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ELUID PROPERTIES AND FLUID STATICS

L Properties of Fluids

Fluid Mechanics is that section of applied mechanics, concerned with the statics and dynamics
of liquids and gases. Knowledge of fluid mechanics is essential for the chemical engineer, because
the majority of chemical processing operations are conducted either partially or totally in the fluid
phase. The handling of liquids is much simpler, much cheaper, and much less troublesome than
handling solids. Even in many operations a solid is handled in a finely divided state so that it stays
in suspension in a fluid.

Fluid Statics: treats fluids in the equilibrium state of no shear stress

Fluid Mechanics: treats when portions of fluid are in motion relative to other parts.

A fluid is defined as a substance that deforms continuously under the action of a shear stress,
however small magnitude present. It means that a fluid deforms under very small shear stress, but
a solid may not deform under that magnitude of the shear stress. It is a substance, as a liquid or
gas, that is capable of flowing and that changes its shape at a steady rate when acted upon by a
force tending to change its shape. The differences between the behaviours of solids and fluids

under an applied force are as follows:

For a solid, the strain is a function of the applied stress, providing that the elastic limit is not
exceeded. For a fluid, the rate of strain is proportional to the applied stress. The strain in a solid is
independent of the time over which the force is applied and, if the elastic limit is not exceeded, the
deformation disappears when the force is removed. A fluid continues to flow as long as the force

is applied and will not recover its original form when the force is removed.

Newtonian fluids:
Fluids which obey the Newton's law of viscosity are called as Newtonian fluids. Newton's law of

viscosity is given by

i
T = —
where = shear stress



# = viscosity of fluid
du/dy = shear rate, rate of strain or velocity gradient
All gases and most liquids which have simpler molecular formula and low molecular weight such
as water, benzene, ethyl alcohol, CCls, hexane and most solutions of simple molecules are
Newtonian fluids.
Non-Newtonian fluids:

Fluids which do not obey the Newton's law of viscosity are called as non-Newtonian fluids.

Generally non-Newtonian fluids are complex mixtures: slurries, pastes, gels, polymer solutions
etc.
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Fig.1: Newtonian Fluid

Density

The density of a substance is the quantity of matter contained in a unit volume of the substance.
It can be expressed in three different ways.

Mass Density
Mass Density, # , is defined as the mass of substance per unit volume.

3 -3
Units: Kilograms per cubic metre, ¥8/# (or %877



Dimensions: ML~

Typical values:
-3 -3 =3 =3
Water = 1000587 Mercury = 13546 %87 Ajr = 1.23%8" " paraffin Oil = 800%8"

=3 -
(at pressure =1.013 * 107 W™ gng Temperature = 288.15 K.)
Specific Weight
Specific Weight € | (sometimes, and sometimes known as specific gravity) is defined as the
weight per unit volume.
or
The force exerted by gravity, g, upon a unit volume of the substance.
The Relationship between g and & can be determined by Newton's 2" Law, since

weight per unit volume = mass per unit volume g

o= g
3
Units: Newton's per cubic metre, &7 / m® (or 2717

Dimensions: ML=T™

Typical values:

-3 -3 =3 =3
Water =9814 7" Mercury = 132043 7 Air=12.07 Y7 paraffin il =7851 &
Relative Density

Relative Density, &, is defined as the ratio of mass density of a substance to some standard
mass density.

For solids and liquids this standard mass density is the maximum mass density for water (which
occurs at 4° ¢) at atmospheric pressure.
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Units: None, since a ratio is a pure number.
Dimensions: 1.

Typical values: Water = 1, Mercury = 13.5, Paraffin Oil =0.8.

Viscosity

Viscosity, is the property of a fluid, due to cohesion and interaction between molecules, which
offers resistance to sheer deformation. Different fluids deform at different rates under the same
shear stress. Fluid with a high viscosity such as syrup, deforms more slowly than fluid with a low
viscosity such as water.

Fig .2 Viscous fluid

All fluids are viscous, "Newtonian Fluids" obey the linear relationship

Pl
= pu—
given by Newton's law of viscosity. v | which we saw earlier.

y dimension

boundary plate

(2D, moving) | velocity, u
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shear sfress, t

boundary plate (2D, stationary)

Fig .3 Variation in velocity
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where ¥ is the shear stress,

2 o1z
Units /7, kg m7s

Dimensions ML T
cfiy
4 js the velocity gradient or rate of shear strain, and has
Dimensions £

o Resistance of liquid to flow. It is the measure of consistency of the fluid and inability to flow.
e Generally highly viscous fluid flows slowly and all the fluids are viscous in nature called

real fluids.
e Ideal fluids have no viscosity

Coefficient of Dynamic Viscosity

The Coefficient of Dynamic Viscosity, , 5 defined as the shear force, per unit area, (or shear stress
), requited to drag one layer of fluid with unit velocity past another layer a unit distance away.

di  Force / Weloctty  Force x Time Idass
=7f—= = =
# gy Area/ Distance Area Length = Area

Units: Newton seconds per square metre, , or Kilograms per meter per second, :
Nem™ kgm™ s

-1 -1
(Although note that & is often expressed in Poise, P, where 10 P=1 kgm™ s )

Typical values:

1

1 -
Mercury =1.552 %&m &

= -1 -l -5 -1 -1
Water =1.14 =107 kgm™ s  Aj =p78 =107 kgm™ s

Paraffin Oil =1.9 kgm ™ s~
Kinematic Viscosity

Kinematic Viscosity, ¥, is defined as the ratio of dynamic viscosity to mass density.

L
Vv=—

2



. 2.-1
Units: square metres per second, #°5

(Although note that (1 is often expressed in Stokes, St, where 10* St = 1 ms™ )
Dimensions; Z77.
Typical values:

Water =114 *107°m’s™  Ajr =146 *x107ms™  Mercury =1.145 x107"m’s™
Paraffin Oil =2.375 * 107" m’s™",

5.6m" of oil wei ghs 46 800 N. Find its mass density, p, and relative density, .

Weight 46 800 =mg

Mass m= 46 800 /9.81 =4770.6 kg
Mass density p =Mass / volume =4770.6/ 5.6 = 852 kg/m’
Relative density 7 =—F— =% — 0852

P 1000

The density of an oil is 850 kg.u’mJ. Find its relative density and Kinematic viscosity if the dynamic
viscosity 15 5 = 107 kg/ms.

Pait = 850 kg/m®  pyaer = 1000 kg/m®

You = 850/ 1000 = 0.85

Dynamic viscosity = p = 5x 107 kg/ms

Kinematic viscosity =v= pu/p



The velocity distribution of a viscous lhiquid (dynamic viscosity p=10.9 Ns/m’) flowing over a
fixed plate is given by u = 0.68y - ¥ (u is velocity in m/s and v is the distance from the plate in
m).

What are the shear stresses at the plate surface and at y=0.34m?

u=0068y—y°
':” —0.68—2y
At the plate face y = Om,
M _0.68

¥
Calculate the shear stress at the plate face

ou

r=,£fg=ﬂ-9:¢ﬂ.ﬁ3=ﬂ.ﬁ|2.’\-’."ml

Aty = 0.34m,

o 0.68—2x0.34=0.0
av

As the velocity gradient is zero at v=0.34 then the shear stress must also be zero.

Vapour Pressure

The pressure at which a liquid will boil is called its vapor pressure. This pressure is a
function of temperature (vapor pressure increases with temperature). In this context we usually
think about the temperature at which boiling occurs. For example, water boils at 100°C at sea- level
atmospheric pressure (1 atm abs). However, in terms of vapor pressure, we can say that by
increasing the temperature of water at sea level to 100 °C, we increase the vapor pressure to the
point at which it is equal to the atmospheric pressure (1 atm abs), so that boiling occurs.

Water Vapor

Fig .4: Vapour Pressure



It is easy to visualize that boiling can also occur in water at temperatures much below
100°C if the pressure in the water is reduced to its vapor pressure. For example, the vapor pressure
of water at 10°C is 0.01 atm. Therefore, if the pressure within water at that temperature is reduced
to that value, the water boils. Such boiling often occurs in flowing liquids, such as on the suction
side of a pump. When such boiling does occur in the flowing liquids, vapor bubbles start growing
in local regions of very low pressure and then collapse in regions of high downstream pressure.

This phenomenon is called as cavitation

Compressibility

All materials, whether solids, liquids or gases, are compressible, i.e. the volume V of a given mass
will be reduced to V - dV when a force is exerted uniformly all over its surface. If the force per
unit area of surface increases from p to p + dp, the relationship between change of pressure and

change of volume depends on the bulk modulus of the material.

