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Unit I Momentum Transport 

 

Introduction to Momentum Transport 
 

Momentum transport deals with the transport of momentum which is 

responsible for flow in fluids. Momentum transport describes the science of 

fluid flow also called fluid dynamics. A few basic assumptions are involved 

in fluid flow and these are discussed below. No slip boundary condition 

This is the first basic assumption used in momentum transport. It deals with 

the fluid flowing over a solid surface, and states that whenever a fluid 

comes in contact with any solid boundary, the adjacent layer of the fluid in 

contact with the solid surface has the same velocity as the solid surface. 

Hence, we assumed that there is no slip between the solid surface and the 

fluid or the relative velocity is zero at the fluid–solid interface. For example, 

consider a fluid flowing inside a stationary tube of radius R as shown in Fig 

7.1. Since the wall of the tube at r=R is stationary, according to the no-slip 

condition implies that the fluid velocity at r=R is also zero. 
 

Fig .1 Fluid flow in a circular tube of radius R 

 

In the second example as shown in Fig .2, there are two plates which are 

separated by a Fig .2 Fig. 2 Two parallel plates at stationary condition                                                             

distance h, and some fluid is present between these plates. If the lower 

plate is forced to move with a velocity V in x direction and the upper plate 

is held stationary, no-slip boundary conditions may be written as follows. 

 

Thus, for Re <2100, we have laminar flow, i.e., no mixing in the radial 

direction leading to a thread like flow and for Re >2100, we have the 

turbulent flow, i.e., mixing in the radial direction between layers of fluid. 
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In laminar flow, the fluid flows as a stream line flow with no mixing between 

layers. In turbulent flow, the fluid is unstable and mixes rapidly due to 

fluctuations and disturbances in the flow. The disturbance might be present 

due to pumps, friction of the solid surface or any type of noise present in the 

system. This makes solving fluid flow problem much more difficult. To 

understand the difference in the velocity profile in two kinds of fluid flows, 

we consider a fluid flowing to a horizontal tube in z direction under steady 

state condition. Then, we can intuitively see the velocity profile may be shown 

below.  

Fluid: 

A fluid is a gas or liquid that, unlike a solid, flows to assume the shape of the 

container in which it is placed. This occurs because a fluid responds to a shear 

stress, or a force per unit area directed along the face of a cube of fluid, by 

flowing, rather than by an elastic displacement as in a solid. 

TYPES OF FLUIDS BASED ON VISCOSITY: 

The fluids may be classified into following five types: 

1. Ideal fluid 

2. Real fluid 

3. Newtonian fluid 

4. Non-Newtonian fluid 

5. Ideal plastic fluid 

Properties of fluid 

Density: Density of a fluid is defined as the ratio of the mass of a fluid to its volume. 

Specific Volume: Specific volume of a fluid is defined as the volume of a fluid occupied 

by a unit mass or volume per unit mass of a fluid. 

Viscosity of liquid: Viscosity is defined as the property of a fluid which offers resistance 

to the movement of one layer of fluid over another adjacent layer of fluid. 

 
 

Thus, every layer of fluid is moving at a different velocity. This leads to 

shear forces which are described in the next section. 

 

 Newton’s Law of Viscosity 

 

Newton’s law of viscosity may be used for solving problem for Newtonian 

fluids. For many fluids in chemical engineering the assumption of Newtonian 

fluid is reasonably acceptable. To understand Newtonian fluid, let us consider 
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a hypothetical experiment, in which there are two infinitely large plates 

situated parallel to each other, separated by a distance h. A fluid is present 

between these two plates and the contact area between the fluid and the plates 

is A. 

A constant force F1 is now applied on the lower plate while the upper 

plate is held stationary. After steady state has reached, the velocity 

achieved by the lower plate is measured as V1. The force is then changed, 

and the new velocity of the plate associated with this force is measured. 

The experiment is then repeated to take sufficiently large readings as 

shown in the following table. Table 1. Applied force vs velocity 

 
 

 

surface on which this force is acting. The quantity or the velocity 

gradient is also called the shear rate. µ is a property of the fluid and is 

measured the resistance offered by the fluid to flow. Viscosity may be 

constant for many Newtonian fluids and may change only with 

temperature. 

Thus, the Newton’s law of viscosity, in its most basic form is given as 

The shear stress is directly proportional to velocity gradient.  

The constant of proportionality is known as coefficient of viscosity. 

Variation of viscosity with respect to temperature 

Viscosity of fluids is due to  

1. cohesion between the fluid molecules and  

2. transfer of momentum between the molecules.  

Fluids are aggregations of molecules; widely spaced for a gas and closely spaced for liquids. Distance 

between the molecules is very large compared to the molecular diameter. The number of molecules 

involved is immense and the separation between them is normally negligible. Under these 

conditions, fluid can be treated as continuum and the properties at any point can be treated as bulk 

behavior of the fluids. For the continuum model to be valid, the smallest sample of matter of 

practical interest must contain a large number of molecules so that meaningful averages can be 

calculated. In the case of air at sea-level conditions, a volume of 10-9 mm3 contains 3×107 molecules. 

In engineering sense, this volume is quite small, so the continuum hypothesis is valid. 
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If the F/A is plotted against V/h, we may observe that they lie on a straight line passing through 

the origin. 
 
 

Fig 4 Shear stress vs. shear stain 

 

Thus, it may be said that F/A is proportional to v/h for a Newtonian fluid. 

 
 

It may be noted that it is the velocity gradient which leads to the development of shear forces. 

The above equation may be re-written as 
 

 

In the limiting case, as h → 0, we have 
 

where, µ is a constant of proportionality, and is called as the viscosity of the fluid. The quantity 

F/A represents the shear forces/stress. It may be represented as  , where the subscript x 

indicates the direction of force and subscript y indicates the direction of outward normal of the
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 Newton’s law of viscosity states that the shear stress is directly proportional to 

Velocity gradient. 

Here, both ‘+’ or ‘–’ sign are valid. The positive sign is used in many fluid 

mechanics books whereas the negative sign may be found in transport 

phenomena books. If the positive sign is used then may be called the 

shear force while if the negative sign is used may be referred to as the 

momentum flux which flows from a higher value to a lower value. 
 

 
 

The reason for having a negative sign for momentum flux in the transport 

phenomena is to have similarities with Fourier's law of heat conduction in 

heat transport and Ficks law of diffusion in mass transport. For example, in 

heat transport, heat flows from higher temperature to lower temperature 

indicating that heat flux is positive when the temperature gradient is 

negative. Thus,a minus sign is required in the Fourier's law of heat 

conduction. The interpretation of  as the momentum flux is that x 

directed momentum flows from higher value to lower value in y direction. 

 

Viscosity 

 

Viscosity is a measure of flow resistance to the fluid. The viscosity is of two types  

dynamic or absolute viscosity and kinematic viscosity. Dynamic viscosity is simply 

the viscosity offered as resistance to fluid flow. Kinematic viscosity is defined as the ratio  
of absolute viscosity to density.  
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The SI unit of viscosity is kg/m.s or Pa.s. In CGS unit is g/cm.s and is 

commonly known as poise (P). where 1 P = 0.1 kg/m.s. The unit poise is also 

used with the prefix centi-, which refers to one-hundredth of a poise, i.e. 1 

cP = 0.01 P. The viscosity of air at 25oC is 0.018 cP, water at 25oC is 1 cP and 

for many polymer melts it may range from 1000 to 100,000 cP, thus 

showing a long range of viscosity. 

 
 

 Laminar and turbulent flow 

 

Fluid flow can broadly be categorized into two kinds: laminar and turbulent. 

In laminar flow, the fluid layers do not inter-mix, and flow separately. This is 

the flow encountered when a tap is just opened and water is allowed to flow 

very slowly. As the flow increases, it becomes much more irregular and the 

different fluid layers start mixing with each other leading to turbulent flow. 

Osborne Reynolds tried to distinguish between the two kinds of flow using an 

ingenious experiment and known as the Reynolds’s experiment. The basic 

idea behind this experiment is described below. 

 

The experiment setup used for performing the Reynolds's experiment is 

shown in Fig. 7.5. The average velocity of fluid flow through the pipe 

diameter can be varied. Also, there is an arrangement to inject a colored dye 

at the center of the pipe. The profile of the dye is observed along the length 

of the pipe for different velocities for different fluids. If this experiment is 

performed, it may be seen that for certain cases the dye shows a regular 

thread type profile, which is seen at low fluid velocity and flow is called 

laminar flow. when the fluid velocity is increased the dye starts to mixed 

with the fluid and for larger velocities simply disappears. At this point fluid 

flow becomes turbulent. 

For the variables average velocity of fluid vz avg, pipe diameter D, fluid 

density ρ, and the fluid viscosity µ, Reynolds found a dimensionless group 

which could be used to characterize the type of fluid flow in the tube. This 

dimensionless quantity is known as the Reynolds number. From the 

experiment, It was observed that if Re >2100, the dye simply disappeared 

and the flow has changed to laminar to turbulent flow.
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For laminar flow, it is observed that fluid flows as smooth stream line and all other components 

of velocity are zero. Thus 

 

For turbulent flow, if we observe the fluid flows at a local point. It is observed that fluid flows in 

very random manner in all directions where these local velocities may be the function of any 

dimensions. 

 
 

Internal and external flows 

 

Depending on how the fluid and the solid boundaries contact each other, the flow may be 

classified as internal flow or external flow. In internal flows, the fluid moves between solid 

boundaries as is the case when fluid flows in a pipe or a duct. In external flows, however, the 

fluid is flowing over an external solid surface, the example may be sited is the flow of fluid over 

a sphere as shown in Fig. 8.1. 

 

On the other hand, if the velocity of fluid is very low the deviation due to disturbances may 

decay with time, and becomes negligible after that. Thus the flow remains in laminar region. 

Consider a practical example in which some cars 

are moving on the highway in the same direction but in the different lanes at different speeds. If 

suddenly, some obstacle comes on the road, then if the car's speed is sufficiently low, it can move 

on to other lane smoothly and come back to its original lane after the obstacle is crossed. This is 

the regular laminar case. On the other hand, if the car is moving at a high speed and suddenly 

encounters an obstacle, then the driver may lose control, and this car may move haphazardly and 

hit other cars and after that traffic may never return to normal traffic conditions. This is the 

turbulent case. 
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Fig 8.1 External flow around a sphere  

Boundary layers and fully developed regions 

Let us now consider the example of fluid flowing over a horizontal flat plate as shown in Fig. 

 
The velocity of the fluid is before it encounters the plate. As the fluid touches the 
plate, the velocity of the fluid layer just adjacent to the plate surface becomes zero due to the 
no slip boundary condition. This layer of fluid tries to drag the next fluid layer above it and 
reduces its velocity. As the fluid proceeds along the length of the plate (in x-direction), each 
layer starts to drag adjacent fluid layer but the effect of drag reduces as we go further away 
from the plate in y-direction. Finally, at some distance from the plate this drag effect disappears 
or becomes insignificant. This region where the velocity is changing or where the velocity 
gradients exists, is called the boundary layer region. The region beyond boundary layer where 
the velocity gradients are insignificant is called the potential flow region. 

 

Thus, we see that for laminar flow there is only one component of velocity present and it 

depends only on one coordinate whereas the solution of turbulent flow may be vary complex. 

For turbulent flow, one can ask the question that if the fluid is flowing in the z direction then why 

are the velocity components in r and θ direction non-zero? The mathematical answer for this 

question can be deciphered from the equation of motion. The equation of motion is a non-linear 

partial differential equation. This non-linear nature of the equation causes instability in the 

system which produces flow in other directions. The instability in the system may occur due to 

any disturbances or noise present in the environment.  
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Fig 8.2 External flow over a flat plate 

 

As depicted in Fig. 8.2, the boundary layer keeps growing along the x-direction, and may be 

referred to as the developing flow region. In internal flows (e.g. fluid flow through a pipe), the 

boundary layers finally merge after flow over a distance as shown in Fig. 8.3 below. 
 
 

Fig 8.3 Developing flow and fully developed flow region 

 

The region after the point at which the layers merge is called the fully developed flow region and 

before this it is called the developing flow region. In fact, fully developed flow is another 

important assumption which is taken for finding solution for varity of fluid flow problem. In the 

fully developed flow region (as shown in Figure 8.3), the velocity vz is a function of r direction 

only. However, the developing flow region, velocity vz is also changing in the z direction. 

 

Main axioms of transport phenomena 

 

The basic equations of transport phenomena are derived based on following five axioms. 

 

 Mass is conserved, which leads to the equation of continuity. 
 

 Momentum is conserved, which leads to the equation of motion. 
 

 Moment of momentum is conserved leads to an important result that the 2nd order 

stress tensor        is symmetric. 
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 Energy is conserved, which leads to equation of thermal energy. 
 

 Mass of component i in a multi-component system is conserved, which leads to 
the convective diffusion equation. 

 

The solution of equations, resulting from axiom 2, 4 and 5 leads to the solution of velocity, 

temperature and concentration profiles. Ones these profiles are known, all other important 

information needed can be determined. We first take the axiom -1. Other axioms will be taken up 

one by one letter on. 

There are three types of control volumes (CV) which may be chosen for deriving the equations 

based these axioms. 
 

 Rectangular shaped control volume fixed in space 

 
In this case, the control volume is rectangular volume element and is fixed in space. This method 

is the easiest to understand but requires more number of steps. 
 

 Irregular shaped control volume element fixed in space 

 
In this case, the control volume can be of any shape, but it is again fixed in space. This method is 

somewhat more difficult than the previous method as it requires little better understanding vector 

analysis and surface and volume integrals. 
 

 Material volume approach 

 
In this case, the control volume can be of any shape but moves with the velocity of the flowing 

fluid. This method is most difficult in terms of mathematics, but requires least number of steps 

for deriving the equations. 

 

All three approaches when applied to above axiom, lead to the same equations. In this web 

course, we follow the first approach. Other approaches may be found elsewhere. 

Axioms-1 

 

Mass is conserved 

Consider a fluid of density ρ flowing with velocity as shown in Fig. 8.4. Here, ρ and  

are functions of space (x,y,z) and time (t). For conversion of mass, the rate of mass entering and 

leaving from the control volume (net rate of inflow) has to be evaluated and this should be equal 

to the rate of accumulation of mass in the control volume (CV). Thus, conservation of mass may 

be written in words as given below 
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Fig 4 Fixed rectangular volume element through which fluid is flowing 

 

The equation is then divided by the volume of the CV and converted into a partial differential 

equation by taking the limit as all dimensions go to zero. This limit effectively means that CV 

collapses to a point, thereby making the equation valid at every point in the system. 

 

Let m and m+Δm be the mass of the control volume at time t and t+Δt respectively. Then, the 

rate of accumulation, 
 

 
In order to evaluate the rate of inflow of mass into the control volume, we need to inspect how 

mass enters the control volume. Since the fluid velocity has three components vx, vy and vz, we 

need to identify the components which cause the inflow or the outflow at each of the six faces of 

the rectangular CV. For example, it is the component vx which forces the fluid to flow in the x 

direction, and thus it makes the fluid enter or exit through the faces having area ΔyΔz at x = x 

and x = x+Δx respectively. The component vy forces the fluid in y direction, and thus it makes 

the fluid enter or exit through the faces having area ΔxΔz at y = y and y = y+Δy respectively. 

Similarly, the component vz forces the fluid to flow in z direction, and thus it makes fluid enter 

or exit through the faces having area ΔxΔy at z = z and z = z+Δ z respectively. 

 

The rate mass entering in x direction through the surface ΔyΔz is (ρvxΔyΔz|x), the rate of mass 

entering in y direction through the surface ΔxΔz is (ρvyΔxΔz|y) and the rate of mass entering 

from z direction through the surface ΔxΔy is (ρvzΔxΔy|z). In a similar manner, expressions for 

the rate of mass leaving from the control volume may be written. 

 

Thus, the conservation of mass leads to the following expressions 
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Dividing the Equation (8.1) by the volume ΔxΔyΔz, we obtain 

 

 
Note that each term in Equation (8.2) has the unit of mass per unit volume per unit time. Now, 

taking the limits Δx→0, Δy→0 and Δz→0, we get 
 
 

 

and using the definition of derivative, we finally obtain 
 

 

Equation (8.4) is applicable to each point of the fluid. Rearranging the terms, we get the equation 

of continuity, may be written as given below. 
 

 

 

 

We need not to derive the equation of continuity again and again in other coordinate system (that 

is, spherical or cylindrical). The idea is to rewrite Equation (8.5) in vector and tensor form. Once 

it is written in this form, the same equation may be applied to other coordinate system as well.  

Thus, the Equation (8.5) may be rewritten in vector and tensor form as shown below. 
 

 

Vector and tensor analysis of cylindrical and spherical coordinate systems is not done here, and 

can be looked up elsewhere. Thus, the final expressions in cylindrical and spherical coordinates 
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are given as below. 

