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UNIT-1 

 
Arrays- Linked List - Single Linked List - Insertion and Deletion - Doubly Linked List.- 

Circular Linked List – Stack- Queues- Array implementation of a Stack and queue - 

Linked List implementation of a Stack and Queue- Priority Queues 

 

1. INDRODUCTION 
 

ABSTRACT DATA TYPE 

 

In programming each program is breakdown into modules, so that no routine should ever exceed 

a page. Each module is a logical unit and does specific job modules which in turn will call 

another module. 

 

Modularity has several advantages 

 

1. Modules can be compiled separately which makes debugging process easier. 

 

2. Several modules can be implemented and executed simultaneously. 

 

3. Modules can be easily enhanced. 

 

Abstract Data type is an extension of modular design. 

 

An abstract data type is a set of operations such as Union, Intersection, Complement, Find etc., 

 

The basic idea of implementing ADT is that the operations are written once in program and can 

be called by any part of the program. 

 

 THE LIST ADT 
 

List is an ordered set of elements. 

The general form of the list is 

A1, A2, A3, ..... ,AN 
 

A1 - First element of the list 

AN - Last element of the list 
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N - Size of the list 

 

If the element at position i is Ai then its successor is Ai+1 and its predecessor is Ai-1. 

 

Various operations performed on List 

 

1. Insert (X, 5) - Insert the element X after the position 5. 

 

2. Delete (X) - The element X is deleted 

 

3. Find (X) - Returns the position of X. 

 

4. Next (i) - Returns the position of its successor element i+1. 

 

5. Previous (i) - Returns the position of its predecessor i-1. 

 

6. Print list - Contents of the list is displayed. 

 

7. Makeempty - Makes the list empty. 

 

Implementation of List ADT 

 

1. Array Implementation 

 

2. Linked List Implementation 

 

3. Cursor Implementation. 

 

Array Implementation of List 

 

Array is a collection of specific number of data stored in a consecutive memory locations. 

 

* Insertion and Deletion operation are expensive as it requires more data movement 

 

* Find and Printlist operations takes constant time. 

 

* Even if the array is dynamically allocated, an estimate of the maximum size of the 

list is required which considerably wastes the memory space. 

Linked List Implementation 

 

Linked list consists of series of nodes. Each node contains the element and a pointer to its 

successor node. The pointer of the last node points to NULL. 

 

Insertion and deletion operations are easily performed using linked list. 
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Types of Linked List 

 

1. Singly Linked List 

 

2. Doubly Linked List 

 

3. Circular Linked List. 

 

Singly Linked List 

 

A singly linked list is a linked list in which each node contains only one link field pointing to the 

next node in the list. 

 

DECLARATION FOR LINKED LIST 

 

Struct node ; 

 

typedef struct Node *List ; 

typedef struct Node *Position ; 

int IsLast (List L) ; 

int IsEmpty (List L) ; 

position Find(int X, List L) ; 

void Delete(int X, List L) ; 

position FindPrevious(int X, List L) ; 

position FindNext(int X, List L) ; 

void Insert(int X, List L, Position P) ; 

void DeleteList(List L) ; 

Struct Node 

 

{ 

 

int element ; 

position Next ; 

}; 
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ROUTINE TO INSERT AN ELEMENT IN THE LIST 

 

void Insert (int X, List L, Position P) 

 

/* Insert after the position P*/ 

 

{ 

 

position Newnode; 

 

Newnode = malloc (size of (Struct Node)); 

If (Newnode! = NULL) 

{ 

 

Newnode ->Element = X; 

Newnode ->Next = P-> Next; 

P-> Next = Newnode; 

} 

 

} 

 

INSERT (25, P, L) 

 

ROUTINE TO CHECK WHETHER THE LIST IS EMPTY 

 

int IsEmpty (List L) /*Returns 1 if L is empty */ 

 

{ 

 

if (L -> Next = = NULL) 

 

return (1); 

 

} 

 

ROUTINE TO CHECK WHETHER THE CURRENT POSITION IS LAST 

 

int IsLast (position P, List L) /* Returns 1 is P is the last position in L */ 

 

{ 
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if (P->Next = = NULL) 

 

return 

 

} 

 

FIND ROUTINE 

 

position Find (int X, List L) 

 

{ 

 

/*Returns the position of X in L; NULL if X is not found */ 

position P; 

P = L-> Next; 

 

while (P! = NULL && P Element ! = X) 

P = P->Next; 

return P; 

 

} 

 

} 

 

FIND PREVIOUS ROUTINE 

 

position FindPrevious (int X, List L) 

 

{ 

 

/* Returns the position of the predecessor */ 

position P; 

P = L; 

 

while (P -> Next ! = Null && P ->Next Element ! = X) 

P = P ->Next; 

return P; 



7  

} 

 
 

FINDNEXT ROUTINE 

 

position FindNext (int X, List L) 

 

{ 

 

/*Returns the position of its successor */ 

P = L ->Next; 

while (P Next! = NULL && P Element ! = X) 

P = P→Next; 

return P→Next; 

 

} 

 

