
1

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – I-Rich Internet Applications – SCS1401

2

I. Rich Internet Application Overview

Introduction to Web2.0 - Key characteristics of Rich Internet Application - Current Rich

Internet Application platforms - Rich Internet Application benefits - Rich Internet

Application patterns and best practices - Rich Internet Application architecture - Restful

Web Services with Nodes.

Introduction to Web 2.0

Web 1.0

• Web 1.0 refers to the first stage in the World Wide Web

• Entirely made up of web pages connected by hyperlinks.

• A set of static websites that were not yet providing interactive content.

• Used as “Information portal”.

Examples: Amazon,Yahoo, Personal web pages

 Web 2.0

• Web 2.0 is the term used to describe a variety of web sites and applications that

allow anyone to create and share online information or material they have created.

• It allows people to create, share, collaborate & communicate.

• Allows everyone to produce their content.

• Gives the users the possibility to control their data.

• Web 2.0 allows groups of people to work on a document or spreadsheet

simultaneously.

• In the background a computer keeps track of who made what changes where and

when.

• Web-based applications can be accessed from anywhere.

• Web 2.0 Examples

• Web applications (Google Docs, Flickr)

• Video sharing sites (YouTube)

• Wikis (Media Wiki)

• Blogs (WordPress)

• Social networking (Facebook)

• Microblogging (Twitter)

• Hosted services (Google Maps)

3

Web 3.0

• It refers to the evolution of web utilization and interaction which includes altering the

Web into a database.

• It enables the upgradation of back-end of the web, after a long time of focus on the

front-end

• Data isn’t owned but instead shared, where services show different views for the same

web / the same data.

• The Semantic Web (3.0) promises to establish “the world’s information” in more

reasonable way than Google can ever attain with their existing engine schema.

• The Semantic Web necessitates the use of a declarative ontological language like

OWL to produce domain-specific ontologies that machines can use to reason about

information and make new conclusions.

• Examples: Online Coupons, Voice Search, FB app

 Difference between Web 1.0, Web 2.0 and Web 3.0

The difference between web 1.0,2.0,3.0 are discussed in the figure 1.1.

 Figure 1.1 Difference between Web 1.0,Web 2.0,Web 3.0

What is RIA?

• Rich Internet Applications (RIAs) are web applications that have the features

and functionality of traditional desktop applications.

4

• RIAs typically provide a “no-refresh” look to the user interface.

• RIA provides HDuX – High Definition User eXperience.

Limitations of HTML based Web Applications

• Process Complexity – Multi step tasks are time consuming and frustrating.

• Data Complexity – HTML based web applications don’t facilitate the

manipulation and visualization of complex data.

• Feedback Complexity – Server based processing limits the scope of an

interactive user experience.

What is special in RIA?

• RIA works in Web.

• RIA appears – never refreshes.

• RIA reduces network traffic.

• RIA is rich.

• RIA makes it easy.

History of RIA

• The term "rich Internet application" was introduced in a white paper in March 2002

by Macromedia (now merged into Adobe).

• The concept had existed earlier under names such as:

➢ Remote Scripting, by Microsoft, circa 1999

➢ X Internet, by Forrester Research in October 2000

➢ Rich (Web) clients

➢ Rich Web application

5

Differences between a Desktop, Traditional Web Application and RIA

 The below figure 1.2 describes the difference between Desktop, Traditional Web

Applications and Rich Internet Applications.

 Figure 1.2 Difference between Desktop, Traditional Web, RIA

RIA Tools

• Adobe Flex → a highly productive, open source application framework for

building and maintaining expressive web applications that deploy consistently

on all major browsers, desktops and devices.

• OpenLaszlo → a open source platform for the development and delivery

of Rich Internet Applications, consists of the LZX programming language and

the OpenLaszlo Server.

• Microsoft Silverlight → a powerful development tool for creating engaging,

interactive user experiences for Web and mobile applications.

• JavaFX → a software platform for creating and delivering desktop

applications, as well as Rich Internet Applications (RIAs) that can run across

a wide variety of devices.

• The logos of RIA tools are shown in figure 1.3.

6

Figure 1.3 RIA Tools

Platforms of RIA

• Adobe Flash

• Java

• Microsoft Silverlight

• AJAX

Adobe Flash

• Manipulates vector and raster graphics to provide animation of text, drawings, and

still images.

• Supports bidirectional streaming of audio and video.

• It can capture user input via mouse, keyboard, microphone, and camera.

• Flash contains an object-oriented language called ActionScript and supports

automation via the JavaScript Flash language (JSFL).

• Flash content may be displayed on various computer systems and devices, using

Adobe Flash Player, some mobile phones and a few other electronic devices (using

Flash Lite).

Java

• Java applets are used to create interactive visualization.

• To present video, three dimensional objects and other media.

7

• Java applets are more appropriate for complex visualizations that require significant

programming effort in high level language or communications between applet and

originating server.

• JavaFX is considered as another competitor for Rich Internet Applications.

Microsoft Silverlight

• It has emerged as a potential competitor to Flash.

• To provide video streaming for many high profile events, including the 2008 Summer

Olympics in Beijing, the 2010 Winter Olympics in Vancouver, and the 2008

conventions for both major political parties in the United States.

• Silverlight is also used by Netflix for its instant video streaming service.

Characteristics of RIA

• Rich user experience

• Interactive- An RIA can use a wider range of controls that allow greater efficiency

and enhance the user experience.

– Users can interact directly with page elements through editing or drag-and-

drop tools.

– They can also do things like pan across a map or other image.

• Responsive

• Low maintenance

• Is plastic (changing, transforming)

• Breaks walled gardens

• Partial-page updating: RIAs incorporate additional technologies, such as real-time

streaming, high-performance client-side virtual machines, and local caching

mechanisms that reduce latency (wait times) and increase responsiveness.

• Better feedback: Because of their ability to change parts of pages without reloading,

RIAs can provide the user with fast and accurate feedback, real-time confirmation of

actions and choices, and informative and detailed error messages.

• Consistency of look and feel: With RIA tools, the user interface and experience with

different browsers and operating systems can be more carefully controlled and made

consistent.

• Offline use: When connectivity is unavailable, it might still be possible to use an RIA

if the app is designed to retain its state locally on the client machine.

• Caching

• RIA client has the ability of keeping the server information during a period of time

improving application performance and UI responsiveness.

8

• Security

• RIAs should be as secure as any other web application, and the framework should be

well equipped to enforce limitations appropriately when the user lacks the required

privileges, especially when running within a constrained environment such as a

sandbox.

• Advanced Communication

• Sophisticated communications with supporting servers through optimized network

protocols can considerably enhance the user experience.

• Rapid Development

An RIA Framework should facilitate rapid development of a rich user experience

through its easy-to-use interfaces in ways that help developers.

• Improved Features

RIA allow programmers to embed various functionalities in graphics-based web pages

that look fascinating and engaging like desktop applications.

RIA provide complex application screens on which various mixed media, including

different fonts, vector graphic and bitmap files online conferencing etc. are paused by

using different modern development tools.

Advantages of RIA

• Remotely accessed application – The basic principle of RIA is the ability to have

any new user connect and run the application from any location as long as they are

connected to the network.

• Full interactive experience – Unlike Web applications that provide page-by-page

interaction and feedback, RIA provides a full interactive end-user experience.

• Integrated Form Editor

• A Comprehensive Solution – A comprehensive end-to-end solution facilitating full

interactive distributed clients and a centralized managed server.

• A Single Unified IDE & Paradigm – The RIA is supported by a single and unified

IDE and development paradigm for defining server-side and client-side logic along

with the user interface design.

• Automatic Logic Partitioning – The RIA deployment modules facilitate optimized

automatic logic partitioning between client and server.

• Performance-Aware Development – The Rich Client Studio is a performance-aware

platform for developing response-optimized applications.

• Native Look & Feel – It provides an automatic reflection of the native look and feel

of the selected client machine.

9

• Browser free solution – RIA is independent of browser vendors and browser

versions.

• Local Resources Activation – RIA supports various activities that can be executed

on the client side. For example:

• OS command

• File manipulation

• OS environment manipulation

• More Responsive: The agile response from applications keeps the user engaged

while improving user productivity.

• Interactive User Interface:

• RIAs have more interactive UI as they can be used to provide information in

more appealing way in lesser time as compared to conventional internet

applications.

• This fast interactivity with the application improves user satisfaction quite

significantly.

• Less Internet Traffic and Faster Processing:

• Rich internet application does not refresh entire page and that leads to

less traffic and faster processing.

• Simplifying Online Transactions:

• RIAs eliminate the multi-page for multi-step transactions by presenting all

pertinent information to users without leaving the initial environment.

• This improves customer satisfaction and customer loyalty as they view the

service provider as someone who understands their needs.

• Easier Mobile Access to Information

A number of manufacturing systems can potentially benefit from mobile access.

By using RIAs, plant managers and supervisors can access mission-critical

information without being anchored to a static workstation.

Mobile devices can help management more quickly identify and resolve problems on

the shop floor, locate inventory and update information, in real-time and on-location.

• Better Data Visualization

Manufacturers who have implemented RIAs find users suggesting new and useful

ways of visualizing data all the time.

➢ Data visualization improves decision making and can reduce product costs and direct

material spent by identifying bottlenecks, anticipating shortages and improving lean

manufacturing procedures.

10

• Batch and Item Level Tracking

➢ Tracking of inventory, supplies, spare parts, and even labor resources using RFID

enhances business efficiency.

➢ Use of RFID and custom applications to support batch and item level tracking in

manufacturing processes can improve productivity for activities.

• Integration Across Multiple Systems

➢ RIAs can pull data from multiple data warehouses and systems, and present

information on a single screen or reduced number of screens with visualization

capabilities, as well as to drill-down to necessary detail.

Business Benefits of RIA

• Enables more transactions

• Retains customers

• Low operational cost

• Improves performance

Application Benefits:

• Add value to your applications

• Meet your customer expectations

• Simplify & speed up processes

• Get regular and dedicated visitors

• Save costs on Bandwidth

• Increase your productivity

First Generation Web Applications

• First generation web applications were page oriented.

• All GUI logic and application logic inside the same web page shown in Figure 1.4.

Figure 1.4 First Generation of Web Applications

Browser

Web Server

GUI Logic +Application

Logic

11

• Every action the application allowed was typically embedded in its own web page

script.

• Each script was like a separate transaction which executed the application logic, and

generated the GUI to be sent back to the browser after the application logic was

executed.

• First generation web page technologies include Servlets (Java), JSP (JavaServer

Pages), ASP, PHP and CGI scripts in Perl etc.

Second Generation Web Applications

• In second generation web applications developers found ways to separate the GUI

logic from the application logic on the server shown in Figure 1.5.

• Web page scripts were used for the GUI logic

• Real classes and objects were used for the application logic

• Frameworks were developed to help make second generation web applications easier

to develop.

• Examples of such frameworks are ASP.NET (.NET), Struts + Struts 2 (Java), Spring

MVC (Java), JSF (JavaServer Faces), Wicket (Java) Tapestry (Java) and many others.

• GUI logic was written in the same language as the application logic, changing the

programming language meant rewriting the whole application again.

Figure 1.5 Second Generation Web Applications

RIA Web Applications

• RIA (Rich Internet Applications) web applications are the third generation of web

applications.

12

• RIA technologies are typically executed in the browser using either JavaScript, Flash,

JavaFX or Silverlight

• The GUI logic is now moved from the web server to the browser.

• GUI logic is executed in the browser, the CPU time needed to generate the GUI is

lifted off the server, freeing up more CPU cycles for executing application logic.

• GUI state can be kept in the browser, thus further cleaning up the server side of RIA

web applications.

• GUI logic is completely separated from the application logic is shown in Figure 1.6,

it becomes easier to develop reusable GUI components

• No matter what server-side programming language is used for the application logic.

 Figure 1.6 RIA Web Applications

13

Architecture of RIA

Figure 1.7 Architecture of RIA

A typical Rich Internet Application is decomposed into three layers is shown in Figure

1.7.

• Presentation layer - contains UI and presentation logic components

• Business layer - contains business logic, business workflow and business entities

components

• Data layer – Contains data access and service agent components.

• It is common in RIAs to move some of business processing and even the data access

code to the client.

• The client may in fact contain some or all of the functionality of the business and data

layers, depending on the application scenario.

UI components

• Users can interact with the application

• Format data and render data to users

• Acquire and validate data

Application facade

• To combine multiple business operations into single message-based operation

• The facade can be accessed from the presentation layer using a range of

communication technologies.

Data access logic components

14

• Abstract the logic needed to access the underlying data stores.

• This centralizes data access functionality, makes it easier to configure and maintain.

Data helpers/utilities

• For centralizing generic data access functionality (managing db connection and

caching data).

• Data source specific helper components can be designed to abstract the complexity of

accessing the db.

• Service Agents – Basic mapping between the format of the data exposed by the service

and the format your application needs.

• Business components – implement the business logic of the application. Implement

business rules and perform business tasks.

• Business workflows – Define and coordinate long running, multistep business

processes. They can be implemented using business process management tools.

• Design considerations

• Choose an appropriate technology based on application requirements.(eg . Windows

Forms, OBA, WPF)

• Separate presentation logic from interface implementation

 - Eases maintenance

 - Promotes reusability

 - Improves testability

• Identify the presentation tasks and presentation flows

 - Helps to design each screen and each step-in multi-screen or wizard

 Processes.

• Design to provide a suitable and usable interface

 - Features like layout, navigation, choice of controls to maximize

 accessibility and usability.

• Extract business rules and other tasks not related to the interface.

• Reuse common presentation logic – (Libraries that contain templates, generalized

client-side validation functions and helper classes)

• Loose couple your client from any remote services it uses.

 - Use a message-based interface to communicate with services located on separate

 physical tiers.

15

• Avoid tight coupling to objects in other layers – Use the abstract base classes or

messaging when communicating with other layers of the application.

• Reduce round trips when accessing remote layers – Use coarse grained methods and

execute them asynchronously to avoid blocking or freezing the UI.

General design considerations

1.Choose a RIA based on audience, rich interface, and ease of deployment

• Consider designing a RIA when your vital audience is using a browser that supports

RIAs.

• If part of your vital audience is on a non-RIA supported browser, consider whether

limiting browser choice to a supported version is a possibility.

• If you cannot influence the browser choice, consider if the loss of audience is

significant enough to require choice of an alternative type of application, such as a

Web application using AJAX.

• With a RIA, the ease of deployment and maintenance is similar to that of a Web

application, assuming that your clients have a reliable network connection.

• RIA implementations are well suited to Web-based scenarios where you need

visualization beyond that provided by basic HTML.

• They are likely to have more consistent behavior and require less testing across the

range of supported browsers when compared to Web applications that utilize

advanced functions and code customizations.

• RIA implementations are also perfect for streaming-media applications.

• They are less suited to extremely complex multipage UIs.

2.Design to use a Web infrastructure utilizing services.

• RIA implementations require an infrastructure similar to Web applications.

• Typically, a RIA will perform processing on the client, but also communicate with

other networked services.

• For example, to persist data in a database.

3.Design to take advantage of client processing power.

RIAs run on the client computer and can take advantage of all the processing power

available there.

Consider moving as much functionality as possible onto the client to improve user

experience.

• Sensitive business rules should still be executed on the server, because the client logic

can be circumvented.

4.Design for execution within the browser sandbox

16

– RIA implementations have higher security by default and therefore may not

have access to all resources on a machine, such as cameras and hardware video

acceleration.

– Access to the local file system is limited.

– Local storage is available, but there is a maximum limit.

5. Determine the complexity of your UI requirements.

– Consider the complexity of your UI. RIA implementations work best when

using a single screen for all operations.

– They can be extended to multiple screens, but this requires extra code and

screen flow consideration.

– Users should be able to easily navigate or pause, and return to the appropriate

point in a screen flow, without restarting the whole process.

– For multi-page UIs, use deep linking methods. Also, manipulate the Uniform

Resource Locator (URL), the history list, and the browser's back and forward

buttons to avoid confusion as users navigate between screens.

