
UNIT – I – SBSA3003 - Mobile Application Development

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT 1

Introduction to Android:

Introduction to mobile technologies, mobile operation systems, Mobile devices –pros and

cons, Introduction to Android, Versions, Features, Architecture, UI Widgets and Events

handling, Layouts, Required tools - Eclipse, ADT,AVD, Application structure, Android

Manifest file, Creating Android applications.

Mobile Networks / Technologies

GSM

GPRS

EDGE

1G, 2G, 3G, 4G, 5G

IEEE 802.11

Infrared

Bluetooth

Cellular Network

• Base stations transmit to and receive from mobiles at the assigned spectrum

– Multiple base stations use the same spectrum (spectralreuse)

• The service area of each base station is called a cell

• Each mobile terminal is typically served by the ‗closest‘

base stations

– Handoff when terminals move

Figure 1.1 Cellular Networks

Cellular Network Generations

• It is useful to think of cellular Network/telephony in terms of generations:

– 0G: Briefcase-size mobile radio telephones

– 1G: Analog cellular telephony

– 2G: Digital cellular telephony

– 3G: High-speed digital cellular telephony (including

video telephony)

– 4G: IP-based ―anytime, anywhere‖ voice, data, and

multimedia telephony at faster data rates than 3G (to be deployed

in 2012–2015)

Frequency Division Multiple Access

• Each mobile is assigned a separate frequency channel for the duration of the

call

• Sufficient guard band is required to prevent adjacent channel interference

• Usually, mobile terminals will have one downlink frequency

band and one uplink frequency band

• Different cellular network protocols use different frequencies

• Frequency is a precious and scare resource. We are running

out of it.

Time Division Multiple Access

Figure 1.2 Time Division Multiple Accesses

Guard time – signal transmitted by mobile terminals at different locations do

no arrive at the base station at the same time

• Time is divided into slots and only one mobile terminal

transmits during each slot

– Like during the lecture, only one can talk, but others maytake
the floor in turn

• Each user is given a specific slot. No competition in cellular

network

– Unlike Carrier Sensing Multiple Access (CSMA) in WiFi

Code Division Multiple Access

• Use of orthogonal codes to separate different

transmissions

• Each symbol of bit is transmitted as a larger number of bits using the user

specific code – Spreading

– Bandwidth occupied by the signal is much larger than the

information transmission rate

– But all users use the same frequency band together

Figure 1.3 Code Divisions Multiple Accesses

1 GENERATION

• First generation cellular networks

• Radio signals = analog

• Technologies - AMPS (Advanced Mobile Phone System)

• First Blackberry (850)

2G (GSM and GPRS Networks)

• 2G carriers continued to improve transmission quality and coverage paging,

faxes, text messages and voicemail.

• 2.5G uses GPRS(General Packet Radio Services), which delivers packet-

switched capabilities to existing GSM networks.

GSM Architecture

Figure 1.4 GSM Architecture

GPRS GSM

HSCSD
GSM

9.6kbps (one timeslot)

GSM Data

Also called CSD

GSM Evolution to 3G

High Speed Circuit Switched Data

Dedicate up to 4 timeslots for data

connection ~ 50 kbps Good for

real-time applications c.w. GPRS

Inefficient -> ties up resources, even when nothing sent

Not as popular as GPRS (many skipping HSCSD)

Enhanced

Data Rates for

Global

Evolution

Uses 8PSK

modulation

3x improvement in

data rate on short

distances Can fall

back to GMSK for

greater distances

Combine with GPRS

(EGPRS) ~ 384 kbps

Can also be combined with

HSCSD

General Packet Radio Services Data rates

up to ~ 115 kbps

Max: 8 timeslots used as any one time

Packet switched; resources not tied up all the time Contention based.

Efficient, but variable delays GSM / GPRS core network re-used by WCDMA

(3G)

WCDMA

• W-CDMA (Wide Band Code Division Multiple Access) technology.

• It also used for services like Wireless Application Protocol (WAP) access,

Multimedia Messaging Service (MMS) or Short Message Service (SMS)

• Internet communication through the excess to World Wide Web and E-mail.

EDGE

1. Mobile Operating Systems

What is Mobile OS?

• A Mobile OS is a very basic and essential software to operate a Mobile
System.

• A Mobile OS is a software platform which is designed specially for mobile
to handle the devices like Smart phone, Tablet, PDA with lot of features and
facilities.

Android

- Android is a mobile operating system (OS) currently developed by Google,

based on the Linux kernel and designed primarily for touchscreen mobile

devices such as smartphones and tablets.

- It was developed by Google, Open Handset Alliance, Android Open Source

Project, Android Inc.

- Source model, open source

- Written in C (core), C++, and Java (UI)

- OS family, Unix

OHA (Open Handset Alliance)

• A business alliance consisting of 47+ companies to develop

openstandards for mobile devices

iOS

- iOS (originally iPhone OS) is a mobile operating system created and

developed by Apple Inc. and distributed exclusively for Apple hardware. It is

the operating system that presently powers many of the company's mobile

devices, including the iPhone, iPad, and iPod touch.

- It was developed by Apple Inc. June 29, 2007

-Source model, closed source

- Written in, C,C++, Objective-C, and Swift

- OS family, Unix

Windows Mobile

- Windows Mobile is a mobile operating system developed by

Microsoft for smart phones and Pocket PC‘s

- It was first launched in October 2010 with Windows Phone 7

- Currently maintained with Micosoft Corporation

- Written in C, C++

- OS Family, Microsoft Windows

Blackberry

- BlackBerry OS is a proprietary mobile operating system developed by

BlackBerry Ltd for its BlackBerry line of smartphone handheld devices.

- It was developed by BlackBerry Ltd on January 19, 1999

- Source model is closed source

- Written in, C++ and Java

- OS family, Mobile Operating Systems

Symbian

- Symbian is a mobile operating system (OS) and computing platform

designed for smart phones

- Symbian was originally developed as a closed- source OS for PDAs in 1998

by Symbian Ltd.

- Currently maintained by Accenture on behalf of Nokia (historically Symbian

Ltd. and Symbian Foundation)

- Written in C++

- OS Family RTOS

Why Mobile App Development?

• Mobile platform is the platform of the future world

• Job market is hot

– Market for mobile software surges from $4.1 billion in 2009 to

$17.5 billion by 2012

– In 2010, www.dice.com survey: 72% of recruiters lookingfor

iPhone app developers, 60% for Android

– Dice.com: mobile app developers made $85,000 in 2010 and

salaries expected to rise

– According to 2016, 79% of the organizations surveyed planto

increase spending on mobile development by 36%

• Students (and faculty!) are naturally interested!

Types of Mobile Appications

• What are they?

– Any application that runs on a mobile device

• Types

– Web Apps

– Native Apps

– Hybrid Apps

http://www.dice.com/

• Native Apps

– It is live on the device and are accessed through icons on

the device home screen.

– They are installed through an application store (such as

Google Play or Apple‘s App Store).

– They are developed specifically for one platform, and can take full

advantage of all the device features — they can use the camera, the

GPS, the accelerometer, the compass, the

list of contacts, and so on.

• Web Apps

– They are not real applications; they are really websites that, in

many ways, look and feel like native applications, but are

not implemented as such.

– They are run by a browser and typically written in

HTML5

– Web apps became really popular when HTML5 came around and

people realized that they can obtain native-like functionality in the

browser.

• Hybrid apps

– Hybrid apps are part native apps, part web apps.

– Like native apps, they live in an app store and can take advantage of

the many device features available.

– Like web apps, they rely on HTML being rendered in a

browser, with the caveat that the browser is embedded within

the app.

2. Mobile Devices: Advantages compared to fixed

devices)

• Always with the user

• Typically have Internet access

• Typically GPS enabled

• Typically have accelerometer & compass

• Mostly have cameras & microphones

• Many apps are free or low-cost and etc...

Mobile Devices: Limitations

• Limited memory

• Limited processing power

• Different technologies and standards

• Limited or awkward input: soft keyboard, phone keypad, touch screen, or

stylus

• Small screens

• Limited and slow network access

• Slow hardware

• Limited battery life

• Limited web browser functionality

• Often inconsistent platforms across devices and etc...

Android Mobile Application Development

Prerequisite

• Good knowledge of JAVA language

• Familiarity with Eclipse IDE

* All the above is not mandatory

• Android is a software stack
for mobile devices that
includes an operating

system, middleware and

key applications.

3. Introduction to Android

• Open software platform for mobile development

• A complete stack – OS, Middleware,

Applications

• An Open Handset Alliance (OHA) project

• Powered by Linux operating system

• Fast application development in Java

• Open source under the Apache 2 license

What is Android?

Developed by

• Andy Rubin (co-founder of Danger),

• Rich Miner (co-founder

• Nick Sears (once VP at T-Mobile)

History of Android

• 1) Initially, Andy Rubin founded Android Incorporation in Palo

Alto, California, United States in October, 2003.

• 2) In 17th August 2005, Google acquired Android Incorporation.

Since then, it is in the subsidiary of Google Incorporation.

• 3) The key employees of Android Incorporation are Andy Rubin, Rich

Miner, Chris White and Nick Sears.

• 4) Originally intended for camera but shifted to smart phones later

because of low market for camera only.

• 5) Android is the nick name of Andy Rubin given by coworkers because of

his love to robots.

• 6) In 2007, Google announces the development of Android OS.

• 7) In 2008, HTC launched the first android mobile.

History of Android (con...)

• The code names of android ranges from A to N currently, suchas

– 1.0 Astro (some times says no code name)

– 1.1 Bender (Some times say ―Petit four‖)

– 1.5 Cupcake

– 1.6 Donut

– 2.x Eclair

– 2.2 Froyo

– 2.3.x Gingerbread

– 3.x.x Honeycomb

– 4.0.x Ice Cream Sandwitch

– 4.1.x, 4.2.x and 4.3.x Jelly Bean

– 4.4.x KitKat and

– 5.x.x Lollipop

– 6.0 MarshMallow

– N (―A Few Weeks‖)

• Let's understand the android history ina sequence.

Why Android?

• A lot of students have them

– 2010 survey by University of Colorado : 22% of college

students have Android phone (26% Blackberry, 40%

iPhone)

– Gartner survey: Android used on 22.7% of smart phones sold

world-wide in 2010 (37.6% Symbian, 15.7% iOS)

• Students already know Java and Eclipse

– Low learning curve

– CS students can use App Inventor for Android

Android Applications

• Android applications are usually developed in the Java language using the

Android Software Development Kit

• Once developed, Android applications can be packaged easily and sold out

either through a store such as Google Play, SlideME, Opera Mobile Store,

Mobango, F-droid and the Amazon Appstore.

• Android powers hundreds of millions of mobile devices in more than 190

countries around the world. It's the largest installed base of any mobile

platform and growing fast.

• Every day more than 1 million new Android devices are activated worldwide.

Categories of Android applications

• There are many android applications inthe market

Features of Android

• Android is a powerful operating system competing with Apple 4GS

and supports great features.

Features Description

Beautiful UI Android OS basic screen provides a

beautiful and intuitive user interface.

Connectivity GSM/EDGE, IDEN, CDMA, EV-DO, UMTS,

Bluetooth, Wi-Fi, LTE, NFC and WiMAX.

Storage SQLite, a lightweight relational database, is used for

data storage purposes.

Features Description

Media support H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC,

HE-AAC, AAC 5.1, MP3, MIDI, Ogg Vorbis, WAV,

JPEG, PNG, GIF, and BMP

Messaging SMS and MMS

Web browser Based on the open-source WebKit layout engine,

coupled with Chrome's V8 JavaScript engine

supporting HTML5 and CSS3.

Multi-touch Android has native support for multi-touch which was

initially made available in handsets such as the HTC

Hero.

Multi-tasking User can jump from one task to another and same

time various application can run simultaneously.

Features Description

Resizable widgets Widgets are resizable, so users can expand them

to show more content or shrink them to save

space

Multi- Language Supports single direction and bi-directional text.

GCM Google Cloud Messaging (GCM) is a service that

lets developers send short message data to their

users on Android devices.

Wi-Fi Direct A technology that lets apps discover and pair directly,

over a high-bandwidth peer-to-peer connection.

Android Beam A popular NFC-based technology that lets

users instantly share, just by touching two

NFC-enabled phones together.

• Application framework enabling reuse and replacement of components

• Dalvik virtual machine optimized for mobile devices

• Integrated browser based on the open source webkit engine

• Optimized graphics powered by a custom 2D graphics library; 3D graphics

based on the OpenGL ES 1.0 specification (hardware acceleration optional)

• SQLite for structured data storage

• Media support for common audio, video, and still image formats (MPEG4,

H.264, MP3, AAC, AMR, JPG, PNG, GIF)

67

What does it have that other’s don’t?

• Google Map Applications

• Background Services and Applications

• Shared Data and Inter-process communication

• All Applications are created Equal

• P2P Inter-device Application Messaging

• MVC2 Architecture

VC2

• The goal of the MVC design pattern is to separate the application

object (model) from the way it is represented to the user (view) from

the way in which the user controls it (controller).

69

Manufacturer and carrier support

• Almost all carriers have Android

• HTC

• LG

• Sony-Ericsson

• Geeksphone

• Dell

• Motorola

• Acer

• Samsung

• Archos

• Lenovo

• Huawei

70

4. Architecture

Android S/W Stack - Applications

• Android provides a set of core applications:

 Email Client

 SMS Program

 Calendar

 Maps

 Browser

 Contacts

 Etc

• All applications are written using the Java language.

Android S/W Stack Application Framework

• Enabling and simplifying the reuse of components

 Developers have full access to the same framework APIs used by the
core applications.

 Users are allowed to replace components.

Android S/W Stack App Framework (Cont)

• Features

Feature Role

View System Used to build an application, including lists,

grids, text boxes, buttons, and embedded web
browser

Content Provider Enabling applications to access

data from other applications or to
share their own data

Resource Manager Providing access to non-code resources (localized

strings, graphics, and layout files)

Notification Manager Enabling all applications to display customer

alerts in the status bar

Activity

Manager

Managing the lifecycle of applications and providing

a common navigation back-stack

Android S/W Stack - Libraries

• Including a set of C/C++ libraries used by components of the Android

system

• Interface through Java

• Surface manager – Handling UI Windows

• 2D and 3D graphics

• Media codes, SQLite, Browser engine

.

Android S/W Stack - Runtime

• Core Libraries

 Providing most of the functionality available in the core libraries of

the Java language

 APIs

 Data Structures

 Utilities

 File Access

 Network Access

 Graphics

Android S/W Stack – Runtime (Cont)

• Dalvik Virtual Machine

 Providing environment on which every Android

application runs

 Each Android application runs in its own process, with its
own instance of the Dalvik VM.

 Dalvik has been written such that a device can run multiple
VMs efficiently.

 Register-based virtual machine

Android S/W Stack – Runtime (Cont)

• Dalvik Virtual Machine (Cont)

• Executing the Dalvik Executable (.dex) format

.dex format is optimized for minimal memory

footprint.

Compilation

 Relying on the Linux Kernel for:

Threading

Low-level memory management

Android S/W Stack – Linux Kernel

 Relying on Linux Kernel 2.6 for core system services

 Memory and Process Management

 Network Stack

 Driver Model

 Security

 Providing an abstraction layer between the H/W and the rest of the

S/W stack

Android development setup

Follow the instructions ...

Download the software from the URL:

http://developer.android.com/sdk/index.html

Install the following Softwares:

• Android SDK

• Eclipse IDE (3.4 or newer)

• Android Development Tools (ADT) Eclipse plug-in

Bring with you (optional):

• Android OS enabled Mobile device

• USB cable so you can test your app on your phone

http://developer.android.com/sdk/index.html

Application Fundamentals

• Apps are written in Java

• Bundled by Android Asset Packaging Tool

• Every App runs its own Linux process

• Each process has it‘s own Java Virtual Machine

• Each App is assigned a unique Linux user ID

• Apps can share the same user ID to see
each other‘s files

Applications

• Lifestyle applications for senior citizens

• Environmental applications that give data about pollution levels.

• Emergency services (Hospitals, Police station etc.,)

• Bus services

• Games

• E-governance

• Google map

5. UI Layouts

• The basic building block for user interface is a View object which is

created from the View class

• It occupies a rectangular area on the screen and is responsible for drawing

and event handling.

• View is the base class for widgets, which are used to create interactive

UI components like buttons, text fields, etc.

• The ViewGroup is a subclass of View and provides invisible container that

holdother Views or other ViewGroups and define their layout properties.

• At third level we have different layouts which are subclasses of

ViewGroup class

• A typical layout defines the visual structure for an Android user interface.

• To declare the layout using simple XML file main_layout.xml which is

located inthe res/layout folder of your project.

• A layout may contain any type of widgets such as buttons, labels,

textboxes, andso on.

A simple XML file having LinearLayout

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_p

arent"

android:layout_height="fill_p

arent"

android:orientation="vertical"

>

<TextView android:id="@+id/text"

android:layout_width="wrap_content" android:layout_height="wrap_content"

android:text="This is a TextView" />

<Button android:id="@+id/button"

android:layout_width="wrap_content" android:layout_height="wrap_content"

android:text="This is a Button" />

<!-- More GUI components go here -->

</LinearLayout>

..LinearLayout (con…)

• Once the layout has created, it can loaded by the help of application code

• Sample Code

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState); setContentView(R.layout.activity_main);

}

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Layout Types

• Linear Layout

• Relative Layout

• Table Layout

• Absolute Layout

• Frame Layout

• List View

• Grid View

Linear Layout

• Linear Layout is a view group that alignsall children in either vertically or

horizontally.

Attributes

Attribute Description

android:id This is the ID which uniquely identifies

the layout.

android:gravity This specifies how an object should

position its content, on both the X and Y

axes. Possible values are top, bottom,

left, right, center, center_vertical,

center_horizontal etc.

android:orientation This specifies the direction of arrangement

and you will use "horizontal" for a row,

"vertical" for a column. The default is

horizontal.

Example

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/ res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="vertical" >

<!-- More GUI components go here -->

</LinearLayout>

Output

http://schemas.android.com/apk/
http://schemas.android.com/apk/

utes

child views are drawn at the top-left of the layo

ition of each view using the various layout prop

Relative Layout

• Relative Layout enables you to specify how child views are positioned

relative to each other.

• The position of each view can be specified as relative to sibling elements

or relative to the parent.

Attrib

By default, all ut, so you must

define the pos erties.

Attribute Description

android:id This is the ID which uniquely
identifies the layout.

android:gravit y This specifies how an object should position its content,

on both the X and Y axes. Possible values are top,

bottom, left, right, center, center_vertical,

center_horizontal etc.

Example

<RelativeLayout xmlns:android="http://schemas.android.co m/apk/res/android"

android:layout_width="fill_parent" android:layout_height="fill_parent"

android:paddingLeft="16dp" android:paddingRight="16dp" >

<!-- More GUI components go here -->

</RelativeLayout>

Output

http://schemas.android.co/
http://schemas.android.co/

Table Layout

• TableLayout going to be arranged groups of views into rows and columns.

• Use the <TableRow> element to build a row in the table.

• Each row has zero or more cells; each cell can hold one View object

• It don‘t display border lines for their rows, columns, or cells.

Attributes

Attribute Description

android:id This is the ID which uniquely identifies the

layout.

android:collapseColum ns This specifies the zero- based index of the

columns to collapse.

android:shrinkColumns The zero-based index of the columns to shrink.

android:stretchColumns The zero-based index of the columns to stretch.

Example

<TableLayout xmlns:android="http://schemas.android.com/apk/res/and roid"

android:layout_width="fill_parent" android:layout_height="fill_parent">

<TableRow

android:layout_width="fill_p

arent"

android:layout_height="fill_p

arent">

<!-- More GUI components go here -->

</TableRow>

<!-- More Table rows go here -->

</TableLayout>

http://schemas.android.com/apk/res/and
http://schemas.android.com/apk/res/and

6. UI Controls / Widgets

• Input controls are the interactive components in your app's user interface.

• Android provides a wide variety of controls you can use in your UI, such as

buttons, text fields, seek bars, check box, zoom buttons, toggle buttons, and

many more

• RadioButton

• RadioGroup

• • ProgressBar

• Spinner

• TimePicker

TextView Control

• A TextView displays text to the user and optionally

allows them to edit it.

• A TextView is a complete text editor, however the basic class is configured

to not allow editing.

Attributes

Attribute Description

android:id This is the ID which uniquely identifies the

control.

android:fontFamily Font family (named by string) for the text.

android:inputType The type of data being placed in a

text field. Phone, Date, Time,

Number, Password etc.

android:text Text to display.

android:textAllCaps Present the text in ALL CAPS.

Possible value either "true" or "false".

android:textColor Text color. May be a color value.

android:textSize Size of the text. Recommended dimension type

for text is "sp" for scaled-pixels.

Example

In XML:

<TextView

android:id="@+id/text_id" android:layout_width="300dp"

android:layout_height="200dp" android:capitalize="characters"

android:text="hello_world" android:textColor="@android:color/holo_blue_dark"

android:textColorHighlight="@android:color/primary_text_d ark"

android:layout_centerVertical="true" android:layout_alignParentEnd="true"

android:textSize="50dp"/>

In JAVA:

TextView txtView = (TextView) findViewById(R.id.text_id);

Button Control

• A Button is a Push-button which can be pressed, or clicked, by the user to

perform an action.

Attribute Description

android:autoText If set, specifies that this TextView has a textual

input method and automatically corrects some

common spelling errors.

android:drawableBotto m This is the drawable to be drawn below the

text.

android:drawableRight This is the drawable to be drawn to the right

of the text.

android:editable If set, specifies that this TextView has an input

method.

android:text This is the Text to display.

Example

In XML:

<Button android:layout_width="wrap_content" android:layout_height="wrap_content"

android:text="Button" android:id="@+id/button"

android:layout_alignTop="@+id/editText"

android:layout_alignLeft="@+id/textView1"

android:layout_alignStart="@+id/textView1"

android:layout_alignRight="@+id/editText"

android:layout_alignEnd="@+id/editText" />

In JAVA:

Button b1=(Button)findViewById(R.id.button);

b1.setOnClickListener(new View.OnClickListener()

{

@Override

public void onClick(View v)

{

Toast.makeText(MainActivity.this,"YOUR

MESSAGE",Toast.LENGTH_LONG).show();

}

});

ImageButton Control

• A ImageButton is a AbsoluteLayout which enables you to specify the

exact location of its children.

• This shows a button with an image (instead of text) that can be

pressed or clicked by the user.

Attributes

Attribute Description

android:adjustViewBounds Set this to true if you want the ImageView

to adjust its bounds to preserve the aspect

ratio of its drawable.

android:baseline This is the offset of the baseline within

this view.

android:baselineAlignBottom If true, the image view will be baseline

aligned with based on its bottom edge.

android:cropToPadding If true, the image will be cropped to fit within

its padding.

android:src This sets a drawable as the content of this

ImageView.

Example

In XML:

<ImageButton android:layout_width="wrap_content" android:layout_height="wrap_content"

android:id="@+id/imageButton" android:layout_centerVertical="true"

android:layout_centerHorizontal="true" android:src="@drawable/abc"/>

In JAVA:

ImageButton imgButton =(ImageButton)

findViewById(R.id.imageButton);

imgButton.setOnClickListener(new

View.OnClickListener()

{

@Override public void onClick(View v)

{

Toast.makeText(getApplicationContext(),―Test

Image Button",Toast.LENGTH_LONG).show();

}

});

ToggleButton Control

• A ToggleButton displays checked/unchecked states as a button.

• It is basically an on/off button with a light indicator.

Attributes

Attribute Description

android:disabledAlpha This is the alpha to apply to the indicator when

disabled.

android:textOff This is the text for the button when it is

not checked.

android:textOn This is the text for the button when it is checked.

Example

In XML:

<ToggleButton

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="On" android:id="@+id/toggleButton1―

android:checked="true" />

<ToggleButton android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Off" android:id="@+id/toggleButton2" android:checked="true― />

android:layout_width="wrap_content" android:layout_height="wrap_content "

android:id="@+id/button2" android:text="ClickMe― />

In JAVA:

ToggleButton tg1,tg2;

Button b1;

tg1=(ToggleButton)findViewById(R.id.toggleBu

tton1);

tg2=(ToggleButton)findViewById(R.id.toggleBu

tton2); b1=(Button)findViewById(R.id.button2);

b1.setOnClickListener(new

View.OnClickListener() { @Override public

void onClick(View v) { StringBuffer result =

new StringBuffer();

result.append("You have clicked first ON Button").append(tg1.getText());

result.append("\You have clicked Second ON Button

").append(tg2.getText());

Toast.makeText(MainActivity.this,result.toString(),Toast.LENGTH_SHORT)

.show(); } });

AutoCompleteTextView Control

• A AutoCompleteTextView is a view that is similar to EditText, except that it

shows a list of completion suggestions automatically while the user is typing.

• The list of suggestions is displayed in drop down menu.

• The user can choose an item from there to replace the

content of edit box with.

Attributes

Attribute Description

android:completionHintVie

w

This defines the hint view displayed in the

drop down menu.

android:completionThresho ld This defines the number of characters that the user

must type before completion suggestions are

displayed in a drop down menu.

android:dropDownAnchor This is the View to anchor the auto- complete

dropdown to.

android:dropDownHeight This specifies the basic height of the dropdown.

android:dropDownSelector This is the selector in a drop down list.

android:dropDownWidth This specifies the basic width of the dropdown.

android:popupBackground This sets the background.

Example

In XML:

<AutoCompleteTextView android:id="@+id/autoCompleteTextView1 "

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignLeft="@+id/textView2"

android:layout_below="@+id/textView2"

android:layout_marginTop="54dp" android:ems="10" />

In JAVA:

AutoCompleteTextView autocompletetextview; String[] arr = { "Paries,France",

"PA,United States","Parana,Brazil", "Padua,Italy", "Pasadena,CA,United

States"};

autocomplete = (AutoCompleteTextView) findViewById(R.id.autoCompleteTextView1);

ArrayAdapter<String> adapter = new ArrayAdapter<String>

(this,android.R.layout.select_dialog_item, arr);

autocomplete.setThreshold(2); autocomplete.setAdapter(adapter);

Output

CheckBox Control

• A CheckBox is an on/off switch that can be toggled by the user.

• To use check-boxes when presenting users with a group of

selectable options that are not mutually exclusive.

Attributes

Attribute Description

android:autoText If set, specifies that this TextView has a

textual input method and automatically

corrects some common spelling errors.

android:drawableBot tom This is the drawable to be drawn below the

text.

android:drawableRig ht This is the drawable to be drawn to the right of

the text.

android:editable If set, specifies that this TextView has an

input method.

android:text This is the Text to display.

In XML:

<CheckBox android:id="@+id/checkBox1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Do you like

android―

android:checked="false―

/>

<CheckBox android:id="@+id/checkBox2"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Do you like android "

android:checked="false― />

In JAVA:

);

CheckBox ch1,ch2; Button b1,b2;

ch1=(CheckBox)findViewById(R.id.checkBox1);

ById(R.id.checkBox2); b1=(Button)findViewById(R.id.button);

b1.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) { StringBuffer

result = new StringBuffer();

result.append("Thanks : ").append(ch1.isChecked()); result.append("\nThanks:

").append(ch2.isChecked()); Toast.makeText(MainActivity.this,

result.toString(), Toast.LENGTH_LONG).show(); }

RadioButton Control

A RadioButton has two states: either checked or unchecked.

This allows the user to select one option from a set.

In XML:

<RadioGroup

<RadioButton

android:text="JAVA"

android:id="@+id/radioButton1"

android:checked="false― />

<RadioButton

android:text="ANDROID" android:id="@+id/radioButton2―

android:checked="false― />

Example (con…)

In JAVA:

RadioButton rb1; RadioGroup rg1; Button

b1;

addListenerRadioButton();

private void addListenerRadioButton() {

rg1 = (RadioGroup) findViewById(R.id.radioGroup);

b1 = (Button) findViewById(R.id.button1);

b1.setOnClickListener(new View.OnClickListener() { @Override

public void onClick(View v) {

int selected=rg1.getCheckedRadioButtonId();

rb1=(RadioButton)findViewById(selected);

Toast.makeText(MainActivity.this,rb1.getText(),Toast.LE NGTH_LONG).show(); }

}); }

RadioGroup Control

• A RadioGroup class is used for set of radio buttons.

• If we check one radio button that belongs to a radio group, it automatically

unchecks any previously checked radio button within the same group.

(Refer RadioButton)

Progress Bar Control

• Progress bars are used to show progress of a task.

• A class called ProgressDialog that allows you to create progress bar.

• Syntax:

ProgressDialog progress = new

ProgressDialog(this);

• For example, when you are uploading or downloading something from

the internet, it is better to show the progress of download/upload to the

user.

Spinner Control

• Spinner allows you to select an item from a drop down menu.

TimePicker Control

• Time Picker allows you to select the time of day in either 24 hour or

AM/PM mode.

• The time consists of hours, minutes and clock format.

• Android provides this functionality through TimePicker

class.

7. Event Handling

• Events are a useful way to collect data about a user's interaction with interactive

components of Applications.

• Like button presses or screen touch etc.

• The Android framework maintains an event queue as first-in, first-out (FIFO)

basis.

• Capture these events in program andtake appropriate action as per

requirements.

• Event Management

– Event Listeners

• An event listener is an interface in the View class that contains a single

callback method.

• These methods will be called by the Android framework when the View to

which the listener has been registered is triggered by user interaction with

the item in the UI.

– Event Handlers

• When an event happens and we have registered in the event listener for the

event, the event listener calls the Event Handlers, which is the method that

actually handles the event.

– Event Listeners Registration

• Event Registration is the process by which an Event Handler gets registered

with an Event Listener so that the handler is called when the Event Listener

fires the event

Event Listeners & Event Handlers

Event Handler Event Listener Description

onClick() OnClickListener() This is called when the user

either clicks or touches or

focuses upon any widget like

button, text, image etc.

onLongClick() OnLongClickListener() This is called when the user

either clicks or touches or

focuses upon any widget like

button, text, image etc. for

one or more seconds.

onFocusChange () OnFocusChangeListene

r()

This is called when the

widget looses its focus.

onKey() OnFocusChangeListener

()

This is called when the

user is focused on the

item and presses or

releases a hardware key

on the device.

onTouch() OnTouchListener() This is called when the

user presses the key,

releases the key, or any

movement gesture on

the screen.

onMenuItemClick() OnMenuItemClickListene

r()

This is called when the

user selects a menu

item.

onCreateContextMenu () onCreateContextMenuIte

mListener()

This is called when the

context menu is being

built(as the result of a

sustained "long click‖).

Event Listeners Registration

• Event Registration is the process by which an Event Handler gets

registered with an Event Listener so that the handler is called when

the Event Listener fires the event.

• Top 3 ways are,

– Using an Anonymous Inner Class

– Activity class implements the Listener interface.

– Using Layout file activity_main.xml to specify event handler
directly.

Example

• Using an Anonymous Inner Class Button

b1; b1=(Button)findViewById(R.id.button);

b1.setOnClickListener(new View.OnClickListener()

{ @Override

public void onClick(View v) {

TextView txtView =

(TextView)

findViewById(R.id.textView)

;

txtView.setTextSize(25); } });

Example (con…)

• Activity class implements the Listener interface BtnListener listener =

new BtnListener();

((Button) findViewById(R.id.btnNum0Id)).setOnClickListen er(listener);

private class BtnListener implements OnClickListener { // On-click event handler

for all the buttons @Override public void onClick(View view) {

//ToDo the code here….

} }

• Using Layout file activity_main.xml to specify event handler

directly

• In XML

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Small font"

android:id="@+id/button―

android:onClick=―Font_Change‖/>

• In JAVA

public void Font_Change(View v) { TextView txtView = (TextView)

findViewById(R.id.textView);

txtView.setTextSize(25);

}

8. Tools - Eclipse IDE

Eclipse IDE (con…)

DDMS Configuration

New Android Project Creation

Giving Name Application /

Project

Con…

Icon Customization

Customized Icon

Activity type selection

Customize the activity name

Default code appear in Eclipse IDE

Creating AVD Manager

AVD Configuration

Launching the AVD

Launching the AVD (con…)

AVD – Emulator

Configure the Logcat

Application running status displayed in Logcat

Output

9. Application Structure

src

gen

– This contains the .java source files for your project.

– By default, it includes an MainActivity.java source file having an
activity class that runs when your app is launched using the app
icon.

– This contains the .R file, a compiler-generated file that references all
the resources found in your project.

– User should not modify this file.

• bin

– This folder contains the Androidpackage

files .apk built by the ADT during the build process and

everything else needed to run an Android application.

• res/drawable-hdpi

– This is a directory for drawable objects that are designed for high-

density screens.

• res/layout

– This is a directory for files that define your app's user interface.

• res/values

– This is a directory for other various XML files that contain a collection

of resources, such as strings and colours definitions.

• AndroidManifest.xml

– This is the manifest file which describes the fundamental

characteristics of the app and defines each of its components.

AndroidManifest

• The component you develop as a part of your application, you must

declare all its components in a manifest.xml which resides at the root

of the application project directory.

• This file works as an interface between Android OS and your application,

so if you do not declare your component in this file, then it will not be

considered by the OS.

• Default manifest file will look like as following file

<manifest xmlns:android="http://schemas.android.com/apk/res/and roid"

package="com.example.helloworld"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk

android:minSdkVersion="8"

android:targetSdkVersion="22" />

http://schemas.android.com/apk/res/and
http://schemas.android.com/apk/res/and

AndroidManifest (con…)

<application

android:icon="@drawable/ic_launch

er"

android:label="@string/app_name"

android:theme="@style/AppTheme"

>

<activity

android:name=".Main

Activity"

android:label="@string/title_activity_main" >

<intent-filter>

<action android:name="android.intent.action.MAIN"

/>

<category

android:name="android.intent.category.LAUNCHER"/>

</intent-filter> </activity> </application> </manifest>

<application>...</application> tags enclosed the components related to the

application.

Attribute android:icon will point to the application icon available

underres/drawable-hdpi.

The @string/app_name refers to the app_name string defined in the strings.xml

file, which is "HelloWorld"

The <activity> tag is used to specify an activity and android:name attribute

specifies the fully qualified class name of the Activity subclass.

The android:label attributes specifies a string to use as the label for the

activity / application.

The action for the intent filter is named android.intent.action.MAIN to

indicate that this activity serves as the entry point for the application.

The category for the intent-filter is named

android.intent.category.LAUNCHER to indicate that the application can be

launched from the device's launcher icon.

• Following is the list of tags which you will use in your manifest file to

specify different Android application components.

– <activity> elements for activities

– <service> elements for services

– <receiver> elements for broadcast receivers

– <provider> elements for content providers

Practices

• To know about the history, features and various versions of Android

• Draw the Android architecture

• To study various tools used in Android

development

• To study about Eclipse IDE

• To develop first Android App ―Hello World‖

• To implement the various Android layouts

• To implement the various Android UI controls

• To study the importance of Android application

structure and Android manifest file

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT 2

Introduction to Activity and Intents- Understanding Activity Life Cycle - Linking Activities -

Passing Data – Toast - Displaying Dialog Window – Notifications – Services - Broadcast

Receiver- Content Provider - SQLite Database - Publish App in Play store- Sample

Applications

UNIT- II - SBSA3003-Mobile Application

Development

Android Application Components

Application components are the basic building blocks of an application and these components

will act as an entry point to allow system or user to access our app. Basic core application

components that can be used in Android application.

❖ Activities

❖ Intents

❖ Content Providers

❖ Broadcast Receivers

❖ Services.

Android Components.

Basic core application components that can be used in Android application.

❖ Activities

❖ Intents

❖ Content Providers

❖ Broadcast Receivers

❖ Services

1. Activity

An activity is implemented as a subclass of activity class

public class MainActivity extends Activity{

}

2. Services

A Services is implemented as a subclass of Service class

Public class Myservice extends Service{

}

A Broadcast Receiver is implemented as a subclass of Broadcast Receiver class and

each message is broadcasted as an Intent object

Public class MyReceiver extends BroadcastReceiver{

}

3. A Content provider is implemented as a subclass of ComtentProvider class and must

implement a standard set of APIs that enable other applications to perform

transactions.

Public class MyContentProvider extends ContentProvider{ }

Introduction to Activity:

1. An Activity is an application component that provides a screen with which users

can interact in order to do something, such as dial the phone, take a photo, send

an email, or view a map.

2. Each activity is given a window in which to draw its user interface.

3. The window typically fills the screen, but may be smaller than the screen and

float on top of other windows.

Subclass of Activity class.

An activity is implemented as a subclass of class Activity.

public class MainActivity extends Activity {

}

Manifest XML FILE

<?xml version="1.0" encoding="utf-8"?>

<manifest …..>

<application …..>

<activity android:name=".MainActivity" >

…….

…….

</activity>

…….

</application>

</manifest>

Android Activity Lifecycle:

Android system initiates its program with in an Activity starting with a call

on onCreate() callback method. There is a sequence of callback methods that start up an

activity and a sequence of callback methods that tear down an activity.

Figure 2.1 Activity Sequence

Activity State
1.Doesn‟t exist State

2. Foreground State

3. Background State

4.Pause State

Figure 2.2 Activity Lifecycle

1. Running State

An activity is in the running state if it‟s shown in the foreground of the users‟ screen. Activity

is in the running state when the user is interacting with it.

2. Paused State

When an activity is not in the focus but is still alive for the user, it‟s in a paused state. The

activity comes in this state when some other activity comes in with a higher position in the

window.

3. Resumed State

It is when an activity goes from the paused state to the foreground that is an active state.

4. Stopped State

When an activity is no longer in the activity stack and not visible to the users.

Android Activity. Methods. Android activities go through four states during their entire

lifecycle. These activities have callback methods() to describe each activity in each of the

four stages. These methods need to be overridden by the implementing subclass. In Android,

we have the following 7 callback methods that activity uses to go through the four states:

1. onCreate()

2. onStart()

3. onPause()

4. onRestart()

5. onResume()

6. onStop()

7. onDestroy()

1. onCreate()

The Android oncreate() method is called at the very start when an activity is created. An

activity is created as soon as an application is opened. This method is used in order to create

an Activity.

