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1.1 Introduction to Momentum Transport 

Momentum transport deals with the transport of momentum which is responsible for flow in 

fluids. Momentum transport describes the science of fluid flow also called fluid dynamics. A few 

basic assumptions are involved in fluid flow and these are discussed below. 

 

No slip boundary condition 

 

This is the first basic assumption used in momentum transport. It deals with the fluid flowing 

over a solid surface, and states that whenever a fluid comes in contact with any solid boundary, 

the adjacent layer of the fluid in contact with the solid surface has the same velocity as the solid 

surface. Hence, we assumed that there is no slip between the solid surface and the fluid or the 

relative velocity is zero at the fluid–solid interface. For example, consider a fluid flowing inside 

a stationary tube of radius R as shown in Fig 7.1. Since the wall of the tube at r=R is stationary, 

according to the no-slip condition implies that the fluid velocity at r=R is also zero. 
 

 

 

 
 

Fig 1 Fluid flow in a circular tube of radius R 

 

In the second example as shown in Fig. 7.2, there are two plates which are separated by a 

distance h, and some fluid is present between these plates. If the lower plate is forced to move 

with a velocity V in x direction and the upper plate is held stationary, no-slip boundary 

conditions may be written as follows 
 

Fig 2 Two parallel plates at stationary condition 



   

4 

 

 

 

 
 

 
 

Thus, every layer of fluid is moving at a different velocity. This leads to shear forces which are 

described in the next section. 

 

1.2 Newton’s Law of Viscosity 

 

Newton’s law of viscosity may be used for solving problem for Newtonian fluids. For many 

fluids in chemical engineering the assumption of Newtonian fluid is reasonably acceptable. To 

understand Newtonian fluid, let us consider a hypothetical experiment, in which there are two 

infinitely large plates situated parallel to each other, separated by a distance h. A fluid is present 

between these two plates and the contact area between the fluid and the plates is A. 

A constant force F1 is now applied on the lower plate while the upper plate is held stationary. 

After steady state has reached, the velocity achieved by the lower plate is measured as V1. The 

force is then changed, and the new velocity of the plate associated with this force is measured.  

If the F/A is plotted against V/h, we may observe that they lie on a straight line passing through 

the origin. 
 
 

Fig  3 Shear stress vs. shear stain 

 

Thus, it may be said that F/A is proportional to v/h for a Newtonian fluid. 

 
 

It may be noted that it is the velocity gradient which leads to the development of shear forces. 

The above equation may be re-written as 
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In the limiting case, as h → 0, we have 
 

where, µ is a constant of proportionality, and is called as the viscosity of the fluid. The quantity 

F/A represents the shear forces/stress. It may be represented as  , where the subscript x 

indicates the direction of force and subscript y indicates the direction of outward normal of the 
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surface on which this force is acting. The quantity or the velocity gradient is also called 

the shear rate. µ is a property of the fluid and is measured the resistance offered by the fluid to 

flow. Viscosity may be constant for many Newtonian fluids and may change only with 

temperature. 

 

Thus, the Newton’s law of viscosity, in its most basic form is given as 
 

 

Here, both ‘+’ or ‘–’ sign are valid. The positive sign is used in many fluid mechanics books 

whereas the negative sign may be found in transport phenomena books. If the positive sign is 

used then may be called the shear force while if the negative sign is used may be 

referred to as the momentum flux which flows from a higher value to a lower value. 
 

 
 

The reason for having a negative sign for momentum flux in the transport phenomena is to have 

similarities with Fourier's law of heat conduction in heat transport and Ficks law of diffusion in 

mass transport. For example, in heat transport, heat flows from higher temperature to lower 

temperature indicating that heat flux is positive when the temperature gradient is negative. Thus, 

a minus sign is required in the Fourier's law of heat conduction. The interpretation of  as 

the momentum flux is that x directed momentum flows from higher value to lower value in y 

direction. 

 

The dimensions of viscosity are as follows: 
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The SI unit of viscosity is kg/m.s or Pa.s. In CGS unit is g/cm.s and is commonly known as poise 

(P). where 1 P = 0.1 kg/m.s. The unit poise is also used with the prefix centi-, which refers to 

one-hundredth of a poise, i.e. 1 cP = 0.01 P. The viscosity of air at 25oC is 0.018 cP, water at 

25oC is 1 cP and for many polymer melts it may range from 1000 to 100,000 cP, thus showing a 

long range of viscosity. 

 
 

1.3 Laminar and turbulent flow 

 

Fluid flow can broadly be categorized into two kinds: laminar and turbulent. In laminar flow, the 

fluid layers do not inter-mix, and flow separately. This is the flow encountered when a tap is just 

opened and water is allowed to flow very slowly. As the flow increases, it becomes much more 

irregular and the different fluid layers start mixing with each other leading to turbulent flow. 

Osborne Reynolds tried to distinguish between the two kinds of flow using an ingenious 

experiment and known as the Reynolds’s experiment. The basic idea behind this experiment is 

described below. 

 

1.4 Reynolds’s experiment 
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Fig 5 Reynolds’s experiments 

 

The experiment setup used for performing the Reynolds's experiment is shown in Fig. 5. The 

average velocity of fluid flow through the pipe diameter can be varied. Also, there is an 

arrangement to inject a colored dye at the center of the pipe. The profile of the dye is observed 

along the length of the pipe for different velocities for different fluids. If this experiment is 

performed, it may be seen that for certain cases the dye shows a regular thread type profile, which 

is seen at low fluid velocity and flow is called laminar flow. when the fluid velocity is increased 

the dye starts to mixed with the fluid and for larger velocities simply disappears. At this point 

fluid flow becomes turbulent. 

For the variables average velocity of fluid vz avg, pipe diameter D, fluid density ρ, and the fluid 

viscosity µ, Reynolds found a dimensionless group which could be used to characterize the type 

of fluid flow in the tube. This dimensionless quantity is known as the Reynolds number. From 

the experiment, It was observed that if Re >2100, the dye simply disappeared and the flow has 

changed to laminar to turbulent flow. 
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Thus, for Re <2100, we have laminar flow, i.e., no mixing in the radial direction leading to a 

thread like flow and for Re >2100, we have the turbulent flow, i.e., mixing in the radial direction 

between layers of fluid. 

 

 

In laminar flow, the fluid flows as a stream line flow with no mixing between layers. In turbulent 

flow, the fluid is unstable and mixes rapidly due to fluctuations and disturbances in the flow. The 

disturbance might be present due to pumps, friction of the solid surface or any type of noise 

present in the system. This makes solving fluid flow problem much more difficult. To understand 

the difference in the velocity profile in two kinds of fluid flows, we consider a fluid flowing to a 

horizontal tube in z direction under steady state condition. Then, we can intuitively see the 

velocity profile may be shown below 

 

For laminar flow, it is observed that fluid flows as smooth stream line and all other components 

of velocity are zero. Thus 

 

For turbulent flow, if we observe the fluid flows at a local point. It is observed that fluid flows in 

very random manner in all directions where these local velocities may be the function of any 

dimensions. 

 

 
Thus, we see that for laminar flow there is only one component of velocity present and it depends 

only on one coordinate whereas the solution of turbulent flow may be vary complex. For turbulent 

flow, one can ask the question that if the fluid is flowing in the z direction then why are the velocity 

components in r and θ direction non-zero? The mathematical answer for this question can be 

deciphered from the equation of motion. The equation of motion is a non-linear partial differential 

equation. This non-linear nature of the equation causes instability in the system which produces 

flow in other directions. The instability in the system may occur due to any disturbances or noise 

present in the environment. On the other hand, if the velocity of fluid is very low the deviation due 

to disturbances may decay with time, and becomes negligible after that. Thus the flow remains in 

laminar region. Consider a practical example in which some cars 
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are moving on the highway in the same direction but in the different lanes at different speeds. If 

suddenly, some obstacle comes on the road, then if the car's speed is sufficiently low, it can move 

on to other lane smoothly and come back to its original lane after the obstacle is crossed. This is 

the regular laminar case. On the other hand, if the car is moving at a high speed and suddenly 

encounters an obstacle, then the driver may lose control, and this car may move haphazardly and 

hit other cars and after that traffic may never return to normal traffic conditions. This is the turbulent 

case. 

 
 

1.4.1 Internal and external flows 
 

Depending on how the fluid and the solid boundaries contact each other, the flow may be 

classified as internal flow or external flow. In internal flows, the fluid moves between solid 

boundaries. As is the case when fluid flows in a pipe or a duct. In external flows, however, the 

fluid is flowing over an external solid surface, the example may be sited is the flow of fluid over 

a sphere as shown in Fig. 8.1. 
 

 

Fig 8.1 External flow around a sphere 

Boundary layers and fully developed regions 

Let us now consider the example of fluid flowing over a horizontal flat plate as shown in Fig. 

 
8.2. The velocity of the fluid is before it encounters the plate. As the fluid touches the 

plate, the velocity of the fluid layer just adjacent to the plate surface becomes zero due to the no 

slip boundary condition. This layer of fluid tries to drag the next fluid layer above it and reduces 

its velocity. As the fluid proceeds along the length of the plate (in x-direction), each layer starts 

to drag adjacent fluid layer but the effect of drag reduces as we go further away from the plate in 

y-direction. Finally, at some distance from the plate this drag effect disappears or becomes 

insignificant. This region where the velocity is changing or where the velocity gradients exists, is 

called the boundary layer region. The region beyond boundary layer where the velocity gradients 

are insignificant is called the potential flow region. 
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Fig 8.2 External flow over a flat plate 

 

As depicted in Fig. 8.2, the boundary layer keeps growing along the x-direction, and may be 

referred to as the developing flow region. In internal flows (e.g. fluid flow through a pipe), the 

boundary layers finally merge after flow over a distance as shown in Fig. 8.3 below. 
 
 

Fig 8.3 Developing flow and fully developed flow region 

 

The region after the point at which the layers merge is called the fully developed flow region and 

before this it is called the developing flow region. In fact, fully developed flow is another 

important assumption which is taken for finding solution for varity of fluid flow problem. In the 

fully developed flow region (as shown in Figure 8.3), the velocity vz is a function of r direction 

only. However, the developing flow region, velocity vz is also changing in the z direction. 

 

Main axioms of transport phenomena 

 

The basic equations of transport phenomena are derived based on following five axioms. 
 

 Mass is conserved, which leads to the equation of continuity. 
 

 Momentum is conserved, which leads to the equation of motion. 
 

 Moment of momentum is conserved leads to an important result that the 2nd order 

stress tensor        is symmetric. 
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 Energy is conserved, which leads to equation of thermal energy. 
 

 Mass of component i in a multi-component system is conserved, which leads to 

the convective diffusion equation. 
 

The solution of equations, resulting from axiom 2, 4 and 5 leads to the solution of velocity, 

temperature and concentration profiles. Ones these profiles are known, all other important 

information needed can be determined. We first take the axiom -1. Other axioms will be taken up 

one by one letter on. 

There are three types of control volumes (CV) which may be chosen for deriving the equations 

based these axioms. 
 

 Rectangular shaped control volume fixed in space 

 
In this case, the control volume is rectangular volume element and is fixed in space. This method 

is the easiest to understand but requires more number of steps. 
 

 Irregular shaped control volume element fixed in space 

 
In this case, the control volume can be of any shape, but it is again fixed in space. This method is 

somewhat more difficult than the previous method as it requires little better understanding vector 

analysis and surface and volume integrals. 
 

 Material volume approach 

 
In this case, the control volume can be of any shape but moves with the velocity of the flowing 

fluid. This method is most difficult in terms of mathematics, but requires least number of steps 

for deriving the equations. 

 

All three approaches when applied to above axiom, lead to the same equations. In this web 

course, we follow the first approach. Other approaches may be found elsewhere. 

Axioms-1 

 

Mass is conserved 

Consider a fluid of density ρ flowing with velocity as shown in Fig. 8.4. Here, ρ and  

are functions of space (x,y,z) and time (t). For conversion of mass, the rate of mass entering and 

leaving from the control volume (net rate of inflow) has to be evaluated and this should be equal 

to the rate of accumulation of mass in the control volume (CV). Thus, conservation of mass may 

be written in words as given below 
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Fig 8.4 Fixed rectangular volume element through which fluid is flowing 

 

The equation is then divided by the volume of the CV and converted into a partial differential 

equation by taking the limit as all dimensions go to zero. This limit effectively means that CV 

collapses to a point, thereby making the equation valid at every point in the system. 

 

Let m and m+Δm be the mass of the control volume at time t and t+Δt respectively. Then, the 

rate of accumulation, 
 

 
In order to evaluate the rate of inflow of mass into the control volume, we need to inspect how 

mass enters the control volume. Since the fluid velocity has three components vx, vy and vz, we 

need to identify the components which cause the inflow or the outflow at each of the six faces of 

the rectangular CV. For example, it is the component vx which forces the fluid to flow in the x 

direction, and thus it makes the fluid enter or exit through the faces having area ΔyΔz at x = x 

and x = x+Δx respectively. The component vy forces the fluid in y direction, and thus it makes 

the fluid enter or exit through the faces having area ΔxΔz at y = y and y = y+Δy respectively. 

Similarly, the component vz forces the fluid to flow in z direction, and thus it makes fluid enter 

or exit through the faces having area ΔxΔy at z = z and z = z+Δ z respectively. 

 

The rate mass entering in x direction through the surface ΔyΔz is (ρvxΔyΔz|x), the rate of mass 

entering in y direction through the surface ΔxΔz is (ρvyΔxΔz|y) and the rate of mass entering 

from z direction through the surface ΔxΔy is (ρvzΔxΔy|z). In a similar manner, expressions for 

the rate of mass leaving from the control volume may be written. 

 

Thus, the conservation of mass leads to the following expressions 



   

14 

 

 

 

 
 

Dividing the Equation (8.1) by the volume ΔxΔyΔz, we obtain 

 

 
Note that each term in Equation (8.2) has the unit of mass per unit volume per unit time. Now, 

taking the limits Δx→0, Δy→0 and Δz→0, we get 
 
 

 

and using the definition of derivative, we finally obtain 
 

 

Equation (8.4) is applicable to each point of the fluid. Rearranging the terms, we get the equation 

of continuity, may be written as given below. 
 

 

 

 

We need not to derive the equation of continuity again and again in other coordinate system (that 

is, spherical or cylindrical). The idea is to rewrite Equation (8.5) in vector and tensor form. Once 

it is written in this form, the same equation may be applied to other coordinate system as well. 

Thus, the Equation (8.5) may be rewritten in vector and tensor form as shown below. 
 

 

Vector and tensor analysis of cylindrical and spherical coordinate systems is not done here, and 

can be looked up elsewhere. Thus, the final expressions in cylindrical and spherical coordinates 
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are given as below. 

 

cylindrical coordinates (r, θ, z) 
 

 
Spherical coordinates (r, θ, φ) 

 

 

Equation of continuity in terms of substantial derivative 

 

The second term in Equation (8.6) may be broken into two parts as shown below. Partial 

derivative present in the Equation (8.6) can be converted into substantial derivative using vector 

and tensor identities. 
 

 

In the above equation, the first two terms may be combined using the definition of substantial 

derivative to obtain the following equation. 

 
In some cases, the fluid may be incompressible, i.e. density ρ is a constant with time as well as 

space coordinates. For example, water may be assumed as an incompressible fluid under 

isothermal conditions. In fact, all liquids may be assumed as incompressible fluids under 

isothermal conditions. For this special case, the equation of continuity may be further simplified 

as shown below 
 

The above equation for an incompressible fluid does not mean that the system is under steady 

state conditions. The velocity of the fluid may still be a function of time. It only implies that if 

the velocity of the fluid changes in a particular direction (x, y or z) then it should also change in 

the other directions such that mass is conserved without changing its density. The equation of 

continuity provides additional information about the velocity profile and helps in solution of 
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1.5 EQUATION OF MOTION. 

Internal and external flows 

 

Depending on how the fluid and the solid boundaries contact each other, the flow may be 

classified as internal flow or external flow. In internal flows, the fluid moves between solid 

boundaries. As is the case when fluid flows in a pipe or a duct. In external flows, however, the 

fluid is flowing over an external solid surface, the example may be sited is the flow of fluid over 

a sphere as shown in Fig. 8.1. 
 

 

Fig  External flow around a sphere 

Boundary layers and fully developed regions 

Let us now consider the example of fluid flowing over a horizontal flat plate as shown in Fig. 

 
8.2. The velocity of the fluid is before it encounters the plate. As the fluid touches the 

plate, the velocity of the fluid layer just adjacent to the plate surface becomes zero due to the no 

slip boundary condition. This layer of fluid tries to drag the next fluid layer above it and reduces 

its velocity. As the fluid proceeds along the length of the plate (in x-direction), each layer starts 

to drag adjacent fluid layer but the effect of drag reduces as we go further away from the plate in 

y-direction. Finally, at some distance from the plate this drag effect disappears or becomes 

insignificant. This region where the velocity is changing or where the velocity gradients exists, is 

called the boundary layer region. The region beyond boundary layer where the velocity gradients 

are insignificant is called the potential flow region. 
 
 

 

Fig External flow over a flat plate 
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As depicted in Fig. 8.2, the boundary layer keeps growing along the x-direction, and may be 

referred to as the developing flow region. In internal flows (e.g. fluid flow through a pipe), the 

boundary layers finally merge after flow over a distance as shown in Fig. 8.3 below. 
 
 

Fig Developing flow and fully developed flow region 

 

The region after the point at which the layers merge is called the fully developed flow region and 

before this it is called the developing flow region. In fact, fully developed flow is another 

important assumption which is taken for finding solution for varity of fluid flow problem. In the 

fully developed flow region (as shown in Figure 8.3), the velocity vz is a function of r direction 

only. However, the developing flow region, velocity vz is also changing in the z direction. 

 

Main axioms of transport phenomena 

 

The basic equations of transport phenomena are derived based on following five axioms. 
 

 Mass is conserved, which leads to the equation of continuity. 
 

 Momentum is conserved, which leads to the equation of motion. 
 

 Moment of momentum is conserved leads to an important result that the 2nd order 

stress tensor        is symmetric. 

 Energy is conserved, which leads to equation of thermal energy. 
 

 Mass of component i in a multi-component system is conserved, which leads to 

the convective diffusion equation. 
 

The solution of equations, resulting from axiom 2, 4 and 5 leads to the solution of velocity, 

temperature and concentration profiles. Ones these profiles are known, all other important 

information needed can be determined. We first take the axiom -1. Other axioms will be taken up 

one by one letter on. 

There are three types of control volumes (CV) which may be chosen for deriving the equations 

based these axioms. 
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 Rectangular shaped control volume fixed in space 

 
In this case, the control volume is rectangular volume element and is fixed in space. This method 

is the easiest to understand but requires more number of steps. 
 

 Irregular shaped control volume element fixed in space 

 
In this case, the control volume can be of any shape, but it is again fixed in space. This method is 

somewhat more difficult than the previous method as it requires little better understanding vector 

analysis and surface and volume integrals. 
 

 Material volume approach 

 
In this case, the control volume can be of any shape but moves with the velocity of the flowing 

fluid. This method is most difficult in terms of mathematics, but requires least number of steps 

for deriving the equations. 

 

All three approaches when applied to above axiom, lead to the same equations. In this web 

course, we follow the first approach. Other approaches may be found elsewhere. 

Axioms-1 

 

Mass is conserved 

Consider a fluid of density ρ flowing with velocity as shown in Fig. 8.4. Here, ρ and  

are functions of space (x,y,z) and time (t). For conversion of mass, the rate of mass entering and 

leaving from the control volume (net rate of inflow) has to be evaluated and this should be equal 

to the rate of accumulation of mass in the control volume (CV). Thus, conservation of mass may 

be written in words as given below 
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Fig 8.4 Fixed rectangular volume element through which fluid is flowing 

 

The equation is then divided by the volume of the CV and converted into a partial differential 

equation by taking the limit as all dimensions go to zero. This limit effectively means that CV 

collapses to a point, thereby making the equation valid at every point in the system. 

 

Let m and m+Δm be the mass of the control volume at time t and t+Δt respectively. Then, the 

rate of accumulation, 
 

 
In order to evaluate the rate of inflow of mass into the control volume, we need to inspect how 

mass enters the control volume. Since the fluid velocity has three components vx, vy and vz, we 

need to identify the components which cause the inflow or the outflow at each of the six faces of 

the rectangular CV. For example, it is the component vx which forces the fluid to flow in the x 

direction, and thus it makes the fluid enter or exit through the faces having area ΔyΔz at x = x 

and x = x+Δx respectively. The component vy forces the fluid in y direction, and thus it makes 

the fluid enter or exit through the faces having area ΔxΔz at y = y and y = y+Δy respectively. 

Similarly, the component vz forces the fluid to flow in z direction, and thus it makes fluid enter 

or exit through the faces having area ΔxΔy at z = z and z = z+Δ z respectively. 

 

The rate mass entering in x direction through the surface ΔyΔz is (ρvxΔyΔz|x), the rate of mass 

entering in y direction through the surface ΔxΔz is (ρvyΔxΔz|y) and the rate of mass entering 

from z direction through the surface ΔxΔy is (ρvzΔxΔy|z). In a similar manner, expressions for 

the rate of mass leaving from the control volume may be written. 

 

Thus, the conservation of mass leads to the following expressions 
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Dividing the Equation (8.1) by the volume ΔxΔyΔz, we obtain 

 

 
Note that each term in Equation (8.2) has the unit of mass per unit volume per unit time. Now, 

taking the limits Δx→0, Δy→0 and Δz→0, we get 
 
 

 

and using the definition of derivative, we finally obtain 
 

 

Equation (8.4) is applicable to each point of the fluid. Rearranging the terms, we get the equation 

of continuity, may be written as given below. 
 

 

 

 

We need not to derive the equation of continuity again and again in other coordinate system (that 

is, spherical or cylindrical). The idea is to rewrite Equation (8.5) in vector and tensor form. Once 

it is written in this form, the same equation may be applied to other coordinate system as well. 

