SALHIABAMA

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC |71ZB Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT- I - Python Programming — SCS1619

UNIT I

INTRODUCTION

Introduction to the IDLE interpreter (shell) -Expressions — Data Types
- Built-in function -Conditional statements - Iterative statements-
Input/output -Compound Data Types - Nested compound statements —
Introduction to Object Oriented Concepts.

1.1 INTRODUCTION TO THE IDLE INTERPRETER (SHELL)

Python is a freeware that can be installed on your workstation or laptop.
The current version of is Python 3.8.2. (Release date: Feb 24, 2020).
Python can be downloaded from the https://www.python.org/downloads/
website

o] - ot

e python . I

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows 7 ! N
y 7
\1 [/)%

ent 0S? Python for Windows,

ges
Looking for Python 2.72 See below for specific releases

Looking for a specific release?

Python releases by version number:

After installation, shortcut for the python software will be available on the
start menu. Select Start menu -> All Programs -> Python 3.8 -> IDLE Python
3.8 to invoke python IDE (Integrated Development Environment).

A, IDLE (Python 3.7 64-bit)
=
/53 Microsoft Office PowerPoint 2007

52 Calculator

5 TurboCs+

F Python 3.8 (32-bit)

> AllPrograms

IDLE (Integrated Development and Learning Environment) is an IDE for
Python. Python programs can also be executed in Python command line.

F® Python 3.8 (32-bit)

FPython 3.8.2 {(tags~-uv3.8.2:7h3abbh?. Feb 25 2028, 22:45:29> [MEC v.1916 32 bit <In
tel>] on win32
"help". "copyright",. "credits" or "license" for more information.

1.1.2 Program

A program performs a task in the computer. But, in order to be
executed, a program must be written in the machine language of the processor
of a computer. Unfortunately, it is extremely difficult for humans to read or
write a machine language program. This is because a machine language is
entirely made up of sequences of bits. However, high level languages are
close to natural languages like English and only use familiar mathematical
characters, operators and expressions. Hence, people prefer to write programs
in high level languages like C, C++, Java, or Python. A high level program is
translated into machine language by translators like compiler or interpreter.

1.1.3 About Python

Python is a high level programming language that is translated by the
python interpreter. As is known, an interpreter works by translating line-by-
line and executing. It was developed by Guido-van-rossum in 1990, at the
National Research Institute for Mathematics and Computer Science in

3

Netherlands. Python doesn’t refer to the snake but was named after the
famous British comedy troupe, Monty Python’s Flying Circus. Python is
Interpreted: Python is processed at runtime by the interpreter. You do not need
to compile your program before executing it.

Python is Interactive: we can actually sit at a Python prompt and
interact with the interpreter directly to write our programs.

Python is Object-Oriented: Python supports Object-Oriented style or
technique of programming that encapsulates code within objects.

Application of python used in Search engine. In mission critical
projects in Naza, in processing financial transaction at New york stock
Exchange.

The following are some of the features of Python:

» Python is an Open Source: It is freely downloadable, from the link
“http:// python.org/”

» Python is portable: It runs on different operating systems / platforms3

» Python has automatic memory management

» Python is flexible with both procedural oriented and object oriented
programming

» Python is easy to learn, read and maintain
» Python is Extendable. You can add low-level modules to the Python is

Interpreted. These modules enable programmers to add to or customize
their tools to be more efficient.

» Python supports GUI applications that can be created and ported to
many system calls, libraries and windows systems, such as Windows
MFC, Macintosh, and the X Window system of Unix.

» IT supports automatic garbage collection.

» It can be easily integrated with C, C++, COM, ActiveX, CORBA, and
Java.

» It supports functional and structured programming methods as well as
OOP.

It is very flexible with the console program, Graphical User Interface (GUI)
applications, Web related programs etc.

Points to remember while writing a Python program

> Case sensitive : Example - In case of print statement use only
lower case and not upper case, (See the snippet below)

3y print("hello") = Valid
hello .
33> Print("hello") = Invalid

Traceback {most recent call last):
File "<stdimn>", line 1. in <{module’
?gmeﬂrrur: name *Print' is not defined

>

» Punctuation is not required at end of the statement

» In case of string use single or double quotesi.e. © *or “ ”

» Must use proper indentation. The screen shots given below show, how
the value of “i” behaves with indentation and without indentation.

E_& *flpy - C/Users/Administrator/AppDatarLocal/Programs/Python/Pythen37-32/f1.p... EI@
File Edit Fermat Run Options Window Help
i range(5) : -
print (i) . .
| <: With Indentation
Ln:3 Col: 4
E‘} SyntaxError @
E_& fl.py - C:/Users/Administrator/AppDyg _ = || =R
File Edit Format Run Options [8} expected an indented block
i range (5): "'
BERNE (i)
_
Lm:2 Col:5
u

Without Indentation
> Special characters like (,),# etc. are used
> () ->Used in opening and closing parameters of functions

> #-> The Pound sign is used to comment a line

1.1.4 Two Modes of Python Program

Python Program can be executed in two different modes:

» Interactive mode programming
» Script mode programming

Interactive Mode Programming

It is a command line shell which gives immediate output for each statement,
while keeping previously fed statements in active memory. This mode is used
when a user wishes to run one single line or small block of code. It runs very
quickly and gives instant output. A sample code is executed using interactive
mode as below.

B Python 37 (32-bi ol B e

Python 3.7.2 (tags/3.7.2:9a3f£c0492, Dec 23 2618, 22:20:52) [MSC v.1916 32 hit .

(Intel>] on wind2

Type “help”, “copyright", “credits" or "license" for more information.
»3 myuniv = "Sathyahama !..."

>} print{myuniv)

Sathyahama !...

Y

Interactive mode can also be opened using the following ways:

i) From command prompt ¢ :> users\\...>python

.
B Administrator: Command Prompt - python BEEE

Microsoft Windows [Version 6.1.76011 "
Copyright (c> 200? Microsoft Corporation. A1l rights reserved.

C:sUserss\Adninistratordpython

Python 3.7.2 (tags/vd.7.2:9a3ffcB492, Dec 23 2618, 22:20:52)> [MSC v.1916 32 b
(Intel)] on win32

Type "help". “copyright”, “credits" or “license" for more information.

b3y

14 n }

The symbol “>>>" in the above screen indicates that the Python environment
is in interactive mode.

ii) From the start menu select Python (As shown below)

';H—'-:% Snipping Tool

A .-"'r Paint 3
l‘-i VLC media player >

E Python 3.7 (32-bit)

Python interpreter in interactive mode is commonly known as Python
Shell. >>> is the prompt for Python shell. It shows that shell is ready
to accept your commands. Python shell allows you to type Python

code and see the result immediately. It is also known as REPL which
stands Read-Eval-Print-Loop. REPL allows you to quickly test code
snippets and see the output immediately. To quit the Python shell in
Python Command line, hit Ctrl+Z followed by the Enter Key. To quit
the Python shell in Idle, press Ctrl+Q.

Script Mode Programming

When the programmer wishes to use more than one line of code or a block of
code, script mode is preferred. The Script mode works the following way:

i) Open the Script mode

i) Type the complete program. Comment, edit if required.
iii) Save the program with a valid name.

iv) Run

V) Correct errors, if any, Save and Run until proper output

The above steps are described in detail below:

) To open script mode, select the menu “IDLE (Python
3.7 32-bit)” from start menu

Programs (4)
@ IDLE (Pythen 3.7 32-hit)
B Python 3.7 (32-bit)
™ Python 3.7 Module Docs (32-bit)
& Python 3.7 Manuals (32-hit)

Documents (24)

i) After clicking on the menu “IDLE (Python 3.7 32-
bit)” , a new window with the text Python 3.7.2 Shell will be
opened as shown below:

| & Python 3.7.2 Shell =B]
File Edit Shell Debug Options Window Help

Bython 3.7.2 (tege/vi,T7.2:8a3ffc0482, Dec 23 2018, 22:20:52) [M3C w.l18l6 352 bitc
(Intel)] on win32

Type "help®, "copyright®, "credics® or "license ()" for more informacion.

y
fy; |

Lm:3 Col:4

iii) Select File > New, to open editor. Type the complete program.
iv) Select File again; Choose Save.

This will automatically save the file with an extension “.py”.

V) Select Run = Run Module or Short Cut Key F5 (As shown in

the screen below)
10

E_.a fl.py - C:/Users/Administrator/AppData/Local/Programs/Python/Python37-32/f1 py... EI@
File Edit Format Options Window Help

=3 Pythen Shell i
j < Check Module Alt+X E

Run Medule F5

=

Ln:2 Col6

The output of the program will be displayed as below:

>> Sum ofaand b is: 30

Script mode is used to create, modify and execute Python programs. Script
mode is used for executing a set of statements at any time and any number of
times. The set of statements can be saved in a file with extension .py which
can be executed at later time. The Python Interpreter in Script mode is used to
execute the python code from a file.

1.2 VARIABLES

Variable is the name given to a reserved memory locations to store
values. It is also known as Identifier in python.

Need for variable:

Sometimes certain parameters will take different values at different
time. Hence, in order to know the current value of such parameter we need to
have a temporary memory which is identified by a name that name is called as

11

variable. For example, our surrounding temperature changesfrequently.in
order to know the temperature at a particular time, we need to have a variable.

Naming and Initialization of a variable

12

1. A variable name is made up of alphabets (Both upper and
lower cases) and digits and is case sensitive

2 No reserved words

3 Initialize before calling

4. Multiple variables initialized

5 Dynamic variable initialization

Consist of upper and lower case alphabets,Numbers (0-9).E.g. X2

In the above example, a memory space is assignedto variable X2.
The value of X2 is stored in this space.

X2 - Value

Reserved words should not be used as variables names.

= [[=3][==

B® python 3.7 (32-bit)
22:2@:52> [MSC uv.1916 32 bit

Puython 2.7.2 <{(tags-uv3._.7.2:%7a3ffcB4?2. Dec 23 2818.

<Intel>]1 on win32
Type *h Y. "copuright'. "credits" or ""license' for more information.

elp' .
>>> # Ualid Uariable

>>> x2 = 25

>>> printdx2>

25

>>> # Invalid variable
- nd = 25

J7 and =
File “<stdin>*. line 2 .
and = 25 -<:= "and" is reserved word

SyntaxError: invalid syntax
>35>

13

In the above example “and” is a reserved word, which leads to Syntax
error

iii. Variables must be initialized before it called , else it reports “is
not defined ” error message as below E.g.: a=5 print(a)

P python 37 (32-bi) =R Ecy
thon 3.7.2 (tags/v3.7.2:9a3ffc0492, Dec 23 2818, 22:20:52) [MSC v.1916 32 hit .

{Intel)] on winl
gge "help", "copyright", “credits" or “license" for more information.
>332 printdal
raceback (most recent call last):
File “{stdin>", line 1, in {module’
ameError: name 'a’ iz not defined

rr

In the above example “a” is called before it initialized. Hence, the
python interpreter generates the error message: NameError: ‘a’ is not
defined.

iv. Multiple variables can be initialized with a common value.
E.g.: x=y=2=25
B Python 37 32-bit [[=] = |3

Python 3.7.2 (tags/v3.7.2:%a3ffcB492, Dec 23 2818, 22:28:52) [MS5C v.1916 32 hit .
(Intel>] on win32
Type “help", "copyright". “credits" or “license" for more information.
»>> printdal
Traceback (most recent call last):

File "<stdin>". line 1, in <module>
NameError: name
> w=y=z=25
»>> printdy)
25

e

a’ dis not defined

33> print{x)>
25

In the above three variables x, y, z is assigned with same value 25.

v. Python also supports dynamic variable initialization. E.g.:
x,y,2=1,2,3

B python 3.7 (32-bit) =3

Fython 3.7.2 {tagssu3.7._2:9a3ffcB492, Dec 23 2018, 22:28:52)> [MEC uv._1916 32 hit .
(Intel>] on win32

Type "help”. “copyright". “credits" or “license" for more information.

>3 x.y.2=1

2> print{x)

>»> print{yd
2

;)) print{z)
23>

Proper spacing should be given

eprint(10+20+30)-> bad style

eprint(20 + 30 + 10) - good style
1.2.1 Expression

An expression is a combination of variables, operators, values and calls to
functions. Expressions need to be evaluated.

Need for Expression:

Suppose if you wish to calculate area. Area depends on various parameters in
different situations. E.g. Circle, Rectangle and so on...

In order to find area of circle, the expression 7 * r * r must be evaluated
and for the rectangle the expression is w * | in case of rectangle. Hence, in this
case a variable / value / operator are not enough to handle such situation. So

14

expressions are used. Expression is the combination of variables, values and
operations.

A simple example of an expression is 10 + 15. An expression can be
broken down into operators and operands. Few valid examples are given
below.

ircle

Circle .
Solution For Area ~ “ Rec 7- - . le
— 2 . ,

w

)
)
—
jAh]
[_\
(1]

F® Python 3.7 (32-bit) = | <

ython 3.7.2 {(tags-uv3.7_2:9a3ffcB492, Dec 23 2018, 22:200:52> [MSC v_1916 32 hit
<Intel>] on win3Z2

Type “"help'. “"copyright',. "credits' or "license'" for more information.

>>> # Examplel

m| »

333 diameter = 25.8

>>>» radious = diameter ~ 2
>>> print <{radiousd
12.5

>>> # Example2

>>> i = 25 = (32> + 5 = 18
>>> printddid

87.5

>>> # Example3

>>3> area = radious * radious > 3.14
>>> print{aread
4980.625

2
>>> ## Example4
335 B + 28
38
>

Invalid Expression

15

Always values should be assigned in the right hand side of the variable, but in
the below example, the value is given in the left hand side of the variable,
which is an invalid syntax for expression.

P Python 37 (32-bit) o| @] %

Python 3.7.2 (tags/v3.?.2:9a3ffcB492, Dec 23 2018, 22:20:52> [MSC v.1916 32 .
CIntel>] on win32
Type “help", “copyright", “credits" or "license" for more information.
1=x
File "{stdin}", line 1
SyntaxError: can’t assign to literal

b33

1.3 DATA TYPES

A Data type indicates which type of value a variable has in a program.
However a python variables can store data of any data type but it is necessary
to identify the different types of data they contain to avoid errors during
execution of program. The most common data types used in python are
str(string), int(integer) and float (floating-point).

16

Python - Data Types

Numeric Dictionary Boolean Set sefr‘;,’;:ce
Interger | Float Strings | Tuple |
" Complex ‘ [Gist
Number -

Fig.1.1: Python Data Types
1.3.1 Numeric
Numeric data type means the data will have numeric value.
Numeric value can be integer, floating number or even complex numbers.

. Integers — Int class is used to represent integers which may be a
positive whole number or negative whole number. There is on restriction on
limit for the value of integer. Integers are whole number values such as 50,
100,-3

. Float — Float class is used to represent floating point number which is
a a real number with floating point representation. It is specified by a decimal
point. Float is a value that use decimal point and therefore may have fractional
point E.g.: 3.415, -5.15

17

. Complex Numbers — Complex class is used to represent Complex
number specified as (real part) + (imaginary part)j. For example: 5 + 7j
where 5 is the real part and 7 is the imaginary part.

By default when a user gives input it will be stored as string. But strings
cannot be used for performing arithmetic operations. For example while
attempting to perform arithmetic operation add on string values it just
concatenates (joins together) the values together rather performing addition.
For example : 25’ + ‘20° = ‘45’ (As in the below Example)

B python 3.7 (32-bit) =% EoR ===

Python 3.7.2 (tags/v3.7.2:9a3ffc@492, Dec 23 2018, 22:20:52> [MSC v.1916 32 hit .
¢(Intel>] on winl2

Type “help". “copyright". “credits" or "license" for more information.
>»7 x = input(“Enter X'">

Enter R25

»»? y=input{“Enter ¥

Enter Y2

FrF E= Xty

>>» printcz)

2524

>33

Fortunately python have an option of converting one date type into another
data type (Called as “Casting”) using build in functions in python. The build
function int() converts the string into integer before performing operation to
give the right answer. (As in the below Program)

18

P byhon 3 4t o)

Python 3.7.2 (tags/v3.7.2:9a3ffc@492, Dec 23 2018, 22:28:52) [MEC v.1916 32 hit .
(Intel}] on wind2

Type "help"”, “copyright”, “credits" or "license” for more information.

22> x = input("Enter A™)

Enter A 25

> y=input ("Enter B")

Enter B 2 .
¥ 2 = intdx) + int(y><::= Type Casting
22 print("Sum is", 2)

Sun is 27
¥y

PROGRAM:

Python program to demonstrate numeric value

a=10

print("Type of a: ", type(a))
b=20.0

print("\nType of b: ", type(b))
c=5+7]

print("\nType of c: ", type(c))

Output:

Type of a: <class 'int"™>

Type of b: <class 'float">
Type of c: <class ‘complex'>

19

1.3.2 Boolean

The Boolean data type has two built-in values True or False. It is denoted by
the class bool.

Note — True and False with capital ‘T’ and ‘F’ are valid booleans value.
otherwise python will throw an error.

PROGRAM:

Python program to demonstrate boolean type
print(type(True))

print(type(False))

print(type(true))

Output:

<class 'bool>
<class 'bool>
Traceback (most recent call last):
File "/home/jesu/boolean.py”, line 9, in
print(type(true))
NameError: name ‘true’ is not defined

1.3.3 Sequence Type

20

A sequence is an ordered collection of similar or different data items. Using
sequence, Multiple values can be stored in the data type in an efficient
manner. There are different types of sequence data type such as

) Strings
i) List
1)) Tuple
) Strings
1.3.3.1 String

String is an array of bytes. Each byte represents a Unicode character. A
string is a collection of one or more characters put in a single quote, double-
quote or triple quote. In python there is no character data type, a character is a
string of length one. It is represented by str class.

Individual characters of a String can be accessed by using the method of
Indexing. Indexing allows negative address references to access characters
from the back of the String, e.g. -1 refers to the last character, -2 refers to the
second last character and so on. Only Integers are allowed to be passed as an
index, float or other types will cause a TypeError.

Updation or deletion of characters from a String is not allowed. This will
cause an error because item assignment or item deletion from a String is not
supported. This is because Strings are immutable, hence elements of a String
cannot be changed once it has been assigned. Only new strings can be
reassigned to the same name.

Strings: Sequence of characters inside single quotes or double quotes.

E.g. myuniv = “Sathyabama !..”
21

PROGRAM:

Python Program for String Manipulation
Creating a String with single Quotes, double quotes, tripple quotes
Stringl = 'Welcome'
String2 = "Sathyabama™
String3 = "'CSE™
Triple Quotes allows multiple lines
String4 = ""'Welcome

To

Sathyabama™

print("\nUsing Single quote™)
print(Stringl)
print("\nUsing Double quote™)
print(String2)
print("\nUsing Triple quote™)
print(String3)
print("\nUsing Triple quote to print multiline™)
print(String4)

#printing first character
print("\nPringint First Character")
print(String1[0])

#printing last character

print("\nPringint Last Character")
print(String1[-1])

22

#updating a single character
#Stringl[2] ='p'
#Cannot Update because strings are immutable

Deleting a character of the String
#del String1[2]
#Cannot Delete because strings are immutable

Escaping Single Quote

Stringl = 'I\'m "Trying™
print("\nEscaping Single Quote:)
print(Stringl)

Escaping Doule Quotes

Stringl = "I'm a \"Trying\""
print("\nEscaping Double Quotes: ™)
print(String1)

Printing Paths with the

use of Escape Sequences

Stringl = "C:\\Python\\programs\\"
print("\nEscaping Backslashes: ™)
print(Stringl)

Output:

Using Single quote
Welcome

23

Using Double quote
Sathyabama

Using Triple quote
CSE

Using Triple quote to print multiline
Welcome
To
Sathyabama

Pringint First Character
W

Pringint Last Character
e

Escaping Single Quote:
I'm "Trying"

Escaping Double Quotes:
I'ma "Trying"

Escaping Backslashes:

C:\Python\programs\
>>>

24

1.3.3.2 List

The List is an ordered sequence of data items. It is one of the flexible and very
frequently used data type in Python. All the items in a list are not necessary to
be of the same data type.

Declaring a list is straight forward methods. Items in the list are just separated
by commas and enclosed within brackets [].

>>> ist1 =[3.141, 100, ‘CSE’, ‘ECE’, ‘IT’, ‘EEE’]

Methods used in list

listl.append(x) To add item x to the end of the list “list1”
listl.reverse() Reverse the order of the element in the list “list1”
list1.sort() To sort elements in the list

listl.reverse() To reverse the order of the elements in list1.

Lists are similar to arrays but they are homogeneous always which makes it
the most powerful tool in Python. A single list may contain Data Types like
Integers, Strings, as well as Objects. Lists are mutable. Hence, they cannot be
modified once created. Lists are ordered and have definite count. The list
index starts with 0. Duplication of elements is possible in list. The lists are
implemented by list class.

Lists in Python can be created by just placing the sequence inside the square

brackets[]. Unlike Sets, list doesn’t need a built-in function for creation of list.
25

https://www.programiz.com/python-programming/list

PROGRAM:

Python program to demonstrate List
List =]

print("Intial blank List: ™)

print(List)

Creating a List with the use of a String
List = ['Welcome To Sathyabama']
print("\nList with the use of String: ")
print(List)

Creating a List with the use of multiple values
List = ["Welcome", "To", "Sathyabama"]
print("\nList containing multiple values: ")
print(List[0])

print(List[2])

Creating a Multi-Dimensional List (By Nesting a list inside a List)
List = [['Welcome', 'To'], ['Sathyabama]
print("\nMulti-Dimensional List: ")

print(List)

Addition of Elements
in the List
List.append(1)
List.append(2)
List.append(4)

26

print("\nList after Addition of Three elements: ")
print(List)

Addition of elements in a List

Creating a List

List =]

print("Initial blank List:)
print(List)

Addition of Elements

in the List

List.append(1)

List.append(2)

List.append(4)

print("\nList after Addition of Three elements: ")
print(List)

Addition of Element at

specific Position

(using Insert Method)

List.insert(3, 12)

List.insert(0, 'Sathyabama')

print("\nList after performing Insert Operation: ")
print(List)

Addition of multiple elements
to the List at the end

27

(using Extend Method)

List.extend([8, 'Sathyabama’, 'Always'])
print("\nList after performing Extend Operation: ")
print(List)

Python program to demonstrate
accessing of element from list

Creating a List with
the use of multiple values
List = ["Welcome", "To", "Sathyabama"]

accessing a element from the

list using index number
print("\nAccessing element from the list")
print(List[0])

print(List[2])

accessing a element using
negative indexing
print("\nAccessing element using negative indexing")

print the last element of list
print(List[-1])

print the third last element of list
print(List[-3])

28

List=1[1, 2, 3, 4,5, 6,

7,8,9, 10, 11, 12]
print("\nintial List: ")
print(List)

Removing elements from List

using Remove() method

List.remove(3)

List.remove(4)

print("\nList after Removal of two elements: ™)
print(List)

List.pop()
print("\nList after popping an element: ")
print(List)

Removing element at a

specific location from the

Set using the pop() method

List.pop(2)

print("\nList after popping a specific element: ")
print(List)

OUTPUT:
29

Intial blank List:
[

List with the use of String:
['Welcome To Sathyabama']

List containing multiple values:
Welcome
Sathyabama

Multi-Dimensional List:
[['Welcome', 'To"], ['SathyabamaT]

List after Addition of Three elements:
[['Welcome', To", ['Sathyabama'], 1, 2, 4]
Initial blank List:

{1

List after Addition of Three elements:
[1, 2, 4]

List after performing Insert Operation:
['Sathyabama', 1, 2, 4, 12]

List after performing Extend Operation:
['Sathyabama', 1, 2, 4, 12, 8, 'Sathyabama', 'Always']

Accessing element from the list

30

Welcome
Sathyabama

Accessing element using negative indexing
Sathyabama
Welcome

Intial List:
[1,2,3,4,5,6,7,8,9, 10, 11, 12]

List after Removal of two elements:
[1,2,5/6,7,8,9, 10,11, 12]

List after popping an element:
[1,2,5,6,7, 8,09, 10, 11]

List after popping a specific element:

[1,2 6,78 9, 10, 11]
>>>

1.3.3.3 Tuple

Tuple is also an ordered sequence of items of different data types like list. But,
in a list data can be modified even after creation of the list whereas Tuples are
immutable and cannot be modified after creation.

