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Unit I Momentum Transport 

 

Introduction to Momentum Transport 
 

Momentum transport deals with the transport of momentum which is 

responsible for flow in fluids. Momentum transport describes the science of 

fluid flow also called fluid dynamics. A few basic assumptions are involved 

in fluid flow and these are discussed below. No slip boundary condition 

This is the first basic assumption used in momentum transport. It deals with 

the fluid flowing over a solid surface, and states that whenever a fluid 

comes in contact with any solid boundary, the adjacent layer of the fluid in 

contact with the solid surface has the same velocity as the solid surface. 

Hence, we assumed that there is no slip between the solid surface and the 

fluid or the relative velocity is zero at the fluid–solid interface. For example, 

consider a fluid flowing inside a stationary tube of radius R as shown in Fig 

7.1. Since the wall of the tube at r=R is stationary, according to the no-slip 

condition implies that the fluid velocity at r=R is also zero. 
 

Fig .1 Fluid flow in a circular tube of radius R 

 

In the second example as shown in Fig .2, there are two plates which are 

separated by a Fig .2 Fig. 2 Two parallel plates at stationary condition                                                             

distance h, and some fluid is present between these plates. If the lower 

plate is forced to move with a velocity V in x direction and the upper plate 

is held stationary, no-slip boundary conditions may be written as follows. 

 

Thus, for Re <2100, we have laminar flow, i.e., no mixing in the radial 

direction leading to a thread like flow and for Re >2100, we have the 

turbulent flow, i.e., mixing in the radial direction between layers of fluid. 
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In laminar flow, the fluid flows as a stream line flow with no mixing between 

layers. In turbulent flow, the fluid is unstable and mixes rapidly due to 

fluctuations and disturbances in the flow. The disturbance might be present 

due to pumps, friction of the solid surface or any type of noise present in the 

system. This makes solving fluid flow problem much more difficult. To 

understand the difference in the velocity profile in two kinds of fluid flows, 

we consider a fluid flowing to a horizontal tube in z direction under steady 

state condition. Then, we can intuitively see the velocity profile may be shown 

below.  

Fluid: 

A fluid is a gas or liquid that, unlike a solid, flows to assume the shape of the 

container in which it is placed. This occurs because a fluid responds to a shear 

stress, or a force per unit area directed along the face of a cube of fluid, by 

flowing, rather than by an elastic displacement as in a solid. 

TYPES OF FLUIDS BASED ON VISCOSITY: 

The fluids may be classified into following five types: 

1. Ideal fluid 

2. Real fluid 

3. Newtonian fluid 

4. Non-Newtonian fluid 

5. Ideal plastic fluid 

Properties of fluid 

Density: Density of a fluid is defined as the ratio of the mass of a fluid to its volume. 

Specific Volume: Specific volume of a fluid is defined as the volume of a fluid occupied 

by a unit mass or volume per unit mass of a fluid. 

Viscosity of liquid: Viscosity is defined as the property of a fluid which offers resistance 

to the movement of one layer of fluid over another adjacent layer of fluid. 

 
 

Thus, every layer of fluid is moving at a different velocity. This leads to 

shear forces which are described in the next section. 

 

 Newton’s Law of Viscosity 

 

Newton’s law of viscosity may be used for solving problem for Newtonian 

fluids. For many fluids in chemical engineering the assumption of Newtonian 

fluid is reasonably acceptable. To understand Newtonian fluid, let us consider 
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a hypothetical experiment, in which there are two infinitely large plates 

situated parallel to each other, separated by a distance h. A fluid is present 

between these two plates and the contact area between the fluid and the plates 

is A. 

A constant force F1 is now applied on the lower plate while the upper 

plate is held stationary. After steady state has reached, the velocity 

achieved by the lower plate is measured as V1. The force is then changed, 

and the new velocity of the plate associated with this force is measured. 

The experiment is then repeated to take sufficiently large readings as 

shown in the following table. Table 1. Applied force vs velocity 

 
 

 

surface on which this force is acting. The quantity or the velocity 

gradient is also called the shear rate. µ is a property of the fluid and is 

measured the resistance offered by the fluid to flow. Viscosity may be 

constant for many Newtonian fluids and may change only with 

temperature. 

Thus, the Newton’s law of viscosity, in its most basic form is given as 

The shear stress is directly proportional to velocity gradient.  

The constant of proportionality is known as coefficient of viscosity. 

Variation of viscosity with respect to temperature 

Viscosity of fluids is due to  

1. cohesion between the fluid molecules and  

2. transfer of momentum between the molecules.  

Fluids are aggregations of molecules; widely spaced for a gas and closely spaced for liquids. Distance 

between the molecules is very large compared to the molecular diameter. The number of molecules 

involved is immense and the separation between them is normally negligible. Under these 

conditions, fluid can be treated as continuum and the properties at any point can be treated as bulk 

behavior of the fluids. For the continuum model to be valid, the smallest sample of matter of 

practical interest must contain a large number of molecules so that meaningful averages can be 

calculated. In the case of air at sea-level conditions, a volume of 10-9 mm3 contains 3×107 molecules. 

In engineering sense, this volume is quite small, so the continuum hypothesis is valid. 
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If the F/A is plotted against V/h, we may observe that they lie on a straight line passing through 

the origin. 
 
 

Fig 4 Shear stress vs. shear stain 

 

Thus, it may be said that F/A is proportional to v/h for a Newtonian fluid. 

 
 

It may be noted that it is the velocity gradient which leads to the development of shear forces. 

The above equation may be re-written as 
 

 

In the limiting case, as h → 0, we have 
 

where, µ is a constant of proportionality, and is called as the viscosity of the fluid. The quantity 

F/A represents the shear forces/stress. It may be represented as  , where the subscript x 

indicates the direction of force and subscript y indicates the direction of outward normal of the
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 Newton’s law of viscosity states that the shear stress is directly proportional to 

Velocity gradient. 

Here, both ‘+’ or ‘–’ sign are valid. The positive sign is used in many fluid 

mechanics books whereas the negative sign may be found in transport 

phenomena books. If the positive sign is used then may be called the 

shear force while if the negative sign is used may be referred to as the 

momentum flux which flows from a higher value to a lower value. 
 

 
 

The reason for having a negative sign for momentum flux in the transport 

phenomena is to have similarities with Fourier's law of heat conduction in 

heat transport and Ficks law of diffusion in mass transport. For example, in 

heat transport, heat flows from higher temperature to lower temperature 

indicating that heat flux is positive when the temperature gradient is 

negative. Thus,a minus sign is required in the Fourier's law of heat 

conduction. The interpretation of  as the momentum flux is that x 

directed momentum flows from higher value to lower value in y direction. 

 

Viscosity 

 

Viscosity is a measure of flow resistance to the fluid. The viscosity is of two types  

dynamic or absolute viscosity and kinematic viscosity. Dynamic viscosity is simply 

the viscosity offered as resistance to fluid flow. Kinematic viscosity is defined as the ratio  
of absolute viscosity to density.  
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The SI unit of viscosity is kg/m.s or Pa.s. In CGS unit is g/cm.s and is 

commonly known as poise (P). where 1 P = 0.1 kg/m.s. The unit poise is also 

used with the prefix centi-, which refers to one-hundredth of a poise, i.e. 1 

cP = 0.01 P. The viscosity of air at 25oC is 0.018 cP, water at 25oC is 1 cP and 

for many polymer melts it may range from 1000 to 100,000 cP, thus 

showing a long range of viscosity. 

 
 

 Laminar and turbulent flow 

 

Fluid flow can broadly be categorized into two kinds: laminar and turbulent. 

In laminar flow, the fluid layers do not inter-mix, and flow separately. This is 

the flow encountered when a tap is just opened and water is allowed to flow 

very slowly. As the flow increases, it becomes much more irregular and the 

different fluid layers start mixing with each other leading to turbulent flow. 

Osborne Reynolds tried to distinguish between the two kinds of flow using an 

ingenious experiment and known as the Reynolds’s experiment. The basic 

idea behind this experiment is described below. 

 

The experiment setup used for performing the Reynolds's experiment is 

shown in Fig. 7.5. The average velocity of fluid flow through the pipe 

diameter can be varied. Also, there is an arrangement to inject a colored dye 

at the center of the pipe. The profile of the dye is observed along the length 

of the pipe for different velocities for different fluids. If this experiment is 

performed, it may be seen that for certain cases the dye shows a regular 

thread type profile, which is seen at low fluid velocity and flow is called 

laminar flow. when the fluid velocity is increased the dye starts to mixed 

with the fluid and for larger velocities simply disappears. At this point fluid 

flow becomes turbulent. 

For the variables average velocity of fluid vz avg, pipe diameter D, fluid 

density ρ, and the fluid viscosity µ, Reynolds found a dimensionless group 

which could be used to characterize the type of fluid flow in the tube. This 

dimensionless quantity is known as the Reynolds number. From the 

experiment, It was observed that if Re >2100, the dye simply disappeared 

and the flow has changed to laminar to turbulent flow.
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For laminar flow, it is observed that fluid flows as smooth stream line and all other components 

of velocity are zero. Thus 

 

For turbulent flow, if we observe the fluid flows at a local point. It is observed that fluid flows in 

very random manner in all directions where these local velocities may be the function of any 

dimensions. 

 
 

Internal and external flows 

 

Depending on how the fluid and the solid boundaries contact each other, the flow may be 

classified as internal flow or external flow. In internal flows, the fluid moves between solid 

boundaries as is the case when fluid flows in a pipe or a duct. In external flows, however, the 

fluid is flowing over an external solid surface, the example may be sited is the flow of fluid over 

a sphere as shown in Fig. 8.1. 

 

On the other hand, if the velocity of fluid is very low the deviation due to disturbances may 

decay with time, and becomes negligible after that. Thus the flow remains in laminar region. 

Consider a practical example in which some cars 

are moving on the highway in the same direction but in the different lanes at different speeds. If 

suddenly, some obstacle comes on the road, then if the car's speed is sufficiently low, it can move 

on to other lane smoothly and come back to its original lane after the obstacle is crossed. This is 

the regular laminar case. On the other hand, if the car is moving at a high speed and suddenly 

encounters an obstacle, then the driver may lose control, and this car may move haphazardly and 

hit other cars and after that traffic may never return to normal traffic conditions. This is the 

turbulent case. 
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Fig 8.1 External flow around a sphere  

Boundary layers and fully developed regions 

Let us now consider the example of fluid flowing over a horizontal flat plate as shown in Fig. 

 
The velocity of the fluid is before it encounters the plate. As the fluid touches the 
plate, the velocity of the fluid layer just adjacent to the plate surface becomes zero due to the 
no slip boundary condition. This layer of fluid tries to drag the next fluid layer above it and 
reduces its velocity. As the fluid proceeds along the length of the plate (in x-direction), each 
layer starts to drag adjacent fluid layer but the effect of drag reduces as we go further away 
from the plate in y-direction. Finally, at some distance from the plate this drag effect disappears 
or becomes insignificant. This region where the velocity is changing or where the velocity 
gradients exists, is called the boundary layer region. The region beyond boundary layer where 
the velocity gradients are insignificant is called the potential flow region. 

 

Thus, we see that for laminar flow there is only one component of velocity present and it 

depends only on one coordinate whereas the solution of turbulent flow may be vary complex. 

For turbulent flow, one can ask the question that if the fluid is flowing in the z direction then why 

are the velocity components in r and θ direction non-zero? The mathematical answer for this 

question can be deciphered from the equation of motion. The equation of motion is a non-linear 

partial differential equation. This non-linear nature of the equation causes instability in the 

system which produces flow in other directions. The instability in the system may occur due to 

any disturbances or noise present in the environment.  
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Fig 8.2 External flow over a flat plate 

 

As depicted in Fig. 8.2, the boundary layer keeps growing along the x-direction, and may be 

referred to as the developing flow region. In internal flows (e.g. fluid flow through a pipe), the 

boundary layers finally merge after flow over a distance as shown in Fig. 8.3 below. 
 
 

Fig 8.3 Developing flow and fully developed flow region 

 

The region after the point at which the layers merge is called the fully developed flow region and 

before this it is called the developing flow region. In fact, fully developed flow is another 

important assumption which is taken for finding solution for varity of fluid flow problem. In the 

fully developed flow region (as shown in Figure 8.3), the velocity vz is a function of r direction 

only. However, the developing flow region, velocity vz is also changing in the z direction. 

 

Main axioms of transport phenomena 

 

The basic equations of transport phenomena are derived based on following five axioms. 

 

 Mass is conserved, which leads to the equation of continuity. 
 

 Momentum is conserved, which leads to the equation of motion. 
 

 Moment of momentum is conserved leads to an important result that the 2nd order 

stress tensor        is symmetric. 
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 Energy is conserved, which leads to equation of thermal energy. 
 

 Mass of component i in a multi-component system is conserved, which leads to 
the convective diffusion equation. 

 

The solution of equations, resulting from axiom 2, 4 and 5 leads to the solution of velocity, 

temperature and concentration profiles. Ones these profiles are known, all other important 

information needed can be determined. We first take the axiom -1. Other axioms will be taken up 

one by one letter on. 

There are three types of control volumes (CV) which may be chosen for deriving the equations 

based these axioms. 
 

 Rectangular shaped control volume fixed in space 

 
In this case, the control volume is rectangular volume element and is fixed in space. This method 

is the easiest to understand but requires more number of steps. 
 

 Irregular shaped control volume element fixed in space 

 
In this case, the control volume can be of any shape, but it is again fixed in space. This method is 

somewhat more difficult than the previous method as it requires little better understanding vector 

analysis and surface and volume integrals. 
 

 Material volume approach 

 
In this case, the control volume can be of any shape but moves with the velocity of the flowing 

fluid. This method is most difficult in terms of mathematics, but requires least number of steps 

for deriving the equations. 

 

All three approaches when applied to above axiom, lead to the same equations. In this web 

course, we follow the first approach. Other approaches may be found elsewhere. 

Axioms-1 

 

Mass is conserved 

Consider a fluid of density ρ flowing with velocity as shown in Fig. 8.4. Here, ρ and  

are functions of space (x,y,z) and time (t). For conversion of mass, the rate of mass entering and 

leaving from the control volume (net rate of inflow) has to be evaluated and this should be equal 

to the rate of accumulation of mass in the control volume (CV). Thus, conservation of mass may 

be written in words as given below 
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Fig 4 Fixed rectangular volume element through which fluid is flowing 

 

The equation is then divided by the volume of the CV and converted into a partial differential 

equation by taking the limit as all dimensions go to zero. This limit effectively means that CV 

collapses to a point, thereby making the equation valid at every point in the system. 

 

Let m and m+Δm be the mass of the control volume at time t and t+Δt respectively. Then, the 

rate of accumulation, 
 

 
In order to evaluate the rate of inflow of mass into the control volume, we need to inspect how 

mass enters the control volume. Since the fluid velocity has three components vx, vy and vz, we 

need to identify the components which cause the inflow or the outflow at each of the six faces of 

the rectangular CV. For example, it is the component vx which forces the fluid to flow in the x 

direction, and thus it makes the fluid enter or exit through the faces having area ΔyΔz at x = x 

and x = x+Δx respectively. The component vy forces the fluid in y direction, and thus it makes 

the fluid enter or exit through the faces having area ΔxΔz at y = y and y = y+Δy respectively.  

Similarly, the component vz forces the fluid to flow in z direction, and thus it makes fluid enter 

or exit through the faces having area ΔxΔy at z = z and z = z+Δ z respectively. 

 

The rate mass entering in x direction through the surface ΔyΔz is (ρvxΔyΔz|x), the rate of mass 

entering in y direction through the surface ΔxΔz is (ρvyΔxΔz|y) and the rate of mass entering 

from z direction through the surface ΔxΔy is (ρvzΔxΔy|z). In a similar manner, expressions for 

the rate of mass leaving from the control volume may be written. 

 

Thus, the conservation of mass leads to the following expressions 
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Dividing the Equation (8.1) by the volume ΔxΔyΔz, we obtain 

 

 
Note that each term in Equation (8.2) has the unit of mass per unit volume per unit time. Now, 

taking the limits Δx→0, Δy→0 and Δz→0, we get 
 
 

 

and using the definition of derivative, we finally obtain 
 

 

Equation (8.4) is applicable to each point of the fluid. Rearranging the terms, we get the equation 

of continuity, may be written as given below. 
 

 

 

 

We need not to derive the equation of continuity again and again in other coordinate system (that 

is, spherical or cylindrical). The idea is to rewrite Equation (8.5) in vector and tensor form. Once 

it is written in this form, the same equation may be applied to other coordinate system as well.  

Thus, the Equation (8.5) may be rewritten in vector and tensor form as shown below. 
 

 

Vector and tensor analysis of cylindrical and spherical coordinate systems is not done here, and 

can be looked up elsewhere. Thus, the final expressions in cylindrical and spherical coordinates 
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are given as below. 

 

cylindrical coordinates (r, θ, z) 
 

 
Spherical coordinates (r, θ, φ) 

 

 

Equation of continuity in terms of substantial derivative 

 

The second term in Equation (8.6) may be broken into two parts as shown below. Partial 

derivative present in the Equation (8.6) can be converted into substantial derivative using vector 

and tensor identities. 
 

 

In the above equation, the first two terms may be combined using the definition of substantial 

derivative to obtain the following equation. 

 
In some cases, the fluid may be incompressible, i.e. density ρ is a constant with time as well as 

space coordinates. For example, water may be assumed as an incompressible fluid under 

isothermal conditions. In fact, all liquids may be assumed as incompressible fluids under 

isothermal conditions. For this special case, the equation of continuity may be further simplified 

as shown below 
 

The above equation for an incompressible fluid does not mean that the system is under steady 

state conditions. The velocity of the fluid may still be a function of time. It only implies that if 

the velocity of the fluid changes in a particular direction (x, y or z) then it should also change in 

the other directions such that mass is conserved without changing its density. The equation of 

continuity provides additional information about the velocity profile and helps in solution of 
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 EQUATION OF MOTION 

 

Depending on how the fluid and the solid boundaries contact each other, the flow may be 

classified as internal flow or external flow. In internal flows, the fluid moves between solid 

boundaries as is the case when fluid flows in a pipe or a duct. In external flows, however, the 

fluid is flowing over an external solid surface, the example may be sited is the flow of fluid over 

a sphere as shown in Fig. 8.1. 
 

 

Fig  External flow around a sphere 

Boundary layers and fully developed regions 

Let us now consider the example of fluid flowing over a horizontal flat plate as shown in Fig. 

 
The velocity of the fluid is before it encounters the plate. As the fluid touches the 
plate, the velocity of the fluid layer just adjacent to the plate surface becomes zero due to the 
no slip boundary condition. This layer of fluid tries to drag the next fluid layer above it and 
reduces its velocity. As the fluid proceeds along the length of the plate (in x-direction), each 
layer starts to drag adjacent fluid layer but the effect of drag reduces as we go further away 
from the plate in y-direction. Finally, at some distance from the plate this drag effect disappears 
or becomes insignificant. This region where the velocity is changing or where the velocity 
gradients exists, is called the boundary layer region. The region beyond boundary layer where 
the velocity gradients are insignificant is called the potential flow region. 

 
 

 

Fig External flow over a flat plate 
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As depicted in Fig. 8.2, the boundary layer keeps growing along the x-direction, and may be 

referred to as the developing flow region. In internal flows (e.g. fluid flow through a pipe), the 

boundary layers finally merge after flow over a distance as shown in Fig. 8.3 below. 
 