@Override protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

...

}

2. onStart()

The Android onstart() method is invoked as soon as the activity becomes visible to the users.

This method is to start an activity. The activity comes on the forescreen of the users when this

method is invoked.

Syntax:

@Override protected void onStart()

{

super.onStart();

...

}

3. onPause()

The Android onPause() method is invoked when the activity doesn‟t receive any user input

and goes on hold. In the pause state, the activity is partially visible to the user. This is done

when the user presses the back or home buttons. Once an activity is in the pause state, it can

be followed by either onResume() or onStopped() callback method.

Syntax:

@Override protected void onPause()

{

super.onPause();

...

}

4. onRestart()

The Android onRestart() method is invoked when activity is about to start from the stop state.

This method is to restart an activity that had been active some time back. When an activity

restarts, it starts working from where it was paused.

Syntax:

@Override protected void onRestart()

{

super.onRestart();

...

}

5. onResume()

The Android onResume() method is invoked when the user starts interacting with the user.

This callback method is followed by onPause(). Most of the functionalities of an application

are implemented using onResume().

Syntax:

@Override protected void onResume()

{

super.onResume();

...

}

6. onStop()

The Android onStop() method is invoked when the activity is no longer visible to the user.

The reason for this state is either activity is getting destroyed or another existing activity

comes back to resume state.

Syntax:

@Override protected void onStop()

{

super.onStop();

...

}

7. onDestroy()

The Android onDestroy() is the method that is called when an activity finishes and the user
stops using it. It is the final callback method received by activity, as after this it is destroyed.

Syntax:

@Override protected void onDestroy()

{

super.onDestroy();

...

}

Figure 2.3 Android Activity Lifecycle

Android Activity Lifecycle Example

MainActivity.java

package example.javatpoint.com.activitylifecycle;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

Log.d("lifecycle","onCreate invoked");

}

@Override

protected void onStart() {

super.onStart();

Log.d("lifecycle","onStart invoked");

}

@Override

protected void onResume() {

super.onResume();

Log.d("lifecycle","onResume invoked");

}

@Override

protected void onPause() {

super.onPause();

Log.d("lifecycle","onPause invoked");

}

@Override

protected void onStop() {

super.onStop();

Log.d("lifecycle","onStop invoked");

}

@Override

protected void onRestart() {

super.onRestart();

Log.d("lifecycle","onRestart invoked");

}

@Override

protected void onDestroy() {

super.onDestroy();

Log.d("lifecycle","onDestroy invoked");

}

}

activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.co

m/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

tools:context="example.javatpoint.com.activitylifecycle.MainActivity">

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello World!"

app:layout_constraintBottom_toBottomOf="parent"

app:layout_constraintLeft_toLeftOf="parent"

app:layout_constraintRight_toRightOf="parent"

app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Introduction to Intents:

Android Intent is the message that is passed between components such as activities, content

providers, broadcast receivers, services etc.It is generally used with startActivity() method to

invoke activity, broadcast receivers etc.

Uses of Intent in Android

There are three fundamental uses of intents:

1. To start an Activity

An represents a single screen in an app. You can start a new instance of an Activity by

passing an Intent to startActivity(). The Intent describes the activity to start and carries any

necessary data along.

2. To start a Service

A Service is a component that performs operations in the background and does not have a

user interface. You can start a service to perform a one-time operation(such as downloading a

file) by passing an Intent to startService(). The Intent describes which service to start and

carries any necessary data.

3. To deliver a Broadcast

A broadcast is a message that any app can receive. The system delivers various broadcasts for

system events, such as when the system boots up or the device starts charging. You can

deliver a broadcast to other apps by passing an Intent

to sendBroadcast() or sendOrderedBroadcast().

http://schemas.android.co/
http://schemas.android.com/apk/res-auto
http://schemas.android.com/tools

Types of Intents

In Android, there are two types of Intents:

1. Explicit Intents

2. Implicit Intents

1) Implicit Intent

Implicit Intent doesn't specifiy the component. In such case, intent provides information of

available components provided by the system that is to be invoked

Example:

Intent intent=new Intent(Intent.ACTION_VIEW);

intent.setData(Uri.parse("http://www.javatpoint.com"));

startActivity(intent);

2) Explicit Intent

Explicit Intent specifies the component. In such case, intent provides the external class to

be invoked.

Intent i = new Intent(getApplicationContext(), ActivityTwo.class);

startActivity(i);

Android Implicit Intent Example:

activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.co

m/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

tools:context="example.javatpoint.com.implicitintent.MainActivity">

<EditText

android:id="@+id/editText"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_marginEnd="8dp"

android:layout_marginStart="8dp"

android:layout_marginTop="60dp"

android:ems="10"

app:layout_constraintEnd_toEndOf="parent"

app:layout_constraintHorizontal_bias="0.575"

http://www.javatpoint.com/
http://schemas.android.co/
http://schemas.android.com/apk/res-auto
http://schemas.android.com/tools

app:layout_constraintStart_toStartOf="parent"

app:layout_constraintTop_toTopOf="parent" />

<Button

android:id="@+id/button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_marginRight="8dp"

android:layout_marginLeft="156dp"

android:layout_marginTop="172dp"

android:text="Visit"

app:layout_constraintEnd_toEndOf="parent"

app:layout_constraintHorizontal_bias="0.0"

app:layout_constraintStart_toStartOf="parent"

app:layout_constraintTop_toBottomOf="@+id/editText" />

</android.support.constraint.ConstraintLayout>

MainActivity.java

package example.javatpoint.com.implicitintent;

import android.content.Intent;

import android.net.Uri;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

public class MainActivity extends AppCompatActivity {

Button button;

EditText editText;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

button = findViewById(R.id.button);

editText = findViewById(R.id.editText);

button.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

String url=editText.getText().toString();

}

});

}

}

Intent intent=new Intent(Intent.ACTION_VIEW, Uri.parse(url));

startActivity(intent);

Linking Activity:

⮚ To start an Activity

An Activity represents a single screen in an app.start a new instance of an Activity by

passing an Intent to startActivity()

⮚ To start a Service

A Service is a component that performs operations in the background and does not

have a user interface. You can start a service to perform a one-time operation(such as

downloading a file) by passing an Intent to startService()

⮚ To deliver a Broadcast

A broadcast is a message that any app can receive. The system delivers various

broadcasts for system events, such as when the system boots up or the device starts

charging. You can deliver a broadcast to other apps by passing an Intent to

sendBroadcast() or sendOrderedBroadcast().

Launchable Android Provided Activities:

Open a browser window

public static void invokeWebBrowser(Activity activity)

{ Intent intent = new Intent(Intent.ACTION_VIEW);

intent.setData(Uri.parse("http://www.google.com"));

activity.startActivity(intent); }

Call a telephone number

public static void call(Activity activity)

{ Intent intent = new Intent(Intent.ACTION_CALL);

intent.setData(Uri.parse("tel:555-555-5555"));

activity.startActivity(intent); }

Present a phone dialer

public static void dial(Activity activity)

{ Intent intent = new Intent(Intent.ACTION_DIAL);

activity.startActivity(intent);

Building an intent:

⮚ Component name

⮚ Action

⮚ Data

⮚ Category

⮚ Extras

⮚ Flags

http://www.google.com/

Bundling an Intent:

• Code to add bundleable objects

Bundle more = new Bundle(); // a bundle contains key/value pairs

more.putString("someKey", "someString");

intent.putExtra("bundleKey", more); // A bundle of extra items

intent.putExtra("anotherKey", 3.5); // A single extra item

• Updating the bundle

– If a bundle exists, Android adds additional key/data pairs

– If a bundle doesn't exist, create one and copy key/data pairs to it

• Overloaded putExtra() methods for adding

– booleans, ints, doubles, floats, strings, arrays, serializable objects, parcelable

objects, bundles, additional intents

Passing Data:

• Activity is used to represent the data to user and allows user interaction.

• In an android application, we can have multiple activities and that can interact with

each other.

• During activity interaction we might required to pass data from one activity to other.

• Data is passed as extras and are key/value pairs.

The key is always a String and the value you can use the primitive data types int, float, chars,

etc.

Syntax for sending and Retriving data:

• Sending data

Intent intent = new Intent(context, Your Activity Class . class);

intent.putExtra(KEY, <your value here>); startActivity(intent);

• Retrieving data Intent intent = getIntent();

String stringData= intent.getStringExtra(KEY);

int numberData = intent . getIntExtra(KEY , default Value) ;

boolean booleanData = intent.getBooleanExtra(KEY, defaultValue);

char charData = intent.getCharExtra(KEY, defaultValue);

Example:

public class MainActivity extends Activity implements OnClickListener {

Button btn;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState); setContentView(R.layout.activity_main);

btn = (Button) findViewById(R.id.btnPassData);

btn.setOnClickListener(this);

}

@Override

public void onClick(View view) { Intent intent = new

Intent(getApplicationContext(), SecondActivity.class);

intent.putExtra("message", "Hello From Main Activity”);

startActivity(intent);}}

public class SecondActivity extends Activity { @Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_another);

Intent intent = getIntent();

String msg = intent.getStringExtra("message"); Toast toast = Toast.makeText(this,

msg,Toast . LENGTH_ LONG);

toast.show();

}

}

Toasts:

• A toast provides simple feedback about an operation in a small popup. It only fills the

amount of space required for the message and the current activity remains visible and

interactive,Toasts automatically disappear after a timeout.

• First, instantiate a Toast object with one of the makeText() methods.

• This method takes three parameters: the application Context, the text message, and

the duration for the toast. It returns a properly initialized Toast object.

• You can display the toast notification with show()

• Context context = getApplicationContext(); CharSequence text = "Hello toast!";

int duration = Toast.LENGTH_SHORT;

Toast toast = Toast.makeText(context, text, duration); toast.show();

(or)

Toast.makeText(context, text, duration).show();

(or)

Toast.makeText(getApplicationContext(),”Hello toast!”,

Toast.LENGTH_“SHORT).show();

Positioning your Toast:

• A standard toast notification appears near the bottom of the

screen, centered horizontally.

• You can change this position with the setGravity(int, int, int) method.

• This accepts three parameters: a Gravity constant, an x-position offset, and a y-

position offset.

• Exmaple toast.setGravity(Gravity.TOP|Gravity.LEFT, 0, 0);

Custom Toast:

• To create a customized layout for your toast notification.

• To create a custom layout, define a View layout, in XML or in your application

code, and pass the root View object to the setView(View) method.

Example:

<LinearLayout

android:id="@+id/toast_layout_root" android:orientation="horizontal"

android:layout_width="fill_parent" android:layout_height="fill_parent”>

<TextView

android:id="@+id/text" android:layout_width="wrap_content"

android:layout_height="wrap_content“ />

</LinearLayout>

LayoutInflater inflater = getLayoutInflater();

View layout = inflater.inflate(R.layout.custom_toast,

(ViewGroup) findViewById(R.id.toast_layout_root));

TextView text = (TextView) layout.findViewById(R.id.text); text.setText("This is a

custom toast");

Toast toast = new Toast(getApplicationContext());

toast.setGravity(Gravity.CENTER_VERTICAL, 0, 0);

toast.setDuration(Toast.LENGTH_LONG); toast.setView(layout);

toast.show();

Displaying Dialog Window:

• A dialog is a small window that prompts the user to make a decision or enter

additional information.

• Creating alert dialog is very easy.

• The Dialog class is the base class for dialogs, but you should avoid instantiating

Dialog directly.

• Instead, use one of the following subclass AlertDialog class

• Three regions of an alert dialog

• Title

This is optional and should be used only when the content area is

occupied by a detailed message.

• Content area

This can display a message.

• Action buttons

There should be no more than three action buttons in a dialog.

• Different action buttons

– Positive

• Use this to accept and continue with the action (the "OK" action).

– Negative

• Use this to cancel the action.

– Neutral

• Use this when the user may not want to proceed with

the action, but doesn't necessarily want to cancel.

• It appears between the positive and negative buttons.

• For example, the action might be "Remind me later."

• Different alert dialogue methods

Example:

• one button(ok button) - setPositiveButton()

• two buttons(yes or no buttons) - setNegativeButton()

• three buttons(yes, no and cancel buttons) -

setNeutralButton()

AlertDialog.Builder alertDialog = new AlertDialog .Builder (AlertDialog Activity.this) ;

// Setting Dialog Title

alertDialog.setTitle("Confirm Delete...");

// Setting Dialog Message

alertDialog.setMessage ("you want delete this”);

// Setting Icon to Dialog

alertDialog.setIcon(R.drawable.delete);

// Setting Positive "Yes" Button

alertDialog.setPositiveButton("YES", new Dialog Interface . OnClick Listener() {

public void onClick(DialogInterface dialog,int which) {

// Write your code here to invoke YES event Toast.makeText(getApplicationContext(), "You

clicked on YES", Toast.LENGTH_SHORT).show();

}});

// Setting Negative "NO" Button alertDialog.setNegativeButton("NO", new

DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

// Write your code here to invoke NO event Toast.makeText(getApplicationContext(), "You

clicked

on NO", Toast.LENGTH_SHORT).show();

dialog.cancel();

}});

// Showing Alert Message

alertDialog.show();

Notification

• A notification is a message you can display to the user outside of your application's

normal UI.

• When you tell the system to issue a notification, itfirst

appears as an icon in the notification area.

• To see the details of the notification, the user opens

the notification drawer.

• Both the notification area and the notification drawer are system-controlled areas that

the user can view at any time.

Android Toast class provides a handy way to show users alerts but problem is that these

alerts are not persistent which means alert flashes on the screen for a few seconds and then

disappears.

Step 1 - Create Notification Builder

• A first step is to create a notification builder using

NotificationCompat.Builder.build().

• Use Notification Builder to set various Notification properties like its small and large

icons, title, priority etc.

• Syntax

NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this);

Step 2 - Setting Notification Properties:

• To set its Notification properties using Builder object as per your requirement.

– A small icon, set by setSmallIcon()

– A title, set by setContentTitle()

– Detail text, set by setContentText()

• Example mBuilder.setSmallIcon(R.drawable.notification_icon);

mBuilder.setContentTitle("Notification Alert, Click Me!");

mBuilder.setContentText("Hi, This is Android Notification Detail!");

Step 3 - Attach Actions:

• The action is defined by a PendingIntent containing an Intent that starts an Activity in

your application.

• A PendingIntent object helps you to perform an action on your applications behalf,

often at a later time, without caring of whether or not your application is running.

• We take help of stack builder object which will contain an artificial back stack for

the started Activity.

This ensures that navigating backward from the Activity leads out of your application to

the Home scrren.

Intent resultIntent = new Intent(this, ResultActivity.class);

TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);

stackBuilder.addParentStack(MainActivity.this);

stackBuilder.addNextIntent(resultIntent); PendingIntent resultPendingIntent =

stackBuilder.getPendingIntent(0,PendingIntent.FLAG

_UPDATE_CURRENT);

mBuilder.setContentIntent(resultPendingIntent);

Step 4 - Issue the notification:

• Finally, you pass the Notification object to the system by calling

NotificationManager.notify() to send your notification.

• Make sure you call

NotificationCompat.Builder.build() method on builder object before notifying it.

• Example

NotificationManager mNotificationManager = (NotificationManager)

getSystemService(Context.NOTIFICATION_SERVICE)

mNotificationManager.notify(notificationID, mBuilder.build());

Example:

Button b; b=(Button)findViewById(R.id.notify_btn);

b.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

// TODO Auto-generated method stub Notify_method("Test notify message");

}

private void Notify_method(String string) {

NotificationManager notificationManager = (NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

Notification notification = new Notification(R.drawable.abc,"New Message",

System.currentTimeMillis());

Intent notificationIntent = new

Intent(MainActivity.this,NotifyDisplay.class);

PendingIntent pendingIntent = PendingIntent.getActivity(MainActivity.this,

0,notificationIntent, 0);

notification.setLatestEventInfo(MainActivity.this, "Notification",string,

pendingIntent);

notificationManager.notify(9999, notification);

}

});

Services:

• A service is a component that runs in the background to perform long-running

operations without needing to interact with the user and it works even if application

is destroyed.

• A service can essentially take two states

– Started

• A service is started when an application component, such as an

activity, starts it by calling startService().

• Once started, a service can run in the background indefinitely, even if

the component that started it is destroyed.

• Android Services are the application components that run in the background. Service

is process that doesn‟t need any direct user interaction.

• As they perform long-running processes without user intervention, they have no User

Interface.

• They can be connected to other components and do inter-process communication

(IPC).

Figure 2.4 Android Services

1. Foreground Services

Foreground services are those services that are visible to the users. The users can interact

with them at ease and track what‟s happening. These services continue to run even when

users are using other applications.

2. Background Services

These services run in the background, such that the user can‟t see or access them. These are

the tasks that don‟t need the user to know them

3. Bound Services

Bound service runs as long as some other application component is bound to it. Many

components can bind to one service at a time, but once they all unbind, the service will

destroy.

To bind an application component to the service, bindService() is used.

Bound

• A bound service is the server in a client-server interface. It allows components (such

as activities) to bind to the service, send requests, receive responses, and perform

interprocess communication (IPC).

• A bound service typically lives only while it serves another application component

and does not run in the background indefinitely.

• A bound service is an implementation of the Service class that allows other

applications to bind to it and interact with it.

• To provide binding for a service, you must implement the onBind() callback method.

This method returns an IBinder object that defines the programming interface that

clients can use to interact with the service.

Binding Methods

1.onBind()

2. bindService()

3. serviceConnection()

4. onstartCommand()

5. onService Connected()

Lifecycle of Android Services

Android services life-cycle can have two forms of services and they follow two paths, that
are:

• Started Service

• Bounded Service

1. Started Service

• A service becomes started only when an application component calls startService(). It

performs a single operation and doesn‟t return any result to the caller. Once this

service starts, it runs in the background even if the component that created it destroys.

This service can be stopped only in one of the two cases:

 By using the stopService() method.

 By stopping itself using the stopSelf() method.

2. Bound Service

• A service is bound only if an application component binds to it using bindService(). It

gives a client-server relation that lets the components interact with the service. The

components can send requests to services and get results.

• This service runs in the background as long as another application is bound to it. Or it

can be unbound according to our requirement by using the unbindService() method.

IntentService()

• There‟s an additional service class, that extends Service class, IntentService Class. It

is a base class for services to handle asynchronous requests.

• It enables running an operation on a single background. It executes long-running
programs without affecting any user‟s interface interaction.

• Intent services run and execute in the background and terminate themself as soon as

they are executed completely.

Certain important features of Intent are :

• It queues up the upcoming request and executes them one by one.

• Once the queue is empty it stops itself, without the user‟s intervention in its lifecycle.

• It does proper thread management by handling the requests on a separate thread.

Methods of Android Services

• The service base class defines certain callback methods to perform operations on

applications. When we talk about Android services it becomes quite obvious that

these services will do some operations and they‟ll be used. The following are a few

important methods of Android services :

1. onStartCommand()

2. onBind()

3. onCreate()

4. onUnbind()

5. onDestroy()
6. onRebind()

1. onStartCommand()

The system calls this method whenever a component, say an activity requests „start‟ to a

service, using startService().Once we use this method it‟s our duty to stop the service

using stopService() or stopSelf().

2. onBind()

This is invoked when a component wants to bind with the service by
calling bindService(). In this, we must provide an interface for clients to communicate

with the service. For interprocess communication, we use the IBinder object.

It is a must to implement this method. If in case binding is not required, we should

return null as implementation is mandatory.

3. onUnbind()

The system invokes this when all the clients disconnect from the interface published by

the service.

4. onRebind()

The system calls this method when new clients connect to the service. The system calls it

after the onBind() method.

5. onCreate()

This is the first callback method that the system calls when a new component starts the

service. We need this method for a one-time set-up.

6. onDestroy()

This method is the final clean up call for the system. The system invokes it just before the

service destroys. It cleans up resources like threads, receivers, registered listeners, etc.

Figure 2.5 Service Life Cycle

Example of Service Life cycle:

package com.tutorialspoint;

import android.app.Service;

import android.os.IBinder;

import android.content.Intent;

import android.os.Bundle;

public class HelloService extends Service {

/** indicates how to behave if the service is killed */

int mStartMode;

/** interface for clients that bind */

Broadcast Receivers

Broadcast Receivers simply respond to broadcast messages from other applications or from

the system itself. These messages are sometime called events or intents. For example,

applications can also initiate broadcasts to let other applications know that some data has

IBinder mBinder;

/** indicates whether onRebind should be used */

boolean mAllowRebind;

/** Called when the service is being created. */

@Override

public void onCreate() {

}

/** The service is starting, due to a call to startService() */

@Override

public int onStartCommand(Intent intent, int flags, int startId) {
return mStartMode;

}

/** A client is binding to the service with bindService() */

@Override

public IBinder onBind(Intent intent) {

return mBinder;

}

/** Called when all clients have unbound with unbindService() */

@Override

public boolean onUnbind(Intent intent) {
return mAllowRebind;

}

/** Called when a client is binding to the service with bindService()*/

@Override

public void onRebind(Intent intent) {

}

/** Called when The service is no longer used and is being destroyed */

@Override

public void onDestroy() {

}
}

public class MyReceiver extends BroadcastReceiver {

@Override

public void onReceive(Context context, Intent intent) {

Toast.makeText(context, "Intent Detected.", Toast.LENGTH_LONG).show();

}
}

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<receiver android:name="MyReceiver">

been downloaded to the device and is available for them to use, so this is broadcast receiver

who will intercept this communication and will initiate appropriate action.

Here are following two important steps to make BroadcastReceiver works for the system

broadcasted intents −

 Creating the Broadcast Receiver.

 Registering Broadcast Receiver

There is one additional steps in case you are going to implement your custom intents then

you will have to create and broadcast those intents.

Creating the Broadcast Receiver

A broadcast receiver is implemented as a subclass of BroadcastReceiver class and

overriding the onReceive() method where each message is received as a Intent object

parameter.

Registering Broadcast Receiver

An application listens for specific broadcast intents by registering a broadcast receiver

in AndroidManifest.xml file. Consider we are going to register MyReceiver for system

generated event ACTION_BOOT_COMPLETED which is fired by the system once the

Android system has completed the boot process.

Figure 2.6 Broadcast-Receiver

Broadcast-Receiver

Now whenever your Android device gets booted, it will be intercepted by
BroadcastReceiver MyReceiver and implemented logic inside onReceive() will be executed.

There are several system generated events defined as final static fields in the Intent class.
The following table lists a few important system events.

Sr.No Event Constant & Description

1

android.intent.action.BATTERY_CHANGED

Sticky broadcast containing the charging state, level, and other information about the

battery.

2
android.intent.action.BATTERY_LOW

Indicates low battery condition on the device.

3
android.intent.action.BATTERY_OKAY

Indicates the battery is now okay after being low.

4
android.intent.action.BOOT_COMPLETED

This is broadcast once, after the system has finished booting.

5
android.intent.action.BUG_REPORT

Show activity for reporting a bug.

6
android.intent.action.CALL

Perform a call to someone specified by the data.

7

android.intent.action.CALL_BUTTON

The user pressed the "call" button to go to the dialer or other appropriate UI for

placing a call.

<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED">

</action>

</intent-filter>

</receiver>

</application>

public void broadcastIntent(View view) {

Intent intent = new Intent();

intent.setAction("com.tutorialspoint.CUSTOM_INTENT");
sendBroadcast(intent);

}

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<receiver android:name="MyReceiver">

<intent-filter>

<action android:name="com.tutorialspoint.CUSTOM_INTENT">

</action>

</intent-filter>

</receiver>

</application>

package com.example.tutorialspoint7.myapplication;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class MainActivity extends Activity {

/** Called when the activity is first created. */

8
android.intent.action.DATE_CHANGED

The date has changed.

9
android.intent.action.REBOOT

Have the device reboot.

Broadcasting Custom Intents

If you want your application itself should generate and send custom intents then you will

have to create and send those intents by using the sendBroadcast() method inside your

activity class. If you use the sendStickyBroadcast(Intent) method, the Intent is sticky,

meaning the Intent you are sending stays around after the broadcast is complete.

This intent com.tutorialspoint.CUSTOM_INTENT can also be registered in similar way as

we have regsitered system generated intent.

Example: mainactivity.java

package com.example.tutorialspoint7.myapplication;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

/**

* Created by TutorialsPoint7 on 8/23/2016.

*/

public class MyReceiver extends BroadcastReceiver{

@Override

public void onReceive(Context context, Intent intent) {

Toast.makeText(context, "Intent Detected.", Toast.LENGTH_LONG).show();

}

}

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.tutorialspoint7.myapplication">

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:supportsRtl="true"

android:theme="@style/AppTheme">

Myreceiver.java

AndroidManifest.xml

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

// broadcast a custom intent.

public void broadcastIntent(View view){

Intent intent = new Intent();

intent.setAction("com.tutorialspoint.CUSTOM_INTENT"); sendBroadcast(intent);

}

}

http://schemas.android.com/apk/res/android

res/layout/activity_main.xml

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:paddingLeft="@dimen/activity_horizontal_margin"

android:paddingRight="@dimen/activity_horizontal_margin"

android:paddingTop="@dimen/activity_vertical_margin"

android:paddingBottom="@dimen/activity_vertical_margin"

tools:context=".MainActivity">

<TextView

android:id="@+id/textView1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Example of Broadcast"

android:layout_alignParentTop="true"

android:layout_centerHorizontal="true"

android:textSize="30dp" />

<TextView

android:id="@+id/textView2"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Tutorials point "

android:textColor="#ff87ff09"

android:textSize="30dp"

android:layout_above="@+id/imageButton"

<activity android:name=".MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<receiver android:name="MyReceiver">

<intent-filter>

<action android:name="com.tutorialspoint.CUSTOM_INTENT">

</action>

</intent-filter>

</receiver>

</application>

</manifest>

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Content Provider:

A content provider component supplies data from one application to others on request. Such

requests are handled by the methods of the ContentResolver class. A content provider can use

different ways to store its data and the data can be stored in a database, in files, or even over a

network.

Figure 2. 7 Content Provider

android:layout_centerHorizontal="true"

android:layout_marginBottom="40dp" />

<ImageButton

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/imageButton"

android:src="@drawable/abc"

android:layout_centerVertical="true"

android:layout_centerHorizontal="true" />

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/button2"

android:text="Broadcast Intent"

android:onClick="broadcastIntent"

android:layout_below="@+id/imageButton"

android:layout_centerHorizontal="true" />

</RelativeLayout>

Content URI

Content URI(Uniform Resource Identifier) is the key concept of Content providers. To access

the data from a content provider, URI is used as a query string.

Structure of a Content URI: content://authority/optionalPath/optionalID

Details of different parts of Content URI:

 content:// – Mandatory part of the URI as it represents that the given URI is a Content

URI.

 authority – Signifies the name of the content provider like contacts, browser, etc. This
part must be unique for every content provider.

 optionalPath – Specifies the type of data provided by the content provider. It is essential

as this part helps content providers to support different types of data that are not related

to each other like audio and video files.

 optionalID – It is a numeric value that is used when there is a need to access a particular

record.

Operations in Content Provider

Four fundamental operations are possible in Content Provider namely Create, Read, Update,

and Delete. These operations are often termed as CRUD operations.

 Create: Operation to create data in a content provider.

 Read: Used to fetch data from a content provider.

 Update: To modify existing data.
 Delete: To remove existing data from the storage.

Working of the Content Provider

UI components of android applications like Activity and Fragments use an

object CursorLoader to send query requests to ContentResolver. The ContentResolver object

sends requests (like create, read, update, and delete) to the ContentProvider as a client. After

receiving a request, ContentProvider process it and returns the desired result.

Figure 2. 8 Operations in Content Provider

https://www.geeksforgeeks.org/activity-lifecycle-in-android-with-demo-app/
https://www.geeksforgeeks.org/introduction-fragments-android/

Creating a Content Provider

Following are the steps which are essential to follow in order to create a Content Provider:

 Create a class in the same directory where the that MainActivity file resides and this

class must extend the ContentProvider base class.

 To access the content, define a content provider URI address.

 Create a database to store the application data.

 Implement the six abstract methods of ContentProvider class.

 Register the content provider in AndroidManifest.xml file using <provider> tag.

Following are the six abstract methods and their description which are essential to override as

the part of ContenProvider class:

Figure 2.9 Content Provider Methods

Creating a Content Provider:

Step 1: Create a new project

1. Click on File, then New => New Project.

2. Select language as Java/Kotlin.

3. Choose empty activity as a template

4. Select the minimum SDK as per your need.

Step 2: Modify the strings.xml file

All the strings used in the activity are stored here.

<resources>

</resources>.

<string name="app_name">Content_Provider_In_Android</string>

<string name="hintText">Enter User Name</string>

<string name="heading">Content Provider In Android</string>

<string name="insertButtontext">Insert Data</string>

<string name="loadButtonText">Load Data</string>

Step 3: Creating the Content Provider class

1. Click on File, then New => Other => ContentProvider.

2. Name the ContentProvider

3. Define authority (it can be anything for example “com.demo.user.provider”)

4. Select Exported and Enabled option

5. Choose the language as Java/Kotlin

package com.example.contentprovidersinandroid;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.Context;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteException;

import android.database.sqlite.SQLiteOpenHelper;

import android.database.sqlite.SQLiteQueryBuilder;

import android.net.Uri;

import java.util.HashMap;

public class MyContentProvider extends ContentProvider {

public MyContentProvider() {

}

// defining authority so that other application can access it

static final String PROVIDER_NAME = "com.demo.user.provider";

// defining content URI

static final String URL = "content://" + PROVIDER_NAME + "/users";

// parsing the content URI

static final Uri CONTENT_URI = Uri.parse(URL);

static final String id = "id";

static final String name = "name";

static final int uriCode = 1;

static final UriMatcher uriMatcher;
private static HashMap<String, String> values;

static {

// to match the content URI

// every time user access table under content provider

uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

// to access whole table

uriMatcher.addURI(PROVIDER_NAME, "users", uriCode);

// to access a particular row

// of the table

uriMatcher.addURI(PROVIDER_NAME, "users/*", uriCode);

}

@Override

public String getType(Uri uri) {
switch (uriMatcher.match(uri)) {

case uriCode:

return "vnd.android.cursor.dir/users";

default:

throw new IllegalArgumentException("Unsupported URI: " +

uri);

}

}
// creating the database

@Override

public boolean onCreate() {

Context context = getContext();
DatabaseHelper dbHelper = new DatabaseHelper(context);
db = dbHelper.getWritableDatabase();

if (db != null) {

return true;

}

return false;
}

@Override

public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

qb.setTables(TABLE_NAME);

switch (uriMatcher.match(uri)) {

case uriCode:

qb.setProjectionMap(values);

break;

default:

throw new IllegalArgumentException("Unknown URI " + uri);
}

if (sortOrder == null || sortOrder == "") {

sortOrder = id;

}
Cursor c = qb.query(db, projection, selection, selectionArgs, null,

null, sortOrder);

c.setNotificationUri(getContext().getContentResolver(), uri);
return c;

}

// adding data to the database

@Override

public Uri insert(Uri uri, ContentValues values) {

long rowID = db.insert(TABLE_NAME, "", values);

if (rowID > 0) {

Uri _uri = ContentUris.withAppendedId(CONTENT_URI, rowID);

getContext().getContentResolver().notifyChange(_uri, null);

return _uri;
}

throw new SQLiteException("Failed to add a record into " + uri);
}

@Override

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

int count = 0;
switch (uriMatcher.match(uri)) {

case uriCode:

count = db.update(TABLE_NAME, values, selection,

selectionArgs);

}

break;

default:

throw new IllegalArgumentException("Unknown URI " + uri);

getContext().getContentResolver().notifyChange(uri, null);

return count;

}

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {

int count = 0;

switch (uriMatcher.match(uri)) {

case uriCode:

count = db.delete(TABLE_NAME, selection, selectionArgs);

break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

}

getContext().getContentResolver().notifyChange(uri, null);

return count;

}

// creating object of database

// to perform query
private SQLiteDatabase db;

// declaring name of the database

static final String DATABASE_NAME = "UserDB";

// declaring table name of the database

static final String TABLE_NAME = "Users";

// declaring version of the database

static final int DATABASE_VERSION = 1;

// sql query to create the table

static final String CREATE_DB_TABLE = " CREATE TABLE " + TABLE_NAME

+ " (id INTEGER PRIMARY KEY AUTOINCREMENT, "

+ " name TEXT NOT NULL);";

// creating a database

private static class DatabaseHelper extends SQLiteOpenHelper {

// defining a constructor

DatabaseHelper(Context context) {

super(context, DATABASE_NAME, null, DATABASE_VERSION);
}

// creating a table in the database

@Override

public void onCreate(SQLiteDatabase db) {

db.execSQL(CREATE_DB_TABLE);

}

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

// sql query to drop a table

// having similar name

db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);

onCreate(db);

}

}

}

Step 4: Design the activity_main.xml layout

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:background="#168BC34A"

tools:context=".MainActivity">

<LinearLayout
android:id="@+id/linearLayout"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_centerVertical="true"

android:orientation="vertical"

app:layout_constraintBottom_toTopOf="@+id/imageView"

app:layout_constraintEnd_toEndOf="parent"

app:layout_constraintStart_toStartOf="parent"

app:layout_constraintTop_toTopOf="parent"

app:layout_constraintVertical_bias="0.13"

tools:ignore="MissingConstraints">

<TextView

android:id="@+id/textView1"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginTop="40dp"

android:layout_marginBottom="70dp"

android:fontFamily="@font/roboto"

android:text="@string/heading"

android:textAlignment="center"

android:textAppearance="@style/TextAppearance.AppCompat.Large"

android:textColor="@android:color/holo_green_dark"

android:textSize="36sp"

android:textStyle="bold" />

<EditText

android:id="@+id/textName"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginStart="20dp"

android:layout_marginEnd="20dp"

android:layout_marginBottom="40dp"

android:fontFamily="@font/roboto"

android:hint="@string/hintText" />

<Button

android:id="@+id/insertButton"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:layout_marginStart="20dp"

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto
http://schemas.android.com/tools

android:layout_marginTop="10dp"

android:layout_marginEnd="20dp"

android:layout_marginBottom="20dp"

android:background="#4CAF50"

android:fontFamily="@font/roboto"

android:onClick="onClickAddDetails"

android:text="@string/insertButtontext"

android:textAlignment="center"

android:textAppearance="@style/TextAppearance.AppCompat.Display1"

android:textColor="#FFFFFF"

android:textStyle="bold" />

<Button

android:id="@+id/loadButton"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:layout_marginStart="20dp"

android:layout_marginTop="10dp"

android:layout_marginEnd="20dp"

android:layout_marginBottom="20dp"

android:background="#4CAF50"

android:fontFamily="@font/roboto"

android:onClick="onClickShowDetails"

android:text="@string/loadButtonText"

android:textAlignment="center"

android:textAppearance="@style/TextAppearance.AppCompat.Display1"

android:textColor="#FFFFFF"

android:textStyle="bold" />

<TextView

android:id="@+id/res"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginStart="20dp"

android:layout_marginEnd="20dp"

android:clickable="false"

android:ems="10"

android:fontFamily="@font/roboto"

android:textColor="@android:color/holo_green_dark"
android:textSize="18sp"

android:textStyle="bold" />

</LinearLayout>

<ImageView
android:id="@+id/imageView"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

app:layout_constraintBottom_toBottomOf="parent"

app:layout_constraintEnd_toEndOf="parent"

app:layout_constraintStart_toStartOf="parent"

app:srcCompat="@drawable/banner" />

</androidx.constraintlayout.widget.ConstraintLayout>

Step 5: Modify the MainActivity file

package com.example.contentprovidersinandroid;

import androidx.appcompat.app.AppCompatActivity;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.MotionEvent;

import android.view.View;

import android.view.inputmethod.InputMethodManager;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

@Override

public boolean onTouchEvent(MotionEvent event) {

InputMethodManager imm =

(InputMethodManager)getSystemService(Context.INPUT_METHOD_SERVICE);

0);

imm.hideSoftInputFromWindow(getCurrentFocus().getWindowToken(),

return true;

}

public void onClickAddDetails(View view) {

// class to add values in the database

ContentValues values = new ContentValues();

// fetching text from user

values.put(MyContentProvider.name, ((EditText)

findViewById(R.id.textName)).getText().toString());

values);

// inserting into database through content URI

getContentResolver().insert(MyContentProvider.CONTENT_URI,

// displaying a toast message

Toast.makeText(getBaseContext(), "New Record Inserted",

Toast.LENGTH_LONG).show();

}

public void onClickShowDetails(View view) {

// inserting complete table details in this text field

TextView resultView= (TextView) findViewById(R.id.res);

// creating a cursor object of the

// content URI

Cursor cursor =

getContentResolver().query(Uri.parse("content://com.demo.user.provider/users"), null, null,

null, null);

// iteration of the cursor

// to print whole table

if(cursor.moveToFirst()) {

StringBuilder strBuild=new StringBuilder();

while (!cursor.isAfterLast()) {

strBuild.append("\n"+cursor.getString(cursor.getColumnIndex("id"))+ "-"+

cursor.getString(cursor.getColumnIndex("name")));

cursor.moveToNext();

}

else {

}

}

}

}

resultView.setText(strBuild);

resultView.setText("No Records Found");

Step 6: Modify the AndroidManifest file

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.content_provider_in_android">

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:roundIcon="@mipmap/ic_launcher_round"

android:supportsRtl="true"

android:theme="@style/AppTheme">

<provider

android:name="com.example.contentprovidersinandroid.MyContentProvide

r"

android:authorities="com.demo.user.provider"

android:enabled="true"

android:exported="true"></provider>

<activity android:name=".MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category

android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<meta-data

http://schemas.android.com/apk/res/android

android:name="preloaded_fonts"

android:resource="@array/preloaded_fonts" />

</application>

</manifest>

SQLite Database:

What is SQLite?