ROUTINE TO DELETE AN ELEMENT FROM THE LIST 

 

void Delete(int X, List L) 

 

{ 

 

/* Delete the first occurence of X from the List */ 

position P, Temp; 

P = Findprevious (X,L); 

If (!IsLast(P,L)) 

{ 

 

Temp = P→Next; 

 

P →Next = Temp→Next; 

 

Free (Temp); 

 

} 

 

} 
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ROUTINE TO DELETE THE LIST 

 

void DeleteList (List L) 

 

{ 

 

position P, Temp; 

P = L →Next; 

L→Next = NULL; 

while (P! = NULL) 

{ 

 

Temp = P→Next 

free (P); 

P = Temp; 

 

} 

 

} 

 

Doubly Linked List 

 

A Doubly linked list is a linked list in which each node has three fields namely data field, 

forward link (FLINK) and Backward Link (BLINK). FLINK points to the successor node in the 

list whereas BLINK points to the predecessor node. 

 

STRUCTURE DECLARATION : - 

 

Struct Node 

 

{ 

 

int Element; 

 

Struct Node *FLINK; 

 

Struct Node *BLINK 

 

}; 
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ROUTINE TO INSERT AN ELEMENT IN A DOUBLY LINKED LIST 

 

void Insert (int X, list L, position P) 

 

{ 

 

Struct Node * Newnode; 

 

Newnode = malloc (size of (Struct Node)); 

If (Newnode ! = NULL) 

{ 

 

Newnode →Element = X; 

Newnode →Flink = P Flink; 

P →Flink →Blink = Newnode; 

P →Flink = Newnode ; 

Newnode →Blink = P; 

} 

 

} 

 

ROUTINE TO DELETE AN ELEMENT 

 

void Delete (int X, List L) 

 

{ 

 

position P; 

 

P = Find (X, L); 

 

If ( IsLast (P, L)) 

 

{ 

 

Temp = P; 

 

P →Blink →Flink = NULL; 
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free (Temp); 

 

} 

 

else 

 

{ 

 

Temp = P; 

 

P →Blink→ Flink = P→Flink; 

P →Flink →Blink = P→Blink; 

free (Temp); 

} 

 

} 

 

Advantage 

 

* Deletion operation is easier. 

 

* Finding the predecessor & Successor of a node is easier. 

 

Disadvantage 

 

* More Memory Space is required since it has two pointers. 

 

Circular Linked List 

 

In circular linked list the pointer of the last node points to the first node. Circular linked list can 

be implemented as Singly linked list and Doubly linked list with or without headers. 

 

Singly Linked Circular List 

 

A singly linked circular list is a linked list in which the last node of the list points to the first 

node. 

 

Doubly Linked Circular List 

 

A doubly linked circular list is a Doubly linked list in which the forward link of the last node 

points to the first node and backward link of the first node points to the last node of the list. 

 

Advantages of Circular Linked List 
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• It allows to traverse the list starting at any point. 

 

• It allows quick access to the first and last records. 

 

Applications of Linked List 

 

1. Polynomial ADT 

 

2. Radix Sort 

 

3. Multilist 

 

 
 

 THE STACK ADT 
 

1.2.1 Stack Model : 

 

A stack is a linear data structure which follows Last In First Out (LIFO) principle, in which both 

insertion and deletion occur at only one end of the list called the Top. 

 

Example : - 

 

Pile of coins., a stack of trays in cafeteria. 

 

2.2.2 Operations On Stack 

 

The fundamental operations performed on a stack are 

 

1. Push 

 

2. Pop 

 

PUSH : 

 

The process of inserting a new element to the top of the stack. For every push operation the top is 

incremented by 1. 

 

POP : 

 

The process of deleting an element from the top of stack is called pop operation. After every pop 

operation the top pointer is decremented by 1. 

 

EXCEPTIONAL CONDITIONS 

 

OverFlow 
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Attempt to insert an element when the stack is full is said to be overflow. 

 

UnderFlow 

 

Attempt to delete an element, when the stack is empty is said to be underflow. 

 

1.2.3 Implementation of Stack 

 

Stack can be implemented using arrays and pointers. 

 

Array Implementation 

 

In this implementation each stack is associated with a pop pointer, which is -1 for an empty 

stack. 

 

• To push an element X onto the stack, Top Pointer is incremented and then set Stack [Top] = X. 

 

• To pop an element, the stack [Top] value is returned and the top pointer is decremented. 

 

• pop on an empty stack or push on a full stack will exceed the array bounds. 

