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FLUID PROPERTIES AND FLUID STATICS 

 

I. Properties of Fluids 

 

Fluid Mechanics is that section of applied mechanics, concerned with the statics and dynamics 

of liquids and gases. Knowledge of fluid mechanics is essential for the chemical engineer, because 

the majority of chemical processing operations are conducted either partially or totally in the fluid 

phase. The handling of liquids is much simpler, much cheaper, and much less troublesome than 

handling solids. Even in many operations a solid is handled in a finely divided state so that it stays 

in suspension in a fluid. 

Fluid Statics: treats fluids in the equilibrium state of no shear stress 

Fluid Mechanics: treats when portions of fluid are in motion relative to other parts. 

A fluid is defined as a substance that deforms continuously under the action of a shear stress, 

however small magnitude present. It means that a fluid deforms under very small shear stress, but 

a solid may not deform under that magnitude of the shear stress. It is a substance, as a liquid or 

gas, that is capable of flowing and that changes its shape at a steady rate when acted upon by a 

force tending to change its shape. The differences between the behaviours of solids and fluids 

under an applied force are as follows: 

 

For a solid, the strain is a function of the applied stress, providing that the elastic limit is not 

exceeded. For a fluid, the rate of strain is proportional to the applied stress. The strain in a solid is 

independent of the time over which the force is applied and, if the elastic limit is not exceeded, the 

deformation disappears when the force is removed. A fluid continues to flow as long as the force 

is applied and will not recover its original form when the force is removed. 

Newtonian fluids: 

Fluids which obey the Newton's law of viscosity are called as Newtonian fluids. Newton's law of 

viscosity is given by 

 

where = shear stress 
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= viscosity of fluid 
 

du/dy = shear rate, rate of strain or velocity gradient 

 

All gases and most liquids which have simpler molecular formula and low molecular weight such 

as water, benzene, ethyl alcohol, CCl4, hexane and most solutions of simple molecules are 

Newtonian fluids. 
 

Non-Newtonian fluids: 

 

Fluids which do not obey the Newton's law of viscosity are called as non-Newtonian fluids. 

 

Generally non-Newtonian fluids are complex mixtures: slurries, pastes, gels, polymer solutions 

etc. 
 
 

Fig.1: Newtonian Fluid 

 
Density 

 

The density of a substance is the quantity of matter contained in a unit volume of the substance. 

It can be expressed in three different ways. 

 

Mass Density 

 
Mass Density, , is defined as the mass of substance per unit volume. 

Units: Kilograms per cubic metre, (or ) 
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Dimensions: 
 

Typical values: 

Water = 1000 , Mercury = 13546 Air = 1.23 , Paraffin Oil = 800 . 

(at pressure =1.013  and Temperature = 288.15 K.) 

Specific Weight 

 
Specific Weight , (sometimes, and sometimes known as specific gravity) is defined as the 

weight per unit volume. 

or 

 

The force exerted by gravity, g, upon a unit volume of the substance. 

 
The Relationship between g and can be determined by Newton's 2nd Law, since 

weight per unit volume = mass per unit volume g 

Units: Newton's per cubic metre, (or ) 

Dimensions: . 

 

Typical values: 

 
Water =9814 , Mercury = 132943 , Air =12.07 , Paraffin Oil =7851 

 

Relative Density 

 
Relative Density, , is defined as the ratio of mass density of a substance to some standard 

mass density. 

 

For solids and liquids this standard mass density is the maximum mass density for water (which 

occurs at c) at atmospheric pressure. 
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Units: None, since a ratio is a pure number. 

Dimensions: 1. 

Typical values: Water = 1, Mercury = 13.5, Paraffin Oil =0.8. 

 

Viscosity 

 

Viscosity, is the property of a fluid, due to cohesion and interaction between molecules, which 

offers resistance to sheer deformation. Different fluids deform at different rates under the same 

shear stress. Fluid with a high viscosity such as syrup, deforms more slowly than fluid with a low 

viscosity such as water. 
 

Fig .2 Viscous fluid 

 

All fluids are viscous, "Newtonian Fluids" obey the linear relationship 

 

 
given by Newton's law of viscosity. , which we saw earlier. 

 

 

Fig .3 Variation in velocity 
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where is the shear stress, 

Units  ; 

Dimensions . 

 

is the velocity gradient or rate of shear strain, and has 

Dimensions  

 

 Resistance of liquid to flow. It is the measure of consistency of the fluid and inability to flow. 

 Generally highly viscous fluid flows slowly and all the fluids are viscous in nature called 

real fluids. 

 Ideal fluids have no viscosity 

 
Coefficient of Dynamic Viscosity 

 
The Coefficient of Dynamic Viscosity, , is defined as the shear force, per unit area, (or shear stress 

), required to drag one layer of fluid with unit velocity past another layer a unit distance away. 

 

Units: Newton seconds per square metre, or Kilograms per meter per second, . 

(Although note that      is often expressed in Poise, P, where 10 P = 1 .) 

 

Typical values: 

 

Water   =1.14   ,   Air   =1.78   ,  Mercury  =1.552 , 

Paraffin Oil =1.9 . 

Kinematic Viscosity 

 
Kinematic Viscosity, , is defined as the ratio of dynamic viscosity to mass density. 
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Units: square metres per second, 

 

(Although note that   is often expressed in Stokes, St, where St = 1 .) 

 
Dimensions: . 

 

Typical values: 

 

Water =1.14 , Air =1.46 , Mercury =1.145 , 

Paraffin Oil =2.375  . 
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Vapour Pressure 

 

The pressure at which a liquid will boil is called its vapor pressure. This pressure is a 

function of temperature (vapor pressure increases with temperature). In this context we usually 

think about the temperature at which boiling occurs. For example, water boils at 100oC at sea- level 

atmospheric pressure (1 atm abs). However, in terms of vapor pressure, we can say that by 

increasing the temperature of water at sea level to 100 oC, we increase the vapor pressure to the 

point at which it is equal to the atmospheric pressure (1 atm abs), so that boiling occurs. 

 

 

Fig .4:  Vapour Pressure 
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It is easy to visualize that boiling can also occur in water at temperatures much below 

100oC if the pressure in the water is reduced to its vapor pressure. For example, the vapor  pressure 

of water at 10oC is 0.01 atm. Therefore, if the pressure within water at that temperature is reduced 

to that value, the water boils. Such boiling often occurs in flowing liquids, such as on the suction 

side of a pump. When such boiling does occur in the flowing liquids, vapor bubbles start growing 

in local regions of very low pressure and then collapse in regions of high downstream pressure. 

This phenomenon is called as cavitation 

 

Compressibility 

 

All materials, whether solids, liquids or gases, are compressible, i.e. the volume V of a given mass 

will be reduced to V - dV when a force is exerted uniformly all over its surface. If the force per 

unit area of surface increases from p to p + dp, the relationship between change of pressure and 

change of volume depends on the bulk modulus of the material. 

 

Fig .5:  Compressibility 

 
Bulk modulus (K) = (change in pressure) / (volumetric strain) 

 

Volumetric strain is the change in volume divided by the original volume. Therefore, 

(change in volume) / (original volume) = (change in pressure) / (bulk modulus) 

i.e., -dV/V = dp/K 
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Negative sign for dV indicates the volume decreases as pressure increases. The concept of the 

bulk modulus is mainly applied to liquids, since for gases the compressibility is so great that the 

value of K is not a constant. The relationship between pressure and mass density is more 

conveniently found from the characteristic equation of gas. 

 

For liquids, the changes in pressure occurring in many fluid mechanics problems are not 

sufficiently great to cause appreciable changes in density. It is therefore usual to ignore such 

changes and consider liquids as incompressible. 

 

Gases may also be treated as incompressible if the pressure changes are very small, but usually 

compressibility cannot be ignored. In general, compressibility becomes important when the 

velocity of the fluid exceeds about one-fifth of the velocity of a pressure wave (velocity of 

sound) in the fluid. 

 

Typical values of Bulk Modulus: 

K = 2.05 x 109 N/m2 for water 

K = 1.62 x 109 N/m2 for oil. 
 

 

Surface Tension 

It is a fluid property which occurs at the interfaces of a liquid and gas or at the interface 

of two immiscible liquids. As shown in Fig ,the liquid molecules- 'A' is under the action 

of molecular attraction between like molecules (cohesion). However the molecule ‘B' 

close to the interface is subject to molecular attractions between both like and unlike 

molecules (adhesion). As a result the cohesive forces cancel for liquid molecule 'A'. But 

at the interface of molecule 'B' the cohesive forces exceed the adhesive force of the gas. 

The corresponding net force acts on the interface; the interface is at a state of tension 

similar to a stretched elastic membrane. 

As explained, the corresponding net force is referred to as surface tension,  In short it  is 

apparent tensile stresses which acts at the interface of two immiscible fluids. 

Dimension: 

Unit: 
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Fig .6:  Surface Tension 

Formation of water droplet- Phenomenon of surface tension 
 

Capillarity 

It is important (in fluid measurements) when using tubes smaller than about 10 mm in diameter. 

Capillary rise (or depression) in a tube can be calculated by making force balances. The forces 

acting are force due to surface tension and gravity.  

The force due to surface tension, 

 

Fig .7:  Capillarity 
 
 

Fs = pdscos(q), 

 

where q is the wetting angle or contact angle. If tube (made of glass) is clean 

A 

B 
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q is zero for water and about 140o for Mercury. 

This is opposed by the gravity force on the column of fluid, which is equal to the height of the 

liquid which is above (or below) the free surface and which equals 

 

Fg =(p/4)d2hgr, 

 

where r is the density of liquid. 

 

Equating these forces and solving for Capillary rise (or depression) ‘h’ 

 
 

h = 4scos(q)/(rgd) 
 

1. Water has a surface tension of 0.4 N/m. In a 3 mm diameter vertical tube if the liquid 

rises 6 mm above the liquid outside the tube, calculate the contact angle. 
 

Data: 

 

Surface tension (s) = 0.4 N/m 

 

Dia of tube (d) = 3 mm = 0.003 m 

Capillary rise (h) = 6 mm = 0.006 m 

Formula: 

 

Capillary rise due to surface tension is given by 

h = 4scos(q)/(rgd), where q is the contact angle. 

 

 

Calculations: 

 

cos(q) = hrgd/(4s) = 0.006 x 1000 x 9.812 x 0.003 / (4 x 0.4) = 0.11 

 

Therfore, contact angle q = 83.7o 
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Pressure Measuring Instruments 

A somewhat more complicated device for measuring fluid pressure consists of a bent tube 

containing  one  or  more  liquid  of  different  specific  gravities.  Such  a  device  is  known   as 

manometer. 

In using a manometer, generally a known pressure (which may be atmospheric) is applied to one 

end of the manometer tube and the unknown pressure to be determined is applied to the other 

end. 

In some cases, however, the difference between pressure at ends of the manometer tube is desired 

rather than the actual pressure at the either end. A manometer to determine this differential 

pressure is known as differential pressure manometer. 

 

Manometers - Various forms 

 

1. Simple U - tube Manometer 

2. Inverted U - tube Manometer 

3. U - tube with one leg enlarged 

4. Two fluid U - tube Manometer 

5. Inclined U - tube Manometer 
 

 

Simple U tube Manometer Differential Manometer 

 
Fig .8:  Simple U tube Manometer 
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Inverted U tube Manometer 

Fig .9:  Simple U tube Manometer 
 

 
For the left hand side: 

Px = P1 + g(a+h) 

For the right hand side: 

 
Px' = P2 + ga + mgh 
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Since Px = Px' 

 
P1 + g(a+h) = P2 + ga + mgh 

P1 - P2 = mgh - gh 

i.e.P1 -P2 =( m - )  gh. 

 

The maximum value of P1 - P2 is limited by the height of the manometer. 

 

To measure larger pressure differences we can choose a manometer with higher density, and to 

measure smaller pressure differences with accuracy we can choose a manometer fluid which is 

having a density closer to the fluid density. 

 

Inverted U-tube manometer 
 

 
Fig .10:  Inverted U tube Manometer 

It is used for measuring pressure differences in liquids. The space above the liquid in the 

manometer is filled with air which can be admitted or expelled through the tap on the top, in order 

to adjust the level of the liquid in the manometer. 

 

Equating the pressure at the level XX'(pressure at the same level in a continuous body of static 

fluid is equal), 
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x 2 m 

For the left hand side: 

 
Px = P1 - g(h+a) 

 

For the right hand side: 

 
P ' = P  - ( ga + gh) 

Since Px = Px' 

P1 - g(h+a) = P2 - ( ga + mgh) 

P1 - P2 = ( - m)gh 

If the manometric fluid is choosen in such a way that m << then, 

P1 - P2 = gh. 

For inverted U - tube manometer the manometric fluid is usually air. 
 