SQLite is an in-process library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. It is a database, which is zero-configured,

which means like other databases you do not need to configure it in your system.

SQLite engine is not a standalone process like other databases, you can link it statically or

dynamically as per your requirement with your application. SQLite accesses its storage files

directly.

Why SQLite?

 SQLite does not require a separate server process or system to operate (serverless).

 SQLite comes with zero-configuration, which means no setup or administration

needed.

 A complete SQLite database is stored in a single cross-platform disk file.

 SQLite is very small and light weight, less than 400KiB fully configured or less than

250KiB with optional features omitted.

 SQLite is self-contained, which means no external dependencies.

 SQLite transactions are fully ACID-compliant, allowing safe access from multiple

processes or threads.

 SQLite supports most of the query language features found in SQL92 (SQL2)
standard.

 SQLite is written in ANSI-C and provides simple and easy-to-use API.

 SQLite is available on UNIX (Linux, Mac OS-X, Android, iOS) and Windows

(Win32, WinCE, WinRT).

SQLite Commands

The standard SQLite commands to interact with relational databases are similar to SQL.

They are CREATE, SELECT, INSERT, UPDATE, DELETE and DROP. These commands

can be classified into groups based on their operational nature

SQLiteOpenHelper class

The android.database.sqlite.SQLiteOpenHelper class is used for database creation and

version management. For performing any database operation, you have to provide the

implementation of onCreate() and onUpgrade() methods of SQLiteOpenHelper class.

Constructors of SQLiteOpenHelper class

There are two constructors of SQLiteOpenHelper class.

Methods of SQLiteOpenHelper class

There are many methods in SQLiteOpenHelper class. Some of them are as follows:

SQLiteDatabase class

It contains methods to be performed on sqlite database such as create, update, delete, select

etc.

Methods of SQLiteDatabase class

There are many methods in SQLiteDatabase class. Some of them are as follows:

Example:

Content.java

package example.javatpoint.com.sqlitetutorial;

public class Contact {

int _id;

String _name;

String _phone_number;

public Contact(){ }

public Contact(int id, String name, String _phone_number){

this._id = id;

this._name = name;

this._phone_number = _phone_number;

}

public Contact(String name, String _phone_number){

this._name = name;

this._phone_number = _phone_number;

}

public int getID(){

return this._id;

}

public void setID(int id){

this._id = id;

}

public String getName(){

return this._name;

}

public void setName(String name){

this._name = name;

}

public String getPhoneNumber(){

return this._phone_number;

}

public void setPhoneNumber(String phone_number){

this._phone_number = phone_number;

}

}

DatabaseHandler.java

package example.javatpoint.com.sqlitetutorial;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import java.util.ArrayList;

import java.util.List;

public class DatabaseHandler extends SQLiteOpenHelper {

private static final int DATABASE_VERSION = 1;

private static final String DATABASE_NAME = "contactsManager";

private static final String TABLE_CONTACTS = "contacts";

private static final String KEY_ID = "id";

private static final String KEY_NAME = "name";

private static final String KEY_PH_NO = "phone_number";

public DatabaseHandler(Context context) {

super(context, DATABASE_NAME, null, DATABASE_VERSION);

//3rd argument to be passed is CursorFactory instance

}

// Creating Tables

@Override

public void onCreate(SQLiteDatabase db) {

String CREATE_CONTACTS_TABLE = "CREATE TABLE " + TABLE_CONTACS

+ "("

+ KEY_ID + " INTEGER PRIMARY KEY," + KEY_NAME + " TEXT,"

+ KEY_PH_NO + " TEXT" + ")";

db.execSQL(CREATE_CONTACTS_TABLE);

}

// Upgrading database

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

// Drop older table if existed

db.execSQL("DROP TABLE IF EXISTS " + TABLE_CONTACTS);

// Create tables again

onCreate(db);

}

// code to add the new contact

void addContact(Contact contact) {

SQLiteDatabase db = this.getWritableDatabase();

ContentValues values = new ContentValues();

values.put(KEY_NAME, contact.getName()); // Contact Name

values.put(KEY_PH_NO, contact.getPhoneNumber()); // Contact Phone

// Inserting Row

db.insert(TABLE_CONTACTS, null, values);

//2nd argument is String containing nullColumnHack

db.close(); // Closing database connection

}

// code to get the single contact

Contact getContact(int id) {

SQLiteDatabase db = this.getReadableDatabase();

Cursor cursor = db.query(TABLE_CONTACTS, new String[] { KEY_ID,

KEY_NAME, KEY_PH_NO }, KEY_ID + "=?",

new String[] { String.valueOf(id) }, null, null, null, null);

if (cursor != null)

cursor.moveToFirst();

Contact contact = new Contact(Integer.parseInt(cursor.getString(0)),

cursor.getString(1), cursor.getString(2));

// return contact

return contact;

}

// code to get all contacts in a list view

public List<Contact> getAllContacts() {

List<Contact> contactList = new ArrayList<Contact>();

// Select All Query

String selectQuery = "SELECT * FROM " + TABLE_CONTACTS;

SQLiteDatabase db = this.getWritableDatabase();

Cursor cursor = db.rawQuery(selectQuery, null);

// looping through all rows and adding to list

if (cursor.moveToFirst()) {

do {

Contact contact = new Contact();

contact.setID(Integer.parseInt(cursor.getString(0)));

contact.setName(cursor.getString(1));

contact.setPhoneNumber(cursor.getString(2));

// Adding contact to list

contactList.add(contact);

} while (cursor.moveToNext());

}

// return contact list

return contactList;

}

// code to update the single contact

public int updateContact(Contact contact) {

SQLiteDatabase db = this.getWritableDatabase();

ContentValues values = new ContentValues();

values.put(KEY_NAME, contact.getName());

values.put(KEY_PH_NO, contact.getPhoneNumber());

// updating row

return db.update(TABLE_CONTACTS, values, KEY_ID + " = ?",

new String[] { String.valueOf(contact.getID()) });

}

// Deleting single contact

public void deleteContact(Contact contact) {

SQLiteDatabase db = this.getWritableDatabase();

db.delete(TABLE_CONTACTS, KEY_ID + " = ?",

new String[] { String.valueOf(contact.getID()) });

db.close();

}

// Getting contacts Count

public int getContactsCount() {

String countQuery = "SELECT * FROM " + TABLE_CONTACTS;

SQLiteDatabase db = this.getReadableDatabase();

Cursor cursor = db.rawQuery(countQuery, null);

cursor.close();

// return count

return cursor.getCount();

}

}

MainActivity.java

package example.javatpoint.com.sqlitetutorial;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.util.Log;

import java.util.List;

public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

DatabaseHandler db = new DatabaseHandler(this);

// Inserting Contacts

Log.d("Insert: ", "Inserting ..");

db.addContact(new Contact("Ravi", "9100000000"));

db.addContact(new Contact("Srinivas", "9199999999"));

db.addContact(new Contact("Tommy", "9522222222"));

db.addContact(new Contact("Karthik", "9533333333"));

// Reading all contacts

Log.d("Reading: ", "Reading all contacts..");

List<Contact> contacts = db.getAllContacts();

for (Contact cn : contacts) {

String log = "Id: " + cn.getID() + " ,Name: " + cn.getName() + " ,Phone: " +

cn.getPhoneNumber();

// Writing Contacts to log

Log.d("Name: ", log);

}

}

}

1

UNIT – III – SBSA3003- Mobile Application Development

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Unit – III

Introduction to Objective-C - Data Types andExpressions - Decision Making and Looping -

Objects andClasses – Property – Messaging – Category - Extensions - FastEnumeration - NSArray

and NSDictionary - Methods and Selectors - Static and DynamicObjects - Exception Handling -

Memory Management - RequiredTools–Xcode, iOS Simulator, Instruments,ARC and Frameworks

2

Introduction

• Objective-C is a general-purpose, object-oriented programming language that adds

Smalltalk-style messagingtotheCprogramminglanguage.

• This is the main programming language used by Apple for the OS X and iOS operating

systemsand theirrespectiveAPIs,CocoaandCocoaTouch.

• Initially,Objective-CwasdevelopedbyNeXTfor itsNeXTSTEPOSfromwhomitwas

takenoverby AppleforitsiOSandMacOSX.

Objective-C Program Structure

 Preprocessor Commands

 Interface

 Implementation

 Method

 Variables

 Statements &Expressions

 Comments

Example

#import <Foundation/Foundation.h> @interface SampleClass:NSObject

- (void)sampleMethod; @end

@implementation SampleClass

- (void)sampleMethod

{

NSLog(@"Hello,World!\n");

}

@end

int main(){

/*myfirstprograminObjective-C*/

SampleClass *sampleClass = [[SampleClass alloc]init];

[sampleClass sampleMethod];

return 0;

3

}

Various parts of the program

• Thefirstlineofthe program #import

<Foundation/Foundation.h> is a preprocessor command, which tells an Objective-C compiler

to include Foundation.h file before going to actual compilation.

• The next line @interface SampleClass:NSObject shows how to create an interface. It inherits

NSObject, which is the base class of all objects.

• The next line - (void)sampleMethod; shows how to declare a method.

• The next line @end marks the end of an interface.

• The next line @implementation SampleClass shows how to implement the interface

SampleClass.

• The next line - (void)sampleMethod{} shows the implementation of the sampleMethod.

• The next line @end marks the end of an implementation.

• The next line int main() is the main function where program execution begins.

• The next line /*...*/ will be ignored by the compiler and it has been put to add additional

comments in the program. So such lines are called comments in the program.

• The next line NSLog(...) is another function available in Objective-C which causes the

message "Hello, World!" to be displayed on the screen.

• The next line return 0; terminates main() function and returns the value 0.

Token

An Objective-C program consists of various tokens and a token is either,

– a keyword

– an identifier

– a constant

– a string literal, or a symbol.

The semicolon is a statement terminator.

NSLog(@"Hello,World!\n");

(or)

NSLog (

@

4

"Hello, World!\n"

)

;

Data types classified

• Basic Types

– They are arithmetic types and consist of the two types: (a)

integer types and (b) floating-point types.

• Enumerated types

– They are again arithmetic types and they are used to define variables that can only be

assigned certain discrete integer values throughout the program.

• The void type

– The type specifier void indicates that no value is available.

• Derived types

– They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union types

and (e) Function types.

Datatypes

 Integer types

– char- 1 byte

– unsignedchar- 1 byte

– signedchar- 1 byte

– int - 2 or 4 bytes

– unsignedint- 2 or 4 bytes

– short - 2bytes

– unsignedshort- 2 bytes

– long - 4bytes

– unsignedlong- 4 bytes

• Floating-Point Types

5

– float - 4byte

– double - 8byte

– longdouble - 10 byte

• The void Type

– Function returns asvoid

– Function arguments asvoid

Variables

• A variable is nothing but a name given to a storage area that our programs can

manipulate.

• Each variable in Objective-C has a specific type, which determines the size and layout

of the variable's memory,

– the range of values that can be stored within that memory

– the set of operations that can be applied to the variable.

•

Basic variabletypes

• char

– Typically a single octet (one byte). This is an integer type.

• int

– The most natural size of integer for the machine.

• float

– A single-precision floating point value.

• double

– A double-precision floating point value.

• void

– Represents the absence of type.

Example

#import <Foundation/Foundation.h>

// variable declaration

extern int a, b;

6

extern int c;

extern float f;

int main (){

/*

variable

definitio

n:*/ inta,

b; int c;

floatf;

/* actual

initializat

ion */ a=

10;b=20;

c=a+b;

NSLog(@"valueofc:%d\n",

c); f =70.0/3.0;

NSLog(@"value of f : %f

\n",f); return 0;

}

Constants

• The constants refer to fixed values that the program may not alter during its execution.

• Constants can be of any of the basic data types like

– integer constant

– floating constant

– character constant

– string literal

– enumeration constant

Operators

• ArithmeticOperators

• RelationalOperators

• LogicalOperators

7

• Bitwise Operators

• AssignmentOperators

• Misc Operators

– sizeof()

– & operator

– *operator

– ?: operator

Decision Making - Branching

Decision making structures require that the programmer specify one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be executed if

the condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false as shown in figure 3.1.

Figure 3.1 Decision making flowchart

Types of decision-making statements

• If statement

if(boolean_expression) {

/* statement(s) will execute if the boolean expression is true */ }

• If else statement

if(boolean_expression) {

/* statement(s) will execute if the boolean expression is true */ }

else {

8

/* statement(s) will execute if the boolean expression is false */

}

• Nested if statement

if(boolean_expression 1) {

/* Executes when the boolean expression 1 is true */

if(boolean_expression 2) {

/* Executes when the boolean expression 2 is true */

}}

 Switch statement

switch(expression)

{

case constant-expression:

statement; break;

/* you can have any number of case statements */ default :

/* optional */

statement(s); break;

}

Decision making - Looping

A looping statement allows us to execute a statement or group of statements multiple

times. It’s flowchart is shown in figure 3.2.

9

Figure 3.2 Decision making – Looping flowchart

Looping statement

• While loop

while(condition) {

statement(s); }

• Do while loop

do {

statement(s);

}while(condition);

• For loop

for (init; condition; increment/decrement) {

statement(s); }

Classes & Objects

• The main purpose of Objective-C programming language is to add object orientation

to the C programming language.

• Classes are the central feature of Objective-C that support object-oriented programming

and are often called user-defined types.

• A class is used to specify the form of an object and it combines data representation and

methods for manipulating that data into one neat package.

• The data and methods within a class are called members of the class.

Objective-C characteristics

• The class is defined in two different sections namely @interface and @implementation.

• Almost everything is in form of objects.

• Objects receive messages and objects are often referred as receivers.

• Objects contain instance variables.

• Objects and instance variables have scope.

• Classes hide an object's implementation.

• Properties are used to provide access to class instance variables in other classes.

Class Definitions

• Define a blueprint for a data type.

10

– Define what the class name means?

– What an object of the class will consist?

– What operations can be performed on such an object?

• A class definition starts with the keyword @interface followed by the

interface(class) name;

and the class body, enclosed by a pair of curly braces.

• In Objective-C, all classes are derived from the base class called NSObject.

It is the super class of all Objective-C classes. It provides basic methods like

memory allocation and initialization.

Example

@interface Box:NSObject {

//Instance variables

double length; // Length of a box

double breadth; // Breadth of a box

}

// Property

@property(nonatomic, readwrite) double height;

@end

Allocating and initializing Objects

• A class provides the blueprints for objects, so basically an object is created from a

class.

• We declare objects of a class with exactly the same sort of declaration that we declare

variables of basic types.

Example

Box box1 = [[Box alloc]init]; // Create box1 object of type Box

Box box2 = [[Box alloc]init]; // Create box2 object of type Box

Accessing the Data Members

11

• The properties of objects of a class can be accessed using the direct member

access operator (.)

Example

#import<Foundation/Foundation.h>

@interface Box:NSObject {

double length;

double breadth;

double height;

}

@property(nonatomic, readwrite) double height;

-(double) volume;

@end

@implementation Box

@synthesize height;

-(id)init

{

self = [super init];

length = 1.0;

breadth = 1.0;

return self;

}

-(double) volume

{ return length*breadth*height;

}

@end

int main()

{

Box *box1 = [[Box alloc]init];

Box *box2 = [[Box alloc]init];

double volume = 0.0;

box1.height = 5.0;

12

box2.height = 10.0;

volume = [box1 volume];

NSLog(@"Volume of Box1 : %f", volume);

volume = [box2 volume];

NSLog(@"Volume of Box2 : %f", volume); return 0; }

Function

• A function is a group of statements that together perform a task.

• A function declaration tells the compiler about a function's name, return type, and

parameters.

• A function definition provides the actual body of the function.

• Call the function as method

Defining a Method

Syntax:

- (return_type) method_name:(argumentType1

)argumentName1 joiningArgument2:(argumentType2)argumentName2

joiningArgumentN:(argumentTypeN)argumentNameN

{

body of the function

}

Example

/* function returning the max between two numbers */

- (int) max:(int) num1 Num2:(int) num2

{

int result;

if (num1 > num2)

{

result = num1;

}else{

result=num2;

}

13

return result;}

Method Declaration

Syntax:

- (return_type) function_name:(argumentType1)argumentName1 joiningArgument2:

(argumentType2)argumentName2 ... joiningArgumentN:(argumentTypeN

)argumentNameN;

Example

-(int) max:(int)num1 andNum2:(int)num2;

Example

#import<Foundation/Foundation.h>

@interface SampleClass:NSObject

/* method declaration */

- (int)max:(int)num1 andNum2:(int)num2;

@end

@implementation SampleClass

/* method returning the max between two numbers */

- (int)max:(int)num1 andNum2:(int)num2{

/* local variable declaration

*/ int result;

if (num1 > num2)

result = num1;

}

@end

int main ()

{

else

return result;

result = num2;

/* local variable definition */

int a = 100;

14

int b = 200;

int ret;

SampleClass *sampleClass = [[SampleClass alloc]init];

/* calling a method to get max value */

ret = [sampleClass max:a andNum2:b];

NSLog(@"Max value is : %d\n", ret);

return 0;

}

Log Handling

NSLog method

– To print logs, we use the NSLog method

– Syntax:

N―Log(@‖―tring‖);

– Example

#import<Foundation/Foundation.h>

int main() {

NSLog(@"Hello,

World! \n");

return 0;

}

Example

• DebugLog Method

– To print logs in a live build.

int main() {

#import <Foundation/Foundation.h>

#if DEBUG == 0

#define DebugLog(...)

#elif DEBUG== 1

#define DebugLog(...) NSLog(VA_ARGS)

#endif

15

}

Output

DebugLog(@"Debug log, our custom addition gets \ printed during debug

only");

NSLog(@"NSLog gets printed always");

return 0;

• We compile and run the program in debug mode, the output is,

– Debug log, our custom addition gets printed during debug

only

– NSLog gets printed always

• We compile and run the program in release mode, the output is,

– NSLog gets printed always

Property

• To ensure that the instance variable of the class can be accessed outside the class.

• The various parts are the property declaration are as follows

– Properties begin with @property, which is a keyword

– Access specifiers (atomic, nonatomic, readwrite, readonly, strong, weak)

– This is followed by the data-type of the variable.

– Finally, we have the property name terminated by a semicolon.

– We can add synthesize statement in the implementation class.

• Properties let other objects inspect or change its state

• A well-designed object-oriented program, it’s not possible to directly access the

internal state of an object as shown in figure 3.3

• Accessor methods are used

– Setters

– Getters

16

Figure 3.3 Setter and Getter methods

Messaging

• In Objective-C, messages aren’t bound to method implementations until runtime.

• The compiler converts a message expression,

[receiver message] into a call on a messaging function, objc_msgSend.

• This function takes the receiver and the name of the method mentioned in the

message—that is, the method selector—as its two principal parameters:

objc_msgSend(receiver, selector)

• Any arguments passed in the message are also handed to objc_msgSend:

objc_msgSend(receiver, selector, arg1, arg2, ...)

• The messaging function does everything necessary for dynamic binding:

– It first finds the procedure (method implementation) that the selector refers to.

Since the same method can be implemented differently by separate classes, the

precise procedure that it finds depends on the class of the receiver.

– It then calls the procedure, passing it the receiving object (a pointer to its data),

along with any arguments that were specified for the method.

– Finally, it passes on the return value of the procedure as its own return value.

Messaging Framework

17

Figure 3.4 Messaging framework

• When a message is sent to an object, the messaging function follows the object’s is a

pointer to the class structure where it looks up the method selector in the dispatch table.

• If it can’t find the selector here, objc_msgSend follows the pointer to the superclass

and tries to find the selector in its dispatch table.

• Successive failures cause objc_msgSend to climb the class hierarchy until it reaches

the NSObject class as indicated in figure 3.4.

• Once it locates the selector, the function calls the method entered in the table and passes

it the receiving object’s data structure.

• To speed the messaging process, the runtime system caches the selectors and addresses

of methods as they are used.

• There’s a separate cache for each class, and it can contain selectors for inherited

methods as well as for methods defined in the class.

• Before searching the dispatch tables, the messaging routine first checks the cache of

the receiving object’s class.

• If the method selector is in the cache, messaging is only slightly slower than a function

call.

• Caches grow dynamically to accommodate new messages as the program runs.

Categories

18

• To extend an existing class by adding behavior that is useful only in certain situations.

• If you need to add a method to an existing class, the easiest way is to use a category.

• To declare a category uses the @interface keyword.

Syntax

@interface ClassName (CategoryName)

@end

Characteristics of category

• A category can be declared for any class, even if you don't have the original

implementation source code.

• Any methods that you declare in a category will be available to all instances of the

original class, as well as any subclasses of the original class.

• At runtime, there's no difference between a method added by a category and one that

is implemented by the original class.

Person.h

@interface Person : NSObject

@property (readonly) NSMutableArray* friends;

@property (copy) NSString* name;

- (void)sayHello;

- (void)sayGoodbye;

@end

Person.m

#import "Person.h"

@implementation Person

@synthesize name = _name;

@synthesize friends = _friends;

-(id)init

{

self = [super init];

if(self)

19

{

_friends = [[NSMutableArray alloc] init];

}

return self;

}

- (void)sayHello

{

NSLog(@"Hello, says %@.", _name);

}

- (void)sayGoodbye

{

NSLog(@"Goodbye, says %@.", _name);

}

@end

Person+Relations.h

#import<Foundation/Foundation.h>

#import "Person.h"

@interface Person (Relations)

- (void)addFriend:(Person *)aFriend;

- (void)removeFriend:(Person *)aFriend;

- (void)sayHelloToFriends;

@end

Person+Relations.m

#import"Person+Relations.h"

@implementation Person (Relations)

- (void)addFriend:(Person *)aFriend

{

[[self friends] addObject:aFriend];

}

20

- (void)removeFriend:(Person *)aFriend

{

[[self friends] removeObject:aFriend];

}

- (void)sayHelloToFriends

{

@end

for(Person *friend in [self friends])

{

NSLog(@"Hello there, %@!", [friend name]);

}}

Main.m

#import <Foundation/Foundation.h>

#import "Person.h"

#import "Person+Relations.h"

int main(int argc, const char * argv[])

{

@autoreleasepool

{

Person *joe = [[Person alloc] init];

joe.name = @"Joe";

Person *bill = [[Person alloc] init];

bill.name = @"Bill";

Person *mary = [[Person alloc] init];

mary.name = @"Mary";

[joe sayHello];

[joe addFriend:bill];

[joe addFriend:mary];

[joe sayHelloToFriends];

}

21

}

Extensions

• A class extension is similar to a category, but it can only be added to a class for which

you have the source code at compile time.

• The methods declared by a class extension are implemented in the implementation

block for the original class.

• Extensions are actually categories without the category name.

It's often referred as anonymous categories.

• The syntax to declare a extension uses the @interface keyword.

• Syntax

@interface ClassName ()

@end

Characteristics of extensions

• An extension cannot be declared for any class, only for the classes that we have

original implementation of source code.

• An extension is adding private methods and private variables that are only

specific to the class.

• Any method or variable declared inside the extensions is not accessible

even to the inherited classes.

Example

@interface SampleClass : NSObject

{

NSString *name;

}

- (void)setInternalID;

- (NSString *)getExternalID;

22

@end

@interface SampleClass()

{

NSString *internalID;

}

@end

@implementation SampleClass

- (void)setInternalID

{

internalID=[NSStringstringWithFormat:

@"UNIQUEINTERNALKEY%dUNIQUEINTERNALKEY",arc4r

andom()%100];

}

- (NSString *)getExternalID

{

return[internalIDstringByReplacingOccurrencesOfString:

@"UNIQUEINTERNALKEY" withString:@""];

}

@end

The following table 3.1 shows the Difference between Category & Extension.

Table 3.1 Difference between Category & Extension

Category Extension

Categories to define additional

methods of an existing class—even

one whose source code is

unavailable to you

A class extension is similar to a category,

but it can only be added to a class for

which you have the source code

Category have category name Extension don’t have name

23

It helps to add some more

functionality to existing class,

but only functions

It helps to add some more functionality to

existing class, but only properties and

instance variables

It come with its own .h and .m file It comes with .m file only

@interface MyClass (Category Name)

// method declarations

@end

@interface MyClass ()

// method declarations

@end

Fast Enumeration-NSArray

• NSArray is general-purpose array type.

• It represents an ordered collection of objects.

• Like NSSet, NSArray is immutable, so you cannot dynamically add

or remove items.

• Immutable arrays can be defined as literals using the @[] syntax.

Figure 3.5 NSArray - Fast Enumeration

Eg.

NSArray *germanMakes = @[@"Mercedes-Benz", @"BMW", @"Porsche", @"Opel",

@"Volkswagen", @"Audi"];

NSArray *ukMakes = [NSArray arrayWithObjects:@"Aston Martin", @"Lotus", @"Jaguar",

@"Bentley", nil];

NSLog(@"First german make: %@", germanMakes[0]);

NSLog(@"First U.K. make: %@", [ukMakes objectAtIndex:0]);

• Fast-enumeration is the most efficient way to iterate over an NSArray, and its contents

24

are guaranteed to appear in the correct order.

Eg.

NSArray *germanMakes = @[@"Mercedes- Benz", @"BMW", @"Porsche", @"Opel",

@"Volkswagen", @"Audi"];

// With fast-enumeration

for (NSString *item in germanMakes)

{

NSLog(@"%@", item);

}

// With a traditional for loop

for (int i=0; i<[germanMakes count]; i++)

{

NSLog(@"%d: %@", i, germanMakes[i]);

}

There are several advantages to using fast enumeration:

– The enumeration is considerably more efficient than, for The

syntax is concise

– Enumeration is ―safe‖—the enumerator has a mutation guard so that if

you attempt to modify the collection during enumeration, an exception is

raised

• The NSDictionary class represents an unordered collection of objects

• They associate each value with a key, which acts like a label for the value.

This is useful for modeling relationships between pairs of objects

• NSDictionary is immutable, but the NSMutableDictionary data structure lets you

dynamically add and remove entries as necessary.

• Immutable dictionaries can be defined using the

literal @{} syntax.

• Factory methods

– dictionaryWithObjectsAndKeys:

– dictionaryWithObjects:forKeys:

Eg.

25

// Literal syntax

NSDictionary *inventory = @{ @"Mercedes-Benz SLK250" : [NSNumber

numberWithInt:13],

@"Mercedes-Benz E350" : [NSNumber numberWithInt:22],

@"BMW M3 Coupe" : [NSNumber numberWithInt:19], @"BMW X6" : [NSNumber

numberWithInt:16], };

Eg.

// Values and keys as arguments

inventory = [NSDictionary dictionaryWithObjectsAndKeys:

[NSNumber numberWithInt:13], @"Mercedes-Benz SLK250",

[NSNumber numberWithInt:22], @"Mercedes-Benz E350",

[NSNumber numberWithInt:19], @"BMW M3 Coupe", [NSNumber numberWithInt:16],

@"BMW X6", nil];

Eg.

// Values and keys as arrays

NSArray *models = @[@"Mercedes-Benz SLK250", @"Mercedes-Benz E350", @"BMW

M3 Coupe", @"BMW X6"];

NSArray *stock = @[[NSNumber numberWithInt:13], [NSNumber numberWithInt:22],

[NSNumber numberWithInt:19], [NSNumber numberWithInt:16]];

inventory = [NSDictionary dictionaryWithObjects:stock forKeys:models];

NSLog(@"%@", inventory);

• Fast-enumeration is the most efficient way to enumerate a dictionary, and it loops

through the keys (not the values).

• NSDictionary also defines a count method, which returns the number of entries in the

collection.

Eg.

NSLog(@"We currently have %ld models available", [inventory count]);

for (id key in inventory) {

NSLog(@"There are %@ %@'s in stock", inventory[key], key); }

Methods and Selectors

26

• A selector refers to the name used to select a method to execute for an object

• It is used to identify a method

– Compiler writes each method name into a table

– Pairs the name with a unique identifier that represents the method at runtime

– The runtime system makes sure each identifier is unique

– No two selectors are the same, and all methods with the

same name have the same selector

Static Class

• A class is a blue print for the members like, static variable and static methods.

• A static variable are declared using the modifier static.

• Syntax

• static <data_type> <variable_name>;

Eg.

static int number;

For static method which is also known as class method, you can use the + sign instead of

the – sign when declaring the method.

• Syntax

+ (data_type)method_name;

Eg. +(int) getNumber;

Dynamic Objects

• Dynamic binding is determining the method to invoke at runtime instead of at compile

time. Dynamic binding is also referred to as late binding.

• In Objective-C, all methods are resolved dynamically at runtime.

• The exact code executed is determined by both the method name (the selector) and

the receiving object.

• Dynamic binding enables polymorphism.

Eg.

– Consider a collection of objects including Rectangle and Square.

– Each object has its own implementation of a printArea method.

27

Example

– The actual code that should be executed by the expression [anObject

printArea] is determined at runtime.

– In this, printArea method is dynamically selected in runtime.

#import <Foundation/Foundation.h>

@interface Square:NSObject

{

float area;

}

@end

- (void)calculateAreaOfSide:(CGFloat)side;

- void)printArea;

@implementation Square

- (void)calculateAreaOfSide:(CGFloat)side

{

area = side * side;

}

-(void)printArea

{

NSLog(@"The area of square is %f",area);

}

@end

@interface Rectangle:NSObject

{

float area;

}

@end

- (void)calculateAreaOfLength:(CGFloat)length andBreadth:(CGFloat)breadth;

- (void)printArea;

@implementation Rectangle

- (void)calculateAreaOfLength:(CGFloat)length andBreadth:(CGFloat)breadth

28

{

area = length * breadth;

}

- (void)printArea

{

NSLog(@"The area of Rectangle is %f",area); }

@end

int main()

{

Square *square = [[Square alloc]init];

[square calculateAreaOfSide:10.0];

Rectangle *rectangle = [[Rectangle alloc]init];

[rectangle calculateAreaOfLength:10.0 andBreadth:5.0];

NSArray *shapes = [[NSArray alloc]initWithObjects: square, rectangle,nil];

id object1 = [shapes objectAtIndex:0];

[object1 printArea];

id object2 = [shapes objectAtIndex:1];

[object2 printArea];

return 0;}

Exception Handling

• An exception is a special condition that interrupts the normal flow of program

execution

• There are a variety of reasons why an exception may be generated, by hardware as

well as software

• Exception handling is made available in Objective- C with foundation class

NSException

• Objective-C exception support four compiler directives:

– @try - This block tries to execute a set of statements

– @catch - This block tries to catch the exception in try block

– @throw - throw exceptions if you find yourself in a situation that indicates

a programming error, and want to stop the application from running

29

– @finally - This block contains set of statements that always execute

Eg. division by zero, underflow or overflow, calling undefined instructions

#import <Foundation/Foundation.h>

int main()

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSMutableArray *array = [[NSMutableArray alloc]init];

@try

{

NSString *string = [array objectAtIndex:10];

}

@catch (NSException *exception)

{

NSLog(@"%@ ",exception.name);

NSLog(@"Reason: %@ ",exception.reason);

}

@finally

{

NSLog(@"@finaly Always Executes");

}

[pool drain];

return 0;}

Memory Management

• Objects reside in memory, and especially on mobile devices this is a scarce resource

• To make sure that programs don’t take up any more space than they need

• The goal of any memory management system is to reduce the memory footprint of

a program by controlling the lifetime of all its objects. iOS and OS X applications

accomplish this through object ownership, which makes sure objects exist as long

as they have to, but no longer

• Many languages accomplish this through garbage collection, but Objective-C uses

object ownership

30

Figure 3.6 Memory management in Objective C

Manual Retain Release environment

• alloc - Create an object and claim ownership of it.

• retain - Claim ownership of an existing object.

• copy - Copy an object and claim ownership of it.

• release - Relinquish ownership of an object and destroy it immediately.

• autorelease - Relinquish ownership of an object but defer its destruction.

• Manually controlling object ownership might seem like a daunting task, but it’s

actually very easy.

• All you have to do is claim ownership of any object you need and remember to

relinquish ownership when you’re done with it.

• When you forget to balance these calls, one of two things can happen.

– If you forget to release an object, its underlying memory is never freed,

resulting in a memory leak.

– ―mall leaks won’t have a visible effect on your program, but if you eat up

enough memory, your program will eventually crash.

– On the other hand, if you try to release an object too many times, you’ll have what’s

called a dangling pointer.

– When you try to access the dangling pointer, you’ll be requesting an invalid

memory address, and your program will most likely crash.

31

Figure 3.7 Balance between memory leak and dangling pointer

The alloc Method

• Using the alloc method to create objects. But, it’s not just allocating memory for

the object, it’s also setting its reference count to 1.

• Eg.

#importFoundation/Foundation.h>

int main(int argc, const char * argv[])

{

@autoreleasepool

{

NSMutableArray *inventory = [[NSMutableArray alloc] init];

[inventory addObject:@"Honda Civic"];

NSLog(@"%@", inventory);

}

return 0;

}

The release Method

• The release method relinquishes ownership of an object by decrementing its

reference count.

• So, we can get rid of our memory leak by adding the following line after the

NSLog()

• Eg.

[inventory release];

32

The Retain Method

• The retain method claims ownership of an existing object.

• It’s like telling the operating system, ―Hey! I

need that object too, so don’t get rid of it!‖.

Figure 3.8 Reference count of objects during retain and release

Eg.

// CarStore.h

#import<Foundation/Foundation.h>

@interface CarStore : NSObject

-(NSMutableArray *)inventory;

-(void)setInventory:(NSMutableArray *)newInventory;

@end

// CarStore.m

-(void)setInventory:(NSMutableArray *)newInventory

{

_inventory = [newInventory retain]; }

The autorelease method

• The autorelease method relinquishes ownership of an object, but instead of

destroying the object immediately, it defers the actual freeing of memory until

later on in the program.

• This allows you to release objects when you are ―supposed‖

to, while still keeping them around for others to use.

Eg.

// CarStore.h

33

+ (CarStore *)carStore;

// CarStore.m

+ (CarStore *)carStore

{

CarStore *newStore = [[CarStore alloc] init];

return [newStore autorelease];

}

The dealloc Method

• An object’s dealloc method is the opposite of its init method.

• It’s called right before the object is destroyed, giving you a

chance to clean up any internal objects.

• This method is called automatically by the runtime—you should

never try to call dealloc yourself.

• Eg.

// CarStore.m

(void)dealloc

{

[_inventory release];

[super dealloc];

}

• Automatic Reference Counting works the exact same way as MRR, but it

automatically inserts the appropriate memory- management methods for

you.

• This is a big deal for Objective-C developers, as it lets them focus entirely

on what their application needs to do rather than how it does it.

• ARC takes the human error out of memory management with virtually no

downside, so the only reason not to use it is when you’re interfacing with a

legacy code base.

• The rest of this module explains the major changes between MRR and ARC

• Enabling ARC

– First, let’s go ahead and turn ARC back on in the project’s Build Settings tab as

shown in figure 3.9.

34

– Change the Automatic Reference Counting compiler option to Yes.

– Again, this is the default for all Xcode templates, and it’s what you should be

using for all of your projects

Figure 3.9 Enabling ARC in project’s Build Setting tab

• Automatic Reference Counting, the compiler manages all of

your object ownership automatically

• We never to worry about how the memory management system actually works

• To understand the various attributes of @property, since they tell the compiler

what kind of relationship objects should have

– Strong attribute

– Weak attribute

– Copy attribute

• The strong Attribute

– It creates an owning relationship to whatever object is assigned to the

property

35

– It makes sure the value exists as long as it’s assigned to the property

Figure 3.10 Retain cycle between Car and Person classes

The weak Attribute

 The weak attribute creates a non-owning relationship

 Possible to maintain a cyclical relationship without creating a retain cycle

 Two objects should never have strong references to each other

Figure 3.11 Weak reference

The copy Attribute

– The copy attribute is an alternative to strong

– Instead of taking ownership of the existing object, it creates a copy of

whatever you assign to the property, then takes ownership of that

– Properties that represent values are good candidates

for copying

– Eg.

@property (nonatomic, copy)

NSString *model;

36

Required Tools

• Objective-C is the native programming language for Apple’s iO― and O― X

operating systems.

• It’s a compiled, general-purpose language capable of building everything from

command line utilities to animated GUIs to domain- specific libraries.

• It also provides many tools for maintaining large, scalable frameworks.

Figure 3.12 Types of programs written in Objective-C

Xcode

• Xcode is the Integrated Development Environment (IDE) designed for

developing iOS and Mac OS apps

• The Xcode IDE includes editors used to design and implement your apps

• Xcode can show you mistakes in both syntax and logic, and even suggests fixes as

you type.

37

• Finally, Build and run your apps

Figure 3.13 XCode IDE

Components of Xcode

• Xcode IDE : IDE that enables you to manage, edit, and debug your projects

• Dashcode : IDE that enables you to develop web- based iPhone and iPad applications

and Dashboard widgets

• iOS Simulator : Provides a software simulator to simulate an iPhone or an iPad on

your Mac

• Interface Builder : Visual editor for designing user interfaces for your iPhone and

iPad applications

• Instruments : Analysis tool to help you both optimize your application and monitor

for memory leaks in real time

Creating an Application

• Xcode provides several templates for various types of iOS and OS X applications. All

of them can be found by navigating to File > New > Project... or using the

Cmd+Shift+N shortcut.

38

• This will open a dialog window asking you to select a

template:

Figure 3.14 Creating a command line application

• This opens another dialog asking you to configure the project:

Figure 3.15 Configuring a command line application

• You can use whatever you like for the Product Name and Organization Name fields.

• Finally, the Use Automatic Reference Counting checkbox should always be selected

for new projects.

• Clicking Next prompts you for a file path to store the project (save it anywhere you

like), and you should now have a brand new Xcode project to play with.

• In the left-hand column of the Xcode IDE, you’ll find a file called main.m (along

with some other files and folders). At the moment, this file contains the entirety of

your application.

• Note that the .m extension is used for Objective-C source files.

39

Figure 3.16 main.m in the Project Navigator

• To compile the project, click the Run button in the upper-left corner of the IDE or use

the Cmd+R shortcut.