 

ROUTINE TO PUSH AN ELEMENT ONTO A STACK 

 

void push (int x, Stack S) 

 

{ 

 

if (IsFull (S)) 

 

Error ("Full Stack"); 

else 

{ 

 

Top = Top + 1; 

S[Top] = X; 

} 

 

} 

 

int IsFull (Stack S) 

 

{ 
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if (Top = = Arraysize) 

return (1); 

} 

 

ROUTINE TO POP AN ELEMENT FROM THE STACK 

 

void pop (Stack S) 

 

{ 

 

if (IsEmpty (S)) 

 

Error ("Empty Stack"); 

else 

{ 

 

X = S [Top]; 

 

Top = Top - 1; 

 

} 

 

} 

 

int IsEmpty (Stack S) 

 

{ 

 

if (S Top = = -1) 

return (1); 

} 

 

ROUTINE TO RETURN TOP ELEMENT OF THE STACK 

 

int TopElement (Stack S) 

 

{ 

 

if (! IsEmpty (s)) 
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return S[Top]; 

else 

Error ("Empty Stack"); 

return 0; 

} 

 

 LINKED LIST IMPLEMENTATION OF STACK 
 

• Push operation is performed by inserting an element at the front of the list. 

 

• Pop operation is performed by deleting at the front of the list. 

 

• Top operation returns the element at the front of the list. 

 

DECLARATION FOR LINKED LIST IMPLEMENTATION 

 

Struct Node; 

 

typedef Struct Node *Stack; 

int IsEmpty (Stack S); 

Stack CreateStack (void); 

void MakeEmpty (Stack S); 

void push (int X, Stack S); 

int Top (Stack S); 

void pop (Stack S); 

Struct Node 

{ 
 

int Element ; 

Struct Node *Next; 

}; 
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ROUTINE TO CHECK WHETHER THE STACK IS EMPTY 

 

int IsEmpty (Stack S) 

 

{ 

 

if (S→Next = = NULL) 

 

return (1); 

 

} 

 

ROUTINE TO CREATE AN EMPTY STACK 

 

Stack CreateStack ( ) 

 

{ 

 

Stack S; 

 

S = malloc (Sizeof (Struct Node)); 

if (S = = NULL) 

Error (" Outof Space"); 

MakeEmpty (s); 

return S; 

 

} 

 

void MakeEmpty (Stack S) 

 

{ 

 

if (S = = NULL) 

 

Error (" Create Stack First"); 

else 

while (! IsEmpty (s)) 

pop (s); 
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} 

 

ROUTINE TO PUSH AN ELEMENT ONTO A STACK 

 

void push (int X, Stack S) 

 

{ 

 

Struct Node * Tempcell; 

 

Tempcell = malloc (sizeof (Struct Node)); 

If (Tempcell = = NULL) 

Error ("Out of Space"); 

else 

{ 

 

Tempcell Element = X; 

Tempcell Next = S Next; 

S→Next = Tempcell; 

} 

 

} 

 

ROUTINE TO RETURN TOP ELEMENT IN A STACK 

 

int Top (Stack S) 

 

{ 

 

If (! IsEmpty (s)) 

 

return S→Next→Element; 

Error ("Empty Stack"); 

return 0; 

} 



17  

ROUTINE TO POP FROM A STACK 

 

void pop (Stack S) 

 

{ 

 

Struct Node *Tempcell; 

If (IsEmpty (S)) 

Error ("Empty Stack"); 

else 

{ 
 

Tempcell = S→Next; 

S→Next = S→Next→Next; 

Free (Tempcell); 

} 
 

} 

 

 The Queue ADT 
 

1.4.1 Queue Model 

 

A Queue is a linear data structure which follows First In First Out (FIFO) principle, in which 

insertion is performed at rear end and deletion is performed at front end. 

 

Example : Waiting Line in Reservation Counter, 

 

2.3.2 Operations on Queue 

 

The fundamental operations performed on queue are 

 

1. Enqueue 

 

2. Dequeue 

 

Enqueue : 

 

The process of inserting an element in the queue. 
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Dequeue : 

 

The process of deleting an element from the queue. 

 

Exception Conditions 

 

Overflow : Attempt to insert an element, when the queue is full is said to be overflow condition. 

Underflow : Attempt to delete an element from the queue, when the queue is empty is said to be 

underflow. 

Implementation of Queue 

 

Queue can be implemented using arrays and pointers. 

 

Array Implementation 

 

In this implementation queue Q is associated with two pointers namely rear pointer and front 

pointer. 

 

To insert an element X onto the Queue Q, the rear pointer is incremented by 1 and then set 

Queue [Rear] = X 

To delete an element, the Queue [Front] is returned and the Front Pointer is incremented by 1. 

 

ROUTINE TO ENQUEUE 

 

void Enqueue (int X) 

 

{ 

 

if (rear > = max _ Arraysize) 

print (" Queue overflow"); 

else 

{ 

 

Rear = Rear + 1; 

Queue [Rear] = X; 

} 
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} 

 

ROUTINE FOR DEQUEUE 

 

void delete ( ) 

 

{ 

 

if (Front < 0) 

 

print (" Queue Underflow"); 

else 

{ 

 

X = Queue [Front]; 

if (Front = = Rear) 

{ 

 

Front = 0; 

 

Rear = -1; 

 

} 

 

else 

 

Front = Front + 1 ; 

 

} 

 

} 

 

In Dequeue operation, if Front = Rear, then reset both 

the pointers to their initial values. (i.e. F = 0, R = -1) 

Linked List Implementation of Queue 

Enqueue operation is performed at the end of the list. 