6. Use scenarios to increase application performance or responsiveness.

▪ List and examine the common application scenarios to decide how to

divide and load components of your application, as well as how to

cache data or move business logic to the client.

▪ To reduce the download and startup time for the application, segregate

functionality into separate downloadable components.

7. Design for scenarios where the plug-in is not installed.

• Because RIA implementations require a browser plug-in, you should

design for non-interruptive plug-in installation.

• Consider whether your clients have access to, have permission to, and

will want to install the plug-in.

• Consider what control you have over the installation process.

8. Plan for the scenario where users cannot install the plug-in by displaying an

informative error message, or by providing an alternative Web UI.

RIA patterns

• The interaction is the trigger of the RIA pattern.

• Every pattern starts with a user event or a system event, e.g. mouseover, on focus,

keyboard stroke or time event.

• A variety of operations can be triggered by the interaction, such as validate, search

and refresh.

• Finally, the result of the operation implies an update of the user interface.

17

RIA pattern – Autocompletion

• User has to deal with a lot of forms and input fields.

• There are forms for analysis parameter, search masks or user registration.

• Unnecessary work would be burdened to the user if he had to fill in every input field.

• Therefore the application should fill in redundant input fields automatically.

• All data captured by application logics could only be suggestions in order to allow a

better usability.

• The user is still the last instance for checking the correctness of the suggested data.

• Therefore he should be able to overwrite every auto-completed input field.

• Problem - How could the user of a RIA get an immediate suggestion for values in an

input field, after he has entered some initial data or has filled in other related fields?

• Motivation - Assistance by filling in input fields and forms.

(1) People make mistakes when they type.

(2) Typing in data is a tedious work.

(3) Typing speed remains a bottleneck; faster user input is aimed by reducing the number

of keystrokes.

(4) Solution - Suggest words or phrases that are likely to complete what the user is typing.

(5) As soon as the user moves to another input element or even as soon as the user inputs

a character, the RIA in the background will try to query databases and find relations

to already entered data.

(6) If such data could be found and the user has not yet completed it himself, a completed

value for the input field is suggested to user.

RIA patterns – autosave

Use When

• composing email messages

• composing web documents (spreadsheet, text)

Possible Pitfalls

• if save takes a while can be disruptive to typing

• can cause interface change (as in gmail) leading to unexpected behavior

Best Practice

• make auto-save as transparent as possible

• email, make it default behavior

18

• documents, allow it to be turned on

• catch navigation away from page and offer to save

RIA pattern- Busy indicator

Use When

• Need to show that system is processing

• want to show indication in context

Possible Pitfalls

• can be distracting if not necessary

Best Practices

• Place the busy indication as close to the user input as possible

• Use small animated indicator beside input or inside input field

•Place the busy indication at the place where the results will appear

• Don’t use too many indicators as it will make for a noisy interface

• Avoid using indicator if delay is really short

RIA pattern – Item selection

pattern. item selection.

Use When

• within a paging context

• need a simple way to provide discontiguous selection

Potential Pitfalls

• confusion between checkbox and clicking in row

• mixing with drag and drop

• handling actions on no selection

Best Practices

• use only within context of paging; not for scrolled content

• combine with a row of buttons or toolbar that operates on the selected items

• use light shading to re-enforce selected state

• avoid using with drag and drop

RIA pattern – live search

Use When

19

• user needs to search for content and are uncertain on the correct keywords.

Potential Pitfalls

• if results are returned too quick, will be distracting

• if results are not returned quick enough, it will feel sluggish

Best Practices

• start returning results when the user “slows down” typing

• show results below text entry field for feedback

RIA pattern – Refining search

Use When

• user needs to refine a search

• for merchandise search

Potential Pitfalls

• sluggish performance

Best Practices

• place refining criteria to left of results

• use checkboxes for toggling filters

• use sliders for value ranges

• generally avoid sliders for single values (can combine slider & input)

• provide a “show all” to undo refinement

• try to keep criteria above the fold

RESTful Web Services with Nodejs

• REST defines a set of architectural principles by which you can design Web services

that focus on a system's resources, including how resource states are addressed and

transferred over HTTP by a wide range of clients written in different languages.

• Implementation of a REST Web service follows four basic design principles:

• Use HTTP methods explicitly.

• Be stateless.

• Expose directory structure-like URIs.

• Transfer XML, JavaScript Object Notation (JSON), or both.

Use HTTP methods explicitly

20

• This REST design principle establishes a one-to-one mapping between create, read,

update, and delete (CRUD) operations and HTTP methods.

• To create a resource on the server, use POST.

• To retrieve a resource, use GET.

• To change the state of a resource or to update it, use PUT.

• To remove or delete a resource, use DELETE.

• A stateful service keeps track of where the application leaves off while navigating

the set. In this stateful design, the service increments and stores a previous Page

variable somewhere to be able to respond to requests for next.

• In a Java Platform, Enterprise Edition (Java EE) environment stateful services require

a lot of up-front consideration to efficiently store and enable the synchronization of

session data across a cluster of Java EE containers

• Stateless server-side components, on the other hand, are less complicated to design,

write, and distribute across load-balanced servers.

• A stateless service not only performs better, it shifts most of the responsibility of

maintaining state to the client application.

Expose directory structure-like URIs

• This type of URI is hierarchical, rooted at a single path, and branching from it are sub

paths that expose the service's main areas.

• A URI is not merely a slash-delimited string, but rather a tree with subordinate and

superordinate branches connected at nodes.

• For example, in a discussion threading service that gathers topics ranging from Java

to paper, you might define a structured set of URIs like this:

• http://www.myservice.org/discussion/topics/{topic}

• The root, /discussion, has a /topics node beneath it. Underneath that there are a series

of topic names, such as gossip, technology, and so on, each of which points to a

discussion thread. Within this structure, it's easy to pull up discussion threads just by

typing something after /topics/.

Transfer XML, JSON, or both

• The objects in your data model are usually related in some way, and the relationships

between data model objects (resources) should be reflected in the way they are

represented for transfer to a client application.

• In the discussion threading service, an example of connected resource representations

might include a root discussion topic and its attributes, and embed links to the

responses given to that topic.

• XML representation of a thread

21

<?xml version="1.0"?>

<discussion date="{date}" topic="{topic}">

 <comment>{comment}</comment>

 <replies>

 <reply from="joe@mail.com" href="/discussion/topics/{topic}/joe"/>

 <reply from="bob@mail.com" href="/discussion/topics/{topic}/bob"/>

 </replies>

</discussion>

• To give client applications the ability to request a specific content type that's best

suited for them, construct your service so that it makes use of the built-in HTTP

Accept header, where the value of the header is a MIME type.

• Common MIME types used by RESTful services

MIME-Type

Content-Type

• JSON

application/json

• XML

application/xml

• XHTML

application/xhtml+xml

• Node.js is a software system designed for writing highly-scalable internet

applications, notably web servers.

• A complete implementation of hello world as an HTTP Server in Node.js:

var http = require('http');

http.createServer(function (request, response) {

response.writeHead(200, {'Content-Type': 'text/plain'});

response.end('Hello World\n');

}).listen(8000);

console.log('Server running at http://localhost:8000/');

References

1.Shreeraj Shah, “ Web 2.0 Security: Defending Ajax, RIA, and SOA ”, Course Technology

PTR , 2007.

2. Krishna Sankar , Susan A. Bouchard, “ Enterprise Web 2.0 Fundamentals ”, Cisco Press

, 2010.

22

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – II-Rich Internet Applications – SCS1401

23

II. Introduction

Functions - Objects and Classes - Javascript in Web Browsers - Getting started with

Ext JS - Creating your first Ext JS Application - MVC Basics.

Introduction

 Ext JS stands for Extended JavaScript. It is a JavaScript framework and a product

of Sencha, based on YUI (Yahoo User Interface). It is basically a desktop application

development platform with modern UI. Ext JS is a popular JavaScript framework which

provides rich UI for building web applications with cross-browser functionality. Ext JS is

basically used for creating desktop applications. It supports all the modern browsers such as

IE6+, FF, Chrome, Safari 6+, Opera 12+, etc. Whereas another product of Sencha, Sencha

Touch is used for mobile applications.

 Ext JS is based on MVC/MVVM architecture. The latest version of Ext JS 6 is a

single platform, which can be used for both desktop and mobile application without having

different code for different platform.

 MVC − Model View Controller architecture (version 4)

 MVVM − Model View Viewmodel (version 5)

History

Ext JS 1.1

• The first version of Ext JS was developed by Jack Slocum in 2006.

• It was a set of utility classes, which is an extension of YUI.

• He named the library as YUI-ext.

Ext JS 2.0

• Ext JS version 2.0 was released in 2007.

• This version doesn’t have backward compatibility with previous version of Ext JS.

Ext JS 3.0

• Ext JS version 3.0 was released in 2009.

• This version added new features as chart and list view.

• It had backward compatibility with version 2.0.

Ext JS 4.0

24

• Ext JS version 4.0 was released in 2011.

• It had the complete revised structure, which was followed by MVC architecture and a

speedy application.

Ext JS 5.0

• Ext JS version 5.0 was released in 2014.

• The major change in this release was to change the MVC architecture to MVVM

architecture ability to build desktop apps on touch-enabled devices, two-way data binding,

responsive layouts, and many more features.

Ext JS 6.0

• Released in July 1,2015.

• Ext JS 6 merges the Ext JS (for desktop application) and Sencha Touch (for mobile

application) framework.

Ext JS 7.0

• Released in August 29,2019.

• The Ext JS 7.0 Modern toolkit supports: drag and drop, row editor and collapsible group for

grids, accordion layout, form group, breadcrumb toolbar and drag and drop for tree view.

• Ext JS 7.0 has been upgraded to support Font Awesome 5+, which is SVG based.

Features of Ext Js

• Customizable UI widgets with collection of rich UI such as grids, pivot grids, forms, charts,

trees.

• Code compatibility of new versions with the older one.

• A flexible layout manager helps to organize the display of data and content across multiple

browsers, devices, and screen sizes.

• Advance data package decouples the UI widgets from the data layer.

• Sophisticated data visualization

• Rich Data Analytics

• Pre integrated and tested UI components

• Layout Manager and responsive configs.

• Ext JS is a client-side JavaScript application framework to build enterprise applications.

• Ext JS supports object-oriented programming concepts using JavaScript which makes easy

application development and maintenance.

• Ext JS supports Single Page Application development.

25

• Ext JS includes MVC and MVVM architecture.

• Ext JS Data package makes it easy to retrieve or saving of data.

• Ext JS includes OOB UI components, containers and layouts.

• Ext JS includes drag and drop functionality for UI containers and components.

• Ext JS includes localization package that makes it easy to localize application.

• Includes OOB themes.

Advantages

• Streamlines cross-platform development across desktops, tablets, and smartphones — for

both modern and legacy browsers.

• Increases the productivity of development teams by integrating into enterprise development

environments via IDE plugins.

• Reduces the cost of web application development.

• It has set of widgets for making UI powerful and easy.

• It follows MVC architecture so highly readable code.

Limitations

• The size of the library is large, around 500 KB, which makes initial loading time more and

makes application slow.

• HTML is full of tags that makes it complex and difficult to debug.

• It is free for open source applications but paid for commercial applications.

• Need quite experienced developer for developing Ext JS applications.

Major Browsers support by Ext Js

• IE 6+

• Mozilla firefox version 1.5+

• Apple safari version 2+

• Opera version 9+

• Chrome 10+

Downloading Library Files

• Download the trial version of Ext JS library files from Sencha https://www.sencha.com

• Unzip the folder and you will find various JavaScript and CSS files, which you will include

in our application.

https://www.sencha.com/products/download

26

• JavaScript Files − JS file which you can find under the folder \ext-6.0.1-trial\ext6.0.1\build

are

JavaScript Files

• ext.js -This is the core file which contains all the functionalities to run the application.

• ext-all.js-This file contains all the code minified with no comments in the file.

• ext-all-debug.js-This is the unminified version of ext-all.js for debugging purpose.

• ext-all-dev.js-This file is also unminified and is used for development purpose as it contains

all the comments and console logs to check any errors/issue.

• ext-all.js-This file is used for production purpose mostly as it is much smaller than any

other.

Difference between Ext.all and Ext.js

• ext-all.js: This file contains the entire Ext JS framework (used for Development & testing)

ext.js: This file contains the minimum Ext JS code (Ext JS base library)- used in Production.

Naming Convention

• Naming convention is a set of rules to be followed for identifiers is shown in Table 2.1.

• It makes the code more readable and understandable to other programmers as well.

• The second word will start with an uppercase letter always.

 Table 2.1. Naming Convention

27

Architecture

----------src

----------resources

-------------------CSS files

-------------------Images

----------JavaScript

--------------------App Folder

-------------------------------Controller

------------------------------------Contoller.js

-------------------------------Model

------------------------------------Model.js

-------------------------------Store

------------------------------------Store.js

-------------------------------View

------------------------------------View.js

-------------------------------Utils

------------------------------------Utils.js

--------------------------------app.js

-----------HTML files

Ext Js App

• Ext JS app folder will reside in JavaScript folder of your project.

• The App will contain controller, view, model, store, and utility files with app.js.

• The App will contain controller, view, model, store, and utility files with app.js.

– app.js − The main file from where the flow of program will start, which should be included

in the main HTML file using <script> tag.

Controller.js

– It is the controller file of Ext JS MVC architecture.

– This contains all the control of the application, the events listeners, and most of the

functionality of the code.

28

– It has the path defined for all the other files used in that application such as store, view,

model, require, mixins.

View.js

– It contains the interface part of the application, which shows up to the user.

– Ext JS uses various UI rich views, which can be extended and customized here according to

the requirement.

Model.js

– It contains the objects which binds the store data to view.

– It has the mapping of backend data objects to the view dataIndex.

– The data is fetched with the help of store.

Store.js

– It contains the data locally cached which is to be rendered on the view with the help of

model objects.

– Store fetches the data using proxies which has the path defined for services to fetch the

backend data.

Utils.js

– It is not included in MVC architecture but a best practice to use to make the code clean, less

complex, and more readable.

– In MVVM architecture, the controller is replaced by ViewModel.

Components of Ext JS

• The components can be defined as the number of widgets, which helps to create an

application.

• The Component is referred to as the DOM element, which contains the complicated

functionality.

• All components are inherited from the Ext. Component class.

• Ext JS application includes various types of elements, such as Combobox, grid, panel,

container, textfield, numberfield, etc is shown in Figure.2.1.

29

 Figure.2.1 Ext.Js Components

The different types of Components and description are shown in Table.2.2.

Sr.

No.

Component Description

1. Form The form helps us to obtain the data from the user.

2. Grid It is used to display the data in the form of a table.

3. Chart It is used to display the data in a pictorial manner.

4. Message Box This component is used to display the data in an

alert box form.

5. Window The Window component helps us to create the

window. It is always popped up when an event

occurs.

6. Tool tip It is used to display the data during the event

occurring.

30

7. HTML editor The editor is used to style the data input by the user.

It should be color, size, and font.

8. Progress Bar This bar always shows the progress of the backend

functions.

 Table 2.2 Different types of Components

Alert boxes

Different type of alert boxes in Ext JS are

• Ext.MessageBox.alert();

• Ext.MessageBox.confirm();

• Ext.MessageBox.wait();

• Ext.MessageBox.prompt();

• Ext.MessageBox.show();

Getting Started with Ext Js Applications

<!DOCTYPE html>

<html>

<head>

<link href = "https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-

classic/resources/theme-classic-all.css"

rel = "stylesheet" />

<script type = "text/javascript"

 src = "https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"></script> <script

type = "text/javascript">

</script>

</head>

<body>

<div id="helloWorldPanel"></div>

</body>

</html>

31

Ext.onReady(function() {

Ext.create('Ext.Panel', {

renderTo: 'helloWorldPanel',

height: 500,

width: 500,

title: 'Hello world',

html: 'Welcome to the world of Ext'

});

});

 Classes in Ext Js

• Ext JS is a JavaScript framework having functionalities of object-oriented programming.

• Ext provides more than 300 classes, which we can use for various functionalities.

