SMTP

or ESMTP listener daemon.

Here is a simple syntax to create one SMTP object, which can later be used

to send an e-mail –

import smtplib

37

smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])

Here is the detail of the parameters −

 host − This is the host running your SMTP server. You can specify IP

address of the host or a domain name like tutorialspoint.com. This is

optional argument.

 port − If you are providing host argument, then you need to specify a

port, where SMTP server is listening. Usually this port would be 25.

 local_hostname − If your SMTP server is running on your local

machine, then you can specify just localhost as of this option.

An SMTP object has an instance method called sendmail, which is typically

used to do the work of mailing a message. It takes three parameters −

 The sender − A string with the address of the sender.

 The receivers − A list of strings, one for each recipient.

 The message − A message as a string formatted as specified in the

various RFCs.

Example

Here is a simple way to send one e-mail using Python script. Try it once −

import smtplib

sender = 'from@fromdomain.com'

38

receivers = ['to@todomain.com']

message = """From: From Person from@fromdomain.com

To: To Person to@todomain.com

Subject: SMTP e-mail test

This is a test e-mail message.

"""

try:

 smtpObj = smtplib.SMTP('localhost')

 smtpObj.sendmail(sender, receivers, message)

 print "Successfully sent email"

except SMTPException:

Here, you have placed a basic e-mail in message, using a triple quote, taking

care to format the headers correctly. An e-mail requires a From, To,

and Subject header, separated from the body of the e-mail with a blank line.

To send the mail you use smtpObj to connect to the SMTP server on the local

machine and then use the sendmail method along with the message, the from

address, and the destination address as parameters (even though the from and

to addresses are within the e-mail itself, these aren't always used to route

mail).

mailto:from@fromdomain.com
mailto:to@todomain.com

39

If you are not running an SMTP server on your local machine, you can

use smtplib client to communicate with a remote SMTP server. Unless you

are using a webmail service (such as Hotmail or Yahoo! Mail), your e-mail

provider must have provided you with outgoing mail server details that you

can supply them, as follows − smtplib.SMTP('mail.your-domain.com', 25)

 SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-V - Python Programming – SCS1619

1

UNIT V

CASE STUDY

Web Programming using Python.

Image Processing–Face Book Analysis–Twitter Analysis

5.1 WEB PROGRAMMING USING PYTHON

Python is one of the most acceptable language for web application

development for its efficiency and readability. There are different frameworks

supported by python. A framework is a bundle of packages and modules that

allows us to create web application very easily without having to handle low

level activities such as thread management, process management and protocol

management. We can build our application very effectively with the help of

frameworks.

Below are the popular web frameworks in python.

1. Django

Django is a popular python web framework and is used for larger

applications. It contains everything needed for web development bundled with

the framework itself. Users no need to handle database administration, routing

and authentication. It works with all important databases like

Oracle,MySQL,PostgreSQL,SQLite,etc.

2

Features

1. Ridiculously fast- It is designed to handle the applications from

beginning to end as quickly as possible.

2. Fully loaded – It handles user authentication, context administration,

site maps and many tasks.

3. Security- It helps the developer to avoid common security mistakes

such as SQL injection, cross-site scripting and cross site request

forgery.

4. Scalability- It handle the heaviest traffic demands.

2. Flask

Flask is a micro framework for python and good choice for building

smaller applications and web services. It implements the commonly used core

components of a web application framework such as URL routing, request and

response objects and templates. Database access, form generation and

validation are not built in functions of Flask.

3. Pyramid

Pyramid is the most flexible python framework and is used for mid-high

scale applications. Anyone can start to work with Pyramid without any prior

knowledge about it. It comes with only some important tools which are needed

for developing application. It is a finishing framework with the ability to start

small application and allow us to code a solid foundation for our solution and

to scale up as needed.

3

5.1.1 Developing simple application using Django

Web framework provide tools and libraries to simplify the task of web

development operations. It solve the issues and it will make our worka lot

easier. Django web framework is written on quickly and helps in building the

clean and maintainable web applications.

5.1.2 Django Architecture

It follows a MVC-MVT architecture. MVC stands for Model View

Controller. It is used for developing the web applications. It consists of three

segments like model, view and controller. The following fig 1 shows the MVC

architecture.