Dequeue operation is performed at the front of the list. 
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Queue ADT 

 

DECLARATION FOR LINKED LIST IMPLEMENTATION OF QUEUE ADT 

 

Struct Node; 

 

typedef Struct Node * Queue; 

int IsEmpty (Queue Q); 

Queue CreateQueue (void); 

void MakeEmpty (Queue Q); 

void Enqueue (int X, Queue Q); 

void Dequeue (Queue Q); 

Struct Node 

{ 

 

int Element; 

 

Struct Node *Next; 

 

}* Front = NULL, *Rear = NULL; 

 

ROUTINE TO CHECK WHETHER THE QUEUE IS EMPTY 

 

int IsEmpty (Queue Q) // returns boolean value / 

 

{ // if Q is empty 

 

if (Q→Next = = NULL) // else returns 0 

 

return (1); 

 

} 

 

ROUTINE TO CHECK AN EMPTY QUEUE 

 

Struct CreateQueue ( ) 

 

{ 
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Queue Q; 

 

Q = Malloc (Sizeof (Struct Node)); 

if (Q = = NULL) 

Error ("Out of Space"); 

MakeEmpty (Q); 

return Q; 

} 

 

void MakeEmpty (Queue Q) 

 

{ 

 

if (Q = = NULL) 

 

Error ("Create Queue First"); 

else 

while (! IsEmpty (Q) 

Dequeue (Q); 

} 

 

ROUTINE TO ENQUEUE AN ELEMENT IN QUEUE 

 

void Enqueue (int X) 

 

{ 

 

Struct node *newnode; 

 

newnode = Malloc (sizeof (Struct node)); 

if (Rear = = NULL) 

{ 

 

newnode →data = X; 
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newnode →Next = NULL; 

 

Front = newnode; 

Rear = newnode; 

} 

 

else 

 

{ 

 

newnode → data = X; 

newnode → Next = NULL; 

Rear →next = newnode; 

Rear = newnode; 

} 

 

} 

 

ROUTINE TO DEQUEUE AN ELEMENT FROM THE QUEUE 

 

void Dequeue ( ) 

 

{ 

 

Struct node *temp; 

if (Front = = NULL) 

Error("Queue is underflow"); 

else 

{ 
 

temp = Front; 

 

if (Front = = Rear) 

 

{ 
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Front = NULL; 

Rear = NULL; 

} 

 

else 

 

Front = Front →Next; 

Print (temp→data); 

free (temp); 

} 

 

} 

 

Double Ended Queue (DEQUE) 

 

In Double Ended Queue, insertion and deletion operations are performed at both the ends. 

 

Circular Queue 

 

In Circular Queue, the insertion of a new element is performed at the very first location of the 

queue if the last location of the queue is full, in which the first element comes just after the last  

element. 

 

Advantages 

 

It overcomes the problem of unutilized space in linear queues, when it is implemented as arrays. 

 

To perform the insertion of an element to the queue, the position of the element is calculated by 

the relation as 

 

Rear = (Rear + 1) % Maxsize. 

and then set 

Queue [Rear] = value. 

 

ROUTINE TO INSERT AN ELEMENT IN CIRCULAR QUEUE 

 

void CEnqueue (int X) 

 

{ 
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if (Front = = (rear + 1) % Maxsize) 

print ("Queue is overflow"); 

else 

 

{ 

 

if (front = = -1) 

front = rear = 0; 

else 

rear = (rear + 1)% Maxsize; 

CQueue [rear] = X; 

} 

 

} 

 

To perform the deletion, the position of the Front printer is calculated by the relation 

Value = CQueue [Front] 

Front = (Front + 1) % maxsize. 

 

ROUTINE TO DELETE AN ELEMENT FROM CIRCULAR QUEUE 

 

int CDequeue ( ) 

 

{ 

 

if (front = = -1) 

 

print ("Queue is underflow"); 

else 

{ 

 

X = CQueue [Front]; 

if (Front = = Rear) 
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Front = Rear = -1; 

else 

Front = (Front + 1)% maxsize; 

 

} 

 

return (X); 
 

} 

 

 Priority Queues 
 

Priority Queue is a Queue in which inserting an item or removing an item can be performed from 

any position based on some priority. 

 

1.5.1 Applications of Queue 

 

* Batch processing in an operating system 

 

* To implement Priority Queues. 

 

* Priority Queues can be used to sort the elements using Heap Sort. 

 

* Simulation. 

 

* Mathematics user Queueing theory. 

 

* Computer networks where the server takes the jobs of the client as per the queue strategy. 
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 APPLICATIONS OF STACK 
 

Some of the applications of stack are : 

 

(i) Evaluating arithmetic expression 

 

(ii) Balancing the symbols 

 

(iii) Towers of Hannoi 

 

(iv) Function Calls. 

 

(v) 8 Queen Problem. 

 

Different Types of Notations To Represent Arithmetic Expression 

 

There are 3 different ways of representing the algebraic expression. 

They are 

* INFIX NOTATION 

 

* POSTFIX NOTATION 

 

* PREFIX NOTATION 

 

INFIX 

 

In Infix notation, The arithmetic operator appears between the two operands to which it is being 

applied. 

