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Basic Concepts and First Law of Thermodynamics

Thermodynamics is:

e the science of heat and work and related
properties
e the basic science that deals with energy

e the study of energy movements

The name was coined in 1849 by Lord Kelvin by combining Greek words for heat (thermos) and

power (dynamos).

1.1 Energy

e Potential Energy (EP) -- depends on position within reference frame

e Kinetic Energy (EK) -- depends on movement within reference frame

e Internal Energy (U) -- includes all chemical energy. It lumps together the
microscopic energies, including EP and EK of molecular vibration, rotation, and
translation. These can be expressed as functions of the temperature and density of
the system and don't really vary much with the position or motion of the

system. U thus depends on the thermodynamic state.

Aiorls = Forces+ Distatice
Worle = I +1m=Jd
= 1hf = ft

It isn't really possible to identify a condition that has zero energy, because energy depends so
much on our definitions and how we choose to make measurements. Consequently, all energy

terms are relative to some reference state.



Physics has often defined work as force (needed to move an object) acting through a distance
(moved). This is reflected in energy units:
These are the basic units of energy, heat, and work.

There is another set of units based on heat

e calorie = heat needed to raise 1 gram of water by 1 degree Kelvin

e BTU (British Thermal Unit) = heat needed to raise 1 pound of water by 1 degree Rankine

Power is the rate of change/transport of energy.
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1.2 System and Surroundings

In order to avoid confusion, scientists discuss thermodynamic values in reference to a system and
its surroundings. Everything that is not a part of the system constitutes its surroundings. The
system and surroundings are separated by a boundary. For example, if the system is one mole of
a gas in a container, then the boundary is simply the inner wall of the container itself. Everything
outside of the boundary is considered the surroundings, which would include the container itself.

The boundary must be clearly defined, so one can clearly say whether a given part of the world is



in the system or in the surroundings. If matter is not able to pass across the boundary, then the
system is said to be closed; otherwise, it is open. A closed system may still exchange energy with
the surroundings unless the system is an isolated one, in which case neither matter nor energy
can pass across the boundary.

The boundaries are set up in a way most conducive to understanding the energetics of what we're
studying.
Defining the system and surroundings is arbitrary, but it becomes important when we consider
the exchange of energy between the system and surroundings.
Two types of exchange can occur between system and surroundings: (1) energy exchange (heat,
work, friction, radiation, etc.) and (2) matter exchange (movement of molecules across the
boundary of the system and surroundings).
Based on the types of exchange which take place or don't take place, we will define three types
of systems:

e isolated systems: no exchange of matter or energy

e closed systems: no exchange of matter but some exchange of

energy

e open systems: exchange of both matter and energy

1.3 Control VVolume

Control volume is defined as a volume which encloses the matter and the device inside a

control surface.

e Every thing external to the control volume is the surroundings with the separation
given by the control surface.

e The surface may be open or closed to mass flows and it may have flows from
energy in terms of heat transfer and work across it.

e The boundaries may be moveable or stationary.

e In the case of a control surface that is closed to the mass flow, so that no mass can
enter or escape the control volume, it is called a control mass containing same

amount of matter at all times.



1.4 Property

e In thermodynamics a property is any characteristic of a system that is associated with
the energy and can be quantitatively evaluated.

e The property of a system should have a definite value when the system is in a
particular state.

e Thermodynamic property is a point function.

e Properties like volume of a system that depend on the mass of a system are
called extensive properties.

e Properties like pressure or temperature which do not depend on the system mass

e The ratio of extensive property to the mass of the system are called specific
properties and therefore become intensive properties.

e Substance can be found in three states of physical aggregation namely, solid, liquid
and vapor which are called its phases.

e |f the system consists of mixture of different phases, the phases are separated from
each other by phase boundary.

e The thermodynamic properties change abruptly at the phase boundary, even though

the intensive properties like temperature and pressure are identical.

1.5 Equilibrium

e When the property of a system is defined, it is understood that the system is
in equilibrium.

e If asystem is in thermal equilibrium, the temperature will be same throughout the system.

e If a system is in mechanical equilibrium, there is no tendency for the pressure to
change. In a single phase system, if the concentration is uniform and there is no
tendency for mass transfer or diffusion, the system is said to be in chemical equilibrium.

e A system which is simultaneously in thermal, mechanical, and chemical

equilibrium is said to be in thermal equilibrium.



1.6 Process
A process is path followed by a system in reaching a given final state of equilibrium state
starting from a specified initial state.
An actual process occurs only when the equilibrium state does not exist.
An ideal process can be defined in which the deviation from thermodynamic equilibrium is
infinitesimal.
All the states the system passes through during a quasi-equilibrium process may be considered
equilibrium states.
For non-equilibrium processes, we are limited to a description of the system before the process
occurs and after the equilibrium is restored.
Several processes are described by the fact that one property remains constant.
The prefix iso- is used to describe such processes.
A process is said to be reversible if both the system and its surroundings can be restored to their
respective initial states by reversing the direction of the process.

e reversible: if the process happens slow enough to be reversed.

e irreversible: if the process cannot be reversed (like most

processes).

e isobaric: process done at constant pressure

e isochoric: process done at constant volume

e isothermal: process done at constant

temperature
e adiabatic: process where =0

e cyclic: process where initial state = final state

1.7 The basic units (SI Units)

Mass-kg.
Mole-The mole is the amount of substance that contains as many atoms (or molecules) as there

are atoms in 0.012 kg of carbon-12.



Length-m.

Time: second

Sl unit of temperature is Kelvin (abbreviated as K). The Kelvin is defined as the fraction of
1/273.16 of the thermodynamic temperature of the triple point of water. The relation between
Kelvin and Celsius temperature is K = C + 273.15 (The triple point of water is at 0.01 C).

Derived units: Force: 1 N = 1 kg m/s, pressure 1 Pa=1 N/m2, 1 bar =10 Pa, 1 atm. = 101325 Pa.
In thermodynamics we are concerned with absolute pressure. Gauge pressure = absolute pressure
— atmospheric pressure. Ordinary vacuum gauge pressure = atmospheric pressure — absolute

pressure.

1.8 Internal Energy

e The molecule as a whole can move in X, y and z directions with respective
components of velocities and hence possesses Kinetic energy.

e There can be rotation of molecule about its center of mass and than the kinetic
energy associated with rotation is called rotational energy.

e In addition the bond length undergoes change and the energy associated with it
is called vibrational energy.

e The electron move around the nucleus and they possess a certain energy that
is called electron energy.

e The microscopic modes of energy are due to the internal structure of the
matter and hence sum of all microscopic modes of energy is called the internal
energy.

Bulk kinetic energy (KE) and potential energy (PE) are considered separately and the other
energy of control mass as a single property (U).
The total energy possessed by the body is given by:

E=KE+PE+U

1.9 Work

Whenever a system interacts with its surroundings, it can exchange energy in two ways- work

and heat.



In mechanics, work is defined as the product of the force and the displacement in the direction
of the force.

Work done when a spring is compressed or extended: According to Hooke's law

Spring force = - k (x — x0)

Where K is the spring constant, X0 is the equilibrium position, and x is the final position. The
negative sign shows that the direction of the spring force is opposite the direction of the
displacement from x0. The external force is equal in magnitude but opposite in sign to the spring
force, so

External force (force of your hands) = k (x —x0).

Now, we want to calculate the work done when we stretch the spring from position 1 to position
2.

W= Fdx = k(x—X0) d(x-x0) = 1/2 k [(x2-x0)? - (x1-

x0)2] Work done when a volume is increased or

decreased

Consider a gas in a container with a movable piston on top. If the gas expands, the piston moves
out and work is done by the system on the surroundings.

Alternatively, if the gas inside contracts, the piston moves in and work is done by the
surroundings on the system. Why would the gas inside contract or expand?

It would if the external pressure, Pex, and the internal pressure, Pin, were different. To calculate
the work done in moving the piston, we know that the force = pressure times area and then work
equals pressure times area times distance or work equals pressure times the change in volume.
So, W = the integral of (Pex) dV

The differential work done (dW) associated with a differential displacement (dl) is given by
dw=Fdl

For a piston cylinder assembly,
dwW=Fdl=PA (dl) =P dV

If the gas is allowed to expand reversibly from the initial pressure P to final pressure P, then the
work done is given by
W= [pdv



e The integral represents the area under the curve on a pressure versus volume
diagram. Therefore the work depends on the path followed and work is a path
function and hence not a property of the system.

e The above expression does not represent work in the case of an irreversible process.

e The thermodynamic definition of work is «“ Work is said to be done by a system
on the surrounding if the sole effect external to the system could be reduced to
the raising of a mass through a distance”.

1.10 Heat

Heat like work, is a form of energy.

The energy transfer between a system and its surroundings is called heat if it occurs by virtue of
the temperature difference across the boundary.

The two modes of energy transfer — work and heat- depend on the choice of the system.

Heat energy moves from a hotter body to a colder body upon contact of the two bodies.

If two bodies at different temperatures are allowed to remain in contact, the system of two

bodies will eventually reach a thermal equilibrium (they will have the same temperature).

A body never contains heat. Rather heat is a transient phenomenon and can be identified as it

crosses the boundary.

1.11 Zeroth law of thermodynamics

The zeroth law of thermodynamics states that if two thermodynamic systems are each in
thermal equilibrium with a third, then they are in thermal equilibrium with each other.

9



1.12 First law of thermodynamics

The first law, also known as Law of Conservation of Energy.

It states that energy cannot be created or destroyed in an isolated system.

The first law of thermodynamics, also known as Law of Conservation of Energy, states that
energy can neither be created nor destroyed; energy can only be transferred or changed from one
form to another. For example, turning on a light would seem to produce energy; however, it is
electrical energy that is converted. A way of expressing the first law of thermodynamics is that
any change in the internal energy (AU) of a system is given by the sum of the heat (q) that flows

across its boundaries and the work (w) done on the system by the surroundings:

AU=qg+w

This law says that there are two kinds of processes, heat and work, that can lead to a change in
the internal energy of a system. Since both heat and work can be measured and quantified, this is
the same as saying that any change in the energy of a system must result in a corresponding
change in the energy of the surroundings outside the system. In other words, energy cannot be
created or destroyed. If heat flows into a system or the surroundings do work on it, the internal
energy increases and the sign of g and w are positive. Conversely, heat flow out of the system or
work done by the system (on the surroundings) will be at the expense of the internal energy, and

g and w will therefore be negative.

1.13 State Function and Path Function

10
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A state variable is a variable that depends only on the final and initial states of a system and not
on the path connecting these states. Internal energy and enthalpy are examples of state functions.

State variables can be calculated by exact differentials.

A path variable is a variable that depends on the sequence of steps that takes the system from
the initial state to the final state. This sequence of steps is called the path. Heat and work are

examples of path variables.