 Model : It is used for storing and maintaining our data. It is the backend

where our database is defined.

 Views: views are in html. Whatever user is seeing ,it is defined as view.

 Controller: Controller is business logic that interact with the model and

the view.

Fig. 5.1: MVC Architecture

View

Model

Controller

4

5.1.3 Django MVT pattern

MVT stands for Model View Template. In MVT, predefined template is used

for user interface. User no need to rewrite the code again by using template.

Django will acts as controller in this part. Template is our front end which will

interact with the view and the model will be used as backend. View will access

both the model and templates and maps it to a URL. Fig 2 describes the MVT

pattern.

Fig. 5.2: MVT Pattern

5.1.4 Django Installation

Step 1: Go to the link: https://www.djangoproject.com/download/. It is

described in fig 3.

 User

Django

URL View

Template

Model

https://www.djangoproject.com/download/

5

Step 2: Type the pip command on command prompt which run as a

administrator. Fig 4 shows the installation of Django

Pip install Django ==1.11.4

Step 3: Build our web application, first let’s create a project. Enter in to our

project folder. Execute the following command in the command prompt

Django-admin start project myproject

Fig.5.3: Django Website

6

Fig.5.4: Installation of Django

Fig.5.5: Folder Creation in Python Environment

7

Fig.5.6: Files in Directory

Fig 5 and 6 describes the folder creation and list of files in directory. Our

project is created now. We will see the list of files in directory. Let’s discuss

about the following files.

1. Manage.py- It is a command line utility

2. Myproject –It is actual python package in our project.

3. Init.py-Python package

4. Settings.py- It manages all the settings of our project

8

5. Urls.py-Main controller which maps it to our web site.

6. Wsgi.py- It acts as an entry point for WSGI (Web Server Gateway

Interface) compatible web servers

Step 4: Create our web application and make sure that we are in the same

directory as mangae.py and type the following command

python manage.py startappwebapp

Now webapp is added in our project folder and few elements are added in web

app like view, test and model. It is shown in fig 7.

Fig.5.7: Creation of Web App

9

Step 5: Now open our myproject/settings.py and our webapp manually. The

following fig 8 shows the settings file.

Fig.5.8: Settings File

INSTALLED_APPS = [

 'webapp',

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

10

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

]

Step 6 : Once we have installed our app, now create a view which is shown

fig 9. Open our webapp/views.py and enter the following code.

fromdjango.shortcuts import render

fromdjango.http import HttpResponse

def index(request):

return HttpResponse("<H2>HEY! Welcome to Sathyabama! </H2>")

11

Fig.5.9: View File

Step 7: We have created a view that returns http response and map this view to

a URL. We need to create a “url.py” inside our webapp and enter the following

code.

fromdjango.conf.urls import url

from .import views

urlpatterns = [

url(r'^$', views.index, name='index'),

]

Step 8:

12

Point the root URLconf at the webapp.urls module. Open our

myproject/urls.py file and write the following code.

fromdjango.conf.urls import include, url

fromdjango.contrib import admin

urlpatterns = [

url(r'^admin/', include(admin.site.urls)),

url(r'^webapp/', include('webapp.urls')),

]

Step 9: Now start the server by type the following command

Python manage.py runserver

 After running the server,gotohttp://localhost:8000/webapp/ in our browser and

see the “Hey!nWelcome to sathyabama “ which we defined in the index view.

5.2 IMAGE PROCESSING

Image processing is a method of converting an image into digital form and

perform the operations like smoothing, sharpening, contrasting and stretching

on image to get an enhanced image and to extract the useful information from

it. It can increase the readability of the image and enhance the quality of the

image. Image processing is a part of computer vision. Computer vision is an

important field in the area of artificial intelligence.

http://localhost:8000/webapp/

13

Python supports lot of libraries for image processing, including

 Open-CV- It is mainly focused on real time computer vision with

variety of applications such as two dimensional and three dimensional

Open-CV is an open source computer vision library for real time image

and video processing. It supports a lot of algorithms related to

computer vision. It supports a variety of languages like C++, Python

and Java. It is available on different platforms including Windows,

Linux, Android and iOS.

 Numpy and Scipy libraries- Numpy is a optimized library for numerical

operations. Open-CV array structures are converted to Numpy arrays.