 

cylindrical coordinates (r, θ, z) 
 

 
Spherical coordinates (r, θ, φ) 

 

 

Equation of continuity in terms of substantial derivative 

 

The second term in Equation (8.6) may be broken into two parts as shown below. Partial 

derivative present in the Equation (8.6) can be converted into substantial derivative using vector 

and tensor identities. 
 

 

In the above equation, the first two terms may be combined using the definition of substantial 

derivative to obtain the following equation. 

 
In some cases, the fluid may be incompressible, i.e. density ρ is a constant with time as well as 

space coordinates. For example, water may be assumed as an incompressible fluid under 

isothermal conditions. In fact, all liquids may be assumed as incompressible fluids under 

isothermal conditions. For this special case, the equation of continuity may be further simplified 

as shown below 
 

The above equation for an incompressible fluid does not mean that the system is under steady 

state conditions. The velocity of the fluid may still be a function of time. It only implies that if 

the velocity of the fluid changes in a particular direction (x, y or z) then it should also change in 

the other directions such that mass is conserved without changing its density. The equation of 

continuity provides additional information about the velocity profile and helps in solution of 
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Flow through circular tube 

Flow of fluids through a circular tube is a common problem, encountered frequently in different 

fields of engineering. Consider an incompressible, Newtonian fluid, flowing through a horizontal 

circular tube as shown in Fig. (10.1). Assume that the fluid flow is laminar and under steady state 

conditions. Determine the velocity profile and average velocity of the fluid using shell 

momentum balance approach. 

 

Assumptions 
 

 Fluid density and viscosity are constants. 
 

 System is in steady state. 
 

 Laminar flow (simple shear flow). 
 

 Newton's law of viscosity is applicable. 
 

 Fully developed flow. 
 

 

Fig Laminar flow in a horizontal pipe 

Intuitively guess the velocity profile 

Since the flow is steady and laminar, we may intuitively say that the velocities in r direction and 

θ direction are zero. Due to steady state conditions, the fluid velocity in z direction, vz, is not 

dependent on time t. Furthermore, due to the axisymmetric geometry fluid flow the velocity vz is 
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independent of θ. Thus, 
 

By applying the equation of continuity in cylindrical coordinates 
 
 

Hence, 

 
 

Since the fluid is flowing in z direction, we may conclude the following. 

 
 

 Since vr=0, r directional momentum balance is not important. 
 

 Since vθ=0 , θ directional momentum balance is again not important. 
 

 Since vz≠0, z directional momentum balance is most important. 

 

 Equation for circular pipe: 

The control volume should be decided very carefully. The geometry and size of the control 

volume should be taken according to the geometry of the system and based on the conditions 

given in the problem. In this case, the geometry of the pipe is cylindrical, hence we use the 

cylindrical control volume. The fluid is flowing in the z direction but velocity is changing only in 

r direction. Therefore, the control volume is taken in such a way that the variable thickness of the 

control volume is in the r direction. As the flow is not dependent on z and θ coordinates, we may 

choose any dimension in z or θ directions. This means that z may be any length. It may be L/4, 

L/2 or L. In a similar manner, any value of θ may be taken. It may be 2   or or /2 or /4. 

However, in the r direction, we need to take the differential thickness dr. These arguments leads 

us to a control volume as shown in Fig. (10.2). The length of the cylindrical shell is L which is 

equal to length of pipe and thickness is dr. 



   

17 

 

 

 

 

 
 

 

Fig 10.2 Control volume for flow through pipe 

Momentum balance 

As discussed earlier, the shear stress/forces may be written in two ways: 
 

 Taking shear stress as actual shear forces. 
 

 Taking shear stress as momentum flux. 

 
Here, we show that both methods lead to the same final results for velocity profile. 

Momentum balance using shear stress as shear force 

Momentum flux entering the control volume by convection 

= 

 
Momentum flux leaving the control volume by convection 

= 

 

 
Since the pipe is horizontal, the force due to gravity is zero. No other body forces are acting on 

the control volume. 

 

Surface forces 

 
 

 Pressure force: Fluid is flowing in z direction only. So pressure forces which are working 
on the surface normal to z direction are 

 

Pressure force at z=0 is 



   

18 

 

 

 

 
Pressure force at z=L is 
 

 
 Shear forces: The shear stress tensor in cylindrical coordinate is given below. 

 

Among all 9 components the first column of stresses are important for r directional flow, the 

second column of stresses are important for θ directional flow, and the third column are 

important for z directional flow. Since the fluid is flowing in the z direction, only the third 

column needs to be considered. Since the Velocity gradient is present only in the r-direction, only 

needs to be considered, the remaining two terms are not significant. Now, we need to decide 

the direction in which the shear forces are acting. Recall 
 

 

Where the unit vector is the outer normal of a surface and if it is in positive direction then 

is also positive while if it is in negative direction then  is shown as negative direction. 

Therefore, (as a force) is positive at r+dr and negative at r as shown in Fig. 10.2.(Note: the 

first index, z, in  from right to left indicates the direction of force and second index, r, 

indicates the surface on which it acts). 

 
Accumulation term: Due to steady state system, the rate of accumulation of momentum equals to 

zero . 

General momentum balance is given below 
 

or in this case 
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Since the velocity is constant along the axial direction as shown in Equation (10.2), the first two 

terms in Equation (10.8) are cancel out and we are left with following Equation. 
 

 

Dividing by  , we have 
 

As dr→0, the Equation (10.10) may be rewritten as given below. 

(Note that, is a function of r only which means we get the total derivative instead of the 

partial derivative.) 
 

 

Further integrating the Equation (10.11) once with respect to the variable r, we obtain 
 

or 

 

 

Here, c1 is a constant of integration. Equation (10.12) shows that if r=0, the value of will be 

infinite, which is physically not possible. Therefore, c1 must be zero. Hence, 
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Now, by applying Newton’s law of viscosity, and taking as force, we obtain 
 

 

Momentum balance using shear stress as momentum flux 

 

Now, we will employ the second method where shear force are considered as momentum flux. 

To indicate the direction of momentum flux, we draw the arrow in r direction and find where this 

arrow enters the control volume and also leaves the control volume as shown in Fig (10.3). Thus, 

the momentum flux enters the control volume through the surface 2 rL at r=r and leaves 

through the surface 2 rL at r=r+dr. 

 

 

 
Fig 10.3 Momentum flux applied on control volume 

Thus, 

Momentum flux at r = r is 

 
Momentum flux at r = r +Δr is 

 

 

(Note: when we consider  as the momentum flux, first index, z, indicates the direction of 

momentum flux, while the second index, r, indicates the direction of flow of momentum flux 

from higher to lower value. Subsequently, it will become clear that if we follow the coordinate 

system’s directions and assume momentum is flowing in this direction, the sign convention for 

momentum flux is automatically taken place.) 
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In this case, momentum balance in Equation (9.2) may be modified as shown below 
 

Here, the shear stress are taken into account as momentum flux. The pressure and gravity are the 

only applied forces. 

 

Substituting various terms in above equation, we obtain 
 

 

Dividing by , we obtain 
 

Again as dr→0 Equation (10.17) leads to 
 
 

 

or 
 

 

By integrating the Equation (10.18), we have 
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As we discussed earlier, c1 should be zero. Therefore, 
 

 

Now applying Newton’s law of viscosity where shear stress is taken as momentum flux, we 

obtain 
 

 

 

Equation (10.14) and (10.20) are identical and hence show that both methods finally lead to the 

same result. 

To obtain velocity profile we further integrating the Equation (10.21) 
 

Here c2 is the second constant of integration which may be determined by using appropriate 

boundary condition. 

 

Boundary condition 

 

By no-slip boundary condition 

vz=0 at r=R 
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Substituting the value of c2 in Equation (10.22), we finally get 
 

 

Note: c1 can also be calculated by using the boundary condition in terms of velocity vz: i.e., vz is 

finite at r=0 

 

 

or (since the velocity profile is symmetric about r=0). 

Thus, the velocity profile for flow through pipe is given by the following expression 

 
The maximum velocity of the fluid will be exhibited at the centre of the pipe and is given by 

 

Alternatively, the velocity profile may also be expressed in terms of the maximum velocity as 
 

 

The average velocity of the fluid in the pipe is the average of all local velocities. Thus, this may 

be calculated by estimating the volumetric flow rate through the pipe and then dividing it by the 

cross sectional area of the pipe. The total volumetric flow in the system is 
 

where, dQ is the volumetric flow rate from small cylindrical strip of thickness dr. 
 

 

 

 

By substituting the value of v z from equation (10.27), we have 



   

24 

 

 

 

 
 

By integrating the equation (10.30) from r=0 to r=R, we obtain 

 

or 

 
 

Thus, 

 

 
and average velocity is 

 

or 

 

 
The velocity profile for laminar flow in a circular tube is shown in Fig. 10.5. 
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Fig 10.5 Velocity profile in horizontal pipe 

 

We can also find the radial distance at which the local velocity of fluid flow equals the average 

velocity. For this, substitute   into Equation (10.26), we obtain 

 

Finally, the volumetric flow rate in terms of pressure drop is as follows 

 
 

Equation (10.36) is known as the Hagen – Poiseuille equation. Thus, if the pressure drop is 

given, we can calculate the volumetric flow rate in the pipe and vice-versa. This equation can 

also be used for the calculation of viscosity in capillary flow viscometer. However, it may be 

noted that Hagen – Poiseuille equation is valid only for fully developed laminar flow. Therefore, 

when this equation is used for various calculations there may be some errors due to developing 

and exiting flow at both ends of the pipe. Hence, this equation has to be modified for real 

situations. 

Friction factor 

 

The friction factor is a dimensionless number, which provides an idea about the magnitude of 

shear stress produced by a solid boundary as fluid flows. This is defined as the ratio of shear 

 

 
 

stress at the wall and the kinetic energy head of the fluid, . Here, ρ is the density 
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and is the average velocity of fluid. The friction factor is thereby defined as 
 

 

 

 

 

 
 

where, is the shear force per unit area on the wall of the tube. This may be calculated as 

shown below 
 

Here, first minus sign is used as the inside surface of the tube wall has outer normal in the 

negative r direction and second minus sign is used because  is treated here as momentum 

flux. If is treated as actual shear force then positive sign would have to be taken. For fully 

developed laminar flow, the velocity profile is parabolic and is given by 
 

Evaluating the velocity gradient at the wall (r=R), we have 
 

Thus, the shear stress considered as momentum flux is given by 
 

 

or 
 

 

The friction factor may now be calculated as shown below 
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or 
 

 

Equation (11.7) shows that the friction factor in laminar flow region depends only on the 

Reynolds number. Clearly, the friction factor is also a dimensionless number. 

 

Friction factor in turbulent flow 
 
 

Fig 11.1 Smooth and rough surface of pipe 

 
In turbulent flow, the friction factor also depends on the surface of the pipe. A rough pipe leads to 

higher turbulence than a smoother pipe, so that the friction factor for smoother pipes is less than 

that for rougher pipes. The ratio of surface roughness height (∈) to pipe diameter (D) is used to 

quantify the “roughness” of the pipe surface. In practice, the shear stress on the wall may be 

calculated by measuring the pressure drop across the pipe for a given flow rate. Thus, friction 

factor may be calculated as the function of Reynolds number and plotted on a log-log plot for a 

given surface roughness. The curves are different for different surface roughness as shown in 

figure. (11.2). The collection of these f-Re plots is called Moody Chart as shown in figure below, 

and can be used for estimating the friction factor for given flow parameters. 
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Ref: http://www.brighthub.com/engineering/civil/articles 

 

Solution of some more fluid flow problems by shell momentum balance approach 

 

In this section, we solve a few more fluid mechanics problems in simple geometries using the 

shell momentum balance approach. The detail procedure, which was also used in previous 

example, is outlined below. 

 

1) Make a diagram of the flow geometry with the appropriate coordinate system 
 

2) Specify all necessary assumptions 
 

3) Intuitively assume the velocity profile 
 

This is an important step for solving these problems. In laminar flow, the fluid flows in parallel 

layer without mixing. Thus, it is easy to guess the non-zero components of velocities by 

intuition. 

 

4) Apply of the equation of continuity to modify the velocity profile 
 

5) Determine the non-zero shear stress component(s) 
 

Since the shear stress components depend on the velocity profile, the non-zero shear stress 

components may now be determine. 

 

6) Determine control volume and make shell momentum balance for the control volume 
 

Draw control volume in system diagram according to system shape, size and problem statement. 

The selection of proper control volume is very important to solve problem correctly. The control 

volume should be select in such way that it can be easily integrated for whole system. The 

differential length of control volume should be taken in direction of changing velocity. 

Write momentum balance equation for the control volume. The shear stress may be considered as 

shear force or as momentum flux, both provide the same results as shown in previous example . 

Write down all surface and body force acting on the fluid carefully. Finally obtain a appropriate 

http://www.brighthub.com/engineering/civil/articles
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differential equation and integrate. 

 

7) Boundary conditions 
 

Use appropriate boundary conditions which help us to determine the constant of integration in 

above step. 

 

 Falling film on an inclined flat surface 

 

An inclined surface of length L and width W is situated at an angle Β to the vertical direction as 

shown in Fig. (11.3). A Newtonian fluid is freely falling on the surface as a film of thickness δ. 

Assuming the flow to be laminar, determine the velocity profile, flow rate and shear force on the 

surface by the fluid. 

 

Solution 
 

 
 

Fig 11.3 Laminar flow on an inclined surface 

Assumptions 
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, an
d 

 

 Constant density, viscosity 
 

 Steady state 
 

 Laminar flow (simple shear flow) 
 

 Fully developed flow 
 

 Newton's law of viscosity is applicable 

 

Assume velocity profile 

The fluid is flowing in the z direction, hence only the z component of velocity is non-zero. Thus, 

we may assume 
 

 

We may further assume that vz does not depends upon y coordinate. Since the flow is steady, vz 

does not depend on time. Thus, 
 

 

Using the equation of continuity in the cartesian coordinates for constant fluid density, we have 
 

 

which reduces to 
 

 

Equation (11.11) indicates that vz does not depend on the z coordinate. Thus, 
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There are nine components of the shear stress as shear force or momentum flux, namely 
 

 

Since vz is only the non-zero velocity, and also it is the function of x coordinate , is the only 

significant component of shear stress and we need to write momentum balance only in z 

direction. Because the pressure is same at both ends of the inclined plane, there is no pressure 

force on the fluid. Now, we can solve this problem by assuming shear stress as a shear force or 

shear stress as momentum flux. 

 

Assuming   as momentum flux 

Draw a control volume of length L, width W and differential thickness dx. 
 
 

Fig 11.3 Control volume for falling film problem 

Momentum balance in x direction 

Rate of momentum flux entering CV due to viscous transport at 
 

 

Rate of momentum flux leaving CV due to viscous transport at 
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Gravity force acting on fluid in z direction 
 

 
Rate of momentum flux entering in CV due to convective transport 

 

 

Rate of momentum flux leaving from CV due to convective transport 
 
 

 
Now, when above terms are substituted for z-momentum balance, we obtain 

 

 

Since the velocity vz does not depends on z coordinate, the first two terms cancel out and we 

obtain 
 

Dividing Equation (11.19) by volume of the control volume (LWΔx), we have 
 

 
As Δx→0 , The Equation (11.20)simplified to 

 

 
The Newton’s law of viscosity (here, shear stress is defined as momentum flux) is given by 
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By integrating the Equation (11.25), we have 
 

or 
 

 

The above equation requires two boundary conditions for determining c1 and c2. 

Boundary conditions 

1 At x=0 the liquid surface is in contact with air where the shear stresses at both gas liquid 

phases should be equal. Thus, 
 
 

 

Since both may be assumed Newtonian fluids, we have 
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where ρg is the density and µg is the viscosity of air. Thus 
 
 

 

Since, µg and ρg is much smaller than µ and ρ, and Equation (11.30) may be approximately 

written as 
 

 

Substituting above boundary condition in Equation (11.26), we obtain 
 

 

2. At x=δ no slip boundary condition may be applied, i.e., 
at 

 

 
Thus, from Equation (11.27), we get 

 

 

or 
 

 

Finally the velocity profile is obtained as 
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or 
 

 

 

 

 

 

Falling film "Assuming as shear force" 

 

Now, we again solve the same problem (falling film over an inclined plane) by treating shear 

stress as a shear force. For this purpose, we take the same control volume as before. 

For momentum balance in z direction, all terms are same as before except the terms for shear 

forces. Here, represents the force in z direction acting on the surfaces which have normal in 

x direction. Shear force is positive if the outward normal is in positive direction and negative if 

normal is in negative direction. Thus, 

 

shear force at x=x is 

 
 

Shear force at x=x+Δx is 

 
; 

 

The z momentum balance for this case is as follows 
 

 
Dividing Equation (12.3) by the volume of control volume WLΔx, we have 

 

 

As Δx→0 Equation (12.4) leads to 
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Now, substituting the Newton’s law of viscosity for shear stress as a force 
 

 
Therefore, 

 

 

Equations (11.24) and (12.7) are the same, which show that both approaches provide the same 

answer. 