• Ext.define() is used for defining the classes in Ext JS.

• An Ext class includes approx. 59 properties and 78 methods.

• Some of the essential methods are Ext.apply, Ext.create, Ext.define, Ext.getCmp,

Ext.override, and Ext.application etc.

• Syntax

 Ext.define(class name, class members/properties, callback function);

• Class Name: It is the class name that is given by the user depending upon the application

structure.

• Class Member/Properties: Class member/properties are used to determine the class

behavior.

• Callback Function: It is a function that is invoked when the class is loaded. It is an optional

function to use.

 Ext.Base

• Ext.Base is root of all classes created with Ext.define.

• All the classes in Ext JS inherit from Ext.Base

http://docs.sencha.com/extjs/6.2.0/modern/Ext.Base.html

32

Ext.define('Student',

{

 name : 'unnamed',

 getName : function(){

 return "Student name is" + this.name;

 }

}, function(){

 alert('Student object created');

});

Create an Object of a Class

• JavaScript allows us to create an object using new keyword.

• Sencha recommends to use Ext.create() method to create an object of a class which is created

using Ext.define() method.

 var studentObj = Ext.create('Student');

 studentObj.getName();

Example

<!DOCTYPE html>

<html>

<head>

<link href = "https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-

classic/resources/theme-classic-all.css"

rel = "stylesheet" />

<script type = "text/javascript"

 src = "https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"></script>

<script type = "text/javascript">

 Ext.define('Student',

{

 name : ‘suji',

 getName : function(){

33

 return "Student name is" + this.name;

 }

}, function(){

 alert('Student object created');

 var studentObj = Ext.create('Student');

alert(studentObj.getName());

});

</script>

</head>

<body>

<div id="helloWorldPanel"></div>

</body>

</html>

Define Constructor

• A constructor is a special function that gets called when a Class is instantiated.

Example

 Ext.define('Student', {

 name : 'unnamed',

 getName : function(){

 return 'Student name is ' + this.name;

 },

 constructor : function(studentName){

 if(studentName)

 this.name = studentName;

 }

});

• Now you can create an object by passing parameter to the constructor:

• var studentObj = Ext.create('Student','XYZ');

• studentObj.getName();

34

Declare Private Members in Class

• In JavaScript, there are two types of object fields.

• Public:

• accessible from anywhere.

• They comprise the external interface.

• Until now we were only using public properties and methods.

• Private:

• accessible only from inside the class.

• These are for the internal interface.

Example

Ext.define('Student', function(){

 var name = 'abc';

 return {

 constructor : function(name){

 this.name = name;

 },

 getName : function(){

 alert('Student name is' + this.name);

 }

 };

});

//create an object of Student class

var studentObj = Ext.create('Student','XYZ');

studentObj.getName();

Declare Static Members in Class

• The static members in an Ext JS class can be accessed without creating an object using

Ext.create() method.

35

• It can be accessed using class name with dot notation same as other programming languages.

• Declare static members in Ext JS class using 'statics’ parameter

Example

Ext.define('Student',

{

 name : 'abc',

 getName : function(){

 alert('Student name is ' + this.name);

 },

 constructor : function(studentName){

 if(studentName)

 this.name = studentName;

 },

 statics :

 {

 getSchoolName : function(){

 return "XYZ";

 }

 }

});

//call static method

alert(Student.getSchoolName());

Inheritance in Ext JS

• Ext JS supports object-oriented programming concepts such as class, inheritance,

polymorphism etc.

• We can inherit a new class from existing class using extend keyword while defining a

new class in Ext JS.

36

Example

Ext.define('Person',

{

 name : 'abc',

 getName : function(){

 alert("My name is " + this.name);

 },

 constructor : function(name){

 if(name){

 this.name = name;

 }

 }

});

Example

Ext.define('Student',

{

 extend : 'Person',

 schoolName : 'sathyabama',

 constructor : function(name, schoolName){

 this.schoolName = schoolName;

 //call parent class constructor

 this.callParent(arguments);

 },

 getSchoolName : function(){

 alert("My school name is " + this.schoolName);

 }

});

var newStudent = new Student('Queen', 'American School');

newStudent.getName();

newStudent.getSchoolName();

37

Mixins

• Mixins introduced since Ext JS 4.

• Mixins allows us to use functions of one class as a function of another class without

inheritance.

• Mixins can be defined using mixins keyword

• The value of a property will be name of the class where the method is defined.

Example

Ext.define('Person', {

 name: 'abc',

 constructor: function(name) {

 if (name) {

 this.name = name;

 }

 },

 getName: function() {

 alert("My name is " + this.name);

 },

 eat: function(foodType) {

 alert("I like " + foodType);

 }

});

Ext.define('Student', {

 schoolName: 'sathyabama',

 constructor: function(schoolName) {

 this.schoolName = schoolName

 },

 mixins: {

 eat: 'Person'

 },

38

 getSchoolName: function() {

 alert("I am a student of " + this.schoolName);

 }

});

var studentObj = new Ext.create('Student', 'XYZ');

studentObj.eat('Sandwich');

alert(studentObj.getSchoolName());

Config

• Ext JS has a feature called config.

• The config allows you to declare public properties with default values which will be

completely encapsulated from other class members.

• Properties which are declared via config, will have get() and set().

• The config properties can be defined using config keyword.

• Initconfig- This will create get and set methods for all the config properties.

– in the constructor in order to initialize getters and setters.

• The get method returns a value of a config property.

• Set method is used to assign a new value to a config property.

• The name of the get method will start from get and suffix with property name

• get<config property name>()

• Set method will be named as

• set<config property name>().

• The suffix in get and set method names will start from capital character.

Example

Ext.define('Student', {

 config :

 {

 name : ‘xxxx’,

 schoolName : ‘abc'

 },

 constructor : function(config){

39

 this.initConfig(config);

 }

});

var newStudent = Ext.create('Student', { name: 'XYZ', schoolName:

'ABC School' });

newStudent.getName();//output: XYZ

newStudent.getSchoolName();//output: ABC School

newStudent.setName('John');

newStudent.setSchoolName('New School');

alert(newStudent.getName());//output: John

alert(newStudent.getSchoolName());

Description

• getName(), setName() and getSchoolName(), setSchoolName() methods in Student

object.

• It was automatically created for config properties by Ext JS API.

• Cannot assign config property value directly same as normal class property.

newStudent.name = ‘bnn'; //Not valid.

newStudent.setName(‘bvbb');//Valid

Custom Setters

• get and set methods are created for config property automatically.

• Custom setters allow you to add extra logic.

• There are two custom setters: apply and update.

• The apply() method for config property allows us to add some extra logic before it

assigns the value to config property.

• The name of apply method must start with apply with config property name as suffix

in CamelCase.

Example: applyName

Custom Setters -Update()

• The update() method executes after the configuration property value has been assigned.

40

• The name of update method must start with update with config property name as suffix

in CamelCase.

• It has two parameters, newValue and oldValue.

 Example: updateName : function(newValue, oldValue)

Example

Ext.define('Student',{

 config :

 {

 name : 'unnamed',

 schoolName : 'Unknown'

 },

 constructor : function(config){

 this.initConfig(config);

 },

 applyName : function(name){

 return Ext.String.capitalize(name);

 },

 updateName : function(newValue, oldValue){

 alert('New value: ' + newValue + ', Old value: ' + oldValue);

 }

});

var newStudent = Ext.create('Student', {name : 'xyz', schoolName : 'ABC

School'});

newStudent.setName('john');

Alternate ClassName

• Defines alternate names for the class.

Example

Ext.define('Developer',

{

41

 alternateClassName: ['Cc'],

 code: function(msg) {

 alert('Typing... ' + msg);

 }

});

var obj = Ext.create('Developer');

obj.code('hi');

var rms = Ext.create('Cc');

rms.code('hello');

requires

• List of classes that have to be loaded when a class is invoked.

• Example

define('Mother', {

 requires: ['Child'],

 giveBirth: function() {

 // we can be sure that child class is available.

 return new Child();

 }

});

Uses

• List of optional classes to load together with this class.

• Example

Ext.define('Mother', {

 uses: ['Child'],

42

 giveBirth: function() {

 // This code might, or might not work:

 // return new Child();

 // Instead use Ext.create() to load the class at the spot if not loaded already:

 return Ext.create('Child');

 }

});

Ext.ClassManager

• Ext.ClassManager manages all classes and handles mapping from string class name to

actual class objects throughout the whole framework.

• Ext.define

• create

• Ext.widget

• Ext.getClass

• Ext.getClassName

Methods

• Get-Retrieve a class by its name.

• getByAlias- Get a reference to the class by its alias.

• getByConfig-Get a component class name from a config object.

• getClass (object)-Get the class of the provided object.

• getDisplayName (object)-Returns the displayName property or className or object.

• getName (object)-Get the name of the class by its reference or its instance.

• isCreated (className)

• Checks if a class has already been created.

Object

• defineProperties (obj, props)-Defines new or modifies existing properties directly on

an object, returning the object.

• freeze (obj) -Nothing can be added to or removed from the properties set of a frozen

object. Any attempt to do so will fail

• getOwnPropertyNames (obj)-Returns an array of all properties

43

• isFrozen (obj)-Determines if an object is frozen.

• isSealed (obj)-Determines if an object is sealed.

• seal (obj)-Seals an object, preventing new properties from being added to it and

marking all existing properties as non-config

• preventExtensions (obj)-Prevents new properties from ever being added to an object

What is the difference between freeze and seal in JavaScript ?

• Object.seal() allows changes to the existing properties of an object

whereas Object.freeze() does not allow so.

• Object.freeze() makes an object immune to everything even little changes cannot be

made.

• Object.seal() prevents from deletion of existing properties but cannot prevent them

from external changes.

• Important classes: The different classes are discussed in Table 2.3.

Table 2.3 Important Classes

Class Description

Ext The Ext namespace (global object) encapsulates all classes,

singletons, and utility methods provided by Sencha libraries.

Ext.Base The root of all classes created with Ext.define. Ext.Base is the

building block of all Ext classes. All classes in Ext inherit

from Ext.Base. All prototype and static members of this class

are inherited by all other classes.

Ext.ClassManager Ext.ClassManager manages all classes and handles mapping

from string class name to actual class objects throughout the

whole framework.

Ext.Loader Ext.Loader is the heart of the new dynamic dependency

loading capability in Ext JS 4+. It is most commonly used via

the Ext.require shorthand.

44

Ext.is Class

• This class checks the platform you are using, whether it is a phone or a desktop, a

mac or Windows operating system.

• Ext.is.Platforms-This function returns the platform available for this version.

• Ext.is.Android-This function will return true, if you are using Android operating

system, else it returns false

• Ext.is.Desktop-This function will return true, if you are using a desktop for the

application, else it returns false

• Ext.is.Phone-This function will return true, if you are using a mobile, else it returns

false.

• Ext.is.iPhone-This function will return true if you are using iPhone, else it returns false.

• Ext.is.iPod-This function will return true, if you are using iPod, else it returns false.

• Ext.is.iPad-This function will return true, if you are using an iPad, else it returns false.

• Ext.is.Windows-This function will return true, if you are using Windows operating

system, else it returns false.

Ext.supports Class

• This class provides information if the feature is supported by the current environment

of the browser/device or not.

• Ext.supports.History- It checks if the device supports HTML 5 history as

window.history or not.

• Ext.supports.GeoLocation-It checks if the device supports geolocation method or

not.

• Ext.supports.Svg-It checks if the device supports HTML 5 feature scalable vector

graphics (svg) method or not.

Ext.String Class

• Ext.String class has various methods to work with string data. The most used methods

are encoding decoding, trim, toggle, urlAppend, etc.

• Ext.String.trim-This function is to trim the unwanted space in the string.

• Ext.String.urlAppend-This method is used to append a value in the URL string.

String

• It is a global object that may be used to construct String instances.

45

• String objects may be created by calling the constructor new String().

• charAt (index)-Returns the character at the specified index.

• concat (strings)-Combines combines the text from one or more strings and returns a

new string.

var hello = "Hello, ";

alert(hello.concat("Kevin", " have a nice day."));

Functions

• Ext.each

• Ext.each applies a function to each member of an array.

• It’s basically a more convenient form of a for loop.

Example

var countries = ['Vietnam', 'Singapore', 'United States', 'Russia'];

Ext.Array.each(countries, function(name, index, countriesItSelf) {

 alert(countries[index])

});

Ext.iterate

• Ext.iterate is like Ext.each for non-array objects.

• Example

 ships= {'Bill': 'wonderful', 'Laura': 'great'};

Ext.iterate(ships, function(key, value) {

alert(key + "'s ship is the " + value);

});

Ext.pluck

• Ext.pluck grabs the specified property from an array of objects:

Example:

var animals = [

{name: 'Ed', species: 'Unknown'},

{name: 'Bumble', species: 'Cat'},

https://docs.sencha.com/extjs/6.0.2/modern/String.html
https://docs.sencha.com/extjs/6.0.2/modern/String.html

46

{name: 'Triumph', species: 'Insult Dog'}

];

alert(Ext.pluck(animals, 'species'));

 alert(Ext.pluck(animals, 'name'));

Ext.invoke

• Invoke allows a function to be applied to all members of an array, and returns the

results.

• Example:

var animal=[

{name: 'Ed', species: 'Unknown'},

{name: 'Bumble', species: 'Cat'},

{name: 'Triumph', species: 'Insult Dog'}

];

var describeAnimal = function(animal) {

return String.format("{0} is a {1}", animal.name, animal.species);

}

var describedAnimals = Ext.invoke(animals, describeAnimal);

alert(describedAnimals); // ['Ed is a Unknown', 'Bumble is a Cat', 'Triumph

is a Insult Dog'];

Ext.partition

• Ext.Partition splits an array into two sets based on a function you provide:

• Example

var trees = [

{name: 'Oak',height: 20},

{name: 'Willow', height: 10},

{name: 'Cactus', height: 5}];

var isTall = function(tree) {return tree.height > 15};

alert(Ext.partition(trees, isTall));

47

Math functions

• Example

– var numbers = [1, 2, 3, 4, 5];

– alert(Ext.min(numbers)); //1

– alert(Ext.max(numbers)); //5

– alert(Ext.sum(numbers)); //15

– alert(Ext.mean(numbers)); //3

Date

• The following example converts the date object to a numerical value using number as

a function .

• Example

 d = new Date("December 17, 1995 03:24:00");

 alert(Number(d));

 Array

• An array is a JavaScript object.

• Creating an Array

var msgArray = new Array();

• Example

var msgArray = new Array();

msgArray[0] = "Hello";

msgArray[99] = "world";

if (msgArray.length == 100)

alert("The length is 100.");

Accessing array elements

• Array elements are nothing less than object properties, so they are accessed as such.

• Method 1:

var myArray = new Array("Wind", "Rain", "Fire");

alert(myArray[0]); // "Wind”

• Method 2:

myArray[02]

48

Methods of Array

• indexOf (searchElement, [fromIndex])

• Returns the first index at which a given element can be found in the

array, or -1 if it is not present.

 Example

var array = [2, 5, 9];

var index = array.indexOf(2);

alert(index);// index is 0

index = array.indexOf(7);

// index is -1

• join (separator)-Joins all elements of an array into a string.

• Example

var a = new Array("Wind","Rain","Fire");

var myVar1 = a.join();

var myVar2 = a.join(", ");

var myVar3 = a.join(" + ");

• lastIndexOf (searchElement, [fromIndex])

• Returns the last index at which a given element can be found in the array,

or -1 if it is not present.

» var array = [2, 5, 9, 2];

» var index = array.lastIndexOf(2);

» // index is 3

• pop -The pop method removes the last element from an array and returns that value to

the caller.

var myObj = ['angel', 'sonal', 'manal', 'somu'];

var popped = myObj.pop();

alert(popped); // Alerts ‘somu'

49

• push (elements)-Adds one or more elements to the end of an array and returns the new

length of the array.

var sports = ['soccer', 'baseball'];

sports.push(['football', 'swimming']);

alert(sports);

• Reverse-Reverses the order of the elements of an array

var myArray = ["one", "two", "three"];

alert(myArray.reverse());

• sort-Sorts the elements of an array.

var numbers = [4, 2, 5, 1, 3];

alert(numbers.sort());

Methods of String

• replace (pattern, replacement)

• search (regexp)

• toLocaleLowerCase()

• var upperText="SENCHA";

• document.write(upperText.toLocaleLowerCase());

• toLocaleUpperCase

• Trim()

• To UpperCase()

Ext.Window

• Ext JS take configuration parameters, many of which can be changed at runtime.

