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UNIT 1 OBJECTIVE AND FORMULATION OF OPTIMIZATION 

1.0 Introduction to Optimization 

Optimization is the mathematical discipline which is concerned with finding the maxima and 

minima of functions, possibly subject to constraints. 

Optimization is an important tool in making decisions and in analyzing physical systems. In 

mathematical terms, an optimization  problem is  the  problem  of  finding  the best solution  

from  among  the  set  of  all feasible solutions. 

Constructing a Model 

The first step in the optimization process is constructing an appropriate model; modeling is the 

process of identifying and expressing in mathematical terms the objective, the variables, and 

the constraints of the problem. 

An objective is a quantitative measure of the performance of the system that we want to 

minimize or maximize. In manufacturing, we may want to maximize the profits or minimize 

the cost of production, whereas in fitting experimental data to a model, we may want to 

minimize the total deviation of the observed data from the predicted data. 

The variables or the unknowns are the components of the system for which we want to find 

values. In manufacturing, the variables may be the amount of each resource consumed or the 

time spent on each activity, whereas in data fitting, the variables would be the parameters of 

the model. 

The constraints are the functions that describe the relationships among the variables and that 

define the allowable values for the variables. In manufacturing, the amount of a resource 

consumed cannot exceed the available amount. 

Essential Features 

Every optimisation problem contains three essential categories: 

 

At least one objective function to be 

optimised Equality constraints 

Inequality constraints. By a feasible solution we mean a set of variables which satisfy 

categories 2 and 3. The region of feasible solutions is called the feasible region. 
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An optimal solution is a set of values of the variables that are contained in the feasible region 

and also provide the best value of the objective function in category 1. 

For a meaningful optimisation problem the model needs to be underdetermined. 

1.1 Mathematical Description 

Steps Used To Solve Optimisation Problems 

Analyse the process in order to make a list of all the variables. 

Determine the optimisation criterion and specify the objective 

function. 

Develop the mathematical model of the process to define the equality and inequality constraints. 

Identify the independent and dependent variables to obtain the number of degrees of freedom. 

If the problem formulation is too large or complex simplify it if 

possible. Apply a suitable optimisation technique. 

Check the result and examine it’s sensitivity to changes in model parameters and assumptions. 

Classification of Optimisation Problems 

Properties of f(x) 

· single variable or multivariable 

· linear or nonlinear 

· sum of squares 

· quadratic 

· smooth or non-smooth 

· sparsity 

Properties of h(x) and g(x) 
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· simple bounds 

· smooth or non-smooth 

· sparsity 

· linear or nonlinear 
no constraints Properties of optimization variables x time variant or invariant continuous or discrete take only integer 
values mixed 

Obstacles and Difficulties 

Objective function and/or the constraint functions may have finite discontinuities in the 

continuous parameter values. 

Objective function and/or the constraint functions may be non-linear functions of the variables. 

Objective function and/or the constraint functions may be defined in terms of complicated 

interactions of the variables. This may prevent calculation of unique values of the variables at 

the optimum. 

Objective function and/or the constraint functions may exhibit nearly “flat” behaviour for some 

ranges of variables or exponential behaviour for other ranges. This causes the problem to be 

insensitive, or too sensitive. 

The problem may exhibit many local optima whereas the global optimum is sought. A solution 

may be obtained that is less satisfactory than another solution elsewhere. 

Absence of a feasible 

region. Model-reality 

differences. 

Typical Examples of 

Application static 

optimisation 

Plant design (sizing and layout). 

Operation (best steady-state operating 

condition). Parameter estimation (model 

fitting). 

Allocation of resources. 

Choice of controller parameters (e.g. gains, time constants) to minimise a given performance 

index (e.g. overshoot, settling time, integral of error squared). 
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1.2 Six steps to do optimization problems 

1. Analyze the process itself so that the process variables and specific characteristics of interest are 

defined; that is, make a list of all of the variables. 2. Determine the criterion for optimization, and 

specify the objective function in terms of the variables defined in step 1 together with coefficients. 

This step provides the performance model (sometimes called the economic model when 

appropriate). 3. Using mathematical expressions, develop a valid process or equipment model that 

relates the input-output variables of the process and associated coefficients. Include both equality 

and inequality constraints. Use well-known physical principles (mass balances, energy balances), 

empirical relations, implicit concepts, and external restrictions. Identify the independent and 

dependent variables to get the number of degrees of freedom. 4. If the problem formulation is too 

large in scope: (a) break it up into manageable parts or (b) simplify the objective function and 

model 5. Apply a suitable optimization technique to the mathematical statement of the problem. 6. 

Check the answers, and examine the sensitivity of the result to changes in the coefficients in the 

problem and the assumptions.
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Dynamic optimisation 

Determination of a control signal u(t) to transfer a dynamic system from an initial state to a 

desired final state to satisfy a given performance index. 

Optimal plant start-up and/or shut 

down. Minimum time problems 

1.3 BASIC PRINCIPLES OF STATIC OPTIMISATION THEORY 

Continuity of Functions 

Functions containing discontinuities can cause difficulty in solving optimisation problems. 

Definition: A function of a single variable x is continuous at a point xo if: 

 

(a) f ( 

xo ) 

exists 

(b) li
m 

x 
 

xo 

f ( 

x) 

exists 

(c) lim f ( x)  f ( xo ) 

If f(x) is continuous at every point xin axoregion R, then f(x) is said to be continuous 

throughout R. f(x) is discontinuous 

 
 

f(x) is continuous, but 

f (x)  df (x) 

dx is not 

Unimodal and Multimodal Functions 

A unimodal function f(x) (in the range specified for x) has a single extremum (minimum or 

maximum). A multimodal function f(x) has two or more extrema. 

If f (x) 0at the extremum, the point is called a stationary point. 

There is a distinction between the global extremum (the biggest or smallest between a set of 

extrema) and 
local extrema (any extremum). Note: many numerical procedures terminate at a local extremum. 

A multimodal function 
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Multivariate Functions - Surface and Contour Plots 

We shall be concerned with basic properties of a scalar function f(x) of n variables 

(x1,...,xn). If n = 1, f(x) is a univariate function 

If n > 1, f(x) is a multivariate function. 

For any multivariate function, the equation 

z = f(x) defines a surface in n+1 dimensional space. 

In the case n = 2, the points z = f(x1,x2) represent a three dimensional surface. 

Let c be a particular value of f(x1,x2). Then f(x1,x2) = c defines a curve in x1 and x2 on the plane z 

= c. If we consider a selection of different values of c, we obtain a family of curves which provide a 

contour map 

of the function z = f(x1,x2). 

Contourmap  
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Optimization Problem and Model Formulation 

Introduction In the previous lecture we studied the history of evolution of optimization methods 

and their engineering applications. A brief introduction was also given to the art of modeling. In 

this lecture we will study the Optimization problem, its various components and its formulation 

as a mathematical programming problem. 

1.4 Basic components of an optimization problem: 

An objective function expresses the main aim of the model which is either to be minimized or 

maximized. For example, in a manufacturing process, the aim may be to maximize the profit or 

minimize the cost. In comparing the data prescribed by a user-defined model with the observed 

data, the aim is minimizing the total deviation of the predictions based on the model from the 

observed data. In designing a bridge pier, the goal is to maximize the strength and minimize size. 

A set of unknowns or variables control the value of the objective function. In the manufacturing 

problem, the variables may include the amounts of different resources used or the time spent on 

each activity. In fitting- the-data problem, the unknowns are the parameters of the model. In the 

pier design problem, the variables are the shape and dimensions of the pier. 

A set of constraints are those which allow the unknowns to take on certain values but exclude 

others. In the manufacturing problem, one cannot spend negative amount of time on any activity, 

so one constraint is that the "time" variables are to be non-negative. In the pier design problem, 

one would probably want to limit the breadth of the base and to constrain its size. 

The optimization problem is then to find values of the variables that minimize or maximize the 

objective function while satisfying the constraints. 

Objective Function 

As already stated, the objective function is the mathematical function one wants to maximize or 

minimize, subject to certain constraints. Many all optimization problems have a single objective 

function. (When they don't they can often be reformulated so that they do) The two exceptions 

are: 

• No objective function. In some cases (for example, design of integrated circuit layouts), the 

goal is to find a set of variables that satisfies the constraints of the model. The user does not 

particularly want to optimize anything and so there is no reason to define an objective function. 

This type of problems is usually called a feasibility problem. 

• Multiple objective functions. In some cases, the user may like to optimize a number of 

different objectives concurrently. For instance, in the panel design problem, it would be nice to 

minimize weight and 



   
 

9 
 

maximize strength simultaneously. Usually, the different objectives are not compatible; the 

variables that optimize one objective may be far from optimal for the others. In practice, 

problems with multiple objectives are reformulated as single-objective problems by either 

forming a weighted combination of the different objectives or by treating some of the objectives 

as constraints. 

Statement of an optimization problem An optimization or a mathematical programming problem 

can be stated as follows: 

To find X 

f(X) (1.1) Subject to the 

constraints gi(X) ≤ 0 , i = 1, 

2,….,m 

lj(X) = 0 , j = 1, 2,….,p 

where X is an n-dimensional vector called the design vector, f(X) is called the objective function, 

and gi(X) and lj(X) are known as inequality and equality constraints, respectively. The number 

of variables n and the number of constraints m and/or p need not be related in any way. This type 

problem is called a constrained optimization problem. 

If the locus of all points satisfying f(X) = a constant c, is considered, it can form a family of 

surfaces in the design space called the objective function surfaces. When drawn with the 

constraint surfaces as shown in Fig 1 we can identify the optimum point (maxima). This is 

possible graphically only when the number of design variables is two. When we have three or 

more design variables because of complexity in the objective function surface, we have to solve 

the problem as a mathematical problem and this visualization is not possible. 
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1.5 Linear Programming 

Optimization is an important and fascinating area of management science and operations 

research. It helps to do less work, but gain more. 

Linear programming (LP) is a central topic in optimization. It provides a powerful tool in 

modeling many applications. LP has attracted most of its attention in optimization during the last 

six decades for two main reasons: 

Applicability: There are many real world applications that can be modeled as linear 

programming; Solvability: There are theoretically and practically efficient techniques for solving 

large-scale problems. 

Basic Components of an LP: 

Each optimization problem consists of three elements: decision variables: describe our choices 

that are under our control;  objective function: describes a criterion that we wish to minimize  

(e.g., cost) or maximize (e.g., profit); constraints: describe the limitations that restrict our choices 

for  decision variables. Problem Statement: A company makes two products (say, P and Q) 

using two machines (say, A and B). Each unit of P that is produced requires 50 minutes 

processing time on machine A and 30 minutes processing time on machine B. Each unit of Q that 

is produced requires 24 minutes processing time on machine A and 33 minutes processing time 

on machine B.Machine A is going to be available for 40 hours and machine B is available for 35 

hours. The profit per unit of P is $25 and the profit per unit of Q is $30. Company policy is to 

determine the production quantity of 
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each product in such a way as to maximize the total profit given that the available resources should 

not be exceeded 

Task: The aim is to formulate the problem of deciding how much of each product to make in the 

current week as an LP. 

Step 1: Defining the Decision Variables 

We often start with identifying decision variables (i.e., what we want to determine among those 

things which are under our control). Tom! Can you identify the decision variables for our 

example? 

The company wants to determine the optimal product to make in the current week. So there are 

two decision variables: 

x: the number of units 

of P y: the number of 

units of Q 

Step 2: Choosing an Objective Function 

We usually seek a criterion (or a measure) to compare alternative solutions. This yields the 

objective function. Tom! It is now your turn to identify the objective function. 

We want to maximize the total profit. The profit per each unit of product P is $25 and profit per 

each unit of product Q is $30. Therefore, the total profit is 25x+30y if we produce x units of P 

and y units of Q. This leads to the following objective function: 

max 40x+35y 

Note that: 1: The objective function is linear in terms of decision variables x and y (i.e., it is of 

the form ax + by, where a and b are constant). 2: We typically use the variable z to denote the 

value of the objective. So the objective function can be stated as: 

max z=25x+30y 

Step 3: Identifying the Constraints 

In many practical problems, there are limitations (such as resource / physical / strategic / 

economical) that restrict our decisions. We describe these limitations using mathematical 

constraints. Tom!What are the constraints in our example? 

The amount of time that machine A is available restricts the quantities to be manufactured. If we 

produce x units of P and y units of Q, machine A should be used for 50x+24y minutes since each 

unit of P requires 50 minutes processing time on machine A and each unit of Q requires 24 

minutes processing time on machine 

A. On the other hand, machine A is available for 40 hours or equivalently for 2400 minutes. This 

imposes the following constraint: 
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50x + 24y ≤ 2400. 

Similarly, the amount of time that machine B is available imposes the following 

constraint: 30x + 33y ≤ 2100. 

These constrains are linear inequalities since in each constraint the left-hand side of the inequality 

sign is a linear function in terms of the decision variables x and y and the right hand side is 

constant. 

Step 3: Identifying the Constraints 

Note: In most problems, the decision variables are required to be nonnegative, and this should be 

explicitly included in the formulation. This is the case here. So you need to include the following 

two no negativity constraints as well: 

x ≥0 and y ≥0 

I see your point. So the constraints we are subject to (s.t.) are : 

50x + 24y ≤ 2400, (machine A 

time) 30x + 33y ≤ 2100, 

(machine B time) x ≥ 0, y ≥ 0. 

Here is the LP: 

max z= 25x + 30y 

s.t. 50x + 24y ≤ 

2400, 30x + 33y ≤ 

2100, 

x ≥ 0, y ≥ 0. 