Both are used for image manipulation and processing.

 Python Imaging Library(PIL) – It is mainly used for performing basic

operations such as resize, rotation and convert between different file

formats.

 Matplotlib- It is an optional choice for displaying frames from images

or videos.

The following Python packages are needed to be downloaded and installed to

their default locations.

 Python-2.7.x

 Numpy

 Matplotlib

14

Steps for installation of packages:

1. Python will be installed in C://Python27/.

2. After installation , open Python IDE and enter import numpy and verify

that Numpy is working fine.

3. Download the latest Open-CV release from the internet and double

click to extract it.

4. Go to opencv/build/python/2.7 folder

5. Copy cv2.pyd to C://Python27/lib/site-packages

6. Open Python IDE and type the following codes in python terminal

>>>import cv2

>>>print cv2._version_

5.2.1 Gray Scale Image

Below are the some of the examples for demonstrating the use of libraries for

image processing. The given program shows the image in gray scale. Import

the all the libraries and read the image using imread function. Fig 10 shows

the image in gray scale.

Code:

import cv2

importnumpy as np

15

frommatplotlib import pyplot as plt

im = cv2.imread('boat.jpg',cv2.IMREAD_GRAYSCALE)

cv2.imshow('image',im)

cv2.waitKey(0)

cv2.destroyAllWindows()

Output:

Fig.5.10: Gray scale Image

16

5.2.2 Geo metric Transformation of Image

5.2.2.1 Resize Image

Scaling is just resizing of the image. The size of the image can be specified

manually or specify with scaling factor. Resizing an image is changing the

dimensions of it ,be it width alone, height alone or both. The following syntax

specify the resize function.

cv2.resize(src,dsize, Interpolation)

wheresrc specifies source image

dsize specifies destination image

Interpolation represent the different function such as cv.INTER_AREA for

shrinking and cv.INTER_CUBIC for zooming operation.

Fig 11 shows the output of scaling.

 Code:

import cv2

img = cv2.imread('boat.jpg', cv2.IMREAD_UNCHANGED)

print('Original Dimensions : ',img.shape)

scale_percent = 60 # percent of original size

17

width = int(img.shape[1] * scale_percent / 100)

height = int(img.shape[0] * scale_percent / 100)

dim = (width, height)

resize image

resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)

print('Resized Dimensions : ',resized.shape)

cv2.imshow("Resized image", resized)

cv2.waitKey(0)

cv2.destroyAllWindows()

18

Fig.5.11: Scaling

5.2.2.2 Translation

Translation is the shifting of object’s location from (x,y) direction tp (tx,ty)

location.

The transformation matrix M is represented as follows:

𝑀 = [
 1 0 𝑡𝑥

 0 1 𝑡𝑦
]

Code:

importnumpy as np

19

import cv2 as cv

img = cv.imread('boat.jpg',0)

rows,cols = img.shape

M = np.float32([[1,0,100],[0,1,50]])

dst = cv.warpAffine(img,M,(cols,rows))

cv.imshow('img',dst)

cv.waitKey(0)

cv.destroyAllWindows()

wherecv.warpaffine function specifies size of the output image.

Fig 12 and 13 describes the original image and translation result.

20

Fig.5.12: Original Image

Fig .5.13: Translation

21

5.2.3 Thresholding

Thresholding is a simplest method of image segmentation. It converts a gray

scale image into a binary image. If a pixel is greater than a threshold value, it

is assigned with one value(White), else it is assigned another value (Black).

The threshold function is described as below:

Cv2.threshold(src, thresh, maxval, type[, dst])

This function is used to get a binary image out of a grayscaleimage for

removing a noise.

1. src-Input array. This is the source image.

2. thresh-threshold value which is used for classifying the pixel.

3. maxval-Maxval which represents the value to given if pixel is more

than the threshold value.

4. Type- Thresholding type. Different types are mentioned as below:

a. cv2.THRESH_BINARY (Threshold Binary)

b. cv2.THRESH_BINARY_INVY (Threshold Binary Inverted)

c. cv2.THRESH_TRUNCY (Truncate)

d. cv2.THRESH_TOZEROY (Threshold to Zero)

e. cv2.THRESH_TOZERO_INVY(Threshold to Zero Inverted)

The following fig 14 shows the outputs for different threshold functions.