 

Fig Developing flow and fully developed flow region 

 

The region after the point at which the layers merge is called the fully developed flow region and 

before this it is called the developing flow region. In fact, fully developed flow is another 

important assumption which is taken for finding solution for varity of fluid flow problem. In the 

fully developed flow region (as shown in Figure 8.3), the velocity vz is a function of r direction 

only. However, the developing flow region, velocity vz is also changing in the z direction. 

 

Main axioms of transport phenomena 

 

The basic equations of transport phenomena are derived based on following five axioms. 
 

 Mass is conserved, which leads to the equation of continuity. 
 

 Momentum is conserved, which leads to the equation of motion. 
 

 Moment of momentum is conserved leads to an important result that the 2nd order 

stress tensor        is symmetric. 

 Energy is conserved, which leads to equation of thermal energy. 
 

 Mass of component i in a multi-component system is conserved, which leads to 
the convective diffusion equation. 

 

The solution of equations, resulting from axiom 2, 4 and 5 leads to the solution of velocity, 

temperature and concentration profiles. Ones these profiles are known, all other important 

information needed can be determined. We first take the axiom -1. Other axioms will be taken up 

one by one letter on. 

There are three types of control volumes (CV) which may be chosen for deriving the equations 

based these axioms. 
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 Rectangular shaped control volume fixed in space 

 
In this case, the control volume is rectangular volume element and is fixed in space. This method 

is the easiest to understand but requires more number of steps. 
 

 Irregular shaped control volume element fixed in space 
 
In this case, the control volume can be of any shape, but it is again fixed in space. This method is 

somewhat more difficult than the previous method as it requires little better understanding vector 

analysis and surface and volume integrals. 
 

 Material volume approach 

 
In this case, the control volume can be of any shape but moves with the velocity of the flowing 

fluid. This method is most difficult in terms of mathematics, but requires least number of steps 

for deriving the equations. 

 

All three approaches when applied to above axiom, lead to the same equations. In this web 

course, we follow the first approach. Other approaches may be found elsewhere. 

Axioms-1 

 

Mass is conserved 

Consider a fluid of density ρ flowing with velocity as shown in Fig. 8.4. Here, ρ and  

are functions of space (x,y,z) and time (t). For conversion of mass, the rate of mass entering and 

leaving from the control volume (net rate of inflow) has to be evaluated and this should be equal 

to the rate of accumulation of mass in the control volume (CV). Thus, conservation of mass may 

be written in words as given below 
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Fig 8.4 Fixed rectangular volume element through which fluid is flowing 

 

The equation is then divided by the volume of the CV and converted into a partial differential 

equation by taking the limit as all dimensions go to zero. This limit effectively means that CV 

collapses to a point, thereby making the equation valid at every point in the system. 

 

Let m and m+Δm be the mass of the control volume at time t and t+Δt respectively. Then, the 

rate of accumulation, 
 

 
In order to evaluate the rate of inflow of mass into the control volume, we need to inspect how 

mass enters the control volume. Since the fluid velocity has three components vx, vy and vz, we 

need to identify the components which cause the inflow or the outflow at each of the six faces of 

the rectangular CV. For example, it is the component vx which forces the fluid to flow in the x 

direction, and thus it makes the fluid enter or exit through the faces having area ΔyΔz at x = x 

and x = x+Δx respectively. The component vy forces the fluid in y direction, and thus it makes 

the fluid enter or exit through the faces having area ΔxΔz at y = y and y = y+Δy respectively.  

Similarly, the component vz forces the fluid to flow in z direction, and thus it makes fluid enter 

or exit through the faces having area ΔxΔy at z = z and z = z+Δ z respectively. 

 

The rate mass entering in x direction through the surface ΔyΔz is (ρvxΔyΔz|x), the rate of mass 

entering in y direction through the surface ΔxΔz is (ρvyΔxΔz|y) and the rate of mass entering 

from z direction through the surface ΔxΔy is (ρvzΔxΔy|z). In a similar manner, expressions for 

the rate of mass leaving from the control volume may be written. 

 

Thus, the conservation of mass leads to the following expressions 
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Dividing the Equation (8.1) by the volume ΔxΔyΔz, we obtain 

 

 
Note that each term in Equation (8.2) has the unit of mass per unit volume per unit time. Now, 

taking the limits Δx→0, Δy→0 and Δz→0, we get 
 
 

 

and using the definition of derivative, we finally obtain 
 

 

Equation (8.4) is applicable to each point of the fluid. Rearranging the terms, we get the equation 

of continuity, may be written as given below. 
 

 

 

 

We need not to derive the equation of continuity again and again in other coordinate system (that 

is, spherical or cylindrical). The idea is to rewrite Equation (8.5) in vector and tensor form. Once 

it is written in this form, the same equation may be applied to other coordinate system as well. 

Thus, the Equation (8.5) may be rewritten in vector and tensor form as shown below. 
 

 

Vector and tensor analysis of cylindrical and spherical coordinate systems is not done here, and 

can be looked up elsewhere. Thus, the final expressions in cylindrical and spherical coordinates 
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are given as below. 

 

cylindrical coordinates (r, θ, z) 
 

 
Spherical coordinates (r, θ, φ) 

 

 
 

 Equation of continuity in terms of substantial derivative 

 

The second term in Equation (8.6) may be broken into two parts as shown below. Partial 

derivative present in the Equation (8.6) can be converted into substantial derivative using vector 

and tensor identities. 
 

 

In the above equation, the first two terms may be combined using the definition of substantial 

derivative to obtain the following equation. 

 
In some cases, the fluid may be incompressible, i.e. density ρ is a constant with time as well as 

space coordinates. For example, water may be assumed as an incompressible fluid under 

isothermal conditions. In fact, all liquids may be assumed as incompressible fluids under 

isothermal conditions. For this special case, the equation of continuity may be further simplified 

as shown below 
 

The above equation for an incompressible fluid does not mean that the system is under steady 

state conditions. The velocity of the fluid may still be a function of time. It only implies that if 

the velocity of the fluid changes in a particular direction (x, y or z) then it should also change in 

the other directions such that mass is conserved without changing its density. The equation of 
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continuity provides additional information about the velocity profile and helps in solution of 

equation of motion. 

Solution of momentum transport problem by shell momentum balances 

 

Here, we solve few simple problems of fluid mechanics with simple geometries by using the 

shell momentum balance approach. This will lead to greater understanding of various terms 

involved in the application of conservation of momentum in fluid given in Equation (9.1) 

 

Flow through circular tube 

Flow of fluids through a circular tube is a common problem, encountered frequently in different 

fields of engineering. Consider an incompressible, Newtonian fluid, flowing through a horizontal 

circular tube as shown in Fig. (10.1). Assume that the fluid flow is laminar and under steady state 

conditions. Determine the velocity profile and average velocity of the fluid using shell 

momentum balance approach. 

 

Assumptions 
 

 Fluid density and viscosity are constants. 
 

 System is in steady state. 
 

 Laminar flow (simple shear flow). 
 

 Newton's law of viscosity is applicable. 
 

 Fully developed flow. 
 

 

Fig Laminar flow in a horizontal pipe 

Intuitively guess the velocity profile 

Since the flow is steady and laminar, we may intuitively say that the velocities in r direction and 

θ direction are zero. Due to steady state conditions, the fluid velocity in z direction, vz, is not 

dependent on time t. Furthermore, due to the axisymmetric geometry fluid flow the velocity vz is 
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independent of θ. Thus, 
 

By applying the equation of continuity in cylindrical coordinates 
 
 

Hence, 

 
 

Since the fluid is flowing in z direction, we may conclude the following. 

 
 

 Since vr=0, r directional momentum balance is not important. 
 

 Since vθ=0 , θ directional momentum balance is again not important. 
 

 Since vz≠0, z directional momentum balance is most important. 

 

 Equation for circular pipe: 

The control volume should be decided very carefully. The geometry and size of the control 

volume should be taken according to the geometry of the system and based on the conditions 

given in the problem. In this case, the geometry of the pipe is cylindrical, hence we use the 

cylindrical control volume. The fluid is flowing in the z direction but velocity is changing only in 

r direction. Therefore, the control volume is taken in such a way that the variable thickness of the 

control volume is in the r direction. As the flow is not dependent on z and θ coordinates, we may 

choose any dimension in z or θ directions. This means that z may be any length. It may be L/4, 

L/2 or L. In a similar manner, any value of θ may be taken. It may be 2   or or /2 or /4. 

However, in the r direction, we need to take the differential thickness dr. These arguments leads 

us to a control volume as shown in Fig. (10.2). The length of the cylindrical shell is L which is 

equal to length of pipe and thickness is dr. 
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Fig 10.2 Control volume for flow through pipe 

Momentum balance 

As discussed earlier, the shear stress/forces may be written in two ways: 
 

 Taking shear stress as actual shear forces. 
 

 Taking shear stress as momentum flux. 

 
Here, we show that both methods lead to the same final results for velocity profile. 

Momentum balance using shear stress as shear force 

Momentum flux entering the control volume by convection 

= 

 
Momentum flux leaving the control volume by convection 

= 

 

 
Since the pipe is horizontal, the force due to gravity is zero. No other body forces are acting on 

the control volume. 

 

Surface forces 

 
 

 Pressure force: Fluid is flowing in z direction only. So pressure forces which are working 
on the surface normal to z direction are 

 

Pressure force at z=0 is 
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Pressure force at z=L is 
 

 
 Shear forces: The shear stress tensor in cylindrical coordinate is given below. 

 

Among all 9 components the first column of stresses are important for r directional flow, the 

second column of stresses are important for θ directional flow, and the third column are 

important for z directional flow. Since the fluid is flowing in the z direction, only the third 

column needs to be considered. Since the Velocity gradient is present only in the r-direction, only 

needs to be considered, the remaining two terms are not significant. Now, we need to decide 

the direction in which the shear forces are acting. Recall 
 

 

Where the unit vector is the outer normal of a surface and if it is in positive direction then 

is also positive while if it is in negative direction then  is shown as negative direction. 

Therefore, (as a force) is positive at r+dr and negative at r as shown in Fig. 10.2.(Note: the 

first index, z, in  from right to left indicates the direction of force and second index, r, 

indicates the surface on which it acts). 

 
Accumulation term: Due to steady state system, the rate of accumulation of momentum equals to 

zero . 

General momentum balance is given below 
 

or in this case 
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Since the velocity is constant along the axial direction as shown in Equation (10.2), the first two 

terms in Equation (10.8) are cancel out and we are left with following Equation. 
 

 

Dividing by  , we have 
 

As dr→0, the Equation (10.10) may be rewritten as given below. 

(Note that, is a function of r only which means we get the total derivative instead of the 

partial derivative.) 
 

 

Further integrating the Equation (10.11) once with respect to the variable r, we obtain 
 

or 

 

 

Here, c1 is a constant of integration. Equation (10.12) shows that if r=0, the value of will be 

infinite, which is physically not possible. Therefore, c1 must be zero. Hence, 
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Now, by applying Newton’s law of viscosity, and taking as force, we obtain 
 

 

Momentum balance using shear stress as momentum flux 

 

Now, we will employ the second method where shear force are considered as momentum flux. 

To indicate the direction of momentum flux, we draw the arrow in r direction and find where this 

arrow enters the control volume and also leaves the control volume as shown in Fig (10.3). Thus, 

the momentum flux enters the control volume through the surface 2 rL at r=r and leaves 

through the surface 2 rL at r=r+dr. 

 

 

 
Fig 10.3 Momentum flux applied on control volume 

Thus, 

Momentum flux at r = r is 

 
Momentum flux at r = r +Δr is 

 

 

(Note: when we consider  as the momentum flux, first index, z, indicates the direction of 

momentum flux, while the second index, r, indicates the direction of flow of momentum flux 

from higher to lower value. Subsequently, it will become clear that if we follow the coordinate 

system’s directions and assume momentum is flowing in this direction, the sign convention for 

momentum flux is automatically taken place.) 
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In this case, momentum balance in Equation (9.2) may be modified as shown below 
 

Here, the shear stress are taken into account as momentum flux. The pressure and gravity are the 

only applied forces. 

 

Substituting various terms in above equation, we obtain 
 

 

Dividing by , we obtain 
 

Again as dr→0 Equation (10.17) leads to 
 
 

 

or 
 

 

By integrating the Equation (10.18), we have 
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As we discussed earlier, c1 should be zero. Therefore, 
 

 

Now applying Newton’s law of viscosity where shear stress is taken as momentum flux, we 

obtain 
 

 

 

Equation (10.14) and (10.20) are identical and hence show that both methods finally lead to the 

same result. 

To obtain velocity profile we further integrating the Equation (10.21) 
 

Here c2 is the second constant of integration which may be determined by using appropriate 

boundary condition. 

 

Boundary condition 

 

By no-slip boundary condition 

vz=0 at r=R 
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Substituting the value of c2 in Equation (10.22), we finally get 
 

 

Note: c1 can also be calculated by using the boundary condition in terms of velocity vz: i.e., vz is 

finite at r=0 

 

 

or (since the velocity profile is symmetric about r=0). 

Thus, the velocity profile for flow through pipe is given by the following expression 

 
The maximum velocity of the fluid will be exhibited at the centre of the pipe and is given by 

 

Alternatively, the velocity profile may also be expressed in terms of the maximum velocity as 
 

 

The average velocity of the fluid in the pipe is the average of all local velocities. Thus, this may 

be calculated by estimating the volumetric flow rate through the pipe and then dividing it by the 

cross sectional area of the pipe. The total volumetric flow in the system is 
 

where, dQ is the volumetric flow rate from small cylindrical strip of thickness dr. 
 

 

 

 

By substituting the value of v z from equation (10.27), we have 
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By integrating the equation (10.30) from r=0 to r=R, we obtain 

 

or 

 
 

Thus, 

 

 
and average velocity is 

 

or 

 

 
The velocity profile for laminar flow in a circular tube is shown in Fig. 10.5. 
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Fig 10.5 Velocity profile in horizontal pipe 

 

We can also find the radial distance at which the local velocity of fluid flow equals the average 

velocity. For this, substitute   into Equation (10.26), we obtain 

 

Finally, the volumetric flow rate in terms of pressure drop is as follows 

 
 

Equation (10.36) is known as the Hagen – Poiseuille equation. Thus, if the pressure drop is 

given, we can calculate the volumetric flow rate in the pipe and vice-versa. This equation can 

also be used for the calculation of viscosity in capillary flow viscometer. However, it may be 

noted that Hagen – Poiseuille equation is valid only for fully developed laminar flow. Therefore, 

when this equation is used for various calculations there may be some errors due to developing 

and exiting flow at both ends of the pipe. Hence, this equation has to be modified for real 

situations. 

Friction factor 

 

The friction factor is a dimensionless number, which provides an idea about the magnitude of 

shear stress produced by a solid boundary as fluid flows. This is defined as the ratio of shear 

 

 
 

stress at the wall and the kinetic energy head of the fluid, . Here, ρ is the density 
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and is the average velocity of fluid. The friction factor is thereby defined as 
 

 

 

 

 

 
 

where, is the shear force per unit area on the wall of the tube. This may be calculated as 

shown below 
 

Here, first minus sign is used as the inside surface of the tube wall has outer normal in the 

negative r direction and second minus sign is used because  is treated here as momentum 

flux. If is treated as actual shear force then positive sign would have to be taken. For fully 

developed laminar flow, the velocity profile is parabolic and is given by 
 

Evaluating the velocity gradient at the wall (r=R), we have 
 

Thus, the shear stress considered as momentum flux is given by 
 

 

or 
 

 

The friction factor may now be calculated as shown below 
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or 
 

 

Equation (11.7) shows that the friction factor in laminar flow region depends only on the 

Reynolds number. Clearly, the friction factor is also a dimensionless number. 

 

Friction factor in turbulent flow 
 
 

Fig 11.1 Smooth and rough surface of pipe 

 
In turbulent flow, the friction factor also depends on the surface of the pipe. A rough pipe leads to 

higher turbulence than a smoother pipe, so that the friction factor for smoother pipes is less than 

that for rougher pipes. The ratio of surface roughness height (∈) to pipe diameter (D) is used to 

quantify the “roughness” of the pipe surface. In practice, the shear stress on the wall may be 

calculated by measuring the pressure drop across the pipe for a given flow rate. Thus, friction 

factor may be calculated as the function of Reynolds number and plotted on a log-log plot for a 

given surface roughness. The curves are different for different surface roughness as shown in 

figure. (11.2). The collection of these f-Re plots is called Moody Chart as shown in figure below, 

and can be used for estimating the friction factor for given flow parameters. 
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Ref: http://www.brighthub.com/engineering/civil/articles 

 

Solution of some more fluid flow problems by shell momentum balance approach 

 

In this section, we solve a few more fluid mechanics problems in simple geometries using the 

shell momentum balance approach. The detail procedure, which was also used in previous 

example, is outlined below. 

 

1) Make a diagram of the flow geometry with the appropriate coordinate system 
 

2) Specify all necessary assumptions 
 

3) Intuitively assume the velocity profile 
 

This is an important step for solving these problems. In laminar flow, the fluid flows in parallel 

layer without mixing. Thus, it is easy to guess the non-zero components of velocities by 

intuition. 

 

4) Apply of the equation of continuity to modify the velocity profile 
 

5) Determine the non-zero shear stress component(s) 
 

Since the shear stress components depend on the velocity profile, the non-zero shear stress 

components may now be determine. 

 

6) Determine control volume and make shell momentum balance for the control volume 
 

Draw control volume in system diagram according to system shape, size and problem statement. 

The selection of proper control volume is very important to solve problem correctly. The control 

volume should be select in such way that it can be easily integrated for whole system. The 

differential length of control volume should be taken in direction of changing velocity. 

Write momentum balance equation for the control volume. The shear stress may be considered as 

shear force or as momentum flux, both provide the same results as shown in previous example . 

Write down all surface and body force acting on the fluid carefully. Finally obtain a appropriate 

http://www.brighthub.com/engineering/civil/articles
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differential equation and integrate. 

 

7) Boundary conditions 
 

Use appropriate boundary conditions which help us to determine the constant of integration in 

above step. 

 

 Falling film on an inclined flat surface 

 

An inclined surface of length L and width W is situated at an angle Β to the vertical direction as 

shown in Fig. (11.3). A Newtonian fluid is freely falling on the surface as a film of thickness δ. 

Assuming the flow to be laminar, determine the velocity profile, flow rate and shear force on the 

surface by the fluid. 

 

Solution 
 

 
 

Fig 11.3 Laminar flow on an inclined surface 

Assumptions 
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 Constant density, viscosity 
 

 Steady state 
 

 Laminar flow (simple shear flow) 
 

 Fully developed flow 
 

 Newton's law of viscosity is applicable 

 

Assume velocity profile 

The fluid is flowing in the z direction, hence only the z component of velocity is non-zero. Thus, 

we may assume 
 

 

We may further assume that vz does not depends upon y coordinate. Since the flow is steady, vz 

does not depend on time. Thus, 
 

 

Using the equation of continuity in the cartesian coordinates for constant fluid density, we have 
 

 

which reduces to 
 

 

Equation (11.11) indicates that vz does not depend on the z coordinate. Thus, 
 

, an
d 
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There are nine components of the shear stress as shear force or momentum flux, namely 
 

 

Since vz is only the non-zero velocity, and also it is the function of x coordinate , is the only 

significant component of shear stress and we need to write momentum balance only in z 

direction. Because the pressure is same at both ends of the inclined plane, there is no pressure 

force on the fluid. Now, we can solve this problem by assuming shear stress as a shear force or 

shear stress as momentum flux. 

 

Assuming   as momentum flux 

Draw a control volume of length L, width W and differential thickness dx. 
 