A Manufacturing Example 

Problem Statement: An operations manager is trying to determine a production plan for the next 

week. There are three products (say, P, Q, and Q) to produce using four machines (say, A and B, 

C, and D). Each of the four machines performs a unique process. There is one machine of each 

type, and each machine is available for 2400 minutes per week. The unit processing times for 

each machine is given in Table 1. 
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The unit revenues and maximum sales for the week are indicated in Table 2. Storage from one 

week to the next is not permitted. The operating expenses associated with the plant are $6000 per 

week, regardless of how many components and products are made. The $6000 includes all 

expenses except for material costs. 

 

Task: Here we seek the “optimal” product mix-- that is, the amount of each product that should be 

manufactured during the present week in order to maximize profits. Formulate this as an LP. 

Step 1: Defining the Decision Variables 

We are trying to select the optimal product mix, so we define three decision variables as 

follows: p: number of units of product P to produce, 

q: number of units of product Q to 

produce, r: number of units of product 

R to produce. Step 2: Choosing an 

Objective Function Our objective is to 

maximize profit: 

Profit = (90-45)p + (100-40)q + (70-20r) – 6000 

= 45p + 60q + 50r – 6000 
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Note: The operating costs are not a function of the variables in the problem. If we were to drop 

the $6000 term from the profit function, we would still obtain the same optimal mix of products. 

Thus, the objective function is 

z = 45p + 60q + 50r 

Step 3: Identifying the Constraints 

The amount of time a machine is available and the maximum sales potential for each product 

restrict the quantities to be manufactured. Since we know the unit processing times for each 

machine, the constraints can be written as linear inequalities as follows: 

20p+10q +10r ≤ 2400 (Machine 

A) 1 2p+28q+16r ≤ 2400 

(Machine B) 15p+6q+16r ≤ 2400 

(Machine C) 10p+15q+0r ≤ 2400 

(Machine D) 

Observe that the unit for these constraints is minutes per week. Both sides of an inequality must be 

in the same unit. The market limitations are written as simple upper bounds. Market 

Constraints: P ≤ 100, Q ≤ 40, R ≤ 60. 

Logic indicates that we should also include no negativity restrictions on the 

variables. No negativity constraints: P ≥ 0, Q ≥ 0, R ≥ 0. 

By combining the objective function and the constraints, we obtain the LP model as 

follows: max z=45p+60q+50r 

s.t. 20p+10q+10r ≤ 

2400 12p+28q+16r ≤ 

2400 

15p+6q+16r ≤ 2400 

10p+15q+0r ≤ 2400 

0 ≤ p ≤ 100 

0 ≤ q ≤ 40 

0 ≤ r ≤ 60 

Introduction to Factorial 

Designs Basic Definitions 

and Principles 

Study the effects of two or more 

factors. Factorial designs 

Crossed: factors are arranged in a factorial design 
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Main effect: the change in response produced by a change in the level of the factor 

 

1.6 Factorial experiments 

 

Response variable(s) in any experiment can be found to be affected by a number of factors in the 

overall system some of which are controlled or maintained at desired levels in the experiment. 

An experiment in which the treatments consist of all possible combinations of the selected levels 

in two or more factors is referred as a factorial experiment. For example, an experiment on 

rooting of cuttings involving two factors, each at two levels, such as two hormones at two doses, 

is referred to as a 2 x 2 or a 22 factorial  experiment. Its treatments consist of the following four 

possible combinations of the two levels in each of the two factors. 

 

 Treatment combination 

Treatment number Hormone Dose (ppm) 

1 NAA 10 

2 NAA 20 

3 IBA 10 

4 IBA 20 

 

The term complete factorial experiment is sometimes used when the treatments include all 

combinations of the selected levels of the factors. In contrast, the term fractional factorial 

experiment is used when only a fraction of all the combinations is tested. Throughout this 

manual, however, complete factorial experiments are referred simply as factorial experiments. 

Note that the term factorial describes a specific way in which the treatments are formed and does 

not, in any way, refer to the design used for laying out the experiment. For example, if the 

foregoing 22 factorial experiment is in a randomized complete block design, then the correct 

description of the experiment would be 22 factorial experiment in randomized complete block 

design. 
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The total number of treatments in a factorial experiment is the product of the number of levels of 

each factor; in the 22 factorial example, the number of treatments is 2 x 2 = 4, in the 23 factorial, 

the number of treatments is 2 x 2 x 2 = 8. 

The number of treatments increases rapidly with an increase in the number of factors or an 

increase in the levels in each factor. For a factorial experiment involving 5 clones, 4 

espacements, and 3 weed-control methods, the total number of treatments would be 5 x 4 x 3 = 

60. Thus, indiscriminate use of factorial experiments has to be avoided because of their large 

size, complexity, and cost. 

Furthermore, it is not wise to commit oneself to a large experiment at the beginning of the 

investigation when several small preliminary experiments may offer promising results. For 

example, a tree breeder has collected 30 new clones from a neighbouring country and wants to 

assess their reaction to the local environment. Because the environment is expected to vary in 

terms of soil fertility, moisture levels, and so on, the ideal experiment would be one that tests the 

30 clones in a factorial experiment involving such other variable factors as fertilizer, moisture 

level, and population density. Such an experiment, however,  becomes extremely large as factors 

other than clones are added. 

Even if only one factor, say nitrogen or fertilizer with three levels were included, the number of 

treatments would increase from 30 to 90. Such a large experiment would mean difficulties in 

financing, in obtaining an adequate experimental area, in controlling soil heterogeneity, and so 

on. Thus, the more practical approach would be to test the 30 clones first in a single-factor 

experiment, and then use the results to select a few clones for further studies in more detail.  

For example, the initial single-factor experiment may show that only five clones are outstanding 

enough to warrant further testing. These five clones could then be put into a factorial experiment 

with three levels of nitrogen, resulting in an experiment with 15 treatments rather than the 90 

treatments needed with a factorial experiment with 30 clones. 

The effect of a factor is defined to be the average change in response produced by a change in 

the level of that factor. This is frequently called the main effect. For example, consider the data 

in Table 4.12. 

 

 

 

 

 

 

Table 4.12. Data from a 2x2 factorial experiment 
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  Factor B 

 Level b1 b2 

    

 a1 20 30 

Factor A    

 a2 40 52 

 

The main effect of factor A could be thought of as the difference between the average response 

at the first level of A and the average response at the second level of A. Numerically, this is 

That is, increasing factor A from level 1 to level to 2 causes an average increase in the response 

by 21 units. Similarly, the main effect of B is 

 

If the factors appear at more than two levels, the above procedure must be modified since there 

are many ways to express the differences between the average responses. 

The major advantage of conducting a factorial experiment is the gain in information on 

interaction between factors. In some experiments, we may find that the difference in response 

between the levels of one factor is not the same at all levels of the other factors. When this 

occurs, there is an interaction between the factors. For example, consider the data in Table 4.13. 

 

 

 

 

Table 4.13. Data from a 2x2 factorial experiment 

 

  Factor B 
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 Levels b1 b2 

    

 a1 20 40 

Factor A    

 a2 50 12 

 

At the first level of factor B, the factor A effect is 

A = 50-20 = 30 

and at the second level of factor B, the factor A effect is 

A = 12-40 = -28 

Since the effect of A depends on the level chosen for factor B, we see that there is interaction 

between A and B. 

These ideas may be illustrated graphically. Figure 4.5 plots the response data in Table 4.12. 

against factor A for both levels of factor B. 

 

 

Figure 4.5. Graphical representation of lack of interaction between factors. 

Note that the b1 and b2 lines are approximately parallel, indicating a lack of interaction between 

factors A and B. 

Similarly, Figure 4.6 plots the response data in Table 4.13. Here we see that the b1 and b2 lines 

are not parallel. This indicates an interaction between factors A and B. Graphs such as these are 

frequently very useful in interpreting significant interactions and in reporting the results to 

nonstatistically trained management. However, they should not be utilized as the sole technique 

of data analysis because their interpretation is subjective and their appearance is often 

misleading. 
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Figure 4.6. Graphical representation of interaction between factors. 

Note that when an interaction is large, the corresponding main effects have little practical 

meaning. For the data of Table 4.13, we would estimate the main effect of A to be 

 

= 1 

which is very small, and we are tempted to conclude that there is no effect due to A. However, 

when we examine the effects of A at different levels of factor B, we see that this is not the case. 

Factor A has an effect, but it depends on the level of factor B i.e., a significant interaction will 

often mask the significance of main effects. In the presence of significant interaction, the 

experimenter must usually examine the levels of one factor, say A, with level of the other factors 

fixed to draw conclusions about the main effect of A. 

For most factorial experiments, the number of treatments is usually too large for an efficient use 

of a complete block design. There are, however, special types of designs developed specifically 

for large factorial experiments such as confounded designs. Descriptions on the use of such 

designs can be found in Das and Giri (1980). 

1.7 Analysis of variance 

Any of the complete block designs discussed in sections 4.2 and 4.3 for single-factor 

experiments is applicable to a factorial experiment. The procedures for randomization and layout 

of the individual designs are directly applicable by simply ignoring the factor composition of the 

factorial treatments and considering all the treatments as if they were unrelated. For the analysis 

of variance, the computations discussed for individual designs are also directly applicable. 

However, additional computational steps are required to partition the treatment sum of squares 

into factorial components corresponding to the main effects of individual factors and to their 

interactions. The procedure for such partitioning is the same for all complete block designs and 

is, therefore, illustrated for only one case, namely, that of RCBD. 
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The step-by-step procedure for the analysis of variance of a two-factor experiment on bamboo 

involving two levels of spacing (Factor A) and three levels of age at planting (Factor A) laid out 

in RCBD with three replications is illustrated here. The list of the six factorial treatment 

combinations is shown in Table 4.14, the experimental layout in Figure 4.7, and the data in Table 

4.15. 

Table 4.14. The 2 x 3 factorial treatment combinations of two levels of spacing and three levels of 

age. 

 

Age at planting Spacing (m) 

(month) 10 m x 10 m 12 m x 12m 

 (a1) (a2) 

6 (b1) a1b1 a2b1 

12 (b2) a1b2 a2b2 

24 (b3) a1b3 a2b3 

Replication I Replication II Replication III 

 

a2b3 a2b3 a1b2 

a1b3 a1b2 a1b1 

a1b2 a1b3 a2b2 

a2b1 a2b1 a1b3 

a1b1 a2b2 a2b1 

a2b2 a1b1 a2b3 

 

Figure 4.7. A sample layout of 2 3 factorial experiment involving two levels of spacing and three 

levels of age in a RCBD with 3 replications. 

Table 4.15. Mean maximum culm height of Bambusa arundinacea tested with three age levels 

and two levels of spacing in a RCBD. 
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Treatment Maximum culm height of a clump (cm) Treatment 

combination Rep. I Rep. II Rep. III total (Tij) 

a1b1 46.50 55.90 78.70 181.10 

a1b2 49.50 59.50 78.70 187.70 

a1b3 127.70 134.10 137.10 398.90 

a2b1 49.30 53.20 65.30 167.80 

a2b2 65.50 65.00 74.00 204.50 

a2b3 67.90 112.70 129.00 309.60 

Replication total (Rk) 406.40 480.40 562.80 G=1449.60 

 

Step 1. Denote the number of replication by r, the number of levels of factor A (i.e., spacing) by 

a, and that of factor B (i.e., age) by b. Construct the outline of the analysis of variance as 

follows: 

 

 

 

 

 

 

 

Table 4.16. Schematic representation of ANOVA of a factorial experiment with two levels of 

factor A, three levels of factor B and with three replications in RCBD. 

Source of 

variation 

Degrees of 

freedom 

(df) 

Sum of 

squares 

(SS) 

Mean square 

 

 
 

Computedf 

Replication r-1 SSR MSR  

Treatment ab- 1 SST MST  
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A a- 1 SSA MSA  

 

B b- 1 SSB MSB  

 

AB (a-1)(b-1) SSAB MSAB  

 

Error (r-1)(ab-1) SSE MSE  

Total rab -1 SSTO   

 

Step 2.Compute treatment totals (Tij), replication totals (Rk), and the grand total (G), as shown in 

Table 4.15 and  compute  the SSTO, SSR, SST and SSE following  the  procedure   described   in   

Section   4.3.3.  Let yijk refer to the observation corresponding to the ith level of factor A and jth 

level factor B in the kth replication. 

 

(4.22) 

 

 

 

SSTO (4.23) 

 

= 17479.10 

 

 

 

SSR (4.24) 

 

= 2040.37 
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SST (4.25) 

 

= 14251.87 

SSE = SSTO - SSR - SST (4.26) 

= 17479.10 - 2040.37 - 14251.87 

= 1186.86 

The preliminary analysis of variance is shown in Table 4.17. 

 

 

 

 

 

 

 

 

Table 4.17. Preliminary analysis of variance for data in Table 4.15. 

 

Source of 

variation 

Degree 

of 

freedom 

Sum of 

squares 

Mean 

square 

Computed F Tabular 

F5% 

Replication 2 2040.37 1020.187 8.59567* 4.10 

Treatment 5 14251.87 2850.373 24.01609* 3.33 

Error 10 1186.86 118.686   

Total 17 17479.10    

 

*Significant at 5% level. 

1.8 Degrees of Freedom 

To determine the degrees of freedom (the number of variables whose values may be 

independently specified) in our model we could simply count the number of independent 

variables (the number of 
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variables which remain on the right- hand side) in our modified equations. This suggests a 

possible definition: 

degrees of freedom = # variables - # equations 

Definition: 

The degrees of freedom for a given problem are the number of independent problem variables 

which must be specified to uniquely determine a solution. In our distillation example, there are: 

16 equations 16 variables (recall that F and XF are fixed by upstream processes). This seems to 

indicate that there are no degrees of freedom. 