 

Maximum velocity 

 

It is clear from Equation (11.37) that the maximum velocity is given by 
 

 

Average velocity and volumetric flow rate of falling film 

 

vz is the linear velocity in z direction. Hence, the volumetric flow rate can be determined by 

integrating it over the cross section of flow (Wδ).Thus , 

 
 

From Equation (11.37), we get 
 

 

By integrating Equation (12.10), we find 
 

 

To obtain the average velocity, we divide the volumetric flow rate by the cross sectional area. 
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or 
 

 

Equation (12.12) may also be written as 
 

 

Force acting on solid surface due to the fluid 
 

 

(Note: in Equation (12.14), first ‘+’ sign shows the direction of the normal of the inclined surface 

and second ‘+’ sign is taken since shear stress is defined as shear force). Thus, 
 

 

In this lecture, we have once again seen that the shear stress tensor may be assumed as a shear 

force or as a momentum flux. In either case, we finally obtain the same expression for the 

velocity profile. The only difference is that when we treat shear stress as a shear force, it is 

included in the summation of all forces term in the momentum balance equation, while when we 

treat shear stress as momentum flux, it is written as momentum entering and leaving by the 

viscous transport. From now onwards, we will treat shear stress as momentum flux as it is more 

consistent with what we see in heat transfer as Fourier’s law of heat conduction and in mass 

transfer as Fick’s law of diffusion. Thus, in transport phenomena (Momentum transport, Heat 

transport, and Mass transport) for the basic transport laws we have minus sign in front the 

relevant gradient implying fluxes flow from higher values to lower values. 

 

Falling film on the outside of a circular shell 

In an experiment, a fluid flows upward through a small circular shell and then flows downward 

out side the tube under laminar conditions as shown in Fig. 12.2. We need to set up a relevant 

momentum balance and determine the velocity profile, mass flow rate and the force acting on 

outer surface of the tube. 
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Fig 12.2 Falling film outside the circular tube 

Assumptions 

 Density and viscosity are constants. 
 

 Steady state. 
 

 Fully developed laminar flow. 
 

 Newton’s law of viscosity is applicable. 

 

Non-zero velocities 

Fluid is flowing in the z direction due to gravity. There is no driving force in the θ direction and a 

solid surface is present in the r direction. Therefore, we may intuitively assume that 
 

 
Now, using the equation of continuity in cylindrical coordinate system, we have 

 

 

or 
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From Equation (12.18), we obtain that vz is independent to z. Therefore, 
 

 

Choose a control volume in the film of differential thickness dr and length L (it is a cylindrical 

shell). 
 
 

Fig 12.3 Control volume for falling film outside the circular tube 

 

There are nine components of shear stress tensor. Since the fluid is flowing in z direction and it is 

a function of r only, we may argue as before  is the only important component of the shear 

stress tensor. The other components are insignificant for momentum balance in z direction. The 

momentum balance in z-direction is given below. 

 

Momentum balance for control volume 

Convective momentum entering the control volume at z=0 is 

 
Convective momentum leaving the control volume at z=L is 

 
Shear stress as momentum flux entering the control volume at r= r is 
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Shear stress as momentum flux entering the control volume at r= r + Δr is 

 
{Note: If you consider shear stress as momentum flux, then it always flows in the positive 

direction of axes} 

 

Fluid is flowing only due to gravity and may be written as 

Substituting above terms, we obtain 
 

 

Since velocity, vz, is not dependent on the z, the first two terms in above equation are equal and 

cancel out, leaving the following equation for momentum balance. 
 

 

Dividing Equation (12.26) by volume of control volume  , we obtain 
 

As dr→0, Equation (12.27) reduces to 
 

 

or 
 

 

After integration we obtain 
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and 

 
 

Here, and are the constants of integration. 

Boundary conditions 

1. r=aR we have the air water interface where we may assume that 

 
(The explanation is given earlier in Lecture 11.) 

Substituting the above boundary condition, we obtain 

 

 
2. At r = R, no slip boundary condition is applicable. Thus, 

 

Using this boundary condition, we obtain 

 
or, 

 
 

Therefore, the velocity profile is given by 
 

 

or 
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Maximum velocity 

 

At r = aR, the velocity is maximum. Thus, 
 

 

 

Equation of motion 

In this section, we derive the equation of motion, which may be used for solving any fluid 

mechanics problem. This equation is based on axiom 2, i.e., the momentum is conserved. We 

consider a control volume having volume Δx,Δy,Δz fixed in space. 

 

According to the momentum conservation equation, 

 

Rate of accumulation of control volume = Net rate of inflow of momentum by convection + net rate of   

                                                                    momentum by viscous transport + pressure forces + gravity forces 

 

                

 



   

43 

 

 

 

 

 

 

 
 

Fig 15.1 Cubical control volume fixed in space 

Momentum balance in x direction 

 

Rate of accumulation of x directed momentum in control volume 
 
 

 
Net rate of inflow of x directed momentum into CV by convection from x-phases 

 
 

 
Net rate of inflow of x-momentum into CV from y-phases 

 
 

 
Net rate of inflow of x-momentum into CV from z-phases 
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In all shear stress component, the second index shows the direction of momentum flux and first 

 

index shows the direction in which the momentum is flowing. For example, denotes the x 

directed momentum flowing in y direction. Therefore, the x directed momentum fluxes are 

 

and . Thus, 

 

Net rate of inflow of x directed momentum by viscous transport from x phase are 
 

 

Net rate of inflow of x directed momentum by viscous transport from y phase are 
 

 
Net rate of inflow of x directed momentum by viscous transport from z phase are 

 

 

Net pressure force in x direction = 

 
 

Gravity force in x direction = 

 
Adding all the above terms and dividing by the volume of control volume Δx,Δy,Δz and finally 

taking the limits, 

Δx→0, Δy→0,and Δz→0, we obtain 
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The above equation is the x component of equation of motion in cartesian coordinate system. 

Similarly, for y-direction 
 

 
and for z-direction 

 

 

The above three equation may be combined in vector tensor form as 
 

In above form, the equation of motion may be used in any coordinate system. 

Equation (15.14) may be written in substantial derivative form as shown below 

 

 
 

if    and  are the two vectors. We may use the following vector identity. 
 

Now, replace  by  and   by  then we have 
 



   

47 

 

 

also, 

 

 
After substituting Equations, the equation of motion reduces to 

 
 

 

Rearranging the terms on the left hand side, we have 
 

 
But from the equation of continuity 

 
 

 

or 
 

 
 

Equations (15.20) and (15.21) are the generalized form of equation of motion without any 

assumption and may be applied to any coordinate system. The detailed form of this equation in 

cartesian, cylindrical and spherical coordinate system is given in Appendix-3. 

Navier Stokes Equation for incompressible Newtonian fluid 

 

The equation of motion may be further simplified by substituting the Newton’s law of viscosity 

for the momentum flux term appearing in the equation of motion. 

For a one-dimensional system where 
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vy=0,vz=0 

 

we have seen that the Newton's law of viscosity may be written as, 
 

 

where, represents x directed momentum flowing in the y direction However, in general, for 

a three dimensional flow, all 9 components of shear stress may be important. Thus, 
 

 

 

 

Here,  , and  are the normal stresses and the remaining are shear stress. 

Axiom 3: Moment of momentum is conserved 

This axiom 3 leads to a very simple conclusion that the shear stress tensor is symmetric in nature. 

The derivative itself is lengthy and is not reproduced here. is symmetric implies that 
 

Newton’s law of viscosity may now be generalized as given below. Again, the basis for this 

representation is not shown here, but it may be found in any standard books in fluid mechanics. 
 

 

where, 
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Hence, we have the nine components of shear stress as 
 

 

The detail form of Newtons law of viscosity in all coordinate system is given in Appendix- 01. 

Now, consider the situation when an incompressible fluid is flowing only in x direction and 

depends on y coordinate only. In such a case, we have , and  . We can 

easily see that for this case, 
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and only significant components of stress are and . Also, the expression for is 

the same as given earlier as Newton’s law of viscosity. For rectangular coordinate system, 

substituting the value of  in the x component of equation of motion, we obtain 
 

Assuming that ρ and µ are constant, we obtain 
 

 
or 

 

 

or 
 

 

But from equation of continuity for an incompressible fluid, we have 
 

 

Therefore, 
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or 
 
 

 
or 

 
 

similarly 
 

 

Therefore, in vector and tensor form 
 

 
Thus, the equation of motion reduce to 

 

 

Equation (16.25) is known as the Navier Stokes equation and is used for solving problems 

involving Newtonian fluids of constant density and viscosity. For non-Newtonian and 

compressible fluids, the generalized form of equation of motion given earlier must be used.  

Solution of momentum transport problems using Navier Stokes equation 

In this section, transport problems involving Newtonian fluids are solved by making use of the 

equation of motion or Navier Stokes equation. We will firstly solve the falling film problem and 

flow through a circular tube for comparing the solutions obtained earlier by using the momentum 

balance
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 Falling film on an inclined surface 
 

 

 

 

 

 

Fig 17.1 Falling film on inclined surface 

 

This problem was solved earlier by the shell momentum balance technique. We will now try to 

solve this problem by using the Navier Stokes equations. 

We are again required to make the same necessary assumptions as done earlier using the shell 

momentum balance technique. We postulate the non- zero components of the velocity and from 

there, determine the non-zero components of the shear stress tensor. These steps are the same as 

earlier and lead us to conclude that  and  is the only important component of 

shear stress. We now use the Navier Stokes equation in cartesian coordinates as given in 

Appendix-03. 

x component is  
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y component is 

 

 
z component is 
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where 
 

 

Integrating Equation (17.3), we have 
 

 

and 
 

 

The boundary conditions are also the same as used earlier, 

at 

 

 

 
and 

at 

 
This leads to the solution for velocity profile, as 

 

 

which is same as obtain earlier using shell momentum balance approach. 

Fluid flow through a vertical tube 

A Newtonian fluid is flowing inside a vertical tube having circular cross section due to pressure 

difference and gravity. Solve the problem using the Navier Stokes equations. 



   

56 

 

 

 

 

Fig 17.2 Flow through a vertical circular tube 

 

A similar type of problem (for a horizontal pipe) was solved earlier using the shell momentum 

balance technique. Therefore, the initial steps are the same and include making appropriate 

assumptions and postulating the non- zero velocity components. As shown earlier, it leads to the 

conclusion that  

Now using the Navier Stokes equation for cylindrical co-ordinates, after eliminating all zero 

terms, we have r- component of Navier Stokes equation 

 
 

component 
 

z - component 
 

 

We can combine gravity and pressure forces as to rewrite Equation (17.11) as, 
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where, Pc is the effective pressure including the gravity, and is defined as, 

 
 
Note that since pressure changes in only z direction and vz is a function of r only the partial 

derivative may be converted to total derivative. Furthermore, in Equation (17.12), the first term 

is only a function of z and the second term is only a function of r, i.e., 
 

 

This leads to result that F1 and F2 both are constants as Equation (17.13) is true for all values of 

z and r. 
 

 

Therefore, 
 

 

By integrating the Equation (17.15) 
 

 

Boundary conditions are 

at 

 

and 

at 

This leads to the following solution 
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By substituting in Equation (17.12) 
 

 
or 

 

 

 

Boundary conditions are 

at r= 0,  is finite 

and 

 

at r = R, 

 

This leads to 
 

 

which is again similar to what we have seen for a horizontal tube except for pressure difference 

term. In fact, it can be shown that the velocity profile given in Equation (17.22) is valid for any 

configuration, horizontal, vertical, or inclined, with effective pressure is defined as 
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For simplifying the problem further, we may assume that for low shear rates 

 
 
Using the θ component of the Navier – Stokes equation for cylindrical co-ordinate systems 

 

 

By substituting Equation (19.25), we get 
 

or 
 

 

 
After integration, we finally obtain 

where and are the integral constant. 
 

Boundary conditions are 

at  , or 
 

thus, 
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and at or 

 

 

Now, the z-component of the torque exerted on the fluid by the upper rotating disc, may be 

calculated as 

 

 
or 

   

Finally, we obtain the value of torque. 

Thus, by plotting the angular velocity vs torque Tz, the viscosity may be 
determined. 
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Non-Newtonian fluids 

 

Non-Newtonian fluids are the fluids which do not obey Newton’s law of viscosity. For 

describing Non-Newtonian fluids, let’s recall the Newton's law of viscosity experiment. There 

are two long parallel plate situated at distance h to each other. Top plate is stationary and bottom 

plate is moving with velocity   as shown in Fig. (20.1). 
 
 

Fig 20.1 Non-Newtonian flow between two parallel plates 

If a force, F, is applied to move plate, then (  ) 

 
and under steady state conditions when h is small and when 

 

 

Now, we calculate  by repeating experiments for different applied forces and velocity 

achieved by the bottom plate and plotting a graph as shown in Fig. (20.2). Depending on the 

nature of fluid, different types of curves may be obtained. 
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Fig 20.2 Shear stress vs. shear strain diagram for Newtonian and non-Newtonian fluids 

 

Rheological behaviour of fluids 

 

If fluid shows the behaviour like curve (1) then it is a Newtonian fluid. Other fluids are non- 

Newtonian fluids. Curve (2) represents a Pseudo-plastic fluid, curve (3) represents a Dilatant 

fluid, and curve (4) represents a Bingham plastic fluid. There are several Theoretical and 

empirical models available to describe the rheological behaviour of non-Newtonian fluids. Here, 

we discuss some of them, which come under the group of generalized Newtonian models. Basic 

equation for a generalized non-Newtonian fluid is given below 
 

 

Here,  is the apparent viscosity, which is clearly a function of shear rate as may be seen. 

Therefore, 

 

 

 
If the apparent viscosity increases with increase in shear rate, , then the fluid is called 

 

 
Dilatant fluid and if it decreases with increase in shear rate, then fluid is called Pseudo- 

plastic fluid. Some fluids require a critical shear stress to initiate the flow. These fluids are called 

Bingham fluids. Some important rheological models for non-Newtonian fluids are given below. 
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Here, apparent viscosity is defined as, 

 

1 Power Law or Ostwald De Waele model 

 

Power law or Ostwald De Waele model is the most generalized model for non-Newtonian fluids. 

The expression of this model is given in Equation (20.3) 
 

 

This is a two-parameter model where m and n are the two parameters. 

If n = l then    = m 

where m is similar to the viscosity of the fluid and model shows the Newtonian behaviour . 

If n>1, then   increases with increasing shear rate and the model shows the Dilatant behaviour. 

If n<1, then  decreases with increasing shear rate and the model shows the Pseudo-plastic 

behaviour. 

 

Modulus sign 

 

In power law model, modulus sign can be removed according to the value of shear rate. 

 

1. If  is positive, then 
 

2. If  is negative, then 
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In Eyring model, if → 0 which means very low shear forces, we have 

 

 
 

Several fluids do not show single type of rheological behaviour. They show Newtonian 

behaviour for a range of shear stress and Non-Newtonian behaviour for some other ranges of 

shear stresses. Several models have been suggested for these types of fluids. Some popular 

models like Eyring model, Ellis model, Reiner Philipp off model and Bingham Fluid model are 

discussed here. 

 

2. Eyring model 
 

Eyring model is a two-parameter model. The equation of Eyring model is as follow 
 

 

 

where A, B are the two parameters. 
 

 
 

Therefore, as → 0, the model shows Newtonian behaviour 

 
 

Here, viscosity =  

If is very large, the model shows Non-Newtonian behaviour as shown Fig. 20.3 
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Fig 20.3 Shear stress vs. shear strain diagram for Eyring model 

 

Therefore, Eyring model may be used for a fluid which shows Newtonian behaviour at low shear 

rates and non- Newtonian behaviour at high shear rates. 

 

3. Ellis model 
 

Ellis model is a three-parameter model. The equation of this model is as follows 
 

 

 

 

 

 

Here, , and are the three parameters . 

Here, we consider some special cases, 

1. If  then Equation (20.11) reduce to 
 

or 
 

 

which is same as Newton’s law of viscosity with  as the viscosity of the fluid. 
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2. If , then 
 

 

which is similar to a Power law model 

 

3. If  >1 and is small then the second term is approximately zero and equation reduces to 
 

which is similar to Newton’s law of viscosity. 

 

4. If  <1 and is very large, then again, second term is negligible and we have 
 

 

 

Which again shows Newtonian behaviour. Therefore, Ellis model may be used for fluids which 

show Newtonian behaviour at very low and very high shear stresses, but non-Newtonian 

behaviour at intermediate value of shear stresses. 
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Fig 20.4 Shear stress vs. shear strain diagram for Ellis model 

This type of behaviour may be shown by some polymer melts 

4. Reiner Philipp off model 
 

This is also a three-parameter model. The equation of Reiner Philipp off model is as follows, 
 

 

where, , and  are the three parameters. 