GAS LIQUID

Fig .5: Compressibility
Bulk modulus (K) = (change in pressure) / (volumetric strain)
Volumetric strain is the change in volume divided by the original volume. Therefore,
(change in volume) / (original volume) = (change in pressure) / (bulk modulus)

ie., -dV/V = dp/K



Negative sign for dV indicates the volume decreases as pressure increases. The concept of the
bulk modulus is mainly applied to liquids, since for gases the compressibility is so great that the
value of K is not a constant. The relationship between pressure and mass density is more
conveniently found from the characteristic equation of gas.

For liquids, the changes in pressure occurring in many fluid mechanics problems are not
sufficiently great to cause appreciable changes in density. It is therefore usual to ignore such

changes and consider liquids as incompressible.

Gases may also be treated as incompressible if the pressure changes are very small, but usually
compressibility cannot be ignored. In general, compressibility becomes important when the
velocity of the fluid exceeds about one-fifth of the velocity of a pressure wave (velocity of
sound) in the fluid.

Typical values of Bulk Modulus:
K =2.05 x 10° N/m? for water

K = 1.62 x 10° N/m? for oil.

Surface Tension

It is a fluid property which occurs at the interfaces of a liquid and gas or at the interface
of two immiscible liquids. As shown in Fig ,the liquid molecules- ‘A" is under the action
of molecular attraction between like molecules (cohesion). However the molecule ‘B’
close to the interface is subject to molecular attractions between both like and unlike
molecules (adhesion). As a result the cohesive forces cancel for liquid molecule 'A'. But
at the interface of molecule 'B' the cohesive forces exceed the adhesive force of the gas.
The corresponding net force acts on the interface; the interface is at a state of tension
similar to a stretched elastic membrane.

As explained, the corresponding net force is referred to as surface tension, n short it is
apparent tensile stresses which acts at the interface of two immiscible fluids.

Dimension: M7
Unit: Nim
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Fig .6: Surface Tension
Formation of water droplet- Phenomenon of surface tension

Capillarity

It is important (in fluid measurements) when using tubes smaller than about 10 mm in diameter.
Capillary rise (or depression) in a tube can be calculated by making force balances. The forces
acting are force due to surface tension and gravity.

The force due to surface tension,
L)

1

d
— = |h

Fig .7: Capillarity
Fs = pdscos(q),
where q is the wetting angle or contact angle. If tube (made of glass) is clean
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q is zero for water and about 140° for Mercury.

This is opposed by the gravity force on the column of fluid, which is equal to the height of the
liguid which is above (or below) the free surface and which equals

Fq =(p/4)d?hgr,
where r is the density of liquid.

Equating these forces and solving for Capillary rise (or depression) ‘h’

h = 4scos(q)/(rgd)

1. Water has a surface tension of 0.4 N/m. In a 3 mm diameter vertical tube if the liquid
rises 6 mm above the liquid outside the tube, calculate the contact angle.

Data:

Surface tension (s) = 0.4 N/m

Dia of tube (d) =3 mm =0.003 m

Capillary rise (h) =6 mm = 0.006 m

Formula:

Capillary rise due to surface tension is given by

h = 4scos(q)/(rgd), where q is the contact angle.

Calculations:

cos(q) = hrgd/(4s) = 0.006 x 1000 x 9.812 x 0.003/ (4 x 0.4) =0.11

Therfore, contact angle g = 83.7°

12



Pressure Measuring Instruments

A somewhat more complicated device for measuring fluid pressure consists of a bent tube
containing one or more liquid of different specific gravities. Such a device is known as
manometer.

In using a manometer, generally a known pressure (which may be atmospheric) is applied to one
end of the manometer tube and the unknown pressure to be determined is applied to the other
end.

In some cases, however, the difference between pressure at ends of the manometer tube is desired
rather than the actual pressure at the either end. A manometer to determine this differential

pressure is known as differential pressure manometer.

Manometers - VVarious forms

1.Simple U - tube Manometer

2. Inverted U - tube Manometer
3.U - tube with one leg enlarged
4.Two fluid U - tube Manometer

5.Inclined U - tube Manometer

Simple U tube Manometer Differential Manometer

Fig .8: Simple U tube Manometer

13



Inverted U tube Manometer

For the left hand side:
P«=P1+ #g(ath)
For the right hand side:

Px=Pz2+ Pga+ #ngh

Fiezometer
tube

QL 2)
l |

Fig .9: Simple U tube Manometer
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Slnce Px: Px'
P1+ Fg(ath) =P, + #ga+ #ngh
P1-Py= J{}mgh- f:}gh

i.e.P1-P2=(# m- #)0 gh.

The maximum value of P1 - P2 is limited by the height of the manometer.

To measure larger pressure differences we can choose a manometer with higher density, and to
measure smaller pressure differences with accuracy we can choose a manometer fluid which is

having a density closer to the fluid density.

Inverted U-tube manometer

1 1

L) (2)

Fig .10: Inverted U tube Manometer

It is used for measuring pressure differences in liquids. The space above the liquid in the
manometer is filled with air which can be admitted or expelled through the tap on the top, in order
to adjust the level of the liquid in the manometer.

Equating the pressure at the level XX'(pressure at the same level in a continuous body of static
fluid is equal),

15



For the left hand side:

Px = Py - #g(h+a)

For the right hand side:

Px=P,-(Pga+ ¥ ,gh)

Slnce Px = Px'

P1- Pg(h+a) =P2- (P ga+ # ngh)

P1-P2=(# - Pm)gh

If the manometric fluid is choosen in such a way that # n << # then,

P1-P2= #gh.

For inverted U - tube manometer the manometric fluid is usually air.

The manometer in its various forms is an extremely useful type of pressure measuring

instrument, but suffers from a number of limitations.

e}

While it can be adapted to measure very small pressure differences, it can not be used
conveniently for large pressure differences - although it is possible to connect a number of
manometers in series and to use mercury as the manometric fluid to improve the range.
(limitation)

A manometer does not have to be calibrated against any standard; the pressure difference

can be calculated from first principles. ( Advantage)

Some liquids are unsuitable for use because they do not form well-defined menisci. Surface
tension can also cause errors due to capillary rise; this can be avoided if the diameters of

the tubes are sufficiently large - preferably not less than 15 mm diameter. (limitation)

A major disadvantage of the manometer is its slow response, which makes it unsuitable for

measuring fluctuating pressures.(limitation)

It is essential that the pipes connecting the manometer to the pipe or vessel containing the
liquid under pressure should be filled with this liquid and there should be no air bubbles in

the liquid.(important point to be kept in mind)
16



Bourdon Gauge:

Heedle

(scale not showt

Bourdon
tuhe

‘_"— Huh {with
WIotion as refurt spmg)
Pressure
MCcreases

.

From source
of pressure

The pressure to be measured is applied to a curved tube, oval in cross section. Pressure applied
to the tube tends to cause the tube to straighten out, and the deflection of the end of the tube is
communicated through a system of levers to a recording needle. This gauge is widely used for
steam and compressed gases. The pressure indicated is the difference between that
communicated by the system to the external (ambient) pressure, and is usually referred to as
the gauge pressure.

The basic property of a static fluid is pressure. Pressure is familiar as a surface force exerted by
a fluid against the walls of its container. Pressure also exists at every point within a volume of

fluid. For a static fluid, as shown by the following analysis, pressure turns to be independent
direction.

17



At what depth below' the surface of oil. rclatii ¢ derisity® 0.8, will producc a Fe«e Urc of 120 IN/m ? fi’hat
depth of water is this equivalent to?

[15.3m, 12.2m]

a)

b)

=08x= 1000 kg / n’

12010 =[SJ9m of ail
/| g 800=96 I

p=1000 kg [ m’
120 = 10°

= =122
h 1000 x 981 1223 m of water

-~

200 mm
200 mm

150 mm

18
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Equating the pressure at the level XX' (pressure at the same level in a continuous body of fluid is
equal),

For the left hand side:

Py =P1+ #19(0.45)

For the right hand side:

Py=P2+ #2g(0.5)+ #mg x0.15

Since Px = Py

P1+ #10(0.45) =P, + 72 g (0.5)+ # ng x0.15

P1-P2=#2g(0.5)+ #ngx0.15 - #1g(0.45)
= (0.8x1000x9.81x0.5)+ (13.6x1000x9.81x0.15) — (0.9x1000x9.81x0.5)
= 19521 N/m?

Pascal’s Law

By considering the equilibrium of a small fluid element in the form of a triangular prism
ABCDEF surrounding a point in the fluid, a relationship can be established between the pressures
Px in the x direction, Py in the y direction, and Ps normal to any plane inclined at any angle g to
the horizontal at this point.

Pyx is acting at right angle to ABEF, and Py at right angle to CDEF, similarly Ps at right angle to
ABCD.

19



Since there can be no shearing forces for a fluid at rest, and there will be no accelerating forces,
the sum of the forces in any direction must therefore, be zero. The forces acting are due to the
pressures on the surrounding and the gravity force.

