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SCIA5201 - Finite Element Analysis 

 

UNIT-I INTRODUCTION 

 
Boundary Conditions 

For structural mechanics problems the boundary conditions   may be kinematic,   i.e. 

where the displacements (and slope, i.e. derivative of displacement), may be prescribed, 

or static, i.e. where forces (and moments) may be   prescribed. In problems where time 

is involved the initial values may have to be specified. Figure 1.1 shows a cantilever 

beam AB subjected to a uniformly   distributed   load. If the vertical deflection w at any 

point is taken as a field variable, it must satisfy the differential equation Eq. (1.1), which 

is an equilibrium condition, 

El 
d4 w 

/dx4 = p 

And the solution to the above equation must also satisfy the boundary conditions at A 

and B as follows. 

Introduction 

Kinematic boundary conditions at A: Displacement w=0 and slope 

Fig. 1.1 A cantilever beam 
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static or force boundary conditions at B: shear force, 

EI 
d3w 

=0 
dx3 

and bending moment 

EI 
d2w    

=0 
dx2 

 
 

The variational formulation of the above problem is discussed and the application of 

Euler-Lagrange equation to obtain the governing differential equation is illustrated 

for the above cantilever beam problem. 

APPROXIMATE SOLUTIONS 

It is not possible to obtain analytical solution for many engineering problems. An 

analytical solution is a mathematical expression that gives the value of the field 

variable at any location in the body. For problems involving complex shapes, 

material properties and complicated boundary conditions, it is difficult and if many 

cases intractable to obtain analytical solution that satisfies the governing differential 

equations or gives extreme value to the governing functional. Hence, for mast of the 

practical problems the engineer resorts to numerical methods that provide 

approximate but acceptable solutions. The three methods that are used are as follows: 

(i) Functional approximation (ii) Finite difference method (iii) Finite element method 

A brief description of the first two methods is given in the subsequent sections and 

then the finite element method is introduced as a powerful numerical method, widely 

used in practice. 
 

Functional Approximation 

A set of independent functions   satisfying   the boundary conditions is chosen and a 

linear combination of a finite number of them is taken to approximately specify the field 

variable at any point. The unknown parameters that combine the functions are found out in 

such a way to achieve at best the field condition, which is represented through variational 

formulation. The well known classical methods such as Rayleigh- Ritz, Galerkin   and 

collocation are based on   functional   approximation but vary in  their   procedure for 

valuating the   unknown parameters [6]. 
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Fig. 1.2 Simply supported beam 

 

 

The Ray-leigh Ritz method is briefly described below. Consider a simply supported beam, 

shown in Fig.1.2 

subjected   to a central concentrated load P and a uniformly distributed load of 

intensity 

 

 

 

 

 

 

 

 

In this problem if the deflected shape of the beam is known, the bending moment 

and shear force at any cross-section can be determined. Consider the following 

approximation to the deflection curve that satisfies the boundary condition. 

W=a1 Sin 
πx

+a2
3πx 

(a) 
L L 

where a1 and a2 are unknown parameters. It is known from the elementary strength 

of materials that the strain energy, U, of the beam due to bending is 
 

 

 

 

 
 

Substituting for w from equation (a) into equation (b), 

(b) 

 

 

 

 

(c) 
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0 

The potential energy due to loads is given by, 

H= - ∫
L 

P0 w dx − Pwmax 
 

 

The total potential energy, π, of the beam is 

 

 

 

 

 

 

 
(d) 

 

 

 

 

 

 

 
(e) 
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a any po n a ong he beam 

 

For stable equilibrium of the body the potential energy attains stationary value. It can be seen 

from equation (e) that the total potential energy is now expressed in terms of the parameters 

al and a2. Hence, for stationary value of 7T the following conditions must be satisfied, 

 

1 
= 0 

2 
= 0 (f) 

 

Applying the above conditions to equation (e) we get, 

 

 

Solving the above two equations we get, 

 

 

 

 

 

 

 
Thus the maximum deflection at the centre of the beam is, 

 

 

 

(g) 

 

 
(h) 

 

 

 
 

(i) 

 

 

 
 

(j) 

 

 

 

 
 

(k) 

The maximum deflection practically coincides with the exact value of 
 

 

 

 
 

The bending moment at any point along the beam is given by (l) 
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After substituting for the values of at and a2 from equation (i) and (j) into equation 

(a) and differentiating, the bending moment, Me, at the centre of the beam, x = L/2, 

can be shown to be 
 

(m) 
 

It may be noted that the error in the first term is 9.92 per cent and that in the second term is

 0.62 per cent.   This error can be reduced by adding more terms to the 

approximate (or trial) function for w, i.e. into equation (a). The above procedure can be 

extended to the analysis of a three dimensional solid. In general a deformable body 

consists of infinite material points and, therefore, it has infinitely many degrees of 

freedom. By the Rayleigh-Ritz method such a continuous system is reduced to a system of

 finite degrees of freedom.   For the case of three   dimensional solid, the variation 

of the field variables, displacements u, r and w can approximately be represented by the 

following trial functions  

where ai, th and ci are linearly independent unknown parameters and 0, p (x, y, z), , (x,y,z) 

and 1bi (x, v, z), where 2, . . n are continuous functions in x, y and z that satisfy all the 

kinematic boundary conditions. By this approximation the body is reduced to have  

 

311 degrees of freedom. Now the potential energy of the body can be expressed by a 

functional in terms of these parameters. 

 
As was indicated earlier that for stable equilibrium of the body the potential energy 

attains a stationary value and as the potential   energy functional is in terms of the 

parameters al, bi and ci the following equations must be satisfied. 
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∭ 

we get 3,1 linear algebraic equations to solve the u., known parameters ai, bt and Ci. It may 

be noted that the assumed trial functions must be continuous and satisfy all the prescribed 

boundary conditions, and no simple guidelines are available to select such functions. Also 

the classical approach of arriving at the equations of the type (1.6) is quite cumbersome. 

Hence, except in simple situations, this approach could not be used to solve practical 

problems. However, the concepts used in Rayleigh-Ritz method,   i.e. representing  the 

variation of the field variable by trial function and finding the unknown parameters through 

minimization of potential energy, are well exploited in the finite element method. 

Variational method 
 

Variational formulation is the generalized   method   of formulating   the   element 

stiffness matrix and load vector using   the variational   principle   of solid mechanics. 

The strain energy in a structural body is given by the relation 

 
U =1 

 

�εT��σ�dΩ 
2 

Ω 

For a 3D structural problem, stress has six components: {σ }= {σx,σy,σz,Txy,Tyz,tzx } 

Similarly, there are six components of strains: {ε}T ={ εx, εy, εz, γxy, γyz, γzx } 

Now the strain displacement relationship can be expressed as {ε } =[B]{d} , where 

{d} is the displacement vector in x, y and z directions and [B] is called as the strain 

displacement relationship matrix. Again, the stress can be represented in terms of its 

constitutive relationship matrix: {σ } =[D]{ε } . Here [D] is called as the constituent 

relationship 

can arrive 

matrix. Using the above relationship in the strain   energy equation one 

 

U= 
1 

��B��d��T �D��B��d�dΩ 
2 

Ω 

Applying the variational principle one can express 
 

{F}= 
� � 

= ∭[ ]T 
[D][B]dΩ{d} 

 

Now, from the relationship of {F} =[K]{d}, one can arrive at the element stiffness 

matrix as: 

 
 

Thus, by the use of 

[K] = ∭�B�T [D][B] dΩ 
Ω 

Variational principle, the stiffness matrix of a structural element 
can be obtained as expressed in the above equation. 