 

For example : - A / B + C 

 

POSTFIX 



 

The arithmetic operator appears directly after the two operands to which it applies. Also called 

reverse polish notation. ((A/B) + C) 

 

For example : - AB / C + 

 

PREFIX 

 

The arithmetic operator is placed before the two operands to which it applies. Also called as 

polish notation. ((A/B) + C) 

 

For example : - +/ABC 

 

INFIX PREFIX (or) POLISH POSTFIX (or) REVERSE 

POLISH 

1. (A + B) / (C - D) /+AB - CD AB + CD - / 

 

2. A + B*(C - D) +A*B - CD ABCD - * + 

 

3. X * A / B - D - / * XABD X A*B/D- 

 

4. X + Y * (A - B) / +X/*Y - AB - CD XYAB - *CD - / + 

(C - D) 

5. A * B/C + D + / * ABCD AB * C / D + 

 

2.2. Evaluating Arithmetic Expression 
 

To evaluate an arithmetic expressions, first convert the given infix expression to postfix 

expression and then evaluate the postfix expression using stack. 

 

Infix to Postfix Conversion 

 

Read the infix expression one character at a time until it encounters the delimiter. "#" 

Step 1 : If the character is an operand, place it on to the output. 

Step 2 : If the character is an operator, push it onto the stack. If the stack operator has a higher 

 

or equal priority than input operator then pop that operator from the stack and place it onto the 

output. 

 

Step 3 : If the character is a left paraenthesis, push it onto the stack. 



 

Step 4 : If the character is a right paraenthesis, pop all the operators from the stack till it 

encounters left parenthesis, discard both the parenthesis in the output. 

Evaluating Postfix Expression 
 

Read the postfix expression one character at a time until it encounters the delimiter `#'. 

Step 1 : - If the character is an operand, push its associated value onto the stack. 

Step 2 : - If the character is an operator, POP two values from the stack, apply the operator to 

them and push the result onto the stack. 

 
 

Recursive Solution 

 

N - represents the number of disks. 

 

Step 1. If N = 1, move the disk from A to C. 

Step 2. If N = 2, move the 1st disk from A to B. 

Then move the 2nd disk from A to C, 

The move the 1st disk from B to C. 

 

Step 3. If N = 3, Repeat the step (2) to more the first 2 disks from A to B using C as 

intermediate. 

Then the 3rd disk is moved from A to C. Then repeat the step (2) to move 2 disks from 

B to C using A as intermediate. 

In general, to move N disks. Apply the recursive technique to move N - 1 disks from 

A to B using C as an intermediate. Then move the Nth disk from A to C. Then again 

apply the recursive technique to move N - 1 disks from B to C using A as an 

intermediate. 

Evaluation of Postfix Expressions Using Stack [with C program] 



 

How to evaluate postfix expression using stack in C language program? 

 

The compiler finds it convenient to evaluate an expression in its postfix form. The virtues of 

postfix form include elimination of parentheses which signify priority of evaluation and the 

elimination of the need to observe rules of hierarchy, precedence and associativity during 

evaluation of the expression. 

 

As Postfix expression is without parenthesis and can be evaluated as two operands and an 

operator at a time, this becomes easier for the compiler and the computer to handle. 

 

Evaluation rule of a Postfix Expression states: 

 

1. While reading the expression from left to right, push the element in the stack if it is an 

operand. 

2. Pop the two operands from the stack, if the element is an operator and then evaluate it. 

3. Push back the result of the evaluation. Repeat it till the end of the expression. 

 

Algorithm 

 

1) Add ) to postfix expression. 

2) Read postfix expression Left to Right until ) encountered 

3) If operand is encountered, push it onto Stack 

[End If] 

4) If operator is encountered, Pop two elements 

i) A -> Top element 

ii) B-> Next to Top element 

iii) Evaluate B operator A 

push B operator A onto Stack 

5) Set result = pop 

6) END 

 

Let's see an example to better understand the algorithm: 

Expression: 456*+ 

 



#define MAXSTACK 100 /* for max size of stack */  

Fig.2.3.1 Evaluating Postfix Expression 

 
 

Result: 34 

 

Evaluation of Postfix Expressions Using Stack 

 

/* This program is for evaluation of postfix expression 

 

* This program assume that there are only four operators 

 

* (*, /, +, -) in an expression and operand is single digit only 

 

* Further this program does not do any error handling e.g. 

 

* it does not check that entered postfix expression is valid 

 

* or not. 