Force due to Px = Px x Area ABEF = Pxdydz

Horizontal component of force due to Ps = - (Ps x Area ABCD) sin(q) = - Psdsdz dy/ds = - Psdydz
As Py has no component in the x direction, the element will be in equilibrium, if

Pxdydz + (-Psdydz) =0

i.e. Px="Ps

Similarly in the y direction, force due to Py = Pydxdz

Component of force due to Ps = - (Ps X Area ABCD) cos(q) = - Psdsdz dx/ds = - Psdxdz

Force due to weight of element = - mg = - rVg = - r (dxdydz/2) g

Since dx, dy, and dz are very small quantities, dxdydz is negligible in comparison with other two
vertical force terms, and the equation reduces to,

Py = Ps
Therefore, Px = Py = Ps

i.e. pressure at a point is same in all directions. This is Pascal's law. This applies
to fluid at rest.
Fine powdery solids resemble fluids in many respects but differs considerably in others. For
one thing, a static mass of particulate solids, can support shear stresses of considerable magnitude

and the pressure is not the same in all directions.

In a stationary fluid the pressure is exerted equally in all directions and is referred to as the
static pressure. Ina moving fluid, the static pressure is exerted on any plane parallel to the direction
of motion. The fluid pressure exerted on a plane right angles to the direction of flow is greater than
the static pressure because the surface has, in addition, to exert sufficient force to bring the fluid

to rest.

20



Buoyancy

Upthrust on body = weight of fluid displaced by the body This
is known as Archimedes principle.

Buoyancy we know that wooden objects float on water, but a small needle of iron sinks into water.
This means that a fluid exerts an upward force on a body which is immersed fully or partially in
it. The upward force that tends to lift the body is called the buoyant force, . The buoyant force
acting on floating and submerged objects can be estimated by employing hydrostatic principle.

Center of Buoyancy

The line of action of the buoyant force on the object is called the center of buoyancy. To find the
centre of buoyancy, moments about an axis OO can be taken and equated to the moment of the
resultant forces. The equation gives the distance to the centeroid to the object volume. The
centeroid of the displaced volume of fluid is the centre of buoyancy, which, is applicable for both

Weight
pushes
down

Buoyancy Weight < Buoyancy
pushes up Object will float
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submerged and floating objects. This principle is known as the Archimedes principle which states
A body immersed in a fluid experiences a vertical buoyant force which is equal to the weight of
the fluid displaced by the body and the buoyant force acts upward through the centroid of the

displaced volume"

Metacentric height (GM)

The metacentric height (GM) is a measurement of the initial static stability of a floating
body. It is calculated as the distance between the centre of gravity of a ship and its metacentre. A

larger metacentric height implies greater initial stability against overturning. The metacentric
height also influences the natural period of rolling of a hull, with very large metacentric heights
being associated with shorter periods of roll which are uncomfortable for passengers. Hence, a
sufficiently high but not excessively high metacentric height is considered ideal for passenger

ships.

The centre of buoyancy is at the centre of mass of the volume of water that the hull displaces.
This point is referred to as B in naval architecture. The centre of gravity of the ship is commonly
denoted as point G or VCG. When a ship is stable, the centre of buoyancy is vertically in line with
the centre of gravity of the ship. It is defined as the point about which a body starts oscillating
when the body is tilted by a small angle. The meta center may also defined as the point at which
the line of action of force of buoyancy will meet the normal axis of the body is given a small

angular displacement.
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Pressure Distributions-Flat Surfaces

Horizontally immersed surface

| The total pressure on the surface, 7 | | :_:_:_:_-_-_:_:_::F_:_:_:_:_:_:_: |
P = weight of the liquid above the immersed| | ~ "~~~ """ " 7777
surface

= specific weight of liquid x volume of liquid

|
= specific weight of liquid x area of surface x l
depth of liquid

= wAX ( =

pgh A

EGGD3109FIluid Mechanics Chapter3: Pressure and Fluid Statics

The Total pressure on an immersed surface, may be defined as the total pressure exerted by the
liquid on it. Mathematically total pressure,

P = pay + psas + paas....
where,

= P1.P2.P3 = Intensities of pressure on different strips of the surface, and
= 1. 103,43 = Areas of corresponding strips.

Total Pressure

When a static mass of the fluid comes in contact with a surface either plane or curved, a force
exerted by the fluid on the surface. This force is known as the total pressure. Since the fluid at
rest, no tangential force exists, hence the total pressure will act in the direction normal to the
surface.

Centre of Pressure
The point of application of total pressure on the surface is known as centre of pressure.

The position of an immersed surface may be,

= Horizontal
=  Vertical
= Inclined

23



Example - Total Pressure on a Horizontal Immersed Surface
A tank 3m x 4m contains 1.2m deep oil of specific gravity 0.8. Find

(a) intensity of the pressure at the base of the tank, and
(b) total pressure on the base of the tank.
Example

Given,

= Areaoftank, 4A=3m x 4m=12m2
= Depthof oil, x =1.2m
= Specific gravity of 0il = 0.8

. Specific weight of oil, w = 0.8 x 9.24 = T.85K N /m?
(@) Intensity of pressure at the base of the tank
=wr=T78yx12= 9.42!&'.\";’}3':.2 = 942K Pa
(b) Total pressure on the base of the tank

P=wAr =942 x 12 =1134KN

Intensity of pressure at the base of the tank = 9.42 KPa
Total pressure on the base of the tank = 113.4 KN

For horizontally submerged surfaces , depth of plane surface(h), distance of center of gravity
from the top surface and depth of centre of pressure from top surface are same that is

h = Distance of C.G with top water surface = Distance of centre of pressure with top water
surface

Here centre of pressure = 1.2m
Total Pressure On A Vertically Immersed Surface
Consider a plane vertical surface immersed in a liquid shown in figure

Let the whole immersed surface is divided into a number of small parallel stripes as shown in
figure.

Here,
= pg = Specific weight of the liquid

24



= A4 =Total area of the immersed surface

x or h == Depth of the center of gravity of the immersed surface from the liquid surface
.. Pressure on the strip = Intensity of pressure * Area = pghdA

Now, Total pressure on the surface,
F =pgh dA=pghdA

h dA = Area of surface x distance of C.G from free surface = A X h

Liquid Surface

Fig 2 : Vertically immersed surface

F=pgAh
Centre of pressure (h*)
According to the principle of moment theory, moment of the resultant force about an axis is
equal to the sum of the moments of the components about the same axis. The resultant force F is

acting at P, at a distance h* (center of pressure) from free surface of liquid.

Moment of force of F about the free surface of the liquid = Fx h*
Moment of force dF acting on the strip about free surface = Df xh = ®h.dAXh = ®h2dA

Sum of the moments of all such forces about the free surfaces
= pgh?dA= pg h2dA

h2dA =10 = Moment of Inertia of the surface about free surface of the liquid Sum

of the moments of all such forces about the free surfaces = pg 10

25



Hence Fx h* = pglO
pg AhX h*=pglO

h* =10

Ah

By the theorem of parallel axis,

I0=1G+AhR?

h* _——[G +Ah? :£ +h

Ah

Table.1: Moment of Inertia

2% moment of area, 66, about
Shape Area A
an axis through the centrodd
Eectangle
h
B ——
F
bd*
baf ki
) 12
G T———- —— G
¥
Triangle
h
6 ——fm —— 54 bd’
bE 2 36
il " -
Cirele
4
2 TR
G — - G I, 7
Setmicircle
Rﬂ
: . ﬁz 011028
SO AN W 7V
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Hydrostatic forces on inclined submerged surfaces

area centrold
center of pressure

top view

= pg = Specific weight of the liquid
» A =Total area of the immersed surface

1 or h== Depth of the center of gravity of the immersed surface from the liquid surface

here h=-—Y

<

h=
sinf
*—= y!

sin H‘

Pressure force dF acting on the strip about AXIS O-O =dF =pgy sin g dA
Now, Total pressure on the surface,

F= pgysing dA = pgsin g ydA
y dA = Area of surface x distance of C.G from free surface = A X'y
sinf y =h
F= pgsing AXy = pg AXFk

=pgAh
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Centre of pressure

According to the principle of moment theory, moment of the resultant force about an axis is
equal to the sum of the momentsof the componentsabout the same axis. The resultant force F is

acting at P, at a distance h* (center of pressure) from free surface of liquid.

Moment of force of F about the free surface of the liquid = Fx y*
Pressure force dF acting on the strip about AXIS O-O = dF =pgysin ¢ dA

Moment of force dF acting on the strip about AXIS O-O = dF xy =pgy sin  dAXy

Sum of the moments of all such forces about the free surfaces
= pgy?sin? dA= pgsin? y2dA

y2dA =10 = Moment of Inertia of the surface about free surface of the liquid

Sum of the moments of all such forces about the free surfaces = pg 10

Hence Fx y*=pgsin # 10
pgsin! AyXy*= pgsin ! 10

y*:i
y

By the theorem of parallel axis,

10 =1G + ARW?
hx _ IG+Ahy? :E +y
sin
Ay Ay
hal IG h
= +
sin A—h sin
sin
@ _ IGsin & + h
sin & Ah sin
Igsin® h

Cp or h* =
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A rectangular plane surface 3m wide and 4m deep lies in water in such a way that its plane makes an angle
of 30 with the free surface of water. Determine the total pressure and position of center of pressure when
the upper edge is 2m below the free water surface.