• This should display Hello, World!in the Output Panel located at the bottom of the

IDE as shown in figure 3.17

Figure 3.17 Output console

The main() Function

#import<Foundation/Foundation.h>

int main(int argc, const char * argv[])

{

@autoreleasepool

{

}

return 0;

}

// insert code here...

NSLog(@"Hello, World!");

40

iOS Simulator

• The iOS Simulator app, available within Xcode, presents the iPhone, iPad, or Apple

Watch user interface in a window on your Mac computer.

• You interact with iOS Simulator by using the keyboard and the mouse to emulate

taps, device rotation, and other user actions.

• There are two different ways to access iOS Simulator through Xcode.

– The first way is to run your app in iOS Simulator.

– The second way is to launch iOS Simulator without running an app.

Running Your App in iOS Simulator

• When testing an app in iOS Simulator, it is easiest to launch and run your app in iOS

Simulator directly from your Xcode project.

• To run your app in iOS Simulator, choose an iOS simulator—for example, iPhone 6

or iPad Air—from the Xcode scheme pop-up menu and click Run.

• Xcode builds your project and then launches the most recent version of your app

running in iOS Simulator on your Mac screen as shown in figure 3.18

Figure 3.18 Running App in iOS

Instruments

• Instruments is a powerful and flexible performance- analysis and testing tool that’s

part of the Xcode tool set.

• It’s designed to help you profile your OS X and iOS apps, processes, and devices in

order to better understand and optimize their behavior and performance.

41

• Incorporating Instruments into your workflow from the beginning of the app

development process can save you time later by helping you find issues early in the

development cycle.

• In Instruments, you use specialized tools, known as instruments, to trace different

aspects of your apps, processes, and devices over time.

• Instruments collects data as it profiles, and presents the results to you in detail for

analysis.

• By using Instruments effectively, you can:

– Examine the behavior of one or more apps or processes

– Examine device-specific features, such as Wi-Fi and Bluetooth

– Perform profiling in a simulator or on a physical device

– Create custom DTrace instruments to analyze aspects of system and app

behavior

– Track down problems in your source code

– Conduct performance analysis on your app

– Find memory problems in your app, such as leaks, abandoned memory, and

zombies

– Identify ways to optimize your app for greater power efficiency

– Perform general system-level troubleshooting

– Automate testing of your iOS app by running custom scripts to perform a

sequence of user actions and replaying them to reliably reproduce those events

and collect data over multiple runs

– Save instrument configurations as templates

The Instruments Workflow

Figure 3.19 InstrumentsWorkflow

42

• It can be used to gather all kinds of useful information about your app, and

help you diagnose and resolve problems.

• At a high level, it consists of the following main phases:

– Set up a trace document containing the desired

instruments and settings.

– Target a device and an app to profile.

– Profile the app.

– Analyze the data captured during profiling.

– Fix any problems in your source code.

Know When to Use Instruments

• While testing your app with Xcode, consult the debug navigator gauges

(see Figure) before diving into Instruments.

• These gauges provide high-level information about

your app’s CPU, memory, energy usage, and more.

• Often, they provide all the information you need to improve performance and

resolve common problems quickly.

• Use Instruments when you need to perform more detailed analysis

The CPU debugging gauge in XCode

Figure 3.20 CPU debugging gauge in XCode

43

ARC

• Automatic Reference Counting (ARC) to track and manage your app’s memory usage.

• Every time you create a new instance of a class, ARC allocates a chunk of memory to

store information about that instance.

• This memory holds information about the type of the instance, together with the values

of any stored properties associated with that instance.

• Additionally, when an instance is no longer needed, ARC frees up the memory used by

that instance so that the memory can be used for other purposes instead.

• This ensures that class instances do not take up space in memory when they are no longer

needed.

• ARC were to deallocate an instance that was still in use, it would no longer be possible

to access that instance’s properties, or call that instance’s methods.

• Indeed, if you tried to access the instance, your app would most likely crash.

• ARC tracks how many properties, constants, and variables are currently referring to each

class instance.

• ARC will not deallocate an instance as long as at least one active reference to that

instance still exists.

• To make this possible, whenever you assign a class instance to a property, constant, or

variable, that property, constant, or variable makes a strong reference to the instance.

• The reference is called a ―strong― reference because it keeps a firm hold on that instance,

and does not allow it to be deallocated for as long as that strong reference remains.

Framework

• A framework is a collection of resources; it collects a static library and its header files

into a single structure that Xcode can easily incorporate into your projects.

• The Foundation framework defines a base layer of Objective-C classes.

• In addition to providing a set of useful primitive object classes, it introduces several

paradigms that define functionality not covered by the Objective-C language.

• The Foundation framework is designed with these goals in mind:

– Provide a small set of basic utility classes

– Make software development easier by introducing consistent conventions

for things such as deallocation

– Support Unicode strings, object persistence, and object distribution

44

• Provide a level of OS independence to enhance portability The framework was

developed by NeXTStep, which was acquired by Apple and these foundation classes

became part of Mac OS X and iOS.

• Since it was developed by NeXTStep, it has class prefix of ―NS‖.

• We have used Foundation Framework in all our sample programs. It is almost a must

to use Foundation Framework.

• Generally, we use something like

#import<Foundation/NSString.h> to import an Objective-C class, but in order avoid

importing too many classes, it's all imported in

#import<Foundation/Foundation.h>.

• NSObject is the base class of all objects including the foundation kit classes. It

provides the methods for memory management.

• It also provides basic interface to the runtime system and ability to behave as

Objective-C objects. It doesn't have any base class and is the root for all classes.

Table 3.3 Foundation Classes based on functionality

Loop Type Description

Data storage NSArray, NSDictionary, and NSSet provide storage for

Objective-C objects of any class.

Text and strings NSCharacterSet represents various groupings of characters

that are used by the NSString and NSScanner classes.

The NSString classes represent text strings and provide

methods for searching, combining, and comparing strings.

An NSScanner object is used to scan numbers and words

from an NSString object.

Dates and times The NSDate, NSTimeZone, and NSCalendar classes store

times and dates and represent calendrical information. They

offer methods for calculating date and time differences.

Together with NSLocale, they provide methods for

displaying dates and times in many formats and for adjusting

times and dates based on location in the world.

45

Exception handling Exception handling is used to handle unexpected situations

and it's offered in Objective-C with NSException.

File handling File handling is done with the help of class NSFileManager.

URL loading system A set of classes and protocols that provide access to

common Internet protocols.

• To study various tools involved to develop an iOS app.

• Write a structure Objective-C program.

• Write a Objective-C program for finding given number is prime or not.

• Write a Objective-C program to reverse a given number.

• Explain various conditional branching and looping statements in

Objective-C.

• Mention the exception handling mechanism in Objective-C

• Explain about memory management in Objective-C

1

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – IV – SBSA3003-Mobile Application Development

Unit – IV

Introduction to iOS – History, Versions and Features - MVC Architecture - View

Controller - Building the UI - Event handling - Application life cycle - Tab Bars - Story

Boards - Navigation Controllers - Push Notification - Database handling - Debugging and

Deployment - Publishing app in Appstore.

2

Introduction to IOS

Operating system is a set of programs that manage computer hardware resources and

provide common services for application software important system software in computer

system. User cannot run an application program on computer without OS. i.e. Android,

Mac OS X, Microsoft Windows. Apples mobile operating system considered the

foundation of the iPhone Originally designed for the iPhone but now supports iPod touch,

iPad, and Apple TV It is updated just like Itune for iPods As of Oct 2011 Apple contains

over 500,000 iOS applications.

History, Version and Features

History

iPhone OS was first unveiled in Jan 2007 at the Macworld Conference and Expo Released

June 2007.In June 2010 licensed the trademark iOS (From Cisco IOS). Now goes all the

way up to iOS 5. Originally did not allow third party applications but after Feb 2008 this

changed. With either 30% profit to apple, or free with membership fee. The following

figure 4.1 shows the features of IOS.

Features

Figure 4.1 Features of IOS

The power of iOS can be felt with some of the following features provided as a part of the

device.

 Maps

 Siri

3

 Facebook and Twitter

 Multi-Touch

 Accelerometer

 GPS

 High end processor

 Camera

 Safari

 Powerful APIs

 Game center

 In-App Purchase

 Reminders

The primary applications consist of

 Safari

 Music

 Mail

 Phone, Face Time

The secondary applications consist of

 Camera, Camcorder

 Photos

 Calendar

 Messaging

 WeTube

 Stocks

 Map

 Clock

Environmental Setup

iOS - Xcode Installation

Step1−Download the latest version of Xcode

from(https://developer.apple.com/downloads/)

Step 2 − Double click the Xcode dmg file.

Step 3 − We will find a device mounted and opened.

Step 4 − There will be two items in the window that's displayed namely, Xcode application

and the Application folder's shortcut.

https://developer.apple.com/downloads/

4

Step 5 − Drag the Xcode to application and it will be copied to our applications.

Step 6 − Now Xcode will be available as a part of other applications from which we can

select and run.

We also have another option of downloading Xcode from the Mac App store and then

install following the step-by-step procedure given on the screen.

Interface Builder

Interface builder is the tool that enables easy creation of UI interface. We have a

rich set of UI elements that is developed for use. We just have to drag and drop into our

UI view. We'll learn about adding UI elements, creating outlets and actions for the UI

elements in the upcoming pages.

Step 1 : First, launch Xcode. If we’ve installed Xcode via Mac App Store, we should be

able to locate Xcode in the LaunchPad. Just click on the

Step 2: Once launched, Xcode displays a welcome dialog. From here, choose ―Create a

new

Xcode project‖ to start a new project:

5

6

We can simply fill in the options as follows:

 Product Name: HelloWorld – This is the name of our app.

 Company Identifier: com. appcoda – It’s actually the domain name written the other way

round. If we have a domain, we can use our own domain name. Otherwise, we may use

mine or just fill in ―edu.self‖.

 Class Prefix: HelloWorld – Xcode uses the class prefix to name the class automatically. In

future, we may choose our own prefix or even leave it blank. But for this tutorial, let’s

keep it simple and use ―HelloWorld‖.

 Device Family: iPhone – Just use ―iPhone‖ for this project.

 Use Storyboards: [unchecked] – Do not select this option. We do not need Storyboards for

this simple project.

 Use Automatic Reference Counting: [checked] – By default, this should be enabled. Just

leave it as it is.

 Include Unit Tests: [unchecked] – Leave this box unchecked. For now, we do not need the

unit test class.

Step 4: Click ―Next‖ to continue. Xcode then asks us where to save the ―Hello.

7

8

The rightmost pane is the utility area. This area displays the properties of the file and

allows we to access Quick Help. If Xcode doesn’t show this area, we can select the

rightmost view button in the toolbar to enable it.

Step 7: Add the Hello World button to our app. Go back to the Project Navigator and

select ―HelloWorldViewController.xib‖.

The editor changes to an Interface Builder and displays an empty view of our app like

below.

9

Step 8: In the lower part of the utility area, it shows the Object library. From here, we can

choose any of the UI Controls, drag-and-drop it into the view. For the Hello World app,

let’s pick the ―Round Rect Button‖ and drag it into the view. Try to place the button at the

center of the view. To edit the label of the button, double-click it and name it ―Hello

World‖.

Step 9: Coding the Hello World Button

In the Project Navigator, select the ―HelloWorldViewController.h‖. The editor area now

displays the source code of the selected file. Add the following line of code before the

―@endline.

10

Step 10: Next, select the ―HelloWordViewController.m‖ and insert the following code

before the ―@endline‖.

- (IBAction)showMessage

{

UIAlertView *helloWorldAlert = [[UIAlertView alloc]

initWithTitle:@"My First App" message:@"Hello, World!" delegate:nil

cancelButtonTitle:@"OK" otherButtonTitles:nil];

// Display the Hello World Message

[helloWorldAlert show];

}

Step 11: Connecting Hello World Button with the Action

we’ll need to establish a connection between the ―Hello World‖ button and the

―showMessage‖ action we’ve just added. Select the ―HelloWorldViewController.xib‖ file

to go back to the Interface Builder. Press and hold the Control key on our keyboard, click

the ―Hello World‖ button and drag to the ―File’s Owner‖. Our screen should look like this:

11

Step 12: Test Our App

Just hit the ―Run‖ button. If everything is correct, our app should run properly in the

Simulator. An iOS simulator actually consists of two types of devices, namely iPhone and

iPad with their different versions. iPhone versions include iPhone (normal), iPhone Retina,

iPhone 5. iPad has iPad and iPad Retina. We can simulate location in an iOS simulator for

playing around with latitude and longitude effects of the app. We can also simulate

memory warning and in-call status in the simulator. We can use the simulator for most

purposes, however we cannot test

device features like accelerometer.

Model-View-Controller

The Model-View-Controller design pattern (MVC) is quite old. Variations of it have

been around at least since the early days of Smalltalk. It is a high-level pattern in that it

concerns itself with the global architecture of an application and classifies objects

according to the general roles they play in an application. It is also a compound pattern in

that it comprises several, more elemental patterns. The MVC design pattern considers there

to be three types of objects: model objects, view objects, and controller objects. The MVC

pattern defines the roles that these types of objects play in the application and their lines

of communication.

Model Object

Model objects represent special knowledge and expertise. They hold an application’s

data and define the logic that manipulates that data. A well-designed MVC application has

12

all its important data encapsulated in model objects. Any data that is part of the persistent

state of the application (whether that persistent state is stored in files or databases) should

reside in the model objects once the data is loaded into the application. Because they

represent knowledge and expertise related to a specific problem domain, they tend to be

reusable.

View Objects

A view object knows how to display, and might allow users to edit, the data from the

application’s model. The view should not be responsible for storing the data it is

displaying. A view object can be in charge of displaying just one part of a model object,

or a whole model object, or even many different model objects. Views come in many

different varieties.View objects tend to be reusable and configurable, and they provide

consistency between applications. A view should ensure it is displaying the model

correctly.

Controller Objects

A controller object acts as the intermediary between the application's view objects

and its model objects. Controllers are often in charge of making sure the views have access

to the model objects they need to display and act as the conduit through which views learn

about changes to the model. Controller objects can also perform set-up and coordinating

tasks for an application and manage the life cycles of other objects. Model-View-

Controller is a design pattern that is composed of several more basic design patterns. These

basic patterns work together to define the functional separation and paths of

communication that are characteristic of an MVC application. MVC is made up of the

Composite, Strategy, and Observer patterns.

• Composite—The view objects in an application are actually a composite of nested

views that work together in a coordinated fashion (that is, the view hierarchy). These

display components range from a window to compound views, such as a table view, to

individual views, such as buttons. User input and display can take place at any level of the

composite structure.

• Strategy—A controller object implements the strategy for one or more view

objects. The view object confines itself to maintaining its visual aspects, and it delegates

to the controller all decisions about the application-specific meaning of the interface

behavior.

• Observer—A model object keeps interested objects in an application—usually

13

view objects—advised of changes in its state.

A controller object receives the event and interprets it in an application-specific

way— that is, it applies a strategy. This strategy can be to request (via message) a model

object to change its state or to request a view object (at some level of the composite

structure) to change its behavior or appearance. The model object, in turn, notifies all

objects who have registered as observers when its state changes; if the observer is a view

object, it may update its appearance accordingly. The following figure 4.2 shows the MVC

design patterns.

Figure 4.2 MVC Design Patterns

A user needs to interact with an app interface in the simplest way possible. Design

the interface with the user in mind, and make it efficient, clear, and straightforward.

Storyboards let we design and implement our interface in a graphical environment. We see

exactly what we're building while we’re building it, get immediate feedback about what’s

working and what’s not, and make instantly visible changes to our interface. They are the

building blocks for constructing our user interface and presenting our content in a clear,

elegant, and useful way. As we develop more complex apps, we'll create interfaces with

more scenes and more views. The following figure 4.3 shows the MVC architecture.

14

Figure 4.3 MVC Architecture

One can merge the MVC roles played by an object, making an object, for example,

fulfill both the controller and view roles—in which case, it would be called a view

controller.

A model controller is a controller that concerns itself mostly with the model layer.

It ―owns‖ the model; its primary responsibilities are to manage the model and

communicate with view objects. Action methods that apply to the model as a whole are

typically implemented in a model controller. The document architecture provides a number

of these methods for we; for example, an NSDocument object (which is a central part of

the document architecture) automatically handles action methods related to saving files.

A view controller is a controller that concerns itself mostly with the view layer. It

―owns‖ the interface (the views); its primary responsibilities are to manage the interface

and communicate with the model. Action methods concerned with data displayed in a view

are typically implemented in a view controller. An NSWindowControllerobject (also part

of the document architecture) is an example of a view controller.

A coordinating controller is typically an NSWindowController or

NSDocumentControllerobject (available only in AppKit), or an instance of a custom

subclass of NSObject. Its role in an application is to oversee—or coordinate—the

functioning of the entire application or of part of the application, such as the objects

unarchived from a nib file. A coordinating controller provides services such as:

• Responding to delegation messages and observing notifications

• Responding to action messages

• Managing the life cycle of owned objects (for example, releasing them at the proper time)

• Establishing connections between objects and performing other set-up tasks

15

View Controller

A view controller is a controller that concerns itself mostly with the view layer. It ―owns‖

the interface (the views); its primary responsibilities are to manage the interface and

communicate with the model. Action methods concerned with data displayed in a view are

typically implemented in a view controller. An NSWindowControllerobject (also part of

the document architecture) is an example of a view controller.

Views not only display themselves onscreen and react to user input, they can serve

as containers for other views. As a result, views in an app are arranged in a hierarchical

structure called the view hierarchy. The view hierarchy defines the lawet of views relative

to other views. Within that hierarchy, views enclosed within a view are called sub views,

and the parent view that encloses a view is referred to as its super view. Even though a

view can have multiple sub views, it can have only one super view.

At the top of the view hierarchy is the window object. Represented by an instance

of the UIWindow class, a window object is the basic container into which we add our view

objects for display onscreen. By itself, a window doesn’t display any content.

To display content, we add a content view object (with its hierarchy of sub views)

to the window. For a content view and its sub views to be visible to the user, the content

view must be inserted into a window’s view hierarchy. When we use a storyboard, this

placement is configured automatically for we. When an app launches, the application

object loads the storyboard, creates instances of the relevant view controller classes, un

archives the content view hierarchies for each view controller, and then adds the content

view of the initial view controller into the window.

Types of Views

A UIKit view object is an instance of the UIView class or one of its subclasses.

The UIKit framework provides many types of views to help present and organize data as

shown in figure 4.4. Although each view has its own specific function, UIKit views can

be grouped into these general categories.

16

Figure 4.4 Type of view objects

Use Storyboards to Lay Out Views

Storyboards provide a direct, visual way to work with views and build our interface

and composed of scenes, and each scene has an associated view hierarchy. We drag a view

out of the object library and place it in a storyboard scene to add it automatically to that

scene’s view hierarchy. The view’s location within that hierarchy is determined by where

we place it. After we add a view to our scene, we can resize, manipulate, configure, and

move it on the canvas. The canvas also shows an outline view of the objects in our

interface. The outline view which appears on the left side of the canvas—lets we see a

hierarchical representation of the objects in our storyboard. The following figure 4.5 shows

the view controller.

17

Figure 4.5 View Controller

The view hierarchy that we create graphically in a storyboard scene is effectively

a set of archived Objective-C objects. At runtime, these objects are un archived. The result

is a hierarchy of instances of the relevant classes configured with the properties we’ve set

visually using the various inspectors in the utility area.

When we need to adjust our interface for specific device sizes or orientations, we

make the changes to specific size classes. A size class is a high-level way to describe the

horizontal or vertical space that’s available in a display environment, such as iPhone in

portrait or iPad in landscape. There are two types of size classes: regular and compact. A

display environment is characterized by a pair of size classes, one that the horizontal space

and one that describes the vertical space. We can view and edit our interface for different

combinations of regular and compact size classes using the size class control on the canvas.

The following figure 4.6 and 4.7 show the inspector pane and auto lawet icons.

18

Figure 4.6 Inspection Pane

Use the Auto Lawet icons in the bottom-right area of our canvas to add various

types of constraints to views on our canvas, resolve lawet issues, and determine constraint

resizing behavior.

• Align. Create alignment constraints, such as centering a view in its container, or

aligning the left edges of two views.

• Pin. Create spacing constraints, such as defining the height of a view, or

specifying its horizontal distance from another view.

• Resolve Auto Lawet Issues. Resolve lawet issues by adding or resetting

constraints based on suggestions.

• Resizing Behavior. Specify how resizing affects constraints.

19

Figure 4.7 Auto Lawet Icons

Building UI

UI elements are the visual elements that we can see in our applications. Some of

these elements respond to user interactions such as buttons, text fields and others are

informative such as images, labels.

Use of Text Field

A text field is a UI element that enables the app to get user input. A UITextfield is

shown in figure 4.8. The table 4.1 shows the different UI input types along with its

descriptions.

Figure 4.8 UI element - Text Field

Important Properties of Text Field

 Placeholder text which is shown when there is no user input

 Normal text

 Auto correction type

20

 Key board type

 Return key type

 Clear button mode

 Alignment

 Delegate

Table 4.1 UI Input Types

Buttons

Buttons are used for handling user actions. It intercepts the touch events and sends message

to the target object.

Buttons Types

 UIButtonTypeCustom

 UIButtonTypeRoundedRect

 UIButtonTypeDetailDisclosure

 UIButtonTypeInfoLight

 UIButtonTypeInfoDark

 UIButtonTypeContactAdd

Code

-(void)addDifferentTypesOfButton

{ // A rounded Rect button created by using class method

UIButton *roundRectButton = [UIButton buttonWithType: UIButtonTypeRoundedRect];

[roundRectButton setFrame:CGRectMake(60, 50, 200, 40)]; // sets title for the button

21

[roundRectButton setTitle:@"Rounded Rect Button" forState: UIControlStateNormal];

[self.view addSubview:roundRectButton];

Labels

Labels are used for displaying static content, which consists of a single line or multiple

lines as shown in figure 4.9.

Important Properties

 textAlignment

 textColor

 text

 numberOflines

 lineBreakMode

- (void)addLabel

{ UILabel *aLabel = [[UILabel alloc]initWithFrame: CGRectMake(20, 200, 280, 80)];

aLabel.numberOfLines = 0;

aLabel.textColor = [UIColor blueColor];

aLabel.backgroundColor = [UIColor clearColor];

aLabel.textAlignment = UITextAlignmentCenter;

aLabel.text = @"This is a sample text\n of multiple lines. here number of lines is

not limited.";

[self.view addSubview:aLabel];

}

- (void)viewDidLoad

{

[super viewDidLoad];

[self addLabel]; }

Figure 4.9 iOS application with a Label

22

Toolbar

If we want to manipulate something based on our current view we can use toolbar.

Example would be the email app with an inbox item having options to delete, make favorite,

reply and so on. It is shown in figure 4.10.

Figure 4.10 UI Element – Toolbar

Status Bar

Status bar displays the key information of device like−

 Device model or network provider

 Network strength

 Battery information

 Time

Status bar is shown in figure 4.11.

Figure 4.11 UI Element – Status Bar

Add a Custom Method hide Statusbar to our Class

It hides the status bar animated and also resize our view to occupy the statusbar space.

-(void)hideStatusbar

{

[[UIApplication sharedApplication]

setStatusBarHidden:YES

withAnimation:UIStatusBarAnimationFade];

[UIView beginAnimations:@"Statusbar hide" context:nil]; [UIView

setAnimationDuration:0.5];

23

[self.view setFrame:CGRectMake(0, 0, 320, 480)];

[UIView commitAnimations];

}

Tab Bar

It's generally used to switch between various subtasks, views or models within the same

view.

Important Properties

 backgroundImage

 items

 selectedItem

Image View

Image view is used for displaying a single image or animated sequence of images.

Important Properties

 image

 highlightedImage

 userInteractionEnabled

 animationImages

 animationRepeatCount

Important Methods

- (id)initWithImage:(UIImage*)image

- (id)initWithImage:(UIImage *)image highlightedImage: (UIImage

*)highlightedImage

- (void)startAnimating

- (void)stopAnimating

Add a Custom Method addImageView

-(void)addImageView

{

UIImageView *imgview = [[UIImageView alloc] initWithFrame:CGRectMake(10, 10,

300, 400)];

[imgview setImage:[UIImage imageNamed:@"AppleUSA1.jpg"]]; [imgview

24

setContentMode:UIViewContentModeScaleAspectFit];

[self.view addSubview:imgview];

}

Scroll View

Scroll View is used for displaying content more than the size of the screen. It can

contain all of the other UI elements like image views, labels, text views and even another

scroll view itself as shown in figure 4.12.

Important Properties

 contentSize

 contentInset

 contentOffset

 delegate

Code

-(void)addScrollView

{

myScrollView = [[UIScrollView alloc]initWithFrame: CGRectMake(20, 20, 280, 420)];

myScrollView.accessibilityActivationPoint = CGPointMake(100, 100);

imgView = [[UIImageView alloc]initWithImage: [UIImage

imageNamed:@"AppleUSA.jpg"]];

[myScrollView addSubview:imgView];

myScrollView.minimumZoomScale = 0.5; myScrollView.maximumZoomScale = 3;

myScrollView.contentSize = CGSizeMake(imgView.frame.size.width,

imgView.frame.size.height);

myScrollView.delegate = self; [self.view addSubview:myScrollView];

}

25

Figure 4.12 UI Element – Scroll View

Table View

It is used for displaying a vertically scrollable view which consists of a number of

cells (generally reusable cells). It has special features like headers, footers, rows, and section.

Important Properties

 Delegate

 Data source

 Row height

 Section footer height

 Section header height

 Separator color

 Table header view

 Table footer view

Code

- @interface ViewController ()

- @end

- @implementation ViewController

- (void)viewDidLoad

- {

26

- [super viewDidLoad]; // table view data is being set here

- myData = [[NSMutableArray alloc]initWithObjects:

- @"Data 1 in array",

- @"Data 2 in array",

- @"Data 3 in array",

- @"Data 4 in array",

- @"Data 5 in array",

- @"Data 5 in array",

- @"Data 6 in array",

- @"Data 7 in array",

- @"Data 8 in array",

- @"Data 9 in array", nil];

View Transitions

View Transitions are effective ways of adding one view on another view with a proper

transition animation effect as shown in figure 4.13.

Figure 4.13 View Transitions

Pickers

Pickers consist of a rotating scrollable view, which is used for picking a value from

the list of items. It is shown in figure 4.14.

Important Properties

27

 delegate

 dataSource

Figure 4.14 UI Element – Pickers

Switches

Switches are used to toggle between on and off states.

Important Properties

 onImage

 offImage

 on

Important Method

- (void)setOn:(BOOL)on animated:(BOOL)animated

-(IBAction)switched:(id)sender

{

NSLog(@"Switch current state %@", mySwitch.on ? @"On": @"Off");

}

-(void)addSwitch

{

mySwitch = [[UISwitch alloc] init]; [self.view addSubview:mySwitch]; mySwitch.center

= CGPointMake(150, 200);

28

[mySwitch addTarget:self action:@selector(switched:)

forControlEvents:UIControlEventValueChanged];

}

Sliders

Sliders are used to choose a single value from a range of values as shown in figure

4.15.

Important Properties

 Continuous

 Maximum Value

 Minimum Value

 Value

Important Method

- (void)setValue:(float)value animated:(BOOL)animated

Code

-(IBAction)sliderChanged:

(id)sender

{

NSLog(@"SliderValue %f",mySlider.value);

}

-(void)addSlider

{

mySlider = [[UISlider alloc] initWithFrame:CGRectMake(50, 200, 200, 23)]; [self.view

addSubview:mySlider];

mySlider.minimumValue = 10.0;

mySlider.maximumValue = 99.0; mySlider.continuous = NO;

[mySlider addTarget:self action:@selector(sliderChanged:)

forControlEvents:UIControlEventValueChanged]; }

29

Alerts

Figure 4.15 UI Element – Sliders

Alerts are used to give important information to user. Only after selecting the

option in the alert view, we can proceed further using the app. It is shown in figure 4.16.

Important Properties

 Alert View Style

 Cancel Button Index

 Delegate message

 Number of Buttons

 Title

Code

(NSInteger)addButtonWithTitle:(NSString *)title

- (NSString *)buttonTitleAtIndex:(NSInteger)buttonIndex

- (void)dismissWithClickedButtonIndex: (NSInteger)buttonIndex animated:

(BOOL)animated

- (id)initWithTitle:(NSString *)title message: (NSString *)message delegate:(id)delegate

cancelButtonTitle:(NSString *)cancelButtonTitle otherButtonTitles:

(NSString*)otherButtonTitles,

- - (void)show

30

Figure 4.16 UI Element – Alerts

Event Handling

Users manipulate their iOS devices in a number of ways, such as touching the

screen or shaking the device. iOS interprets when and how a user is manipulating the

hardware and passes this information to our app. The more our app responds to actions in

natural and intuitive ways, the more compelling the experience is for the user.

Events are objects sent to an app to inform it of user actions. In iOS, events can

take many forms: Multi-Touch events, motion events, and events for controlling

multimedia. This last type of event is known as a remote-control event because it can

originate from an external accessory.

iOS apps recognize combinations of touches and respond to them in ways that are

intuitive to users, such as zooming in on content in response to a pinching gesture and

scrolling through content in response to a flicking gesture. In fact, some gestures are so

common that they are built in to UIKit. For example, UIControl subclasses, such as

UIButton and UISlider, respond to specific gestures—a tap for a button and a drag for a

slider. When we configure these controls, they send an action message to a target object

when that touch occurs. We can also employ the target-action mechanism on views by

using gesture recognizers. When we attach a gesture recognizer to a view, the entire view

acts like a control—responding to whatever gesture we specify.

Gesture recognizers provide a higher-level abstraction for complex event handling

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIControl_Class/index.html%23/apple_ref/occ/cl/UIControl
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIButton_Class/index.html%23/apple_ref/occ/cl/UIButton
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UISlider_Class/index.html%23/apple_ref/occ/cl/UISlider

31

logic. Gesture recognizers are the preferred way to implement touch-event handling in our

app because gesture recognizers are powerful, reusable, and adaptable. We can use one of

the built-in gesture recognizers and customize its behavior. Or we can create our own

gesture recognizer to recognize a new gesture.

Gesture Recognizers

When iOS recognizes an event, it passes the event to the initial object that seems

most relevant for handling that event, such as the view where a touch occurred. If the initial

object cannot handle the event, iOS continues to pass the event to objects with greater

scope until it finds an object with enough context to handle the event. This sequence of

objects is known as a responder chain, and as iOS passes events along the chain, it also

transfers the responsibility of responding to the event. This design pattern makes event

handling cooperative and dynamic.

Multitouch Events

Depending on our app, UIKit controls and gesture recognizers might be sufficient

for all of our app’s touch event handling. Even if our app has custom views, we can use

gesture recognizers. As a rule of thumb, we write our own custom touch-event handling

when our app’s response to touch is tightly coupled with the view itself, such as drawing

under a touch. In these cases, we are responsible for the low-level event handling. We

implement the touch methods, and within these methods, we analyze raw touch events and

respond appropriately.

Motion Events

Motion events provide information about the device’s location, orientation, and

movement. By reacting to motion events, we can add subtle, yet powerful features to our

app. Accelerometer and gyroscope data allow us to detect tilting, rotating, and shaking.

Motion events come in different forms, and we can handle them using different

frameworks. When users shake the device, UIKit delivers a UIEvent object to an app. If

we want our app to receive high-rate, continuous accelerometer and gyroscope data, use

the Core Motion framework.

https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/GestureRecognizer_basics/GestureRecognizer_basics.html%23/apple_ref/doc/uid/TP40009541-CH2-SW2

32

Remote Control Events

IOS controls and external accessories send remote control events to an app. These

events allow users to control audio and video, such as adjusting the volume through a

headset. Handle multimedia remote control events to make our app responsive to these

types of commands.

The figure 4.17 shows the architecture of the main run loop and how user events result in

actions taken by our app. As the user interacts with a device, events related to those

interactions are generated by the system and delivered to the app via a special port set up

by UIKit. Events are queued internally by the app and dispatched one-by-one to the main

run loop for execution. The UIApplication object is the first object to receive the event and

make the decision about what needs to be done. A touch event is usually dispatched to the

main window object, which in turn dispatches it to the view in which the touch occurred.

Other events might take slightly different paths through various app objects. The table 4.2

shows the various types of Events.

Figure 4.17 Event Handling

33

Table 4.2 Events and its types

Event Delivered to Description

Touch
The view object in

which the event

occurred

Views are responder objects. Any touch

events not handled by the view are

forwarded down the responder chain for

processing.

Remote control

Shake motion

events

First responder

object

Remote control events are for controlling

media playback and are generated by

headphones and other accessories.

Accelerometer

Magnetometer

Gyroscope

The object we

designate

Events related to the accelerometer,

magnetometer, and gyroscope hardware

are delivered to the object

We designate.

Location The object we

designate

We register to receive location events

using the Core Location

framework.

Redraw
The view that

needs the

update

Redraw events do not involve

an event object but are simply calls to the

view to draw itself.

Touch
The view object in

which the event

occurred

Views are responder objects. Any touch

events not handled by the view are

forwarded down the responder chain for

processing.

Some events, such as touch and remote-control events, are handled by our app’s

responder objects. Responder objects are everywhere in our app. Most events target a

specific responder object but can be passed to other responder objects (via the responder

chain) if needed to handle an event. For example, a view that does not handle an event can

pass the event to its super view or to a view controller.

Touch events occurring in controls (such as buttons) are handled differently than

touch events occurring in many other types of views. There are typically only a limited

number of interactions possible with a control, and so those interactions are repackaged into

34

action messages and delivered to an appropriate target object. This target-action design

pattern makes it easy to use controls to trigger the execution of custom code in our app.

App Life Cycle

Apps are a sophisticated interplay between our custom code and the system

frameworks. The system frameworks provide the basic infrastructure that all apps need to

run, and we provide the code required to customize that infrastructure and give the app the

look and feel we want. To do that effectively, it helps to understand a little bit about the iOS

infrastructure and how it works. The lifecycle of an iOS app is given in figure 4.18.

The system moves our app from state to state in response to actions happening

throughout the system. For example, when the user presses the Home button, a phone call

comes in, or any of several other interruptions occurs, the currently running apps change state

in response. The table 4.3 describes the different states of an application.

Table 4.3 Different states of App

State Description

Not running The app has not been launched or was running but was terminated

by the system.

Inactive

The app is running in the foreground but is currently not receiving

events. (It may be executing other code though.) An app usually

stays in this state only briefly as it transitions to a different state.

Active

The app is running in the foreground and is receiving events. This

is the normal mode for foreground apps.

Background

The app is in the background and executing code. Most apps enter

this state briefly on their way to being suspended. However, an app

that requests extra execution time may remain in this state for a

period of time. In addition, an app being launched directly into the

background enters this state instead of the inactive state.

Suspended

The app is in the background but is not executing code. The system

moves apps to this state automatically and does not notify them

before doing so. While suspended, an app remains in memory but

does not execute any code. When a low-memory condition occurs,

35

 the system may purge suspended apps without notice to make more

space for the foreground app.

Figure 4.18 App Life Cycle

Tab bar Controllers

A tab bar controller is a container view controller that we use to divide our app into

two or more distinct modes of operation. A tab bar controller is an instance of the

UITabBarController class. The tab bar has multiple tabs, each represented by a child view

controller. Selecting a tab causes the tab bar controller to display the associated view

controller’s view on the screen. The figure 4.19 shows several modes of the Clock app along

with the relationships between the corresponding view controllers. Each mode has a content

view controller to manage the main content area. In the case of the Clock app, the Clock and

Alarm view controllers both display a navigation-style interface to accommodate some

additional controls along the top of the screen. The other modes use content view controllers

to present a single screen.

36

Figure 4.19 Tab bar Controller

Navigation Controllers

A navigation controller presents data that is organized hierarchically and is an

instance of the UINavigationController class. The methods of this class provide support

for managing a

stack-based collection of content view controllers. This stack represents the path taken by

the user through the hierarchical data, with the bottom of the stack reflecting the starting

point and the top of the stack reflecting the user’s current position in the data.

The figure 4.20 shows screens from the Contacts app, which uses a navigation

controller to present contact information to the user. The navigation bar at the top of each

page is owned by the navigation controller. The rest of each screen displayed to the user

is managed by a content view controller that presents the information at that specific level

of the data hierarchy. As the user interacts with controls in the interface, those controls tell

the navigation controller to display the next view controller in the sequence or dismiss the

37

current view controller.

Figure 4.20 Navigation Controllers

Story Board

A Storyboard is a visual representation of the appearance and flow of our application.

When we implement our app using storyboards, we use Interface Builder to organize our

app’s view controllers and any associated views. The following figure shows an example

interface lawet from Interface Builder. The visual lawet of Interface Builder allows us to

understand the flow through app at a glance. The resulting storyboard is stored as a file in

project. When we build our project, the storyboards in our project are processed and copied

into the app bundle, where they are loaded by our app at runtime. The figure 4.21 shows

the details of story board.

38

Figure 4.21 Story Board

Often, iOS can automatically instantiate the view controllers in our storyboard at

the moment they are needed. Similarly, the view hierarchy associated with each controller

is automatically loaded when it needs to be displayed. Both view controllers and views are

instantiated with the same attributes we configured in Interface Builder. Because most of

this behavior is automated for, we, it greatly simplifies the work required to use view

controllers in our app.

A scene represents an onscreen content area that is managed by a view controller.

We can think of a scene as a view controller and its associated view

hierarchy. We create relationships between scenes in the same storyboard. Relationships

are expressed visually in a storyboard as a connection arrow from one scene to another.

Interface Builder usually infers the details of a new relationship automatically when we

make a connection between two objects. Two important kinds of relationships exist:

 Containment represents a parent-child relationship between two scenes. View

controllers contained in other view controllers are instantiated when their parent controller

39

is instantiated. For example, the first connection from a navigation controller to another

scene defines the first view controller pushed onto the navigation stack. This controller is

automatically instantiated when the navigation controller is instantiated.