The advantages of tuples is to write-protect data and are usually very fast
when compared to lists as a tuple cannot be changed dynamically.

31

https://www.programiz.com/python-programming/tuple

The elements of the tuples are separated by commas and are enclosed inside
open and closed brackets.

>>> t = (50,'python’, 2+3j)

List Tuple
>>> |ist1[12,45,27] >>> t1 = (12,45,27)
>>> list1[1] = 55 >>> t1[1] =55
>>> print(list1) >>> Generates Error Message
>>> [12,55,27] # Because Tuples are immutable

The values stored in a tuple can be of any type, and they are indexed by
integers. The important difference between a list and a tuple is that tuples are
immutable. Tuples are hashable whereas lists are not. It is represented by tuple
class.

In Python, tuples are created by placing sequence of values separated by
‘comma’ with or without the use of parentheses for grouping of data
sequence. Tuples can contain any number of elements and of any datatype
(like strings, integers, list, etc.). Tuples can also be created with a single
element, but it is a bit tricky. Having one element in the parentheses is not
sufficient, there must be a trailing ‘comma’ to make it a tuple.

32

Note — Creation of Python tuple without the use of parentheses is known as
Tuple Packing.

PROGRAM:

Python program to demonstrate Set

Creating an empty tuple
Tuplel = ()

print("Initial empty Tuple: ™)
print (Tuplel)

Creating a Tuple with the use of Strings
Tuplel = (‘Welcome', 'Sathyabama’)
print("\nTuple with the use of String: ")
print(Tuplel)

Creating a Tuple with the use of list
listl =[1, 2, 4,5, 6]

print("\nTuple using List: ™)
print(tuple(listl))

Creating a Tuple with the use of built-in function
Tuplel = tuple('Sathyabama’)

print("\nTuple with the use of function: ™)
print(Tuplel)

Creating a Tuple with nested tuples
Tuplel =(0, 1, 2, 3)
33

Tuple2 = (‘python’, '‘program’)
Tuple3 = (Tuplel, Tuple2)
print("\nTuple with nested tuples: ™)
print(Tuple3)

demonstrate accessing tuple
tuplel = tuple([1, 2, 3, 4, 5])

Accessing element using indexing
print("Frist element of tuple™)
print(tuple1[0])

Accessing element from last
negative indexing
print("\nLast element of tuple™)
print(tuplel[-1])

print("\nThird last element of tuple™)
print(tuplel[-3])

demonstrate updation / deletion from a tuple
tuplel = tuple([1, 2, 3, 4, 5])

print("Initial tuple™)

print(tuplel)

Updating an element of a tuple is not possible as it is immutable
#tuplel[0] = -1

34

Deleting an element from a tuple is not possible as it is immutable
#del tuplel[2]

OUTPUT:
Initial empty Tuple:
0

Tuple with the use of String:
('Welcome', 'Sathyabama’)

Tuple using List:
(1,2,4,5, 6)

Tuple with the use of function:
(s, 'a,'t,'h, 'y, a,'b, a, 'm, a’)

Tuple with nested tuples:

((0, 1, 2, 3), (‘python’, ‘program’))
Frist element of tuple

1

Last element of tuple
5

Third last element of tuple
3

35

Initial tuple
(1,2, 3,4,5)
>>>

1.3.3.4 Set

The Set is an unordered collection of unique data items.Items in a set are not
ordered, separated by comma and enclosed inside { } braces. Sets are helpful
inperforming operations like union and intersection. However, indexing is not
done because sets are unordered.

List Set
>>> L1 =1,20,25] >>> S1={1,20,25,25}
>>> print(L1[1]) >>> print(S1)
>>> 20 >>> {1,20,25}

>>> print(S1[1])

>>>Error , Set object does not support
indexing.

It is iterable, mutable and has no duplicate elements. The order of elements in
a set is undefined though it may consist of various elements. The major
advantage of using a set, as opposed to a list, is that it has a highly optimized
method for checking whether a specific element is contained in the set. Type
of elements in a set need not be the same, various mixed-up data type values
can also be passed to the set.

36

https://www.programiz.com/python-programming/set

PROGRAM:

Python program to demonstrate Set in Python
setl = set()

print("Intial blank Set: ")

print(setl)

Creating a Set with the use of a String
setl = set("Welcome to Python")
print("\nSet with the use of String: ")
print(setl)

Creating a Set with the use of a List
setl = set(["Python", "is", "Simple"])
print("\nSet with the use of List: ")
print(setl)

Creating a Set with a mixed type of values
(Having numbers and strings)

setl = set([1, 2, 'Python’, 4, 'is’, 6, 'simple)

print("\nSet with the use of Mixed Values")

print(setl)

Addition of elements in a Set
setl = set()

print("Intial blank Set: ")
print(setl)

37

Adding element and tuple to the Set
setl.add(8)

setl.add(9)

setl.add((6, 7))

print("\nSet after Addition of Three elements: ")
print(setl)

Addition of elements to the Set using Update function
setl.update([10, 11])

print("\nSet after Addition of elements using Update: ")
print(setl)

Accessing of elements in a set

Creating a set

setl = set(["Python", "is", "Excellent"])
print("\ninitial set")

print(setl)

Accessing element using for loop
print("\nElements of set: ")
for i in setl:

print(i, end =" ")

Checking the element using in keyword
print("Great" in setl)

38

Deletion of elements in a Set

Creating a Set

setl =set([1, 2, 3,4, 5, 6,
7,8,9,10, 11, 12])

print("Intial Set: ™)

print(setl)

Removing elements from Set using Remove() method
setl.remove(5)

setl.remove(6)

print("\nSet after Removal of two elements: ™)
print(setl)

Removing elements from Set using Discard() method
setl.discard(8)

setl.discard(9)

print("\nSet after Discarding two elements: ™)
print(setl)

Removing element from the Set using the pop() method
setl.pop()

print("\nSet after popping an element: ")

print(setl)

Removing all the elements from Set using clear() method
setl.clear()
print("\nSet after clearing all the elements: ™)

39

print(setl)

OUTPUT:
Intial blank Set:
set()

Set with the use of String:
{'t'1 ' 'l |h|l IOI’ Iell Imll IWI’ 'P'1 'C'l 'yll |n|l III}

Set with the use of List:
{'Python’, 'is', 'Simple'}

Set with the use of Mixed Values
{1, 2, 4, 6, 'is', 'Python’, 'simple'}
Intial blank Set:

set()

Set after Addition of Three elements:

{8,9, (6,7}

Set after Addition of elements using Update:
{8, 9, (6,7),10, 11}

Initial set
{'Python’, 'is', 'Excellent}

Elements of set:
Python is Excellent False

40

Intial Set:
{1,2,3,4,5,6,7,8,9, 10, 11, 12}

Set after Removal of two elements:
{1,2,3,4,7,8,9, 10, 11, 12}

Set after Discarding two elements:
{1, 2,3,4,7,10, 11, 12}

Set after popping an element:
{2,3,4,7,10, 11, 12}

Set after clearing all the elements:

set()
>>>

1.3.3.5 Dictionary

Dictionary is an unordered collection of data values. It is used to store data
values like a map. Dictionary holds key:value pair. Key-value is provided in
the dictionary to make it more optimized. Each key-value pair is separated by
a colon :, whereas each key is separated by a ‘comma’.

Dictionary can be created by placing a sequence of elements within curly {}
braces, separated by ‘comma’. Dictionary holds a pair of values, one being the
Key and the other corresponding pair element being its Key:value. Values in a
dictionary can be of any datatype and can be duplicated, whereas keys can’t

be repeated and must be immutable.

41

Dictionary can also be created by the built-in function dict(). An empty
dictionary can be created by just placing to curly braces{}.

Note — Dictionary keys are case sensitive, same name but different cases of
Key will be treated distinctly.

Dictionaries are optimized for retrieving data when there is huge volume of
data. They provide the key to retrieve the value.

>>> d1={1:'value','key":2}

>>> type(d)

PROGRAM:

Creating an empty Dictionary
Dict = {}

print("Empty Dictionary: ™)
print(Dict)

Creating a Dictionary

with Integer Keys

Dict = {1: 'Python’, 2: 'Is', 3: 'Powerful'}
print("\nDictionary with the use of Integer Keys: ")
print(Dict)

Creating a Dictionary

with Mixed keys

Dict = {'Name": 'Python’, 1: [1, 2, 3, 4]}
print("\nDictionary with the use of Mixed Keys: ")

42

print(Dict)

Creating a Dictionary
with dict() method
Dict = dict({1: 'Python’, 2: 'Is', 3:'Efficient})
print("\nDictionary with the use of dict(): ")
print(Dict)
Creating a Dictionary
with each item as a Pair
Dict = dict([(1, 'Python’), (2, 'Programming’)])
print("\nDictionary with each item as a pair: ")
print(Dict)
Creating an empty Dictionary
Dict = {}
print("Empty Dictionary: ")
print(Dict)
Adding elements one at a time
Dict[0] = 'Python’
Dict[2] = 'Program’
Dict[3] =1
print("\nDictionary after adding 3 elements: ")
print(Dict)
Updating existing Key's Value
Dict[2] = 'Welcome'
print("\nUpdated key value: ")
print(Dict)
Python program to demonstrate
accessing a element from a Dictionary

43

Creating a Dictionary
Dict = {1: 'Python’, 'name": 'Is', 3: 'Case-Sensitive'}
accessing a element using key

print("Accessing a element using key:")

print(Dict['name)

accessing a element using get() method

print("Accessing a element using get:")

print(Dict.get(3))

Initial Dictionary

Dict ={ 5: 'Welcome', 6 : 'To', 7 : 'Python,
‘A" {1 :'Python’, 2 :'Is', 3 : 'Simple'},
'B': {1: 'Python', 2 : 'Pramming'}}

print("Initial Dictionary: ™)

print(Dict)

Deleting a Key value

del Dict[6]

print("\nDeleting a specific key: ")

print(Dict)

Deleting a Key

using pop()

Dict.pop(5)

print("\nPopping specific element: ")

print(Dict)

Deleting an arbitrary Key-value pair using popitem()
Dict.popitem()

print("\nPops an arbitrary key-value pair: ")

44

print(Dict)

Deleting entire Dictionary
Dict.clear()

print("\nDeleting Entire Dictionary: ")
print(Dict)

OUTPUT:

Empty Dictionary:

¢

Dictionary with the use of Integer Keys:
{1: 'Python’, 2: 'Is', 3: 'Powerful'}

Dictionary with the use of Mixed Keys:
{'Name": 'Python’, 1: [1, 2, 3, 4]}
Dictionary with the use of dict():
{1: 'Python’, 2: 'Is', 3: 'Efficient'}
Dictionary with each item as a pair:
{1: 'Python’, 2: 'Programming'}
Empty Dictionary:

{

Dictionary after adding 3 elements:
{0: 'Python’, 2: 'Program’, 3: 1}
Updated key value:

{0: 'Python’, 2: 'Welcome', 3: 1}
Accessing a element using key:

Is

Accessing a element using get:
Case-Sensitive

Initial Dictionary:

45

{5: 'Welcome', 6: 'To', 7: 'Python’, 'A": {1: 'Python’, 2:'Is', 3: 'Simple'}, 'B" {1:
'Python’, 2: 'Pramming'}}

Deleting a specific key:

{5: 'Welcome', 7: 'Python’, 'A": {1: 'Python’, 2: 'Is', 3: 'Simple'}, 'B" {1:
'Python’, 2: 'Pramming'}}

Popping specific element:

{7: 'Python', 'A" {1: 'Python’, 2: 'Is', 3: 'Simple’}, 'B" {1: 'Python', 2:
‘Pramming'}}

Pops an arbitrary key-value pair:

{7: 'Python’, ‘A" {1: 'Python’, 2: 'Is', 3: 'Simple'}}

Deleting Entire Dictionary:

b

>>>

1.4 PYTHON BUILT-IN FUNCTIONS

A function is a group of statements that performs a specific task. Python
provides a library of functions like any other programming language. The
built-in functions such as eval, input, print, and int are always available in the
Python interpreter. You don’t have to import any modules to use these
functions.

Table.1.1: Simple Python Built-in Functions

Function Description Example
abs(x) Returns the absolute value for | abs(-2) is 2
X

46

max(x1, X2, ...) Returns the largest among x1, | max(1, 5, 2) is 5
X2, ...
min(x1, X2, ...) Returns the smallest among | min(1, 5, 2) is 1
X1, X2, ...
pow(a, b) Returns ab. Same as a ** b. pow(2, 3) is 8
round(x) Returns an integer nearest to | round(5.4) is 5
x. If x is equally close to two | round(5.5) is 6
integers, the even one is | round(4.5)is4
returned.
round(x, n) Returns the float value | round(5.466, 2) is 5.47
rounded to n digits after the | round(5.463, 2) is 5.46
decimal point.
Table 1.2: Mathematical Functions
Function Description Example
fabs(x) Returns the absolute value for x as a | fabs(-2) is 2.0
float.
ceil(x) Rounds x up to its nearest integer and | ceil(2.1) is 3
returns that integer. ceil(-2.1) is -2

floor(x) Rounds x down to its nearest integer | floor(2.1) is 2
and returns that integer. floor(-2.1) is -3
exp(x) Returns the exponential function of x | exp(1) is 2.71828
(ex).
log(x) Returns the natural logarithm of x. log(2.71828) is 1.0
log(x, base) | Returns the logarithm of x for the | log(100, 10) is 2.0
specified base.
sgrt(x) Returns the square root of x. sqrt(4.0) is 2

47

sin(x)

Returns the sine of x. X represents an
angle in radians.

sin(3.14159/2)is 1
sin(3.14159) is 0

asin(x) Returns the angle in radians for the | asin(1.0) is 1.57
inverse of sine. asin(0.5) is
0.523599
cos(x) Returns the cosine of x. x represents an | cos(3.14159 / 2) is
angle in radians. 0
c0s(3.14159) is -1
acos(x) Returns the angle in radians for the | acos(1.0) is O
inverse of cosine. acos(0.5) is 1.0472
tan(x) Returns the tangent of x. x represents | tan(3.14159/4)is 1
an angle in radians. tan(0.0) is 0
degrees(x) | Converts angle x from radians to | degrees(1.57) is 90
degrees.
radians(x) | Converts angle x from degrees to | radians(90) is 1.57
radians.
PROGRAM:

import math # import math module to use the math functions
Test algebraic functions

print("exp(1.0) =", math.exp(1))
print("log(2.78) =", math.log(math.e))
print("log10(10, 10) =", math.log(10, 10))
print("'sqrt(4.0) =", math.sqrt(4.0))

Test trigonometric functions
print("sin(P1 / 2) =", math.sin(math.pi / 2))
print(cos(Pl / 2) =", math.cos(math.pi / 2))

48

print(“tan(P1 / 2) =", math.tan(math.pi / 2))
print("degrees(1.57) =", math.degrees(1.57))
print("radians(90) =", math.radians(90))

OUTPUT:

exp(1.0) = 2.718281828459045
log(2.78) = 1.0

log10(10, 10) = 1.0

sqrt(4.0) = 2.0

sin(P1/2)=1.0

cos(Pl/2) =6.123233995736766e-17
tan(P1/2) = 1.633123935319537e+16
degrees(1.57) = 89.95437383553924
radians(90) = 1.5707963267948966

>>>

Table 1.3: String Functions
Method Description
capitalize() Converts the first character to upper case
casefold() Converts string into lower case
center() Returns a centered string

Returns the number of times a specified value occurs

count() in a string
encode() Returns an encoded version of the string
endswith() Returns true if the string ends with the specified value

49

expandtabs()

Sets the tab size of the string

find()

Searches the string for a specified value and returns
the position of where it was found

format()

Formats specified values in a string

format_map()

Formats specified values in a string

Searches the string for a specified value and returns

index() the position of where it was found

Returns True if all characters in the string are
isalnum() alphanumeric

Returns True if all characters in the string are in the
isalpha() alphabet
isdecimal() Returns True if all characters in the string are decimals
isdigit() Returns True if all characters in the string are digits

isidentifier()

Returns True if the string is an identifier

islower()

Returns True if all characters in the string are lower
case

isnumeric()

Returns True if all characters in the string are numeric

isprintable()

Returns True if all characters in the string are printable

Returns True if all characters in the string are

isspace() whitespaces
istitle() Returns True if the string follows the rules of a title
Returns True if all characters in the string are upper
isupper() case
Joins the elements of an iterable to the end of the
join() string
ljust() Returns a left justified version of the string
lower() Converts a string into lower case

50

Istrip() Returns a left trim version of the string
maketrans() Returns a translation table to be used in translations

Returns a tuple where the string is parted into three
partition() parts

Returns a string where a specified value is replaced
replace() with a specified value

Searches the string for a specified value and returns
rfind() the last position of where it was found

Searches the string for a specified value and returns
rindex() the last position of where it was found
rjust() Returns a right justified version of the string

Returns a tuple where the string is parted into three
rpartition() parts

Splits the string at the specified separator, and returns
rsplit() a list
rstrip() Returns a right trim version of the string

Splits the string at the specified separator, and returns
split() a list
splitlines() Splits the string at line breaks and returns a list
startswith() Returns true if the string starts with the specified value
strip() Returns a trimmed version of the string

Swaps cases, lower case becomes upper case and vice
swapcase() versa
title() Converts the first character of each word to upper case
translate() Returns a translated string
upper() Converts a string into upper case

51

Zfill()

Fills the string with a specified number of O values at
the beginning

1.5 CONDITIONAL STATEMENTS

When there is no condition placed before any set of statements , the

program will be executed in sequential manure. But when some condition is
placed before a block of statements the flow of execution might change
depends on the result evaluated by the condition. This type of statement is also
called decision making statements or control statements. This type of
statement may skip some set of statements based on the condition.

Logical Conditions Supported by Python

> Equal to (==) Eg: a==

> Not Equal ('=)Eg:al=b

> Greater than (>) Eg: a>b

> Greater than or equal to (>=) Eg: a>=Db

> Less than (<) Eg:a Less than or equal to (<=) Eg:a<=Db
Indentation

C Program Python
x =500 x =500
y =200 y =200
if (x>y) ifx>y:
{ print("x is greater than y")
printf("X is greater than y") elifx==y:
print("x and y are equal)

else if(x ==y) else:
{ print("x is less than y")

52

printf("x and y are equal)
i |
else
{ Indentation (At least one White Space
printf("x is less than y") instead of curly bracket)
}

Structure of C- Program Vs Python

To represent a block of statements other programming languages like
C, C++uses “{ ...} curly — brackets , instead of this curly braces python uses
indentation using white space which defines scope in the code. The example
given below shows the difference between usage of Curly bracket and white
space to represent a block of statement.

Without proper Indentation:

x =500
y =200
ifx>y:
print("X is greater than y™)

In the above example there is no proper indentation after if statement which
will lead to Indentation error.

1.5.1 If Statement

The ‘if” statement is written using “if” keyword, followed by a condition.If
the condition is true the block will be executed. Otherwise, the control will
be transferred to the firststatement after the block.

Syntax:
53

if<Boolean>:

<block>

If condition If condition
is true is false

conditional \
code

Fig.1.3: if statement

In this statement, the order of execution is purely based on the evaluation of

boolean expression.

Example:

x =200
y =100
if x>y:
print("X is greater than Y")

print(“End”)
54

Output :
X is greater than Y
End

In the above the value of x is greater than y , hence it executed the print
statement whereas in the below example x is not greater than y hence it is not
executed the first print statement

x =100
y =200
ifx>y:
print("X is greater than Y")

print(“End”)

Output :

End

Elif

The elif keyword is useful for checking another condition when one condition
is false.

55

Example

mark = 55

if (mark >=75):
print("FIRST CLASS")
elif mark >= 50:
print("PASS")

Output :

r' !

| & Python 3.7.2 Shell (o [@ [=]
File Edit Shell Debug Options Window Help
Python 3.7.2 (tags/v3.7.2:9a3ffc0492, Dec 23 2018, 22:20:52) [M3C ok
v.1916 32 bit (Intel)] on win32 T
Type "help", "copyright™, "credits" or "license()" for more inform
ation.

S

EESTART: C:/Users/Rkdministrator/ApplData/Local/Programs,/Python/Pyt
nhon37-32/f1.py

PLSS

S L9

Lm: Col: 4

In the above the example, the first condition (mark >=75) is false then the
control is transferred to the next condition (mark >=50), Thus, the keyword
elif will be helpful for having more than one condition.

Else

56

The else keyword will be used as a default condition. i.e. When there are
many conditions, whentheif-condition is not trueand all elif-conditionsare
also not true, then else part will be executed..

I

If condition
is true

If condition’
is false
y

else code

®

Fig.1.4: if-eslse statement

Example
mark = 10

if mark >= 75:
print("FIRST CLASS")
elif mark >= 50:
print("PASS")

else:

print("FAIL")

57

| & Python 3.7.2 Shell [e (>

File Edit S5hell Debug Options Window Help

Tracekback [(most recent call last): "
File "C:/Uzers/Adninistrator/applata/Local/Programs/Pyvthon/Bvytho
n37=-32/7fL.pvy", line 1, in <modules>
if mark »>= 7I:
HameErroxr: name '"mark' iz not defined
el

RESTLRT: C:/Users/hdministrator/applData/Local/Prograns/Bython/Byvt [

hon37-32/fl.py

FRIL

s | -
Ln: 27 Col: 4

In the example above, condition 1 and condition 2 fail.Noneof the
preceding condition is true. Hence,the else part is executed.

1.5.2 Iterative Statements

Sometimes certain section of the code (block) may need tobe repeated again
and again as long as certain condition remains true. In order to achieve this,
the iterativestatements are used.The number of times the block needs to be
repeated is controlled by the test condition used in that statement. This type
of statement is also called as the “Looping Statement”. Looping statements
add a surprising amount of new power to the program.