In Reiner Philipp off model, if is very large, the equation reduces to, 

 

or 
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which is same as the Newton’s law of viscosity, 

 
 

If is very small then equation reduces to 
 

 

or 
 

 

which is also same as the Newton’s law of viscosity. Therefore, Reiner Philipp off model may be 

used for a fluid which shows Newtonian behaviour at very low and very high shear stresses but 

non-Newtonian behaviour for intermediate values of shear stress. Here,  and  represent 

the viscosity of fluid at very low and very high shear stress conditions respectively. 

 

5. Bingham Fluid model 
 

Bingham fluid is special type of fluid which require a critical shear stress to start the flow. 

The equation of Bingham fluid model are given below 
 

 

 

 

 

 
 

 

 

 

if 
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A typical shear stress vs. shear rate diagram for a Binghum model is shown below 
 
 

Fig 20.5 Shear stress vs. shear strain diagram for Bingham model 

Momentum transport problems involving Power law and Bingham fluids: 

 

In this section, we will solve fluid mechanics problem for Power law and Bingham plastic fluids. 

These problems have been earlier solved for Newtonian fluids. We have chosen the same 

problems here for better understanding. 

 

Falling film on inclined plane 
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Fig 21.1 Falling film problem for non-Newtonian fluid 

 

Initial steps, such as making appropriate assumptions, finding important velocity components, 

applying equation of continuity, and determining important shear stress components are similar 

as steps seen for Newtonian fluid in lecture 11 and 17. As before and is the only 

non-zero velocity component and is the only important shear stress component. 
 

(Note: Since the forms of shear stress for Newtonian and non-Newtonian fluids are same, the 

only difference is the viscosity μ for Newtonian fluids and apparent viscosity η for non- 

Newtonian fluids and furthermore as non-zero components of velocities are also same, the same 

components of shear stress    are significant for both Newtonian and non- Newtonian fluids.) 

To solve the problem, we start with the generalized equation of motion in terms of    .  Since 

the fluid is moving in z direction, discarding all terms which are zero, z-component of the 

equation of motion reduces to 
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where 
 

 

therefore, 
 

 
For Power law fluids 

 

 

 
Since vz is decreasing with increasing value of x , the negative sign should be used for removing 

the modulus sign, i.e. , 
 

 
or 

 

 

By substituting in above, 
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By applying the boundary condition, at 

which simplifies to 
 

 

as disused in lecture 11 
 
 

By substituting this boundary condition in Equation (21.8), we get . Therefore, 
 

 
or 

 

Here,  is another integral constant. 

Now, using the second boundary condition, at  , we finally obtain 
 

Tube flow problem for Power law fluid 
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Fig 21.1 Flow through pipe for non-Newtonian fluid 

 

As we discussed in lecture 10, the only non-zero component of velocity is vz, which depends on 

r only. The important component of shear stress is . 

By applying general equation of motion in cylindrical co-ordinate, we get 
 

Equation (21.11) may be further simplified as before 

 
 

or 
 

 

By applying the boundary condition, at r=0, velocity is finite, we obtain 
 

and for power law fluids 

 
(Note: Since vz is decreasing with increasing value of r, the negative sign should be used for 

removing the modulus sign.) 



   

74 

 

 

By substituting Equation (21.13) to Equation (21.12), we get 
 
 

 

Integrating above equation, we obtain 
 

 

 

 

Now, by applying the no-slip boundary condition at, , we obtain 

Thus, 
 

 

Equation (21.15) represents the velocity profile of freely falling film on an inclined surface for a 

Power law non-Newtonian fluid. If we substitute the n=1 and m=μ in this expression, we get 

Equation (10.25) which was derived earlier for a Newtonian fluid. 

Tube Flow Problem for a Bingham Fluid 
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Fig 22.1 Flow through pipe for Bingham fluid 

 

As mentioned in the previous lecture, the forms of shear stress    for Newtonian and non- 

Newtonian fluids are the same. Therefore, Equation (21.12) is applicable for a Bingham fluids 

also, i.e., 

 
 

Equations (20.19) and (20.20) may be written for this system 

 

1. For (  ), where is to be determine latter, 
 
 

, or 
 

 

 

2. For ( ) 
 

 
 
In Equation (22.2), is negative. Therefore, after removing the modulus sign, we obtain 
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Thus, 
 

 

or 
 

 

Condition for movement of fluid 

 

As we start to pressurize the fluid by imposing pressure difference , fluid does not move initially. 

As we continue to increase the pressure difference the fluid may start to move at some critical 

pressure difference ( ). This critical value may be determined by setting 

. Thus, 
 
 

Thus, the fluid will flow if 
 

 
Suppose the pressure difference across the tube exceeds this critical value of pressure ( 

) then the fluid will start to flow. Now, under this condition we may calculate the 

value of (r0) where the value of  . For r<r0, the velocity gradient is zero and the 
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fluid flows with a constant velocity. The detail calculation for two different regions r<r0 and r>r0 

are given below. 
 

 

At  . Thus, 
 

or 
 

 

For r<r0, we equate Equations (21.12) and (22.4), that is 

 
 

Finally, we obtain, 
 

 

No slip Boundary condition at r=R ,    may be used to calculate c1 as shown below 

Substituting this value in Equation (22.11), we get 
 

 

Finally, the velocity profile is given by 
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Equation (22.12) gives the velocity profile is region as shown in Fig. 22.2. Equation 
 

(22.9) shows that as we keep increasing the pressure difference , the value of r0 keep 

on decreasing and the velocity profile changes as shown in Fig. 22.2. 

The value of r0 also depends on and reduces with it. If we substitute   in Equation 

(22.12), we obtain the same expression for velocity profile as we had earlier obtain for 

Newtonian fluids. This result implies that if the value of pressure difference  is 

significantly high then the Bingham fluid may show behaviour similar to Newtonian fluids. 
 

Fig 22.2 Effect of differential pressure flow through pipe for Bingham fluid 

Now, we may determine the velocity profile in the plug flow region (r>r0) by substituting r= r0 

in Equation (22.12) 
 

 

 

Falling film problem for Bingham fluid 
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or 

 

 
 

 
 

 
 

For region (2) where and , we have 
 

 

Here is negative. Therefore, after removing the modulus sign and substituting the value 

of η in Generalized Newton’s law of viscosity. we obtain, 

 

 

 

 

 

 

or 
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or 
 

 

Finally, we obtain the velocity profile, as given below 
 

 

where c2 is an integral constant. By using no slip boundary condition at  , , we 

obtain 
 

 
Therefore, 

 

 

Equation shows the velocity profile in region . From Equation, we may also 

calculate the velocity of plug flow region by substituting the value  

 

 

 

 EQUATION OF MOTION 

 

Depending on how the fluid and the solid boundaries contact each other, the flow may be 

classified as internal flow or external flow. In internal flows, the fluid moves between solid 

boundaries as is the case when fluid flows in a pipe or a duct. In external flows, however, the 

fluid is flowing over an external solid surface, the example may be sited is the flow of fluid over 

a sphere as shown in Fig. 8.1. 
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Fig  External flow around a sphere 

Boundary layers and fully developed regions 

Let us now consider the example of fluid flowing over a horizontal flat plate as shown in Fig. 

 
The velocity of the fluid is before it encounters the plate. As the fluid touches the 
plate, the velocity of the fluid layer just adjacent to the plate surface becomes zero due to the 
no slip boundary condition. This layer of fluid tries to drag the next fluid layer above it and 
reduces its velocity. As the fluid proceeds along the length of the plate (in x-direction), each 
layer starts to drag adjacent fluid layer but the effect of drag reduces as we go further away 
from the plate in y-direction. Finally, at some distance from the plate this drag effect disappears 
or becomes insignificant. This region where the velocity is changing or where the velocity 
gradients exists, is called the boundary layer region. The region beyond boundary layer where 
the velocity gradients are insignificant is called the potential flow region. 

 
 

 

Fig External flow over a flat plate 
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As depicted in Fig. 8.2, the boundary layer keeps growing along the x-direction, and may be 

referred to as the developing flow region. In internal flows (e.g. fluid flow through a pipe), the 

boundary layers finally merge after flow over a distance as shown in Fig. 8.3 below. 
 
 

Fig Developing flow and fully developed flow region 

 

The region after the point at which the layers merge is called the fully developed flow region and 

before this it is called the developing flow region. In fact, fully developed flow is another 

important assumption which is taken for finding solution for varity of fluid flow problem. In the 

fully developed flow region (as shown in Figure 8.3), the velocity vz is a function of r direction 

only. However, the developing flow region, velocity vz is also changing in the z direction. 

 

Main axioms of transport phenomena 

 

The basic equations of transport phenomena are derived based on following five axioms. 
 

 Mass is conserved, which leads to the equation of continuity. 
 

 Momentum is conserved, which leads to the equation of motion. 
 

 Moment of momentum is conserved leads to an important result that the 2nd order 

stress tensor        is symmetric. 

 Energy is conserved, which leads to equation of thermal energy. 
 

 Mass of component i in a multi-component system is conserved, which leads to 
the convective diffusion equation. 

 

The solution of equations, resulting from axiom 2, 4 and 5 leads to the solution of velocity, 

temperature and concentration profiles. Ones these profiles are known, all other important 

information needed can be determined. We first take the axiom -1. Other axioms will be taken up 

one by one letter on. 

There are three types of control volumes (CV) which may be chosen for deriving the equations 

based these axioms. 
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 Rectangular shaped control volume fixed in space 

 
In this case, the control volume is rectangular volume element and is fixed in space. This method 

is the easiest to understand but requires more number of steps. 
 

 Irregular shaped control volume element fixed in space 
 
In this case, the control volume can be of any shape, but it is again fixed in space. This method is 

somewhat more difficult than the previous method as it requires little better understanding vector 

analysis and surface and volume integrals. 
 

 Material volume approach 

 
In this case, the control volume can be of any shape but moves with the velocity of the flowing 

fluid. This method is most difficult in terms of mathematics, but requires least number of steps 

for deriving the equations. 

 

All three approaches when applied to above axiom, lead to the same equations. In this web 

course, we follow the first approach. Other approaches may be found elsewhere. 

Axioms-1 

 

Mass is conserved 

Consider a fluid of density ρ flowing with velocity as shown in Fig. 8.4. Here, ρ and  

are functions of space (x,y,z) and time (t). For conversion of mass, the rate of mass entering and 

leaving from the control volume (net rate of inflow) has to be evaluated and this should be equal 

to the rate of accumulation of mass in the control volume (CV). Thus, conservation of mass may 

be written in words as given below 
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Fig 8.4 Fixed rectangular volume element through which fluid is flowing 

 

The equation is then divided by the volume of the CV and converted into a partial differential 

equation by taking the limit as all dimensions go to zero. This limit effectively means that CV 

collapses to a point, thereby making the equation valid at every point in the system. 

 

Let m and m+Δm be the mass of the control volume at time t and t+Δt respectively. Then, the 

rate of accumulation, 
 

 
In order to evaluate the rate of inflow of mass into the control volume, we need to inspect how 

mass enters the control volume. Since the fluid velocity has three components vx, vy and vz, we 

need to identify the components which cause the inflow or the outflow at each of the six faces of 

the rectangular CV. For example, it is the component vx which forces the fluid to flow in the x 

direction, and thus it makes the fluid enter or exit through the faces having area ΔyΔz at x = x 

and x = x+Δx respectively. The component vy forces the fluid in y direction, and thus it makes 

the fluid enter or exit through the faces having area ΔxΔz at y = y and y = y+Δy respectively. 

Similarly, the component vz forces the fluid to flow in z direction, and thus it makes fluid enter 

or exit through the faces having area ΔxΔy at z = z and z = z+Δ z respectively. 

 

The rate mass entering in x direction through the surface ΔyΔz is (ρvxΔyΔz|x), the rate of mass 

entering in y direction through the surface ΔxΔz is (ρvyΔxΔz|y) and the rate of mass entering 

from z direction through the surface ΔxΔy is (ρvzΔxΔy|z). In a similar manner, expressions for 

the rate of mass leaving from the control volume may be written. 

 

Thus, the conservation of mass leads to the following expressions 
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Dividing the Equation (8.1) by the volume ΔxΔyΔz, we obtain 

 

 
Note that each term in Equation (8.2) has the unit of mass per unit volume per unit time. Now, 

taking the limits Δx→0, Δy→0 and Δz→0, we get 
 
 

 

and using the definition of derivative, we finally obtain 
 

 

Equation (8.4) is applicable to each point of the fluid. Rearranging the terms, we get the equation 

of continuity, may be written as given below. 
 

 

 

 

We need not to derive the equation of continuity again and again in other coordinate system (that 

is, spherical or cylindrical). The idea is to rewrite Equation (8.5) in vector and tensor form. Once 

it is written in this form, the same equation may be applied to other coordinate system as well.  

Thus, the Equation (8.5) may be rewritten in vector and tensor form as shown below. 
 

 

Vector and tensor analysis of cylindrical and spherical coordinate systems is not done here, and 

can be looked up elsewhere. Thus, the final expressions in cylindrical and spherical coordinates 
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are given as below. 

 

cylindrical coordinates (r, θ, z) 
 

 
Spherical coordinates (r, θ, φ) 

 

 
 

 Equation of continuity in terms of substantial derivative 

 

The second term in Equation (8.6) may be broken into two parts as shown below. 

Partial derivative present in the Equation (8.6) can be converted into substantial 

derivative using vector and tensor identities. 
 

 

In the above equation, the first two terms may be combined using the definition of 

substantial derivative to obtain the following equation. 

 
In some cases, the fluid may be incompressible, i.e. density ρ is a constant with time 

as well as space coordinates. For example, water may be assumed as an 

incompressible fluid under isothermal conditions. In fact, all liquids may be assumed 

as incompressible fluids under isothermal conditions. For this special case, the 

equation of continuity may be further simplified as shown below 
 

The above equation for an incompressible fluid does not mean that the system is 

under steady state conditions.  
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1. Introduction to Heat Transfer 

Practically all the operations that are carried out by the chemical engineers involve the production or 

absorption of energy in the form of heat. The study of temperature distribution and heat transfer is of 

great importance to engineers because of its almost universal occurrence in many branches of science 

and engineering. The first step in the optimal design of heat exchangers such as boilers, heaters, 

refrigerators and radiators is a detailed analysis of heat transfer. This is essential to determine the 

feasibility and cost of the undertaking, as well as the size of equipment required to transfer a specified 

amount of heat in a given time. Difference between thermodynamics and heat transfer 

Thermodynamic tells us (i) How much heat is transferred (ii) How much work is done (iii) Final state 

of the system. 

 Heat transfer tells us: (i) How much heat is transferred (with what modes) (ii) At what rate heat is 

transferred (iii) Temperature distribution inside the body. 

The various modes of heat transfer are (i) conduction (ii) convection (iii) radiation. Conduction Heat 

transfer by the actual but invisible movement of molecules within the continuous substance due to 

temperature gradient is known as conduction. When a current or macroscopic particle of fluid crosses 

a specific surface, it carries with it a definite quantity of enthalpy. Such a flow of enthalpy is called 

convection. Convection is the mode of heat transfer in which the heat flow is associated with the 

movement of fluid.  Transfer of energy through space by electromagnetic waves is known as radiation. 

1.1 Applications of heat transfer  

Energy production and conversion -steam power plant, solar energy conversion etc. Refrigeration and 

air-conditioning Domestic applications -ovens, stoves, toaster Cooling of electronic equipment 

Manufacturing / materials processing -welding, casting, soldering, laser machining Automobiles / 

aircraft design 

1.1.1 Conduction: It is the transfer of internal energy by microscopic diffusion and collisions of 

particles or quasi-particles within a body due to a temperature gradient. The microscopically diffusing 

and colliding objects include molecules, electrons, atoms, and phonons. They transfer disorganized 

microscopic kinetic and potential energy, which are jointly known as internal energy. Conduction can 

only take place within an object or material, or between two objects that are in direct or indirect 

contact with each other. On a microscopic scale, heat conduction occurs as hot, rapidly moving or 
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vibrating atoms and molecules interact with neighboring atoms and molecules, transferring some of 

their energy (heat) to these neighboring particles. In other words, heat is transferred by conduction 

when adjacent atoms vibrate against one another, or as electrons move from one atom to another.  

Fourier’s law of heat Conduction 

The rate of heat transfer due to conduction is governed by Fourier’s Law, as shown  

𝑞 = 𝑘𝐴 (
𝛥𝑇

𝛥𝑥
)  

The terms in Eqn. 1 are: 

 q – rate of heat transfer (W) 

 k – thermal conductivity (W/m∙K) 

 A – surface area across which heat is transferred (m2) 

 ΔT – difference in temperature over which heat is transferred (K) 

 Δx – distance over which heat is transferred (m) 

Thermal conductivity indicates the ease of heat transfer through a material and is a material dependent 

property. The ΔT term is the driving force for heat transfer. 