∭ 
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Weighted Residual Method 
 

Virtual work and Variational method are applicable and adequate for most of the 

problems. However, in some cases functional analogous to potential energy cannot be 

written because of not having clear physical meaning. For some applications, such as in 

fluid mechanics problem, functional needed for   a   variational approach cannot be 

expressed. For some types of fluid flow problems, only differential equations and boundary 

conditions are available. For Such problems weighted residual method can be used for 

obtaining   the solutions.   Approximate solutions of differential equation satisfy only part 

of conditions of the problem.   For example a differential equation may be satisfied only at 

few points, rather than at each. The strategy used in weighted residual method is to first 

take an approximate solution and then its validity is assessed. The different 

methods in weighted Residual Method are 

 

• Collocation method 

• Least square method 

• Method of moment 

• Galerkin method 

 
The mathematical statement of a physical problem can be defined as: In 

domainΩ, 

Du−f =0 

Where, 

D is the differential operator 

u = u(x) = dependent variables such as displacement, pressure, velocity, 

potential function 

x = independent variables such as coordinates of a point f = a 

function of x which may be constant or zero 

 
If u is an approximate solution then residual in domainΩ, R =Du−f 

According to the weighted residual method, the weak form of above equation will 

become 
 

∫ Wi RdΩ � 

0 
Ω 

or 

For i= 1,2,3,....n 

 

∫ Wi �Du � f�dΩ = 0 

Ω 

 

Where weighting function wi= wi(x) is chosen from the approximate basis function 

used for constructing approximated solution u. 
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∫ 

2 i i 

RAYLEIGH-RITZ METHOD 

In mechanics of solids, our problem is to determine the displacement u of the body 

satisfying the equilibrium  stresses are related to strains, which, in turn, are related to 

displacements. This leads to requiring solution of second order partial  differential 

equations. Solution of this set of equations is generally referred to as an exact 

solution. Such exact solutions are available for simple geometries and loading conditions, 

and one may refer to publications in theory of elasticity. For problems of complex 

geometries and general boundary and loading conditions, obtaining such solutions is an 

almost impossible   task.   Approximate   solution   methods   usually employ potential 

energy or variational methods, which place less stringent conditions on the functions. 

 

Potential Energy 

The total potential energy of an elastic body, is defined as the sum of total strain 

energy (U) and the work potential: 

n = Strain energy + Work potential 

(U) (WP) 

For linear elastic materials., the strain energy per unit volume in the body is 
1 

σTε. 
2 

The total strain energy U is given by  
U=1 T ε dv 

2 

v 

The work potential WP is given by 
 

Wp = - ∫  Tf dV - ∫ UTTds – Σ u Ti Pj 

v  s i 

The total potential for the general elastic body is 

n = 1 ∫ T
εdV - ∫ T

fdV -∫  T
dS – Σu T p 

v v s f 

We consider conservative systems here, where the work potential is independent of the path 
taken. In other words, if the system is displaced from a given configuration and brought 
back to this state, the forces do zero work regardless of the path. 

 

Kinematically admissible displacements are those that satisfy the single-valued nature of 

displacements (compatibility) and the boundary   conditions.   In problems where 

displacements are the unknowns, which is the approach in this book, compatibility is 

automatically satisfied. 
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Galerkins method 

 
Galerkin method is the   most   widely   used   among   the various weighted residual 

methods. Galerkin method incorporates differential equations in their weak form, i.e., before 

starting integration by parts it is in strong form and after by parts it will be in weak form, so 

that they are satisfied over a domain in an integral. Thus, in case of Galerkin method, the 

equations are satisfied over a domain in an integral or average sense, rather than at very   

point.   The solution of the equations must satisfy the boundary conditions. There are two 

types of boundary conditions: 

 

• Essential or kinematic boundary condition 

• Non essential or natural boundary condition 

 
As a result, displacement and slope will be essential boundary condition where as 

moment and shear will be non-essential boundary condition. 

 
Galerkin's method   uses the set of governing equations in the development of an 

integral form. It is usually presented as one of the weighted residual methods. For our 

discussion, 
region V: 

let us consider a general   representation of a governing equation   on a 

Lu = P 

For the one-dimensional rod the governing equation is the differential equation 

(EA ) = 0 

(a) 

We may consider L as the operator 

) 

operating on u. 

The exact solution needs to satisfy (a) at every point x. If we seek an approximate 

solution u, it introduces an error ε(x), called the residual: 

ε(X) = Lu - P (b) (b) 

The approximate methods revolve around setting the residual relative to a weighting 

function wi to zero: 
 

∫ Wi(LU - P)dV = 0 i = 1 to n (c) 

The choice of the weighting function Wi leads to various approximation methods. In 

the Galerkin method, the weighting functions Wi are chosen from the basis functions 

used for constructing U. Let u be represented by 

u=2∑ =1 QiGi (d) 

where Gi i = 1 to n, are basis functions (usually polynomials of x, y, z). Here, we 

choose the weighting functions to be a linear combination of the basis functions Gi 
Specifically, consider an arbitrary function given by 

 
EA ( 
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Φ = ∑ =1 iGi (e) 

 
 
where the coefficients   Φi are 

 
 
arbitrary, 

 

 
except for requiring that Φi satisfy 

homogeneous (zero) boundary conditions where u is prescribed. 
 

Galerkin's method can be stated as follows: 

Choose basis functions Gi · Determine the coefficients Qii in u =∑ =1 iGi such that 

∫ (LU - P) dV = 0 (f) 

for every Φ of the type Φ = ∑ iGi where coefficients Φ, are arbitrary except for 

requiring that Φ satisfy homogeneous (zero) boundary conditions. The solution of the 
resulting equations for Qi then yields the approximate solution U. 

 
Usually, in the treatment of (f) an integration by parts is involved. The order of the 

derivatives is reduced and the natural boundary conditions, such as surface-force 

conditions, are introduced. 

 

Displacement 
 

In the case of a three dimensional solid or a structure, the displacement at any point 

can be expressed by its components u, v and w parallel to the cartesian coordinate 

axes x, y and z. The displacement u, v and w are continuous functions of x, y and z. 

Any virtual displacement will also be continuous functions and in addition that they 

should satisfy the kinematic boundary conditions. 

 

The equilibrium conditions to be satisfied by the stresses within the body and on the 

boundary are given in Eqs: 

 

 

 
 

(a) 

 

and 

 

(b) 
 

Multiply the equilibrium Eqs 

area of the solid 

2.5 by Su and 8v respectively and integrate over the 

 

 
 

(c) 
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e m o he n eg a n eq c Le Φ=σx and 

In order to give a physical interpretation to the equation we can consider Su and 8v as 

virtual displacements and also expand each one of the terms by using the Green's 

theorem in two dimensions. if sb(x, y) and 0(x, y) are continuous functions with their 

first and second partial derivatives are also continuous, then according to Green's 

theorem, 

 

 

 

(d) 

 

 

 

 
Consider the first term of the integral in eq (c). Let Φ=σx and assume ψ such that 
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eeccoommeess 

Thus Eq. (C) is transformed to 
 

 

 

 

 

(d) 
 

 

 

 

 

Eq (d) becomes  
 

-δU+δWe =0 

δWe= δU 
 

For equilibrium to exist the total external virtual work is equal to the total internal 

virtual work. Thisma the-matical statement is a necessary condition for equilibrium. 

Again if we apply Green's theorem in the opposite direction 

Thus, the principle of virtual displacement can be stated as that a de-formable system 

is in equilibrium if the total external virtual work is equal to the total internal virtual 

work for every virtual displacement satisfying the kinematic boundary conditions. It 

may be noted here that the principle of virtual displacement is an equilibrium 

requirement and is independent of the material behaviour. 