1.14 Types of Properties

Thermodynamic properties are divided into two broad types:

Intensive properties and extensive properties.

An extensive property is any property that depends on the size (or extent) of the system under
consideration. Volume is an example. Mass is another. An intensive property is any property

that can exist at a point in space. Temperature, pressure and density are good examples.

1.15 Constant flow processes - an open system in steady state

Consider a smooth flowing fluid. Define a system comprising a volume of space in a constant
flow process, bounded at its sides by stream lines and two cross sections Al and A2
perpendicular to the direction of flow at its ends (see figure). The bounding surface along the
stream lines could be the walls of a vessel, or any imaginary surface parallel to the steady flow.
The properties of the fluid are assumed constant over the cross-sections A1 and A2. This system
has constant mass, so we can work with per-unit-mass “intensive” variables. Consider the energy
balance. The fluid entering the system does work P1 per unit volume of fluid crossing the
surface; this work is done on the fluid already in the system. Per unit mass of fluid entering, the
work is P1/p1, where p1 is the density of the fluid at Al. Similarly the system does work —P2/p2
on the surroundings at A2. The total energy entering and leaving the fixed volume is the sum of
the kinetic energy, the internal energy and the potential energy of the fluid (all per unit mass),
plus the work done by/on the surroundings.
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1.16 Reversible and Irreversible processes
A reversible process can be represented by a continuous line and arrow on an indicator diagram.

An irreversible process cannot be represented by a continuous line on an indicator diagram. Such
a process may be represented on the graph by a sequence of circles between equilibrium states
but only the end points are well-defined. In particular if the process is not quasistatic (for
example if a piston moves too quickly temperature and pressure gradients might be set up) the
values of the state variables will not be uniform and therefore pressure and density cannot be

defined for the whole sample.
1.17 Work done during a reversible change of volume of a fluid

This could be the response to a gradual change in force on a piston or to slow heating (a change
in temperature). The area A of the piston multiplied by the pressure P of the fluid balances the
force F on the piston F = P A. The fluid expands or contracts quasistatically, with the piston
moving infinitesimal distances dx much more slowly than the time the system take to reach
equilibrium at the new volume. The infinitesimal amount of work done reversibly by the system
on its surroundings is P Adx = P dV . For a finite quasistatic change in volume from V1 to V2,

Is given by

. . 2
The total work done on the surroundings is: work done on surroundings = Jvl pPdV

12
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LAWS OF THERMODYNAMICS

2.1 Thermodynamic Laws

Heat Engines and Second Law Statements: The First Law provides a constraint on the
total energy contained in a system and its surroundings. If it disappears in one form from the
system during any thermodynamic process of change, it must reappear in another form either

within the system or in the surroundings.
2.2 Limitations of First law of thermodynamics:

The first law provides no constraint on the possible direction a process may take
place. Nevertheless, in the real world such constraints do exist. For example, heat always
flows from a high temperature body to one at a lower temperature. Momentum flow is always
prompted in the direction of a pressure gradient, and molecules always migrate from a region
of higher to lower chemical potential. These observations clearly are indicative of the

existence of a constraint on natural processes, which have never been found to be violated.

Further, it is common observation that work is readily transformed into other forms of energy,
including heat. But all efforts to develop a device that may work in a continuous manner
and convert heat completely into work or any other form of energy have proved
impossible. Experimental observations show that typically no more than 40-50% of the total

heat available may be converted to work or other energy forms.

This finding has led to the conclusion that heat is a lower form of energy in that while it may
be feasible to “degrade” work to heat, it is impossible to “upgrade” heat completely into work.
Heat may be seen as a more primitive form of energy, as it always has to be made available
from matter (say by combustion) and subsequently converted to work for carrying out activities
useful to humans. In this sense one never derives work directly from the energy locked in
matter as enthalpy. This prompts the natural question: what determines the efficiency of such
a conversion of heat to work? Evidently one needs a limiting principle that may help answer
this question. These considerations provide the basis for formulating the Second Law of

Thermodynamics



2.3 Second Law Statements

It need be mentioned that the second law is a product of experiential observations involving heat
engines that powered the Industrial Revolution of the 19" century .A heat engine is a machine
that produces work from heat through a cyclic process. An example is a steam power plant in
which the working fluid (steam) periodically goes through a series of steps in a cyclic

manner as follows:

Step 1: Liquid water at ambient temperature is pumped into a boiler operating at high

pressure century.

Step 2: Heat released by burning a fossil fuel is transferred in the boiler to the water, converting

it to steam at high-temperature and pressure

Step 3: The energy contained in the steam is then transferred as shaft work to a turbine; during

this process steam temperature and pressure are reduced.

Step 4: Steam exiting the turbine is converted to water by cooling it and transferring the
heat released to the surroundings. The water is then returned to step 1.

Like the steam power plant all heat engines absorb heat at a higher temperature body (source)
and release a fraction of it to a low temperature body (sink), the difference between the two
quantities constitutes the net work delivered during the cycle. As in the case of the steam cycle, a
series of heat and work exchanges takes place, in each case a specific hot source and a cold sink
are implicated.

There are indeed a large number other types of practical heat engines and power cycles.
Select examples include: Ericsson Cycle, Stirling cycle, Otto cycle (e.g. Gasoline/Petrol
engine, high-speed diesel engine), Diesel cycle (e.g. low-speed diesel engine), etc. The
Rankine cycle most closely reproduces the functioning of heat engines that use steam as
the process fluid function; such heat engines are most commonly found in power generation
plants. In such plants typically heat is derived from nuclear fission or the combustion of
fossil fuels such as coal, natural gas, and oil. Detailed thermodynamic analysis of the various
heat engine cycles may be found in a number of textbooks (for example: J.W. Tester and M.
Modell, Thermodynamics and its Applications, 3rd ed., Prentice Hall, 1999)

As evident, the operation of practical heat engines requires two bodies at constant
differential temperature levels. These bodies are termed heat reservoirs; they essentially are

bodies with — theoretically speaking — infinite thermal mass (i.e., mCP — oo ) which therefore
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do not undergo a change of temperature due to either release or absorption of heat. The above
considerations may be converted to a set of statements that are equivalent descriptors
of the second law (R. Balzheiser, M. Samuels, and J. Eliassen, Chemical Engineering
Thermodynamics, Prentice Hall, 1972):

Kelvin-Planck Statement: It is impossible to devise a cyclically operating device, the sole effect

of which is to absorb energy in the form of heat from a single thermal reservoir and to deliver

an equivalent amount of work.

Clausius Statement: It is impossible to devise a cyclically operating device, the sole effect of

which is to transfer energy in the form of heat from a low temperature body to a
high temperature body.

2.4 Carnot Heat Engine Cycle and the 2nd Law

In theory we may say that a heat engine absorbs a quantity of heat QH from a high
temperature reservoir at TH and rejects amount of heat QC to a colder reservoir at TC. It

follows that the net work W delivered by the engine.

Of the various forms of heat engines ideated, the Carnot engine proposed in 1824 by the
French engineer Nicholas Leonard Sadi Carnot (1796-1832), provides a fundamental

reference concept in the development of the second law.

e Step 1. A system at the temperature of a cold reservoir TC undergoes a
reversible adiabatic compression which raises it temperature to that of a hot reservoir
at TH

e Step 2: While in contact with the hot reservoir the system absorbs QH amount of
heat through an isothermal process during which its temperature remains at TH

e Step 3: The system next undergoes a reversible adiabatic process in a direction
reverse of step 1 during which its temperature drops back to TC

e Step 4: A reversible isothermal process of expansion at TC, transfers QC amount of
heat to the cold reservoir and the system state returns to that at the commencement of

step 1.



The Carnot engine, therefore, operates between two heat reservoirs in such a way that all
heat exchanges with heat reservoirs occur under isothermal conditions for the system and
at the temperatures corresponding to those of the reservoirs. This implies that the heat transfer
occurs under infinitesimal temperature gradients across the system boundary, and hence these
processes are reversible. If in addition the isothermal and adiabatic processes are also
carried out under mechanically reversible (quasi-static) conditions the cycle operates in a
fully reversible manner. It follows that any other heat engine operating on a different
cycle (between two heat reservoirs) must necessarily transfer heat across finite
temperature differences and therefore cannot be thermally reversible. | rreversibility also
derives from the existence of dissipative forces in nature, which essentially leads to waste of
useful energy in the conversion of work to heat. It follows therefore the Carnot cycle (which
also comprises mechanically reversible processes) offers the maximum efficiency possible
This conclusion may also be proved more formally (see K. Denbigh, Principles of Chemical
Equilibrium, 4th ed., Cambridge University Press, 1981).

Further for the adiabatic paths xy and zw one may easily derive the following equality:

y
|Qu|= RT, IHFI

r

And [0, |= R?}.In%



2.5 ENTROPY OF THE SYSTEM

In thermodynamics, entropy (usual symbol S) is a measure of the number of specific realizations
or microstates that may realize a thermodynamic system in a defined state specified by
macroscopic variables. Most understand entropy as a measure of molecular disorder within a
macroscopic system. The second law of thermodynamics states that an isolated system's entropy
never decreases. Such a system spontaneously evolves towards thermodynamic equilibrium, the
state with maximum entropy. Non-isolated systems may lose entropy, provided they increase their
environment's entropy by that increment. Since entropy is a state function, the change in entropy
of a system is constant for any process with known initial and final states. This applies
whether the process is reversible or irreversible. However, irreversible processes increase the
combined entropy of the system and its environment. The change in entropy (AS) of a system
was originally defined for a thermodynamically reversible process as

AS =nRIn % = -—nhRin %.

o
AS = / T

2.6 ENTROPY CHANGE FOR SIMPLE PROCESS

For certain simple transformations in systems of constant composition, the entropy changes
are given by simple formulas.
Isothermal expansion or compression of an ideal gas

For the expansion (or compression) of an ideal gas from an initial volume Vb and pressure Foto

a final volume V and pressure [ at any constant temperature, the change in entropy is given by:


https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Order_and_disorder
https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
https://en.wikipedia.org/wiki/State_function

Here 71 is the number of moles of gas and [ is the ideal gas constant. These equations also
apply for expansion into a finite vacuum or a throttling process, where the temperature,

internal energy and enthalpy for an ideal gas remain constant.

COOLING AND HEATING

For heating or cooling of any system (gas, liquid or solid) at constant pressure from an 1nitial

temperature T5 to a final temperature 1 , the entropy change is

AS =nCpln %

0.

provided that the constant-pressure molar heat capacity (or specific heat) Cp is constant and that

no phase transitionoccurs in this temperature interval.

Similarly at constant volume, the entropy change is

T
J&S — 'C.“T_’l p—
n 1 TD

¥

where the constant-volume heat capacity C- 1s constant and there 1s no phase change.