Free surface of water

- P

2m
I

Upper edge

e Yiew nomnal to plate

o

(A

Total pressure F = F=pgAh
= 1000x9.81x4x3x h =
AE+EB

Centre of Pressure
EB =2 sin30 h=2+2 sin30

h=3m
F = pgA h=1000x9.81x4x3x 3= 353.167 kN

h*_ I(;sinze
Ah
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IG =bd3/12 = 3x43/12 = 16 mm4

2
h* =16 sn 0 4+ h = [(16X(1/4))/(12X3)] +3 = 3.111m
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UNIT 11— FLUID KINEMATICS AND DYNAMIC

1.0 INTRODUCTION

»  Kinematics means the study of motion. Fluid kinematics is the study of how fluids flow
and how to describe fluid motion. Fluid kinematics deals with describing the motion of
fluids without considering (or even understanding) the forces and moments that cause
the motion. Branch of fluid mechanics which deals with response of fluids in motion
without considering forces and energies in them. The study of kinematics is often
referred to as the geometry of motion.

»  Kinematics of fluid flow deals with the motion of fluid particles without considering
the agency producing the motion. This deals with the geometry of motion of fluid
particles. This also deals with the velocity and acceleration of fluid particles in motion.
The motion of a fluid can be analysed on the same principles as those applied in the
motion of a solid.

» There, however exists a basic difference between the motion of a solid and the motion
of a fluid. A solid body is compact and moves as one mass. There is no relative motion
between the particles of a solid body. Hence, we study the motion of the entire body

and there is no necessity to study the motion of any particle of a solid body.

Methods of Describing Fluid Motion:

We know that each particle of a fluid in motion has at any instant a certain definite
value of its properties like density, velocity, acceleration etc. As the fluid moves on, the values
of these properties will change from one position to other positions, from time to time. Thus,
it may be realized that two methods are possible to describe fluid motion. In the first method
called the Lagrangian method, we study the velocity, acceleration etc. of an individual fluid
particle at every instant of time as the particle moves to different positions.

This method of studying the properties of a single fluid particle is a very tedious process
and therefore this method is not generally adopted. In the second method called the Eulerian
method, we describe the flow by studying the velocity, acceleration, pressure, density etc. at a
fixed point in space. Due to its easy application, this method is most commonly adopted.



«

Fig 1: ordinates

Let x, y and z denote the space coordinates and t the time. Let V be the resultant velocity at
any point in space in a fluid body. Let u, v and w be the components of the resultant velocity
V at any point in the directions of the x, y and z axes. Fig. 6.1 illustrates the notations.

In the Eulerian method the velocity at a point (x2) can be expressed as

w=fimna) A
v=fnn) (i)
W=y (i)
V=finyed) Ab)

Relation (1) can be explained as follows. The velocity component u is some function of the space coordinates xz and time 1,
Hence for certain values of x, y, 2 and f there is a corresponding value of u.

Stream Line:
A stream line is a continuous line in a fluid which shows the direction of the velocity of the

fluid at each point along the line. The tangent to the stream line at any point on it is in the
direction of the velocity at that point. Fluid particles lying on a stream line at an instant move
along the stream line.


https://www.engineeringenotes.com/wp-content/uploads/2018/06/clip_image004-14.jpg

Fig. 6.2, Fig. 6.3

Fig. 6.2 shows a stream line ABC. The velocity at A is along the tangent to the stream line at 4. The velocity at B is along the
tangent to the stream line at B. Fig. 6.3 shows a number of stream lines AB, CD, EF etc. For the sake of clarity, the fluid particles on the
stream line CD are also shown. These fluid particles move along the stream line CD.

Equation to @ stream line-

Suppost a particle moving along a stream line describes a small distance ds in a small interval of time dr. Let dx, dy, dz be the
components of ds along three mutually perpendicular axes x, y and z. If V be the velocity of the particle, then the time taken by the
particle to describe the distance ds 1s given by

ds
dr =—
[

If uv and w are the components of the velocity V along the x, y and z axis, the above relation can also be given as
de _dy_dt

dt
i yoOw
Thus, the differential equation of a stream line is given by.

de _dy dt

u v ) W
When a fluid is in motion there are many stream lines and these stream lines indicate the flow
pattern at that particular instant. For example, as a fluid flows round a cylindrical body, the
stream line pattern will be as shown in Fig. 6.3. In steady flow the velocity at a point does not
change in its magnitude and direction.
Hence, there is no change in the direction of the velocity vector at a point. In other words, the
stream line is fixed in position. Conversely, if the stream line pattern remains constant the flow
is steady. In the case of an unsteady flow, the direction of the velocity changes with time at
every point. This means the position of a stream line is not constant. The position of a stream

line changes from instant to instant.


https://www.engineeringenotes.com/wp-content/uploads/2018/06/clip_image006-10.png

Path Line
A path line means the path or a line actually described by a single fluid particle as it moves
during a period of time. The path line indicates the direction of the velocity of the same fluid
particle at successive instants of time.
In the case of a steady flow since there are no fluctuations of the velocity, the path line coincides
with the stream line. In the case of an unsteady flow the stream lines change their positions at
every instant and thus the path line may fluctuate between different stream lines during an
interval of time.
This particle passed
through the origin at
time t;

This particle passed

ti+3at  through the origin at
time ty

This particle passed
to+3at  through the origin at
time to

\1'”‘ t2+3at

Fig. 6.4. Path line. Fig 6.5.

Fig. 6.4 shows the path line of a particular fluid particle. It is the locus of the positions of the
same particle as it moves.Fig. 6.5 shows the path lines described by three particles which had
passed through the origin at times to, t1 and t>. Consider the particle which passed through the
origin at time to. Fig. 6.5 shows the positions taken by the particle at times to + At, to +2At,
tot+3At etc. as it has traced its path line.

Streak Line:

The streak line is the locus of the positions of fluid particles which have passed through a given
point in succession. Suppose A, B, C, D... are fluid particles which passed through a reference
point say the origin one after the other in succession. These particles have described their own
path lines. Suppose at a time t, these particles A, B, C, D... are at Pa, Pp, Pc, Pq.... The line Py,
Pb, Pc, Pq.... is the streak line, at time t.

Potential Lines:
On a surface consisting of stream lines, we can imagine lines running orthogonally with the

stream lines. Such line are called potential lines



Stream
hnes

Potential
lines

A set of stream lines and potential lines constitutes a flow net.
Types of Flow:

We come across the following types of flow:

(1) Laminar flow and turbulent flow.

(ii) Steady flow and unsteady flow.

(iii) Uniform flow and non-uniform flow.

(iv) Rotational and irrotational flow.

(i) Laminar and Turbulent Flow:

Laminar Flow:

This is a type of flow in which the fluid particles move in layers, gilding smoothly over adjacent
layers. There is no transportation of fluid particles from one layer to another. The fluid particles
in any layer move along well defined stream lines.

The paths of the individual particles do not cross each other. This type of flow is also called
stream line flow or viscous flow. This is a smooth flow of one layer of fluid over another. This

type of flow occurs in viscous fluids where viscosity influences the flow.

Fig. 6.9. Laminar flow.

Turbulent Flow:
This is the most common type of flow that occurs in nature. This flow is characterised by

random, erratic, unpredictable motion of fluid particles which result in eddy currents. There is

6



a general mixing up of fluid particles, in motion. The velocity changes in direction and
magnitude from point to point.

There is a continuous collision between particles resulting in transference of momentum
between them. The eddy currents cause a considerable loss of energy compared to the loss of
energy in laminar flow. This greater loss of energy is due to the fact that turbulent shear stresses

are very much greater than laminar shear stress given by Newton’s law of viscosity.