Consider the three equations relating QC, QR, and qvapour: 

QR - QC = 0 

QR - DHvap qvapour 

= 0 QC - DHvap 

qvapour = 0 

Notice that if we subtract the last from the second equation: 

QR - DHvap qvapour = 0 

- QC - DHvap qvapour = 0 

QR - QC = 0 the result is the first equation. 

It seems that we have three different equations, which contain no more information than two of 

the equations. In fact any of the equations is a linear combination of the other two equations. We 

require a clearer, more precise definition for degrees of freedom. 

Measures that ignore time value of money 

net profit 

payout 

time 

return on investment, ROI 

Measures that recognize the time value of money 

Internal rate of 

return, IRR Net 

present value, 

NPV Discounted return on investment, 

DROI A measure of the total 

profitability 

• Alternative, Benefits-to-cost ratio 

• Strengths 
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– Recognizes a profit in relation to investment size and simple design. 

– Can also use discounted cashflows, DROI 

• Weakness 

– Continuing investments 
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Unit II 

2.0 CONTINUITY OF FUNCTIONS 

Definition 

 

 

 

The function value and the limit aren‘t the same and so the function is not continuous at this 
point. This 

. Firs
t 

Solution 

To answer the question for each point we‘ll need to get both the limit at that point and the 

function value at 

that point. If they are equal the function is continuous at that point and if they aren‘t equal the 

function isn‘t continuous at that point. 

. , 
and 

, 

Example 1 Given the graph of f(x), shown below, determine if f(x) is 
continuous at 

A function is said to be continuous on the interval [a, b] if it is continuous at each point in 
the interval. 

i
f 

is said to be continuous 
at 

A 
function 
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From this example we can get a quick ―working‖ definition  of continuity.   A function is 

continuous on an interval if we can draw the graph from start to finish without ever once picking 

up our pencil. The graph in the last example has only two discontinuities since there are only two 

places where we would have to pick up our pencil in sketching it. 

In other words, a function is continuous if its graph has no holes or breaks in it. 
 

For many functions it‘s easy to determine where it won‘t be continuous. Functions won‘t be 

continuous where we have things like division by zero or logarithms of zero. Let‘s take a quick 

look at an example of determining where a function is not continuous. 

 

 

The function is not continuous at this point. This kind of discontinuity is called a removable 
discontinuity. 

Removable discontinuities are those where there is a hole in the graph as there is in this case. 

. Finall
y 

The function is continuous at this point since the function and limit have the 
same value. 

. No
w 

kind of discontinuity in a graph is called a jump discontinuity. Jump discontinuities occur where 
the graph 

has a break in it as this graph does. 

Example 2 Determine where the function below is not continuous. 

 

 

 

Solution 
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A nice consequence of continuity is the following fact. 

 

Fact 2 

 

To see a proof of this fact see the Proof of Various Limit Properties section in the Extras 

chapter. With this fact we can now do limits like the following example. 

 

 

Rational functions are continuous everywhere except where we have division by zero. So all 

that we need determining where the denominator is zero. That‘s easy enough to determine by 

setting the denominator equal to zero and solving. 

 

 

 

 

 

So, the function will not be continuous at t=-3 and t=5. 

then
, 

an
d 

a
t 

continuo
us 

is I
f 

Example 3 Evaluate the following limit. 

 

 

Solution 

Since we know that exponentials are continuous everywhere we can use the fact above. 

http://tutorial.math.lamar.edu/Classes/CalcI/LimitProofs.aspx#Extras_Limit_LimComp
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Another very nice consequence of continuity is the Intermediate Value Theorem. 

 

2.1 Intermediate Value Theorem 

 

 

All the Intermediate Value Theorem is really saying is that a continuous function will take on all 

values between f(a) and f(b). Below is a graph of a continuous function that illustrates the 

Intermediate Value Theorem. 

Fig. 4 

As we can see from this image  if we pick  any value, M, that is between the  value  of f(a) and  

the  value  of f(b) and draw a line straight out from this point the line will hit the graph in at least 

one point. In other words somewhere between a and b the function will take on the value of M. 

Also, as the figure shows the function may take on the value at more than one place. 

Suppose that f(x) is continuous on [a, b] and let M be any number between f(a) and f(b). Then 

there exists a number c such that, 

1. 

 

2. 
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It‘s also important to note that the Intermediate Value Theorem only says that the function will 

take on the value of M somewhere between a and b. It doesn‘t say just what that value will be. It 

only says that it  exists. 

 

So, the Intermediate Value Theorem tells us that a function  will  take  the  value  of M 

somewhere  between a and b but it doesn‘t tell us where it will take the value nor does it tell us 

how many times it will take the value. There are important ideas to remember about the 

Intermediate Value Theorem. 

 

A nice use of the Intermediate Value Theorem is to prove the existence of roots of equations as 

the following example shows. 

 

 

and we‘ll be 
done. 

o
r 

(i.e
. 

an
d 

is 
between 

that the function is continuous and that 

So, this problem is set up to use the Intermediate Value Theorem and in fact, all we need to do 
is to show 

can see that these two condition on c are exactly the conclusions of the Intermediate 
Value Theorem. 

. However if
 we 

and

 w

e 

and 

and acknowledge 

that 

that 

defin

e 

somewhere between -1 and 2. In other words, we want to show that there is a number c such 

Solution 

What we‘re really asking here is whether or not the function will take 

on the value 

[-
1,2]. 

Show that 

 

has a root somewhere in the 

interval 

4 Exampl

e 
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For the sake of completeness here is a graph showing the root that we just proved existed. Note 
that we 

used a computer program to actually find the root and that the Intermediate Value Theorem 

did not tell us what this value was. 

Therefore the polynomial does have a root between -1 
and 2. 

since is a polynomial it‘s continuous everywhere and so in particular it‘s 

continuous on the interval [-1,2]. So by the Intermediate Value Theorem there must be a 

number 

so that, 

an
d 

an
d 

betwee
n 

is Therefor
e 

So we 
have, 

To do this all we need to do is 
compute, 
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Fig. 5 

Let‘s take a look at another example of the Intermediate Value Theorem. 

 

 

Theorem to prove that the function will take the 
given value. 

. If it does then we can use the Intermediate 
Value 

an
d 

betwee
n 

Now, for each part we will let M be the given value for that part and then we‘ll need to show 
that M lives 

Solution 

Okay, so much as the previous example we‘re being asked to determine, if possible, if the 

function takes on either of the two values above in the interval [0,5]. First, let‘s notice that this 

is a continuous function and 

so we know that we can use the Intermediate Value Theorem to do this problem. 

? 
[Solution] 

(b) 
Does 

? [Solution] (a) 
Does 

[0,5]
. 

takes the following values in the 
interval 

i
f 

determi
ne 

possible
, 

I
f 

5 Exampl

e 

http://tutorial.math.lamar.edu/Classes/CalcI/Continuity.aspx#Limit_Cont_Ex5b
http://tutorial.math.lamar.edu/Classes/CalcI/Continuity.aspx#Limit_Cont_Ex5a
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So, since we‘ll need the two function evaluations for each part let‘s give them here, 

 

 

 

 

 

Now, let‘s take a look at each part. 

 

 

(a) Okay, in this case we‘ll define and we can see that, 

 

 

 

 

 

So, by the Intermediate Value Theorem there must be a number such 

that 

 

 

 

(b) In this part we‘ll define  . We now have a problem. In this part M 

does not live between and   . So, what does this mean for us?  Does 

this mean that   in [0,5]? 

 

Unfortunately for us, this doesn‘t mean anything. It is possible that 

 

in [0,5], but is it also possible that in [0,5]. The 

Intermediate Value Theorem will only tell us that c‘s will exist. The theorem will NOT tell us 

that c‘s don‘t exist. 

 

 

In this case it is not possible to determine if in [0,5] using 

the Intermediate Value Theorem. 
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Okay, as the previous example has shown, the Intermediate Value Theorem will not always be 

able to tell us what we want to know. Sometimes we can use it to verify that a function will take 

some value in a given interval and in other cases we won‘t be able to use it. 

 

For completeness sake here is the graph of  

in the interval [0,5]. 

 

Fig. 6 

 

From this graph we can see that not only does an interval with a range value from in [0,5] it 

does so a total of 4 times! Also note that as we verified in the first part of the previous 

example in [0,5] and in fact it does so a total of 3 times. 

 

So, remember that the Intermediate Value Theorem will only verify that a function will take on a 

given value. It will never exclude a value from being taken by the function. Also, if we can use 

the Intermediate Value Theorem to verify that a function will take on a value it never tells us 

how many times the function will take on the value, it only tells us that it does take the value. 
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2.3 Nonlinear Programming 

Numerous mathematical-programming applications, including many introduced in 

previous chapters, are cast naturally as linear programs. Linear programming assumptions or 

approximations may also lead to appropriate problem representations over the range of decision 

variables being considered. At other times, though, nonlinearities in the form of either nonlinear 

objective functions or nonlinear constraints are crucial for representing an application properly as 

a mathematical program. This chapter provides an initial step toward coping with such 

nonlinearities, first by introducing several characteristics of nonlinear programs and then by 

treating problems that can be solved using simplex-like pivoting procedures. As a consequence, 

the techniques to be discussed are primarily algebra-based. The final two sections comment on 

some techniques that do not involve pivoting. As our discussion of nonlinear programming 

unfolds, the reader is urged to reflect upon the linear- programming theory that we have 

developed previously, contrasting the two theories to understand why the nonlinear problems are 

intrinsically more difficult to solve. At the same time, we should try to understand the similarities 

between the two theories, particularly since the nonlinear results often are motivated by, and are 

direct extensions of, their linear analogs. The similarities will be particularly visible for the 

material of this chapter where simplex-like techniques predominate. 

 

2.4 NONLINEAR PROGRAMMING PROBLEMS 

 

A general optimization problem is to select n decision variables x 1, x 2, . . . , xn from a 

given feasible region in such a way as to optimize (minimize or maximize) a given objective 

function 

f ( x 1, x 2, . . . , xn) 

of the decision variables. The problem is called a nonlinear programming problem (NLP) 

if the objective function is nonlinear and/or thefeasible region is determined by nonlinear 

constraints. Thus, in maximization form, the general nonlinear program is stated as: 

Maximize f ( x 1, x 2, . . . , 

xn), subject to: 

g 1( x 1, x 2, . . . , xn) ≤ b 1, 

gm( x 1, x 2, . . . , xn) ≤ bm, 

where each of the constraint functions g 1 through gm is given. A special case is the 

linear  program that has been treated previously. The obvious association for this case is 

n 
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f ( x 1, x 2, . . . , xn) = 

c j x j , 

j =1 

Nonlinear Programming Problems 

n 

gi ( x 1, x 2, . . . , xn) = 

ai j x j 

( i = 1, 2, . . . , m). 

j =1 

Note that nonnegativity restrictions on variables can be included simply by appending the 

additional con- straints: 

gm+ i ( x 1, x 2, . . . , xn) = − xi ≤ 0 

( i = 1, 2, . . . , n). 

Sometimes these constraints will be treated explicitly, just like any other problem 

constraints. At other times, it will be convenient to consider them implicitly in the same way that 

nonnegativity constraints are handled implicitly in the simplex method. 

For notational convenience, we usually let x denote the vector of n decision variables x 1, x 

2, . . . , 
xn — 

 

 

 

 

 

 

 

 

cours

e 

 

b and 

 

that is, x = ( x 1, x 2, . . . , xn) — and write the problem more 

concisely as Maximize f ( x), 

subject to: 

gi ( x) ≤ bi 

( i = 1, 2, . . . , m). 

As in linear programming, we are not restricted to this formulation. To minimize f ( x), we 

can of maximize − f ( x). Equality constraints h( x) = b  can be written as two inequality 

constraints h( x)  ≤ 

− h( x) ≤ − b. In addition, if we introduce a slack variable, each inequality constraint is  

transformed 
to an equality constraint. Thus sometimes we will consider an alternative equality 

form: Maximize f ( x), subject to: 
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hi ( x) = bi 

( i = 1, 2, . . . , m) 

x j ≥ 0 

( j = 1, 2, . . . , n). 

Usually the problem context suggests either an equality or inequality formulation (or a 

formulation with both types of constraints), and we will not wish to force the problem into either 

form. The following three simplified examples illustrate how nonlinear programs can arise in 

practice. 

LOCAL vs. GLOBAL OPTIMUM 

Geometrically, nonlinear programs can behave much differently from linear programs, 

even for problems with linear constraints. In Fig. 13.1, the portfolio-selection example from the 

last section has been plotted for several values of the tradeoff parameter θ. For each fixed value 

of θ, contours of constant objective values are concentric ellipses. As Fig. 13.1 shows, the 

optimal solution can occur: 

a) at an interior point of the feasible region; 

b) on the boundary of the feasible region, which is not an extreme point; or 

c) at an extreme point of the feasible region. 

As a consequence, procedures, such as the simplex method, that search only extreme 

points may not determine an optimal solution. 

Figure 5 illustrates another feature of nonlinear-programming problems. Suppose that we 

are to minimize f ( x) in this example, with 0 ≤ x ≤ 10. The point x = 7 is optimal. Note, however, 

that in the indicated dashed interval, the point x = 0 is the best feasible point; i.e., it is an optimal 

feasible point in the local vicinity of x = 0 specified by the dashed interval. 