Shape Function 

Based on the shapes elements can be classified as 

(i) One dimensional elements 

(ii) Two dimensional elements 

(iii)Three dimensional elements 
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One dimensional elements 

These elements are suitable for the analysis of one dimensional problem and may be 

called as line elements also. Figure 1.3 shows different types of one dimensional 

elements. 

 

 

Fig 1.3 one dimensional elements 

Two Dimensional elements 

We need two dimensional elements to solve two dimensional problems. Common 

two dimensional problems in stress analysis are plane stress, plane strain and plate 

problems. Two dimensional elements often used is three noded triangular element 

shown in Fig. 1.4. It has the distinction of being the first and most used element. 

These elements are known as Constant Strain Triangles (CST) or Linear 

Displacement Triangles. 

 

 

 

 

 

 

 
Fig 1.4 Constant Strain triangle 

Six noded and ten noded triangular elements (Fig. 1.5) are also used by the analysts. 

Six noded triangular element is known as Linear Strain Triangle (LST) or as 

Quadratic Displacement Triangle. Ten noded triangular elements are known as 

Quadratic Strain Triangles (QST) or Cubic Displacement Triangles. One can think of 

trying the use of still higher order triangular elements like Cubic Strain Triangles and 

Quartic Strain Triangles. A simple but less used two dimensional element is the four 

noded rectangular element whose sides are parallel to the global coordinate systems 

(Fig. 1.7). This systems is easy to construct automatically but it is not well suited to 

approximate inclined boundaries. 
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Fig 1.5 (a) Linear strain triangle (b) Quadratic Strain triangle 
 

 

 

 

Fig 1.6 (a) Cubic strain triangle (b) Quadratic strain triangle 
 

 

 

 

Fig 1.7 4 noded rectangular element 
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Lagrange, Serendipity and iso parametric Elements 

Rectangular elements of higher order also can be used. Figure 1.8 shows a family of 

Lagrange rectangle in which nodes are in the form of grid points. Figure 1.9 shows 

the family of Serendipity rectangles which are having nodes only along the external 

boundaries. 

 

 

Fig 1.8 Lagrange family rectangular elements 
 

 

Fig 1.9 Serendipity Family rectangular elememts 

Quadrilateral Elements are also used in finite element analysis (Fig. 1.10). Initially 

quadrilateral elements were developed by combining triangular elements (Fig. 1.11). 

But it has taken back stage after isoparametric concept was developed. Isoparametric 

concept is based on using same functions for defining geometries and nodal 

unknowns. Even higher order triangular elements may be used to generate 

quadrilateral elements. 
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Fig 1.10 Quadrilateral element 
 

 

 

 
 

Fig 1.11 Quadrilateral elements generated using triangular elements 

 

 
Using isoparametric concept even curved elements are developed to take care of 

boundaries with curved shapes (Fig. 1.12). 
 

 
 

Fig 1.12 iso parametric two dimensional elements 
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Three Dimensional elements 

Similar to the triangle for two dimensional problems tetrahedron is the basic element 

for three dimensional problems (Fig. 1.13). Tetrahedron is having four nodes, one at 

each corner. Three dimensional elements with eight nodes are either in the form of a 

general hexahedron or a rectangular prism, which is a particular case of a hexahedron. 

The rectangular prism element is many times called as a brick element also. In these 

elements also one can think of using higher order elements. (Fig. 1.13). 
 

 
 

 

Fig 1.13 (a) tetrahedron element (b) Rectangular prism element 

(c) Arbitary hexahedron element (d) Three dimensional quadratic element 
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Minimum potential energy 

 
The minimum total potential energy   principle is a fundamental concept used in 

physics, chemistry, biology, and engineering. It asserts that a structure or body shall deform 

or displace to a position that minimizes the total potential energy, with the lost potential 

energy being dissipated as heat. For example, a marble placed in a bowl will move to the  

bottom and rest there, and similarly, a tree branch laden with snow will bend to a lower 

position. The lower position is the position for minimum potential energy: it is the 

stable configuration   for equilibrium.   The principle   has many applications in structural 

analysis and solid mechanics. 

 

   A binding energy is the energy that must be exported from a system for the system to enter a 

bound state. If the potential energy is chosen to be zero when the system is unbound, the 

potential energy of the system is negative after it enters a bound state.
[1] 

A bound system 

has a lower (i.e., more negative) potential energy than the sum of its 

parts—this is   what keeps the system aggregated   in accordance   with the minimum 

total potential energy principle. 

 

The total potential energy,    is the sum of the elastic strain energy,U,    stored in the 

deformed body and the potential energy V associated to the applied forces: 

 

= U+V 

 
This energy is at a stationary position when an infinitesimal variation   from such 

position involves no change in energy: 

 

δ = δ (U+V) = 0 

 
The principle of minimum total potential energy may be derived as a special case of 

the virtual work principle for elastic systems subject to conservative forces. The 

equality between external and internal virtual work (due to virtual displacements) is: 

∫ U
T 

T ds +∫ u
T

fdv = ∫ ε
T

σdv 

Where 

 
U = Vector of displacements 

 

T=Vector of distributed forces on the part St of the surface 

F=Vector of body forces 

In the special case of elastic bodies, the right-hand-side of can be taken to be the 

change, , of elastic strain energy U due to infinitesimal variations of real 
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displacements. In addition, when the external forces are conservative forces, the left- 

hand-side of can be seen as the change in   the potential   energy function V of the 
forces. The function V is defined as: 

V = -∫ 
T

ds - ∫   
T

fdv 

where the minus sign implies a loss of potential energy as the force is displaced in its 

direction. With these two subsidiary conditions, becomes: 

-δV = δU 
 

         Generation of Stiffness Matrix 

 

The stiffness matrix of a structural system can be derived by various methods like 

Variational principle, Galerkin method etc. The derivation of an element stiffness 

matrix   has already   been   discussed in earlier   lecture. The stiffness matrix is an 

inherent property of the structure. Element stiffness is obtained with respect to its axes 

and then transformed this stiffness to structure axes. The properties of stiffness matrix 

are as follows: 

  Stiffness matrix is symmetric and square. 

  In stiffness matrix, all diagonal elements are positive. 

  Stiffness matrix is positive definite 

For example, if K is a symmetric n × n real matrix and x is non-zero column vector, 

then K will be positive definite while xTKx is positive. 

Global Stiffness Matrix 

A structural system is an assemblage of number of elements. These elements are 

interconnected together to form the whole structure. Therefore, the element stiffness 

of all the elements   are first need to be calculated and then assembled together in 

systematic manner. It may be noted that the stiffness at a joint is obtained by adding 

the stiffness of all   elements meeting at that   joint. To start with, the degrees of 

freedom of the structure are numbered  first. This numbering will start from 1 to n 

where n is the total degrees of freedom. These numberings are referred to as degrees of 

freedom corresponding to global degrees of freedom. The element stiffness matrix 

of each   element   should be placed in their proper position in the overall stiffness 

matrix. The following steps may be performed to calculate the global stiffness matrix of the 

whole structure. 

a. Initialize global stiffness matrix [K] as zero. The size of global stiffness matrix will be 

equal to the total degrees of freedom of the structure. 

b. Compute individual element properties and calculate local stiffness matrix [k] of that 

element. 

c. Add local stiffness matrix [k] to global stiffness matrix [k] using proper locations 

d. Repeat the Step b. and c. till all local stiffness matrices are placed globally. 
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The steps to be followed in the computer program are shown in the form of flow 

chart in Fig. 1.14 for assembling the local stiffness matrix to global stiffness matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1.14 Assembly of stiffness matrix from local to global 
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UNIT-II STRESS ANALYSIS 
 

The problems of solid   mechanics may be  formulated as three-dimensional 

problems   and finite element   technique may be used to solve them.  In many 

practical situations, the geometry and loading will be such that the problems 

may be formulated to two-dimensional or one-dimensional problems without 

much loss of accuracy.  The relation between strain and displacement for two 

dimensional problems can be simplified as follows. 