~ - - -~ iy | 9
-~ 7 <-~ ’\ - N > g R
— — - o g
\ N s \\ - ’> _\. =
. . - \ —— e .
-_— - P —— .
N L - i -> > - 0
= -- - -
- -— — ' - ~ o~

Fig. 6.10. Turbulent flow.
In a turbulent flow the distinguished characteristic of turbulence is its irregularity, indefinite
frequency and no definite observable pattern. This type of flow cannot be truly mathematically
analysed and any analysis is possible by statistical evaluation. Flow of water in rivers is
generally turbulent. Flow of water in pipes at high velocity is turbulent. Flow of thick oil in
narrow tubes, flow of ground water, flow of blood in blood vessels are laminar.
As the velocity of water in a pipe is gradually increased the flow will change from laminar to
turbulent flow. The velocity at which the flow changes from laminar to turbulent flow in a pipe
is called the critical velocity. The type of flow that exists in any case depends upon the value
of a non-dimensional number dv/y called the Reynolds’s number, where d is the diameter of
the pipe, v is the mean velocity of flow in the pipe and vy is the kinematic viscosity of the fluid.
When the Reynolds number is less than 2000, the flow is generally laminar. When the Reynolds
number is greater than 2800, the flow is generally turbulent. If the Reynolds number lies
between the above limits the flow may be either laminar or turbulent. Thus the critical velocity
has no fixed or definite value.
The velocity corresponding to Reynolds number equal to 2000, is called the lower critical
velocity and the velocity corresponding to Reynolds number equal to 2800 is called the upper
critical velocity.
(ii) Steady Flow and Unsteady Flow:
Steady Flow:
If the flow characteristics like, velocity, density, pressure etc. at a given point in a flowing mass
of fluid does not change with the passage of time, the flow is said to be steady. On the contrary,

if these flow characteristics at a given point change with respect to time, the flow is said to be

7



unsteady flow.
Since velocity is a commonly adopted characteristic of flow it is quite sufficient to regard the
flow to be steady if the velocity at a given point does not change with respect to time.

Suppose V is the velocity at a point (X1, Y1, z1). At this point if V remains constant at all times
the flow is a steady flow. But, if at this point, V changes with time the flow is unsteady flow
ie.,

av
{ 3 l =0 for steady flow
d Xy¥ysly)

av :
ar frms #0 for unsteady flow.

In a steady flow the velocily at a point depends on the position of the point only, and is independent of the time i.e.
For steady flow, V=f(xy2

. 3] o
) a" Ta=i) -
But, for unsteady flow V=Fflx,yzi)
v
and [ o ]l w0
Xp¥yy)

(iii) Uniform and Non-Uniform Flow:

If the flow characteristics like velocity, density, pressure etc. at a given instant remain
the same at all points, the flow is uniform. If V is chosen as a flow characteristic, then, at a
given instant V has the same value at all points and is independent of the space position. If the
flow characteristics have different values at different points at a given instant of time, the flow
is non-uniform flow.

dv
For uniform flow, s | = 0
: dv
For non-uniform flow, 3 #0
S

i.e., for uniform flow, at time ¢ = ¢, V'is independent of (x, y, 2).
but, for non-uniform flow, at time 1 =1, V=f(x, y. 2) if the flow is steady.

We use the terms uniform and non-uniform flow often in connection with open
channels. In a channel where the section of the channel is uniform and the depth of flow is
uniform the flow will be uniform as the velocity will be the same at all sections. But if the
sectional dimensions of the channel are different at different sections, the depths of flow will

be different at different sections.
Obviously, the velocity will be different at different sections and the flow will be non-uniform,

whether the flow is uniform or non-uniform if the rate of flow is constant the flow is steady

and if the rate of flow changes with time, the flow is unsteady. Thus, we may come across



steady or unsteady or uniform or non-uniform flow. Any type of flow can exist independently
of the other.

A combination of two types of flow is also possible.

Some combinations are:

a. Steady uniform flow.

b. Steady non-uniform flow.

c. Unsteady uniform flow.

d. Unsteady non-uniform flow.

(iv) Rotational and Irrotational Flows:

As a fluid moves the fluid particles may be subjected to translatory or rotatory displacements.
Suppose a particle which is moving along a stream line rotates about its own axis also then the
particle is said to have a rotational motion. Whereas if the particle as it moves along the stream

line does not rotate about its own axis the particle is said to have irrotational motion.

Fig. 6.11 (a) shows a rotational motion. Consider the fluid particle AB. As this particle moves
along the stream line it rotates about its own axis also. Fig 6.11 (b) shows an irrotational motion.
The fluid particle AB in this case, as it moves along the stream line, does not rotate about its

own axis.

(a) Rotational motion (b) Irrotational motion

Fig. 6.11.



Various Types of Fluid Movements:

A fluid element may undergo four types of movements, namely,

(1) A pure translation,

(i) A linear deformation,

(iii) A pure rotation,

(iv) An angular (shearing) deformation

One, Two and Three-Dimensional Flows:

This is another way of describing fluid motion. The velocity of a fluid element in the most
general case is dependent upon its position. If any point in space be defined in terms of the
space coordinates (X, y, z), then at any given instant the velocity at the point is given by V = f
(X, y, z). The flow in such a case is called a three-dimensional flow. Sometimes, the flow
condition may be such that the velocity at any point depends only on two space coordinates say
(x, y) at a given instant, i.e., in this case, at the given instant V = f (x, y). In this case the flow
conditions are potential in planes normal to the Z-axis. This type of flow is called a two-

dimensional flow.

In a two-dimensional flow, the flow is identical in parallel planes. Fig. 6.16 shows a two-
dimensional flow. In this figure is shown a channel whose walls are perpendicular to the plane
of the diagram. Note the velocity vectors at sections 1-1 and 2-2. At section 1-1 the velocity
varies across the channel. Similarly at section 2-2 the velocity varies across the channel. But

the flow is identical in all planes parallel to the plane of the figure.

There is no component of the velocity perpendicular to the plane of the figure. In quite a number
of cases it is usual to consider the motion as one-dimensional. This is no doubt a simplification
over the two- dimensional and three-dimensional fluid motions. In this type of flow the velocity

V at a given instant is a function of one space coordinate say x only i.e., at a given instant, V =

f X

Fig. 6.17 shows a one-dimensional flow. At section 1-1 the velocity is constant over the entire

section. Similarly at section 2-2 the velocity is constant over the entire section. A one-
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dimensional or two-dimensional or three-dimensional flow may be a steady flow or an unsteady

flow.
Steady Unsteady
One-dimensional flow V=f(x) V=f(x1)
Two-dimensional flow V=f(xy) V=f(xyt)
Three-dimensional flow V=f(x,52) V=f(x,n21
wl YNNIV TITTININ VN
2 2

iﬂmi’ g
TTIT. Ilr/lr1 7T

1

Fig. 6.16. Two-dimensional flow Fig. 6.17. One-dimensional flow
(vectors shown are velocity vectors.) (vectors shown are velocity vectors).

Control Volume:

This is a certain well defined extent of space. For the purpose of understanding the changes
that take place in the fluid characteristics we may introduce a control volume so that we may
compare the flow characteristics of a fluid just before it enters the control volume and just after

it leaves the control volume.
Continuity Equation:

This is an equation based on the principle of conservation of mass. Suppose we consider a
stream tube. Since the stream tube is always full of the fluid, the quantity of the fluid entering
the stream tube at one end per unit of time should be equal to the quantity of the fluid leaving

the stream tube at the other end per unit of time.

Let V be the average velocity at any section and A the area of the section. If w be the specific

weight of the fluid, the quantity of the fluid flowing per second across the section

11



= wAV
If at sections 1-1 and 2-2 the specific weights of the fluid be w amdw2 and if A, and A, be the sectional areas at the secuons 1-1
and 2-2, and if V, and V, be the velocities at these sections, then
wA V|, =wA,V,
If the fluid is incompressible w, = w, and the above relation reduces to
AV, =AY,
i.e., volume of the fluid flowing across a section per unit of time is constant.

Continuity Equation in Three Dimensions:

Consider an infinitesimal parallelopiped of space in a fluid body. Let the sides of parallelopiped
have length dx, dy and dz respectively. See Fig. 6.20. Let u, v and w be the inlet velocity
components in the directions of the X, Y and Z axes. Mass of the fluid entering the left face =

pu dy dz. Mass of the fluid leaving the right face

Velocity Potential and Stream Functions:
Velocity potential function:

This is a function which is devised to expedite the analytical study of velocity fields. If ¢ is
some function of the coordinates x and y in a two-dimensional flow, such that

and =—y

where u and v are the velocity components in the directions of the X and the Y axis, then the function ¢ is called a velocity
wotential function.
For example, suppose the velocity potential function for a flow is given by °

¥ Y

¢ =4x+8y
96
Then — =-y=4
pw u
u =—4 unitsisec.
and a¢ =-y=8

“v = 8 units/sec
We know, for a two-dimensional flow of an incompressible fluid, the condition of continuity of flow is
au dv
oy
% 9%
i
3% 9 ;
52+5$ =0 (Laplace equation)
Stream function. If y is some function of x and y such that

=0

a\y =uand%f ==y
then the function y is called stream function.
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Equipotential Line:

This is a line along which the velocity potential ¢ is constant i.e., along this line d¢ = 0.
db:=2® dx+ 22 dy = _{uds+ vay)

But
ox Oy
For the equipotential line,
d¢ =0
udx+vdy =0
dy u " o
T =— [Slope of the equipotential line)
PROBLEM
Solution We are fo calculate the material acceleration for a given velocity field.
Analysis The velocity field is

V=(uv)=(Uy+bx)i ~byj (1)

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

a =ﬂ+uﬁ+1'ﬂ+w@= 0+(U0 +bx]b+(—by)0+0

x - n

Ct L 4 L
@

=
'

v v v Oy

a,=—+u—+v—+w—="0+(U, +bx)0+(-by)(-b)+0
Tdt ox oy Gz

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-

dimensional. Eq. 2 simplifies to

Material acceleration components: a, = b(UD +bx ) a,= bz}’ (3)

In terms of a vector,

a=b(U, +bx)i +b’yj ()

Material acceleration vector:

13



Solution  For a given velocity field we are to calculate the acceleration.
Assumptions 1 The flow is steady. 2 The flow 1s two-dimensional in the x-y plane.