The latter example illustrates that a solution optimal in a local sense need not be optimal 

for the overall problem. Two types of solution must be distinguished. A global optimum is a 

solution to the overall optimization problem. Its objective value is as good as any other point in 

the feasible region. A local optimum, on the other hand, is optimal only with respect to feasible 

solutions close to that point. Points far removed from a local optimum play no role in its 

definition and may actually be preferred to the local optimum. Stated more formally, 

 

Definition 

 

Let x = ( x 1, x 2, . . . , xn) be a feasiblesolution to a maximization problem with objective 

function f ( 

x). We call x 
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1. A global maximum if f ( x) ≥ f ( y) for every feasible point y = ( y 1, y 2, 

. . . , yn); denotes absolute value; that is, | x | = x if x ≥ 0 and | x | = − x if x 

< 0. 
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values

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to x. 

Nonlinear Programming 

Portfolio-selection example for various values of θ. (Lines are contours of constant 

objective 

 

 

Fig. 7 

2.5 Convex and Concave Functions 

Local and global minima. 

2. A local maximum if f ( x) ≥ f ( y) for every feasible point y = ( y 1, y 2, . . . , yn) 

sufficiently close 

 

That is, if there is a number 

> 0 (possibly quite small) so that, whenever each variable yj is 

within of x j — that is, x j − ≤ y j ≤ x j + —and y is feasible, 

then f ( x) ≥ f ( y). 

Global and local minima are defined analogously. The definition of local maximum simply 

says that 

if we place an n-dimensional box (e.g., a cube in three dimensions) about x, whose side has 

length 2 , then f ( x) is as small as f ( y) for every feasible point y lying within the box. 

(Equivalently, we can use n- dimensional spheres in this definition.) For instance, if 

= 1 in the above example, the one-dimensional box, or interval, is pictured about the local 

minimum 

x = 0 in Fig.7 The concept of a local maximum is extremely important. As we shall see, most 

general-purpose nonlinear- programming procedures are near-sighted and can do no better than 

determine local maxima. 
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We should point out that, since every global maximum is also a local maximum, the overall 

optimization problem can be viewed as seeking the best local maxima. 

Under certain circumstances, local maxima and minima are known to be global. 

Whenever a function  ‗‗curves  upward‘‘  as  in  Fig.  13.3(a),  a  local  minimum  will  be  global.  

These  functions  are  called convex.  Whenever  a  function  ‗‗curves  downward‘‘  as  in  Fig.  

13.3(b)  a  local  maximum  will  be  a  global maximum. 

These functions are called concave.† For this reason we usually wish to minimize convex 

functions and maximize concave functions. These observations are formalized below. 

CONVEX AND CONCAVE FUNCTIONS 

Because of both their pivotal role in model formulation and their convenient 

mathematical properties, certain functional forms predominate in mathematical programming. 

Linear functions are by far the most important. Next in importance are functions which are 

convex or concave. These functions are so central to the theory that we take some time here to 

introduce a few of their basic properties. 

An essential assumption in a linear-programming model for profit maximization is 

constant returns to scale for each activity. This assumption implies that if the level of one activity 

doubles, then that activity‘s profit contribution also doubles; if the first activity level changes 

from x 1 to 2 x 1, then profit increases proportionally from say $20 to $40 [i.e., from c 1 x 1 to c 

1(2 x 1)]. In many instances, it is realistic to assume constant returns to scale over the range of 

the data. At other times, though, due to economies of scale, profit might increase 

disproportionately, to say $45; or, due to diseconomies of scale (saturation effects), profit may be 

only $35. 

In the former case, marginal returns are increasing with the activity level, and we say that 

the profit functions. As a mnemonic, the ‗‗A‘‘ in concave reflects the shape of these functions. 
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            Fig. 8 

 

Nonlinear Programming 

a) Convex function b) concave function (c) nonconvex, nonconcave function. 

is convex (Fig. 13.3(a)). In the second case, marginal returns are decreasing with the 

activity level and we say that the profit function is concave (Fig.b). Of course, marginal returns 

may increase over parts of the data range and decrease elsewhere, giving functions that are 

neither convex nor concave (Fig. (c)). 

An alternative way to view a convex function is to note that linear interpolation 

overestimates its 

values

. Fig). 

 

That is, for any points y and z, the line segment joining f ( y) and f ( z) lies above the 

function (see More intuitively, convex functions are ‗‗bathtub like‘‘ and hold water. 

Algebraically, 
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Definition 

 

A function f ( x) is called convex if,for every y and z and every 0 ≤ λ ≤ 1, 

f [λ y + (1 − λ) z] ≤ λ f ( y) + (1 − λ) f ( z). 

It is called strictly convex if, for every two distinct points y and z and every 0 < λ < 1, 

f [λ y + (1 − λ) z] < λ f ( y) + (1 − λ) f ( z). 

The lefthand side in this definition is the function evaluation on the line joining x and y; 

the righthand side is the linear interpolation. Strict convexity corresponds to profit functions 

whose marginal returns are strictly increasing. 

Note that although we have pictured f above to be a function of one decision variable, this 

is not a restric-tion. If y = ( y 1, y 2, . . . , yn) and z = ( z 1, z 2, . . . , zn), we must interpret λ y + (1 

− λ) z only as weighting the decision variables one at a time, i.e., as the decision vector (λ y 1 + 

(1 − λ) z 1, . . . , λ yn + (1 

− λ) zn). 

Concave functions are simply the negative of convex functions. In this case, linear 

interpolation under-estimates the function. The definition above is altered by reversing the 

direction of the inequality. Strict concavity is defined analogously. Formally, 

 

Definition 

 

A function f (x) is called concave if, for every y and z and every 0 ≤ λ ≤ 1, 

f [λ y + (1 − λ) z] ≥ λ f ( y) + (1 − λ) f ( z). 

It is called strictly concave if, for every y and z and every 0 < λ < 1, 

f [λ y + (1 − λ) z] > λ f ( y) + (1 − λ) f ( z). 
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Fig. 9 

 

2.6 Quadratic Approximation 

The Formula for Quadratic Approximation 

Quadratic approximation is an extension of linear approximation – we‘re adding one more 

term, which is related to the second derivative. The formula for the quadratic approximation of 

a function f(x) for values of x near x0 is: 

f(x) ≈ f(x0) + f‘ (x0)(x − x0) + f‖(x0) (x − x0) 2 (x ≈ 

x0) 2 Compare this to our old formula for the linear 

approximation of f: f(x) ≈ f(x0) + f‘ (x0)(x − x0) (x ≈ 

x0). 

We got from the linear approximation to the quadratic one by adding one more term that is 

related to the second derivative: f(x) ≈ f(x0) + f‘ (x0)(x − x0) + f‖(x0) (x − x0) 2 (x ≈ x0) 2 

Linear Part Quadratic Part These are more complicated and so are only used when higher 

accuracy is needed. We‘d like to develop a catalog of quadratic approximations similar to our 

catalog of linear approximations. 

Let‘s start by looking at the quadratic version of our estimate of ln(1.1). The formula for the 

quadratic approximation turns out to be: 2 x 

ln(1 + x) ≈ x − , 2 1 1 1 ( 1 )2 and so ln(1.1) = ln(1 + 10 ) ≈ 10 − 2 10 = 0.095. This is not the 

value 0.1 that we got from the linear approximation, but it‘s pretty close (and slightly more 

accurate). 

 

 



   
 

1 
 

 

SCHOOL OF BIO & CHEMICAL ENGINEERING 

DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

UNIT – III –Optimization of Chemical Processes – SCH1402 



   
 

2 
 

UNIT III One-Dimensional Unconstrained optimization 

3.0 One dimensional minimization methods 

1. Analytical methods (differential calculus methods) 

2. Numerical methods 

a. Elimination methods 

i. Unrestricted search 

ii. Exhaustive search 

iii. Dichotomous search 

iv. Fibonacci method 

v. Golden section method 

b. Interpolation methods 

i. Requiring no derivatives (quadratic) 

ii. Requiring derivatives 

1. Cubic 

2. Direct root 

a. Newton 

b. Quasi-Newton 

3. Secant 

 

In multimodal functions, both local and global optima can occur. In almost all cases, we are 

interested in finding the absolute highest or lowest value of a function. 

 
 

Direct search methods 

The direct search methods use only the objective function values to locate the minimum point. 

The typical direct search methods include uniform search, uniform dichotomous search, 

sequential dichotomous search, Fibonacci search and golden section search methods. 
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Uniform search In the uniform search method, the trial points are spaced equally over the 

allowable range of values. Each point is evaluated in turn in an exhaustive search. For example, 

the designer wants to optimize the yield of a chemical reaction by varying the concentration of a 

catalyst, x and x lies over the range 0 to 10. Four experiments are available, and the same are 

distributed at equivalent spacing over the range =10L. 

This divides L into intervals each of width L/n+1, where n is the number of experiments. From 

inspection of the results at the experimental points, we can conclude that the optimum will not lie 

in the ranges < 2x or > 6x . Therefore, we know the optimum will lie in between the range << 

6x2 . So, the range of values that require further search is reduced to 40% of the total range with 

only four experiments. 

3.1 Uniform dichotomous 

search Dichotomous 

search 

1. The dichotomous search method, as well as the Fibonacci and the golden section 

methods discussed in subsequent sections, are sequential search methods in which the 

result of any experiment influences the location of the subsequent experiment. 

2. In the dichotomous search, two experiments are placed as close as possible at the center 

of the interval of uncertainty. 

3. Based on the relative values of the objective function at the two points, almost half of the 

interval of uncertainty is eliminated. 

Let the positions of the two experiments be given by: 

where  is a small positive number chosen such that the two experiments give significantly 

different results. 

 

1. Then the new interval of uncertainty is given by (L0/2+ /2). 
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

2. The building block of dichotomous search consists of conducting a pair of experiments at 

the center of the current interval of uncertainty. 

3. The next pair of experiments is, therefore, conducted at the center of the remaining 

interval of uncertainty. 

4. This results in the reduction of the interval of uncertainty by nearly a factor of two. 

5. The intervals of uncertainty at the ends of different pairs of experiments are given in the 

following table. 

 

Number

 o

f experiments 

2 4 6 

Final interval 

of uncertainty 

(L0+ )/2 1  L    
  

   0   
2  2  2 

1  L0   
 

  
 

     
2 

 
4 2 

 
2 

  

 

 

6. In general, the final interval of uncertainty after conducting n experiments (n even) is 

given by: 

 

L     
L0       1    

1 
 

 
n 

2n / 2  
2n / 2  

 

3.2 Fibonacci method 

This method makes use of the sequence of Fibonacci numbers, {Fn}, for placing the 

experiments. 

These numbers are defined as: 

F0  F1  1 

Fn  Fn 1  

Fn 2 , 

n  2,3,4,  

which yield the sequence 1,1,2,3,5,8,13,21,34,55,89,... 

Procedure: 

Let L0 be the initial interval of uncertainty defined by a  x  b and n be the total number 

of experiments to be conducted.  

n 
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F 

F F 

0 

F 

0 

define and place the first two experiments at points x1 and x2, which are located at a distance 

of L2* from each end of L0. 

This gives 

 

x  a  L
* 

 a  
Fn 2 L 

 
1 2 0 

n 

x  b  L
* 

 b  
Fn 2 L  a  

Fn 1 L 
  

2 2 0 0 

n n 

Discard part of the interval by using the unimodality assumption. Then there remains a smaller 

interval of uncertainty L2 given by: 

 
*  Fn 2  Fn 1 

 
L2    L0   L2    L0 1    L0 

 Fn       Fn 

The only experiment left in will be at a distance of 

 

L*  
Fn 2 L  

Fn 2 L 

n Fn 1 

from one end and 

L  L*  
Fn 3 L 

 

 
Fn 3 L 

 
2 2
 0 

n 

Fn 1 

from the other end. Now place the third experiment in the interval L2 so that the current 

two experiments are located at a distance of: 

 

L*  
Fn 3 L  

Fn 3 L 

n Fn 1 

2 
F 

2 

2 

3 
F 

2 
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3.3 Newton’s Method 

A similar approach to Newton- Raphson method can be used to find an optimum of f(x) 

by defining a new function g(x)=f‘(x). Thus because the same optimal value x* satisfies 

both 

f‘(x*)=g(x*)=0 

We can use the following as a technique to the extremum of f(x). 

 

 

x  x  f (xi 
) 

i

1 

i 
f  

(xi ) 

 

Newton’s Method for Solving a Nonlinear Equation—an example 

 

Let’s say we want to evaluate the cube root of 467. That is, we want to find a value of x such that 

x3  467 . Put another way, we want to find a root of the following equation: 

f (x)  x3  467   0 . 
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o 

If f(x) were a straight line, then 

 
f (x )  

 
f (x )  

df x  xo 
 

x
 

 

 x   0 . 

1 o 
dx 

1 o 

 

In fact, 
f (x1 )  0 , but let’s say 

that 

f (x1 ) 

 0 

and 

solve for x1. 

 
x  x  

f x1  f xo 

 
 x

 

  

 
f xo  

.
 

  

1 o df (xo ) 
 

dx 

o 
f x  

 

Note that we are using f 

(x

o 

)  
df (x  xo ) .

 

dx 

Having now obtained a new estimate for the 

root, we repeat the process to obtain a sequence of estimated roots which we hope converges on 

the exact or correct root. 

 
x  x  f x1  

  

f x1  

 
x  x  

f x2  

  

3 2 

 

etc. 

f x2  

In our 

example, 
f (x)  x3  

467 

an

d 

f (x)  3x 2 . If we take our initial guess 

to be 

xo  6 , then 

by 

iterating the formula above, we generate the following table: 

 

 

i xi f (xi ) f (xi ) 

0 6 -251 108 

2 1 



   
 

8 
 

1 8.32

4 

109.771

8 

207.870

6 

2 7.79

6 

6.8172 182.331

6 

3 7.75
9 

0.108 0.0350 

 

 

Fitting models by least squares 
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2 

 

3.4 Evaluation of Derivatives: Issues and Problems 

 

All major NLP algorithms require estimation of first derivatives of the problem functions 

to obtain a solution and to evaluate the optimality conditions. If the val-ues of the 

derivatives are computed inaccurately, the algorithm may progress very slowly, choose 

poor directions for movement, and terminate due to lack of progress or reaching the 

iteration limits at points far from the actual optimum, or, in extreme cases, actually declare 

optimality at nonoptimal points. 