 

Fig 11.3 Control volume for falling film problem 

Momentum balance in x direction 

Rate of momentum flux entering CV due to viscous transport at 
 

 

Rate of momentum flux leaving CV due to viscous transport at 
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Gravity force acting on fluid in z direction 
 

 
Rate of momentum flux entering in CV due to convective transport 

 

 

Rate of momentum flux leaving from CV due to convective transport 
 
 

 
Now, when above terms are substituted for z-momentum balance, we obtain 

 

 

Since the velocity vz does not depends on z coordinate, the first two terms cancel out and we 

obtain 
 

Dividing Equation (11.19) by volume of the control volume (LWΔx), we have 
 

 
As Δx→0 , The Equation (11.20)simplified to 

 

 
The Newton’s law of viscosity (here, shear stress is defined as momentum flux) is given by 
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By integrating the Equation (11.25), we have 
 

or 
 

 

The above equation requires two boundary conditions for determining c1 and c2. 

Boundary conditions 

1 At x=0 the liquid surface is in contact with air where the shear stresses at both gas liquid 

phases should be equal. Thus, 
 
 

 

Since both may be assumed Newtonian fluids, we have 
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where ρg is the density and µg is the viscosity of air. Thus 
 
 

 

Since, µg and ρg is much smaller than µ and ρ, and Equation (11.30) may be approximately 

written as 
 

 

Substituting above boundary condition in Equation (11.26), we obtain 
 

 

2. At x=δ no slip boundary condition may be applied, i.e., 
at 

 

 
Thus, from Equation (11.27), we get 

 

 

or 
 

 

Finally the velocity profile is obtained as 
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or 
 

 

 

 

 

 

Falling film "Assuming as shear force" 

 

Now, we again solve the same problem (falling film over an inclined plane) by treating shear 

stress as a shear force. For this purpose, we take the same control volume as before. 

For momentum balance in z direction, all terms are same as before except the terms for shear 

forces. Here, represents the force in z direction acting on the surfaces which have normal in 

x direction. Shear force is positive if the outward normal is in positive direction and negative if 

normal is in negative direction. Thus, 

 

shear force at x=x is 

 
 

Shear force at x=x+Δx is 

 
; 

 

The z momentum balance for this case is as follows 
 

 
Dividing Equation (12.3) by the volume of control volume WLΔx, we have 

 

 

As Δx→0 Equation (12.4) leads to 
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Now, substituting the Newton’s law of viscosity for shear stress as a force 
 

 
Therefore, 

 

 

Equations (11.24) and (12.7) are the same, which show that both approaches provide the same 

answer. 

 

Maximum velocity 

 

It is clear from Equation (11.37) that the maximum velocity is given by 
 

 

Average velocity and volumetric flow rate of falling film 

 

vz is the linear velocity in z direction. Hence, the volumetric flow rate can be determined by 

integrating it over the cross section of flow (Wδ).Thus , 

 
 

From Equation (11.37), we get 
 

 

By integrating Equation (12.10), we find 
 

 

To obtain the average velocity, we divide the volumetric flow rate by the cross sectional area. 



   

43 

 

 

 

 
 

or 
 

 

Equation (12.12) may also be written as 
 

 

Force acting on solid surface due to the fluid 
 

 

(Note: in Equation (12.14), first ‘+’ sign shows the direction of the normal of the inclined surface 

and second ‘+’ sign is taken since shear stress is defined as shear force). Thus, 
 

 

In this lecture, we have once again seen that the shear stress tensor may be assumed as a shear 

force or as a momentum flux. In either case, we finally obtain the same expression for the 

velocity profile. The only difference is that when we treat shear stress as a shear force, it is 

included in the summation of all forces term in the momentum balance equation, while when we 

treat shear stress as momentum flux, it is written as momentum entering and leaving by the 

viscous transport. From now onwards, we will treat shear stress as momentum flux as it is more 

consistent with what we see in heat transfer as Fourier’s law of heat conduction and in mass 

transfer as Fick’s law of diffusion. Thus, in transport phenomena (Momentum transport, Heat 

transport, and Mass transport) for the basic transport laws we have minus sign in front the 

relevant gradient implying fluxes flow from higher values to lower values. 

 

Falling film on the outside of a circular shell 

In an experiment, a fluid flows upward through a small circular shell and then flows downward 

out side the tube under laminar conditions as shown in Fig. 12.2. We need to set up a relevant 

momentum balance and determine the velocity profile, mass flow rate and the force acting on 

outer surface of the tube. 
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Fig 12.2 Falling film outside the circular tube 

Assumptions 

 Density and viscosity are constants. 
 

 Steady state. 
 

 Fully developed laminar flow. 
 

 Newton’s law of viscosity is applicable. 

 

Non-zero velocities 

Fluid is flowing in the z direction due to gravity. There is no driving force in the θ direction and a 

solid surface is present in the r direction. Therefore, we may intuitively assume that 
 

 
Now, using the equation of continuity in cylindrical coordinate system, we have 

 

 

or 
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From Equation (12.18), we obtain that vz is independent to z. Therefore, 
 

 

Choose a control volume in the film of differential thickness dr and length L (it is a cylindrical 

shell). 
 
 

Fig 12.3 Control volume for falling film outside the circular tube 

 

There are nine components of shear stress tensor. Since the fluid is flowing in z direction and it is 

a function of r only, we may argue as before  is the only important component of the shear 

stress tensor. The other components are insignificant for momentum balance in z direction. The 

momentum balance in z-direction is given below. 

 

Momentum balance for control volume 

Convective momentum entering the control volume at z=0 is 

 
Convective momentum leaving the control volume at z=L is 

 
Shear stress as momentum flux entering the control volume at r= r is 
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Shear stress as momentum flux entering the control volume at r= r + Δr is 

 
{Note: If you consider shear stress as momentum flux, then it always flows in the positive 

direction of axes} 

 

Fluid is flowing only due to gravity and may be written as 

Substituting above terms, we obtain 
 

 

Since velocity, vz, is not dependent on the z, the first two terms in above equation are equal and 

cancel out, leaving the following equation for momentum balance. 
 

 

Dividing Equation (12.26) by volume of control volume  , we obtain 
 

As dr→0, Equation (12.27) reduces to 
 

 

or 
 

 

After integration we obtain 
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and 

 
 

Here, and are the constants of integration. 

Boundary conditions 

1. r=aR we have the air water interface where we may assume that 

 
(The explanation is given earlier in Lecture 11.) 

Substituting the above boundary condition, we obtain 

 

 
2. At r = R, no slip boundary condition is applicable. Thus, 

 

Using this boundary condition, we obtain 

 
or, 

 
 

Therefore, the velocity profile is given by 
 

 

or 
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Maximum velocity 

 

At r = aR, the velocity is maximum. Thus, 
 

 

 

Equation of motion 

In this section, we derive the equation of motion, which may be used for solving any fluid 

mechanics problem. This equation is based on axiom 2, i.e., the momentum is conserved. We 

consider a control volume having volume Δx,Δy,Δz fixed in space. 

 

According to the momentum conservation equation, 

 

Rate of accumulation of control volume = Net rate of inflow of momentum by convection + net rate of   

                                                                    momentum by viscous transport + pressure forces + gravity forces 
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Fig 15.1 Cubical control volume fixed in space 

Momentum balance in x direction 

 

Rate of accumulation of x directed momentum in control volume 
 
 

 
Net rate of inflow of x directed momentum into CV by convection from x-phases 

 
 

 
Net rate of inflow of x-momentum into CV from y-phases 

 
 

 
Net rate of inflow of x-momentum into CV from z-phases 
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In all shear stress component, the second index shows the direction of momentum flux and first 

 

index shows the direction in which the momentum is flowing. For example, denotes the x 

directed momentum flowing in y direction. Therefore, the x directed momentum fluxes are 

 

and . Thus, 

 

Net rate of inflow of x directed momentum by viscous transport from x phase are 
 

 

Net rate of inflow of x directed momentum by viscous transport from y phase are 
 

 
Net rate of inflow of x directed momentum by viscous transport from z phase are 

 

 

Net pressure force in x direction = 

 
 

Gravity force in x direction = 

 
Adding all the above terms and dividing by the volume of control volume Δx,Δy,Δz and finally 

taking the limits, 

Δx→0, Δy→0,and Δz→0, we obtain 
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The above equation is the x component of equation of motion in cartesian coordinate system. 

Similarly, for y-direction 
 

 
and for z-direction 

 

 

The above three equation may be combined in vector tensor form as 
 

In above form, the equation of motion may be used in any coordinate system. 

Equation (15.14) may be written in substantial derivative form as shown below 

 

 
 

if    and  are the two vectors. We may use the following vector identity. 
 

Now, replace  by  and   by  then we have 
 



   

53 

 

 

also, 

 

 
After substituting Equations, the equation of motion reduces to 

 
 

 

Rearranging the terms on the left hand side, we have 
 

 
But from the equation of continuity 

 
 

 

or 
 

 
 

Equations (15.20) and (15.21) are the generalized form of equation of motion without any 

assumption and may be applied to any coordinate system. The detailed form of this equation in 

cartesian, cylindrical and spherical coordinate system is given in Appendix-3. 

Navier Stokes Equation for incompressible Newtonian fluid 

 

The equation of motion may be further simplified by substituting the Newton’s law of viscosity 

for the momentum flux term appearing in the equation of motion. 

For a one-dimensional system where 
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vy=0,vz=0 

 

we have seen that the Newton's law of viscosity may be written as, 
 

 

where, represents x directed momentum flowing in the y direction However, in general, for 

a three dimensional flow, all 9 components of shear stress may be important. Thus, 
 

 

 

 

Here,  , and  are the normal stresses and the remaining are shear stress. 

Axiom 3: Moment of momentum is conserved 

This axiom 3 leads to a very simple conclusion that the shear stress tensor is symmetric in nature. 

The derivative itself is lengthy and is not reproduced here. is symmetric implies that 
 

Newton’s law of viscosity may now be generalized as given below. Again, the basis for this 

representation is not shown here, but it may be found in any standard books in fluid mechanics. 
 

 

where, 
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Hence, we have the nine components of shear stress as 
 

 

The detail form of Newtons law of viscosity in all coordinate system is given in Appendix- 01. 

Now, consider the situation when an incompressible fluid is flowing only in x direction and 

depends on y coordinate only. In such a case, we have , and  . We can 

easily see that for this case, 
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and only significant components of stress are and . Also, the expression for is 

the same as given earlier as Newton’s law of viscosity. For rectangular coordinate system, 

substituting the value of  in the x component of equation of motion, we obtain 
 

Assuming that ρ and µ are constant, we obtain 
 

 
or 

 

 

or 
 

 

But from equation of continuity for an incompressible fluid, we have 
 

 

Therefore, 
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or 
 
 

 
or 

 
 

similarly 
 

 

Therefore, in vector and tensor form 
 

 
Thus, the equation of motion reduce to 

 

 

Equation (16.25) is known as the Navier Stokes equation and is used for solving problems 

involving Newtonian fluids of constant density and viscosity. For non-Newtonian and 

compressible fluids, the generalized form of equation of motion given earlier must be used. The 

detailed forms of the equations of motion along with Navier Stokes equations in cartesian, 

cylindrical and spherical coordinates are given in the Appendix-03. 

Solution of momentum transport problems using Navier Stokes equation 

 

In this section, transport problems involving Newtonian fluids are solved by making use of the 

equation of motion or Navier Stokes equation. We will firstly solve the falling film problem and 

flow through a circular tube for comparing the solutions obtained earlier by using the shell 
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momentum balance method. We will then proceed to solve some more fluid mechanics problems. 

 
 Falling film on an inclined surface 
 

 

 

 

 

 

Fig 17.1 Falling film on inclined surface 

 

This problem was solved earlier by the shell momentum balance technique. We will now try to 

solve this problem by using the Navier Stokes equations. 

We are again required to make the same necessary assumptions as done earlier using the shell 

momentum balance technique. We postulate the non- zero components of the velocity and from 

there, determine the non-zero components of the shear stress tensor. These steps are the same as 

earlier and lead us to conclude that  and  is the only important component of 

shear stress. We now use the Navier Stokes equation in cartesian coordinates as given in 

Appendix-03. 

x component is  
 

y component is 

 

 
z component is 
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where 
 

 

Integrating Equation (17.3), we have 
 

 

and 
 

 

The boundary conditions are also the same as used earlier, 

at 

 

 

 
and 

at 

 
This leads to the solution for velocity profile, as 

 

 

which is same as obtain earlier using shell momentum balance approach. 

Fluid flow through a vertical tube 

A Newtonian fluid is flowing inside a vertical tube having circular cross section due to pressure 

difference and gravity. Solve the problem using the Navier Stokes equations. 
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Fig 17.2 Flow through a vertical circular tube 

 

A similar type of problem (for a horizontal pipe) was solved earlier using the shell momentum 

balance technique. Therefore, the initial steps are the same and include making appropriate 

assumptions and postulating the non- zero velocity components. As shown earlier, it leads to the 

conclusion that  

Now using the Navier Stokes equation for cylindrical co-ordinates, after eliminating all zero 

terms, we have r- component of Navier Stokes equation 

 
 

component 
 

z - component 
 

 

We can combine gravity and pressure forces as to rewrite Equation (17.11) as, 
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where, Pc is the effective pressure including the gravity, and is defined as, 

 
 
Note that since pressure changes in only z direction and vz is a function of r only the partial 

derivative may be converted to total derivative. Furthermore, in Equation (17.12), the first term 

is only a function of z and the second term is only a function of r, i.e., 
 

 

This leads to result that F1 and F2 both are constants as Equation (17.13) is true for all values of 

z and r. 
 

 

Therefore, 
 

 

By integrating the Equation (17.15) 
 

 

Boundary conditions are 

at 

 

and 

at 

This leads to the following solution 
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By substituting in Equation (17.12) 
 

 
or 

 

 

 

Boundary conditions are 

at r= 0,  is finite 

and 

 

at r = R, 

 

This leads to 
 

 

which is again similar to what we have seen for a horizontal tube except for pressure difference 

term. In fact, it can be shown that the velocity profile given in Equation (17.22) is valid for any 

configuration, horizontal, vertical, or inclined, with effective pressure is defined as 
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For simplifying the problem further, we may assume that for low shear rates 

 
 
Using the θ component of the Navier – Stokes equation for cylindrical co-ordinate systems 

 

 

By substituting Equation (19.25), we get 
 

or 
 

 

 
After integration, we finally obtain 

where and are the integral constant. 
 

Boundary conditions are 

at  , or 
 

thus, 
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and at or 

 

 

Now, the z-component of the torque exerted on the fluid by the upper rotating disc, may be 

calculated as 

 

 
or 

   

Finally, we obtain the value of torque. 

Thus, by plotting the angular velocity vs torque Tz, the viscosity may be 
determined. 
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Non-Newtonian fluids 

 

Non-Newtonian fluids are the fluids which do not obey Newton’s law of viscosity. For 

describing Non-Newtonian fluids, let’s recall the Newton's law of viscosity experiment. There 

are two long parallel plate situated at distance h to each other. Top plate is stationary and bottom 

plate is moving with velocity   as shown in Fig. (20.1). 
 
 

Fig 20.1 Non-Newtonian flow between two parallel plates 

If a force, F, is applied to move plate, then (  ) 

 
and under steady state conditions when h is small and when 

 

 

Now, we calculate  by repeating experiments for different applied forces and velocity 

achieved by the bottom plate and plotting a graph as shown in Fig. (20.2). Depending on the 

nature of fluid, different types of curves may be obtained. 
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Fig 20.2 Shear stress vs. shear strain diagram for Newtonian and non-Newtonian fluids 

 

Rheological behaviour of fluids 

 

If fluid shows the behaviour like curve (1) then it is a Newtonian fluid. Other fluids are non- 

Newtonian fluids. Curve (2) represents a Pseudo-plastic fluid, curve (3) represents a Dilatant 

fluid, and curve (4) represents a Bingham plastic fluid. There are several Theoretical and 

empirical models available to describe the rheological behaviour of non-Newtonian fluids. Here, 

we discuss some of them, which come under the group of generalized Newtonian models. Basic 

equation for a generalized non-Newtonian fluid is given below 
 

 

Here,  is the apparent viscosity, which is clearly a function of shear rate as may be seen. 

Therefore, 

 

 

 
If the apparent viscosity increases with increase in shear rate, , then the fluid is called 

 

 
Dilatant fluid and if it decreases with increase in shear rate, then fluid is called Pseudo- 

plastic fluid. Some fluids require a critical shear stress to initiate the flow. These fluids are called 

Bingham fluids. Some important rheological models for non-Newtonian fluids are given below. 
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1 Power Law or Ostwald De Waele model 

 

Power law or Ostwald De Waele model is the most generalized model for non-Newtonian fluids. 

The expression of this model is given in Equation (20.3) 
 

 

This is a two-parameter model where m and n are the two parameters. 

If n = l then    = m 

where m is similar to the viscosity of the fluid and model shows the Newtonian behaviour . 

If n>1, then   increases with increasing shear rate and the model shows the Dilatant behaviour. 

If n<1, then  decreases with increasing shear rate and the model shows the Pseudo-plastic 

behaviour. 

 

Modulus sign 

 

In power law model, modulus sign can be removed according to the value of shear rate. 

 

1. If  is positive, then 
 

2. If  is negative, then 

Here, apparent viscosity is defined as, 
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Several fluids do not show single type of rheological behaviour. They show Newtonian 

behaviour for a range of shear stress and Non-Newtonian behaviour for some other ranges of 

shear stresses. Several models have been suggested for these types of fluids. Some popular 

models like Eyring model, Ellis model, Reiner Philipp off model and Bingham Fluid model are 

discussed here. 

 

2. Eyring model 
 

Eyring model is a two-parameter model. The equation of Eyring model is as follow 
 

 

 

where A, B are the two parameters. 
 

 
 

Therefore, as → 0, the model shows Newtonian behaviour 

 
 

Here, viscosity =  

If is very large, the model shows Non-Newtonian behaviour as shown Fig. 20.3 

In Eyring model, if → 0 which means very low shear forces, we have 
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Fig 20.3 Shear stress vs. shear strain diagram for Eyring model 

 

Therefore, Eyring model may be used for a fluid which shows Newtonian behaviour at low shear 

rates and non- Newtonian behaviour at high shear rates. 

 

3. Ellis model 
 

Ellis model is a three-parameter model. The equation of this model is as follows 
 

 

 

 

 

 

Here, , and are the three parameters . 

Here, we consider some special cases, 

1. If  then Equation (20.11) reduce to 
 

or 
 

 

which is same as Newton’s law of viscosity with  as the viscosity of the fluid. 
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2. If , then 
 

 

which is similar to a Power law model 

 

3. If  >1 and is small then the second term is approximately zero and equation reduces to 
 

which is similar to Newton’s law of viscosity. 

 

4. If  <1 and is very large, then again, second term is negligible and we have 
 

 

 

Which again shows Newtonian behaviour. Therefore, Ellis model may be used for fluids which 

show Newtonian behaviour at very low and very high shear stresses, but non-Newtonian 

behaviour at intermediate value of shear stresses. 
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Fig 20.4 Shear stress vs. shear strain diagram for Ellis model 

This type of behaviour may be shown by some polymer melts 

4. Reiner Philipp off model 
 

This is also a three-parameter model. The equation of Reiner Philipp off model is as follows, 
 

 

where, , and  are the three parameters. 

In Reiner Philipp off model, if is very large, the equation reduces to, 

 

or 
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which is same as the Newton’s law of viscosity, 

 
 

If is very small then equation reduces to 
 

 

or 
 

 

which is also same as the Newton’s law of viscosity. Therefore, Reiner Philipp off model may be 

used for a fluid which shows Newtonian behaviour at very low and very high shear stresses but 

non-Newtonian behaviour for intermediate values of shear stress. Here,  and  represent 

the viscosity of fluid at very low and very high shear stress conditions respectively. 