 

* */ 

 

Example 

 

#include <stdio.h> 

#include <ctype.h> 



/* define pop operation */  

#define POSTFIXSIZE 100 /* define max number of charcters in postfix expression */ 

 

 
 

/* declare stack and its top pointer to be used during postfix expression 

evaluation*/ 

int stack[MAXSTACK]; 

 

int top = -1; /* because array index in C begins at 0 */ 

 

/* can be do this initialization somewhere else */ 

 

 
 

/* define push operation */ 

 

void push(int item) 

 

{ 

 

 
 

if (top >= MAXSTACK - 1) { 

 

printf("stack over flow"); 

 

return; 

 

} 

 

else { 

 

top = top + 1; 

stack[top] = item; 

} 

 

} 



ch = postfix[i];  

int pop() 

 

{ 

 

int item; 

 

if (top < 0) { 

 

printf("stack under flow"); 

 

} 

 

else { 

 

item = stack[top]; 

top = top - 1; 

return item; 

} 

 

} 

 

 
 

/* define function that is used to input postfix expression and to evaluate it */ 

 

void EvalPostfix(char postfix[]) 

 

{ 

 

int i; 

char ch; 

int val; 

int A, B; 

/* evaluate postfix expression */ 

 

for (i = 0; postfix[i] != ')'; i++) { 



val = B + A;  

if (isdigit(ch)) { 

 

/* we saw an operand,push the digit onto stack 

 

ch - '0' is used for getting digit rather than ASCII code of digit */ 

push(ch - '0'); 

} 

 

else if (ch == '+' || ch == '-' || ch == '*' || ch == '/') { 

 

/* we saw an operator 

 

* pop top element A and next-to-top elemnet B 

 

* from stack and compute B operator A 

 

*/ 

 

A = pop(); 

 

B = pop(); 

 

 
 

switch (ch) /* ch is an operator */ 

 

{ 

 

case '*': 

 

val = B * A; 

 

break; 

case '/': 

val = B / A; 

 

break; 

case '+': 



 

break; 

case '-': 

val = B - A; 

 

break; 

 

} 

 

/* push the value obtained above onto the stack */ 

push(val); 

} 
 

} 

 

printf(" \n Result of expression evaluation : %d \n", pop()); 
 

} 

 

 
 

int main() 

 

{ 

 

 
 

int i; 

 

 
 

/* declare character array to store postfix expression */ 

 

char postfix[POSTFIXSIZE]; 

 

printf("ASSUMPTION: There are only four operators(*, /, +, -) in an expression and operand 

is single digit only.\n"); 

 

printf(" \nEnter postfix expression,\npress right parenthesis ')' for end expression : "); 

 

/* take input of postfix expression from user */ 

 

for (i = 0; i <= POSTFIXSIZE - 1; i++) { 



 

scanf("%c", &postfix[i]); 

 

if (postfix[i] == ')') /* is there any way to eliminate this if */ 

 

{ 

 

break; 

 

} /* and break statement */ 
 

} 

 

/* call function to evaluate postfix expression */ 

EvalPostfix(postfix); 

return 0; 
 

} 

 

Output 

 

First Run: 

 

Enter postfix expression, press right parenthesis ')' for end expression : 456*+) 

Result of expression evaluation : 34 

Second Run: 

 

Enter postfix expression, press right parenthesis ')' for end expression: 12345*+*+) 

Result of expression evaluation: 47 

 
 Infix to Postfix Conversion 

 
This problem requires you to write a program to convert an infix expression to a postfix 

expression. The evaluation of an infix expression such as A + B * C requires knowledge of 

which of the two operations, + and *, should be performed first. In general, A + B * C is to be 

interpreted as A + ( B * C ) unless otherwise specified. We say that multiplication takes 

precedence over addition. Suppose that we would now like to convert A + B * C to postfix. 

Applying the rules of precedence, we first convert the portion of the expression that is 

evaluated first, namely the multiplication. Doing this conversion in stages, we obtain 



 

 
A + B * C Given infix form 
A + B C *  Postfix 
A B C *  +  Convert the addition to posfix 

 

The major rules to remember during the conversion process are that the operations with highest 

precedence are converted first and that after a portion of an expression has been converted to 

postfix, it is to be treated as a single operand. Let us now consider the same example with the 

precedence of operators reversed by the deliberate insertion of parentheses. 

 
( A + B ) * C Given infix form 

A B + * C Convert the addition 

A B + C * Convert the multiplication 

 
Note that in the conversion from AB + * C to AB + C *,   AB+ was treated as a single 

operand.   The rules for converting from infix to postfix are simple, provided that you know 

the order of precedence. 

 
We consider five binary operations: addition, subtraction, multiplication, division, and 

exponentiation. These operations are denoted by the usual operators, +, –, *, /, and ^, 

respectively. There are three levels of operator precedence. Both * and / have higher 

precedence than + and –. ^ has higher precedence than * and /. Furthermore, when operators of 

the same precedence are scanned, +, –, * and / are left associative, but ^ is right associative. 

Parentheses may be used in infix expressions to override the default precedence. 

 
The postfix form requires no parentheses. The order of the operators in the postfix expressions 

determines the actual order of operations in evaluating the expression, making the use of 

parentheses unnecessary. 

 
Input 

A collection of error-free simple arithmetic expressions. Expressions are presented one per line. 

The input has an arbitrary number of blanks between any two symbols. A symbol may be a 

letter (A – Z), an operator (+, – , *, or /), a left parenthesis, or a right parenthesis. Each operand 

is composed of a single letter. The input expressions are in infix notation. 