Analysis The velocity components are

Velocity conmponents: u=185+233x+0.656y v=0754-2.18x-2.33y (1)
The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

o
0, =y = 04(185+2.330+0.6367)(2.33) +(0.754-2.18v-2.33)(0.636) +0
Tod éx v oz

o o o v o | @
0y =ty =0+ (L85 + 2330 0656y) (-2.18) (071542 18r-233y)( 2.3 0
’ 1 x oV CZ !

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to

Acceleration coniponents: a.= 4.8051+3.9988x a, = -5.7898 + 39988}‘ (3)

At the point (v,y) =(-1.2), the acceleration components of Eq. 3 are

Acceleration components at (-1,2): a.=0.80628 = 0.806 a,=22078=2.21

14



SATH BAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF BUILDING AND ENVIRONMENT

DEPARTMENT OF CIVIL ENGINEERING

UNIT - 111 - MECHANICS OF FLUID - SCIA1301



UNIT Il -FLOW THROUGH PIPES

1.0 INTRODUCTION

Fluid flow is classified as external and internal, depending on whether the fluid is forced to flow
over a surface or in a conduit. If the conduit is completely filled with the fluid, and flow isdriven
primarily by a pressure difference whereas in open-channel flow where the conduit is partially
filled by the fluid and thus the flow is partially bounded by solid surfaces, as in an irrigation

ditch, and flow is driven by gravity alone.

PIPE FLOW VS OPEN CHANNEL FLOW

Pipe flow: Flows completely filling the pipe (a) .The pressure gradient along the pipe is main
driving force. Open channel flow: Flows without completely filling the pipe (b). The gravity

alone is the driving force.

172 * I)l

< P1=P2
S

0
(a) (b)
Fig 1. Pipe flow
PIPE SYSTEM
A pipe system include the pipes themselves (perhaps of more than one diameter), the various

fittings, the flow rate control devices valves and the pumps or turbines.



Fig 2. Pipe flow system

LAMINAR OR TURBULENT FLOW

Osborne Reynolds, a British scientist and mathematician,was the first to distinguish the

difference between the classifications of flow by using a simple apparatus as shown in figure.

el

) Laminar
Dye
Pipe D

—

AN, L
Q= ‘f:‘ Dye streak
> = - Transitional
I < [
Smooth, well-rounded |
entrance I_
Turbulent

(a) ()

Fig 3. Pipe flow system
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e For “small enough flow rate” the dye streak will remain as a well-defined line as it flows

along, with only slight blurring due to molecular diffusion of the dye into the

surrounding water.

For a somewhat larger “intermediate flow rate”the dye fluctuates in time and space, and

intermittent bursts of irregular behavior appear along the streak.

For “large enough flow rate” the dye streakalmost immediately become blurred and

spreads across the entire pipe in a random fashion.

LAMINAR FLOW

Fluid particles move along straight parallel path in layers. The path of individual fluid particles

does not cross those of neighboring particles. If Reynolds Number is less than 2000, is termed

as laminar flow.

TURBULENT FLOW:

The fluid particles move in random manner resulting in general mixing of the particles. If

Reynolds Number is greater than 4000, is termed as turbulent flow. Reynolds number between
2000-4000 termed as transition flow.

Background to Pipe Flow Theory

To explain the various pipe flow theories we will follow the historical development of the subject:

Date | Name Contribution
~1084 Hagen and Poiseuille Laminar flow equation
1850 | Darcy and Weisbach Turbulent flow equation
1883 | Reynolds Distinction between laminar and turbulent flow
1913 | Blasius Friction factor equation or smooth pipes
1914 | Stanton and Pannell Experimental values of friction factor for smooth
1930 | Nikuradse Experimental values of friction factor for artificially rough pipes
1930 | Prandtl and von Karman | Equations for rough and smooth friction factors
: Experimental values of the friction factor for commercial pipes
1937 | Colebrook and White and the

transition formula




1944 | Moody

The Moody diagram for commercial pipes

LAMINAR FLOW

Steady Uniform Flow in a Pipe: Momentum Equation

The development that follows forms the basis of the flow theories applied to laminar flows. We

remember from before that at the boundary of the pipe, the fluid velocity is zero, and the

maximum velocity occurs at the centre of the pipe. This is because of the effect of viscosity.

Therefore, at a given radius from the centre of the pipe the velocity is the same and so we

consider an elemental annulus of fluid:

Consider a horizontal pipe of radius R.

Direction

of Flow
—
—_—

Hel 25

[, te-axel
per (@) (b)

Fig 4. Pipe flow system

In the figure we have the following:

* A r—thickness of the fluid element ;

* /x— length of pipe considered;

* R -—radius of pipe;

The forces acting on the elements are

* The pressure forces:

On face AB - par?

On face CD — (p+ o ,g-x) X 712
X




* The shear force = 1 x (2 7r X Ax)
The sum of the forces acting is equal to the change in momentum. However, the change in

momentum is zero since the flow is steady and uniform. Thus:

pnrz-(p+3pgx)X7rr2 -TX (2 nrx Ax) =0
x
par?- p mr?—(% A}é.-x mr?) -1x (2 arx Ax) =0
x
- TrXAxLr Axr+1t 2)= 0
0x
_onr (1)

~ 9x 2

Thus the shear stress at any radius is known in terms of the piezometric pressure.

T

Velocity Distribution:
We can use the knowledge of the shear stress at any distance from the centre of the pipe in

conjunction with our knowledge of viscosity as follows:

Shear stress, T=pd_
dy

Y is measured from pipe wall

y=R-r
dy: - dr
T=- pde_
! dr
substitute the values in equation (1)
o ,duw _Opr
Rar = 0x 2



Integrating the above equation with r

Value of C from boundary condition

when, r=R, u=0

Sub C in equation (2)

w10,
dr _2[1 dx

u =lawgp2yc
4u 0x

Thus the velocity distribution is parabolic (i.e. a quadratic in r).

Ratio of Maximum velocity to average velocity:

(2)

(3)

From equation (3) the velocity is maximum when, r = 0. Sub r=0 in equation (3)

max

:_lapR2 4)

4u ox

The average velocity i, is obtained by dividing the discharge of fluid across the section by the

area of the pipe (zr?). The discharge Q across the secion is obtained by considering the flow

through a circular ring element of radius r and thickness dr.



The fluid flowing per second through this elementary ring,

dQ =velocity at radius r x Area of ring element

dQ =uX2mrdr

Substitute value of u in equation (5)

19
’P [R? — r?|x 2t dr
du ox

dQ =—

Q= do

1
= 9 [R2 2] x2mr dr
4u ox

1
- ___ap x 2 [R? —r?rdr
du ox

1 R
=100 o gz 1y dr

du ox 0

1 4
=", [Rzrz _r_]

auoax L2 3

1
4_p4
4 aap 27_[[ZR REI

Average Velocity a=

(6)

i DR )

Dividing equation (4) by equation (7)

()



=R

0= f w(r2ardr,

Substituting V. in Eqg. (16), we obtain

Average velocity of flow:

The average velocity of flow, V is given by

v=2
A
Substituting © from Eq. (17) in Eq. (18) and cross-sectional area A=1D we get
Ve ApD- _
32ul
Loss of pressure head (hy):
h, = Ap
Pe

Using Eq. (17) or Eq. (19) for Ap in Eq. (20), one obtains

b, = 32;!1’{_, _ IES,ULQ_
pegD*  mpeD’

Eq. (21) is called the Hagen Poiseuille equation.

32uil
hf = .
pgD

(16)

(17)

(18)

(19)

(20)

(21)

(Hagen poiseuille equation)



Example: Laminar Flow in Pipe
Problem:

A crude oil of viscosity 0.97 poise and density 900 kg/m? is flowing through a horizontal circular
pipe of diameter 100 mm and of length 10 m. Calculate the difference of pressure at the two ends
of pipe, if 100 kg of the oil is collected in a tank in 30 seconds.