Thus, the Equation (8.5) may be rewritten in vector and tensor form as shown below. 
 

 

Vector and tensor analysis of cylindrical and spherical coordinate systems is not done here, and 

can be looked up elsewhere. Thus, the final expressions in cylindrical and spherical coordinates 
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are given as below. 

 

cylindrical coordinates (r, θ, z) 
 

 
Spherical coordinates (r, θ, φ) 

 

 
 

1.6 Equation of continuity in terms of substantial derivative 

 

The second term in Equation (8.6) may be broken into two parts as shown below. Partial 

derivative present in the Equation (8.6) can be converted into substantial derivative using vector 

and tensor identities. 
 

 

In the above equation, the first two terms may be combined using the definition of substantial 

derivative to obtain the following equation. 

 
In some cases, the fluid may be incompressible, i.e. density ρ is a constant with time as well as 

space coordinates. For example, water may be assumed as an incompressible fluid under 

isothermal conditions. In fact, all liquids may be assumed as incompressible fluids under 

isothermal conditions. For this special case, the equation of continuity may be further simplified 

as shown below 
 

The above equation for an incompressible fluid does not mean that the system is under steady 

state conditions. The velocity of the fluid may still be a function of time. It only implies that if 

the velocity of the fluid changes in a particular direction (x, y or z) then it should also change in 

the other directions such that mass is conserved without changing its density. The equation of 
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continuity provides additional information about the velocity profile and helps in solution of 

equation of motion. 

Solution of momentum transport problem by shell momentum balances 

 

Here, we solve few simple problems of fluid mechanics with simple geometries by using the 

shell momentum balance approach. This will lead to greater understanding of various terms 

involved in the application of conservation of momentum in fluid given in Equation (9.1) 

 

Flow through circular tube 

Flow of fluids through a circular tube is a common problem, encountered frequently in different 

fields of engineering. Consider an incompressible, Newtonian fluid, flowing through a horizontal 

circular tube as shown in Fig. (10.1). Assume that the fluid flow is laminar and under steady state 

conditions. Determine the velocity profile and average velocity of the fluid using shell 

momentum balance approach. 

 

solution procedure 

Assumptions 

 

 Fluid density and viscosity are constants. 
 

 System is in steady state. 
 

 Laminar flow (simple shear flow). 
 

 Newton's law of viscosity is applicable. 
 

 Fully developed flow. 
 

 

Fig Laminar flow in a horizontal pipe 

Intuitively guess the velocity profile 

Since the flow is steady and laminar, we may intuitively say that the velocities in r direction and 

θ direction are zero. Due to steady state conditions, the fluid velocity in z direction, vz, is not 

dependent on time t. Furthermore, due to the axisymmetric geometry fluid flow the velocity vz is 



   

23 

 

 

independent of θ. Thus, 
 

By applying the equation of continuity in cylindrical coordinates 
 
 

Hence, 

 
 

Since the fluid is flowing in z direction, we may conclude the following. 

 
 

 Since vr=0, r directional momentum balance is not important. 
 

 Since vθ=0 , θ directional momentum balance is again not important. 
 

 Since vz≠0, z directional momentum balance is most important. 

 

1.7 Equation for circular pipe: 

The control volume should be decided very carefully. The geometry and size of the control 

volume should be taken according to the geometry of the system and based on the conditions 

given in the problem. In this case, the geometry of the pipe is cylindrical, hence we use the 

cylindrical control volume. The fluid is flowing in the z direction but velocity is changing only in 

r direction. Therefore, the control volume is taken in such a way that the variable thickness of the 

control volume is in the r direction. As the flow is not dependent on z and θ coordinates, we may 

choose any dimension in z or θ directions. This means that z may be any length. It may be L/4, 

L/2 or L. In a similar manner, any value of θ may be taken. It may be 2   or or /2 or /4. 

However, in the r direction, we need to take the differential thickness dr. These arguments leads 

us to a control volume as shown in Fig. (10.2). The length of the cylindrical shell is L which is 

equal to length of pipe and thickness is dr. 
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Fig 10.2 Control volume for flow through pipe 

Momentum balance 

As discussed earlier, the shear stress/forces may be written in two ways: 
 

 Taking shear stress as actual shear forces. 
 

 Taking shear stress as momentum flux. 

 
Here, we show that both methods lead to the same final results for velocity profile. 

Momentum balance using shear stress as shear force 

Momentum flux entering the control volume by convection 

= 

 
Momentum flux leaving the control volume by convection 

= 

 

 
Since the pipe is horizontal, the force due to gravity is zero. No other body forces are acting on 

the control volume. 

 

Surface forces 

 
 

 Pressure force: Fluid is flowing in z direction only. So pressure forces which are working 

on the surface normal to z direction are 
 

Pressure force at z=0 is 
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Pressure force at z=L is 

 
 

 Shear forces: The shear stress tensor in cylindrical coordinate is given below. 
 

Among all 9 components the first column of stresses are important for r directional flow, the 

second column of stresses are important for θ directional flow, and the third column are 

important for z directional flow. Since the fluid is flowing in the z direction, only the third 

column needs to be considered. Since the Velocity gradient is present only in the r-direction, only 

needs to be considered, the remaining two terms are not significant. Now, we need to decide 

the direction in which the shear forces are acting. Recall 
 

 

Where the unit vector is the outer normal of a surface and if it is in positive direction then 

is also positive while if it is in negative direction then  is shown as negative direction. 

Therefore, (as a force) is positive at r+dr and negative at r as shown in Fig. 10.2.(Note: the 

first index, z, in  from right to left indicates the direction of force and second index, r, 

indicates the surface on which it acts). 

 
Accumulation term: Due to steady state system, the rate of accumulation of momentum equals to 

zero . 

General momentum balance is given below 
 

or in this case 
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Since the velocity is constant along the axial direction as shown in Equation (10.2), the first two 

terms in Equation (10.8) are cancel out and we are left with following Equation. 
 

 

Dividing by  , we have 
 

As dr→0, the Equation (10.10) may be rewritten as given below. 

(Note that, is a function of r only which means we get the total derivative instead of the 

partial derivative.) 
 

 

Further integrating the Equation (10.11) once with respect to the variable r, we obtain 
 

or 

 

 

Here, c1 is a constant of integration. Equation (10.12) shows that if r=0, the value of will be 

infinite, which is physically not possible. Therefore, c1 must be zero. Hence, 
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Now, by applying Newton’s law of viscosity, and taking as force, we obtain 
 

 

Momentum balance using shear stress as momentum flux 

 

Now, we will employ the second method where shear force are considered as momentum flux. 

To indicate the direction of momentum flux, we draw the arrow in r direction and find where this 

arrow enters the control volume and also leaves the control volume as shown in Fig (10.3). Thus, 

the momentum flux enters the control volume through the surface 2 rL at r=r and leaves 

through the surface 2 rL at r=r+dr. 

 

 

 

Fig 10.3 Momentum flux applied on control volume 

Thus, 

Momentum flux at r = r is 

 
 

Momentum flux at r = r +Δr is 

 

 
 

(Note: when we consider  as the momentum flux, first index, z, indicates the direction of 

momentum flux, while the second index, r, indicates the direction of flow of momentum flux 

from higher to lower value. Subsequently, it will become clear that if we follow the coordinate 

system’s directions and assume momentum is flowing in this direction, the sign convention for 

momentum flux is automatically taken place.) 
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In this case, momentum balance in Equation (9.2) may be modified as shown below 
 

Here, the shear stress are taken into account as momentum flux. The pressure and gravity are the 

only applied forces. 

 

Substituting various terms in above equation, we obtain 
 

 

Dividing by , we obtain 
 

Again as dr→0 Equation (10.17) leads to 
 
 

 

or 
 

 

By integrating the Equation (10.18), we have 
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As we discussed earlier, c1 should be zero. Therefore, 
 

 

Now applying Newton’s law of viscosity where shear stress is taken as momentum flux, we 

obtain 
 

 

 

Equation (10.14) and (10.20) are identical and hence show that both methods finally lead to the 

same result. 

To obtain velocity profile we further integrating the Equation (10.21) 
 

Here c2 is the second constant of integration which may be determined by using appropriate 

boundary condition. 

 

Boundary condition 

 

By no-slip boundary condition 

vz=0 at r=R 
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Substituting the value of c2 in Equation (10.22), we finally get 
 

 

Note: c1 can also be calculated by using the boundary condition in terms of velocity vz: i.e., vz is 

finite at r=0 

 

 

or (since the velocity profile is symmetric about r=0). 

Thus, the velocity profile for flow through pipe is given by the following expression 

 
The maximum velocity of the fluid will be exhibited at the centre of the pipe and is given by 

 

Alternatively, the velocity profile may also be expressed in terms of the maximum velocity as 
 

 

The average velocity of the fluid in the pipe is the average of all local velocities. Thus, this may 

be calculated by estimating the volumetric flow rate through the pipe and then dividing it by the 

cross sectional area of the pipe. The total volumetric flow in the system is 
 

where, dQ is the volumetric flow rate from small cylindrical strip of thickness dr. 
 

 

 

 

By substituting the value of v z from equation (10.27), we have 
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By integrating the equation (10.30) from r=0 to r=R, we obtain 

 

or 

 
 

Thus, 

 

 
and average velocity is 

 

or 

 

 
The velocity profile for laminar flow in a circular tube is shown in Fig. 10.5. 
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Fig 10.5 Velocity profile in horizontal pipe 

 

We can also find the radial distance at which the local velocity of fluid flow equals the average 

velocity. For this, substitute   into Equation (10.26), we obtain 

 

Finally , the volumetric flow rate in terms of pressure drop is as follows 
 

 

Equation (10.36) is known as the Hagen – Poiseuille equation. Thus, if the pressure drop is 

given, we can calculate the volumetric flow rate in the pipe and vice-versa. This equation can 

also be used for the calculation of viscosity in capillary flow viscometer. However, it may be 

noted that Hagen – Poiseuille equation is valid only for fully developed laminar flow. Therefore, 

when this equation is used for various calculations there may be some errors due to developing 

and exiting flow at both ends of the pipe. Hence, this equation has to be modified for real 

situations. 

Friction factor 

 

The friction factor is a dimensionless number, which provides an idea about the magnitude of 

shear stress produced by a solid boundary as fluid flows. This is defined as the ratio of shear 

 

 
 

stress at the wall and the kinetic energy head of the fluid, . Here, ρ is the density 
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and is the average velocity of fluid. The friction factor is thereby defined as 
 

 

 

 

 

 

 

where, is the shear force per unit area on the wall of the tube. This may be calculated as 

shown below 
 

Here, first minus sign is used as the inside surface of the tube wall has outer normal in the 

negative r direction and second minus sign is used because  is treated here as momentum 

flux. If is treated as actual shear force then positive sign would have to be taken. For fully 

developed laminar flow, the velocity profile is parabolic and is given by 
 

Evaluating the velocity gradient at the wall (r=R), we have 
 

Thus, the shear stress considered as momentum flux is given by 
 

 

or 
 

 

The friction factor may now be calculated as shown below 



   

34 

 

 

 

 
 

or 
 

 

Equation (11.7) shows that the friction factor in laminar flow region depends only on the 

Reynolds number. Clearly, the friction factor is also a dimensionless number. 

 

Friction factor in turbulent flow 
 
 

Fig 11.1 Smooth and rough surface of pipe 

 

In turbulent flow, the friction factor also depends on the surface of the pipe. A rough pipe leads to 

higher turbulence than a smoother pipe, so that the friction factor for smoother pipes is less than 

that for rougher pipes. The ratio of surface roughness height (∈) to pipe diameter (D) is used to 

quantify the “roughness” of the pipe surface. In practice, the shear stress on the wall may be 

calculated by measuring the pressure drop across the pipe for a given flow rate. Thus, friction 

factor may be calculated as the function of Reynolds number and plotted on a log-log plot for a 

given surface roughness. The curves are different for different surface roughness as shown in 

figure. (11.2). The collection of these f-Re plots is called Moody Chart as shown in figure below, 

and can be used for estimating the friction factor for given flow parameters. 
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Ref: http://www.brighthub.com/engineering/civil/articles 

 

Solution of some more fluid flow problems by shell momentum balance approach 

 

In this section, we solve a few more fluid mechanics problems in simple geometries using the 

shell momentum balance approach. The detail procedure, which was also used in previous 

example, is outlined below. 

 

1) Make a diagram of the flow geometry with the appropriate coordinate system 
 

2) Specify all necessary assumptions 
 

3) Intuitively assume the velocity profile 
 

This is an important step for solving these problems. In laminar flow, the fluid flows in parallel 

layer without mixing. Thus, it is easy to guess the non-zero components of velocities by 

intuition. 

 

4) Apply of the equation of continuity to modify the velocity profile 
 

5) Determine the non-zero shear stress component(s) 
 

Since the shear stress components depend on the velocity profile, the non-zero shear stress 

components may now be determine. 

 

6) Determine control volume and make shell momentum balance for the control volume 
 

Draw control volume in system diagram according to system shape, size and problem statement. 

The selection of proper control volume is very important to solve problem correctly. The control 

volume should be select in such way that it can be easily integrated for whole system. The 

differential length of control volume should be taken in direction of changing velocity. 

Write momentum balance equation for the control volume. The shear stress may be considered as 

shear force or as momentum flux, both provide the same results as shown in previous example . 

Write down all surface and body force acting on the fluid carefully. Finally obtain a appropriate 

http://www.brighthub.com/engineering/civil/articles
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differential equation and integrate. 

 

7) Boundary conditions 
 

Use appropriate boundary conditions which help us to determine the constant of integration in 

above step. 

 

1.8 Falling film on an inclined flat surface 

 

An inclined surface of length L and width W is situated at an angle Β to the vertical direction as 

shown in Fig. (11.3). A Newtonian fluid is freely falling on the surface as a film of thickness δ. 

Assuming the flow to be laminar, determine the velocity profile, flow rate and shear force on the 

surface by the fluid. 

 

Solution 
 

 
 

Fig 11.3 Laminar flow on an inclined surface 

Assumptions 
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 Constant density, viscosity 
 

 Steady state 
 

 Laminar flow (simple shear flow) 
 

 Fully developed flow 
 

 Newton's law of viscosity is applicable 

 

Assume velocity profile 

The fluid is flowing in the z direction, hence only the z component of velocity is non-zero. Thus, 

we may assume 
 

 

We may further assume that vz does not depends upon y coordinate. Since the flow is steady, vz 

does not depend on time. Thus, 
 

 

Using the equation of continuity in the cartesian coordinates for constant fluid density, we have 
 

 

which reduces to 
 

 

Equation (11.11) indicates that vz does not depend on the z coordinate. Thus, 
 

, an
d 
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There are nine components of the shear stress as shear force or momentum flux, namely 
 

 

Since vz is only the non-zero velocity, and also it is the function of x coordinate , is the only 

significant component of shear stress and we need to write momentum balance only in z 

direction. Because the pressure is same at both ends of the inclined plane, there is no pressure 

force on the fluid. Now, we can solve this problem by assuming shear stress as a shear force or 

shear stress as momentum flux. 

 

Assuming   as momentum flux 

Draw a control volume of length L, width W and differential thickness dx. 
 
 

Fig 11.3 Control volume for falling film problem 

Momentum balance in x direction 

Rate of momentum flux entering CV due to viscous transport at 
 

 

Rate of momentum flux leaving CV due to viscous transport at 
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Gravity force acting on fluid in z direction 
 

 
Rate of momentum flux entering in CV due to convective transport 

 

 

Rate of momentum flux leaving from CV due to convective transport 
 
 

 
Now, when above terms are substituted for z-momentum balance, we obtain 

 

 

Since the velocity vz does not depends on z coordinate, the first two terms cancel out and we 

obtain 
 

Dividing Equation (11.19) by volume of the control volume (LWΔx), we have 
 

 
As Δx→0 , The Equation (11.20)simplified to 

 

 
The Newton’s law of viscosity (here, shear stress is defined as momentum flux) is given by 
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By integrating the Equation (11.25), we have 
 

or 
 

 

The above equation requires two boundary conditions for determining c1 and c2. 

Boundary conditions 

1 At x=0 the liquid surface is in contact with air where the shear stresses at both gas liquid 

phases should be equal. Thus, 
 
 

 

Since both may be assumed Newtonian fluids, we have 
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where ρg is the density and µg is the viscosity of air. Thus 
 
 

 

Since, µg and ρg is much smaller than µ and ρ, and Equation (11.30) may be approximately 

written as 
 

 

Substituting above boundary condition in Equation (11.26), we obtain 
 

 
2. At x=δ no slip boundary condition may be applied, i.e., 

at 

 

 
Thus, from Equation (11.27), we get 

 

 

or 
 

 

Finally the velocity profile is obtained as 
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or 
 

 

 

 

 

 

Falling film "Assuming as shear force" 

 

Now, we again solve the same problem (falling film over an inclined plane) by treating shear 

stress as a shear force. For this purpose, we take the same control volume as before. 

For momentum balance in z direction, all terms are same as before except the terms for shear 

forces. Here, represents the force in z direction acting on the surfaces which have normal in 

x direction. Shear force is positive if the outward normal is in positive direction and negative if 

normal is in negative direction. Thus, 

 

shear force at x=x is 

 
 

Shear force at x=x+Δx is 

 
; 

 

The z momentum balance for this case is as follows 
 

 
Dividing Equation (12.3) by the volume of control volume WLΔx, we have 

 

 

As Δx→0 Equation (12.4) leads to 
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Now, substituting the Newton’s law of viscosity for shear stress as a force 
 

 
Therefore, 

 

 

Equations (11.24) and (12.7) are the same, which show that both approaches provide the same 

answer. 

 

Maximum velocity 

 

It is clear from Equation (11.37) that the maximum velocity is given by 
 

 

Average velocity and volumetric flow rate of falling film 

 

vz is the linear velocity in z direction. Hence, the volumetric flow rate can be determined by 

integrating it over the cross section of flow (Wδ).Thus , 

 
 

From Equation (11.37), we get 
 

 

By integrating Equation (12.10), we find 
 

 

To obtain the average velocity, we divide the volumetric flow rate by the cross sectional area. 
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or 
 

 

Equation (12.12) may also be written as 
 

 

Force acting on solid surface due to the fluid 
 

 

(Note: in Equation (12.14), first ‘+’ sign shows the direction of the normal of the inclined surface 

and second ‘+’ sign is taken since shear stress is defined as shear force). Thus, 
 

 

In this lecture, we have once again seen that the shear stress tensor may be assumed as a shear 

force or as a momentum flux. In either case, we finally obtain the same expression for the 

velocity profile. The only difference is that when we treat shear stress as a shear force, it is 

included in the summation of all forces term in the momentum balance equation, while when we 

treat shear stress as momentum flux, it is written as momentum entering and leaving by the 

viscous transport. From now onwards, we will treat shear stress as momentum flux as it is more 

consistent with what we see in heat transfer as Fourier’s law of heat conduction and in mass 

transfer as Fick’s law of diffusion. Thus, in transport phenomena (Momentum transport, Heat 

transport, and Mass transport) for the basic transport laws we have minus sign in front the 

relevant gradient implying fluxes flow from higher values to lower values. 

 

Falling film on the outside of a circular shell 

In an experiment, a fluid flows upward through a small circular shell and then flows downward 

out side the tube under laminar conditions as shown in Fig. 12.2. We need to set up a relevant 

momentum balance and determine the velocity profile, mass flow rate and the force acting on 

outer surface of the tube. 
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Fig 12.2 Falling film outside the circular tube 

Assumptions 

 Density and viscosity are constants. 
 

 Steady state. 
 

 Fully developed laminar flow. 
 

 Newton’s law of viscosity is applicable. 

 

Non-zero velocities 

Fluid is flowing in the z direction due to gravity. There is no driving force in the θ direction and a 

solid surface is present in the r direction. Therefore, we may intuitively assume that 
 

 
Now, using the equation of continuity in cylindrical coordinate system, we have 

 

 

or 
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From Equation (12.18), we obtain that vz is independent to z. Therefore, 
 

 

Choose a control volume in the film of differential thickness dr and length L (it is a cylindrical 

shell). 
 
 

Fig 12.3 Control volume for falling film outside the circular tube 

 

There are nine components of shear stress tensor. Since the fluid is flowing in z direction and it is 

a function of r only, we may argue as before  is the only important component of the shear 

stress tensor. The other components are insignificant for momentum balance in z direction. The 

momentum balance in z-direction is given below. 

 

Momentum balance for control volume 

Convective momentum entering the control volume at z=0 is 

 
 

Convective momentum leaving the control volume at z=L is 

 
 

Shear stress as momentum flux entering the control volume at r= r is 
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Shear stress as momentum flux entering the control volume at r= r + Δr is 

 
 

{Note: If you consider shear stress as momentum flux, then it always flows in the positive 

direction of axes} 

 

Fluid is flowing only due to gravity and may be written as 

 

Substituting above terms, we obtain 
 

 

Since velocity, vz, is not dependent on the z, the first two terms in above equation are equal and 

cancel out, leaving the following equation for momentum balance. 
 

 

Dividing Equation (12.26) by volume of control volume  , we obtain 
 

As dr→0, Equation (12.27) reduces to 
 

 

or 
 

 

After integration we obtain 
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and 

 
 

Here, and are the constants of integration. 

Boundary conditions 

1. r=aR we have the air water interface where we may assume that 

 
(The explanation is given earlier in Lecture 11.) 

Substituting the above boundary condition in Equation (12.31), we obtain 

 

 
2. At r = R, no slip boundary condition is applicable. Thus, 

 

Using this boundary condition, we obtain 

 
or, 

 
 

Therefore, the velocity profile is given by 
 

 

or 



   

49 

 

 

 

 
 

Maximum velocity 

 

At r = aR, the velocity is maximum. Thus, 
 

1.9 Flow through Annulus 

 

A Newtonian fluid is flowing in a narrow slit (B<<W<<L ), formed by two parallel plates as 

shown in Fig. (13.1), due to the combined effect of both gravity and pressure. Determine the 

velocity profile, average velocity, and mass flow rate for laminar and steady flow. 
 