1.1.2 Convection 

The rate of heat transfer due to convection is described by 

𝑞 = ℎ𝐴(𝛥𝑇)  

In Eqn. 2 the new term is: 

 h –heat transfer coefficient (W/m2∙K) 

In Eqn. 2, the heat transfer coefficient replaces the k/Δx term in Eqn. 1. The reason this happens is 

because convection has a mobile phase, and thickness is no longer an effective way of describing how 

the heat is transferred. The heat transfer coefficient can be thought of as the inverse of the resistance to 

heat transfer. Also, because temperature is a function of distance from a surface, the ΔT term is 

calculated between the surface and the bulk temperature of the mobile phase.  
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1.1.3 Radiation 

The concept for radiation is that all materials are constantly emitting infrared radiation that is absorbed 

by other materials. For this module, we will assume that radiation is emitted directly outward from the 

surface of objects. While conduction and convection are driven by a temperature gradient, radiation is 

only based on the temperature of the object emitting radiation. 

The rate of heat transfer due to radiation can be described by  

Radiation Emitted:        𝑞𝑜𝑢𝑡 = ε𝐴𝜎(𝑇𝑠
4)  

Radiation Absorbed:      𝑞𝑖𝑛 = 𝛼𝐴𝜎(𝑇𝑜
4)   

Heat transfer is the exchange of thermal energy between physical systems. The rate of heat transfer is 

dependent on the temperatures of the systems and the properties of the intervening medium through 

which the heat is transferred. The three fundamental modes of heat transfer 

are conduction, convection and radiation.  

Heat transfer, the flow of energy in the form of heat, is a process by which a system changes its 

internal energy, hence is of vital use in applications of the First Law of Thermodynamics. Conduction 

is also known as diffusion, not to be confused with diffusion related to the mixing of constituents of a 

fluid. The direction of heat transfer is from a region of high temperature to another region of lower 

temperature, and is governed by the Second Law of Thermodynamics. Heat transfer changes 

the internal energy of the systems from which and to which the energy is transferred. Heat transfer will 

occur in a direction that increases the entropy of the collection of systems. Thermal equilibrium is 

reached when all involved bodies and the surroundings reach the same temperature. Thermal 

expansion is the tendency of matter to change in volume in response to a change in temperature. 

Newton's law of cooling states that the rate of heat loss of a body is proportional to the difference in 

temperatures between the body and its surroundings. As such, it is equivalent to a statement that 

the heat transfer coefficient, which mediates between heat losses and temperature differences, is a 

constant. This condition is generally true in thermal conduction (where it is guaranteed by Fourier's 

law), but it is often only approximately true in conditions of convective heat transfer, where a number 

of physical processes make effective heat transfer coefficients somewhat dependent on temperature 

differences. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling is not 

true.  

https://en.wikipedia.org/wiki/Thermal_energy
https://en.wikipedia.org/wiki/Heat
https://en.wikipedia.org/wiki/Thermal_conduction
https://en.wikipedia.org/wiki/Convection
https://en.wikipedia.org/wiki/Radiation
https://en.wikipedia.org/wiki/Internal_energy
https://en.wikipedia.org/wiki/First_Law_of_Thermodynamics
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Second_Law_of_Thermodynamics
https://en.wikipedia.org/wiki/Internal_energy
https://en.wikipedia.org/wiki/Thermal_equilibrium
https://en.wikipedia.org/wiki/Thermal_expansion
https://en.wikipedia.org/wiki/Thermal_expansion
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Heat_transfer_coefficient
https://en.wikipedia.org/wiki/Thermal_conduction
https://en.wikipedia.org/wiki/Thermal_conduction#Fourier.27s_law
https://en.wikipedia.org/wiki/Thermal_conduction#Fourier.27s_law
https://en.wikipedia.org/wiki/Convective_heat_transfer
https://en.wikipedia.org/wiki/Thermal_radiation
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Thermal conductivity (often denoted k, λ, or κ) is the property of a material to conduct heat. It is 

evaluated primarily in terms of Fourier's Law for heat conduction. Heat transfer occurs at a lower rate 

across materials of low thermal conductivity than across materials of high thermal conductivity. 

Correspondingly, materials of high thermal conductivity are widely used in heat sink applications and 

materials of low thermal conductivity are used as thermal insulation. The thermal conductivity of a 

material may depend on temperature. The reciprocal of thermal conductivity is called thermal 

resistivity. Thermal conductivity is actually a tensor, which means it is possible to have different 

values in different directions. 

Table 1: Thermal conductivity at room temperature for some metals and non-metals 

Metals Ag Cu Al Fe Steel 

k [W/m-K] 420 390 200 70 50 

Non-metals H20 Air Engine oil H2 Brick Wood Cork 

k [W/m-K] 0.6 0.026 0.15 0.18 0.4 -0 .5 0.2 0.04 

 

1.2 Effect of temperature on thermal conductivity  

Thermal conductivity is the physical property of the substance. It depends upon temperature gradient. 

For pure metals, thermal conductivity decreases with an increase in temperature. For gases and 

insulators, thermal conductivity increases with an increase in temperature. For small ranges of 

temperature, k may be considered constant. For larger temperature ranges, thermal conductivity can be 

approximated by an equation of the form k = a + bT, where a and b are empirical constants. 

Steady-State Conduction It is the form of conduction which happens when the temperature difference 

driving the conduction is constant so that after an equilibrium time, the spatial distribution of 

temperatures (temperature field) in the conducting object does not change any further. In steady state 

conduction, the amount of heat entering a section is equal to amount of heat coming out. Unsteady 

state conduction It is the form of conduction which happens when the temperature difference driving 

the conduction is not constant so that after an equilibrium time, the spatial distribution of temperatures 

(temperature field) in the conducting object changes as a function of time. Heat flux is denoted as q/A 

and it is defined as the rate of heat flow passing  through a material per  cross-sectional area and its 

unit is w/m2. 

Silver is the material which possess highest thermal conductivity and being a solid it is composed of 

https://en.wikipedia.org/wiki/List_of_materials_properties
https://en.wikipedia.org/wiki/Heat_conduction
https://en.wikipedia.org/wiki/Heat_conduction#Fourier.27s_law
https://en.wikipedia.org/wiki/Heat_conduction
https://en.wikipedia.org/wiki/Heat_sink
https://en.wikipedia.org/wiki/Thermal_insulation
https://en.wikipedia.org/wiki/Tensor
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closed packing arrangement and due to this more molecular interactions within the molecules and 

hence  the thermal conductivity is high. 

Thermal conductivity is ability of a material to transport heat energy through it from high temperature 

region to low temperature region.  The heat energy, Q, transported across a plane of area A in presence 

of a temperature gradient ΔT/Δl is given where k is the thermal conductivity of the material. It has 

units as W/m.K.  It is a microstructure sensitive property. • Its value range o for metals 20-400  for 

ceramics 2-50  for polymers order of 0.3 Mechanisms - Thermal conductivity  

Heat is transported in two ways – electronic contribution, vibrational (phonon) contribution.  In 

metals, electronic contribution is very high. Thus metals have higher thermal conductivities. It is same 

as electrical conduction. Both conductivities are related through Wiedemann-Franz law where L – 

Lorentz constant (5.5x10-9 cal.ohm/sec.K2) • As different contributions to conduction vary with 

temperature, the above relation is valid to a limited extension for many metals. • With increase in 

temperature, both number of carrier electrons and contribution of lattice vibrations increase. Thus 

thermal conductivity of a metal is expected to increase.  However, because of greater lattice vibrations, 

electron mobility decreases.  The combined effect of these factors leads to very different behavior for 

different metals. Eg.: thermal conductivity of iron initially decreases then increases slightly; thermal 

conductivity decreases with increase in temperature for aluminium; while it increases for platinum. 

 

  

 

 

 

 

 



 

 

 

93 
 

1.3.1 HEAT TRANSFER THROUGH A PLANE WALL 

 Let us consider a plane wall of thickness L, thermal conductivity k, inside surface temperature Ti, 

outside surface temperature To. Let Q be the rate of heat transferred through the plane wall. 

By Fourier’s law of heat conduction 

Q = -kA dT/dx 

 

 

Fig. 1: Heat flow through a metal wall 

 

 

On integrating the above eqn,  Q = KA(Ti-To) / L  
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Q = KA ΔT / L  i.e Q = ΔT / (KA/L) where KA/L = Rth where Rth – thermal resistance measured in oC / 

Watts or K / Watts.  Hence Q = ΔT / Rth.  

1.3.2 HEAT TRANSFER THROUGH A HOLLOW CYLINDER 

Let us consider a hollow cylinder. The inside radius of the cylinder is r1, the outside radius is r2, and 

the length of the cylinder is L. The thermal conductivity of the material of which the cylinder is made 

is k. The temperature of the outside surface is T2, and that of the inside surface is T1. 

By Fourier’s law of heat conduction, 

 

Fig. 2 Heat flow through a cylinder 

Q = -kA dT/dr 

 

integrating the above eqn,  

 

 

1.3.2.1 LOGARITHMIC MEAN RADIUS AND ARITHMETIC MEAN RADIUS 

Logarithmic mean radius is the radius that when applied to the integrated equation for a flat wall, will 

give the correct rate of heat flow through a thick walled cylinder. It is given by the expression 
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where  is the logarithmic mean radius of the cylinder 

 

   ro is the outer radius of the pipe and  

   ri  is the inner radius of the pipe.  

Hence using the above expression Q = 2∏ k L (Ti-To) * (ro-ri) / ln (ro/ri) *(ro-ri)  

Using the Logarithmic mean radius expression in above, we get 

Q = 2∏ k L  ΔT * rlm / (ro-ri)  hence, Q = ΔT / (ro-ri) / Alm * k   

Where Alm = 2∏  L * rlm ,  Alm is the logarithmic mean area which is used for thin cylinders.  

  1.3.3 COMPOUND RESISTANCES IN SERIES 

(I) Heat Transfer Through A Composite Plane Wall 

 

Let us consider a flat wall constructed of a series of 3 layers as shown. Let the thickness of the layers 

be L1, L2, L3 and the average thermal conductivities of the materials of which the layers are made be 

k1, k2, k3 respectively. Let us consider a hot fluid at a temperature Ta and heat transfer coefficient ha 

inside the wall and cold fluid at a temperature Tb and heat transfer coefficient hb outside the wall. Let 

T1, T2, T3 and T4 be the interface temperatures. It is desired to derive an equation for calculating the 

rate of heat flow through the series of resistances.                                 
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Fig. 3 Heat flow through a composite wall 

Rate of heat flow from the hot fluid to the inner surface of the wall 

By Newton’s law of cooling 

Q = ha A (Ta – Tb)  

By rearranging the above eqn, we get 

 

Rate of heat flow through the I layer, by Fourier’s law of heat conduction,  

Q = KA(T1-T2) / L    On rearranging this,  

Q = (T1-T2) / (L1/K1.A) 

Rate of heat flow through the II layer, 

Q = (T2-T3) / (L2/K2.A)  

Rate of heat flow through the III layer, 

Q = (T3-T4) / (L3/K3.A)  
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Rate of heat flow from  outer surface of the wall to the cold fluid By Newton’s law of cooling 

Q = hb A (T4 – Tb) and Q = (T4 – Tb) / 1/ hb A 

Overall rate of heat flow =overall thermal resistance / overall temperature drop  

 

In  steady state heat conduction through a composite wall, this can be written as  

 Q = (T1 – T4) / (L1/K1.A +  L2/K2.A +  L3/K3.A ) 

i.e Q =  ΔT / Rth1 + Rth2 + Rth3 

Hence, Q =   ΔT /  ∑ Rth 

 

Table 2 Various flows and their driving forces 
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It was observed in the previous discussion that for the given plane wall the area for heat transfer 

was constant along the heat flow direction. The plane solid wall was one of the geometries but if 

we take some other geometry (tapered plane, cylindrical body, spherical body etc.) in which the 

area changes in the direction of heat flow. Now we will consider geometrical configuration which 

will be mathematically simple and also of great engineering importance like hollow cylinder and 

hollow sphere. In these cases the heat transfer area varies in the radial direction of heat conduction. 

We will take up both the cases one by one in the following sections. 

1.4 ) Heat transfer through co-axial cylinder Provided with one layer of insulation  

 

 

Fig. 4 Heat flow through a composite cylinder 

Let us consider coaxial cylinders constructed of a series of 3 layers as shown in fig.  Let Ro R1 and 

R2 be the radii of the cylinders and the average thermal conductivities of the materials of which the 

layers are made be k1 and k2 respectively. Let us consider a hot fluid at a temperature Tb and heat 

transfer coefficient hb inside the cylinder and cold fluid at a temperature Ta and heat transfer 

coefficient ha outside the cylinder. Let To, T1 and T2 be the interface temperatures. It is desired to 

derive an equation for calculating the rate of heat flow through the composite cylinder provided 

with series of resistances. 
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Rate of heat flow from the hot fluid to the inner surface of the wall 

By Newton’s law of cooling, 

Q = hb A (Tb – T0 ) 

Q = hb 2 ∏RL (Tb – To) 

By rearranging the above,  

Q = (Tb – To) / 1/ 2п Ro L 

Rate of the heat flow through the cylinder By Fourier’s law of heat conduction 

 

using the above conditions from the fig,  

 

Q = 2∏ k1 L (To – T1) / ln (R1/Ro) 

By rearranging the above,  

Q = (To – T1) / ln (R1/Ro) / 2∏ k1 L 

Rate of the heat flow through the II layer By Fourier’s law of heat conduction  

 

Q = (T1 – T2) / ln (R2/R1) / 2∏ k2 L  

Rate of heat flow from the outer surface of the wall to the cold fluid 

By Newton’s law of cooling 

Q = ha A (T2 – Ta)  

Q = ha 2пR2L (T2– Ta) on rearranging, Q = (T2– Ta) / 1 / ha 2∏ R2L 

 

Overall rate of heat flow =overall thermal resistance / overall temperature drop  

Hence overall rate of heat flow is given by  



  

 

 

 

 

  

Q =  (Tb-Ta) / (1/ hb 2  Ro) + (ln (R1/Ro) / 2∏ k1 L) + (ln (R2/R1) / 2∏ k2 L) +(1/ ha 2∏ R2L) 

For steady state conduction , heat transfer coefficients can be neglected and the heat flow is 

given by  

 Q = (Tb-Ta) / (ln (R1/Ro) / 2∏ k1 L) + (ln (R2/R1) / 2∏ k2 L)  

Hence Q = ΔT / Rth1 + Rth2 

Where Rth1 = (ln (R1/Ro) / 2∏ k1 L) and Rth2 = (ln (R2/R1) / 2∏ k2 L) 

 Q = ΔT / ∑ Rth 

1.5 Insulation 

The addition of insulation material on a surface reduces the amount of heat flow to the 

ambient. There are certain instances in which the addition of insulation to the outside surface 

of cylindrical of spherical walls does not reduce the heat loss. Under certain circumstances it 

actually increases the heat loss up to a certain thickness of insulation. It is well known fact 

that the rate of heat transfer will approach zero if an infinite amount of insulation are added. 

This means that there must be a value of radius for which rate of heat transfer is maximum. 

This value is known as the critical radius of insulation, rc. 

Variation of thermal conductivity with respect to solids, liquids and gases 

In solids, solids, heat conduction conduction is due to two effects effects: the lattice lattice 

vibrational vibrational waves induced by the vibrational motions of the molecules positioned 

at relatively fixed positions in a periodic manner called a lattice, and the energy transported 

via the free flow of electrons in the solid. • The thermal conductivity of a solid is obtained by 

adding the lattice and electronic components. The relatively high thermal conductivities of 

pure metals are primarily due to the electronic component. The lattice component of th l 

erma cond ii uct v ty strongly d d epen s on the way the molecules are arranged. For 

example, diamond, which is a highly ordered crystalline solid has the highest known thermal 

conductivity at room. Conduction crystalline solid, has the highest known thermal 

conductivity at room temperature. 

 



  

 

 

 

 

 

 

The thermal thermal conductivities conductivities of materials materials vary with 

temperature temperature. The variation of thermal conductivity over certain temperature 

ranges is negligible for some materials, but significant for others. The thermal conductivities 

of certain solids exhibit dramatic increases at temperatures near absolute zero, when these 

solids become superconductors. 