At low temperatures near absolute zero, heat capacities of solids quickly drop off to near zero, so

the assumption of constant heat capacity does not apply.



Since entropy is a state function, the entropy change of any process in which temperature and
volume both vary 1s the same as for a path divided into two steps - heating at constant volume

and expansion at constant temperature. For an 1deal gas, the total entropy change is
rs

AS =nC,In 1 +nRIn —

Ty Vo
Similarly if the temperature and pressure of an ideal gas both vary,
T P
AS=nCpln — —nRIn —
Ty B

PHASE TRANSITIONS

Reversible phase transitions occur at constant temperature and pressure. The reversible heat is
the enthalpy change for the transition, and the entropy change is the enthalpy change divided by
the thermodynamic temperature. For fusion (melting) of a solid to a liquid at the melting

point 7m, the entropy of fusion is

AHg,
ASp. = Tm‘ .

2.7 ENTROPY CHANGE FOR MIXING
In ideal materials, intermolecular forces are the same betwken every pair of molecular kinds, so
that a molecule "feels" no difference between itself and its molecular neighbours. This is the

reference case for examining corresponding mixings of non-ideal materials.
For example, two ideal gases, at the same temperature and pressure, are initially separated by a
dividing partition.
Upon removal of the dividing partition, they expand into a final common volume (the sum of the
two initial volumes), and the entropy of mixing ASpiz is given by

ASpiz = —nR(xyInay + 29 Inay)
where Ris the gas constant, 7 the total number of molesand i the mole fraction of

component ?"; which initially occupies volume Vi =2V After the removal of the partition,

i = N} the moles of component ¢ may explore the combined volume V/, which causes an



entropy increase equal to na; R 11](1—";/ Vi) = —nRz; N T; g5 eqch component gas.

In this case, the increase in entropy is due entirely to the irreversible processes of expansion of

the two gases, and involves no heat or work flow between the system and its surroundings.
Gibbs free energy of mixing

The Gibbs free energy change AGniz = AH,iz — TAS iz determines whether mixing

at constant (absolute) temperature T and pressure P is a spontaneous process. This quantity

combines two physical effects—the enthalpy of mixing, which is a measure of the energy

change, and the entropy of mixing considered here.

For an ideal gas mixture or an ideal solution, there is no enthalpy of mixing (*ﬁHmi;r), so that

the Gibbs free energy of mixing is given by the entropy term only:

.-“'_\u.G.,mE = —T-’igmi.z

For an ideal solution, the Gibbs free energy of mixing is always negative, meaning that mixing of
ideal solutions is always spontaneous. The lowest value is when the mole fraction is 0.5 for a

mixture of two components, or 1/n for a mixture of n components.

2.8 CLAUSIUS INEQUALITY

Since the concept irreversibility plays a crucial role in the thermodynamics, it is necessary for us
to find an approach to determine whether the process is reversible or not. And the most well-
known Clausius Inequality provides us this possibility. Imagine that we have a reversible
engine which consists of more than two heat reservoirs. We know from the Carnot Principles
that between the same reservoirs (one is a constant temperature source and the other a constant
temperature sink), the efficiency of a reversible heat engine is always greater than the
efficiency of an irreversible one. Hence, for the maximum efficiency, Carnot efficiency, all
the heat transfer must take place at highest and lowest reservoir temperatures. In other words,
heat is absorbed from temperature source with TH and released to temperature sink with
TL by heat engine during each sub process. Now we draw an arbitrary reversible cycle
process operated by the engine in p-v diagram. We can divide this cycle process into
infinite small Carnot process reversible isothermal expansion at T1; Heat g1 is absorbed. :
reversible adiabac expansion. : reversible isothermal compression at T2; Heat g2 is released.

- reversible adiabatic compression.



2.9 MATHEMATICAL STATEMENT OF 2"° | AW OF THERMODYNAMICS

Consider a mechanically irreversible adiabatic between two equilibrium states X and Y. This
path is reproduced as a broken line between points. Next the fluid is returned to the original
state by means two sequential processes: (i) a mechanically reversible adiabatic process Y-Z,
and then (ii) a reversible isobaric compression Z-X. Assuming that the mechanically
irreversible process X-Y leads to an entropy change, heat transfer must occur during process
Z-X (since none occurs on Y-Z). This is because for the reversible return path the same
entropy change must occur as between X to Y. Since the return path
a0, =Tds.

Thus, integrating this expression for the return path:

b= [[as =5 -5, e

For the entire cykcle we must have AT =0. Thus, net total work during the cycle may be written

! ——
as: = Q’E’V. However, since (as depicted by the P-V diagram) a net work would need to be

W' > 0, hence O, <

done gnthe system over the cycle, it follows that 0. Therefore, using eqn.

xd
S-Sy =] %m,

t
that is: Sk <8y . This implies that the entropy change for the original irreversible step A to B,
we have

t _ ot
we have: AS' =8y =8y >0, Therefore, we conclude that the original irreversible step is

accompanied by a positive change of entropy. It may be additionally shown that if the original
process occurred through irreversible heat transfer process an increase of entropy would result
likewise.

what change in a system is thermodynamically feasible? The second law provides answer to this,
1.e., a process can only proceed in a direction that results in a positive change in the fotal entropy
of the universe, the limiting value of zero being attained only by a fully reversible process. The

corollary to this is: no process is possible for which the total entropy of the universe decreases

10
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THERMODYMANIC EQUATIONS OF STATE

An equation of state is an equation which relates the variables of state (T, P, V, and n). It's
particularly useful when you want to know the effect of a change in one of the variables of

state

Solids and Liquids: If the pressure on a solid or liquid is increased, the volume does not
change much. If the temperature is increased, the volume doesn't change much either.
Therefore, an appropriate equation of state describing such systems would be: V/(T,P)

= constant.

Gases: In contrast, changing the pressure or temperature of a gas will have an easily
observable effect on the volume of that gas. For an ideal gas (no intermolecular
interactions and no molecular volume) n appropriate equation of state would be:
V(T,P,n) = (NRT)/P.

(1 There are many equations of state describing real gases. These equations take in
consideration molecular volume and interactions. The most well-known such equations

is probably the VVan der Waals equation.
3.1 Ideal and real gases
An ideal gas is one which follows the ideal gas equation of state, namely
PV=(m/M)(MR)T=nRy T

The universal gas constant has a value of 8.314 J/mol K or kJ/kmol K and is related to

the specific gas constant by the relation Ry = (R /M)

The ideal gas equation of state can be derived from the kinetic theory of gases where the

following assumptions are made:

1. The molecules are independent of each other. In other words, there are no attractive

forces between the molecules.
2. The molecules do not occupy any volume. That is the volume occupied by the molecules

is quite negligible compared to the volume available for motion of the molecules.

The internal energy of an ideal gas is a function of temperature only and is independent of

pressure and volume. That is,



u=u(T)

(0u/dP)T =0, (0u /ov)T =0

3.2 Enthalpy and specific heat

h =u+ Pv

For an ideal gas u = u(T) only and PV = mRT and hence h = h(T) only.

The specific heat at constant volume is defined as the amount of energy transferred as heat
at constant volume, per unit mass of a system to raise its temperature by one degree. That

is,

Cv = (dg/dT)v

The specific heat at constant pressure is defined as the energy transferred as heat at constant
pressure, per unit mass of a substance to raise its temperature by one degree. That is
Cp = (dg/dT)p

For a constant pressure process dq = du + dw = du + Pdv = du+ Pdv +vdP(since dP=0 for

a constant pressure process)
Or dg= du+d(Pv) = d(U+ Pv) = dh

or dg=dh
Cp = (ch/0T)p

The ratio of specific heat (y) is given by

v=C P/Cy
For mono-atomic ideal gases y = 1.67 and for diatomic gases y=1.4.

3.3 Relation between two specific heats:
The two specific heats are related to each other.
h=u+ Pv or dh = du + d(Pv)

For an ideal gas, the above equation reduces to



dh =du + d(RT) =du + RdT or
dh/dT = du/dT+R or Cp = Cy+ R
or Cp —Cy =R for an ideal gas.
v=Cp /Cy or Cp =R/(y-1) and Cy = Ry/(y-1)
3.4 Real gases:
The ideal gas law is only an approximation to the actual behavior of gases.

At high densities, that is at high pressures and low temperatures, the behavior of actual or real
gases deviate from that predicted by the ideal gas law. In general, at sufficiently low pressures
or at low densities all gases behave like ideal gases.

3.5 Van der Waals Equation of State

An equation of state taking account the volume occupied by the molecules and the

attractive forces between them.
(P+aiv® )(v-b) = RT
where a and b are van der Waals constants.

The equation is cubic in volume and in general there will be three values of v for given values
of T and P.

However in some range of values of P and T there is only one real value v.

For T >T¢ (critical temperature) there will be only one real value of v and for T< T¢ there will

be three real values.

In Figure, the solid curve represents the value predicted by the van der Waals equation of state

and the points represent the experimentally determined values.

It can be observed that at temperatures greater than critical, there is only one real value
of volume for agiven Pand T.

However at temperatures less than the critical, there are three real values of volume for a

given value of P and T.

The experimental values differ from those predicted by van der Waals equation of state in region



2345 if T<Tg.

One can use the criterion that the critical isotherm (isotherm passing through the critical point)

shows a point of inflexion. Stated mathematically
(0P/ov)T=Tc= 0 and (8%P/ov®)T=Tc = 0
(OP/ov)T=Tc = -RTc/(vc —b)? + 2alve® = 0

or
RT¢/(ve —b)? = 2alvc®
(@%P/ov3)T=Tc = 2RTc/(ve-b)® -6alve? = 0

or

2RTc/(ve-b) = 6aive?

Therefore

2/(vc —b) =3/v¢ orve =3b

At the critical point, the van der Waal’s equation is given by
Pc =RT¢/(ve —b) - a/V(;2
From these equations,

a = 27R%Tc2/64 Pc and b = RT¢/8P¢



Reference Equations of state

Redlich-Kwong (1949) RT a

Py v >
Soave-Redlich-Kwong (1972) RT alT)

P8 v+
Peng- Robinson (1976) _RT all’)

PV e Vs )+ bV =b)
Stryjek-Vera-Peng-Robinson RT al@.T)
(1986) Py s TV b+ bV =b)

RT alT)

Patel Teja (1982) F:i'-b-!'{!'+b]+c{!'-b]

Reduced pressure, PR = P/Pc,

Reduced temperature, TR = T/T¢

Reduced volume, VR = v/v¢

Where Pg¢, T¢ and v denote the critical pressure, temperature and volume respectively.

These equations state that the reduced property for a given state is the value of this property in

this state divided by the value of this same property by at the critical point.

The striking fact is that when such Z versus Py diagrams are prepared for a number of
different substances, all of them very nearly coincide, especially when the substances have

simple, essentially spherical molecules.