 
The above expression can be written in a combined form:         (c) 

 

 
 

 

 

Eq. (c) is the compatibility equation since it states the geometric requirements. This 

condition will ensure adjacent elements to remain free from discontinuities such as gaps 

and overlaps. 

 
Plane stress problem 

The plane stress problem is characterized by very small dimensions in one of 

the normal directions. Some typical examples are shown in Fig.   1. In these 

cases, it is assumed that no stress component varies across the thickness and the 

stress components   σz,   xz and yz are zero. The state of stress is specified by σx, 

σy and xy only and is called plane stress. 

 

 

 
 

 

 

 
 

Fig. 1 Plane stress example: Thin plate with in-plane loading 
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TThhee ccononss uu  vvee  ee aa  oonn  oo  ee aass  cc  ssoo  oopp cc mmaa ee  aa oo hh ss ccaassee mmaayy bbee gg vvee 

bbyy 

The stress components may be expressed in terms of strain, which is as follows. 

The strain components can also be expressed in terms of the stress, which is 

given below 

 

It can also be shown that 

 

Plane strain problem 
Problems involving long   bodies whose   geometry and loading do not vary 

significantly in the   longitudinal  direction are   referred to as plane strain 

problems. Some typical examples are given in Fig. 2. In these cases, a constant 

longitudinal displacement corresponding   to  a rigid body  translation  and 

displacements linear in z corresponding to rigid body rotation do not result in strain. 

As a result, the following relations arise. 

 

z = yz = zx = 0 
 

The constitutive relation for elastic isotropic material for this case may be given 

by 
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The strain components can be expressed in terms of the stress as follows. 
 
 

 

(a) Retaining wall (b) Dam 

 
 

Fig. 2 Plane strain examples 

 

Axisymmetric Problem 
 

Many problems in stress analysis which are of practical interest involve solids of 

revolution subject to axially symmetric loading. A circular cylinder loaded by a 

uniform   internal or external pressure, circular footing resting on soil mass, 

pressure vessels, rotating wheels,   flywheels   etc.   The strain   displacement 

relations in these type of problems are given by 
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The two components of displacements in any plane section of the body along its 

axis of symmetry define completely the state of strain and therefore the state of 

stress. The constitutive relations are given below for such types of problems. 
 

 
 

Triangular element 

The triangular element can be used to represent the arbitrary geometry much 

easily. On the other hand, rectangular elements, in general, are of limited use as 

they are not well suited for representing curved boundaries. However, an 

assemblage of rectangular and triangular element with triangular elements near 

the boundary can be very effective (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Finite element mesh consisting of triangular and rectangular element 

The shape function for triangular elements (linear, quadratic and cubic) with 

various nodes (Fig. 4) can be formulated. An internal node will exist for cubic 

element as seen in Fig. 4(c). 
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Fig. 4 Triangular elements 

In displacement formulation, it is very important to approximate the variation of 

displacement in the element by suitable function. The interpolation function can 

be derived either using the Cartesian coordinate system or by the area 

coordinates. 

Shape function using Cartesian coordinates 

 

Polynomials are easiest way of mathematical operation for expressing variation 

of displacement. For example, the displacement variation within the element 

can be represented by the following function in case of two dimensional plane 

stress/strain problems. 

 

where α0, α1, α2 ….. are unknown coefficients. Thus the displacement vectors at 

any point P,in the element (Fig.4) can be expressed with the following relation. 
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Fig. 4 Triangular element in Cartesian Coordinates 

 

 
Similarly, for “m” node element having three degrees of freedom at each node, 

the displacement function can be expressed as 
 

 
Hence, in such case, 

 

 

 

 

 

 

 
Now, for a linear triangular element with 2 degrees of freedom, eq. (3.2.3) can 

be written in terms of the nodal displacements as follows. 
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Where, {d} is the nodal displacements. To simplify the above expression for 

finding out the shape function, the displacements in X direction can be 

separated out which will be as follows: 
 

 

 

To obtain the polynomial coefficients, {α} the matrix of the above equation are 

to be inverted. Thus, 
 

 

Where, A is the area of the triangle and can be obtained as follows. 
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Thus, the interpolation function can be obtained from the above as: 
 

 

Such three node triangular element is commonly known as constant strain 

triangle (CST) as its strain is assumed to be constant inside the element. 

CST is the simplest element to develop mathematically. As there is no 

variation of strain inside the element, the mesh size of the triangular element 

should be small enough to get correct results. This element produces constant 

temperature gradients 

transfer problems. 

ensuring constant heat flow within the element for heat 

 

Shape function for six node element 

Fig. 5 shows a triangular element with six nodes. The additional three 

nodes (4, 5, and 6) are situated at the midpoints of the sides of the element. A 

complete polynomial representation of the field variable can be expressed with 

the help of Pascal triangle: 

Fig. 5 (a) Six node triangular element (b) Lines of constant values of the 

area coordinates 
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1 1 1 2 1 1 

Using the above field variable function, one can reach the following expression 

using interpolation function and the nodal values. 

∅(x,y) = 0 + 1x+ 2y+ 3x2+ 4xy+ 5y2 
 

Here, the every shape function must be such that its value will be unity if 

evaluated at its related node and zero if evaluated at any of the other five nodes. 

Moreover, as the field variable representation is quadratic, each interpolation 

function will also become quadratic. Fig. 5 (a) shows the six node element with 

node numbering convention along with the area coordinates at three corners. 

The six node element with lines of constant values of the area coordinates 

passing through the nodes is shown in Fig. 5 (b). Now the interpolation 

functions can be constructed with the help of area coordinates from the above 

diagram. For example, the interpolation function N1 should be unity at node 1 

and zero at all other five nodes. According to the above diagram, the value of 

L1 is 1 at node 1 and ½ at node 4 and 6. Again, L1 will be 0 at nodes 2, 3 and 5. 

To satisfy all these conditions, one can propose following expression: 

N (X,Y) = N (L ,L ,L )=L1[L1- 1] 
1 1 1 2 3 2 

 

Evaluating the above expression, the value of N1 is becoming ½ at node 1 

though it must become unity. Therefore, the above expression is slightly 

modified satisfying all the conditions and will be as follows: 

N  = 2L [L -
1] = L  (2L -1) 

This assures the required conditions at all the six nodes and is a quadratic 

function, asL1 is a linear function of x and y. The remaining five interpolation 

functions can also be obtained in similar fashion applying the required nodal 

conditions. Thus, the shape function for the six node triangle element can be 

written as given below. 
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Such six node triangular element is commonly known as linear strain triangle 

(LST) as its strain is assumed to vary linearly inside the element. In case of 2-D 

plane stress/strain problem, the element displacement field for such quadratic 

triangle may be expressed as so the element strain can be derived from the 

above displacement field as follows. 
 

So the element strain can be derived from the above displacement field as 

follows. 

 

 

The above expression shows that the strain components are linearly varying 

inside the element. Therefore, this six node element is called linear strain 

triangle. The main advantage of this element is that it can capture the variation 

of strains and therefore stresses of the element. 
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Construction of Shape Function by Degrading Technique 
 

Sometimes, the geometry of the structure or its loading and boundary conditions 

are such that the stresses developed in few locations are quite high. On the other 

hand, variations of stresses are less in some areas and as a result, refinement of 

finite element mesh is not necessary. It would be economical in terms of 

computation if higher order elements are chosen where stress concentration is high 

and lower order elements at area away from the critical area. Fig.6 shows 

graphical representations where various order of triangular elements are used for 

generating a finite element mesh. 
 