An advantage to using containment relationships in a storyboard is that Interface Builder

can adjust the appearance of the child view controller to reflect the presence of its

ancestors. This allows Interface Builder to display the content view controller as it appears

in our final app.

 A segue represents a visual transition from one scene to another. At runtime, segues

can be triggered by various actions. When a segue is triggered, it causes a new view

controller to be instantiated and transitioned onscreen.

Although a segue is always from one view controller to another, sometimes a third object

can be involved in the process. This object actually triggers the segue. For example, if we

make a connection from a button in the source view controller’s view hierarchy to the

destination view controller, when the user taps the button, the segue is triggered. When a

segue is made directly from the source view controller to the destination view controller,

it usually represents a segue that we intend to trigger programmatically.

Different kinds of segues provide the common transitions needed between two different

view controllers:

 A push segue pushes the destination view controller onto a navigation controller’s

stack.

 A modal segue presents the destination view controller.

 A popover segue displays the destination view controller in a popover.

 A custom segue allows weto design our own transition to display the destination

view controller.

Push Notification

Apple Push Notification service (APNs) is the centerpiece of the remote notifications

feature. It is a robust and highly efficient service for propagating information to iOS (and,

indirectly, watchOS), tvOS, and OS X devices. Each device establishes an accredited and

encrypted IP connection with APNs and receives notifications over this persistent

connection. If a notification for an app arrives when that app is not running, the device

alerts the user that the app has data waiting for it.

40

We provide our own server to generate the remote notifications for our users. This

server, known as the provider, gathers data for our users and decides when a notification

needs to be sent. For each notification, the provider generates the notification payload and

attaches that payload to an HTTP/2 request, which it then sends to APNs using a persistent

and secure channel using the HTTP/2 multiplex protocol. Upon receipt of our request,

APNs handles the delivery of our notification payload to our app on the user’s device.

The Path of a Remote Notification

Apple Push Notification service transports and routes remote notifications for our apps

from our provider to each user’s device. The figure 4.22 shows the path each notification

takes. When our provider determines that a notification is needed, we send the notification

and a device token to the APNs servers. The APNs servers handle the routing of that

notification to the correct user device, and the operating system handles the deliver of the

notification to our client app.

Figure 4.22 Pushing a remote notification from a provider to a client app

The device token we provide to the server is analogous to a phone number; it contains

information that enables APNs to locate the device on which our client app is installed.

APNs also uses it to authenticate the routing of a notification. The device token is provided

to us by our client app, which receives the token after registering itself with the remote

notification service.

The notification payload is a JSON dictionary containing the data we want sent to the

device. The payload contains information about how we want to notify the user, such as

using an alert, badge or sound. It can also contain custom data that we define.

The figure 4.23 shows a more realistic depiction of the virtual network APNs makes

possible among providers and devices. The device-facing and provider-facing sides of

APNs both have multiple points of connection; on the provider-facing side, these are called

41

gateways. There are typically multiple providers, each making one or more persistent and

secure connections with APNs through these gateways. And these providers are sending

notifications through APNs to many devices on which their client apps are installed.

Figure 4.23 Pushing remote notifications from multiple providers to multiple devices

Quality of Service

Apple Push Notification service includes a default Quality of Service (QoS)

component that performs a store-and-forward function. If APNs attempts to deliver a

notification but the device is offline, the notification is stored for a limited period of time,

and delivered to the device when it becomes available. Only one recent notification for a

particular app is stored. If multiple notifications are sent while the device is offline, the

new notification causes the prior notification to be discarded. This behavior of keeping

only the newest notification is referred to as coalescing notifications. If the device remains

offline for a long time, any notifications that were being stored for it are discarded.

Security Architecture

To ensure secure communication, APNs regulates the entry points between providers

and devices using two different levels of trust: connection trust and token trust. Connection

trust establishes certainty that APNs is connected to an authorized provider for whom

Apple has agreed to deliver notifications. APNs also uses connection trust with the device

42

to ensure the legitimacy of that device. Connection trust with the device is handled

automatically by APNs but we must take steps to ensure connection trust exists between

our provider and APNs.

Token trust ensures that notifications are routed only between legitimate start and end

points. Token trust involves the use of a device token, which is an opaque identifier

assigned to a specific app on a specific device. Each app instance receives its unique token

when it registers with APNs and must share this token with its provider. Thereafter, the

token must accompany each notification sent by our provider. Providing the token ensures

that the notification is delivered only to the app/device combination for which it is

intended.

Provider-to-APNs Connection Trust

Each provider must have a unique provider certificate and private cryptographic

key, which are used to validate the provider’s connection with APNs. The provider

certificate (which is provisioned by Apple) identifies the topics supported by the provider.

(A topic is the bundle ID associated with one of our apps.)

Our provider establishes connection trust with APNs through TLS peer-to-peer

authentication. After the TLS connection is initiated, we get the server certificate from

APNs and validate that certificate on our end. Then we send our provider certificate to

APNs, which validates that certificate on its end. After this procedure is complete, a secure

TLS connection is established; APNs is now satisfied that the connection has been made

by a legitimate provider.

Data Base

The database that can be used by apps in iOS (and also used by iOS) is called

SQLite, and it’s a relational database. It is contained in a C-library that is embedded to

the app that is about to use it. Note that it does not consist of a separate service or daemon

running on the background and attached to the app. On the contrary, the app runs it as an

integral part of it. Nowadays, SQLite lives its third version, so it’s also commonly referred

as SQLite 3. SQLite is not as powerful as other DMBSs, such as MySQL or SQL Server,

as it does not include all of their features. However, its greatness lies mostly to these

factors:

 It’s lightweight.

43

 It contains an embedded SQL engine, so almost all of our SQL knowledge can

be applied.

 It works as part of the app itself, and it doesn’t require extra active services.

 It’s very reliable.

 It’s fast.

 It’s fully supported by Apple, as it’s used in both iOS and Mac OS.

 It has continuous support by developers in the whole world and new features are

always added to it.

SQLite is an embedded implementation of SQL. SQL stands for Structured Query

Language and is a standard language to work with relational databases. SQLite can be

embedded inside any application, so there is no need for a separate process running the

database instance. It follows the principals of a Relational Database Management System

(RDBMS). Inside a RDBMS data is stored inside tables and the relationship between this data

is also stored inside tables.

A good example for this is the relationship between a person and his address as shown

in figure 4.24. A person has typically some properties like first name, last name, birthdate and

much more. An address has properties like street name, street number, etc. But there is also a

relationship between them, a person can have several addresses. In the database this is

achieved by adding a foreign key to the address object. This foreign key points to the primary

key of the person it belongs to. This has also as advantage that when a person is deleted a

warning is given about an associated address. So it becomes possible to also delete the address

if needed.

Figure 4.24 Relationship between person and address class

44

The Core SQLite functions

Let’s first start with a list of the most used SQLite functions and describe their purpose:

 sqlite3_open(): This function creates and opens an empty database with the specified

filename argument. If the database already exists it will only open the database. Upon

return the second argument will contain a handle to the database instance.

 sqlite3_close(): This function should be used to close a previously opened SQLite database

connection. It will free all system resources associated with the database connection.

 sqlite3_prepare_v2(): To execute an SQL statement it first needs to be compiled into byte-

code and that is exactly what this function is doing. It basically transforms an SQL

statement written in a string to an executable piece of code.

 sqlite3_step(): Calling this function will execute a previously prepared SQL statement.

 sqlite3_finalize(): This function deletes a previously prepared SQL statement from

memory.

 sqlite3_exec(): Combines the functionality of sqlite3_prepare_v2(), sqlite3_step() and

sqlite3_finalize() into a single function call.

 sqlite3_column_<type>(): This routine returns information about a single column of the

current result row of a query. Typical values for <type> are text and int. It is important to

note that the column indexes are zero based.

Setting up the project

1. Create a new project and choose Single View Application.

45

2. Name the application "SQLiteTutorial" and make sure to uncheck all options.

3. Now add the SQLite framework called "libsqlite3.dylib". To do so select the

SQLiteTutorial project inside the navigation area and then select the SQLiteTutorial target

inside the editor area. Scroll to the section called "Linked Frameworks and Libraries"

and click the add button. Filter the frameworks by typing "sqlite". Select "libsqlite3.dylib"

and press add. We will also notice a framework called "ibsqlite3.0.dylib" this is the

physical library, "ibsqlite3.dylib" is just a symbolic link to the latest version.

46

4. Add a new file to the project. Choose the Cocoa Touch Objective-C template and call

this new file "DataController".

5. Open the header file "DataController.h" and add an import for "sqlite3.h" and a data

member to store a handle to the database:

#import <Foundation/Foundation.h>

#import <sqlite3.h>

@interface DataController : NSObject

{

sqlite3 *databaseHandle;

}

-(void)initDatabase;

@end

6. Now it is time to start adding some entities. Again, choose for the Cocoa Touch

Objective-C template and call the first entity Address. The Address entity will be holding

a street name and a street number.

#import <Foundation/Foundation.h>

@interface Address : NSObject

{

NSString *streetName;

NSNumber *streetNumber;

}

@property (nonatomic,retain) NSString* streetName;

@property (nonatomic,retain) NSNumber* streetNumber;

-(id)initWithStreetName:(NSString*)aStreetName

andStreetNumber:(NSNumber*)streetNumber;

@end

#import "Address.h"

@implementation Address

@synthesize streetName;

@synthesize streetNumber;

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/

47

/ Custom initializer

-(id)initWithStreetName:(NSString*)aStreetName

andStreetNumber:(NSNumber*)aStreetNumber

{

self = [super init];

if(self) {

self.streetName = aStreetName;

self.streetNumber = aStreetNumber;

}

return self;

}

// Cleanup all contained properties

- (void)dealloc

{

[self.streetName release];

[self.streetNumber release];

[super dealloc];

}

7. The next entity to add will be the Person entity. It will contain a first name, last name and

birthday. The Person class will also contain an Address object, this will be reflected in the

SQLite database by using a foreign key inside the address table, but that will become more

clear when creating the database. Again, a custom initializer was added for convenience

and a dealloc method will clean up the object:

#import <Foundation/Foundation.h>

#import "Address.h"

@interface Person : NSObject

{

NSString *firstName;

NSString *lastName;

 NSDate *birthday;

Address *address;

}

@property (nonatomic, retain) NSString* firstName;

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/

48

@property (nonatomic, retain) NSString* lastName;

@property (nonatomic, retain) NSDate* birthday;

@property (nonatomic, retain) Address* address;

-(id)initWithFirstName:(NSString*)aFirstName andLastName:(NSString*)aLastName

andBirthday:(NSDate*)aBirthday andAddress:(Address*)anAddress;

@end

#import "Person.h"

@implementation Person

@synthesize firstName;

@synthesize lastName;

@synthesize birthday;

@synthesize address;

// Custom initializer

-(id)initWithFirstName:(NSString*)aFirstName andLastName:(NSString*)aLastName

andBirthday:(NSDate*)aBirthday andAddress:(Address*)anAddress

{

self = [super init];

if(self) {

self.firstName = aFirstName;

self.lastName = aLastName; self.birthday = aBirthday; self.address = anAddress;

}

return self;

}

// Cleanup all contained objects

- (void)dealloc {

[self.firstName release];

[self.lastName release];

[self.birthday release];

[self.address release];

[super dealloc];

}

@end

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/

49

Now that are basic building blocks are in-place it is time to start working with the SQLite

database.

Creating an SQLite database

The SQLite database for this sample application will be stored inside the Documents folder

of the application sandbox and will be called "sqlite.db". To do this add the method

"initDatabase" to the DataController.

// Method to open a database, the database will be created if it doesn't exist

-(void)initDatabase

{

// Create a string containing the full path to the sqlite.db inside the documents folder

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask,YES);

// To get the application documents directory in app

NSString *documentsDirectory = [paths objectAtIndex:0];

NSString *databasePath = [documentsDirectory

stringByAppendingPathComponent:@"sqlite.db"];

// Check to see if the database file already exists

Bool

databaseAlreadyExists = [[NSFileManager defaultManager] fileExistsAtPath:databasePat

h];

// Open the database and store the handle as a data member

if (sqlite3_open([databasePath UTF8String], &databaseHandle) == SQLITE_OK)

{

// Create the database if it doesn't yet exists in the file system

if (!databaseAlreadyExists)

{

// Create the PERSON table

const char *sqlStatement = "CREATE TABLE IF NOT EXISTS PERSON (ID INTEGER

PRIMARY KEY AUTOINCREMENT, FIRSTNAME TEXT, LASTNAME TEXT,

BIRTHDAY DATE)";

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/

50

char *error;

if (sqlite3_exec(databaseHandle,

sqlStatement, NULL, NULL, &error) == SQLITE_OK)

{

// Create the ADDRESS table with foreign key to the PERSON table

sqlStatement = "CREATE TABLE IF NOT EXISTS ADDRESS (ID INTEGER

PRIMARY KEY AUTOINCREMENT, STREETNAME TEXT, STREETNUMBER

INT, PERSONID INT, FOREIGN KEY(PERSONID) REFERENCES PERSON(ID))";

if (sqlite3_exec(databaseHandle,

sqlStatement, NULL, NULL, &error) == SQLITE_OK)

{

NSLog(@"Database and tables created.");

}

Else

{

NSLog(@"Error: %s", error);

}}

else

{

NSLog(@"Error: %s", error);

}}}}

Let’s highlight some points inside this method:

1. A full path is created that points to sqlite.db inside the documents folder of the

application. In case when running inside the simulator this will be inside the folder

~Library/Application Support/iPhone Simulator

2. Check if the database file already exists inside the file system.

3. Open a connection to the database and store the databaseHandle for later use.

4. If the database did not exist inside the file system then the tables will be created.

5. The table PERSON is created with a auto-incrementing primary key.

51

6. The table ADDRESS is also created with an auto-incrementing primary key and a

foreign key constraint set to the ID of the PERSON table and will be called

PERSONID.

It is also important to close the database connection once the DataController gets released.

To do this simply override the "dealloc" method of the class DataController:

// Close the database connection when the DataController is disposed

- (void)dealloc {

sqlite3_close(databaseHandle);

}

To verify this piece of code update the method "viewDidLoad" from the file

"ViewController.m" so that it looks like:

- (void)viewDidLoad

{

[super viewDidLoad];

// Create datacontroller and initialize database

DataController *dataController = [[DataController alloc]init];

[dataController initDatabase];

[dataController release];

}

Storing values inside the SQLite database

Next part to implement is a method to insert a Person and his associated Address inside

the database. To do so a new method called "insertPerson" needs to be created inside the

DataController:

// Method to store a person and his associated address

-(void)insertPerson:(Person*)person

{

52

// Create insert statement for the person

NSString *insertStatement = [NSString stringWithFormat:@"INSERT INTO PERSON

(FIRSTNAME, LASTNAME, BIRTHDAY) VALUES

(\"%@\", \"%@\", \"%@\")", person.firstName, person.lastName, person.birthday];

char *error;

if (sqlite3_exec(databaseHandle, [insertStatement UTF8String], NULL, NULL, &error)
==SQLITE_OK)

{

int personID = sqlite3_last_insert_rowid(databaseHandle);

// Create insert statement for the address

insertStatement = [NSString stringWithFormat:@"INSERT INTO ADDRESS

(STREETNAME, STREETNUMBER, PERSONID) VALUES

(\"%@\", \"%@\", \"%d\")", person.address.streetName, person.address.streetNumber,

personID];

if (sqlite3_exec(databaseHandle, [insertStatement

UTF8String], NULL, NULL, &error) ==SQLITE_OK)

{

NSLog(@"Person inserted.");

}

else{

NSLog(@"Error: %s", error);

}}

Else

{

NSLog(@"Error: %s", error);

}}

Lets discuss the previous code snippet:

1. Create an insert statement for the person object.

2. Execute the insert statement for the person by calling "sqlite3_exec".

3. Get the ID of the last inserted row by calling "sqlite3_last_insert_rowid". This ID

needs to be pasted as the foreign key for the address object.

4. Create the insert statement for the address object. Note that the foreign key is also

passed in.

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/

53

5. Execute the insert statement for the address by calling "sqlite3_exec".

Again it is possible to test the new code by updating the method "viewDidLoad":

// Create address and person objects

Address *address = [[Address alloc]initWithStreetName:@"Infinite Loop"

andStreetNumber:[NSNumbernumberWithInt:1]]; NSDateFormatter *dateFormatter =

[[NSDateFormatter alloc] init];

[dateFormatter setDateFormat:@"yyyy-MM-dd"];

NSDate *birthday = [dateFormatter dateFromString: @"1955-02-24"];

Person *person = [[Person

alloc]initWithFirstName:@"Steve"andLastName:@"Jobs"andBirthday:birthday

andAddress:address];

[dataController insertPerson:person]; //Insert the person

// Cleanup

[dateFormatter release];

[address release];

[person release];

[DataController release];

Testing the result of this action can be done again from the command line with sqlite3

Terminal command:

Enter SQL statements terminated with a ";"

sqlite> SELECT * FROM ADDRESS;

1|Infinite Loop|1|

sqlite> SELECT * FROM PERSON;

1|Steve|Jobs|1955-02-23 23:00:00 +0000

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/

54

Retrieving values from the SQLite database

Now it is time to programmatically retrieve values from the database. This can be done by

using the "sqlite3_step" function. The DataController implementation file needs to be

updated with a method called "getAddressByPersonID" and "getPersons". The method

"getAddressByPersonID" is a helper method to get an address associated with a person.

The method "getPersons" returns an array of all persons inside the database.

// Get an array of all persons stored inside the database

-(NSArray*)getPersons

// Allocate a persons array

NSMutableArray *persons = [[NSMutableArray alloc]init];

// Create the query statement to get all persons

NSString *queryStatement = [NSString stringWithFormat:@"SELECT ID,

FIRSTNAME, LASTNAME, BIRTHDAY FROM PERSON"];

//Prepare the query for execution

sqlite3_stmt *statement;

if (sqlite3_prepare_v2(databaseHandle, [queryStatement UTF8String], -

1, &statement, NULL) ==SQLITE_OK)

{

// Iterate over all returned rows

while (sqlite3_step(statement) == SQLITE_ROW) {

// Get associated address of the current person row

int personID = sqlite3_column_int(statement, 0);

Address *address = [self getAddressByPersonID:personID];

// Convert the birthday column to an NSDate

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc]init];

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/

55

dateFormatter.dateFormat = @"yyyy-MM-dd HH:mm:ss Z";

NSString *birthdayAsString = [NSString stringWithUTF8String:

(char*)sqlite3_column_text(statement, 3)];

NSDate *birthday = [dateFormatter dateFromString: birthdayAsString];

[dateFormatter release];

// Create a new person and add it to the array

Person *person = [[Person alloc]initWithFirstName:

[NSString stringWithUTF8String:(char*)sqlite3_column_text(statement, 1)]

andLastName:[NSString stringWithUTF8String:

(char*)sqlite3_column_text(statement, 2)]

andBirthday:birthday andAddress:address];

[persons addObject:person];

// Release the person because the array takes ownership

[person release];

}

sqlite3_finalize(statement);

}

// Return the persons array an mark for autorelease

return [persons autorelease];

}

Debug and deploy application

1. Join the Apple iOS Developer Program.

We can log in using our existing Apple ID or create an Apple ID. The Apple Developer

Registration guides us through the necessary steps.

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/programs/register/
http://developer.apple.com/programs/register/

56

2. Register the Unique Device Identifier (UDID) of the device.

This step is applicable only if we are deploying our application to an iOS device and not

the Apple App Store. If we want to deploy our application on several iOS devices, register

the UDID of each device.

3. Obtain the UDID of our iOS device

 Connect the iOS device to our development computer and launch iTunes. The connected

iOS device appears under the Devices section in iTunes.

 Click the device name to display a summary of the iOS device.

 In the Summary tab, click Serial Number to display the 40-character UDID of the iOS

device.

4. Register the UDID of our device

 Log in to the iOS Provisioning Portal using our Apple ID and register the device’s UDID.

 Generate a Certificate Signing Request (CSR) file (*.certSigningRequest).We generate a

CSR to obtain a iOS developer/distribution certificate. We can generate a CSR by using

Keychain Access on Mac or Open SSL on Windows. When we generate a CSR we only

provide our user name and email address; we don’t provide any information about our

application or device.

 Generating a CSR creates a public key and a private key as well as a *.cert Signing Request

file. The public key is included in the CSR, and the private key is used to sign the request.

For more information on generating a CSR, see Generating a certificate signing request.

Generate an iOS developer certificate or an iOS distribution certificate (*.cer), as required.

5. Generate an iOS developer certificate

 Log in to the iOS Provisioning Portal using our Apple ID, and select the Development tab

 Click Request Certificate and browse to the CSR file that we generated and saved on our

computer (step 3).

 Select the CSR file and click Submit.

 On the Certificates page, click Download.

 Save the downloaded file (*.developer_identity.cer).

6. Generate an iOS distribution certificate

 Log in to the iOS Provisioning Portal using our Apple ID, and select the Distribution

tab

http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://www.adobe.com/go/learn_ioscsr_en
http://www.adobe.com/go/learn_ioscsr_en
http://www.adobe.com/go/learn_ioscsr_en
http://www.adobe.com/go/learn_ioscsr_en
http://www.adobe.com/go/learn_ioscsr_en
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios

57

 Click Request Certificate and browse to the CSR file that we generated and saved on

our computer (step 3).

 Select the CSR file and click Submit.

 On the Certificates page, click Download.

 Save the downloaded file (*.distribution_identity.cer).

 1 Convert the iOS developer certificate or the iOS distribution certificate to a P12 file

format (*.p12).

7. Generate the Application ID by following these steps:

 Log in to the iOS Provisioning Portal using our Apple ID.

 Go to the App IDs page, and click New App ID.

 In the Manage tab, enter a description for our application, generate a new Bundle Seed

ID, and enter a Bundle Identifier.

 Every application has a unique Application ID, which wespecify in the application

descriptor XML file. An Application ID consists of a ten-character "Bundle Seed ID"

that Apple provides and a "Bundle Identifier" suffix that wespecify. The Bundle

Identifier we specify must match the application ID in the application descriptor file.

For example, if our Application ID is com.myDomain.*, the ID in the application

descriptor file must start with com.myDomain.

 Generate a Developer Provisioning Profile file or a Distribution Provisioning Profile

File (*.mobileprovision).

8. Generate a Developer Provisioning Profile

 Log in to the iOS Provisioning Portal using our Apple ID.

 Go to Certificate > Provisioning, and click New Profile.

 Enter a profile name, select the iOS developer certificate, the App ID, and the UDIDs

on which wewant to install the application.

 Click Submit.

 Download the generated Developer Provisioning Profile file (*.mobileprovision)and

save it on our computer.

9. Generate a Distribution Provisioning Profile

 Log in to the iOS Provisioning Portal using our Apple ID. Go to Certificate > Provisioning,

and click New Profile.

http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios

58

 Enter a profile name, select the iOS distribution certificate and the App ID. If we want to

test the application before deployment, specify the UDIDs of the devices on which we

want to test.

 Click Submit.

 Download the generated Provisioning Profile file (*.mobileprovision)and save it on our

computer.

Files to select when we test, debug, or install an iOS application

 To run, debug, or install an application for testing on an iOS device, we select the following

files in the Run/Debug Configurations dialog box:

 iOS developer certificate in P12 format (step 5)

 Application descriptor XML file that contains the Application ID (step 6)

 Developer Provisioning Profile (step 7)

For more information, see Debug an application on an Apple iOS deviceand Install an

application on an Apple iOS device.

Files to select when we deploy an application to the Apple App Store

To deploy an application to the Apple App Store, select the Package Type in the

Export Release Build dialog box as Final Release Package For Apple App Store, and

select the following files:

 iOS distribution certificate in P12 format (step 5)

 Application descriptor XML file that contains the Application ID (step 6).

Note: We can’t use a wildcard Application ID while submitting an application to the

Apple App Store.

 Distribution Provisioning Profile

Publishing App in App Store

The App Store review process is a black box for the most part, that doesn't mean that

we can't prepare ourself and our application for Apple's review process. Apple provides

http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff6.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff6.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff6.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff6.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff4.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff4.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff4.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff4.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff4.html

59

guidelines to help we stay within the sometimes-invisible boundaries of what is and isn't

allowed in the App Store.

Testing

An application isn't necessarily ready when we've written the last line of code or

implemented the final feature of the application's specification. The family of iOS devices

has grown substantially over the past years and it is important to test our application on as

many iOS devices as we can lay our hands on. The iOS Simulator is a great tool, but it runs

on our Mac, which has more memory and processing power than the phone in our pocket.

Apple's Review Process isn't airtight, but it is very capable of identifying problems that might

affect our application's user experience. If our application crashes from time to time or it

becomes slow after ten minutes of use, then we have some work to do before submitting it to

the App Store. Even if Apple's review team doesn't spot the problem, our users will. If the

people using our application are not pleased, they will leave bad reviews on the App Store,

which may harm sales or inhibit downloads.

Rules and Guidelines

Our application ...

 doesn't crash.

 shouldn't use private API's.

 shouldn't replicate the functionality of native applications.

 should use In App Purchase for in-app (financial) transactions.

 shouldn't use the camera or microphone without the user's knowledge.

 only uses artwork that we have the copyright of or we have permission to use.

1. App ID

Every application needs an App ID or application identifier. There are two types of

application identifiers, (1) an explicit App ID and (2) a wildcard App ID. A wildcard

App ID can be used for building and installing multiple applications. Despite the

convenience of a wildcard App ID, an explicit App ID is required if our application uses

60

iCloud or makes use of other iOS features, such as Game Center, Apple Push

Notifications, or In App Purchase.

2. Distribution Certificate

To submit an application to the App Store, we need to create an iOS provisioning profile

for distribution. To create such a provisioning profile, we first need to create a distribution

certificate. The process for creating a distribution certificate is very similar to creating a

development certificate. If we have tested our application on a physical device, then we

are probably already familiar with the creation of a development certificate.

3. Provisioning Profile

Once we've created an App ID and a distribution certificate, we can create an iOS

provisioning profile for distributing our application through the App Store. Keep in mind

that we cannot use the same provisioning profile that we use for ad hoc distribution. We

need to create a separate provisioning profile for App Store distribution. If we use a

wildcard App ID for our project, then we can use the same provisioning profile for multiple

applications.

4. Build Settings

With the App ID, distribution certificate, and provisioning profile in place, it is time to

configure our target's build settings in Xcode. This means selecting the target from the list

of targets in Xcode's Project Navigator, opening the Build Settings tab at the top, and

updating the settings in the Code Signing section to match the distribution provisioning

profile we created earlier. Newly added provisioning profiles are sometimes not

immediately visible in the Code Signing section of the build settings. Quitting and

relaunching Xcode remedies this issue.

5. Deployment Target

Each target in an Xcode project, has a deployment target, which indicates the minimum

version of the operating system that the application can run on. It is up to we to set the

deployment target, but keep in mind that modifying the deployment target is not something

we can do without consequences once our application is in the App Store. If we increase

the deployment target for an update of our application, then users who already purchased

our application but don't meet the new deployment target, cannot run the update.

61

Assets

1. Icons

We need to make sure that our application ships with the correct sizes of the artwork.

 iTunes Artwork: 1024px x 1024px (required)

 iPad/iPad Mini: 72px x 72px and 114px x 114px (required)

 iPhone/iPod Touch: 57px x 57px and 114px x 114px (required)

 Search Icon: 29px x 29px and 58px x 58px (optional)

 Settings Application: 50px x 50px and 100px x 100px (optional)

2. Screenshots

Each application can have up to five screenshots and we must provide at least one. If we

are developing a universal application, then we need to provide separate screenshots for

iPhone/iPod Touch and iPad/iPad Mini. In addition, we can optionally include separate

screenshots for the 3.5" and the 4" screen sizes of the iPhone/iPod Touch. This is quite a

bit of work and we want to make sure that the screenshots show our application from its

best side.

3. Metadata

Before we submit our application, it is a good idea to have our application's metadata at

hand. This includes (1) our application's name, (2) the version number, (3) the primary

(and an optional secondary) category, (4) a concise description, (5) keywords, and (6) a

support URL.

4. Submission Preparation

1. The submission process has become much easier since the release of Xcode 4. We can

now validate and submit an application using Xcode, for example. First, however, we

need to create our application in iTunes Connect.

2. The App Name, which needs to be unique, is the name of our application as it will

appear in the App Store. This can be different than the name that is displayed below our

application icon on the home screen, but it is recommended to choose the same name.

62

3. The SKU Number is a unique string that identifies our application. I usually use the

application's bundle identifier. The last piece of information is the Bundle ID of our

application. This means selecting the (wildcard or explicit) App ID that we created earlier

from the drop-down menu.

4. Specifying Price and Availability

5. Once our application's metadata is submitted, we will be presented with a summary of our

application. Under Versions, we should see the version that we submitted a moment ago.

6. To submit our application, we need to create an archive of our application. We can only

create an archive by building our application on a physical device. Select the archive from

the list and click the Distribute button on the right. From the options we are presented

with, select Submit to the iOS App Store. After entering our iOS developer account

credentials and selecting the Application and Code Signing Identity, the application

binary is uploaded to Apple's servers. During this process, our application is also validated.

If an error occurs during the validation, the submission process will fail. The validation

process is very useful as it will tell we if there is something wrong with our application

binary that would otherwise result in a rejection by the App Store review team.

1

Unit V- SBSA3003 -Mobile App Development

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Unit 5

Introduction to Windows Phone 8, Application Life cycle, UI Designing and events, Building,

Files and Storage, Network Communication, Push Notification, Background Agents, Maps and

Locations, Data Access and storage, Introduction to Silverlight and XAML, Running and

Debugging the App, Deploying and Publishing

2

 Update 1 (or GDR1), which added some improvements in Internet Explorer, Wi-Fi

connectivity, and messaging experience

Introduction to windows phone 8

Microsoft was developing Windows Mobile 7 when it realized that

the phone wouldn‘t be an appealing product for consumers who were starting

to get used to iPhone or Android devices. So its developers dropped the

project and started from scratch to build a totally new platform: Windows

Phone 7. The result was really different from the other competitors: a new

user interface, based on a flat design style called Microsoft Design style

(once known as Metro); and deep integration with social networks and all the

Microsoft services, like Office, SkyDrive, and Xbox.

The current version of the platform (which will be covered in this

series) is Windows Phone 8; in the middle, Microsoft released an update

called Windows Phone 7.5 that added many new consumer features but, most

of all, improved the developer experience by adding many new APIs.

Windows Phone 8 is a fresh start for the platform: Microsoft has

abandoned the old stack of technologies used in Windows Phone 7 (the

Windows Mobile kernel, Silverlight, XNA) to embrace the new features

introduced in Windows 8, like the new kernel, the Windows Runtime, and

the native code (C++) support.

1.1 Microsoft has released three updates:

3

1.2 The Hardware

Windows Phone can run on a wide range of devices, with different form factors and

hardware capabilities. However, Microsoft has defined a set of hardware guidelines that all

manufacturers need to follow to build a Windows Phone device. In addition, vendors can‘t

customize the user interface or the operating system; all the phones, regardless of the producer,

offer the same familiar user experience.

This way, Windows Phone can take the best from both worlds: a wide range of devices

means more opportunities, because Windows Phone can run well on cheap and small devices in

the same way it works well on high-resolution, powerful phones. A more controlled hardware,

instead, makes the lives of developers much easier, because they can always count on features

like sensors or GPS.

Here are the key features of a Windows Phone 8 device:

 multi-core processor support (dual core and quad core processors)

 at least 512 MB of RAM (usually 1 GB or 2 GB on high-end devices)

 at least 4 GB of storage (that can be expanded with a Micro SD)

 camera

 motion sensors (accelerometer, gyroscope, compass), optional

 proximity sensor, optional

 Wi-Fi and 3G connection

 GPS

 Update 2 (or GDR2), which improved support for Google accounts, Xbox Music, and

Skype, added FM radio support, and expanded the availability of the Data Sense

application to keep track of the data traffic

 Update 3 (or GDR3), which added support for a new resolution (1080p), driving mode,

screen lock orientation, and better storage management, and improved the Bluetooth and

Wi-Fi stack

4

 The XAML stack has been ported directly from Windows Phone 7 instead of from

Windows 8. This means that the XAML is still managed and not native, but it's

completely aligned with the previous one so that, for example, features like behaviors, for

which support has been added only in Windows 8.1, are still available). This way, you‘ll

be able to reuse all the XAML written for Windows Phone 7 applications without having

to change it or fix it.

 Thanks to a feature called quirks mode, applications written for Windows Phone 7 are

able to run on Windows Phone 8 devices without having to apply any change in most

cases. This mode is able to translate Windows Phone 7 API calls to the related Windows

Runtime ones.

The Windows Runtime

The Windows Runtime is the new API layer that Microsoft introduced in Windows 8,

and it‘s the foundation of a new and more modern approach to developing applications. In fact,

unlike the .NET framework, it‘s a native layer, which means better performance. Plus, it supports

a wide range of APIs that cover many of the new scenarios that have been introduced in recent

years: geolocation, movement sensors, NFC, and much more. In the end, it‘s well suited for

asynchronous and multi-threading scenarios that are one of the key requirements of mobile

applications; the user interface needs to be always responsive, no matter which operation the

application is performing.

Under the hood of the operating system, Microsoft has introduced the Windows Phone

Runtime. Compared to the original Windows Runtime, it lacks some features (specifically, all

the APIs that don‘t make much sense on a phone, like printing APIs), but it adds several new

ones specific to the platform (like hub integration, contacts and appointments access, etc.).

 Microsoft introduced three features:

 four supported resolutions: WVGA (480 × 800), WXGA (768 × 1280), 720p(720 ×

1280), and 1080p (1080 × 1920)

 three hardware buttons: Back, Start, and Search

5

Like the full Windows Runtime, Windows Phone 8 has added support for C++ as a

programming language, while the WinJS layer, which is a library that allows developers to

create Windows Store apps using HTML and JavaScript, is missing. If you want to develop

Windows Phone applications using web technologies, you‘ll have to rely on

the WebBrowser control (which embeds a web view in the application) and make use of

features provided by frameworks like PhoneGap.

 The Development Tools

The official platform to develop Windows Phone applications is Visual Studio 2012,

although support has also been added to the Visual Studio 2013 commercial versions. The major

difference is that while Visual Studio 2012 still allows you to open and create Windows Phone 7

projects, Visual Studio 2013 can only be used to develop Windows Phone 8 applications.

There are no differences between the two versions when we talk about Windows Phone

development: since the SDK is the same, you‘ll get the same features in both environments, so

we‘ll use Visual Studio 2012 as a reference for this series.

To start, you‘ll need to download the Windows Phone 8 SDK from the official developer

portal. This download is suitable for both new developers and Microsoft developers who already

have a commercial version of Visual Studio 2012. If you don‘t already have Visual Studio

installed, the setup will install the free Express version; otherwise, it will simply install the SDK

and the emulator and add them to your existing Visual Studio installation.

The setup will also install Blend for Windows Phone, a tool made by Microsoft

specifically for designers. It‘s a XAML visual editor that makes it easier to create a user interface

for a Windows Phone application. If you‘re a developer, you‘ll probably spend most of the time

 The Windows Phone Runtime includes a layer called .NET for Windows Phone, which

is the subset of APIs that were available in Windows Phone 7. Thanks to this layer, you‘ll

be able to use the old APIs in a Windows Phone 8 application, even if they‘ve been

replaced by new APIs in the Windows Runtime. This way, you‘ll be able to migrate your

old applications to the new platform without having to rewrite all the code.

6

manually writing XAML in the Visual Studio editor, but it can be a valid companion when it

comes to more complex things like creating animations or managing the visual states of a

control.

To install the Windows Phone 8 SDK you‘ll need a computer with Windows 8

Pro orWindows 8 Enterprise 64-bit. This is required since the emulator is based on Hyper-V,

which is the Microsoft virtualization technology that is available only in professional versions of

Windows. In addition, there‘s a hardware requirement: your CPU needs to support the Second

Level Address Translation (SLAT), which is a CPU feature needed for Hyper-V to properly run.

If you have a newer computer, you don‘t have to worry; basically all architectures from Intel i5

and further support it. Otherwise, you‘ll still be able to install and the use the SDK, but you‘ll

need a real device for testing and debugging.

 The Emulator

Testing and debugging a Windows Phone app on a device before submitting it to the

Windows Phone Store is a requirement; only on a real phone will you be able to test the true

performance of the application. During daily development, using the device can slow you down.

This is when the emulator is useful, especially because you‘ll easily be able to test different

conditions (like different resolutions, the loss of connectivity, etc.).

The emulator is a virtual machine powered by Hyper-V that is able to interact with the

hardware of your computer. If you have a touch monitor, you can simulate the phone touch

screen; if you have a microphone, you can simulate the phone microphone, etc. In addition, the

emulator comes with a set of additional tools that are helpful for testing some scenarios that

would require a physical device, like using the accelerometer or the GPS sensor.

7

1. Windows application life cycle

The following image illustrates the lifecycle of a Windows Phone application. In this

diagram, the circles are application states. The rectangles show either application- or page-level

events where applications should manage their state.

 The Launching Event

A user can launch a new instance of your app by selecting it from the installed

applications list or from a Tile on Start in addition to other means, such as tapping on a toast

8

notification associated with the app or selecting the app from the Photos Extras menu. When

your app is launched this way, it should present a user interface that makes it clear to the user

that a new instance the app was launched. It‘s ok to provide context about the user‘s previous

experience with the app, such as a list of recent documents the user viewed, but it shouldn‘t

appear as though the user is returning to a previously running instance of the app.

When a new instance of your app is launched, the Launching event is raised. To help

ensure that your app loads quickly, you should execute as little code as possible in the handler

for this event. In particular, avoid resource-intensive tasks like file and network operations. You

should perform these tasks on a background thread after your app has loaded for the best user

experience.

 Running

After being launched, an app is Running. It continues to run until the user navigates

forward, away from the app, or backwards past the app‘s first page. Windows Phone apps

shouldn‘t provide a mechanism for the user to quit or exit. Apps also leave the Running state

when the phone‘s lock screen engages unless you have disabled application idle detection. For

more information, see Idle detection for Windows Phone 8.