• Ext.Window , has a ‘title’ configuration, which takes the default value of ‘Window

Title’.

• 4 methods for free – getTitle, setTitle, resetTitle and applyTitle.

• getTitle – returns the current title

• setTitle – sets the title to a new value

• resetTitle – reverts the title to its default value (‘Window Title’)

• applyTitle – this is a template method that you can choose to define. It is called

whenever setTitle is called.

Ext.define('Ext.Window', {

50

//..as above,

config: {

title: 'Window Title'

},

applyTitle: function(newTitle) {

this.titleEl.update(newTitle);

}

});

Ext JS MVC framework

• Model: It is the collection of fields.

• Store: It is the collection of data. Each store is associated with a model. ...

• View: It is any type of UI component like grid, chart etc.

• Controllers: In controllers we put all the codes that makes our app work.

Model-View-Controller

• Model-View-Controller (MVC) is an architectural pattern for writing software.

• It divides the user interface of an application into three distinct parts, helping to

organize the codebase into logical representations of information depending upon their

function shown in Figure 2.2.

Figure 2.2 MVC Architecture Diagram

• The Model describes a common format for the data being used in the application. It

may also contain business rules, validation logic, and various other functions.

51

• The View represents the data to the user. Multiple views may display the same data in

different ways (e.g. charts versus grids).

• The Controller is the central piece of an MVC application. It listens for events in the

application and delegates commands between the Model and the View.

Advantages of MVC

• Easy code maintenance , easy to extend

• MVC Model component can be tested separately from the user

• Easier support for new type of clients

• Development of the various components can be performed parallelly.

• It helps you to avoid complexity by dividing an application into the three units.

Model, view, and controller

• It only uses a Front Controller pattern which process web application requests

through a single controller.

Disadvantages of using MVC

• Difficult to read, change, to unit test, and reuse this model

• No formal validation support

• Increased complexity

• The difficulty of using MVC with the modern user interface

• There is a need for multiple programmers to conduct parallel programming.

• Knowledge of multiple technologies is required.

• Maintenance of lots of codes in Controller

Model-View-ViewModel

• Model-View-ViewModel (MVVM) is another architectural pattern for writing

software that is largely based on the MVC pattern.

• The key difference between MVC and MVVM is that MVVM features an

abstraction of a View (the ViewModel) which manages the changes between

a Model’s data and the View‘s representation of that data (i.e. data bindings) —

something which typically is cumbersome to manage in traditional MVC

applications.

52

Figure 2.3 MVVM Architecture Diagram

Elements of the MVVM

– The Model describes a common format for the data being used in the

application, just as in the classic MVC pattern shown in Figure 2.3.

– The View represents the data to the user, just as in the classic MVC pattern.

– The ViewModel is an abstraction of the view that mediates changes between

the View and an associated Model. In the MVC pattern, this would have been

the responsibility of a specialized Controller, but in MVVM, the ViewModel

directly manages the data bindings and formulas used by the View in question.

Javascript in web browser

• Internet Explorer

– On web browser menu click "Tools" menu and select "Internet Options".

– In the "Internet Options" window select the "Security" tab.

– On the "Security" tab click on the "Custom level..." button.

– When the "Security Settings - Internet Zone" dialog window opens, look for the

"Scripting" section.

– In the "Active Scripting" item select "Enable".

– When the "Warning!" window pops out asking "Are you sure you want to

change the settings for this zone?" select "Yes".

– In the "Internet Options" window click on the "OK" button to close it.

– Click on the "Refresh" button of the web browser to refresh the page.

• Internet Explorer < 9

– On web browser menu click "Tools" and select "Internet Options".

– In the "Internet Options" window select the "Security" tab.

– On the "Security" tab click on the "Custom level..." button.

– When the "Security Settings - Internet Zone" dialog window opens, look for the

"Scripting" section.

– In the "Active Scripting" item select "Enable".

53

– When the "Warning!" window pops out asking "Are you sure you want to

change the settings for this zone?" select "Yes".

– In the "Internet Options" window click on the"OK" button to close it.

– Click on the "Refresh" button of the web browser to refresh the page.

• Mozilla Firefox < 4

– On the web browser menu click "Tools" and select "Options".

– In the "Options" window select the "Content" tab.

– Mark the "Enable JavaScript" checkbox.

– In the opened "Options" window click on the "OK" button to close it.

– Click on the "Reload current page" button of the web browser to refresh the

page.

• Google Chrome

– On the web browser menu click on the "Customize and control Google Chrome"

and select "Options".

– In the "Google Chrome Options" tab select the "Under the Hood" menu item.

– In the "Privacy" section click "Content settings..." button.

– In the "Content settings" window go to "JavaScript" section and select "Allow

all sites to run JavaScript (recommended)".

– Close the "Google Chrome Options" tab.

– Click on the "Reload this page" button of the web browser to refresh the page.

• Google Chrome < 10

– On the web browser menu click on the "Customize and control Google Chrome"

and select "Options".

– In the "Google Chrome Options" window select the "Under the Hood" tab.

– In the "Privacy" section click "Content settings..." button.

– In the "Content settings" window select the "JavaScript" tab.

– In the "JavaScript" tab select "Allow all sites to run JavaScript (recommended)".

– Close the "Content Setting" window.

– Close the "Google Chrome Options" window.

– Click on the "Reload this page" button of the web browser to refresh the page.

• Apple Safari

– On the web browser menu click on the "Edit" and select "Preferences".

54

– In the "Preferences" window select the "Security" tab.

– In the "Security" tab section "Web content" mark the "Enable JavaScript"

checkbox.

– Click on the "Reload the current page" button of the web browser to refresh the

page.

• Opera

– 1. a) Click on "Menu", over mouse on the "Settings" then over mouse on the

"Quick preferences" and mark the "Enable JavaScript" checkbox.

– 1. b) If "Menu bar" is shown click on the "Tools", hover mouse on the "Quick

preferences" and mark the "Enable JavaScript" checkbox.

• Opera < v. 10

– On the web browser menu click "Tools" and select "Preferences".

– In the "Preferences" window select the "Advanced" tab.

– On the "Advanced" tab click on "Content" menu item.

– Mark the "Enable JavaScript" checkbox.

– In the opened "Preferences" window click on the "OK" button to close it.

– Click on the "Reload" button of the web browser to refresh the page.

REFERENCES

1. David Flanagan, ” JavaScript: The Definitive Guide ” , 6th Edition, O'Reilly

Media, Inc, March 2011.

2. Alessio Malizia , Ext JS Documentation Site “ Mobile 3D Graphics ”,

Springer,2006.

3. Colin Ramsay , Shea Frederick , Steve Cutter' Blades, “ Learning Ext JS ”, Packt

Publishing , 2008.

4. Jesus Garcia, “ Ext JS in Action ”, Manning Publications , 2010.

55

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – III - Rich Internet Applications – SCS1401

56

III. Introduction

Fundamental Classes - Event Handling - Panels and Grids - Layouts and Widgets -

Working with data.

Components in Ext JS

• UI is made up of one or more widgets called Components.

• Ext JS provides different types of components out of the box with complex

functionalities, which you can use in your application such as Viewport, panel,

container, grid, textfield, combobox, numberfield etc. .

• Component is a group of DOM elements with complex functionality.

• Ext JS UI components are derived from the Ext.Component class, which in-turn is

derived from the Ext.Base class.

• All the Ext JS components inherit from Ext.Component class.

• Ext.Component class is derived from the Ext.Base class.

• All the components in Ext JS are registered with Ext.ComponentManager class on

creation.

• It can be accessed by id using Ext.getCmp() method.

• Example: Ext.getCmp('myComponent')

Example

Ext.onReady(function () {

 Ext.create('Ext.Component', {

 id:'myComponent',

 renderTo: Ext.getBody(), //render method to render to body

 html:'Hello World!'

 });

});

Component Life Cycle

• Each component in Ext JS passes through following three stages is shown in Table 3.1.

57

Stage Description

Initialization Registering the component with

Ext.ComponentManager and

deciding if a component will be

rendered.

Rendering Creating the DOM for the

component and adding it to the

DOM hierarchy with the events,

CSS, etc..

Destruction Removing the events, the DOM

object and unregistering the

component from the

Ext.ComponentManager

 Table 3.1 Stages of Component Life Cycle

Ext JS UI Components

Every Component has a symbolic name called 'xtype’.

Example: Ext.panel.Panel has xtype : 'panel' is discussed in Table 3.2.

Component

Name Class Name Xtype

ComboBox Ext.form.field.ComboBox combobox or combo

Radio Button Ext.form.field.Radio radio or radiofield

Checkbox Ext.form.field.Checkbox checkbox or checkboxfield

TextField Ext.form.field.Text Textfield

Label Ext.form.Label Label

Button Ext.button.Button Button

DateField Ext.form.field.Date Datefield

File Upload Ext.form.field.File filefield, fileuploadfield

Hidden Field Ext.form.field.Hidden Hidden

Number Field Ext.form.field.Number Numberfield

Spinner Ext.form.field.Spinner Spinnerfield

58

Text Area Ext.form.field.TextArea Textarea

Time Field Ext.form.field.Time Timefield

Trigger Ext.form.field.Trigger triggerfield, trigger

Chart Ext.chart.CartesianChart Chart

Html Editor Ext.form.field.HtmlEditor Htmleditor

 Table 3.2 Ext JS UI Components

Combo box

var states = Ext.create('Ext.data.Store’,

{

 fields: ['abbr', 'name'],

 data : [{"abbr":"AL", "name":“Sonal"},

{"abbr":"AK", "name":“Monal"},

{"abbr":"AZ", "name":“Konal"}]

});

Ext.create('Ext.form.ComboBox’,

{

fieldLabel: 'Choose State',

store: states,

 queryMode: 'local',

displayField: 'name',

valueField: 'abbr',

renderTo: Ext.getBody();

});

Text

• The Text field has a useful set of validations and able to input the data.

Example

Ext.create('Ext.form.Panel’,

 { title: 'Contact Info',

 width: 300,

59

 bodyPadding: 10,

 renderTo: Ext.getBody(),

 items: [{

 xtype: 'textfield',

 name: 'name',

 fieldLabel: 'Name',

 allowBlank: false

 },

{

 xtype: 'textfield',

 name: 'email',

 fieldLabel: 'Email Address',

 vtype: 'email’

 }]});

Label

Ext.create('Ext.form.Panel',

{

title: 'Field with Label',

width: 400,

bodyPadding: 10,

renderTo: Ext.getBody(),

layout: { type: 'hbox',

align: 'middle'

},

 items: [{

 xtype: 'textfield',

hideLabel: true,

 flex: 1

},]});

60

Button

Ext.create('Ext.Button',

{

 text: 'Click me',

 renderTo: Ext.getBody(),

 handler: function()

{

alert('You clicked the button!');

}});

Date

Ext.create('Ext.form.Panel',

{ renderTo: Ext.getBody(),

 width: 300,

 bodyPadding: 10,

 title: 'Dates',

 items: [{

 xtype: 'datefield',

 fieldLabel: 'From',

 name: 'from_date',

 maxValue: new Date()

 }]});

Number

Ext.create('Ext.form.Panel’,

{

title: 'Numberings',

width: 300,

bodyPadding: 10,

renderTo: Ext.getBody(),

61

items: [{

xtype: 'numberfield’,

name: 'bottles’,

fieldLabel: 'Number starts’,

value: 99,

maxValue: 99,

minValue: 0

}],});

Text Area

Ext.create('Ext.form.FormPanel',

{

 title : 'My Document',

 width : 400,

 bodyPadding: 10,

 renderTo : Ext.getBody(),

 items: [{

 xtype : 'textareafield',

 name : 'message',

 fieldLabel: 'Message',

 anchor : '100%'

 }]});

HTML Editor

Ext.tip.QuickTipManager.init();

Ext.create('Ext.form.HtmlEditor',

{

width: 580,

height: 250,

renderTo: Ext.getBody()

});

Charts

62

• Charts are used to represent data in pictorial format.

• The different charts provided by Ext JS −

• Pie Chart

• Line Chart

• Bar Chart

• Area Chart

Pie Chart

• Syntax

Ext.create('Ext.chart.PolarChart', {

 series: [{

 Type: 'pie'

 ..

 }]

 render and other properties.

});

Container

• Ext JS includes components that can contain other components are called container.

• Ext.container.Container is a base class for all the containers in Ext JS.

• Add different types of Ext JS components into a container using items config

property or add() method.

• Container can also include another container.

• We can add or remove the components from the container and from its child

elements.

• Ext.container.Container is the base class for all the containers in Ext JS.

Example

 Ext.create('Ext.container.Container’,

 {

 layout:

 {

 type: 'hbox'

63

 },

 width: 400,

 renderTo: Ext.getBody(),

 border: 1,

 defaults: {

 labelWidth: 80, xtype: 'datefield',

 },

 items: [{

 xtype: 'datefield',

 name: 'Dates',

 fieldLabel: 'Dates’

 }]});

Components inside container

var component1 = Ext.create('Ext.Component', {

 html:'First Component'

});

Ext.create('Ext.container.Container', {

 renderTo: Ext.getBody(),

 items: [component1]

});

Container inside container

var container = Ext.create('Ext.container.Container', {

 items: [component3, component4]

});

Ext.create('Ext.container.Container', {

 renderTo: Ext.getBody(),

 items: [container]

});

Types of Container

• Ext.panel.Panel

64

• Ext.form.Panel

• Ext.tab.Panel

• Ext.container.Viewport

Ext.panel.Panel

• It is the basic container which allows to add items in a normal panel.

 var childPanel1 = Ext.create('Ext.Panel', {

 html: 'First Panel'

 });

Ext.create('Ext.panel.Panel', {

 renderTo: Ext.getBody(),

 width: 100,

 height : 100,

 border : true,

 frame : true,

 items: [childPanel1]

});

Ext.form.Panel Container

• Form panel provides a standard container for forms.

• Ext.panel.Panel, which automatically creates a BasicForm for to manage any

Ext.form.field.Field objects.

• Example

var child1 = Ext.create('Ext.Panel',{

 html: 'Text field'

 });

Ext.create('Ext.form.Panel', {

 renderTo: Ext.getBody(),

 width: 100,

 height : 100,

 border : true,

65

 frame : true,

 layout : 'auto', // auto is one of the layout type.

 items : [child1]

});

Ext.tab.Panel

• Tab panel is like a normal panel but has support for card tab panel layout.

• Example

Ext.create('Ext.tab.Panel', {

 renderTo: Ext.getBody(),

 height: 100,

 width: 200,

 items: [{

 xtype: 'panel',

 title: 'Tab One',

 html: 'The first tab',

 },{

 // xtype for all Component configurations in a Container

 title: 'Tab Two',

 html: 'The second tab',

 }]

 });

Ext.container.Viewport

• Viewport is a container that automatically resizes itself to the size of the whole browser

window.

66

Example

var childPanel1= Ext.create('Ext.panel.Panel', {

title: 'Child Panel 1',

html: 'Another Panel'

});

Ext.create('Ext.container.Viewport', {

renderTo: Ext.getBody(),

items: [childPanel1]

});

Layout

• Layout is the way the elements are arranged in a container.

• It can be horizontal, vertical, or any other.

• Ext JS has a different layout defined in its library but we can always write custom

layouts

Types of Layout

• Absolute Layout

• Accordian Layout

• Anchor Layout

• Border Layout

• Auto Layout

• Card Layout

• Column Layout

• Fit Layout

• Table Layout

• vBox Layout

• hBox Layout

Absolute Layout

• This layout allows to position the items using XY coordinates in the container.