 

3.5 Finite difference substitutes for derivatives 

 

When the user, whether working on stand-alone software or through a spread-sheet, 

supplies only the values of the problem functions at a proposed point, the NLP code 

computes the first partial derivatives by finite differences. Each function is evaluated at a 

base point and then at a perturbed point. The difference between the function values is then 

divided by the perturbation distance to obtain an approx-imation of the first derivative at 

the base point. If the perturbation is in the positive direction from the base point, we call 

the resulting approximation a forward differ-ence approximation. For highly nonlinear 

functions, accuracy in the values of derivatives may be improved by using central 

differences; here, the base point is perturbed both forward and backward, and the 

derivative approximation is formed from the difference of the function values at thosk 

points. The price for this increased accuracy is that central differences require twice as 

many function eval-uations of forward differences. If the functions are inexpensive to 

evaluate, the additional effort may be modest, but for large problems with complex 

functions, the use of central differences may dramatically increase solution times. Most 

NLP codes possess options that enable the user to specify the use of central differences. 

Some codes attempt to assess derivative accuracy as the solution progresses and switch to 

central differences automatically if the switch seems warranted. 

 

A critical factor in the accuracy of finite difference approximations for deriva-tives is the 

value of the perturbation step. The default values employed by all NLP codes (generally 

1.E-6 to 1.E-7 times the value of the variable) yield good accuracy when the problem 

functions can be evaluated to full machine precision. When prob-lem functions cannot be 

evaluated to this accuracy (perhaps due to functions that are the result of iterative 
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computations), the default step is often too small. The resulting derivative approximations 

then contain significant error. If the function(s) are highly nonlinear in the neighborhood of 

the base point, the default perturbation step may be too large to accurately approximate the 

tangent to the function at that point. Special care must be taken in derivative computation 

if the problem functions are not closed-form functions in compiled code or a modeling 

language (or, equiv-alently, a sequence of simple computations in a spreadsheet). If each 

function eval-uation involves convergence of a simulation, solution of simultaneous 

equations, or convergence of an empirical model, the interaction between the derivative 

pertur-bation step and the convergence criteria of the functions strongly affects the deriv-

ative accuracy, solution progress, and reliability. In such cases, increasing the per-turbation 

step by two or three orders of magnitude may aid the solution process. 

 

3.6 Analytic derivatives 

 

Algebraic modeling systems, such as those described in Section 8.9.3, accept 

user-provided expressions for the objective and constraint functions and process them 

to produce additional expressions for the analytic first partial deriv-atives of these 

functions with respect to all decision variables. These expressions are exact, so the 

derivatives are evaluated to full machine precision (about 15 correct decimal digits 

using double precision arithmetic), and they are used by any derivative-based 

nonlinear code that is interfaced to the system. Finite-difference approximations to 

first derivatives have at most seven or eight signif-icant digits. Hence, an NLP code 

used within an algebraic modeling system can be expected to produce more accurate 

results in fewer iterations than the same solver using finite-difference derivatives. 

Chemical process simulators like Aspen also compute analytic derivatives and provide 

these to their nonlinear optimizers. Spreadsheet solvers currently use finite-difference 

approximations to derivatives. 
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Of course, many models in chemical and other engineering disciplines are difficult to 

express in a modeling language, because these are usually coded in FORTRAN or C 

(referred to as "general purpose" programming languages), as are many existing "legacy" 

models, which were developed before modeling systems became widely used. General-

purpose languages offer great flexibility, and mod-els coded in these languages generally 

execute about ten times faster than those in an algebraic modeling system because 

FORTRAN and C are compiled, whereas statements in algebraic modeling systems are 

interpreted. This additional speed is ' especially important in on-line control applications 

derivatives in FORTRAN or C models may be approximated by differencing, or expressions 

for the derivatives can be derived by hand and coded in subroutines used by a solver. 

Anyone who has tried to write expressions for frrst derivatives of many complex functions 

of many variables knows how error-prone and tedious this process is. These shortcomings 

motivated the development of computer programs for automatic diflerentiation (AD). 

Given FORTRAN or C source code which eval-uates the functions, plus the user's 

specification of which variables in the program are independent, AD software augments the 

given program with additional state-ments that compute partial derivatives of all functions 

with respect to all indepen-dent variables. In other words, using AD along with FORTRAN 

or C produces a program that computes the functions and their first derivatives. 

 

Currently, the most widely used AD codes are ADIFOR (automatic differentia-tion 

of FORTRAN) and ADIC (automatic differentiation of C). These are available at no 

charge from the Mathematics and Computer Science division of Argonne National 

Laboratories-see www.mcs.anl.gov for information on downloading the software and 

further information on AD. This software has been successfully applied to several 

difficult problems in aeronautical and structural design as well as chemi-cal process 

modeling. 
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What to Do When an NLP Algorithm Is Not "Working" 

 

Probably the most common mode of failure of NLP algorithms is termination due to 

"fractional change" (i.e., when the difference in successive objective function values is a 

small fraction of the value itself over a set of consecutive iterations) at a point where the 

Kuhn-Tucker optimality conditions are far from satisfied. Some-times this criterion is not 

considered, so the algorithm terminates due to an itera-tion limit. Termination at a 

significantly nonoptimal point is an indication that the algorithm is unable to make any 

further progress. Such lack of progress is often associated with poor derivative accuracy, 

which can lead to search directions that do not improve the objective function. In such 

cases, the user should analyze the problem functions and perhaps experiment with 

different derivative steps or differ-ent starting points. 

Parameter adjustment 

Most NLP solvers use a set of default tolerances and parameters that control the 

algorithm's determination of which values are "nonzero," when constraints are satisfied, 

when optimality conditions are met, and other tuning factors. 

Feasibility and optimality tolerances 

Most NLP solvers evaluate the first-order optimality conditions and declare 

optimality when a feasible solution meets these conditions to within a specified tol-

erance. Problems that reach what appear to be optimal solutions in a practical sense but 

require many additional iterations to actually declare optimality may be sped up by 

increasing the optimality or feasibility tolerances. See Equations (8.3 la) and (8.3 1b) for 

definitions of these tolerances. Conversely, problems that terminate at points near 

optimality may often reach improved solutions by decreasing the opti-mality or 

feasibility tolerances if derivative accuracy is high enough. 
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Other "tuning" issues 

The feasibility tolerance is a critical parameter for GRG algorithms because it 

represents the convergence tolerance for the Newton iterations (see Section 8.7 for 

details of the GRG algorithm). Increasing this tolerance from its default value may speed 

convergence of slow problems, whereas decreasing it may yield a more accu-rate 

solution (at some sacrifice of speed) or "unstick" a sequence of iterations that are going 

nowhere. MINOS requires specification of a parameter that penalizes con-straint 

violations. Penalty parameter values affect the balance between seeking feasi-bility and 

improving of the objective function. 

 

Scaling 

The performance of most NLP algorithms (particularly on large problems) is 

greatly influenced by the relative scale of the variables, function 'values, and Jaco-bian 

elements. In general, NLP problems in which the absolute values of these quantities lie 

within a few orders of magnitude of each other (say in the range 0-100) tend to solve (if 

solutions exist) faster and with fewer numerical difficulties. Most codes either scale 

problems by default or allow the user to specify that the problem be scaled. Users can 

take advantage of these scaling procedures by build-ing models that are reasonably 

scaled in the beginning. 
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3.7 Model formulation 

 

Users can enhance the reliability of any NLP solver by considering the follow-ing simple 

model formulation issues: 

 

Avoid constructs that may result in discontinuities or undefined function argu-ments. Use 

exponential functions rather than logs. Avoid denominator terms that may tend toward zero 

(i.e., llx or ll(x- 1), etc.), multiplying out these denominators where possible. 

 Be sensitive to possible "domain violations," that is, the potential for the optimizer to move 

variables to values for which the functions are not defined (negative log arguments, negative 

square roots, negative bases for fractional exponents) or for which the functions that make up 

the model are not valid expressions of the sys-tems being modeled. 

Starting points 

The performance of NLP solvers is strongly influenced by the point from which the solution 

process is started. Points such as the origin (0,0, . . .) should be avoided because there may be a 

number of zero derivatives at that point (as well as problems with infinite values). In general, 

any point where a substantial number of zero derivatives are possible is undesirable, as is any 

point where tiny denominator values are possible. Finally, for models of physical processes, the 

user should avoid starting points that do not represent realistic operating conditions. Such points 

may cause the solver to move toward points that are stationary points but unacceptable 

configurations of the physical system. 

Local and global optima 

is was discussed in Section, a global optimum is a feasible solution that has the best 

objective value. A local optimum has an objective value that is better than that of any "nearby" 

feasible solution. All NLP algorithms and solvers here are only capable of finding local optima. 

For convex programs, any local optimum is also global. Unfortunately, many NLPs are not 

convex or cannot be guaranteed to be convex, hence we must consider any solution returned by 

an NLP solver to be local. The user should examine the solution for reasonableness, perhaps re-

solving the problem from several starting points to investigate what local optima exist and how 

these solutions differ from one another. He/she can also try a global optimizer;  
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UNIT IV Constrained optimization 

4.0 The Linear Programming Model 

Let: X1, X2, X3, ………, Xn = decision 

variables Z = Objective function or linear 

function Requirement: Maximization of the 

linear function Z. 

Z = c1X1 + c2X2 + c3X3 + 

………+ cnXn subject to the following 

constraints: 

where aij, bi, and cj are given constants. 

The linear programming model can be written in more efficient notation as: 

 

The decision variables, xI, x2, ..., xn, represent levels of n competing 

activities. The linear programming model for this example can be 

summarized as: 
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Evaluation Of Unidimensional Search Methods 

 
 In this chapter we described and illustrated only a few unidimensional search methods. Refer to 

Luenberger (1984), Bazarra et al. (1993), or Nash and Sofer (1996) for many others. Naturally, you 

can ask which unidimensional search method is best to use, most robust, most efficient, and so on. 

Unfortunately, the various algorithms are problem-dependent even if used alone, and if used as 

subroutines in optimization codes, also depend on how well they mesh with the particular code. 

Most codes simply take one or a few steps in the search direction, or in more than one direction, 

with no requirement for accuracy that f(x) be reduced by a sufficient amount. 

From a given starting point, a search direction is determined, and f (x) is minimized in that 

direction. The search stops based on some criteria, and then a new search direction is determined, 

followed by another line search. The line search can be carried out to various degrees of precision. 

For example, we could use a simple successive doubling of the step size as a screening method until 

we detect the optimum has been bracketed. At this point the screening search can be terminated and 

a more sophisticated method employed to yield a higher degree of accuracy. In any event, refer to 

the techniques discussed in Chapter 5 for ways to carry out the line search 

4.1 Graphical Solution to LP Problems 
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• An equation of the form 4x1 + 5x2 = 1500 defines a straight line in the x1-x2 plane. An 

inequality defines an area bounded by a straight line. Therefore, the region below and 

including the line 4x1 + 5x2 = 1500 in the Figure represents the region defined by 4x1 + 

5x2  1500. 

• Same thing applies to other equations as well. 

• The shaded area of the figure comprises the area common to all the regions 

defined by the constraints and contains all pairs of xI and x2 that are feasible 

solutions to the problem. 

• This area is known as the feasible region or feasible solution space. The optimal 

solution must lie within this region. 

• There are various pairs of x1 and x2 that satisfy the constraints such as: 

 

• Trying different solutions, the optimal solution will be: 

X1 = 270 

X2 = 75 This indicates that maximum income of $4335 is obtained by 

producing 270 units of product I and 75 units of product II. 
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• In this solution, all the raw material and available time are used, because the optimal 

point lies on the two constraint lines for these resources. 

• However, 1500- [4(270) + 5(75)], or 45 ft2 of storage space, is not used. Thus the 

storage space is not a constraint on the optimal solution; that is, more products could be 

produced before the company ran out of storage space. Thus this constraint is said to be 

slack. 

4.2 The Simplex Method 

 When decision variables are more than 2, it is always advisable to use Simplex 

Method to avoid lengthy graphical procedure. 

 The simplex method is not used to examine all the feasible solutions. 

 It deals only with a small and unique set of feasible solutions, the set of vertex points 

(i.e., extreme points) of the convex feasible space that contains the optimal solution. 

 Steps involved: 

 Locate an extreme point of the feasible region. 

 Examine each boundary edge intersecting at this point to see whether 

movement along any edge increases the value of the objective function. 

 If the value of the objective function increases along any edge, move along this 

edge to the adjacent extreme point. If several edges indicate improvement, the 

edge providing the greatest rate of increase is selected. 

 Repeat steps 2 and 3 until movement along any edge no longer increases the 

value of the objective function. 

Example: Product Mix Problem 

The N. Dustrious Company produces two products: I and II. The raw material requirements, 

space needed for storage, production rates, and selling prices for these products are given 

below: 

The total amount of raw material available per day for both products is 15751b. The total 

storage space for all products is 1500 ft2, and a maximum of 7 hours per day can be used 

for production. 
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The company wants to determine how many units of each product to produce per 

day to maximize its total income. 

Solution 

Step 1: Convert all the inequality constraints into equalities by the use of slack variables. 

Let: 

 

 

 

Step 2: From Equation CI, which limits the maximum value of x1. 

 

Substituting this equation into Eq. (5) yields the following new formulation of the model. 