 The OnNavigatedFrom Method

The OnNavigatedFrom(NavigationEventArgs) method is called whenever the user

navigates away from one of the pages in your app. This can happen as the result of normal page

navigation within your application, but it is also called if the user navigates away from your app.

Whenever this method is called, your application should store the page state so that it can be

restored if the user returns to the page and the page is no longer in memory. The exception to this

is backward navigation. The NavigationMode property can be used to determine if the navigation

is a backward navigation, in which case there is no need to save state because the page will be re-

created the next time it is visited.

 The Deactivated Event

The Deactivated event is raised when the user navigates forward, away from your app, by

pressing the Start button or by launching another application. The Deactivated event is also

raised if your application launches a Chooser. This event is also raised if the device‘s lock screen

is engaged, unless application idle detection is disabled.

In the handler for the Deactivated event, your application should save any unsaved

application data so that it can be restored at a later time, if necessary. Windows Phone

applications are provided with the State object, which is a dictionary you can use to store

application state. If the operating system tombstones your app, as discussed below, it will save

this dictionary and return it to you if your app is reactivated..

It is possible for an application to be completely terminated after Deactivated is called.

When an application is terminated, its state dictionary is not preserved. So you should also store

any unsaved state that should be persisted across application instances to isolated storage during

the Deactivated event.

9

 Dormant

When the user navigates forward, away from an app, after the Deactivated event is

raised, the operating system will attempt to put the app into a dormant state. In this state, all of

the application‘s threads are stopped and no processing takes place, but the application remains

intact in memory. If the app is reactivated from the dormant, it doesn‘t need to do anything to re-

establish state, because it has been preserved.

If new apps are launched after an app has been made dormant, and these applications

requires more memory than is available to provide a good user experience, the operating system

will begin to tombstone dormant applications to free up memory.

 Tombstoned

A tombstoned app has been terminated, but the operating system preserves information

about its navigation state and also preserves the state dictionaries the app populated

during Deactivated. The device will maintain tombstoning information for up to five apps at a

time. If an app is tombstoned and the user navigates back to the application, it will be relaunched

and the application can use the preserved data to restore state.

 The Activated Event

The Activated event is called when the user returns to a dormant or tombstoned app.

Your app should check the IsApplicationInstancePreserved property of the event args to

determine whether it is returning from being dormant or tombstoned.

If IsApplicationInstancePreserved is true, then your app was dormant and state was

automatically preserved by the operating system. If it is false, then your app was tombstoned and

should use the state dictionary to restore application state

 The OnNavigatedTo Method

The OnNavigatedTo(NavigationEventArgs) method is called when the user navigates to a

page. This includes when the app is first launched, when the user navigates between the pages of

the app, and when the app is relaunched after being made dormant or tombstoned. In this

method, your app should check to see whether the page is a new instance. If it is not, then page

state does not need to be restored. If the page is a new instance, and there is data in the state

dictionary for the page, then you should use this data to restore the state of the page‘s UI.

 The Closing Event

The Closing event is raised when the user navigates backwards past the first page of an

app. In this case, the app is terminated and no state is saved. In the Closing event handler, your

app can save data that should persist across instances. There is a limit of 10 seconds for an app to

complete all application and page navigation events. If this limit is exceeded, the application is

terminated. For this reason, it is a good idea to save persistent state throughout the lifetime of the

application and avoid having to do large amounts of file I/O in the Closing event handle

10

2. UI Design Guidelines for Windows Phone 8

App bar and command bar

Command bars (also called "app bars") provide users with easy access to your app's most

common tasks, and can be used to show commands or options that are specific to the user's

context, such as a photo selection or drawing mode. They can also be used for navigation among

app pages or between app sections. Command bars can be used with any navigation pattern.

Command Bar

The command bar is divided into 4 main areas:

 The "see more" [•••] button is shown on the right of the bar. Pressing the "see more" [•••]

button has 2 effects: it reveals the labels on the primary command buttons, and it opens

the overflow menu if any secondary commands are present. In the newest SDK, the

button will not be visible when no secondary commands and no hidden labels are

present. OverflowButtonVisibility property allows apps to change this default auto-hide

behavior.

 The content area is aligned to the left side of the bar. It is shown if the Content property is

populated.

 The primary command area is aligned to the right side of the bar, next to the "see more"

[•••] button. It is shown if the PrimaryCommands property is populated.

 The overflow menu is shown only when the command bar is open and

the SecondaryCommands property is populated. The new dynamic overflow behavior

will automatically move primary commands into the SecondaryCommands area when

space is limited.

https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.commandbar.overflowbuttonvisibility.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.contentcontrol.content.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.commandbar.primarycommands.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.commandbar.secondarycommands.aspx

11

 Buttons

A button gives the user a way to trigger an immediate action.

Create the button in XAML.

<Button Content="Submit" Click="SubmitButton_Click"/>

Or create the button in code.

Button submitButton = new Button();

submitButton.Content = "Submit";

submitButton.Click += SubmitButton_Click;

// Add the button to a parent container in the visual tree.

stackPanel1.Children.Add(submitButton);

Handle the Click event.

private async void SubmitButton_Click(object sender, RoutedEventArgs e)

{

// Call app specific code to submit form. For example:

// form.Submit();

12

Windows.UI.Popups.MessageDialog messageDialog = new

Windows.UI.Popups.MessageDialog("Thank you for your submission.");

await messageDialog.ShowAsync();

}

Button

 Check boxes

A check box is used to select or deselect action items. It can be used for a single item or for a

list of multiple items that a user can choose from. The control has three selection states:

unselected, selected, and indeterminate. Use the indeterminate state when a collection of sub-

choices have both unselected and selected states.

This XAML creates a single check box that is used to agree to terms of service before a form

can be submitted.

<CheckBox x:Name="termsOfServiceCheckBox" Content="I agree to the terms of

service."/>

the same check box created in code.

CheckBox checkBox1 = new CheckBox();

checkBox1.Content = "I agree to the terms of service.";

Check Box

 Calendar view

A calendar view lets a user view and interact with a calendar that they can navigate by month,

year, or decade. A user can select a single date or a range of dates. It doesn't have a picker

surface and the calendar is always visible.

13

The calendar view is made up of 3 separate views: the month view, year view, and decade

view. By default, it starts with the month view open.

This example shows how to create a simple calendar view.

<CalendarView/>

The resulting calendar view looks like this:

Calender View

calendarView1.SelectedDates.Add(DateTimeOffset.Now);

calendarView1.SelectedDates.Add(new DateTime(1977, 1, 5));

Customizing the calendar view's appearance

14

Properties of Calender View

 Date picker

The date picker gives you a standardized way to let users pick a localized date value using

touch, mouse, or keyboard input.

to create a simple date picker with a header.

<DatePicker x:Name=birthDatePicker Header="Date of birth"/> or

DatePicker birthDatePicker = new DatePicker(); birthDatePicker.Header = "Date of birth";

The resulting date picker looks like this:

Date Picker

 Time picker

The time picker gives you a standardized way to let users pick a time value using touch, mouse,

or keyboard input.

to create a simple time picker with a header.

<TimePicker x:Name=arrivalTimePicker Header="Arrival time"/>

Or

TimePicker arrivalTimePicker = new TimePicker();

arrivalTimePicker.Header = "Arrival time";

The resulting time picker looks like this:

15

Time Picker

 Dialogs

Dialogs is transient UI elements that appear when something happens that requires

notification, approval, or additional information from the user.

Dialog Control

private async void displayDeleteFileDialog()

{

ContentDialog deleteFileDialog = new ContentDialog()

{

Title = "Delete file permanently?",

Content = "If you delete this file, you won't be able to recover it. Do you want to

delete it?",

PrimaryButtonText = "Cancel",

SecondaryButtonText = "Delete file permanently"

};

ContentDialogResult result = await deleteFileDialog.ShowAsync();

// Delete the file if the user clicked the second button.

// Otherwise, do nothing.

if (result == ContentDialogResult.Secondary)

{

// Delete the file.

}

}

 Hyperlinks

Hyperlinks navigate the user to another part of the app, to another app, or launch a specific

uniform resource identifier (URI) using a separate browser app. There are two ways that you

can add a hyperlink to a XAML app: the Hyperlink text element

and HyperlinkButton control.

This example shows how to use a Hyperlink text element inside of a TextBlock.

https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.textblock.aspx

16

Sample Code

The hyperlink appears inline and flows with the surrounding text:

Hyperlink

 Images

To display an image, you can use either the Image object. An Image object renders an

image.

to create an image by using the Image object.

<Image Width="200" Source="licorice.jpg" />

Here's the rendered Image object.

https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.image.aspx

17

image

 Radio buttons

Radio buttons let users select one option from two or more choices. Each option is represented

by one radio button; a user can select only one radio button in a radio button group.

Sample Code

private void BGRadioButton_Checked(object sender, RoutedEventArgs e)

{

RadioButton rb = sender as RadioButton;

if (rb != null && BorderExample1 != null)

{

string colorName = rb.Tag.ToString(); switch

(colorName)

{

case "Yellow":

BorderExample1.Background = new SolidColorBrush(Colors.Yellow); break;

case "Green":

BorderExample1.Background = new SolidColorBrush(Colors.Green);

18

break; case

"Blue":

BorderExample1.Background = new SolidColorBrush(Colors.Blue); break;

case "White":

BorderExample1.Background = new SolidColorBrush(Colors.White);

break;

}

}

}

private void BorderRadioButton_Checked(object sender, RoutedEventArgs e)

{

RadioButton rb = sender as RadioButton;

if (rb != null && BorderExample1 != null)

{

string colorName = rb.Tag.ToString(); switch

(colorName)

{

case "Yellow":

BorderExample1.BorderBrush = new SolidColorBrush(Colors.Gold);

break;

case "Green":

BorderExample1.BorderBrush = new SolidColorBrush(Colors.DarkGreen);

break;

case "Blue":

BorderExample1.BorderBrush = new SolidColorBrush(Colors.DarkBlue);

break;

case "White":

BorderExample1.BorderBrush = new SolidColorBrush(Colors.White); break;

}

}

}

The radio button groups look like this.

19

Radio Buttons

 Text box

The TextBox control lets a user type text into an app. It's typically used to capture a single line

of text, but can be configured to capture multiple lines of text. The text displays on the screen

in a simple, uniform, plaintext format.

Here's the XAML for a simple text box with a header and placeholder text.

<TextBox Width="500" Header="Notes" PlaceholderText="Type your notes here"/>

or

TextBox textBox = new TextBox();

textBox.Width = 500;

textBox.Header = "Notes";

textBox.PlaceholderText = "Type your notes here";

// Add the TextBox to the visual tree.

rootGrid.Children.Add(textBox);

Here's the text box that results from this XAML.

 Password box

A password box is a text input box that conceals the characters typed into it for the purpose of

privacy. A password box looks like a text box, except that it renders placeholder characters in

place of the text that has been entered. You can configure the placeholder character.

Here's the XAML for a password box control that demonstrates the default look of the

PasswordBox.

<StackPanel>

20

<PasswordBox x:Name="passwordBox" Width="200" MaxLength="16"

PasswordChanged="passwordBox_PasswordChanged"/>

<TextBlock x:Name="statusText" Margin="10" HorizontalAlignment="Center" />

</StackPanel>

private void passwordBox_PasswordChanged(object sender, RoutedEventArgs e)

{

if (passwordBox.Password == "Password")

{

statusText.Text = "'Password' is not allowed as a password.";

}

else

{

statusText.Text = string.Empty;

}

}

Here's the result when this code runs and the user enters "Password".

You can change the character used to mask the password by setting

the PasswordChar property. Here, the default bullet is replaced with an asterisk.

<PasswordBox x:Name="passwordBox" Width="200" PasswordChar="*"/>

The result looks like this.

Password Character

Headers and placeholder text

<PasswordBox x:Name="passwordBox" Width="200"

Header="Password" PlaceholderText="Enter your password"/>

21

 Auto-suggest box

Use an AutoSuggestBox to provide a list of suggestions for a user to select from as they

type.

to make the AutoSuggestBox look like a typical search box, add a ‗find‘ icon, like this.

<AutoSuggestBox QueryIcon="Find"/>

Here's an AutoSuggestBox with a 'find' icon.

AutoSuggest Box

 Labels

A label is the name or title of a control or a group of related controls.

Password help text

22

 Toggle switches

Label

23

The toggle switch represents a physical switch that allows users to turn things on or off. Use

ToggleSwitch controls to present users with exactly two mutually exclusive options (like

on/off), where choosing an option results in an immediate action.

This XAML creates the WiFi toggle switch shown previously.

<ToggleSwitch x:Name="wiFiToggle" Header="Wifi"/>

Here's how to create the same toggle switch in code.

ToggleSwitch wiFiToggle = new ToggleSwitch();

wiFiToggle.Header = "WiFi";

// Add the toggle switch to a parent container in the visual tree.

stackPanel1.Children.Add(wiFiToggle);

Toggle switch

 Tooltips

A tooltip is a short description that is linked to another control or object. Tooltips help users

understand unfamiliar objects that aren't described directly in the UI. They display automatically

when the user moves focus to, presses and holds, or hovers the mouse pointer over a control.

The tooltip disappears after a few seconds, or when the user moves the finger, pointer or

keyboard/gamepad focus.

Tooltips

24

3. Events

An event is a message sent by an object to signal the occurrence of an action. The action

could be caused by user interaction, such as touching the screen, or it could be triggered by the

internal logic of a class. The object that raises the event is called the event sender. The object that

captures the event and responds to it is called the event receiver. Basically the purpose of events

is to communicate time-specific, relatively lightweight information from an object at run time,

and potentially to deliver that information to other objects in the app.

 Windows Phone events

Generally speaking, Windows Phone events are CLR events, and therefore are events that

you can handle with managed code. If you know how to work with basic CLR events already,

you have a head start on some of the concepts involved. But you do not necessarily need to know

that much about the CLR event model in order to perform some basic tasks, such as attaching

handlers.

Because the UI for a typical Windows Phone-based app is defined in markup (XAML),

some of the principles of connecting UI events from markup elements to a runtime code entity

are similar to other Web technologies, such as ASP.NET, or working with an HTML DOM. In

Windows Phone the code that provides the runtime logic for a XAML-defined UI is often

referred to as code-behind or the code-behind file. In the Visual Studio solution views, this

relationship is shown graphically, with the code-behind file being a dependent and nested file

versus the XAML page it refers to.

 Button.Click: an introduction to using Windows Phone events

Generally, you define the UI for your Windows Phone-based app by generating XAML.

This XAML can be the output from a designer such as Blend for Visual Studio or from a design

surface in a larger IDE such as Windows Phone. The XAML can also be written out in a

plaintext editor or a third-party XAML editor. As part of generating that XAML, you can wire

event handlers for individual UI elements at the same time that you define all the other attributes

that describe that UI element.

If you are using Windows Phone, you can use design features that make it very simple to wire

event handlers from XAML and then define them in code-behind. This includes providing an

automatic naming scheme for the handlers.

 Defining an event handler

Event handlers in the partial class are written as methods, based on the CLR delegates

that are used by that particular event. Your event handler methods can be public, or they can

have a private access level. Private access works because the handler and instance created by the

XAML are ultimately joined by code generation. The general recommendation is to not make

your event handler methods public in the class.

25

 The sender parameter and event data

Any handler you write for a managed Windows Phone event can access two values that

are available as input for each case where your handler is invoked. The first such value is sender,

which is a reference to the object where the handler is attached. The sender parameter is typed as

the base Object type. A common technique in Windows Phone event handling is to cast sender to

a more precise type. This technique is useful if you expect to check or change state on

thesender object itself. Based on your own app design, you expect a type that is safe to

cast sender to, based on where the handler is attached or other design specifics.

The second value is event data, which generally appears in signatures as the e parameter.

Per the CLR event model, all events send some kind of event data, with that data captured as an

instance of a class that inherits EventArgs (or isEventArgs itself). You can discover which

properties for event data are available by looking at the e parameter of the delegate that is

assigned for the specific event you are handling, and then using Intellisense in Visual Studio or

the .NET Framework Class Library for Windows Phone. Some Windows Phone events use

the EventHandler<TEventArgs>delegate or other generic handler types. In most cases, the event

definitions constrains the generic with a specific EventArgs derived event data class. You should

then write the handler method as if it took that EventArgs derived event data class directly as the

second parameter.

For some events, the event data in the EventArgs derived class is as important as

knowing that the event was raised. This is especially true of the input events. For keyboard

events, key presses on the keyboard raise the same KeyUp andKeyDown events. In order to

26

determine which key was pressed, you must access the KeyEventArgs that is available to the

event handler.

 Adding event handlers in managed code

XAML is not the only way to assign an event handler to an object. To add event handlers

to any given object in managed code, including to objects that are not even usable in XAML, you

can use the CLR language-specific syntax for adding event handlers.In C#, the syntax is to use

the += operator. You instantiate the handler by declaring a new delegate that uses the event

handler method name.

If you are using code to add event handlers to objects that appear in the run-time UI, a

common practice for Windows Phone is to add such handlers in response to an object lifetime

event or callback, such as Loaded orOnApplyTemplate, so that the event handlers on the relevant

object are ready for user-initiated events at run time.

The other option for Visual Basic syntax is to use the Handles keyword on event

handlers. This technique is appropriate for cases where handlers are expected to exist on objects

at load time and persist throughout the object lifetime. Using Handles on an object that is

defined in XAML requires that you provide a Name / x:Name. This name becomes the instance

qualifier that is needed for the Instance.Event part of the Handles syntax. In this case you do not

need an object lifetime-based event handler to initiate attaching the other event handlers;

the Handles connections are created when you compile your XAML page.

VB

Sub textBlock1_MouseEnter(ByVal sender As Object, ByVal e As MouseEventArgs) Handles

textBlock1.MouseEnter

'....

End Sub

Sub textBlock1_MouseLeave(ByVal sender As Object, ByVal e As MouseEventArgs) Handles

textBlock1.MouseLeave

'....

End Sub

 Routed events

Windows Phone supports the concept of a routed event for several input events that are

defined in base classes and are present on most UI elements that support user interaction and

input. The following is a list of input events that are routed events:

 KeyDown

 KeyUp

 GotFocus

 LostFocus

https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.keydown(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.keyup(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.gotfocus(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.lostfocus(v%3Dvs.105).aspx

27

 MouseLeftButtonDown

 MouseLeftButtonUp

 MouseMove

 BindingValidationError

A routed event is an event that is potentially passed on (routed) from a child object to

each of its successive parent objects in the object tree. The object tree in question is

approximated by the XAML structure of your UI, with the root of that tree being the root

element in XAML. The true object tree might vary somewhat from the XAML because the

object tree does not include XAML language features such as property element tags.

 The OriginalSource property of RoutedEventArgs

When an event bubbles up an event route, sender is no longer the same object as the

event-raising object. Instead,sender is the object where the handler that is being invoked is

attached. In many cases, sender is not the object of interest, and you are instead interested in

knowing information such as object held focus when a keyboard key was pressed. In such a case,

the value of the OriginalSource property is the object of interest.

At all points on the route, OriginalSource reports the original object that raised the event,

instead of where the handler is attached. For an example scenario where this is useful, consider

an app where you want certain key combinations to be "hot keys" or accelerators, regardless of

which control currently holds keyboard focus and initiated the event. In terms of the object tree,

the focused object might be nested within some items list in a list box, or could be one of

hundreds of objects in the overall UI.

 The Handled property

Several event data classes for specific routed events contain a property named Handled.

For examples, seeMouseButtonEventArgs.Handled, KeyEventArgs.Handled,

, DragEventArgs.Handled, andValidationErrorEventArgs.Handled. Handled is a settable

Boolean property.

Setting the Handled property to true influences the event system in Windows Phone.

When you set the value to truein event data, the routing stops for most event handlers; the event

does not continue along the route to notify other attached handlers of that particular event case.

What "handled" as an action means in the context of the event and how your app responds is up

to you. However, you should keep in mind the behavior of the Windows Phone event system if

you set Handled in your event handlers.

 Input event handlers in controls

Specific existing Windows Phone controls sometimes use this Handled concept for input

events internally. This can give the appearance from user code that an input event never occurs.

https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.mouseleftbuttondown(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.mouseleftbuttonup(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.mousemove(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.frameworkelement.bindingvalidationerror(v%3Dvs.105).aspx

28

For example, the Button class includes logic that deliberately handles the general input

event MouseLeftButtonDown. Reference topics for specific control classes in the .NET

Framework Library often note the event handling behavior implemented by the class. In some

cases, the behavior can be changed or appended in subclasses by overriding OnEvent methods.

For example, you can change how your TextBox derived class reacts to key input by

overriding TextBox.OnKeyDown.

 Registering handlers for already-handled routed events

Earlier it was stated that setting Handled to true prevented most handlers from acting.

The API AddHandler provides a technique where you can attach a handler that will always be

invoked for the route, even if some other handler earlier in the route has set Handled to true.

This technique is useful if a control you are using has handled the event in its internal

compositing or for control-specific logic but you still want to respond to it on a control instance,

or higher in the route. However, this technique should be used with caution because it can

contradict the purpose of Handled and possibly violate a control's intended usage or object

model.

 User-initiated events

Windows Phone enforces that certain operations are only permitted in the context of a

handler that handles a user-initiated event. The following is a list of such operations:

 Navigating from a HyperlinkButton.

 Accessing the primary Clipboard API.

Windows Phone user-initiated events include the mouse events (such

as MouseLeftButtonDown), and the keyboard events (such as KeyDown). Events of controls that

are based on such events are also considered user-initiated.

API calls that require user initiation should be called as soon as possible in an event handler.

This is because the Windows Phone user initiation concept also requires that the calls occur

within a certain time window after the event occurrence. In Windows Phone, this time window is

approximately one second.

 Removing event handlers

In some circumstances, you might want to remove event handlers during the app lifetime.

To remove event handlers, you use the CLR-language-specific syntax. In C#, you use the -

= operator. In Visual Basic, you use the RemoveHandlerfunction. In either case, you reference

the event handler method name

29

DATA ACCESS AND STORAGE

Local Storage

The Internet plays an important role in mobile applications. Most Windows Phone

applications available in the Store make use of the network connection offered by every device.

However, relying only on the network connection can be a mistake; users can find themselves in

situations where no connection is available. In addition, data plans are often limited, so the fewer

network operations we do, the better the user experience is.

Windows Phone offers a special way to store local data called isolated storage. It works

like a regular file system, so you can create folders and files as on a computer hard drive. The

difference is that the storage is isolated—only your applications can use it. No other applications

can access your storage, and users are not able to see it when they connect their phone to the

computer. Moreover, as a security measure, the isolated storage is the only storage that the

application can use. You‘re not allowed to access the operating system folders or write data in

the application‘s folder.

Local storage is one of the features which offers duplicated APIs—the old Silverlight

ones based on the IsolatedStorageFile class and the new Windows Runtime ones based on the

LocalFolder class. As mentioned in the beginning of the series, we‘re going to focus on the

Windows Runtime APIs.

Working With Folders

The base class that identifies a folder in the local storage is called StorageFolder. Even

the root of the storage (which can be accessed using theApplicationData.Current.LocalStorage

class that is part of the Windows.Storagenamespace) is a StorageFolder object.

This class exposes different asynchronous methods to interact with the current folder, such as:

• CreateFolderAsync() to create a new folder in the current path.

• GetFolderAsync() to get a reference to a subfolder of the current path.

• GetFoldersAsync() to get the list of folders available in the current path.

• DeleteAsync() to delete the current folder.

• RenameAsync() to rename a folder.

 In the following sample, you can see how to create a

30

Working With File

Files, instead, are identified by the

interact with files:

StorageFile

folder in the local storage‘s root:

private async void

OnCreateFolderClicked(object

sender, RoutedEventArgs e)

class, which similarly offers methods to

{

await

ApplicationData.Current.LocalF

older.CreateFolderAsync(―myF

older‖);

}

DeleteAsync() to delete a file.

RenameAsync() to rename a file.

CopyAsync() to copy a file from one location to another.

MoveAsync() to move a file from one location to another.

The starting point to manipulate a file is the StorageFolder class we‘ve previously discussed,

since it offers methods to open an existing file (GetFileAsync()) or to create a new one in the

current folder (CreateFileAsync()).

Let‘s examine the two most common operations: writing content to a file and reading content

from a file.

How to Create a File

As already mentioned, the first step to create a file is to use the CreateFile() method on

a StorageFolder object. The following sample shows how to create a new file called file.txt in

the local storage‘s root:

31

private async void OnCreateFileClicked(object sender, RoutedEventArgs e)

{

StorageFile file = await

ApplicationData.Current.LocalFolder.CreateFileAsync(―file.txt‖, CreationCollisi

}

You can also pass the optional parameter CreationCollisionOption to the method to define the

behavior to use in case a file with the same name already exists. In the previous sample,

the ReplaceExisting value is used to overwrite the existing file.

Now that you have a file reference thanks to the StorageFile object, you are able to

work with it using the OpenAsync() method. This method returns the file stream, which you

can use to write and read content.

The following sample shows how to write text inside the file:

private async void OnCreateFileClicked(object sender, RoutedEventArgs e)

{

StorageFile file = await

ApplicationData.Current.LocalFolder.CreateFileAsync(―file.txt‖,

CreationColli IRandomAccessStream randomAccessStream = await

file.OpenAsync(FileAccessMode.ReadWrite);

using (DataWriter writer = new
DataWriter(randomAccessStream.GetOutputStreamAt(0)))

{

writer.WriteS

tring(―Sampl

32

sync(); }

}

The key is the DataWriter class, which is a Windows Runtime class that can be used to

easily write data to a file. We simply have to create a new DataWriter object, passing as a

await

writer.StoreA

e text‖);

e

private async void OnReadFileClicked(object sender, RoutedEventArgs e)

{

StorageFile file = await

ApplicationData.Current.LocalFolder.GetFileAsync("file.txt");

IRandomAccessStream randomAccessStream = await

file.OpenAsync(FileAccessMode.Read);

using (DataReader reader = new

DataReader(randomAccessStream.GetInputStreamAt(0)))

parameter the output stream of the file we get using th GetOuputStreamAt() method on the

stream returned by the OpenAsync() method.

The DataWriter class offers many methods to write different data types,

like WriteDouble() for decimal numbers, WriteDateTime() for dates, and WriteBytes() for

binary data. In the sample we write text using the WriteString() method, and then we call

the StoreAsync() and FlushAsync() methods to finalize the writing operation.

How to Read a File

The operation to read a file is not very different from the writing one. In this case, we

also need to get the file stream using the OpenFile() method. The difference is that, instead of

using the DataWriter class, we‘re going to use the DataReader class, which does the opposite

operation. Look at the following sample code:

33

ApplicationSettings

{

uint bytesLoaded = await reader.LoadAsync((uint)

randomAccessStream.Size); string readString =

reader.ReadString(bytesLoaded);

MessageBox.Show(readString);

}

}

Manage Settings

One common scenario in mobile development is the need to store

settings. Many applications offer a Settings page where users can

customize different options.

To allow developers to quickly accomplish this task, the

SDK includes a class called IsolatedStorageSettings , which

offers a dictionary called ApplicationSettings that you can use to store

settings.

Note: The

Runtime

class is part of the old storage APIs; the Windows

offers a new API to manage settings but, unfortunately, it isn’t available in Windows

Phone.

Using the

Dictionary<string,

property is very simple: its type is

object> and it can be used to store any object.

In the following sample, you can see two event handlers: the first one

saves an object in the settings, while the second one retrieves it.

private void OnSaveSettingsClicked(object sender, RoutedEventArgs e)

{

IsolatedStorageSettings

34

IsolatedStorageSettings settings =

IsolatedStorageSettings.ApplicationSettings;

settings.Add("name", "Matteo");

settings.Save();

}

private void OnReadSettingsClicked(object sender, RoutedEventArgs e)

{

IsolatedStorageSettings settings =

IsolatedStorageSettings.ApplicationSettings; if

(settings.Contains("name"))

{

MessageBox.Show(settings["name"].ToString());

}

}

The only thing to highlight is the Save() method, which you need to call every time you want to

35

persist the changes you‘ve made. Except for this, it works like a regular Dictionary collection.

Debugging the Local Storage

A common requirement for a developer working with local storage is the ability to see

which files and folders are actually stored. Since the storage is isolated, developers can‘t simply

connect the phone to a computer and explore it.

The best way to view an application‘s local storage is by using a third-party tool available

on CodePlex called Windows Phone Power Tools, which offers a visual interface for exploring

an application‘s local storage.

The tool is easy to use. After you‘ve installed it, you‘ll be able to connect to a device or

to one of the available emulators. Then, in the Isolated Storage section, you‘ll see a list of all

the applications that have been side-loaded from Visual Studio. Each one will be identified by its

application ID (which is a GUID). Like a regular file explorer, you can expand the tree structure

and analyze the storage‘s content. You‘ll be able to save files from the device to your PC, copy

files from your PC to the application storage, and even delete items.

Storing Techniques

Serialization and Deserialization

Serialization is the simplest way to store an application‘s data in the local

storage. It‘s the process that converts complex objects into plain text so that

they can be stored in a text file, using XML or JSON as output.

Deserialization is the opposite process; the plain text is converted back into

http://wptools.codeplex.com/

36

objects so that they can be used by the application.

In a Windows Phone application that uses these techniques, serialization is

typically applied every time the application‘s data is changed (when a new

item is added, edited, or removed) to minimize the risk of losing data if

something happens, like an unexpected crash or a suspension.

Deserialization, instead, is usually applied when the application starts for

the first time.Serialization is very simple to use, but its usage should be

limited to applications that work with small amounts of data, since

everything is kept in memory during the execution.

public class Person

{

public string

Name { get;

set; } public

string

Surname {

get; set; }

}

We assume that you will have a collection of Person objects, which represents your local data:

List<Person> people = new List<Person>

{

new Person

{

Name = "Matteo", Surname =

"Pagani"

},

37

CreateFile()

zation

To serialize our application‘s data we‘re going to use the local storage APIs we learned about in

the previous section. We‘ll use the method again, as shown in the

following sample:

new Person

{

Name = "John", Surname = "Doe"

}

};

private async void OnSerializeClicked(object sender, RoutedEventArgs e)

{

DataContractSerializer serializer = new

DataContractSerializer(typeof(List<Person>));

StorageFile file = await

ApplicationData.Current.LocalFolder.CreateFileAsync("people.xml");

IRandomAccessStream randomAccessStream = await

file.OpenAsync(FileAccessMode.ReadWrite);

using (Stream stream = randomAccessStream.AsStreamForWrite())

{

serializer.WriteO

bject(stream,

people); await

stream.FlushAsy

nc();

38

The class (which is part of

the System.Runtime.Serialization namespace) takes care of managing the serialization process.

When we create a new instance, we need to specify which data type we‘re going to serialize (in

the previous sample, it‘s). Next, we create a new file in the local storage and get

the stream needed to write the data. The serialization operation is made by calling

the method of the class, which requires as parameters

the stream location in which to write the data and the object to serialize. In this example, it‘s the

collection of objects we‘ve previously defined. Person

DataContractSerializer

DataContractSerializer WriteObject()

List<Person>

}

}

<ArrayOfPerson xmlns:i="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://schemas.dataco

<Person>

<Name>Matteo</Name>

<Surname>Pagani</Surname>

</Person>

<Person>

<Name>John</Name>

<Surname>Doe</Surname>

</Person>

</ArrayOfPerson>

http://www.w3.org/2001/XMLSchema-instance
http://schemas.datacontract.org/2004/07/Storage.Classes

39

 We get a stream to read by using the AsStreamForRead() method.

 We use the method of the DataContractSerializer class to deserialize the

file‘s content, which takes the file stream as its input parameter. It‘s important to note

that the method always returns a generic object, so you‘ll always have to cast it to your

real data type (in the sample, we cast it as). List<Person>

ReadObject()

private async void OnDeserializeClicked(object sender, RoutedEventArgs e)

{

StorageFile file = await

ApplicationData.Current.LocalFolder.GetFileAsync("people.xml");

DataContractSerializer serializer = new

DataContractSerializer(typeof(List<Person>));

IRandomAccessStream randomAccessStream = await

file.OpenAsync(FileAccessMode.Read);

using (Stream stream = randomAccessStream.AsStreamForRead())

{

List<Person> people = serializer.ReadObject(stream) as List<Person>;

}

}

 The only differences are:

Deserialization

The deserialization process is very similar and involves, again, the storage APIs to read

the file‘s content and the DataContractSerializer class. The following sample shows how to

deserialize the data we serialized in the previous section:

40

which will be used to translate it into a column. In the following sample we adapt the

familiar Person class to be stored in a table:

{

[Column(IsPrimaryKey = true, CanBeNull = false,

Using Databases: SQL CE

SQL CE is the database solution that was introduced in Windows Phone 7.5. It‘s

a stand- alone database, which means that data is stored in a single file in the storage

without needing a DBMS to manage all the operations.

Windows Phone uses SQL CE 3.5 (the latest release at this time is 4.0, but it is

not supported) and doesn‘t support SQL query execution. Every operation is made using

LINQ to SQL, which is one of the first of Microsoft‘s ORM solutions.

The approach used by SQL CE on Windows Phone is called code first. The

database is created the first time the data is needed, according to the entities definition

that you‘re going to store in tables. Another solution is to include an already existing

SQL CE file in your Visual Studio project. In this case, you‘ll only be able to work with

it in read-only mode.

How to Define the Database

The first step is to create the entities that you‘ll need to store in your database.

Each entity will be mapped to a specific table.entity definition is made using attributes,

which are part

of the System.Data.Linq.Mapping namespace. Each property is decorated with an

attribute,

[Table]

public class Person

IsDbGenerated = true)] public string Id { get; set; }

[Column]

public string Name { get; set; }

41

tic string ConnectionString = "Data source=isostore:/Persons.sdf"; public sta

[Column]

 public string Surname { get; set; }

}

The entire entity is marked with the Table attribute, while every property is marked with

the Column attribute. Attributes can be customized with some properties, like:

IsPrimaryKey to apply to columns that are part of the primary key.

IsDbGenerated in case the column‘s value needs to be automatically generated

every

time a new row is inserted (for example, an automatically incremented number).

 Name if you want to assign to the column a different name than the property.

 DbType to customize the column‘s type. By default, the column‘s type is

automatically set by the property‘s type.

Working With the Database: The DataContext

DataContext is a special class that acts as an intermediary between the

database and

your application. It exposes all the methods needed to perform the most common

operations, like insert, update, and delete.

The DataContext class contains the connection string‘s definition (which is the path

where the database is stored) and all the tables that are included in the database. In the

following sample,

you can see a DataContext definition that includes the Person table we‘ve

previously defined:

public class DatabaseContext: DataContext

{

public DatabaseContext(string connectionString):base(connectionString)

42

 DatabaseExists() returns whether the database already exists.

 CreateDatabase() effectively creates the database in the storage.

In the following sample, you can see a typical database initialization that is executed every time

the application starts:

{

}

public Table<Person> Persons;

}

A separate class of your project inherits from the DataContext class. It

will force

you to

implement a public constructor that supports a connection string as its input

parameter. There are two connection string types, based on the following

prefixes:

 isostore:/ means that the file is stored in the local storage. In the previous

sample, the

database‘s file name is Persons.sdf and it‘s stored in the storage‘s root.

 appdata:/ means that the file is stored in the Visual Studio project

instead. In this case,

you‘re forced to set the File Mode attribute to Read Only .

Creating the Database

As soon as the data is needed, you‘ll need to create the database if it doesn‘t exist
yet. For

this purpose, the DataContext class exposes two methods:

private void OnCreateDatabaseClicked(object sender, RoutedEventArgs e)

43

Working With the Data

All the operations are made using the object that we‘ve declared in

the definition. It supports standard LINQ operations, so you can query the data

using methods like , , , and .

In the following sample, you can see how we retrieve all the

name is Matteo:

objects in the table whose Person

OrderBy() Select() FirstOrDefault() Where()

DataContext

Table<T>

{

using (DatabaseContext db = new

DatabaseContext(DatabaseContext.ConnectionString))

{

if (!db.DatabaseExists())

{

db.CreateDatabase();

}

}

}

private void OnShowClicked(object sender, RoutedEventArgs e)

{

using (DatabaseContext db = new

DatabaseContext(DatabaseContext.ConnectionString))

{

List<Person> persons = db.Persons.Where(x => x.Name ==

"Matteo").ToList();

}

44

The returned result can be used not only for display purposes, but also for editing. To update the

item in the database, you can change the values of the returned object by calling

the SubmitChanges() method exposed by the DataContext class.

To add new items to

and

the table, the class offers two

methods: . The first method can be used to insert a

single object, while the second one adds multiple items in one operation (in fact, it accepts a

collection as a parameter).

InsertAllOnSubmit() InsertOnSubmit()

Table<T>

}

private void OnAddClicked(object sender, RoutedEventArgs e)

{

using (DatabaseContext db = new

DatabaseContext(DatabaseContext.ConnectionString))

{

Person person = new Person

{

Name = "Matteo",

Surname = "Pagani" };

db.Persons.InsertOnSubmit(person);

db.SubmitChanges();

}

}

Please note again the SubmitChanges() method: it‘s important to call it every

time you modify

45

In a similar way, you can delete items

all persons with the name Matteo:

Updating the Schema

SQL CE in Windows Phone offers a specific class to satisfy this requirement,

called , which offers some methods to update an already existing

database‘s schema.

The key property offered by the class

is , which is used to track the current schema‘s version. It‘s important

to properly set it every time we apply an update because we‘re going to use it when the database

is created or updated to recognize whether we‘re using the latest version.

DatabaseSchemaVersion

DatabaseSchemaUpdater

DatabaseSchemaUpdater

the table (by adding a new item or editing or deleting an already existing one),

otherwise changes won‘t be saved.

private void OnDeleteClicked(object sender, RoutedEventArgs e)

{

using (DatabaseContext db = new

DatabaseContext(DatabaseContext.ConnectionString))

{

List<Person> persons = db.Persons.Where(x => x.Name == "Matteo").ToList();

db.Persons.DeleteAllOnSubmit(persons);db.SubmitChanges();

}

}

After you‘ve modified your entities or the DataContext definition in your project, you can use

the following methods:

 if you‘ve added a new table (of type).

 if you‘ve added a new column to a table (of type T).