Syntax

Layout: ‘absolute’

67

Example

Ext.create('Ext.container.Container', {

 renderTo: Ext.getBody(),

 layout: 'absolute' ,

 items: [{

 title: 'Panel 1',

 x: 50,

 y: 50,

 html: 'Positioned at x:50, y:50',

 width: 500,

 height: 100

 }]

});

Accordion Layout

• This layout allows to place all the items in stack fashion (one on top of the other) inside

a container.

Syntax:

 layout:’accordian’

Example

 renderTo : Ext.getBody(),

 layout : 'accordion' ,

 width : 600,

 items : [{

 title : 'Panel 1',

 html : 'Panel 1 html content'

 },{

 title : 'Panel 2',

 html : 'Panel 2 html content'

 },{

 title : 'Panel 3',

68

 html : 'Panel 3 html content'

 },{

 title : 'Panel 4',

 html : 'Panel 4 html content'

 },{

 title : 'Panel 5',

 html : 'Panel 5 html content'

 }]

});

Anchor Layout

• This layout gives the privilege to the user to specify the size of each element with

respect to the container size.

Syntax

 layout:’anchor’

Example

Ext.create('Ext.container.Container', {

 renderTo : Ext.getBody(),

 layout : 'anchor' ,

 width : 600,

 items : [{

 title : 'Panel 1',

 html : 'panel 1',

 height : 100,

 anchor : '50%'

 }

]

});

Border Layout

• In this layout, various panels are nested and separated by borders.

69

Syntax

 Layout:’Border’

Example

Ext.create('Ext.panel.Panel', {

 renderTo: Ext.getBody(),

 height: 300,

 width: 600,

 layout:'border',

 defaults: {

 collapsible: true,

 split: true,

 bodyStyle: 'padding:15px'

 },

 items: [{

 title: 'Panel1',

 region:'west',

 html: 'This is Panel 1’

}]

});

Auto Layout

• This is the default layout that decides the layout of the elements based on the number

of elements.

Syntax

 layout:’auto’

 Example

Ext.create('Ext.container.Container', {

 renderTo : Ext.getBody(),

 layout : 'auto',

 width : 600,

70

 items : [{

 title: 'First Component',

 html : 'This is First Component'

 },{

 title: 'Second Component',

 html : 'This is Second Component'

 },{

 title: 'Third Component',

 html : 'This is Third Component'

 },{

 title: 'Fourth Component',

 html : 'This is Fourth Component'

 }]

 });

Card

• This layout arranges different components in tab fashion.

• Tabs will be displayed on top of the container.

• Every time only one tab is visible and each tab is considered as a different component.

Example

Ext.create('Ext.tab.Panel', {

 renderTo: Ext.getBody(),

 requires: ['Ext.layout.container.Card'],

 xtype: 'layout-cardtabs',

 width: 600,

 height: 200,

 items:[{

 title: 'Tab 1',

 html: 'This is first tab.'

 },{

 title: 'Tab 2',

71

 html: 'This is second tab.'

 },{

 title: 'Tab 3',

 html: 'This is third tab.'

 }]

});

Column

• This layout is to show multiple columns in the container.

• We can define a fixed or percentage width to the columns.

• The percentage width will be calculated based on the full size of the container.

Example

Ext.create('Ext.panel.Panel', {

 renderTo : Ext.getBody(),

 layout : 'column' ,

 xtype: 'layout-column',

 requires: ['Ext.layout.container.Column'],

 width : 600

 items: [{

 title : 'First Component width 30%',

 html : 'This is First Component',

 columnWidth : 0.30

 },{

 title : 'Second Component width 40%',

 html : '<p> This is Second Component </p> <p> Next line for

second component </p>',

 columnWidth : 0.40

 }]

 });

Fit

• In this layout, the container is filled with a single panel.

• When there is no specific requirement related to the layout, then this layout is used.

72

Example

Ext.create('Ext.container.Container', {

 renderTo : Ext.getBody(),

 layout : {

 type :'fit'

 },

 width : 600,

 defaults: {

 bodyPadding: 15

 },

 items : [{

 title: 'Panel1',

 html : 'This is panel 1'

 },{

 title: 'Panel2',

 html : 'This is panel 2'

 },{

 title: 'Panel3',

 html : 'This is panel 3'

 },{

 title: 'Panel4',

 html : 'This is panel 4'

 }]

});

Table Layout

• As the name implies, this layout arranges the components in a container in the HTML

table format.

73

Example

Ext.create('Ext.container.Container', {

 renderTo : Ext.getBody(),

 layout : {

 type :'table',

 columns : 3,

 tableAttrs: {

 style: {

 width: '100%'

 }

 }

 },

 width:600,

 height:200,

 items : [{

 title : 'Panel1',

 html : 'This panel has colspan = 2',

 colspan :2

 },{

 title : 'Panel2',

 html : 'This panel has rowspan = 2',

 rowspan: 2

 },{

 title : 'Panel3',

 html : 'This s panel 3'

 },{

 title : 'Panel4',

 html : 'This is panel 4'

 },{

74

 title : 'Panel5',

 html : 'This is panel 5'

 }]

 });

vBox

• This layout allows the element to be distributed in the vertical manner. This is one of

the mostly used layout.

Example

Ext.create('Ext.panel.Panel', {

 renderTo : Ext.getBody(),

 layout : {

 type :'vbox',

 align: 'stretch'

 },

 requires: ['Ext.layout.container.VBox'],

 xtype: 'layout-vertical-box',

 width : 600,

 height :400,

 frame :true,

 items : [{

 title: 'Panel 1',

 html : 'Panel with flex 1',

 margin: '0 0 10 0',

 flex : 1

 },{

 title: 'Panel 2',

 html : 'Panel with flex 2',

 margin: '0 0 10 0',

 flex : 2

 }]

75

});

Hbox

• This layout allows the element to be distributed in the horizontal manner.

Example

Ext.create('Ext.panel.Panel', {

 renderTo : Ext.getBody(),

 layout : {

 type :'hbox'

 },

 requires: ['Ext.layout.container.HBox'],

 xtype: 'layout-horizontal-box',

 width : 600,

 frame :true,

 items : [{

 title: 'Panel 1',

 html : 'Panel with flex 1',

 flex : 1

 },{

 title: 'Panel 2',

 html : 'Panel with flex 2',

 flex : 2

 },]

});

Working with Data

• Data package is used for loading and saving all the data in the application.

• Data package has numerous number of classes but the most important classes are −

• Model

• Store

• Proxy

Model

76

• The base class for model is Ext.data.Model.

• It represents an entity in an application.

• It binds the store data to view.

• It has mapping of backend data objects to the view dataIndex.

• The data is fetched with the help of store.

Creating a Model

• For creating a model, we need to extend Ext.data.Model class and we need to define

the fields, their name, and mapping.

Ext.define('StudentDataModel', {

 extend: 'Ext.data.Model',

 fields: [

 {name: 'name', mapping : 'name'},

 {name: 'age', mapping : 'age'},

 {name: 'marks', mapping : 'marks'}

]

});

• The name should be the same as the dataIndex, which we declare in the view and the

mapping should match the data, either static or dynamic from the database, which is to

be fetched using store.

Store

• The base class for store is Ext.data.Store.

• It contains the data locally cached, which is to be rendered on view with the help of

model objects. Store fetches the data using proxies, which has the path defined for

services to fetch the backend data.

• Store data can be fetched in two ways - static or dynamic.

Static store

• For static store, we will have all the data present in the store as shown in the following

code.

Ext.create('Ext.data.Store', {

 model: 'StudentDataModel',

 data: [

 { name : "Asha", age : "16", marks : "90" },

77

 { name : "Vinit", age : "18", marks : "95" },

 { name : "Anand", age : "20", marks : "68" },

 { name : "Niharika", age : "21", marks : "86" },

 { name : "Manali", age : "22", marks : "57" }

];

});

Dynamic Store

• Dynamic data can be fetched using proxy.

• We can have proxy which can fetch data from Ajax, Rest, and Json.

Proxy

• The base class for proxy is Ext.data.proxy.Proxy.

• Proxy is used by Models and Stores to handle the loading and saving of Model data.

• There are two types of proxies

• Client Proxy

• Server Proxy

Types of proxy

• Client Proxy-Client proxies include Memory and Local Storage using HTML5 local

storage.

• Server Proxy-Server proxies handle data from the remote server using Ajax, Json data,

and Rest service.

Defining proxies in the server

Ext.create('Ext.data.Store', {

 model: 'StudentDataModel',

 proxy : {

 type : 'rest',

 actionMethods : {

 read : 'POST' // Get or Post type based on requirement

 },

 url : 'restUrlPathOrJsonFilePath', // here we have to include the rest URL

path

 // which fetches data from database or Json file path where the data is stored

78

 reader: {

 type : 'json', // the type of data which is fetched is of JSON type

 root : 'data'

 },

 }

});

Panels

• A panel is a container that has specific functionality and structural components that

make it the perfect building block for application-oriented user interfaces.

• We can add toolbars, buttons at the bottom or make the panel collapsible.

• The panels can be assigned easily to another container.

• Example

 var main = new Ext.Panel({

 title: 'My first panel', //panel's title

 width:250, //panel's width

 height:300, //panel's height

 renderTo: 'frame', //the element where the panel is going to be inserted

 html: 'Nothing important just dummy text' //panel's content

});

Types of Panel

Tree Panel

• The Tree Panel Component is one of the most versatile Components in Ext JS and is an

excellent tool for displaying heirarchical data in an application.

• Tree Panel extends from the same class as Grid Panel, so all of the benefits of Grid

Panels - features, extensions, and plugins can also be used on Tree Panels.

• Things like columns, column resizing, dragging and dropping, renderers, sorting and

filtering can be expected to work similarly for both components.

Example

Ext.create('Ext.tree.Panel', {

 renderTo: Ext.getBody(),

79

 title: 'Simple Tree',

 width: 150,

 height: 150,

 root: {

 text: 'Root',

 expanded: true,

 children: [

 {

 text: 'Child 1',

 leaf: true

 },

 {

 text: 'Child 2',

 leaf: true

 },

 {

 text: 'Child 3',

 expanded: true,

 children: [

 {

 text: 'Grandchild',

 leaf: true

 }

]

 }

]

 }

});

Grid Panels

• ExtJS Grid, you can create grids which are nothing but tables with rows and columns

in it.

80

• Based on the type of ExtJS Grid you use, you can print and edit the grid contents.

• Edit includes Add/Modify/Delete of a particular column/row in the table.

• ExtJS Grid also takes care of paging when the number of records is huge.

Types of Grid Panels in ExtJS Grid

• Grid Panel – Using GridPanel you are allowed to show only the data on the Grid. No

other transactions can be done on the Grid.

• Editor Grid Panel – Editor Grid Panel extends or inherits from GridPanel. If any of

the columns in the Editor Grid Panel has to be editable, then you can configure specific

editor for that column.

• Property Grid – Property Grid extends or inherits from EditorGridPanel. It is used to

manage elements of the Grid as key-value pairs.

Events

• Events are something which get fired when something happens to the class.

• For example, when a button is getting clicked or before/after the element is rendered.

Methods of Writing Events

• Built-in events using listeners

• Attaching events later

• Custom events

Built-in Events Using Listeners

Ext.create('Ext.Button', {

 renderTo: Ext.getElementById('helloWorldPanel'),

 text: 'My Button',

 listeners: {

 click: function() {

 Ext.MessageBox.alert('Alert box', 'Button is clicked');

 }

 }

 });

81

Attaching an Event Later

• In the previous method of writing events, we have written events in listeners at the time

of creating elements.

Example

 button.on('click', function() {

 Ext.MessageBox.alert('Alert box', 'Button is clicked');

 });

Example

var button = Ext.create('Ext.Button’,

{

 renderTo: Ext.getBody(),

text: 'My Button’

 });

button.on('click', function()

{ alert("Success!','Event listener attached by .on’);

});

Custom Events

• We can write custom events in Ext JS and fire the events with fireEvent method.

• FireEvent- Events fire whenever something interesting happens to one of your Classes.

• when a Component renders to the screen, Ext JS fires an event after the render

completes.

Removing Listeners

• we can add listeners at any time, we can also remove them.

• Use .un function to remove the listener.

Example

 doSomething = function() {

 Ext.Msg.alert('listener called');

};

var button = Ext.create('Ext.Button', {

 renderTo: Ext.getBody(),

82

 text: 'My Button',

 listeners: {

 click: doSomething,

 }

});

Ext.defer(function() {

 button.un('click', doSomething);

}, 3000);

Ext.defer

• Clicking the button in the first 3 seconds yields an alert message.

• However, after 3 seconds the listener is removed so nothing happens

REFERENCES

1. David Flanagan, ” JavaScript: The Definitive Guide ” , 6th Edition, O'Reilly Media,

Inc, March 2011.

2. Alessio Malizia , Ext JS Documentation Site “ Mobile 3D Graphics ”, Springer,2006.

3. Colin Ramsay , Shea Frederick , Steve Cutter' Blades, “ Learning Ext JS ”, Packt

Publishing , 2008.

4. Jesus Garcia, “ Ext JS in Action ”, Manning Publications , 2010.

83

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 UNIT – IV-Rich Internet Applications – SCS1401

84

IV.Introduction to GWT

Overview - Why Gwt - GWT compiler - Cross browser compatibility. Basic GWT -

GWT modules - Build and deploy simple GWT application - GWT Widget Library.

Overview

Google Web Toolkit (GWT) is a development toolkit to create Rich Internet Applications

(RIA).

Features of GWT are

• GWT provides developers option to write client-side application in JAVA.

• GWT compiles the code written in JAVA to JavaScript code.

• Application written in GWT is cross-browser compliant. GWT automatically

generates Java script code suitable for each browser.

• GWT is open source, completely free, and used by thousands of developers around the

world. It is licensed under the Apache License version 2.0.

• GWT is a framework to build large-scale high-performance web application while

keeping them as easy-to-maintain.

• Browser supports (IE, Firefox, Mozilla, Safari, and Opera)

• Browser history management

• Dynamic, reusable UI components

• Really simple RPC

• Real debugging

• Completely Open Source

Why GWT?

▪ All of our favourite Java development tools such as Eclipse, Junit, IntelliJ and J Profiler

can be used for AJAX development.

▪ Static type checking in Java language boosts productivity while reducing errors.

▪ Common Java script errors are easily caught at compile time rather than by users at run

time.

▪ Code prompting/completion is widely available.

▪ Java based OO designs are easier to communicate and understand, thus making AJAX

code base more comprehensible with less documentation.

▪ GWT provides easy integration with Junit and Maven.

▪ Being Java based, GWT has a low learning curve for Java Developers.

▪ GWT generates optimized Java script code, produces browser's specific Javascript code

by self.

▪ GWT provides Widgets library provides most of tasks required in an application.

▪ GWT is extensible and custom widget can be created to cater to application needs.

85

▪ On top of everything, GWT applications can run on all major browsers and smart phones

including Android and iOS-based phones/tablets.

Disadvantages of GWT

Although GWT offers plenty of advantages, it suffers from the following disadvantages

▪ Not Indexable − Web pages generated by GWT would not be indexed by search engines

because these applications are generated dynamically.

▪ Not Degradable − If your application user disables Javascript then user will just see the

basic page and nothing more.

▪ Not Designer's Friendly − GWT is not suitable for web designers who prefer using plain

HTML with placeholders for inserting dynamic content at later point in time

The GWT Components

The GWT framework can be divided into following three major parts −

➢ GWT Java to JavaScript compiler − This is the most important part of GWT which

makes it a powerful tool for building RIAs. The GWT compiler is used to translate

all the application code written in Java into JavaScript.

➢ JRE Emulation library − Google Web Toolkit includes a library that emulates a

subset of the Java runtime library. The list includes java.lang, java.lang.annotation,

java.math, java.io, java.sql, java.util and java.util.logging

➢ GWT UI building library − This part of GWT consists of many subparts which

includes the actual UI components, RPC support, History management, and much

more.