The manometer in its various forms is an extremely useful type of pressure measuring 

instrument, but suffers from a number of limitations. 

o While it can be adapted to measure very small pressure differences, it can not be used 

conveniently for large pressure differences - although it is possible to connect a number of 

manometers in series and to use mercury as the manometric fluid to improve the range. 

(limitation) 

o A manometer does not have to be calibrated against any standard; the pressure difference 

can be calculated from first principles. ( Advantage) 

o Some liquids are unsuitable for use because they do not form well-defined menisci. Surface 

tension can also cause errors due to capillary rise; this can be avoided if the diameters of 

the tubes are sufficiently large - preferably not less than 15 mm diameter. (limitation) 

 

o A major disadvantage of the manometer is its slow response, which makes it unsuitable for 

measuring fluctuating pressures.(limitation) 

o It is essential that the pipes connecting the manometer to the pipe or vessel containing the 

liquid under pressure should be filled with this liquid and there should be no air bubbles in 

the liquid.(important point to be kept in mind) 
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Bourdon Gauge: 
 
 

 
 

The pressure to be measured is applied to a curved tube, oval in cross section. Pressure applied 

to the tube tends to cause the tube to straighten out, and the deflection of the end of the tube is 

communicated through a system of levers to a recording needle. This gauge is widely used for 

steam and compressed gases. The pressure indicated is the difference between that 

communicated by the system to the external (ambient) pressure, and is usually referred to as 

the gauge pressure. 

 

The basic property of a static fluid is pressure. Pressure is familiar as a surface force exerted by 

a fluid against the walls of its container. Pressure also exists at every point within a volume of 

fluid. For a static fluid, as shown by the following analysis, pressure turns to be independent 

direction. 
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At w hat depth below' the surface of oil. rclatii c dcrisity‘ 0.8, will producc a F•«• urc of 120 IN/m ? fi’hat 

depth of water is this equivalent to? 

[ I 5.3m, 1 2.2m] 
 

 
 

 

      120 IO' 
= lSJ9m of oil 

/    g 800 = 96 I 

b) 
 

120 = 103 
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Equating the pressure at the level XX' (pressure at the same level in a continuous body of fluid is 

equal), 

 

For the left hand side: 

 
Px = P1 + 1 g(0.45) 

 

For the right hand side: 

 
Px' = P2 + 2 g (0.5)+ mg x 0.15 

 

Since Px = Px' 

 
P1 + 1 g(0.45) = P2 + 2 g (0.5)+ mg x 0.15 

 
P1 - P2 = 2 g (0.5)+ mg x 0.15 - 1 g(0.45) 

 

= (0.8x1000x9.81x0.5)+ (13.6x1000x9.81x0.15) – (0.9x1000x9.81x0.5) 

 

= 19521 N/m2 

 

Pascal’s Law 

 
 

By considering the equilibrium of a small fluid element in the form of a triangular prism 

ABCDEF surrounding a point in the fluid, a relationship can be established between the pressures 

Px in the x direction, Py in the y direction, and Ps normal to any plane inclined at any angle q to 

the horizontal at this point. 

 

Px is acting at right angle to ABEF, and Py at right angle to CDEF, similarly Ps at right angle to 

ABCD. 
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Since there can be no shearing forces for a fluid at rest, and there will be no accelerating forces, 

the sum of the forces in any direction must therefore, be zero. The forces acting are due to the 

pressures on the surrounding and the gravity force. 

 

Force due to Px = Px x Area ABEF = Pxdydz 

 

Horizontal component of force due to Ps = - (Ps x Area ABCD) sin(q) = - Psdsdz dy/ds = - Psdydz 

 

As Py has no component in the x direction, the element will be in equilibrium, if 

Pxdydz + (-Psdydz) = 0 

i.e. Px = Ps 

 

Similarly in the y direction, force due to Py = Pydxdz 

 

Component of force due to Ps = - (Ps x Area ABCD) cos(q) = - Psdsdz dx/ds = - Psdxdz 

Force due to weight of element = - mg = - rVg = - r (dxdydz/2) g 

Since dx, dy, and dz are very small quantities, dxdydz is negligible in comparison with other two 

vertical force terms, and the equation reduces to, 

 

Py = Ps 

 

Therefore, Px = Py = Ps 
 

i.e. pressure at a point is same in all directions. This is Pascal's law. This applies 

to fluid at rest. 

 

Fine powdery solids resemble fluids in many respects but differs considerably in others. For 

one thing, a static mass of particulate solids, can support shear stresses of considerable magnitude 

and the pressure is not the same in all directions. 

 

In a stationary fluid the pressure is exerted equally in all directions and is referred to as the 

static pressure. In a moving fluid, the static pressure is exerted on any plane parallel to the direction 

of motion. The fluid pressure exerted on a plane right angles to the direction of flow is greater than 

the static pressure because the surface has, in addition, to exert sufficient force to bring the fluid 

to rest. 
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 Buoyancy  

 

Upthrust      on      body      =      weight      of      fluid       displaced       by       the       body   This 

is known as Archimedes principle. 
 

Buoyancy we know that wooden objects float on water, but a small needle of iron sinks into water. 

This means that a fluid exerts an upward force on a body which is immersed fully or partially in 

it. The upward force that tends to lift the body is called the buoyant force, . The buoyant force 

acting on floating and submerged objects can be estimated by employing hydrostatic principle. 

Center of Buoyancy 
 

The line of action of the buoyant force on the object is called the center of buoyancy. To find the 

centre of buoyancy, moments about an axis OO can be taken and equated to the moment of the 

resultant forces. The equation gives the distance to the centeroid to the object volume. The 

centeroid of the displaced volume of fluid is the centre of buoyancy, which, is applicable for both 
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submerged and floating objects. This principle is known as the Archimedes principle which states 

A body immersed in a fluid experiences a vertical buoyant force which is equal to the weight of 

the fluid displaced by the body and the buoyant force acts upward through the centroid of the 

displaced volume" 

Metacentric height (GM) 

 

The metacentric height (GM) is a measurement of the initial static stability of a floating 

body. It is calculated as the distance between the centre of gravity of a ship and its metacentre. A 

larger metacentric height implies greater initial stability against overturning. The metacentric 

height also influences the natural period of rolling of a hull, with very large metacentric heights 

being associated with shorter periods of roll which are uncomfortable for passengers. Hence, a 

sufficiently high but not excessively high metacentric height is considered ideal for passenger 

ships. 

 
 

The centre of buoyancy is at the centre of mass of the volume of water that the hull displaces. 

This point is referred to as B in naval architecture. The centre of gravity of the ship is commonly 

denoted as point G or VCG. When a ship is stable, the centre of buoyancy is vertically in line with 

the centre of gravity of the ship. It is defined as the point about which a body starts oscillating 

when the body is tilted by a small angle. The meta center may also defined as the point at which 

the line of action of force of buoyancy will meet the normal axis of the body is given a small 

angular displacement. 

https://en.wikipedia.org/wiki/Centre_of_gravity
https://en.wikipedia.org/wiki/Metacentric_height#Metacentre
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Water
https://en.wikipedia.org/wiki/Hull_%28ship%29
https://en.wikipedia.org/wiki/Hull_%28ship%29
https://en.wikipedia.org/wiki/Naval_architecture
https://en.wikipedia.org/wiki/Centre_of_gravity
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The Total pressure on an immersed surface, may be defined as the total pressure exerted by the 

liquid on it. Mathematically total pressure, 

where, 

 
 = Intensities of pressure on different strips of the surface, and 

 = Areas of corresponding strips. 

 
Total Pressure 

When a static mass of the fluid comes in contact with a surface either plane or curved, a force 

exerted by the fluid on the surface. This force is known as the total pressure. Since the fluid at 

rest, no tangential force exists, hence the total pressure will act in the direction normal to the 

surface. 

Centre of Pressure 
 

The point of application of total pressure on the surface is known as centre of pressure. 

The position of an immersed surface may be, 

 Horizontal 

 Vertical 

 Inclined 
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Example - Total Pressure on a Horizontal Immersed Surface 

A tank 3m 4m contains 1.2m deep oil of specific gravity 0.8. Find 

(a) intensity of the pressure at the base of the tank, and 

(b) total pressure on the base of the tank. 

Example 

Given, 

 
 Area of tank, = 3m 4m = 12m2 

 Depth of oil, = 1.2m 

 Specific gravity of oil = 0.8 

 

Specific weight of oil, = =  

(a) Intensity of pressure at the base of the tank 
 

(b) Total pressure on the base of the tank 
 

Intensity of pressure at the base of the tank = 9.42 KPa 

Total pressure on the base of the tank = 113.4 KN 

For horizontally submerged surfaces , depth of plane surface(h), distance of center of gravity 

from the top surface and depth of centre of pressure from top surface are same that is 

h = Distance of C.G with top water surface = Distance of centre of pressure with top water 

surface 

Here centre of pressure = 1.2m 
 

Total Pressure On A Vertically Immersed Surface 
 

Consider a plane vertical surface immersed in a liquid shown in figure 
 

Let the whole immersed surface is divided into a number of small parallel stripes as shown in 

figure. 

Here, 

 

 ρg = Specific weight of the liquid 
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 = Total area of the immersed surface 

 
or h = = Depth of the center of gravity of the immersed surface from the liquid surface 

Pressure on the strip = Intensity of pressure * Area = ρghdA 

Now, Total pressure on the surface, 

F = ρgh dA = ρg h dA 

  h dA = Area of surface x distance of C.G from free surface = A X h  
 

 

 
F = ρgA h  

 
Centre of pressure (h*) 

 
According to the principle of moment theory, moment of the resultant force about an axis is 

equal to the sum of the moments of the components about the same axis. The resultant force F is 

acting at P, at a distance h* (center of pressure) from free surface of liquid. 

 
Moment of force of F about the free surface of the liquid = Fx h* 

Moment of force dF acting on the strip about free surface = Df xh = ώh.dAXh = ώh2dA 

 
Sum of the moments of all such forces about the free surfaces 

=    ρgh2 dA =  ρg  h2dA 

 

  h2dA = IO = Moment of Inertia of the surface about free surface of the liquid Sum 

of the moments of all such forces about the free surfaces = ρg IO 
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Hence Fx h* = ρg IO 

ρg A h X h* = ρg IO 

 
h* = IO 

A h  

By the theorem of parallel axis, 

IO = IG + A h 2  
 

h* = 
IG + A h 2 

= 
IG + h  

A h A h  

 
 

Table.1:   Moment  of  Inertia
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Hydrostatic forces on inclined submerged surfaces 
 

 
 

 

 

 ρg = Specific weight of the liquid 

 = Total area of the immersed surface 

 
or h = = Depth of the center of gravity of the immersed surface from the liquid surface 

 

 

 

 

h *=  y ∗ 
sin 

 

Pressure force dF acting on the strip about AXIS O-O = dF  = ρgy sin dA 
Now, Total pressure on the surface, 

F =   ρgy sin dA  = ρg sin y dA 

  y dA = Area of surface x distance of C.G from free surface = A X y  

sin y = h  

F= ρg sin A X y =  ρg  A X h F 

= ρgA h  

here h = 
 

 

h = 
y 

sin 
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sin 

Centre of pressure 

 

According to the principle of moment theory, moment of the resultant force about an axis is 

equal to the sum of the momentsof the componentsabout the same axis. The resultant force F is 

acting at P, at a distance h* (center of pressure) from free surface of liquid. 

 

Moment of force of F about the free surface of the liquid = Fx y* 

Pressure force dF acting on the strip about AXIS O-O = dF  = ρgy sin dA 

Moment of force dF acting on the strip about AXIS O-O = dF xy = ρgy sin dAXy 

Sum of the moments of all such forces about the free surfaces 

=   ρgy2 sin dA = ρgsin y2dA 

  y2dA = IO = Moment of Inertia of the surface about free surface of the liquid 

Sum of the moments of all such forces about the free surfaces = ρg IO 

Hence Fx y*= ρgsin IO 

ρgsin A y X y* = ρgsin IO 

 
y* = IO 

A y 
 

By the theorem of parallel axis, 

IO = IG + A h 2  

 

h∗  
= 

IG + A h y 2 

= 
IG 

 
+ y  

A y A y 

 

 

 

 

sin 

 
 

 

A
    h 

sin 

+  
h 

sin 

 

sin 
= 

IG sin 

A h 
+  

h 

sin 

Cp or h* = 
IG sin θ 

+ h
  

A h 
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A rectangular plane surface 3m wide and 4m deep lies in water in such a way that its plane makes an angle 

of 30 with the free surface of water. Determine the total pressure and position of center of pressure when 

the upper edge is 2m below the free water surface. 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 Total pressure F =  F = ρgA h 

= 1000x9.81x4x3x h h = 

AE+EB 

 
Centre of Pressure 

EB = 2 sin30 h = 2+2 sin30 

h = 3m 

F = ρgA h = 1000x9.81x4x3x 3= 353.167 kN 
 

h* = 
IG sin 2 θ 

A h 
+ h  
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IG  = bd3/12 = 3x43/12 = 16 mm4 
 

h* = IG sin 
2 30 

+ h = [(16X(1/4))/(12X3)] +3 = 3.111m 



1 
 

 

 
 

 

 

 
 

 

 

SCHOOL OF BUILDING AND ENVIRONMENT 

 

 

DEPARTMENT OF CIVIL ENGINEERING 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – II – MECHANICS OF FLUID – SCIA1301 



2 
 

 

UNIT II – FLUID KINEMATICS AND DYNAMIC 

 

1.0 INTRODUCTION 

◗  Kinematics means the study of motion. Fluid kinematics is the study of how fluids flow 

and how to describe fluid motion. Fluid kinematics deals with describing the motion of 

fluids without considering (or even understanding) the forces and moments that cause 

the motion. Branch of fluid mechanics which deals with response of fluids in motion 

without considering forces and energies in them. The study of kinematics is often 

referred to as the geometry of motion. 