We need to know only critical temperature and critical pressure to use this basic

generalized chart.

In general it can be noted that idealized gas behavior for very low pressures as compared to

critical) regardless of temperature. Furthermore, at high temperatures (greater than twice T¢),
the ideal-gas model can be assumed to good accuracy to pressures as high as 4-5 times Pg.

The term saturation temperature designates the temperature at which vaporization takes place.



For water at 99.6 C the saturation pressure is 0.1 M Pa, and for water at 0.1 Mpa, the saturation

temperature is 99.6 C.

If a substance exists as liquid at the saturation temperature and pressure it is called saturated

liquid.

If the temperature is of the liquid is lower than saturation temperature at the existing pressure

it is called sub-cooled liquid or compressed liquid.

1. When a substance exists as part liquid and part vapor at the saturation temperature,

its quality is defined as the ratio of the mass of vapor to the total mass.
2. Ifasubstance exists as vapor at the saturation temperature, it is called a saturated vapor.

3. When the vapor is at a temperature greater than the saturation temperature, it is said

to exist as superheated vapor.
4. At the critical point, the saturated liquid and saturated vapor state are identical.

5. At supercritical pressures, the substance is simply termed fluid rather than liquid or

vapor.

6. If the initial pressure at —20%C i 0.260 kPa, heat transfer results in increase

of temperature to ~10%¢C. Ice passes directly from the solid phase to vapor phase.

7. Atthe triple point (0.6113 kPa) and a temperature of —ZOOC, let heat transfer increase

the temperature until it reaches 0.019C. At this point, further heat transfer may cause
some
ice to become vapor and some to become liquid. The three phases may be

present simultaneously in equilibrium.
3.6 Tables of Thermodynamic Properties

Tables of thermodynamic properties of many substances are available, and in general, all

these have same form.

Steam tables are selected because steam is used extensively in power plants and industrial

processes.



The steam tables provide the data of useful thermodynamic properties like T, P, v, u, h and s for

saturated liquid, saturated vapor and superheated vapor.

Since the properties like internal energy, enthalpy and entropy of a system cannot be
directly measured; they are related to change in the energy of the system.

Hence one can determine Au, Ah, As, but not the absolute values of these properties. Therefore
it is necessary to choose a reference state to which these properties are arbitrarily assigned

some numerical values.

For water, the triple point (T = 0.01° C and P = 0.6113 kPa) is selected as the reference

state, where the internal energy and entropy of saturated liquid are assigned a zero value.

In the saturated steam tables, the properties of saturated liquid that is in equilibrium

with saturated vapor are presented.

During phase transition, the pressure and temperature are not independent of each other. If the
temperature is specified, the pressure at which both phases coexist in equilibrium is equal to

the saturation pressure.

Hence, it is possible to choose either temperature or pressure as the independent variable, to

specify the state of two-phase system.

Depending on whether the temperature or pressure is used as the independent variable, the tables

are called temperature or pressure tables.

The two phases- liquid and vapor can coexist in a state of equilibrium only up to the
critical point.

Therefore the listing of the thermodynamic properties of steam in the saturated steam

tables ends at the critical point (374.15O C and 212.2 bar).

If the steam exists in only one phase (superheated steam), it is necessary to specify two
independent variables, pressure and temperature, for the complete specification of the state.
In the superheated steam tables, the properties- v, u, h, and s- are tabulated from the

saturation temperature to some temperature for a given pressure.



The thermodynamic properties of a liquid and vapor mixture can be evaluated in terms of its
quality. In particular, the specific volume, specific internal energy, specific enthalpy and

specific entropy of a mixture of quality X are given by

v = (1-X)vf + Xvg, u = (1-X)uf + Xug, h = (1-X)hf + Xhg = hf + Xhfg, s = (1-X)sf + Xhg
where hfg = hg - hf = latent hat of vaporization.

3.7 Temperature-volume diagram

The locus of all the saturated states gives the saturated liquid curve AC and the locus of all
the saturated vapor states gives the saturated vapor states gives the saturated vapor states gives

the saturated vapor curve BC.

The point C represents the critical point. The difference between vg and vf reduces as

the pressure is increased, and at the critical point vg = vf .

At the critical point, the two phases-liquid and vapor- are indistinguishable.

3.8 Pressure-volume diagram

The pressure-volume (P-V) diagram for a pure substance is shown in Figure. The curves AC
and BC represent the saturated liquid curve and saturated vapor curve, respectively, and C is
critical point.

The area under the curve represents the two-phase region. Any point M in this region is a
mixture of saturated liquid (shown as f) and saturated vapor (g).

3.9 Mollier (h-s) Diagram

The h-s diagram was introduced by Richard Mollier and was named after him.

It consists of a family of constant pressure lines, constant temperature lines and constant

volume lines plotted on enthalpy versus entropy coordinates.

In the two-phase region, the constant pressure and constant temperature lines coincide.



3.10 Polytropic Process

W = cdv/ V"

w = (P1v1- P2v2)/(n-1)

du = dg — dw

u2 —u1 =q- (P1v1- P2v2)/(n-1)
uz-u1=Cv (T2-T1)=q-w

q=R(T2 - T1)/(D-1) + (P1v1- P2v2)/(n-1)
=R (T1 - T2){1/(n-1) - 1/(C-1)}

=(P1v1- P2v2)/(n-1) {(C -n)/(T-1)}

=w.{ (1 -n)/(0-1)}

Problem: Air (ideal gas with [1 =1.4) at 1 bar and 300K is compressed till the final volume

1.25

is one-sixteenth of the original volume, following a polytropic process Pv = const.

Calculate (a) the final pressure and temperature of the air, (b) the work done and (c) the energy

transferred as heat per mole of the air.

1.25 1.25

Solution: (a) P1v1 = Pov2™
P2 = P1(v1/v2)1'25 = 1(16)1'25 =32 bar
T2 = (T1P2v2)/(P1v1) = (300 x 32 x 1)/(1x16)

= 600K
(b) w= (P1v1i- P2v2)/(n-1)

= Ru(T1 -T2)/(n-1)

= 8.314 (300 — 600)/(1.25-1) = -9.977 kJ/mol

(©)

=-9.977 (1.4 — 1.25)/(1.4-1)



=-3.742 kJ/mol

3

Problem: A rigid and insulated container of 2m®“ capacity is divided into two

equal compartments by a membrane. One compartment contains helium at 200kPa and 127°C

while the second compartment contains nitrogen at 400kPa and 227°9C. The membrane is
punctured and the gases are allowed to mix. Determine the temperature and pressure after
equilibrium has been

established. Consider helium and nitrogen as perfect gases with their Cy as 3R/2 and

5R/2 respectively.

Solution: Considering the gases contained in both the compartments as the system, W= 0 and
Q =0. Therefore, U =0 (U2 =U1)

Amount of helium = NHe = PAVA/RUTA

=200 x 103 x 1/(8.314 x400)
= 60.14 mol.

Amount of nitrogen = NN2 = PBVB/RUTB
= 400 x 103 x 1/(8.314x500)

= 96.22 mol.
Let Tf be the final temperature after equilibrium has been established. Then,

[NCy(Tf-400)]He + [NCv(Tf-500)]N2 =0

Ru[60.14(T§-400)3 + 96.22(T§-500)5 ] /2 = 0



Or, Tf =472.73 K

The final pressure of the mixture can be obtained by applying the equation of state:

PfVf = (NHe + NN2)Ru Tf

2Pf = (60.14 + 96.22) 8.314 (472.73)

or, Pf =307.27 kPa
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THERMODYNAMIC FORMULATIONS

4.1 Properties

4.1.1 Reference Properties

Property which enable us to define the state of the system.

Eg., Temperature, Pressure, Volume

4.1.2 Energy Properties

Properties in which the changes in thermodynamic functions such as Internal energy,
enthalpy etc.,

Eg., Gibbs free energy, Helmholtz energy

4.1.3 Derived Properties

Properties which are derived mathematically from reference and energy properties.

Eg., Specific heat

4.2 Thermodynamic Property Relations

Apart from internal energy and enthalpy, two other ones that are particularly useful in depiction
of thermodynamic equilibrium are Helmholtz free energy (A) and Gibbs free energy (G). We defer
expanding upon the concept of these two types of energies to chapter 6; however, we state their
definition at this point as they are instrumental in the development of property correlations for real

fluids.

+ Specific Helmholtz free energy: A=U -TS



« Specific Gibbs free energy:G=H - TS
dU =dQ +dw
du= TdS- PdVv

H = U + PV and taking a total differential of both sides:

4.3 Relation between Cp and Cv

Cp and Cy are related to each other and their difference can be calculated from an equation of state.

6,~Ga[ ][]
8T J,\oT ),

Let's begin with the definitions of C » and H.
OH
(%)
aT J,

_(aU+ pV]]
aj" r
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Divide the above equation by dT and keeping p constant
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4.4 Maxwell’s Relation
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4.5 Mnemonic Diagram

The differential expressions for the thermodynamic potentials and Maxwell relations can be

remembered conveniently in terms of a thermodynamic Mnemonic diagram.

The diagram consists of a square with two diagonal arrows pointing upwards and the
thermodynamic potentials in alphabetical order clockwise on the sides as shown in figure. The

natural variables associated with each potential are placed in the corners.



Diagonal arrows indicate the coefficients associated with the natural variables in the differential

expression of the potential. The sign of the coefficient depends on whether the arrow is pointing
towards (- ve) or away from the natural variable (+ ve).

du = (sign)(coeff.) ds + (sign)(coeff.) dv
du = (sign)Tds + (sign)Pdv
du = +Tds - Pdv

To write the Maxwell relations we need to concentrate on the direction of the
arrows and the natural variables only.

If both the arrows pointing in the same direction, there is no need to change the
sign, otherwise the equation should carry a negative sign.



4. 6 Flow through nozzles

A nozzle is a duct that increases the velocity of the flowing fluid at the expense of pressure drop.
A duct which decreases the velocity of a fluid and causes a corresponding increase in pressure is
a diffuser . The same duct may be either a nozzle or a diffuser depending upon the end conditions
across it. If the cross-section of a duct decreases gradually from inlet to exit, the duct is said to be
convergent. Conversely if the cross section increases gradually from the inlet to exit, the duct is
said to be divergent. If the cross-section initially decreases and then increases, the duct is called a
convergent-divergent nozzle. The minimum cross-section of such ducts is known as throat. A fluid
is said to be compressible if its density changes with the change in pressure brought about by the
flow. If the density does not changes or changes very little, the fluid is said to be incompressible.
Usually the gases and vapors are compressible, whereas liquids are incompressible .