GWT also provides a GWT Hosted Web Browser which lets you run and execute

your GWT applications in hosted mode, where your code runs as Java in the Java

Virtual Machine without compiling to JavaScript.

Cross browser compatibility

 GWT shields you from worrying too much about cross-browser incompatibilities. If

you stick to built-in widgets and composites, your applications will work similarly on the

most recent versions of Internet Explorer, Firefox, Chrome, and Safari. (Opera, too, most of

the time.) HTML user interfaces are remarkably quirky, though, so make sure to test your

applications thoroughly on every browser.

 Whenever possible, GWT defers to browsers’ native user interface elements. For

example, GWT’s Button widget is a true HTML <button> rather than a synthetic button-

like widget built, say, from a <div>. That means that GWT buttons render appropriately in

different browsers and on different client operating systems. We like the native browser

controls because they’re fast, accessible, and most familiar to users.

Basic Widgets

86

Every user interface considers the following three main aspects −

UI elements − These are the core visual elements the user eventually sees and interacts

with.

Layouts − They define how UI elements should be organized on the screen and provide a

final look and feel to the GUI (Graphical User Interface).

Behavior − These are events which occur when the user interacts with UI elements.

GWT UI Elements

The GWT library provides classes in a well-defined class hierarchy to create complex web-

based user interfaces. All classes in this component hierarchy has been derived from the

UIObject base class shown in Figure 4.1.

Figure 4.1 Hierarchical structure of GWT UI elements

Every Basic UI widget inherits properties from Widget class which in turn inherits

properties from UIObject.

GWT Basic widgets are:

Label: The Label can contain only arbitrary text and it cannot be interpreted as HTML. This

widget uses a <div> element, causing it to be displayed with block layout.

HTML: This widget can contain HTML text and displays the html content using a <div>

element, causing it to be displayed with block layout.

Image: This widget displays an image at a given URL.

Anchor: This widget represents a simple <a> element.

GWT Form widgets:

 The GWT form widgets are discussed in Figure 4.2 and Figure 4.3.

87

• Button -This widget represents a standard push button.

• PushButton - This widget represents a normal push button with custom styling.

• ToggleButton - This widget represents a stylish stateful button which allows the user to

toggle between up and down states.

• CheckBox - This widget represents a standard check box widget. This class also serves

as a base class for RadioButton.

• RadioButton - This widget represents a mutually-exclusive selection radio button

widget.

• Button -This widget represents a standard push button.

• PushButton - This widget represents a normal push button with custom styling.

• ToggleButton - This widget represents a stylish stateful button which allows the user to

toggle between up and down states.

• CheckBox - This widget represents a standard check box widget. This class also serves

as a base class for RadioButton.

• RadioButton - This widget represents a mutually-exclusive selection radio button

widget.

• Button -This widget represents a standard push button.

• PushButton - This widget represents a normal push button with custom styling.

• ToggleButton - This widget represents a stylish stateful button which allows the user to

toggle between up and down states.

• CheckBox - This widget represents a standard check box widget. This class also serves

as a base class for RadioButton.

• RadioButton - This widget represents a mutually-exclusive selection radio button

widget.

88

Figure 4.2 Form widgets

Figure 4.3 Form widgets

GWT Compiler

• The heart of GWT is a compiler that converts Java source into JavaScript,

• i.e transforming your working Java application into an equivalent JavaScript

application.

• If your GWT application compiles and runs in hosted mode.

• GWT compiles your application into JavaScript output without complaint,

• Then your application will work the same way in a web browser as it did in hosted mode

Debugging and Deploying GWT Applications

GWT applications can be run in two modes:

1.Development mode (formerly Hosted mode):

• The application is run as Java bytecode within the (JVM).

• This mode is typically used for development, supporting hot swapping of code(Hot

swapping and Hot plugging are terms used to describe the functions of replacing

computer system components without shutting down the system.) and debugging.

2.Production mode (formerly Web mode):

– The application is run as pure JavaScript and HTML, compiled from the Java source.

– This mode is typically used for deployment.

89

Google Web Toolkit Architecture

GWT has three major components:

1.Java-to-Javascript compiler

– Translates the Java programming language to the JavaScript programming

language.

2. GWT Development Mode

– Allows the developers to run and execute GWT applications in development

mode.

3. Two Java class libraries

 (i)JRE Emulation library.

 (ii)GWT web UI class library.

JRE Emulation library : Google Web Toolkit includes a library that adds a subset of the

Java runtime library.

The list includes java.lang, java.lang.annotation, java.math, java.io, java.sql, java.util and

java.util.logging

GWT UI building library : This part of GWT consists of many subparts which includes

the actual UI components, RPC support, History management, and much more shown in

Figure 4.4.

 Figure 4.4 GWT UI building library

Google Web Toolkit Features

▪ Browser supports (IE, Firefox, Mozilla, Safari, and Opera)

▪ Browser history management

▪ Dynamic, reusable UI components

90

▪ Really simple RPC

▪ Real debugging

▪ Completely Open Source

System Requirement

 The GWT system requirement is shown in Figure 4.5.

Figure 4.5 System Requirement

Follow the given steps to setup your environment to start with GWT application

development.

• Step 1 -Verify Java installation on your machine

• Now open console and execute the following java command shown in Figure 4.6.

Figure 4.6 Command

91

Step 2 -Setup Java Development Kit (JDK):

• If you do not have Java installed then you can install the Java Software Development Kit

(SDK) from Oracle's Java site: https://www.oracle.com/java/technologies/javase-

downloads.html

• set PATH and JAVA_HOME environment variables to refer to the directory that contains

java and javac, typically java_install_dir/bin and java_install_dir respectively.

• Set the JAVA_HOME environment variable to point to the base directory location where

Java is installed on your machine. For example

Step 3 -Setup Eclipse IDE

• To install Eclipse IDE, download the latest Eclipse binaries from

http://www.eclipse.org/downloads/.

• Once you downloaded the installation, unpack the binary distribution into a convenient

location.

 For example in C:\eclipse on windows, or

• /usr/local/eclipse on Linux/Unix and finally set PATH variable appropriately.

• Eclipse can be started by executing the following commands on windows machine, or you

can simply double click on eclipse.exe

• %C:\eclipse\eclipse.exe

Eclipse can be started by executing the following commands on Unix machine:

• $/usr/local/eclipse/eclipse

• After a successful startup, if everything is fine then it should display following result in

Figure : 4.7.

92

 Figure 4.7 Successful Startup

Step 4: Install GWT SDK & Plugin for Eclipse

• Follow the instructions given

– Start Eclipse, then select Help > Install New Software...

– In the dialog that appears, enter the update site URL into the Work with text

box:http://dl.google.com/eclipse/plugin/4.2

• After a successful setup for the GWT plugin, if everything is fine then it should display

following screen in Figure 4.8 with google icon marked with red rectangle:

 Figure 4.8 Successful Setup

Step 5: Setup Apache Tomcat:

• You can download the latest version of Tomcat from http://tomcat.apache.org/.

• Once you downloaded the installation, unpack the binary distribution into a convenient

location.

For example in C:\apache-tomcat-6.0.33 on windows,

• /usr/local/apache-tomcat-6.0.33 on Linux/Unix

and set CATALINA_HOME environment variable pointing to the installation locations.

• Tomcat can be started by executing the following commands on windows machine, or you

can simply double click on startup.bat

• %CATALINA_HOME%\bin\startup.bat

 or

• C:\apache-tomcat-6.0.33\bin\startup.bat

• Tomcat can be started by executing the following commands on Unix machine:

93

• $CATALINA_HOME/bin/startup.sh

• or /usr/local/apache-tomcat-6.0.33/bin/startup.sh

• The .sh file extension is a shell script.

After a successful startup, the default web applications included with Tomcat will be

available by visiting http://localhost:8080/. If everything is fine then it should display

following result in Figure 4.9

Figure 4.9 Successful Startup

• Tomcat can be stopped by executing the following commands on windows machine:

– %CATALINA_HOME%\bin\shutdown

or

– C:\apache-tomcat-5.5.29\bin\shutdown

• Tomcat can be stopped by executing the following commands on Unix machine:

– $CATALINA_HOME/bin/shutdown.sh

or

– /usr/local/apache-tomcat-5.5.29/bin/shutdown.sh

Applications

A GWT application consists of following four important parts out of which last part is

optional but first three parts are mandatory.

1. Module descriptors

94

2. Public resources

3. Client-side code

4. Server-side code

1. Module Descriptors

• A module descriptor is the configuration file in the form of XML which is used to

configure a GWT application.

• A module descriptor file extension is *.gwt.xml,

• where * is the name of the application and this file should reside in the project's root.

• Following will be a default module descriptor HelloWorld.gwt.xml for a HelloWorld

application is shown in Figure 4.10.

 Figure 4.10 Default Module Descriptor

1. <module rename-to="helloworld">

1. This provides name of the application.

2.<inherits name="logical-module-name" />

– This adds other gwt module in java appliacations.

3.<entry-point class="classname" />

– This specifies the name of class which will start loading the GWT Application .

4. <source path="path" />

This specifies the names of source folders which GWT compiler will search for source

compilation.

95

 5.<public path="path" />

– The public path is the place to store resources such as CSS or

images .

6. <script src="js-url" />

– Automatically inserts the external JavaScript file located at the location specified by src.

 7. <stylesheet src="css-url" />

Automatically inserts the external CSS file located at the location specified by src.

2. Public resources

• These all files referenced by your GWT module ,such as HTML, CSS or Images.

• The location of these resources can be configured using <public path="path" /> .

• When you compile your application into JavaScript, all the files that can be found on your

public path are copied to the module's output directory .

<html>

<head>

<title>Hello World</title>

<link rel="stylesheet"href="HelloWorld.css"/>

<script language="javascript“ src="helloworld/helloworld.nocache.js">

</script> </head>

<body>

<h1>Hello World</h1>

<p>Welcome to first GWT application</p>

</body> </html>

Following is the sample style sheet which we have included in our host page

body {

text-align: center;

font-family: verdana, sans-serif; }

h1 {

font-size:2em;

font-weight: bold;

color:red;

96

margin:40px0px70px;

text-align: center; }

3. Client-side code

• The location of these resources can be configured using <source path="path" />.

• This is the actual Java code implementing the business logic of the application and that the

GWT compiler translates into JavaScript .

• When a module is loaded, every entry point class is detected and its

– EntryPoint.onModuleLoad() method gets called.

• A sample HelloWorld Entry Point class will be as follows

Public class HelloWorld implements EntryPoint

{

 public void onModuleLoad()

 {

Window.alert("Hello, World!");

 }

}

4. Server-side code

• This is the server side part of your application and its very much optional.

• If you are not doing any backend processing with-in your application then you do not need

this part

Create Application

Let's start with a simple HelloWorld application is shown in Figure 4.11(a),Figure

4.11(b), Figure 4.11(c).

Step 1 -Create Project

• The first step is to create a simple Web Application Project using Eclipse IDE.

• Launch project wizard using the option

• Google Icon > New Web Application Project....

97

 Figure 4.11(a) Create Application-step1

Figure 4.11(b) Create Application-step2

Figure 4.11(c) Create Application-Step 3

98

• Description of all important folders

SRC:

✓ Source code (java classes) files.

✓ Client folder containing the client-side specific java classes responsible for client UI

display.

✓ Server folder containing the server-side java classes responsible for server side

processing.

✓ Shared folder containing the java model class to transfer data from server to client and

vice versa.

✓ HelloWorld.gwt.xml, a module descriptor file required for GWT compiler to compile the

HelloWorld project.

TEST:

• Test code (java classes) source files.

• Client folder containing the java classes responsible to test gwt client side code.

• This is the most important part, it represents the actual deployable web application.

• WEB-INF containing compiled classes, gwt libraries, servlet libraries,HelloWorld.css,

project style sheet.

• HelloWorld.html, hosts HTML which will invoke GWT UI Application.

Step 2 -Modify Module Descriptor: HelloWorld.gwt.xml

GWT plugin will create a default module descriptor file - src/HelloWorld.gwt.xml which is

given below :

<?xml version="1.0“ ?>

<modulerename-to='helloworld'>

<!-- Inherit the core Web Toolkit stuff. -->

<inheritsname='com.google.gwt.user.User'/>

<!-- Inherit the default GWT style sheet. You can change -->

<!-- the theme of your GWT application by uncommenting -->

<!-- any one of the following lines. -->

<inheritsname='com.google.gwt.user.theme.clean.Clean'/>

<!--<inherits name='com.google.gwt.user.theme.chrome.Chrome'/> -->

<!--<inherits name='com.google.gwt.user.theme.dark.Dark'/> -->

<!-- Other module inherits -->

99

<!-- Specify the app entry point class. -->

<entry-pointclass='com.client.HelloWorld'/>

<!-- Specify the paths for translatable code -->

<sourcepath='client'/>

<sourcepath='shared'/>

</module>

Step 3 -Modify Style Sheet: HelloWorld.css

• GWT plugin will create a default Style Sheet file war/HelloWorld.css.

• Let us modify this file to keep our example at simplest level of understaning:

body { text-align: center;

font-family: verdana, sans-serif; }

h1 { font-size:2em;

font-weight: bold;

color:red;

margin:40px0px70px;

text-align: center; }

Step 4 -Modify Host File: HelloWorld.html

GWT plugin will create a default HTML host file war/HelloWorld.html.

Let us modify this file to keep our example at simplest level of understaning:

<html> <head> <title>Hello World</title>

<linkrel="stylesheet"href="HelloWorld.css"/>

<scriptlanguage="javascript"src="helloworld/helloworld.nocache.js">

</script></head> <body>

<h1>Hello World</h1>

<p>Welcome to first GWT application</p>

</body> </html>

Step 5 -Modify Entry Point: HelloWorld.java

100

• GWT plugin will create a default Java file src/com.HelloWorld.java, which keeps an entry

point for the application.

• Let us modify this file to display "Hello,World!":

package com.client;

import com.google.gwt.core.client.EntryPoint;

import com.google.gwt.user.client.Window;

Public class HelloWorld implements EntryPoint{

Public void onModuleLoad(){

Window.alert("Hello, World!");

} }

Step 6 -Compile Application

• Once you are ready with all the changes done, its time to compile the project.

• Use the option Google Icon > GWT Compile Project...

• to launch GWT Compile dialogue box as shown below in Figure 4.12:

 Figure 4.12 GWT Compile Dialogue Box

• Click Compile button. If everything goes fine, you will see following output in Eclipse

console

• Compiling module com.HelloWorld

101

• Compiling 6 permutations

• Compiling permutation 0...

• Compiling permutation 1...

• Compiling permutation 2...

• Compiling permutation 3...

• Compiling permutation 4...

• Compiling permutation 5...

• Compile of permutations succeeded

• Linking into C:\workspace\HelloWorld\war\helloworld

• Link succeeded

Step 7 -Run Application

• Now click on Run application menu and select Hello World application to run the

application in Figure 4.13.

 Figure 4.13 Run Application

If everything is fine, you must see GWT Development Mode active in Eclipse containing a

URL as shown below in Figure 4.14.

Double click the URL to open the GWT application.

102

Figure 4.14 GWT Development Mode

Deploy Application

• Create WAR(Web application Archive) File

• Now our applictaion is working fine and we are ready to export it as a war file. Follow the

following steps:

• Go into your project's war directory

 C:\workspace\HelloWorld\war

• Select all the files & folders available inside war directory.

• Zip all the selected files & folders in a file called HelloWorld.zip.

• Rename HelloWorld.zip to HelloWorld.war.

Deploy WAR file

• Stop the tomcat server.

• Copy the HelloWorld.war file to tomcat installation directory > webapps folder.

• Start the tomcat server.

• Look inside webapps directory, there should be a folder helloworld got created.

• Now HelloWorld.war is successfully deployed in Tomcat Webserver root.

Run Application –

• Enter a url in web browser: http://localhost:8080/HelloWorld to launch the application in

figure 4.15.

• Server name (localhost) and port (8080) may vary as per your tomcat configuration.