◗  Kinematics of fluid flow deals with the motion of fluid particles without considering 

the agency producing the motion. This deals with the geometry of motion of fluid 

particles. This also deals with the velocity and acceleration of fluid particles in motion. 

The motion of a fluid can be analysed on the same principles as those applied in the 

motion of a solid. 

◗  There, however exists a basic difference between the motion of a solid and the motion 

of a fluid. A solid body is compact and moves as one mass. There is no relative motion 

between the particles of a solid body. Hence, we study the motion of the entire body 

and there is no necessity to study the motion of any particle of a solid body. 

 

Methods of Describing Fluid Motion: 

We know that each particle of a fluid in motion has at any instant a certain definite 

value of its properties like density, velocity, acceleration etc. As the fluid moves on, the values 

of these properties will change from one position to other positions, from time to time. Thus, 

it may be realized that two methods are possible to describe fluid motion. In the first method 

called the Lagrangian method, we study the velocity, acceleration etc. of an individual fluid 

particle at every instant of time as the particle moves to different positions. 

 

This method of studying the properties of a single fluid particle is a very tedious process 

and therefore this method is not generally adopted. In the second method called the Eulerian 

method, we describe the flow by studying the velocity, acceleration, pressure, density etc. at a 

fixed point in space. Due to its easy application, this method is most commonly adopted. 
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Fig 1: ordinates 

 

Let x, y and z denote the space coordinates and t the time. Let V be the resultant velocity at 

any point in space in a fluid body. Let u, v and w be the components of the resultant velocity 

V at any point in the directions of the x, y and z axes. Fig. 6.1 illustrates the notations. 

 

 
 

Stream Line: 

A stream line is a continuous line in a fluid which shows the direction of the velocity of the 

fluid at each point along the line. The tangent to the stream line at any point on it is in the 

direction of the velocity at that point. Fluid particles lying on a stream line at an instant move 

along the stream line. 

https://www.engineeringenotes.com/wp-content/uploads/2018/06/clip_image004-14.jpg
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When a fluid is in motion there are many stream lines and these stream lines indicate the flow 

pattern at that particular instant. For example, as a fluid flows round a cylindrical body, the 

stream line pattern will be as shown in Fig. 6.3. In steady flow the velocity at a point does not 

change in its magnitude and direction. 

Hence, there is no change in the direction of the velocity vector at a point. In other words, the 

stream line is fixed in position. Conversely, if the stream line pattern remains constant the flow 

is steady. In the case of an unsteady flow, the direction of the velocity changes with time at 

every point. This means the position of a stream line is not constant. The position of a stream 

line changes from instant to instant. 

 

 

https://www.engineeringenotes.com/wp-content/uploads/2018/06/clip_image006-10.png
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Path Line 

A path line means the path or a line actually described by a single fluid particle as it moves 

during a period of time. The path line indicates the direction of the velocity of the same fluid 

particle at successive instants of time. 

In the case of a steady flow since there are no fluctuations of the velocity, the path line coincides 

with the stream line. In the case of an unsteady flow the stream lines change their positions at 

every instant and thus the path line may fluctuate between different stream lines during an 

interval of time. 

 

Fig. 6.4 shows the path line of a particular fluid particle. It is the locus of the positions of the 

same particle as it moves.Fig. 6.5 shows the path lines described by three particles which had 

passed through the origin at times t0, t1 and t2. Consider the particle which passed through the 

origin at time to. Fig. 6.5 shows the positions taken by the particle at times t0 + ∆t, t0 +2∆t, 

t0+3∆t etc. as it has traced its path line. 

 

Streak Line: 
 

The streak line is the locus of the positions of fluid particles which have passed through a given 

point in succession. Suppose A, B, C, D… are fluid particles which passed through a reference 

point say the origin one after the other in succession. These particles have described their own 

path lines. Suppose at a time t, these particles A, B, C, D… are at Pa, Pb, Pc, Pd …. The line Pa, 

Pb, Pc, Pd …. is the streak line, at time t. 

 
Potential Lines: 

On a surface consisting of stream lines, we can imagine lines running orthogonally with the 

stream lines. Such line are called potential lines 
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A set of stream lines and potential lines constitutes a flow net. 

Types of Flow: 

We come across the following types of flow: 

(i) Laminar flow and turbulent flow. 

(ii) Steady flow and unsteady flow. 

(iii) Uniform flow and non-uniform flow. 

(iv) Rotational and irrotational flow. 

(i) Laminar and Turbulent Flow: 

Laminar Flow: 

This is a type of flow in which the fluid particles move in layers, gilding smoothly over adjacent 

layers. There is no transportation of fluid particles from one layer to another. The fluid particles 

in any layer move along well defined stream lines. 

The paths of the individual particles do not cross each other. This type of flow is also called 

stream line flow or viscous flow. This is a smooth flow of one layer of fluid over another. This 

type of flow occurs in viscous fluids where viscosity influences the flow. 

 

Turbulent Flow: 

This is the most common type of flow that occurs in nature. This flow is characterised by 

random, erratic, unpredictable motion of fluid particles which result in eddy currents. There is 
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a general mixing up of fluid particles, in motion. The velocity changes in direction and 

magnitude from point to point. 

There is a continuous collision between particles resulting in transference of momentum 

between them. The eddy currents cause a considerable loss of energy compared to the loss of 

energy in laminar flow. This greater loss of energy is due to the fact that turbulent shear stresses 

are very much greater than laminar shear stress given by Newton’s law of viscosity. 

 

In a turbulent flow the distinguished characteristic of turbulence is its irregularity, indefinite 

frequency and no definite observable pattern. This type of flow cannot be truly mathematically 

analysed and any analysis is possible by statistical evaluation. Flow of water in rivers is 

generally turbulent. Flow of water in pipes at high velocity is turbulent. Flow of thick oil in 

narrow tubes, flow of ground water, flow of blood in blood vessels are laminar. 

As the velocity of water in a pipe is gradually increased the flow will change from laminar to 

turbulent flow. The velocity at which the flow changes from laminar to turbulent flow in a pipe 

is called the critical velocity. The type of flow that exists in any case depends upon the value 

of a non-dimensional number dν/γ called the Reynolds’s number, where d is the diameter of 

the pipe, ν is the mean velocity of flow in the pipe and γ is the kinematic viscosity of the fluid.  

When the Reynolds number is less than 2000, the flow is generally laminar. When the Reynolds 

number is greater than 2800, the flow is generally turbulent. If the Reynolds number lies 

between the above limits the flow may be either laminar or turbulent. Thus the critical velocity 

has no fixed or definite value. 

The velocity corresponding to Reynolds number equal to 2000, is called the lower critical 

velocity and the velocity corresponding to Reynolds number equal to 2800 is called the upper 

critical velocity. 

(ii) Steady Flow and Unsteady Flow: 

Steady Flow: 

If the flow characteristics like, velocity, density, pressure etc. at a given point in a flowing mass 

of fluid does not change with the passage of time, the flow is said to be steady. On the contrary, 

if these flow characteristics at a given point change with respect to time, the flow is said to be 
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unsteady flow. 

Since velocity is a commonly adopted characteristic of flow it is quite sufficient to regard the 

flow to be steady if the velocity at a given point does not change with respect to time. 

Suppose V is the velocity at a point (x1, y1, z1). At this point if V remains constant at all times 

the flow is a steady flow. But, if at this point, V changes with time the flow is unsteady flow 

i.e., 

 

(iii) Uniform and Non-Uniform Flow: 

If the flow characteristics like velocity, density, pressure etc. at a given instant remain 

the same at all points, the flow is uniform. If V is chosen as a flow characteristic, then, at a 

given instant V has the same value at all points and is independent of the space position. If the 

flow characteristics have different values at different points at a given instant of time, the flow 

is non-uniform flow. 

 

We use the terms uniform and non-uniform flow often in connection with open 

channels. In a channel where the section of the channel is uniform and the depth of flow is 

uniform the flow will be uniform as the velocity will be the same at all sections. But if the 

sectional dimensions of the channel are different at different sections, the depths of flow will 

be different at different sections. 

Obviously, the velocity will be different at different sections and the flow will be non-uniform, 

whether the flow is uniform or non-uniform if the rate of flow is constant the flow is steady 

and if the rate of flow changes with time, the flow is unsteady. Thus, we may come across 



9 
 

steady or unsteady or uniform or non-uniform flow. Any type of flow can exist independently 

of the other. 

A combination of two types of flow is also possible. 

Some combinations are: 

a. Steady uniform flow. 

b. Steady non-uniform flow. 

c. Unsteady uniform flow. 

d. Unsteady non-uniform flow. 

(iv) Rotational and Irrotational Flows: 

As a fluid moves the fluid particles may be subjected to translatory or rotatory displacements. 

Suppose a particle which is moving along a stream line rotates about its own axis also then the 

particle is said to have a rotational motion. Whereas if the particle as it moves along the stream 

line does not rotate about its own axis the particle is said to have irrotational motion. 

Fig. 6.11 (a) shows a rotational motion. Consider the fluid particle AB. As this particle moves 

along the stream line it rotates about its own axis also. Fig 6.11 (b) shows an irrotational motion. 

The fluid particle AB in this case, as it moves along the stream line, does not rotate about its 

own axis. 
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Various Types of Fluid Movements: 

A fluid element may undergo four types of movements, namely, 

(i) A pure translation, 

(ii) A linear deformation, 

(iii) A pure rotation, 

(iv) An angular (shearing) deformation 

One, Two and Three-Dimensional Flows: 

This is another way of describing fluid motion. The velocity of a fluid element in the most 

general case is dependent upon its position. If any point in space be defined in terms of the 

space coordinates (x, y, z), then at any given instant the velocity at the point is given by V = ƒ 

(x, y, z). The flow in such a case is called a three-dimensional flow. Sometimes, the flow 

condition may be such that the velocity at any point depends only on two space coordinates say 

(x, y) at a given instant, i.e., in this case, at the given instant V = ƒ (x, y). In this case the flow 

conditions are potential in planes normal to the Z-axis. This type of flow is called a two-

dimensional flow. 

In a two-dimensional flow, the flow is identical in parallel planes. Fig. 6.16 shows a two-

dimensional flow. In this figure is shown a channel whose walls are perpendicular to the plane 

of the diagram. Note the velocity vectors at sections 1-1 and 2-2. At section 1-1 the velocity 

varies across the channel. Similarly at section 2-2 the velocity varies across the channel. But 

the flow is identical in all planes parallel to the plane of the figure. 

There is no component of the velocity perpendicular to the plane of the figure. In quite a number 

of cases it is usual to consider the motion as one-dimensional. This is no doubt a simplification 

over the two- dimensional and three-dimensional fluid motions. In this type of flow the velocity 

V at a given instant is a function of one space coordinate say x only i.e., at a given instant, V = 

ƒ (x) 

Fig. 6.17 shows a one-dimensional flow. At section 1-1 the velocity is constant over the entire 

section. Similarly at section 2-2 the velocity is constant over the entire section. A one-
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dimensional or two-dimensional or three-dimensional flow may be a steady flow or an unsteady 

flow. 

 

Control Volume: 

This is a certain well defined extent of space. For the purpose of understanding the changes 

that take place in the fluid characteristics we may introduce a control volume so that we may 

compare the flow characteristics of a fluid just before it enters the control volume and just after 

it leaves the control volume. 

Continuity Equation: 

This is an equation based on the principle of conservation of mass. Suppose we consider a 

stream tube. Since the stream tube is always full of the fluid, the quantity of the fluid entering 

the stream tube at one end per unit of time should be equal to the quantity of the fluid leaving 

the stream tube at the other end per unit of time. 