Fig 13.1 Laminar flow in narrow slit 

Assumptions 

 Density and viscosity are constant. 
 

 Steady state. 
 

 Laminar Flow(simple shear flow). 
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 Newton's law of viscosity is applicable. 

 

Fluid is flowing in the z direction due to both gravity and pressure difference. Therefore, vz is 

the only important velocity component. As the slit is very narrow (B<<W<<L ), we may assume 

that end effects are negligible in y direction and vz is not a function of y. 

 

Thus, intuitively we assume the velocity profile as, 
 

Now, using the equation of continuity in cartesian coordinate system 
 

 

or 
 

 
Therefore, 

 
 

 

From above velocity profile, we may conclude that  is the only important shear stress 

component. We now select a cuboidal control volume of dimensions L, W, Δx, as shown in Fig. 

13.2 (Note: differential thickness is chosen in x direction) 
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Fig 13.2 Control volume for laminar flow in narrow slit. 

Momentum balance in z direction 

Convective momentum entering the CV at z=0 is 

 

Convective momentum leaving the CV at z=L is 

 

Momentum entering CV by viscous transport at x=x is 

 

Momentum leaving the CV by viscous transport at x=x+Δx is 

 

Pressure force at z=0 is 

Pressure force at z=L is 

Gravity force on CV is 

 

Substituting these terms into the momentum balance in z direction, we get 
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Since, vz is not a function of z, the first two convective momentum terms represented by 

Equations (13.5) and (13.6) are equal and hence cancel out from the above equation and we get 
 

 
Dividing Equation (13.13) by the volume of the control volume ΔxLW , we obtain 

 

 

Combining the pressure force with gravity, and taking the limit as Δx→0, we have 
 

 

or 
 

 

 
where, 

 

 
Substituting Newton’s law of viscosity, we have 
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or 
 
 

and finally after integration, we get 
 

 

Boundary conditions are 

 

1. At x=0 , the velocity profile must be symmetric. Therefore,  

or 
 

 

2. At x=B , no slip boundary condition is applicable. Thus,  
 

or 
 

 

Thus, velocity profile may be written as 
 

 

Equation (13.23) describes the velocity profile in the narrow slit. 

Mass flow rate and average velocity 
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Mass flow rate = Volumetric flow rate × Density 
 

 

By substituting the value of velocity from Equation (13.23), we have 
 

 

or 
 

 

Average velocity = Volumetric flow rate/ Area of cross section 
 

 

or 
 

 

Annular flow with inner cylinder moving axially 

 

In a wire coating machine, a wire of radius kR is moving into a cylindrical hollow die. The 

radius of the die is R , and the wire is moving with a velocity v0 along the axis. The die is filled 

with a Newtonian fluid, a coating material. The pressure at both ends of the die is same. Find the 

velocity distribution in the narrow annular region. Obtain the viscous force acting on the wire of 

length L . Also, find the mass flow rate through the annular region. 



   

55 

 

 

 

 

Fig 13.3 Annular flow with the inner cylinder moving axially 

Assumptions 

 density and viscosity are constant 
 

 steady state. 
 

 laminar (simple shear flow). 
 

 Newton's law of viscosity is applicable. 

 

Velocity components 

 

The fluid is moving due to the motion of the wire in z direction so vz is the only important 

velocity component. There is no solid boundary in θ direction, and the flow is steady, therefore 

vz will not depend on θ and t. Hence, 
 

 
Now, applying the equation of continuity in cylindrical coordinates 

 

 

or 
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Thus, 
 

 

This result indicates that  is the only significant shear stress among the 9 components for 

momentum balance in z direction. Now, consider a control volume of differential thickness dr 

and length L at a distance r away from the center. We may write the momentum balance in z 

direction. 
 

Fig 13.4 Control volume for annular flow with the inner cylinder moving axially 

Convective momentum entering at z=0 is 

 

 

Convective momentum leaving at z=L is 
 

 

Momentum entering control volume by viscous transport at r = r is 
 

 

Momentum leaving control volume by viscous transport at at r = r +Δr is 
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Now, the momentum balance over the control volume is below 
 

 

Since velocity vz is not dependent on z coordinate therefore the convective terms represented by 

equations (13.29) and (13.30) are equal and hence cancelled out. Leaving with the following 

equation, 
 
 

 

 

Dividing equation (13.34) by volume of the control volume, 
 
 

 

Taking the limit as dr→0, we have 
 

 

and after integration 
 

 

where  is an integration constant. Now, using Newton’s law of viscosity, we get 
 

or 
 

 

where  is another integration constant. 
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Boundary conditions are 

 

at r = kR ,  
 

or 
 

 

and at r = R,  
 

or 
 

 

From Equation (13.41) 
 

 

or 
 

 

or 
 

By substituting the value of c1 into Equation (13.39), the velocity profile may be obtained as 
 

 

or 
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Mass flow rate in the annular region 
 

 

or 
 

 

or 
 

 

Drag force acting on the wire may be calculated as 

 

or 
 

 

By substituting the value of velocity vz, we obtain 
 

Finally, we obtain the expression for drag force as 
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1.10 Flow of two immiscible fluids between two parallel plates 

 

Two immiscible liquids are flowing in between two adjacent, parallel plates. Solve the problem 

for velocity profile and mass flow rate. 
 

Fig 14.1 Flow of two immiscible fluids between a pair of horizontal plates 

Assumptions 

 Density and viscosity are constants. 
 

 Steady state. 
 

 Laminar (simple shear flow) fully developed. 
 

 Newton’s law of viscosity is applicable. 

 

Since fluid is flowing in z direction only, therefore vz is the only non-zero velocity component. 

We can assume that end effects are negligible in y direction and hence, vz is not a function of y. 

thus, 
 

 
Now using equation of continuity for Cartesian coordinate system 
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which implies that 
 

 

As before, we may concluded that is only important shear stress component for momentum 

balance in z direction. Choosing a differential strip of thickness dx and length L as a control 

volume, we have 
 

 

 

 

Fig 14.2 Control volume for Flow of two immiscible fluid between a pair of horizontal plates 

Momentum balance in control volume 

Convective momentum entering CV at z=0 is 
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Convective momentum leaving CV at z=0 is 

 

Momentum entering CV by viscous transport at x=x is  

Momentum leaving CV by viscous transport at x=x+Δx is  

Pressure force at z=0 is 

 
 

Pressure force at z=L is 

 

The equation for momentum balance can be written as 
 

 
As before, convective terms cancel out and Equation (14.11) reduces to the following equation. 

 

 

Dividing Equation (14.12) by volume of control volume ΔxLW, we obtain 
 

 

Now, as Δx →0 Equation (14.13) becomes 
 

 
After substituting Newton’s law of viscosity in Equation (14.14) and integrating it, we obtain 

 

 

This equation is valid for both regions. Therefore, 
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Here, superscript (1) represents the phase-1 and superscript (2) represents the phase-2. 

Boundary conditions 

There are four boundary conditions needed to solve the problem and given below 
 

 

This leads to the solution 
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1.11 Derivation of equation of motion 

 

In this section, we derive the equation of motion, which may be used for solving any fluid 

mechanics problem. This equation is based on axiom 2, i.e., the momentum is conserved. We 

consider a control volume having volume Δx,Δy,Δz fixed in space. 

 

According to the momentum conservation equation, 
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Fig 15.1 Cubical control volume fixed in space 

Momentum balance in x direction 

 

Rate of accumulation of x directed momentum in control volume 
 
 

 
Net rate of inflow of x directed momentum into CV by convection from x-phases 

 
 

 
Net rate of inflow of x-momentum into CV from y-phases 

 
 

 
Net rate of inflow of x-momentum into CV from z-phases 

 
 

 
Net rate of inflow of momentum into CV due to viscous transport 



   

66 

 

 

 
 

 
 

In all shear stress component, the second index shows the direction of momentum flux and first 

 

index shows the direction in which the momentum is flowing. For example, denotes the x 

directed momentum flowing in y direction. Therefore, the x directed momentum fluxes are 

 

and . Thus, 

 

Net rate of inflow of x directed momentum by viscous transport from x phase are 
 

 

Net rate of inflow of x directed momentum by viscous transport from y phase are 
 

 
Net rate of inflow of x directed momentum by viscous transport from z phase are 

 

 

Net pressure force in x direction = 

 
 

Gravity force in x direction = 

 
 

Adding all the above terms and dividing by the volume of control volume Δx,Δy,Δz and finally 

taking the limits, 

Δx→0, Δy→0,and Δz→0, we obtain 
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The above equation is the x component of equation of motion in cartesian coordinate system. 

Similarly, for y-direction 
 

 
and for z-direction 

 

 

The above three equation may be combined in vector tensor form as 
 

In above form, the equation of motion may be used in any coordinate system. 

Equation (15.14) may be written in substantial derivative form as shown below 

 

 
 

if    and  are the two vectors. We may use the following vector identity. 
 

Now, replace  by  and   by  then we have 
 



   

68 

 

 

also, 

 

 
After substituting Equations (15.17) and (15.18) in Equation (15.14), the equation of motion 

reduces to 
 
 

 

Rearranging the terms on the left hand side, we have 
 

 
But from the equation of continuity 

 
 

 

or 
 

 
 

Equations (15.20) and (15.21) are the generalized form of equation of motion without any 

assumption and may be applied to any coordinate system. The detailed form of this equation in 

cartesian, cylindrical and spherical coordinate system is given in Appendix-3. 

Navier Stokes Equation for incompressible Newtonian fluid 

 

The equation of motion may be further simplified by substituting the Newton’s law of viscosity 

for the momentum flux term appearing in the equation of motion. 

For a one-dimensional system where 
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vy=0,vz=0...................................................................................................................................... 

(16.1) 

 

we have seen that the Newton's law of viscosity may be written as, 
 

 

where, represents x directed momentum flowing in the y direction However, in general, for 

a three dimensional flow, all 9 components of shear stress may be important. Thus, 
 

 

 

 

Here,  , and  are the normal stresses and the remaining are shear stress. 

Axiom 3: Moment of momentum is conserved 

This axiom 3 leads to a very simple conclusion that the shear stress tensor is symmetric in nature. 

The derivative itself is lengthy and is not reproduced here. is symmetric implies that 
 

Newton’s law of viscosity may now be generalized as given below. Again, the basis for this 

representation is not shown here, but it may be found in any standard books in fluid mechanics. 
 

 

where, 
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Hence, we have the nine components of shrear stress as 
 

 

The detail form of Newtons law of viscosity in all coordinate system is given in Appendix- 01. 

Now, consider the situation when an incompressible fluid is flowing only in x direction and 

depends on y coordinate only. In such a case, we have , and  . We can 

easily see that for this case, 
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and only significant components of stress are and . Also, the expression for is 

the same as given earlier as Newton’s law of viscosity. For rectangular coordinate system, 

substituting the value of  in the x component of equation of motion, we obtain 
 

Assuming that ρ and µ are constant, we obtain 
 

 
or 

 

 

or 
 

 

But from equation of continuity for an incompressible fluid, we have 
 

 

Therefore, 
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or 
 
 

 
or 

 
 

similarly 
 

 

Therefore, in vector and tensor form 
 

 
Thus, the equation of motion reduce to 

 

 

Equation (16.25) is known as the Navier Stokes equation and is used for solving problems 

involving Newtonian fluids of constant density and viscosity. For non-Newtonian and 

compressible fluids, the generalized form of equation of motion given earlier must be used. The 

detailed forms of the equations of motion along with Navier Stokes equations in cartesian, 

cylindrical and spherical coordinates are given in the Appendix-03. 

Solution of momentum transport problems using Navier Stokes equation 

 

In this section, transport problems involving Newtonian fluids are solved by making use of the 

equation of motion or Navier Stokes equation. We will firstly solve the falling film problem and 

flow through a circular tube for comparing the solutions obtained earlier by using the shell 
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momentum balance method. We will then proceed to solve some more fluid mechanics problems. 

 
1.12 Falling film on an inclined surface 

 

 

 

 

 

 

Fig 17.1 Falling film on inclined surface 

 

This problem was solved earlier by the shell momentum balance technique. We will now try to 

solve this problem by using the Navier Stokes equations. 

We are again required to make the same necessary assumptions as done earlier using the shell 

momentum balance technique. We postulate the non- zero components of the velocity and from 

there, determine the non-zero components of the shear stress tensor. These steps are the same as 

earlier and lead us to conclude that  and  is the only important component of 

shear stress. We now use the Navier Stokes equation in cartesian coordinates as given in 

Appendix-03. 

x component is  
 

y component is 

 

 
z component is 
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where 
 

 

Integrating Equation (17.3), we have 
 

 

and 
 

 

The boundary conditions are also the same as used earlier, 

at 

 

 

 
and 

at 

 
This leads to the solution for velocity profile, as 

 

 

which is same as obtain earlier using shell momentum balance approach. 

Fluid flow through a vertical tube 

A Newtonian fluid is flowing inside a vertical tube having circular cross section due to pressure 

difference and gravity. Solve the problem using the Navier Stokes equations. 
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Fig 17.2 Flow through a vertical circular tube 

 

A similar type of problem (for a horizontal pipe) was solved earlier using the shell momentum 

balance technique. Therefore, the initial steps are the same and include making appropriate 

assumptions and postulating the non- zero velocity components. As shown earlier, it leads to the 

conclusion that  

Now using the Navier Stokes equation for cylindrical co-ordinates, after eliminating all zero 

terms, we have r- component of Navier Stokes equation 

 
 

component 
 

z - component 
 

 

We can combine gravity and pressure forces as to rewrite Equation (17.11) as, 
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where, Pc is the effective pressure including the gravity, and is defined as, 

 

 
Note that since pressure changes in only z direction and vz is a function of r only the partial 

derivative may be converted to total derivative. Furthermore, in Equation (17.12), the first term 

is only a function of z and the second term is only a function of r, i.e., 
 

 

This leads to result that F1 and F2 both are constants as Equation (17.13) is true for all values of 

z and r. 
 

 

Therefore, 
 

 

By integrating the Equation (17.15) 
 

 

Boundary conditions are 

at 

 

and 

at 

This leads to the following solution 
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By substituting in Equation (17.12) 
 

 
or 

 

 

 

Boundary conditions are 

at r= 0,  is finite 

and 

 

at r = R, 

 

This leads to 
 

 

which is again similar to what we have seen for a horizontal tube except for pressure difference 

term. In fact, it can be shown that the velocity profile given in Equation (17.22) is valid for any 

configuration, horizontal, vertical, or inclined, with effective pressure is defined as 
 

 

 

Radial flow between two parallel discs 
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A part of a lubrication system consists of two circular discs and the lubricant flows in the radial 

direction. The flow takes place because of modified pressure (p1- p2) between the inner and outer 

radii r1 and r2 respectively. Formulate the problem for velocity profile and mass flow rate 

through the system. 
 

Fig 19.1 Radial flow in space between two parallel circular discs 

 

Assumptions 

 

 Density and viscosity are constant 
 

 Steady state. 
 

 Laminar flow (simple shear flow). 
 

 Newton's law of viscosity is applicable. 

 

Velocity profile 

 

The fluid is flowing in the r direction. Hence, the only non-zero component of velocity is vr and 

it depends on the both r and z. It will not depend on the θ coordinate due to cylindrical 

symmetry. i.e., 
 
 

 
Applying the equation of continuity in cylindrical coordinates 
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or 
 

 
or 

 

 
Thus, is a constant and which may be a function of the z, 

 

 

Using the r-component of the Navier–Stokes equation in cylindrical co-ordinate systems, we 

have 
 

 
By substituting Equation (19.5), we get 

 
 

 
Equation (19.7) is a second order partial differential equation and may not solve analytically. 

However, we may obtain an analytical solution for the limiting case when the flow is very slow 

(also called a creeping flow). In such a scenario, we may neglect the convective term (on the left 

hand side) in Equation (19.7) and thus, we have 
 

 
Multiplying r on both sides, we have 
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or 
 

 

In Equation (19.9), the left hand side is a function of r only, while the right hand side is a 

function of z only. Since this equation is valid for all possible values of r and z, both the terms 

should be equal to each other, and in turn equal to a constant, , independent of r and z. 

Therefore, 
 
 

 

or 
 

 
From Equation (19.10), we get 

 

 

or 
 

 

Substituting Equation (19.13) into Equation (19.11), we find 
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or 

 

 

 

 

 

 

Boundary conditions 
 

No-slip is valid at both the plates. Thus, 

at 

 

 
By substituting these boundary conditions in Equation (19.15), we have 

 

 

At z=0, the velocity profile is symmetric. Therefore, this is the second required boundary 

condition for the problem 

 

 

 

 

 
This leads to the solution 

 

 

and 
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or 

 

 

 

 

 

 

 
Finally, we obtain the velocity profile 

 

 

 

 

 

 

 

 

 

The mass flow rate of at any r in the system must be the same (in fact that was the reason, why 

we got constant for a given in the first place). Select the surface at to obtain mass 

flow rate 
 
 

 

or 

 

 

 

 

 

 

 
Parallel – disc viscometer 

 

A fluid is placed in a gap (of thickness B) between two parallel discs of radius R. The lower disc 
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is kept stationary while the upper disc is made to rotate at a constant angular velocity . 

Formulate the problem for determining the viscosity at low shear rates. 
 

 

 

Fig 19.2 Front view of two-plate viscometer 

 

Assumptions 

 

 Density and viscosity are constant. 
 

 Steady state. 
 

 Laminar flow (simple shear flow). 
 

 Newton's law of viscosity is applicable. 

 

Velocity profile 

 

The fluid is sheared in the θ direction; hence, vθ is the non-zero component of velocity. Applying 

the equation of continuity in cylindrical coordinate, we obtain 

 

 

 

 

 
Thus, vθ, does not depend on the θ coordinate, or 
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For simplifying the problem further, we may assume that for low shear rates 

 

 

 

 
Using the θ component of the Navier – Stokes equation for cylindrical co-ordinate systems 

 

 

 

 

 

 

By substituting Equation (19.25), we get 
 

 

 

 

 

 

 

or 
 

 

After integration, we finally obtain 

 

 

 

 

where and are the integral constant. 
 

Boundary conditions are 

at  , or 
 

thus, 
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and at or 

 

 
 

This boundary condition leads to the solution 
 

 

 

 

 

 

and 

 

 

 

 
 

Finally, we obtain the velocity profile 
 

 

 

 

 

 

Now, the z-component of the torque exerted on the fluid by the upper rotating disc, may be 

calculated as 

 

 

 

 

 
 

or 
 

 

Finally, we obtain the value of torque. 

Thus, by plotting the angular velocity vs torque Tz, the viscosity may be 
determined. 
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Non-Newtonian fluids 

 

Non-Newtonian fluids are the fluids which do not obey Newton’s law of viscosity. For 

describing Non-Newtonian fluids, let’s recall the Newton's law of viscosity experiment. There 

are two long parallel plate situated at distance h to each other. Top plate is stationary and bottom 

plate is moving with velocity   as shown in Fig. (20.1). 
 
 

Fig 20.1 Non-Newtonian flow between two parallel plates 

If a force, F, is applied to move plate, then (  ) 

 
and under steady state conditions when h is small and when 

 

 

Now, we calculate  by repeating experiments for different applied forces and velocity 

achieved by the bottom plate and plotting a graph as shown in Fig. (20.2). Depending on the 

nature of fluid, different types of curves may be obtained. 
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Fig 20.2 Shear stress vs. shear strain diagram for Newtonian and non-Newtonian fluids 

1.13 Rheological behaviour of fluids 

 

If fluid shows the behaviour like curve (1) then it is a Newtonian fluid. Other fluids are non- 

Newtonian fluids. Curve (2) represents a Pseudo-plastic fluid, curve (3) represents a Dilatant 

fluid, and curve (4) represents a Bingham plastic fluid. There are several Theoretical and 

empirical models available to describe the rheological behaviour of non-Newtonian fluids. Here, 

we discuss some of them, which come under the group of generalized Newtonian models. Basic 

equation for a generalized non-Newtonian fluid is given below 
 

 

Here,  is the apparent viscosity, which is clearly a function of shear rate as may be seen from 

Fig. (20.2). Therefore, 
 

 

 

 
If the apparent viscosity increases with increase in shear rate, , then the fluid is called 

 

 
Dilatant fluid and if it decreases with increase in shear rate, then fluid is called Pseudo- 

plastic fluid. Some fluids require a critical shear stress to initiate the flow. These fluids are called 

Bingham fluids. Some important rheological models for non-Newtonian fluids are given below. 
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1 Power Law or Ostwald De Waele model 

 

Power law or Ostwald De Waele model is the most generalized model for non-Newtonian fluids. 

The expression of this model is given in Equation (20.3) 
 

 

This is a two-parameter model where m and n are the two parameters. 

If n = l then    = m 

where m is similar to the viscosity of the fluid and model shows the Newtonian behaviour . 

If n>1, then   increases with increasing shear rate and the model shows the Dilatant behaviour. 

If n<1, then  decreases with increasing shear rate and the model shows the Pseudo-plastic 

behaviour. 

 

Modulus sign 

 

In power law model, modulus sign can be removed according to the value of shear rate. 

 

1. If  is positive, then 
 

2. If  is negative, then 

Here, apparent viscosity is defined as, 
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Several fluids do not show single type of rheological behaviour. They show Newtonian 

behaviour for a range of shear stress and Non-Newtonian behaviour for some other ranges of 

shear stresses. Several models have been suggested for these types of fluids. Some popular 

models like Eyring model, Ellis model, Reiner Philipp off model and Bingham Fluid model are 

discussed here. 