Code:

22

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('bloodcells.jpg',0)

ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)

ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)

ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)

ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)

ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)

titles = ['Original

Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']

images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in xrange(6):

plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')

plt.title(titles[i])

plt.xticks([]),plt.yticks([])

plt.show()

23

Fig.5.14: Thresholding

5.2.4 Image Blurring (Image Smoothing)

Image blurring is achieved by removing the outlier pixels in the image. It

removes high frequency content from the image resulting in edges being

24

blurred when the filter is applied. Here the following section describes the

examples of blurring techniques.

5.2.4.1Averaging

It takes the average of all the pixels under kernel area and replaces the

central element with this average. This is achieved by using cv2.blur(). A 3×3

filter is described as below:𝐾 =
1

9
[
1 1 1
1 1 1
1 1 1

]

Code:

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('bloodcells.jpg')

blur = cv2.blur(img,(5,5))

plt.subplot(121),plt.imshow(img),plt.title('Original')

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(blur),plt.title('Blurred')

plt.xticks([]), plt.yticks([])

plt.show()

25

Fig 15 shows the image averaging output.

Fig.5.15: Image Averaging

5.2.4.2 Median Filtering

Median filter is effectively used for removing salt and pepper noise. It

computes the medial of all pixels under the kernel window and the central

pixel is replaced by the median value. Central element is always replaced by

some pixel value in the image. It reduces the noise effectively. Fig 16 shows

the output of blurred image.

26

Code:

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('noise.jpg')

median = cv2.medianBlur(img,5)

plt.subplot(121),plt.imshow(img),plt.title('Original')

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(median),plt.title('Blurred')

plt.xticks([]), plt.yticks([])

plt.show()

Output:

27

Fig.5.16: Median Filtering

5.2.5 Canny Edge Detection

It is a popular edge detection algorithm and consists of multiple numbers of

stags such noise reduction, finding intensity gradient of the image, Non-

maximum suppression and hysteresis threshold. In noise reduction, remove

the noise from the image. It allows us to find the gradient of the gray scale

image to find the edge regions in the x axis and y axis directions. After getting

the magnitude and direction, a full scanning is performed to remove

28

unwanted pixels in the edges. In hysteresis thresholding decides which are the

edges are really edges or not by using two threshold values minval and

maxval. Any edges with intensity gradient is more than maxval are consided

as edges and those below minval are considered as non edged and also

discarded. The following fig 17 shows the result of canny edge detection.

Code

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('noise.jpg',0)

edges = cv2.Canny(img,100,200)

plt.subplot(121),plt.imshow(img,cmap = 'gray')

plt.title('Original Image'), plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(edges,cmap = 'gray')

plt.title('Edge Image'), plt.xticks([]), plt.yticks([])

plt.show()

29

Fig.5.17: Canny Edge Detection

5.2.6 Histograms

Histogram is a graph or plot which gives us an overall idea about the intensity

distribution of an image. It is a plot with pixel values(ranging from 0 to 255)

in X axis and corresponding number of pixels the Y axis. Cv2.calcHist()

function is used to find the histogram. It is described as given below:

30

Cv2.calcHist(images,channels,mask,histsize,ranges[,hist[,accumulate]])

1. Images- Source image

2. Channels-If the input is grayscale image ,its value is [0]. For color

image, we can pass [0],[1],[2] to calculate histogram of blue,green or

red respectively.

3. Mask- If we want to find the histogram of particular region of the

image, we have to create a mask image for that one.

4. Histsize: BIN count is 256 which represent the number of pixels for

every pixel value from 0 to 255.

5. Ranges- Normally it is [0,256]

Fig 18 shows the histogram output with mask.

Code:

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('boat.jpg',0)

create a mask

mask = np.zeros(img.shape[:2], np.uint8)

mask[100:300, 100:400] = 255

31

masked_img = cv2.bitwise_and(img,img,mask = mask)

Calculate histogram with mask and without mask

Check third argument for mask

hist_full = cv2.calcHist([img],[0],None,[256],[0,256])

hist_mask = cv2.calcHist([img],[0],mask,[256],[0,256])

plt.subplot(221), plt.imshow(img, 'gray')

plt.subplot(222), plt.imshow(mask,'gray')

plt.subplot(223), plt.imshow(masked_img, 'gray')

plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)

plt.xlim([0,256])

plt.show()

Fig.5.18: Histograms

32

5.3 FACE BOOK DATA ANALYSIS

Python is used for extract data from facebook . We need to register as

developer on facebook. Here the steps are listed below.