Need for Looping / Iterative Statement

Suppose the programmer wishes to display the string “Sathyabama !...” 150
times. For this,one can use the print command 150 times.

58 150 times

print(“Sathyabama
1...7)

print(“Sathyabama
1..7)

The above method is somewhat difficult and laborious. The same result can
be achieved by a loop using just two lines of code.(As below)

for count in
range(1,150) :
print ("Sathyabama

Types of looping statements
1) for loop
2) while loop

1.5.2.1 The ‘for’ Loop

The forloop is one of the powerful and efficient statements in
python which is used very often. It specifies how many times the body of
the loops needs to be executed. For this reason it uses control variables
which keep tracks,the count of execution. The general syntax of a ‘for’ loop
looks as below:

for<variable>in range (A,B):

<body of the loop >

59

Flow Chart:

item in

for each
Jsequence

Last
— - item
reached?

No
Body
of loop

Yes

v
Exit Loop / Next statement

after body of loop
Fig.1.5: for loop

Example 1: To compute the sum of first n numbers (i.e. 1+2+3 +.......
+n)

Sum.py

total = 0

n = int (input ("Enter a Positive Number"))

for i in range(1,n+1):

total = total + i

print ("The Sum is ", total)

Note:Why (n+1)? Check in table given below.

60

Output:

-

4 Python 372 Shel =N =
File Edit Shell Debug Options Window Help

Bython 3.7.2 (tags/v3.7.2:%a3ffc0492, Dec 23 2018, 22:20:52) [MEC + =
.1916 32 bit (Intel)] on win3Z

Type "help", "copyright™, "credits" or "license()" for more informa
i

RESTART: C:/Users/Rdministrator/ippData/Local/Programs/Python/Pyth
on37-32/fl.p

Enter a Poszitive Number 5

The Sum is 15

i X

Ln:7 Col:4

In the above program, the statement total = total + i is repeated again and
again ‘n’ times. The number of execution count is controlled by the variable
‘i’. The range value is specified earlier before it starts executing the body of
loop. The initial value for the variable i is 1 and final value depends on ‘n’.
You may also specify any constant value.

The range() Function:

The range() function can be called in three different ways based on the
number of parameters. All parameter values must be integers.

61

Type

Example

Explanation

range(end)

for i in range(5):
print(i)

Output :

0,1,2,3,4

This is begins at 0.
Increments by 1. End just
before the value of end
parameter.

range(begin,end)

for i in range(2,5):
print(i)

Output :

2,3,4

Starts at begin, End before
end value, Increment by 1

range(begin,end,step)

for i in range(2,7,2)
print(i)

Output :

2,4,6

Starts at begin, End before
end value, increment by
step value

Example:To compute Harmonic Sum (ie: 1 +'%+ 1/3+% +1/n)

harmonic.py

total = 0

n= int(input("Enter a Positive Integer:"))

for i in range(1,n+1):
total+= 1/i

62

print("The Sum of range 1 to ",n, "is", total)
Output:

& Python 37.2 Shell =5 ol

File Edit Shell Debug Optiens Window Help

Python 3.7.2 (tags/vw3.7.2:9a3ffc0492, Dec 23 2018, 22:20:52) [MEC w.191lg =
32 bit (Intel)] or n3z

Type "help”, "copyright™, "credits" or "license ()" for more information.
rr

RESTART: C:/Users/Bdministrator/appData/Local/Programs/Python/Python37-
32/fl.p
Enter a Positive Integer 5
The Sum of range 1 to 5 iz 2.283333333333333
S

Ln:7 Col:d

Example:

Factorial of a number "n"

n=int(input("Enter a Number :"))

factorial = 1

Initialize factorial value by 1

Toverify whether the given number is negative / positive / zero
ifn<0:

print("Negative Number , Enter valid Number !...")

elif n ==0:

63

print("The factorial of 0 is 1")

else:

for iinrange(1,n + 1):

factorial = factorial*i

print("The factorial of" ,n, "is", factorial)
Output:

& Python 372 Shell (=8 Een =<5
File Edit Shell Debug Options Window Help
Bython 3.7.2 (tags/v3.7.2:9%23ffc04%2, Dec 23 2018, 22:20:52) [M5C w.1%16 32 bic
(Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
Fr
RESTART: C:/Users/Administrator/4pplData/Local/Programs/Python/Python37-32/f1l.py
r a Number -1
HNumkber Enter wvalid Humber
RESTART: C:/Users/Administrator/AppData/Local/Programs/Python/Python37-32/f1.py
Enter a Number 10
The factorizl of 10 is 3628800
rE
Ln:11 Cold

1.5.2.2 The while Loop

The while loop allows the program to repeat the body of a loop, any
number of times, when some condition is true.The drawback of while loop

64

is that, if the condition not proper it may lead to infinite looping. So the
user has to carefully choose the condition in such a way that it will

terminate at a particular stage.

Flow Chart:

Loop Entrv

Test False
» Condition

True

P

Body of
Loop

Y
Exit Loop / Next Statment

immediately after loop

Fig.1.6: while loop

Syntax:

65

while (condition):

<body of the loop>

In this type of loop, The execution of the loop body is purely based on the
output of the given condition. As long as the condition is TRUE or in other
words until the condition becomes FALSE the program will repeat the body
of loop.

Valid Example Invalid Example
i=10 i=10
while i<15 : while i<15 :

print(i) print(i)

i=i+1

Output :

Output : 10,10,10,10........
10,11,12,13,14 Indeterminate number of times

Example: Program to display Fibonacci Sequence

Program to Display Fibonacci Sequence based on number of terms
n

n = int(input("Enter number of terms in the sequence you want to
display™))
66

nl represents -- > first term and n2 represents --> Second term

nli=0
n2=1
count=0

count -- To check number of terms

if n<=0: # To check whether valid number of terms
print ("Enter a positive integer")

elifn==1:

print("Fibonacci sequence up to",n,":")

print(n2)

else:

print("Fibonacci sequence of ",n, “ terms :”)

while count < n:

print(nl,end=", ")

nth =nl+ n2
nl=n2
n2 = nth

count =count + 1

1.6 INPUT / OUTPUT STATEMENT

Programmer often has a need to interact with users, either to get data or to
provide some sort of result.

67

For Example: In a program to add two numbers, first the program needs to
have an input of two numbers (The numbers which they prefer to add) and
after processing, the output should be displayed. So to get the input of two
numbers, the program need to have an Input Statement and in order to display
the result i.e. the sum of two numbers, it needs to have an Output Statement.

1.6.1 Input Statement

Helpful to take input from the user through input devices like keyboard.In
Python, the standard input function is ‘input()’

The syntax for input function is as follows:

input()

However, to get an input by prompting the user, the following form is used:
input(‘prompt’)

where prompt is the string, which programmer wish to display on the screen
to give more clarity about the input data. It is optional.

Example:
>>>num = input('Enter a number: ")

The above statement will wait till the user, enters the input value.

Output:

Enter a number:

>>>num
68

‘10" # Input data entered by the user

1.6.2 Output Statement

The output statement is used to display the output in the standard output
devices like monitor (screen).The standard output function “print()” is used.

Syntax:
print(‘prompt’)
where prompt is the string, which programmer wish to display on the screen
Example 1:
print("WWelcome to the Python World !")
Output:
Welcome to the Python World !
Example 2:
X=5
print ('The value of a is', X)
Output:
The value of X is 5

Example 3:
69

print(1,2,3,4)

Output: 1234

Example 4:

print(100,200,300,4000,sep="*")

Output:

100*200*300*4000

Example 5:

print(1,2,3,4,sep="#",end='&'")

Output:

1#2#3#A&

1.7 OBJECT ORIENTED PROGRAMMING

Python supports object oriented programming concepts. The basic entities in
object oriented programming are Class, Objects, and Methods. It also supports
some of the techniques in real world entities like inheritance, Data hiding,
Polymorphism, Encapsulation, MethodOverloading etc., in programming.
Obiject orientation helps to utilize GUI environment efficiently. Some of the
otherprogramming languages which support OOPS concepts are C++, JAVA,
C#.net, VB.net etc.

70

Need for Object Oriented Programming

The object oriented programming is having certain advantage when
compared to the normal procedure oriented programming. The main
advantage is to provide access specifiers like Public, Private and Protected.
Oops provide data hiding technique which is more secured than procedure
oriented programming. Code reusability is one of the key features of OOPs
Concept.

Class

It is a template or blue print created by the programmer — which defines how
the object’s data field and methods are represented. Basically class consists of
two parts: data member and function member (methods).

Object

It is an instance of a Class;Any number objects can be created.

Class Name: Student
Data Fields:

Name,
Mark1,Mark2,Mark3
Methods:

Average ()

Rank ()

71

A Class is a template for creating an object. Python provides a special
method, __init__ ,called as initializer, to initialize a new object when it is
created.

Example :

class Student:
def __init__(self, name, regno):
self.name = name
self.regno = regno
s1 = Student("John", 36)
print(sl.name)
print(sl.regno)

In the above example “Student” is the class name, name andregno are the
data fields and s1 is the created object,

Note :

__init__ is a method or constructor in Python. This method is
automatically called to allocate memory when a new object/ instance
of a class is created. All classes have the __init__ method.

Output :
>>> John
36

Let us create a method (Function member) for the above class
72

https://www.edureka.co/blog/python-programming-language

class Student:
def __init__(self,name, regno):
self.name = name
self.regno = regno
def display(self):
print("Name of the student is " + self.name)
s1 = Student("James", 43)
sl.display()

2

In the above example “display’
name.

is the method used to display the student

1.7.1 Inheritance

Inheritance allows to create anew class (Child Class) from the existing class
(Parent Class).The child class inherits all the attributes of its parent class.

Parent class is the class, whose properties are being inherited by subclass.
Parent class is also called as Base class or Super Class.

Child class is the class that inherits properties from another class. The child
class is also called as Sub class or Derived Class.

Example :

class Person:

def __init__ (self, fname, Iname):
73

74

self.firstname = fname
self.lastname = Iname

def printdetails(self):
print(self.firstname, self.lastname)

#Use the Person class to create an object and then execute the
printdetails method:

x = Person("John", "Doe")
x.printdetails()
classEmployee(Person):

pass

y = Employee("Mike", "Olsen™)
y.printdetails()

Output :

>>>

RESTART:
C:/Users/Administrator/ AppData/Local/Programs/Python/Python37-
32/f1l.py

John Doe
Mike Olsen

>>>

In the above example the base class is Person. The first object “x” is created
through the base class “Person” and the method printdetails() is invoked
with that object which produces an output “John Doe”. Again, another
object “y” is created through derived class “Employee” and the same
method printdetails() (belongs to base class) is invoked to produce the
output “Mike Olsen”. Thus, the derived class is having the ability to invoke
the method from base class just because of the inheritance property which
reduces the code length or in other words it is helpful for reusability of
code.

Note: Use the pass keyword when the programmer does not wish to add any
other properties or methods to the derived class.

Example 2:

class Person:

def __init__(self, fname, Iname):
self.firstname = fname
self.lastname = Iname

def printdetails(self):
print(self.firstname, self.lastname)

#Object For Base Class
x = Person("Paul", "Benjamin")
x.printdetails()

75

class Employee(Person):

def __init__(self, fname, Iname):
Person.__init__(self, fname, Iname)
self.doj = 2019

defgreetings(self):

print("Welcome", self.firstname, self.lastname, "who joined in the
year ", self.doj)

Object for derived class
y = Employee("Samuel”, "Ernest")
y.printdetails()

y.greetings()

In the above example a new method greetings() is included in the derived
class, Thus the derived class object is capable of invoking the method
present inside base class as well as its own methods.

76

printdetails() -- method present inside base class Person.
greetings() -- method present inside derived class Employee.

The object “y” is able to invoke both the methods printdetails() and
greetings().

Questions :

1. Compare a) List and Tuple b) List and Set
2. What is type conversion in Python?

3. Is indentation required in python?

4. What is _init__?

5. How can you randomize the items of a list in place in Python?
6. How do you write comments in python?
7. What is a dictionary in Python?

8. Does Python have OOPs concepts?

9. Write a program in Python to check if a sequence is a Palindrome.
77

10. Write a program in Python to check if a number is prime.
11. How to create an empty class in Python?

12. Write a sorting algorithm for a numerical dataset in Python.

78

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC |7123 Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-II - Python Programming — SCS1619

UNIT Il

FILE HANDLING

File Operations —Iterators - Exception handling - Regular Expressions

2.1 FILE OPERATIONS

An object that stores data, settings or programming commands in a computer
system is called as a file. The data’s used in a program is temporary. The data
is lost when the program terminates. A file is used to store data permanently.

There are three major file operations:

e Opening a file
e Performing file operations using Read or Write
e Closing the file

2.1.1. File Open

To open a file create a file object and use the open() function. The open
function returns a file object for the filename. The access mode specifies how
the file is used

Method:open()

Purpose: To open a file
1

Syntax:
File_object=open(filename,Access_mode,buffering)
Attributes:
i. Filename — Name of the file

ii. Access_mode- Mode of Access (Read, Write, Append)

Access Mode Description
“r Opens a file for reading
“rb” Opens a file for reading binary data
w” Opens a file for writing
“wh” Opens a file for writing binary data
“a” Opens a file for appending
“ah” Opens a file for appending binary data

iii. Buffering — 0 (no buffer), 1 (buffer)

Example:

f= open(‘abc.txt”) (or)

f=open(“D:/Mypython/abc.txt”)

2.1.1.1 File Access Modes

Table 2.1: File Access Modes

File Mode | Description
r Read mode
w Write mode
X Create and open a file
a Appending at end of file
t Text mode
b Binary mode
+ Update mode

Example:

f= open(‘abc.txt’, r)

The above statement opens the file ‘abe.txt’ in read mode.

2.1.1.2 Example for File Access modes and Properties

fo=open('"aa.tcxc", "w')

rint("Filenams: "', fo.name)
print("Filemodese: ', fo.mode)

rint{("File clo=sed: ", fo.closed)
fo.clo=e|()

rint{"Fileclo=sed: ", fo.clo=ed)

SR I L

The above code is a sample snippet for understanding the file modes and file
properties.

(e.0)
To open a file in current directory
obj = open (“abc.txt”, “r”)
To open a file in specified directory
obj = open (r”’c:\python\abc.txt”, “r”)
(Here, the prefix r represents that the string is a raw string where the backslash
characters are treated as literal backslashes

4

(or)
obj = open (“c:\\python\\abc.txt”, “r”)

2.1.2. File Reading and Writing
2.1.2.1. File write:

write() method is used to write the contents to a file. The following code is for
writing the contents to the file aa.txt.

fo=open(‘aa.txt’,’w’)
fo.write(‘hai \n how are you?’)

fo.close()

Output:

In the above example, the contents of the file can be viewed by opening the

file ‘aa.txt’.

Example

Python code to create a file

file = open('good.txt’,'w")

file.write("This is the write command")
file.write("It allows us to write in a particular file™)
file.close(

2.1.2.2. Reading a file:

read() method is used to read the contents from a file. The following code is
for reading the first 10 bytes of the file ‘aa.txt’.

fo=—open('"aa.Txt', "x")

rint (fo.read ())
Fgreading 10 byvte=
fo.read(10)
fo.clo=se ()

| I I |

i i id -

There is more than one way to read a file in Python. If you need to extract a
string that contains all characters in the file then we can use file.read().

Python code to illustrate read() mode
file = open("file.text", "r")
print file.read()

Another way to read a file is to call a certain number of characters like in the
following code ,the interpreter will read the first five characters of stored data
and return it as a string:

Python code to illustrate read() mode character wise

file = open("file.txt", "r")
print file.read(5)

2.1.3. File Positions

To know about the file offset positions in Python, the following methods are
used:

o seek()

o tell()

seek():
Syntax:seek(offset,from)

Description: Sets the file's current position at the offset. The offset values are
as follows:

0 : reference (beginning of file(default))
1 : current (current file position)
2 : end (end of file)
tell() :
Description: Prints the current position of file pointer.

2.1.3.1.File Offset

Ih.‘ Ia.' I'l.') Ih.‘ IO.' IW.' Ia.' Ir.' Ie.' IYJ IO.' Iu.' l‘?.‘
0 |1 (2 (3]41|5]6 (7 |8& (91011121314 151617

Ffo—open ("aa.tcxt ", " ")

primnt({"current position' , fo.tceldll ())
print(fo.read (10})
print("current positcion', fo.tell ())

fo.seek(2,0) #F to skip firstc 2
print (fo.xread ())

outputc
current positciomn O
Hai , How

current positiom 10

i . How are wywou?

In the above code, initially the position of the file pointer is at 0. After reading
the contents, the position of the file pointer is moved to 10 (from 0 to 9). Now
up on giving the command seek(2,0), the file will be read from the beginning
after skipping the first 2 positions.

Detailed Example:

The contents of the file aa.txt is now:

Hai, How are you?

Welcome to Sathyabama

School of Computing

Department of Computer Science & Engineering

2.1.3.2. Reading a file Line by line
In order to read a file till the End of File(EoF), while loop is used.

Ff=open("£fS.cxtc", "T")
Aime=F. Ieadllneij
while l1imsel="

prlﬂt(llnej
ldime=F.readline{)
F.oclo=es ()
foutpaat
kd=kfa

dsafldk

kdafsl13£" " "

2.1.3.3. Modifying a file

f—open(a=a.txt . "a”)

£ e =("aa B oo dd”)
£.= =13

= (== .cxe ", "= ")
=xa £.z=ad ())

Fprints the entize £3le

Fogo o Stk position umsing Se=o=k (S)

CL.E.rTead)

from Ioch Dosn

2.1.4. Alternate way for opening and closing a file:

Syntax:

with open(‘filename’) as file object:

> No need to close the file

rith open('aa.cxt') as
for line in f£:
print({line)

Welcome TOo Scatayabama

School of Computing

cc ddaa bb cc dd'"'

of Computer Sci

Department

2.1.5. read() &readline()
e read() — read entire file content from current position

e readline() — read the particular line of file pointer

To read data from a file read() function is used.
read specifies the number of bytes to be read

Syntax
fileobject.read (count)

11

Syntax
seek (offset, from)

offset — number of bytes to be moved
from — specifies the reference position from where the bytes are to be
moved

0 — use beginning of file as reference position

1 — use current position as reference position

2 —end of file as reference position
(e.0)
f=open (“abc.txt”, “r”) str = f.read(10)
print (“The string is”, str) # current position pos = fo.tell()
print (“The current file position is”, pos) #Reposition at beginning
pos = fo.seek(0,0) str = f.read(10)
print (“The string read again is”, str) f.close()

Output

The string is : Python is

The current file position is : 10
The string read again is : Python is

2.1.6. Appending Data to an existing file
append() used to append data to an existing file
Python code to illustrate append() mode

file = open('geek.txt','a’)
12

file.write("This will add this line™)
file.close()
2.1.7. Closing a File

The close() function is used to close afile

Syntax

fileobject.close()

2.2 ITERATORS

Iterator in python is any python type that can be used with a 'for in loop".
Python lists, tuples, dicts and sets are all examples of inbuilt iterators.

An iterator is an object that can be iterated upon, meaning that you can
traverse through all the values. Iterators are objects that can be iterated upon.
They are implemented within for loops, generators etc. but hidden in plain
sight

The iterator object must implement two special methods _ iter () and
__next__() collectively called iterator protocol. The iter() function returns
an iterator. The next() function is used to manually iterate through all the
items of an iterator.

13

Technically, in Python, an iterator is an object which implements the iterator
protocol, which consist of the methods __iter () and __next__ ().

Return an iterator from a tuple, and print each value:
mytuple = ("apple”, "banana”, "cherry")
myit = iter(mytuple)

print(next(myit))
print(next(myit))
print(next(myit))
Output

apple
banana

cherry

Iterate the values of a tuple:
mytuple = ("apple", "banana”, "cherry")
for x in mytuple:

print(x)

14

apple

banana

cherry

Iterate the characters of a string:

mystr="banana” =
for x in mystr:
print(x)

List as iterator:

foriin[1, 2, 3, 4]:

print(i)

Iterator in Python is a type which could be implemented in for loops. An
iterator is an object that returns data one at a time.

15

For example if we have a list A=[1,2,3] , then iterator is used to return the
items in the list one at a time.

There are two special Methods:

= jter_ () : returns iterator from list

= _next__(): returns next element in the list
Iterable objects in Python are:

® List

® Tuple

e String

2.2.1. Example Iterator:

mywIli=tct—[F, T, 2., =1

i Cer—I iter (A 3 =1)
Erimnt (raexxis (a3 Tex))
= i (et (a3 Tex))
Erimnt (raexxis (a3 Tex))
Erimnt (raexxis (a3 Tex))
Erimtc (rrext (myrd tex))

16

In the above code the list items of mylist object are retrieved one by one using
‘next()’ method. When the list reaches its end and if next() method is used , it

shows error in the output.

2.2.2. Example for _ _next_ ()

Alternate way for retrieving the items is to use for loop and retrieve the item
using _ next () inside the for loop. To find the length of the list ‘len()’
method is used.

lizt=[3,4,5,6]
icerobj=iter(list)
print ()

i range (0, len{list)}:

print (iterobj. next (})

8

nI

2.2.3. Building User defined iterators

We can also build our own iterators. The following code is for implementing
user defined iterators for finding powers of two.

17

implement amn iterator of powers of two
T dmit (self,ma=x=0) :

self . .max—max

_ drver (self) :

self.n=0

return self
def @ mnmext (self) :

]

DOwWS §
FTo

"X
H

if self.n<=sellf.max:
res=2%%self.n
sellf.n+=1

recurn res
raise StopIteration
except Stoplteration:

guit (O)
a=pow? (4)
d=itexr(a)
print (next (i))

t};ext(ij]

= 20k R e

= 0

2.2.4. Python Infinite Iterators:

Ther are two Arguments in infinite iterators:
» Callable Object: A built in function
» Sentinels: The terminating value

The following is an example for infinite iterator. next(inf) will always return
0, since the sentinel 1 not at all reaches.

Fxx Ant ()
0
»»>» inf=iter(int,1)
»>> next (inf)

0
»xx» nexXt (inf)
0

18

Similarly , the following code uses while loop to print the odd numbers

starting from 1 to infinite number of times.

The execution is manually

terminated by providing keyboard interrupt(Ctrl+c).

infin:
__iter (self):
self.num=1
self
__next (self):
num—s3elf . num
=elf . num+=2
num
a=iter (infin())

print (next (a))

Wo=] N

=)

0 =1 i w =

2.2.5. Python Generators

Generator functions are alternates for iterators that contain one or more yield()
statements. Methods like __iter (), _ next_ () are implemented and are
iterated using next() automatically. Local variables are remembered between
successive calls. When function terminates, Stoplterator exception is raised

automatically.

19

2.2.5.1.Example

In the following code, n value is initiated to 1 in the first step. In the second
step n is incremented by two and the value yielded is now 3. In the last step n
is incremented by 1 and now the value is 4.

def my ger () :
=1
primt("fixrst")
wield m
4=
primc({("=scecormd")
wieseld m
41
primt{("last")
wield m

Ffor 4 4 my gem ()
Drint (i)

Ffir=stc

== corncd

lastc

The following is an example for reversing a String using python Generator.
Here the string ‘hello’ is passed to the function ‘rev()’. Using for loop, the
string is yielded from the last character(len-1) to -1(0™ position minus 1) as

per the syntax.