4.6.1 Stagnation, Sonic Properties And Isentropic Expansion In Nozzle

The stagnation values are useful reference conditions in a compressible flow. Suppose the
properties of a flow (such as T, p, p etc.) are known at a point. The stagnation properties at a point
are defined as those which are to be obtained if the local flow were imagined to cease to zero
velocity is entropically. The stagnation values are denoted by a subscript zero. Thus, the stagnation

enthalpy is defined as

For a calorically perfect gas, this yields,

cPﬁzmpT+%V2

by =h+=0>



which defines the stagnation temperature. It is meaningful to express the ratio of (/1) in the form

If we know the local temperature (T) and Mach number (Ma), we can fine out the stagnation

temperature To . Consequently, isentropic relations can be used to obtain stagnation pressure and

stagnation density as.

In general, the stagnation properties can vary throughout the flow field.

il
h+—
However, if the flow is adiabatic, then 2 is constant throughout the flow. It follows that the

%07 and “0 are constant throughout an adiabatic flow, even in the presence of friction. Here a is

the speed of sound and the suffix signifies the stagnation condition. It is understood that all stagnation
properties are constant along an isentropic flow. If such a flow starts from a large reservoir where the
fluid is practically at rest, then the properties in the reservoir are equal to the stagnation properties
everywhere in the flow .

There is another set of conditions of comparable usefulness where the flow is sonic, Ma=1.0.

. . . . ) p*?p*,a_*? T* .
These sonic, or critical properties are denoted by asterisks: and. £ ™. These properties are

attained if the local fluid is imagined to expand or compress isentropically until it reachers Ma=1.
We have already discussed that the total enthalpy, hence o , Is conserved so long the process
is adiabatic, irrespective of frictional effects. In contrast, the stagnation pressure #0 and

density 0 decrease if there is friction.
From Equation, we note that

V=20, (Ty - T)

1
=122 -2
v—1



or,

is the relationship between the fluid velocity and local temperature (T), in an adiabatic flow. The flow

can attain a maximum velocity of

rr

max:[

2YRT, ]%
v—1

As it has already been stated, the unity Mach number, Ma=1, condition is of special significance in

compressible flow, and we can now write from Eq.(18.2), (18.3) and (18.4).

1.

At subsonic speeds (Ma<1) a decrease in area increases the speed of flow. A subsonic
nozzle should have a convergent profile and a subsonic diffuser should possess a divergent
profile. The flow behaviour in the regime of Ma<1 is therefore qualitatively the same as in

incompressible flows.

In supersonic flows (Ma>1), the effect of area changes are different. According to Eq. (19.4),
a supersonic nozzle must be built with an increasing area in the flow direction. A supersonic
diffuser must be a converging channel. Divergent nozzles are used to produce supersonic flow

in missiles and launch vehicles.

Suppose a nozzle is used to obtain a supersonic stream staring from low speeds at the inlet
(Fig.19.2). Then the Mach number should increase from Ma=0 near the inlet to Ma>1 at the
exit. It is clear that the nozzle must converge in the subsonic portion and diverge in the
supersonic portion. Such a nozzle is called a convergent-divergent nozzle.A convergent-
divergent nozzle is also called a de Laval nozzle, after Carl G.P. de Laval who first used such
a configuration in his steam turbines in late nineteenth century (this has already been
mentioned in the introductory note). Mach number must be unity at the throat, where the area

is neither increasing nor decreasing. This is consistent with Eq. (19.4) which shows that dV



can be non-zero at the throat only if Ma=1. It also follows that the sonic velocity can be

achieved only at the throat of a nozzle or a diffuser.

4.7 Compressors

There exist a large number of fluid machines in practice, that use air, steam and gas (the mixture of
air and products of burnt fuel) as the working fluids. The density of the fluids change with a change
in pressure as well as in temperature as they pass through the machines. These machines are called
‘compressible flow machines' and more popularly 'turbomachines'. Apart from the change in density
with pressure, other features of compressible flow, depending upon the regimes, are also observed in
course of flow of fluids through turbomachines. Therefore, the basic equation of energy transfer
(Euler's equation, as discussed before) along with the equation of state relating the pressure, density
and temperature of the working fluid and other necessary equations of compressible flow, are needed
to describe the performance of a turbomachine. However, a detailed discussion on all types of
turbomachines is beyond the scope of this book. We shall present a very brief description of a few
compressible flow machines, namely, compressors, fans and blowers in this module. In practice two

kinds of compressors:centrifugal and axial are generally in use.

4.7.1 Centrifugal Compressors

A centrifugal compressor is a radial flow rotodynamic fluid machine that uses mostly air as the
working fluid and utilizes the mechanical energy imparted to the machine from outside to increase

the total internal energy of the fluid mainly in the form of increased static pressure head.

During the second world war most of the gas turbine units used centrifugal compressors. Attention
was focused on the simple turbojet units where low power-plant weight was of great importance.
Since the war, however, the axial compressors have been developed to the point where it has an
appreciably higher isentropic efficiency. Though centrifugal compressors are not that popular today,
there is renewed interest in the centrifugal stage, used in conjunction with one or more axial stages,

for small turbofan and turboprop aircraft engines.

A centrifugal compressor essentially consists of three components.



1. Astationary casing

2. A rotating impeller as shown in Fig. 6.1 (a) which imparts a high velocity to the air. The
impeller may be single or double sided as show in Fig. 6.1 (b) and (c), but the fundamental
theory is same for both.

3. A diffuser consisting of a number of fixed diverging passages in which the air is decelerated

with a consequent rise in static pressure.

Impeller eye

Impeller blades

¥ Vaneless space

Volute
casing

Casing - W

-
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4.7.2 Principle of operation

Air is sucked into the impeller eye and whirled outwards at high speed by the impeller disk. At any
point in the flow of air through the impeller the centripetal acceleration is obtained by a pressure head
so that the static pressure of the air increases from the eye to the tip of the impeller. The remainder
of the static pressure rise is obtained in the diffuser, where the very high velocity of air leaving the

impeller tip is reduced to almost the velocity with which the air enters the impeller eye.

Usually, about half of the total pressure rise occurs in the impeller and the other half in the diffuser.
Owing to the action of the vanes in carrying the air around with the impeller, there is a

slightly higher static pressure on the forward side of the vane than on the trailing face. The air will
thus tend to flow around the edge of the vanes in the clearing space between the impeller and the
casing. This results in a loss of efficiency and the clearance must be kept as small as possible.
Sometimes, a shroud attached to the blades as shown in Figure.6.1(d) may eliminate such a loss, but

it is avoided because of increased disc friction loss and of manufacturing difficulties.

The straight and radial blades are usually employed to avoid any undesirable bending stress to be set
up in the blades. The choice of radial blades also determines that the total pressure rise is divided

equally between impeller and diffuser.

Before further discussions following points are worth mentioning for a centrifugal compresssor.

(i) The pressure rise per stage is high and the volume flow rate tends to be low. The pressure rise per
stage is generally limited to 4:1 for smooth operations.

(ii) Blade geometry is relatively simple and small foreign material does not affect much on

operational characteristics.

(i) Centrifugal impellers have lower efficiency compared to axial impellers and when used in aircraft
engine it increases frontal area and thus drag. Multistaging is also difficult to achieve in case of

centrifugal machines.



Compressors are used to move gases and vapors in situations where large pressure differences

are necessary.

4.7.3 Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating.
Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate
at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller

and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural
gas gathering and transmission systems, but are less common in process applications. Reciprocating
compressors may be used when very large pressure differences must be achieved; however, since

they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers.
When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a
compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise.
Since the temperature change is accompanied by a change in the specific volume, the work necessary
to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by
cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through
a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used,
intercooler heat exchangers are often used between the stages.

4.7.4 Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-
stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section
where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to
pressure. In a multistage compressor, the gas encounters another set of guide vanes and the

compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

4.8 Entropy



The second law of thermodynamics states that all spontaneous processes are, to some extent,
irreversible and are accompanied by a degradation of energy. It also means that it is impossible for
any self-acting machine to transfer energy from a given state to a higher state of availability. To make
these statements quantitative there is required some function that always changes in a certain way
during a spontaneous process and therefore, will characterise such a change. Internal energy was

defined to give quantitative significance to the first law. Internal energy does not change in any
characteristic way in a spontaneous process, and it does not help in any way in the development of the
second law. The function that 1s fundamental 1n the development of the second law 1s entropy, which
means transformability (change) in Greek, introduced by Clausius in 1851. Later in this chapter, we
will show that the second law of thermodynamics necessitates that all spontaneous processes result in
an increase in the entropy and no process 1s possible that results in a decrease in entropy.

As noted above, the entropy is a measure of the unavailability of the internal energy. Among the
various forms, heat 1s the least available form of energy. Whenever a certain form of energy gets
transformed to heat the total energy gets degraded with a corresponding increase in the entropy of the
system. Consider 1 kg of water at the top of a mountain of height about 426.8 m. At this position,
water possesses a potential energy of nearly 4.187 kJ. When the water falls and strikes the river at the
bottom, all 1ts potential energy gets converled to thermal energy with a consequent temperature rise ol
water by approximately 1 K. This process results in a degradation of total energy. If not, we could
have reversed the process and raised the water to its mnitial position by cooling it by 1 K. This

degradation of energy is measured by a net increase in the entropy. In this case, the increase in
entropy was due to the degeneration of mechanical energy into heat. In general, an increase in entropy
results from the addition of heat into the system through the degradation of energy in any form or, by
the direct supply of heat to the system. In short, the entropy of the system is increased by the
addition of heat through any mechanism or from any source. The increase in entropy 1is
proportional to the heat exchanged but not equal to it, since, it is necessary to consider the
temperature of the system when the heat is transferred.



The amount of heat added to a system is only a partial measure of the magnitude of its entropy
increase. It also depends upon the temperature of the system to which heat 1s added. Consider a
system consisting of a weight and two separate reservoirs, one at temperature 77 and the other at a

lower temperature 7.. The weight 1s first allowed to fall to the high-temperature reservorr,

transferring to it certain quantity of heat in the process. The heat so transferred is then made to flow
into the reservoir at 7. These two irreversible processes result in a net increase in entropy which

would be the same as the increase in entropy that would result if the weight were allowed to fall
directly to the reservoir at 7. This is so, because, the initial and the final conditions are the same in

both cases. Entropy, as will be shown later, is a thermodynamic property that depends only on the
terminal states and not on the path followed. Therefore, the change in entropy would be the same 1n
both cases. In the first instance, it 1s the sum of two contributions: one, the entropy change that
resulted by the dropping of the weight to the hot reservoir; and the other by the transfer of heat to the
cold reservoir. Since, these two together equal the entropy change resulted by the dropping of the
weight to the cold reservoir, we can conclude that the change in entropy due to the lowering of weight
to a reservoir at a high temperature 1s less than that resulted when the weight was lowered to the
reservoir at a low temperature. It means that the transfer of energy to a low temperature leads to a
greater degradation than that resulted by the transfer of the same quantity to a higher temperature. The
greater the degradation of the energy, the greater would be the irreversibility of the process. Entropy,
being a thermodynamic function, used to measure the degree of degradation or the extent of
irreversibility, should therefore, be related not to O, but to O/T, where Q is the heat received by the
reservoir and 7 is its temperature.
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Applications of the Laws of Thermodynamics

5.1.1 Continuity Equation
For a control volume (see Fig. 5.1), the law of conservation of mass may be written as:

Rate of accumulation of mass . Net rate of mass out 0

within the control volume by the flowing streams

Mathematically, the above relation can be represented as

dm
— +A(pud) =0 5.1
dt+ (puA) (3.1)

where r 1s the average fluid density, 4 1s the fluid cross-sectional area and u 1s the average fluid
velocity. Equation (5.1) 1s known as the continuity equation. For steady-state flow process, there 1s
no accumulation of mass within the control volume, and the equation reduces to

A(puA) = 0 (5.2)

W

Fig. 5.1 Energy balance for a control volume.