 

2. Eyring model 
 

Eyring model is a two-parameter model. The equation of Eyring model is as follow 
 

 

 

where A, B are the two parameters. 
 

 
 

Therefore, as → 0, the model shows Newtonian behaviour 

 
 

Here, viscosity =  

If is very large, the model shows Non-Newtonian behaviour as shown Fig. 20.3 

In Eyring model, if → 0 which means very low shear forces, we have 
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Fig 20.3 Shear stress vs. shear strain diagram for Eyring model 

 

Therefore, Eyring model may be used for a fluid which shows Newtonian behaviour at low shear 

rates and non- Newtonian behaviour at high shear rates. 

 

3. Ellis model 
 

Ellis model is a three-parameter model. The equation of this model is as follows 
 

 

 

 

 

 

Here, , and are the three parameters . 

Here, we consider some special cases, 

1. If  then Equation (20.11) reduce to 
 

or 
 

 

which is same as Newton’s law of viscosity with  as the viscosity of the fluid. 
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2. If , then 
 

 

which is similar to a Power law model 

 

3. If  >1 and is small then the second term is approximately zero and equation reduces to 
 

which is similar to Newton’s law of viscosity. 

 

4. If  <1 and is very large, then again, second term is negligible and we have 
 

 

 

Which again shows Newtonian behaviour. Therefore, Ellis model may be used for fluids which 

show Newtonian behaviour at very low and very high shear stresses, but non-Newtonian 

behaviour at intermediate value of shear stresses. 
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Fig 20.4 Shear stress vs. shear strain diagram for Ellis model 

This type of behaviour may be shown by some polymer melts 

4. Reiner Philipp off model 
 

This is also a three-parameter model. The equation of Reiner Philipp off model is as follows, 
 

 

where, , and  are the three parameters. 

In Reiner Philipp off model, if is very large, the equation reduces to, 

 

or 
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which is same as the Newton’s law of viscosity, 

 
 

If is very small then equation reduces to 
 

 

or 
 

 

which is also same as the Newton’s law of viscosity. Therefore, Reiner Philipp off model may be 

used for a fluid which shows Newtonian behaviour at very low and very high shear stresses but 

non-Newtonian behaviour for intermediate values of shear stress. Here,  and  represent 

the viscosity of fluid at very low and very high shear stress conditions respectively. 

 

5. Bingham Fluid model 
 

Bingham fluid is special type of fluid which require a critical shear stress to start the flow. 

The equation of Bingham fluid model are given below 
 

 

 

 

 

 

 

 

 

 

if 
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A typical shear stress vs. shear rate diagram for a Binghum model is shown below 
 
 

Fig 20.5 Shear stress vs. shear strain diagram for Bingham model 

Momentum transport problems involving Power law and Bingham fluids: 

 

In this section, we will solve fluid mechanics problem for Power law and Bingham plastic fluids. 

These problems have been earlier solved for Newtonian fluids. We have chosen the same 

problems here for better understanding. 

 

Falling film on inclined plane 

if or 
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Fig 21.1 Falling film problem for non-Newtonian fluid 

 

Initial steps, such as making appropriate assumptions, finding important velocity components, 

applying equation of continuity, and determining important shear stress components are similar 

as steps seen for Newtonian fluid in lecture 11 and 17. As before and is the only 

non-zero velocity component and is the only important shear stress component. 
 

(Note: Since the forms of shear stress for Newtonian and non-Newtonian fluids are same, the 

only difference is the viscosity μ for Newtonian fluids and apparent viscosity η for non- 

Newtonian fluids and furthermore as non-zero components of velocities are also same, the same 

components of shear stress    are significant for both Newtonian and non- Newtonian fluids.) 

To solve the problem, we start with the generalized equation of motion in terms of    .  Since 

the fluid is moving in z direction, discarding all terms which are zero, z-component of the 

equation of motion reduces to 
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where 
 

 

therefore, 
 

 
For Power law fluids 

 

 

 
Since vz is decreasing with increasing value of x , the negative sign should be used for removing 

the modulus sign, i.e. , 
 

 
or 

 

 

By substituting Equation (21.7) in Equation. (21.1), we obtain 
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By applying the boundary condition, at 

which simplifies to 
 

 

as disused in lecture 11 
 

 

By substituting this boundary condition in Equation (21.8), we get . Therefore, 
 

 
or 

 

Here,  is another integral constant. 

Now, using the second boundary condition, at  , we finally obtain 
 

Tube flow problem for Power law fluid 
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Fig 21.1 Flow through pipe for non-Newtonian fluid 

 

As we discussed in lecture 10, the only non-zero component of velocity is vz, which depends on 

r only. The important component of shear stress is . 

By applying general equation of motion in cylindrical co-ordinate, we get 
 

Equation (21.11) may be further simplified as before 

 
 

or 
 

 

By applying the boundary condition, at r=0, velocity is finite, we obtain 
 

and for power law fluids 

 
(Note: Since vz is decreasing with increasing value of r, the negative sign should be used for 

removing the modulus sign.) 
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By substituting Equation (21.13) to Equation (21.12), we get 
 
 

 

Integrating above equation, we obtain 
 

 

 

 

Now, by applying the no-slip boundary condition at, , we obtain 

Thus, 
 

 

Equation (21.15) represents the velocity profile of freely falling film on an inclined surface for a 

Power law non-Newtonian fluid. If we substitute the n=1 and m=μ in this expression, we get 

Equation (10.25) which was derived earlier for a Newtonian fluid. 

Tube Flow Problem for a Bingham Fluid 
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Fig 22.1 Flow through pipe for Bingham fluid 

 

As mentioned in the previous lecture, the forms of shear stress    for Newtonian and non- 

Newtonian fluids are the same. Therefore, Equation (21.12) is applicable for a Bingham fluids 

also, i.e., 

 
 

Equations (20.19) and (20.20) may be written for this system 

 

1. For (  ), where is to be determine latter, 
 
 

, or 
 

 

 

2. For ( ) 
 

 
 
In Equation (22.2), is negative. Therefore, after removing the modulus sign, we obtain 
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Thus, 
 

 

or 
 

 

Condition for movement of fluid 

 

As we start to pressurize the fluid by imposing pressure difference , fluid does not move initially. 

As we continue to increase the pressure difference the fluid may start to move at some critical 

pressure difference ( ). This critical value may be determined by setting 

. Thus, 
 
 

Thus, the fluid will flow if 
 

 
Suppose the pressure difference across the tube exceeds this critical value of pressure ( 

) then the fluid will start to flow. Now, under this condition we may calculate the 

value of (r0) where the value of  . For r<r0, the velocity gradient is zero and the 
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fluid flows with a constant velocity. The detail calculation for two different regions r<r0 and r>r0 

are given below. 
 

 

At  . Thus, 
 

or 
 

 

For r<r0, we equate Equations (21.12) and (22.4), that is 

 
 

Finally, we obtain, 
 

 

No slip Boundary condition at r=R ,    may be used to calculate c1 as shown below 

Substituting this value in Equation (22.11), we get 

 

 

Finally, the velocity profile is given by 
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Equation (22.12) gives the velocity profile is region as shown in Fig. 22.2. Equation 
 

(22.9) shows that as we keep increasing the pressure difference , the value of r0 keep 

on decreasing and the velocity profile changes as shown in Fig. 22.2. 

The value of r0 also depends on and reduces with it. If we substitute   in Equation 

(22.12), we obtain the same expression for velocity profile as we had earlier obtain for 

Newtonian fluids. This result implies that if the value of pressure difference  is 

significantly high then the Bingham fluid may show behaviour similar to Newtonian fluids. 
 

Fig 22.2 Effect of differential pressure flow through pipe for Bingham fluid 

Now, we may determine the velocity profile in the plug flow region (r>r0) by substituting r= r0 

in Equation (22.12) 
 

 

 

Falling film problem for Bingham fluid 
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Fig 22.3 Flow on inclined surface for Bingham fluid 

 

As we discussed earlier, the expression of shear stress is same, as we had derived for Newtonian 

fluids and Power law fluids in lecture 11 and lecture 21. Therefore, from Equation (21.3) 
 

 

For this system, Bingham fluid model may be written as, 

 

1. For ,  
 

2. For ,  
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As the critical thickness of film is unknown, (the fluid flows only when ) we may 

calculated from Equation (22.17), i.e., 

 

at or, 
 

or 
 

 

From region (1) where and , we have 
 

 
 

For region (2) where and , we have 
 

 

Here is negative. Therefore, after removing the modulus sign and substituting the value 

of η in Generalized Newton’s law of viscosity. we obtain, 

or 
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or 
 

 

or 
 

 

Finally, we obtain the velocity profile, as given below 
 

 

where c2 is an integral constant. By using no slip boundary condition at  , , we 

obtain 
 

 
Therefore, 

 

 

Equation (22.22) shows the velocity profile in region . From Equation(22.22), we 

may also calculate the velocity of plug flow region by substituting the value . Thus, 
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2.1 Introduction to Heat Transfer 
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In heat transfer, we deal with transfer of thermal energy or heat which takes place between 

different bodies/fluids. Here, we start with Axiom-4 of transport phenomena. 

 
This axiom is similar to the first law of thermodynamics. It states that "energy is conserved" 

which means energy can not be created or destroyed. Energy may be transferred from one form 

to another or one place to another. Transfer of energy in a system depends how it interacts with 

the surrounding. Here, the system is defined as the region of an equipment / unit which is under 

investigation. The remainder of everything else is called the surrounding which is outside the 

boundaries of the system. The system may be classified in three types, based on how the system 

is interacting with the surrounding in terms of heat, work, and mass exchange. 

 

(1) Isolated system 
 

Here, the system can not exchange either heat, work or mass with the surrounding. Therefore, the 

total energy of an isolated system does not be change or ΔE = E1-E2=0 where ΔE is the change in 

total energy of the system at two different states 1 and 2. 

 

(2) Closed system 
 

Here, the system can not exchange mass with the surrounding but heat and work may be 

exchanged. Therefore, the change in total energy of a closed system within two different states 

can be calculated as ΔE=ΔQ+ΔW where, ΔE is the change in energy of the system, ΔQ is the 

heat added to the system, and ΔW is the work done on the system by the surrounding. The 

change in total energy of a system, ΔE equals to the summation of changes in potential, kinetic, 

and internal energies of the system. However, the change in potential and kinetic energies of the 

system are usually negligible and thus, the total energy E changes only due to the change in 

internal energy, U. Therefore, for a closed system, we may write, 

ΔU=ΔQ+ΔW 

 

(3) Open system 
 

In an open system all three mass, heat, and work may be exchanged with the surrounding. 

Therefore, the change in total energy of an open system may be calculated as, 

 

 

the following manner. 
 

For a fluid flowing through a system it may be further expanded 

in 
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The above equation takes into account the heat transfer by three different modes as shown below. 

 
 

 Conduction: In heat transfer, heat conduction is the transfer of heat from 

higher temperature region to lower temperature region due to temperature 

gradients. 
 

 Convection: The energy transfer may also occur due to the transport of material from 

the boundaries of the system. 
 

 Radiation: This term implies transfer of heat energy due to electromagnetic waves 

under certain range of wavelength. Radiation does not require a material medium for 

energy transport like in conduction and convection. Unless the temperature is high, the 

heat addition by radiation may be neglected. 

 
 

While studying the subject of heat transfer, the main objective is to find the rate of heat transfer 

from a body or a system. Fourier’s law of heat conduction provides the relation between the rate 

of heat transfer and temperature gradients. 

 

Fourier’s law of heat conduction 

 

When a temperature gradient exists in a body, experience has shown that the heat is transferred 

from higher temperatures to lower temperatures. Consider a solid block of surface area A, which 

is located between two parallel planes, set a distance H apart as shown in Fig. (24.1). Initially, for 

t<0, the solid block is maintained at a homogeneous temperature T1 throughout. After some time 

t=0, lower plane is suddenly brought to a higher temperature T2 and maintained at that 

temperature for t>0. Once the steady state is achieved, it is found that a constant heat flux in x 

direction is required to maintain the temperature difference,  is required to maintain the 

constant temperature difference (T2-T1) across the solid block. 
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Fig 24.1 Flow of heat between two parallel plates 

 

Repetition of the above experiment with different temperature differences ΔT=(T2-T1) shows that 

the heat flux is proportional to ΔT/H as shown in Fig. (24.2). 
 
 

Fig 24.2 Heat flus vs. temperature gradient 

 

This implies that 
 

 
or 

 

 

 

where k is called thermal conductivity. Negative sign indicates that the heat flows from higher 

temperatures to lower temperatures. 
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Unit of thermal conductivity is 
 

 

 

The Equation (24.2) is called the Fourier’s law of heat conduction. By extending this equation in 

three dimensions, we obtain 

 
 

which may be written in vector form as 
 

 

Equation (24.4) describes the molecular heat transport or conduction for an isotropic body and 

holds for any coordinate system. The detail forms of Fourier's law in all coordinate systems are 

given in Appendix - 4. 

Heat transfer problem 

 

In this section, we solve some simple heat transfer problems due to conduction by using shell 

energy balance. 

 

2.2 Heat conduction through a composite wall 

 

 
Consider a composite wall of height L , width W and thickness . The wall contains 

two layers of different materials which have the thermal conductivity K0 and K1, and different 

 
thickness respectively. At x=0, the composite wall is maintained at a constant 

temperature T0, while at , it has a constant temperature T2 as shown in Fig. (25.1). 
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Fig 25.1 Heat conduction through a composite wall 

Assumptions 

 

 System is in steady state. 
 

 Thermal conductivity for both walls, K0 , and K1 are constants. 
 

 System follows Fourier’s law of heat conduction. 
 

 Heat loss from side walls in direction of y and z are negligible. 

 

Non-zero components of heat flux and the control volume 
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Fig 2 Control volume for heat flow through a composite wall 

 

Since temperature is changing in x direction only, the control volume is chosen such that it has 

differential thickness in x direction as shown in Fig. (25.2) and qx is the only component of heat 

flux. 

 

Energy balance 

 

Heat flux entering into the control volume at x = x is 
 

 
Heat flux leaving from the control volume at x = x + dx is p 

 

 

 
Any source or sink of heat is not present in the control volume and work done on the system is 

zero. The thermal energy balance for this control volume may be written as 

 

After dividing by LWΔx and taking the limit Δx to zero, we get 
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Integration of this equation gives 
 

 
Here C1 is the integration constant. Equation (25.5) implies that heat flux is constant throughout 

the composite wall. 

By applying the Fourier’s law of heat conduction, we get 
 

 

Equation (25.6) may also be written as 
 

 

Now, the problem may be solved for both layers of composite wall separately. 

Layer 1:  

Here, thermal conductivity is k0 Therefore, Equation (25.7) may be changed to 
 

 
At x=0, the temperature of the composite wall is given as T=T0. Also the temperature of the first 

at can be assumed as T=T11. By integration of Equation (25.8) and substituting the boundary 

conditions, we obtain 

 
 

Layer 2:  
 

 

Similar to solution for layer one, solution for layer 2 may also be found and given below 
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Here, T12 is the assumed temperature of second layer of 
 

 
It may be noted that at the interface of the two layers at X=δ1, the heat fluxes are same for both 

layers. Thus, equating the heat fluxes we find the integration constant c1 is same for both layers. 

Also, thermal equilibrium may assume at interface and therefore, 
 

 
Using above boundary condition in Equation (25.9) and (25.10) and adding, we obtain 

 

 

or 
 

 

The above equation (25.14) provides resulting heat flow per unit area of the composite wall. 

In the last example, we had solved a heat transfer problem which involved cartesian coordinates. 

To understand the formulation of problem in other coordinate systems two more example are 

considered here. One in cylindrical coordinate system and second in spherical coordinate system. 

 

2.3 Heat transfer in a cylindrical shell 

 

Consider a long cylindrical shell of inner radius R1, outer radius R2, and length L shown in Fig. 

26.1. The inner wall of cylindrical shell is maintained at constant temperature T1 and outer wall 
is maintained at constant temperature T2. Calculate the heat transfer rate in radial direction 
from the cylindrical shell. 
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Fig 26.1 Heat transfer in cylindrical shell 

Assumptions 

 

 System is in steady state. 
 

 Thermal conductivity, k, is constant. 
 

 System follows Fourier’s law of heat conduction. 
 

 Heat loss in axial direction is negligible. 

 

Non-zero heat flux component 

 

Since temperature is changing in r direction only, qr is present. Now, consider a control volume 

of differential thickness Δr as shown below 
 

Fig 26.2 Control volume for heat transfer in cylindrical shell 
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Shell energy balance across the control volume 

Heat flux entering the control volume at r=r is 

 

Heat flux leaving from the control volume at r= r+ Δr is 
 

 

No source or sink of heat is present in the control volume and work done on the system is zero. 

Thus, the thermal energy balance is reduced to 

 
 

By dividing Equation (26.3) to the volume of control volume 2πrLΔr and taking the limit Δr 

going to zero, we obtain 
 

 

By integrating Equation (26.4), we get 
 

 

where c1 is a integration constant. 

Substituting Fourier’s law of heat conduction in Equation (26.5) , we obtain 
 

 

Here, c2 is the constant of integrations. 

Boundary conditions are 
 
 

at , 

(26.7) 
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and 
 

 

at , 

(26.8) 
 

This leads to the solution 
 

 

 

 
 

 

Substituting the value of c1 in Equation (26.5), we finally obtain 
 

 

 

The rate of heat transfer through cylindrical shell may be calculated as shown below, 
 

 
2.4 Heat transfer in a spherical shell 

 

Consider a spherical shell of inner radius R1 and outer radius R2, whose inside and outside 

surfaces are maintained at the constant temperatures T1 and T2 respectively as shown in Fig. 

26.3. Calculate the heat flux from the spherical shell 

Therefore
, 
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Fig Heat transfer in hollow sphere 

Assumptions 

 

 System is in steady state. 
 

 Thermal conductivity, k, is constant. 
 

 System follows Fourier’s law of heat conduction. 

 

Non-zero heat flux component 

 

Since temperature changing in r direction, only qr is present. The control volume may be drawn 

of differential thickness δr as shown in Fig (26.4). 

 

Shell energy balance across the control volume 
 

 
 

Heat flux entering control volume at r= r is 

(26.12) 
 

 

 

Heat flux leaving control volume at r= r+ Δr is 

(26.13) 
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Fig 26.4 Control volume for heat transfer in hollow sphere 

 

Any heat source or sink is not present in the control volume and work done on the system is zero. 

Thus, the thermal energy balance is reduced to 
 

 

 
Dividing Equation (26.14) by volume of control volume and taking the limit Δr→0 , 

we get 
 

 

and integrating Equation (26.15), we find 
 

 

where, c1 is an integration constant. 

 

By substituting Fourier’s law of heat conduction in Equation (26.16) and integrating, we obtain 
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where c2 is another integration constant. 

 

The Equation (26.17) is subjected to the boundary conditions, 
 

at , 

(26.18) 
 

and 
 

 

at , 

(26.19) 
 

Using above boundary conditions and evaluating the constants of integration c1 and c2, we 

finally obtain heat flux through spherical shell as given below, 
 

2.5 Heat transfer from a cylindrical composite wall : Use of heat transfer coefficients 
 

Consider a cylindrical composite wall whose inner surface is exposed to a fluid at constant 

temperature Tb and the outer surface is exposed to atmosphere at a temperature Ta. Ro is the 

inner radius of cylinder while outer radius is R1. The cylinder is insulated and radius of 

insulation changes from R1 to R2 as shown in Fig. (27.1). The inside and out side heat transfer 

coefficients are hb and ha respectively. K01 and K12 are the thermal conductivity of cylinder 

material and insulation respectively. Calculate the overall heat loss through the cylindrical wall. 
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Fig 1 Heat transfer in cylindrical composite wall 

Assumptions 

 

 System is in steady state. 
 

 Thermal conductivities K01and K12 are constants. 
 

 System follows Fourier’s law of heat conduction. 
 

 Heat loss in axial directions are negligible. 

 

Heat flux component 

 

Here, the temperature is changing in the radial direction, and therefore, T=T(r) and qr is the only 

non-zero heat flux. As we have seen in the previous problems, the energy balance for cylinder 

material and insulation may be written as 
 

 
where, c1= R0q0 = R1 q1= R2q2 where q0, q1, and q2 are the heat fluxes at R0, R1 and R2 
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respectively. Substituting Fourier's law of heat conduction, we obtain, 
 

 

Assume the unknown temperatures are T0, T1 and T2 respectively as shown in Fig. (27.1). To 

solve Equation (27.2) for metal wall as well as for insulation material, it may be noted that the 

metal wall subjected to the following boundary conditions. 

 

at ,   (27.3) 

and 

 

at ,   (27.4) 

Similarly for insulation, we have the boundary condition (27.4) and second boundary condition 

is given below 
 

 

The final solution in for Equation (27.2) is given below 
 

 

or 
 

 

or 

 

and similarly 
 

Heat transfer coefficient 
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For complete solution of this problem, we need to solve problems of heat transfer in fluid inside 

the cylindrical tube as well as in the atmosphere outside the insulation. However, if we know the 

heat transfer coefficients, we may avoid finding these solutions. Recall the Newton's law of 

cooling which states the rate of heat transfer from a body is proportional to the difference in 

temperature between the body and its surrounding where q= AδT where A is the constant of 

proportionality. The heat transfer coefficients are similar to the coefficient A in the Newton's law 

of cooling, using these coefficients 
 

 

or 
 

 

and for insulation, we have 
 
 

 
or 

 

 

By adding Equations (27.7), (27.8),(27.10) and (27.11) and, noting Equation (27.1), we get 
 

 

or 
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Heat conduction with a heat source 

 

A cylindrical rod of radius R0 and length L is producing heat which is equal to Sc per unit time 

per unit volume, may be due to conversion of electrical energy into heat. The surface of the 

cylinder is maintained at temperature T0. Determine the temperature profile. 
 