 

Fig. 6 Triangular elements with different number of nodes 

Fig. 6 contains four types of element. Type 1 has only three nodes, type 2 

element has five nodes, type 3 has four nodes and type 4 has six nodes. The 

shape function for 3-node and 6-node triangular elements has already been 

derived. The shape functions of 6-node element can suitably be degraded to 

derive shape functions of other two types of triangular elements. 

Quadrilateral element 
 

Shape Function 

The shape function of eight node rectangular element can be derived in similar 

fashion as done in case of four node element. The only difference will be on 

choosing of polynomial as this element is of quadratic in nature. The derivation 

will be algebraically complex in case of using Cartesian coordinate system. 

However, use of the natural coordinate system will make the process simpler as 
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the natural coordinates vary from -1 to +1 in the element. The variation of filed 

variable ϕ can be expressed in natural coordinate system by the following 

polynomial. 
 

 

It may be noted that the cubic terms ξ3 and η3are omitted and geometric 

invariance is ensured by choosing the above expression. Fig. 8 shows the 

natural nodal coordinates of the eight node rectangle element in natural 

coordinate system. 

The nodal field variables can be obtained from the above expression after 

putting the coordinates at nodes. 
 

 

 

 
Fig. 8 Natural coordinates of eight node rectangular element 
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Replacing the unknown coefficient αi 
 

 

 

Thus, the interpolation function will become 
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The shape functions of rectangular elements with higher nodes can be derived in 

similar manner using appropriate polynomial satisfying all necessary criteria. 

However, difficulty arises due to the inversion of large size of the matrix 

because of higher degree of polynomial chosen. In next lecture, the shape 

functions of rectangular element with higher nodes will be derived in a much 

simpler way. 
 

Natural coordinates 

 
Natural coordinate system is basically a local coordinate system which allows 

the specification of a point within the element by a set of dimensionless 

numbers whose magnitude never exceeds unity. This coordinate system is found 

to be very effective in formulating the element properties in finite element 

formulation. This system is defined in such that the magnitude at nodal points 

will have unity or zero or a convenient set of fractions. It also facilitates the 

integration to calculate element stiffness. 

The natural coordinate system for a triangular element is generally called as 

triangular coordinate system. The coordinate of any point Pinside the triangle is 

x,y in Cartesian coordinate system. Here, three coordinates, L1, L2 and L3 can 

be used to define the location of the point in terms of natural coordinate system. 

The point P can be defined by the following set of area coordinates: 
 

 

 

L1 = 
1 

; L2 = 
2 ; 

L3 = 
3
 

 

Where, 
A1= Area of the triangle P23 

A2= Area of the triangle P13 

A3= Area of the triangle P12 

A=Area of the triangle 123 
 

Thus, 

 

 

And 

 

A= A1+A2+A3 

 

 
L1+L2+L3 = 1 
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Therefore, the natural coordinate of three nodes will be: node 1 (1,0,0); 

node 2 (0,1,0); and node 3 (0,0,1). 

 

 
Fig. 9Triangular coordinate system 

 

 
The area of the triangles can be written using Cartesian coordinates considering 

x, y as coordinates of an arbitrary point P inside or on the boundaries of the 

element: 
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The relation between two coordinate systems to define point P can be 

established by their nodal coordinates as 
 

 

 
The inverse between natural and Cartesian coordinates may be expressed as: 

 
 

The derivatives with respect to global coordinates are necessary to determine 

the properties of an element. The relationship between two coordinate systems 

may be computed by using the chain rule of partial differentiation as 

 

Where, b1 = y2 – y3; b2 = y3 – y1 and b3 = y1 – y2. Similarly, following 

relation can be obtained. 
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de ned as un y 

Where, c1 = x3 – x2; c2 = x1 – x3 and c3 = x2 – x1. The above expressions are 

looked cumbersome. However, the main advantage is the ease with which 

polynomial terms can be integrated using following area integral expression. 
 
 

Where 0! is defined as unity. 

Shape Function using Area Coordinates 

 

The interpolation functions for the triangular element are algebraically complex 

if expressed in Cartesian coordinates. Moreover, the integration required to 

obtain the element stiffness matrix is quite cumbersome. This will be discussed 

in details in next lecture. The interpolation function and subsequently the 

required integration can be obtained in a simplified manner by the concept of 

area coordinates. Considering a linear displacement variation of a triangular 

element as shown in Fig. 10, the displacement at any point can be written in 

terms of its area coordinates. 

 

Here, A is the total area of the triangle. It is important to note that the area 

coordinates are dependent as L1+L2+L3 = 1 . It may be seen from figure that at 

node 1, L1 = 1 while L2 = L3 = 0. Similarly for other two nodes: at node 2, L2 = 

1 while L1 = L3 = 0, andL3 = 1 while L2 = L1 = 0. Now, substituting the area 

coordinates for node 1, 2 and 3, the displacement components at nodes can be 

written as 
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Thus, from the above expression, one can obtain the unknown coefficient: 
 

 
Fig .10 Area coordinates for triangular element 

 

 

 

 

 

The above expression can be written in terms of interpolation function as 

{N }T {u }i Where, 
 

Similarly, the displacement variation v in Y direction can be expressed as 

follows. 
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Thus, for two displacement components u and v of any point inside the 

element can be written as: 

Thus, the shape function of the element will become 
 

It is important to note that the shape function Ni become unity at node i 

and zero at other nodes of the element. The displacement at any point of the 

element can be expressed in terms of its nodal displacement and the 

interpolation function as given below. 
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Isoparametric Formulation 

 

The two or three dimensional elements discussed till now are of regular 

geometry (e.g. triangular and rectangular element) having straight edge. Hence, 

for the analysis of any irregular geometry, it is difficult to use such elements 

directly. For example, the continuum having curve boundary as shown in the 

Fig. 11 (a) has been discretized into a mesh of finite elements in three ways as 

shown. 
 

 
 

 
(a) The Continuum to be discritized (b) Discritization using Triangular Elements (c) 

Discritization using rectangular elements (d) Discritization using a combination of 

rectangular and quadrilateral elements 
 

Fig. 11 Discretization of a continuum using different elements 
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Figure 11 (b) presents a possible mesh using triangular elements. Though, 

triangular elements can suitable approximate the circular boundary of the 

continuum, but the elements close to the center becomes slender and hence 

affect the accuracy of finite element solutions. One possible solution to the 

problem is to reduce the height of each row of elements as we approach to the 

center. But, unnecessary refining of the continuum generates relatively large 

number of elements and thus increases computation time. Alternatively, when 

meshing is done using rectangular elements as shown in Fig 11 (c), the area of 

continuum excluded from the finite element model is significantly adequate to 

provide incorrect results. In order to improve the accuracy of the result one  

can generate mesh using very small elements. But, this will significantly 

increase the computation time. Another possible way is to use a combination of 

both rectangular and triangular elements as discussed below. But such types of 

combination may not provide the best solution in terms of accuracy, since 

different order polynomials are used to represent the field variables for different 

types of elements. Also the triangular elements may be slender and thus can 

affect the accuracy. In Fig. 11 (d), the same continuum is discritized with 

rectangular elements near center and with four node quadrilateral elements near 

boundary. This four-node quadrilateral element can be derived from rectangular 

elements using the concept of mapping. Using the concept of mapping regular 

triangular, rectangular or solid elements in natural coordinate system (known as 

parent element) can be transformed into global Cartesian coordinate system 

having arbitrary shapes (with curved edge or surfaces). Fig. 12 shows the parent 

elements in natural coordinate system and the mapped elements in global 

Cartesian system. 
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Fig 12 Mapping of isoparametric elements in global coordinate system 

Coordinate Transformation 

 

The geometry of an element may be expressed in terms of the interpolation 

functions as follows. 
 