Denoting the conditions at the entrance to the control volume by subscript 1 and the conditions at the
exit by subscript 2, Eq. (5.2) may be re-written as

Flu1dy = rupdp



5.1.2 Energy Equation

The law of conservation of energy for a control volume is given by

Rate of accumulation of energy +Nel rate of energy out _ O-W
within the control volume by the flowing streams

where © and i are the rate at which heat is supplied to the fluid and the rate at which shaft work is
done by the fluid respectively.

Rate of accumulation of energy is dU'/dt, where U is the total internal energy within the control
volume. The total energy of the fluid stream is the sum of its kinetic energy (KE), potential energy
(PE), and internal energy (/E). The law of conservation of energy can now be expressed as

t
d(i +A(KE) + A(PE) + AUE)= Q - W (5.3)

In Eq. (5.3), the symbol A represents the difference between exit and entrance streams.

2
A(KE)+A(PE)+A(IE)=A[n’1 “7+gZ+U ] (5.4)
L J

where m is the mass flow rate and Z is the height above a reference plane. The work rate /" is made

up of two parts—the shaft work W5 and the flow-work, the latter being the product of the pressure

and the volume of the fluid. The flow work is equal to 27(”) and it is the net work done by the
fluid in pushing it into and out of the control volume.

W = W, + Ali(PV)] (5.5)
Substituting Eqgs. (5.4) and (5.5) in Eq. (5.3) and noting that H = U + PV, the energy equation becomes

dU‘f r (uz \-I - -
— +A|m| —+gZ+H || =0 - W (5.6)

gt ] |2 )]

For steady-state flow process, there is no accumulation of energy within the control volume,
and Eq. (5.6) reduces to

[ (2 Y
A!mt—2-+gZ+HJ!:Q— W (5.7)
L J

For flow systems where the kinetic and potential energy changes are negligible, Eq. (5.7) can be
further simplified to

AmH = Q — W (5.8)



If the fluid enters and leaves the control volume in a single stream, the mass rate of flow remains the
same at the entrance and exit. Then Eq. (5.7) becomes

(w )
A|7+82+H|=Q-WS (59)

\

This equation is known as the total energy balance. For the case, where changes in kinetic and
potential energies are negligible, Eq. (5.9) becomes

DH=0Q- Wg (5.10)

In both Egs. (5.9) and (5.10), @ Q) and 5~ (),

The “total energy balance’ considers only the input and output from the system. For fluid mechanics
calculations, it is customary to express this equation in the form of mechanical energy balance. The
mechanical energy balance takes irreversible effects, such as, fluid friction also into account.
Equation (5.9) may be put in the following form:

T
2 ' (5.11)
From the definition of enthalpy of a fluid [see Eq. (2.9)], we get
dH =dU+ PdV + VdP (5.12)

Using the first law of thermodynamics [see Eq. (2.5)],

dU=dQ—dwW (5.13)
For a reversible process, the work done by the fluid is

dw=PrPdV
Substituting this into Eq. (5.13) and combining the resulting equation with Eq. (5.12), we get
dH=dQ+ VdP (5.14)

Integrate Eq. (5.14) between the entrance and exit of the control volume. Then,
P,
AH=Q+L V dP (5.15)
1
Using this relation, Eq. (5.11) can be modified to the following form:

Au? P,
W =2 seaz+ [ vap (5.16)
§ g .

If the changes 1n kinetic and potential energies are negligible, the shaft work 1s given by

P,
We=- [ vap (5.17)




The above equations are developed assuming reversible processes. On including the work lost due
to the irreversibilities, Eq. (5.16) takes the following form:

2

Au Py
— +g/_\.Z+J. VdP+W; +F =0 (5.18)
R

Here, F represents the lost work due to friction or mechanical energy dissipated to heat due to
irreversibilities in the system. Equation (5.18) is known as the mechanical energy balance.

Bernoulli’s equation. Bernoulli’s equation is a special form of the mechanical energy balance
applicable only to non-viscous incompressible fluids, which do not exchange shaft work with the
surroundings. For non-viscous fluids, /' = 0. The integral in Eq. (5.18) can be evaluated if the
functional relationship between pressure and volume 1s known. For incompressible fluids, volume is
independent of pressure, and hence

Py AP
VdP =VAP = — (5.19)

A P

wherer is the density of the fluid. Since no shaft work is exchanged, Wg = 0. Using these
simplifications, Eq. (5.18) can be written as

2

L T (5.20)
2 P

ﬁ + 97 + £ = constant

> g P é (5.21)

Equation (5.21) is known as Bernoulli’s equation.
5.1.3 Flow in Pipes

Pressure drop. The pressure drop accompanying the steady-state flow of a fluid through a straight
pipe is evaluated from the mechanical energy balance [Eq. (5.18)] expressed in differential form:

udu+gdZ+VdP+dWg+dF=0 (5.22)

The friction term is usually expressed in terms of the flow geometry, dynamics of flow and a
dimensionless friction factor f; known as the Fanning friction factor.

2 fu2
dF = —— dL 323
D (5.23)
In Eq. (5.23), D and L are the length and diameter of the pipe respectively.

Maximum velocity. The maximum velocity attainable in pipe flow can be determined using
thermodynamic principles. The total energy balance [Eq. (5.11)] may be put in differential form as
follows:



d2
%+gdz+dH=dQ—dWS

Assuming isentropic flow and neglecting potential energy changes, this equation can be simplified
as

2
W aH =0
2
or
dH = —u du (5.24)

For flow through closed conduits of uniform cross-section, the equation of continuity [Eq. (5.2)]
may be put in differential form as d(up) = O, or

udp+pdu=0 and du = — ud—p (5.25)
o
Substitute Eq. (5.25) into Eq. (5.24). The result is
dp
dH = 1" = 5.26
P (5.26)

Noting that /O = T'dS for a reversible process, Eq. (5.14) may be written as

dH =TdS + VdP (5.27)
Compare Eq. (5.26) with Eq. (5.27).

L T (5.28)
P P P
Equation (5.28) may be written in the following form:
pT dS = u* dp — dP (5.29)

For flow of gas through a pipe of uniform cross-section, since the flow is in the direction of decrease
in pressure (dP < 0), the specific volume increases or density decreases (df < 0) in the flow
direction. The first term on the right is negative and the second term is positive. At a particular
pressure, these two contributions to the entropy change will be equal in magnitude so that dS = 0. The
maximum velocity is attained by the gas at this condition and it can be evaluated as:

e dr — dP = 0 for constant S
. (P
U

T APk (5.30)
The speed of sound in a fluid is evaluated as the square root of the derivative on the right-hand side
of Liq. (5.30). Therefore, , where c is the sonic velocity. Thus, we see that the maximum fluid velocity



attained in a pipe of uniform cross-section is equal to the speed of sound in the fluid.

5.1.4 Flow through Nozzles

A nozzle 1s a device for converting thermal or mechanical energy into kinetic energy. This is
achieved by changing the cross-sectional area available for flow. Nozzles find application in
turbines, ejectors, diffusers, etc. In the analysis of flow through nozzles presented below, it is
assumed that the flow is isentropic.

Relation between A and u. Let us first see the relationship between cross-sectional area and
velocity of the fluid through a pipe of varying cross-section. Equation (5.2), the equation of
confinuity, expressed in differential formis given below:

d(urd) =0
This equation may be put into the following form:
(PA) du + u d(pA) =
or

U
du=-—d(pA
u DA (pA) (5.31)

The mechanical energy balance [Eq. (5.18)] may be put in differential form as given below:

1 1wy 2

udu + gdZ +VdP+dWg +dF =0

For frictionless flow (dF = 0) with no work exchange (dWs = 0), and neglecting change in
potential energy (dZ = 0), the above equation gives

udu+VdP =0
Noting that V = 1/p, the above equation may be written as
dP = —pu du (D32}

Combining Eqgs. (5.31) and (5.32) we get the following results:

dP =

% d(pd) =~ (pdA + Adp)

dP pu (dA)
+uU (5.33)
dp A LdpJ

Because of our assumption of isentropic flow, (dP/dr) in the above equation may be replaced by

2

(OP/Ar)g which was shown to be equal to ¢, where ¢ is the sonic velocity. Also, dr can be replaced

by dPIc?. The resulting equation can be rearranged as



7_—2'L1-—2J (5.34)

The ratio of actual velocity to the speed of sound is known as the Mach number and is denoted
by M. Equation (5.34) may now be written as

dA A 2
= =;ﬁ(1—1\’l ) (5.35)

Using Eq. (5.32), dP may be eliminated from the above equation.

dA _ A
— == (M? - 1) (5.36)

For subsonic velocity of the gas M < 1 and (dA/du) < 0. For supersonic velocity, M > 1 and

(dA/du) > 0. For sonic velocity, M =1 and (dA/du) = 0. Equation (5.36), therefore, means that if the
gas 1s to be accelerated continuously from subsonic to supersonic velocity, the area of cross- sectior
for flow should first decrease (d4 < 0), then remain constant (d4 = 0), and finally increase (dA4 > 0)
This principle is used for increasing the velocity of gases beyond Mach number unity in the
converging—diverging nozzles (Fig. 5.2).

| |
— Divergent section ————=4

section

Convergent

Reservoir ——m—— Flow Receiver

Fig. 5.2 The convergent-divergent nozzle.