1. Go to the link developers.facebook.com and create an there.

2. Go to the link developers.facebook.com/tools/explorer.

3. Go to Myapps drop down in the top right corner and select add a new

app. Choose the display name and category and then create APP ID.

4. Again go to the link developers.facebook.com/tools/explorer. We will

see “Graph API Explorer below “Myapps” in the top right corner.

From “Graph API Explorer” drop down, select our App.

5. Select “Get Token”. From this menu select “Get user access Token “.

Select permissions from the menu that appears and then select “Get

access Token”

We can download datasets from other Face book pages and get these stats for

each post:

 Number of likes

 Number of shares

 Number of comments

Then we can analyze this data using Excel or Tableau or Python or any

software used for data analysis. Fig 19 shows the login access in facebook

developer account. App creation details are described in fig 20,21 and 22.

33

Fig.5.19: Login in face bookdevelopers account

Fig.5.20: Creation of App

34

Fig.5.21: App Dashboard

Fig.5.22: Access Token Details

35

The graph API is called social graph. It is a representation of information in

face book. It consists of the following elements.

 Nodes- Individual objects such as user, photo ,page or

comment

 Edges- Connection between a collection of objects and a single

object such as photos or comments on a photo.

 Fields- Data about an object such as birthday or a page’s name.

We can use nodes to get data about a specific object, use edges to get

collections of objects on a single object and fields to get about a single object

or each object in a collection. Graph API is HTTP based and works with any

language.

Google graph API provides us a way by which we can get data from face

book. We can put our data in facebook platform. It is a REST based API and

used to query data, manage our ads on facebook, upload photos, videos and

post our new stories to facebook automatically. We can this API to get our

own Facebook account data. But, we need to get other users data for this we

need to take several permissions from users . We need to implement oAuth

protocol to implement this operation. Anyonecan authenticate and grant our

permissions. Fig 23 and 24 show the face bookgraph API and node

information.

36

Fig.5.23: Facebook Graph API

Fig.5.24: Node Information

37

Code

importjson

importfacebook

def main():

 token =

"{EAAQa3kWzdcYBAKdzunCHWEixLKLvLSb5lnd8Ohs5Jh6zBef

MCgOPPJdYq4mTvkpgl15y1th6XpRSO5pxlnijQSCZAHShENSP06x

tF4WZAAD0CPFq988ZBdZAZAG8nx0DrTZAvIZBcfsYskP3JXsg7

GN973Q39XwhKORlmxxR5kZA5GYN3ZCyNM3uL3waUh3dm91H

ruwWM63ZAtYQZDZD}"

 graph = facebook.GraphAPI(token)

 page_name = raw_input("Enter a page name: ")

 # list of required fields

 fields = ['id','name','about','likes']

 fields = ','.join(fields)

38

 page = graph.get_object(page_name, fields=fields)

 print(json.dumps(page,indent=4))

if __name__ == '__main__':

 main()

Output:

Enter page name

Smith

Name: Smith

Id: 13456234578

Likes: 23

5.4 TWITTER ANALYSIS

Sentiment analysis is the process of determining whether a piece of

writing is positive, negative or neutral. In business field, companies use it to

develop their strategies, understand the customer’s feelings related to

particular product ,product launches and reasons for not buying the particular

39

products. In political field , it is used to detect the consistency and

inconsistency statements.

Installation:

Before we start coding, we need to register for the Twitter API

https://apps.twitter.com/. Here we need to register an app to generate various

keys associated with our API. The following keys are used for authentication

 API key

 API secret Key

 Access Token

 Access Token Secret

After creating the app we need to install the following commands.

Tweepy: Python client for the official Twitter API.Install it using following

pip command.

Pip installtweepy

Textblob: Python library for processing textual data.

Pip installtextblob

.

Code:

https://apps.twitter.com/

40

import re

importtweepy

fromtweepy import OAuthHandler

fromtextblob import TextBlob

classTwitterClient(object):

 '''

 Generic Twitter Class for sentiment analysis.