 
Example 

A + B – C A + B 

* C 

(A + B) / (C – D) 

( ( A + B ) * ( C – D ) + E ) / (F + G) 



 

 

Output 

Your output will consist of the input expression, followed by its corresponding postfix 

expression. All output (including the original infix expression) must be clearly formatted (or 

reformatted) and also clearly labeled. 

 

Example 

(Only the four postfix expressions corresponding to the above sample input are 

shown here.) A B + C – 

A B C * + 

A B + C D - / 

A B + C D - * E + F G + / 

 
In converting infix expressions to postfix notation, the following fact should be taken into 

consideration: In infix form, the order of applying operators is governed by the possible 

appearance of parentheses and the operator precedence relations; however, in postfix form, the 

order is simply the “natural” order – i.e., the order of appearance from left to right. 

 
Accordingly, subexpressions within innermost parentheses must first be converted to postfix, so 

that they can then be treated as single operands. In this fashion, parentheses can be 

successively eliminated until the entire expression has been converted. The last pair of 

parentheses to be opened within a group of nested parentheses encloses the first subexpression 

within the group to be transformed. This last-in, first-out behavior should immediately suggest 

the use of a stack. 

 
Your program should utilize the basic stack methods. You will need to PUSH certain symbols 

on the stack, POP symbols, test to see if the stack is EMPTY, look at the TOP element of the 

stack, etc. 

 
In addition, you must devise a boolean method that takes two operators and tells you which has 

higher precedence. This will be helpful, because in Rule 3 below, you need to compare the next 

symbol to the one on the top of the stack. [Question: what precedence do you assign to ‘(‘? You 

need to answer this question since ‘(‘ may be on top of the stack.] 

 
You should formulate the conversion algorithm using the following six rules: 

 

 
1. Scan the input string (infix notation) from left to right. One pass is sufficient. 

2. If the next symbol scanned is an operand, it may be immediately appended to the 



 

postfix string. 

3. If the next symbol is an operator, 

i. Pop and append to the postfix string every operator on the stack that a. is 

above the most recently scanned left parenthesis, and has precedence higher than or is a 

right-associative operator of equal precedence to that of the new operator symbol. 

ii. Push the new operator onto the stack. 

4. When a left parenthesis is seen, it must be pushed onto the stack. 

5. When a right parenthesis is seen, all operators down to the most recently scanned left 

parenthesis must be popped and appended to the postfix string. Furthermore, this pair of 

parentheses must be discarded. 

6. When the infix string is completely scanned, the stack may still contain some operators. 

[Why are there no parentheses on the stack at this point?] All the remaining operators should be 

popped and appended to the postfix string. 

 
Examples 

Here are two examples to help you understand how the algorithm works. Each line below 

demonstrates the state of the postfix string and the stack when the corresponding next infix 

symbol is scanned.  The 

rightmost symbol of the stack is the top symbol. The rule number corresponding to each line 

demonstrates which of the six rules was used to reach the current state from that of the previous 

line. 

 
Example 1 

Input expression: A + B * C / D - E 
 
 

 

A A  2 
+ A + 3 
B A B + 2 
* A B + * 3 
C A B C + * 2 
/ A B C * + / 3 
D A B C * D + / 2 
- A B C * D / + - 3 
E A B C * D / + E - 2 
 A B C * D / + E -  6 

 

 
Example 2 

Input expression: ( A + B * ( C - D ) ) / E. 

 



 

Next Symbol Postfix String Stack Rule 

(  ( 4 
A A ( 2 
+ A ( + 3 
B A B ( + 2 
* A B ( + * 3 
( A B ( + * ( 4 
C A B C ( + * ( 2 
- A B C ( + * ( - 3 
D A B C D ( + * ( - 2 
) A B C D - ( + * 5 

) A B C D - * +  5 
/ A B C D - * + / 3 
E A B C D - * + E / 2 
 A B C D - * + E /  6 

 

 

 

 

RECURSIVE ROUTINE FOR TOWERS OF HANOI 
 

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more than 

one rings is as depicted − 
 

Fig.2.5.1 Tower of Hanoi 

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one 

sits over the larger one. There are other variations of the puzzle where the number of disks 

increase, but the tower count remains the same. 

 

Rules 

 

The mission is to move all the disks to some another tower without violating the sequence of 

arrangement. A few rules to be followed for Tower of Hanoi are − 

 

 Only one disk can be moved among the towers at any given time. 

 Only the "top" disk can be removed. 



 

 No large disk can sit over a small disk. 

Following is an animated representation of solving a Tower of Hanoi puzzle with three disks. 
 

Fig.2.5.2 Tower of Hanoi with 3 Disks 

Tower of Hanoi puzzle with n disks can be solved in minimum 2n−1 steps. This presentation 

shows that a puzzle with 3 disks has taken 23 - 1 = 7 steps. 

 

Algorithm 

 

To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with 

lesser    amount    of    disks,    say    →     1     or    2.    We    mark    three    towers    with 

name, source, destination and aux (only to help moving the disks). If we have only one disk, 

then it can easily be moved from source to destination peg. 

If we have 2 disks − 

 

 First, we move the smaller (top) disk to aux peg. 