 

Fig 27.2 Heat transfer in cylindrical shell 

Assumptions 

 

 System is in steady state. 
 

 Thermal conductivity of metal is constant. 
 

 System follow Fourier’s law of thermal heat conduction. 
 

 Heat loss in axial directions are negligible. 

 

Once again, temperature is changing in r direction only and qr is the only non-zero component of 

heat flux. Writing the following terms required for energy balance for a control volume shown in 

Fig. 27.2, we obtain the following terms 

Heat entering the control volume is  
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(27.13) 
 

 

 
 

Heat leaving control volume is 

(27.14) 
 

 

 

the heat produced in metal rod is given by 
 

 

Writing the energy balance, we find 
 

 

which leads to the following differential equation 
 

 

Integrating Equation (27.17), we finally obtain 
 

 

To evaluate the constant of integration c1, we may apply the boundary condition that at r=0, qr is 

finite; Therefore, 

c1 =0 (27.19) 

 

or 
 

 

Applying Fourier’s law of heat conduction, we have 
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Thus, after integration, we obtain 
 

 

The second boundary condition for this problem is that 

at 

 
or 

 

 

Thus, the temperature profile may be determined as below 
 

 

2.6 Critical radius of insulation 

 

Consider a cylindrical rod which is insulated by an insulation material as shown in Fig. (27.3). 

The radius of the rod is R0 and rod is maintained at temperature T0. The insulated rod is 

surrounded by a medium at temperature Ta. The out-side heat transfer coefficient is ha. 

Determine the critical radius of insulation at which the heat loss is maximum. 
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Fig 27.3Insulated cylindrical pipe 

 

Once again, as shown earlier, the energy balance for cylindrical shell in insulation material leads 

to the following differential equation. 
 

 

Integrating Equation (27.25) and applying Fourier’s law of heat conduction, we obtain 
 

 

The above equation may be integrated subject to the following boundary conditions 

at ,  

(27.27) 
 

and 
 

 

at , 

(27.28) 
 

Also, since the out side heat transfer coefficient is given, we have 
 

 
The solution of this problem is similar to the problem solved earlier for composite cylindrical 

shell. Thus, we finally obtain 
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In Equation (27.28), we may define the overall heat transfer resistance as 
 

 

In Equation (27.30), the first term in right hand side represents the convective heat transfer 

resistance and the second term represents the conductive heat transfer resistance. It can be easily 

observed that convective resistance decreases and conductive resistance increases as we increase 

the thickness of the insulation, i.e., R1 thus, over all heat loss may initially increase and then 

decreases as shown in Fig. 27.8. The value of R1 where the heat loss is maximum or the overall 

heat transfer resistance is minimum, is called the critical radius of insulation. 
 
 

Fig 27.3 Thickness of insulation Vs. heat flux 

 

Since, the overall heat transfer resistance should be minimum at critical radius, we have 
 
 

 

or 
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which provides the critical radius of insulation 
 

 

If the overall resistance U is differentiated twice with respect to the radius of insulation R1, we 

obtain 
 

 
At critical radius of insulation the value of the right hand side in Equation of (27.35) is positive 

as shown below 
 

 

Since, the value of second derivative is always positive, verifies that U is minimum at critical 

radius of insulation. Thus, the heat loss is maximum at critical radius of insulation given by 

Equation (27.33). 

2.7 Derivation of equation of energy 

 

In this section, we derive the equation of energy by using Axiom-4, which states that energy is 

conserved. The equation of total energy may be further divided into two parts. First is the 

equation of mechanical energy and second is the equation of thermal energy. The equation of 

mechanical energy is derived from equation of motion. The equation of thermal energy is derived 

by subtracting the equation of mechanical energy from the equation of total energy. Later, the 

equation of thermal energy is modified in temperature explicit form, which may be used for 

obtaining temperature profile 

 

Consider a stationary control volume of dimension Δx, Δy and Δz. The fluid is flowing with a 

 
velocity , which has components vx, vy and vz in x, y and z directions respectively, as 

shown in the Fig.(28.1). 



  

27 

 

 

 

 
 

Fig 28.1 Cubical control volume 

 

The total energy consists of potential energy , Internal energy and kinetic energy . 

Since the control volume is fixed in the space, the change in potential energy is negligible. 

Therefore, the energy balance may be written as . 
 

 

Now, we take each term in equation (28.1) and write them separately as given below. 

 

(1) Rate of accumulation of internal and kinetic energy 
 

The rate of accumulation of internal and kinetic energy in the control may be written as 
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where, is the internal energy per unit mass of the system. 

 

(2) Rate of net change of kinetic and internal energy by convection 
 

Net inflow of kinetic and internal energy by convection may be written as 
 

 
(3) Rate of heat addition by conduction 

 

As shown in Fig. (28.2), heat flux,    , has three components qx, qy and qz respectively. 

Therefore, the net heat addition by conduction is given below 
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Fig 28.2 Cubical control volume with heat transfer 
 

(4) Rate work done on the system 
 

Work done on the system is defined as a scalar product of force and displacement vectors. If  

is a force and  is the displacement then work done delta w, is 
 

or rate of work done is given by 
 
 

 

or 
 

 

or 
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Now, consider the forces acting on a fluid element. These forces are 

 

 Gravity force 
 

 Pressure force 
 

 Shear force 

 

Therefore, we need to consider work done by these force on the control volume separately. 

 

1. Rate of work done against Gravity forces 
 

By following Equation (28.6), the work done against gravity force may be written as 
 

 

2. Rate of work done by pressure forces 
 

The pressure forces always act in the opposite direction to the outer normal of a plane. It is a 

compressible force. Therefore, the work done on the control volume by pressure forces may be 

calculated as follows 

Rate of work done by x directed pressure forces: 
 
 

 

Rate of work done by y directed pressure forces: 
 

 

Rate of work done by z directed pressure forces: 
 

Derivation of equation of energy 

 

3. Rate of Work done by shear forces 
 

There are nine components of shear stress tensor. Three of these act on x directed face, similarly 

the net three acts on the y directed face and remaining three act on z directed faces (shown in 
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Fig. 29.1) as discussed earlier. 
 

Fig.29.1 Shear stresses, acting on z directed plane 

 

Therefore, the work done by shear forces on the control volume, acting on x directed plane may 

be calculated as 
 

 

Similarly, the work done by shear forces on the control volume, acting on y directed plane may 

be calculated as 
 

 

and the work done by shear force on the control volume, acting on z directed plane may be 

calculated as 
 

 

5. Rate of Heat addition by Heat source or sink 
 

If any heat source/sink is present in the control volume which generates the heat as Sc per unit 

volume then heat generated in the control volume may be written as. 
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We now substitute all terms given above in Eqution (28.1) and then divide by ΔxΔyΔz. After 

taking the limits Δx,Δy and Δz going to zero, we obtain the following equation 
 

 

In Equation (29.5), the stress tensor was taken as shear forces. To change it into momentum 

flux, we replace all components of with a minus sign. In addition, if we rewrite the Equation 

(29.8) in vector and tensor form , we obtain the following result for equation of energy. 
 

 

We may further simplify Equation (29.6) by combining the internal energy and kinetic energy 

terms as shown below. If 

 

 
Then, Equation (29.6) may be written as 

 

 

The left hand side of Equation (29.8) may be modified as shown below 
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or 
 

 

or 
 

 

But, 
 

 

Therefor, Equation (29.10) simplifies to, 
 

 

or 
 

 

Therefore, Equation (29.08) simplifies to 
 

 

or 
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Above equation represents the equation of total energy in terms of substantial derivative. Since 

observer is moving with fluid in the case of substantial derivative, the convective terms are not 

presents in the above equation. 

 

Derivation of equation of energy 

In previous lecture, we had derived the equation of energy which may be further divided into two 

parts 

 
 

1. Equation of mechanical energy 

2. Equation of thermal 

energy Equation of mechanical 

energy 
For understanding the nature of mechanical energy, consider a simple case of a single particle 

moving in one direction as shown in Fig. 30.1. Assume the particle has mass m and is located at 

height h from a reference plane and moving upward with velocity  . Gravity is the only force 

working on the particle. 
 

Fig 30.1 A particle of mass m situated at height z 

 

Starting with Newton’s second law of motion, we have 

Force = mass x acceleration 
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where 
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or 

 

 
By taking dot product of equation (30.2) with velocity , we find that 

 
 

 
or 

 

 
Using vector identity, we have 

 

 
or 

 

 
where, ν is the magnitude of the velocity vector  . 

By substituting Equation (30.6) in Equation (30.4), we obtain 
 

 

or, 
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For the example given above, we have , 

F1 = 0, F2 = 0, F3=-mg ................................................................ (30.8) 

 

 

and 

 

ν1 = 0, ν2 = 0, ν3 = ν .................................... (30.9) 

 

Thus, Equation (30.7), reduces to 
 
 

 

Substitute ν = (dz/dt). Thus we obtain, 
 

 

Since, m and g are constants. We may rewrite above equation as, 
 

or 
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...... 

 

First term in above equation is the potential energy and second term represents the kinetic 

energy. Therefore, the above equation states that the sum of kinetic and potential energy remains 

constant. This is the equation of mechanical energy for a particle and similar equation may be 

derived for fluids as shown below. 

Equation of mechanical energy for fluids 

The equation of motion for a fluid is equivalent to Newton’s second law of motion for solid 

bodies. Therefore, to derive the equation of mechanical energy for fluids we take the dot product 

of velocity with equation of motion for fluids. i.e., 
 

 

As before, 
 

 
(Note: substantial derivatives behave like normal derivatives.). Thus, 

 

 
The following vector and tensor identities may be used for simplifying Equation (30.14) 

 

 
 

and if  is a second order symmetric tensor then we also have 
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Thus, we obtain 
 
 

 

or 
 
 

 
Equation (30.18) is called the equation of mechanical energy for fluids. Significance of each 

term is given below. 
 
 

 
As discussed earlier, the equation of thermal energy can be derived by subtracting the equation of 

mechanical energy (Equation (30.18)) from the equation of total energy (Equation (29.15)), i.e., 
 

 
thus 
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or 
 

 
The significance of each term in equation of thermal energy, Equation (31.21) is given below 

 
 

 

Here  , is known as the viscous heat dissipation and the significance of this will be 

discussed later. 

Equation of mechanical energy of fluids and its interpretation 

If we consider a special case of non-viscous fluid, where the shear stress is zero, Equation 

(30.14) simplifies as shown below 
 

 

Here, the gravity may be represented by gradient of a scalar quantity Φ, or 
 

 
Then, Equation (30.23) may be rewritten as 
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Further, if we assume that pressure and gravity do not depend on time. Thus, we have 
 

and 

 

 
After substituting these values in Equation (30.25), we obtain 

 

 
which may be further simplified as 

 

 
or 

 

 
which leads to 
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The above equation is called Bernoulli’s equation. This states that the sum of the kinetic energy, 

pressure and potential energy heads is constant for a non-viscous fluid. 

 

 

 

Comparisons of mechanical and thermal energy 

 

Equations (30.18) and (30.20) show that the heat flux by conduction,     , is not present in the 

equation of mechanical energy and its contribution shows up only in the equation of thermal 

energy. Similarly, the heat addition by a heat so appears only in the equation of thermal energy. 

Also, as is shown letter the term  is always positive and appears with a minus sign in 

the equation of mechanical energy while it appears with a positive sign in the equation of thermal 

energy. Indicating the mechanical energy always degrades and converts into thermal energy. All 

these facts indicate that theses equations are consistence with the second law of thermodynamics 

which specifies that for an isolated system work can be converted into heat but not vice versa . 

 

Temperature explicit form of the equation of thermal energy 

 

Internal energy,     , is a state function which may be written in the terms of two intensive 

variables. If the intensive variables are temperature and volume, we may write and 

 

 

 
where the symbol “^” represents the value of the property per unit mass or per unit mole. 

From thermodynamics for fluids 

 
 

 
 

For example, if fluid is an ideal gas then substituting the ideal gas law in the right hand side of 

Equation (31.2), we obtain 
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or 

 
 

Thus, 

 

 

For real fluids, Equation (31.2) may be written in the form of the substantial derivative,i.e., 
 

 

 

 
 

Furthermore, the specific volume is the inverse of the density ρ, or 
 

 

 

 

 

 

 

 

Therefore, 
 

 

 

 

 

 

 

 

 

 

Thus, Equation (31.4) reduces to 
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or 
 

 

 

 

 

 

 

 

 

However, the equation of thermal energy is 
 

 

 

 

 

 

 

 

From Equations (31.7) and (31.8), we obtain the temperature explicit form of equation of thermal 

energy as 
 

 

 

 

 

 

 

 

 

 

 

Using the equation of continuity , in above equation, we finally obtain 
 

 

 

 

 

 

 

 

 

which simplifies the equation (31.10) leads to 
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or 

 

 

 

 

 

 
Equation (31.11) represents the equation of thermal energy in terms of temperatures for a real 

fluid. Expended form of Equation (31.11) in cartesian, cylindrical and spherical coordinate 

system is given in Appendix-5. Some limiting cases of Equation (31.11) are discussed below. 
 

 

 

Case 1: heat conduction in solids 

 

In solids, all velocities are zero and Equation (31.11) simplifies to 
 

 

 

 

 

 

 

 
 

where, the heat flux may be estimated by the Fourier’s law of heat conduction. If k is a 

constant then 
 

 

 

or, 
 

 

Equation (31.13) is also known as the Fourier's second law of heat conduction. 

 

Case 2 Heat transfer in fluids with constant ρ and k 
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For constant density, equation of continuity reduces to 
 

 

 

 

 

 

In addition, the heat capacity at constant volume and constant pressures are the same. Thus, 
 

 

 
 

For this case, the equation of thermal energy may be simplified to 
 

 

 

or 
 

 

 
Equation (31.18) represents the equation of thermal energy for constant density and heat 

conductivity. It may be noted that Equation (31.18) has a similar form as the equation of motion 

for constant density and viscosity (Navior Stoke equation), i.e., 
 

 

 
 

Both equations show the similarities between momentum and heat transport. The detail form of 

Equation (31.18) for different coordinate system is given in the Appendix -5 

 

2.8 Viscous heat dissipation / viscous heating 

 

The viscous heat dissipation term , in the equation of thermal energy represents the 
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conversion of mechanical energy into thermal energy due to viscous dissipation. This term is 

always positive. For Newtonian fluids,    may be calculated by using the Newton’s law 

viscosity. The details are not shown here but may be found elsewhere, i.e., 
 

 

 
 

or 
 

 

 

 

where, Φv is a scalar quantity and the value of Φv for different coordinate system is given in the 

Appendix -6. As may be seen from this table that all terms present in the expression from Φv are 

positive. Thus, this viscous dissipation leads to increase the value of thermal energy and raises 

the temperature of fluid. 

 

 
 

Significance of Viscous dissipation / heating 

As discussed in previous lecture, the viscous dissipation leads to rise in the temperature of fluid. 

Here, we solve a problem which help us to understand the significance of this term in terms of 

rise in temperature. 

Consider a fluid flowing under laminar conditions between two parallel plates which are kept at 

same temperature T0 as shown in Fig. (32.1). The incoming fluid, at z = 0, have the same 

temperature T0. Assuming steady state, determine the increase in temperature of fluid due to 

viscous heat dissipation. 
 
 

Fig 32.1 Viscous flow between two parallel plates 

Assumptions 

 Density ρ, viscosity μ and thermal conductivity k are constants. 
 

 System is in steady state. 
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 Flow is laminar (simple shear flow) and fully developed. 
 

 Newton’s law of viscosity is applicable. 

 

Fluid is flowing in z direction only and the Non-zero velocity components are 

νx = 0, νy = 0, νz = νz(x) 

the velocity profile vz may be easily obtained for a Newtonian fluid as given below 
 

 
 

where vz,max is the maximum velocity of fluid. 

 

At steady state, the heat produced by viscous dissipation is removed from both plates to keep the 

temperature of the plates at T0. Thus, temperature of the fluid increases until the heat generation 

by viscous dissipation matches the heat remove from the plates and the temperature is no longer 

a function of z coordinate. For this fully developed region, the temperature is a function of x 

coordinate only, i.e., 
 

 

 
 

For this case, the equation of thermal energy may be simplified as follows 
 

 

 

 

Substituting the value of viscous dissipation in the equation of thermal energy, we have 
 

 

 
 

The velocity gradient in equation (32.4) may be estimated from Equation (32.1) as 
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Therefore, the Equation (32.4) finally simplifies as 
 

 

 

or 
 

 
 

where, A is a constant. 

 

Integrating Equation (32.6), we finally obtain the temperature profile as 
 

 

 

where c1 and c2 are the constants of integrations. These constants may be determined by using 

the following boundary conditions, 
 

 

or 
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which leads to 
 

 

 

and 
 

 

Thus, the rise in temperature of fluid is given by the following equation by substituting the value 

of c1 and c2 in Equation (32.7), we finally obtain, 
 

 

 

or 
 

 

Equation (32.12) shows that the rise in temperature is maximum at x = 0 and is given by 
 

 

 
 

For example, if water is flowing at a maximum velocity 100 ft/sec, then we find, 
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Thus, even for such large velocities, the rise in temperature is only about 10F. For highly viscous 

fluids, such as polymer solutions with viscosity 1000 Cp, the temperature rise may be 
 

 

 

 

 

Therefore, we may conclude that the viscous dissipation may be important for highly viscous 

fluids, for low viscosity fluid like air, the viscous dissipation term may be safely neglected. 

 

 
 

2.9 Transpiration Cooling/ heating 

 

Transpiration cooling / heating is used to reduce or enhance the heat transfer rates by a 

convective flow of fluid in or opposite direction of the actual heat transfer. Additional 

convective flow provides forced convection to produce the desired effect. A classic example of 

the transpiration cooling is the design of a storage tank for liquefied gas nitrogen or oxygen. 

Both liquefied gas have cryogenic boiling points. The required thickness of insulation material 

may be quite high in order to reduce heat gained by conduction from surrounding at atmospheric 

temperature to very low temperature in the tank. Here, we may use transpiration cooling to 

reduce the heat transfer. Design of a cryogenic storage tank is shown below 
 

 

 

 

 

Fig 3 Use of transpiration cooling in liquefied gas container 

 
 

Here, the cryogenic liquid is stored in a spherical container, which is surrounded by a porous 

insulation, as shown in Fig. (32.2). Some amount of stored liquid is allowed to vaporize. This 

vaporized gas fills the space between liquid gas container and the porous insulation. It provides 

the cold jacket to the container and reduces the heat transfer. As this gas starts to diffuse through 
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pores, it provides a convective transpiration cooling and prevents the heat transferred from 

outside to the liquid container. 

 

Here, we solve a simpler example of transpiration cooling. Assume the radius of two concentric 

porous spheres are kR and R as shown in Fig. (32.3). The temperature of inner sphere is Tk and 

outer sphere is T0. The inner sphere is refrigerated. An air stream at temperature Tk with the mass 

flow rate w is forced from the inner sphere to outer sphere for maintaining the internal sphere 

temperature at Tk. Determine the heat flux with and without transpiration cooling(w = 0). 
 

 

Fig 32.3 Transpiration cooling between two concentric spherical shell 

 
 

Assumptions 

 

 Density ρ, viscosity μ & thermal conductivity k are constant. 
 

 System is in steady state. 
 

 Flow is laminar (simple shear flow) and fully developed. 

 
Air flows only in the radial direction. Therefore, the non-zero velocity components are 

 

 

 

 

 

Assume, the temperature is changing only in radial direction, or, 
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The equation of continuity in spherical coordinates provides, 
 

 

 
 

By integrating above equation, we obtain 
 

 

 

 

Here, the mass flow rate may be calculated as 
 

 

 

 

Thus, 
 

 

 

Since, the viscosity of air is very low, we may neglect the viscous dissipation term from the 

equation of thermal energy, or 

 

 

 

 

 

 
Substituting the value of vr from Equation (32.20) in above equation, we obtain 
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or 
 

 

where, 
 

 

 
 

Equation (32.22) may be solved as follows 
 

 

 

 

 

 

 

 

Thus, Equation ( 32.22 ) may be rewritten as, 
 

 

 

 

 

or 

 
 

or 
 

 

 
which may be integrated to gives the following expression, 
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Here, c1 is the integral constant. Thus, we have 
 

 

 

 

 

 

 

 

 

where, 
 

By integrating Equation (32.27), we finally obtain 
 

 

 

 

 

 

 

 

Here, c3 is another integration constant. 

Boundary conditions for this problem are 

at 

 

 
and at 

 

 

 
 

Finally evaluating c2 and c3 , we obtain the temperature profile between r = KR to R, 
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Now, we may calculate heat loss from inner sphere by first calculating the temperature gradient 

from above equation then multiplying it by the surface area of the sphere. Thus, 
 

 

or 

 

 

 

 

where, 
 

 

Here, ‘−‘ sign is used as the outer normal of the inner sphere is in negative r direction. Thus, 
 

 

 

 

where 
 

 

 
 

Now, consider the situation when transpiration cooling in not used. Therefore, the velocity of air 

stream vr is zero. In this case, the equation of thermal energy may be written as 
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By integrating Equation (32.35) and using the above boundary conditions, we obtain 
 

 

 

 

We may once again calculate the heat loss from inner sphere by following the same procedure as 

earlier, thus, 
 

 

 

 

Here, Q0 is the heat loss without transpiration cooling. The transpiration cooling efficiency may 

now be defined as 
 

 

 

 

where, 
 

 

 
 

Relation between the transpiration efficiency and Φ is shown in Fig. (32.4). As may be seen 

from this figure, the transpiration efficiency increases with increase in the value of Φ or mass 

flow rate, w. For very large values of Φ, transpiration efficiency approaches to one, which 

implies that heat transfer from outer sphere to inner sphere, Q, is negligible. 
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Fig 32.4 Efficiency of transpiration cooling 

 

2.10 Heat conduction in a rectangular fin 
 

Fins are used to enhance the heat transfer from any surface by increasing the heat transfer surface 

area. Due to heat conduction, this additional surface is at lower and lower temperatures as more 

and more surface area is added. Thus, the rate of heat transfer decreases as we move away from 

the original surface and efficiency of the fin is reduced. The effectiveness of a fin is defined as 

the ratio of actual heat transfer through the fin and heat transfer when the whole fin surface is 

available at the same temperature as that of the original surface. A simple rectangular fin is 

shown in Fig. (33.1). The wall temperature is Tw and the ambient temperature is Ta. Dimensions 

of fin are as shown in Fig. (33.1). Formulate the problem and determine the temperature profile. 