 AddAssociation<T>() if you‘ve added a new relationship to a table (of type T).

The following sample code is executed when the application starts and needs to take care of the

schema update process:

AddColumn<T>()

T AddTable<T>()

46

private void OnUpdateDatabaseClicked(object sender, RoutedEventArgs e)

{

using (DatabaseContext db = new

DatabaseContext(DatabaseContext.ConnectionString))

{

if (!db.DatabaseExists())

{

db.CreateDatabase();

DatabaseSchemaUpdater updater = db.CreateDatabaseSchemaUpdater();

updater.DatabaseSchemaVersion = 2;

updater.Execute();

}

else

{

DatabaseSchemaUpdater updater =

db.CreateDatabaseSchemaUpdater(); if

(updater.DatabaseSchemaVersion < 2)

{

updater.AddColumn<Person>("BirthDate");

updater.Databas

eSchemaVersio

n = 2;

updater.Execute

();

47

}

We‘re assuming that the current database‘s schema version is 2. In case the database

doesn‘t exist, we simply create it and, using the class, we update

the property. This way, the next time the data will be needed, the

update operation won‘t be executed since we‘re already working with the latest version.

Instead, if the database already exists, we check the version number. If it‘s an older

version, we update the current schema. In the previous sample, we‘ve added a new column to

the Person table, called (which is the parameter requested by

the AddColumn<T>() method). Also in this case we need to remember to properly set

the DatabaseSchemaVersion property to avoid further executions of the update operation.

In both cases, we need to apply the described changes by calling the method.

SQL Server Compact Toolbox: An Easier Way to Work With SQL CE

Two versions of the tool are available:

Execute()

BirthDate

DatabaseSchemaVersion

DatabaseSchemaUpdater

 As an extension that‘s integrated into commercial versions of Visual Studio.

 As a stand-alone tool for Visual Studio Express since it does not support extensions.

}

}

}

 The following are some of the features supported by the tool:

 Automatically create entities and a DataContext class starting from an already existing

SQL CE database.

 The generated DataContext is able to copy a database from your Visual Studio project

http://visualstudiogallery.msdn.microsoft.com/0e313dfd-be80-4afb-b5e9-6e74d369f7a1/
http://sqlcetoolbox.codeplex.com/releases/view/104096

48

Advertisement

Using Databases: SQLite

SQLite, from a conceptual point of view, is a similar solution to SQL CE: it‘s a stand-

alone database solution, where data is stored in a single file without a DBMS requirement.

The pros of using SQLite are:

 It offers better performance than SQL CE, especially with large amounts of data.

 It is open source and cross-platform; you‘ll find a SQLite implementation for Windows 8,

Android, iOS, web apps, etc.

SQLite support has been introduced only in Windows Phone 8 due to the new native code

support feature (since the SQLite engine is written in native code), and it‘s available as a Visual

Studio extension that you can download from the Visual Studio website.

After you‘ve installed it, you‘ll find the SQLite for Windows Phone runtime available in

the Add reference window, in the Windows Phone Extension section. Be careful; this runtime

is just the SQLite engine, which is written in native code. If you need to use a SQLite database in

a C# application, you‘ll need a third-party library that is able to execute the appropriate native

calls for you.

In actuality, there are two available SQLite libraries: sqlite-net and SQLite Wrapper for

Windows Phone. Unfortunately, neither of them is as powerful and flexible as the LINQ to SQL

library that is available for SQL CE.

to your application‘s local storage. This way, you can start with a prepopulated database

and, at the same time, have write access.

 The generated DataContext supports logging in the Visual Studio Output Window so

you can see the SQL queries generated by LINQ to SQL.

http://visualstudiogallery.msdn.microsoft.com/cd120b42-30f4-446e-8287-45387a4f40b7

49

public class Person

{

[Primary

Key,

AutoIncr

ement]

public

int Id {

get; set;

}

[MaxLength(50)]

public string Name { get; set; }

Sqlite-net

Sqlite-net is a third-party library. The original version for Windows Store apps is

developed by Frank A. Krueger, while the Windows Phone 8 port is developed byPeter Huene.

The Windows Phone version is available on GitHub. Its configuration procedure is a bit tricky

and changes from time to time, so be sure to follow the directions provided by the developer on

the project‘s home page.

Sqlite-net offers a LINQ approach to use the database that is similar to the code-first one offered

by LINQ to SQL with SQL CE.

For example, in sqlite-net, tables are mapped with your project‘s entities. The difference is that,

this time, attributes are not required since every property will be automatically translated into a

column. Attributes are needed only if you need to customize the conversion process, as in the

following sample:

https://github.com/praeclarum
https://github.com/peterhuene
https://github.com/peterhuene/sqlite-net-wp8

50

 public string Surnam e { get; set; }

}

Surname doesn‘t have any attribute, so it will be automatically converted into

column. Instead, we set Id as a primary key with an auto increment value, while we a varchar

specify that Name can have a maximum length of 50 characters.

All the basic operations with the database are accomplished using

the SQLiteAsyncConnection class, which exposes asynchronous methods to create tables, query

the data, delete items, etc. It requires as an input parameter the local storage path where the

database will be saved.

As with SQL CE and LINQ to SQL, we need to create the database before using it. This

is done by calling the CreateTableAsync<T>() method for every table we need to create,

where T is the table‘s type. In the following sample, we create a table to store

the Person entity:

private async Task CreateDatabase()

{

SQLiteAsyncConnection conn = new

SQLiteAsyncConnection(Path.Combine(ApplicationData.Current.L await

conn.CreateTableAsync<Person>();

}

In a similar way to LINQ to SQL, queries are performed using the Table<T> object. The only

difference is that all the LINQ methods are asynchronous.

private async void OnReadDataClicked(object sender, RoutedEventArgs e)

{

SQLiteAsyncConnection conn = new

51

In the previous sample, we retrieve all the objects whose name is Matteo.

Insert, update, and delete operations are instead

the

and

object, which offers the

directly executed using

U

methods. It is not required to specify the object‘s type; sqlite-net will DeleteAsync()

pdateAsync() , InsertAsync() , SQLiteAsyncConnection

Person

automatically detect it and execute the operation on the proper table. In the following sample,

you can see how a new record is added to a table:

SQLiteAsyncConnection(Path.Combine(ApplicationData.Current.L List<Person>

person = await conn.Table<Person>().Where(x => x.Name ==

"Matteo").ToListAsync();

}

private async void OnAddDataClicked(object sender, RoutedEventArgs e)

{

SQLiteAsyncConnection conn = new

SQLiteAsyncConnection(Path.Combine(ApplicationData.Current

Person person = new Person

{

N

a

m

e

=

52

"

M

a

t

t

e

o

"

,

S

u

r

n

a

m

e

=

"

P

a

g

a

n

53

Sqlite-net is the SQLite library that offers the easiest approach, but it has many limitations. For

example, foreign keys are not supported, so it‘s not possible to easily manage relationships.

SQLite Wrapper for Windows Phone

SQLite Wrapper for Windows Phone has been developed directly by Microsoft team

members (notably Peter Torr and Andy Wigley) and offers a totally different approach than

sqlite-net. It doesn‘t support LINQ, just plain SQL query statements.

The advantage is that you have total control and freedom, since every SQL feature is

supported: indexes, relationships, etc. The downside is that writing SQL queries for every

operation takes more time, and it‘s not as easy and intuitive as using LINQ.

The key class is called , which takes care of initializing the database and offers

all the methods needed to perform the queries. As a parameter, you need to set the local storage

Database

i

"

};

await conn.InsertAsync(person);

}

54

path to save the database. If the path doesn‘t exist, it will be automatically created. Then, you

need to open the connection using the OpenAsync() method. Now you are ready to perform

operations.

There are two ways to execute a query based on the value it returns.

If the query doesn‘t return a value—for example, a table creation—you can use

the ExecuteStatementAsync() method as shown in the following sample:

private async void OnCreateDatabaseClicked(object sender, RoutedEventArgs e)

{

Database database = new Database(ApplicationData.Current.LocalFolder, ―people.db‖);

await database.OpenAsync();

string query = ―CREATE TABLE PEOPLE ― +

―(Id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,‖ +

―Name varchar(100), ― +

―Surname varchar(100))‖;

await database.ExecuteStatementAsync(query);

}

The previous method simply executes the query against the opened database. In the sample, we

create a People t able with two fields, Na me an d Sur name .

The query, instead, can contain some dynamic parameters or return some values. In this case, we

need to introduce a new class called Statement as demonstrated in the following sample:

55

private async void OnAddDataClicked(object sender, RoutedEventArgs e)

{

Database database = new Database(ApplicationData.Current.LocalFolder,

―people.db‖);

await database.OpenAsync();

string query = ―INSERT INTO PEOPLE (Name, Surname) VALUES

(@name, @surname)‖; Statement statement = await

database.PrepareStatementAsync(query);

statement.BindTextParameterWithName(―@name‖,―Matteo‖);

statement.BindTextParameterWithName(―@surname‖, ―Pagani‖);

await statement.StepAsync();

}

The

with

the

class identifies a query, but it allows additional customization to be performed

it. In

and

the sample, we use it to assign a dynamic value to

parameters. We set the placeholder

and then we assign them

using

a

the @ prefix

(@name and), value using

the BindTextParameterWithName() method, passing the parameter‘s name and the value.

isn‘t the only available method, but it‘s specifically for string

parameters. There are other methods based on the parameter‘s type, such

as BindIntParameterWithName() for numbers.

To execute the query, we use the

query, but also to iterate the resulting rows.

method. Its purpose isn‘t just to execute the

In the following sample, we can see how this method can be used to manage the results of

a query: SELECT

BindTextParameterWithName()

Statement

@surname

Surname Name

StepAsync()

56

private async void OnGetDataClicked(object sender, RoutedEventArgs e)

{

Database database = new Database(ApplicationData.Current.LocalFolder, ―people.db‖);

await database.OpenAsync();

string query = ―SELECT * FROM PEOPLE‖;

Statement statement = await database.PrepareStatementAsync(query);

while (await statement.StepAsync())

{

MessageBox.Show(statement.GetTextAt(0) + ― ― + statement.GetTextAt(1));

}

}

NETWORK COMMUNICATION

The Windows Runtime API, Windows.Networking.Sockets, has been adopted for

Windows Phone 8. It has been implemented as a Windows Phone Runtime API, making it easy

to use in whatever supported programming language you choose. Although we've enhanced the

.NET API, System.Net.Sockets, to support more features such as IPv6 and listener sockets, you

should consider using the new API for sockets programming because it is more portable than the

.NET API. Windows.Networking.Sockets has been built from the ground up to be clean, secure,

and easy-to-use APIs that enforce best practices

New Features in Windows Phone 8

• Two different Networking APIs

• System.Net – Windows Phone 7.1 API, upgraded with new features

• Windows.Networking.Sockets – WinRT API adapted for Windows Phone

• Support for IPV6

• Support for the 128-bit addressing system added to System.Net.Sockets and also is supported in

Windows.Networking.Sockets

• NTLM and Kerberos authentication support

https://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.sockets.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.net.sockets(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.sockets.aspx

57

• Incoming Sockets

• Listener sockets supported in both System.Net and in Windows.Networking

• Winsock support

• Winsock supported for

native development

Windows Phone 8

Emulator and local host

• In Windows Phone 7.x, the emulator shared the networking of the Host PC

• You could host services on your PC and access them from your code using http://localhost...

• In Windows Phone 8, the emulator is a Virtual machine running under Hyper-V

• You cannot access services on your PC using http://localhost...

• You must use the correct host name or raw IP address of your host PC in URIs

Sockets for Windows Phone 8

Windows Phone provides a programming interface to enable developers

to create applications that can communicate with internet services and other

remote applications using sockets. Examples of applications and services that

use sockets to communicate include FTP, email, chat systems, and streaming

multimedia. Using sockets in your Windows Phone application enables you to

create rich client applications that can communicate with services over

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP)

sockets.

Sockets Support on Windows Phone

Windows Phone provides the programming interface needed to create

and use TCP and UDP sockets. You can select which type of socket to use

based on your application‘s needs. The following diagram shows a view of the

operations that take place during a communication session between a client

application and a service.

http://localhost./
http://localhost./

58

59

Operation TCP UDP

1 To communicate over TCP, a

connection must be established

between the client and the server. The

endpoint to which the client wants to
communicate must be defined as part

of the connection request. This is an

asynchronous operation in Windows
Phone.

Communication over UDP is connectionless,

meaning a connection does not have to be
created prior to communication.

2 Once the connection has been
successfully established, the client can

send data to the server by setting up a

buffer of data and passing it to the

server. TCP is stream-based and the

order in which the data is received is

guaranteed to be in the order in which
it was sent. The TCP protocol takes

care of this ordering and reliability for

the transmission.

A UDP socket can begin communicating by
creating a send request and passing the buffer

of data to the server. The successful receipt of

the data by the server and the order in which it

is received is not guaranteed. If the client

requires this certainty, then this must be

custom implemented on both the client and
the server.

3 The client can request to receive data

from the server. This is an

asynchronous call and, if successful,

the resulting callback will contain the

buffer of data that was sent.

A UDP socket can receive data from a service

by ―listening‖ on the port associated with this
service for any incoming data, and processing
it as appropriate.

4 The send and receive pattern in

operations 2 and

3 can be repeated for as long as the
socket remains connected.

The client can continue to send and receive

data.

5 Once the client has finished
communicating, it calls shutdown to

inform the server that the socket is

terminating. This call is used to make

sure the remaining data from the server

is received before the socket
disconnects.

6 Finally, the client disconnects the socket
and closes the communication channel.

7 At this point, there is no active socket
channel, and data sent to the client will

be lost.

At this point, there is no active socket channel,
and data sent to the client will be lost.

60

The following is a comparison of the characteristics of TCP and

UDP sockets on Windows Phone.

TCP UDP

Transmission Type Stream-based Datagram

Example Uses Email, Remote

Administration, File

Transfer, Web

Streaming Multimedia,

Online Games, Internet

Telephony

Unicast Yes Yes

Any Source Multicast (ASM) No Yes

Source-specific Multicast (SSM) No Yes

Broadcast No No

Connectionless or

Connected

Connection-oriented Connectionless

Reliable Communication Yes No

Terminology

A socket is a mechanism for delivering data packets or

messages between applications or processes. In programming terms, a

socket is a programming interface against the TCP/IP protocol stack.

Sockets are identified on a network through a socket address, which is

a combination of Internet protocol (IP) address and port number. The

following table lists some common terminology that you should

become familiar with as you work with sockets in your Windows

Phone applications.

Term Description

Broadcast To send data to all devices on a network.

Client In socket communication, the consumer of a service provided by a server. For

example, a chat client is a consumer of a chat service and can use that service to

establish a chat session with other clients. An application running on a Windows
Phone device is a client

61

application that can consume a service over sockets.

Connectionless Communication in which a connection does not need to be

set up between the sending socket and the receiving socket

prior to the communication starting. In this mode, there is no

guarantee that the recipient is ready to receive the data and

there is also no acknowledgement that the data was ever

received, or received with no errors. A UDP socket provides
a connectionless communication interface.

Connection-

oriented

Communication in which a socket must first set up a

connection to a destination socket prior to sending or

receiving data. Once a connection is established, a stream of

data can be sent and it will be received in the same order. A

TCP socket provides a connection- oriented communication

interface.

Endpoint A communication port on either side of the communication.

It is typically defined by an IP address, supported transport

protocol type, and port number.

IP Address The industry-standard naming convention for devices on a

network. It is a binary number, usually stored in a human
readable format such as 172.36.254.14.

IPv4 The older 32-bit addressing system for devices on the

Internet. An example of an IPv4 address in human-readable

form is 172.36.254.14.

IPv6 The latest 128-bit addressing system for devices on a

network. It was developed to accommodate the ever-

increasing growth of the number of devices on the Internet.

An example of an IPv6 address in human-readable form is

fe80::e42b:2e74:6ddb:e30.

Important Note:

IPv6 is not supported in sockets for Windows Phone OS 7.1.

Multicast Sending data to devices on a network that have registered

interest in that data by joining a multicast group.

Port Number A number that, combined with an IP address and the

transport protocol it supports for communication, identifies

a port or endpoint on a network. A well-known list of ports

has been reserved for use by specific services such as Telnet

(23) and HTTP (80). Other numbers are available for use by

other services and applications.

62

Datagram A Transport Layer protocol used to transmit datagrams in a

l (UDP) connectionless manner, meaning that no prior connection

needs to be established before sending and receiving

messages. This characteristic makes UDP a fast transport

protocol, but it can have disadvantages over TCP in terms

of reliability since receipt of these datagrams by the

destination is not guaranteed and no acknowledgement is

sent by default.

Sending data to a specific destination with a uniquely

identifiable address in a network.

Server A device on a network that provides a service, or multiple

services, for consumption by clients. As an example, a chat

server provides a chat service that can be used by chat

clients to establish chat sessions with other clients. Although

applications on a Windows Phone device can send and
receive data over a socket, they are not considered servers.

Socket A programming interface to communicate with other

applications or services on a network.

Transmission
Control Protocol

(TCP)

An Internet standard that guarantees reliable, in order,
delivery of messages on a network.

TCP/IP The suite of communication protocols used on the Internet

and other networks. It was named after the first two

protocols that were added to this standard, namely, TCP

and IP, but it consists of four layers of protocols, with the

TCP and UDP protocols being parts of the Transport

Layer.

User Simple Http

Protoco

using System

public MainP

Operations – WebClient

.Net; ... WebClient client; // Constructor

age()

Unicast
{ ...

client = new WebClient();

client.DownloadStringCompleted += client_DownloadStringCompleted;

}

void client_DownloadStringCompleted(object sender, DownloadStringCompletedEventArgs e)

{ this.downloadedText = e.Result;

63

Determining the Current Internet Connection Type

private const int IANA_INTERFACE_TYPE_OTHER = 1;

}

private void loadButton_Click(object sender, RoutedEventArgs e) {

client.DownloadStringAsync(new Uri("http://MyServer/ServicesApplication/rssdump.xml"));

}

http://myserver/ServicesApplication/rssdump.xml

64

// Get current Internet Connection Profile. ConnectionProfile internetConnectionProfile =

Windows.Networking.Connectivity.NetworkInformation.GetInternetConnectionProfile();

switch (internetConnectionProfile.NetworkAdapter.IanaInterfaceType)

{

case IANA_INTERFACE_TYPE_OTHER: cost += "Network: Other";

break;

case IANA_INTERFACE_TYPE_ETHERNET: cost += "Network: Ethernet";

break;

case IANA_INTERFACE_TYPE_WIFI: cost += "Network: Wifi\r\n";

break;

default:

cost += "Network: Unknown\r\n"; break;

}

private const int IANA_INTERFACE_TYPE_ETHERNET = 6;

private const int IANA_INTERFACE_TYPE_PPP = 23;

private const int IANA_INTERFACE_TYPE_WIFI = 71; ... string network = string.Empty;

65

 PUSH NOTIFICATION

Microsoft Push Notification Service in Windows Phone is an asynchronous, best-effort

service that offers third-party developers a channel to send data to a Windows Phone app from a

cloud service in a power-efficient manner.

The following diagram shows how a push notification is sent.

1. Your app requests a push notification URI from the Push client service.

2. The Push client service negotiates with the Microsoft Push Notification Service (MPNS), and

MPNS returns a notification URI to the Push client service.

3. The Push client service returns the notification URI to your app.

4. Your app can then send the notification URI to your cloud service.

5. When your cloud service has info to send to your app, it uses the notification URI to send a push

notification to MPNS.

6. MPNS routes the push notification to your app.

To send push notifications, your web service or app must:

 Create a POST message for each Windows Phone device to which you want to send a

notification.

 Form the message for the appropriate notification type. The following sections describe

the message formats for toast, Tile, and raw notification messages. You can post only one

notification type (toast, Tile, or raw) to the server at a time. If you want to send multiple

notification types to the same client device at the same time, you must create separate POST

messages for each notification type.

Post the messages to the push notification service.

Get the response from the push notification service and respond accordingly.

Custom HTTP headers

66

Custom HTTP headers can include a notification message ID, batching interval, the type

of push notification being sent, and the notification channel URI.The MessageID is the

notification message ID associated with the response. If this header is not added to the POST

request, the push notification service omits this header in the response.

The header specification is "X-MessageID"":"1*MessageIDValue MessageIDValue =

STRING (uuid).

For example: X-MessageID: UUID

The NotificationClass is the batching interval that indicates when the push notification will be

sent to the app from the push notification service. See the tables in the toast, Tile, and raw

notification sections for possible values for this header. If this header is not present, the message

will be delivered by the push notification service immediately.

The header specification is ‖X-NotificationClass‖‖:‖1*NotificationClassValue

NotificationClassValue = DIGIT.

For example: X-NotificationClass:1

The Notification Type is the type of push notification being sent. Possible options are

Tile, toast, and raw. If this header is not present, the push notification will be treated as a raw

notification. For more info, see Push notifications for Windows Phone 8. The header

specification is ―X-WindowsPhone-Target‖‖:‖1*NotificationTypeValue NotificationTypeValue

= STRING.

For example: X-WindowsPhone-Target:toast.

Special characters

The following characters should be encoded as shown in the table when used in a Tile or toast

payload.

Character XML encoding

< <

> >

& &

‘ '

Tile and toast notification payloads

https://msdn.microsoft.com/en-us/library/windows/apps/ff402558(v%3Dvs.105).aspx

67

The following sections describe payload info needed for sending a push notification to a

toast or Tile.

Toast notification payloads

For general info about how to structure the toast notification payload using code or XML,

as well as for info about how to structure the payload to deep link into your app, see Toasts for

Windows Phone 8.

Toast notification payload HTTP headers

Use the following HTTP headers when creating a toast notification:

C#

sendNotificationRequest.ContentType = "text/xml";

sendNotificationRequest.Headers.Add("X-WindowsPhone-Target", "toast");

sendNotificationRequest.Headers.Add("X-NotificationClass", "[batching interval]");

Toast notification batching intervals

The following table describes the values that the batching interval can have.

Tile notification batching intervals

The following table describes the values that the batching interval can have.

Sending push notifications to secondary Tiles

If your app has secondary Tiles, the Id attribute designates which Tile to update. You can

omit the Id attribute of theTile element if updating your app's default Tile.

Value Delivery interval

2 Immediate delivery.

12 Delivered within 450 seconds.

22 Delivered within 900 seconds.

Value Delivery interval

1 Immediate delivery.

11 Delivered within 450 seconds.

21 Delivered within 900 seconds.

https://msdn.microsoft.com/en-us/library/windows/apps/jj662938(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/jj662938(v%3Dvs.105).aspx

68

The following code shows an example of the Id attribute of the Tile element, which should

contain the exact navigation URI of the secondary Tile.

string tileMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +

"<wp:Notification xmlns:wp=\"WPNotification\">" +

"<wp:Tile Id=\"/SecondaryTile.xaml?DefaultTitle=FromTile\">" +

…

"</wp:Tile> " +

"</wp:Notification>";

Raw Tile notification payload

Use the following HTTP headers when sending a raw Tile notification.

C#

sendNotificationRequest.ContentType = "text/xml";

sendNotificationRequest.Headers.Add("X-NotificationClass", "[batching interval]");

The following table describes the values that the batching interval can have.

string tileMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +

"<root>" +

"<Value1>[UserValue1]<Value1>" +

"<Value2>[UserValue2]<Value2>" +

"</root>"

You can also pass a byte stream. The following code shows an example.

new byte[] {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};

Background agents for Windows Phone 8

Scheduled Tasks and background agents allow an application to execute code in the

background, even when the application is not running in the foreground. The different types of

Scheduled Tasks are designed for different types of background processing scenarios and

Value Delivery interval

3 Immediate delivery.

13 Delivered within 450 seconds.

23
The structure of the pa

Delivered within 900 seconds.
yload is defined by the app. The following code shows an example.

69

The following are the types of Scheduled Tasks. Note that

ScheduledTask derives from ScheduledAction. The code that runs in the

background is placed in a class that derives from ScheduledTaskAgent, which

derives fromBackgroundAgent.

Scheduled Task

Type
Description

PeriodicTask Periodic agents run for a small amount of time on a regular recurring

interval. Typical scenarios for this type of task include uploading the

device‘s location and performing small amounts of data synchronization.

ResourceIntensiv

eTask

Resource-intensive agents run for a relatively long period of time when the

phone meets a set of requirements relating to processor activity, power

source, and network connection. A typical scenario for this type of task is

synchronizing large amounts of data to the phone while it is not being

actively used by the user.

Background Agent Lifecycle

An application may have only one background agent. This agent can

be registered as a PeriodicTask, aResourceIntensiveTask, or both. The

schedule on which the agent runs depends on which type of task it is registered

as. The details of the schedules are described later in this topic. Only one

instance of the agent runs at a time.

The code for the agent is implemented by the application in a class

that inherits from BackgroundAgent. When the agent is launched,

the operating system calls OnInvoke(ScheduledTask). In this method,

the application can determine which type of ScheduledTask it is being run

as, and perform the appropriate actions.

When the agent has completed its task, it should call NotifyComplete()

or Abort() to let the operating system know that it has

completed.NotifyComplete should be used if the task was successful. If the

agent is unable to perform its task – such as a needed server being unavailable

- the agent should call Abort, which causes the IsScheduled property to be set

to false.

The following constraints apply to all Scheduled Tasks.

therefore have different behaviors and constraints. This topic describes the scheduling, duration,

and limitations of scheduled tasks.

https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledtask(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledaction(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledtaskagent(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.backgroundagent(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.periodictask(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.resourceintensivetask(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.resourceintensivetask(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.backgroundagent(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledtaskagent.oninvoke(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.backgroundagent.notifycomplete(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.backgroundagent.abort(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledaction.isscheduled(v%3Dvs.105).aspx

70

Unsupported APIs There is a set of APIs that cannot be used by any Scheduled Task. Using these

APIs either will cause an exception to be thrown at run time or will cause the

application to fail certification during submission to Store. For the list

of restricted APIs, see Unsupported APIs for background agents for

Windows Phone 8.

Memory usage

cap

Periodic agents and resource-intensive agents can use no more than 20 MB of

memory at any time on devices with 1 GB of memory or more.

Reschedule

required every two

weeks

Use the ExpirationTime property of the ScheduledTask object to set the time

after which the task no longer runs. This value must be set to a time within two

weeks of the time when the action is scheduled with the Add(ScheduledAction)

method.

Agents
unscheduled

after two
consecuti

ve crashes

Both periodic and resource-intensive agents are unscheduled if they exit two

consecutive times due to exceeding the memory quota or any other unhandled
exception. The agents must be rescheduled by the foreground application.

The following are the schedule, duration, and general constraints for Resource-intensive agents.

Constraint Description

Duration:

10 minutes

Resource-intensive agents typically run for 10 minutes. There are other constraints that may cause
an agent to be terminated early.

External power
required

Resource-intensive agents do not run unless the device is connected to an external power source.

Non-cellular

connection

required

Resource-intensive agents do not run unless the device has a network connection over Wi-Fi or

through a connection to a PC.

Minimum

battery power

Resource-intensive agents do not run unless the device‘s battery power is greater than 90%.

Device

scree

n lock required

Resource-intensive agents do not run unless the device screen is locked.

No active phone

call

Resource-intensive agents do not run while a phone call is active.

https://msdn.microsoft.com/en-us/library/windows/apps/hh202962(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh202962(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledaction.expirationtime(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledtask(v%3Dvs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledactionservice.add(v%3Dvs.105).aspx

71

Introduction to Silverlight

Microsoft Silverlight is a deprecated application framework for writing and

running rich Internet applications, similar to Adobe Flash. A plug-in for Silverlight

is available for some browsers.

Microsoft Silverlight is a cross-browser, cross-platform implementation of .NET for

building and delivering the next generation of media experiences & rich interactive

applications for the Web.

72

73

74

75

76

ound Agents

With the release of Windows Phone 7 Mango, you now

have the ability to multitask (scheduled multitask) by using

background agents. Background agents allow you to do things

when your application is not running.

It is important to understand that the OS is responsible for

determining when your background agent can run and is

determined by a number of factors. It is also dependent on the

type of Background Agent you use.

B

a For both types of Agents you are constrained by the following:
c

k - Unsupported APIs

g - Memory Cap Usage
r

77

s

r

- A hes)

g - Rescheduling (You have to reschedule every two weeks)
e

n Periodic Agents (PeriodicTask) are used when you want a
t ―semi‖ predictable action to fire. But they are constrained to the

C
following. For example, you can use Periodic Agents for

r collecting quick GPS coordinates or updating an RSS feed.

a
- 30 Minute Intervals (this time may drift)

h - Run for 25 seconds

e - Might not run on Battery Saver mode

s - Agents per device (The number of apps using agents) can be as low as 6 on

some devices

(

u Resource-intensive Agents (resourceIntensiveTask) can be used

n for more intensive items like downloading larger files or coping
s database entries to a replication server. But you must keep in
c

mind that they have some specific constraints as well.
h
e - Duration 10 Minutes
d

- External Power Required (You need to plug it in)
u

l - Connection through WiFi or PC

e - Battery 90% or better

d - Screen Lock on
- No active phone call

A - Add a ScheduledAgentTasks project to your solution
g

- Add a reference to the agent project in your phone application project
e

- Add your code to the Invoke Method in the
n
t

ScheduledAgentTasks project as shown below protected
s

override void OnInvoke(ScheduledTask task)
a

f {
t
e

//TODO: Add code to

t
perform your task in

w
background string

o

toastMessage = "";
c
r // If your application uses both PeriodicTask and ResourceIntensiveTask
a
s // you can branch your application code

78

h need to. if (task is PeriodicTask)

e {

r
// Execute

e
periodic task

.
actions here.

toastMessag

O
e =

t
"Periodic

h
task

e
running.";

r
}

w

else
i

{
s

e // Execute resource-

, intensive task actions

here. toastMessage =

y "Resource-intensive

o task running."; u

 }

d
// Launch a toast to show that the agent is running.

o // The toast will not be shown if the

n
foreground application is running.

'
ShellToast toast = new ShellToast();

t
toast.Title

79

= ";

toast.Conte

" nt =

B toastMessa

a ge;

c toast.Show

k ();

g

r // If debugging is enabled,

olaunch the agent again in one minute.

u#if DEBUG_AGENT

#endif

}

n ScheduledActionService.LaunchForTest(task.Name,
TimeSpan.FromSeconds(60));

d

A

g

// Call NeotifyComplete to let the system know the agent is done working.

NotifyConmplete();

t

S

a

m

p

l

e

80

The one caveat is that it can sometimes be difficult to debug in an emulator. If you have a

developer phone you will have a much easier time debugging it on the device.

Background Agents

81

82

Applications of Background Agents

83

84

Using maps and Locations The Maps app in Windows Phone can show you where you are,

85

where you want to go, and provide directions to get you there. It can also show you nearby shops

or restaurants you might be interested in and what other people are saying about them.

Displaying a Map

To display a map in your Windows Phone 8 app, use the Map control. For

more info, see How to add a Map control to a page in Windows Phone 8.

Important Note:

To use the control, you have to select the ID_CAP_MAP capability in the

app manifest file. For more info, see How to modify the app manifest file

for Windows Phone 8.

Displaying a Map with XAML

The following code example shows how you can use XAML to display a

Map control in your Windows Phone 8 app.

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<maps:Map />

</Grid>

If you add the control by writing XAML, you also have to add the

following xmlns declaration to the phone:PhoneApplicationPage element.

If you drag and drop the Map control from the Toolbox, this declaration is

added automatically.

xmlns:maps="clr-

namespace:Microsoft.Phone.Maps.Controls;assembly=Microsoft.Phone.Maps"

Displaying a Map with code (C#)

The following code example shows how you can use code to display a

Map control in your Windows Phone 8 app.

using Microsoft.Phone.Maps.Controls;

Map MyMap = new Map();

ContentPanel.Children.Add(MyMap);

http://www.windowsphone.com/en-in/how-to/wp7/web/get-directions

86

Displaying a Map by using a built-in launcher

This topic describes how to write code that displays a map inside your

app. If you simply want to display a map, you can also use the Maps task,

which launches the built-in Maps app. For more info, see How to use the

Maps task for Windows Phone 8.

The following table lists all the built-in launchers that display or manage

maps. For more info about launchers, see Launchers and Choosers for

Windows Phone 8.

Launcher More info

Maps task Launches the built-in Maps app and optionally marks a

location.

Maps directions task Launches the built-in Maps app and displays directions.

MapDownloader task Downloads maps for offline use.

87

Specifying the center of a map (XAML)

You can set the center of the Map control by using its Center property. To set the property using

XAML, assign a (latitude, longitude) pair to the Center property.

The following code example shows how you can set the center of Map by using XAML.

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<maps:Map x:Name="MyMap" Center="47.6097, -122.3331" />

</Grid>

The following code example shows how can set the center of Map using code. (C#)

using Microsoft.Phone.Maps.Controls;

using System.Device.Location;

...

Map MyMap = new Map();

MyMap.Center = new GeoCoordinate(47.6097, -122.3331);

ContentPanel.Children.Add(MyMap);

}

Specifying the zoom level of a map (XAML)

Use the ZoomLevel property to set the initial resolution at which you want to display the

map. ZoomLevel property takes values from 1 to 20, where 1 corresponds to a fully zoomed out

map, and higher zoom levels zoom in at a higher resolution. The following code examples show

how you can set the zoom level of the map by using the ZoomLevel property in XAML and

code.

The following code example shows how you can set the zoom level of the map by using the

ZoomLevel property in XAML.

88

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<maps:Map x:Name="MyMap" Center="47.6097, -122.3331" ZoomLevel="10"/>

</Grid>

The following code example shows how you can set the zoom level of the map by using the

ZoomLevel property in code. (C#)

using Microsoft.Phone.Maps.Controls;

using System.Device.Location;

...

Map MyMap = new Map();

MyMap.Center = new GeoCoordinate(47.6097, -122.3331);

MyMap.ZoomLevel = 10;

ContentPanel.Children.Add(MyMap);

}

Converting a Geocoordinate to a GeoCoordinate

The Center property of the Map control requires a value of type GeoCoordinate from the

System.Device.Location namespace. If you are using location services from the

Windows.Devices.Geolocation namespace, you have to convert a

Windows.Devices.Geolocation.Geocoordinate value to a

System.Device.Location.GeoCoordinate value for use with the Map control.

You can get an extension method to do this conversion, along with other useful

extensions to the Maps API, by downloading the Windows Phone Toolkit. If you want to write

your own code, here is an example of a method that you can use to convert a Geocoordinate to a

GeoCoordinate:

using System;

using System.Device.Location; // Contains the GeoCoordinate class.

using Windows.Devices.Geolocation; // Contains the Geocoordinate class.

namespace CoordinateConverter

89

{

public static class CoordinateConverter

{

public static GeoCoordinate ConvertGeocoordinate(Geocoordinate geocoordinate)

{

return new GeoCoordinate

(

geocoordinate.Latitude,

geocoordinate.Longitude,

geocoordinate.Altitude ?? Double.NaN,

geocoordinate.Accuracy,

geocoordinate.AltitudeAccuracy ?? Double.NaN,

geocoordinate.Speed ?? Double.NaN,

geocoordinate.Heading ?? Double.NaN

);

}

}

}

Displaying landmarks and pedestrian features

Landmarks. Set the LandmarksEnabled property to true to display landmarks on a Map

control. Landmarks are visible on the map only when the ZoomLevel property is set to a value of

16 or higher.

Pedestrian features. Set PedestrianFeaturesEnabled to true on a Map control to display

pedestrian features such as public stairs. Pedestrian features are visible on the map only when the

ZoomLevel property is set to a value of 16 or higher.

90

The following illustration displays a map with landmarks and pedestrian features.

The following example shows how you can set the PedestrianFeaturesEnabled property and the

LandmarksEnabled property in XAML.

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<maps:Map Center="47.6097, -122.3331" ZoomLevel="16" LandmarksEnabled="true"

PedestrianFeaturesEnabled="true"/>

</Grid>

The following example shows how to set these properties in code.

using Microsoft.Phone.Maps.Controls;

using System.Device.Location;

...

Map MyMap = new Map();

MyMap.Center = new GeoCoordinate(47.6097, -122.3331);

91

MyMap.ZoomLevel = 16;

MyMap.LandmarksEnabled = true;

MyMap.PedestrianFeaturesEnabled = true;

ContentPanel.Children.Add(MyMap);

}

Setting the cartographic mode

Once you set the center and zoom level of a map, you You might may also want to set the

cartographic mode of the map. The cartographic mode defines the display and the translation of

coordinate systems from screen coordinates to world coordinates on the Map control. You can

use the CartographicMode property of the Map control to set the cartographic mode of the map.

This property takes accepts values from the MapCartographicMode enumeration. The following

types of cartographic modes are supported in the MapCartographicMode enumeration:

Road: displays the normal, default 2-D map.

Aerial: displays an aerial photographic map.

Hybrid: displays an aerial view of the map overlaid with roads and labels.

Terrain: displays physical relief images for displaying elevation and water features such as

mountains and rivers.

The following illustration displays the four cartographic modes.

92

The following example displays a map in the default Road mode. The buttons in the app

bar can be used to view the map in Aerial, Hybrid, and Terrain modes.