Let V be the average velocity at any section and A the area of the section. If w be the specific 

weight of the fluid, the quantity of the fluid flowing per second across the section 
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Continuity Equation in Three Dimensions: 

Consider an infinitesimal parallelopiped of space in a fluid body. Let the sides of parallelopiped 

have length dx, dy and dz respectively. See Fig. 6.20. Let u, v and w be the inlet velocity 

components in the directions of the X, Y and Z axes. Mass of the fluid entering the left face = 

ρu dy dz. Mass of the fluid leaving the right face 

Velocity Potential and Stream Functions: 

Velocity potential function: 

This is a function which is devised to expedite the analytical study of velocity fields. If ɸ is 

some function of the coordinates x and y in a two-dimensional flow, such that 
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Equipotential Line: 
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UNIT III -FLOW THROUGH PIPES 

 

1.0 INTRODUCTION 

Fluid flow is classified as external and internal, depending on whether the fluid is forced to flow 

over a surface or in a conduit. If the conduit is completely filled with the fluid, and flow isdriven 

primarily by a pressure difference whereas in open-channel flow where the conduit is partially 

filled by the fluid and thus the flow is partially bounded by solid surfaces, as in an irrigation 

ditch, and flow is driven by gravity alone. 

PIPE FLOW VS OPEN CHANNEL FLOW 

Pipe flow: Flows completely filling the pipe (a) .The pressure gradient along the pipe is main 

driving force. Open channel flow: Flows without completely filling the pipe (b). The gravity 

alone is the driving force. 

Fig 1. Pipe flow 

PIPE SYSTEM 

A pipe system include the pipes themselves (perhaps of more than one diameter), the various 

fittings, the flow rate control devices valves and the pumps or turbines. 
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Fig 2. Pipe flow system 

 

 

LAMINAR OR TURBULENT FLOW 

Osborne Reynolds, a British scientist and mathematician,was the first to distinguish the 

difference between the classifications of flow by using a simple apparatus as shown in figure. 

 

 

 

Fig 3. Pipe flow system 
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 For “small enough flow rate” the dye streak will remain as a well-defined line as it flows 

along, with only slight blurring due to molecular diffusion of the dye into the 

surrounding water. 

 For a somewhat larger “intermediate flow rate”the dye fluctuates in time and space, and 

intermittent bursts of irregular behavior appear along the streak. 

 For “large enough flow rate” the dye streakalmost immediately become blurred and 

spreads across the entire pipe in a random fashion. 

LAMINAR FLOW 

 

Fluid particles move along straight parallel path in layers. The path of individual fluid particles 

does not cross those of neighboring particles. If Reynolds Number is less than 2000, is termed 

as laminar flow. 

TURBULENT FLOW: 

 

The fluid particles move in random manner resulting in general mixing of the particles. If 

Reynolds Number is greater than 4000, is termed as turbulent flow. Reynolds number between 

2000-4000 termed as transition flow. 

Background to Pipe Flow Theory 

To explain the various pipe flow theories we will follow the historical development of the subject: 

 

Date Name Contribution 

~184
0 

Hagen and Poiseuille Laminar flow equation 

1850 Darcy and Weisbach Turbulent flow equation 

1883 Reynolds Distinction between laminar and turbulent flow 

1913 Blasius Friction factor equation or smooth pipes 

1914 Stanton and Pannell Experimental values of friction factor for smooth 

1930 Nikuradse Experimental values of friction factor for artificially rough pipes 

1930
s 

Prandtl and von Karman Equations for rough and smooth friction factors 

 
1937 

 
Colebrook and White 

Experimental values of the friction factor for commercial pipes 
and the 
transition formula 
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1944 Moody The Moody diagram for commercial pipes 

 

 

LAMINAR FLOW 

 

Steady Uniform Flow in a Pipe: Momentum Equation 

The development that follows forms the basis of the flow theories applied to laminar flows. We 

remember from before that at the boundary of the pipe, the fluid velocity is zero, and the 

maximum velocity occurs at the centre of the pipe. This is because of the effect of viscosity. 

Therefore, at a given radius from the centre of the pipe the velocity is the same and so we 

consider an elemental annulus of fluid: 

Consider a horizontal pipe of radius R. 

 

 

Fig 4. Pipe flow system 

 

 

In the figure we have the following: 

• Δ r– thickness of the fluid element ; 

 

• Δx– length of pipe considered; 

 

• R – radius of pipe; 

 

The forces acting on the elements are 

• The pressure forces: 

On face AB - pπ𝑟2 

On face CD – ( p+ 𝜕𝑝 𝛥𝑥) x π𝑟2 
𝜕𝑥 
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• The shear force = τ x (2 πr x 𝛥𝑥) 

The sum of the forces acting is equal to the change in momentum. However, the change in 

momentum is zero since the flow is steady and uniform. Thus: 

 

 

pπ𝑟2- ( p +𝜕𝑝 𝛥𝑥) x π𝑟2  - τ x (2 πr x 𝛥𝑥) = 0 
𝜕𝑥 

 

pπ𝑟2- p π𝑟2–(𝜕𝑝 𝛥𝑥 x π𝑟2) - τ x (2 πr x 𝛥𝑥) = 0 
𝜕𝑥 

-  π r x 𝛥𝑥 (𝜕𝑝 𝛥𝑥𝑟 + τ  2) =  0 
𝜕𝑥 

τ= -
𝜕𝑝 𝑟 

𝜕𝑥 2 
(1) 

Thus the shear stress at any radius is known in terms of the piezometric pressure. 

Velocity Distribution: 

We can use the knowledge of the shear stress at any distance from the centre of the pipe in 

conjunction with our knowledge of viscosity as follows: 

 

Shear stress, τ = μ𝑑𝑢 
𝑑𝑦 

 

Y is measured from pipe wall 

y = R-r 

dy= - dr 

 τ = - μ𝑑𝑢 
𝑑𝑟 

 

substitute the values in equation (1) 

 

- μ
𝑑𝑢 

𝑑𝑟 
= -

𝜕𝑝 𝑟 

𝜕𝑥 2 
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𝑑𝑢 

𝑑𝑟 
= 

1 𝜕𝑝 
𝑟
 

2𝜇 𝜕𝑥 

 

Integrating the above equation with r 

u =  1  𝜕𝑝 𝑟2 + 𝑐 (2) 
4𝜇 𝜕𝑥 

 

Value of C from boundary condition 

when, r=R, u=0 

C = − 
1
 𝜕𝑝 

𝑅2 

4𝜇 𝜕𝑥 
 

Sub C in equation (2) 

 

u = 1 𝜕𝑝 
𝑟2 

− 
1 𝜕𝑝 

𝑅2 

4𝜇 𝜕𝑥 4𝜇 𝜕𝑥 
 

u = −  
1   𝜕𝑝  

[𝑅2 − 𝑟2]         (3) 
4𝜇 𝜕𝑥 

 

Thus the velocity distribution is parabolic (i.e. a quadratic in r). 

 

Ratio of Maximum velocity to average velocity: 

 

From equation (3) the velocity is maximum when, r = 0. Sub r=0 in equation (3) 

 

U = −  
1  𝜕𝑝 

𝑅2 (4) 
max 

4𝜇 𝜕𝑥 
 

The average velocity ū, is obtained by dividing the discharge of fluid across the section by the 

area of the pipe (π𝑟2). The discharge Q across the secion  is obtained by considering the flow 

through a circular ring element of radius r and thickness 𝑑𝑟. 
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The fluid flowing per second through this elementary ring, 

 

𝑑𝑄 =velocity at radius r x Area of ring element 

 

𝑑𝑄  =u x 2πr 𝑑𝑟 (5) 

 

Substitute value of u in equation (5) 

 

𝑑𝑄 = − 
1 𝜕𝑝 

[𝑅2 − 𝑟2]x 2πr 𝑑𝑟 
4𝜇 𝜕𝑥 

 

Q = 𝑑𝑄 
 

= −  
1   𝜕𝑝  

[𝑅2 − 𝑟2]  x 2πr 𝑑𝑟 
4𝜇 𝜕𝑥 

 

= −  
1   𝜕𝑝  

× 2𝜋    [𝑅2 − 𝑟2]𝑟𝑑𝑟 
4𝜇 𝜕𝑥 

 

= − 
1 𝜕𝑝 

× 2𝜋 
𝑅

(𝑅2 − 𝑟3) 𝑑𝑟 
4𝜇 𝜕𝑥 0 

 

= − 
1
 𝜕𝑝 

× 2𝜋[
𝑅2𝑟 2 − 

𝑟 4
] 

4𝜇 𝜕𝑥 2 4 
 

= − 
1
 𝜕𝑝 

× 2𝜋[
2𝑅4−𝑅4

]
 

4𝜇 𝜕𝑥 4 
 

 
Q =  𝜋 

8
𝜇 

 (−   
𝜕𝑝 

)𝑅4 (6) 
𝜕𝑥 

 

Average Velocity ū =   𝑄 
𝐴 

 

= 
𝜋 (−   

𝜕𝑝  
)𝑅4 X 1 

8𝜇 𝜕x 𝜋 𝑟 2 
 

 
ū = 1 

8   
𝜇 

(−     
𝜕𝑝 

) 𝑅2 (7) 
𝜕𝑥 

Dividing equation (4) by equation (7) 
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𝒉𝒇 = 
𝟑𝟐𝝁ū𝑳      

(Hagen poiseuille equation) 
𝜌ɡ𝑫

𝟐
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Example: Laminar Flow in Pipe 

Problem: 

A crude oil of viscosity 0.97 poise and density 900 kg/m3 is flowing through a horizontal circular 

pipe of diameter 100 mm and of length 10 m. Calculate the difference of pressure at the two ends 

of pipe, if 100 kg of the oil is collected in a tank in 30 seconds. 

Solution: 

given, 

μ = 0.97 poise = 0.097 Ns/m2 

density = 900 kg/m3 

D = 100 mm = 0.1 m L 

= 10m 

Mass M = 100 Kg 

Time = 30 sec 

Pressure drop 
P -P = 

=
32𝜇ū𝐿 

1 2    𝐷2 

Average Velocity ū =   𝑄 
𝐴 

𝑄 = 
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 
 

= (100 x 1)/ (30 x 900) 

Q = 3.704 X10-3 m3 

ū = 3.704 X10
−3 

x 4 = 0.472 m/s 
𝜋×𝐷2 

 

 

 
P -P =

=
32𝜇ū𝐿 

1 2 𝐷2 

= 
32×0.097×0.472×10 

0.12 

P1-P2 = 1465.1N/m2 
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Turbulent Flow 

 

Description 

 

 

Since the shearing action in laminar flows is well understood, equations describing the flow were 

easily determined. In turbulent flows there is no simple description of the shear forces that act in 

the fluid. Therefore the solutions of problems involving turbulent flows usually involve 

experimental results. 

In his work, Reynolds clarified two previous results found experimentally: 

• Hagen and Poiseuille found that friction head loss is proportional to the mean velocity: 

hf∝V 

Reynolds found that this only applies to laminar flows, as we have seen. 

• Darcy and Weisbach found that friction head loss is proportional to the mean velocity 

squared: 

hf∝V2 

Reynolds found that this applies to turbulent flows. 

 

DARCY’S WEISBACH EQUATION 

 

Consider a uniform horizontal pipe,having a steady flow as shown in fig.Let 1-1 and 2-2 are two 

setions of pipe. 

 

Let, 

 

P1 and P2= Pressure intensity at section 1-1 and 2-2, V1 and 

V2=Velocity of flow at sec 1-1 and 2-2, 

L = length of the pipe between sections 1-1 and 2-2 d = dia 
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of the pipe, 

f'' = frictional resistance per unit wetted area per unit velocity, hf = loss of 

head due to friction 

 

 

PIPE FRICTION FACTOR 

 

Many experiments have been performed to determine the pipe friction factor for many 

different arrangements of pipes and flows. 

Laminar Flow 

We can just equate the Hagen-Poiseuille and the Darcy-Weisbach Equations: 

 

 

 

𝟑𝟐𝝁ū𝑳 

𝜌ɡ𝑫𝟐 =   

4f L 𝑣2 

2ɡ𝑑 
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f=𝑅 

Hence, for laminar flow we have: 

 

 

 

Smooth Pipes – Blasius Equation 

 

64 

f=Re 

 

 

Blasius determined the following equation from experiments on „smooth‟ pipes: 

 

0.316 
0.25 
𝑒 

 

Stanton and Pannell confirmed that this equation is valid for Re <105 . Hence it is for „smooth‟ 

pipes. 

Nikuradse’s Experiments 

 

 

Nikuradse carried out many experiments up to Re = 3×106 . In the experiments, he artificially 

roughened pipes by sticking uniform sand grains to smooth pipes. He defined the relative 

roughness ( ks D ) as the ration of the sand grain size to the pipe diameter. He plotted his results 

as log f against log Re for each k s D , shown below. 
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There are 5 regions of flow in the diagram: 

 

1. Laminar Flow – as before; 

 

2. Transitional flow – as before, but no clear f ; 

 

3. Smooth turbulence – a limiting line of turbulence as Re decreases for all ks D ; 

 

4. Transitional turbulence – f varies both with Re and ks D , most pipe flows are in this region; 

5. Rough turbulence - f is constant for a given ks D and is independent of Re. 
 

The von Karman and Prandlt Laws 

 

 

von Karman and Prandlt used Nikuradse‟s experimental results to supplement their own 

theoretical results which were not yet accurate. They found semi-empirical laws: 

• Smooth pipes: 

 
1   

=2 log   𝑅
𝑒
 

𝑓 𝑓  
2.51 

 

• Rough pipes: 

 

1 

 
 

 𝑓 

= 2 log 
𝐾𝑠 𝐷 

 

 

The Von Karman and Prandlt Law for smooth pipes better fits the experimental data than the 

Blasius Equation. 