Finally also calculate the efficiency of the fin. 
 

 

Fig 33.1 Rectangular fin 
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Assumption 

 
 

 System is at steady state. 
 

 Fin has a constant heat conductivity. 
 

 The outside heat transfer coefficient is ha. 

We may solve this problem for two different 

cases. 

Case 1: when L, W and B are of the same order of magnitude 

 

In this case the temperature is a function of x, y and z coordinates, i.e., 
 

and the equation of thermal energy may be written as 

 
After substituting the Fourier’s law of conduction, we obtain 

 
 

The above equation may needs to be solved subject to the following boundary conditions, 
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and it is obvious that Equation (33.3) can not be solved analytically and requires computational 

methods. 

 

Case 2: Now, consider a case when thickness of the fin is negligible in comparison with 

height and width, i.e., L & W >> 2B 

 

In this case, the heat flux in y direction is small and we may write temperature as function of x 

and z coordinates only, 
 

 

In this case, the equation of thermal energy may be simplified as 
 

 

This may also require numerical solutions. To find simple analytical solution, we may further 

assume that the average temperature, Tavg , at any cross section of fin is a function of z coordinate 

only, i.e., 
 

 

Thus, we are reducing the original two dimensional into a one-dimensional problem to obtain an 

approximate solution. This assumption is reasonably valid since the thickness of the fin is very 

small and the variation of temperature in x direction may be averaged out. Since, we have 

reduced a two dimensional problem to a one-dimensional problem by averaging the temperature, 

the equation of thermal energy is no longer applicable. We may use the shell energy balance 

approach to find a appropriate solution. For the sake of convenience,Tavg is now replaced by T . 

The control volume is a strip of the fin with thickness 2B, length Δz and width W as shown in 

Fig. (33.2). 

 

 

Fig 33.2 Control volume for a rectangular fin 
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Heat entering the control volume by conduction 
 
 

 
Heat leaving the control volume by conduction 

 
 

 

Heat loss from upper and lower surfaces of the control volume 
 

 

Thus, energy balance may be written as 
 

 

After dividing the Equation (33.17) by 2BWΔz and taking the limit Δz→0 , we obtain 
 

 
Fourier’s law may be applied here as 

 

 

and finally, we obtain 
 
 

 

The Boundary conditions may be written as 

at 
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and at 

 

 
 

However, for a sufficiently long fin is small and we may assume that 

at 

 

 

 
By applying the above boundary conditions in Equation (33.20), we obtain the following 

solution 
 

 

where 
 

 

 

and 
 

 

 

 

This equation may be arranged as 
 

 

with 
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Going back to the original two dimensional problem given in Equation (33.11), even without 

assuming anything further, we may still obtain the same results as given by Equation (33.26), 

provided B is very small. Thus, the fin temperature is the function of both x and z coordinates, 

i.e., T(x,z), and the equation of thermal energy may be written as 
 

 

If 2B is small (from the definition of a differential), we may approximate the first term as 
 

 

By applying the boundary conditions given in the Equations (33.6) and (33.7), we get, 
 

 

or 
 

 

where the partial derivative is replaced by the total derivative. By substituting the Equation 

(33.31) in (33.28), we again obtain 
 

 

where the partial derivative is replaced by the total derivative. After using the Fourier’s law of 

heat conduction, we obtain the following differential equation 
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Equation (33.33) has the same form as Equation (33.20) and therefore the solutions is also the 

same 

 

Efficiency of the rectangular fin 

 

As state above , the efficiency of fin may be defined as, 
 

 
Substituting the values, we get 

 
 

 

which may be simplified by using the above dimensionless numbers, defined in Equation (33.25) 

and (33.27), as 
 

 

The Equation (33.35) leads to the following simple solution 
 

 

which may be further simplified as 
 



  

66 

 

 

As may be noted from above equation η depends only on N. A simple plot for η vs N is shown 

below 

 

Fig 33.3 Efficiency of fin vs N 

 

Fig. 4 shows that long fins have lesser efficiency. The optimum fin length may be found by 

optimizing the enhancement in heat transfer and the cost of this additional surface area. In the 

real life, the fins need not to be rectangular in shape and the different shaped fins may be 

designed for enhanced fin efficiency. 

 
Fourier’s Law of Heat Conduction 

 
 

Cartesian coordinates(x,y,z) 
 
 

 

Cylindrical coordinates (r,θ,z) 
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Spherical coordinate (r, θ,Φ) 
 
 

 

 
Equation of Thermal Energy in Terms of heat flux 

 
Cartesian coordinates(x,y,z) 

 

 
Cylindrical coordinates (r,θ,z) 
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Spherical coordinate (r, θ,Φ) 
 

 
Equation of Energy for Pure Newtonian Fluid with Constant ρ and k 

 
 

Cartesian coordinates(x,y,z) 
 

 
Cylindrical coordinates (r,θ,z) 

 

 

Spherical coordinate (r, θ,Φ) 
 
 

 

Appendix - 6 
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Dissipation Function for 

Newtonian Fluids Cartesian 

coordinates(x,y,z) 

 

Cylindrical coordinates (r,θ,z) 
 

 

Spherical coordinate (r, θ,Φ) 
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3 MASS TRANSFER 

 

3.1 Introduction of Mass Transfer 

 

When a system contains two or more components whose concentrations vary from point 

to point, there is a natural tendency for mass to be transferred, minimizing the 

concentration differences within a system. The transport of one constituent from a region 

of higher concentration to that of a lower concentration is called mass transfer. 

 

The transfer of mass within a fluid mixture or across a phase boundary is a process that 

plays a major role in many industrial processes. Examples of such processes are: 

 

(i) Dispersion of gases from stacks 

(ii) Removal of pollutants from plant discharge streams by absorption 

(iii) Stripping of gases from waste water 

(iv) Neutron diffusion within nuclear reactors 

(v) Air conditioning 

 
 

Many of air day-by-day experiences also involve mass transfer, for example: 

 

(i) A lump of sugar added to a cup of coffee eventually dissolves and then 

eventually diffuses to make the concentration uniform. 

(ii) Water evaporates from ponds to increase the humidity of passing-air-stream 

(iii) Perfumes presents a pleasant fragrance which is imparted throughout the 

surrounding atmosphere. 

 

The mechanism of mass transfer involves both molecular diffusion and convection. 

 

The mole fraction for liquid and solid mixture, x A ,and for gaseous mixtures, y A, are the 

molar concentration of species A divided by the molar density of the mixtures. 
 

x A    
C A

 

C 
 

y A     
C A

 

C 

 

(liquids and solids) 

 

 
(gases). 

 

The sum of the mole fractions, by definition must equal 1; 
 

(i.e.)  x i  1
 

i 
 

 y i  1 
i 
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by similar way, mass fraction of A in mixture is; 
 

w A  
 A

 

 
1. The molar composition of a gas mixture at 273 K and 1.5 * 10 5 Pa is: 
n 

 molar 
V 

density   m 

Therefore, density (or mass density) =  mM 
Where M is the molecular weight of the gas. 

 

 

 
Density   m M  

PM 

RT 

1.5 * 10 5 * 30.68 
kg m 

8314 * 273 

= 2.03 kg/m 3 

 

Partial pressure of O 2 = [mole fraction of O 2] * total pressure 

 
 7 

* 1.5 * 10 5 

100 

= 0.07 * 1.5 * 10 5 

= 0.105 * 10 5 Pa 

 
 

3.2 Diffusion flux 

 

Just as momentum and energy (heat) transfer have two mechanisms for transport- 

molecular and convective, so does mass transfer. However, there are convective fluxes in 

mass transfer, even on a molecular level. The reason for this is that in mass transfer, 

whenever there is a driving force, there is always a net movement of the mass of a 

particular species which results in a bulk motion of molecules. Of course, there can also 

be convective mass transport due to macroscopic fluid motion. In this chapter the focus is 

on molecular mass transfer. 

 

The mass (or molar) flux of a given species is a vector quantity denoting the amount of 

the particular species, in either mass or molar units, that passes per given increment of 

time through a unit area normal to the vector. The flux of species defined with reference 

to fixed spatial coordinates, NA is 
 

N A C A  A ---------------------- (1) 
 

This could be written interms of diffusion velocity of A, (i.e.,  A - ) and average 
velocity of mixture, , as 

 

N A  C A (   A   )  C A  --------------- (2) 

 
3 
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By definition  
 C i  i 

    *   i 
 

C 
 

Therefore, equation (2) becomes 

N A  C A (  A   )  
C A 

C 
 C i  i i 

 

 C A  (   A   )  y A  C i  i 
i 

 

For systems containing two components A and B, 
 

N A  C A (   A     )  y A (C A  A  C B  B ) 

 C A (   A     )  y A (N A  N B ) 

N A  C A (   A     )  y A N ----------- (3) 
 

The first term on the right hand side of this equation is diffusional molar flux of A, and 

the second term is flux due to bulk motion. 

 

3.2.1 Fick’s law: 

 

An empirical relation for the diffusional molar flux, first postulated by Fick and, 

accordingly, often referred to as Fick’s first law, defines the diffusion of component A in 

an isothermal, isobaric system. For diffusion in only the Z direction, the Fick’s rate 

equation is 
 

JA   D A B d C A 
 

d Z 
 

where D AB is diffusivity or diffusion coefficient for component A diffusing through 

component B, and dCA / dZ is the concentration gradient in the Z-direction. 

 

A more general flux relation which is not restricted to isothermal, isobasic system could 

be written as 
 

JA   C DA B d y A 
 

----------------- (4) 
d Z 

 

using this expression, Equation (3) could be written as 
 

N A   C DA B d y A  y A N 
 

--------------- (5) 
d Z 
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Relation among molar fluxes: 

 

For a binary system containing A and B, from Equation (5), 
 

N A  J A  y A N 

or J A  N A  y A N ----------------------- (6) 
 

Similarly,  
 
J B  N B 

 
 

 y B N 

 

 
-------------------- (7) 

 

Addition of Equation (6) & (7) gives, 
 

J A  J B  N A  N B  (y A  y B ) N ---------- (8) 
 

By definition N = N A + N B and y A + y B = 1. 

Therefore equation (8) becomes, 

J A + J B = 0 

J A = -J B 
 

C D AB d y A   C D BA d y B 
 

--------------- (9) 
d z d Z 

 

From y A + y B = 1 

dy A = - dy B 

 

Therefore Equation (9) becomes, 
 

D AB = D BA (10) 
 

This leads to the conclusion that diffusivity of A in B is equal to diffusivity of B in A. 

 
 

Diffusivity 

 
Fick’s law proportionality, D AB, is known as mass diffusivity (simply as diffusivity) or as 
the diffusion coefficient. D AB has the dimension of L 2 / t, identical to the fundamental 
dimensions of the other transport properties: Kinematic viscosity,  = (  / ) in 

momentum transfer, and thermal diffusivity,  (= k /  C  ) in heat transfer. 

Diffusivity is normally reported in cm2 / sec; the SI unit being m2 / sec. 

Diffusivity depends on pressure, temperature, and composition of the system. 
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2 

 

In table, some values of DAB are given for a few gas, liquid, and solid systems. 

 

Diffusivities of gases at low density are almost composition independent, incease with the 

temperature and vary inversely with pressure. Liquid and solid diffusivities are strongly 

concentration dependent and increase with temperature. 

 

General range of values of diffusivity: 
 

Gases : 5 X 10 –6 ------------- 1 X 10-5 m2 / sec. 

Liquids : 10 –6 ------------- 10-9 m2 / sec. 

Solids : 5 X 10 –14 ------------- 1 X 10-10 m2 / sec. 

 

In the absence of experimental data, semitheoretical expressions have been developed 

which give approximation, sometimes as valid as experimental values, due to the 

difficulties encountered in experimental measurements. 

 

Diffusivity in Gases: 

 

Pressure dependence of diffusivity is given by 
 

D AB  
1

 
p 

 

(for moderate ranges of pressures, upto 25 atm). 

And temperature dependency is according to 

D AB  T 
 

Diffusivity of a component in a mixture of components can be calculated using the 

diffusivities for the various binary pairs involved in the mixture. The relation given by 

Wilke is 
 

D 1  mixture 
  

y2 

D1  2 

 

  
y3 

D1  3 

1 

...........  

 

yn D1  

n 

 

Where D 1-mixture is the diffusivity for component 1 in the gas mixture; D 1-n is the 
diffusivity for the binary pair, component 1 diffusing through component n; and  yn  is 

the mole fraction of component n in the gas mixture evaluated on a component –1 – free 

basis, that is 

y2  
y  

y2 

y3   ........... yn 

 

 

Diffusivity in liquids: 

3 
2 
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Diffusivity in liquid are exemplified by the values given in table … Most of these values 

are nearer to 10-5 cm2 / sec, and about ten thousand times shower than those in dilute 

gases. This characteristic of liquid diffusion often limits the overall rate of processes 

accruing in liquids (such as reaction between two components in liquids). 

 

In chemistry, diffusivity limits the rate of acid-base reactions; in the chemical industry, 

diffusion is responsible for the rates of liquid-liquid extraction. Diffusion in liquids is 

important because it is slow. 

 

Certain molecules diffuse as molecules, while others which are designated as electrolytes 

ionize in solutions and diffuse as ions. For example, sodium chloride (NaCl), diffuses in 

water as ions Na + and Cl-. Though each ions has a different mobility, the electrical 

neutrality of the solution indicates the ions must diffuse at the same rate; accordingly it is 

possible to speak of a diffusion coefficient for molecular electrolytes such as NaCl. 

However, if several ions are present, the diffusion rates of the individual cations and 

anions must be considered, and molecular diffusion coefficients have no meaning. 

 

Diffusivity varies inversely with viscosity when the ratio of solute to solvent ratio 

exceeds five. In extremely high viscosity materials, diffusion becomes independent of 

viscosity. 

 

Diffusivity in solids: 

 

Typical values for diffusivity in solids are shown in table. One outstanding characteristic 

of these values is their small size, usually thousands of time less than those in a liquid, 

which are inturn 10,000 times less than those in a gas. 

 

Diffusion plays a major role in catalysis and is important to the chemical engineer. For 

metallurgists, diffusion of atoms within the solids is of more importance. 

 

3.2.2 Steady State Diffusion 

 

In this section, steady-state molecular mass transfer through simple systems in which the 

concentration and molar flux are functions of a single space coordinate will be 

considered. 

 

In a binary system, containing A and B, this molar flux in the direction of z, as given by 

Eqn (5) is [section 3.3.1] 

N A  
 C D AB 

d y A
 

d z 
 y A (N A  N B ) --- (1) 

 

Problem.  Oxygen  is  diffusing  in  a  mixture  of oxygen-nitrogen  at 1  std  atm, 25 C. 
Concentration of oxygen at planes 2 mm apart are 10 and 20 volume % respectively. 
Nitrogen is non-diffusing. 



   

9 

 

 

(a) Derive the appropriate expression to calculate the flux oxygen. Define units 

of each term clearly. 

(b) Calculate the flux of oxygen. Diffusivity of oxygen in nitrogen = 1.89 * 10 –5 

m 2/sec. 

 

Solution: 

 

Let us denote oxygen as A and nitrogen as B. Flux of A (i.e.) N A is made up of two 

components, namely that resulting from the bulk motion of A (i.e.), Nx A and that 

resulting from molecular diffusion J A: 
 

N A  Nx A  J A  (1) 
 

From Fick’s law of diffusion, 
 

J A   D AB 

d C A  
(2) 

d z 
 

Substituting this equation (1) 
 

N A  Nx A  D AB 
d C A 

d z 

 

----------------------------- (3) 

 

Since N = N A + N B and x A = C A / C equation (3) becomes 
 

N A    N A  N B 
C A 

C 
 D AB 

d C A 
 

 

d z 
 

Rearranging the terms and integrating between the planes between 1 and 2, 
 

  
d z  

 
 

C A2 dC A  -------------- (4) 

cD AB C A1 N AC  C A N A   N B  
 

Since B is non diffusing N B = 0. Also, the total concentration C remains constant. 

Therefore, equation (4) becomes 
 

  z 
 
 C A2 

dC A 
 

 

CD AB 
C A1 N AC  N AC A 

  1  

N A 
ln  

C   C A2 

C   C A1 

 

Therefore, 
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A 

A 

N  
CD AB 

z 
ln 

C   C A2 

C   C A1 

 
---------------------------- (5) 

 

Replacing concentration in terms of pressures using Ideal gas law, equation (5) becomes 
 

N  
D AB Pt 

RTz 
ln 

Pt  

Pt  

P A2 

P A1 

 
--------------------------- (6) 

 

where  
D AB = molecular diffusivity of A in B 

P T = total pressure of system 

R = universal gas constant 

T = temperature of system in absolute scale 

z = distance between two planes across the direction of diffusion 

P A1 = partial pressure of A at plane 1, and 

P A2 = partial pressure of A at plane 2 
 

Given:  
D AB = 1.89 * 10 –5 m2/sec 
P t = 1 atm = 1.01325 * 10 5 N/m 2 

T = 25 C = 273 + 25 = 298 K 
z = 2 mm = 0.002 m 

P A1 = 0.2 * 1 = 0.2 atm (From Ideal gas law and additive pressure rule) 

P A2 = 0.1 * 1 = 0.1 atm 
 

Substituting these in equation (6) 

1.89 * 10  5 1.01325 * 10 5  
 

 

 
 1   0.1  

N A  
8314  298  0.002  

= 4.55 * 10 –5 kmol/m 2.sec 

ln  
1 

 
0.2  

 

3.3 Psuedo steady state diffusion through a stagnant film: 

 

In many mass transfer operations, one of the boundaries may move with time. If the 

length of the diffusion path changes a small amount over a long period of time, a pseudo 

steady state diffusion model may be used. When this condition exists, the equation of 

steady state diffusion through stagnant gas’ can be used to find the flux. 

 

If the difference in the level of liquid A over the time interval considered is only a small 

fraction of the total diffusion path, and t0 – t is relatively long period of time, at any given 

instant in that period, the molar flux in the gas phase may be evaluated by 
 

N  
C D AB (y A1  y A2)  ------------------ (1) 

A 
zy B, lm 
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 A,L yB, lm M A 

 A,L yB, lm M A 

 
2 

 

 
2 

 

 

where z equals z 2 – z1, the length of the diffusion path at time t. 

 

The molar flux NA is related to the amount of A leaving the liquid by 
 

N A   
M 

A,L   d z 

A d t 

 
-------------------------- (2) 

 

 
where 

 A,L  
is the molar density of A in the liquid phase 

M A 

 

under Psuedo steady state conditions, equations (1) & (2) can be equated to give 
 

 A,L d z  C D AB (y A1  y A2)  
--------------- (3) 

M A d t z y B, lm 

 

Equation. (3) may be integrated from t = 0 to t and from z = z t0 to z = zt as: 
 

t 

 dt 
t 0 

 
C D 

 
AB (y 

 
A1  y 

 
A2) 

Zt 

 z dz 
Zt 0 

 

yielding  
 z 2  z 2  

t       t t 0  -------- (4) 

C D AB (y 
A1  y A2)    

 

This shall be rearranged to evaluate diffusivity DAB as, 
 

 A,L yB, lm  z 2  z 2  
D AB      t t 0  

MA C 

Equimolar counter diffusion: 

(y A1  y A2) t    

 

A physical situation which is encountered in the distillation of two constituents whose 

molar latent heats of vaporization are essentially equal, stipulates that the flux of one 

gaseous component is equal to but acting in the opposite direction from the other gaseous 

component; that is, NA = - NB. 

 

The molar flux NA, for a binary system at constant temperature and pressure is described 

by 
 

N A     C D AB d y A  y A (N A  N B ) 
d z 
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or N A 
 D AB 

d C A 
 

d z 
 y A (N A  N B ) 

 

------- (1) 

 

with the substitution of NB = - NA, Equation (1) becomes, 
 

 

N A     D AB d C A 

d z 

 

----------------- (2) 

 

For steady state diffusion Equation. (2) may be integrated, using the boundary conditions: 

at   z = z1 CA =  CA1 

and   z = z2 CA =  CA2 
 

Giving, 

 

 

from which 

 
Z2 

NA  d z 
Z1 

 

  D AB 

 
CA2 

 d C A 
CA1 

 
 

N A  
D AB 

 

z 2  z 1 

(C A1  C A2) 
 

------------------- (3) 

 

For ideal gases, C A  
n A 

V 
 
pA 

R T 

 

. Therefore Equation. (3) becomes 

 

N A  
D AB 

R T (z 2  z 1) 

(P A1  P A2) 
 
---------- (4) 

 

This is the equation of molar flux for steady-state equimolar counter diffusion. 

Concentration profile in these equimolar counter diffusion may be obtained from, 

d 
(N A)  0 

d z 
(Since NA is constant over the diffusion path). 

 

And from equation. (2) 
 

N A   D AB 
d CA 

.
 

d z 
 

Therefore  
d  d CA  

   
d z  

D AB 
 

d z  
 0 . 
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d 
2 

CA 

or 
d z 

2 
 0. 

 

This equation may be solved using the boundary conditions to give 
 

C 
A    

  C A1 

C 
A1   

  C A2 
 

z  z 1 

z 1   z 2 

 
-------------- (5) 

 

Problem. Methane diffuses at steady state through a tube containing helium. At point 1 

the partial pressure of methane is p A1 = 55 kPa and at point 2, 0.03 m apart P A2 = 15 KPa. 