103

Figure 4.15 Execution of Hello Application

GWT Widgets

• Button

• PushButton

• RadioButton

• CheckBox

• DatePicker

• ToggleButton

• TextBox

• PasswordTextBox

• TextArea

• Hyperlink

• ListBox

• CellList

• MenuBar

• Tree

• CellTree

• SuggestBox

• RichTextArea

• FlexTable

• Grid

• CellTable

• CellBrowser

104

• TabBar D

• DialogBox

TextBox Widget Example

src/com.text/HelloWorld.gwt.xml.

<?xml version="1.0“ >

<module rename-to='helloworld'>

<inherits name='com.google.gwt.user.User'/>

<inherits name='com.google.gwt.user.theme.clean.Clean'/>

<entry-point class='com.tutorialspoint.client.HelloWorld'/>

<source path='client'/>

<source path='shared'/>

</module>

war/HelloWorld.css

body{

text-align: center;

font-family: verdana, sans-serif; }

h1{

font-size:2em;

font-weight: bold;

color:red;

margin:40px0px70px;

text-align: center; }

.gwt-TextArea{ color: green; }

.gwt-TextArea-readonly{ background-color: yellow; }

war/HelloWorld.html.

<html> <head>

<title>Hello World</title>

<link rel="stylesheet" href="HelloWorld.css"/>

<script language="javascript" src="helloworld/helloworld.js">

</script>

105

</head><body>

<h1>TextArea Widget Demonstration</h1>

<div id="gwtContainer"></div>

</body></html >

src/com.text/HelloWorld.java

package com.tutorialspoint.client;

import com.google.gwt.core.client.EntryPoint;

import com.google.gwt.user.client.ui.RootPanel;

import com.google.gwt.user.client.ui.TextArea;

import com.google.gwt.user.client.ui.VerticalPanel;

public class HelloWorld implementsEntryPoint{

public void onModuleLoad(){

//create textarea elements

TextArea textArea1 =new TextArea();

TextArea textArea2 =new TextArea();

//set width as 10 characters

textArea1.setCharacterWidth(20);

textArea2.setCharacterWidth(20);

//set height as 5 lines

textArea1.setVisibleLines(5);

textArea2.setVisibleLines(5);

//add text to text area

textArea2.setText(" Hello World! \n Be Happy! \n Stay Cool!");

//set textbox as readonly

textArea2.setReadOnly(true);

// Add text boxes to the root panel.

VerticalPanel panel =newVerticalPanel();

panel.setSpacing(10);

panel.add(textArea1);

panel.add(textArea2);

106

RootPanel.get("gwtContainer").add(panel);

}

}

GWT Widget Library

• Widgets included with Service Portal can be customized to suit your own needs or as a basic

code sample for you to refer to as you are building your own widgets.

• Widgets included with Service Portal can be customized to suit your own needs or as a basic

code sample for you to refer to as you are building your own widgets.

• Each widget provides end-user functions such as data visualization, remote device control,

alarms management and displaying static custom html content.

Digital Gauges

 Useful for visualization of temperature, humidity, speed and other integer or float

values shown in Figure 4.16.

Figure 4.16 Digital Gauges

Analog Gauges

Similar to digital gauges, but have a different style in Figure 4.17.

Figure 4.17 Analog Gauges

107

Charts

Useful for visualization of historical or real-time data with a time window in Figure 4.18.

Figure 4.18 Charts

Maps widgets

The maps widgets are shown in Figure 4.19.

Figure 4.19 Maps Widgets

Announcements widget

 Users can view all active announcements. You can use this base system widget as-

is in your Service Portal or clone it to suit your own business needs is shown in Figure

4.20.

108

Figure 4.20 Announcement Widgets

• Announcements widget-Users can view all active announcements. You can use this base

system widget as-is in your Service Portal or clone it to suit your own business needs.

• Approvals widget-Users can approve or reject items directly within Service Portal. You

can use this base system widget as-is in your Service Portal or clone it to suit your own

business needs.

• Approval Info widget-The Approval Info widget works in tandem with the Approval

widget to display details about the approval request. You can use this base system widget

as-is in your Service Portal or clone it to suit your own business needs.

• Approval Record widget-The Approval Record widget shows the full record for an

approval including the activity stream. You can use this base system widget as-is in

your Service Portal or clone it to suit your own business needs.

• Breadcrumbs widget-The breadcrumbs widget allows users to easily navigate around a

portal. You can use this base system widget as-is in your Service Portal or clone it to suit

your own business needs.

• Breakout Game widget-Add a fun, interactive 404 page to pages that do not exist using

the Breakout Game widget. You can use this base system widget as-is in your Service

Portal or clone it to suit your own business needs.

• Calculator widget-The calculator widget does simple calculations. You can use this base

system widget as-is in your Service Portal or clone it to suit your own business needs.

• Carousel widget-Showcase specific items in your catalog using a scrolling list of images

in the carousel widget. You can use this base system widget as-is in your Service Portal or

clone it to suit your own business needs.

• Change Password widget-Users can change their passwords using the Change Password

widget.

• Cool Clock widget-Show different times around the world using the Cool Clock

widget. You can use this base system widget as-is in your Service Portal or clone it to suit

your own business needs.

https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/announcements-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/announcements-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/approvals-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/approvals-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/approval-info-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/approval-info-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/approval-record-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/approval-record-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/breadcrumbs-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/breadcrumbs-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/breakout-game-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/breakout-game-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/calculator-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/calculator-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/carousel-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/carousel-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/change-password-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/change-password-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/cool-clock-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/cool-clock-widget.html

109

• Data table from instance definition widget-Display a filtered list on your portal using the

data table from instance definition widget. You can use this base system widget as-is in

your Service Portal or clone it to suit your own business needs.

• Data Table from URL definition widget-The Data Table from URL definition widget

displays the table you select from the list. You can use this base system widget as-is in

your Service Portal or clone it to suit your own business needs.

• Form widget-The form widget is a platform form within the Service Portal UI with a few

differences. You can use this base system widget as-is in your Service Portal or clone it to

suit your own business needs.

• Header menu widget-The Header Menu widget controls which options appear in the page

header. You can use this base system widget as-is in your Service Portal or clone it to suit

your own business needs.

• Hello World widgets-The Hello World widgets are included with Service Portal as

examples of how to use and create widgets. You can use this base system widget as-is in

your Service Portal or clone it to suit your own business needs.

• HTML widget-Use the HTML widget to directly inject HTML, text, lists, or content in

general into a page. You can use this base system widget as-is in your Service Portal or

clone it to suit your own business needs.

• Icon Link widget-Link to any other item. You can use this base system widget as-is in

your Service Portal or clone it to suit your own business needs.

• Icon menu list widget-A simple list with a glyph icon next to each link. You can use this

base system widget as-is in your Service Portal or clone it to suit your own business needs.

• Language Switch widget-Add the Language Switch widget to a landing or homepage to

allow your users to change the language of the page. You can use this base system widget

as-is in your Service Portal or clone it to suit your own business needs.

• Link button widget-The Link Button widget is a button you can nest in any other widget

that links to another destination. You can use this base system widget as-is in your Service

Portal or clone it to suit your own business needs.

• Login widget-The login widget controls user access to your site. You can use this base

system widget as-is in your Service Portal or clone it to suit your own business needs.

• My Requests widget-The My Requests widget stores all of your open requests in one

place. You can use this base system widget as-is in your Service Portal or clone it to suit

your own business needs.

• My Requests widget-Use the My Requests widget (my-requests-v2) to enable requesters

to view open or closed requests in Service Portal. Requests, incidents, and tasks are

displayed in a single view that is based on the filter conditions and display settings in the

My Request Filter module. For information on defining filters for this module, refer to the

Related information section.

https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/data-table-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/data-table-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/data-table-url-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/data-table-url-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/form-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/form-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/header-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/header-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/hello-world-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/hello-world-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/html-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/html-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/icon-link-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/icon-link-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/icon-menu-list-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/icon-menu-list-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/language-switch-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/language-switch-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/link-button-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/link-button-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/login-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/login-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/my-requests-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/my-requests-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/my-request-widget-portal.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/my-request-widget-portal.html

110

• Organization Chart widget-The Organization Chart widget shows employees in a tree

structure relative to their manager. You can use this base system widget as-is in your Service

Portal or clone it to suit your own business needs.

• Simple List widget-The Simple List widget can be used to display any list in the system

within Service Portal. You can use this base system widget as-is in your Service Portal or

clone it to suit your own business needs.

• Sample Footer widget-The Sample Footer widget is an example of a footer you can use in

your portal. You can use this base system widget as-is in your Service Portal or clone it to

suit your own business needs.

• Ticket Attachments widget-Use the attachment widget to attach items to tickets. You can

use this base system widget as-is in your Service Portal or clone it to suit your own business

needs.

• Ticket Conversations widget-Record of ticket items. Users can use this widget to

communicate back and forth with the fulfiller and the receiver. You can use this base system

widget as-is in your Service Portal or clone it to suit your own business needs.

• Ticket Fields widget-The Ticket Fields widget displays information about a request that a

user has made. You can use this base system widget as-is in your Service Portal or clone it

to suit your own business needs.

• Ticket Location widget-Share your location in a ticket. You can use this base system

widget as-is in your Service Portal or clone it to suit your own business needs.

• User Profile widget-Display user profile information. You can use this base system widget

as-is in your Service Portal or clone it to suit your own business needs.

References

1. Federico Kerek , “ Essential GWT: Building for the Web with Google Web Toolkit

2 ”, Addison-Wesley Professional,2010.

https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/org-chart-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/org-chart-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/simple-list-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/simple-list-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/sample-footer-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/sample-footer-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/ticket-attachment-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/ticket-attachment-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/ticket-conversations-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/ticket-conversations-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/ticket-fields-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/ticket-fields-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/ticket-location-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/ticket-location-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/user-profile-widget.html
https://docs.servicenow.com/bundle/paris-servicenow-platform/page/build/service-portal/concept/user-profile-widget.html

111

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – V-Rich Internet Applications – SCS1401

112

V. Building Ria With GWT

GWT Panels and Layouts - Event Handling - Internationalisation - Advanced GWT -

RPC and AJAX – Writing a service implementation - Handling browser back button

functionality - MVP Design pattern.

GWT Layout Panels

• Layout Panel helps us to design the user interface of the panels.

• This panel helps to fit all the content inside the windows.

• Every Panel widget inherits properties from Panel class which in turn inherits

properties from Widget class and which in turn inherits properties from UIObject

class.

Types of Layout Panels

1.Flow Panel

2. Horizontal Panel

3. Vertical Panel

4. Horizontal Split Panel

5. Vertical Split Panel

6. Flex Table

7. Grid

8. Deck Panel

9. Dock Panel

10. HTML Panel

11. Tab Panel

12. Composite

13. Simple Panel

14. Scroll Panel

15. Focus Panel

16. Form Panel

17. Popup Panel

18. Dialog Box

113

Flow Panel

• This widget represents a panel that formats its child widgets using the default HTML

layout behavior shown in Figure 5.1.

Class Declaration

public class FlowPanel extends ComplexPanel

implements InsertPanel.ForIsWidget

Constructor

 FlowPanel()

Class Methods

• void add(Widget w)-Adds a new child widget to the panel.

• void clear()-Removes all child widgets.

• void insert(Widget w, int beforeIndex)

EXAMPLE

Figure 5.1 Flow Layout

HorizontalPanel

• The HorizantalPanel widget represents a panel that lays all of its widgets out in a

single horizontal column in figure 5.2.

Class Declaration

 public class HorizontalPanel extends CellPanel

 implements HasAlignment, InsertPanel.ForIsWidget

114

Class Constructors

 HorizontalPanel()

 Class Methods

• void add(Widget w)- Adds a child widget.

• HasHorizontalAlignment.HorizontalAlignmentConstant

getHorizontalAlignment()- Gets the horizontal alignment.

• HasVerticalAlignment.VerticalAlignmentConstant

getVerticalAlignment()-Gets the vertical alignment.

• void insert(Widget w, int beforeIndex)- Inserts a child widget before the

specified index.

• boolean remove(Widget w)- Removes a child widget.

 Figure 5.2 Horizontal Layout

Vertical Panel

• The VerticalPanel widget represents a panel that lays all of its widgets out in a single

vertical in Figure 5.3.

• row.

Class Declaration

 public class VerticalPanel extends CellPanel

 implements HasAlignment, InsertPanel.ForIsWidget

 Class Constructors

 VerticalPanel()

115

 Class Methods

• void add(Widget w)-Adds a child widget.

• boolean remove(Widget w)-Removes a child widget.

 Figure 5.3 Vertical Panel

Horizontal Split Panel

• The HorizantalSplitPanel widget represents a panel that arranges two widgets in a

single horizontal row and allows the user to interactively change the proportion of the

width dedicated to each of the two widgets.

Class Declaration

 public final class HorizontalSplitPanel extends Panel

 Constructors

 HorizontalSplitPanel()

 HorizontalSplitPanel(HorizontalSplitPanel.Resources resources)

 Class Methods

• void add(Widget w)

• Widget getLeftWidget()-Gets the widget in the left side of the panel.

• Widget getRightWidget()-Gets the widget in the right side of the panel.

• boolean isResizing()-Indicates whether the split panel is being resized.

• boolean remove(Widget widget)-Removes a child widget.

• void setLeftWidget(Widget w)-Sets the widget in the left side of the panel.

• void setRightWidget(Widget w)-Sets the widget in the right side of the panel.

116

 Figure 5.4 Horizontal Split Panel

VerticalSplit Panel

• The VerticalSplitPanel widget represents a panel that arranges two widgets in a

single vertical column and allows the user to interactively change the proportion of

the height dedicated to each of the two widgets.

• Widgets contained within a VerticalSplitterPanel will be automatically decorated with

scrollbars when necessary.

Class Declaration

 public final class VerticalSplitPanel extends Panel

FlexTable

• The FlexTable widget represents a flexible table that creates cells on demand.

• It can be jagged (that is, each row can contain a different number of cells) and

individual cells can be set to span multiple rows or columns.

Class Declaration

 public class FlexTable extends HTMLTable

 Class Methods

 void addCell(int row)-Appends a cell to the specified row.

 int getCellCount(int row)-Gets the number of cells on a given row.

int getRowCount()-Gets the number of rows.

void insertCell(int beforeRow, int beforeColumn)-Inserts a cell into the

FlexTable.

int insertRow(int beforeRow)-Inserts a row into the FlexTable.

117

Grid

• This widget represents a A rectangular grid that can contain text, html, or a child

Widget within its cells.

• It must be resized explicitly to the desired number of rows and columns.

 Class Declaration

 public class Grid extends HTMLTable

 Constructors

 Grid()

 Grid(int rows, int columns)

 Class Methods

• boolean clearCell(int row, int column)-Replaces the contents of the

specified cell with a single space.

• protected Element createCell()-Creates a new, empty cell.

• int getCellCount(int row)-Return number of columns.

• int getColumnCount()-Gets the number of columns in this grid.

• int getRowCount()-Return number of rows.

• void removeRow(int row)-Removes the specified row from the table.

• void resize(int rows, int columns)-Resizes the grid.

Deck Panel

• Panel that displays all of its child widgets in a 'deck', where only one can be visible at

a time. It is used by TabPanel.

Class Declaration

 public class DeckPanel extends ComplexPanel

 implements HasAnimation, InsertPanel.ForIsWidget

 Class Methods

 void add(Widget w)-Adds a child widget.

 int getVisibleWidget()-Gets the index of the currently-visible widget.

DockPanel

• This widget represents a panel that lays its child widgets out "docked" at its outer

edges, and allows its last widget to take up the remaining space in its center is shown

in Figure 5.5.

Class Declaration

118

• public class DockPanel extends CellPanel implements HasAlignment

 Class Methods

void add(Widget widget, DockPanel. DockLayoutConstant direction)-

Adds a widget to the specified edge of the dock.

Figure 5.5 Dock Panel

HTMLPanel

• This widget represents a panel that contains HTML, and which can attach child

widgets to identified elements within that HTML is shown in Figure 5.6.

Class

 public class HTMLPanel extends ComplexPanel

Class Methods

• void add(Widget widget, Element elem)

• void addAndReplaceElement(Widget widget, Element toReplace)-Adds a

child widget to the panel, replacing the HTML element.