3.7 
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The Colebrook-White Transition Formula 

 

 

The friction factors thus far are the result of experiments on artificially roughened pipes. 

Commercial pipes have roughnesses that are uneven in both size and spacing. Colebrook and 

White did two things: 

1. They carried out experiments and matched commercial pipes up to Nikuradse‟s results by 

finding an „effective roughness‟ for the commercial pipes: 

 

 

Pipe/Material ks(mm) 

Brass, copper, glass, Perspex 0.003 

Wrought iron 0.06 

Galvanized iron 0.15 

Plastic 0.03 

Concrete 6.0 

 

 

 

this equation is known as the Colebrook-White transition formula and it gives results 

very close to experimental values for transitional behaviour when using effective 

roughnesses for commercial pipes. 

 
1  

= −2 log 
𝐾𝑠

 
2.51 

+ 
𝑓 3.7 𝐷 𝑅𝑒 𝑓 
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𝑅 

The transition formula must be solved by trial and error and is not expressed in terms of the 

preferred variables of diameter, discharge and hydraulic gradient. Hence it was not used much 

initially. 

Moody 

Moody recognized the problems with the Colebrok-White transition formula and did two 

things to remove objections to its use: 

1. He presented an approximation to the Colebrook-White formula: 

f=
200𝐾𝑠  + 

106  
𝐷 1  3 

𝑒 
 

2. He plotted f (or)λagainst log Re for commercial pipes, this is now known as the Moody 

diagram: 
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LOSS OF ENERGY IN PIPES: 

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which 

some of the energy of fluid is lost. The energy loss is classified as 

Major Energy Losses - due to friction 

Minor Energy Losses 

 Sudden expansion of pipes 

 Sudden contraction of pipes 

 Loss of head at the entrance of the pipe 

 Loss of head at the exit of the pipe 

 Bend in pipe 

 Pipe fittings 

 An obstruction in pipe 

Problem for Major Loss: 

Find the head lost due to friction in a pipe of diameter 300 mm and length 50 m, through 

which water is flowing at velocity of 3 m/s using (i) Darcy formula, (2) Chezy‟s formula for 

which C= 60. Take Kinematic viscosity ϑ = 0.01 stoke. 

Solution: 

Given: 

d= 300 mm=0.3 m 

L= 50 m 

V= 3 m/s 

C= 60 

ϑ = 0.01 stoke = 0.01 x 10-4 m2/s 

(1) Darcy formula 

 

 

𝑓  = 
4f l 𝑣2 

  
2ɡ𝑑 
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𝑅 1
 4 

𝑅𝑒 = 
𝑣𝑑 
𝜗 

 

 

= (3 x .3)/(0.01 x 10-4) 

 

 

 

for Re 

Re= 9 x 105 

4000 to 106 f=0.079 

𝑒 
 

 

 

 

 

 

 

(2) Chezy‟s Formula: 

 

 

 

 

 

 

 

 

 

 

 

 

  

= (0.079)/(9 x 105)1/4 f = 

0.00256 

hf = (4 x 0.00256 x 50 x 32)/(0.3x 2x9.81) hf = 

0.7828 m.
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𝑣 

MINOR LOSSES 

Losses at Sudden Enlargement: 

 

Consider the flow in the sudden enlargement, shown in figure , fluid flows from section 1 

to section 2. The velocity must reduce and so the pressure increases (this follows from 

Bernoulli). At position 1' turbulent eddies occur which give rise to the local head loss. 

 

𝒉 (𝒗𝟏−𝒗𝟐)𝟐 𝒆= 𝟐𝒈 

he = loss of head due to sudden enlargement 

v1 and v2 velocity of flow at section 1-1 and 2-2. 

Losses at Sudden Contraction 

In a sudden contraction, flow contracts from point 1 to point 1', forming a vena contraction 

 

 
2 

hc= 0.5
  2 

 
2𝑔 

 

hc - Loss of head due to sudden contraction. 
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Loss of head at the entrance of the pipe (hi): 

It occurs when a liquid enters a pipe which is connected to large tank or reservoir. 

h = 0.5     𝑣
2

 
i 2𝑔 

 

v- velocity of liquid in a pipe. 

Loss of head at the exit of the pipe (ho) : 

This will occur due to the velocity of liquid at outlet of the pipe which is dissipated in the form 

of free jet or it lost in tank or reservoir. 

h  =   𝑣
2
 

o 
 

v- velocity of liquid in a pipe. 

 

2𝑔 



21 

 

Bend in pipe (hb): 

 

 

 

 

 

 

 

 

 

 

Due to bend in pipe the velocity of flow changes hence separation of the flow from boundary 

and eddies will occur. 

h =  𝐾 
𝑣2

 
b 

 

v- velocity of flow 

k- co- efficient of bend k 

value depends on 

 Angle of bend 

 Radius of curvature 

 Diameter of pipe 

Pipe fittings 

2𝑔 

 

The loss of head in the various pipe fittings such as valves, couplings = 𝐾 
𝑣2

 
2𝑔 

 

v- velocity of flow 

k- co- efficient of pipe fitting. 

An obstruction in pipe 

The loss of energy takes place due to reduction of the area of the cross section of the pipe at 

the place where obstruction is found. 

 

Head loss due to obstruction = 𝑣
2

 
2𝑔 

( 
𝐴 

𝐶𝑐 
(𝐴−𝑎)  

− 1)2 
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v- velocity of flow 

CC – Coefficient of contraction A- 

Area of pipe 

a- Maximum area of obstruction. 

Some common situation where significant head losses occur in pipe are shown in figure 

 

 

 

A divergent duct or diffuser Tee-Junctions 

 

 

 
 

 

Y-Junctions Bends 
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Pipes in series 

 

When pipes of different diameters are connected end to end to form a pipe line, they are said to 

be in series. The total loss of energy (or head) will be the sum of the losses in each pipe plus 

local losses at connections. 

Pipes in parallel 

When two or more pipes in parallel connect two reservoirs, as shown in Figure 17, for example, 

then the fluid may flow down any of the available pipes at possible different rates. But the head 

difference over each pipe will always be the same. 

The total volume flow rate will be the sum of the flow in each pipe. 

 

 

The analysis can be carried out by simply treating each pipe individually and summing flow rates 

at the end. 

 

 

 

Energy Grade Line (EGL) and Hydraulic Grade Line (HGL) 

Graphical interpretations of the energy along a pipeline may be 

obtained through the EGL and HGL: 

𝑝 𝑣2 
𝐸𝐺𝐿 = 

𝜌ɡ 
+ 

2ɡ 
+ 𝑧 

 

𝐻𝐺𝐿 =  
𝑝

 
𝜌ɡ + 

𝑣2 

2ɡ 

 

EGL and HGL may be obtained via a pitot tube and a piezometer tube, 

Respectively. 
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hf=hL loss of head due to friction. 

 

 

Hints: 

1. EGL = HGL + V2/2g, EGL = HGL for V=0 

2. If p=0, then HGL=z 

3. A change in pipe diameter leads to a change in V (V2/2g) due to continuity and thus a 

change in distance between HGL and EGL 

4. A change in head loss (hL) leads to a change in slope of EGL and HGL. 
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UNIT IV 
 

BOUNDARY LAYER 
 

1.0 BOUNDARY LAYER: 

 When a real fluid flows over a solid body or a solid wall, the fluid particles adhere to the 

boundary and condition of no slip occurs. This means that the velocity of fluid close to 

the boundary will be as that of the boundary.

 If the boundary is stationary, velocity of fluid at the boundary will be zero. Farther away 

from the boundary, velocity will be higher and as a result of this variation of velocity, 

velocity gradient du/dy will exist.

 The velocity of fluid increases from zero velocity on the stationary boundary to free 

stream velocity (U) of fluid in the direction normal to the boundary. This variation of 

velocity takes place in a narrow region in the vicinity of solid boundary. This narrow 

region of the fluid is called boundary layer.

 

Fig.1: Velocity Profile 
 

BOUNDARY LAYER THEORY: 

 The theory dealing with boundary layer flows is called boundary layer theory. According 

to this theory, the flow of fluid of solid boundary is divided into two regions.

 A very thin layer of fluid called boundary layer in the immediate neighborhood of solid 

boundary, where the variation of velocity from zero to free stream velocity. In this 

region, velocity gradient du/dy exists and hence the fluid exerts a shear stress on the wall 

in the direction of motion. The value of shear stress , τ = µ du/dy.
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 The remaining fluid which is outside the boundary layer. The velocity outside the 

boundary layer is constant and equal to free stream velocity. As there is no variation of 

velocity in this region, velocity gradient du/dy becomes zero. As a result of this, shear 

stress is zero.
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Fig.2: Boundary layer on flat plate 

 

LAMINAR BOUNDARY LAYER: 

 A laminar boundary layer is one where the flow takes place in layers, i.e., each layer 

slides past the adjacent layers.

 Laminar boundary layers are found only when the Reynolds numbers are small.
 A thin layer over the surface of a body immersed in a fluid, in which the fluidvelocity rel 

ative to the surface increases rapidly with distance from the surface and

the flow is laminar. 

 

TURBULENT BOUNDARY LAYER: 

 If the length of the plate is more, the thickness of boundary layer will go on increasing in 

the downstream direction. Then the laminar boundary layer becomes unstable and motion 

of fluid within it, is disturbed and irregular which leads to a transition from laminar to 

turbulent layer.

 This short length over which the boundary layer flow changes from laminar to turbulent 

is called transition zone. Further downstream the transition zone, the boundary layer is 

turbulent and continues to grow in thickness. This layer of boundary is called turbulent 

boundary layer.

 

LAMINAR SUB LAYER: 

 This is the region in the turbulent boundary layer zone, adjacent to the solid surface of the 

plate. In this zone, the velocity variation is influenced only by viscous effects.

 The shear stress in the laminar sub layer would be constant and equal to the boundary 

shear stress τ0. Thus the shear stress in the sub layer is
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BOUNDARY LAYER THICKNESS (δ): 

 It is defined as the distance from the boundary of the solid body measured in the y – 

direction to the point, where the velocity of the fluid is approximately equal to 0.99 times 

the free stream velocity( U) of the fluid.

 

DISPLACEMENT THICKNESS(δ *): 

 It is defined as the distance measured perpendicular to the boundary of the solid body by 

which the boundary should be displaced to compensate for the reduction in flow rate on 

account of boundary layer formation.
 

Fig.3 : Boundary layer on flat plate 

 

Consider the flow of a fluid having free stream velocity equal to U over a thin smooth plate. At a 

distance x from the leading edge consider a section 1-1. The velocity of fluid at B is zero and at 

C, which lies on the boundary layer is U. thus velocity varies from zero at B to U at C, where BC 

is equal to the thickness of boundary layer. 

Distance BC = δ 
 

At the section 1-1, consider an elemental strip. 

Let y = distance of elemental strip from the plate. 

dy = thickness of the elemental strip 

u = velocity of fluid at the elemental strip 

b = width of plate. 

Then area of elemental strip, dA = b x dy 
 

Mass of fluid per second flowing through elemental strip = ρ X velocity X Area of elemental 

Strip. 
 

=  ρu x dA= ρu x b x dy (i) 
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If there had been no plate, then the fluid would have been flowing with a constant velocity equal 

to free stream velocity (U) at the section 1-1. Then mass of fluid per second flowing through 

elemental strip would have been = ρ x velocity x Area = ρ x U x b x dy (ii) 

As U is more than u, hence due to the presence of the plate and consequently due to the 

formation of the boundary layer , there will be a reduction in mass flowing perr second through 

the elemental strip. 

This reduction in mass/sec flowing through elemental strip 
 

= mass/sec given by equation (ii) - mass/sec given by equation (i) 
 

= ρUbdy – ρubdy = ρb (U–u) dy. 