20

rev(mystr) :
lenl=len (mystr)
i range (lenl-1,-1,-1)
mystr[i]

2.2.5.2. Advantages of Generators

¢ Easy to implement
* Memory efficient
® Represents infinite stream

® Generators can be pipelined
2.3. EXCEPTION HANDLING

Exception is an event that occurs during execution of a Python program
disrupting the normal flow of execution. Exceptions are handled using try and
except blocks in Python. There are built in exception classes for handling
common exceptions. BaseException is the parent class for all built in
Exception classes. Fig 2.1 represents the Standard Exception class hierarchy.

21

An error that occurs at runtime is called an exception. It enables a program to
deal with exceptions and continue its normal execution. The try block lets
you test a block of code for errors. The except block lets you handle the error.
The finally block lets you execute code, regardless of the result of the try- and
except blocks.

BaseException

Exception

StandardError

{H

Ar1thmet1cError Env1ronmentError Runt1meError LookupError SyntaxError
ZeroD1v1s1onError| \ | Indentat1onError|
I0Error | 0SError IndexError | KeyError

Fig 2.1 Standard Exception class hierarchy
2.3.1. Exception Handling Syntax and Examples

While handling exception, keep the suspicious code in try block and following
the try block, include except: statement

22

suspiciou=s block
except Exceptionl:

Fztatementl

no exception

The following code raises exception when a run time error occurs upon
writing the file ‘aa.txt’. In case of normal program flow, the else clause will
be invoked and the statements in else block will be executed.

it

fo=open({'aa.txt", "w')

fo.write ("Exception
xcept IOError:
print ("cant w

successfully
has been

LA LIl

$content

written

for

[

0
1]

ptiomn')

v

to file aa.txt

IOError exception is also invoked when we intend to write a file when it is

opened in ‘read’ mode. The following code depicts this case.

23

fo—open("aa.txc", "x")
Fo.write("Exception handling examplse")
except ICError
print({"cant write in read mode")
print{"written successfull)
Foutput :
" ' cant write in read mode

2.3.1.1. Except Clause without specifying any exception

In python, we can also have except clause with no specific exception. In this
case any type of exception can be handled. The following is the syntax for
except statement with no specific exception type.

Syntax:
#¥Error code
except
#Execute block with Any exception
#¥Mo exception
Example:

In the following code, except clause is alone given, without mentioning the
type of exception. In the sample runs when the value of ‘b’ is given as 0,

24

exception is caught and ‘divide by zero error’ is printed. Whereas, in case of

normal run, the output is displayed.

a,b=ewval (input ("Enter two no=s."})
try:

c=a/b
except:

print {('divide by zero error')

print {"Hormal execution & the walue is',c})

""'Sample outputs:
Runl :

Enter two nos.2,0
divide by zZero error

Run 2:

Enter two no=.3,6

Normal execution & the wvalue i= 0.5
LI I]

25

2.3.1.2. Except Clause with Multiple exceptions:

There is another way of specifying multiple exceptions in the single except
clause. When multiple exceptions are thrown, the first exception which is
being caught will alone be handled. The syntax is given as follows.

Syntax:

Error code
except (Exception 1, ExXceptionZ,)}:
#Execute block with Anyv exception

a=input { "Enter the wvalus of a'")
b =input {"Enter the walue of b'")

(TyvpeError, ZeroDivisionError) :
if TyvpeError:
print {"Tx pp error")

2lif ZeroDivisionError:
print {("Divide by =Zero erroxr')
print {"Hormal execution & the walue is',c)
"
Sample uTpuT =
Enter the walue of a L=
Enter the wvalue of b a

26

2.3.1.3 Optional finally clause

Like other object oriented programming languages, try has optional finally
clause. The statements given in finally block will be executed even after the
exceptions are handled.

f.close ()
print {"'normal flow')

2.3.2. Raising Exceptions

Exception can be raised from a function:
raise ExceptionClass(‘Something Wrong’)

Example:

ex=RunTimeError(‘Something Wrong’)

raise ex

27

OR

Raise RunTimeError(‘Something Wrong”’)

a = int (input ("Enter a positive integer "))
if a<= 0:
raisze ValueError ("That i=s not a positive number!™)

except ValueError as er:

print (er)
"1 S5ample output:
Enter % t:s;dlve integer: -7
That is not a positive number
T

2.3.3. Custom Exception/User Defined Exception

In Python custom exception or otherwise

called as user defined exception can

be handled by creating a new user defined class which is a derived class from

Exception class.

class custom (Standard Exception):

3

class user_definedexception{customy):

Fig. 2.2: Inheriting the Standard Exception class

28

In the following example two user defined exception classes are derived from
the parent class Error which inherits the standard Exception class. The number
guessed is 10. When any number greater than 10 is given as input
ToolLargeErr exception is thrown and when the number is less than 10,
TooSmallErr exception is thrown.

~la=s== Error (Excentiorn) !
~la=s==s TooSmallErr(Error) :
~las=s TooLargeErr (Errorxr) :
n=10
x=—int {(input {"enter a nDnumbexr"})
if =<m
raise TooSmallErr
=1if =x>m:
raise TooLargeErr
except TooSmallErr:
print{'"valme is small, try again'!..")
print {)
except ToolLargeErr:
print{"valme i= large, Ttry again!..")
print ()
print {"Wow! Guess i=s correct! ')
output
entcer a number23
raluse i= large, try again
enter a number
value is small, try again
enter a numberld
Wowr Guess i=s correct!

29

2.4 REGULAR EXPRESSIONS

Regular Expressions can also be called as RE/regex/regex patterns .RE’s are
specialized programming languages embedded inside Python. RE’s are
available by importing re module. RE patterns are compiled into a series of
bytecodes when executed by a matching engine written in C language. REs
could not perform all string processing tasks. REs are applicable in Pattern
recognition problems. RE module has to imported for calling re methods like:
split(), findall(), search() etc.

Syntax:

import re

2.4.1 RE matching characters

Character matching is very important for identifying patterns and matching
them with the given input. The following table describes some of the
important matching characters used in Python REs.

Table: 2.2 Python Character Matching

Matching Description
Character
[] Finding a range of characters [a-z]
\w Alphanumeric character [a-zA-Z0-9]

30

\W

Non alpha numeric characters :* [a-zA-Z0-9]

*

Repeating a character [0] or more times

0 Grouping or including
+ 1 or more

? Oor1l

{x} Exact no. of match
{a,b} Inrange fromatob

\any_number

Matching the group of same number.

\A

Only at the start of the string.

\Z Only at the end of the string

\b Empty string only at the beginning or end of a word.

\B Empty string match not at the beginning or end of a word
\d [0-9]

\D ~0-9]

\s Space

\S Non space

2.4.2. RE Methods

2.4.2.1. The search() method

31

Method:search()

Description: Returns true if the search string is found.

Example:
import re
m = re.search('info', "information")
if m:
print(m,"iz found")
print{'not found')
111 -
<re.Match object:; span=(0, 4), match="info'> iz found
11l

The above code returns the Match object with a span position from 0 to n-1
when the search information is found.

2.4.2.2. The split() method
Method:split()
Description: For creating space in the string.

Example:

32

import re
print {re.splitc{r' (\3)',"'This i= a =tring"))

1 1
print ()
print (re.split(r'[a-i]"', 'This iz a string'))
| I I |
-1_,_31 1 1 1._31 1 1 15.1 1 1 13::._:_-:.

In the above code, split() method is applied twice on the string, ‘This is a
string’. When the matching character \s is applied, the spaces in the string are
split up. When the regular expression r’([a-i]) is applied, the string is split

ignoring the range of characters from a to i.

2.4.2.3. The findall () method

Method:findall()

Description: Finds all the matches and returns them as a list of strings.

Example:

33

import re

n="123 1234 12345 636525 147TE8B523"
print(re.findall {"\d{5,7}",n))

'Y Youtpuat

return=s digits of length from 5 to 7
["12345", '"&£36525'", "14T8B523"']

2.4.2.4. The match() method

Method:match()

Description: To match the RE pattern to string with optional flags.

Example:
import re
ligt=["csea','c3eb','cse a and b']
for e in list:
z=re.match(’ (c\w+) ', &)
if z:

34

print{z.groups())

Sample output:

The first word of the list items matching the letter ¢ is grouped up
("csea',)

("cseb',)

('cse',)

LI]

2.4.2.5. The finditer() method
Method: finditer()
Description:Generating an iterator.

Example:

import re
str='welcome to cse dept and it dept of Soc!
for 1 in re.finditer({'dept',str):
localtuple=i.=zpan ()
print(localtuple)
"' 1output:
returns start index and end index of the strin

'dept' which occurs in 2 places:

2.4.2.6. The compile() method

Method:compile()

Description: Compiling a pattern without rewriting it.

Example:

35

import re
pattern=re.compile('Python')

result=pattern.findall {'Welcome to Python programming. Python is Cbject Oriented.')
print(result)

result?=pattern.findall('Learning Python is Simple')

print(result2)

aaaaaa

In the above code the compiled pattern is ‘Python’. The result objects return
each and every occurrence of the matched pattern line by line. Other Regular
Expression methods are given in Table 2.2 and RE Compilation flags are
given in Table 2.3.

Table 2.3: Other RE methods

Method/Attribute Purpose

group() Returns the string matched by the RE
start() Returns the starting position of the match
end() Returns the ending position of the match

36

Returns a tuple containing the starting and ending
span() positions of the match

sub() Replaces the RE pattern and returns the modified string

Table 2.4: RE Compilation Flags

Flag Syntax [Description

ASCII oA Makes several escapes like \w,\b,\s and \d and
match only on ASCII characters

DOTALL re.S Match any character including newline

IGNORECASE |re.l Case insensitive matches

MULTILINE re.M Multiline matching affecting ~ and $

LOCALE re.L Locale aware match(Localization API)

VERBOSE re.X Enables verbose RE

37

Example:

import re
lizc="'"'"'caea
n=eb

dseal and b'"'

ml=re.findall (r'"\w',list)
m2=re,.findall (r'*\w',list, re.MULTILINE)

print (ml)
print ()
print {m2)

' output
['='] <- returns only the first character of first line

['c', 'm', 'd'] <-return=s all first characters since it i=s multiline

38

2.4.3. Case Studies on Pattern Matching:

Case Study 1: Phone number verification

import re
ph='412-555-342-4533"

print{'valid phone no'})

glag:
2 =

[45]

print{'invalid phone no')
11
putput:
valid phone no''!

if re.search("\w{3}-\w{3}-\w{3}-‘\wi{4}',ph):

Case Study 2: Validating First name & Last name

import re

name="arthi rathna'

if re.gearch('\w',name):
print{'valid full name')

=

g

print{'invalid name')
LI A]
output:
valid full name'"'"

39

Case Study 3: Email Address Verification

import re

n='abcfgmail.com, x3@,@abc.com,az2@abc.in’

print (re.findall (' [\w. /+]{1,20}8[\w.-]{2,20}.[A~Za-2]{2,3}",n))
""1output

returns valid emailaddresses:

['abcfomail.com', 'az2@abc.in']

Case Study 4: Web Scrapping

40

import urllib.request
from re import findall
url='http://www.sathyabama.ac.in/sitepagethree.phpmainref=23/"
resp=urllib.request.urlopen(url)
html=resp.read()
htmlstr=html.decode ()
pdata=findall ('\d{4}\s-\z\d{3}\s-\=\d{4} ", htmlstr)
for iterm in pdata:
print (iterm)
1
gutput:
1800 - 425 - 1770

2.8. EXERCISES

1. What is the output of the following code?

fi=

2
open ("data.txt™, "w") fl:
> 2

print (fl.clo=ed)

2. Write a Python code to read a String, character by character and print the
String as a whole using iterators.

3. Write a Python program that matches any string that has an a followed by
one or more t's.

4. Write a Python program to insert spaces between words starting with
capital letters.

5. Write a Python program to remove the parenthesis area in a
string usingREs.
Sample data : ["abc (.com)", "w3schools", "google (.com)"]
Expected Output:
abc
w3schools
google

6. Write a Python program to do a case-insensitive string replacement.
7. Write a Python code to print the given list in reverse order.

8. What is the output of the snippet of code shown below?
41

https://www.w3resource.com/python-exercises/re/#EDITOR

9.

numpy np
a = np.array([[1, 2, 3],[4,5,6],[7,58,2]1)
print{al[l])

Write a Python code to append a file ‘aa.txt” and then read and display the
contents of the file line by line.

10. Check whether the methods today() and now() of datetime library are

same or not. Prove the same using a Python code.

REFERENCES:

1. Timothy A.Budd, Exploring Python, Tata McGraw Hill Education Private
Limited, New Delhi, 2011.

2. Python basics: https://www.tutorialspoint.com/python , Accessed on May
2019.

3. Y. Daniel Liang, Introduction to Programming Using Python, Pearson,
2013.

4. Python Libraries: http://cs231n.github.io/python-numpy-tutorial/,
Accessed on May 2019.

5. Scipy: https://www.guru99.com/scipy-tutorial.html, Accessed on May
2019.

6. Python Excercises: https://www.w3resource.com/python-exercises/re/

42

Accessed on May 2019.

https://www.tutorialspoint.com/python
http://cs231n.github.io/python-numpy-tutorial/
https://www.guru99.com/scipy-tutorial.html
https://www.w3resource.com/python-exercises/re/

()

\ N

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC I71ZB Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-I11 Python - Programming — SCS1619

UNIT 11

GUI PROGRAMMING WITH PYTHON

GUI Programming in Python - Introduction to GUI library - Layout
management - Events and bindings - Fonts — Colors - Canvas - Widgets
(frame, label, button, check box, entry, list box, message, radio button,
text, spin box).

In python text only programs can be created using Command line
Interface. Graphical user interface(GUI) can be created using tkinter module
in python.

3.1 INTRODUCTION TO GUI LIBRARY IN PYTHON

Tkinter is a module in the Python standard library which serves as an
interface to Tk (ie) simple toolkit. There are many other toolkits also available
to create GUI.

Tkinter provides the following widgets:

e button

e canvas

e checkbutton
e combobox

e entry
o frame
e label

o listbox

e menu

e message

e progresshar
o radiobutton

e scrollbar
e spinbox
e text

Tkinter also provides three layout managers:

e place - It positions widgets at absolute locations
e grid - Itarranges widgets in a grid
e pack - It packs widgets into a cavity

3.2 LAYOUT MANAGEMENT

The Layout Managers are used to arrange components in a particular
manner. It is used to organize the conponents. There are three Layout
Management in python:

1. Pack Layout
2. Grid Layout
3. Place Layout

3.2.1 Pack Layout Manager

2

It is a simple layout manager. Here widgets can be organized in
horizontal and vertical boxes. It is used to place each widget next to previous
widget. It will be called without any arguments and it will position and size
the widgets in a reasonable way. Whenever the user wants to have a series of
widgets in a vertical or horizontal row, the pack layout manager is fairly
simple to use. The layout is controlled with the fill, expand, and side options.

Example:

fromtkinter import *

top=Tk()
I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True)
12.pack(fill=X,side=RIGHT)
top.mainloop()

Output:

;?|_|:||IEI; 2|

—

"X Emrmaf Daimtar

Explanation: Label I1 has been placed in top position, it is filled in X axis.
Label 12 has been placed in Right Position and it is also filled in X axis. Since
expand attribute has the value True for Label I1,it can be stretched.

Padding Option in Pack Layout:
The pack() manager has four padding options:

1. Internal Padding

2. External padding

3. Padding in X Direction.

4. Padding in Y Direction.
External Padding in Horizontal direction(padx)
Example:
fromtkinter import *
top=Tk()
I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True,padx=10)
12.pack(fill=X,side=TOP,padx=10)

top.mainloop()

Output:

External Padding in Vertical direction (pady)
Example:

fromtkinter import *

top=Tk()

I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True,pady=10)
12.pack(fill=X,side=TOP,pady=10)
top.mainloop()

Output:

Internal Padding in Horizontal direction(ipadx)
Example:

fromtkinter import *

top=Tk()

I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True,ipadx=10)
12.pack(fill=X,side=TOP,ipadx=10)
top.mainloop()

Output:

o

L — =

Internal Padding in Y Direction(ipady):
Example:

fromtkinter import *

6

top=Tk()

I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
11.pack(fill=X,side=TOP,expand=True,ipadx=10)
12.pack(fill=X,side=TOP,ipady=10)
top.mainloop()

Output:

o

3.2.2. Place Layout

Place is the most complex manager out of the 3 managers. It uses
absolute positioning, when we choose place lay out in our design, then we
need to specify the position of the widgets using x and y coordinates. The size
and position of the widgets will not be changed when we resize the window.

Example:

fromtkinter import *

top=Tk()
I1=Label(top,text="Labell",bg="blue")

7

I2=Label(top,text="Label2",bg="red")
11.place(x=10,y=50)
12.place(x=10,y=100)

top.mainloop()

Output:

7 \
i t F=ifef _IJ
e]
Label2 :
]
1

Explanation:

Here Labell is placed in the position (10,50) and label2 is placed in
the position (10,100).

3.2.3 Grid Layout

Pack Layout is not easy to understand and it is difficult to change the
existing design. By using place layout, we can control the positioning of

8

widgets but it is complex than pack. Grid is one of the most versatile layout
manager out of the three layout managers in python. By using Grid layout, the
widgets can be placed in rows and columns.

Example:

fromtkinter import *

top=Tk()
I1=Label(top,text="Labell",bg="blue")
I2=Label(top,text="Label2",bg="red")
I3=Label(top,text="Label2",bg="green™)
11.grid(row=0,column=0)
12.grid(row=0,column=1)
13.grid(row=1,column=1)

top.mainloop()

Output:

(=l

Explanation:

Here Label 1 is placed in 0™ row and 0" column. Label 2 is placed in 0" row
and 1% column and Label 3 is placed in 1% row and 1% column.

3.3 FONT
There are three ways to specify font in python.
1.By using Font Tuple
2.By using Font Object

3.By using XFont

3.3.1 Simple Font Tuple

10

Font can be specified using tuple.Herethe font tuple consists of
threeelements.First element specifies font family ,second element specifies
font size and third element specifies font style.

Ex: t =(“Arial”,14,”Bold”)
Example:
fromtkinter import *
top=Tk()
b1=Button(text="submit", font=("Arial","16","bold"))
b1.pack()
top.mainloop()

Output:

4n L T T e

?||:| [=] £ |

‘ submit ‘

Explanation:
Text for the Button has been set in the Arial font with size 16 and Bold style.
3.3.2 Font Object

Font object can be created by importing tkFont module.
11

Syntax for Font class constructor is:
Import tkFont
Font fl1=tkFont.Font(parameters,.....)

Here is the list of parameters:

Family — The font family name as a string.

size — The font height as an integer in points. To get a font n pixels
high, use -n.

weight —"bold" for boldface, "normal" for regular weight.

Slant — "italic" for italic, "roman" for unslanted.

underline — 1 for underlined text, 0 for normal.

Overstrike — 1 for overstruck text, 0 for normal

Example:

fromtkinter import *
fromtkFont import *

top=Tk()

12

f1=Font(family="Helvetica",size=20,weight="bold",slant="italic",underline=1
,overstrike=1)

I1=Label(top,text="Labell",bg="blue",font=f1)
11.pack()

top.mainloop()

X Window Fonts:

If you are running under the X Window System, you can use any of the X font
names.

3.4 COLORS

Tkinter represents colors with strings. There are two general ways to specify
colors in Tkinter :

e We can use a string specifying the proportion of red, green and blue in
hexadecimal digits. For example,

o HFff" -- white,
e "#000000" -- black,
e "#000fff00O0" -- pure green
o "HOOFFFf" -- pure cyan
e We can also use any locally defined standard following color names.
= "white"
= "black"

13

= red”

= "green”

= "blue”

= "cyan”

= yellow"

= "magenta”

The common color options are :

Active background

activeforeground

background

disabledforeground

foreground

14

Specifies Background color for the widget when the
widget is active.

Specifies Foreground color for the widget when the
widget is active.

Specifies Background color for the widget. This can
also be represented as bg.

Specifies Foreground color for the widget when the
widget is disabled.

Specifies Foreground color for the widget. This can
also be represented as fg.

highlightbackground Specifies Background color of the highlight region

when the widget has focus.

highlightcolor — Specifies Foreground color of the highlight region
when the widget has focus.

selectbackground Specifies Background color for the selected items of

the widget.

selectforeground Specifies Foreground color for the selected items of

the widget.
Example:
fromtkinter import *
top=Tk()
b1=Button(text="submit",bg="red",fg="white")
b1.pack()

top.mainloop()

Output:
FL=l Bl
Explanation:

15

Here the back ground of the button is red in color and foreground color of the
button is white in colour.

3.5 CANVAS

The Canvas is a rectangular area used for drawing pictures or other
complex layouts. Graphics, text, widgets or frames can be placed on a Canvas.

Syntax:
w = Canvas (top, option=value, ...)
top — It represents the parent window.

Options — commonly used options for this widget. These options can be
used as key-value pairs separated by commas.

Commonly used Options are:

bd - Border Width of the canvas

bg - Background color of the canvas

cursor - Cursor used in the canvas like circle,arrow and dot.
relief - Type of the border

width - Width of the canvas

Items supported by canvas:

1.Arc
2.Image
3.Line

4.0val
16

5.Polygon

ARC
Creates an arc item, which can be a chord or a simple arc.

Syntax:

create_arc(x0, y0, x1, y1, options.....)

x0,y0,x1,y1-Top Left and Bottom Right coordinates of Bounding Rectangle
Commonly used Options:

start,extend-Specifies which section to draw

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)

coord = 10, 50, 240, 210

arc = w.create_arc(coord, start=0, extent=150, fill="blue™)

w.pack()

Output:

17

7 & (=R

<<

Explanation:

Here Arc is drawn with blue color and within the bounded rectangle with top
left(10,50)position and bottom right(240,210) position and started from angle
0 and extended till 150 degree.

3.5.1 Image

Creates an image , which can be an instance of either the Bitmaplmage or the
Photolmage classes.

Syntax:
Create image(x,y,options....)
X,y-Specifies the position of the image

commonly used options:

18

anchor=Where to place the image relative to the given position.
Default is CENTER.

image=image object
Example:
fromtkinter import *
root=Tk()
w = Canvas(root, width=500, height=500)
w.create_image("F:\img2",50,50)
w.pack()
root.mainloop()
3.5.2 Line
Creates a line item.,
Syntax:
canvas.create_line(x0, y0, x1, y1, ...,xn, yn, options)
x0,y0,x1,yl->coordinates of line
Commonly used options:
activefill-Color of the line when it is active

width -Width of the line

19

Example:

fromtkinter import *

root=Tk()

w = Canvas(root, width=500, height=500)
w.create_line(10,10,100,100,activefill="red")
w.pack()

root.mainloop()

Output:

3.5.3 Oval

20

Creates a circle or an ellipse at the given coordinates. It takes two pairs of
coordinates; the top left and bottom right corners of the bounding rectangle for
the oval.