 '''

def __init__(self):

 '''

Class constructor or initialization method.

 '''

 # keys and tokens from the Twitter Dev Console

consumer_key = 'XXXXXXXXXXXXXXXXXXXXXXXX'

consumer_secret = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX'

41

access_token = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX'

access_token_secret = 'XXXXXXXXXXXXXXXXXXXXXXXXX'

 # attempt authentication

try:

 # create OAuthHandler object

self.auth = OAuthHandler(consumer_key, consumer_secret)

 # set access token and secret

self.auth.set_access_token(access_token, access_token_secret)

 # create tweepy API object to fetch tweets

self.api = tweepy.API(self.auth)

except:

print("Error: Authentication Failed")

defclean_tweet(self, tweet):

 '''

42

 Utility function to clean tweet text by removing links, special characters

using simple regex statements.

 '''

return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])

|(\w+:\/\/\S+)", " ", tweet).split())

defget_tweet_sentiment(self, tweet):

 '''

 Utility function to classify sentiment of passed tweet

usingtextblob's sentiment method

 '''

 # create TextBlob object of passed tweet text

analysis = TextBlob(self.clean_tweet(tweet))

 # set sentiment

ifanalysis.sentiment.polarity> 0:

return 'positive'

43

elifanalysis.sentiment.polarity == 0:

return 'neutral'

else:

return 'negative'

defget_tweets(self, query, count = 10):

 '''

Main function to fetch tweets and parse them.

 '''

 # empty list to store parsed tweets

tweets = []

try:

 # call twitter api to fetch tweets

fetched_tweets = self.api.search(q = query, count = count)

 # parsing tweets one by one

44

for tweet in fetched_tweets:

 # empty dictionary to store required params of a tweet

parsed_tweet = {}

 # saving text of tweet

parsed_tweet['text'] = tweet.text

 # saving sentiment of tweet

parsed_tweet['sentiment'] = self.get_tweet_sentiment(tweet.text)

 # appending parsed tweet to tweets list

iftweet.retweet_count> 0:

 # if tweet has retweets, ensure that it is appended only once

ifparsed_tweet not in tweets:

tweets.append(parsed_tweet)

else:

tweets.append(parsed_tweet)

45

 # return parsed tweets

return tweets

excepttweepy.TweepError as e:

 # print error (if any)

print("Error : " + str(e))

def main():

 # creating object of TwitterClient Class

api = TwitterClient()

 # calling function to get tweets

tweets = api.get_tweets(query = 'Donald Trump', count = 200)

 # picking positive tweets from tweets

ptweets = [tweet for tweet in tweets if tweet['sentiment'] == 'positive']

46

 # percentage of positive tweets

print("Positive tweets percentage: {}

%".format(100*len(ptweets)/len(tweets)))

 # picking negative tweets from tweets

ntweets = [tweet for tweet in tweets if tweet['sentiment'] == 'negative']

 # percentage of negative tweets

print("Negative tweets percentage: {}

%".format(100*len(ntweets)/len(tweets)))

 # percentage of neutral tweets

print("Neutral tweets percentage: {} % \

 ".format(100*len(tweets - ntweets - ptweets)/len(tweets)))

 # printing first 5 positive tweets

print("\n\nPositive tweets:")

for tweet in ptweets[:10]:

print(tweet['text'])

47

 # printing first 5 negative tweets

print("\n\nNegative tweets:")

for tweet in ntweets[:10]:

print(tweet['text'])

if __name__ == "__main__":

 # calling main function

main()

Output:

Positive tweet percentage: 22%

Negative tweet percentage: 16%

48

QUESTIONS

1. List out the frame works of python in web programming.

2. Mention the libraries for image processing.

3. Explain different types of threshold function types?

4. Illustrate about canny edge detection algorithm?

5. How do you find the intensity distribution of the image?

6. Describe about the parameters of histogram function?

7. Evaluate the procedure for getting access token in Face Book data

analysis?

8. Illustrate the implementation of Django web framework?

9. Elaborate about the method for removing noise from the image?

10. Assess the methods used in geo metric transformation of the image?

11. Analyze the steps involved in face book data analysis?

12. Elaborate about twitter data analysis?