The total pressure is 101.32 kPa, and the temperature is 298 K. At this pressure and 

temperature, the value of diffusivity is 6.75 * 10 –5 m 2/sec. 

 

i) calculate the flux of CH 4 at steady state for equimolar counter diffusion. 

ii) Calculate the partial pressure at a point 0.02 m apart from point 1. 

 

Calculation: 

 

For steady state equimolar counter diffusion, molar flux is given by 
 

N  
D AB    

p 
 

 

   p   
--------------------------- (1) 

A 
R T z A 1 A 2 

 

Therefore; 

N A  
6.75 * 10 

 5
 

8.314 * 298 * 0.03 

 
55  

 

15  
 
   kmol 

m 2. sec 

 3.633 * 10  5
 

kmol 
 

 

m 2 sec 
 

And from (1), partial pressure at 0.02 m from point 1 is: 
 

3.633 * 10 
 5

  
6.75 * 10  5

 

8.314 * 298 * 0.02 
55  p A  

 

p A = 28.33 kPa 

 
Problem. In a gas mixture of hydrogen and oxygen, steady state equimolar counter 
diffusion  is  occurring  at  a  total  pressure  of  100  kPa  and  temperature  of  20 C.   If  the 
partial pressures of oxygen at two planes 0.01 m apart, and perpendicular to the direction 
of diffusion are 15 kPa and 5 kPa, respectively and the mass diffusion flux of oxygen in 
the mixture is 1.6 * 10 –5 kmol/m 2.sec, calculate the molecular diffusivity for the system. 

 

Solution: 
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For equimolar counter current diffusion: 
 

N  
D AB   

p   p   ---------------- (1) 
A 

RTz A1 A2 

 

where 
 

N A = molar flux of A (1.6 * 10 –5 kmol/m 2.sec): 

D AB = molecular diffusivity of A in B 

R = Universal gas constant (8.314 kJ/kmol.k) 

T = Temperature in absolute scale (273 + 20 = 293 K) 

z = distance between two measurement planes 1 and 2 (0.01 m) 

P A1 = partial pressure of A at plane 1 (15 kPa); and 

P A2 = partial pressure of A at plane 2 (5 kPa) 

Substituting these in equation (1) 

1.6 * 10  5
 

D AB 

 
8.314  293  0.01 

15  5  

Therefore, D AB = 3.898 * 10 –5 m 2/sec 

 
Problem. A tube 1 cm in inside diameter that is 20 cm long is filled with Co2 and H2 at a 
total pressure of 2 atm at 0 C.   The diffusion coefficient of the Co2 – H2 system under 
these conditions is 0.275 cm2/sec. If the partial pressure of Co2 is 1.5 atm at one end of  
the tube and 0.5 atm at the other end, find the rate of diffusion for: 

 

i) steady state equimolar counter diffusion (N A = - N B) 

ii) steady state counter diffusion where N B = -0.75 N A, and 

iii) steady state diffusion of Co2 through stagnant H2 (NB = 0) 
 

 

i) N A   C D AB 
d y A 

d z 
 y A N A  N B  

Given 

N B = - N A 
 

 

Therefore N A 
  C D AB 

d y A 

d z 
  D AB 

d C A 
 

 

d z 
 

(For ideal gas mixture C A    
pA

 

R T 

 

where pA 
 

is the partial pressure of A; such that p A + p 

B = P) 

 
Therefore N A 

 
  D A B  

d pA  RT  
d z 
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Z 

For isothermal system, T is constant 
 

 

Therefore N A  
 D AB 

RT 

d p A 
 

 

d z 
 

Z 2 D AB 
P A2 

(i.e.) N A d z   
RT

 

1 

d p A 
P A1 

N 
D AB  

p 
 

 

    p  ---------------------------------- (1) 
A 

RT z A1 A2 

 

where Z = Z 2 – Z 1 

Given: D AB = 0.275 cm 2/sec = 0.275 * 10 –4 m 2 /sec ; T = 0 C = 273 k 
 

N A  
0.275 * 10  4

 
 

 

8314 * 273 * 0.2 1.5 * 1.01325 * 10 5   0.5 * 1.01325 * 10 5  
 6.138 * 10  6

 
k mol 

m 2 sec 

 

Rate of diffusion = N A S 

Where S is surface area 

Therefore rate of diffusion = 6.138 * 10-6 *  r 2 

= 6.138 * 10 –6 *  (0.5 * 10 –2) 2 
= 4.821 * 10 –10 k mol/sec 

= 1.735 * 10 –3 mol/hr. 
 

 

ii) N A   C D AB 
d y A 

 y 
d z 

A  N A  N B  

given: N B = - 0.75 N A 
 

 

Therefore N A   C D AB 
d y A 

d z 
 y A N A   0.75 N A  

 

 C D A B 
d y A 

d z 
 0.25 y 

 

A N A 

N A  0.25 y A N A   C D AB 
d y A 

 
 

d z 

N A d z   C D AB 
d y A 

1   0.25 y A 

for constant N A and C 
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0.25  A 

 

y  

  

   

  

 

Z 2 

N A d z 
Z 1 

 
  CD AB 

y A2 

 
y A1 

d y A 

1  0.25 y A 

 
 

   d x  

 

 
1 

ln a  b x   
 

a  b x b  

N A z   C D AB       1   
ln 1  0.25 y 

y A2
 y A1 

  
4 CD AB  1  0.25 y A 2  

N A   ln    
z  1  0.25 y A 1  ---------------------------------- (2) 

  
 

Given: 
 

   p 

R T 

 
 
2 * 1.01325 * 10 5 

8314 * 273 

 
 0.0893 K mol m 3 

y A 1 

 
y A 2 

 
p A 1 

P 

 
p A 2 

P 

 
1.5 

2 

 
0.5 

2 

 0.75 

 0.25 

Substituting these in equation (2), 
 

4 * 0.0893 * 0.275 * 10  4 
 

 
 

 
1  0.25 * 0.25  

 
 

N A  0.2 

 7.028 * 10  6
 

 
kmol 

m 2 sec 

ln 
1 

 
0.25 * 0.75  

Rate of diffusion = N A S = 7.028 * 10 –6 *  * (0.5 * 10 –2) 2 
= 5.52 * 10 –10 kmol/sec 

= 1.987 * 10 –3 mol/hr. 
 

 

iii) N A   CD AB 
d y A 

d z 
 y A N A  N B  

 

Given: N B = 0 

 
Therefore N A 

 

 
  CD AB 

 

 
d y A 

d z 

 

 
 y A N A 

Z 2 y A2 d y A 
N A  d z   CD AB Z 1  

1 y 
A1 

CD AB  1  y A2  
 ln    

 

Z  1  y A1  

 
0.0893 * 0.275 * 10  4

 
ln 

 1   0.25   

0.2   
1  0.75 

 
 

C 

A 
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 1.349 * 10  5
 

kmol 

m 2. sec 
 

Rate of diffusion = 1.349 8 10 –5 *  * (0.5 * 10 –2) 2 

= 1.059 Kmol / sec 

= 3.814 mol/hr 

 
 

3.4 Diffusion in Liquids: 

Equation derived for diffusion in gases equally applies to diffusion in liquids with 

some modifications. Mole fraction in liquid phases is normally written as ‘x’ (in gases as 
   

y). The concentration term ‘C’ is replaced by average molar density,  
M 

 . 
 

a) For steady – state diffusion of A through non diffusivity B: 

N A = constant , N B = 0 

 av 

N  
D AB    x   x  

A 
z x  

M 
 A1 A2 

BM     av 

where Z = Z 2 – Z 1, the length of diffusion path; and 

X BM  X B 2  X B 1 

 
 

b) For steady – state equimolar counter diffusion : 

N A = - N B = const 
N  

D AB  
C  C  

 
 

 
D AB      

x
 

 
 

    x  
A 

Z 
A1 A2 

Z 
 
M 

 A 1 A 2 

  av 

Problem. Calculate the rate of diffusion of butanol at 20 C under unidirectional steady 
state conditions through a 0.1 cm thick film of water when the concentrations of butanol 

at the opposite sides of the film are, respectively 10% and 4% butanol by weight. The 
diffusivity of butanol in water solution is 5.9 * 10 –6 cm 2/sec. The densities of 10% and 
4%  butanol  solutions  at  20 C  may  be  taken  as  0.971  and  0.992  g/cc  respectively. 
Molecular weight of Butanol (C 4 H 9 OH) is 74, and that of water 18. 

 

Calculations 

 

For steady state unidirectional diffusion, 

 
N A  

 

D AB 
z 

x A1  
x 

x A2  
B, lm 

where C is the average molar density. 
   
 
M 

 
  avg 

Conversion from weight fraction the Mole fraction: 

ln 
  
 

X B 2 
X B 1  

 

 

 

C 
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 1  M 1     2   M 2  

ln x B2   x B1  

  

  

 0.9 18 

 

x A1   
0.1 74  

 
 0.026 

x A2   0.04 74  
 

 0.010 

 

Average molecular weight at 1 & 2: 

 
M 1  19.47 kg Kmol 

 

 
 

   
 
M 

 

M 2  

 
 

2
 

 18.56 kg Kmol 

  avg 

 
0.971 19.47  0.992 18.56 

2 
= 0.0517 gmol / cm 3 

= 51.7 kmol/m 3 

 
x B,lm  

x B2  
 

x B1 1  
 

x A2   
 1  

1   x A1  
x  

ln  
 1  

A2  
x A1  

 
(i.e.) x B,lm 

 
1   0.01    1   0.026  

ln 
 1  0.01  

 
1  

 
0.016 
0.0163 

0.026  

 0.982 

 
Therefore N A  

D AB 
2 

   
 
M 

 x A1  
x 

x A2  
  avg B, lm 

5.9 * 10 
 6 

* 10 
 4 

* 51.7 
* 

0.1 * 10 
 2

 

0.026   0.010  
0.982 

 4.97 * 10  7
 

kmol 

m 2 sec 

 1.789 

 1.789 

gmol 

m 2.hr . 

* 74 
g

 
 

 
 132.4 

m 2. hr . 

g 
 

 

m 2. hr . 

1 

0.1 74   0.9 18  1 

0.04 74   0.96 18  

0.1 74 

0.04 74 
 0.96 18 
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3.5 Diffusion in solids 

In certain unit operation of chemical engineering such as in drying or in 

absorption, mass transfer takes place between a solid and a fluid phase. If the transferred 

species is distributed uniformly in the solid phase and forms a homogeneous medium, the 

diffusion of the species in the solid phase is said to be structure independent. In this cases 

diffusivity or diffusion coefficient is direction – independent. 

At steady state, and for mass diffusion which is independent of the solid matrix 

structure, the molar flux in the z direction is : 

N A    D AB 
d C A 

d z 
 constant , as given by Fick’s law. 

Integrating the above equation, 
D AB  C A1  C A2  

 

N A   
z
 

which is similar to the expression obtained for diffusion in a stagnant fluid with no bulk 

motion (i.e. N = 0). 

In some chemical operations, such as heterogeneous catalysis, an important factor, 

affecting the rate of reaction is the diffusions of the gaseous component through a porous 

solid. The effective diffusivity in the solid is reduced below what it could be in a free 

fluid, for two reasons. First, the tortuous nature of the path increases the distance, which a 

molecule must travel to advance a given distance in the solid. Second, the free cross – 

sectional area is restricted. For many catalyst pellets, the effective diffusivity of a gaseous 

component is of the order of one tenth of its value in a free gas. 

If the pressure is low enough and the pores are small enough, the gas molecules 

will collide with the walls more frequently than with each other. This is known as 

Knudsen flow or Knudsen diffusion. Upon hitting the wall, the molecules are 

momentarily absorbed and then given off in random directions. The gas flux is reduced 

by the wall collisions. 

By use of the kinetic flux is the concentration gradient is independent of pressure ; 

whereas the proportionality constant for molecular diffusion in gases (i.e. Diffusivity) is 

inversely proportional to pressure. 

Knudsen diffusion occurs when the size of the pore is of the order of the mean 

free path of the diffusing molecule. 
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4.1 Equation of energy 
 

4.2 Flow through Packed bed 
 

4.3 Sudden Enlargement 
 

4.4 Liquid –liquid ejector 
 

4.5 Flow through orifice 
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4.1 Derivation of equation of energy 

 

1. Equation of mechanical energy 

2. Equation of thermal energy 

 
Equation of mechanical energy 

For understanding the nature of mechanical energy, consider a simple case of a single 

particle moving in one direction as shown in Fig. 30.1. Assume the particle has mass m 

and is located at height h from a reference plane and moving upward with velocity . 

Gravity is the only force working on the particle. 

 

 

 

 

 

 

 

 

 

 

Starting with Newton’s second law of motion, 

we have Force = mass x acceleration 

 

 

 

 
 

Using vector identity, we have 
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or 

 

 
where, ν is the magnitude of the 

velocity vector . By substituting 

 

 

 
For the example given above, we have , 

F1 = 0, F2 = 0, F3=-mg 

 

and 

 

ν1 = 0, ν2 = 0, ν3 = ν 
 

 

 
 

 

Substitute ν = (dz/dt). Thus we obtain, 
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Since, m and g are constants. We may rewrite above equation as, 
 

or 

 
 

 

As before, 
 

 
(Note: substantial derivatives behave like normal derivatives.). Thus, 

 

 
The following vector and tensor identities may be used for simplifying Equation (30.14) 
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and if is a second order symmetric tensor then we also have 
 

 

Thus, we obtain 
 
 

 

 

 

 
Equation is called the equation of mechanical energy for fluids. 

 

Significance of each term is given below. 
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4.2 FLOW THROUGH PACKED BED 
 

 

 

 

For the theoretical analysis to calculate pressure–drop, actual flow 

channels are replaced with parallel cylindrical conduits of constant cross–

section. Particles are assumed to be of the same size and shape having 

constant sphericity, . 

Pressure–drop occurs due to inertial and viscous effects. At high Reynolds 

number, inertial effects prevail, whereas the viscous effects are important 

at low Reynolds number. In general, 
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Similarly, pressure–drop at high Reynolds number, . Therefore, Pressure-drop 

in packed beds is related to pressure–drop due to viscous and inertial effects via two 

empirical constants, . 

 (multiply both numerator and denominator by 

L) , S0 = cross sectional area of packed–bed 
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4.3 SUDDEN ENLARGEMENT 
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4.4 LIQUID - LIQUID EJECTOR 
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4.5 ISOTHERMAL FLOW OF AN LIQUID THROUGH AN ORIFICE 
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5.1 Analogy of Mass Transfer 

 
 

Mass transfer by convection involves the transport of material between a boundary surface 

(such as solid or liquid surface) and a moving fluid or between two relatively immiscible, moving 

fluids. 

 
There are two different cases of convective mass transfer: 

 
 

1. Mass transfer takes place only in a single phase either to or from a phase boundary, as in 

sublimation of naphthalene (solid form) into the moving air. 

 
2. Mass transfer takes place in the two contacting phases as in extraction and absorption. 

 

 

 
Convective Mass Transfer Coefficient 

 
 

In the study of convective heat transfer, the heat flux is connected to heat transfer coefficient as 

 

Q  A  q  h t s   t m  
 

-------------------- (1.1) 

 

 

The analogous situation in mass transfer is handled by an equation of the form 

 

N A   k c C As   C A  
 

-------------------- (1.2) 

 

 

The molar flux N A is measured relative to a set of axes fixed in space. The driving force is the 

difference between the concentration at the phase boundary, CAS (a solid surface or a fluid 

interface) and the concentration at some arbitrarily defined point in the fluid medium, C A . The 
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convective mass transfer coefficient kC is a function of geometry of the system and the velocity 

and properties of the fluid similar to the heat transfer coefficient, h. 
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Significant Parameters in Convective Mass Transfer 

 
 

Dimensionless parameters are often used to correlate convective transfer data. In momentum 

transfer Reynolds number and friction factor play a major role. In the correlation of convective 

heat transfer data, Prandtl and Nusselt numbers are important. Some of the same parameters, along 

with some newly defined dimensionless numbers, will be useful in the correlation of convective 

mass-transfer data. 

 
The molecular diffusivities of the three transport process (momentum, heat and mass) have been 

defined as: 

 
 

Momentum diffusivity    

 

 

----------------------------- (1.3) 

 
 

 

Thermal 
 

diffusivity   
  k  

 C p 

 

--------------------------- (1.4) 

 

 

and  

Mass diffusivity D AB 

 

--------------------------- (1.5) 

 

 

It can be shown that each of the diffusivities has the dimensions of L2 / t, hence, a ratio of any of 

the two of these must be dimensionless. 

 
The ratio of the molecular diffusivity of momentum to the molecular diffusivity of heat (thermal 

diffusivity) is designated as the Prandtl Number 

 

Momentum diffusivity  Pr  
 

 
Cp  

 

 
------------------------ (1.6) 

Thermal diffusivity  K 
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The analogous number in mass transfer is Schmidt number given as 
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Momentum diffusivity 
 Sc          

-------------- (1.7) 

Mass diffusivity D AB  D AB 

 

 

The ratio of the molecular diffusivity of heat to the molecular diffusivity of mass is designated 

the Lewis Number, and is given by 

 

Thermal diffusivity  Le  
      k 

 
 
------------- (1.8) 

Mass diffusivity D AB  C p D AB 

 
 
 
 
 

 

Lewis number is encountered in processes involving simultaneous convective transfer of mass and 

energy. 

 
Let us consider the mass transfer of solute A from a solid to a fluid flowing past the surface of the 

solid. The concentration and velocity profile is depicted .For such a case, the mass transfer between 

the solid surface and the fluid may be written as 

 

N A   k c C As   C A   
 

---------------------- (1 a) 

 

 

Since the mass transfer at the surface is by molecular diffusion, the mass transfer may also 

described by 

 

 

N A   D AB 
 

y 0 
------------------------- (1.9) 

 
 

When the boundary concentration, CAs is constant, equation (9) may be written as 
 

 
N A   

D 
A

B 
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d C A    C A s  
d y 

 
 
 

y 0 

 

----

----

----

----

----

-- 

(1.

10) 
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d y 

Equation (4.1a) and (4.10) may be equated, since they define the same flux of component A 

leaving the surface and entering the fluid 

 

k c  C A s     C A      D AB 
 d     

C A    C A s  
 
 

y 0 

 
--------------- (1.11) 

 
 

This relation may be rearranged into the following form: 
 

 

k c 
  

D AB 

 

 
y 0 

 
-------------------- (1..12) 

 
 

Multiplying both sides of equation(4.12) by a characteristic length, L we obtain the following 

dimensionless expression: 

 

k c L 
 

 
 

 

d C A    C A s  d y 
 

y 0 ------------------------ (1.13) 

D AB C A S  C A   L 

 
 

The right hand side of equation (4.13) is the ratio of the concentration gradient at the surface to an 

overall or reference concentration gradient; accordingly, it may be considered as the ratio of 

molecular mass-transport resistance to the convective mass-transport resistance of the fluid. This 

ratio is generally known as the Sherwood number, Sh and analogous to the Nusselt number Nu, in 

heat transfer. 

 
5.2 Application of Dimensional Analysis to Mass Transfer 

 
 

One of the method of obtaining equations for predicting mass-transfer coefficients is the use of 

dimensionless analysis. Dimensional analysis predicts the various dimensionless parameters 

which are helpful in correlating experimental data. 
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AB 

AB 

AB 

AB 

There are two important mass transfer processes, which we shall consider, the transfer of mass 

into a steam flowing under forced convection and the transfer of mass into a phase which is moving 

as the result of natural convection associated with density gradients. 

 
Transfer into a stream flowing under forced convection 

 
 

Consider the transfer of mass from the walls of a circular conduit to a fluid flowing through the 

conduit.  The mass transfer is due to the concentration driving force C As – C A . 

 
These variables include terms descriptive of the system geometry, the flow and fluid properties 

and the quantity of importance, k c. 

 
By the Buckingham method of grouping the variables, the number of dimensionless  groups is 

equal to the number of variables minus the number of fundamental dimensions. Hence the number 

of dimensionless group for this problem will be three. 

With D AB,  and D as the core variables, the three  groups to be formed are 
 

 

 1 D a  b D 
c 

k c ---------------------------- (1.14) 

 

 

 2 D d  e D 
f  ---------------------------- (1.15) 

 

 

and  3 D g  h D 
i  ---------------------------- (1.16) 

 

 

 
 

Substituting the dimensions for  , 
 

 

 1 D a  b D 
c 

k c ---------------------------- (1.17) 
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t   

 L 2  
a
 

 M  
b
 

 
 

 L  
 

1       L  c    --------------------------- (1.18) 
   L 3   t  
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D 

 D 

 

Equating the exponents of the fundamental dimensions on both sides of the equation, we have 

L : 0 = 2a – 3b + c + 1 

t  : 0 = – a – 1 

 
 

M : 0 = b 

 
 

Solving these equations, 

 
 

a = –1, b = 0 and c = 1 
 

 

Thus  1  
k c D 

D AB 

 
which is the Sherwood number. 

 

 

The other two  groups could be determined in the same manner, yielding 
 

 

 2  
 D   

(1.19) 
AB 

 

 

 

and 
 3 

   
 S c ----------------------------------------------------- (1.20) 

AB 

which is termed as Schmidt Number 

Dividing 2 by 3, we get 

 2   D      
 

 

 D   
 

     3 
 D AB        D AB 

  Re ----------------- (1.21) 
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which is the Reynolds Number 
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AB 

L  

AB 

 
 

The result of the dimensional analysis of mass transfer by forced convection in a circular conduit 

indicates that a correlating relation could be of the form, 

 

Sh  Re, Sc  --------------------------- (1.22) 

 
 

Which is analogous to the heat transfer correlation 
 

 

Nu  Re, Pr  
 

---------------------------- (1.23) 

 

 

Transfer into a phase whose motion is due to Natural Convection 

 
 

Natural convection currents develop if there exists any variation in density within the fluid phase. 