 

5. Bingham Fluid model 
 

Bingham fluid is special type of fluid which require a critical shear stress to start the flow. 

The equation of Bingham fluid model are given below 
 

 

 

 

 

 
 

 

 

 

if 
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A typical shear stress vs. shear rate diagram for a Binghum model is shown below 
 
 

Fig 20.5 Shear stress vs. shear strain diagram for Bingham model 

Momentum transport problems involving Power law and Bingham fluids: 

 

In this section, we will solve fluid mechanics problem for Power law and Bingham plastic fluids. 

These problems have been earlier solved for Newtonian fluids. We have chosen the same 

problems here for better understanding. 

 

Falling film on inclined plane 
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Fig 21.1 Falling film problem for non-Newtonian fluid 

 

Initial steps, such as making appropriate assumptions, finding important velocity components, 

applying equation of continuity, and determining important shear stress components are similar 

as steps seen for Newtonian fluid in lecture 11 and 17. As before and is the only 

non-zero velocity component and is the only important shear stress component. 
 

(Note: Since the forms of shear stress for Newtonian and non-Newtonian fluids are same, the 

only difference is the viscosity μ for Newtonian fluids and apparent viscosity η for non- 

Newtonian fluids and furthermore as non-zero components of velocities are also same, the same 

components of shear stress    are significant for both Newtonian and non- Newtonian fluids.) 

To solve the problem, we start with the generalized equation of motion in terms of    .  Since 

the fluid is moving in z direction, discarding all terms which are zero, z-component of the 

equation of motion reduces to 
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where 
 

 

therefore, 
 

 
For Power law fluids 

 

 

 
Since vz is decreasing with increasing value of x , the negative sign should be used for removing 

the modulus sign, i.e. , 
 

 
or 

 

 

By substituting in above, 
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By applying the boundary condition, at 

which simplifies to 
 

 

as disused in lecture 11 
 
 

By substituting this boundary condition in Equation (21.8), we get . Therefore, 
 

 
or 

 

Here,  is another integral constant. 

Now, using the second boundary condition, at  , we finally obtain 
 

Tube flow problem for Power law fluid 
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Fig 21.1 Flow through pipe for non-Newtonian fluid 

 

As we discussed in lecture 10, the only non-zero component of velocity is vz, which depends on 

r only. The important component of shear stress is . 

By applying general equation of motion in cylindrical co-ordinate, we get 
 

Equation (21.11) may be further simplified as before 

 
 

or 
 

 

By applying the boundary condition, at r=0, velocity is finite, we obtain 
 

and for power law fluids 

 
(Note: Since vz is decreasing with increasing value of r, the negative sign should be used for 

removing the modulus sign.) 
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By substituting Equation (21.13) to Equation (21.12), we get 
 
 

 

Integrating above equation, we obtain 
 

 

 

 

Now, by applying the no-slip boundary condition at, , we obtain 

Thus, 
 

 

Equation (21.15) represents the velocity profile of freely falling film on an inclined surface for a 

Power law non-Newtonian fluid. If we substitute the n=1 and m=μ in this expression, we get 

Equation (10.25) which was derived earlier for a Newtonian fluid. 

Tube Flow Problem for a Bingham Fluid 
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Fig 22.1 Flow through pipe for Bingham fluid 

 

As mentioned in the previous lecture, the forms of shear stress    for Newtonian and non- 

Newtonian fluids are the same. Therefore, Equation (21.12) is applicable for a Bingham fluids 

also, i.e., 

 
 

Equations (20.19) and (20.20) may be written for this system 

 

1. For (  ), where is to be determine latter, 
 
 

, or 
 

 

 

2. For ( ) 
 

 
 
In Equation (22.2), is negative. Therefore, after removing the modulus sign, we obtain 
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Thus, 
 

 

or 
 

 

Condition for movement of fluid 

 

As we start to pressurize the fluid by imposing pressure difference , fluid does not move initially. 

As we continue to increase the pressure difference the fluid may start to move at some critical 

pressure difference ( ). This critical value may be determined by setting 

. Thus, 
 
 

Thus, the fluid will flow if 
 

 
Suppose the pressure difference across the tube exceeds this critical value of pressure ( 

) then the fluid will start to flow. Now, under this condition we may calculate the 

value of (r0) where the value of  . For r<r0, the velocity gradient is zero and the 
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fluid flows with a constant velocity. The detail calculation for two different regions r<r0 and r>r0 

are given below. 
 

 

At  . Thus, 
 

or 
 

 

For r<r0, we equate Equations (21.12) and (22.4), that is 

 
 

Finally, we obtain, 
 

 

No slip Boundary condition at r=R ,    may be used to calculate c1 as shown below 

Substituting this value in Equation (22.11), we get 
 

 

Finally, the velocity profile is given by 
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Equation (22.12) gives the velocity profile is region as shown in Fig. 22.2. Equation 
 

(22.9) shows that as we keep increasing the pressure difference , the value of r0 keep 

on decreasing and the velocity profile changes as shown in Fig. 22.2. 

The value of r0 also depends on and reduces with it. If we substitute   in Equation 

(22.12), we obtain the same expression for velocity profile as we had earlier obtain for 

Newtonian fluids. This result implies that if the value of pressure difference  is 

significantly high then the Bingham fluid may show behaviour similar to Newtonian fluids. 
 

Fig 22.2 Effect of differential pressure flow through pipe for Bingham fluid 

Now, we may determine the velocity profile in the plug flow region (r>r0) by substituting r= r0 

in Equation (22.12) 
 

 

 

Falling film problem for Bingham fluid 
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For region (2) where and , we have 
 

 

Here is negative. Therefore, after removing the modulus sign and substituting the value 

of η in Generalized Newton’s law of viscosity. we obtain, 

 

 

 

 

 

 

or 
 

or 
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or 
 

 

Finally, we obtain the velocity profile, as given below 
 

 

where c2 is an integral constant. By using no slip boundary condition at  , , we 

obtain 
 

 
Therefore, 

 

 

Equation shows the velocity profile in region . From Equation, we may also 

calculate the velocity of plug flow region by substituting the value 
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2. Introduction to Heat Transport 

Practically all the operations that are carried out by the chemical engineers involve the production or 

absorption of energy in the form of heat. The study of temperature distribution and heat transfer is of 

great importance to engineers because of its almost universal occurrence in many branches of science 

and engineering. The first step in the optimal design of heat exchangers such as boilers, heaters, 

refrigerators and radiators is a detailed analysis of heat transfer. This is essential to determine the 

feasibility and cost of the undertaking, as well as the size of equipment required to transfer a specified 

amount of heat in a given time. Difference between thermodynamics and heat transfer 

Thermodynamic tells us (i) How much heat is transferred (ii) How much work is done (iii) Final state 

of the system. 

 Heat transfer tells us: (i) How much heat is transferred (with what modes) (ii) At what rate heat is 

transferred (iii) Temperature distribution inside the body. 

The various modes of heat transfer are (i) conduction (ii) convection (iii) radiation. Conduction Heat 

transfer by the actual but invisible movement of molecules within the continuous substance due to 

temperature gradient is known as conduction. When a current or macroscopic particle of fluid crosses 

a specific surface, it carries with it a definite quantity of enthalpy. Such a flow of enthalpy is called 

convection. Convection is the mode of heat transfer in which the heat flow is associated with the 

movement of fluid.  Transfer of energy through space by electromagnetic waves is known as radiation. 

2.1 Applications of heat transfer  

Energy production and conversion -steam power plant, solar energy conversion etc. Refrigeration and 

air-conditioning Domestic applications -ovens, stoves, toaster Cooling of electronic equipment 

Manufacturing / materials processing -welding, casting, soldering, laser machining Automobiles / 

aircraft design 

2.1.1 Conduction: It is the transfer of internal energy by microscopic diffusion and collisions of 

particles or quasi-particles within a body due to a temperature gradient. The microscopically diffusing 

and colliding objects include molecules, electrons, atoms, and phonons. They transfer disorganized 

microscopic kinetic and potential energy, which are jointly known as internal energy. Conduction can 

only take place within an object or material, or between two objects that are in direct or indirect 

contact with each other. On a microscopic scale, heat conduction occurs as hot, rapidly moving or 
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vibrating atoms and molecules interact with neighboring atoms and molecules, transferring some of 

their energy (heat) to these neighboring particles. In other words, heat is transferred by conduction 

when adjacent atoms vibrate against one another, or as electrons move from one atom to another.  

Fourier’s law of heat Conduction 

The rate of heat transfer due to conduction is governed by Fourier’s Law, as shown  

𝑞 = 𝑘𝐴 (
𝛥𝑇

𝛥𝑥
)  

The terms in Eqn. 1 are: 

 q – rate of heat transfer (W) 

 k – thermal conductivity (W/m∙K) 

 A – surface area across which heat is transferred (m2) 

 ΔT – difference in temperature over which heat is transferred (K) 

 Δx – distance over which heat is transferred (m) 

Thermal conductivity indicates the ease of heat transfer through a material and is a material dependent 

property. The ΔT term is the driving force for heat transfer. 

2.1.2 Convection 

The rate of heat transfer due to convection is described by 

𝑞 = ℎ𝐴(𝛥𝑇)  

In Eqn. 2 the new term is: 

 h –heat transfer coefficient (W/m2∙K) 

In Eqn. 2, the heat transfer coefficient replaces the k/Δx term in Eqn. 1. The reason this happens is 

because convection has a mobile phase, and thickness is no longer an effective way of describing how 

the heat is transferred. The heat transfer coefficient can be thought of as the inverse of the resistance to 

heat transfer. Also, because temperature is a function of distance from a surface, the ΔT term is 

calculated between the surface and the bulk temperature of the mobile phase.  
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2.1.3 Radiation 

The concept for radiation is that all materials are constantly emitting infrared radiation that is absorbed 

by other materials. For this module, we will assume that radiation is emitted directly outward from the 

surface of objects. While conduction and convection are driven by a temperature gradient, radiation is 

only based on the temperature of the object emitting radiation. 

The rate of heat transfer due to radiation can be described by  

Radiation Emitted:        𝑞𝑜𝑢𝑡 = ε𝐴𝜎(𝑇𝑠
4)  

Radiation Absorbed:      𝑞𝑖𝑛 = 𝛼𝐴𝜎(𝑇𝑜
4)   

Heat transfer is the exchange of thermal energy between physical systems. The rate of heat transfer is 

dependent on the temperatures of the systems and the properties of the intervening medium through 

which the heat is transferred. The three fundamental modes of heat transfer 

are conduction, convection and radiation.  

Heat transfer, the flow of energy in the form of heat, is a process by which a system changes its 

internal energy, hence is of vital use in applications of the First Law of Thermodynamics. Conduction 

is also known as diffusion, not to be confused with diffusion related to the mixing of constituents of a 

fluid. The direction of heat transfer is from a region of high temperature to another region of lower 

temperature, and is governed by the Second Law of Thermodynamics. Heat transfer changes 

the internal energy of the systems from which and to which the energy is transferred. Heat transfer will 

occur in a direction that increases the entropy of the collection of systems. Thermal equilibrium is 

reached when all involved bodies and the surroundings reach the same temperature. Thermal 

expansion is the tendency of matter to change in volume in response to a change in temperature. 

Newton's law of cooling states that the rate of heat loss of a body is proportional to the difference in 

temperatures between the body and its surroundings. As such, it is equivalent to a statement that 

the heat transfer coefficient, which mediates between heat losses and temperature differences, is a 

constant. This condition is generally true in thermal conduction (where it is guaranteed by Fourier's 

law), but it is often only approximately true in conditions of convective heat transfer, where a number 

of physical processes make effective heat transfer coefficients somewhat dependent on temperature 

differences. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling is not 

true.  

https://en.wikipedia.org/wiki/Thermal_energy
https://en.wikipedia.org/wiki/Heat
https://en.wikipedia.org/wiki/Thermal_conduction
https://en.wikipedia.org/wiki/Convection
https://en.wikipedia.org/wiki/Radiation
https://en.wikipedia.org/wiki/Internal_energy
https://en.wikipedia.org/wiki/First_Law_of_Thermodynamics
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Second_Law_of_Thermodynamics
https://en.wikipedia.org/wiki/Internal_energy
https://en.wikipedia.org/wiki/Thermal_equilibrium
https://en.wikipedia.org/wiki/Thermal_expansion
https://en.wikipedia.org/wiki/Thermal_expansion
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Heat_transfer_coefficient
https://en.wikipedia.org/wiki/Thermal_conduction
https://en.wikipedia.org/wiki/Thermal_conduction#Fourier.27s_law
https://en.wikipedia.org/wiki/Thermal_conduction#Fourier.27s_law
https://en.wikipedia.org/wiki/Convective_heat_transfer
https://en.wikipedia.org/wiki/Thermal_radiation
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Thermal conductivity (often denoted k, λ, or κ) is the property of a material to conduct heat. It is 

evaluated primarily in terms of Fourier's Law for heat conduction. Heat transfer occurs at a lower rate 

across materials of low thermal conductivity than across materials of high thermal conductivity. 

Correspondingly, materials of high thermal conductivity are widely used in heat sink applications and 

materials of low thermal conductivity are used as thermal insulation. The thermal conductivity of a 

material may depend on temperature. The reciprocal of thermal conductivity is called thermal 

resistivity. Thermal conductivity is actually a tensor, which means it is possible to have different 

values in different directions. 

Table 1: Thermal conductivity at room temperature for some metals and non-metals 

Metals Ag Cu Al Fe Steel 

k [W/m-K] 420 390 200 70 50 

Non-metals H20 Air Engine oil H2 Brick Wood Cork 

k [W/m-K] 0.6 0.026 0.15 0.18 0.4 -0 .5 0.2 0.04 

 

2.2 Effect of temperature on thermal conductivity  

Thermal conductivity is the physical property of the substance. It depends upon temperature gradient. 

For pure metals, thermal conductivity decreases with an increase in temperature. For gases and 

insulators, thermal conductivity increases with an increase in temperature. For small ranges of 

temperature, k may be considered constant. For larger temperature ranges, thermal conductivity can be 

approximated by an equation of the form k = a + bT, where a and b are empirical constants. 

Steady-State Conduction It is the form of conduction which happens when the temperature difference 

driving the conduction is constant so that after an equilibrium time, the spatial distribution of 

temperatures (temperature field) in the conducting object does not change any further. In steady state 

conduction, the amount of heat entering a section is equal to amount of heat coming out. Unsteady 

state conduction It is the form of conduction which happens when the temperature difference driving 

the conduction is not constant so that after an equilibrium time, the spatial distribution of temperatures 

(temperature field) in the conducting object changes as a function of time. Heat flux is denoted as q/A 

and it is defined as the rate of heat flow passing  through a material per  cross-sectional area and its 

unit is w/m2. 

https://en.wikipedia.org/wiki/List_of_materials_properties
https://en.wikipedia.org/wiki/Heat_conduction
https://en.wikipedia.org/wiki/Heat_conduction#Fourier.27s_law
https://en.wikipedia.org/wiki/Heat_conduction
https://en.wikipedia.org/wiki/Heat_sink
https://en.wikipedia.org/wiki/Thermal_insulation
https://en.wikipedia.org/wiki/Tensor
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Silver is the material which possess highest thermal conductivity and being a solid it is composed of 

closed packing arrangement and due to this more molecular interactions within the molecules and 

hence  the thermal conductivity is high. 

Thermal conductivity is ability of a material to transport heat energy through it from high temperature 

region to low temperature region.  The heat energy, Q, transported across a plane of area A in presence 

of a temperature gradient ΔT/Δl is given where k is the thermal conductivity of the material. It has 

units as W/m.K.  It is a microstructure sensitive property. • Its value range o for metals 20-400  for 

ceramics 2-50  for polymers order of 0.3 Mechanisms - Thermal conductivity  

Heat is transported in two ways – electronic contribution, vibrational (phonon) contribution.  In 

metals, electronic contribution is very high. Thus metals have higher thermal conductivities. It is same 

as electrical conduction. Both conductivities are related through Wiedemann-Franz law where L – 

Lorentz constant (5.5x10-9 cal.ohm/sec.K2) • As different contributions to conduction vary with 

temperature, the above relation is valid to a limited extension for many metals. • With increase in 

temperature, both number of carrier electrons and contribution of lattice vibrations increase. Thus 

thermal conductivity of a metal is expected to increase.  However, because of greater lattice vibrations, 

electron mobility decreases.  The combined effect of these factors leads to very different behavior for 

different metals. Eg.: thermal conductivity of iron initially decreases then increases slightly; thermal 

conductivity decreases with increase in temperature for aluminium; while it increases for platinum. 
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2.3.1 HEAT TRANSFER THROUGH A PLANE WALL 

 Let us consider a plane wall of thickness L, thermal conductivity k, inside surface temperature Ti, 

outside surface temperature To. Let Q be the rate of heat transferred through the plane wall. 

By Fourier’s law of heat conduction 

Q = -kA dT/dx 

 

 

Fig. 1: Heat flow through a metal wall 

 

 

On integrating the above eqn,  Q = KA(Ti-To) / L  
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Q = KA ΔT / L  i.e Q = ΔT / (KA/L) where KA/L = Rth where Rth – thermal resistance measured in oC / 

Watts or K / Watts.  Hence Q = ΔT / Rth.  

2.3.2 HEAT TRANSFER THROUGH A HOLLOW CYLINDER 

Let us consider a hollow cylinder. The inside radius of the cylinder is r1, the outside radius is r2, and 

the length of the cylinder is L. The thermal conductivity of the material of which the cylinder is made 

is k. The temperature of the outside surface is T2, and that of the inside surface is T1. 

By Fourier’s law of heat conduction, 

 

Fig. 2 Heat flow through a cylinder 

Q = -kA dT/dr 

 

integrating the above eqn,  

 

 

2.3.2.1 LOGARITHMIC MEAN RADIUS AND ARITHMETIC MEAN RADIUS 

Logarithmic mean radius is the radius that when applied to the integrated equation for a flat wall, will 

give the correct rate of heat flow through a thick walled cylinder. It is given by the expression 
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where  is the logarithmic mean radius of the cylinder 

 

   ro is the outer radius of the pipe and  

   ri  is the inner radius of the pipe.  

Hence using the above expression Q = 2∏ k L (Ti-To) * (ro-ri) / ln (ro/ri) *(ro-ri)  

Using the Logarithmic mean radius expression in above, we get 

Q = 2∏ k L  ΔT * rlm / (ro-ri)  hence, Q = ΔT / (ro-ri) / Alm * k   

Where Alm = 2∏  L * rlm ,  Alm is the logarithmic mean area which is used for thin cylinders.  