5.1 CRITICAL RADIUS OF INSULATION IN PIPES 

Let us consider an insulating layer in the form of a hollow cylinder of length L. Let ri and ro 

be the inner and outer radii of insulation. The thermal conductivity of the material of which 

the layer is made be k. Let the inside surface of insulation be at a temperature Ti, and the 

outside surface at a temperature To be dissipating heat by convection to the surroundings at a 

temperature Tb with a heat transfer coefficient h. Then the rate of heat transfer Q through 

this insulation layer is 

 

Fig. 5 Heat flow through a cylindrical pipe for critical radius 

 

 



  

 

 

 

 

 

1.6 VARIABLE THERMAL CONDUCTIVITY 

Let us a hollow cylinder. The inside radius of the cylinder is ri, the outside radius is ro, and 

the length of the cylinder is L. The thermal conductivity of the material of which the cylinder 

is varies with temperature as k= ko(1 + αT). The temperature of the outside surface is To and 

that of the inside surface is Ti. This can be used with many equations such as  

k = ko (α + βT)  

k = ko (α + βT + γT2 ) 

k = ko (a +bT)  

k= ko (a + bT + cT2 ) 



  

 

 

 

 

By Fourier’s law of heat conduction 

 

 

1.7 Introduction to Unsteady state heat transfer 

A solid body is said to be in a steady state if its temperature does not vary with time. If 

however there is an abrupt change in its surface temperature or environment it takes some 

time before the body to attain an equilibrium temperature or steady state. During this interim 

period the temperature varies with time and the body is said to be in an unsteady or transient 

state. The analysis of unsteady state heat transfer is of great interest to engineers because of 

its widespread occurrence such as in boiler tubes, rocket nozzles, automobile engines, 

cooling of IC engines, cooling and freezing of food, heat treatment of metals by quenching, 

etc. For practical purposes it is necessary to know the time taken to attain a certain 

temperature when the environment suddenly changes. The solution of an unsteady sate 

problem will be more complex than that of steady state one because of the presence of 

another variable time, t. 



  

 

 

 

 

Transient heat conduction problems can be divided into periodic heat flow and non periodic 

heat flow problems. Periodic heat flow problems are those in which the temperature varies 

on a regular basis, eg., the variation of temperature of the surface of the earth during a twenty 

four hour period.. In the non periodic type, the temperature at any point within the system 

varies non linearly with time. 

Introduction to this point, we have considered conductive heat transfer problems in which the 

temperatures are independent of time. In many applications, however, the temperatures are 

varying with time, and we require the understanding of the complete time history of the 

temperature variation. For example, in metallurgy, the heat treating process can be controlled 

to directly affect the characteristics of the processed materials. Annealing (slow cool) can 

soften metals and improve ductility. On the other hand, quenching (rapid cool) can harden 

the strain boundary and increase strength. In order to characterize this transient behavior, the 

full unsteady equation is needed.  

 

Where   is the thermal diffusivity. Without any heat generation and considering 

spatial variation of temperature only in x-direction, the above equation reduces to: 

1.8 Systems with negligible internal resistance – Lumped Heat Analysis 

Heat transfer in heating and cooling of a body is dependent upon both the internal and 

surface resistances. The simplest unsteady state problem is one in which the internal 

resistance is negligible, that is, the convective resistance at the surface boundary is very large 

when compared to the internal resistance due to conduction. In other words, the solid has an 

infinite thermal conductivity so that there is no variation of temperature inside the solid and 

temperature is a function of time only. This situation cannot exist in reality because all the 

solids have a finite thermal conductivity and there will always be a temperature gradient 

inside whenever heat is added or removed. Problems such as heat treatment of metals by 



  

 

 

 

 

quenching, time response of thermocouples and thermometers, etc can be analyzed by this 

idealization of negligible internal resistance. The process in which the internal resistance is 

ignored being negligible in comparison with its surface resistance is called the Newtonian 

heating and cooling process. In Newtonian heating and cooling process the temperature 

throughout the solid is considered to be uniform at a given time. Such an analysis is called 

the lumped heat capacity analysis. 

1.9 Systems with negligible surface resistance 

Another class of transient problems met with in practice is one in which the surface 

resistance is negligible compared to the overall resistance. This amounts to saying that the 

convective heat transfer coefficient at the surface is infinity. For such a process the surface 

temperature remains constant for all the time and its value is equal to that of ambient 

temperature. 

Dimensionless parameters:  

 

 

The Biot number is dimensionless, and it can be thought of as the ratio to the internal and 

external heat flows. Whenever the Biot number is small, the internal temperature gradients 

are also small and a transient problem can be treated by the “lumped thermal capacity” 

approach. The lumped capacity assumption implies that the object for analysis is considered 

to have a single mass-averaged temperature. 

In general, a characteristic length scale may be obtained by dividing the volume of the solid 

by its surface area: L = V/As 

Using this method to determine the characteristic length scale, the corresponding Biot 

number may be evaluated for objects of any shape, for example a plate, a cylinder, or a 



  

 

 

 

 

sphere. As a thumb rule, if the Biot number turns out to be less than 0.1, lumped capacity 

assumption is applied.  In this context, a dimensionless time, known as the Fourier number, 

can be obtained by multiplying the dimensional time by the thermal diffusivity and dividing 

by the square of the characteristic length: 

Lumped heat capacity 

analysis: temperature distribution inside or outside the solid is neglected.  

The cases considered so far have been those in which the heat conducting solid is free of 

internal heat generation. However, the situations where the internal heat is generated are very 

common cases in chemical industries for example, the exothermic reaction in the solid pallet 

of a catalyst. 

We have learnt that how the Fourier equation is used for the steady-state heat conduction 

through the composites of three different geometries that were not having any heat source in 

it. However, the heat generation term would come into the picture for these geometries. It 

would not be always easier to remember and develop heat conduction relations for different 

standard and non-standard geometries. Therefore, at this point we should learn how to 

develop a general relation for the heat conduction that should be applicable to the entire 

situation such as steady-state, unsteady state, heat source, different geometry, heat 

conduction in different direction, etc. Again here we will consider that the solid is isotropic 

in nature, which means the thermal conductivity of the material is same in all the direction of 

heat flow. 

To get such a general equation the differential form of the heat conduction equation is most 

important. For simplicity, we would consider an infinitesimal volume element in a Cartesian 

coordinate system. The dimensions of the infinitesimal volume element are dx , dy , and dz in 

the respective direction as shown in the fig 

 

 



  

 

 

 

 

 

 



  

 

 

 

 

 



  

 

 

 

 

 

b is a positive quantity having dimension (time)-1. The reciprocal of b is usually called time 

constant, which has the dimension of time. 

1.10 Heat conduction through spherical surface 6 

 

Fig. 7 Heat flow through a spherical surface 

Consider a spherical shell with inside radius r1 and outside radius r2. Let T1 be the inside 

temperature and T2 be the outside temperature. K be the thermal conductivity of the material. 

Q be the heat flow through the spherical shell with a cross sectional area to be A. based on 

Fourier’s law of heat conduction and following the assumptions, 

(i) Heat flow is uniform 

(ii) Heat flow is normal to the surface 

(iii) The material is uniform and possess constant thermal conductivity 

(iv) Heat flow is uni-directional 



  

 

 

 

 

Let us consider a differential element of thickness dr which is lying between 

inside and outside radius. For such an element the heat flow is given by  

 

Q = -kA dT/dr where area of the sphere is  𝐴 = 4𝜋𝑟2 

 

Q = ΔT / (r2 – r1) / 4𝜋k r1r2 where the resistance is given by (r2 – r1) / 4𝜋k r1r2 

Geometric mean radius is given by rm
2 = r1.r2 and hence  



  

 

 

 

 

Rth = (r2-r1) / Am . k where Am = 4𝜋 rm
2 and Am is the geometric mean area. 

Similarly, rate of heat flow for a composite spherical shell with one layer of insulation is 

given by  

Q = ΔT / [(r2 – r1) / 4𝜋k1 r1r2 + (r3 – r2) / 4𝜋k2 r2r3]  

In a plane wall the area perpendicular to the direction of heat flow adding more insulation to 

a wall always decreases heat transfer. If thicker is insulation, the lower is the heat 

transfer rate. This is due to the fact the outer surface have always the same area. 

But in cylindrical and spherical coordinates, the addition of insulation also increases the 

outer surface, which decreases the convection resistance at the outer surface. Moreover, in 

some cases, a decrease in the convection resistance due to the increase in surface area can be 

more important than an increase in conduction resistance due to thicker insulation. As a 

result the total resistance may actually decrease resulting in increased heat flow. 

The thickness upto which heat flow increases and after which heat flow decreases is termed 

as critical thickness. In the case of cylinders and spheres it is called critical radius. It can be 

derived the critical radius of insulation depends on the thermal conductivity of the insulation 

k and the external convection heat transfer coefficient h. 

Optimum thickness of insulation 

The radius of insulation at which the total annual cost is minimum corresponds to optimum 

thickness of insulation. 

 

 

 

 

 



  

 

 

 

 

 

 



  

 

 

 

 

 

1.11 Analogy between heat flow and electricity: 

Heat flow is represented by Fourier’s law of heat conduction whereas electrical flow is 

represented by ohm’s law.  

Heat flow = Temperature gradient / thermal resistance  

Ohm’s law is given by  

Electrical flow = voltage drop / electrical resistance  

The various parameters analogous to each other in both the laws are heat flow and electrical 

flow, voltage drop with temperature gradient, thermal and electrical resistance.  
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3.1  Introduction of Mass Transfer 

 

When a system contains two or more components  whose concentrations vary from point to point, 

there is a natural tendency for mass to be transferred, minimizing the concentration differences 

within a system. The transport of one constituent from a region of higher concentration to that of a 

lower concentration is called mass transfer. 

 

The transfer of mass within a fluid mixture or across a phase boundary is a process that plays a 

major role in many industrial processes. Examples of such processes are: 

 

(i) Dispersion of gases from stacks 

(ii) Removal of pollutants from plant discharge streams by absorption 

(iii) Stripping of gases from waste water 

(iv) Neutron diffusion within nuclear reactors 



  

 

 

 

 

(v) Air conditioning 

 

Many of air day-by-day experiences also involve mass transfer, for example: 

 

(i) A lump of sugar added to a cup of coffee eventually dissolves and then eventually 

diffuses to make the concentration uniform. 

(ii) Water evaporates from ponds to increase the humidity of passing-air-stream 

(iii) Perfumes present a pleasant fragrance which is imparted throughout the surrounding 

atmosphere. 

 

The mechanism of mass transfer involves both molecular diffusion and convection. 

 

3.2 Properties of Mixtures 

 

Mass transfer always involves mixtures.  Consequently, we must account for the variation of 

physical properties which normally exist in a given system. When a system contains three or more 

components, as many industrial fluid streams do, the problem becomes unwidely very quickly. The 

conventional engineering approach to problems of multicomponent system is to attempt to reduce 

them to representative binary (i.e., two component) systems. 

 

In order to understand the future discussions, let us first consider definitions and relations which 

are often used to explain the role of components within a mixture. 

 

3.2.1 Concentration of Species: 

 

Concentration of species in multicomponent mixture can be expressed in many ways. 

For species A, mass concentration denoted by A is defined as the mass of A,mA  per 

unit volume of the mixture. 
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m A
A         ------------------------------------    (1) 

 

The total mass concentration density  is the sum of the total mass of the mixture in 

unit volume: 

 


i

i       

 

where  i  is the concentration of species i in the mixture. 

 

Molar concentration of, A, CA is defined as the number of moles of  A present per unit 

volume of the mixture. 

 

By definition, 
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Therefore from (1) & (2) 
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For ideal gas mixtures, 
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where pA  is the partial pressure of species A in the mixture. V is the volume of gas, T is 

the absolute temperature, and R is the universal gas constant. 

 

The total molar concentration or molar density of the mixture is given by 
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3.2.2 Velocities 

 

In a multi-component system the various species will normally move at different 

velocities; and evaluation of velocity of mixture require the averaging of the velocities 

of each species present. 

 

If  I is the velocity of species i with respect to stationary fixed coordinates, then mass-

average velocity for a multicomponent mixture defined in terms of mass concentration 

is, 
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By similar way, molar-average velocity of the mixture  *  is 
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For most engineering problems, there will be title difference in  *  and   and so the 

mass average velocity, , will be used in all further discussions. 

 

The velocity of a particular species relative to the mass-average or molar average 

velocity is termed as diffusion velocity 

 

(i.e)  Diffusion velocity =  i -  

 

The mole fraction for liquid and solid mixture, x A ,and for gaseous mixtures,  y A, are 

the molar concentration of species A divided by the molar density of the mixtures. 

 

C

C
x A

A        (liquids and solids) 

 

C

C
y A

A     (gases). 

 

The sum of the mole fractions, by definition must equal 1; 
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by similar way, mass fraction of A in mixture is; 
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10. The molar composition of a gas mixture at 273 K and 1.5 * 10 5 Pa is: 

 

 O 2  7% 

 CO 10% 

 CO 2  15% 

 N 2 68% 

 

Determine  

 

a) the composition in weight percent 

b) average molecular weight of the gas mixture 

c) density of gas mixture 

d) partial pressure of O 2. 

 

Calculations: 

 Let the gas mixture constitutes 1 mole.  Then  

 

 O 2  = 0.07 mol 

 CO = 0.10 mol 

 CO 2  = 0.15 mol 

 N 2 = 0.68 mol 

 



  

 

 

 

 

Molecular weight of the constituents are: 

 

 O 2  = 2 * 16 = 32 g/mol 

 CO = 12 + 16 = 28 g/mol 

 CO 2  = 12 + 2 * 16 = 44 g/mol 

 N 2 = 2 * 14 = 28 g/mol 

 

Weight of the constituents are: (1 mol of gas mixture) 

 

 O 2  = 0.07 * 32 = 2.24 g 

 CO = 0.10 * 28 = 2.80 g 

 CO 2  = 0.15 * 44 = 6.60 g 

 N 2 = 0.68 * 28 = 19.04 g 

 

Total weight of gas mixture = 2.24 + 2.80 + 6.60 + 19.04   

    = 30.68 g 

 

Composition in weight percent: 

 %30.7100*
68.30

24.2
2 O  

 %13.9100*
68.30

80.2
CO  

 %51.21100*
68.30

60.6
2 CO  



  

 

 

 

 

 %06.62100*
68.30

04.19
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Average molecular weight of the gas mixture 
molesofNumber

mixturegasofWeight
M  

     molgM 68.30
1

68.30
  

 

Assuming that the gas obeys ideal gas law, 

  PV = nRT 

 

 
RT

P

V

n
  

 

m
V

n
 densitymolar  

Therefore, density (or mass density) =  mM 

 Where M is the molecular weight of the gas. 
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MDensity m    

        = 2.03 kg/m 3 

 



  

 

 

 

 

Partial pressure of O 2 = [mole fraction of O 2] * total pressure 

 

         510*5.1*
100

7
  

         = 0.07 * 1.5 * 10 5 

         = 0.105 * 10 5 Pa 

3.3 Diffusion flux 

 

Just as momentum and energy (heat) transfer have two mechanisms for transport-molecular and 

convective, so does mass transfer. However, there are convective fluxes in mass transfer, even on a 

molecular level. The reason for this is that in mass transfer, whenever there is a driving force, there 

is always a net movement of the mass of a particular species which results in a bulk motion of 

molecules. Of course, there can also be convective mass transport due to macroscopic fluid motion. 

In this chapter the focus is on molecular mass transfer. 

 

The mass (or molar) flux of a given species is a vector quantity denoting the amount of the 

particular species, in either mass or molar units, that passes per given increment of time through a 

unit area normal to the vector. The flux of species defined with reference to fixed spatial 

coordinates, NA is 

 

                                     AAA CN                ---------------------- (1) 

 

This could be written interms of diffusion velocity of A, (i.e.,   A  -  ) and average velocity of 

mixture, , as 
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By definition 
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Therefore, equation (2) becomes 
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For systems containing two components A and B, 

 

                          )()( BBAAAAAA CCyCN           

                                  )()( BAAAA NNyC    

                          NyCN AAAA  )(        ----------- (3) 

 

The first term on the right hand side of this equation is diffusional molar flux of A, and the second 

term is flux due to bulk motion. 

 



  

 

 

 

 

3.3.1 Fick’s law: 

 

An empirical relation for the diffusional molar flux, first postulated by Fick and, accordingly, often 

referred to as Fick’s first law, defines the diffusion of component A in an isothermal, isobaric 

system. For diffusion in only the Z direction, the Fick’s rate equation is 
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where D AB  is diffusivity or diffusion coefficient for component A diffusing through component B, 

and dCA / dZ is the concentration gradient in the Z-direction. 

 

A more general flux relation which is not restricted to isothermal, isobasic system could be written 

as 
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using this expression, Equation (3) could be written as 
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3.3.2 Relation among molar fluxes: 

 



  

 

 

 

 

For a binary system containing A and B, from Equation (5), 

 

                     NyJN AAA   

          or        NyNJ AAA      ----------------------- (6) 

 

Similarly, 

 

                       NyNJ BBB      -------------------- (7) 

 

Addition of Equation (6) & (7) gives, 

 

                     NyyNNJJ BABABA )(      ---------- (8) 

 

By definition N = N A + N B and y A + y B = 1. 

Therefore equation (8) becomes, 

                                J A + J B = 0 

                                J A  = -J B 
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From     y A + y B = 1 

              dy A  = - dy B 

 

Therefore Equation (9) becomes, 

 

                     D AB  = D BA    -----------------------------------   (10) 

 

This leads to the conclusion that diffusivity of A in B is equal to diffusivity of B in A. 

 



  

 

 

 

 

 

3.4 Diffusivity 

 

Fick’s law proportionality, D AB, is known as mass diffusivity (simply as diffusivity) or 

as the diffusion coefficient. D AB  has the dimension of L 2 / t, identical to the 

fundamental dimensions of the other transport properties: Kinematic viscosity,  = ( 

/ ) in momentum transfer, and thermal diffusivity,  (= k /  C  ) in heat transfer. 