The density variation may be due to temperature differences or to relatively large concentration 

differences. 

 
According to Buckingham theorem, there will be three dimensionless groups. Choosing D AB, L 

and  as the core variables, the  groups to be formed are 

 

 1 D a 
L 

b  c k c ---------------------------- (4.24) 

 

 

 2 D d   e f 
AB ---------------------------- (4.25) 

 

 

and  3 D g 
L 

h  i g   A ---------------------------- (4.26) 

 

 

Solving for the dimensionless groups, we obtain 
 

 

  
k c L 

1 
D AB 

 Nu, the Nusselt number 
 
---------------------- (4.27) 
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 D AB  1 

 

 
, the reciprocal of 

 
Schmidt 

 
number 

 
-------- (4.28) 

2 
 Sc 

 
 

 
and 

 

 3  L 3 g   A 
 

 D AB 

 
------------------------------- (4.29) 

 

 

With  the  multiplication  of  2  and  3,  we  obtain  a  dimensionless  parameter  analogous  to  the 

Grashof number in heat transfer by natural convection 

 

  D AB   L 
3 

g   A  
 2  3        

 

  
 D AB  

L 3  g   A 

 
 2

 
 Gr AB -------------------------- (4.30) 

 

 

The result of the dimensional analysis of mass transfer by natural convection indicates that a 

correlating relation could be of the form, 

 

Sh  
Gr AB , Sc  

 

---------------------------- (4.31) 

 

 

5.3 Analogy among Mass, Heat and Momentum Transfer 

 
 

Analogies among mass, heat and momentum transfer have their origin either in the mathematical 

description of the effects or in the physical parameters used for quantitative description. 

 
To explore those analogies, it could be understood that the diffusion of mass and conduction of 

heat obey very similar equations. In particular, diffusion in one dimension is described by the 

Fick’s Law as 
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J A   D AB 

d C A 

d z 

 

------------------------------ (4.32) 
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d z 

Similarly, heat conduction is described by Fourier’s law as 
 

 

q    k 
d T

 
d z 

 

(4.33) 

 

 

Where k is the thermal conductivity. 

 
 

The similar equation describing momentum transfer as given by Newton’s law is 
 
 

    
d    

(4.34) 

 

 

Where  is the momentum flux (or shear stress) and  is the viscosity of fluid. 

 

At this point it has become conventional to draw an analogy among mass, heat and momentum 

transfer. Each process uses a simple law combined with a mass or energy or momentum balance. 

 
In this section, we shall consider several analogies among transfer phenomenon which has been 

proposed because of the similarity in their mechanisms. The analogies are useful in understanding 

the transfer phenomena and as a satisfactory means for predicting behaviour of systems for which 

limited quantitative data are available. 

 
The similarity among the transfer phenomena and accordingly the existence of the analogies 

require that the following five conditions exist within the system 

 
1. The physical properties are constant 

 
 

2. There is no mass or energy produced within the system. This implies that there is no 

chemical reaction within the system 

 
3. There is no emission or absorption of radiant energy. 
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4. There is no viscous dissipation of energy. 

 
 

5. The velocity profile is not affected by the mass transfer. This implies there should be a 

low rate of mass transfer. 

 
5.4 Reynolds Analogy 

 
 

The first recognition of the analogous behaviour of mass, heat and momentum transfer was 

reported by Osborne Reynolds in 1874. Although his analogy is limited in application, it served as 

the base for seeking better analogies. 

 
Reynolds postulated that the mechanisms for transfer of momentum, energy and mass are identical. 

Accordingly, 

 

k c    h 
 
f 

     C p 2 -------------------------------- (4.35) 

 
 

Here h is heat transfer coefficient 

f is friction factor 

  is velocity of free stream 

 

The Reynolds analogy is interesting because it suggests a very simple relation between different 

transport phenomena. This relation is found to be accurate when Prandtl and Schmidt numbers are 

equal to one. This is applicable for mass transfer by means of turbulent eddies in gases. In this 

situation, we can estimate mass transfer coefficients from heat transfer coefficients or from friction 

factors. 

 

 

5.5 Chilton – Colburn Analogy 
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Because the Reynold’s analogy was practically useful, many authors tried to extend it to liquids. 

Chilton and Colburn, using experimental data, sought modifications to the Reynold’s analogy that 

would not have the restrictions that Prandtl and Schmidt numbers must be equal to one. They 

defined for the j factor for mass transfer as 

 

j  
k c

 
D   

Sc  2 3
 

 
--------------------------- (4.36) 

 

 

 

The analogous j factor for heat transfer is 
 

 

j H    St Pr 2 3  (4.37) 
 

 

   Nu  
where St is Stanton number =  Re Pr 

  h  

   C p 

 

 

Based on data collected in both laminar and turbulent flow regimes, they found 
 

 

j D  j H  
f
 

2 

 

(4.38) 

 
 

This analogy is valid for gases and liquids within the range of 0.6 < Sc < 2500 and 0.6 < Pr < 

100. 

 
The Chilton-Colburn analogy has been observed to hold for many different geometries for 

example, flow over flat plates, flow in pipes, and flow around cylinders. 

 

5.6 The Prandtl analogy 

In the turbulent core the transport is mainly by eddies and near the wall, that is laminar sub-layer, 

the transport is by molecular diffusion. Therefore, Prandtl modified the above two analogies 

using universal velocity profile while driving the analogy 
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L 

L 

5.7 The Van Karman analogy 

 

Though Prandtl considered the laminar and turbulent laminar sublayers but did not consider the 

buffer zone. Thus, Van Karman included the buffer zone into the Prandtl analogy to further 

improve the analogy. 
 

 

 

 

Problem. A stream of air at 100 kPa pressure and 300 K is flowing on the top surface of a thin 

flat sheet of solid naphthalene of length 0.2 m with a velocity of 20 m/sec. The other data are: 

 
Mass diffusivity of naphthalene vapor in air = 6 * 10 –6 m 2/sec 

Kinematic viscosity of air = 1.5 * 10 –5 m 2.sc 

Concentration of naphthalene at the air-solid naphthalene interface = 1 * 10 –5 kmol/m3 

 
 

Calculate: 

 
 

(a) the overage mass transfer coefficient over the flat plate 

(b) the rate of loss of naphthalene from the surface per unit width 

 
 

Note: For heat transfer over a flat plate, convective heat transfer coefficient for laminar flow can 

be calculated by the equation. 

Nu  0.664 Re
1 2

 Pr 1 3 

 

 

you may use analogy between mass and heat transfer. 

 
 

Solution: 

 
 

Given: Correlation for heat transfer 
 

 

Nu  0.664 Re
1 2

 Pr 1 3 
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L 

   

The analogous relation for mass transfer is 
 

 

Sh  0.664 Re
1 2

 Sc 1 3 -----------------------------------------(1) 

 

 

where 
 

 

Sh = Sherwood number = kL/D AB 

Re L = Reynolds number = L /  

Sc = Schmidt number =  / (  D AB) 

k = overall mass transfer coefficient 

L = length of sheet 

D AB = diffusivity of A in B 

 = velocity of air 

 = viscosity of air 

 = density of air, and 

/  = kinematic viscosity of air. 

 

Substituting for the known quantities in equation (1) 

   k 0.2      0.2  20   
1 2

  1.5 * 10  5  
1 3

 
 

6 * 10  6
 

 0.664  
 1.5 * 10  5  

  
  6 * 10  6   

k = 0.014 m/sec 

 
 

Rate of loss of naphthalene = k (C Ai – C A ) 

= 0.014 (1 * 10 –5 – 0) = 1.4024 * 10 –7 kmol/m 2 sec 

 
 

Rate of loss per meter width = (1.4024 * 10 –7) (0.2) = 2.8048 * 10 –8 kmol/m.sec 

= 0.101 gmol/m.hr. 

 
 

5.8 Convective Mass Transfer Correlations 
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L 

L 

L 

L 

x 

Extensive data have been obtained for the transfer of mass between a moving fluid and certain 

shapes, such as flat plates, spheres and cylinders. The techniques include sublimation of a solid, 

vapourization of a liquid into a moving stream of air and the dissolution of a solid into water. 

 
These data have been correlated in terms of dimensionless parameters and the equations obtained 

are used to estimate the mass transfer coefficients in other moving fluids and geometrically similar 

surfaces. 

Flat Plate 

 
 

From the experimental measurements of rate of evaporation from a liquid surface or from the 

sublimation rate of a volatile solid surface into a controlled air-stream, several correlations are 

available. These correlation have been found to satisfy the equations obtained by theoretical 

analysis on boundary layers, 

 

Sh  0.664 Re 
1 2

Sc 
1 3

 laminar  Re L   3 * 10 
5
 ------------- (4.39) 

 
 

Sh  0.036 Re 
0.8 

Sc 
1 3

 turbulent  Re L   3 * 10 
5

 ----------- (4.40) 

 
 

Using the definition of j factor for mass transfer on equation (4.39) and (4.40) we obtain 
 

 

j D  0.664 Re 
 1 2

 laminar  Re L   3 * 10 
5

 ------------- (4.41) 

 
 

J D    0.037  Re
  0.2  

turbulent  Re L   3 * 10 
5

 ----------- (4.42) 

 
 

These equations may be used if the Schmidt number in the range 0.6 < Sc < 2500. 

 
 

7. If the local Nusselt number for the laminar boundary layer that is formed over a flat plate is 
 

 

Nu x  0.332 Re 1 2 Sc 1 / 3 
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;

D 

 

x 

 

Obtain an expression for the average film-transfer coefficient k c, when the Reynolds number 

for the plate is 

 
a) Re L = 100 000 

b) Re L = 1500 000 

 
 

The transition from laminar to turbulent flow occurs at Re x = 3 * 10 5. 
 

 

Derivation: 
 

 
 

By definition : k c 

 

 
L 

k c dx 
o  

L 

dx 
o 

 
and Nu x  

k c x 
;
 

D AB 

 
Re x  

x v  
;
 

 
Sc 

   

AB 

 

 

For Re L = 100 000 ; (which is less than the Reynolds number corresponding to Transition value 

of 3 * 10 5) 

 
1 L 

0.332 
 x v    2  

Sc  
1  D AB  

d x 
 

k c  o 

  3 

  x 
L 

 1 3   v  
1 2

 

0.332  Sc  
 

 L d x 

   
L 

D AB  1 2 
o 

0.332 
 

 

1 3   v   
1 2

 
 

 
 

1 2 L 
 

 

  
1 

Sc 
L 

2 

  D AB  x o 

  

 
 

(i.e.)  
k c L

 
D AB 

 0.664 Re L
1 2

 Sc 1 3 
 
[answer (a)] 
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For Re L = 1500 000 (> 3 * 10 5) 
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x 

t 
L t 

t L 

t 

 

 
 

 Lt  0.332 Re x 
1 2

 
 
Sc 1 3 d x  

 
 

L 
0.0292 Re x 

4 5
 

 
Sc 1 3 d x  

 
 

 
o x L 

 
 

x  where L t is the 

k c  D AB 
 t  

L 

distance from the leading edge of the plane to the transition point where Re x = 3 * 10 5. 
 

 

 
 

  v  1 2  L t d x 
 

 

 v   4 5 L 
 

 
 

d x  

 0.332 Sc1 3     0.0292  Sc1 3     
 

k c  D AB  
     o 

L 

   1 5  
L t  

 
 

k c L  
1 2 1 3 

 
0.0292 1 3  4 5 L  V   

4 5
 

D AB 

 0.664 Ret Sx  
4 5 

Sc x L t   
  
  

0.664 Re 
1 2

 Sc 1 3  0.0365 Sc 1 3
 

Re 
4 5  Re 

4 5  

 
 

k c L 

D AB 

0.664 Re 
1 2

 Sc 1 3  0.0365 Re 
4 5

 Sc 1 3  0.0365 Re
4 5

 Sc 1 3 
where Re t 

 

= 3 * 10 5 

 
 

Single Sphere 

 
 

Correlations for mass transfer from single spheres are represented as addition of terms representing 

transfer by purely molecular diffusion and transfer by forced convection, in the form 

 

Sh  Sh o  C Re m Sc n ---------------------- (4.43) 

 

 

Where C, m and n are constants, the value of n is normally taken as 1/3 

For very low Reynold’s number, the Sherwood number should approach a value of 2. This value 

x 1 2 
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has been derived in earlier sections by theoretical consideration of molecular diffusion from a 

sphere into a large volume of stagnant fluid. Therefore the generalized equation becomes 

 

Sh   2  C Re 
m 

Sc 
1 3 --------------------------------------------------- (4.44) 
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AB 

AB 

 
 

For mass transfer into liquid streams, the equation given by Brain and Hales 
 

Sh   4  1.21 Pe
2 3 1 2

 

 
-------------------------- (4.45) 

 

 

correlates the data that are obtained when the mass transfer Peclet number, Pe AB is less than 

10,000. This Peclet number is equal to the product of Reynolds and Schmidt numbers (i.e.) 

 
Pe AB   Re Sc  (4.46) 

 

 

For Peclet numbers greater than 10,000, the relation given by Levich is useful 
 

 

Sh  1.01 Pe
1 3 ---------------------------------------------- 

(4.47) 
 

 

The relation given by Froessling 
 

 

Sh  2  0.552 Re 
1 2  

Sc 
1 3 ---------------------------------------------- (4.48) 

 
 

correlates the data for mass transfer into gases for at Reynold’s numbers ranging from 2 to 800 

and Schmidt number ranging 0.6 to 2.7. 

 
For natural convection mass transfer the relation given by Schutz 

 

Sh   2  0.59  Gr AB Sc  1 4
 

 
----------------------- (4.49) 

 
 

is useful over the range 

 
 

2 * 10 8 < Gr AB Sc < 1.5 * 10 10 
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Problem. The mass flux from a 5 cm diameter naphthalene ball placed in stagnant air at 40 C and 

atmospheric pressure, is 1.47 * 10 –3 mol/m 2. sec. Assume the vapor pressure of naphthalene to 

be 0.15 atm at 40 C and negligible bulk concentration of naphthalene in air.  If air starts blowing 

across the surface of naphthalene ball at 3 m/s by what factor will the mass transfer rate increase, 

all other conditions remaining the same? 

 
For spheres : Sh = 2.0 + 0.6 (Re) 0.5 (Sc)0.33 

 
 

Where Sh is the Sherwood number and Sc is the Schmids number. The viscosity and density of air 

are 1.8 * 10 –5 kg/m.s and 1.123 kg/m 3, respectively and the gas constant is 82.06 cm 3 .atm/mol.K. 

 
Calculations: 

 

 

Sh  
kc L 
D AB 

 
where L is the characteristic dimension for sphere L = Diameter. 

 

 

Sc 
   

 

 D AB 

Rc  
D v  

 

Mass flux, N A 

 

 
 K c c 

 
 
 

------------------------------(1) 

 

 

Sh = 2.0 + 0.6 (Re) 0.5 (Sc) 0.33 

k D  DV   
0.5   

 
 

 
0.33 

     c  D AB  2.0  0.6          D AB  ----------------------- (2) 

  

 

also N = K G p A 

k c 

Therefore 
R T

 

 
 K G 
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Given: 

 
N 

 

 1.47 * 10  3
 

 

mol 

m 2. sec 

 
 
K c 

RT 

 
 

 p A 

k c  0.15  
 

 

0
 

 1.47 * 10  3  * 10  4
   mol  

  
RT     1  cm 2 . sec 

1.47 * 10  7
 

k c 
0.15 

 
* 82.06 * 273  40  

= 0.0252 cm/sec 

k c = 2.517 * 10 –4 m/sec ------------------------------ (3) 

 
 

Estimation of D AB: 
 

 

From (2), 

2.517 * 10  4 * 5 * 10  2
 

2 
D AB 

 

 
(since v = 0) 

 

 

Therefore D AB = 6.2925 * 10 –6 m2/sec. 

And 

k * 5 * 10  2
  5 * 10  2 * 3 * 1.123  

0.5 
 1.8 * 10  5

 
 
0.33 

c 
 2  0.6     

   6.2925 * 10  6
 

 1.8 * 10  5
 

  1.123 * 6.2925 * 10  6  

    

7946 k c = 2 + 0.6 * (96.74) * (1.361) 
 

 

k c = 0.0102 m/sec.  (4) 
 

 

(4)  

(3) 

N A2 
 

 

N A1 

0.0102 
 
2.517 * 10 

 4
 

 40.5 

 

 



   

31 

 

 

 

 

Therefore, rate of mass transfer increases by 40.5 times the initial conditions. 

 
 

Single Cylinder 
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Several investigators have studied the rate of sublimation from a solid cylinder into air flowing 

normal to its axis. Bedingfield and Drew correlated the available data in the form 

 

kG PSc 0.56 

 
 

Gm 

0.281 Re /  0.4 
 
 

 
------------------------ (4.50) 

 

which is valid for 400 < Re / < 25000 

and 0.6 < Sc < 2.6 

Where Re / is the Reynold’s number in terms of the diameter of the cylinder, G m is the molar 

mass velocity of gas and P is the pressure. 

 
5.9 Flow Through Pipes 

 
 

Mass transfer from the inner wall of a tube to a moving fluid has been studied extensively. Gilliland 

and Sherwood, based on the study of rate of vapourization of nine different liquids into air given 

the correlation 

 

Sh 
p B, l m 

P 
 0.023 Re 0.83

 Sc 0.44 
 

-------------- (4.51) 

 
 

Where p B, lm is the log mean composition of the carrier gas, evaluated between the surface and 

bulk stream composition. P is the total pressure. This expression has been found to be valid over 

the range 

 
2000 < Re < 35000 

0.6 < Sc < 2.5 
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Linton and Sherwood modified the above relation making it suitable for large ranges of Schmidt 

number. Their relation is given as 

 

Sh  0.023 Re 0.83
 Sc 1 3 --------------------- (4.52) 

 
 

and found to be valid for 

 
 

2000 < Re < 70000 

and 1000 < Sc < 2260 

 
 

Problem. A solid disc of benzoic acid 3 cm in diameter is spin at 20 rpm and 25 C.  Calculate the 

rate of dissolution in a large volume of water. Diffusivity of benzoic acid in water is 1.0 * 10 –5 

cm 2/sec, and solubility is 0.003 g/cc. The following mass transfer correlation is applicable: 

 
Sh = 0.62 Re ½ Sc 1/3 

 

 

Where Re  
D 2  

 

 
and  is the angular speed in radians/time. 

 
 

Calculations: 

 
 

Dissolution rate = N A S ---------------------------------- (1) 

 
 

Where N A = mass flux, and 

S = surface area for mass transfer 

 
 

N A = k c (C As – C A )  (2) 

 
 

Where C As is the concentration of benzoic and at in water at the surface of the dose. 

C A  is the concentration benzoic acid in wate for an from the surface of the disc. 
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Given: 

Sh = 0.62 Re ½ Sc 1/3 

 
k c D 

 
1 1 

 D 2    2     3 
 

(i.e.)   0.62      ------------------ (3) D AB      D AB 
 

    

 

1 rotation = 2  radian 

Therefore 20 rotation per minute = 20 * 2  radian/min 
 

20 

60 
* 2  

 

radian sec 

For water  = 1 g/cm 3  = 1 centipoise = 0.01 g/cm.sec. 
 

 

From (3), 
 

 

 
1 

    2 

 
 

 
1 

    3 

k c    0.62  D AB      
     D AB 

 

  

1 1 

 0.62 * 1.0 * 10 5  * 
 40   60  * 1  2     0.01   3 

 
 

= 8.973 * 10 –4 cm/sec. 

0.01 
  
  1 * 1.0 * 10  5  

 

From (2), 

 
 

N A = 8.973 * 10 –4 (0.003 – 0) 

= 2.692 * 10 –6 g/cm 2.sec 

 
 

From (1), 

 
 

N A S = N A * (2 r 2) 

= 2.692 * 10 –6 * (2  * 1.5 2) 

= 3.805 * 10 –5 g/sec 

= 0.137 g/hr. 
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5.10 Hot Wire Anemometer 
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A hot-wire anemometer measures local instantaneous velocity based on principles of heat transfer. 

However, it requires that the fluid itself be at a uniform temperature. It can be used to measure 

three components of velocity and velocity fluctuations arising in turbulent flow. This is possible 

because of the high speed of response of the hot-wire probe and the associated feedback circuit. A 

hot-wire probe is used in gas flows, while a hot-film is used for liquid flow. The hot- wire has a 

limitation that it is insensitive to the flow direction. Further, it has a non-linear input- output 

relationship which makes its sensitivity non-uniform over any velocity range. In particular, the 

sensitivity decreases with increasing velocity. The hot-wire probe is a platinum- coated tungsten 

wire, typically of 5 µm diameter and about mm length, supported between highly conducting 

prongs. Tungsten has high temperature coefficient of resistance (i.e., resistance increases rapidly 

with temperature) and the platinum coating affords strength as well as protection against corrosion 

of the thin wire. 

Characteristics of Hot Wire Anemometry 

 Intrusive Technique 

 Measurement of instantaneous velocities and temperature at a point in a flow. 

 Hot wire anemometry is an ideal tool for measurement of velocity fluctuations in time 

domain in turbulent flows. 

 Principal tool for basic studies of physics of turbulent flows. 

Advantages of HWA 

 Good Frequency response 

 Measurements to several hundred kHz possible, 1 MHz also feasible 

 Velocity Measurement: measures magnitude and direction of velocity and velocity 

fluctuations, Wide velocity range Temperature Measurements 

 Two Phase Flow: Measurements in flows containing continuous turbulent phase and 

distributed bubbles 



   

37 

 

 

 

 
 

Mode of Operation 

 
 

1. Constant Current Anemometer 

2. Constant Temperature Anemometer 
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