Solution:
given,

1= 0.97 poise = 0.097 Ns/m?
density = 900 kg/m?
D=100mm=0.1mL

=10m
Mass M = 100 Kg
Time  =30sec
Pressure drop
P-P = 32uiL
1 2~ p2
Average Velocity a= jll
0= Mass of oil collected per second
- density
= (100 x 1)/ (30 x 900)

Q =3.704 X10° m?

-3
g = 3704 X10 4=0.472m/s
—o0?

P-P = 32ua
12 Tp2
_32x0.097%0.472x10
0.12

P1-P, = 1465.1N/m?

10



Turbulent Flow

Description

Since the shearing action in laminar flows is well understood, equations describing the flow were
easily determined. In turbulent flows there is no simple description of the shear forces that act in
the fluid. Therefore the solutions of problems involving turbulent flows usually involve

experimental results.

In his work, Reynolds clarified two previous results found experimentally:

« Hagen and Poiseuille found that friction head loss is proportional to the mean velocity:
hiocV

Reynolds found that this only applies to laminar flows, as we have seen.

Darcy and Weisbach found that friction head loss is proportional to the mean velocity
squared:

hroc\V/2

Reynolds found that this applies to turbulent flows.

DARCY’S WEISBACH EQUATION

Consider a uniform horizontal pipe,having a steady flow as shown in fig.Let 1-1 and 2-2 are two
setions of pipe.

Let,
P1 and Po= Pressure intensity at section 1-1 and 2-2, V1 and
V>=Velocity of flow at sec 1-1 and 2-2,

L = length of the pipe between sections 1-1 and 2-2 d = dia
11



of the pipe,
f' = frictional resistance per unit wetted area per unit velocity, hr = loss of

head due to friction

PIPE FRICTION FACTOR

Many experiments have been performed to determine the pipe friction factor for many

different arrangements of pipes and flows.

Laminar Flow

We can just equate the Hagen-Poiseuille and the Darcy-Weisbach Equations:

32uiLl  4fL 2

pgDZ =—74a
0.126 —
0.1k
transitional ! rough turbulence D/2k
.Bé turbulence 15
J 206
2
: 60
0.032
126
252
507
0.016 ] \ | L ]
400 10° 104 10° 100

Re (log scale)
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Hence, for laminar flow we have:

Smooth Pipes — Blasius Equation

Blasius determined the following equation from experiments on ,,smooth®™ pipes:

g

Stanton and Pannell confirmed that this equation is valid for Re <10° . Hence it is for ,,smooth*
pipes.

Nikuradse’s Experiments

Nikuradse carried out many experiments up to Re = 3x10° . In the experiments, he artificially

roughened pipes by sticking uniform sand grains to smooth pipes. He defined the relative
roughness ( ks /D ) as the ration of the sand grain size to the pipe diameter. He plotted his results

as log f against log Re for each k s/D , Shown below.

13



There are 5 regions of flow in the diagram:

1. Laminar Flow — as before;
2. Transitional flow — as before, but no clear f;

3. Smooth turbulence — a limiting line of turbulence as Re decreases for all kS/D ;

4. Transitional turbulence — f varies both with Re and ks /D , most pipe flows are in this region;

5. Rough turbulence - f is constant for a given ks / D and is independent of Re.

The von Karman and Prandlt Laws

von Karman and Prandlt used Nikuradse*s experimental results to supplement their own

theoretical results which were not yet accurate. They found semi-empirical laws:

* Smooth pipes:

|~

=2 log__R¢
f__
251

* Rough pipes:

1 =210g37
Ks D

-

The Von Karman and Prandlt Law for smooth pipes better fits the experimental data than the

Blasius Equation.

14



The Colebrook-White Transition Formula

The friction factors thus far are the result of experiments on artificially roughened pipes.
Commercial pipes have roughnesses that are uneven in both size and spacing. Colebrook and
White did two things:

1. They carried out experiments and matched commercial pipes up to Nikuradse®s results by

finding an ,,effective roughness®™ for the commercial pipes:

Pipe/Material ks(mm)
Brass, copper, glass, Perspex 0.003
Wrought iron 0.06
Galvanized iron 0.15
Plastic 0.03
Concrete 6.0

this equation is known as the Colebrook-White transition formula and it gives results
very close to experimental values for transitional behaviour when using effective

roughnesses for commercial pipes.

1 K
T = 2log S . 2.51

f 37D R.f

15



The transition formula must be solved by trial and error and is not expressed in terms of the

preferred variables of diameter, discharge and hydraulic gradient. Hence it was not used much

initially.

Moody

Moody recognized the problems with the Colebrok-White transition formula and did two

things to remove objections to its use:

1. He presented an approximation to the Colebrook-White formula: /

200Ks , 106
=22 =4
D «r13
e
2. He plotted £ (or)Jagainst log Re for commercial pipes, this is now known as the Moody
diagram:
. Transitional Zone Rough Turbulent Zone
0-038
I \\ \\k 001
0-036 64 =
0-034 = re NN e
\\ h._h-\
0032 0-006
0-030 \ \\ \
’ Tt
0-028 Laminar flow N N \ 0-004
0-026 M
~ N h\\
5 0024 ~ =
g N 0-002
0-022 S
2 N \NLNu \
0-020
" N \\hs\ ‘\ 0-001
& 0018 T 00006
N P~ N
0016 T N 0.0004
0-014 NSRS N
Smooth pipes 4+ N ~—L_| Tos
0-012 » - N 0-0001
‘N‘N ‘\
0-010 0-00005
0-008 0-00001
1 2 34567891 2 3 4567891 2 3 4567891 2 34567891 2 34
10° 10 10° vb 108 107
Reynolds number = —
v
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LOSS OF ENERGY IN PIPES:

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which
some of the energy of fluid is lost. The energy loss is classified as

Major Energy Losses - due to friction

Minor Energy Losses

e Sudden expansion of pipes

e Sudden contraction of pipes

e Loss of head at the entrance of the pipe
e Loss of head at the exit of the pipe

e Bend in pipe

e Pipe fittings

e An obstruction in pipe

Problem for Major Loss:

Find the head lost due to friction in a pipe of diameter 300 mm and length 50 m, through
which water is flowing at velocity of 3 m/s using (i) Darcy formula, (2) Chezy*s formula for
which C= 60. Take Kinematic viscosity 3 = 0.01 stoke.

Solution:

Given:

d=300 mm=0.3 m

L=50m

V=3 m/s

C=60

9=0.01 stoke = 0.01 x 10* m?/s

(1) Darcy formula

_4f|v2

2gd

17



e = R
= (3% .3)/(0.01 x 10

Re: 9 x 105

for R
OTRe 4000 to 10° f=0.079

14
Re

= (0.079)/(9 x 1054 f =
0.00256
hr = (4 x 0.00256 x 50 x 32)/(0.3x 2x9.81) hs =

0.7828 m.
(2) Chezy*'s Formula:

= (3 x.3)/(0.01 x 107%
R=9x 10°

for R. 4000 to 10° ﬁl%

= (0.079)/(9 x 1074
= 0.00256
hs= (4 x 0.00256 x 50 x 3%)/(0.3x 2x9.81)
hy,=0.7828 m.
(2) Chezy’s Formmula:
V=0Cvmi
m = d/4=0.3/4=0.075m

18



MINOR LOSSES
Losses at Sudden Enlargement:
Consider the flow in the sudden enlargement, shown in figure , fluid flows from section 1

to section 2. The velocity must reduce and so the pressure increases (this follows from
Bernoulli). At position 1' turbulent eddies occur which give rise to the local head loss.

h e(}’l—zvz)z
he = loss of head due to sudden enlargement

vi and vz velocity of flow at section 1-1 and 2-2.

Losses at Sudden Contraction
In a sudden contraction, flow contracts from point 1 to point 1', forming a vena contraction

2

hc: 0.5
29

h. - Loss of head due to sudden contraction.

19



Loss of head at the entrance of the pipe (h;):
It occurs when a liquid enters a pipe which is connected to large tank or reservoir.
2

h=05 v
'
v- velocity of liquid in a pipe.
Loss of head at the exit of the pipe (ho) :

This will occur due to the velocity of liquid at outlet of the pipe which is dissipated in the form
of free jet or it lost in tank or reservoir.

v- velocity of liquid in a pipe.

20



Bend in pipe (hb):

—

> >

T‘M
5 & &

Due to bend in pipe the velocity of flow changes hence separation of the flow from boundary
and eddies will occur.

2
b=
Zg
v- velocity of flow

k- co- efficient of bend k

value depends on

e Angle of bend

e Radius of curvature

e Diameter of pipe
Pipe fittings

2
The loss of head in the various pipe fittings such as valves, couplings = Kv —

v- velocity of flow
k- co- efficient of pipe fitting.
An obstruction in pipe

The loss of energy takes place due to reduction of the area of the cross section of the pipe at
the place where obstruction is found.