 

Diffusivity is normally reported in cm2 / sec; the SI unit being m2 / sec. 

 

Diffusivity depends on pressure, temperature, and composition of the system. 

 

In table, some values of DAB are given for a few gas, liquid, and solid systems. 

 

Diffusivities of gases at low density are almost composition independent, incease with 

the temperature and vary inversely with pressure. Liquid and solid diffusivities are 

strongly concentration dependent and increase with temperature. 

 

General range of values of diffusivity:  

 

Gases :              5 X 10 –6           -------------        1 X 10-5      m2 / sec. 

Liquids :             10 –6                 -------------        10-9             m2 / sec. 

Solids :               5 X 10 –14         -------------        1 X 10-10      m2 / sec. 

                               

In the absence of experimental data, semitheoretical expressions have been developed 

which give approximation, sometimes as valid as experimental values, due to the 

difficulties encountered in experimental measurements. 

 

3.4.1 Diffusivity in Gases: 

 

Pressure dependence of diffusivity is given by 
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     (for moderate ranges of pressures, upto 25 atm). 

And temperature dependency is according to 
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Diffusivity of a component in a mixture of components can be calculated using the 

diffusivities for the various binary pairs involved in the mixture. The relation given by 

Wilke is 
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Where D 1-mixture is the diffusivity for component 1 in the gas mixture; D 1-n is the 

diffusivity for the binary pair, component 1 diffusing through component n; and ny   is 

the mole fraction of component n in the gas mixture evaluated on a component –1 – free 

basis, that is 
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By Similar calculations Diffusivity of N 2 in the mixture can be calculated, and is found to be, D 3m = 

1.588 * 10 –5 m 2/sec. 

 

3.4.2 Diffusivity in liquids: 



  

 

 

 

 

 

Diffusivity in liquid are exemplified by the values given in table … Most of these values 

are nearer to 10-5 cm2 / sec, and about ten thousand times shower than those in dilute 

gases. This characteristic of liquid diffusion often limits the overall rate of processes 

accruing in liquids (such as reaction between two components in liquids). 

 

In chemistry, diffusivity limits the rate of acid-base reactions; in the chemical industry, 

diffusion is responsible for the rates of liquid-liquid extraction. Diffusion in liquids is 

important because it is slow. 

 

Certain molecules diffuse as molecules, while others which are designated as 

electrolytes ionize in solutions and diffuse as ions.  For example, sodium chloride 

(NaCl), diffuses in water as ions Na + and Cl-. Though each ions has a different 

mobility, the electrical neutrality of the solution indicates the ions must diffuse at the 

same rate; accordingly it is possible to speak of a diffusion coefficient for molecular 

electrolytes such as NaCl.  However, if several ions are present, the diffusion rates of 

the individual cations and anions must be considered, and molecular diffusion 

coefficients have no meaning. 

 

Diffusivity varies inversely with viscosity when the ratio of solute to solvent ratio 

exceeds five.  In extremely high viscosity materials, diffusion becomes independent of 

viscosity. 

 

3.4.3 Diffusivity in solids: 

 

Typical values for diffusivity in solids are shown in table.  One outstanding 

characteristic of these values is their small size, usually thousands of time less than 

those in a liquid, which are inturn 10,000 times less than those in a gas. 

 

Diffusion plays a major role in catalysis and is important to the chemical engineer. For 

metallurgists, diffusion of atoms within the solids is of more importance. 



  

 

 

 

 

 

3.5 Steady State Diffusion 

 

In this section, steady-state molecular mass transfer through simple systems in which 

the concentration and molar flux are functions of a single space coordinate will be 

considered. 

 

In a binary system, containing A and B, this molar flux in the direction of z, as given by 

Eqn (5) is [section 3.3.1] 

                       )( BAA
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3.5.1 Diffusion through a stagnant gas film 

 

The diffusivity or diffusion coefficient for a gas can be measured, experimentally using 

Arnold diffusion cell. This cell is illustrated schematically in figure. 

 

The narrow tube of uniform cross section which is partially filled with pure liquid A, is 

maintained at a constant temperature and pressure. Gas B which flows across the open 

end of the tub, has a negligible solubility in liquid A, and is also chemically inert to A. 

(i.e. no reaction between A & B). 

 

Component A vaporizes and diffuses into the gas phase; the rate of vaporization may 

be physically measured and may also be mathematically expressed interms of the molar 

flux. 

 

Consider the control volume S  z, where S is the cross sectional area of the tube. Mass 

balance on A over this control volume for a steady-state operation yields 

 

[Moles of A leaving at z + z] – [Moles of A entering at z] = 0. 
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Dividing through by the volume, SZ, and evaluating in the limit as Z approaches 

zero, we obtain the differential equation 
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This relation stipulates a constant molar flux of A throughout the gas phase from Z1 to 

Z2. 

 

A similar differential equation could also be written for component B as, 
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and accordingly, the molar flux of B is also constant over the entire diffusion path from 

z1 and z 2. 

 

Considering only at plane z1, and since the gas B is insoluble is liquid A, we realize that 

NB, the net flux of B, is zero throughout the diffusion path; accordingly B is a stagnant 

gas. 

 

From equation (1) (of section 3.5) 
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Since N B = 0, 
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Rearranging, 
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This equation may be integrated between the two boundary conditions: 

                           at z = z1              YA = YA1 

              And       at z = z2              YA = yA2  

 

Assuming the diffusivity is to be independent of concentration, and realizing that NA is 

constant along the diffusion path, by integrating equation (3) we obtain 
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The log mean average concentration of component B is defined as 
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Since  AB yy 1 , 
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Substituting from Eqn (5) in Eqn (4), 
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For an ideal gas   
TR

p

V

n
C   ,  and 
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Therefore, for an ideal gas mixture equation. (6) becomes 
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This is the equation of molar flux for steady state diffusion of one gas through a second 

stagnant gas. 

 

Many mass-transfer operations involve the diffusion of one gas component through 

another non-diffusing component; absorption and humidification are typical operations 

defined by these equation. 

 



  

 

 

 

 

The concentration profile (yA vs. z) for this type of diffusion is shown in figure: 

 

 Oxygen is diffusing in a mixture of oxygen-nitrogen at 1 std atm, 25C.  Concentration of 

oxygen at planes 2 mm apart are 10 and 20 volume % respectively.  Nitrogen is non-

diffusing. 

 

(a) Derive the appropriate expression to calculate the flux oxygen.  Define units of each term 

clearly. 

(b) Calculate the flux of oxygen.  Diffusivity of oxygen in nitrogen = 1.89 * 10 –5 m 2/sec. 

 

Solution: 

 

Let us denote oxygen as A and nitrogen as B.  Flux of A (i.e.) N A is made up of two components, 

namely that resulting from the bulk motion of A (i.e.), Nx A and that resulting from molecular 

diffusion J A: 

 

 AAA JNxN    ---------------------------------- (1) 

 

From Fick’s law of diffusion,  
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Substituting this equation (1) 

 



  

 

 

 

 

  
zd

Cd
DNxN

A
ABAA    ----------------------------- (3) 

 

Since N = N A + N B and x A = C A / C equation (3) becomes  
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Rearranging the terms and integrating between the planes between 1 and 2, 
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Since B is non diffusing N B = 0.  Also, the total concentration C remains constant.  Therefore, 

equation (4) becomes 
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Therefore, 
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Replacing concentration in terms of pressures using Ideal gas law, equation (5) becomes 
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where  

 D AB = molecular diffusivity of A in B 

 P T = total pressure of system 

 R = universal gas constant 

 T = temperature of system in absolute scale 

 z = distance between two planes across the direction of diffusion  

 P A1 = partial pressure of A at plane 1, and  

 P A2 = partial pressure of A at plane 2 

 

3.5.2  Psuedo steady state diffusion through a stagnant film: 

 

In many mass transfer operations, one of the boundaries may move with time. If the length of 

the diffusion path changes a small amount over a long period of time, a pseudo steady state 

diffusion model may be used. When this condition exists, the equation of steady state 

diffusion through stagnant gas’ can be used to find the flux. 

 

If the difference in the level of liquid A over the time interval considered is only a small 



  

 

 

 

 

fraction of the total diffusion path, and t0 – t is relatively long period of time, at any given 

instant in that period, the molar flux in the gas phase may be evaluated by 
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where z equals z 2 – z1, the length of the diffusion path at time t. 

 

The molar flux NA  is related to the amount of A leaving the liquid by 
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 is the molar density of A in the liquid phase 

 

under Psuedo steady state conditions, equations (1) & (2) can be equated to give 
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Equation. (3) may be integrated from t = 0 to t and from z = z t0 to z = zt as:  
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yielding 
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This shall be rearranged to evaluate diffusivity DAB as, 
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3.5.3   Equimolar counter diffusion: 

 

A physical situation which is encountered in the distillation of two constituents whose molar 

latent heats of vaporization are essentially equal, stipulates that the flux of one gaseous 

component is equal to but acting in the opposite direction from the other gaseous component; 

that is, NA = - NB. 

 

The molar flux NA, for a binary system at constant temperature and pressure is described by 
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with the substitution of NB = - NA, Equation (1) becomes, 
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For steady state diffusion Equation. (2) may be integrated, using the boundary conditions: 

                      at   z = z1         CA  =  CA1 



  

 

 

 

 

                            and   z = z2        CA  =  CA2 

 

Giving, 

                        
2

1

2

1

A

A

C

C
AAB

Z

Z
A CdDzdN  

from which 

                        

                               

                 )( 21
12

AA
AB

A CC
zz

D
N 


         ------------------- (3) 

 

For ideal gases,   
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This is the equation of molar flux for steady-state equimolar counter diffusion. 

 

Concentration profile in these equimolar counter diffusion may be obtained from, 
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This equation may be solved using the boundary conditions to give 
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Equation, (5) indicates a linear concentration profile for equimolar counter diffusion. 

 

 For equimolar counter current diffusion: 
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Diffusion in Liquids: 

 Equation derived for diffusion in gases equally applies to diffusion in liquids with some 

modifications. Mole fraction in liquid phases is normally written as ‘x’ (in gases as y). The 

concentration term ‘C’ is replaced by average molar density, 
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a) For steady – state diffusion of A through non diffusivity B: 

N A = constant , N B = 0 
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where Z = Z 2 – Z 1, the length of diffusion path; and 
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b) For steady – state equimolar counter diffusion : 

 N A = - N B = const 
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Diffusion in solids 

 In certain unit operation of chemical engineering such as in drying or in absorption, 

mass transfer takes place between a solid and a fluid phase. If the transferred species is 

distributed uniformly in the solid phase and forms a homogeneous medium, the diffusion of 

the species in the solid phase is said to be structure independent. In this cases diffusivity or 

diffusion coefficient is direction – independent. 

 At steady state, and for mass diffusion which is independent of the solid matrix structure, 

the molar flux in the z direction is : 
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Integrating the above equation, 
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which is similar to the expression obtained for diffusion in a stagnant fluid with no bulk motion (i.e. 

N = 0). 

 

Diffusion in process solids: 

 In some chemical operations, such as heterogeneous catalysis, an important factor, 

affecting the rate of reaction is the diffusions of the gaseous component through a porous solid. The 

effective diffusivity in the solid is reduced below what it could be in a free fluid, for two reasons. 

First, the tortuous nature of the path increases the distance, which a molecule must travel to 

advance a given distance in the solid. Second, the free cross – sectional area is restricted. For many 

catalyst pellets, the effective diffusivity of a gaseous component is of the order of one tenth of its 

value in a free gas. 

 If the pressure is low enough and the pores are small enough, the gas molecules will collide 

with the walls more frequently than with each other. This is known as Knudsen flow or Knudsen 

diffusion. Upon hitting the wall, the molecules are momentarily absorbed and then given off in 

random directions. The gas flux is reduced by the wall collisions. 

 By use of the kinetic flux is the concentration gradient is independent of pressure ; whereas 

the proportionality constant for molecular diffusion in gases (i.e. Diffusivity) is inversely 

proportional to pressure. 

 Knudsen diffusion occurs when the size of the pore is of the order of the mean free path of 

the diffusing molecule. 

 

3.6 Transient Diffusion/Unsteady state diffusion 

 Transient processes, in which the concentration at a given point varies with time,  

are referred to as unsteady state processes or time – dependent processes.  

This variation in concentration is associated with a variation in the mass flux. 

 These generally fall into two categories: 

i) the process which is in an unsteady state only during its initial startup, and 

ii) the process which is in a batch operation throughout its operation. 



  

 

 

 

 

In unsteady state processes there are three variables-concentration, time,  

and position. Therefore the diffusion process must be described by partial rather than ordinary 

differential equations. 

 Although the differential equations for unsteady state diffusion are easy to establish, most 

solutions to these equations have been limited to situations involving simple geometries and 

boundary conditions, and a constant diffusion coefficient. 

 Many solutions are for one-directional mass transfer as defined by Fick’s second law of 

diffusion : 
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This partial differential equation describes a physical situation in which there is no bulk–motion 

contribution, and there is no chemical reaction. This situation is encountered when the diffusion 

takes place in solids, in stationary liquids, or in system having equimolar counter diffusion. The 

solution to Fick’s second law usually has one of the two standard forms. It may appear in the form 

of a trigonometric series which converges for large values of time, or it may involve series of error 

functions or related integrals which are most suitable for numerical evaluation at small values of 

time. These solutions are commonly obtained by using the mathematical techniques of separation 

of variables or Laplace transforms.  

 



  

 

 

 

 

 

 



  

 

 

 

 

 

 

 

Theories of mass transfer 
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Modelling in a biological process 

Model 

Mathematical modeling and computer simulations can help us to; 

- understand the nature and dynamics of biological processes 

- to predict the future of the biological process 

- to predict their interactions with the environment. 

• What is a model? 

- a model is an abstract representation of objects or processes that explains features of objects or 

processes. 

- e.g. the letters A, C, G, and T are used as a model for DNA sequences. 

Model Assignment is not Unique 

Biological phenomena can be described in mathematical models. These models are not specific or 

unique to an organism or process. An organism can be studied with different experimental 

methods.A biological process can be described with different models. A model may be applied to 

different biological objects. 

Properties of models 

There is choice in selecting a model or an algorithm to describe a biological object. We may use 

different models but the modeling has to reflect essential properties of the system. 

Different models may highlight different aspects of the same process or an organism. 

System State 

The state of a system is a snapshot of the system at a given time that contains enough information 

to predict the behavior of the system for all future time. Different models have different 

representations of the state. Each model defines what it means by the state of the system. Given 

the current state, the model predicts which state or states can occur next, thereby describing the 

change of state. 

Steady State 

Steady states, (stationary states or fixed points) – the values of all state variables remain constant in 

time. The steady state is actually an abstraction that is based on separation of time scales. Fast and 

slow processes are coupled in the biological world – - 

Fast - formation and release of chemical bonds – nano secs. 



  

 

 

 

 

Slow - growth of organisms – years. 

Fast processes reach a quasi-steady state after a short period. Slow processes are mostly in the 

steady state or their change is negligible. Each steady state can be regarded as a quasi-steady state 

of a system that is in a larger non-stationary (steady) environment.Steady states point to typical 

behavioral modes of the system and hence the respective mathematical problems are easier to 

solve. Variables, Parameters, and Constants. All models have variables, parameters, and constants. 

A constant is a quantity with a fixed value, such as the natural number e or Avogadro’s number. 

Parameters are quantities that are assigned a value, enzyme concentration – the value may change. 

Variables are quantities with a changeable value. State variables are a set of variables that describe 

the system behavior completely. They are independent of each other and each of them is necessary 

to define the system state. 

For example, diameter d and volume V of a sphere obey the relation V = πd3/6.  

• Volume of a sphere V = πd3/6 

• π and 6 are constants and V and d were the variables, but only one of them is a state variable, 

since the mentioned relation uniquely determines the other one. Whether a quantity is a variable or 

a parameter depends on the model. The enzyme concentration is frequently considered a 

parameter in biochemical reaction kinetics. no longer valid if, in a larger model, the enzyme 

concentration may change due to gene expression or protein degradation. 

Model behaviour 

Model behavior is determined by (1) influences from the environment (input) and (2) processes 

within the system.  Further, the system structure, (i. e., the relation among variables, parameters, 

and constants) determines how the external inputs are processed and how the internal processes 

are controlled. 

Process classification 

• Reversible – process can proceed in forward or backward direction. 

• Irreversible – process can proceed in only one direction 

• Periodicity – at specific time intervals the state of the process may change. 

• Deterministic – the future state of the process may be determined 

by the current state. 

• Stochastic – future state cannot be determined – only a probability 

can be predicted. 

• Continuous – the values of the state are continuous. 

• Discrete – the values of the state are discrete (not continuous). 

Advantages of Computational Modeling 

• Modeling gives conceptual clarification – makes things understandable – Eg. AGTC for nucleotides. 