  1.3.3 COMPOUND RESISTANCES IN SERIES 

(I) Heat Transfer Through A Composite Plane Wall 

 

Let us consider a flat wall constructed of a series of 3 layers as shown. Let the thickness of the layers 

be L1, L2, L3 and the average thermal conductivities of the materials of which the layers are made be 

k1, k2, k3 respectively. Let us consider a hot fluid at a temperature Ta and heat transfer coefficient ha 

inside the wall and cold fluid at a temperature Tb and heat transfer coefficient hb outside the wall. Let 

T1, T2, T3 and T4 be the interface temperatures. It is desired to derive an equation for calculating the 

rate of heat flow through the series of resistances.                                 
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Fig. 3 Heat flow through a composite wall 

Rate of heat flow from the hot fluid to the inner surface of the wall 

By Newton’s law of cooling 

Q = ha A (Ta – Tb)  

By rearranging the above eqn, we get 

 

Rate of heat flow through the I layer, by Fourier’s law of heat conduction,  

Q = KA(T1-T2) / L    On rearranging this,  

Q = (T1-T2) / (L1/K1.A) 

Rate of heat flow through the II layer, 

Q = (T2-T3) / (L2/K2.A)  

Rate of heat flow through the III layer, 

Q = (T3-T4) / (L3/K3.A)  
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Rate of heat flow from  outer surface of the wall to the cold fluid By Newton’s law of cooling 

Q = hb A (T4 – Tb) and Q = (T4 – Tb) / 1/ hb A 

Overall rate of heat flow =overall thermal resistance / overall temperature drop  

 

In  steady state heat conduction through a composite wall, this can be written as  

 Q = (T1 – T4) / (L1/K1.A +  L2/K2.A +  L3/K3.A ) 

i.e Q =  ΔT / Rth1 + Rth2 + Rth3 

Hence, Q =   ΔT /  ∑ Rth 

 

Table 2 Various flows and their driving forces 
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It was observed in the previous discussion that for the given plane wall the area for heat transfer 

was constant along the heat flow direction. The plane solid wall was one of the geometries but if 

we take some other geometry (tapered plane, cylindrical body, spherical body etc.) in which the 

area changes in the direction of heat flow. Now we will consider geometrical configuration which 

will be mathematically simple and also of great engineering importance like hollow cylinder and 

hollow sphere. In these cases the heat transfer area varies in the radial direction of heat conduction. 

We will take up both the cases one by one in the following sections. 

1.4 ) Heat transfer through co-axial cylinder Provided with one layer of insulation  

 

 

Fig. 4 Heat flow through a composite cylinder 

Let us consider coaxial cylinders constructed of a series of 3 layers as shown in fig.  Let Ro R1 and 

R2 be the radii of the cylinders and the average thermal conductivities of the materials of which the 

layers are made be k1 and k2 respectively. Let us consider a hot fluid at a temperature Tb and heat 

transfer coefficient hb inside the cylinder and cold fluid at a temperature Ta and heat transfer 

coefficient ha outside the cylinder. Let To, T1 and T2 be the interface temperatures. It is desired to 

derive an equation for calculating the rate of heat flow through the composite cylinder provided 

with series of resistances. 
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Rate of heat flow from the hot fluid to the inner surface of the wall 

By Newton’s law of cooling, 

Q = hb A (Tb – T0 ) 

Q = hb 2 ∏RL (Tb – To) 

By rearranging the above,  

Q = (Tb – To) / 1/ 2п Ro L 

Rate of the heat flow through the cylinder By Fourier’s law of heat conduction 

 

using the above conditions from the fig,  

 

Q = 2∏ k1 L (To – T1) / ln (R1/Ro) 

By rearranging the above,  

Q = (To – T1) / ln (R1/Ro) / 2∏ k1 L 

Rate of the heat flow through the II layer By Fourier’s law of heat conduction  

 

Q = (T1 – T2) / ln (R2/R1) / 2∏ k2 L  

Rate of heat flow from the outer surface of the wall to the cold fluid 

By Newton’s law of cooling 

Q = ha A (T2 – Ta)  

Q = ha 2пR2L (T2– Ta) on rearranging, Q = (T2– Ta) / 1 / ha 2∏ R2L 

 

Overall rate of heat flow =overall thermal resistance / overall temperature drop  

Hence overall rate of heat flow is given by  
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Q =  (Tb-Ta) / (1/ hb 2  Ro) + (ln (R1/Ro) / 2∏ k1 L) + (ln (R2/R1) / 2∏ k2 L) +(1/ ha 2∏ R2L) 

For steady state conduction , heat transfer coefficients can be neglected and the heat flow is given 

by  

 Q = (Tb-Ta) / (ln (R1/Ro) / 2∏ k1 L) + (ln (R2/R1) / 2∏ k2 L)  

Hence Q = ΔT / Rth1 + Rth2 

Where Rth1 = (ln (R1/Ro) / 2∏ k1 L) and Rth2 = (ln (R2/R1) / 2∏ k2 L) 

 Q = ΔT / ∑ Rth 

1.5 Insulation 

The addition of insulation material on a surface reduces the amount of heat flow to the ambient. 

There are certain instances in which the addition of insulation to the outside surface of cylindrical 

of spherical walls does not reduce the heat loss. Under certain circumstances it actually increases 

the heat loss up to a certain thickness of insulation. It is well known fact that the rate of heat 

transfer will approach zero if an infinite amount of insulation are added. This means that there must 

be a value of radius for which rate of heat transfer is maximum. This value is known as the critical 

radius of insulation, rc. 

Variation of thermal conductivity with respect to solids, liquids and gases 

In solids, solids, heat conduction conduction is due to two effects effects: the lattice lattice 

vibrational vibrational waves induced by the vibrational motions of the molecules positioned at 

relatively fixed positions in a periodic manner called a lattice, and the energy transported via the 

free flow of electrons in the solid. • The thermal conductivity of a solid is obtained by adding the 

lattice and electronic components. The relatively high thermal conductivities of pure metals are 

primarily due to the electronic component. The lattice component of th l erma cond ii uct v ty 

strongly d d epen s on the way the molecules are arranged. For example, diamond, which is a 

highly ordered crystalline solid has the highest known thermal conductivity at room. Conduction 

crystalline solid, has the highest known thermal conductivity at room temperature. 
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The thermal thermal conductivities conductivities of materials materials vary with temperature 

temperature. The variation of thermal conductivity over certain temperature ranges is negligible for 

some materials, but significant for others. The thermal conductivities of certain solids exhibit 

dramatic increases at temperatures near absolute zero, when these solids become superconductors. 

2. 4 CRITICAL RADIUS OF INSULATION IN PIPES 

Let us consider an insulating layer in the form of a hollow cylinder of length L. Let ri and ro be the 

inner and outer radii of insulation. The thermal conductivity of the material of which the layer is 

made be k. Let the inside surface of insulation be at a temperature Ti, and the outside surface at a 

temperature To be dissipating heat by convection to the surroundings at a temperature Tb with a 

heat transfer coefficient h. Then the rate of heat transfer Q through this insulation layer is 

 

Fig. 5 Heat flow through a cylindrical pipe for critical radius 
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2.6 VARIABLE THERMAL CONDUCTIVITY 

Let us a hollow cylinder. The inside radius of the cylinder is ri, the outside radius is ro, and the 

length of the cylinder is L. The thermal conductivity of the material of which the cylinder is varies 

with temperature as k= ko(1 + αT). The temperature of the outside surface is To and that of the 

inside surface is Ti. This can be used with many equations such as  

k = ko (α + βT)  

k = ko (α + βT + γT2 ) 

k = ko (a +bT)  

k= ko (a + bT + cT2 ) 

By Fourier’s law of heat conduction 
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2.7 Introduction to Unsteady state heat transfer 

A solid body is said to be in a steady state if its temperature does not vary with time. If however 

there is an abrupt change in its surface temperature or environment it takes some time before the 

body to attain an equilibrium temperature or steady state. During this interim period the 

temperature varies with time and the body is said to be in an unsteady or transient state. The 

analysis of unsteady state heat transfer is of great interest to engineers because of its widespread 

occurrence such as in boiler tubes, rocket nozzles, automobile engines, cooling of IC engines, 

cooling and freezing of food, heat treatment of metals by quenching, etc. For practical purposes it is 

necessary to know the time taken to attain a certain temperature when the environment suddenly 

changes. The solution of an unsteady sate problem will be more complex than that of steady state 

one because of the presence of another variable time, t. 

Transient heat conduction problems can be divided into periodic heat flow and non periodic heat 

flow problems. Periodic heat flow problems are those in which the temperature varies on a regular 

basis, eg., the variation of temperature of the surface of the earth during a twenty four hour period.. 
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In the non periodic type, the temperature at any point within the system varies non linearly with 

time. 

Introduction to this point, we have considered conductive heat transfer problems in which the 

temperatures are independent of time. In many applications, however, the temperatures are varying 

with time, and we require the understanding of the complete time history of the temperature 

variation. For example, in metallurgy, the heat treating process can be controlled to directly affect 

the characteristics of the processed materials. Annealing (slow cool) can soften metals and improve 

ductility. On the other hand, quenching (rapid cool) can harden the strain boundary and increase 

strength. In order to characterize this transient behavior, the full unsteady equation is needed.  

 

Where   is the thermal diffusivity. Without any heat generation and considering 

spatial variation of temperature only in x-direction, the above equation reduces to: 

2.8 Systems with negligible internal resistance – Lumped Heat Analysis 

Heat transfer in heating and cooling of a body is dependent upon both the internal and surface 

resistances. The simplest unsteady state problem is one in which the internal resistance is 

negligible, that is, the convective resistance at the surface boundary is very large when compared to 

the internal resistance due to conduction. In other words, the solid has an infinite thermal 

conductivity so that there is no variation of temperature inside the solid and temperature is a 

function of time only. This situation cannot exist in reality because all the solids have a finite 

thermal conductivity and there will always be a temperature gradient inside whenever heat is added 

or removed. Problems such as heat treatment of metals by quenching, time response of 

thermocouples and thermometers, etc can be analyzed by this idealization of negligible internal 

resistance. The process in which the internal resistance is ignored being negligible in comparison 

with its surface resistance is called the Newtonian heating and cooling process. In Newtonian 

heating and cooling process the temperature throughout the solid is considered to be uniform at a 

given time. Such an analysis is called the lumped heat capacity analysis. 
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2.9 Systems with negligible surface resistance 

Another class of transient problems met with in practice is one in which the surface resistance is 

negligible compared to the overall resistance. This amounts to saying that the convective heat 

transfer coefficient at the surface is infinity. For such a process the surface temperature remains 

constant for all the time and its value is equal to that of ambient temperature. 

Dimensionless parameters:  

 

 

The Biot number is dimensionless, and it can be thought of as the ratio to the internal and external 

heat flows. Whenever the Biot number is small, the internal temperature gradients are also small 

and a transient problem can be treated by the “lumped thermal capacity” approach. The lumped 

capacity assumption implies that the object for analysis is considered to have a single mass-

averaged temperature. 

In general, a characteristic length scale may be obtained by dividing the volume of the solid by its 

surface area: L = V/As 

Using this method to determine the characteristic length scale, the corresponding Biot number may 

be evaluated for objects of any shape, for example a plate, a cylinder, or a sphere. As a thumb rule, 

if the Biot number turns out to be less than 0.1, lumped capacity assumption is applied.  In this 

context, a dimensionless time, known as the Fourier number, can be obtained by multiplying the 

dimensional time by the thermal diffusivity and dividing by the square of the characteristic length: 

Lumped heat capacity analysis: 

temperature distribution inside or outside the solid is neglected.  
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The cases considered so far have been those in which the heat conducting solid is free of internal 

heat generation. However, the situations where the internal heat is generated are very common 

cases in chemical industries for example, the exothermic reaction in the solid pallet of a catalyst. 

We have learnt that how the Fourier equation is used for the steady-state heat conduction through 

the composites of three different geometries that were not having any heat source in it. However, 

the heat generation term would come into the picture for these geometries. It would not be always 

easier to remember and develop heat conduction relations for different standard and non-standard 

geometries. Therefore, at this point we should learn how to develop a general relation for the heat 

conduction that should be applicable to the entire situation such as steady-state, unsteady state, heat 

source, different geometry, heat conduction in different direction, etc. Again here we will consider 

that the solid is isotropic in nature, which means the thermal conductivity of the material is same in 

all the direction of heat flow. 

To get such a general equation the differential form of the heat conduction equation is most 

important. For simplicity, we would consider an infinitesimal volume element in a Cartesian 

coordinate system. The dimensions of the infinitesimal volume element are dx , dy , and dz in the 

respective direction as shown in the fig 
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b is a positive quantity having dimension (time)-1. The reciprocal of b is usually called time 

constant, which has the dimension of time. 

2.10 Heat conduction through spherical surface  

 

Fig. 7 Heat flow through a spherical surface 

Consider a spherical shell with inside radius r1 and outside radius r2. Let T1 be the inside 

temperature and T2 be the outside temperature. K be the thermal conductivity of the material. Q be 

the heat flow through the spherical shell with a cross sectional area to be A. based on Fourier’s law 

of heat conduction and following the assumptions, 

(i) Heat flow is uniform 

(ii) Heat flow is normal to the surface 

(iii) The material is uniform and possess constant thermal conductivity 

(iv) Heat flow is uni-directional 

Let us consider a differential element of thickness dr which is lying between inside and 

outside radius. For such an element the heat flow is given by  
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Q = -kA dT/dr where area of the sphere is  𝐴 = 4𝜋𝑟2 

 

Q = ΔT / (r2 – r1) / 4𝜋k r1r2 where the resistance is given by (r2 – r1) / 4𝜋k r1r2 

Geometric mean radius is given by rm
2 = r1.r2 and hence  

Rth = (r2-r1) / Am . k where Am = 4𝜋 rm
2 and Am is the geometric mean area. 
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Similarly, rate of heat flow for a composite spherical shell with one layer of insulation is given by 

Q = ΔT / [(r2 – r1) / 4𝜋k1 r1r2 + (r3 – r2) / 4𝜋k2 r2r3]  

In a plane wall the area perpendicular to the direction of heat flow adding more insulation to a wall 

always decreases heat transfer. If thicker is insulation, the lower is the heat transfer rate. This is due 

to the fact the outer surface have always the same area. 

But in cylindrical and spherical coordinates, the addition of insulation also increases the outer 

surface, which decreases the convection resistance at the outer surface. Moreover, in some cases, a 

decrease in the convection resistance due to the increase in surface area can be more important than 

an increase in conduction resistance due to thicker insulation. As a result the total resistance may 

actually decrease resulting in increased heat flow. 

The thickness upto which heat flow increases and after which heat flow decreases is termed 

as critical thickness. In the case of cylinders and spheres it is called critical radius. It can be derived 

the critical radius of insulation depends on the thermal conductivity of the insulation k and the 

external convection heat transfer coefficient h. 

Optimum thickness of insulation 

The radius of insulation at which the total annual cost is minimum corresponds to optimum 

thickness of insulation. 

Assume a steel pipe of r1 = 10 mm, which is exposed to natural convection at h = 50 W/m2.K. This 

pipe is insulated by material of thermal conductivity k = 0.5 W/m.K. Determine the critical 

thickness of this combination: 

 
Hence rcr > r1 and heat transfer will increase with the addition of insulation up to a thickness of rcr – 

r1 = (0.010 – 0.005)m = 0.005 m 

 

 

 

https://www.nuclear-power.net/wp-content/uploads/2017/11/critical-thickness-of-insulation-example.png
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2.11 Analogy between heat flow and electricity: 

Heat flow is represented by Fourier’s law of heat conduction whereas electrical flow is represented 

by ohm’s law.  

Heat flow = Temperature gradient / thermal resistance  

Ohm’s law is given by  

Electrical flow = voltage drop / electrical resistance  

The various parameters analogous to each other in both the laws are heat flow and electrical flow, 

voltage drop with temperature gradient, thermal and electrical resistance.  
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2.12 Relation between individual and overall heat transfer coefficient 

Film temperature: It is the average between the temperature of the surface and the fluid. indeed if 

the entire Overall Heat Transfer Coefficient Let us consider a plane wall of thickness xw and 

thermal conductivity kw. The warm fluid at a mean temperature of Th is flowing through the inside 

surface of the wall. The cold fluid at a mean temperature of Tc is flowing through the outside 

surface of the wall. The inside surface temperature is Twh and outside surface temperature is Twc. 

The overall heat transfer coefficient is constructed from the individual coefficients and the 

resistances of the wall in the following manner. (i) Overall Heat transfer Coefficient based on 

outside surface area.  The rate of heat transfer from the warm fluid to the inner surface of the wall 

in differential form:  

 
By rearranging the above,  

 

. The rate of heat transfer through the wall in differential form is 

given by  

on rearranging,  

 

 

the rate of heat transfer from the outer surface of the wall to the 

cold fluid in differential form is given by  



29 

 

 

 

 

on rearranging,  

 
If the eqns are solved for the temperature differences and the temperature differences added, the 

result is 

 

Assume that the heat transfer rate is arbitrarily based on the outside area. If the eqn is solved for 

dQ, and if both sides of the resulting equations are divided by dAo, the result is 

 

 

Then the above Eqn  becomes 
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2.3 Overall heat transfer coefficient based on inside surface area The rate of heat transfer from the 

warm fluid to the inner surface of the wall in differential form:  

 

 

On rearranging, 

 

The rate of heat transfer through the wall in differential form 

 

By rearranging the above,  

 

The rate of heat transfer from the outer surface of the wall to the cold fluid in differential form: 

 

On rearranging  
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If the eqns to  are solved for the temperature differences and the temperature differences added, the 

result is 

 

 

Assume that the heat transfer rate is arbitrarily based on the inside area. If the Eqn is solved for dQ, 

and if both sides of the resulting equations are divided by dAi, the result is 

 

The above eqn becomes 

 

the overall heat transfer coefficient based on outside surface area is, 
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Overall heat transfer coefficient based on inside surface area 

The rate of heat transfer from the warm fluid to the inner surface of the wall in differential form 

 
On rearranging,  

 

The rate of heat transfer from the outer surface of the wall to the cold fluid in differential form: 

on rearranging, 

substituting the above equations, 

 

Assume that the heat transfer rate is arbitrarily based on the inside area. If the eqn is solved for dQ, 

and if both sides of the resulting equations are divided by dAi, the result is 
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Hence, the overall heat transfer coefficient based on inside area is  
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UNIT – III – Modeling and transport of bioprocesses – SCH1312 



3.1  Introduction of Mass Transfer 

 

When a system contains two or more components  whose concentrations vary from point to 

point, there is a natural tendency for mass to be transferred, minimizing the concentration 

differences within a system. The transport of one constituent from a region of higher 

concentration to that of a lower concentration is called mass transfer. 

 

The transfer of mass within a fluid mixture or across a phase boundary is a process that plays a 

major role in many industrial processes. Examples of such processes are: 

 

(i) Dispersion of gases from stacks 

(ii) Removal of pollutants from plant discharge streams by absorption 

(iii) Stripping of gases from waste water 

(iv) Neutron diffusion within nuclear reactors 

(v) Air conditioning 

 

Many of air day-by-day experiences also involve mass transfer, for example: 

 

(i) A lump of sugar added to a cup of coffee eventually dissolves and then eventually 

diffuses to make the concentration uniform. 

(ii) Water evaporates from ponds to increase the humidity of passing-air-stream 

(iii) Perfumes present a pleasant fragrance which is imparted throughout the surrounding 

atmosphere. 

 

The mechanism of mass transfer involves both molecular diffusion and convection. 

 

3.2 Properties of Mixtures 

 



Mass transfer always involves mixtures.  Consequently, we must account for the variation of 

physical properties which normally exist in a given system. When a system contains three or 

more components, as many industrial fluid streams do, the problem becomes unwidely very 

quickly. The conventional engineering approach to problems of multicomponent system is to 

attempt to reduce them to representative binary (i.e., two component) systems. 

 

In order to understand the future discussions, let us first consider definitions and relations which 

are often used to explain the role of components within a mixture. 

 

3.2.1 Concentration of Species: 

 

Concentration of species in multicomponent mixture can be expressed in many ways. For 

species A, mass concentration denoted by A is defined as the mass of A,mA  per unit 

volume of the mixture. 

 

V

m A
A         ------------------------------------    (1) 

 

The total mass concentration density  is the sum of the total mass of the mixture in unit 

volume: 

 


i

i       

 

where  i  is the concentration of species i in the mixture. 