Syntax:
canvas.create_oval(x0, y0, x1, y1, options)

X0, y0, x1, y1- the top left and bottom right corners of the bounding
rectangle

Options:
activefill-Color of the oval when it is active
width -Width of the line
Example:
fromtkinter import *
root=Tk()
w = Canvas(root, width=500, height=500)
w.create_oval(10,10,100,100,activefill="red")
w.pack()

root.mainloop()

21

Output:

3.5.4 Polygon
Creates a polygon item that must have at least three vertices.
Syntax:
canvas.create_polygon(x0, y0, x1, y1,...xn, yn, options)
X0, y0, x1, y1,...xn, yn-Coordinates of polygon
Options:
Activefill-Color of the oval when it is active
width -Width of the line
Example

fromtkinter import *

22

root=Tk()

w = Canvas(root, width=500, height=500)
w.create_polygon(50,50,20,20,100,100,activefill="red")
w.pack()

root.mainloop()

3.6 WIDGETS IN PYTHON

Widgets are standard graphical user interface (GUI) elements, like different
kinds of buttons and menus.

3.6.1 Label

A Label widget shows text to the user about other widgets used in the
application. The widget can be updated programmatically.

Syntax to create Label:

w=Label (root ,options)

root - Parent Window

23

List of commonly used options are given below:

Table 3.1: Options for Label Widget

Option

Description

anchor

It specifies the exact position of the text within the size provided to
the widget. The default value is CENTER, which is used to center
the text within the specified space.

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels
cursor |Specifies type of cursor. eg: dot, arrow, circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget

height |Height of the widget

width |Width of the widget

image |Specifies image to be displayed in the widget
padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget
underline|Underline the label text

24

Example:

fromtkinter import *

root=Tk()

I1=Label(root,text="Enter User Name",bg="green",fg="white")
11.pack()

root,mainloop()

Output:
—§ O X
Explanation:

Here Label has been created with green background color and white

foreground color with the text “Enter User Name”.

25

ENTRY

The Entry widget is used to create the single line text-box to the user to
accept a value from the user. It can accept the text strings from the user. It can
receive one line of text from the user. For multiple lines of text, the text
widget will be used.

Syntax for creating Entry Widget:
w=Entry(root, options)
root-Main Window

Table 3.2: List of commonly used options for Entry Widget

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget
image Specifies image to be displayed in the widget
padx Horizontal padding of text
pady Vertical padding of text

26

Option Description

relief Specifies type of border
text Text to be displayed in the widget
undeline Underline the label text

selectbackground Background color of the selected text

selectforeground Foreground color of the selected text

show Specifies the character used to mask characters in the
text box

Example:

fromtkinter import *

root=Tk()

I1=Label(root,text="Enter User Name",bg="green",fg="white")
el=Entry(root,show="*")

I1.pack(side=LEFT)

el.pack(side=RIGHT)

root.mainloop()

Output:
27

it — O ®

Enter User Name ***********1

Explanation:

Here Label and entry widgets are created.Since the show attribute value is
* the characters entered in the text box appeared as “*”.

3.6.2 Button

Button Widget is used to create various kinds of buttons.The user can interact
with the button.They can contain text or images.

Syntax for creating Button:
b=Button(root,options)

root-main window

28

Table 3.3: List of commonly used options for Button

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget
image Specifies image to be displayed in the widget
padx Horizontal padding of text
pady Vertical padding of text
relief Specifies type of border
text Text to be displayed in the widget
underline Underline the label text
command It is set to function name which will be called the button is
clicked
Example:

fromtkinter import *

root=Tk()
29

b1=Button(root,text="Submit",bg="blue",fg="white")
b1.pack()

root.mainloop()

Output:
—f§ O o
3.6.3 Checkbutton

The Checkbutton is used to track the user's choices provided to the
application. Checkbutton is used to implement the on/off
selections. TheCheckbutton can contain the or images or text. The
Checkbutton is mostly used to provide many choices to the user among which,
the user needs to choose the one.

Syntax for creating Check Button:
b=CheckButton(root,options)

root-main window

30

Table 3.4: List of possible options for Checkbutton

Option Description

bg Specifies background color of the widget

bd Specifies border width. Default is 2 pixels

cursor Specifies type of cursor.eg:dot,arrow,circle

font Specifies font type of the text written inside the widget

fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

text Text to be displayed in the widget

undeline Underline the label text

command It is set to function name whicjh will be called the button is
clicked

offvalue Set value to the control variable if the button is
checked.Default Value is 1

onvalue Set value to the control variable if the button is
unchecked.Default Value is 0

selectcolor Set color of the check button when it is checked.

selectimage |Set the image to be shown when it is checked.

Example:

fromtkinter import *

31

root=Tk()

cl = Checkbutton(root, text = "C", onvalue = 1, offvalue = 0, height = 2,
width = 10)

c2 = Checkbutton(root, text = "C++", onvalue = 1, offvalue = 0, height = 2,
width = 10)

c3 = Checkbutton(root, text = "JAVA", onvalue = 1, offvalue = 0, height = 2,
width = 10)

cl.pack()
c2.pack()
c3.pack()

root.mainloop()

Output:

32

| C++

[JAVA

3.6.4 Radiobutton

The Radiobutton widget is used to implement one-of-many selection. It shows
multiple options to the user out of which, the user can select only one option.
It is possible to display the multiple line text or images on the radiobuttons.
To keep track the user's selection ,theradiobutton is associated with a single
variable.EachRadio button displays a single value for that particular variable.

Syntax for creating Radio Button:
b=RadioButton(root,options)

root-main window

33

Table 3.5: List of possible options for Radiobutton

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget
image Specifies image to be displayed in the widget
padx Horizontal padding of text
pady Vertical padding of text
relief Specifies type of border
text Text to be displayed in the widget
underline Underline the label text
command It is set to function name whicjh will be called the button
is clicked
value Set value to the control variable if the button is selected.
selectcolor Set color of the check button when it is checked.
selectimage Set the image to be shown when it is checked.
variable It is used to keep track of user choices.

Example:

fromtkinter import *

root=Tk()

rl = Radiobutton(root, text ="C", value =1, height = 2, width = 10)

r2 = Radiobutton(root, text = "C++", value = 2, height = 2, width = 10)
r3 = Radiobutton(root, text = "JAVA",value = 3, height = 2, width = 10)
rl.pack()

r2.pack()

r3.pack()

root.mainloop()

Output:

tk — O P

(* C++

" JAVA

35

3.6.5 Listbox

The Listbox widget is used to display the list items to the user.The user can
choose one or more items from the list depending upon the configuration.

Syntax for creatingListBox:

b=Listbox(root,options)

root-main window

Table 3.6: List of possible options foe Listbox

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget
height Height of the widget
width Width of the widget
image Specifies image to be displayed in the widget
padx Horizontal padding of text
pady Vertical padding of text

36

relief Specifies type of border

value Set value to the control variable if the button is selected.

selectbackground Set back ground color of the selected text.

xscrollcommand User can scroll the list box horizontally

yscrollcommand User can scroll the list box vertically

Example:

fromtkinter import *

top = Tk()

Ibl = Label(top,text = "A list of favourite countries...")
listbox = Listbox(top)
listbox.insert(1,"India")
listbox.insert(2, "USA")
listbox.insert(3, "Japan")
listbox.insert(4, "Austrelia")
Ibl.pack()

listbox.pack()

top.mainloop()
37

Output:

F otk — O pe

A list of favourite countries...

India
LISa
Japan
Hustrelia

3.6.6 Message

Its functionality is very similar to Label widget, except that it can
automatically wrap the text, maintaining a given width.

Syntax for creating Message:
m=Message(root,options)
root-main window

Table 3.7: List of possible options for Message

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle

38

Option

Description

font Specifies font type of the text written inside the widget
fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget

padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

Example:

fromtkinter import *

top = Tk()

msg = Message(top, text = "Welcome to Javatpoint™)

msg.pack()

top.mainloop()

Output:

39

i otk — O oY

Welcome
to
Javatpoint

3.6.7 Text

Tkinter provides us the Entry widget which is used to implement the single
line text box. Text widget provides advanced capabilities that allow us to edit
a multiline text and format the way it has to be displayed, such as changing its
color and font. We can also use the structures like tabs and marks to locate
specific sections of the text, and apply changes to those areas.

Syntax for creating Message:
T=Text(root,options)
root-main window

Table 3.8: List of possible options for Text

Option Description

bg Specifies background color of the widget

40

bd Specifies border width. Default is 2 pixels
cursor Specifies type of cursor.eg:dot,arrow,circle
font Specifies font type of the text written inside the widget
fg Foreground color of the widget

height Height of the widget

width Width of the widget

image Specifies image to be displayed in the widget
padx Horizontal padding of text

pady Vertical padding of text

relief Specifies type of border

xscrollcommand User can scroll the text widget horizontally
yscrollcommand User can scroll the text widget vertically
selectbackground |Background color of the selected text

Table 3.9: General Methods

Description
Method
delete(startindex, This method is used to delete the characters of the
endindex) specified range

get(startindex,endindex)

It returns the characters present in the specified
range.

insert(index, string)

It is used to insert the specified string at the given

41

index.

Mark Handling Methods:

Marks are used to bookmark the specified position between the characters of

the associated text.

Table 3.10: List of Mark handling methods

Method

Description

mark_set(mark,index)

It is used to create mark at the specified index.

mark_unset(mark)

It is used to clear the given mark

mark_names()

It is used to return names of all the marks

Tag Handling Methods:

The tags are the names given to the specific areas of the text. The tags are
used to configure the different areas of the text separately.

Table 3.11: The list of tag-handling methods

Method

Description

tag_add(tagname,
endindex)

startindex,|It is used to tag the characters in the
given range

tag_config()

It is used to configure the tag properties

42

tag_delete(tagname) It is used to delete the given tag

tag_remove(tagname, startindex, It is used to remove the tag from the
endindex) specified range

Example:

fromtkinter import *

top = Tk()

text = Text(top)

text.insert(INSERT, "Name.....")

text.insert(END, "Salary.....")

text.pack()

text.tag_add("Write Here", "1.0", "1.4")

text.tag_add("Click Here", "1.8", "1.13")

text.tag_config("Write Here", background="yellow", foreground="black")
text.tag_config("Click Here", background="black", foreground="white")

Output:

43

Explanation:

The tag “Write Here” tags the characters from the index 0 to 4.The tag “Click
Here” tags the characters from the index 8 to 13.These tags are configured
using the method tag_config().

3.6.8 Spinbox

The Spinbox widget is a variant of the standard Tkinter Entry widget, which
can be used to select from a fixed number of values.

Syntax:

w = Spinbox(master, option, ...)

Parameters

e master — This represents the parent window.

e options — Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated by
commas.

44

Sr.No.

45

The Spinbox control is an alternative to the Entry control. It provides
the range of values to the user, out of which, the user can select only
one value.lt is used in the case where a user is given some fixed
number of values to choose from.

Syntax for creating Message:

S=Spinbox(root,options)

root-main window

Table 3.12: List of options for Spinbox

Option & Description

activebackground

The color of the slider and arrowheads when the mouse is over
them.

bg

The color of the slider and arrowheads when the mouse is not over
them.

bd

The width of the 3-d borders around the entire perimeter of the
trough, and also the width of the 3-d effects on the arrowheads and
slider. Default is no border around the trough, and a 2-pixel border
around the arrowheads and slider.

10

46

command

A procedure to be called whenever the scrollbar is moved.

cursor

The cursor that appears when the mouse is over the scrollbar.

disabledbackground

The background color to use when the widget is disabled.

disabledforeground

The text color to use when the widget is disabled.

fg
Text color.

font

The font to use in this widget.

format

Format string. No default value.

11

12

13

14

15

16

17

47

from_

The minimum value. Used together with to to limit the spinbox

range.

justify
Default is LEFT

relief
Default is SUNKEN.

repeatdelay

Together with repeatinterval, this option controls button auto-

repeat. Both values are given in milliseconds.

repeatinterval

See repeatdelay.

state

One of NORMAL, DISABLED, or "readonly".
NORMAL.

textvariable

Default

is

18

19

20

21

22

23

48

No default value.

to

See from.

validate
Validation mode. Default is NONE.

validatecommand

Validation callback. No default value.

values

A tuple containing valid values for this widget. Overrides
from/to/increment.

vemd

Same as validatecommand.

width
Widget width, in character units. Default is 20.

24 wrap

If true, the up and down buttons will wrap around.

25 xscrollcommand
Used to connect a spinbox field to a horizontal scrollbar. This
option should be set to the set method of the corresponding
scrollbar.
Methods
Table 3.13: Methods of Spinbox objects
Sr.No. Methods & Description
1 delete(startindex [,endindex])
This method deletes a specific character or a range of text.
2 get(startindex [,endindex])
This method returns a specific character or a range of text.
3

identify(x, y)

49

Identifies the widget element at the given location.

4 index(index)
Returns the absolute value of an index based on the given index.
5 . . :
insert(index [,string]...)
This method inserts strings at the specified index location.
6 invoke(element)
Invokes a spinbox button.
Example

Try the following example yourself —

from TKinter import *

master = Tk()

50

w = Spinbox(master, from_=0, to=10)
w.pack()

mainloop()

When the above code is executed, it produces the following result —

Example:

fromtkinter import *

top = Tk()

spin = Spinbox(top, from_= 0, to = 25)
spin.pack()

top.mainloop()

Output:

51

otk — O =

3.7 FRAME

Frame widget is used to organize the group of widgets. It acts like a container
which can be used to hold the other widgets. The rectangular areas of the
screen are used to organize the widgets to the python application.

Syntax for creating Frame:
S=Frame(root,options)

root-main window

Table 3.14: List of possible options for Frame

Option Description
bg Specifies background color of the widget
bd Specifies border width. Default is 2 pixels

52

cursor Specifies type of cursor.eg:dot,arrow,circle
height Height of the widget

width Width of the widget

Relief Specifies type of border

Example:

fromtkinter import *

top = Tk()

Topframe = Frame(top)

Topframe.pack(side = TOP)

Bottomframe = Frame(top)

Bottomframe.pack(side =BOTTOM)

btnl = Button(Topframe, text="Submit", fg="red",activebackground = "red")
btnl.pack(side = LEFT)

btn2 = Button(Topframe, text="Remove", fg="brown", activebackground =
"brown™)

btn2.pack(side = RIGHT)

btn3 = Button(Bottomframe, text="Add", fg="blue", activebackground =
"blue™)

btn3.pack(side = LEFT)

53

btn4 = Button(Bottomframe, text="Modify", fg="black", activebackground =
"white")

btn4.pack(side = RIGHT)

top.mainloop()

Output:
I? tk -I:l-@-é
Submit | Remowve
Add | Modify
Explanation:

Here two frames (Top Frame and Bottom Frame) have been
created. Topframe contains submit and remove buttons and Bottom frame
contains Add and modify buttons .

3.8 EVENTS AND BINDINGS IN PYTHON

Binding function is used to deal with the events. We can bind Python’s
Functions and methods to an event as well as we can bind these functions to
any particular widget. Events can come from various sources, including key
presses and mouse operations by the user. Tkinter provides a powerful

54

mechanism to let you deal with events yourself. For each widget, you
can bind Python functions and methods to events.

widget.bind(event, handler)

If an event matching the event description occurs in the widget, the
given handler is called with an object describing the event.
A Tkinter application spends most of its time inside an event loop (entered via
the mainloop method). Events can come from various sources, including key
presses and mouse operations by the user, and redraw events from the window
manager.

Tkinter provides a powerful mechanism to deal with events. For each
widget, you can bind Python functions and methods to events.

widget.bind(event, handler)

If an event matching the event description occurs in the widget, the
given handler is called with an object describing the event.

Here’s a simple example:

Example Program1:Capturing clicks in a window

from tkinter import *
window = Tk()
def callback(event):
print ("clicked at", event.x, event.y)

frame = Frame(window, width=100, height=100)
frame.bind(""<Button-1>", callback)
frame.pack()

window.mainloop()

55

In this example, the bind method of the frame widget is used to bind a
callback function to an event called <Button-1>. Run this program and click
in the window that appears. Each time you click, a message like “clicked at
44 63” is printed to the console window.

Keyboard events are sent to the widget that currently owns the keyboard
focus. The focus_set method can be used to move focus to a widget:

Example Program2:Capturing keyboard events

from tkinter import *
window = Tk()
def key(event):

print("pressed”, repr(event.char))
def callback(event):

frame.focus_set()

print(“clicked at", event.x, event.y)
frame = Frame(window, width=100, height=100)
frame.bind("<Key>", key)
frame.bind(""<Button-1>", callback)
frame.pack()

window.mainloop()

If you run this script, you’ll find that you have to click in the frame before it
starts receiving any keyboard events.
Some of the commonly used events and some event properties are listed

below:

56

Table 3.15: Events

Event Description
<Bi-Motion> An event occurs when a mouse button is moved while
being held down on the widget.
<Button-i> Button-1, Button-2, and Button-3 identify the left,

middle, and right buttons. When a mouse buttonis
pressed over the widget, Tkinter automatically grabs
the mouse pointer’s location. ButtonPressed-
lissynonymous with Button-i.

<ButtonReleased-
i>

An event occurs when a mouse button is released.

<Double-Button-i>

An event occurs when a mouse button is double-
clicked.

<Enter> An event occurs when a mouse pointer enters the
widget.

<Key> An event occurs when a key is pressed.

<Leave> An event occurs when a mouse pointer leaves the
widget.

<Return> An event occurs when the Enter key is pressed. You
can bind any key such as A, B, Up, Down, Left, Right
in the keyboard with an event.

<Shift+A> An event occurs when the Shift+Akeys are pressed.

You can combine Alt, Shift, and Control with other
keys.

<Triple-Button-i>

An event occurs when a mouse button is triple-clicked.

57

Table 3.16: Event Properties

Event Property Description

char The character entered from the keyboard for key events.

keycode The key code (i.e., Unicode) for the key entered from
the keyboard for key events.

keysym The key symbol (i.e., character) for the key entered
from the keyboard for key events.

num The button number (1, 2, 3) indicates which mouse
button was clicked.

widget The widget object that fires this event.

xandy The current mouse location in the widget in pixels.

X_ _root and The current mouse position relative to the upper-left

y_root corner of the screen, in pixels.

The program MouseKeyEventDemo processes mouse and key events. It
displays the window asshown in Figure 1a. The mouse and key events are
processed and the processing informationis displayed in the command

window, as shown in Figure 1 b.

58

Example Program3 : MouseKeyEventDemo

from tkinter import * # Import all definitions from tkinter
class MouseKeyEventDemo:
def __init__(self):
window = Tk() # Create a window
window.title("Event Demo") # Set a title
canvas = Canvas(window, bg = "white", width = 200, height = 100)
canvas.pack()
Bind with <Button-1> event
canvas.bind("<Button-1>", self.processMouseEvent)
Bind with <Key> event
canvas.bind("<Key>", self.processKeyEvent)
canvas.focus_set()
window.mainloop() # Create an event loop
def processMouseEvent(self, event):
print("clicked at", event.x, event.y)
print("Position in the screen”, event.x_root, event.y_root)
print("Which button is clicked? ", event.num)
def processKeyEvent(self, event):
print("keysym? ", event.keysym)
print("char? ", event.char)
print("keycode? ", event.keycode)
MouseKeyEventDemo() # Create GUI

59

i? Even.. — Ol X

Figure 1 a Output Window of Program3

&

File Edit Shell Debug Options Window Help

Python 3.8.1 (tags/v3.8.1:1b293bé6, Dec 18 2019, 22:39:24) [MsSC v.191lé 32 bit (In
tel)] on win32

Type "help", "copyright", "credits" or "license ()" for more information.

P

RESTARRT: F:/evebin3l.py
clicked at 30 24

Position in the screen 894 226
Which button is clicked? 1
keysym? k

char?z k

keycode? 75

clicked at 193 88

Position in the screen 1057 290
Which button is clicked? 1
keysym? 1

char? 1

kevycode? 76

Figure 1 bOutput of Program3 for mouseclick and keypress

The program creates a canvas and binds a mouse event <Button-1>with the
callbackfunction processMouseEventon the canvas. Nothing is drawn on the
canvas.So it is blank as shown in Figure 1a. When the left mouse button is
clicked on the canvas,an event is created. The processMouseEventis invoked

to process an event that displaysthe mouse pointer’s location on the canvas, on

60

the screen, and which mousebutton is clicked.The Canvas widget is also the
source for the key event. The program binds a key eventwith the callback
function processKeyEventon the canvas and sets the focus onthe canvas so
that the canvas will receive input from the keyboard.

The example Program EnlargeShrinkCircledisplays a circle on the canvas.
The circle radius is increased with a left mouseclick and decreased with a

right mouse click, as shown in Figure 2 a,2 b, 2c.

61

Example Program4 : EnlargeShrinkCircle

from tkinter import * # Import all definitions from tkinter
class EnlargeShrinkCircle:
def __init__(self):
self.radius = 50
window = Tk() # Create a window
window.title(Control Circle Demo") # Set a title
self.canvas = Canvas(window, bg = "white",width = 200, height = 200)
self.canvas.pack()
self.canvas.create_oval(100 - self.radius, 100 - self.radius,100 + self.radius,
100 + self.radius, tags = "oval")
Bind canvas with mouse events
self.canvas.bind("<Button-1>", self.increaseCircle)
self.canvas.bind("<Button-3>", self.decreaseCircle)
window.mainloop() # Create an event loop
def increaseCircle(self, event):
self.canvas.delete("oval™)
if self.radius< 100:
self.radius += 2
self.canvas.create_oval(100 - self.radius, 100 - self.radius,100 + self.radius,
100 + self.radius, tags = "oval")
def decreaseCircle(self, event):
self.canvas.delete("oval")
if self.radius> 2:
self.radius -=
self.canvas.create_oval(100 - self.radius, 100 - self.radius,100 + self.radius,
100 + self.radius, tags = "oval")
EnlargeShrinkCircle() # Create GUI

62

63

? Cont...

? Cont...

Figure 2 a Output Window of Program4

Figure 2 b Circle Radius Enlarged using Left Mouse
of Program4

ff Cont.. — | X

Figure 2 c Circle Radius Shrinked using Right Mot
Q of Program4

The program creates a canvas and displays a circle on the canvas with an
initialradius of 50. The canvas is bound to a mouse event <Button-1>with
thehandler increaseCircleand to a mouse event <Button-3>with the
handlerdecreaseCircle. When the left mouse button is pressed, the
increaseCirclefunction is invoked to increase the radius and redisplay the
circle.When the right mouse button is pressed, the decreaseCirclefunction is

invoked todecrease the radius and redisplay the circle.

Another simple example is given below that shows how to use the motion

event, i.e. if the mouse is moved inside of a widget:

64

Example Program5 : MouseMove

from tkinter import *
def motion(event):
print("Mouse position: (%s %s)" % (event.x, event.y))
return
window = Tk()
display_message = "Python Programming and Machine Learning"
msg = Message(window, text = display_message)
msg.config(bg="lightgreen’, font=(times', 24, "italic’))
msg.bind('<Motion>',motion)
msg.pack()
mainloop()

Every time the mouse is moved in the Message widget, the position of the
mouse pointer will be printed.