Therefore total reduction in mass of fluids flowing through BC due to plate 
 

=  
𝛿 

𝛿𝛿(𝛿 − 𝛿) 𝛿𝛿 = 𝛿𝛿 
𝛿

(𝛿 − 𝛿) 𝛿𝛿 (iii) 
0 0 

Let the plate is displaced by a distance 𝛿∗  and velocity of flow for the distance 𝛿∗  is equal to the 

free stream velocity (U). loss of the mass of the fluid/sec flowing through the distance𝛿∗  

= ρ x velocity x Area 

= ρ x U x 𝛿∗  x b (iv) 

Equating (iii) and (iv) , we get 
 

𝛿 

𝛿𝛿 (𝛿 − 𝛿) 𝛿𝛿 = ρ x U x 𝛿∗  x b 
0 

 

Cancelling ρbon both sides, we have 
 

𝛿 

  (𝛿 − 𝛿) 𝛿𝛿 = U x 𝛿∗   

 
0 

 

𝛿∗  = 
1

 
𝛿

(𝛿 − 𝛿) 𝛿𝛿= 
𝛿 (𝛿−𝛿)𝛿𝛿

 
𝛿 0 0 𝛿 

 

𝛿∗  = 
𝛿

(𝛿 –   
𝛿     

) 𝛿𝛿. 
𝛿 𝛿 
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MOMENTUM THICKNESS ( θ ): 

 

 It is defined as the distance measured perpendicular to the boundary of the solid body by 

which the boundary should be displaced to compensate for the reduction in momentum 

of the flowing fluid on account of boundary layer formation.

 Consider the flow over a plate. Consider the section 1-1 at a distance x from leading 

edge. Take an elemental strip at a distance y from the plate having thickness dy. The 

mass of fluid flowing per second through this elemental strip is given by equation (i) and 

is equal to ρubdy.

Momentum of this fluid = Mass X velocity = (ρubdy) u 

Momentum of this fluid in the absence of boundary layer = Mass X velocity = (ρubdy) U 

Loss of momentum through elemental strip = (ρubdy) U - (ρubdy) u = ρbu(U - u)dy 

Total loss of momentum/sec through BC =    𝛿 𝛿𝛿𝛿(𝛿 − 𝛿) 𝛿𝛿 (v) 
0 

Let θ = distance by which plate is displaced when the fluid is flowing with a constant 

velocity U. 

Loss of momentum/sec of fluid flowing through distance θ with a velocity U 

= Mass of fluid through X velocity 

=(ρ X Area Xvelocity) Xvelocity 

=(ρ X θ X b X U) X U 

= ρθbU2. (vi) 

Equating equations (v) and (vi), we have 

ρθbU2 = 
𝛿 

𝛿𝛿𝛿(𝛿 − 𝛿) 𝛿𝛿 = = 𝛿𝛿 
𝛿 

𝛿(𝛿 − 𝛿) 𝛿𝛿 
0 0 

θU2 = 𝛿 𝛿(𝛿 − 𝛿) 𝛿𝛿 
0 

θ = 
1

 
𝛿 

𝛿(𝛿 − 𝛿) 𝛿𝛿 
𝛿 0 

θ = 
𝛿 𝛿    𝛿 

 𝛿 𝛿 
(𝛿 − 

𝛿
) 𝛿𝛿 

The displacement/momentum thickness has the following physical implications; 

 

 The displacement thickness represents the amount of distance that thickness of the body 

must be increased so that the fictitious uniform non viscous flow has the same mass flow 

rate properties as the actual flow.

 It indicates the outward displacement of the streamlines caused by the viscous effects on 

the plate.

 The flow conditions in the boundary layer can be simulated by adding the displacement 

thickness to the actual wall thickness and thus treating the flow over a thickened body as 

in the case of non viscous flow.

 Both are the integral thicknesses and the integrant vanishes in the free stream. 

So, it is relatively easier to evaluate as compared to .
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ENERGY THICKNESS (δ **): 

 

 It is defined as the distance measured perpendicular to the boundary of the solid body by 

which the boundary should be displaced to compensate for the reduction in kinetic energy 

of the flowing fluid on account of boundary layer formation.

 Consider the flow over the plate having section 1-1 at a distance x from leading edge. 

The mas of fluid flowing per second through the elemental strip of thickness ‘dy’ at a 

distance y from the plate is given by = ρubdy.

Kinetic energy of this fluid = 1 m X velocity2 
2 

= 1(ρubdy) Xu2 
2 

Kinetic energy of this fluid in the absence of boundary layer = 1(ρubdy) XU2 
2 

Loss of kinetic energy through elemental strip= 1(𝛿𝛿𝛿𝛿𝛿) U2- 1 (𝛿𝛿𝛿𝛿𝛿)𝛿2 
2 2 

= 1 𝛿𝛿𝛿 [U2- 𝛿2]dy 
2 

Total loss of K.E of fluid passing through BC = 
𝛿

( 
1 
𝛿𝛿𝛿[U2- 𝛿2]dy 

0 2 

=
1 
𝛿𝛿 

𝛿 
𝛿(U2 - 𝛿2]dy 

2 0 

Let 𝛿∗ ∗  = distance by which the plate is displaced to compensate for the reduction in K.E. 

Loss of kinetic energy through 𝛿∗ ∗  of fluid flowing with velocity U 

= 1 (mass) velocity2 = 1 𝛿 × 𝛿𝛿𝛿𝛿 × 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 velocity2 
2 2 

= 1 (𝛿 × 𝛿 × 𝛿∗ ∗  × 𝛿) U2 
2 

= 1 𝛿𝛿 𝛿∗ ∗ U3 
2 

Equating the two losses of K.E, we get 
 

1 𝛿𝛿 𝛿∗ ∗ U3 = 
1 
𝛿𝛿 

𝛿 
𝛿(U2- 𝛿2]dy 

2 2 0 
 

𝛿∗ ∗  = 
1 

𝛿3 
 

𝛿 
𝛿(U2- 𝛿2]dy 

 

𝛿∗ ∗   =   
𝛿 𝛿 

[1 - 𝛿
𝛿 

]dy. 
𝛿 𝛿 U2 

 

DRAG FORCE ON A FLAT PLATE DUE TO BOUNDARY LAYER: 
 

Consider the flow of a fluid having free stream velocityequal to U, over a thin plate. The drag 

force on the plate can be determined if the velocity profile near the plate is known. Consider a 

small length Δx of the plate at a distance of x from the leading edge. 

 
The shear stress τois given by τo = µ ( 𝛿𝛿 )y=0 ,where ( 𝛿𝛿 )y=0 is the velocity distribution near the 

plate at y = 0. 

𝛿
𝛿 

𝛿𝛿 
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0 

0 

0 

0 

  

  

0 

Then drag force or shear force on a small distance Δx is given by 

ΔFD = shear stress X area 

= τo x Δx x b. ( i) 

Where ΔFD = drag force on distance Δx. 

The drag force ΔFD must also be equal to the rate of change of momentum over the distance . 

consider the flow over the small distance Δx.Let ABCD is the control volume of the fluid over 

the distance . the edge DC represents the outer edge of the boundary layer. 

Let u – velocity at any point within the boundary layer. 

b – width of plate. 

Then mass rate of flow entering through the side AD = 
𝛿 

𝛿 x velocity x area of strip of 

thickness dy 

= 
𝛿 

𝛿 x 𝛿 x 𝛿 x 𝛿𝛿 

= 
𝛿 

𝛿 𝛿𝛿𝛿𝛿 
 

Mass rate of flow leaving the side BC = mass through AD + ∂ mass through AD x Δx. 

∂x 

= 
𝛿 

𝛿 𝛿𝛿𝛿𝛿 + ∂ 
𝛿 

𝛿 𝛿𝛿𝛿𝛿 x Δx. 
0 0 

∂x 
From continuity equation for a steady incompressible fluid flow , we have 

Mass rate of flow entering AD + Mass rate of flow entering DC = Mass rate of flow leaving BC 

Mass rate of flow entering DC = Mass rate of flow leaving BC - Mass rate of flow entering AD 

=   
𝛿 

𝛿 𝛿𝛿𝛿𝛿 +    ∂ 
𝛿 

𝛿 𝛿𝛿𝛿𝛿 x Δx - 
𝛿 

𝛿 𝛿𝛿𝛿𝛿 
0 0 0 

∂x 

= ∂ 
𝛿 

𝛿 𝛿𝛿𝛿𝛿 x Δx 

∂x 

The fluid is entering through side DC with a uniform velocity U.now let us calculate momentum 

flux through control volume. 

Momentum flux entering through AD = 
𝛿 
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿𝛿 𝛿𝛿 

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 𝛿𝛿 
0 

= 𝛿 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿𝛿 x 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 
0 

= 
𝛿 

𝛿 𝛿𝛿𝛿𝛿 x u = 
𝛿 

𝛿 u2 𝛿𝛿𝛿 
0 0 

Momentum flux leaving the side BC = 
𝛿 

𝛿 u2 𝛿𝛿𝛿 + ∂ 
𝛿 

𝛿 u2 𝛿𝛿𝛿 x Δx 
0 0 

∂x 
Momentum flux entering the side DC = mass rate through DC x velocity 

=            ∂ 
𝛿 

𝛿 𝛿𝛿𝛿𝛿 x Δx x U 

∂x 
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   0 

𝛿𝛿   

0 

0 

0 

0 

= ∂ 
𝛿 

𝛿 𝛿 𝛿𝛿𝛿𝛿 x Δx 

∂x 

As U is constant and so it can be takeninside the differential and integral. 

Rate of change of momentum of the control volume = Momentum flux through BC - Momentum 

flux through AD - Momentum flux through DC. 

 
=   

𝛿 
𝛿 u2 𝛿𝛿𝛿 + ∂ 

𝛿 
𝛿 u2 𝛿𝛿𝛿 x Δx -     

𝛿 
𝛿 u2 𝛿𝛿𝛿 -  ∂ 

𝛿 
𝛿 𝛿 𝛿𝛿𝛿𝛿 x Δx 

0    0 0   0 

∂x ∂x 
 

𝛿 
=  ∂ (𝛿2 − 𝛿 𝛿)𝛿𝛿 x Δx 

0 

∂x 

 

= 𝛿𝛿  ∂   [    
𝛿  

(𝛿2 − 𝛿 𝛿)𝛿𝛿] x Δx (ii) 

∂x 

Now the rate of change of momentum on the control volume ABCD must be equal to the total 

force on thecontrol volume in the same direction according to the momentum principle. But for a 

flat plate ∂ = 0, which means there is no external pressure force on the control volume. Also 

∂x 

the force on the side DC is negligible as the velocity is constant and velocity gradient is zero. 

The only external force acting on the control volume is the shear force acting on the side AB in 

the direction from B to A. The value of this force is given by, 

ΔFD = τo x Δx x b. 

Total external force in the direction of rate of change of momentum 

=  - τo x Δx x b. (iii) 

According to momentum principle, the two values given by (ii) and (iii) should be same. 
 

- τo x Δx x b = 𝛿𝛿 ∂ [ 
𝛿
 (𝛿2 − 𝛿 𝛿)𝛿𝛿] x Δx 

∂x 

Cancelling Δx x b on both sides, we have 
 

- τo = 𝛿 ∂ [ 
𝛿
 (𝛿2 − 𝛿 𝛿)𝛿𝛿] 

 

∂x 

τo  = 𝛿 ∂ [ 
𝛿
 

 

 
( 𝛿 𝛿 − 𝛿2)𝛿𝛿] 

 

∂x 

= ∂ 
𝛿 𝛿 𝛿 

   𝛿 𝛿 
(𝛿 − 

𝛿
) 𝛿𝛿 

∂x 

   τo = ∂Ө 

ρU2 ∂x 



SCIA1302 - Mechanics of Fluids  
 

11 

 

The above equation is known as Von karman momentum integral equation for boundary layer 

flows. 

This is applied to 

1. Laminar boundary layers 

2. Transition boundary layers and 

3. Turbulent boundary layers flows. 
 

PROBLEMS: 

 

 
For the velocity profile 𝛿 

 
 

 

 

 

 𝛿 𝛿 𝛿, find the thickness of boundary layer at the end 
 

  = 𝛿   
𝛿 𝛿 

  − ( ) 
𝛿 

of the plate and the drag force on one side of a plate 1 m long and 0.8 m wide when placed in 

water flowing with a velocity of 150 mm per second. Calculate the value of co efficient of drag 

also. Take µ for water = 0.01 poise. 
 

Solution: 

Reynold number at the end of the plate is given by, 

ReL = ρUL 

µ 

= 1000 X 0.15 X 1  

0.001 

= 150000. 

(i) As laminar boundary layer exists upto Reynold number = 2 X 105. Hence this is the 

case of laminar boundary layer. 

Thickness of boundary layer at x = 1 m is given by, 

δ= 5.48      x =  5.48 X 10 

 𝑅𝑒𝑥 150000 
= 0.01415 m or 14.15 mm. 

(ii) Drag force on one side of the plate is given by, 

FD = 0.73 b µU 𝜌𝑈𝐿/µ 

= 0.73 X 0.8 X 0.001 x 0.15 X 150000 
= 0.0338 N. 

(iii) Co - efficient of drag is given by, 

CD =   1.46  

 𝑅𝑒𝐿 
 

= 1.46 = 0.00376. 

 

 150000 
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D 

 

 

LOCAL CO - EFFICIENTOF DRAG (C *) : 

 

 It is defined as the ratioof the shear stress to the quantity½ρU2. 

 

CD  = τo 

½ρU2. 