 

Molar concentration of, A, CA is defined as the number of moles of  A present per unit 

volume of the mixture. 

 

By definition, 
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Therefore from (1) & (2) 
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For ideal gas mixtures, 
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where pA  is the partial pressure of species A in the mixture. V is the volume of gas, T is 

the absolute temperature, and R is the universal gas constant. 

 

The total molar concentration or molar density of the mixture is given by 
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3.2.2 Velocities 

 



In a multi-component system the various species will normally move at different 

velocities; and evaluation of velocity of mixture require the averaging of the velocities of 

each species present. 

 

If  I is the velocity of species i with respect to stationary fixed coordinates, then mass-

average velocity for a multicomponent mixture defined in terms of mass concentration is, 
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By similar way, molar-average velocity of the mixture  *  is 
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ii
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For most engineering problems, there will be title difference in  *  and   and so the mass 

average velocity, , will be used in all further discussions. 

 

The velocity of a particular species relative to the mass-average or molar average velocity 

is termed as diffusion velocity 

 

(i.e)  Diffusion velocity =  i -  

 

The mole fraction for liquid and solid mixture, x A ,and for gaseous mixtures,  y A, are the 

molar concentration of species A divided by the molar density of the mixtures. 

 

C

C
x A

A        (liquids and solids) 

 



C
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y A

A     (gases). 

 

The sum of the mole fractions, by definition must equal 1; 

 

(i.e.)                    
i

ix 1 
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iy 1 

 

by similar way, mass fraction of A in mixture is; 
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10. The molar composition of a gas mixture at 273 K and 1.5 * 10 5 Pa is: 

 

 O 2  7% 

 CO 10% 

 CO 2  15% 

 N 2 68% 

 

Determine  

 

a) the composition in weight percent 

b) average molecular weight of the gas mixture 

c) density of gas mixture 



d) partial pressure of O 2. 

 

Calculations: 

 Let the gas mixture constitutes 1 mole.  Then  

 

 O 2  = 0.07 mol 

 CO = 0.10 mol 

 CO 2  = 0.15 mol 

 N 2 = 0.68 mol 

 

Molecular weight of the constituents are: 

 

 O 2  = 2 * 16 = 32 g/mol 

 CO = 12 + 16 = 28 g/mol 

 CO 2  = 12 + 2 * 16 = 44 g/mol 

 N 2 = 2 * 14 = 28 g/mol 

 

Weight of the constituents are: (1 mol of gas mixture) 

 

 O 2  = 0.07 * 32 = 2.24 g 

 CO = 0.10 * 28 = 2.80 g 

 CO 2  = 0.15 * 44 = 6.60 g 

 N 2 = 0.68 * 28 = 19.04 g 



 

Total weight of gas mixture = 2.24 + 2.80 + 6.60 + 19.04   

    = 30.68 g 

 

Composition in weight percent: 

 %30.7100*
68.30

24.2
2 O  

 %13.9100*
68.30

80.2
CO  

 %51.21100*
68.30

60.6
2 CO  

 %06.62100*
68.30

04.19
2 N  

 

Average molecular weight of the gas mixture 
molesofNumber

mixturegasofWeight
M  

     molgM 68.30
1

68.30
  

 

Assuming that the gas obeys ideal gas law, 

  PV = nRT 

 

 
RT

P

V

n
  



 

m
V

n
 densitymolar  

Therefore, density (or mass density) =  mM 

 Where M is the molecular weight of the gas. 

 

 

3
5

273*8314

68.30*10*5.1
mkg

RT

PM
MDensity m    

        = 2.03 kg/m 3 

 

Partial pressure of O 2 = [mole fraction of O 2] * total pressure 

 

         510*5.1*
100

7
  

         = 0.07 * 1.5 * 10 5 

         = 0.105 * 10 5 Pa 

3.3 Diffusion flux 

 

Just as momentum and energy (heat) transfer have two mechanisms for transport-molecular and 

convective, so does mass transfer. However, there are convective fluxes in mass transfer, even on 

a molecular level. The reason for this is that in mass transfer, whenever there is a driving force, 

there is always a net movement of the mass of a particular species which results in a bulk motion 

of molecules. Of course, there can also be convective mass transport due to macroscopic fluid 

motion. In this chapter the focus is on molecular mass transfer. 



 

The mass (or molar) flux of a given species is a vector quantity denoting the amount of the 

particular species, in either mass or molar units, that passes per given increment of time through 

a unit area normal to the vector. The flux of species defined with reference to fixed spatial 

coordinates, NA is 

 

                                     AAA CN                ---------------------- (1) 

 

This could be written interms of diffusion velocity of A, (i.e.,   A  -  ) and average velocity of 

mixture, , as 
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By definition 
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Therefore, equation (2) becomes 
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For systems containing two components A and B, 

 

                          )()( BBAAAAAA CCyCN           

                                  )()( BAAAA NNyC    

                          NyCN AAAA  )(        ----------- (3) 

 

The first term on the right hand side of this equation is diffusional molar flux of A, and the 

second term is flux due to bulk motion. 

 

3.3.1 Fick’s law: 

 

An empirical relation for the diffusional molar flux, first postulated by Fick and, accordingly, 

often referred to as Fick’s first law, defines the diffusion of component A in an isothermal, 

isobaric system. For diffusion in only the Z direction, the Fick’s rate equation is 
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where D AB  is diffusivity or diffusion coefficient for component A diffusing through component 

B, and dCA / dZ is the concentration gradient in the Z-direction. 

 

A more general flux relation which is not restricted to isothermal, isobasic system could be 

written as 
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using this expression, Equation (3) could be written as 
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3.3.2 Relation among molar fluxes: 

 

For a binary system containing A and B, from Equation (5), 

 

                     NyJN AAA   

          or        NyNJ AAA      ----------------------- (6) 

 

Similarly, 

 

                       NyNJ BBB      -------------------- (7) 

 

Addition of Equation (6) & (7) gives, 

 

                     NyyNNJJ BABABA )(      ---------- (8) 

 

By definition N = N A + N B and y A + y B = 1. 

Therefore equation (8) becomes, 



                                J A + J B = 0 

                                J A  = -J B 
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From     y A + y B = 1 

              dy A  = - dy B 

 

Therefore Equation (9) becomes, 

 

                     D AB  = D BA    -----------------------------------   (10) 

 

This leads to the conclusion that diffusivity of A in B is equal to diffusivity of B in A. 

 

 

3.4 Diffusivity 

 

Fick’s law proportionality, D AB, is known as mass diffusivity (simply as diffusivity) or as 

the diffusion coefficient. D AB  has the dimension of L 2 / t, identical to the fundamental 

dimensions of the other transport properties: Kinematic viscosity,  = ( / ) in 

momentum transfer, and thermal diffusivity,  (= k /  C  ) in heat transfer. 

 

Diffusivity is normally reported in cm2 / sec; the SI unit being m2 / sec. 

 

Diffusivity depends on pressure, temperature, and composition of the system. 

 

In table, some values of DAB are given for a few gas, liquid, and solid systems. 

 

Diffusivities of gases at low density are almost composition independent, incease with the 

temperature and vary inversely with pressure. Liquid and solid diffusivities are strongly 



concentration dependent and increase with temperature. 

 

General range of values of diffusivity:  

 

Gases :              5 X 10 –6           -------------        1 X 10-5      m2 / sec. 

Liquids :             10 –6                 -------------        10-9             m2 / sec. 

Solids :               5 X 10 –14         -------------        1 X 10-10      m2 / sec. 

                               

In the absence of experimental data, semitheoretical expressions have been developed 

which give approximation, sometimes as valid as experimental values, due to the 

difficulties encountered in experimental measurements. 

 

3.4.1 Diffusivity in Gases: 

 

Pressure dependence of diffusivity is given by 

 

                     
p

D AB
1

     (for moderate ranges of pressures, upto 25 atm). 

And temperature dependency is according to 

                        2
3

TD AB   

 

Diffusivity of a component in a mixture of components can be calculated using the 

diffusivities for the various binary pairs involved in the mixture. The relation given by 

Wilke is 
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Where D 1-mixture is the diffusivity for component 1 in the gas mixture; D 1-n is the 



diffusivity for the binary pair, component 1 diffusing through component n; and ny   is the 

mole fraction of component n in the gas mixture evaluated on a component –1 – free basis, 

that is 
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 sec10*539.1
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847.1 25

52 mmD   

 

By Similar calculations Diffusivity of N 2 in the mixture can be calculated, and is found to be, D 

3m = 1.588 * 10 –5 m 2/sec. 

 

3.4.2 Diffusivity in liquids: 

 

Diffusivity in liquid are exemplified by the values given in table … Most of these values 

are nearer to 10-5 cm2 / sec, and about ten thousand times shower than those in dilute 

gases. This characteristic of liquid diffusion often limits the overall rate of processes 

accruing in liquids (such as reaction between two components in liquids). 

 

In chemistry, diffusivity limits the rate of acid-base reactions; in the chemical industry, 

diffusion is responsible for the rates of liquid-liquid extraction. Diffusion in liquids is 

important because it is slow. 

 

Certain molecules diffuse as molecules, while others which are designated as electrolytes 

ionize in solutions and diffuse as ions.  For example, sodium chloride (NaCl), diffuses in 

water as ions Na + and Cl-. Though each ions has a different mobility, the electrical 

neutrality of the solution indicates the ions must diffuse at the same rate; accordingly it is 

possible to speak of a diffusion coefficient for molecular electrolytes such as NaCl.  

However, if several ions are present, the diffusion rates of the individual cations and 



anions must be considered, and molecular diffusion coefficients have no meaning. 

 

Diffusivity varies inversely with viscosity when the ratio of solute to solvent ratio exceeds 

five.  In extremely high viscosity materials, diffusion becomes independent of viscosity. 

 

3.4.3 Diffusivity in solids: 

 

Typical values for diffusivity in solids are shown in table.  One outstanding characteristic 

of these values is their small size, usually thousands of time less than those in a liquid, 

which are inturn 10,000 times less than those in a gas. 

 

Diffusion plays a major role in catalysis and is important to the chemical engineer. For 

metallurgists, diffusion of atoms within the solids is of more importance. 

 

3.5 Steady State Diffusion 

 

In this section, steady-state molecular mass transfer through simple systems in which the 

concentration and molar flux are functions of a single space coordinate will be considered. 

 

In a binary system, containing A and B, this molar flux in the direction of z, as given by 

Eqn (5) is [section 3.3.1] 
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3.5.1 Diffusion through a stagnant gas film 

 

The diffusivity or diffusion coefficient for a gas can be measured, experimentally using 

Arnold diffusion cell. This cell is illustrated schematically in figure. 

 

The narrow tube of uniform cross section which is partially filled with pure liquid A, is 

maintained at a constant temperature and pressure. Gas B which flows across the open 



end of the tub, has a negligible solubility in liquid A, and is also chemically inert to A. (i.e. 

no reaction between A & B). 

 

Component A vaporizes and diffuses into the gas phase; the rate of vaporization may be 

physically measured and may also be mathematically expressed interms of the molar flux. 

 

Consider the control volume S  z, where S is the cross sectional area of the tube. Mass 

balance on A over this control volume for a steady-state operation yields 

 

[Moles of A leaving at z + z] – [Moles of A entering at z] = 0. 

 

(i.e.)       .0
 zAzzA NSNS                -------------- (1) 

 

Dividing through by the volume, SZ, and evaluating in the limit as Z approaches zero, 

we obtain the differential equation 

                            0
zd

Nd A      ------------------------- (2) 

 

This relation stipulates a constant molar flux of A throughout the gas phase from Z1 to Z2. 

 

A similar differential equation could also be written for component B as, 

 

                                       ,0
Zd

Nd B  

 

and accordingly, the molar flux of B is also constant over the entire diffusion path from z1 

and z 2. 

 

Considering only at plane z1, and since the gas B is insoluble is liquid A, we realize that 

NB, the net flux of B, is zero throughout the diffusion path; accordingly B is a stagnant 



gas. 

 

From equation (1) (of section 3.5) 
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Since N B = 0, 
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Rearranging, 
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This equation may be integrated between the two boundary conditions: 

                           at z = z1              YA = YA1 

              And       at z = z2              YA = yA2  

 

Assuming the diffusivity is to be independent of concentration, and realizing that NA is 

constant along the diffusion path, by integrating equation (3) we obtain 
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The log mean average concentration of component B is defined as 
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Substituting from Eqn (5) in Eqn (4), 
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For an ideal gas   
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n
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     for mixture of ideal gases 
P

p
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Therefore, for an ideal gas mixture equation. (6) becomes 
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This is the equation of molar flux for steady state diffusion of one gas through a second 

stagnant gas. 

 

Many mass-transfer operations involve the diffusion of one gas component through 

another non-diffusing component; absorption and humidification are typical operations 

defined by these equation. 

 

The concentration profile (yA vs. z) for this type of diffusion is shown in figure: 

 

 Oxygen is diffusing in a mixture of oxygen-nitrogen at 1 std atm, 25C.  Concentration of 

oxygen at planes 2 mm apart are 10 and 20 volume % respectively.  Nitrogen is non-diffusing. 

 

(a) Derive the appropriate expression to calculate the flux oxygen.  Define units of each term 

clearly. 

(b) Calculate the flux of oxygen.  Diffusivity of oxygen in nitrogen = 1.89 * 10 –5 m 2/sec. 

 

Solution: 

 

Let us denote oxygen as A and nitrogen as B.  Flux of A (i.e.) N A is made up of two 

components, namely that resulting from the bulk motion of A (i.e.), Nx A and that resulting from 

molecular diffusion J A: 

 

 AAA JNxN    ---------------------------------- (1) 

 



From Fick’s law of diffusion,  
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Substituting this equation (1) 
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Since N = N A + N B and x A = C A / C equation (3) becomes  

 

  
zd

Cd
D

C

C
NNN

A
AB

A
BAA     

 

Rearranging the terms and integrating between the planes between 1 and 2, 
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Since B is non diffusing N B = 0.  Also, the total concentration C remains constant.  Therefore, 

equation (4) becomes 
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Therefore, 
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Replacing concentration in terms of pressures using Ideal gas law, equation (5) becomes 
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where  

 D AB = molecular diffusivity of A in B 

 P T = total pressure of system 

 R = universal gas constant 

 T = temperature of system in absolute scale 

 z = distance between two planes across the direction of diffusion  

 P A1 = partial pressure of A at plane 1, and  



 P A2 = partial pressure of A at plane 2 

 

3.5.2  Psuedo steady state diffusion through a stagnant film: 

 

In many mass transfer operations, one of the boundaries may move with time. If the 

length of the diffusion path changes a small amount over a long period of time, a pseudo 

steady state diffusion model may be used. When this condition exists, the equation of 

steady state diffusion through stagnant gas’ can be used to find the flux. 

 

If the difference in the level of liquid A over the time interval considered is only a small 

fraction of the total diffusion path, and t0 – t is relatively long period of time, at any given 

instant in that period, the molar flux in the gas phase may be evaluated by 
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where z equals z 2 – z1, the length of the diffusion path at time t. 

 

The molar flux NA  is related to the amount of A leaving the liquid by 
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where  

A

LA

M

,
 is the molar density of A in the liquid phase 

 

under Psuedo steady state conditions, equations (1) & (2) can be equated to give 
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Equation. (3) may be integrated from t = 0 to t and from z = z t0 to z = zt as:  
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This shall be rearranged to evaluate diffusivity DAB as, 
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3.5.3   Equimolar counter diffusion: 

 

A physical situation which is encountered in the distillation of two constituents whose 

molar latent heats of vaporization are essentially equal, stipulates that the flux of one 

gaseous component is equal to but acting in the opposite direction from the other gaseous 

component; that is, NA = - NB. 

 

The molar flux NA, for a binary system at constant temperature and pressure is described 

by 
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with the substitution of NB = - NA, Equation (1) becomes, 
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For steady state diffusion Equation. (2) may be integrated, using the boundary conditions: 

                      at   z = z1         CA  =  CA1 

                            and   z = z2        CA  =  CA2 

 

Giving, 
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For ideal gases,   
TR
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n
C AA

A   .   Therefore Equation. (3) becomes 
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This is the equation of molar flux for steady-state equimolar counter diffusion. 



 

Concentration profile in these equimolar counter diffusion may be obtained from, 
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   (Since NA is constant over the diffusion path). 

 

And   from equation. (2) 
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This equation may be solved using the boundary conditions to give 

 

                                      

21

1

2

1

1
zz

zz

CC

CC

A

A

A

A









   -------------- (5) 

 

Equation, (5) indicates a linear concentration profile for equimolar counter diffusion. 

 

 For equimolar counter current diffusion: 

 



  21 AA
AB

A pp
RTz

D
N   ------------------------ (1) 

 

 

Diffusion in Liquids: 

 Equation derived for diffusion in gases equally applies to diffusion in liquids with some 

modifications. Mole fraction in liquid phases is normally written as ‘x’ (in gases as y). The 

concentration term ‘C’ is replaced by average molar density, 

avM
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a) For steady – state diffusion of A through non diffusivity B: 

N A = constant , N B = 0 
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where Z = Z 2 – Z 1, the length of diffusion path; and 
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b) For steady – state equimolar counter diffusion : 

 N A = - N B = const 
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Diffusion in solids 

 In certain unit operation of chemical engineering such as in drying or in absorption, 



mass transfer takes place between a solid and a fluid phase. If the transferred species is 

distributed uniformly in the solid phase and forms a homogeneous medium, the diffusion 

of the species in the solid phase is said to be structure independent. In this cases diffusivity 

or diffusion coefficient is direction – independent. 

 At steady state, and for mass diffusion which is independent of the solid matrix structure, 

the molar flux in the z direction is : 

 constant
zd

Cd
DN

A
ABA , as given by Fick’s law. 

Integrating the above equation, 
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which is similar to the expression obtained for diffusion in a stagnant fluid with no bulk motion 

(i.e. N = 0). 

 

Diffusion in process solids: 

 In some chemical operations, such as heterogeneous catalysis, an important factor, 

affecting the rate of reaction is the diffusions of the gaseous component through a porous solid. 

The effective diffusivity in the solid is reduced below what it could be in a free fluid, for two 

reasons. First, the tortuous nature of the path increases the distance, which a molecule must 

travel to advance a given distance in the solid. Second, the free cross – sectional area is 

restricted. For many catalyst pellets, the effective diffusivity of a gaseous component is of the 

order of one tenth of its value in a free gas. 

 If the pressure is low enough and the pores are small enough, the gas molecules will 

collide with the walls more frequently than with each other. This is known as Knudsen flow or 

Knudsen diffusion. Upon hitting the wall, the molecules are momentarily absorbed and then 

given off in random directions. The gas flux is reduced by the wall collisions. 



 By use of the kinetic flux is the concentration gradient is independent of pressure ; 

whereas the proportionality constant for molecular diffusion in gases (i.e. Diffusivity) is 

inversely proportional to pressure. 

 Knudsen diffusion occurs when the size of the pore is of the order of the mean free path 

of the diffusing molecule. 

 

3.6 Transient Diffusion/Unsteady state diffusion 

 Transient processes, in which the concentration at a given point varies with time, 

are referred to as unsteady state processes or time – dependent processes. This variation 

in concentration is associated with a variation in the mass flux. 

 These generally fall into two categories: 

i) the process which is in an unsteady state only during its initial startup, and 

ii) the process which is in a batch operation throughout its operation. 

In unsteady state processes there are three variables-concentration, time,  

and position. Therefore the diffusion process must be described by partial rather than ordinary 

differential equations. 

 Although the differential equations for unsteady state diffusion are easy to establish, most 

solutions to these equations have been limited to situations involving simple geometries and 

boundary conditions, and a constant diffusion coefficient. 