3.8.1 Handling Mouse Button Event in Python

Example:

fromtkinter import *

fromtkinter.ttk import *

creates tkinter window or root window

root = Tk()

function to be called when button-2 of mouse is pressed

def pressed2(event):

print('Button-2 pressed at X = % d, y = % d'%(event.x, event.y))
function to be called when button-3 of mouse is pressed

65

def pressed3(event):

print('Button-3 pressed at X = % d, y = % d'%(event.x, event.y))
function to be called when button-1 is double clocked
defdouble_click(event):

print('Double clicked at x = % d, y = % d'%(event.x, event.y))
framel = Frame(root, height = 100, width = 200)

Binding mouse buttons with the Frame widget
framel.bind('<Button-2>', pressed?2)
framel.bind('<Button-3>', pressed3)

framel.bind('<Double 1>', double_click)

framel.pack()

root.mainloop()

Output:

[PENSETET e -]
= w’ ‘k Devug_Optic = i }
=R |IN/AppData/Local/Programs/Python/Python36-32/image.py =
=R lIN/AppData/Local/Programs/Python/Python36-32/image.py =

>5>
= RESTART- GrusersraomIN/AppData/Local/Programs/Python/Python36-32/image.py =

= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Pythan36-32/image.py =
>>>

= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/image.py =

= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/image.py =
22>
= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/image.py =
>>>
= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/frame.py =

RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/mouseevent.py
>5>

RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Pythen36-32/button.py
Button-3 pressed atx = 50,y = 23

Button-3 pressed atx = 50,y = 22

Button-3 pressed atx = 50,y = 22

) Lre22 Cok0

s e N EERE A AEIPEY , - B

Lww)] W]

66

3.8.2 Handling Key Press Event In Python
Example:
fromtkinter import *

fromtkinter.ttk import *

function to be called when
keyboard buttons are pressed
defkey_press(event):

key = event.char

print(key, 'is pressed’)

creates tkinter window or root window
root = Tk()

root.geometry('200x100")

here we are binding keyboard

with the main window
67

root.bind('<Key>', lambda a : key_press(a))

mainloop()

Output:

[& *Rython 363 Shell”

v Help

=y

¢

MIN/AppData/Local/Programs/Python/Python36-32/image.py =

|PMIN/AppData/Local/Programs/Python/Python36-32/image.py =

= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/image.py =
>>>

= RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/frame.py =

RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/mouseevent.py
>>>

RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/button.py
Button-3 pressed at x = 50,y = 23
Button-3 pressed at x = 50,y = 22
Button-3 pressed at x = 50,y = 22

== RESTART: C:/Users/ADMIN/AppData/Local/Programs/Python/Python36-32/KEY .py ==
is pressed

is pressed
is pressed
is pressed
is pressed
is pressed

I

L2 Cok0

B4 4 9 2 & 03

[ix]

68

=R

QUESTIONS

1. Write the Pyhton Program to create simple window.
2. Write a Python Program to create label, entry and button components
and arrange the components using Grid Layout.
3. Write a Python Program to validate user name and password.
4. Write a Python Program to display the basic shapes.
5. Write a Python program to create a following GUI design
—f O X
| male
| female
6. Write the GUI program to create List Box for shopping cart.
7. Write a pyhton Program to create simple calculator.
8. Write a Python Program to add image on the button.
9. Write a Python progam to create simple application form.
10. Wrtite a Pyhton program to create check button for selecting multiple

69

hobbies.

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC |7123 Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-1V - Python Programming — SCS1619

UNIT IV

DATABASE AND NETWORK

Database (using NoSQL): Connector Module —Cursor — Statements -
Exceptions in database.

Network connectivity: Socket module - Client — Server — Email — URL
Access

Data is very important for any organization to continue its operations.
The data may be related to employees in the organization or the operational
data like products information, raw material prices, sales information, profits
and losses. Without data, no organization will survive. Hence, data is very
important and it should never be lost.

DBMS

To store data, a file or database can be used. A file stores data in the
secondary storage device like hard disk, either in the text format or binary
format.

A database represents collection of data. Data can be stores in the database.
Once the data is stored in the database, various operations can be performed
on the data. For example, modifying the existing data, deleting the unwanted
data, or retrieving the data from the database and etc. To perform such

operations, a database comes with software. This is called a database
management system.

DBMS= Database + Software to manage the data
Example DBMS are MySQL, Oracle, Sybase,, SQL server etc.
Types of databases used with Python
4.1 DATABASE SUPPORT
e SQL
e NoSQL

As more and more data become available as unstructured or semi-
structured, the need of managing them through NoSgl database increases.
Python can also interact with NoSQL databases in a similar way as is interacts
with Relational databases. In this chapter we will use python to interact with
MongoDB as a NoSQL database.

4.1.1 MongoDB

MongoDB stores data in JSON-like documents, which makes the database
very flexible and scalable.

Where to Use MongoDB?

e Big Data

e Content Management and Delivery

« Mobile and Social Infrastructure
o User Data Management
o Data Hub

download a free MongoDB database at https://www.mongodb.com.

PyMongo

Python needs a MongoDB driver to access the MongoDB database.

In this tutorial we will use the MongoDB driver "PyMongo".

We recommend that you use PIP to install "PyMongo™.

PIP is most likely already installed in your Python environment.

Navigate your command line to the location of PIP, and type the following:
Download and install "PyMongo":

C:\Users\Your Name\AppData\Local\Programs\Python\Python36-
32\Scripts>python -m pip install pymongo

Now you have downloaded and installed a mongoDB driver.

Where to Use MongoDB?

. Big Data

. Content Management and Delivery
. Mobile and Social Infrastructure

. User Data Management

https://www.mongodb.com/

o Data Hub

Test PyMongo

To test if the installation was successful, or if you already have "pymongo™
installed, create a Python page with the following content:

demo_mongodb_test.py:
import pymongo
Creating a Database

To create a database in MongoDB, start by creating a MongoClient object,
then specify a connection URL with the correct ip address and the name of the
database you want to create.

MongoDB will create the database if it does not exist, and make a connection
to it.

Example
Create a database called mydatabase

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

MongoDB waits until you have created a collection (table), with at least one
document (record) before it actually creates the database (and collection).

Creating a Collection

To create a collection in MongoDB, use database object and specify the name
of the collection you want to create.

MongoDB will create the collection if it does not exist.
Program
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase”]
mycol = mydb["customers"]

MongoDB waits until you have inserted a document before it actually
creates the collection.

Python MongoDB Insert Document
Insert Into Collection

To insert a record, or document as it is called in MongoDB, into a collection,
we use the insert_one() method.

The first parameter of the insert_one() method is a dictionary containing the
name(s) and value(s) of each field in the document you want to insert.

5

Example

Insert a record in the “Customers” Collection:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mydict = { "name": "John", "address": "Highway 37" }
X = mycol.insert_one(mydict)
Insert Multiple Documents

To insert multiple documents into a collection in MongoDB, we use
theinsert_many() method.

The first parameter of the insert_many() method is a list containing
dictionaries with the data you want to insert:

import pymongo
myclient = pymongo.MongoClient(**'mongodb://localhost:27017/*)
mydb = myclient["*'mydatabase’]

mycol = mydb[**customers']

mylist = [

{""name™":

"Amy"', "address': ""Apple st 652"},

{""name": ""Hannah", "address": ""Mountain 21"},
{"name’: ""Michael, ""address™: ""Valley 345"},
{"name": "Sandy"", ""address": ""Ocean blvd 2"},
{"name': "Betty", ""address": ""Green Grass 1"},
{""name’: "Richard", ""address": ""Sky st 331"'},
{"name™: ""Susan', ""address'": ""One way 98"},
{"name™: "Vicky", "address": ""Yellow Garden 2"},
{""name™: ""Ben", "address'": ""Park Lane 38"},
{""name™: "William", "address': ""Central st 954"},
{""name™: "Chuck", "address': "*Main Road 989"},
{"name™: ""Viola™, "address': "'Sideway 1633"}

]

X = mycol.insert_many(mylist)

Python MongoDB Find

In MongoDB we use the find and findOne methods to find data in a
collection.

Just like the SELECT statement is used to find data in a table in a MySQL
database.

Find One

To select data from a collection in

the find_one()method.
7

MongoDB, we can use

The find_one() method returns the first occurrence in the selection.
Example
Find the first document in the customers collection:
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase”]
mycol = mydb["customers"]

x = mycol.find_one()

print(x)
Output
{"_id": 1, 'name’: 'John’, ‘address': "Highway37'}
Find All
To select data from a table in MongoDB, we can also use the find() method.
The find() method returns all occurrences in the selection.

The first parameter of the find() method is a query object. In this example we
use an empty query object, which selects all documents in the collection.

Example

Return all documents in the "customers™ collection, and print each document:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase”]
mycol = mydb["customers"]

for x in mycol.find():

print(x)

{id
{id":
{id":
{id":
{id":
{id":
{id":
{id":
{id":
{id":
{id":
{id":
{id":
{id":

1, 'name’:
2, 'name":
3, 'name":
4, 'name":
5, 'name":
6, 'name":
7, 'name":
8, 'name":
9, 'name":
10, 'name’

‘John’, ‘address’: "Highway37'}
'‘Peter’, 'address': "Lowstreet 27'}
'Amy’, ‘address': "Apple st 652'}
‘Hannah’, 'address': "Mountain 21}
‘Michael’, ‘address’: "Valley 345’}
'Sandy’, ‘address’: "Ocean blvd 2'}
‘Betty’, ‘address’: ‘Green Grass 1'}
‘Richard’, "address': 'Sky st 331"}
'Susan’, ‘address’: *One way 98'}

- "Vicky', "address': *Yellow Garden 2}
11, 'name’:
12, 'name’:
13, 'name’:
14, 'name’:

'Ben’, "address': 'Park Lane 38'}
'William', "address': "Central st 954'}
'Chuck’, "address': "Main Road 989'}
'Viola', 'address': 'Sideway 1633'}

Filter the Result

When finding documents in a collection, you can filter the result by using a
query object.

The first argument of the find() method is a query object, and is used to limit
the search.

Example
Find document(s) with the address "Park Lane 38™:
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase”]
mycol = mydb["customers"]
myquery = { "address": "Park Lane 38" }

mydoc = mycol.find(myquery)

for x in mydoc:
print(x)

output
{"_id": 11, 'name": 'Ben’, 'address': '‘Park Lane 38'}

10

Example

Find documents where the address starts with the letter "S" or higher:
import pymongo
myclient = pymongo.MongoClient(*mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]
myquery = { "address": { "$gt": "S" } }

mydoc = mycol.find(myquery)

for x in mydoc:

print(x)

Output
{_id": 5, 'name": 'Michael', 'address": 'Valley
345%
{ _id" 8, 'name". 'Richard’, ‘address": 'Sky st
331%
{'_id" 10, 'name". 'Vicky', ‘address": "Yellow
Garden 2'}
{ _id" 14, 'name". 'Viola', 'address": 'Sideway
1633%

11

Return Only Some Fields

The second parameter of the find() method is an object describing which
fields to include in the result.

This parameter is optional, and if omitted, all fields will be included in the
result.

Example
Return only the names and addresses, not the _ids:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase”]
mycol = mydb["customers™]

for x in mycol.find({},{ "_id": 0, "name": 1, "address™: 1}):
print(x)

Output

{"'name': 'John’, 'address': "Highway37'}
{"name’: 'Peter’, "address': 'Lowstreet 27"}
{"'name’: '"Amy", 'address': 'Apple st 652"}
{'name': 'Hannah', '‘address': ‘Mountain 21"}
{"'name': 'Michael’, 'address': 'Valley 345}

12

{"'name’': 'Sandy', 'address': 'Ocean blvd 2'}
{"'name’: 'Betty’, 'address': 'Green Grass 1'}
{"'name’: 'Richard’, 'address’: 'Sky st 331’}
{"name’: 'Susan’, ‘address': 'One way 98'}
{"'name’: 'Vicky', 'address’: "Yellow Garden 2'}
{"'name’: 'Ben’, 'address': '‘Park Lane 38'}
{"name’: "William’, 'address': '‘Central st 954'}
{"name’: 'Chuck’, ‘address’: "Main Road 989’}
{"'name’: "Viola', ‘address': 'Sideway 1633}

Sort the Result
Use the sort() method to sort the result in ascending or descending order.

The sort() method takes one parameter for "fieldname" and one parameter for
"direction” (ascending is the default direction).

Example
Sort the result alphabetically by name:
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mydoc = mycol.find().sort("name")

13

for x in mydoc:
print(x)

OUTPUT

{"_id": 3, 'name’: 'Amy’, ‘address’: 'Apple st 652'}
{"_id": 11, 'name’: 'Ben’, 'address': '‘Park Lane 38'}
{"_id": 7, 'name’: 'Betty", 'address': 'Green Grass 1'}
{"_id": 13, 'name": "Chuck’, ‘address': ‘Main Road 989'}
{"_id": 4, 'name’: 'Hannah’, 'address’: ‘"Mountain 21"}
{"_id": 1, 'name’: "John’, ‘address': "Highway37'}

{"_id": 5, 'name’: ‘Michael’, '‘address': "Valley 345}
{"_id": 2, 'name’: 'Peter’, 'address': ‘Lowstreet 27'}
{"_id": 8, 'name’: 'Richard’, ‘address': *Sky st 331"}
{"_id": 6, 'name’: 'Sandy’, ‘address': "Ocean blvd 2}
{"_id": 9, 'name’: 'Susan’, ‘address': 'One way 98'}
{"_id": 10, 'name": "Vicky"’, 'address’: "Yellow Garden 2}
{"_id": 14, 'name": "Viola', ‘address': 'Sideway 1633'}
{"_id": 12, 'name’: "William®, *address’: 'Central st 954’}

Sort Descending
Use the value -1 as the second parameter to sort descending.

sort("name", 1) #ascending
sort("name”, -1) #descending

Example

Sort the result reverse alphabetically by name:

14

Output
{"_id":
{"_id":

{id":
{7id":
{7id":
{id":
{7id";
{id":
{7id";
{id":
{7id";
{id":
{7id";
{id":

import pymongo

myclient = pymongo.MongoClient(*mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mydoc = mycol.find().sort("name", -1)

for x in mydoc:
print(x)

12, 'name’: "William', "address': 'Central st 954'}
14, 'name’: "Viola', ‘address’: ‘Sideway 1633’}
10, 'name’: 'Vicky", ‘address': "Yellow Garden 2'}
9, 'name’: 'Susan’, ‘address': '*One way 98'}

6, 'name’: 'Sandy’, ‘address’: *Ocean blvd 2'}

8, 'name’: 'Richard’, ‘address’: "Sky st 331'}

2, 'name’: 'Peter’, ‘address': "Lowstreet 27"}

5, 'name’: 'Michael’, "address': "Valley 345"}

1, 'name’: 'John’, ‘address': "Highway37'}

4, 'name': 'Hannah', ‘address': ‘Mountain 21'}
13, 'name': 'Chuck’, 'address': ‘"Main Road 989'}
7, 'name’: 'Betty’, ‘address': 'Green Grass 1'}
11, 'name’: 'Ben’, "address": 'Park Lane 38'}

3, 'name’: "Amy", ‘address': 'Apple st 652"}

Python MongoDB Delete Document

To delete one document, we use the delete_one() method.

15

The first parameter of the delete_one() method is a query object defining
which document to delete.

Note: If the query finds more than one document, only the first occurrence is
deleted.

Example
Delete the document with the address "Mountain 21"
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase”]
mycol = mydb["customers™]

myquery = { "address": "Mountain 21" }

mycol.delete_one(myquery)
Delete Many Documents
To delete more than one document, use the delete_many() method.

The first parameter of the delete_many() method is a query object defining
which documents to delete.

Example

Delete all documents were the address starts with the letter S:
16

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase”]
mycol = mydb["customers"]

myquery = { "address": {"$regex": ""S"} }

x = mycol.delete_many(myquery)

print(x.deleted_count, " documents deleted.")
output

2 documents deleted.
Delete All Documents in a Collection

To delete all documents in a collection, pass an empty query object to
the delete_many() method:

Example
Delete all documents in the "customers" collection:
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]
mycol = mydb["customers"]

17

x = mycol.delete_many({})

print(x.deleted_count, " documents deleted.")
Output:
11 documents deleted
Python MongoDB Drop Collection
Delete Collection

You can delete a table, or collection as it is called in MongoDB, by using
the drop() method.

Example
Delete the "customers™ collection:
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]
mycol.drop()

The drop() method returns true if the collection was dropped successfully, and
false if the collection does not exist.
18

Python MongoDB Update

You can update a record, or document as it is called in MongoDB, by using
the update_one() method.

The first parameter of the update_one() method is a query object defining
which document to update.

Note: If the query finds more than one record, only the first occurrence is
updated.

Example
Change the address from "Valley 345" to "Canyon 123"

import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]

mycol = mydb["customers"]

myquery = { "address": "Valley 345" }
newvalues = { "$set": { "address": "Canyon 123" } }

mycol.update_one(myquery, newvalues)

#print "customers" after the update:

19

for x in mycol.find():
print(x)

OUTPUT

{"_id": 1, 'name’': 'John’, ‘address': "Highway37'}

{"_id": 2, 'name’: 'Peter’, 'address': ‘Lowstreet 27"}
{"_id": 3, 'name’: "Amy’, ‘address’: *Apple st 652'}
{"_id": 4, 'name’: 'Hannah’, 'address': ‘"Mountain 21"}
{"_id": 5, 'name’: ‘Michael’, ‘address’: ‘Canyon 123’}
{"_id": 6, 'name’: 'Sandy’, ‘address': "Ocean blvd 2}
{"_id": 7, 'name’: 'Betty", 'address': ‘Green Grass 1'}
{"_id": 8, 'name’: 'Richard’, ‘address': "Sky st 331"}
{"_id": 9, 'name’: 'Susan’, ‘address': 'One way 98'}
{"_id": 10, 'name’: "Vicky", 'address’: "Yellow Garden 2}
{"_id": 11, 'name’: 'Ben’, 'address’: '‘Park Lane 38'}
{"_id": 12, 'name": "William', "address': *Central st 954'}
{"_id": 13, 'name": "Chuck’, 'address’: ‘"Main Road 989'}
{_id": 14, 'name’: "Viola', 'address§'Sideway}]

Update Many

To update all documents that meets the criteria of the query, use
the update_many() method.

Example
Update all documents where the address starts with the letter "S":

import pymongo

20

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

myquery = { "address": { "$regex": ""S" } }
newvalues = { "$set": { "name": "Minnie" } }
x = mycol.update_many(myquery, newvalues)

print(x.modified_count, "documents updated.")

Output
2 documents updated.
Python MongoDB Limit
o limit the result in MongoDB, we use the limit() method.

The limit() method takes one parameter, a number defining how many
documents to return.

Consider you have a "customers" collection:

{"_id": 1, 'name’': 'John’, ‘address': "Highway37'}
{"_id": 2, 'name’: 'Peter’, 'address': ‘Lowstreet 27"}
{"_id": 3, 'name": 'Amy’, 'address’: 'Apple st 652'}
{"_id": 4, 'name": 'Hannah’, 'address': ‘Mountain 21'}
{"_id": 5, 'name": 'Michael’, 'address': 'Valley 345'}
{"_id": 6, 'name": 'Sandy', ‘address': "Ocean blvd 2'}

21

£ id":
{id":
£ id":
{id":
£ id":
{id":
{id":
£7id":

7, 'name': 'Betty’, 'address': 'Green Grass 1'}

8, 'name’: 'Richard’, 'address’: 'Sky st 331'}

9, 'name’: 'Susan’, ‘address’: *One way 98’}

10, 'name’: 'Vicky", ‘address': "Yellow Garden 2'}
11, 'name’: 'Ben’, 'address': 'Park Lane 38'}

12, 'name’: "William', "address': 'Central st 954'}
13, 'name’: 'Chuck’, "address’: "Main Road 989'}
14, 'name': "Viola', 'address': 'Sidewayf}

Example

Limit the result to only return 5 documents:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase”]
mycol = mydb["customers"]

myresult = mycol.find().limit(5)
#print the result:

for x in myresult:
print(x)

OUTPUT

22

{"_id": 1, 'name': 'John’, ‘address': "Highway37'}
{"_id": 2, 'name’: 'Peter’, 'address': 'Lowstreet 27'}

{"_id": 3, 'name’: 'Amy’, ‘address’: 'Apple st 652'}
{"_id": 4, 'name’: 'Hannah’, 'address': ‘"Mountain 21'}
{"_id": 5, 'name’: 'Michael’, 'address': 'Valley 345}

4.2 CURSOR CLASS
To work with MySQL in python, connector sub module of mysgl module.
import mysgl.connector;

to establish connection with MySQL database, we use the connect() method of
mysgl.connector module as:

conn=mysql.connector.connect(host="localhost’,database="university’,user="r

oot’, password="***")
The connect() method returns MySQLConnection class object ‘conn’.

The next step is to create cursor class object by calling the cursor() method on

‘conn’ object as:

cursor=con.cursor()
Cursor object is useful to execute SQL commands on the database.
it is done by execute() method of cursor object.

cursor.execute(sql querry)

23

example: cursor.execute(“select * from emptab”)

The resultant rows retirieved from the table are stored in cursor object. the
result can be fetched using fetchone() or fetchall() methods.

example: row = cursor.fetchone() # get 1 row
row = cursor.fetchall() # get all rows

Finally, the connection with MySQL can be closed by closing the cursor and
connection objects as:

cursor.close()
conn.close()

Program: A python program to retrieve and display all rows from the student
table:

import mysgl.connector;

conn=mysql.connector.connect(host="localhost’,database="university’,user="r

oot’, password="***")
cursor=con.cursor()
cursor.execute(“‘select * from stutab”)
row = cursor.fetchone()

while row is not None:

24

print(row)
row=cursor.fetchone()
cursor.close()

conn.close()

Output:
(1001, ‘Ajay’, 8.5)
(1002, ‘Alan’, 7.5)

(1001, Joe’, 9.00)

4.3 EXCEPTIONS CLASSES

Interacting with a database is an error prone process, so we must always
implement some mechanism to handle errors.

Built in Exceptions

Table 4.1: Types of Exceptions

Exception Description

Warning Used for non-fatal issues. Must subclass

25

StandardError.

Error
Base class for errors. Must subclass
StandardError.

InterfaceError Used for errors in the database module, not the
database itself. Must subclass Error.

DatabaseError Used for errors in the database. Must subclass
Error.

DataError Subclass of DatabaseError that refers to errors in

the data.

Operational Error

Subclass of DatabaseError that refers to errors
such as the loss of a connection to the database.
These errors are generally outside of the control of
the Python scripter.

Exception

Description

IntegrityError

Subclass of DatabaseError for situations that
would damage the relational integrity, such as
uniqueness constraints or foreign keys.