  

 

 

 

 

• Modeling also highlights gaps in knowledge or understanding – if a model fails to mimic the real 

experiment then there is a gap. 

• Modeling provides independence from the modeled object. Time and space may be stretched or 

compressed ad libitum. 

• Modeling is cheap compared to experiments. Models do no harm on animals or plants and help to 

reduce them in experiments. 

• They do not pollute the environment. Models do not interact with the environment or with the 

modeled system. 

• Modeling can assist experimentation. With an adequate model one may test different possibilities 

that are not available in experiment. 

• One may follow time courses of compounds that cannot be measured in an experiment. Eg. Aging 

process 

• One may impose perturbations that are not feasible in the real system. Eg. Effect of a toxin. 

• One may cause precise perturbations without directly changing other system components, which 

is usually impossible in real systems. 

• Model simulations can be repeated for many different conditions. 

• Model results can often be presented in precise mathematical terms that allow for generalization. 

• Graphical representation and visualization make it easier to understand the system. 

• Finally, modeling allows for making well-founded and testable predictions. 

Model Development – Modeling Workflow 

1. Formulation of the problem: 

- which questions shall be answered with the model 

- clear statement about the background, problem, and hypotheses 

2. Verification of available information: 

- the existing data about the structure of the system has to be collected and checked. 

3. Selection of model structure: 

- determine the general type of the model like 1) microscopic or macroscopic, 2) deterministic or 

stochastic approach, 3) discrete or continuous variables, 4) steady-state, temporal, or 

spatiotemporal description. Find variables for external influence, internal structure.  

4. Establishing a simple model: 

- model can be in words, scheme in mathematical formulation. 

5. Sensitivity analysis: 



  

 

 

 

 

- mathematical simulation may be highly sensitive to parameter changes. Verify the parameter 

choice. 

6. Experimental tests of the model predictions: 

7. Stating the agreements and divergences between experimental and modeling results: 

- whether the model results agree with the experimental behavior 

- if results do not agree, check for false assumptions, over simplification, wrong model structure, 

inadequate experimental design, or other inadequately represented factors. 

8. Iterative refinement of model: 

- usually initial models may not be correct. Refine continuously till the model adequately represents 

the biological system. 

 

Steady and Pseudo steady state approximation 

When a reaction mechanism has several steps of comparable rates, the rate-determining step is 

often not obvious. However, there is an intermediate in some of the steps. An intermediate is a 

species that is neither one of the reactants, nor one of the products. The steady-state 

approximation is a method used to derive a rate law. The method is based on the assumption that 

one intermediate in the reaction mechanism is consumed as quickly as it is generated. Its 

concentration remains the same in a duration of the reaction. 

Definition: Intermediates 

An intermediate is a species that is neither one of the reactants, nor one of the products. It 

transiently exists during the course of the reaction. When a reaction involves one or more 

intermediates, the concentration of one of the intermediates remains constant at some stage of the 

reaction. Thus, the system has reached a steady-state. The concentration of one of the 

intermediates, [Int] , varies with time as shown in Figure  4.12.1 . At the start and end of the 

reaction, [Int] does vary with time. 

d[Int]/dt=0 

Example: when an intermediate can be approximated as a steady-state. 

When a reaction mechanism has several steps with comparable rates, the rate-determining step is 

not obvious. However, there is an intermediate in some of the steps. The steady-state 

approximation implies that you select an intermediate in the reaction mechanism, and calculate its 

concentration by assuming that it is consumed as quickly as it is generated. In the following, an 

example is given to show how the steady-state approximation method work. 

Michael Menton Kinetics 

All these reactions involve a substrate S reacting with an enzyme E to form a complex ES 

which then in turn is converted into product P and the enzyme: 



  

 

 

 

 

 
E+S 

k1 k2 

ES 

k-1 

 
E+P [I.1] 

 

In this scheme there are two fundamental different reactions. The first reaction 

depictedwith the double arrow is a reversible reaction reflecting the reversible binding 

andunbinding of the enzyme and the substrate. The second reaction is an irreversible 

reactioninwhichtheenzyme-

substratecomplexisirreversiblyconvertedintoproductandenzyme symbolized by the single 

arrow. The rate of a reaction is proportional to theproduct of the concentrations of the 

reactants. The kinetics of the chemical equationsaboveis describedby the followingset 

ofcoupleddifferentialequations: 

In this case the systems can also be solved analytically. Figure 1 shows anexample of 

the time dependence of the chemical components for k1[So]  k-1>> k2. Thisis often the 

regime of biological relevance since the substrate-enzyme binding occurs atmuch faster 

time scales than the turnover into product. The thermodynamic equilibriumor steady 

state (t∞) of this system would be [S] = [ES] = 0; [E] = [Eo]; [P] = 

[So].However,therelevanttime-scaletoconsideristhetimerangeinwhich[ES]and[E]are 

 

d[S]
k[E][S]k[ES] 

 

dt 1 1 

d[E]
k[E][S](k k  

)[ES] 
dt 1 1 2 [I.2] 

d[ES]
k[E][S](k k )[ES] 

dt 1 1 2 

d[P] 

k
dt 2 [ES]v 

Notethatk1andk-1havedifferentunits,1/(Ms)and1/srespectively.Theturnoverratev□ 

is defined as the increase (or decrease) in product over time, which is 

directlyproportional to the concentration of enzyme-substrate complex [ES]. For the 

analysisbelowwewillassumeinitialconditions:[S]t=0=So;[E]t=0=Eo;[ES]t=0=0;[P]t=0=0. 

 
Since the enzyme is a catalyst that facilitates the reaction but does not react itself, 



  

 

 

 

 

thetotalconcentration of enzyme(free + bound) shouldbe constant: 

Eo[E][ES] [I.3] 

Using this conservation law the four differential equations [I.2] reduce to three 

coupledordinary differential equations: 

d[S]
kE[S](k[S]kdt 1o 1 -1)[ES] 

d[ES]
kE

 
 

d[P] 

k
dt 2 [ES]v 

with the initial conditions [S]t=0 = So, [ES]t=0 = 0, and [P]t=0 = 0. Matlab code 1 

solvestheseequationsandcalculatesthetimedependenceoftheconcentrations[S],[ES]and 

[P] as a function of the initial concentrations [So] and [Eo] and the rate constants k1, k-1,and k2. 

Ultracentrifuge 

Ultracentrifugation has decisively advanced the detailed biochemical analysis of subcellular 

structures and isolated biomolecules. Preparative ultracentrifugation can be operated at relative 

centrifugal fields of up to 900 000×g. In order to minimise excessive rotor temperatures generated 

by frictional resistance between the spinning rotor and air, the rotor chamber is sealed, evacuated 

and refrigerated. Depending on the type, age and condition of a particular ultracentrifuge, cooling 

to the required running temperature and the generation of a stable vacuum might take a 

considerable amount of time. To avoid delays during biochemical procedures involving 

ultracentrifugation, the cooling and evacuation system of older centrifuge models should be 

switched on at least an hour prior to the centrifugation run. In contrast, modern ultracentrifuges 

can be started even without a fully established vacuum and will proceed in the evacuation of the 

rotor chamber during the initial acceleration process. For safety reasons, heavy armour plating 

encapsulates the ultracentrifuge to prevent injury to the user in case of uncontrolled rotor 

movements or dangerous vibrations. A centrifugation run cannot be initiated without proper closing 

of the chamber system. To prevent unfavourable fluctuations in chamber temperature, excessive 

vibrations or operation of rotors above their maximum rated speed, newer models of 

ultracentrifuges contain sophisticated temperature regulation systems, flexible drive shafts and an 

over-speed control device. Although slight rotor imbalances can be absorbed by modern 

ultracentrifuges, a more severe misbalance of tubes will cause the centrifuge to switch off 

automatically. This is especially true for swinging-bucket rotors. The many safety features 



  

 

 

 

 

incorporated into modern ultracentrifuges make them a robust piece of equipment that tolerates a 

certain degree of misuse by an inexperienced operator. In contrast to preparative ultracentrifuges, 

analytical ultracentrifuges contain a solid rotor that incorporates one counterbalancing cell and 

typically either three or seven analytical cells. A specialised optical system enables the sedimenting 

material to be observed throughout the duration of a centrifuge run. Using either an absorption 

optical system (based on ultraviolet/visible light absorption; or a Rayleigh interference optical 

system (based on light refraction, or a combination of both, concentration distributions of 

macromolecules in solution can berecorded at any time during ultracentrifugation. From these 

records, information about the purity/heterogeneity, sedimentation coefficient distribution, 

average molar mass and molar mass distributions, and ligand interaction information can be 

obtained. 

 Types of Rotor  

To illustrate the difference in design of fixed-angle rotor, vertical tube rotors and swinging-bucket 

rotors ,outlines cross-sectional diagrams of these three main types of rotor. Companies usually 

name rotors according to their design type, the maximum allowable speed and sometimes the 

material composition. Depending Centrifugal field Centrifugal field Centrifugal field Axis of rotor Axis 

of rotor Axis of rotor (a) (b) (c) Tube angle 14°–40° rmin ron the use in a simple low-speed 

centrifuge, a high-speed centrifuge or an ultracentrifuge, different centrifugal forces are 

encountered by a spinning rotor. Accordingly, different types of rotors are made from different 

materials. Low-speed rotors are usually made of steel or brass, while high-speed rotors consist of 

aluminium, titanium or fibre-reinforced composites. The exterior of specific rotors might be finished 

with protective paints. For example, rotors for ultracentrifugation made out of titanium alloy are 

covered with a polyurethane layer. Aluminium rotors are protected from corrosion by a tough, 

electrochemically formed layer of aluminium oxide. In order to avoid damaging these protective 

layers, care should be taken during rotor handling. Fixed-angle rotors are an ideal tool for pelleting 

during the differential separation of biological particles where sedimentation rates differ 

significantly, for example when separating nuclei, mitochondria and microsomes. In addition, 

isopycnic (‘matching density’) banding – where the density of the substance matches that of the 

gradient at that radial position – may also be routinely performed with fi xed-angle rotors. For 

isopycnic separation, centrifugation is continued until the biological particles of interest have 

reached their isopycnic position in a gradient. This means that the particle has reached a position 



  

 

 

 

 

where the sedimentation rate is zero because the density of the biological particle and the 

surrounding medium are equal. Centrifugation tubes are held at a fixed angle of between 14° and 

40° to the vertical in this class of rotor. Particles move radially outwards and since the centrifugal fi 

eld is exerted at an angle, they only have to travel a short distance until they reach their isopycnic 

position in a gradient using an isodensity technique or before colliding with the outer wall of the 

centrifuge tube using a differential centrifugation method. Vertical rotors may be divided into true 

vertical rotors and near- vertical rotors. Sealed centrifuge tubes are held parallel to the axis of 

rotation in vertical rotors and are restrained in the rotor cavities by screws, special washers and 

plugs. Since samples are not separated down the length of the centrifuge tube, but across the 

diameter of the tube, isopycnic separation time is significantly shorter as compared to swinging-

bucket rotors. In contrast to fixed-angle rotors, near-vertical rotors exhibit a reduced tube angle of 

7° to 10° and also employ quick-seal tubes. The reduced angle results in much shorter run times as 

compared to fi xed-angle rotors. Near-vertical rotors are useful for gradient centrifugation of 

biological elements that do not properly participate in conventional gradients. Hinge pins or a 

crossbar is used to attach rotor buckets in swinging-bucket rotors. They are loaded in a vertical 

position and during the initial acceleration phase, the rotor buckets swing out horizontally and then 

position themselves at the rotor body for support. To illustrate the separation of particles in the 

three main types of rotors, which outlines the path of biological samples during the initial 

acceleration stage, the main centrifugal separation phase, de-acceleration and the final harvesting 

of separated particles in the rotor atrest. In the case of isopycnic centrifugation in a fixed-angle 

rotor, the centrifuge tubes are gradually filled with a suitable gradient, the sample carefully loaded 

on top of this solution and then the tubes placed at a specific fixed-angle into the rotor cavities. 

During rotor acceleration, the sample solution and the gradient undergo reorientation in the 

centrifugal field, followed by theseparation of particles with different sedimentation properties. The 

gradient returns to its original position during the de-acceleration phase and separated particle 

bands can be taken from the tubes once the rotor is at rest. In analogy, similar reorientation of 

gradients and banding of particles occurs in a vertical rotor system. 

Care and Maintenance of Centrifuges 

 Corrosion and degradation due to biological buffer systems used within rotors or contamination of 

the interior or exterior of the centrifuge via spillage may seriously affect the lifetime of this 

equipment. Another important point is the proper balancing of centrifuge tubes. This is not only 



  

 

 

 

 

important with respect to safety, as outlined below, but might also cause vibration-induced damage 

to the rotor itself and the drive shaft of the centrifuge. Thus, proper handling and care, as well as 

regular maintenance of both centrifuges and rotors, is an important part of keeping this biochemical 

method available in the laboratory. In order to avoid damaging the protective layers of rotors, such 

as polyurethane paint or aluminium oxide, care should be taken in the cleaning of the rotor exterior. 

Coarse brushes that may scratch the finish should not be used and only non-corrosive detergents 

employed. Corrosion may be triggered by long-term exposure of rotors to alkaline solutions, acidic 

buffers, aggressive detergents or salt. Thus, rotors should be thoroughly washed with distilled or 

deionised water after every run. For overnight storage, rotors should be first left upside down to 

drain excess liquid and then positioned in a safe and dry place.  

To avoid damage to the hinge pins of swinging-bucket rotors, they should be dried with tissue paper 

following removal of biological buffers and washing with water. Centrifuge rotors are often not 

properly stored in a clean environment; this can quickly lead to the destruction of the protective 

rotor coating and should thus be avoided. It is advisable to keep rotors in a special clean room, 

physically separated from the actual centrifugation facility, with dedicated places for individual 

types of rotors. Some researchers might prefer to pre-cool their rotors prior to centrifugation by 

transferring them to a cold room. Although this is an acceptable practice and might keep proteolytic 

degradation to a minimum, rotors should not undergo long term storage in a wet and cold 

environment. Regular maintenance of rotors and centrifuges by engineers is important for ensuring 

the safe operation of a centralised centrifugation facility. In order to judge properly the need for 

replacement of a rotor or parts of a centrifuge, it is essential that all users of core centrifuge 

equipment participate in proper book-keeping. Accurate record-keeping of run times and 

centrifugal speeds is important, since cyclic acceleration and deceleration of rotors may lead to 

metal fatigue. 

Separation of DNA Components 

A recent application of ultracentrifugation is in the genome-wide identification of gene regulatory 

regions, i.e. the open regions of DNA not protected by nucleosomes at that point in time. Intact 

nuclei are incubated with limiting amounts of DNase I, which is able to enter the nuclei and digest 

accessible DNA from chromatin. The digested DNA is then recovered and applied to a step gradient 

typically made with 10-400/o sucrose (400/0 at the bottom of the tube, rising to 100/0 at the top), 

and subjected to 24 hours at 90 000xg (at 25 °C). Alternatively a 'sucrose cushion' can be used that 



  

 

 

 

 

is simply a fixed concentration of sucrose; typically 90/o. The gentle separation of DNA fragments 

allows efficient molecular cloning of the DNA fragments that are then sequenced using massively 

parallel sequencing. 

ANALYTICAL ULTRACENTRIFUGATION  

Analytical ultracentrifuges are high-speed ultracentrifuges with optical system(s) for recording the 

sedimentation process. As biological macromolecules exhibit random thermal motion, their relative 

uniform distribution in an aqueous environment is not significantly affected by the Earth's 

gravitational field. Isolated bio-molecules in solution only exhibit distinguishable sedimentation 

when they undergo immense accelerations, e.g. in an ultra centrifugal field. A typical analytical 

ultracentrifuge can generate a centrifugal field of up to 200 000xg in its analytical cell. Within these 

extremely high gravitational fields, the ultracentrifuge cell has to allow light passage through the 

biological particles for proper measurement of the concentration distribution. The schematic 

diagram in Figure 12.8 outlines one of the two principal optical systems for a modern analytical 

ultracentrifuge. The availability of high-intensity xenon flash lamps and the advance in instrumental 

sensitivity and wavelength range has made the measurement of highly dilute protein samples below 

230 nm possible. Analytical ultracentrifuges such as the Beckman Optima XL-A allow the use of 

wavelengths between 190 nm and 800 nm. Sedimentation of isolated proteins or nucleic acids can 

be useful in the determination of the molecular mass, purity and shape of these biomolecules. A 

second optical system (not shown) is the Rayleigh interference optical system, which detects the 

distribution of proteins or nucleic acids - or other macromolecules such as polysaccharides, glycol 

proteins and synthetic macromolecules - based on their different refractive index compared to the 

solvent they are dissolved in. The Beckman Optima XL-I, for example, has both optical systems. 

These two different optical systems can be applied individually, or simultaneously, which can be 

helpful for looking at interactions involving biomolecules with ligands. Other less common optical 

systems are based on fluorescence or refractive gradient "Schlieren" optics.
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