 Many solutions are for one-directional mass transfer as defined by Fick’s second law of 

diffusion : 
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  __________  (1) 

This partial differential equation describes a physical situation in which there is no bulk–motion 

contribution, and there is no chemical reaction. This situation is encountered when the diffusion 

takes place in solids, in stationary liquids, or in system having equimolar counter diffusion.

 The solution to Fick’s second law usually has one of the two standard forms. It may 



appear in the form of a trigonometric series which converges for large values of time, or it may 

involve series of error functions or related integrals which are most suitable for numerical 

evaluation at small values of time. These solutions are commonly obtained by using the 

mathematical techniques of separation of variables or Laplace transforms.  

 

 



 

 



 

 

Theories of mass transfer 
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I Michaelis-Menten kinetics 

 
 

The goal of this chapter is to develop the mathematical techniques to quantitatively 

model biochemical reactions. Biochemical reactions in living cells are often catalyzed by 

enzymes. These enzymes are proteins that bind and subsequently react specifically with 

other molecules (other proteins, DNA, RNA, or small molecules) defined as substrates. A 

few examples: 

1. The conversion of glucose (substrate) into glucose-6-phosphate (product) by 

the protein hexokinase (enzyme). 

2. Transcription: binding of the RNA polymerase (enzyme) to the promoter 

region of the DNA (substrate) results in transcription of the mRNA (product). 

3. The phosphorylation of a protein: the unphosphorylated protein CheY 

(substrate, regulating the direction of rotation of the bacterial flagella) is 

phosphorylated by a phosphate CheZ (enzyme) resulting in CheY-p (product). 

 
All these reactions involve a substrate S reacting with an enzyme E to form a complex ES 

which then in turn is converted into product P and the enzyme: 

 
E + S 

k1 k2 

ES 

k-1 

 
E + P [I.1] 

 

In this scheme there are two fundamental different reactions. The first reaction depicted 

with the double arrow is a reversible reaction reflecting the reversible binding and 

unbinding of the enzyme and the substrate. The second reaction is an irreversible reaction 

in which the enzyme-substrate complex is irreversibly converted into product and 

enzyme symbolized by the single arrow. The rate of a reaction is proportional to the 

product of the concentrations of the reactants. The kinetics of the chemical equations 

above is described by the following set of coupled differential equations: 
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d[S] 
 k [E][S]  k [ES] 

 

dt 1 1 

d[E] 
 k [E][S]  (k  k  

)[ES] 

dt 1 1 2 [I.2] 

d[ES] 
 k [E][S]  (k  k )[ES] 

dt 1 1 2 

d[P] 
 k 

dt 2 
[ES]  v 

Note that k1 and k-1 have different units, 1/(Ms) and 1/s respectively. The turnover rate v  

is defined as the increase (or decrease) in product over time, which is directly 

proportional to the concentration of enzyme-substrate complex [ES]. For the analysis 

below we will assume initial conditions: [S]t=0 = So; [E]t=0 = Eo; [ES]t=0 = 0; [P]t=0 = 0. 

 
Since the enzyme is a catalyst that facilitates the reaction but does not react itself, the 

total concentration of enzyme (free + bound) should be constant: 

Eo   [E]  [ES] [I.3] 

Using this conservation law the four differential equations [I.2] reduce to three coupled 

ordinary differential equations: 
d[S] 

 k E [S]  (k [S]  k 
dt 1 o 1 

-1)[ES] 

d[ES] 
 k E

 
[S]  (k [S]  k  k )[ES] [I.4] 

dt 1 o 1 -1 2 

d[P] 
 k 

dt 2 [ES]  v 

with the initial conditions [S]t=0 = So, [ES]t=0 = 0, and [P]t=0 = 0. Matlab code 1 solves 

these equations and calculates the time dependence of the concentrations [S], [ES] and 

[P] as a function of the initial concentrations [So] and [Eo] and the rate constants k1, k-1, 

and k2. In this case the systems can also be solved analytically. Figure 1 shows an 

example of the time dependence of the chemical components for k1[So]  k-1 >> k2. This 

is often the regime of biological relevance since the substrate-enzyme binding occurs at 

much faster time scales than the turnover into product. The thermodynamic equilibrium  
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m o 

or steady state (t∞) of this system would be [S] = [ES] = 0; [E] = [Eo]; [P] = [So]. 

However the relevant time-scale to consider is the time range in which [ES] and [E] are 

relatively constant. This state is often called the quasi-equilibrium or pseudo-steady state. 

Under these circumstances one expects that after an initial short transient period there 

will be a balance between the formation of the enzyme-substrate complex and the 

breaking apart of complex (either to enzyme and substrate, or to enzyme and product). In 

the pseudo-steady state (d[ES]/dt = d[E]/dt = 0) (I.4) reduces to: 

[ES]  k1[S]Eo 

k1[S]  k•1  k2 

v  
dP 






k2 [S]Eo 

 

 

[I.5] 

dt k-1  k2  [S] 
k1 

In the case of many more substrate than enzyme molecules (So >> Eo), this pseudo-steady 

state will be achieved before there is perceptible transformation of substrate into product. 

In this case the equation [I.5] leads to the traditional Michaelis-Menten equation, which 

predicts the initial turnover rate of the enzymatic reaction vo as a function of initial 

substrate concentration So: 

v    
v

max
S

o 
[I.6] 

 

o K  S 

where the constant Km = (k-1+k2)/kl is called the Michaelis constant and vmax = k2Eo is 

the maximum turn-over rate. The Michaelis constant has units of concentration and 

reflects the affinity of the reaction. Strong affinity means small Km. At a concentration 

Km the turn-over rate is 0.5vmax (Fig. 2). 
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Figure 1. The time dependence of the substrate, enzyme, enzyme-substrate complex, 

and product concentration. This graph was generated by using Matlab 

code 1. The upper panel uses a logarithmic x-axis whereas the lower panel 

uses a linear scale. 
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Figure 2. The initial turnover rate as given by the Michaelis-Menten formula [I.6]. 

 

 
Matlab code 1: Michaelis-Menten kinetics 

 

% filename: mm.m 

 

k1=1e3; % units 1/(Ms) 

k_1=1; % units 1/s 

k2=0.05; % units 1/s 

E0=0.5e-3; % units M 

options=[]; 

[t y]=ode23('mmfunc',[0 100],[1e-3 0 0],options,k1,k_1,k2,E0); 

S=y(:,1); 

ES=y(:,2); 

E=E0-ES; 

P=y(:,3); 

plot(t,S,'r',t,E,'b',t,ES,'g',t,P,'c'); 

 

% filename: mmfunc.m 
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d 

function dydt = f(t,y,flag,k1,k_1,k2,E0) 

% [S] = y(1), [ES] = y(2), [P] = y(3) 

 

II Equilibrium binding and cooperativity 

 
 

In the previous Section we considered Michaelis-Menten kinetics. We found that the 

traditional form of the Michaelis-Menten equation [I.6] is derived by assuming a quasi- 

steady state in which the concentration of enzyme-substrate complex is fairly constant 

over time. Additionally we had to assume that initially the substrate is in excess. In this 

Section, we first will take a step back and focus on the steady state behavior of reversible 

reactions and introduce the concept of multiple binding sites. Initially we will consider 

multiple binding sites that are independently binding substrates. However for most 

protein complexes the binding of substrates is not independent. For example, after 

binding the first substrate molecule the binding probability of the second substrate is 

affected. This phenomenon is called cooperativity. 

 
In the previous section it was assumed that one substrate molecule binds to one enzyme 

molecule. In biological reactions however proteins often bind multiple substrates. 

Assume a protein has n binding sites for a substrate. Pj denotes the protein bound to j 

substrate molecules S. The reactions describing this process are: 

S  Pj-1  Pj [II.1] 

where j = 1, 2, …, n. 

The time-evolution of the concentration of unbound protein Po is (j=1): 
d[P0 ]  k

 
 

 
[P ][S]  k [P ] [II.2] 

dt 
1 o 1 1 

 

where k+1 and k-1 are the forward and backward rate constants of [II.1] for j=1. The 

association and dissociation constants are defined as: 

K    
k1 

a k 

-1 

K     
k-1   

1
 

1 Ka 

[II.3] 

k 
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In steady state, d[Po]/dt = 0: 

K   
[P1] [II.4] 

[Po ][S] 

a 
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To characterize all n reactions, we introduce the n association constants Kj, j = 1, 2, … ,n. 

K   
[Pj ] 

[II.5] 

[Pj•1 ][S] 

It is experimentally difficult to measure [Pj], a more convenient quantity is the average 

number r (0 < r < n) of substrates bound to the protein. Because there are j substrates 

bound to Pj, r is given by: 

r  
[P1]  2[P2 ]  3[P3 ]  ...  n[Pn ] [II.6]

 

[Po ]  [P1]  [P2 ]  ...  [Pn ] 

combining [II.5] and [II.6] gives Adair’s equation: 

K [S]  2K K [S]2  3K K K [S]3  ...  nK K ...K [S]n 
r    1 1   2 1   2    3 1   2 n  [II.7] 

1 K [S]  K K [S]2  ...  K K ...K [S]n 
1 1   2 1   2 n 

 

Note that 0 < r < n, one often uses the normalized form, called the saturation function Y = 

r/n (0 < Y < 1). 

 
Identical and independent binding sites 

For now let’s assume we have n identical binding sites and that binding at a given site is 

independent of the state of binding of all other sites. The rate constants k+ and k- 

characterize the binding and unbinding rates respectively. In steady state, [II.2] can now 

be written as: 

0  nk  [Po ][S]  k- [P1] [II.8] 

The factor n takes into account that there are n possible binding sites available for 

binding the first substrate. On the other hand there is only one possibility to loose a 

substrate going from state P1 to Po. Similarly for j=2 we can deduce: 

0  (n - 1)k  [P1][S]  2k - [P2 ] [II.9] 

because there are (n-1) possibilities to add a substrate and only 2 possibilities to remove a 

substrate. If the intrinsic association constant K is defined as: 

K  
k  [II.10] 

k- 

j 
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K   
(n  j  1)K 

[II.11] 
j j 

 

for j = 1, 2, … , n. By substituting [II.11] in [II.7] an explicit equation for r as a function 

of K, n, and [S] is found. We will not go through the details of the derivation. If you are 

interested, see for example Bisswanger (2002, p. 11-16). The final result is elegantly 

simple: 

r   
nK[S] 

[II.12] 

1 K[S] 

Note that the mathematical form of this equation is very similar to Michaelis-Menten 

kinetics. However this result is a steady-state (equilibrium) property while Michaelis- 

Menten equation is not. Equation [II.12] can also be derived in a more hand waving 

manner. As the n binding sites are identical and independent, it is not important to view 

them as clustered in one protein. If [F] is the concentration of free binding site and [B] 

the concentration of bound sites in steady state, then the association constant for this 

equilibrium is given by: 

K  
[B] 

[II.13] 

[F][S] 

The total number of sites is: n[P]=[F]+[B], this combined with [II.13] gives: 

r  
[B] 


 nK[S] 

[II.14] 

[P] 1 K[S] 

 
 

Non-identical and independent binding sites 

Now consider the case in which the binding sites are non-identical. Each binding site 

family (with nj binding sites) is characterized by its own association constant Kj. At low 

concentrations first the binding sites with the high affinities will be occupied, the lower 

affinity binding site will only be occupied at larger [S]. As the binding site are 

independent the binding equation (18) holds for each binding site family and r is just the 

sum of the different individual processes: 

r  
n1K1[S] 

1 K1[S] 
 

n2K 2 [S] 

1 K 2 [S] 
 ...  

nmKm[S] 

1 Km [S] 

[II.15] 
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Y 

Y 

* 2 

* 2 

Identical and interacting binding sites 

In the following discussion we will confine ourselves to two binding sites (n=2). First, let 

us assume that both binding sites are identical. In this case we only have to consider three 

states for the protein-substrate complex: no substrate bound, one substrate molecule 

bound, and two substrate molecules bound. The rate constants k+ and k- characterize the 

transitions between the unbound and single-bound state, and k*
+ and k*

- the transitions 

between single-bound and double-bound states. The intrinsic association constants are 

defined by: K = k+/k- and K* = k*
+/k*

-. Analogous to [II.10] and [II.11] we find: 

K1  2K 

K 
 1 

K* 
2 

2
 

By using Adair’s equation [II.7] we find: 

2K[S]  2KK *[S]2 
r 

1 2K[S]  KK [S] 

The saturation function Y = r/n is: 

K[S]  KK*[S]2 
Y 

1 2K[S]  KK [S] 

 
 

For K=K* we recover the hyperbolic (Michaelis-Menten like) equation [II.12]: 

[II.16] 

 

 

 
 

[II.17] 

 

 

 
[II.18] 

Y  
K[S] 

1 K[S] 

 
[II.19] 

Let’s compare the functional forms of [II.18] and [II.19] in more detail. The difference 

between the two functions is: 

~ (K* - K)K[S]2 
Y - Y 

1 K[S]1 2K[S]  KK*[S]2  [II.20]
 

Positive cooperativity is often defined as Y  
~ 
 0 , and negative cooperativity as 

Y  
~ 
 0 . In other words, positive cooperativity occurs when the affinity of binding a 

second ligand is larger than binding the first ligand (K* > K). For negative cooperativity 

the binding affinity for the second ligand is smaller than for the first (K* < K). 
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Another, often used, definition for cooperativity is sigmoidality (from ‘S shaped’). For a 

sigmoidal curve the second derivative should change sign. Let’s introduce the 

dimensionless variables  = K*/K and x = K[S]: 

Y 
 x1 βx  

1 2x  βx2 
dY 

 
1 2xβ  βx2 

 

dx (1 2x  βx2 )2 
[II.21] 

d2Y 



dx2 
β  2  βx3  3xβ  βx2 


2 

(1 2x  βx2 )3 

The second derivative can only change sign if  > 2. Note that this definition yields a 

different criterion for cooperativity. According to the first definition a reaction is 

cooperative for  > 1, whereas according to the second definition  > 2. During the rest 

of the course we will use the first definition. 

 
Now consider the limit for which intermediate states can be neglected. In this example, 

that would mean that single-bound states are very unlikely. The effective reaction would 

be: 

Po    2S  P2 [II.22] 

The saturation function is now: 

K[S]2 
Y  

1 K[S]2 
[II.23] 

where K = [P2]/([Po][S]2) is the association constant of reaction [II.22]. Note that is this 

case the units of K are (M)-2. This limit was first consider by Hill who proposed a 

graphical way to represent equations such as [II.23]. In a Hill plot one plots lnY/(1  Y)

versus ln[S] . The slope of this graph is called the Hill number which is in this case 

equals 2. The Hill number is often used as an estimation of the number of binding sites 

of a protein. However one should be very careful as [II.23] involves a major assumption 

(no intermediate states). Let’s calculate the Hill number nH for the case [II.21] in which 

intermediate states are allowed: 
n  

d
 

ln
 Y  

 x 
d 

ln
 Y  

 1


  

(β  1)x 
[II.24] 

 
 

H d(ln[S]) 
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1 Y  dx 

1 Y 
(1 

x)(

1 

βx) 
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The Hill number is plotted in Fig. 3 as a function of x at different values of . The Hill 

number only approaches 2 for very large  and small x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. The Hill number as a function of the dimensionless concentration at 

different values of  for a protein with two identical interacting binding 

sites. The mathematical form is given by equation [II.24]. 
 
 

 

 

 
 

 

 

 

 

Figure 4. Two independent interacting binding sites. 
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Non-identical and interacting binding sites 

How would the analysis above change if the two binding sites are non-identical? The 

ligand binding to the two binding sites is now characterized by the rate constants k1, k2, 

k3, and k4 (Fig. 4) and the four intrinsic association constants Kj=k+j/k-j (j=1,2,3,4). In 

this case there are four states of the protein-ligand complex: nothing bound, site 1 bound, 

site 2 bound, and two sites bound. The principal of detailed balance (thermodynamic 

equilibrium) does not allow any net fluxes between states.  

  

Microbial Growth Kinetics 

Introduction-Studying growth of a microorganism is the basis of biotechnological 

exploitation of microflora for production of desired product. Optimization of growth of 

microorganism in a particular media is desirable due to economical and availability of 

particular growth constituent in a region. Despite this, some microorganisms have specific 

requirement and they grow in a particular growth media. Common media for growth of 

different microorganism, yeast and animal cells is discussed in future lecture. In today’s 

lecture we will discuss bacterial cell division, methods of measuring growth, different 

phase in bacterial growth and growth kinectics. 

Modes of Bacterial Cell Division- 
 

1. Binary division-binary division is the most common mode of cell division in bacteria 

(Figure 9.1). In this mode of cell division, a single bacteria cell grows transversely with the 

synthesis of chromosomal DNA. A transverse septum appears in the middle of the cell 

body that divides the bacterial cell into the two with a distribution of chromosomal DNA, 

ribosome and other cellular machinery. 

Binary Division Budding 
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Figure 9.1: Different modes of cell division in bacteria.  
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2. Budding-In this mode of cell division, chromosomal DNA divides to form two copies. 

Sister chromosomal DNA moves to the one side of the cell and this portion of the cells 

protrude from main body to form bud. Eventually bud grows in size and get separated 

from main cell to develop a new cell. 

3. Fragmentation-This mode of asexual division is more common in filamentous bacteria. 

In this mode, filament of the growing cell gets fragmented into small bacillary or coccoid 

cells, these cellular fragments eventually develop into new cell. 

Measuring Bacterial growth- A number of methds have been developed to measure 

bacterial growth in liquid media and in solid support media. A few are discussed below: 

Microscopic count-bacterial cells can be counted easily on a “petroff-hausser counting 

chamber” (Figure 9.2). The chamber has a ruling to make square (1/400 mm2) of equivalent 

volume. A glass slide is placed (~1/50mm height) to make a chamber filled with bacterial 

cell suspension. Volume of each chamber is 1/20,000 mm3. This chamber can be used to 

observe bacteria with phase contrast microscope. For example, if each chamber has 8 

bacteria then there are 8x20,000,000 or 1.6x108 bacteria/ml. A very high or low 

concentration of bacterial sample can not be counted accurately. 

Plate count method-In this method, a defined amount of bacterial culture suspension is 

introduced onto solid support media to grow and give colonies. If number of colonies on 

solid media is too high, then serial dilution of original stock can be plated on solid media 

and number of colony can be counted with a colony counter. A manual colony counter has 

lamp at the bottom, a grid to divide the bacterial culture plate and a magnifying glass to 

visualize and count single colony. A plate with colony count of 30-300 can be used to 

determine the number of bacteria present in original stock. 

Number of bacteria per ml= Number of colonies counted on plate X dilution of sample 
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Figure 9.2: Different methods of bacterial counting. 

 

Turbidimetric methods-This method is based on light scattering principles of particulate 

matter such as bacteria. A bacteria cell suspension is placed in test cuvette and 

corresponding media in reference cuvette. The optical density or absorbance of the 

bacterial suspension is used to measure the number of bacteria number. This method can 

not distinguish between live or dead bacteria as both form contribute to the turbidity. 

Nitrogen content and Dry weight- A bacterial cell mass can be measured by direct 

measuremenof dry weight of culture or nitrogen content. 

Growth cycle of bacteria- As discussed earlier, the most common method of bacteria 

division is binary fission and by this method, one bacteria cell gives two daughter cells. 

The time a bacteria takes to complete one division is called as generation time and it 

depends on bacteria species and media properties. 
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Hence, if we start from one bacteria, it divides after every generation time as follows- 
 
 

 

 

Hence, After n generations, no of bacteria will be 

 
N=1 x 2n ..................................................................... 