Velocity at the throat. It is clear that the maximum velocity attained by the gas in the converging
section of the converging-diverging nozzle is the sonic velocity. Therefore, referring to Eq. (5.30),
we see that the velocity at the throat 1s given by

. P
Uihroat = % (5.37)
5



Critical pressure ratio. The relationship between pressure and velocity in a nozzle is given by Eq.
(5.32), which may be put in the following form:
2
¥ L (5.38)
2 P

At the inlet to the nozzle, let u = 0 and P = Py, and at any plane normal to the flow within the
nozzle, let the velocity and pressure be u and P respectively. Assuming isentropic flow of ideal
gases, the pressure and volume are related as PV? = constant. Substituting this in Eq. (5.38) and
integrating, we get

u

2RV, | P\
2= 00 ] (5.39)

r-1 | (&)

The subscript ‘0’ in the above equation denotes the condition at the inlet to the nozzle. Since PV
= P/p’ = constant for isentropic expansion of ideal gases,

l(()P Y r yPV
el e e 5.40
L) b e
Comparing this with Eq. (5.37), we obtain

utzhroal o }’PV (541)

Suppose that the nozzle is connected between a reservoir at pressure P() and a receiver at pressure
Py.. Flow through the nozzle occurs when P} 1s less than P() and the velocity of the fluid at the throat is

maximum. On further reduction of the receiver pressure, the flow rate and the velocity through the
nozzle increases. A limiting value is attained when the velocity at the throat becomes sonic. The
pressure at the throat at this condition is P, the critical pressure. The critical pressure ratio P/ Py,

1s the pressure ratio P/P( at which the velocity of the fluid at the throat becomes the sonic velocity.
Substituting u = uthroat 1n Eq. (5.39) and using Eq. (5.41), we get:

P 2 ¥y =1)
C -—
P, _[yHJ e

where the ratio P(/P is the critical pressure ratio. This depends only ong, the ratio of specific

heats. Reduction of the receiver pressure below that corresponding to the critical condition, the throat
will not affect the flow rate through the nozzle.

The maximum velocity attainable in a converging nozzle is the velocity of sound and it is attained
when the pressure ratio reaches the critical value. Therefore, a converging nozzle can discharge a
fluid at constant flow rate to a region of variable pressure, independent of the down stream pressure.
The pressure ratio, provided it is less than the critical value, will not affect the flow rate through the

nozzle. In a converging-diverging nozzle, if the sonic velocity is not attained in the throat because of
insufficient pressure drop, the diverging section acts as a diffuser, which increases the pressure and
reduces the velocity. Therefore, the purpose of the divergent section is to reduce velocity and regain
pressure 1f the flow 1s subsonic, and increase velocity and obtain Mach numbers greater than unity 11
flow is supersonic.



5.1.5 Ejectors

Ejectors or jet pumps are devices which employ the momentum and kinetic energy of a high velocity
stream to entrain and compress a second gas or vapour stream. Steam-jet ejectors are used for
pumping large volumes of vapour and gas at low pressures. See Fig. 5.3.

Diffuser

| i section

Steam
—_—

Compressed
fluid

Mixing space

Nozzle

Gas inlet ?

An ejector consists of the following parts:
1. A nozzle for accelerating the primary fluid
2. A fluid suction for accelerating the secondary fluid before its entrainment
3. A mixing section, where the secondary fluid is further accelerated and primary fluid is
decelerated
4. A diffuser section for decelerating the combined stream of primary and secondary fluids with
consequent increase in pressure.

Steam (primary fluid) is first expanded by passing through a nozzle, where it attains supersonic
velocity. Due to the high velocity of the steam entering the mixing space, a low-pressure region is
created there and as a result the steam transfers some of its momentum to the gas or vapour
(secondary fluid) entering through the gas inlet. In the diffuser section, the mixed stream is
decelerated and it gets compressed, the work of compression being derived at the expense of its
kinetic energy. The compressed gas leaving the ejector 1s discharged directly to atmosphere or it can
be sent to a water-cooled condenser. The latter option is employed in multi-stage ejectors to reduce
the quantity of steam handled in the successive stages.

An exhaustive thermodynamic analysis of the ejector performance requires application of the
equations of continuity, momentum, and energy to various component parts. The overall efficiency of
an ejector 1s the ratio of work of 1sentropic compression of the secondary fluid from the suction to the
discharge pressure, divided by the work of isentropic expansion of the primary fluid from its initial to
the discharge pressure.

Fig. 5.3 Steam-jet ejector.



5.1.6 Throttling Process (Joule-Thomson Expansion)

Throttling process, also known as Joule—Thomson expansion, 1s a steady-state steady-flow process
across a restriction, which results in a reduction in pressure for the fluid. The flow through a partially
opened valve or a porous plug 1s a typical example of throttling process. The throttling process may
be treated as an adiabatic operation, because the expansion takes place in a very short time within a
very small region, so that the heat exchange between the system and the surroundings 1s negligible. As
no mechanisms are present for extracting work, the process is a highly irreversible one.

Since the kinetic and potential energy changes are negligible, we can use Eq. (5.10) to describe the

throttling process. Since dQ = 0 and dWq = 0, this equation reduces to df{ = (. That 1s, Joule-

Thomson expansion is an isenthalpic process. The temperature of the gas changes as a result of this
expansion. The change in temperature resulting from the throttling operation 1s known as the Joule-
Thomson coefficient m, which is defined as
dT
= (5.43)

=

During expansion DP is negative. Therefore, a positive value of Joule-Thomson coefficient means
that DT is negative and the gas cools on throttling. On the other hand, a negative Joule—Thomsor
coefficient means that throttling results in an increase in temperature. Joule-Thomson coefficient of a
gas can be determined using the pressure-volume-temperature relationship. This 1s discussed 1n detail
in the next chapter [see Eq. (6.70)]. It is sufficient here to note that, at any given pressure, the Joule-
Thomson coefficient is positive only within a temperature range, that i1s between the upper and lower
inversion temperatures. Only within these temperatures a gas cools on throttling. For a perfect gas,
enthalpy being a function of temperature alone, throttling, which is essentially a constant enthalpy
process, produces no temperature change. That is, the Joule-Thomson coefficient of ideal gas 1s zero.
This is true for any gas whose volume varies linearly with temperature at a given pressure (see
Exercise 6.30). For real gases, however, above a certain pressure the throttling process always
results 1n cooling. For nitrogen. this pressure 1s found to be about 375 bar.

5.1.7 Compressors

Compressors may be of reciprocating type or turbo type. The reciprocating type compressors are
used for developing high pressure-ratios, whereas turbo type compressors are preferred for high
volumetric rate. The general energy equations are applicable for both types.

Adiabatic compression. I or adiabatic compression of gases under negligible changes in kinetic
and potential energies, Eq. (5.9) reduces to

Wg=-DH
The minimum shaft work required for compressing a gas adiabatically from a given initial state to a
given discharge pressure is the 1sentropic work which 1s given as

Wy (isentropic) = — AHj (5.44)

where DHg is the enthalpy change accompanying the isentropic compression. The ratio of this
isentropic work to the actual work required for compression is the compressor efficiency.



_ W (isentropic)
- W (actual)

(5.45)

Equation (5.17) can also be used to evaluate the shaft work required for developing a given
pressure ratio in a reversible operation.

P.
Wy=-|"vdp G.17)
R

For an ideal gas undergoing isentropic compression, using the relation PVY = constant [see
Eq. (3.24)], Eq. (5.17) can be readily integrated.

PVY = constant = P,vlr

-Pl-l/y
V=y|—
P

Using this relation, /' in Eq. (5.17) may be replaced and the resulting equation is integrated.

[ (p - [ p, ¢~

The work required for compressing an ideal gas may be written in terms of the initial and final
temperatures as well. For an ideal gas, DH = CpDT. Equation (5.44) gives

Wg=-DH=Cp(T - T7) (5.47)

The work computed by Eq. (5.46) or by Eq. (5.47) provides the value for the numerator in
Eq. (5.45).

Isothermal compression. For reversible isothermal compression of a gas, Eq. (5.10) becomes
Wg=Q-DH

Since Q = TDS under this condition, we have
Wg=1DS—-DH (5.48)

If the gas is ideal DH = 0, because, the enthalpy of ideal gas depends only on temperature. Also,

AS=RIn i
P

For ideal gases, Eq. (5.48) therefore simplifies to

Wi =RT In % =RT n ﬁ (5.49)

2 1




Equation (5.49) gives the shaft work required in isothermal compression of ideal gases. The same
result 1s obtained from Eq. (5.17) also by replacing V' by RT/P.

Multi-stage compression. The reversible isothermal and adiabatic paths for the compression of
an 1deal gas from an initial pressure | to a final pressure P; 1s shown in Fig. 5.4.

D C B : —
P, / Reversible adiabatic
= Reversible isothermal
g
o
Py 8 A

Volume
Fig. 5.4 Adiabatic and isothermal compression on a P-V diagram.

The area bounded by the curves, the pressure axis, and the horizontal lines drawn at P = P| and P =

Py gives the integral I V dP evaluated between limits P and P, which, by Eq. (5.17), 1s the shaft

work required. From Fig. 5.4, it is evident that compression along the isothermal path requires less
work compared to the adiabatic path. The actual compression takes place along a path intermediate to
these two limiting paths. However, the isothermal path can be approached in practice by compressing
the gas in stages with inter-stage cooling at constant pressure. In

Fig 5.5, it is shown that the compression of gas from pressure P| to pressure P achieved in three

adiabatic steps.
Adiabatic compression

P, ; / Three-stage adiabatic
compression with intercooling

Isothermal compression

Pressure

\*\
P,

Volume

Fig. 5.5 P-V diagram of a three-stage adiabatic compression with interstage cooling.



After the first and second stages the gas is cooled to the original temperature at constant pressure. The
actual path traced by the gas is shown with arrows and it is very close to the isothermal path for
compressing the gas between the same pressure limits. The shaded area in

Fig. 5.5 1s the saving in the work required for compressing the gas from pressure | to pressure P>

by using a three stage compressor with inter-stage cooling over the work required in a single-stage
compressor employing the same compression ratio.

Because of mechanical difficulties, a compression ratio greater than 5 cannot be attained in a single-
stage reciprocating compressor. Multi-stage compressors are used to develop high compression
ratios. The main advantage of this compression is that it allows inter-stage cooling and thereby an
isothermal operation is closely approached. This results in reduction in the work done for
compression.

The work requirement in a multi-stage compressor is the sum of the work requirements for

the individual stages. For a two-stage compressor in which an ideal gas 1s compressed from pressure
P to PO in the first stage and cooled to the initial temperature 7] before it is sent to the second

stage for the final compression to a pressure P>, the total work required according to
Eq. (5.46) 1s

</

y [ ( pr\T-Vr ( -1y
Wy=——RT |1 - I_] l\ ) | (5.50)

p=i 1A J

For a multi-stage compressor with n stages, if the compression ratios in all the stages are equal
and are denoted by r, then the total work required may be written as

W, = y"%l R, [1 - (r)7 =7 (5.51)

In writing Eq. (5.51) it is assumed that after each stage, the temperature of the gas is brought down
to the initial value. It can be shown that for the minimum total work in a multi-stage compressor,
the pressure ratios in all the stages are equal and are given by

where P,/P, is the overall pressure ratio.