AVERAGE CO - EFFICIENT OF DRAG ( CD) : 

 

 It is defined as the ratio of the total drag force to the quantity ½ρAU2. 

 It is also called coefficient of drag. 

CD  = FD 

½ρ AU2    

BOUNDARY CONDITIONS FOR THE VELOCITY PROFILES: 

 The following are the boundary conditions which must be satisfied by any velocity 

profile whether it is laminar or turbulent boundary layer zone. 

1) At y = 0, u = 0 and du/dy. 

2) At y = δ , u = U. 

3) At y = δ , du/dy = 0. 

 

 
BOUNDARY LAYER SEPARATION: 

 In a flowing fluid when a solid body is immersed, a thin layer of fluid called the 

boundary layer is formed adjacent to solid body.

The forces acting on the fluid in the boundary layer are 

1. Inertia force 

2. Viscous force 

3. Pressure force 

 When the pressure gradient in the direction of flow is negative ( dp/dx <0) that is when 

the pressure decreases in the direction of flow, the flow is accelerated.

 In this case, pressure and inertia force add together and jointly tend to reduce the effect of 

viscous forces in boundary layer.
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 This results in a decreases in the thickness of boundary layer in the direction of flow as a 

consequence of which there are low losses and high efficiencies in accelerating flows.

 When the pressure increases in the direction of flow( dp/dx > 0), pressure forces acts 

opposite to the direction of flow and further increases the retarding effect of viscous 

forces. Subsequently the thickness of boundary layer increases rapidly in the direction of 

flow.

 If these forces act over a long stretch, the boundary layer gets separated from the surface 

and moves into the main stream. This phenomenon is called separation. The point of the 

body at which the boundary layer is on the verge of the separation from the surface is 

called point of separation.
 

 

 Boundary layer separation is the detachment of a boundary layer from the surface into a 

broader wake.

 Boundary layer separation occurs when the portion of the boundary layer closest to the 

wall or leading edge reverses in flow direction.

 The separation point is defined as the point between the forward and backward flow, 

where the shear stress is zero.

 The overall boundary layer initially thickens suddenly at the separation point and is then 

forced off the surface by the reversed flow at its bottom.

 The flow separation depends upon factors such as
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Curvature of the surface 

Reynolds number of the flow 

Roughness of the surface 

 The velocity gradient for a given velocity profile exhibits the following characteristics for 

the flow to remain attached, get detached or be the verge of separation.

1) (δu/ δy) @ y = 0 is positive Attached flow 

2) (δu/ δy) @ y = 0 is zero Flow is on the verge of separation 

3) (δu/ δy) @ y = 0 is negative Separated flow 

 Separation occurs in the following cases,

1) Diffusers 

2) Open channel transitions 

3) Pumps 

4) Fans 

5) Aerofoils 

6) Turbine blades etc. 

METHODS OF PREVENTING THE SEPARATION OF BOUNDARY LAYER: 

 Following are some of the methods generally adopted to retard the flow separation.

1) Streamlining the body shape. 

2) Tripping the boundary layer from laminar to turbulent by provision of surface roughness. 

3) Sucking the retarded flow. 

4) Injecting high velocity fluid in the boundary layer. 

5) Providing slots near the leading edge. 

6) Guidance of flow in a confined passage. 

7) Providing a rotating cylinder near the leading edge. 

8) Energizing the flow by introducing optimum amount of swirl in the incoming flow. 
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Problem: 

Find the displacement thickness, the momentum thickness and energy thickness for the 

velocity distribution in the boundary layer given by 𝒖 = 
𝒖

, where u is the velocity at a 
𝒖 𝒖 

distance y from the plate and u=U at y=δ, where δ= boundary layer thickness. Also 
𝒖∗  

calculate the value of . 
𝒖 

 

Solution: 
 

Velocity distribution 𝛿 = 
𝛿

 
𝛿 𝛿 

 

(i) Displacement Thickness ( 𝛿∗ ) : 
 

 
𝛿 

𝛿∗  = 1 − 
0 

 

𝛿 
  𝛿𝛿 

𝛿 
 
 

𝛿 

𝛿∗  = 1 − 
0 

𝛿 
  𝛿𝛿 

𝛿 

 
= 𝛿 − 

𝛿2 𝛿 

  
2𝛿 

0 

 
 
 
 
 

(ii) Momentum Thickness (θ): 

 
= 𝛿 − 

 

𝛿∗  =    
𝛿

 
2 

𝛿2 
 

 

2𝛿 

 

 𝛿∗ ∗  =    
𝛿 

4 
 

 

 

 

 

 

 

 

 

 

 

 

S.NO Velocity Distribution δ 𝛿
0 

CD 

1 
𝛿 

= 2 
𝛿

 - 
𝛿 2

 
      

𝛿 𝛿 𝛿 

5.48𝛿 
 

 𝛿𝛿𝛿 

𝛿𝛿    
0.365 𝛿𝛿𝛿 

𝛿 

1.46 
 

 𝛿𝛿𝛿 

2 𝛿 
= 

3 𝛿
 -

1 𝛿 3 
           

𝛿 2   𝛿 2 𝛿 

4.64𝛿 
 

 𝛿𝛿𝛿 

𝛿𝛿    
0.323 𝛿𝛿𝛿 

𝛿 

1.292 
 

 𝛿𝛿𝛿 

3 
𝛿 

= 2 
𝛿

 -2 
𝛿 3 

+ 
𝛿 4

 
          

𝛿 𝛿 𝛿 𝛿 

5.84𝛿 
 

 𝛿𝛿𝛿 

𝛿𝛿    
0.34 𝛿𝛿𝛿 

𝛿 

1.36 
 

 𝛿𝛿𝛿 

4 𝛿 𝛿 𝛿 
= 𝛿𝛿𝛿     

𝛿 2 𝛿 

4.79𝛿 
   

 𝛿𝛿𝛿 

𝛿𝛿    
0.327 𝛿𝛿𝛿 

𝛿 

1.31 
 

 𝛿𝛿𝛿 

5 Blasius ‘s Solution 4.91𝛿 
 

 𝛿𝛿𝛿 

𝛿𝛿2 
0.332    

 𝛿𝛿𝛿 

1.328 
 

 𝛿𝛿𝛿 
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UNIT-V 

 

Dimensional Analysis and Model Studies 

 
1. Introduction 

 

Many practical flow problems of different nature can be solved by using equations and 

analytical procedures, as discussed in the previous modules. However, solutions of some real 

flow problems depend heavily on experimental data and the refinements in the analysis are 

made, based on the measurements. Sometimes, the experimental work in the laboratory is not 

only time -consuming, but also expensive. So, the dimensional analysis is an important tool that 

helps in correlating analytical results with experimental data for such unknown flow problems. 

Also, some dimensionless parameters and scaling laws can be framed in order to predict the 

prototype behavior from the measurements on the model. The important terms used in this 

module may be defined as below; 

 

Dimensional Analysis: The systematic procedure of identifying the variables in a physical 

phenomena and correlating them to form a set of dimensionless group is known as dimensional 

analysis. 

 

Dimensional Homogeneity: If an equation truly expresses a proper relationship among variables 

in a physical process, then it will be dimensionally homogeneous. The equations are correct for 

any system of units and consequently each group of terms in the equation must have the same 

dimensional representation. This is also known as the law of dimensional homogeneity 

 

Dimensional analysis is a mathematical technique used to predict physical parameters that 

influence the flow in fluid mechanics, heat transfer in thermodynamics, and so forth. The 

analysis involves the fundamental units of dimensions MLT: mass, length, and time. It is helpful 

in experimental work because it provides a guide to factors that significantly affect the studied 

phenomena. It is commonly used to determine the relationships between several variables, i.e. to 

find the force as a function of other variables when an exact functional relationship is unknown. 

Based on understanding of the problem, we assume a certain functional form. 
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Dimensional analysisis a means of simplifying a physical problem by appealing to dimensional 

homogeneity to reducethe number of relevant variables. 

It is particularly useful for: 

 presenting and interpreting experimental data; 

 attacking problems not amenable to a direct theoretical solution; 

 checking equations; 

 establishing the relative importance of particular physical phenomena; 

 Physical modeling. 

Dimensional variables: These are the quantities, which actually vary during a given case and 

can be plotted against each other. 

 

Dimensional constants: These are normally held constant during a given run. But, they may 

vary from case to case. 

 

Pure constants: They have no dimensions, but, while performing the mathematical 

manipulation, they can arise. 

 Primary Dimensions 

 Length (L) 

 Time (T) 

 Mass (M) 

 Temperature (q) 

 For any relationship A=B 

 Units (A)=Units (B) called Dimensional Homogeneity 

 

Dimensions of Derived Quantities 
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Table 1. Dimensions of common derived mechanical quantities are given in the following 

table. 

 

Rayleigh Method 

 

A basic method to dimensional analysis method and can be simplified to yield dimensionless 

groups controlling the phenomenon. Flow chart below shows the procedures. 
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1.Example:  

The velocity of propagation of a pressure wave through a liquid can be expected to depend on the 

elasticity of the liquid represented by the bulk modulus K, and its mass density ρ. Establish by D. 

A. the form of the possible relationship. 
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For Mass, 0 = a + b 

For Length, 1 = -3a – b 

For Time, -1 = -2b 

 

a = -b 

1= 3b-b= 2b 

b=1/2 

so a = -1/2 
 
 

 
Buckingham pi Theorem 

 

The dimensional analysis for the experimental data of unknown flow problems leads to some 

non- dimensional parameters. These dimensionless products are frequently referred as pi terms. 

Based on the concept of dimensional homogeneity, these dimensionless parameters may be 

grouped and expressed in functional forms. This idea was explored by the famous scientist Edgar 

Buckingham (1867-1940) and the theorem is named accordingly. 

 

Buckingham pi theorem, states that if an equation involving k variables is dimensionally 

homogeneous, then it can be reduced to a relationship among (k−r) independent dimensionless 

products, where r is the minimum number of reference dimensions required to describe the 

variable. For a physical system, involving k variables, the functional relation of variables can be 

written mathematically as, 

 

y = f (x1, x2,x3,……xk) 

In the Equation., it should be ensured that the dimensions of the variables on the left side of the 

equation are equal to the dimensions of any term on the right side of equation. Now, it is possible 

to rearrange the above equation into a set of dimensionless products (pi terms), so that 
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Determination of pi Terms 

 

Several methods can be used to form dimensionless products or pi terms that arise in 

dimensional analysis. But, there is a systematic procedure called method of repeating variables 

that allows in deciding the dimensionless and independent pi terms. For a given problem, 

following distinct steps are followed. 
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Illustration of Pi Theorem 

Let us consider the following example to illustrate the procedure of determining the various steps 

in the pi theorem. 

 

Example (Pressure drop in a pipe flow) 

 

Consider a steady flow of an incompressible Newtonian fluid through a long, smooth walled, 

horizontal circular pipe. It is required to measure the pressure drop per unit length of the pipe and 
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find the number of non-dimensional parameters involved in the problem. Also, it is desired to 

know the functional relation among these dimensionless parameters. 

 



SCIA1302 - Mechanics of Fluids  
 

10 
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The notations used in the Eq. are given in subsequent paragraph of this section. It may be noted 

that the ratio of any two forces will be dimensionless. Since, inertia forces are very important in 



SCIA1302 - Mechanics of Fluids  
 

12 

 

fluid mechanics problems, the ratio of the inertia force to each of the other forces listed above 

leads to fundamental dimensionless groups. 

Some of them are defined as given below; 

 

Reynolds number(Re ): It is defined as the ratio of inertia force to viscous force. 

Mathematically, 

 

 

where Vis the velocity of the flow, L is the characteristics length, and ρ,μ, ν are the density, 

dynamic viscosity and kinematic viscosity of the fluid respectively. If Re is very small, there is 

an indication that the viscous forces are dominant compared to inertia forces. Such types of flows 

are commonly referred to as “creeping/viscous flows”. Conversely, for large Re , viscous forces 

are small compared to inertial effects and such flow problems are characterized as inviscid 

analysis. This number is also used to study the transition between the laminar and turbulent flow 

regimes. 

Euler number (Eu) : In most of the aerodynamic model testing, the pressure data are usually 

expressed mathematically as, 

 

 

where ∆ p is the difference in local pressure and free stream pressure, 

 

V is the velocity of the flow, ρ is the density of the fluid. The denominator in Eq. is called 

“dynamic pressure”. Eu is the ratio of pressure force to inertia force and many a times the 

pressure coefficient (c p) is a also common name which is defined by same manner. In the study 

of cavitations phenomena, similar expressions are used where, ∆ p is the difference in liquid 

stream pressure and liquid- vapour pressure. This dimensional parameter is then called as 

“cavitation number”. 
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Froude number (Fr) : It is interpreted as the ratio of inertia force to gravity force. 