• void addAndReplaceElement(Widget widget, java.lang.String id)-Adds a

child widget to the panel, replacing the HTML element specified by a given

id.

119

 Figure 5.6 HTML Panel

TabPanel

• The TabPanel widget represents panel that represents a tabbed set of pages, each of

which contains another widget.

• Its child widgets are shown as the user selects the various tabs associated with them.

Class Declaration

 public class TabPanel extends Composite

Methods

• void add(Widget w)

• void add(Widget w, Widget tabWidget)

• TabBar getTabBar()

Composite Widget

• The Composite widget is a type of widget that can wrap another widget, hiding the

wrapped widget's methods is shown in Figure 5.7.

Class

 public abstract class Composite extends Widget

 Class Methods

• protected Widget getWidget()-Provides subclasses access to the topmost widget

that defines this composite.

• protected void initWidget(Widget widget)-Sets the widget to be wrapped by the

composite.

• boolean isAttached()-Determines whether this widget is currently attached to the

browser's document.

120

Figure 5.7 Composite Widget

SimplePanel Widget

• The SimplePanel widget represents a base class for panels that contain only one

widget in Figure 5.8.

Class Declaration

 public class SimplePanel extends Panel implements HasOneWidget

Class Methods

• void add(Widget w)-Adds a widget to this panel.

• Widget getWidget()-Gets the panel's child widget.

• boolean remove(Widget w)-Removes a child widget.

• void setWidget(IsWidget w)-Set the only widget of the receiver, replacing

the previous widget if there was one.

 Figure 5.8 Simple Panel Widget

121

ScrollPanel Widget

• The ScrollPanel widget represents a simple panel that wraps its contents in a

scrollable area in figure 5.9.

Class Declaration

• public class ScrollPanel extends SimplePanel implements

SourcesScrollEvents, HasScrollHandlers, RequiresResize,

ProvidesResize

Class Methods

• void ensureVisible(UIObject item)-Ensures that the specified item is visible,

by adjusting the panel's scroll position.

• int getHorizontalScrollPosition()-Gets the horizontal scroll position.

• int getScrollPosition()-Gets the vertical scroll position.

• void scrollToBottom()-Scroll to the bottom of this panel.

• void scrollToLeft()-Scroll to the far left of this panel.

• void scrollToRight()-Scroll to the far right of this panel.

Figure 5.9 Scroll Panel Widget

FocusPanel Widget

• The FocusPanel widget represents a simple panel that makes its contents focusable,

and adds the ability to catch mouse and keyboard events in Figure 5.10.

Class Declaration

 public class FocusPanel extends SimplePanel

Class Methods

• void addClickListener(ClickListener listener)

122

void addMouseListener(MouseListener listener)

 Figure 5.10 FocusPanel Widget

FormPanel Widget

• The FormPanel widget represents a panel that wraps its contents in an HTML

<FORM> element in Figure 5.11.

Class

 public class FormPanel extends SimplePanel

Class Methods

• void add Form Handler (FormHandler handler)

• boolean onFormSubmit()

 Figure 5.11 FormPanel Widget

123

PopupPanel

• The PopupPanel widget represents a panel that can pop up over other widgets Figure

5.12.

Class Declaration

• public class PopupPanel extends SimplePanel

Class Methods

• void addPopupListener(PopupListener listener)

• void center()

Figure 5.12 Popup Panel

DialogBox Widget

• The DialogBox widget represents a form of popup that has a caption area at the top

and can be dragged by the user shown in Figure 5.13.

Class

• public class DialogBox extends DecoratedPopupPanel

Methods

• void onMouseMove(Widget sender, int x, int y)

• void onMouseUp(Widget sender, int x, int y)

124

Figure 5.13 DialogBox Widget

Event Handling in GWT

• GWT provides a list of interfaces corresponding to various possible events.

• A listener interface defines one or more methods that the widget calls to announce an

event.

• For example, the Button class publishes click events so you will have to write a class

to implement ClickHandler to handle click event.

Event Handler Interfaces

• All GWT event handlers have been extended from EventHandler interface and each

handler has only a single method with a single argument.

• Each event object have a number of methods to manipulate the passed event object.

• public class MyClickHandler implements ClickHandler { @Override

public void onClick(ClickEvent event) { Window.alert("Hello World!");

} }

• BlurHandler-void on Blur(Blur Event event);

• ChangeHandler-void on Change(ChangeEvent event);-Called when a change

event is fired.

• ClickHandler-void on Click(ClickEvent event);

• CloseHandler-void on Close(CloseEvent<T> event);-Called when CloseEvent is

fired.

• Context Menu Handler-void on Context Menu(Context Menu Event event);

• Double Click Handler-void on Double Click(Double Click Event event);-Called

when a Double Click Event is fired.

• Error Handler-void on Error(Error Event event);-Called when Error Event is

fired.

• Focus Handler-void on Focus(Focus Event event);

• FormPanel.SubmitHandler-void on Submit(Form Panel.Submit Event event);-

Fired when the form is submitted.

125

• Key Down Handler-void on Key Down(Key Down Event event);-Called when

KeyDownEvent is fired.

• KeyPressHandler-void on KeyPress(KeyPressEvent event);-Called when

KeyPressEvent is fired.

• KeyUpHandler-void on KeyUp(KeyUpEvent event);-Called when KeyUpEvent is

fired.

• LoadHandler-void on Load(LoadEvent event);-Called when LoadEvent is fired.

• MouseDownHandler-void on MouseDown(MouseDownEvent event);-Called

when MouseDown is fired.

GWT Internationalization

• It is similar to Java programming language, where internationalization is implemented

by means of Resource Bundles, Where .properties file is created for each locale that

needs to be supported.

• Internationalization is changing the language of the text based on the locale. For

example, the browser should display the website content in Hindi for a user sitting in

India and French for the user accessing the website from France.

• Types of Internationalization Techniques

1. Static String Internationalization

2. Dynamic String Internationalization

3. Localizable Interface

Static String Internationalization

• It is a good technique for translating both constant and parameterized strings.

• It is the simplest technique to implement as it requires very less over head.

• It uses standard Java properties files to store translated strings and

parameterized messages.

Dynamic String Internationalization

• Dynamic string internationalization is slower but more flexible than static

string internationalization.

• Applications using this technique look like localized strings in the module's

home page. Due to this technique they do not need to be recompiled when you

add a new locale.

Localizable Interface

• It is the most powerful technique to implement the interface.

• It is an advanced internationalization technique that is used rarely.

126

• We require advance level to implement Localizable interface for simple string

substitution. It also creates localized versions of custom types.

Advanced GWT

• Advanced GWT Components is an extension of the standard Google Web Toolkit

library.

• It allows making rich web interfaces extremely quickly even if you're not skilled in

DHTML and JavaScript programming.

• Currently the library supports such popular browsers like Internet Explorer, Firefox,

Safari, Opera and Chrome.

Widgets

• Editable (updatable) Grid

• Hierarchical Grid

• Tree Grid

• Advanced FlexTable

• SimpleGrid

• AdvancedTabPanel

• SingleBorder

• RoundCornerBorder

• Pager

• Grid Toolbar

• Grid Panel

• Master-Detail Panel

• Date Picker

• Combo Box

• Suggestion Box

Advanced GWT features

• Improved browser independent table body scrolling

• Editable grids

• Hierarchical and master-detail representations of complicated data models

• Multiple and single row selections

• Client side paging and sorting

• Server side data loading

127

• Client and server side content rendering

• Full keyboard control

• Flexible tab panels

• Customizable borders API

• Localization and internationalization

• <thead> HTML tag support in tables

• <tfoot> HTML tag support in tables

• Splitting to view and model (MVP design)

• Data model events

• Lazy rendering for large drop down lists

• Customizable event management and rendering

• GWT 1.6.4, 1.7.1, 2.0.x, 2.1.x, 2.2.x, 2.3.x, 2.4.x, 2.5.x or higher compatibility

• No dependencies to other third-party libraries

• Theme runtime switching for non-styled widgets

• Latest releases are available in the Maven Central Repository

MVP Design Pattern

• MVP (Model View Presenter) is a design pattern which allows the application

developing in GWT to follow MVP architecture in Figure 5.14.

• MVP provides the solution of the problem of complexity for developing application.

• Application development is complex as many developers working on same code due

to which all follow same design pattern.

Figure 5.14 MVP

• Model: This segment model consists of data only. It holds within the business object

which is to be manipulated and calculated according to application need.

128

• View: It only consists of view i.e. display the data which is given by presenter. It

provides reusability of view code as we can swap the new view very easily. It only

deals with the HTML and CSS which also helps in separate testing.

• Presenter: It contains all the logic which is to be implemented in the application

development. It communicates with model as well as view. It is complete distinct in

operation which provides separate JUnit testing.

MVP Vs MVC

 The difference between MVP and MVC is discussed in Table 5.1.

MVP (Model View Presenter) MVC (Model View Controller)

It is advance form of MVC It is the basic method to separate

project structure.

In this View handles user gesture

and call presenter.

In this controller handles user gesture

and commands model.

View is dumb i.e. all interaction

goes through Presenter.

In this view has some intelligence. It

can query the model directly.

It highly supports unit testing. It provides limited support to unit

testing.

It has high degree of loose

coupling.

It has fairly loose coupling.

In this presenter will update its

associated view.

It identifies which view to update.

 Table 5.1 MVP vs MVC

MVP Design Pattern – Benefits

• MVP is a design pattern that breaks your app up into the components Model, View

and Presenter.

• The MVP pattern is extremely useful when building large, web-based applications

with GWT.

• It helps to make code more readable, and more maintainable.

• It also makes it much easier to implement new features, optimizations, and automated

testing.

Model

• Houses all of the data objects that are presented and acted upon within your UI.

129

• The number and granularity of models is a design decision. In our PhotoApp, we will

have one very simple model:

• PhotoDetails - holds data about a photo, including the thumbnail URL, original URL,

title, description, tags, and so on.

View

• These are the UI components that display model data and send user commands back

to the presenter component.

• It is not a requirement to have a view per model. You may have a view that uses

several models, or several views for one model. We will keep things simple for our

Photo Application, and will have three views:

• WelcomeView – A very simple welcome page.

• PhotoListView - Displays a list of thumbnail photos and their title.

• PhotoDetailsView - displays the photo together with title and other data and

allows the user to change some of those details.

Presenter

• The presenter will hold the complex application and business logic used to drive UIs

and changes to the model. It also has the code to handle changes in the UI that the

view has sent back.

• Usually for each view, there will be an associated presenter. In our photo application,

this means we will have the following three presenters:

• WelcomePresenter - pushes the welcome screen in front of the user, and handles the

jump to PhotoListView.

• PhotoListPresenter - drives the thumbnail view.

• PhotoDetailsPresenter - drives the view of the original photo.

Creating Views

• Remember that our view should have no application logic in it, at all. It should be just

UI components that the presenter can access to set or get values from.

• All of our views will be implemented as three separate items: a generic interface, a

specific interface and an implementation.

public interface View extends IsWidget{

void setPresenter(PhotoDetailsPresenter presenter);

}

Implementing the views

• Take the detailed view, each implementation implements the setPresenter method

130

public void setPresenter(PhotoDetailsPresenter presenter) {

 this.presenter = presenter;

}

Presenters

• Presenters are where all the application logic sits and will have no UI components.

• In a similar way to views, we provide a generic presenter interface, a specific one, and

an implementation for each presenter.

Handling browser back button functionality

• GWT History mechanism is similar to the Ajax history implementations such as RSH

(Really Simple History).

• Basic idea is to track application internal state in the URL fragment identifier.

Main advantages of this mechanism are:

• It provides browser history reliable.

• It provides good feedback to the user.

• It is bookmarkable i.e., the user can create a bookmark to the current state and save it

or can email it etc.

 GWT History Syntax

 public class History extends java.lang.Object

GWT History Tokens

• A token is simply a string that the application can parse to return to a particular state.

• This token will be saved in browser history as a URL fragment (in the location bar,

after the "#"), and this fragment is passed back to the application when the user goes

back or forward in history, or follows a link.

• Example: History token name - javatpoint.

• http://www.example.com/com.example.gwt.HistoryExample/HistoryExample.html#

javatpoint

GWT Hyperlink Widgets

• Hyperlinks are convenient to use to incorporate history support into an application.

Hyperlink widgets are GWT widgets that look like regular HTML anchors. You can

associate a history token with the Hyperlink, and when it is clicked, the history token is

automatically added to the browser history stack. The History.newItem(token) step is done

automatically.

• Handling an onValueChange() callback

131

• The first step of handling the onValueChange() callback method in a ValueChangeHandler

is to get the new history token with ValueChangeEvent.getValue() then we will parse the

token. Once the token is parsed, we can reset the state of the application.

• When the onValueChange() method is invoked, application handles two cases:

• The application was just started and was passed a history token.

The application is already running and was passed a history token.

AJAX and RPC

 Server-side Code

• Everything that happens within your web server is referred to as server-side

processing.

• When your application running in the user’s browser needs to interact with your server

(for example, to load or save data), it makes an HTTP request across the network using

a remote procedure call (RPC).

• While processing an RPC, your server is executing server-side code.

• GWT provides an RPC mechanism based on Java Servlets to provide access to server-

side resources.

• This mechanism includes generation of efficient client-side and server-side code to

serialize objects across the network using deferred binding.

Remote Procedure Calls

• A fundamental difference between AJAX applications and traditional HTML web

applications is that AJAX applications do not need to fetch new HTML pages while

they execute.

• Because AJAX pages actually run more like applications within the browser, there is

no need to request new HTML from the server to make user interface updates.

• However, like all client/server applications, AJAX applications usually do need to

fetch data from the server as they execute.

• The mechanism for interacting with a server across a network is called making a

remote procedure call (RPC), also sometimes referred to as a server call is shown in

Figure 5.15 and Figure 5.16.

132

 Figure 5.15 RPC

Figure 5.16 Example of an RPC

• GWT RPC makes it easy for the client and server to pass Java objects back and forth

over HTTP.

• When used properly, RPCs give you the opportunity to move all of your UI logic to

the client, resulting in greatly improved performance, reduced bandwidth, reduced

web server load, and a pleasantly fluid user experience.

• The server-side code that gets invoked from the client is often referred to as a service,

so the act of making a remote procedure call is sometimes referred to as invoking a

service

Creating Services

• In order to define your RPC interface, you need to:

• Define an interface for your service that extends RemoteService and lists all

your RPC methods.

• Define a class to implement the server-side code that extends

RemoteServiceServlet and implements the interface you created above.

• Define an asynchronous interface to your service to be called from the client-

side code

 Synchronous Interface

• To begin developing a new service interface, create a client-side Java interface that

extends the RemoteService tag interface.

package com.example.foo.client;

133

import com.google.gwt.user.client.rpc.RemoteService;

public interface MyService extends RemoteService {

 public String myMethod(String s);

}

• Any implementation of this service on the server-side must extend

RemoteServiceServlet and implement this service interface.

package com.example.foo.server;

import com.google.gwt.user.server.rpc.RemoteServiceServlet;

import com.example.foo.client.MyService;

public class MyServiceImpl extends RemoteServiceServlet

implements

 MyService {

 public String myMethod(String s) {

 return s;

} }

• It is not possible to call this version of the RPC directly from the client.

• You must create an asynchronous interface to all your services as shown below.

Asynchronous Interfaces

• Before you can actually attempt to make a remote call from the client, you must create

another client interface, an asynchronous one, based on your original service interface.

• Continuing with the example above, create a new interface in the client subpackage:

package com.example.foo.client;

interface MyServiceAsync {

 public void myMethod(String s, AsyncCallback<String> callback);

}

• An interaction is synchronous if the caller of a method must wait for the method's

work to complete before the caller can continue its processing.

• An interaction is asynchronous if the called method returns immediately, allowing the

caller to continue its processing without delay.

References

1. Federico Kerek , “ Essential GWT: Building for the Web with Google Web Toolkit 2 ”,

Addison-Wesley Professional,2010.