InternalError

Subclass of DatabaseError that refers to errors
internal to the database module, such as a cursor
no longer being active.

ProgrammingError

Subclass of DatabaseError that refers to errors
such as a bad table name and other things that can
safely be blamed on you.

26

4.4 NETWORKING

For a specific purpose if things are connected together, are referred as
a NETWORK. A network can be of many types, like a telephone network,
television network, computer network or even a people network.

Similarly, a COMPUTER NETWORK is also a kind of setup, where it
connects two or more devices to share a range of services and information in
the form of e-mails and messages, databases, documents, web-sites, audios
and videoes, Telephone calls and video conferences etc among them.

A PROTOCOL is nothing but set of defined rules, which has to be followed
by every connected devices across a network to communicate and share
information among them. To facilitates End to End communication, a number
of protocols worked together to form a Protocol Suites or Stacks.

Some basic Protocols are:

e |IP : Internet Protocol

e FTP : File Transfer Protocol

e SMTP : Simple Mail Transfer Protocol

e HTTP : Hyper Text Transfer Protocol
The Network reference models were developed to allow products from
different manufacturers to interoperate on a network. A network reference
model serves as a blueprint, detailing standards for how protocol
communication should occur.

27

The most widely recognized reference models are, the Open Systems
Interconnect (OSI) Model and Department of Defense (DoD, also known
as TCP/IP) model.

Network Types are often categorized by their size and functionality.
According to the size, the network can be commonly categorized
into Three types.

e LANS (Local Area Networks)
e« MANSs (Metropolitan Area Networks)
e« WANSs (Wide Area Networks)

An Internetwork is a general term describing multiple networks connected
together. The Internet is the largest and most well-known internetwork.

Some networks are categorized by their function, as opposed to their size.
For example:

e SAN (Storage Area Network): A SAN provides systems with high-
speed, lossless access to high-capacity storage devices.

e VPN (Virtual Private Network): A VPN allows for information to be
securely sent across a public or unsecure network, such as the Internet.
Common uses of a VPN are to connect branch offices or remote users to
a main office.

28

https://www.geeksforgeeks.org/layers-osi-model/
https://www.geeksforgeeks.org/computer-network-tcpip-model/
https://www.geeksforgeeks.org/computer-network-types-area-networks-lan-man-wan/
https://www.geeksforgeeks.org/computer-networks-internetworking/
https://www.geeksforgeeks.org/storage-area-networks/
https://www.geeksforgeeks.org/virtual-private-network-vpn-introduction/

In a network, any connected device is called as host. A host can serve as
following ways:

e A host can acts as a Client, when he is requesting information.
e A host can acts as a Server, when he provides information.
e A host can also request and provide information, is called Peer.
4.5 SOCKET MODULE
What Are Sockets?

A socket is a link between two applications that can communicate with one
another (either locally on a single machine or remotely between two machines
in separate locations).

Basically, sockets act as a communication link between two entities, i.e. a
server and a client. A server will give out information being requested by a
client. For example, when you visited this page, the browser created a socket
and connected to the server.

The socket Module

In order to create a socket, you use the socket.socket() function, and the
syntax is as simple as:

import socket

s= socket.socket (socket_family, socket_type, protocol=0)

29

Here is the description of the arguments:

o socket_family: Represents the address (and protocol) family. It can be
either AF_UNIX or AF_INET.

e socket type: Represents the socket type, and can be either
SOCK_STREAM or SOCK_DGRAM.

e protocol: This is an optional argument, and it usually defaults to O.

After obtaining your socket object, you can then create a server or client as
desired using the methods available in the socket module.

s.recv() —It receives TCPmessage

s.send() — It transmits TCP message
s.recvfrom() — It receives UDPmessage
s.sendto() — It transmits UDP message
s.close() — It closes socket
socket.gethostname() — It returns thehostname

©c O O O O O

4.6 Create a Simple CLIENT

Before we get started, let's look at the client socket methods available in
Python.

s= socket.socket(socket. AF_INET, socket.sock STREAM)
s.connect()Initiates a TCP server connection.

To create a new socket, you first import the socket method of the socket class.

30

import socket
Next, we'll create a stream (TCP) socket as follows:
stream_socket = socket.socket(socket. AF_INET, socket. SOCK_STREAM)

The AF_INET argument indicates that you're requesting an Internet Protocol
(IP) socket, specifically IPv4. The second argument is the transport protocol
type SOCK_STREAM for TCP sockets. Additionally, you can also create an
IPv6 socket by specifying the socket AF_INETG6 argument.

Specify the server.

server = "localhost"

Specify the port we want to communicate with.

port =80

Connect the socket to the port where the server is listening.
server_address = ((host, port))
stream_socket.connect(server_address)

It's important to note that the host and port must be a tuple.
Send a data request to the server:

message = 'message’

stream_socket.sendall(message)

31

Get the response from the server:

data = sock.recv(10)

print data

To close a connected socket, you use the close method:
stream_socket.close()

Below is the full code for the Client/Server.

import socket

import sys

Create a TCP/IP socket

stream_socket = socket.socket(socket. AF_INET, socket.SOCK_STREAM)
Define host

host = 'localhost’

define the communication port

port = 8080

Connect the socket to the port where the server is listening
server_address = ((host, port))

print "connecting"
32

stream_socket.connect(server_address)
Send data

message = 'message’
stream_socket.sendall(message)

response

data = stream_socket.recv(10)

print data

print 'socket closed'
stream_socket.close()

4.7 BUILD A SIMPLE SERVER

Now let's take a look at a simple Python server. The following are the socket
server methods available in Python.

s = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
s.bind(): Binds address (hostname, port number) to socket.
s.listen(): Sets up and starts TCP listener.

s.accept(): Accepts TCP client connection.

We will follow the following steps:

33

o Create a socket.
e Bind the socket to a port.
o Start accepting connections on the socket.
Here is the server program.
import socket
import sys
Create a TCP/IP socket
sock = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
Define host
host = 'localhost’
define the communication port
port = 8080
Bind the socket to the port
sock.bind((host, port))
Listen for incoming connections
sock.listen(1)

Wait for a connection
34

print ‘waiting for a connection’
connection, client = sock.accept()
print client, 'connected’
Receive the data in small chunks and retransmit it
data = connection.recv(16)
print 'received "%s"™ % data
if data:
connection.sendall(data)
else:
print 'no data from’, client
Close the connection
connection.close()
The server is now ready for incoming connections.

Now run the client and server programs in separate terminal windows, so they
can communicate with each other.

Server Output
$ python server.py

35

waiting for a connection
('127.0.0.1', 47050) connected
received "message"
Client Output
$ python client.py
connecting
message
socket closed

4.8 SENDING EMAIL USING SMTP

Simple Mail Transfer Protocol (SMTP) is a protocol, which handles sending
e-mail and routing e-mail between mail servers.

Python provides smtplib module, which defines an SMTP client session
object that can be used to send mail to any Internet machine with an SMTP
or ESMTP listener daemon.

Here is a simple syntax to create one SMTP object, which can later be used
to send an e-mail —

import smtplib

36

smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])
Here is the detail of the parameters —

e host — This is the host running your SMTP server. You can specify IP
address of the host or a domain name like tutorialspoint.com. This is
optional argument.

e port — If you are providing host argument, then you need to specify a
port, where SMTP server is listening. Usually this port would be 25.

e local_hostname — If your SMTP server is running on your local
machine, then you can specify just localhost as of this option.

An SMTP object has an instance method called sendmail, which is typically

used to do the work of mailing a message. It takes three parameters —
e The sender — A string with the address of the sender.
e The receivers — A list of strings, one for each recipient.

e The message — A message as a string formatted as specified in the
various RFCs.

Example
Here is a simple way to send one e-mail using Python script. Try it once —
import smtplib

sender = from@fromdomain.com'

37

receivers = ['to@todomain.com']

message = """"From: From Person from@fromdomain.com

To: To Person to@todomain.com

Subject: SMTP e-mail test

This is a test e-mail message.

try:
smtpObj = smtplib.SMTP('localhost’)
smtpObj.sendmail(sender, receivers, message)
print "Successfully sent email”

except SMTPEXxception:

Here, you have placed a basic e-mail in message, using a triple quote, taking
care to format the headers correctly. An e-mail requires a From, To,
and Subject header, separated from the body of the e-mail with a blank line.

To send the mail you use smtpObj to connect to the SMTP server on the local
machine and then use the sendmail method along with the message, the from
address, and the destination address as parameters (even though the from and
to addresses are within the e-mail itself, these aren't always used to route
mail).

38

mailto:from@fromdomain.com
mailto:to@todomain.com

If you are not running an SMTP server on your local machine, you can
use smtplib client to communicate with a remote SMTP server. Unless you
are using a webmail service (such as Hotmail or Yahoo! Mail), your e-mail
provider must have provided you with outgoing mail server details that you
can supply them, as follows — smtplib.SMTP('mail.your-domain.com’, 25)

39

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-V - Python Programming — SCS1619

UNIT V

CASE STUDY

Web Programming using Python.

Image Processing—Face Book Analysis—Twitter Analysis

5.1 WEB PROGRAMMING USING PYTHON

Python is one of the most acceptable language for web application
development for its efficiency and readability. There are different frameworks
supported by python. A framework is a bundle of packages and modules that
allows us to create web application very easily without having to handle low
level activities such as thread management, process management and protocol
management. We can build our application very effectively with the help of
frameworks.

Below are the popular web frameworks in python.
1. Django

Django is a popular python web framework and is used for larger
applications. It contains everything needed for web development bundled with
the framework itself. Users no need to handle database administration, routing
and authentication. It works with all important databases like
Oracle,MySQL,PostgreSQL,SQL.ite,etc.

1

Features

1. Ridiculously fast- It is designed to handle the applications from
beginning to end as quickly as possible.

2. Fully loaded — It handles user authentication, context administration,
site maps and many tasks.

3. Security- It helps the developer to avoid common security mistakes
such as SQL injection, cross-site scripting and cross site request
forgery.

4. Scalability- It handle the heaviest traffic demands.

2. Flask

Flask is a micro framework for python and good choice for building
smaller applications and web services. It implements the commonly used core
components of a web application framework such as URL routing, request and
response objects and templates. Database access, form generation and
validation are not built in functions of Flask.

3. Pyramid

Pyramid is the most flexible python framework and is used for mid-high
scale applications. Anyone can start to work with Pyramid without any prior
knowledge about it. It comes with only some important tools which are needed
for developing application. It is a finishing framework with the ability to start
small application and allow us to code a solid foundation for our solution and
to scale up as needed.

2

5.1.1 Developing simple application using Django

Web framework provide tools and libraries to simplify the task of web
development operations. It solve the issues and it will make our worka lot
easier. Django web framework is written on quickly and helps in building the
clean and maintainable web applications.

5.1.2 Django Architecture

It follows a MVC-MVT architecture. MVC stands for Model View
Controller. It is used for developing the web applications. It consists of three
segments like model, view and controller. The following fig 1 shows the MVC
architecture.

e Model : It is used for storing and maintaining our data. It is the backend
where our database is defined.

e Views: views are in html. Whatever user is seeing ,it is defined as view.

e Controller: Controller is business logic that interact with the model and
the view.

View

Controller

Model

Fig. 5.1: MVC Architecture

5.1.3 Django MVT pattern

MVT stands for Model View Template. In MVT, predefined template is used
for user interface. User no need to rewrite the code again by using template.
Django will acts as controller in this part. Template is our front end which will
interact with the view and the model will be used as backend. View will access
both the model and templates and maps it to a URL. Fig 2 describes the MVT

/

Model

pattern.
A
‘ (V)
Django
URL

View

.

Template

Fig. 5.2: MVT Pattern

5.1.4 Django Installation

Step 1: Go to the link: https://www.djangoproject.com/download/. It is

described in fig 3.

4

https://www.djangoproject.com/download/

Step 2: Type the pip command on command prompt which run as a
administrator. Fig 4 shows the installation of Django

Pip install Django ==1.11.4

Step 3: Build our web application, first let’s create a project. Enter in to our
project folder. Execute the following command in the command prompt

Django-admin start project myproject

o (55 \ G pytho \e! Dianc [Dc x @l Instn \ 8 tuid \ * Settic H, Twitte \ Twitte | Down \ ® Socia \y Twitte \ M Inbox \Newrah SF Down \ Thank \ + lel@] % |

C @ htipsy//www.djangoproject.com/download/ o ° H

B Apps b ItjobsinUS|Jobsi. 7] KabviSeham-Seithi., M ear &3 BM:InvitngApplic.. g Download PuTT¥:le.. M sgriculture patent-.. @} Mostrecent papers..

"
d]ango OVERVIEW DOCUMENTATION NEWS COMMUNITY CODE ABOUT vDONATE

Download

How to get Django Support Diango!

Django is available open-source under the BSD license. We recommend using the latest version Anirudcha Adhikary donated o the
of Python 3. The last version to support Python 2.7 is Django 1.11 LTS, See the FAQ for the * Django Software Foundation to support

Django development. Donate today!

Python versions supported by each version of Django. Here's how to get it:

Option 1: Get the latest official version For the impatient:

+ Latest release: Django-2.2.1 ar.gz
Checksums: Django-2.2.1.checksum.txt
Release notes: Online documentation

The latest official version is 2.2.1. Read the 2.2.1 release notes, then install it with pip:

pip install Django==2.2.1

Which version is better?

Option 2: Get the latest development version

We improve Django almost every day and are pretty good

- % @ﬂ \@/\im @”\@/ é \E/\im@”abaulkeeumuthecodestah\e Thus usmmhelateii) Sgsf:o’:g

Fig.5.3: Django Website

Go

G o x el 3 oo | el ! & buld | setin | 06 Twite | B8 Twite | B Down | @ Socal | WP Twitte | M Int ewTsb | S

C @ hitps//wwwgooglecom,

] Kalvi 5

gle python django web devel

Django Tutorials — R
hitps:/irealpython

in wab development in Pyl nane)

. nplesnypr
Simple Django Web)|
hitps://www.codementor.i

n Very pract
y

mpleded .

pip install Django-

application using the Djan;

Build Your First PytH
hitps://scotch.io » Tutoriat

112, 2016 - If not, Pythor
going to be using Django tq

F

What can | do with Python Django? v
How Python is used in Web development? ~
How does Django work with Python? v

Is Diango good for web development?

e o ol ale i [E] =] :

Fig.5.4: Installation of Django

&S)=[1 » Computer » Local Dk (C) » Python2? » -4
T e e - 0 ®
Links = Neme ° Date T s

= ©

mobogenieP2sp

s - s 1/2018 11148 AM
ly Doc g Dac 1/2018 11149 AM
include 1/2018 11148 AM
Lib 19 12:43 PM
libs 1/2018 11149 AM
autoupdate == = T}
Saved Games ypreed] T
C ':C s sample 91910155 AM
’“‘L‘ - Seripts 1912:51 PM
. el 1/2018 11149 AM
omtes Tools 8/31/2016 1149 AM
acal Disk (C:
z) e 63072014 405 PM T KE
inary NEWS 2004 338PM T 0 ke
ConfigMsi 1/2018 1200 PM Text I KE
. numpy-wininst 18 12:00 + Documant
ESD o 6/2019252PM Text Document 0 KE
feature:
fean < python 10/2014 4103 PM KE
= pythonw /2014 404 P Application Ke
i 5
jik1 80152 README 63072004 33T PM T it KE
MsOCache
e =1 Removenumpy 1/2018 1 d LAl
e &7 RemoavePillaw 57267201 pplication 192 ke
erflog: B whxpopen 6/30/2014 402PM Application 19 ke
pluginz
program

Program Filks
ProgramData

Pythan2?

Users .

myproject
File felder

Fig.5.5: Folder Creation in Python Environment

o8 =

@Q-\ » Computer » Local Disk(C) » Python2] » myproject » myproject ~ 3] [search myproject ol
Organize v Includeinlibrary ¥ Sherewith Bum New folder = 0 @
“ Name Type E
2 _init_ AM PythonFile 0KB
A settings AM 4KB
A urls AM Py 1K8
2 wsgi AM PythonFile 1K8

files
jk18.0 152
MS0Cache
Output
PerfLogs

B

plugins
program
Program Files
ProgramData
Python2]
Users

4 items

s S olele B

ws|
1%

ol [m] -]

Fig.5.6: Files in Directory

=

Fig 5 and 6 describes the folder creation and list of files in directory. Our
project is created now. We will see the list of files in directory. Let’s discuss
about the following files.

Manage.py- It is a command line utility
Myproject —It is actual python package in our project.

Init.py-Python package

M w0 nhpoE

Settings.py- It manages all the settings of our project

5. Urls.py-Main controller which maps it to our web site.

6. Wsgi.py- It acts as an entry point for WSGI (Web Server Gateway
Interface) compatible web servers

Step 4: Create our web application and make sure that we are in the same
directory as mangae.py and type the following command

python manage.py startappwebapp

Now webapp is added in our project folder and few elements are added in web
app like view, test and model. It is shown in fig 7.

=
&5)w[) v Computer » LocelDisk (€ » Pythen2] » myproject » ~ |43 || Seareh myersjeet 2|

Organize » J0Open Includeinlibrary Sharewith w Burn New folder - [l @

Links

3
& Local Disk ()
binary
ConfigMsi
€50
features
files
jok1.8.0.152
MSOCeche
Qutput
PerfLags

pluging
program
Program Files
ProgramData
Python27
Users

webapp
File folder

modified: 5/28/2018 231 PM

s culelel@==ll [m[em] -] -

Fig.5.7: Creation of Web App

Step 5: Now open our myproject/settings.py and our webapp manually. The
following fig 8 shows the settings file.

@Q-\ + Computer + Local Disk(C) » Python2? b myproject + myproject

Organize v @ Open » Bum New folder
inks lame ate modified ype ize
2 Link: Al [} ffied T si
bogenicP?:
;“DDQE"‘E =P 2 _init_ 5/28/201910:53 AM Python File 0KB
| it
A MY M”‘“"'E" g B _int_ 5/28/2019231PM Compiled Python . 1K8
usic
MYP 2 settings 5/28/201910:53 AM _ Python File e
= ictures
MYW B settings 5/28/2019231PM Compiled Python| __ OPER
ideos
0 £ 2 uis 5/28/201910:53 AM Python File Edit with IDLE
it te
opera autoupdate B wsgi 5/28/201910:53 AM Python File @ Scan with ByteFence Anti-Malware..
3 Saved Games Show how to open this file
B Searches H Scan selected items for viruses
workspace Open with.
C ite
4 Computer % TeraCopy.
& Local Disk (C:)
= B Addto archive..
binary B Addto "settings.rar”
ConfigMsi B Compressand emil..
£SD B Compressto 'settings.rar’ and email
featy
EAIE Send by Bluetooth to »
files =
jdk1.8.0 152 Restore previous versions
4 MSOCache Sendto »
Output
Perflogs b Cut
plugins Copy
program Create shortcut
Program Files Delete
ProgramData s
Python2?
e A Properties

settings Date modifiec: 5/28/201910:53 AM
A, Pythonfile Size: 314 KB
Date created: 5/28/201910:53 AM

B © o lcle/mlz]

Fig.5.8: Settings File
INSTALLED_APPS =
‘webapp',
‘django.contrib.admin’,
'django.contrib.auth’,

'django.contrib.contenttypes',

'django.contrib.sessions’,
'django.contrib.messages’,
'django.contrib.staticfiles’,

]

Step 6 : Once we have installed our app, now create a view which is shown
fig 9. Open our webapp/views.py and enter the following code.

fromdjango.shortcuts import render
fromdjango.http import HttpResponse
def index(request):

return HttpResponse("<H2>HEY! Welcome to Sathyabama! </H2>")

10

=R =R =)

puter b Local Disk () » PythonZ/ b myproject » webapp =3 | Search webape 5]

Burn New folder o [@

! MsOCache

ut
Copy
Create sh
Delete
Rename
Properties
= - = zaapm | |
EIIEE - ENEIEC) IS

Fig.5.9: View File

Step 7: We have created a view that returns http response and map this view to
a URL. We need to create a “url.py” inside our webapp and enter the following
code.

fromdjango.conf.urls import url

from .import views

urlpatterns = [

url(r~$', views.index, name='index’),

]

Step 8:

11

Point the root URLconf at the webapp.urls module. Open our
myproject/urls.py file and write the following code.

fromdjango.conf.urls import include, url

fromdjango.contrib import admin

urlpatterns = [

url(r'~admin/', include(admin.site.urls)),

url(r*webapp/', include('webapp.urls")),

]

Step 9: Now start the server by type the following command
Python manage.py runserver

After running the server,gotohttp://localhost:8000/webapp/ in our browser and

see the “Hey!nWelcome to sathyabama *“ which we defined in the index view.
5.2 IMAGE PROCESSING

Image processing is a method of converting an image into digital form and
perform the operations like smoothing, sharpening, contrasting and stretching
on image to get an enhanced image and to extract the useful information from
it. It can increase the readability of the image and enhance the quality of the
image. Image processing is a part of computer vision. Computer vision is an
important field in the area of artificial intelligence.

12

http://localhost:8000/webapp/

Python supports lot of libraries for image processing, including

o Open-CV- It is mainly focused on real time computer vision with
variety of applications such as two dimensional and three dimensional
Open-CV is an open source computer vision library for real time image
and video processing. It supports a lot of algorithms related to
computer vision. It supports a variety of languages like C++, Python
and Java. It is available on different platforms including Windows,
Linux, Android and iOS.

o Numpy and Scipy libraries- Numpy is a optimized library for numerical
operations. Open-CV array structures are converted to Numpy arrays.
Both are used for image manipulation and processing.

o Python Imaging Library(PIL) — It is mainly used for performing basic
operations such as resize, rotation and convert between different file
formats.

o Matplotlib- It is an optional choice for displaying frames from images
or videos.

The following Python packages are needed to be downloaded and installed to
their default locations.

o Python-2.7.x
. Numpy
o Matplotlib

13

Steps for installation of packages:

1. Python will be installed in C://Python27/.

2. After installation , open Python IDE and enter import numpy and verify
that Numpy is working fine.

3. Download the latest Open-CV release from the internet and double

click to extract it.

4. Go to opencv/build/python/2.7 folder

5. Copy cv2.pyd to C://Python27/lib/site-packages

6. Open Python IDE and type the following codes in python terminal
>>>import cv2

>>>print cv2._version_
5.2.1 Gray Scale Image

Below are the some of the examples for demonstrating the use of libraries for
image processing. The given program shows the image in gray scale. Import
the all the libraries and read the image using imread function. Fig 10 shows
the image in gray scale.

Code:
import cv2

importnumpy as np

14

frommatplotlib import pyplot as plt

im = cv2.imread('boat.jpg’,cv2.IMREAD_GRAYSCALE)
cv2.imshow(‘image’,im)

cv2.waitKey(0)

cv2.destroyAllWindows()

Output:

Fig.5.10: Gray scale Image
15

5.2.2 Geo metric Transformation of Image
5.2.2.1 Resize Image

Scaling is just resizing of the image. The size of the image can be specified
manually or specify with scaling factor. Resizing an image is changing the
dimensions of it ,be it width alone, height alone or both. The following syntax
specify the resize function.

cv2.resize(src,dsize, Interpolation)
wheresrc specifies source image
dsize specifies destination image

Interpolation represent the different function such as cv.INTER_AREA for
shrinking and cv.INTER_CUBIC for zooming operation.