 

 It is now obvious from these equations that the new feasible 

solution is: x1 = 315, x2 = 0, S1 = 240, S2 = 0, S3 = 105, 

and Z = 4095 

 It is also obvious from Eq.(A2) that it is also not the optimum solution. The 

coefficient of x1 in the objective function represented by A2 is negative ( -16/5), 

which means that the value of Z can be further increased by giving x2 some 
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positive value. 

Step 3: From Equation D2: 

 
At each iteration, to minimize f(x), f(x) is evaluated at each of three vertices of 

the triangle. The direction of search is oriented away from the point with the highest 

value for the function through the centroid of the simplex. By making the search 

direction bisect the line between the other two points of the triangle, the direction 

goes through the centroid. A new point is selected in this reflected direction (as 

shown in Figure 6.3), preserving the geometric shape. The objective function is then 

evaluated at the new point, and a new search direction is determined. The method 

proceeds, rejecting one vertex at a time until the simplex straddles the optimum.  

 

Various rules are used to prevent excessive repetition of the same cycle or simplexes.  

As the optimum is approached, the last equilateral triangle straddles the optimum 

point or is within a distance of the order of its own size from the optimum (examine 

Figure 6.4). The procedure cannot therefore get closer to the optimum and repeats 

itself so that the simplex size must be reduced, such as halving the length of all the 

sides of the simplex containing the vertex where the oscillation started. A new simplex 

composed of the midpoints of the ending simplex is constructed. When the simplex 

size is smaller than a prescribed tolerance, the routine is stopped. Thus, the optimum 

position is determined to within a tolerance influenced by the size  

of the simplex. 

 

Nonlinear objective functions are sometimes nonsmooth due to the presence of functions like abs, 

min, max, or if-then-else statements, which can cause derivatives, or the function itself, to be 

discontinuous at some points. Unconstrained optimization methods that do not use derivatives are 

often able to solve nonsmooth NLP problems, whereas methods that use derivatives can fail. 

Methods employing derivatives can get "stuck" at a point of discontinuity, but -the functionvalue-

only methods are less affected. For smooth functions, however, methods that use derivatives are 

both more accurate and faster, and their advantage grows as the number of decision variables 

increases. Hence, we now turn our attention to unconstrained optimization methods that use only 

first partial derivatives of the objective function.



   
 

8 
 

 

 
 

Substituting this equation into Eq. (7) yield: 

 

From these equations, the new feasible solution is readily found to be: x1 = 270, x2 = 75, S1 = 45, S2 

= 0, S3 

= 0, Z = 4335. 

Simplex Tableau for Maximization 

Step I: Set up the initial tableau using Eq. (5). 

 

 

 

Step II: . Identify the variable that will be assigned a nonzero value in the next iteration 

so as to increase the value of the objective function. This variable is called the entering 

variable. 

 It is that nonbasic variable which is associated with the smallest negative 

coefficient in the objective function. 
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 If two or more nonbasic variables are tied with the smallest coefficients, select one 

of these arbitrarily and continue. 

Step III: Identify the variable, called the leaving variable, which will be changed from a 

nonzero to a zero value in the next solution. 

Step IV: . Enter the basic variables for the second tableau. The row sequence of the 

previous tableau should be maintained, with the leaving variable being replaced by the 

entering variable. 

 

Step V: Compute the coefficients for the second tableau. A sequence of operations will 

be performed so that at the end the x1 column in the second tableau will have the 

following coefficients: 
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The second tableau yields the following feasible solution: 

x1 = 315, x2 = 0, SI = 240, S2 = 0, S3 = 105, and Z = 4095 

Step VI: Check for optimality. The second feasible solution is also not optimal, because 

the objective function (row A2) contains a negative coefficient. Another iteration 

beginning with step 2 is necessary. 

 In the third tableau (next slide), all the coefficients in the objective function (row A3) 

are positive. Thus an optimal solution has been reached and it is as follows: 

x1 = 270, x2 = 75, SI = 45, S2 = 0, S3 = 0, and Z = 4335 

 

Answers to these questions can be obtained from the objective function in the last tableau of 

the simplex solution: 
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Barrier Methods 
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4.3 Theory of linear programming 

The linear programming approach to optimization problems includes the assumption that input 

data is known and is not subject to changes. In real life this assumption may be found inaccurate. 

For example, cost estimates are sometimes subject to errors, and to changes over time due to 

dynamic behavior of the environment; Demand reflects market behavior, which in itself is 

unpredictable to some degree; Resource availability may change when management changes its 

preferences. So, a question about the sensitivity of the optimal solution to changes in input 

parameters seems to be valid, and important for the sake of making informed decisions. This is 

the topic dealt with in these notes. 

Sensitivity analysis allows for only one parameter change at a time. Since in reality several 

changes may occur simultaneously, we‟ll extend the discussion to the multiple changes case 

later. For now, two types of changes are considered within the framework of a linear 

programming model. 

 

(i) Changes in one objective-function coefficient. 

(ii) Changes in one constraint right-hand-side. 

 

First let us present a decision problem to be solved using linear programming. This problem will 

then serve as the vehicle with which we demonstrate the sensitivity analysis concepts. 

Example 

CPI manufactures a standard dining chair used in restaurants. The demand forecasts for chairs 

for quarter 1 and quarter 2 are 3700 and 4200, respectively. The chair contains an upholstered 

seat that can be produced by CPI or purchased from DAP. DAP currently charges $12.25 per 

seat, but has announced a new prices of $13.75 effective the second quarter. CPI can produce at 

most 3800 seats per quarter at a cost of $10.25 per seat. Seats produced or purchased in quarter 1 

can be stored in order to satisfy  demand in quarter 2. A seat cost CPI $1.50 each to hold in 

inventory, and maximum inventory cannot exceed 300 seats. Find the optimal make-or-buy plan 

for CPI. 

The problem is formulated as follows: 

X1 = Number of seats produced by CPI in quarter 1. 

X2 = Number of seats purchased from DAP in quarter 1. 
X3 = Number of seats carried in inventory from quarter 1 to 2. X4 = Number of seats produced by CPI in quarter 2. X5 = 
Number of seats purchased from DAP in quarter 2. 
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The linear programming model is provided next: 

Minimize 10.25X1+12.5X2+1.5X3+10.25X4+13.75X5 

Subject to: X1+ X2 = 3700+ X3 

X3+ 

X4+X5=4200 

X1 3800 

X4 380

0 

X3 300 

X1, X2, X3, X4, and X5 are non-negative 

The linear programming model was run using SOLVER and the output results are given in the 

attached printout: 

a.   What is the optimal solution including the optimal value of the objective function? 

 

 
X1 X

2 

X3 X4 X5 

380
0 

0 100 380
0 

300 

 

 

The total cost (objective function) = $82,175. 

Management is interested in the analysis of a few changes that might be needed for various 

reasons. For example, the per-unit inventory cost may change from $1.50 to $2.50 due to an 

expected increase in the interest rate and the insurance costs. How will this change affect the 

optimal production plan? In addition, if CPI is considering increasing storage space such that 100 

more seats can be stored, what is the maximum it should be willing to pay for this additional 

space? Questions like these can be answered by performing sensitivity analysis. Let us discuss 

the relevant concepts and then return to this problem to answer a few interesting questions. 

Changing the value of one objective - function coefficient 

Changing the value of one coefficient in the objective function, makes the variable associated 

with this coefficient more attractive or less attractive for the optimization mechanism. For 

example, if we look for the solution that maximizes the objective 5X1 + 4X2, when the 

coefficient 4 becomes 6 (max 5X1 + 6X2), the variable X2 becomes more attractive. Therefore, 

one would expect the maximization mechanism to  increase the value of X2 in the optimal 

solution. It turns out that it is not necessarily so.  
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Statement 1: The Range of Optimality 

The optimal solution of a linear programming model does not change if a single coefficient of 

some variable in the objective function changes within a certain range. This range is called the 

range of optimality. Note, that only one coefficient is allowed to change for the range of 

optimality to apply. 

We can find the range of optimality for each objective coefficient in the 

SOLVER output. Adjustable Cells 

 

 

 

 

Cell 

 

 

Na

m 

e 

 

Final 

 

Value 

Redu

c ed 

 

Cost 

Objecti

v e     

Coeffici

e 

nt 

Allowa

bl e 

 

Increas

e 

Allowa

bl e     

Decreas 

e 

$B$2 X1 3800 0 10.25 2 1E+30 

$C$2 X2 0 0.25 12.5 1E+30 0.25 

$D$2 X3 100 0 1.5 2 0.25 

$E$2 X4 3800 0 10.25 3.5 1E+30 

$F$2 X5 300 0 13.75 0.25 2 

 

Let us return to our example and answer a few sensitivity questions related to the range of 

optimality. Question 1: If the per-unit inventory cost increased from $1.50 to $2.50, would the 

optimal solution change? 

 

Answer: First look for the changing parameter in the model. The coefficient 1.50 of the variable 

X3 in the objective function is changing to 2.5: (10.25X1+12.5X2+1.5X3+10.25X4+13.75X5). 

We need to look for the range of optimality of the coefficient 1.5. From  the  output  (see  below)  

the  range  of  optimality  is:  Lower bound =1.5 – 0.25 = 1.25 

Upper bound = 1.5 + 2 = 3.5 

 

Objective 

Coefficient 

Allowable 

Increase 

Allowabl

e 

Decrease 

1.5 2 0.25 

Interpretation: As long as the coefficient of X3 in the objective function (currently equals to 1.5) 

falls in the interval [1.25, 3.5] the current optimal solution does not change. Since the value 2.5 

does fall in this 

Range of  optimality:  

Upper bound = 10.25+2 = 

12.25 

 
Lower bound = 10.25 – 

infinity 

= -infinity 
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range, there will be no change in the optimal solution (in terms of the variable values!). 

However, the objective value changes! 

New objective value = Current objective value + (Change in coefficient value)(the variable 

X3) = 82,175 + (2.5 – 1.5)(100)= 82,275. So, in spite of the increasing cost of holding 

inventory, it remains optimal to store 100 chairs at the end of quarter 1. 

Question 2: If DAP reduced the selling price per seat in quarter 1 from $12.50 to $12.20, should 

CPI consider the purchase of seats in quarter 1 (note that currently no seat is purchased in  

quarter 1)?  Answer: The parameter changing is the coefficient of X2 (12.5) in the objective 

function. It is changing to 

12.25. The range of optimality is: 

Lower bound = 12.5 – 0.25 = 

12.25 Upper bound = 12.5 + 

infinity = Infinity 

Objective 

Coefficient 

Allowable 

Increase 

Allowable 

Decrease 

12.5 1E+30 0.25 

 

Interpretation: Since $12.20 falls below the lower bound of the range of optimality, there will be 

a change in the optimal solution, and seats will be purchased at this price (to rephrase, X2 

becomes sufficiently attractive, so the minimization mechanism will make it a part of the optimal 

plan). Notice, that the objective value is likely to change, because the variables are optimized at 

different values. However, we cannot calculate the new objective value without re-running the 

model. 

Comment: If the changing coefficient falls exactly on the boundary of the range of optimality, 

there will be more than one optimal solution with the same objective function value (called the 

multiple optimal or the alternate optimal solution case). For example, assume the coefficient 

12.50 just discussed becomes 12.25. The two optimal solutions are: 

Solution 1: the current solution; 

Solution 2: a new solution, shown next: 

 

X1 X2 X3 X4 X5 

3800 200 300 380
0 

100 

For both solutions the objective value is 82,175 
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The right hand side of a constraint (when the linear programming model is written in a 

standard form) is a constant that represents resource availability, minimum requirement of some 

property, activity level, etc. Changes in the right hand side value may occur, and sometimes 

affect the optimal solution. The effects that such changes may cause depend on whether the 

constraint is relaxed or is restricted more. Let us look at the following small example: 

Max 2X1 + 3X2 

Subject to 

X1 + 2X2   

15 2X1 + 

X2  5.     

Changing the right hand side of constraint 1 by +1 unit (making it X1 + 2X2  16  ) makes it 

more relaxed, because we allow more values of X1 and X2 participate in the search for the optimal 

solution. Thus, the objective value cannot suffer from this change; either it remain the same or 

becomes better. 

Changing the  right  hand  side  of  constraint  1  by  -1  unit  (making  it  X1  +  2X2   14   )  

makes  it more restrictive, because values included before  in  the  feasible  region  are  not  feasible  

anymore.  Thus, the objective function value cannot improve; either it remains the same (because 

the missing values did  not constitute the previous optimal solution), or it suffers since the 

previous optimal solution is now infeasible. 

The same observations (only of opposite directions) can be made for constraint 2. Since this 

constraint is of the „ ‟ type, reducing its right hand side (making it 2X1 + X2  4)   relaxes the 

constraint (check  yourself that more values of the decision variables are now feasible); while 

increasing its right hand side makes     it more restrictive. To summarize we can state: 

Statement 2: 

(i) Increasing the right hand side of a „ ‟ type constraint, or decreasing the right hand side 

of a „‟ type constraint relaxes the constraint, thus the new objective value at the new 

optimal solution is either the same (no change) or better. 

For a maximization problem “better” means higher (a positive change in the objective 

value), and for a minimization problem “better” means lower (negative change in the 

objective value). 