Where, 

n=No. of Nodes 

N =Interpolation Functions 

x ,y ,z =Coordinates of  Nodal Points of the Element 

One can also express the field variable variation in the element as 
 
 

As the same shape functions are used for both the field variable and description 

of element geometry, the method is known as isoparametric mapping. The 

element defined by such a method is known as an isoparametric element. This 

method can be used to transform the natural coordinates of a point to the 

Cartesian coordinate system and vice versa. 
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Numerical integration 
 

Numerical integrations using Gauss Quadrature method can be extended to two 

and three dimensional cases in a similar fashion. Such integrations are necessary 

to perform for the analysis of plane stress/strain problem, plate and shell 

structures and for the three dimensional stress analysis. 

 

Gauss Quadrature for Two-Dimensional Integrals 

For two dimensional integration problems the above mentioned method can be 

extended by first evaluating the inner integral, keeping η constant, and then 

evaluating the outer integral. Thus, 
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Brick Elements 

Various orders of elements of the parallelepiped family are shown in Fig. 13 

shows the eight-node brick element with reference to a global Cartesian 

coordinate system and then with reference to natural coordinate system. The 

natural coordinates for the brick element can be relate Cartesian coordinate 

system by 
 

Here,2a, 2b and 2care the length, height and width of the element. The 

coordinate of the center of the brick element can be written as follows: 

 

 

 
The nodal values in natural coordinate systems can be derived which is shown 

in Fig. 13 (b). With the above relations variations of x, h &z will be from -1 to 

+1. Now the interpolation function can be derived in several procedures as done 

in case of two dimensional rectangular elements. For example, the interpolation 

function can be derived by inspection in terms of natural coordinate system as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 Eight node brick element 

 

By using field variable the following terms of the polynomial may be used for 

deriving the shape function for eight-node brick element. 
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The above equation is incomplete but symmetric. However, such 

representations are quite often used and solution convergence is achieved in the 

finite element analysis. Again, the shape functions for three dimensional 8-node 

or 27-node brick elements can be derived using Lagrange interpolation 

function. For this we need to introduce interpolation function in the ζ-direction. 

Thus, for example, the Lagrange interpolation function for a three dimensional 8 

node brick element can be obtained from the product of appropriate interpolation 

functions in the ξ, η and ζ directions. Therefore, the shape function will become 
 

Thus using the Lagrange interpolation function the shape function at node 1 can 

be expressed as 
 

Using any of the above concepts, the interpolation function for 8-node brick 

element can be found as follows: 
 

 

 

The shape functions of rectangular parallelepiped elements with higher nodes 

can be derived in similar manner satisfying all necessary criteria. 
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Shell element 

 

A shell is a curved surface, which by virtue of their shape can withstand both 

membrane and bending forces. A shell structure can take higher loads if, 

membrane stresses are predominant, which is primarily caused due to in-plane 

forces (plane stress condition). However, localized bending stresses will appear 

near load concentrations or geometric discontinuities. The shells are analogous 

to cable or arch structure depending on whether the shell resists tensile or, 

compressive 

given below. 

stresses respectively. Few advantages using shell elements are 

1. Higher load carrying capacity 

2. Lesser thickness and hence lesser dead load 

3. Lesser support requirement 

4. Larger useful space 

5. Higher aesthetic value. 

The example of shell structures includes large-span roof, cooling towers, piping 

system, pressure vessel, aircraft fuselage, rockets, water tank, arch dams, and 

many more. Even in the field of biomechanics, shell elements are used for 

analysis of skull, Crustaceans shape, red blood cells, etc. 

 

Classification of Shells 
 

Shell may be classified with several alternatives. Depending upon deflection in 

transverse direction due to transverse shear force per unit length, the shell can 

be classified into structurally thin or thick shell. Further, depending upon the 

thickness of the shell in comparison to the radii of curvature of the mid surface, 

the shell is referred to as geometrically thin or thick shell. Typically, if 

thickness to radii of curvature is less than 0.05, then the shell can be assumed as 

a thin shell. For most of the engineering application the thickness of shell 

remains within 0.001 to 0.05 and treated as thin shell. 

 

Assumptions for Thin Shell Theory 

 
Thin shell theories are basically based on Love-Kirchoff assumptions as 
follows. 

1. As the shell deforms, the normal to the un-deformed middle surface 

remain straight and normal to the deformed middle surface undergo no 

extension. i.e., all strain components in the direction of the normal to the 

middle surface is zero. 

2. The transverse normal stress is neglected. 

Thus, above assumptions reduce the three dimensional problems into two 
dimensional. 
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Finite Element Formulation of a Degenerated Shell 

Let consider a degenerated shell element, obtained by degenerating 3D solid 

element. The degenerated shell element as shown in Fig 14 has eight nodes, for 

which the analysis is carried out. Let ( , ) are the natural coordinates in the mid 

surface. And ς is the natural coordinate along thickness direction. The shape 

functions of a two dimensional eight node isoparametric element are: 
 

 

The position of any point inside the shell element can be written in terms of 

nodal coordinates as 
 

Since, ς is assumed to be normal to the mid surface, the above expression can be 

rewritten in terms of a vector connecting the upper and lower points of shell as 
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Fig 14 Local and global coordinates 
 

For small thickness, the vector V3i can be represented as a unit vector tiv3i: 
 

Where, ti is the thickness of shell at ith node. In a similar way, the displacement at any 

point of the shell element can be expressed in terms of three displacements and two 

rotation components about two orthogonal directions normal to nodal load vector V3i 

as, 
 

Where, σi, i are the rotations of two unit vectors v1i & v2i about two 

orthogonal directions normal to nodal load vector V3i.The values of v1i and v2i 

can be calculated in following way: 

The coordinate vector of the point to which a normal direction is to be 

constructed may be defined as 

 

 
In which, iˆ, ˆj, kˆ are three (orthogonal) base vectors. Then, 1i V is the cross 

product of ˆi & V3i as shown below 
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Jacobian matrix 

The Jacobian matrix for eight node shell element can be expressed as, 
 

 
Strain displacement matrix 

The relationship between strain and displacement is described by 

{e}=[B]{d} 

Where, the displacement vector will become: 

{ d} t ={u1 v1 w1 v11v21 ........u8 v8 w8 } 

And the strain components will be 
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Stress strain relation 

The stress strain relationship is given by 

{σ}=[D]{ε} 

{ σ}=[D][B]{d} 

Where, the stress strain relationship matrix is represented by 

 

 

 
The value of shear correction factor a is considered generally as 5/6. The above 

constitutive matrix can be split into two parts ([Db] and [Ds] )for adoption of 

different numerical integration schemes for bending and shear contributions to 

the stiffness matrix. 
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Element stiffness matrix 

Finally, the stiffness matrix for the shell element can be computed from the 

expression 

[k ]= ∭[ ]T [D][B]dΩ 

However, it is convenient to divide the elemental stiffness matrix into two parts: 

(i) bending and membrane effect and (ii) transverse shear effects. This will 

facilitate 

Thus, 

the use of appropriate order of numerical integration of each part. 

 
 

[k ]= [k ] b [k ]s 
 

Where, contribution due to bending and membrane effects to stiffness is 

denoted as [k]b and transverse shear contribution to stiffness is denoted as [k]s 

and expressed in the following form. 

Numerical procedure will be used to evaluate the stiffness matrix. A 2 ×2 

Gauss Quadrature can be used to evaluate the integral of [k]b and one point 

Gauss Quadrature may be used to integrate [k]s to avoid shear locking effect. 