Mathematically, it is written as, 

 

where Vis the velocity of the flow, Lis the characteristics length descriptive of the flow field and 

g is the acceleration due to gravity. This number is very much significant for flows with free 

surface effects such as in case of open-channel flow. In such types of flows, the characteristics 

length is the depth of water. rF less than unity indicates sub-critical flow and values greater than 

unity indicate super -critical flow. It is also used to study the flow of water around ships with 

resulting wave motion. 

 

Weber number(We): It is defined as the ratio of the inertia force to surface tension force. 

Mathematically, 

 

 

where Vis the velocity of the flow, L is the characteristics length descriptive of the flow field, ρ 

is the density of the fluid and σ is the surface tension force. This number is taken as an index of 

droplet formation and flow of thin film liquids in which there is an interface between two fluids. 

 

Mach number(M): It is the key parameter that characterizes the compressibility effects in a 

fluid flow and is defined as the ratio of inertia force to compressibility force. Mathematically, 

 

 

where V is the velocity of the flow, c is the local sonic speed, ρ is the density of the fluid and v  

E is the bulk modulus. Sometimes, the square of the Mach number is called “Cauchy 

number” (C a ) i.e. 
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Both the numbers are predominantly used in problems in which fluid compressibility is 

important. 

 

Modeling and Similitude 

A “model” is a representation of a physical system which is used to predict the behavior of the 

system in some desired respect. The physical system for which the predictions are to be made is 

called “prototype”. Usually, a model is smaller than the prototype so that laboratory 

experiments/studies can be conducted. It is less expensive to construct and operate. However, in 

certain situations, models are larger than the prototype e.g. study of the motion of blood cells 

whose sizes are of the order of micrometers. “Similitude” is the indication of a known 

relationship between a model and prototype. In other words, the model tests must yield data that 

can be scaled to obtain the similar parameters for the prototype. 

 

Flow Similarity 

In order to achieve similarity between model and prototype behavior, all the corresponding pi 

terms must be equated to satisfy the following conditions. 

 

Geometric similarity: A model and prototype are geometric similar if and only if all body 

dimensions in all three coordinates have the same linear 

-scale ratio. In order to have geometric similarity between the model and prototype, the model 

and the prototype should be of the same shape, all the linear dimensions of the model can be 

related to corresponding dimensions of the prototype by a constant scale factor. Usually, one or 

more of these pi terms will involve ratios of important lengths, which are purely geometrical in 

nature. 

 

Kinematic similarity: The motions of two systems are kinematically similar if homogeneous 

particles lie at same points at same times. In a specific sense, the velocities at corresponding 

points are in the same direction (i.e. same streamline patterns) and are related in magnitude by a 

constant scale factor. 
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Dynamic similarity: When two flows have force distributions such that identical types of forces 

are parallel and are related in magnitude by a constant scale factor at all corresponding points, 

then the flows are dynamic similar. For a model and prototype, the dynamic similarity exists, 

when both of them have same length -scale ratio, time - scale ratio and force- scale (or mass - 

scale ratio). In order to have complete similarity between the model and prototype, all the 

similarity flow conditions must be maintained. This will automatically follow if all the important 

variables are included in the dimensional analysis and if all the similarity requirements based on 

the resulting pi terms are satisfied. For example, in compressible flows, the model and prototype 

should have same Reynolds number,Mach number and specific heat ratio etc. If the flow is 

incompressible (without free surface), then same Reynolds numbers for model and prototype can 

satisfy the complete similarity. 
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Model laws or similarity laws 

 

 For the dynamic similarity between the model and the prototype , the ratio of the 

corresponding forces acting at the corresponding points in the prototype and model 

should be same. The ratio of the forces are dimensionless numbers.

 For the dynamic similarity, the dimensionless numbers should be same for the model and 

proto type.

 But it is quite difficult to satisfy the condition that all the dimensionless numbers to be 

same between model and prototype

 Hence the models are designed based on the ratio of the forces, which are dominating in 

the phenomenon.

 The laws on which the models are designed for dynamic similarity are known as model 

laws or laws of similarity.

The following are the laws 
 

1. Reynolds model law 

 
Pipe flow 

 

Resistance experienced by sub-marines, airplanes, fully immersed bodies etc. 

 

2. Froudes model law 

 
Free surface flows such as flow over spillways, weirs, sluices, channels etc…… 

Flow of jet from an orifice or nozzle, 

Where waves are likely to be formed on surface. 

 

Where fluids of different densities flow over one another. 

 
3. Eulers model law 

 
Euler’s model law is applied for fluid flow problems where flow is taking place in a 

closed pipe in which case turbulence is fully developed so that viscous forces are 

negligible and gravity force and surface tension force is absent. 

 

4. Weber model law 

 
Weber model law is applied in following cases: 

Capillary rise in narrow passages 
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Capillary movement of water in soil 

Capillary waves in channels, 

Flow over weirs for small heads. 

 
5. Mach model law 

 

The Mach number is often used to classify the top speed of a fighter or passenger jet. 

 
 

REYNOLD’S NUMBER 

 

The Reynolds number perhaps is the most common dimensionless parameter used in fluid 

mechanics. It is defined as 

 
 Re = ρVL/μ

 
where ρ is the density, V is the velocity, L is the characteristic length, and μ is the viscosity. The 

L term is different for each flow type. For example, for a pipe, L is the diameter of the pipe. For 

open channel flow, the hydraulic radius, Rh (see diagram) is commonly used. 
 
 

 
Hydraulic Radius (Used with Open Channel Flow) 

 

Reynolds number is the ratio of inertia force and viscous force, and hence fluid flow problems 

where viscous forces alone are predominant. A small Reynolds number implies that the viscous 

effects are important, while the inertial effects are dominant when the Reynolds number is large. 

The models are designed for dynamic similarity on Reynolds law, which states that the Reynolds 

number for the model must be equal to the Reynolds number for the prototype. According to 

Reynolds model law, models are based on Reynolds number. Models based on Reynolds number 

includes: 

 

Let 

 

Vm= Velocity of fluid in model, 

ρm = Density of fluid in model, 
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Lm = Length or linear dimension of the model, 

μm = Viscosity of fluid in model, 

andVp , ρ p , L p , and μ p are the corresponding values of velocity, density, linear dimension and 

viscosity of fluid in prototype. Then according to Reynolds model law, 
 
 

 

 

 
And also ρr,Vr, Lrand = μ r are called the scale ratios for density, velocity, linear dimension and 

viscosity. The scale rations for time, acceleration, force and discharge for Reynolds model law 

are obtained as 

 

 

Problem 1: 

 

A pipe of diameter 1.5 m is required to transport an oil of sp.gr. 0.90 and viscosity 3 × 10-2 

poise at 3000litre/s. Tests were conducted on a 15cm diameter pipe using water at 20. Find the 

velocity and rate of flow in the model. Viscosity of water at 20 = 0.01poise. 
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Solution. 

Given: 

Diameter of prototype, Dp = 1.5 m 

Viscosity of fluid, μp= 3×10-2 poise 

Q for prototype, Qp= 3000lit/s = 3.0 m3/s 

S.p.g of oil, Sp = 0.9 ⇒ Density of oil, ρp= Sp× 1000 = 900kg/m3 

Dia. of the model, Dm = 15cm = 0.15m 

Viscosity of water at 20, μm= 0.01poise = 1× 10-2 poise 

Density of water, ρm= 1000kg/m3 

For pipe flow, the dynamic similarity will be obtained if the Reynolds number in the model and 

prototype are equal 
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Froude number 

 
The Froude number is an important dimensionless parameter in the study of open-channel flow, 

and it is given by 

 

Fr = V / (gL)0.5 

 

where V is the average velocity, L is the characteristic length associated with the depth 

(hydraulic depth for open channel flow), and g is the gravitational acceleration. For rectangular 

cross sections, the hydraulic depth is the water depth. 

 

 

 

 

 

 

 

 

(Hydraulic depth) 

Physically, the Froude number represents the ratio of inertial forces to gravitational forces. 

 

 

 

 

 

 

 

 

(Open channel flow) 

 

As discussed in the open-channel sections, open-channel flow can be classified according to the 

Froude number in the following manner: 

(a) Fr< 1: subcritical (tranquil) flow 

(b) Fr = 1: critical flow 

 

(c) Fr> 1: supercritical (rapid) flow 

https://ecourses.ou.edu/cgi-bin/eBook.cgi?doc&topic=fl&chap_sec=10.1&page=theory
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It is also common to write Fr as V/c, where c is the wave celerity, c (speed of a wave in the 

fluid). This form is similar to the Mach Number in air. For subcritical flow (V < c), the waves 

created by any surface disturbances (e.g., throwing a stone in the water) at the downstream can 

travel upstream. On the other hand, for supercritical flow (V > c), all surface disturbances will be 

swept downstream. The wave will remain stationary for critical flow (V = c). 

 

According to the Froude Model Law, the Froude numbers of the model and prototype should be 

equal to each other. Froude model law is the law in which the models are based on Froude 

number which means for dynamic similarity between the model and prototype, the Froude 

numbers for both of them should be equal. Froude model law is applicable when the gravity 

force is only predominant force which controls the flow in addition to the force of inertia. Froude 

model law is applied in the following fluid flow problems: 

 

Let 

 

Vm= velocity of fluid in model, 

 

Lm = Linear dimension or length of model, 

 

gm= Acceleration due to gravity at a place where model is tested. 

 

andVp , Lpandgpare the corresponding values of the velocity, length and acceleration due to 

gravity for the prototype. Then according to Froude model law, 
 
 

 
 

If the tests on the model are performed on the same place where prototype is to operate, then 

gm = gp and equation (1) becomes as 
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If the fluid used in model and prototype is same, then 
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Problem 2 

 

A ship model of scale is towed through sea water at a speed of 1m/s. A force of 2N is required to 

tow the model. Determine the speed of ship and the propulsive force on the ship, if prototype is 

subjected to wave resistance only. 
 
 

 

 

As prototype is subjected to wave resistance only for dynamic similarity, the Froude number 

should be same for model and prototype. Hence for velocity ratio, for Froude model law using 

equation(3), we have 
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Mach’s Number (M) 

 
Mach’s number is defined as the square root of the ratio of the inertia force of a flowing fluid to 

the elastic force. Mathematically, it is defined as 
 

 
Mach Number (Ma): For high speed flows in some fluids, density is highly dependent on the 

pressure, and the compressibility effects become important. The Mach number is used to indicate 

if a flow is incompressible or compressible, and it is given by 

 

Ma = V/c 

 

where c is the speed of sound (343 m/s at 20oC) and V is the fluid velocity. The Mach number 

represents the ratio of inertia forces to compressibility forces. Flow can be characterized using 

the Mach number as folllows: 

(a) Ma ≤ 0.3: incompressible 

(b) 0.3 < Ma < 1.0: compressible subsonic flow 

(c) Ma ≥ 1.0: compresible supersonic flow 

 

The Mach number is often used to classify the top speed of a fighter or passenger jet. For 

example, the B-2 bomber shown in the picture is capable of reaching high subsonic speed. The 

Concorde of British Airways is a supersonic passenger jet, which cruises at Mach 2, and it takes 

only approximately 4 hours from Los Angeles to Tokyo. 
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B-2 Spirit Bomber: High Subsonic Speed 
 

 

 
 

Concorde from British Airways: 

Supersonic Speed (Mach 2) 

 

Mach model law is the law in which models are designed on Mach number, which is the ratio of 

the square root of inertia force to elastic force of a fluid. Hence where the forces due to elastic 

compression prominent in addition to inertia force, the dynamic similarity between the model 

and its prototype is obtained by equating the Mach number of the model and its prototype. 

 

Euler’s Number (Eu) 
 

 

 
 

According to the Euler’s Model Law, the models are designed on Euler’s number which means 

for dynamic similarity between the model and prototype, the Euler number for model and 

prototype should be equal. Euler’s model law is applicable when the pressure forces are alone 

predominant in addition to the inertia force. According to this law: 
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Euler’s model law is applied for fluid flow problems where flow is taking place in a closed pipe 

in which case turbulence is fully developed so that viscous forces are negligible and gravity force 

and surface tension force is absent. 

 

Weber Number 

 

Weber Number (We): The dimensionless parameter associated with surface tension effects is 

the Weber number, and it is defined as 

 

We = ρV2L/σ 
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where σ is the surface tension. The Weber number denotes the ratio of the inertial forces to 

surface tension forces. The Weber number becomes an important parameter when dealing with 

applications involve two fluid interfaces such as the flow of thin films of liquid and bubble 

formation. Weber model law is the law in which models are based on Weber’s number, which is 

the ratio of the square root of inertia force to surface tension force. Hence where surface tension 

effects predominate in addition to inertia force, the dynamic similarity between the model and 

prototype is obtained by equating the Weber number of the model and its prototype. Hence 

according to this law: 

 

 

 
 
Weber model law is applied in following cases: 

 
1. Capillary rise in narrow passages 

2. Capillary movement of water in soil 

3. Capillary waves in channels, 
4. Flow over weirs for small heads. 