(ii) Decreasing the right hand side of a „ ‟ type constraint, or increasing the right hand 

side of a „‟ type constraint restricts the constraint, thus the new objective value at the 

new optimal solution is either the  same  (no  change)  or  worse.   
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Name 

Final 

Value 

Shadow 

Price 

Constraint 

R.H. Side 

Allowable 

Increase 

Allowable 

Decrease 

Demand Quart 

1 

 
3700 

 
12.25 

 
3700 

 
100 

 
200 

Demand Quart 

2 

 
4200 

 
13.75 

 
4200 

 
1E+30 

 
300 

Capacity Quart 

1 

 
3800 

 
-2 

 
3800 

 
200 

 
100 

Capacity Quart 

2 

 
3800 

 
-3.5 

 
3800 

 
300 

 
3800 

Storage 100 0 300 1E+30 200 

 

Range of Feasibility: 

Upper bound = 3700+ 100 

= 3800 

 

Statement 3: The Shadow Price and the range of feasibility. 

(i) The shadow price for a constraint is defined as the change in the objective value 

when the right hand side of that constraint is increased by one unit. 

(ii) The shadow price value remains unchanged as long as the right hand side of 

the constraint in question remains within a certain range called “Range of 

Feasibility”. 

 

The shadow price and the range of feasibility for all the constraints appear in the computer output. 

 

 

 

 

To illustrate, for constraint 1 the range of feasibility is [3500, 3800]. That is, if the right hand 

side of the constraint changes within this range the shadow price remains 12.25. What is the 

significance of this result? What economical implication does it have? The following two 

questions deal with this topic. 

Example – continued 

Question 3: Management at CPI would like to understand the effects of different demand levels 

on the optimal solution and the total cost. Specifically, you are asked to find the total cost of 

meeting the demand, if  in  the  first  quarter  we‟ll  experience  an  increase  of  50  units   in   

the   demand   for   chairs.  Answer: The parameter changing is the right hand side of constraint 1. 

The new right hand side value is 3750, still in the range of feasibility. The shadow price remains  
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increase in the demand of quarter 1 the total cost increases by $12.25. The new total cost = 

Current total cost + (Shadow price)(50) = 82,175 + 12.25(50) = $82,787.5 

Question 4: How much is it worth for CPI to increase production capacity in quarter 2? 

Answer: The parameter changing is the right hand side of constraint 4. Observing the shadow 

price of constraint 4, for each unit increase in the production capacity in quarter 2 the objective 

reduces by $3.5. So each additional unit of production capacity saves CPI $3.5, and therefore, the 

worth of each additional unit of production capacity for CPI in quarter 2 is $3.5. Note that this is 

the maximum management at CPI should be willing to pay for one additional unit of production 

capacity in quarter 2 (to illustrate, suppose management considers the use of overtime, which 

results in production capacity increase. Then, every unit produced in overtime should not cost 

more than additional $3.5 – that is 10.25 + 3.5 = $13.75 at most). 

Question 5: How much is it worth for CPI to increase its inventory capacity from 300 to 400 

chairs? Answer: The parameter changing is the right hand side of constraint 5 (X3  40  0). Its 

shadow price is  „zero‟. 

Thus, the total cost (the objective function) does not change when the space allocated to 

inventory increases (this should not surprise you because currently only 100 seats are 

stored at the end of quarter 1, while 300 more could be stored). It turns out that no saving 

is obtained by adding storage space, thus CPI should not be willing to pay anything for 

this additional storage. 

Multiple changes 

All the changes considered above occurred one at a time (i.e. one objective coefficient 

changed while the others remained unchanged; one constraint right hand side changed while the 

other right hand sides remained unchanged); however, in many real world applications two or 

more changes need to be considered simultaneously. 

For example, in our example, DAP might announce purchase price changes in both quarters. 

To use the above results (that assume a single parameter change at a time) we turn to an 

empirical rule called “The 100% percent rule”. It deals with multiple changes in different 

objective coefficients and determine when would the optimal solution remains unchanged, as 

well as with multiple changes in constraints right hand sides and determine when would the 

shadow prices not change. 

The 100% Rule for objective-function coefficients: calculate ratios 

a. Define the objective function by C1X1+C2X2+…+ CnXn, and let more then 

one objective function coefficient change. Define the changes by 1, 2, ...k 
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(i) If i is positive (that is the coefficient Ci increases) calculate the ratio 

{ i/”Max increase”}. (“Max increase” appears in the SOLVER output 

for the range of optimality). 

(ii) If i is negative (that is the coefficient Ci decreases) calculate the ratio 

{| i|/”Max decrease”}. (“Max decrease” appears in the SOLVER output for 

the range of optimality). 

b. Add all the ratios calculated in part „b‟. If the sum of ratios is less than „1‟ the optimal 

solution remains unchanged. If the sum of ratios is „1‟ or more it is unclear 

whether or not the optimal solution changes. 

 

To understand this rule let us return to our example. 

Question 6: If in quarter 2 the production cost per seat at CPI increases by $1.25; and DAP is 

changing its mind about the announced price increase leaving it at $12.50 per seat, would the 

optimal solution change? What would be the optimal total cost? 

Answer: Two parameters are changing simultaneously: (i) the production unit cost in quarter 2 

increases  by DProd. = +1.25; (ii) the unit purchase price in quarter 2 decreases by DPurch. = –

1.25 (note: we first used a unit purchase price of 13.75, but now we need to use12.5, so the 

parameter change is 12.5 – 13.75 = - 1.25). To answer the question whether or not the solution 

changes, we must turn to the 100% rule since two parameters are changing simultaneously. By 

this rule we need to calculate two ratios and add them: 

{DProd./Max increase}+ {DPurch./Max decrease} = 1.25/3.5 +|(-

1.25)|/2 = .982 Interpretation: Since the sum is less than „1‟, the optimal 

solution won‟t change. 

In spite of the changes that occur in favor of increasing the amount purchased from DAP while 

reducing the amount self-produced; the make-or-buy plan does not change. 

A new value of the objective function can now be calculated, in accordance with the changes in 

the unit cost. New Total Cost = Current Total Cost + (1.25)(X4) + (-1.25)(X5) 

= 82,175+1.25(3800)-1.25(300) = $86,550. 

The 100% Rule for constraints right hand side: 

c. Let the constraints‟ right hand sides be called B1, B2, … , Bm, and let more 

then one constraint Bi change. Define the changes by 1, 2, ... , k. 

d. Calculate ratios as explained next: 
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(i) If i is positive (that is the coefficient Bi increases) calculate the ratio { i/”Max 

increase”}. (“Max increase” appears in the SOLVER output for the range of 

feasibility). 

(ii) If i is negative (that is the coefficient Bi decreases) calculate the ratio 

{| i|/”Max decrease”}. (“Max decrease” appears in the SOLVER output for 

the range of feasibility). 

e. Add all the ratios calculated in part „b‟. If the sum of ratios is less than „1‟ the 

shadow prices remains unchanged. If the sum of ratios is „1‟ or more it is unclear 

whether or not the optimal solution changes. 

 

To understand this rule let us return again to our example. 

 

Question 7: If CPI increases its production capacity by 100 seats in both quarter 1 and 2, will 

there be any savings or total cost increase? 

Answer: Two constraints‟ right hand sides are changing simultaneously. The production capacity 

of 3800 in quarters 1 and 2 increase by DQuart1 = DQuart2 = 100. By the 100% rule we have: 

{DQuart1/Max increase}+{DQuart2/Max increase} = {100/200 + 100/300) = .833. 

Since the sum is less than „1‟ the shadow prices remain unchanged, and thus can be used to find 

whether or not there going to be some savings. We need to calculate the change in the total cost. 

Change in total cost = (Shadow price Quarter 1)(100) + Shadow price in quarter 2)(100) = (-

2)(100)+(-3.5)(100) = -$550. There will be a saving of $550 due to the production capacity 

increase (management should not pay more than $550 for the capacity increase in the two 

quarters combined). 

In our next topic, “Parametric Analysis”, we deal with multiple changes when the 100% rule 

is violated (possibly, when changes are greater than their maximum allowed). 
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Linear Mixed Integer Programs 

 

 

Excel's Solver is a numerical optimization add-in (an additional file that extends the capabilities 

of Excel). It can be fast, easy, and accurate. It is not, however, a 100 percent guaranteed silver 

bullet. This document shows how to load and use Solver. It concludes with two important 

caveats concerning Solver. 

 

Organization: 

Accessing Excel’s Solver 

Reviewing the Solver Parameters Dialog 

Box Using Excel’s Solver: General 

Description 

Using Excel’s Solver: An Example 

(Solver.xls) Two Dangers of Numerical 

Optimization 

 

Accessing Excel‟s Solver 

 

To use the Solver, click on the Tools heading on the menu bar and select the Solver . . . item. 
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Solver is not listed at 

left. Execute Tools: 

Add-Ins as described 

below in order to install 

Solver. 

 

Upon successful 

installation, execute 

Tools: Solver as indicated 

at right. 

 

If Solver is not listed (as shown above on the left), you must manually include it in the 

algorithms that Excel has available. To do this, select Tools from the menu bar and choose the 

"Add-Ins . . ." item. In the Add- Ins dialog box, scroll down and click on the Solver Add-In so 

that the box is checked as shown by the picture below: 

 

 

 

After selecting the Solver 

Add- In and clicking on the 

OK button, Excel takes a 

moment to call in the 

Solver file and adds it to 

the Tools menu. 
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When you click on the Tools menu, it should be listed somewhere as shown 

above on the right. 

If the Solver add-in is not listed in the Add-Ins dialog box, click on the Select or Browse button 

and navigate to the Solver add-in (called solver.xla in Windows and Solver on the MacOS) and 

open it. It should be in  the Library directory in the folders where Microsoft Office is installed. 

If you cannot find the Solver Add-In, try using the Mac‟s Find File or Find in Windows to locate 

the file.  Search for “solver.” Note the location of the file, return to the Add-Ins dialog box (by 

executing Tools: Add- Ins…), click on Select or Browse, and open the Solver Add-In file. 

 

What if you still cannot find it? Then it is likely your installation of Excel failed to include the 

Solver Add-In. Run your Excel or Office Setup again from the original CD-ROM and install the 

Solver Add-In. You should now be able to use the Solver by clicking on the Tools heading on the 

menu bar and selecting the Solver item. 

 

Although Solver is proprietary, you can download a trial version from Frontline Systems, the 

makers of Solver, at www.frontsys.com. 

 

It is imperative that you successfully load and install the Solver add-in because without it, neither 

Solver nor the Dummy Dependent Variable Analysis add-in will be available. 

 

Reviewing the Solver Parameters Dialog Box 

After executing Tools: Solver . . . , you will be presented with the Solver Parameters dialog box 

below: 

http://www.frontsys.com/
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Let us review each part of this dialog box, one at a time. 

 

 

Set Target Cell is where you indicate the objective function (or goal) to be optimized. This cell 

must  contain a formula that depends on one or more other cells (including at least one “changing 

cell”). You can either type in the cell address or click on the desired cell. 

(NOTE: If you click on the Collapse Dialog button,  , the dialog box disappears and it will be 

easier to select a cell.) 

Equal to: gives you the option of treating the Target Cell in three alternative ways. Max (the 

default) tells Excel to maximize the Target Cell and Min, to minimize it, whereas Value is used 

if you want to reach a certain particular value of the Target Cell by choosing a particular value of 

the endogenous variable. If you choose Value, you must enter the particular value you want to 

attain in the box to the immediate right unless you want the value to be 0 (which is the default). 

Making the value equal to 0 enables Solver to find equilibrium solutions or roots to first-order 

conditions. 

By Changing Cells permits you to indicate which cells are the adjustable cells (i.e., endogenous 

variables). As in the Set Target Cell box, you may either type in a cell address or click on a cell 

in the spreadsheet. Excel handles multivariable optimization problems by allowing you to 

include additional cells in the By Changing Cells box. Each noncontiguous choice variable is 

separated by a comma. If you use the mouse technique (clicking on the cells), the comma 

separation is automatic. 

Guess controls the initial position of the changing cells. Excel uses the current values of the cells 

as the default. Solver is sensitive to the initial values. If a solution cannot be found, try different 

starting values. 
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Subject to the Constraints is used to impose constraints on the endogenous variables. We will 

rely on this important part of Solver when we do Constrained Optimization problems. 

 

You can also use the Constraints part of Solver to help it find a solution. For example, in a profit 

maximization problem, you could tell Solver that Quantity must be greater than or equal to 0 

(i.e., that negative values of Q are not allowed). If Excel has trouble finding a solution to a 

problem, limiting the possible values of the choice variables will help it find a solution. 

Solver allows equality (Lagrange) or inequality (Kuhn-Tucker) constraints. 

Add..., Change..., Delete buttons are used to create and alter the constraints you set. These 

buttons lead to dialog boxes on which you indicate your choices; then hit OK. 

Returning to the top right-hand side of the Solver Parameters dialog box, we have the following: 

Solve is obviously the button you click to get Excel's Solver to find a solution. This is the last 

thing you do in the Solver Parameters dialog box. 

Close is just like cancel; it closes the Solver dialog box, and no changes are made. 

Options...allows you to adjust the way in which Solver approaches the solution.. 

 

 

As you can see, a series of choices are included in the Solver Options dialog box that direct 

Solver‟s search for the optimum solution and for how long it will search. These options may be 

changed if Solver is having difficulty finding the optimal solution. Lowering the Precision, 

Tolerance, and Convergence values slows down the algorithm but may enable Solver to find a 

solution. 
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The Load and Save Model buttons enable you to recall and keep a complicated set of 

constraints or choices so that you do not have to reenter them every time. 

Clicking OK or Cancel returns you to the Solver Parameters dialog box. 

We continue our review of Solver options by going over the remaining buttons in the Solver 

Parameters dialog box (which we display again below): 

 

Reset All. This button changes everything back to the original, default choices, blanking out the 

Set Cell, By Changing Cells, and Subject to the Constraints options. 

It is important to understand that a saved Excel workbook will remember the information 

included in the last Solver run. 