5.2 REFRIGERATION

Refrigeration 1s the process of producing and maintaining a temperature below that of the
surrounding atmosphere. Refrigeration processes find wide applications in chemical process
industries. The process i1s used in manufacturing synthetic rubber, textiles, chlorine, plastics,
hydrogen fluoride, etc. Refrigeration is used to remove heat of chemical reactions and to liquefy
process gases for gas separation by distillation and condensation. Liquefaction processes for the
production of pure gases such as oxygen and nitrogen from air and liquefaction and storage of natural
gases employ refrigeration principles. Separation of volatile hydrocarbons in petroleum industries,
separation of gasoline from natural gas, solvent recovery, crystallisation of salts from solutions,
manufacture of ice, treatment, transport and preservation of food and beverages, etc., are some other
important applications of refrigeration operation. Apart from 1ts widespread use in the air-
conditioning of houses and buildings and in domestic refrigerators, refrigeration is also used in the
air-conditioning of plant areas as in the manufacture of rayon, photographic film, gelatine, etc.
Refrigeration implies production of low temperature by continually absorbing heat at a low level and
rejecting it at a high level. Since heat cannot flow from a body at low temperature to one at a higher
temperature spontaneously, external work is required to achieve refrigeration. Thus, refrigeration 1s
essentially an operation involving the pumping of heat from one temperature to a higher temperature.
In mechanical refrigeration, which is the most commonly used method for commercial applications,
the low temperature is produced by the evaporation of a liquid whose properties are, such that, at the
pressure of evaporation, the saturation temperature is low. The evaporated liquid is then returned to
its original state for continuous operation. The complete series of processes that the working fluid—
the refrigerant—undergoes, constitute a refrigeration cycle. A typical refrigeration cycle includes
evaporation of the liquid refrigerant, compression of the refrigerant vapour, condensation of the
vapour into liquid, and finally expansion of the liquid.

5.2.1 Coefficient of Performance (COP)

Refer Fig. 5.7, which represents schematically the refrigeration process. Let(Q) be the heat that is
absorbed at a low temperature 77 and Q1 be the heat rejected at high temperature 7'1. By first law of
thermodynamics, the external work required to bring about this transfer is

W=01-0
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Fig. 5.7 Schematic representation of a refrigeration cycle.

The efficiency or coefficient of performance (COP) of a refrigerator is defined as the quantity of hea
absorbed at the low temperature per unit of work.

O, O
COP=%2-__%2 _ 5.5
W Ql . Q2 ( 5)

5.2.2 Refrigerator Capacity

The refrigerator capacity determines the rate of circulation of the refrigerant, which in turn, decides
the design and size of the various units such as condenser, compressor, evaporator, and the expansion
devices. The capacity is sometimes measured in ton of refrigeration. One ton is defined as the heat
absorption at the rate of 12000 BTU per hour (One BTU is the amount of heat required to raise th
temperature of one pound, 1.e. 0.4536 kg of water by one degree Fahrenheit, or (1/1.8) K. Thus, 1
BTU = 1.055 kJ). This rate corresponds to the rate of heat removal that is required to freeze 1 ton o
water in a day originally at 273 K. One ton of refrigeration is equivalent to a refrigeration rate of
12660 kJ/h in SI units.

5.2.3 Carnot Cycle

The Carnot cycle can be used as a model of the ideal refrigeration cycle, because, of all the
refrigerators operating between the same two thermal reservoirs, the maximum COP is attained by the
one based on Carnot cycle. The Carnot refrigeration cycle is depicted in Fig. 5.8(a).

It consists of the following steps: reversible adiabatic compression (45), 1sothermal heat rejection
(BC), reversible adiabatic expansion (CD) and isothermal heat absorption (DA). During the
1sothermal heat absorption (DA), an amount of heat Q7 1s absorbed at low temperature level 75. The

area ADXY on the 7-§ diagram [Fig. 5.8(b)] represents the heat absorbed. It is equal to 7oDS, where

DS is the change in entropy of the fluid due to the heat absorption. Heat rejected at higher temperature
T is equal to Q1 and is represented by the area BCXY. It is equal to 71DS. The external work done



for this transfer of heat against a temperature gradient is given by W= Q1 — O, which is the enclosed
area ABCD in Fig. 5.8(b).

G Isothermal heat B
rejection |
=]
2 g 2.8 .
£z 28 ... c B
3 & 5 g :
<3 <E g
5 3t D A
D Isothermal heat - - X Y
absorption i —

Fig. 5.8(a) Components of a Carnot cycle. Fig. 5.8(b) T-S diagram of the Carnot cycle.

The coefficient of performance of the Carnot cycle is,

cop=%= & . Bas | &
W Q-0 @G-T)AS |L-T

(5.56)

We note that the coefficient of performance of the Carnot refrigeration cycle depends only on the
temperature levels between which the machine operates and i1s independent of the working fluid.
Equation (5.56) establishes the optimum performance that can be expected of any refrigerating
machine operating between given temperature limits. Equation (5.56) on rearrangement gives

L-T
, 11— 2

W=0 T (5.57)
2

which is the minimum work required for transferring heat Q> from a low temperature 77 to a higher
temperature 7'1. It 1s impossible to construct a refrigeration machine that will pump heat with less

expenditure of work than that given by Eq. (5.57). Because of the inherent irreversibilities in any
practical process, the COP of an actual machine will be less than that given by Eq. (5.56) and the
work required for transfer of a given quantity of heat will be more than that given by

Eq. (5.57). However, these equations can be used as a standard for comparison of the actual
processes and suggest possible improvement in such processes. Equation (5.57) indicates that the
work input increases with decrease in the temperature of the refrigerator or with increase in the
temperature of the heat receiver and 1s independent of the refrigerant. It may be noted here that even in
the actual cycles, the influence of the working fluid on the work input per unit of refrigeration is quite
insignificant.

Limitations. A refrigeration machine operating on the Carnot cycle cannot be achieved in practice.
Carnot cycle demands reversible operation, and it is difficult to eliminate all irreversibilities in an



actual operation. Isothermal heat interactions at the heat absorption and the heat rejection stages,
which proceed at very slow rates necessitate large heat transfer areas. A temperature difference
between the refrigerant and the reservoirs in the heat absorption and heat rejection stages is
necessary, in order to have a finite rate of heat transfer. If the heat absorption is achieved by the
evaporation of a refrigerant then the possibility of the input stream to the compressor containing
liquid cannot be overruled. This may lead to severe erosion problems in the compressor. Apart from
these, the work output of an expansion engine or a turbine used for reversible expansion is normally
very small whereas their costs are prohibitively high.

5.2.4 Vapour-compression Cycle

The actual refrigeration cycles are less efficient than the ideal Carnot cycle, because of the presence
of the inevitable irreversible effects, such as friction, imperfect heat insulation, and because of the
finite temperature difference that 1s maintained for a reasonably good rate of

heat transfer in the refrigerator and the condenser. In the vapour-compression cycle shown in

Fig 5.9(a), the refrigerant vapour is compressed (4B) to such a pressure that the available cooling
water can condense the vapour in a condenser (BC) operated at this pressure which is maintained
constant. The vapour, during condensation rejects heat to the cooling medium. By passing through a
throttling valve, the pressure of the liquid leaving the condenser 1s reduced (CD) to the pressure

maintained in the evaporator. The liquid then evaporates (DA), absorbing heat at constant temperature
Th. The vapour thus produced enters the compressor, and the cycle i1s repeated. The process is
represented on the 7-S diagram as shown in Fig. 5.9(b). The liquid portion of the refrigerant leaving
the throttling valve is vaporised at constant pressure P» and constant temperature 75 in the

refrigerator. The vapour leaving the refrigerator is saturated (4). It is possible that the vapour leaving
the refrigerator may get slightly superheated or may be slightly unsaturated. On adiabatic
compression, the vapour gets super heated (B) and this vapour enters the condenser at pressure Pq.

The reversible adiabatic compression is an isentropic process and is represented by the vertical line
AB. In the condenser, the vapour 1s first cooled and the superheat 1s removed from the vapour, as
shown by the line BE, and then 1t 1s condensed at constant temperature 75. The saturated liquid (C)

leaving the condenser is expanded by throttling. The throttling is a constant enthalpy process and is
represented by the curve CD. Throttling results in the partial vaporisation of the liquid, and the point
(D) representing the mixture leaving the valve lies in the two-phase region. Figure 5.9(c) shows the
vapour-compression cycle on a pressure-enthalpy diagram.
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As the heat absorption in the refrigerator occurs at constant pressure, the heat absorbed during
vaporisation is equal to the change in the enthalpy of the refrigerant.

Or»=H4-Hp (5.58)



The heat rejected 1s

Q\=Hp-Hc (559
Since the work required, W= Q1 — Qp, and Hp = H( (the process CD is isenthalpic), we have
W=Hp—-Hy (5.60)

The coefficient of performance is

H o=
cor=2_Hi-Hp (5.61)
W HB_HA

If the rate of heat absorption is specified, the rate of circulation of the refrigerant (m ) can be easily
evaluated.

m(H, - Hp) = 0, (5.62)

For a refrigerator rated at 1 ton (Q, = 12660 kJ/h), the rate of circulation in kg/h may be evaluated
by
o 12660
—HA il (5.63)
where H, and Hp are in kJ/kg.
The vapour leaving the compressor is superheated at the condenser pressure P. Its temperature is
greater than the saturation temperature 7. Also, the throttling process is highly irreversible. Because

of these two reasons, the ordinary vapour-compression cycle presented above, 1s less efficient than
the Carnot cycle. By allowing the evaporation to proceed up to pointAL] in Fig. 5.9(b), and



compressing the resultant vapour—liquid mixture adiabatically to saturation at pressure P (process

AOIE in the figure) the first difficulty can be overcome. But the practical gain in such an operation is
only very small in comparison with the operational difficulties associated with the compression of a
two-phase mixture. If the expansion process (CD) were carried out in an expansion engine instead of
throttling, the irreversibilities can be mimmised to a great extent. This 1s what is done in an
expansion-engine vapour-compression cycle illustrated in Figs. 5.10(a) and (b). Here, the expansion
1s 1sentropic and hence CD 1s a vertical line on the 7-8 diagram.

The heat absorbed and heat rejected during this cycle are respectively 07 and 01, which are given by

02 =Hy—Hpand Q1 = Hp - Hc.
The work mnput W= Q1 — Oy. Hence,

cop=C. O Hy = Hy

W _Q1‘Q2 - (HB_HC)_(HA—HD)

(5.64)

As the expansion engine operating on a two-phase mixture is expensive, this cycle is preferred only
for large installations. Because of their simplicity and low cost, the throttle valves are preferred over
turbines in small installations.
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