Eq 9.1 

 
But assume if number of bacteria at time 0 is No, then 

 
N=No X 2n ................................................................. 

Eq 9.2 

 
Log N=Log No+n log10 2 ................................................ Eq 9.3 

 
n= 3.3 (Log10 N-Log10 No) ............................................. Eq 9.4 

 
Eq 9.2 can be used to determine number of bacteria, if initial number of bacteria and 

number of generation is known where as Eq 9.4 can directly been used to calculate number 

of generations. 
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Bacterial growth in a liquid media is given in Figure 9.3 and it has 4 distinct phases: 

 
1. Lag Phase-The single cell inoculation into the liquid media doesn’t start dividing as per 

its generation time. During this phase bacteria gets adjusted to the new media and grow 

in size instead of dividing into daughter cells. In this phase, bacteria synthesize the most 

crucial enzymes or co-enzyme present in traces and required for optimal growth and 

multiplication. In addition, cell is metabolically active and be busy in synthesizing large 

amount of protoplasm. At the end of this phase, each bacterial cell divides and enter into 

the next phase of active multiplication. 

 

 
Figure 9.3: kinetics of Growth of bacteria. 
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2. Log Phase-In this phase, bacterial cell population is involved in active division and 

whole cell population is more or less homogenous in terms of chemical composition, 

physiology and metabolic activity. A plot of number of cell (in log scale) against time gives 

straight line. The growth of bacterial cell population is increasing at a constant rate and 

continues until substrate concentration is not limiting. 

3. Stationary Phase-Once substrate is limiting, the logarithmic phase of growth begins to 

decline gradually with a constant number of cells to give a staright line. The population 

remains constant because number of divisions are equal to the number of death events.  

As substrate is limiting, death of old cell provides enough nutrient for remaining cells to 

grow and multiply to maintain the constant number. 

4. Death Phase-When substrate is not sufficient from dying cells, death rate of bacteria 

superseed rate of growth and as a result number of bacteria declines sharply. 
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Centrifuge – Introduction 

A centrifuge is a device for separating particles from a solution according to their size, shape, density, 

viscosity of the medium and rotor speed. In biology, the particles are usually cells, sub cellular 

organelles, viruses, large molecules such as proteins and nucleic acids. 

Ultracentrifuge 

Ultracentrifuges are available with a wide variety of rotors suitable for a great range of experiments. 

Most rotors are designed to hold tubes that contain the samples. Swinging bucket rotors allow the 

tubes to hang on hinges so the tubes reorient to the horizontal as the rotor initially accelerate. Fixed 

angle rotors are made of a single block of material and hold the tubes in cavities bored at a 

predetermined angle. Zonal rotors are designed to contain a large volume of sample in a single central 

cavity rather than in tubes. Some zonal rotors are capable of dynamic loading and unloading of 

samples while the rotor is spinning at high speed. 

Preparative rotors are used in biology for pelleting of fine particulate fractions, such as cellular 

organelles (mitochondria, microsomes, ribosomes) and viruses. They can also be used for gradient 

separations, in which the tubes are filled from top to bottom with an increasing concentration of a 

dense substance in solution. Sucrose gradients are typically used for separation of cellular organelles. 

Gradients of caesium salts are used for separation of nucleic acids. After the sample has spun at high 

speed for sufficient time to produce the separation, the rotor is allowed to come to a smooth stop and 

the gradient is gently pumped out of each tube to isolate the separated components. 

 

Hazards 

The tremendous rotational kinetic energy of the rotor in an operating ultracentrifuge makes the 

catastrophic failure of a spinning rotor a serious concern. and it can explode. Rotors conventionally 

have been made from high strength-to-weight metals such as aluminum or titanium. The stresses of 

routine use and harsh chemical solutions eventually cause rotors to deteriorate. Proper use of the 

instrument and rotors within recommended limits and careful maintenance of rotors to prevent 

corrosion and to detect deterioration is necessary to mitigate this risk. 

More recently some rotors have been made of lightweight carbon fiber composite material, which are 

up to 60% lighter, resulting in faster acceleration/deceleration rates. Carbon fiber composite rotors 

also are corrosion-resistant, eliminating a major cause of rotor failure. 
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Ultracentrifugation is a specialized technique used to spin samples at exceptionally high speeds. 

Current ultracentrifuges can spin to as much as 150 000 rotations per minute (rpm) (equivalent to 1 

000 000 g) (Biocompare, 2019b). However, extreme centrifugal forces may cause overheating, so to 

avoid sample damage, ultracentrifuges are equipped with vacuum systems that keep a constant 

temperature in the centrifuge’s rotor (Biocompare, 2019b). 

Centrifugation, and ultracentrifugation, is nowadays, at the core of the laboratory routine. Benchtop 

centrifuges are essential devices in any biology or chemistry laboratory, and they are used on a day-

to-day basis in a wide range of experimental protocols, from concentrating solutions to isolating cells 

and subcellular components. Ultracentrifugation widened the applications of benchtop centrifugation, 

allowing the isolation of smaller sized particles, and the study of purified molecules and molecular 

complexes (Ohlendieck & Harding, 2017). In biology, the development of ultracentrifugation in the 

early 1900s, widened the possibilities of scientific research to the subcellular level, allowing for the 

differential separation of cellular components, such as organelles, lipid membranes, and even to 

purify proteins and ribonucleic acids (DNA and RNA). 

The Principle of Ultracentrifugation 

The basis of ultracentrifugation is the same as normal centrifugation: to separate the components of 

a solution based on their size and density, and the density (viscosity) of the medium (solvent) As a 

general principle, (ultra)centrifugation abides by the following rules  

the denser a biological structure is, the faster it sediments in a centrifugal field 

the more massive a biological particle is, the faster it moves in a centrifugal field 

the denser the biological buffer system is, the slower the particle moves in a centrifugal field 

the greater the frictional coefficient (i.e., the friction between the component and the neighbouring 

environment) is, the slower a particle moves 

the greater the centrifugal force is, the faster the particle sediments 

the sedimentation rate of a given particle will be zero when the density of the particle and the 

surrounding medium is equal. 

Centrifugation Versus Ultracentrifugation 

The use of ultracentrifugation over centrifugation (and vice-versa) denotes basic differences between 

the two techniques. Fundamental differences between centrifugation and ultracentrifugation include: 
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Spinning velocity, and therefore, the centrifugal force applied to the samples. The rotor of an 

ultracentrifuge can spin as high as 1 000 000 x g, while most common benchtop centrifuges are 

limited to 65 000 x g. This brings up the second basic difference: 

Refrigeration and vacuum systems, which are mandatory in ultracentrifuges. Because of the 

extremely high spinning speed, ultracentrifuges are always equipped with vacuum and refrigeration 

systems, to avoid sample and/or device damage due to frictional force and overheating. In benchtop 

centrifuges, these two systems are optional, with the most simple centrifuges, like mini micro-

centrifuges, displaying none. 

Type of pellet that is produced from sample fractionation: because ultracentrifuges can achieve much 

higher spinning speeds, the type of sediment (pellet) that results from one or the other is also different, 

with ultracentrifugation allowing for the isolation of smaller particles than benchtop centrifugation. 

In biology labs, subcellular fractionation to separate cytosolic contents (such as whole cytosol, 

mitochondria or chloroplasts) from cell nuclei can be attained by benchtop centrifuges. However, to 

isolate smaller components such as ribosomes and small vesicles, higher centrifugal forces, only 

possible with ultracentrifuges, are necessary. 

Types of Ultracentrifugation: Analytical Versus Preparative 

There is, currently on the market, a wide variety of ultracentrifuges. The choice among different 

brands and models must consider the type of experimental applications to be performed, the 

availability of different rotors (making it possible to adapt the ultracentrifuge to different 

experimental settings) and the temperature range. Some ultracentrifuges further offer remote 

monitoring and control, and password-protection. It is important to ask: For which experimental 

setting do I need an ultracentrifuge? In that sense, two types of ultracentrifuges are available: 

analytical and preparative. Analytical ultracentrifugation is used in the study of purified 

macromolecules or supramolecular assemblies, while preparative ultracentrifugation is used in the 

actual separation of tissues, cells, subcellular components and other biochemically interesting 

particles. 

 

Analytical ultracentrifuges are equipped with optical detection systems that allow the researcher to 

follow the centrifugation process in real-time. These systems may use ultraviolet (UV) light 

absorption or refracting index interference (RII) optical detection systems (ultracentrifuges may be 

equipped with one or both types of optical systems). While UV detection directly measures the 
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absorbance (abs) of a substance at a specific wavelength, RII measures changes in the refraction index 

(radiation direction) of a given substance, compared to the solvent it is dissolved in. The purpose of 

analytical centrifugation is different from other types of centrifugation. Although component 

isolation is possible with analytical centrifugation, the goal of this technique is to obtain data to 

characterize the sample that is spun (sedimentation velocity, viscosity, concentration, etc.). With 

analytical centrifugation, it is possible to follow the variations in sample concentration as a function 

of the applied centrifugal force. This technique is used in two main experimental settings: 

sedimentation velocity and sedimentation equilibrium studies, which are key in macromolecular 

characterization. Results from sedimentation velocity experiments provide data that are used to 

calculate the molecular size (molecular weight), shape, and molar masses of new chemical molecules, 

ribonucleic acids, proteins, and others. 

Preparative ultracentrifuges are mostly used to process biological samples for further analysis. The 

most common application of preparative ultracentrifugation is in tissue and subcellular fractionation, 

to isolate increasingly smaller components of the biological. For that, two main centrifugation 

methods are used: differential and density-gradient centrifugation. 

Differential centrifugation is used to separate the components of a solution based on differences in 

the sedimentation rate of the different components of the mixture. As explained above (see section 

2: The Principle of Ultracentrifugation), the sedimentation properties of a substance depend on its 

size and density but also on the density of the solvent. In medical and biology labs, crude tissue 

homogenates containing organelles, membrane vesicles, and other structural fragments are divided 

into different fractions by the stepwise increase of the applied centrifugal field. Furthermore, 

differential centrifugation is also routinely used in the isolation of non-living substances, like 

nanoparticles, colloids, and viruses.  

 

Density gradient centrifugation goes further in particle separation than differential centrifugation. It 

is ideal when the goal is to isolate particles of similar sizes, but different densities. In this case, it is 

possible to establish density gradient solutions with increasing concentrations of specific materials, 

in the spinning tube. Cesium salt gradients are used in the separation of DNA, and sucrose gradients 

are used in subcellular fractionation to isolate organelles and multiprotein complexes, like ribosomes. 

Today, there are several commercial gradient solution kits to isolate specific particles. Roughly, there 

are two types of density gradient centrifugation: rote-zonal centrifugation and isopycnic 
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centrifugation (also called equilibrium centrifugation), which differ in the way particles are separated 

across the gradient. 

Rote-zonal centrifugation – particle separation depends mostly on particle mass. Zones, or bands, are 

generated, each containing a particle fraction of a specific mass. However, care must be taken when 

performing rote-zonal centrifugation. Because the mass of the particles is higher than the density of 

the solvent, if they are centrifuged for too long, all particles will eventually deposit in the bottom of 

the tube. 

Isopycnic (equilibrium) centrifugation – particle separation depends solely on their density. In 

isopycnic separation, particles are mixed with the gradient solution, and during centrifugation, they 

will move until they reach the gradient phase which equals their density (isopycnic or equilibrium 

point). Because the density of the gradient medium is always higher than the density of particles, 

these will never sediment, independently of the centrifugation time. Continuous gradients may be 

used in isopycnic centrifugation, however, discontinuous gradients in which particles form bands at 

the interface between the density gradient layers are more suitable for the separation of some 

biological samples, like the separation of lymphocytes from whole blood. 

 

Applications of Analytical and Preparative Ultracentrifugation 

Due to their intrinsic differences, analytical and preparative ultracentrifugation are used for different 

purposes: 

Analytical ultracentrifugation 

determination of the purity (including the presence of aggregates) and oligomeric state of 

macromolecules, by recording sedimentation velocity data 

determination of the average molecular mass of solutes in their native state 

Study of changes in the molecular mass of supramolecular complexes, 

using either sedimentation velocity, sedimentation equilibrium (or both) 

the detection of conformation and conformational changes 

Preparative ultracentrifugation 

 

subcellular fractionation 
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affinity purification of membrane vesicles 

separation of DNA components 

colloid separation 

virus purification 

The Ultracentrifuge: How to Use and How to Care 

Modern ultracentrifuges are heavy, sturdy equipment that requires certain know-how for proper usage 

and care. 

Rotor balance. As in all centrifuges, sample spinning requires a proper balance of the weight inside 

the rotor. Given the extremely high spinning speed inside the ultracentrifuge’s rotor, the impact of 

subtle imbalances may be shockingly strong. Modern ultracentrifuges have some buffer capacity, to 

absorb slight weight imbalances, and when there is too much imbalance, an automatic system shuts 

off the device. Moreover, in all ultracentrifuges, the rotor is encapsulated in a strong heavy metallic 

cage, to avoid vibrations and projections that could damage the sample and endanger the operator. 

Yet, it is of vital importance that the ultracentrifuge is properly loaded, according to the 

manufacturer’s instructions. 

Sample position in rotor. All rotor positions must be filled. Even when there are only a few tubes, the 

rest of the positions must be occupied with blank samples of equivalent weight. To avoid both rotor 

and sample damage, it is important to set the ultracentrifuge to slow acceleration and deceleration 

modes. This is especially important in density gradients, as the sudden stop of the spinning may affect 

the separation of the gradient layers (Ohlendieck & Harding, 2017). Ultracentrifuges are expensive 

devices, which are required to accurately separate particles in solution. To ensure the proper function 

of the ultracentrifuge, care measures must be undertaken regularly. Apart from safety, proper loading 

of the rotor avoids excessive vibration, which can cause damage to the device. 

Centrifuge cleaning. Maintenance and cleaning of the rotor must be done with non-abrasive 

detergents to avoid corrosion. Rotor cleaning is especially important to ensure that there are no 

remnants of the samples that were centrifuged, and therefore, should always be performed after 

spinning. 

Storage. Whenever the device is not used, or simply for overnight storage, rotors must be kept in a 

dry room, properly cleaned, and left to dry in an inverted position, to avoid the accumulation of water 

in the sample cells. 
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Regular maintenance. This should be done by certified operators to ensure the proper long-term 

function of the ultracentrifuge. 

Advantages and Limitations of Ultracentrifugation 

From the development of the first ultracentrifuge in the 1920s by Svedberg, up to today, the scientific 

advances that resulted from the application of ultracentrifugation to biology, chemistry, material 

science, and others, are countless. In its most obvious approaches, ultracentrifugation extended the 

limits of biology research to the subcellular level, by allowing the isolation of particles as small as 

ribosomes, subcellular organelles, membranes, and ribonucleic acids. With the advent of analytical 

ultracentrifugation, research took another step further towards the understanding of the 

submicroscopic world, with the ability to further characterize molecular size, shape, and structure. 

However, ultracentrifugation has its own limitations, like any other laboratory technique. These 

include: 

Low sample yield – In preparative ultracentrifugation, samples must be washed several times after 

spinning, to ensure that there is no cross-contamination between fractions. Samples for preparative 

centrifugation are usually limited in size (e.g., tissues) or volume (e.g., cell suspensions or blood). In 

every wash step that a sample is subjected, there is loss of material, and thus, after an 

ultracentrifugation protocol, the yield can be very low. 

Ultracentrifugation is still a time-consuming process, and it can take up to several hours to fractionate 

all the components of a single mixture. 

Ultracentrifuges are extremely expensive devices, which require constant maintenance. 
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Electro-osmosis 

Electroosmotic flow (or electro-osmotic flow, often abbreviated EOF; synonymous with 

electroosmosis or electroendosmosis) is the motion of liquid induced by an applied potential across 

a porous material, capillary tube, membrane, microchannel, or any other fluid conduit. Because 

electroosmotic velocities are independent of conduit size, as long as the electrical double layer is 

much smaller than the characteristic length scale of the channel, electroosmotic flow will have little 

effect. Electroosmotic flow is most significant when in small channels. Electroosmotic flow is an 

essential component in chemical separation techniques, notably capillary electrophoresis. 

Electroosmotic flow can occur in natural unfiltered water, as well as buffered solutions. 

Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile 

electric charge in a solution. Because the chemical equilibrium between a solid surface and an 

electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of 

mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface. 

When an electric field is applied to the fluid (usually via electrodes placed at inlets and outlets), the 

net charge in the electrical double layer is induced to move by the resulting Coulomb force. The 

resulting flow is termed electroosmotic flow. 

The resulting flow from applying a voltage is a plug flow. Unlike a parabolic profile flow generated 

from a pressure differential, a plug flow’s velocity profile is approximately planar, with slight 

variation near the electric double layer. This offers significantly less deleterious dispersive effects 

and can be controlled without valves, offering a high-performance method for fluid separation, 

although many complex factors prove this control to be difficult. Because of difficulties measuring 

and monitoring flow in microfluidic channels, primarily disrupting the flow pattern, most analysis is 

done through numerical methods and simulation. 

Electroosmotic flow through microchannels can be modeled after the Navier-Stokes equation with 

the driving force deriving from the electric field and the pressure differential. Thus it is governed by 

the continuity equation 

Electro-osmotic flow is commonly used in microfluidic devices,[8][9] soil analysis and 

processing,[10] and chemical analysis,[11] all of which routinely involve systems with highly 

charged surfaces, often of oxides. One example is capillary electrophoresis,[9][11] in which electric 

fields are used to separate chemicals according to their electrophoretic mobility by applying an 

electric field to a narrow capillary, usually made of silica. In electrophoretic separations, the 

electroosmotic flow affects the elution time of the analytes. 
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Electro-osmotic flow is actuated in a FlowFET to electronically control fluid flow through a junction. 

It is projected that micro fluidic devices utilizing electroosmotic flow will have applications in 

medical research. Once controlling this flow is better understood and implemented, the ability to 

separate fluids on the atomic level will be a vital component for drug dischargers. Mixing fluids at 

the micro scale is currently troublesome. It is believed that electrically controlling fluids will be the 

method in which small fluids are mixed. A controversial use of electro-osmotic systems is the control 

rising damp in the walls of buildings While there is little evidence to suggest that these systems can 

be useful in moving salts in walls, such systems are claimed to be especially effective in structures 

with very thick walls. However some claim that there is no scientific base for those systems, and cite 

several examples for their failure. 

 

Electro-osmosis is the flow of liquid that is in contact with a charged solid surface when an electric 

field is applied, and it becomes an important consideration with the increased surface area-to-volume 

ratio associated with small diameter capillaries. 

Electro-osmosis refers to the movement of liquid in a porous material due to an applied electric field. 

Electro-osmosis is a very effective instrument when treating heterogeneous, silt and clay-rich soil. 

The phenomenon of electro-osmosis is very useful in chemical separation techniques and buffered 

solutions. 

Electro-osmosis can be used for organics removal. It reduces the need for specialized electrodes. 

Electro-osmosis has achieved two benefits when properly applied: 

 

Provides uniform pore water movement in most types of soil. The size of the pore is not important. 

Electro-osmotic flow rate is primarily a function of applied voltage. 
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The electricity applied to the soil directly results in the heating of the soil. The soil warming not only 

increases the mobilization of volatile organics, but also increases the electro-osmotic permeability by 

lowering the viscosity of the pore water. 

Electro-osmosis techniques are commonly used in chemical analysis, soil analysis and processing, 

and microfluidic devices. All of these uses involve highly charged surfaces, often of oxides. In 

capillary electrophoresis, which is another use of electro-osmosis, chemicals are separated according 

to their electrophoretic mobility by applying an electric field 

 