Plate Bending Elements 

 

The elastic stability analysis of rectangular plates is discussed in this section. 

The total potential energy for plate are expressed as 

 

Here, Fx,Fy,and Fxy, are the in-plane edge load and compressive load is 

considered as positive. For, finite element formulation the deflection in 

above expression needs to convert in terms of nodal displacements in the 

element. to the following form using interpolation functions. 
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Where [N’ x]and [ N’ y]indicate partial derivative of ��� with respect to x and y 

respectively. Thus, the equation of buckling becomes 
 

If the in-plane loads have a constant ratio to each other at all time during their 

buildup, the above equation can be expressed as follows 

 

The term P∗   is called the load factor, and , and are constants relating the in- 
plane loads in the plate member. Solving the above expression, the buckling 
mode shapes are possible to determine. 
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UNIT-III MESHING AND SOLUTION PROBLEMS 

 
The stiffness matrix of the basic element is contained in the new matrix as a 

submatrix. The stiffness matrices of higher order elements are built by a similar process if a 

higher order element is coded into the finite element program, it includes st iffness 

matrices of all lower order elements. In the process of refinement if a higher order 

element is chosen, the previously computed stiffness coefficients would still be valid. 

Hence, only a few additional coefficients have to be evaluated. The method is easier than the 

conventional p - method of increasing the polynomial order where the computation of the 

entire higher order element stiffness matrix is required. 

 
Refinement using hierarchical elements is a-posteriori and appears to be attractive. However 

more research work needs to be done in this area. 

 

Mesh refinement 

The user needs to select the number of nodes and elements in the model. The selection may be 

the one that leads to the best description of the domain geometrically. For example, a curved 

surface could be modeled by a series of interconnected flat rectangular facets. The larger the 

number of facets, the better is the model. The selection may also be based upon intuition, 

past experience and engineering judgment. The mesh obtained may be adequate in some 

cases. In other cases, especially when singularities are present, the mesh may not be adequate 

to obtain the results to the accuracy desired. In such cases, the meshes need to be refined. 

REFINEMENT PROCESS 

There are three ways of refining a finite element mesh: 
 

a) The H-method: This method increases the number of elements and hence decreases the 

element size while keeping the polynomial order of the shape function constant. 

b) The P-method: This method increases the polynomial order of the interpolation function 

while keeping the number of elements in the model constant. 

c) The R-method: This method redistributes the nodes while keeping the element 

number and the polynomial order of the interpolation function constant. 
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=r 

H - Method 

This method is primarily based on the choice of characteristic length of the elements. 

"Characteristic length " is referred to in a generalized sense and is required to define the 

element topologically. A linear element requires one characteristic length, whereas an 

element of rectangular shape requires two characteristic lengths and a triangular element 

requires three characteristic lengths for its definition. In the triangular element the three length 

information’s may be any combination of lengths and angles. 

Instead of expressing the functional in terms of the position vectors of the nodes it can be 

expressed as a function of the element characteristic lengths as 

= (ui,hik) (a) 
 
where, hik is the element characteristic length, 1 is the index on the 

Characteristic length for element k 

 

Also, note that there will be geometrical constraints on hk. For example, the sum of the 

element lengths in a particular direction should be equal to the overall dimension of the 

model in that direction. 

= 
  

u
 

= 0 (b) 
1 

ℎ 2 

 

ℎ   
i k

 

 

 
 

Solving equation ( b) along with the constraints yield the characteristic lengths and hence 

defines the best mesh. Equation (b) is equivalent to cast in the frame work of characteristic 

lengths. Therefore the solution as indicated is difficult. A practical procedure using this 

method consists of selecting a coarse initial mesh, solving the equilibrium equations and 

computing the residue rk on each element. The set of elements with large values of 

residues is the region that needs to be refined. The identified region can be refined by sub- 

dividing the elements, thus creating new regions, or by deleting all the elements in the region 

and replacing them by finer elements. However, the new elements need to be of the same type 

as those in the initial mesh. The equations of the new model are solved and the residues are 

computed. If the values of the residues are still large, the refinement procedure can be 

repeated. Indeed , it could be used iteratively until the solution meets the prescribed accuracy. 

i 
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P - Method 

This method is primarily based on the choice of the order of the interpolation function, which 

in practice, translates to the choice of element type. For example, in a two dimensional 

domain, the basic triangular element with three nodes at the three vertices uses a linear shape 

function (p-l). In order to choose quadratic shape functions (p=2), the triangular element with 

six nodes, three at the vertices and three at mid-side locations, has to be selected. Similarly, 

for cubic functions, an element with nine nodes is selected. 

Higher order elements generally provide better description of the domain geometrically. They 

are particularly useful in regions where the use of lower order elements would result in a 

mesh with poor aspect ratios in those elements. From the point of view of solution accuracy, 

higher order elements are usually more accurate than the lower order elements. But this 

does not mean that increasing the polynomial order indiscriminately will always provide 

point-wise convergence to the exact solution. The argument is based on the theory of 

interpolation. Prenter states that this notion on convergence was first dispelled by Meray 

and later by Range.  He illustrates this with the function f(x) = 

1/(1+5x2) being interpolated by Lagrange polynomial of order 5 and 15 with evenly spaced 

odes in the interval [-1,1] which display divergence at - 1 and 1. Although the example is for 

a continuous interpolation function rather than a piecewise function, as in a finite element 

model, it shows that there is good reason to exercise caution in increasing the polynomial 

order. 

A - priori and a - Posteriori methods 
 

The classification of methods into a-priori and a-posteriori refers to refinement before and 

after the solution of the equilibrium equations. In a finite element program the solution 

process is one that needs much of computer time.   If discretization errors can be 

estimated a-priori, then the mesh can be suitably altered to obtain the best accuracy possible 

by solving the equations only once. Unfortunately there are no practical priory methods 

available. The author has not found any in the literature survey. This study is an attempt to 

provide one. There are several aposteriori methods available for refinement. 
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UNIT IV 

NONLINEAR, VIBRATION AND THERMAL PROBLEMS 

 
Nonlinear problems 

 
Various non-linear problems in finite element analysis may be group into the 

following three categories. 

1. Material non-linear problems 

 
2. Geometric non-linear problems 

 
3. Non-linear boundary or initial conditions 

 
Nonlinear Material Behavior 

 
This is one of the most common forms of nonlinearity, and would include 

nonlinear elastic, plastic, and visco elastic behavior. For thermal problems, a 

temperature dependent thermal conductivity will produce nonlinear equations. 

Large Deformation Theory (Geometric Nonlinearity) 

 
If a continuum body under study undergoes large finite deformations, the 

strain-displacement relations will become nonlinear. Also for structural mechanics 

problems under large deformations, the stiffness will change with deformation thus 

making the problem nonlinear. Buckling problems are also nonlinear. 