Fig 11 shows the output of scaling.

Code:

import cv2

img = cv2.imread('boat.jpg’, cv2.IMREAD_UNCHANGED)
print('Original Dimensions : ',img.shape)

scale_percent = 60 # percent of original size

16

width = int(img.shape[1] * scale_percent / 100)

height = int(img.shape[0] * scale_percent / 100)

dim = (width, height)

resize image

resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)

print('Resized Dimensions : ‘,resized.shape)

cv2.imshow("Resized image”, resized)

cv2.waitKey(0)

cv2.destroyAllwWindows()

17

[*Python 27.15 Shell

[=@]=]
File Edit Shell Debug Options Windows Help
Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:22:17) [MSC v.1500 32 bit (Intel)] on win32 4]
Type "copyright", "credits" or "license()" for more information.
>>> RESTART
>>>

<module>
33> Semmmmmmmmmm———————————========= RESTART
>>>
('Original Dimensions : ', (500, 500, 3))
('Resized Dimensions : ', (300, 300, 3))

Ln: 22(Col:0

BR: © 0 sle/@®LJola]l=]alm] - fuil
Fig.5.11: Scaling

5.2.2.2 Translation

Translation is the shifting of object’s location from (x,y) direction tp (tx,ty)
location.

The transformation matrix M is represented as follows:
0 t,
Ly

M=y 7 &

Code:

importnumpy as np
18

import cv2 as cv

img = cv.imread('boat.jpg’,0)

rows,cols = img.shape

M = np.float32([[1,0,100],[0,1,50]])

dst = cv.warpAffine(img,M,(cols,rows))

cv.imshow('img',dst)

cv.waitKey(0)

cv.destroyAllWindows()

wherecv.warpaffine function specifies size of the output image.

Fig 12 and 13 describes the original image and translation result.

19

[“Python 2715 Shell-
File Edit Shell Deb

500 32 bit (Intel)] on win32

>>> RESTART
>>>
>>> RESTART

Fig.5.12: Original Image

(3 Prhon 2715 Sl

S® =
6:22:17) [MSC v.1500 32 bit (Intel)] on wind2
more information.

BF: © als[e]

Fig .5.13: Translation

20

5.2.3 Thresholding

Thresholding is a simplest method of image segmentation. It converts a gray
scale image into a binary image. If a pixel is greater than a threshold value, it
is assigned with one value(White), else it is assigned another value (Black).
The threshold function is described as below:

Cv2.threshold(src, thresh, maxval, type[, dst])

This function is used to get a binary image out of a grayscaleimage for
removing a noise.

1.
2.

w

&

o o

C.
d.

e.

src-Input array. This is the source image.
thresh-threshold value which is used for classifying the pixel.

maxval-Maxval which represents the value to given if pixel is more
than the threshold value.

Type- Thresholding type. Different types are mentioned as below:
cv2.THRESH_BINARY (Threshold Binary)
cv2.THRESH_BINARY _INVY (Threshold Binary Inverted)
cv2.THRESH_TRUNCY (Truncate)

cv2.THRESH_TOZEROY (Threshold to Zero)
cv2.THRESH_TOZERO _INVY (Threshold to Zero Inverted)

The following fig 14 shows the outputs for different threshold functions.

Code:

21

22

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('bloodcells.jpg’,0)

ret,threshl = cv2.threshold(img,127,255,cv2. THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2. THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,127,255,cv2. THRESH_TOZERO)
ret,threshb = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)

titles = ['Original
Image', BINARY','BINARY_INV','TRUNC', TOZERO', TOZERO_INV]

images = [img, threshl, thresh2, thresh3, thresh4, thresh5]

for i in xrange(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray’)
plt.title(titles[i])

plt.xticks([]),plt.yticks([])
plt.show()

L8 “Python 2715 Shell*

o | @] %
File Edit Shell Debug Options Windows Help
Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:22:17) [MSC v.1500 32 bit (Intel)] on win32 4
Type "copyright”, "credits" or "license()" for more information.
¥y RESTART
pord
t41FqueL =N
Original Image BINARY BINARY INV
\00’

W,

TRUNC TOZERO TOZERQ_INV
g

(!

e
ﬁ\ 1/‘}

[5N)

» S

LR e

i BRI ENEEER =y

Fig.5.14: Thresholding

5.2.4 Image Blurring (Image Smoothing)

Image blurring is achieved by removing the outlier pixels in the image. It
removes high frequency content from the image resulting in edges being

23

blurred when the filter is applied. Here the following section describes the
examples of blurring techniques.

5.2.4.1Averaging

It takes the average of all the pixels under kernel area and replaces the
central element with this average. This is achieved by using cv2.blur(). A 3x3

1 1 1
filter is described as below:K = %[1 1 1]
1 1 1
Code:
import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('bloodcells.jpg’)

blur = cv2.blur(img,(5,5))
plt.subplot(121),plt.imshow(img),plt.title("Original’)
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur),plt.title('Blurred")
plt.xticks([]), plt.yticks([])

plt.show()

24

Fig 15 shows the image averaging output.

=E@=
bit (Incell 3 -]
Eeos RESTART
Eeos
& Figel ==
Original

#/ € +a= B
Solele/@uo[8]C]=]i]

Fig.5.15: Image Averaging

5.2.4.2 Median Filtering

Median filter is effectively used for removing salt and pepper noise. It
computes the medial of all pixels under the kernel window and the central
pixel is replaced by the median value. Central element is always replaced by
some pixel value in the image. It reduces the noise effectively. Fig 16 shows
the output of blurred image.

25

26

Code:

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('noise.jpg’)

median = cv2.medianBlur(img,5)
plt.subplot(121),plt.imshow(img),plt.title('Original’)

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(median),plt.title('Blurred’)

plt.xticks([]), plt.yticks([])

plt.show()

Output:

i@ *Python 2715 Shell” o [& =

Original

€2 Ha=

Bl © 0[c]€/B L]0 2][T]mE].]

Fig.5.16: Median Filtering

5.2.5 Canny Edge Detection

It is a popular edge detection algorithm and consists of multiple numbers of
stags such noise reduction, finding intensity gradient of the image, Non-
maximum suppression and hysteresis threshold. In noise reduction, remove
the noise from the image. It allows us to find the gradient of the gray scale
image to find the edge regions in the x axis and y axis directions. After getting

the magnitude and direction, a full scanning is performed to remove

27

unwanted pixels in the edges. In hysteresis thresholding decides which are the
edges are really edges or not by using two threshold values minval and
maxval. Any edges with intensity gradient is more than maxval are consided
as edges and those below minval are considered as non edged and also
discarded. The following fig 17 shows the result of canny edge detection.

Code

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('noise.jpg’,0)

edges = cv2.Canny(img,100,200)
plt.subplot(121),plt.imshow(img,cmap = ‘gray’)
plt.title('Original Image’), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(edges,cmap = ‘gray’)
plt.title('Edge Image’), plt.xticks([]), plt.yticks([])
plt.show()

28

[& "Python 2715 Shell” SEIE
File Edit Shell Debug Options

Python
Type "c
pass
>»> | (%) Figure

2:17) [MSC v.1500 32 bit (Intel)] on win32 |
ormation.

[E=8(E=R 5

Original Image

Edge Image

A€ #a)= B
BE 2 02l B oo 8lo]i=]r] -

Fig.5.17: Canny Edge Detection

5.2.6 Histograms

Histogram is a graph or plot which gives us an overall idea about the intensity
distribution of an image. It is a plot with pixel values(ranging from 0 to 255)
in X axis and corresponding number of pixels the Y axis. Cv2.calcHist()
function is used to find the histogram. It is described as given below:

29

Cv2.calcHist(images,channels,mask;histsize,ranges[,hist[,accumulate]])

1.

2.

30

Images- Source image

Channels-1f the input is grayscale image ,its value is [0]. For color
image, we can pass [0],[1],[2] to calculate histogram of blue,green or
red respectively.

Mask- If we want to find the histogram of particular region of the
image, we have to create a mask image for that one.

Histsize: BIN count is 256 which represent the number of pixels for
every pixel value from 0 to 255.

5. Ranges- Normally it is [0,256]

Fig 18 shows the histogram output with mask.
Code:

import cv2

importnumpy as np

frommatplotlib import pyplot as plt

img = cv2.imread('boat.jpg’,0)

create a mask

mask = np.zeros(img.shape[:2], np.uint8)

mask[100:300, 100:400] = 255

masked_img = cv2.bitwise_and(img,img,mask = mask)
Calculate histogram with mask and without mask

Check third argument for mask

hist_full = cv2.calcHist([img],[0],None,[256],[0,256])
hist_mask = cv2.calcHist([img],[0],mask,[256],[0,256])
plt.subplot(221), plt.imshow(img, 'gray’)
plt.subplot(222), plt.imshow(mask,'gray’)
plt.subplot(223), plt.imshow(masked_img, 'gray’)
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0,256])

plt.show()

<

31

—

w| €[> +lQl=|

& olo]¢ @Ol SICmA]

Fig.5.18: Histograms

5.3 FACE BOOK DATA ANALYSIS

Python is used for extract data from facebook . We need to register as
developer on facebook. Here the steps are listed below.

1. Go to the link developers.facebook.com and create an there.
2. Go to the link developers.facebook.com/tools/explorer.

3. Go to Myapps drop down in the top right corner and select add a new
app. Choose the display name and category and then create APP ID.

4. Again go to the link developers.facebook.com/tools/explorer. We will
see “Graph API Explorer below “Myapps” in the top right corner.
From “Graph API Explorer” drop down, select our App.

5. Select “Get Token”. From this menu select “Get user access Token .
Select permissions from the menu that appears and then select “Get
access Token”

We can download datasets from other Face book pages and get these stats for
each post:

. Number of likes
. Number of shares
. Number of comments

Then we can analyze this data using Excel or Tableau or Python or any
software used for data analysis. Fig 19 shows the login access in facebook
developer account. App creation details are described in fig 20,21 and 22.

32

@l Dins | B Buid

DG Twitte | W Twitte | M manu: | M Status | G facet

o Twite | Howt I3 A x [E] Deve Faceb | 3 Minin | O Basic | | @ Foceb | @ Intern | + l=leml s |
<« C @ https//developersfacebook.com/app:

Apps b Itjobsin US |Jobz i Y] Kalvi Selvam-Seit

M cor € I8MiTnviting Applic.. g Download PuTTVila.. M sgriculture patent -.. @} Most recent papers

facebool Q, Search developers facebook.com

arted
@ Register @ verity () First App About You

Welcome to Facebook for Developers

Lev's get started with your first app

Siva's first app

siva_sangarizk | @yahoo.coin

sechook Platform Policy Facebook Gata Policy

ol Cier | @ Buie | 56 Toite | % Twit | 1 men | M Stete | @ focet | @ Twite | B How |3 some W3 5 % [eve | i Focet | M8 Min |) Besic | @ Focel | @ e | L=l
<« © @ hupsy/developers facebook.com/apps/35347683197494 naric * @
I Apps J@ Itjobs in US |Jebs L.) Kalvi Selvam-Seithi, M ear @ 1EM:Inviting Applic.. g Download PUTTY: la.. I agriculiure pater W Most recent paper
faceboak f p—repr—————— m
B3 sampie - APP ID: 353476831874943 Status: in Development & View Analytics @ veip
1 Bashioara Select a Scenario
& serngs .
Yy Roles > Select one of the following scenarios to get product-specific help content as you build your app. If you already have your project mapped out
A Alrs N and are ready to build, feel free to skip this step.
@ App Review E Example
‘ ! + + Target audiences strategically by automatically creating
Implement Marketing API aiterans aca pesmations e et
Get programmatic access 1o the Facebooks ads platiorm (o autemate , wjanage and optimize ads in real ime with rules-based ads

management

Get Started with the Ads Insights API - Proviges a single, cor

tent Interface 1o retrieve ac
Get programmatic aceess (o Facebooks Ads Insights. statistics

Integrate Facebook Login

@O T

+ Create accounts without having 1o set a password

0
o
o
0

Fig.5.20: Creation of App

33

@l Djanc | @ Bui | 06 Twit | 9 Twit | M manc | M St | G facet | @ Twit | [How | B3 same B1 = x [Do | i Facel | @5 Mini | 0D Badic | @ Facel | @ Inter | + =@l

< c a m/apps/353476831 s * @

Apps S It jobs in US | Jobs i) KalviSelvam-Seithi.. M ear € 1BM:

iviing Applic.. g Download PUTTY.

M agiiciture patent -..) Most recent papers

facebook Q_ Search developers facebook.com m

sample - APP ID: 353476631974943 Status:

n Development |~ View Analytics @ Hep

M Dashboard Application-L

User-Level Rate Limit

£ settings »
Roles »
L] - sample
& Aerts v n App ID: 352476831974943
@ App Review » 0
Users throttled
PRODUCTS (®) 0% of Limit Used View Detalls
. 100% Remaining
AP Stats
Calls Erors Average Request Time

u No gata Is avallable
Br: ¢ o ©

4o
520200 |

Fig.5.21: App Dashboard

v

@1 Djon. | B Bulc | 56 Twite | 9 Twie | M mon | M State | G tacel | @l Twic BN How W Acce W12 x I sam | i Foce | B0 Grop | @B Mini | O Bosic | @ Foce | @ Imer | + l=l@l

€ @ hitpsy//developers.faceback.com/tools/debug/accesstoken/?access_{ How to use Facebook Graph APl and extract data using Pythonl JibtnhhSKrr439AuNGBDEA0K ZAXGSQsCaXTekPYLaZ.. ¥r @

Apps b Itjobsin US |Jobs i) Kalvi Seham-Seithi. 1 ear @O IBM:Inviting Applic.. g Download PuTT¥: la.. I agriculture patent @ Most recent papers.
facebook for developers Products Docs More ¥ My Apps ¥ Q

Access Token Debugger

Sharing Debugger Batch Invalidator Access Token A1 Version: (21| v33 +

Easan3 aosEaTKz OK7ZAXGHQICTXTBIRFYLaT 21D wa wpranzAma m

Access Token Info

App 1D 1166441861293510 - sample

Type User

App-Scoped User 10 2491018400916481 - Siva Sangari
Learn More User last installed this app via API NIA
Issued 1563127465 (about a minute ago)
Expires 1564311465 (in about 2 months)

Data Access Expires 1566903443 (In about 3 montns)
valia True

onigin Unknown

Scopes public_profile

Fig.5.22: Access Token Details

34

The graph API is called social graph. It is a representation of information in
face book. It consists of the following elements.

e Nodes- Individual objects such as user, photo ,page or
comment

e Edges- Connection between a collection of objects and a single
object such as photos or comments on a photo.

e Fields- Data about an object such as birthday or a page’s name.

We can use nodes to get data about a specific object, use edges to get
collections of objects on a single object and fields to get about a single object
or each object in a collection. Graph API is HTTP based and works with any
language.

Google graph API provides us a way by which we can get data from face
book. We can put our data in facebook platform. It is a REST based API and
used to query data, manage our ads on facebook, upload photos, videos and
post our new stories to facebook automatically. We can this API to get our
own Facebook account data. But, we need to get other users data for this we
need to take several permissions from users . We need to implement oAuth
protocol to implement this operation. Anyonecan authenticate and grant our
permissions. Fig 23 and 24 show the face bookgraph APl and node
information.

35

| OB easic | @ Facer | @ waer | + (=l@m|
* @

ecent papers.

Min

B vow (B e B3 G x [Dewe Face

o facet | @l Twin

3 Twitt | @ Twitt | M4 mam | M Stan

developers facebook.com,

) Kalvi Selvam-Seith

facebook

e! Dian: | B suic
@ 18M: Iviting 4

M esr

a |

Graph API Explorer

mefields=id name

. sasem | |
5/29/2019

sie@lLalo
Fig.5.23: Facebook Graph API

B Acce | B Acce

er-. < o

Sl@l ®
* Q@

Box +

Facel | @ Facel | [Page | O 2.Mi | @ Anal |] Acce

S pythe | G how' | G facet | T 6Intc | @ ()Le |) tow | @ Senti | B How |
<« c a ebook.com/ /method=GET& 3 Ffields%3Did%2Cname. 33
Apps b Ttjobsin US| Jobsi.. 7] KalviSelvam-Seithi.. M ear &3 BM:Inviting Applic.. @ Download PuTTV:la.. M agriculture patent -.. @ Most recent papers...
facebook for developers Docs T Support DBl C. Search developers.facebook.com
ﬂ A beta version of the new Graph Explorer is available. Try it out now! l
171 | sample ~
= Get Token v

FaJZAYZBIQ8HCZZAY Ew54YECIAC2TACDWITBAZ

Graph API Explorer
1ZASDI

O EAAQa:

Acosss Token:

GET - — /v3.3 - /me7field:

Node: me ¢
50" “2081018000915081",
“ia name”: "siva sangari”
3
) name
Search for a field

l<alt=]lgle]][*]

ol
Fig.5.24: Node Information

er: © o ol€e]

36

37

Code
importjson

importfacebook

def main():

token =
"{EAAQa3kWzdcYBAKdzunCHWEIiXLKLVLSb5Ind80hs5Jh6zBef
MCgOPPJdYg4mTvkpgl15y1th6 XpRSO5pxInijQSCZAHShENSP06X
tFAWZAADOCPFQq988ZBdZAZAG8NnX0ODrTZAvVIZBcfsY skP3JXsg7
GN973Q39XwWhKORIMxxXR5kZA5GYN3ZCyNM3uL3waUh3dm91H
ruwWM63ZAtYQzZDzZD}"

graph = facebook.GraphAPI(token)

page_name = raw_input("Enter a page name: ")

list of required fields
fields = ['id",'name’,"about’,'likes’]

fields =',".join(fields)

page = graph.get_object(page_name, fields=fields)

print(json.dumps(page,indent=4))

if _name__ =='_ main__"
main()
Output:
Enter page name
Smith
Name: Smith
Id: 13456234578
Likes: 23
5.4 TWITTER ANALYSIS

Sentiment analysis is the process of determining whether a piece of
writing is positive, negative or neutral. In business field, companies use it to
develop their strategies, understand the customer’s feelings related to
particular product ,product launches and reasons for not buying the particular

38

products. In political field , it is used to detect the consistency and
inconsistency statements.

Installation:

Before we start coding, we need to register for the Twitter API
https://apps.twitter.com/. Here we need to register an app to generate various
keys associated with our API. The following keys are used for authentication

e API key
e API secret Key
e Access Token

e Access Token Secret
After creating the app we need to install the following commands.

Tweepy: Python client for the official Twitter API.Install it using following
pip command.

Pip installtweepy
Textblob: Python library for processing textual data.

Pip installtextblob

Code:

39

https://apps.twitter.com/

import re
importtweepy
fromtweepy import OAuthHandler

fromtextblob import TextBlob

classTwitterClient(object):

Generic Twitter Class for sentiment analysis.

def __init__(self):

Class constructor or initialization method.
keys and tokens from the Twitter Dev Console
consumer_key = XXX XX XXX XXX XXX XXX X XXX XXX

consumer_secret = "XXXXX XXX XXX XX XXX XX XAXXX XXX XXX

40

access_token = XXXXXX XXX XX XXX XXX XX XXX XXX XXX

access_token_secret = XXXXXXX XXX XXX XXX XXX XXX XX X!

attempt authentication
try:
create OAuthHandler object
self.auth = OAuthHandler(consumer_key, consumer_secret)
set access token and secret
self.auth.set_access_token(access_token, access_token_secret)
create tweepy API object to fetch tweets
self.api = tweepy.API(self.auth)
except:

print("Error: Authentication Failed™)

defclean_tweet(self, tweet):

41

Utility function to clean tweet text by removing links, special characters
using simple regex statements.
return ' ".join(re.sub("(@[A-Za-z0-9]+)|(]*0-9A-Za-z \t])

|(Ww+AASH", " ", tweet).split())

defget_tweet_sentiment(self, tweet):

Utility function to classify sentiment of passed tweet
usingtextblob's sentiment method

create TextBlob object of passed tweet text
analysis = TextBlob(self.clean_tweet(tweet))

set sentiment
ifanalysis.sentiment.polarity> O:

return 'positive’

42

elifanalysis.sentiment.polarity == O:
return 'neutral’
else:

return 'negative’

defget_tweets(self, query, count = 10):

Main function to fetch tweets and parse them.
empty list to store parsed tweets

tweets =[]

try:
call twitter api to fetch tweets
fetched_tweets = self.api.search(q = query, count = count)

parsing tweets one by one

43

for tweet in fetched_tweets:
empty dictionary to store required params of a tweet

parsed_tweet = {}

saving text of tweet
parsed_tweet['text’] = tweet.text
saving sentiment of tweet

parsed_tweet['sentiment] = self.get_tweet_sentiment(tweet.text)

appending parsed tweet to tweets list
iftweet.retweet_count> 0:
if tweet has retweets, ensure that it is appended only once
ifparsed_tweet not in tweets:
tweets.append(parsed_tweet)
else:

tweets.append(parsed_tweet)

44

return parsed tweets

return tweets

excepttweepy. TweepError as e:
print error (if any)

print("Error : " + str(e))

def main():

creating object of TwitterClient Class
api = TwitterClient()

calling function to get tweets

tweets = api.get_tweets(query = 'Donald Trump', count = 200)

picking positive tweets from tweets

ptweets = [tweet for tweet in tweets if tweet['sentiment] == 'positive’]

45

percentage of positive tweets

print("Positive tweets percentage: {}
%".format(100*len(ptweets)/len(tweets)))

picking negative tweets from tweets
ntweets = [tweet for tweet in tweets if tweet['sentiment’] == 'negative']
percentage of negative tweets

print("Negative tweets percentage: {}
%".format(100*len(ntweets)/len(tweets)))

percentage of neutral tweets
print("Neutral tweets percentage: {} %\

" format(100*len(tweets - ntweets - ptweets)/len(tweets)))

printing first 5 positive tweets
print("\n\nPositive tweets:")
for tweet in ptweets[:10]:

print(tweet['text])

46

printing first 5 negative tweets
print("\n\nNegative tweets:")
for tweet in ntweets[:10]:
print(tweet['text’])
if _name__ =="_main__ "
calling main function

main()

Output:
Positive tweet percentage: 22%

Negative tweet percentage: 16%

47

QUESTIONS

48

N o o B~ wDdh P

8.
9.

List out the frame works of python in web programming.
Mention the libraries for image processing.

Explain different types of threshold function types?
Illustrate about canny edge detection algorithm?

How do you find the intensity distribution of the image?
Describe about the parameters of histogram function?

Evaluate the procedure for getting access token in Face Book data
analysis?

[llustrate the implementation of Django web framework?

Elaborate about the method for removing noise from the image?

10. Assess the methods used in geo metric transformation of the image?

11. Analyze the steps involved in face book data analysis?

12. Elaborate about twitter data analysis?