XAML

<!--LayoutRoot is the root grid where all page content is placed-->

<Grid x:Name="LayoutRoot" Background="Transparent">

<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>

<RowDefinition Height="*"/>

</Grid.RowDefinitions>

<!--TitlePanel contains the name of the application and page title-->

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

<TextBlock x:Name="ApplicationTitle" Text="Maps" Style="{StaticResource

PhoneTextNormalStyle}"/>

<TextBlock x:Name="PageTitle" Text="map modes" Margin="9,-7,0,0"

Style="{StaticResource PhoneTextTitle1Style}"/>

</StackPanel>

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<maps:Map x:Name="MyMap" Center="13.0810, 80.2740" ZoomLevel="10"/>

</Grid>

</Grid>

<!--Sample code showing usage of ApplicationBar-->

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">

<shell:ApplicationBarIconButton IconUri="/Images/appbar_button1.png" Text="Road"

Click="Road_Click"/>

93

<shell:ApplicationBarIconButton IconUri="/Images/appbar_button2.png" Text="Aerial"

Click="Aerial_Click"/>

<shell:ApplicationBarIconButton IconUri="/Images/appbar_button3.png" Text="Hybrid"

Click="Hybrid_Click"/>

<shell:ApplicationBarIconButton IconUri="/Images/appbar_button4.png" Text="Terrain"

Click="Terrain_Click"/>

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

C#

void Road_Click(object sender, EventArgs args)

{

MyMap.CartographicMode = MapCartographicMode.Road;

}

void Aerial_Click(object sender, EventArgs args)

{

MyMap.CartographicMode = MapCartographicMode.Aerial;

}

void Hybrid_Click(object sender, EventArgs args)

{

MyMap.CartographicMode = MapCartographicMode.Hybrid;

}

void Terrain_Click(object sender, EventArgs args)

{

94

MyMap.CartographicMode = MapCartographicMode.Terrain;

}

Setting the color mode

You can display the map in a light color mode or a dark mode by using the ColorMode

property. The values that this property can take—Light or Dark—is accepts are specified

contained in the MapColorMode enumeration. The default is Light.

In the following illustration, the first map is in the Light color mode and the second map is in the

Dark color mode.

The following code example displays a map in the default Light mode. The buttons in the app

bar can be used to view the map in Light or Dark modes.

XAML

<!--LayoutRoot is the root grid where all page content is placed-->

<Grid x:Name="LayoutRoot" Background="Transparent">

<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>

95

<RowDefinition Height="*"/>

</Grid.RowDefinitions>

<!--TitlePanel contains the name of the application and page title-->

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

<TextBlock x:Name="ApplicationTitle" Text="Maps" Style="{StaticResource

PhoneTextNormalStyle}"/>

<TextBlock x:Name="PageTitle" Text="color modes" Margin="9,-7,0,0"

Style="{StaticResource PhoneTextTitle1Style}"/>

</StackPanel>

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<maps:Map x:Name="MyMap" />

</Grid>

</Grid>

<!--Sample code showing usage of ApplicationBar-->

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">

<shell:ApplicationBarIconButton IconUri="/Images/appbar_button1.png" Text="Light"

Click="Light_Click"/>

<shell:ApplicationBarIconButton IconUri="/Images/appbar_button2.png" Text="Dark"

Click="Dark_Click"/>

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

C#

void Light_Click(object sender, EventArgs args)

{

96

MyMap.ColorMode = MapColorMode.Light;

}

void Dark_Click(object sender, EventArgs args)

{

MyMap.ColorMode = MapColorMode.Dark;

}

XAML

XAML --> Extensible Markup Language. XAML is very easy in use and it is tag based

language. There are different tags that do their work. It is tag based and when we open a tag

mostly it is necessary to close the same tag as same in HTML.

The Extensible Application Markup Language (XAML) with C# to create a simple

"Hello, world" app that targets the Universal Windows Platform (UWP) on Windows 10. With a

single project in Microsoft Visual Studio, you can build an app that runs on any Windows 10

device. Here we focus on creating an app that runs equally well on desktop and mobile devices.

Step 1: Create a new project in Visual Studio

1. Launch Visual Studio 2015.

The Visual Studio 2015 Start page appears. (From now on, we'll refer to Visual Studio 2015

simply as Visual Studio .)

2. On the File menu, select New > Project.

The New Project dialog appears. The left pane of the dialog lets you select the type of templates

to display.

3. In the left pane, expand Installed > Templates > Visual C# > Windows, then pick the

Universal template group. The dialog's center pane displays a list of project templates for

Universal Windows Platform (UWP) apps.

97

4. In the center pane, select the Blank App (Universal Windows) template.

The Blank App template creates a minimal UWP app that compiles and runs, but contains no

user-interface controls or data. You add controls to the app over the course of this tutorial.

5. In the Name text box, type "HelloWorld".

6. Click OK to create the project.

Visual Studio creates your project and displays it in the Solution Explorer.

98

Although the Blank App is a minimal template, it still contains a lot of files:

 A manifest file (Package.appxmanifest) that describes your app (its name, description,

tile, start page, and so on) and lists the files that your app contains.

 A set of logo images (Assets/Square150x150Logo.scale-200.png,

Assets/Square44x44Logo.scale-200.png, and Assets/Wide310x150Logo.scale-200.png)to

display in the start menu.

An image (Assets/StoreLogo.png) to represent your app in the Windows Store.

A splash screen (Assets/SplashScreen.scale-200.png) to display when your app starts.

XAML and code files for the app (App.xaml and App.xaml.cs).

 A start page (MainPage.xaml) and an accompanying code file (MainPage.xaml.cs) that

run when your app starts.

These files are essential to all UWP apps using C#. Every project that you create in Visual Studio

contains them.

Step 2: Modify your start page

What's in the files?

To view and edit a file in your project, double-click the file in the Solution Explorer. By

default, you can expand a XAML file just like a folder to see its associated code file. XAML

files open in a split view that shows both the design surface and the XAML editor.

In this tutorial, you work with just a few of the files listed previously: App.xaml,

MainPage.xaml, and MainPage.xaml.cs.

App.xaml and App.xaml.cs

App.xaml is where you declare resources that are used across the app. App.xaml.cs is the

code-behind file for App.xaml. Code-behind is the code that is joined with the XAML page's

partial class. Together, the XAML and code-behind make a complete class. App.xaml.cs is the

entry point for your app. Like all code-behind pages, it contains a constructor that calls

the InitializeComponent method. You don't write the InitializeComponent method. It's generated

by Visual Studio, and its main purpose is to initialize the elements declared in the XAML file.

App.xaml.cs also contains methods to handle activation and suspension of the app.

MainPage.xaml

In MainPage.xaml you define the UI for your app. You can add elements directly using

XAML markup, or you can use the design tools provided by Visual Studio. MainPage.xaml.cs is

the code-behind page for MainPage.xaml. It's where you add your app logic and event handlers.

Together these two files define a new class called MainPage, which inherits from Page, in

the HelloWorld namespace.

MainPage.xaml

<Page

x:Class="HelloWorld.MainPage"

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx

99

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:local="using:HelloWorld"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

</Grid>

</Page>

MainPage.xaml.cs

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace HelloWorld

{

/// <summary>

/// An empty page that can be used on its own or navigated to within a Frame.

/// </summary>

public sealed partial class MainPage : Page

{

public MainPage()

{

this.InitializeComponent();

}

}

}

Modify the start page

Now, let's add some content to the app. To modify the start page

1. Double-click MainPage.xaml in Solution Explorer to open it.

2. In the XAML editor, add the controls for the UI.

In the root Grid, add this XAML. It contains a StackPanel with a title TextBlock,

a TextBlock that asks the user's name, a TextBox element to accept the user's name, a Button,

and another TextBlock to show a greeting. Some of these controls have names so that you can

refer to them later in your code.

<StackPanel x:Name="contentPanel" Margin="8,32,0,0">

<TextBlock Text="Hello, world!" Margin="0,0,0,40"/>

<TextBlock Text="What's your name?"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.stackpanel.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx

100

<StackPanel x:Name="inputPanel" Orientation="Horizontal" Margin="0,20,0,20">

<TextBox x:Name="nameInput" Width="280" HorizontalAlignment="Left"/>

<Button x:Name="inputButton" Content="Say "Hello""/>

</StackPanel>

<TextBlock x:Name="greetingOutput"/>

</StackPanel>

The controls that you added in the XAML editor show up in the design view.
Step 3: Start the app

At this point, you've created a very simple app. This is a good time to build, deploy, and launch

your app and see what it looks like. You can debug your app on the local machine, in a simulator

or emulator, or on a remote device. Here's the target device menu in Visual Studio.

Start the app on a Desktop device

By default, the app runs on the local machine. The target device menu provides several options

for debugging your app on devices from the desktop device family.

Simulator

Local Machine

Remote Machine

To start debugging on the local machine

1. In the target device menu () on the Standard toolbar, make sure

that Local Machine is selected. (It's the default selection.)

2. Click the Start Debugging button () on the toolbar.

–or–

From the Debug menu, click Start Debugging.
The app opens in a window, and a default splash screen appears first. The splash screen is

101

defined by an image (SplashScreen.png) and a background color (specified in your app's

manifest file).

The splash screen disappears, and then your app appears. It looks like this.

Press the Windows key to open the Start menu, then show all apps. Notice that deploying the

app locally adds its tile to the Start menu. To run the app again (not in debugging mode), tap or

click its tile in the Start menu.

It doesn't do much—yet—but congratulations, you've built your first UWP app!

To stop debugging

Click the Stop Debugging button () in the toolbar.

–or–

From the Debug menu, click Stop debugging.

–or–

Close the app window.

Start the app on a mobile device emulator

Your app runs on any Windows 10 device, so let‘s see how it looks on a Windows Phone.

In addition to the options to debug on a desktop device, Visual Studio provides options for

deploying and debugging your app on a physical mobile device connected to the computer, or on

a mobile device emulator. You can choose among emulators for devices with different memory

and display configurations.

Device

Emulator <SDK version> WVGA 4 inch 512MB

Emulator <SDK version> WVGA 4 inch 1GB

etc... (Various emulators in other configurations)

It's a good idea to test your app on a device with a small screen and limited memory, so use

the Emulator 10.0.10240.0 WVGA 4 inch 512MB option.

To start debugging on a mobile device emulator

1. In the target device menu () on the Standard toolbar, pick Emulator

10.0.10240.0 WVGA 4 inch 512MB.

2. Click the Start Debugging button () in the toolbar.

102

–or–

From the Debug menu, click Start Debugging.

–or–

Press F5.

Visual Studio starts the selected emulator and then deploys and starts your app. On the mobile
device emulator, the app looks like this.

The first thing you'll notice is the button is pushed off the smaller screen of a mobile device.

Later in this tutorial, you'll learn how to adapt the UI to different screen sizes so your app always

looks good.

You might also notice that you can type in the TextBox, but right now, clicking or tapping

the Button doesn't do anything. In the next steps, you create an event handler for the

button's Click event to display a personalized greeting. You add the event handler code to your

MainPage.xaml.cs file.

Step 4: Create an event handler

XAML elements can send messages when certain events occur. These event messages give you

the opportunity to take some action in response to the event. You put your code to respond to the

event in an event handler method. One of the most common events in many apps is a user

clicking a Button.

Let's create an event handler for your button's Click event. The event handler will get the user's

name from the nameInputTextBox control and use it to output a greeting to

the greetingOutput TextBlock.

Using events that work for touch, mouse, and pen input

What events should you handle? Because they can run on a variety of devices, design

your Windows Store apps with touch input in mind. Your app must also be able to handle input

from a mouse or a stylus. Fortunately, events such asClick and DoubleTapped are device-

independent. If you're familiar with Microsoft .NET programming, you might have seen separate

events for mouse, touch, and stylus input, like MouseMove, TouchMove, and StylusMove. In

Windows Store apps, these separate events are replaced with a single PointerMoved event that

works equally well for touch, mouse, and stylus input.

To add an event handler

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.doubletapped.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.pointermoved.aspx

103

1. In XAML or design view, select the "Say Hello" Button that you added to

MainPage.xaml.

2. In the Properties Window, click the Events button ().

3. Find the Click event at the top of the event list. In the text box for the event, type the

name of the function that handles the Click event. For this example, type "Button_Click".

4. Press Enter. The event handler method is created and opened in the code editor so you

can add code to be executed when the event occurs.

In the XAML editor, the XAML for the Button is updated to declare the Click event handler like

this.

<Button x:Name="inputButton" Content="Say "Hello"" Click="Button_Click"/>

5. Add code to the event handler that you created in the code-behind page. In the event

handler, retrieve the user's name from the nameInput TextBox control and use it to create a

greeting. Use the greetingOutput TextBlock to display the result.

private void Button_Click(object sender, RoutedEventArgs e)

{

greetingOutput.Text = "Hello, " + nameInput.Text + "!";

}

6. Debug the app on the local machine. When you enter your name in the text box and click

the button, the app displays a personalized greeting.

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx

104

Step 5: Adapt the UI to different window sizes

Now we'll make the UI adapt to different screen sizes so it looks good on mobile devices. To do

this, you add aVisualStateManager and set properties that are applied for different visual states.

To adjust the UI layout

1. In the XAML editor, add this block of XAML after the opening tag of the

root Grid element.

<VisualStateManager.VisualStateGroups>

<VisualStateGroup>

<VisualState x:Name="wideState">

<VisualState.StateTriggers>

<AdaptiveTrigger MinWindowWidth="641" />

</VisualState.StateTriggers>

</VisualState>

<VisualState x:Name="narrowState">

<VisualState.StateTriggers>

<AdaptiveTrigger MinWindowWidth="0" />

</VisualState.StateTriggers>

<VisualState.Setters>

<Setter Target="inputPanel.Orientation" Value="Vertical"/>

<Setter Target="inputButton.Margin" Value="0,4,0,0"/>

</VisualState.Setters>

</VisualState>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

2. Debug the app on the local machine. Notice that the UI looks the same as before unless

the window gets narrower than 641 pixels.

3. Debug the app on the mobile device emulator. Notice that the UI uses the properties you

defined in the narrowStateand appears correctly on the small screen.

If you've used a VisualStateManager in previous versions of XAML, you might notice that the

XAML here uses a simplified syntax.

The VisualState named wideState has an AdaptiveTrigger with

its MinWindowWidth property set to 641. This means that the state is to be applied only when

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.adaptivetrigger.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.adaptivetrigger.minwindowwidth.aspx

105

the window width is not less than the minimum of 641 pixels. You don't define anySetter objects

for this state, so it uses the layout properties you defined in the XAML for the page content.

The second VisualState, narrowState, has an AdaptiveTrigger with

its MinWindowWidth property set to 0. This state is applied when the window width is greater

than 0, but less than 641 pixels. (At 641 pixels, the wideState is applied.) In this state, you do

define some Setter objects to change the layout properties of controls in the UI:

You change the Orientation of the inputPanel element from Horizontal to Vertical.

You add a top margin of 4 to the inputButton element.

Summary

Congratulations, you've created your first app for Windows 10 and the UWP!

Adding controls and handling events (XAML)

You create the UI for your app by using controls such as buttons, text boxes, and combo boxes.

Here we show you how to add controls to your app. You typically use this pattern when working

with controls:

You add a control to your app UI.

You set properties on the control, such as width, height, or foreground color.

You hook up some code to the control so that it does something.

Adding a control

You can add a control to an app in several ways:

 Use a design tool like Blend for Visual Studio or the Microsoft Visual Studio XAML

designer.

Add the control to the XAML markup in the Visual Studio XAML editor.

Add the control in code. Controls that you add in code are visible when the app runs, but

are not visible in the Visual Studio XAML designer.

Documentation for each control includes a "How to" topic that describes how to add the control

in XAML, code, or using a design tool. For example, to add a Button control, see How to add a

button.

Here, we use Visual Studio as our design tool, but you can do the same tasks and more in Blend

for Visual Studio.

In Visual Studio, when you add and manipulate controls in your app, you can use many of the

program's features, including the Toolbox, XAML designer, XAML editor, and

the Properties window.

The Visual Studio Toolbox displays many of the controls that you can use in your app. To add a

control to your app, double-click it in the Toolbox. For example, when you double-click

the TextBox control, this XAML is added to the XAMLview.

<TextBox HorizontalAlignment="Left" Text="TextBox" VerticalAlignment="Top"/>

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.setter.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.adaptivetrigger.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.adaptivetrigger.minwindowwidth.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.setter.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.stackpanel.orientation.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/jj153345.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/jj153345.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx

106

You can also drag the control from the Toolbox to the XAML designer.

Setting the name of a control

To work with a control in code, you set its x:Name attribute and reference it by name in your

code. You can set the name in the Visual Studio Properties window or in XAML. Here's how to

change the name of the currently selected control by using the Name text box at the top of

the Properties window.

To name a control

1. Select the element to name.

2. In the Properties panel, type a name into the Name text box.

3. Press Enter to commit the name.

Here's how you can change the name of a control in the XAML editor by changing

the x:Name attribute.

<Button x:Name="Button1" Content="Button"/>

Setting control properties

You use properties to specify the appearance, content, and other attributes of controls. When you

add a control using a design tool, some properties that control size, position, and content might

be set for you by Visual Studio. You can change some properties, such

as Width, Height or Margin, by selecting and manipulating the control in the Design view. This

illustration shows some of the resizing tools available in Design view.

You might want to let the control be sized and positioned automatically. In this case, you can

reset the size and position properties that Visual Studio set for you.

To reset a property

1. In the Properties panel, click the property marker next to the property value. The

property menu opens.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh758295.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh758295.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.frameworkelement.width.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.frameworkelement.height.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.frameworkelement.margin.aspx

107

2. In the property menu, click Reset.

You can set control properties in the Properties window, in XAML, or in code. For example, to

change the foreground color for a Button, you set the control's Foreground property. This

illustration shows how to set the Foregroundproperty by using the color picker in

the Properties window.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx

108

Here's how to set the Foreground property in the XAML editor. Notice the Visual Studio

IntelliSense window that opens to help you with the syntax.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx

110

Here's the resulting XAML after you set the Foreground property.
XAML

<Button x:Name="Button1" Content="Button"

HorizontalAlignment="Left" VerticalAlignment="Top"

Foreground="Beige"/>

Here's how to set the Foreground property in code. C#, C++, VB

Button1.Foreground = new SolidColorBrush(Windows.UI.Colors.Beige);

Creating an event handler

Each control has events that enable you to respond to actions from your user or other changes in

your app. For example, a Button control has a Click event that is raised when a user clicks

the Button. You create a method, called an event handler, to handle the event. You can associate

a control's event with an event handler method in the Propertieswindow, in XAML, or in code.

For more info about events, see Events and routed events overview.

To create an event handler, select the control and then click the Events tab at the top of

the Properties window. TheProperties window lists all of the events available for that control.

Here are some of the events for a Button.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&%3Bcs-lang=cpp&%3Bcode-snippet-4
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&%3Bcs-lang=vb&%3Bcode-snippet-4
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh758286.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx

111

To create an event handler with the default name, double-click the text box next to the

event name in the Propertieswindow. To create an event handler with a custom name, type the

name of your choice into the text box and press enter. The event handler is created and the code-

behind file is opened in the code editor. The event handler method has 2 parameters. The first

is sender, which is a reference to the object where the handler is attached. The sender parameter

is anObject type. You typically cast sender to a more precise type if you expect to check or

change state on the sender object itself. Based on your own app design, you expect a type that is

safe to cast sender to, based on where the handler is attached. The second value is event data,

which generally appears in signatures as the e parameter.

Here's code that handles the Click event of a Button named Button1. When you click the button,

the Foreground property of the Button you clicked is set to blue. C#, C++, VB

private void Button_Click(object sender, RoutedEventArgs e)

{

Button b = (Button)sender;

b.Foreground = new SolidColorBrush(Windows.UI.Colors.Blue);

}

You can also associate an event handler in XAML. In the XAML editor, you type in the event

name that you want to handle. Visual Studio shows an IntelliSense window when you begin

typing. After you specify the event, you can double-click <New Event Handler> in the

IntelliSense window to create a new event handler with the default name, or select an existing

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&%3Bcs-lang=cpp&%3Bcode-snippet-5
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&%3Bcs-lang=vb&%3Bcode-snippet-5

112

event handler from the list. Here's the IntelliSense window that appears to

help you create a new event handler.

This example shows how to associate a Click event with

an event handler named Button_Click in XAML.

<Button Name="Button1" Content="Button" Click="Button_Click"/>

You can also associate an event with its event handler in the code-behind.

Here's how to associate an event handler in code. C#, C++, VB

Button1.Click += new RoutedEventHandler(Button_Click);

New controls

If you use other XAML platforms, you might be interested in these controls

that are new for Windows 8.

AppBar

CaptureElement

FlipView

GridView

SemanticZoom

ProgressRing

ToggleSwitch

VariableSizedWrapGrid

Displaying text (XAML)

The XAML framework provides several controls for rendering text, and a set

of properties for formatting the text. The controls for

displaying read-only text areTextBlock and RichTextBlock. This

quickstart shows you how to use TextBlockcontrols to display text.

TextBlock

TextBlock is the primary control for displaying read-only text in Windows

Runtime apps using C++, C#, or Visual Basic. You can display text in a

TextBlock control using its Text property. This XAML shows how to define

a TextBlock control and set its Text property to a string.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&%3Bcs-lang=cpp&%3Bcode-snippet-7
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&%3Bcs-lang=vb&%3Bcode-snippet-7
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.appbar.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.captureelement.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.flipview.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.gridview.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.semanticzoom.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.progressring.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.toggleswitch.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.variablesizedwrapgrid.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richtextblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.text.aspx

113

XAML

<TextBlock Text="Hello, world!" />

You can also display a series of strings in a TextBlock, where each

string has different formatting. You can do this by using a Run element to

display each string with its formatting and by separating each Run element

with a LineBreakelement.

Here's how to define several differently formatted text strings in a

TextBlock by using Run objects separated with aLineBreak.

XAML

<TextBlock FontFamily="Arial" Width="400" Text="Sample text formatting runs">

<LineBreak/>

<Run Foreground="LightGray" FontFamily="Courier

New" FontSize="24"> Courier New 24

</Run>

<LineBreak/>

<Run Foreground="Teal" FontFamily="Times New

Roman" FontSize="18" FontStyle="Italic">

Times New Roman Italic 18

</Run>

<LineBreak/>

<Run Foreground="SteelBlue" FontFamily="Verdana" FontSize="14"

FontWeight="Bold"> Verdana Bold 14

</Run>

</TextBlock>

Here's the result.

Summary and next steps

You learned how to create TextBlock controls to display text in your app.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.run.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.linebreak.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.run.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.linebreak.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx

114

Adding text input and editing controls (XAML)

The XAML framework includes several controls for entering and editing text, and a set

of properties for formatting the text. The text-entry controls areTextBox,PasswordBox,

and RichEditBox. This quickstart shows you how you can use these text controls to display,

enter, and edit text.

Choosing a text control

The XAML framework includes 3 core text-entry controls: TextBox, PasswordBox,

and RichEditBox. The text control that you use depends on your scenario. Here are some

scenarios and the recommended control.

Scenario

ommended Control

Enter or edit plain text, such as in a form. TextBox

Enter a password. PasswordBox

Edit a document, article, or blog that requires formatting,

paragraphs, hyperlinks, or inline images.
RichEditBox

TextBox

You can use a TextBox control to enter and edit unformatted text. You can use the Text property

to get and set the text in a TextBox. Here's the XAML for a simple TextBox with

it's Text property set.

<TextBox Height="35" Width="200" Text="Hello World!" Margin="20"/>

Here's the TextBox that results from this XAML.

You can make a TextBox read-only by setting the IsReadOnly property to true. To make the

text in a multi-line TextBoxwrap, set the TextWrapping property to Wrap and

the AcceptsReturn property to true.

You can get or set the selected text in a TextBox using the SelectedText property. Use

the SelectionChanged event to do something when the user selects or de-selects text.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.text.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.isreadonly.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.textwrapping.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.textwrapping.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.acceptsreturn.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectedtext.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectionchanged.aspx

115

Here, we have an example of these properties and methods in use. When you select text in the

first TextBox, the selected text is displayed in the second TextBox, which is read-only. The

values of the SelectionLength and SelectionStartproperties are shown in two TextBlocks. This

is done using the SelectionChanged event.

<TextBox x:Name="textBox1" Height="75" Width="300" Margin="10"

Text="The text that is selected in this TextBox will show up in the read only TextBox

below."

TextWrapping="Wrap" AcceptsReturn="True"

SelectionChanged="TextBox1_SelectionChanged" />

<TextBox x:Name="textBox2" Height="75" Width="300" Margin="5"

TextWrapping="Wrap" AcceptsReturn="True" IsReadOnly="True"/>

<TextBlock x:Name="label1" HorizontalAlignment="Center"/>

<TextBlock x:Name="label2" HorizontalAlignment="Center"/>

private void TextBox1_SelectionChanged(object sender, RoutedEventArgs e)

{

textBox2.Text = textBox1.SelectedText;

label1.Text = "Selection length is " + textBox1.SelectionLength.ToString();

label2.Text = "Selection starts at " + textBox1.SelectionStart.ToString();

}

Here's the result of this code.

PasswordBox

You can enter a single line of non-wrapping content in a PasswordBox control. The user

cannot view the entered text; only password characters that represents the text are displayed. You

can specify this password character by using thePasswordChar property, and you can specify

the maximum number of characters that the user can enter by setting theMaxLength property.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectionlength.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectionstart.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectionchanged.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.passwordchar.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.maxlength.aspx

116

You get the text that the user entered from the Password property, typically in the handler for

the PasswordChangedevent.

Here's the XAML for a password box control that demonstrates the default look of

the PasswordBox. When the user enters a password, it is checked to see if it is the literal value,

"Password". If it is, we display a message to the user.

XAML

<PasswordBox x:Name="pwBox" Height="35" Width="200"

MaxLength="8" PasswordChanged="pwBox_PasswordChanged"/>

<TextBlock x:Name="statusText" Margin="10" HorizontalAlignment="Center" />

// C#

private void pwBox_PasswordChanged(object sender, RoutedEventArgs e)

{

if (pwBox.Password == "Password")

{

statusText.Text = "'Password' is not allowed as a password.";

}

}

Here's the result when this code runs and the user enters "Password".

In Windows Store apps, the PasswordBox has a built-in button that the user can touch or click to

display the password text. Here's the result of the user's action. When the user releases it, the

password is automatically hidden again.

In Windows Phone Store apps, the PasswordBox has a built-in checkbox below it that the user

can check to display the password text.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.password.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.passwordchanged.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx

117

RichEditBox

You can use a RichEditBox control to enter and edit rich text documents that contain

formatted text, hyperlinks, and images. You can make a RichEditBox read-only by setting

its IsReadOnly property to true.

By default, the RichEditBox supports spell checking. To disable the spell checker, set

the IsSpellCheckEnabled property to false. For more info, see Guidelines and checklist for spell

checking.

You use the Document property of the RichEditBox to get its content. The content of

a RichEditBox is aWindows.UI.Text.ITextDocument object, unlike

the RichTextBlock control, which usesWindows.UI.Xaml.Documents.Block objects as its

content. The ITextDocument interface provides a way to load and save the document to a

stream, retrieve text ranges, get the active selection, undo and redo changes, set default

formatting attributes, and so on.

This example shows how to load and save a Rich Text Format (rtf) file in a RichEditBox.

<Grid Margin="120">

<Grid.RowDefinitions>

<RowDefinition Height="50"/>

<RowDefinition/>

</Grid.RowDefinitions>

<StackPanel Orientation="Horizontal">

<Button Content="Open file" Click="OpenButton_Click"/>

<Button Content="Save file" Click="SaveButton_Click"/>

</StackPanel>

<RichEditBox x:Name="editor" Grid.Row="1"/>

</Grid>

private async void OpenButton_Click(object sender, RoutedEventArgs e)

{

// Open a text file.

Windows.Storage.Pickers.FileOpenPicker open =

new Windows.Storage.Pickers.FileOpenPicker();

open.SuggestedStartLocation =

Windows.Storage.Pickers.PickerLocationId.DocumentsLibrary;

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.isreadonly.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.isspellcheckenabled.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh738359.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh738359.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.document.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/bb774052.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richtextblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.block.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx

118

open.FileTypeFilter.Add(".rtf");

Windows.Storage.StorageFile file = await open.PickSingleFileAsync(); if (file != null)

{

Windows.Storage.Streams.IRandomAccessStream randAccStream =

await file.OpenAsync(Windows.Storage.FileAccessMode.Read);

// Load the file into the Document property of the RichEditBox.

editor.Document.LoadFromStream(Windows.UI.Text.TextSetOptions.FormatRtf,

randAccStream);

}

}

private async void SaveButton_Click(object sender, RoutedEventArgs e)

{

if (((ApplicationView.Value != ApplicationViewState.Snapped) ||

ApplicationView.TryUnsnap()))

{

FileSavePicker savePicker = new FileSavePicker();

savePicker.SuggestedStartLocation = PickerLocationId.DocumentsLibrary;

// Dropdown of file types the user can save the file as

savePicker.FileTypeChoices.Add("Rich Text", new List<string>() { ".rtf" });

// Default file name if the user does not type one in or select a file to replace

savePicker.SuggestedFileName = "New Document";

StorageFile file = await savePicker.PickSaveFileAsync();

if (file != null)

{

// Prevent updates to the remote version of the file until we

// finish making changes and call CompleteUpdatesAsync.

CachedFileManager.DeferUpdates(file);

// write to file

Windows.Storage.Streams.IRandomAccessStream randAccStream =

await file.OpenAsync(Windows.Storage.FileAccessMode.ReadWrite);

editor.Document.SaveToStream(Windows.UI.Text.TextGetOptions.FormatRtf,

randAccStream);

// Let Windows know that we're finished changing the file so the

119

// other app can update the remote version of the file.

FileUpdateStatus status = await

CachedFileManager.CompleteUpdatesAsync(file); if (status !=

FileUpdateStatus.Complete)

saved.");

}

}

}

}

Using the touch keyboard

The touch keyboard can be used for text entry when your app runs on a

device with a touch screen. The touch keyboard is invoked when the user taps

on an editable input field, such as a TextBox or PasswordBox, and is dismissed

when the input field loses focus. The touch keyboard uses accessibility info to

determine when it is invoked and dismissed. The text controls provided in the

XAML framework have the automation properties built in. If you create your

own custom text controls, you must implement TextPattern to use the touch

keyboard.

Packaging Universal Windows apps

To sell your Universal Windows app or distribute it to other users, you

need to create an appxupload package for it. When you create the appxupload,

another appx package will be generated to use for testing and sideloading. You

can distribute your app directly by sideloading the appx package to a device.

For Windows 10, you generate one package (.appxupload) that can be uploaded

to the Windows Store. Your app is then available to be installed and run on any

Windows 10 device.

Here are the steps:

1. Before packaging your app: Follow these steps to make sure your

application is ready to be packaged for store submission.

2. Configure an app package: Use the manifest designer to configure the

package. For example, add tile images and choose the orientations that your app

supports.

3. Create an app package: Use the wizard in Visual Studio and then certify

your package with the Windows App Certification Kit.

4. Sideload your app package: After sideloading your app to a device, you

can test it works correctly.

Once you‘ve done this, you are ready to sell your app in the Store. If you have a

line-of-business (LOB) app, that you don‘t plan to sell because it is for internal

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/ee696214.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh454036.aspx#BeforePackaging
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh454036.aspx#Configure
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh454036.aspx#Create
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh454036.aspx#InstallRemote

120

users only, you can sideload this app to install it on any Windows 10 device.

Before packaging your app

1. Test your app: Before you package your app for store submission, make

sure it works as expected on all device families that you plan to support. These

device families may include desktop, mobile, Surface Hub, XBOX, IoT devices,

or others.

2. Optimize your app: You can use Visual Studio‘s profiling and debugging tools

to optimize the performance of your Universal Windows app. For example, the

Timeline tool for UI responsiveness, the memory Usage tool, the CPU Usage

tool, and more.

3. Check .NET Native compatibility (for VB and C# apps): With the Universal

Windows Platform, there is now a new native compiler that will improve the

runtime performance of your app. With this change, it is highly recommended

that you test your app in this compilation environment. By default, the Release

build configuration enables the .NET native toolchain, so it is important to test

your app with this Release configuration and check that your app behaves as

expected.

Configure an app package

The app manifest file (package.appxmanifest.xml) has the properties and

settings that are required to create your app package. For example, properties in

the manifest file describe the image to use as the tile of your app and the

orientations that your app supports when a user rotates the device.

Visual Studio has a manifest designer that makes it easy for you to update the

manifest file without editing the raw XML of the file.

Visual Studio can associate your package with the Store. When you do this,

some of the fields in the Packaging tab of the manifest designer are

automatically updated.

Configure a package with the manifest designer

1. In Solution Explorer, expand the project node of your Universal Windows app.

2. Double-click the Package.appxmanifest file.

If the manifest file is already open in XML code view, Visual Studio prompts

you to close the file.

3. Now you can decide how to configure your app. Each tab contains information that you

can configure about your app and links to more information if necessary.

121

Check that you have all the images that are required for a Universal Windows

app on the Visual Assets tab.

From the Packaging tab, you can enter publishing data. This is where you can

choose which certificate to use to sign your app. All Universal Windows Apps

must be signed with a certificate. In order to sideload an app package, you need

to trust the package. The certificate must be installed on that device to trust the

package.

4. Save your file after you have made the necessary edits for

your app. Create an app package

To distribute an app through the Store you must create an appxupload package.

You can do that by using the Create App Packages wizard. Follow these steps

to create a package suitable for store submission with Visual Studio 2015:

To create your app package

1. In Solution Explorer, open the solution for your Universal Windows app project.

2. Right-click the project and choose Store->Create App Packages. If this option

is disabled or does not appear at all, check that the project is a Universal

Windows project.

The Create App Packages wizard appears.

3. Select Yes in the first dialog asking if you want to build packages to upload

to the Windows Store, then click Next.

122

If you choose No here, Visual Studio will not generate the required .appxupload

package you need for store submission. If you only want to sideload your app to

run it on internal devices, then you can select this option.

4. Sign in with your developer account to the Windows Dev Center. (If you don‘t

have a developer account yet, the wizard will help you create one.)

5. Select the app name for your package, or reserve a new one if you have not

already reserved one with the Windows Dev Center portal.

6. Make sure you select all three architecture configurations (x86, x64, and

ARM) in the Select and Configure Packages dialog. That way your app can be

deployed to the widest range of devices. In the Generate app bundlelistbox,

select Always. This makes the store submission process much simpler because

you will only have one file to upload (.appxupload). The single bundle will

contain all the necessary packages to deploy to devices with each processor

architecture.

123

7. It is a good idea to include full PDB symbol files for the best crash analytics experience from

the Windows Dev Center.

8. Now you can configure the details to create your package. When you‘re ready to publish your

app, you‘ll upload the packages from the output location.

9. Click Create to generate your appxupload package.

10. Now you will see this dialog:

http://blogs.windows.com/buildingapps/2015/07/13/crash-analysis-in-the-unified-dev-center/

124

Validate your app before you submit it to the Store for certification on a local or remote machine.

(You can only validate release builds for your app package and not debug builds.)

11. To validate locally, leave the Local machine option selected and click Launch Windows App

Certification Kit.

The Windows App Certification Kit performs tests and shows you the results.

If you have a remote Windows 10 device, that you want to use for testing, you will need to

install the Windows App Certification Kit manually on that device. The next section will walk

you through these steps. Once you‘ve done that, then you can select Remote machine and

click Launch Windows App Certification Kit to connect to the remote device and run the

validation tests.

12. After WACK has finished and your app has passed, you are ready to upload to the store. Make

sure you upload the correct file. It can be found in the root folder of your solution

\[AppName]\AppPackages and it will end with .appxupload file extension. The name will be of

the form [AppName]_[AppVersion]_x86_x64_arm_bundle.appxupload.

Validate your app package on a remote Windows 10 device

1. Enable your Windows 10 device for development using these instructions.

2. Download and install the remote tools for Visual Studio. These tools are used to run the

Windows App Certification Kit remotely.

https://msdn.microsoft.com/en-us/library/windows/apps/dn706236.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=46874

125

3. On the Package Creation Completed page of the wizard, choose the Remote

Machine option button, and then choose the ellipsis button next to the Test Connection button.

4. Specify a device from inside your subnet, or provide the Domain Name Server (DNS) name

or IP address of a device that's outside of your subnet.

5. In the Authentication Mode list, choose None if your device doesn't require you to log onto it

by using your Windows credentials.

6. Choose the Select button, and then choose the Launch Windows App Certification Kit

button.

If the remote tools are running on that device, Visual Studio connects to it and then performs the

validation tests.

Sideload your app package
With Universal Windows app packages, you cannot simply install an app to your device like

Desktop apps for example. Typically, you download these apps from the Store and that is how

they are installed on your device. But you can sideload apps to your device without submitting

them to the Store. This lets you install them and test them out using the app package (.appx) that

you have created. If you have an app that you don‘t want to sell in the Store, like a line-of-

business (LOB) app, you can sideload that app so that other users in your company can use it.

To sideload your app package to a Windows 10 device, follow these steps:

Enable your device

To install your app to a desktop, laptop, or tablet, follow the steps in the section below.

To install an app to a Windows 10 Mobile device, use the WinAppDeployCmd.exe.

After you have sideloaded your app to test it, you can upload your package to sell your app in the

Store, or you can sideload your app to any Windows 10 device.

Install an app to a desktop, laptop, or tablet

1. Copy the folders for the version that you want to install to the target device.

If you‘ve created an app bundle, then you will have a folder based on the version number and an

_test folder. For example these two folders (where the version to install is 1.0.2):

o C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0

o C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0_Test

If you don‘t have an app bundle, then you can just copy the folder for the correct architecture and

the corresponding test folder. For example these two folders:

o C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0_x64

o C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0_x64_Test

2. On the target device, open the test folder. For

example:C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0_Test.

3. Right-click the Add-AppDevPackage.ps1 file, then choose Run with PowerShell and follow

the prompts.

https://msdn.microsoft.com/library/windows/apps/xaml/dn706236.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt203806.aspx
https://msdn.microsoft.com/library/windows/apps/hh694062.aspx
https://msdn.microsoft.com/library/windows/apps/hh694062.aspx

126

When the app package has been installed, you will see this message in

your PowerShell window: Your app was successfully installed.

4. Click the Start button and then type the name of your app to

launch it.