Nonlinear Boundary or Initial Conditions 

 
Problems involving contact mechanics normally include a boundary 

condition     that depends     on the d e f o r m a t i o n      thereby p r o d u c i n g      a 

n o n l i n e a r formulation. Thermal problems involving melting or freezing (phase 

change) also include such nonlinear boundary conditions. 
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Non linearity in structural problem 

 
 

 
GEOMETRIC NONLINEARITY 

 
Relations among kinematic quantities (i.e., displacement, rotation and 

strains) are nonlinear 

 

 

 

 
 

Displacement-strain relation 

 
i. E has a higher-order term 

 
ii. (du/dx) << 1  e(x) ~ E(x). 
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Domain of integration 

 
i. Undeformed domain W0 

 

ii. Deformed domain Wx 

 

a(u, u)    
(u) : (u) d


MATERIAL NONLINEARITY 

 
Linear (elastic) material 

 
{  }    [ D ] {  } 

 
Only for infinitesimal deformation 

 
Nonlinear (elastic) material 

 
i. [C] is not a constant but depends on deformation 

 
ii. Stress by differentiating strain energy density U 

 
iii. Linear material: 

 

U  
1 

E2 
2 

 

  
dU 

 E 
d



Stress is a function of strain (deformation): potential, path independent 
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Elasto-plastic material (energy dissipation occurs) 

 
i. Friction plate only support stress up to sy 

 
ii. Stress cannot be determined from stress alone 

 
iii. History of loading path is required: path-dependent 

 

 
 

 

  

 
 

 

Visco-elastic material 

 
i. Time-dependent behavior 

 
ii. Creep, relaxation 

 

 

 

 

Boundary and Force Nonlinearities 

 
Nonlinear displacement BC (kinematic nonlinearity) 

 
Contact problems, displacement dependent conditions 
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T 

d 

T 

Nonlinear force BC (Kinetic nonlinearity) 

 

 
NON LINEAR ANALYSIS 

 
Newton-Raphson Method 

 
 

 
 

i. Most popular method 

 
ii. Assume di at i-th iteration is known 

 
iii. Looking for di+1 from first-order Taylor series expansion 

P(di1 )  P(di)  Ki (di)  di  F 

Ki (di) 
 P 

i

 

T   
 








iv. Solve for incremental solution 

Ki di  F  P(di) 

v. Update solution 

di1  di  di
 

: Jacobian matrix or Tangent stiffness 

matrix 
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Consistent System Matrices 

 
To do dynamic and vibration finite element analysis, you need at least a 

mass matrix to pair with the stiffness matrix. As a general rule, the construction of 

the master mass matrix M largely parallels of the master stiffness matrix K. Mass 

matrices for individual elements are formed in local coordinates, transformed to 

global, and merged into the master mass matrix following exactly the same 

techniques used for K. In practical terms, the assemblers for K and M can be 

made identical. This procedural uniformity is one of the great assets of the Direct 

Stiffness Method. A notable difference with the stiffness matrix is the possibility of 

using a diagonal mass matrix based on direct lumping. A master diagonal mass 

matrix can be stored simply as a vector. If all entries are nonnegative, it is easily 

inverted, since the inverse of a diagonal matrix is also diagonal. Obviously a 

lumped mass matrix entails significant computational advantages for calculations 

that involve M−1. This is balanced by some negative aspects that are examined in 

some detail later. 

 
Mass Matrix Construction 

The master mass matrix is built up from element contributions, and we start 

at that level. The construction of the mass matrix of individual elements can be 

carried out through several methods. can be categorized into three groups: direct 

mass lumping, variational mass lumping, and template mass lumping. The last 

group is more general in that includes all others. Variants of the first two 

techniques are by now standard in the FEM literature, and implemented in all 

general purpose codes. 

 
Direct Mass Lumping 

The total mass of element e is directly apportioned to nodal freedoms, 

ignoring any cross coupling. The goal is to build a diagonally lumped mass matrix 

or DLMM, denoted here by MeL .As the simplest example, consider a 2-node 

prismatic bar element with length L, cross section area A, and mass density ρ, 

which can only move in the axial direction x,. The total mass of the element is Me 

= ρ AL. This is divided into two equal parts and assigned to each end 
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Dynamic condensation 

The accuracy of the resulting reduced model is generally very low for 

dynamic problems. To achieve reasonably accurate results, the masters must be 

chosen with great care and number of masters should be greater than the number of 

modes interested. To alleviate the limitations, the inertia effects could be 

partially or fully included in the condensation. The corresponding condensation 

approaches are generally called dynamic condensation 

The equation of motion is cast as a shifted Eigen problem. A shift value, f, is 

introduced into the set of equations describing the dynamic system, thus 

The terms are rearranged to group the constant term f times the mass 

matrix with the stiffness matrix to yield 

 
 
 

Then let a new system matrix [D] be used to describe the ‘effective’ stiffness 

matrix as 

 

This ‘effective’ stiffness equation 

 

can be partitioned into the ‘a’ active DOF and the ‘d’ deleted or omitted DOF to 

form two equations given as 

 
 

Assuming that the forces on the deleted DOF are zero, then the second equation 

can be written as 

 

which can be solved for the displacement at the deleted DOF as 
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The first equation can be written as 

and upon substituting for the ‘d’ deleted DOF this equation becomes 
 

 

 

This can be manipulated to yield the desired transformation to be 

Using this transformation, the reduced stiffness can be written as 

 

This same transformation can be applied to the mass matrix given by 
 

 

 
 

 
THERMAL ANALYSIS 

 
One dimensional conduction 
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Two-Dimensional Conduction 
 
 

qx  Kxx  
dT 

 K 
dx 

zz 
 

dT 

dz 
 

 
 

Ein  Egen  U  Eout 

qinX  A  dt  qinZ  A  dt  Q  A  dx  dt 

 U  qoutX  A  dt  qoutZ  A  dt 

Finite Element 2-D Conduction 
Select Element Type 

 
i. 1-d elements are lines 
ii. 2-d elements are either triangles, quadrilaterals, or a mixture as shown 

iii.  Label the nodes so that the difference between two nodes on any element 
is minimized. 

Finite Element 2-D Conduction 

 
1. Assume (Choose) a Temperature Function 
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Stiffness matrix is general term for a matrix of known coefficients being 

multiplied by unknown degrees of freedom, i.e., displacement OR temperature, 

etc. Thus, the element conduction matrix is often referred to as the stiffness 

matrix. 

2. Assemble Element Equations, Apply BC’s 

 

F K t

 

From here on virtually the same as structural approach. Heat flux 

boundary conditions already accounted for in derivation. Just substitute into 

above equation and solve for the following: 

3. Solve for Nodal Temperatures 

 
4. Solve for Element Temperature Gradient & Heat Flux 
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UNIT – V -DYNAMIC ANALYSIS AND SOFTWARE APPLICATION– SCIA5201 
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UNIT V 

DYNAMIC ANALYSIS AND SOFTWARE APPLICATION 

 
Dynamic equation of motion 

In dynamic problems the displacements, velocities, strains, stresses and 

loads are all time dependent. The procedure involved in deriving the FE equations 

of a dynamic problem can be stated by the following steps: 

 
1. Idealize the body into E finite elements 

2. Assume the displacement model of element e as 

3. Derive the element characteristic (stiffness and mass) matrices and 

characteristic (load) vector. 

 
 

 
 

 
4. Assemble the element matrices and vectors and derive the overall system 

equations of motion. 

5. Solve the equation of motion by applying the boundary conditions. 

 

Consistent and lumped mass matrices 

The above mass matrix is called as “consistent” mass matrix of the 

element. It is called consistent because the same displacement model that is used 

for deriving the element stiffness matrix is used to for the derivation of mass 

matrix. 

It is interest to note that several dynamic problems have been and are 

being solved with simpler forms of mass matrices. The simplest form of mass matrix 

that can be used is that obtained by placing point (concentrated) mass mi at node 

point I in the directions of assumed displacement degrees of freedom. 
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The concentrated masses refer to translational and rotational inertia of the 

element and are calculated by assuming that the material within the mean 

locations on either side of the particular displacement behaves like a rigid body 

while the remainder of the element does not participate in the motion. 

Thus, this assumption excludes the dynamic coupling that exists between 

the element displacements and hence the resulting element mass matrix is purely 

diagonal and is called the “lumped” mass matrix. 

 
Natural frequencies and mode shapes 

The oscillatory motion occurs at certain frequencies known as natural 

frequencies or characteristic values, and it follows well defined deformation 

patterns known as mode shapes and characteristic modes. 

 
AXIALLY LOADED BAR 
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