2
Head loss due to obstruction=v  _ ( Ay
29 C¢
(A-a)

21



v- velocity of flow
Cc — Coefficient of contraction A-

Area of pipe
a- Maximum area of obstruction.

Some common situation where significant head losses occur in pipe are shown in figure

\7\5\3
Q —». 6]
== a
J @
A divergent duct or diffuser Tee-Junctions

Y-Junctions Bends
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Pipes in series

When pipes of different diameters are connected end to end to form a pipe line, they are said to
be in series. The total loss of energy (or head) will be the sum of the losses in each pipe plus
local losses at connections.

Pipes in parallel

When two or more pipes in parallel connect two reservoirs, as shown in Figure 17, for example,
then the fluid may flow down any of the available pipes at possible different rates. But the head
difference over each pipe will always be the same.

The total volume flow rate will be the sum of the flow in each pipe.

The analysis can be carried out by simply treating each pipe individually and summing flow rates
at the end.

— energy line

H, hy

Energy Grade Line (EGL) and Hydraulic Grade Line (HGL)
Graphical interpretations of the energy along a pipeline may be

obtained through the EGL and HGL.:

2

p v
EGL=—+ —47
Py 29
HeL=P 2
+ —

EGL and HGL may be obtained via a pitot tube and a piezometer tube,

Respectively.
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/EGL ek EGL=HGLif V=0

PEES T e s
~
~.

\,‘.\\‘ e ’
~
SN yg
~. - " Soe=py
\\\ -K/\ o
-~ ™ -
T \\\..\\\\
P2 e N
Y WE_ TN
~. .~
L \\\\\
— ¥
2

P— |

Datum ¢ .

hi=h_ loss of head due to friction.

Hints:
1. EGL = HGL + V?/2g, EGL = HGL for V=0
2. If p=0, then HGL=z

3. A change in pipe diameter leads to a change in V (V?/2g) due to continuity and thus a
change in distance between HGL and EGL

4. A change in head loss (h.) leads to a change in slope of EGL and HGL.
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SCIA1302 - Mechanics of Fluids

UNIT IV

BOUNDARY LAYER

1.0 BOUNDARY LAYER:
» When a real fluid flows over a solid body or a solid wall, the fluid particles adhere to the

boundary and condition of no slip occurs. This means that the velocity of fluid close to
the boundary will be as that of the boundary.

> If the boundary is stationary, velocity of fluid at the boundary will be zero. Farther away
from the boundary, velocity will be higher and as a result of this variation of velocity,
velocity gradient du/dy will exist.

» The velocity of fluid increases from zero velocity on the stationary boundary to free
stream velocity (U) of fluid in the direction normal to the boundary. This variation of
velocity takes place in a narrow region in the vicinity of solid boundary. This narrow

region of the fluid is called boundary layer.

u, ~ Velocity Profile

[

ylk

Fig.1: Velocity Profile

BOUNDARY LAYER THEORY:
» The theory dealing with boundary layer flows is called boundary layer theory. According

to this theory, the flow of fluid of solid boundary is divided into two regions.
> A very thin layer of fluid called boundary layer in the immediate neighborhood of solid
boundary, where the variation of velocity from zero to free stream velocity. In this
region, velocity gradient du/dy exists and hence the fluid exerts a shear stress on the wall
in the direction of motion. The value of shear stress , T = p du/dy.
2
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» The remaining fluid which is outside the boundary layer. The velocity outside the
boundary layer is constant and equal to free stream velocity. As there is no variation of
velocity in this region, velocity gradient du/dy becomes zero. As a result of this, shear
stress is zero.

‘ BOUNDARY
1 LAYER

= O

T o ~<¥1T U / VELOCITY

- Py el DISTRIBUTION

75 s
£ 3 A
> 3 ] EES Y . s 5
[P Y HEN T 1 i P T,
A H . i [- ] LS
“ & 2% 3 T I s8R " % + 1 F-
A AT N Y N
= T Tggyr mE Bpa® 4 - . o HH
= - " Sae ay*
Y - .
""" Turbulent

Transitional

Laminar

>

S

Fig. 5.1.1: Time dependent fluid velocity at a point.
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BOUNDARY LAYER ON FLAT PLATE

o= 90y, = u,
Nominal limit of

Transition boundary layer
N k3 —
s region tsh?n]
Turhutent ||
- .-J“.A L
H y ﬁ/
Laminar § |
/’_r"' fff;/!-’f.'fw\.-f.-'ffr’ﬁff!ﬂffﬂxf.a'f R
: . nt Viscous - \
Leading Transition point  ¢ytayor
gdge | x

Fig.2: Boundary layer on flat plate

LAMINAR BOUNDARY LAYER:
» A laminar boundary layer is one where the flow takes place in layers, i.e., each layer
slides past the adjacent layers.
» Laminar boundary layers are found only when the Reynolds numbers are small.
> Athin layer over the surface of a body immersed in a fluid, in which the fluidvelocity rel
ative to the surface increases rapidly with distance from the surface and
the flow is laminar.

TURBULENT BOUNDARY LAYER:

> If the length of the plate is more, the thickness of boundary layer will go on increasing in
the downstream direction. Then the laminar boundary layer becomes unstable and motion
of fluid within it, is disturbed and irregular which leads to a transition from laminar to
turbulent layer.

» This short length over which the boundary layer flow changes from laminar to turbulent
is called transition zone. Further downstream the transition zone, the boundary layer is
turbulent and continues to grow in thickness. This layer of boundary is called turbulent
boundary layer.

LAMINAR SUB LAYER:
» This is the region in the turbulent boundary layer zone, adjacent to the solid surface of the
plate. In this zone, the velocity variation is influenced only by viscous effects.
» The shear stress in the laminar sub layer would be constant and equal to the boundary
shear stress to. Thus the shear stress in the sub layer is

=u |du
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BOUNDARY LAYER THICKNESS (9):
> It is defined as the distance from the boundary of the solid body measured in the y —
direction to the point, where the velocity of the fluid is approximately equal to 0.99 times
the free stream velocity( U) of the fluid.

DISPLACEMENT THICKNESS(0 *):
> Itis defined as the distance measured perpendicular to the boundary of the solid body by
which the boundary should be displaced to compensate for the reduction in flow rate on
account of boundary layer formation.

BOUNDARY
1 LAYER

U & C_
u /- VELOCITY
DISTRIBUTION

y
A e ’: ——
X PLATE

Fig.3 : Boundary layer on flat plate

Consider the flow of a fluid having free stream velocity equal to U over a thin smooth plate. At a
distance x from the leading edge consider a section 1-1. The velocity of fluid at B is zero and at
C, which lies on the boundary layer is U. thus velocity varies from zero at B to U at C, where BC
is equal to the thickness of boundary layer.

Distance BC =6
At the section 1-1, consider an elemental strip.
Let y = distance of elemental strip from the plate.
dy = thickness of the elemental strip
u = velocity of fluid at the elemental strip
b = width of plate.
Then area of elemental strip, dA = b x dy
Mass of fluid per second flowing through elemental strip = p X velocity X Area of elemental
Strip.

= puXdA=puXbxdy ——(i)
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If there had been no plate, then the fluid would have been flowing with a constant velocity equal
to free stream velocity (U) at the section 1-1. Then mass of fluid per second flowing through

elemental strip would have been = p x velocity x Area=p X U XbXdy — —— (i)

As U is more than u, hence due to the presence of the plate and consequently due to the
formation of the boundary layer , there will be a reduction in mass flowing perr second through
the elemental strip.

This reduction in mass/sec flowing through elemental strip
= mass/sec given by equation (ii) - mass/sec given by equation (i)
= pUbdy — pubdy = pb (U-u) dy.

Therefore total reduction in mass of fluids flowing through BC due to plate

= "00(@-0)oo =00 (0 - 0)0o0 (iii)
0 0

Let the plate is displaced by a distance 1* and velocity of flow for the distance [1* is equal to the
free stream velocity (U). loss of the mass of the fluid/sec flowing through the distance*

= p x velocity x Area

=pxUx[*xb (iv)

Equating (iii) and (iv) , we get
0d (7D -)0d0=pxUx" xb
0
Cancelling pbon both sides, we have

(0-0)00 = Ux0*

0

U (O-=-0)on
0 =1%o -myop=""
o 0 [
0= (0= )0,
O O
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MOMENTUM THICKNESS ( 0 ):

> Itis defined as the distance measured perpendicular to the boundary of the solid body by
which the boundary should be displaced to compensate for the reduction in momentum
of the flowing fluid on account of boundary layer formation.

» Consider the flow over a plate. Consider the section 1-1 at a distance x from leading

edge. Take an elemental strip at a distance y from the plate having thickness dy. The
mass of fluid flowing per second through this elemental strip is given by equation (i) an