If you wish to explore a different problem and want to begin with a “clean” Solver quickly, then 

click on the Reset All button. If you wish to keep a particular Solver model, then use the Options 

and Save Model . . . Buttons. 

Help brings up limited documentation on Solver. Better help is available by typing “solver” in 

the Index of Help (which can be accessed by executing Help: Contents and Index), as shown 

below 
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Using Excel‟s Solver: General Description 

 

When you run Excel‟s Solver, it executes a series of macros and routines that constitute the 

Solver add-in. Upon completion of the various algorithms, Excel presents the user with a Solver 

Results dialog box: 

 

A message appears on the top left-hand side of the box. In this case, Excel reports that “Solver 

has converged to the current solution. All constraints are satisfied.” This is good news! 

 

Bad news is a message like, “Solver could not find a solution.” If this happens, you must 

diagnose, debug, and otherwise think about what went wrong and how it could be fixed. The two 

quickest fixes are to try different initial values and to add constraints to the problem. 

From the Solver Results dialog box, you elect whether to have Excel write the solution it has 

found into the Changing Cells (i.e., Keep Solver Solution) or whether to leave the spreadsheet 

alone and NOT write the 
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value of the solution into the Changing Cells (i.e., Restore Original Values). When Excel reports 

a successful run, you would usually want it to Keep the Solver Solution. 

On the right-hand side of the Solver Results dialog box, Excel presents a series of reports. The 

Answer, Sensitivity, and Limits reports are additional sheets inserted into the current workbook. 

They contain diagnostic and other information and should be selected if Solver is having trouble 

finding a solution. 

Along the bottom of the Solver Results dialog box are four buttons: 

OK is obviously the button you click after reading and choosing various options you want to 

keep. This is the last thing you do in the Solver Results dialog box. 

Cancel closes the Solver Results dialog box and no changes are made. 

Save Scenario... enables the user to save particular solutions for given configurations. 

 

Help brings up information from Excel‟s Help application. 
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Using Excel‟s Solver: An Example 

 

You can see Solver in action by opening the file Solver.xls. The OptimalSolution sheet has a 

simple profit- maximization problem set up, and Solver is ready to run. Execute Tools: Solver to 

access the Solver Parameters dialog box shown below. 
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converges on the optimal solution. 

 

Another type of widely used modeling system is the spreadsheet solver. Microsoft Excel contains a 

module called the Excel Solver, which allows the user to enter the decision variables, constraints, and 

objective of an optimization problem into the cells of a spreadsheet and then invoke an LP, MILP, or 

NLP solver.  

The power of linear programming solvers Modern LP solvers can solve very large LPs very quickly and 

reliably on a PC or workstation. LP size is measured by several parameters: (1) the number of variables 

n, (2) the number of constraints m, and (3) the number of nonzero entries nz in the constraint matrix A. 

The best measure is the number of nonzero elements nz because it directly determines the required 

storage and has a greater effect on computation time than n or m. For almost all LPs encountered in 

practice, nz is much less than mn, because each constraint involves only a few of the variables x. The 

problem density 100(ndmn) is usually less than 1%, and it almost always decreases as m and n increase. 

Problems with small densities are called sparse, and real world LPs are always sparse. Roughly 

speaking, a problem with under 1000 nonzeros is small, between 1000 and 50,000 is medium-size, and 

over 50,000 is large. A small problem probably has m and n in the hundreds, a medium-size problem in 

the low to mid thousands, and a large problem above 10,000. Currently, a good LP solver running on a 

fast (> 500 rnI-Iz) PC with substantial memory, solves a small LP in less than a second, a medium-size 

LP in minutes to tens of minutes, and a large LP in an hour or so. These codes hardly ever fail, even if 

the LP is badly formulated or scaled. They include preprocessing procedures that detect and remove 

redundant constraints, fixed variables, variables that must be at bounds in any optimal solution, and so 

on. Preprocessors produce an equivalent LP, usually of reduced size. A postprocessor then determines 

values of any removed variables and Lagrange multipliers for removed constraints. Automatic scaling 

of variables and constraints is also an option. Armed with such tools, an analyst can solve virtually any 

LP that can be formulated. Solving MILPs is much harder. Focusing on MILPs with only binary 

variables, problems with under 20 binary variables are small, 20 to 100 is medium-size, and over 100 is 

large. Large MILPs may require many hours to solve, but the time depends greatly. on the problem 

structure and the availability of a good starting point. 

In addition to their use as stand-alone systems, LPs are often included within larger systems intended 

for decision support. In this role, the LP solver is usually hidden from the user, who sees only a set of 

critical problem input parameters and a set of suitably formatted solution reports. Many such systems 
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are available for supply chain management-for example, planning raw material acquisitions and 

deliveries, production and inventories, and product distribution. In fact, the process industries--oil, 

chemicals, pharmaceuticals-have been among the earliest users. Almost every refinery in the developed 

world plans production using linear programming. 

 

Solver parameters dialog to define this problem for the Excel Solver, the cells containing the decision 

variables, the constraints, and the objective must be specified. This is done by choosing the Solver 

command from the Tools menu, which causes the Solver parameters dialog shown to appear. The 

"Target Cell"' is the cell containing the objective function. Clicking the "Help'3ut~on explains all the 

steps needed to enter the "changing" (i.e., decision) variables and the constraints. We encourage you to 

"Reset all," and fill in this .dialog from scratch. Solver options dialog. Selecting the "Options" button in 

the Solver Parameters dialog brings up the Solver Options dialog box. The current Solver version does 

not determine automatically if the problem is linear or nonlinear. 

Consequently, in this chapter we will discuss five major approaches for solving nonlinear programming 

problems with constraints: 1. Analytic solution by solving the first-order necessary conditions for 

optimality 2. Penalty and barrier methods 3. Successive linear programming 4. Successive quadratic 

programming 5. Generalized reduced gradient 
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Constrained Nonlinear Optimization 

• Previously in this chapter, we solved NLP problems that only had objective functions, 

with no constraints. 

• Now we will look at methods on how to solve problems that include constraints. 

NLP with Equality Constraints 

• First, we will look at problems that only contain equality 

constraints: Minimize f(x) x = [x1 x2 … xn] 

Subject to: hi(x) = bi i = 1, 2, …, m 

Consider the problem: 

Minimize x1 + x2 

Subject to: (x1)2 + (x2)2 – 1 = 0 

The feasible region is a circle with a radius of one. The possible objective function curves are 

lines with a slope of -1. The minimum will be the point where the lowest line still touches the 

circle. 

• Since the objective function lines are straight parallel lines, the gradient of f is a straight 

line pointing toward the direction of increasing f, which is to the upper right 

• The gradient of h will be pointing out from the circle and so its direction will depend on 

the point at which the gradient is evaluated. 
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• At the optimum point, f(x) is perpendicular to h(x) 

• As we can see at point x1, f(x) is not perpendicular to h(x) and we can move (down) 

to improve the objective function 

• We can say that at a max or min, f(x) must be perpendicular to h(x) 

– Otherwise, we could improve the objective function by changing position 
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

UNIT V 

APPLICATION OF OPTIMIZATION IN CHEMICAL ENGINEERING  

 

5.0 Pipeline Problem 

 

variables parameters 

 

V  

p  

f L 

Re m  

D pipe cost 

electricity cost 

#operating days/yr 

pump efficiency 

Equality 

Constraints 
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Heat Exchanger Variables 

1. heat transfer area 

2. heat duty 

3. flow rates (shell, tube) 

4. no. passes (shell, tube) 

5. baffle spacing 

6. length 

7. diam. of shell, tubes 

8. approach temperature 

9. fluid A (shell or tube, co-current or countercurrent) 

10. tube pitch, no. tubes 

11. velocity (shell, tube) 

12. ∆p (shell, tube) 

13. heat transfer coeffs (shell, tube) 

14. exchanger type (fins?) 

15. material of construction 
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Design Integrated Distillation Columns for Binary Systems 

Classical methods: Methods or deterministic local search are studied, specifically the 

optimization technique based on gradient search. Heuristics and Stochastic methods: Genetic 

Algorithms, being itself a global optimization method, the probabilistic method is used based on 

population. The primary objective pursued by the design of the process under study is to 

determine the optimal physical dimensions (diameter, number of trays andfeed location) of 

binary distillation column for the system described and intonation parameters associated 

controller control compositions and products bottom column distillate to be carried out 

effectively the separation of the components of the binary mixture. The proposed design must be 

optimal gain both economic criteria and the controllability of the process ensuring a feasible 

operation. Being integrated, design optimization problem, the objectives are translated into: y 

Minimize the total cost, which is the aim of designing processes and simultaneously; 
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y Minimize the ISE (integral square error), which is the goal of dynamic controllability. 

 

To resolve this multiobjective problem becomes one of the objectives restriction (mo) ≤ ε j obj , 

in this case the integral square error becomes part of the nonlinear constraints of the problem, 

which involves solving the problem MINLP-DAE (mixed integer no linear programming-

differencial algebraic equations) to different values ranging from optimal controllable to the 

economic optimum, at this point the multiobjective problem becomes a problem of nonlinear 

programming with algebraic differential equations. According to Schweiger, C., the following 

terms and restrictions to the process established first objective function of total cost (cost, 

expressed in $) is related to design costs are assumed and utility through the following 

mathematical expression, where the cost or capital cost design (Cc, expressed in $) is related to 

the dimensions of the column and the cost of utility (Cu, expressed in $) with flows steam and 

reflux. Expression for the total cost: 

 

Cost=7756.VSS+3.075. (615 + 324DC2 + 486 (6+0.76Nt) DC) + 61.25 Nt(0.7+1.5 DC2) 

 

Optimization of waste heat recovery 
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Waste heat recovery 

 

This section describes the modeling of each component of the waste heat recovery ORC. All the 

models are implemented under the EES environment. 

 

Heat exchangers model 

 

The plate heat exchangers are modeled by means of the Logarithmic Mean Temperature 

Difference (LMTD) method for counter-flow heat exchangers. They are subdivided into 3 

moving-boundaries zones, each of them being characterized by a heat transfer area Aand a heat 

transfer coefficient U. 

The heat transfer coefficient U is calculated by considering two convective heat transfer 

resistances in series (secondary fluid and refrigerant sides). 

 

 

The total heat transfer area of the heat exchanger is given by: 

 

At o t =Al +Atp +Av =( Np − 2)⋅L⋅W 

 

Np being the number of plates, L the plate length and W the plate width. 

 

Single-phase 

 

Forced convection heat transfer coefficients are evaluated by means of the non-dimensional 

relationship: 

 

Nu= m CRen Pr 

where the influence of temperature-dependent viscosity is neglected. 

 

The parameters C, m and n are set according to Thonon’s correlation for corrugated plate heat 

exchangers. The pressure drops are computed with the following relation: 

 

Where f is the friction factor, calculated with the Thonon correlation, G is the mass velocity (kg/s 

m2),ρ is the mean fluid density,Dh is the hydraulic diameter and L is the plate length. 
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Boiling heat transfer coefficient 

 

The overall boiling heat transfer coefficient is estimated by the Hsieh correlation, established for 

the boiling of refrigerant R410a in a vertical plate heat exchanger. This heat exchange coefficient 

is considered as constant during the whole evaporation process and is calculated by: 

 

htp =C⋅hl ⋅Bo 0 . 5 

Where Bo is the boiling number and hl is the all-liquid non-boiling heat transfer coefficient. 

 

The pressure drops are calculated in the same manner, using the Hsieh correlation for the 

calculation of the friction factor. 

 

Condensation heat transfer coefficient 

 

The condensation heat transfer coefficient is estimated by the Kuo correlation, established in the 

case of a vertical plate heat exchanger fed with R410A. It is given by: 

 

Where Frl is the Froude Number in saturated liquid state, Bo the boiling number and Co the 

convection number. 

 

The pressure drops are calculated in the same manner, using the Kuo correlation for the 

calculation of the friction factor. 

 

Heat exchanger sizing 

 

For a given corrugation pattern (amplitude, chevron angle, and enlargement factor), two degrees 

of freedom are available when sizing a plate heat exchanger: the length and the total flow width. 

The total flow width is given by the plate width multiplied by the number of channels: 

 

The two degrees of freedom are fixed by the heat exchange area requirement and the limitation 

on the pressure drop on the working fluid side: 
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Increasing the total width decreases the Reynolds number. This leads to a lower pressure drop 

and to a higher required heat transfer area, since the heat transfer coefficient is also decreased. 

Increasing the plate length leads to a higher pressure drop. 

Optimum design of Ammonia reactor 
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Optimization of a reactor 

The nonlinear ordinary differential equations and boundary conditions in the model can be put in 

dimensionless form and converted to algebraic equations using orthogonal collocation 

(Finlayson, 1980). Setalvad and coworkers (1989) used these algebraic equations as constraints 

in formulating a nonlinear programming problem to study the effects of temperature, flow 

parameters, reactor geometry, and wafer size on the LPCVD process, particularly the uniformity 

of silicon deposition. Strategies were devised to determine the potential improvements in the 

system performance by using optimum temperature staging and reactant injection schemes. It 

shows the inputs and performance measures for the reactor that can be optimized to maximize 

the film growth rate (production rate), subject to constraints on radial film uniformity (on each 

wafer), as well as axial uniformity (wafer-to-wafer). The growth rate is quite sensitive to the 

axial temperature profile. An axial temperature profile that increases along the reactor because it 

improves the deposition uniformity is commonly used in industry. The temperature of each 

successive zone in the furnace (defined by the furnace elements in Figure E14.5a) can be 

adjusted by voltage applied to variac heaters. The zone temperatures are assumed constant within 

each zone, T,, j = 1, . . . , n,, where n, is the number of temperature zones to be used. 

 