 Then, we move the larger (bottom) disk to destination peg. 

 And finally, we move the smaller disk from aux to destination peg. 

Fig.2.5.3 Tower of Hanoi with 2 Disks 

So now, we are in a position to design an algorithm for Tower of Hanoi with more than two 

disks. We divide the stack of disks in two parts. The largest disk (nth disk) is in one part and all 

other (n-1) disks are in the second part. 



 

START 

Procedure Hanoi(disk, source, dest, aux) 

 

IF disk == 1, THEN 

move disk from source to dest 

ELSE 

Hanoi(disk - 1, source, aux, dest) // Step 1 

move disk from source to dest // Step 2 

Hanoi(disk - 1, aux, dest, source) // Step 3 

END IF 

 

END Procedure 

STOP 

Our ultimate aim is to move disk n from source to destination and then put all other (n1) disks 

onto it. We can imagine to apply the same in a recursive way for all given set of disks. 

The steps to follow are − 

Step 1 − Move n-1 disks from source to aux 

Step 2 − Move nth disk from source to dest 

Step 3 − Move n-1 disks from aux to dest 

A recursive algorithm for Tower of Hanoi can be driven as follows − 
 

 

Example: 

 

void hanoi (int n, char s, char d, char i) 

 

{ 

 

/* n no. of disks, s source, d destination i intermediate */ 

if (n = = 1) 

{ 

 

print (s, d); 

return; 

} 

 

else 

 

{ 

 

hanoi (n - 1, s, i, d); 



 

print (s, d) 

 

hanoi (n-1, i, d, s); 

return; 

} 

 

} 

 

Function Calls 

 

When a call is made to a new function all the variables local to the calling routine need to be 

saved, otherwise the new function will overwrite the calling routine variables. Similarly the 

current location address in the routine must be saved so that the new function knows where to go 

after it is completed. 

 

RECURSIVE FUNCTION TO FIND FACTORIAL : - 

 

int fact (int n) 

 

{ 

 

int s; 

 

if (n = = 1) 

return (1); 

else 

s = n * fact (n - 1); 

return (s); 

} 
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UNIT-III 
 

Tree Structures: Binary Trees- Implementation of Binary Trees- Linear 

Representation of Binary Tree-Linked representation of a Binary Tree. Binary Tree 

Traversal: Pre order – In order - Post order. 

 

3. TREES 
 

PRELIMINARIES: 

 

TREE: A tree is a finite set of one or more nodes such that there is a specially designated 

node called the Root, and zero or more non empty sub trees T1, T2 Tk, each of 

whose roots are connected by a directed edge from Root R. 

 

The ADT tree 

 

A tree is a finite set of elements or nodes. If the set is non-empty, one of the nodes 

is distinguished as the root node, while the remaining (possibly empty) set of nodes are 

grouped into subsets, each of which is itself a tree. This hierarchical relationship is 

described by referring to each such subtree as a child of the root, while the root is referred 

to as the parent of each subtree. If a tree consists of a single node, that node is called a 

leaf node. 

Figure 3.1.1 A simple tree. 

 
It is a notational convenience to allow an empty tree. It is usual to represent a tree using a 

picture such as Fig. 3.1.1, in which the root node is A, and there are three subtrees rooted 

at B, C and D. The root of the subtree D is a leaf node, as are the remaining nodes, E, F, 

G, H and I. The node C has a single child I, while each of E, F, G and H have the same 

parent B. The subtrees rooted at a given node are taken to be ordered, so the tree in 

Fig. 3.1.1 is different from the one in which nodes E and F are interchanged. Thus it 

makes sense to say that the first subtree at A has 4 leaf nodes. 

 

Example 3.1.1 Show how to implement the Abstract Data Type tree using lists. 
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Solution We write [A B C] for the list containing three elements, and distinguish A from 

[A]. We can represent a tree as a list consisting of the root and a list of the subtrees in 

order. Thus the list-based representation of the tree in Fig 3.1.1 is 

 

[A [[B [[E] [F] [G] [H]]] [C [I]] [D]]]. 

 

 
 

ROOT : A node which doesn't have a parent. In the above tree. 

 

NODE : Item of Information. 

 

LEAF : A node which doesn't have children is called leaf or Terminal node. 

 

SIBLINGS : Children of the same parents are said to be siblings,. F, G are siblings. 

PATH : A path from node n, to nk is defined as a sequence of nodes n1, n2,n3    nk such 

that ni is the parent of ni+1. for . There is exactly only one path from each node to 

root. 

 

LENGTH : The length is defined as the number of edges on the path. 

 

DEGREE : The number of subtrees of a node is called its degree. 

 

 BINARY TREE 
 

Definition :- 

 

Binary Tree is a tree in which no node can have more than two children. 

Maximum number of nodes at level i of a binary tree is 2i-1. 

A binary tree is a tree which is either empty, or one in which every node: 

 

 has no children; or 

 has just a left child; or 
 has just a right child; or 

 has both a left and a right child. 

 

A complete binary tree is a special case of a binary tree, in which all the levels, except 

perhaps the last, are full; while on the last level, any missing nodes are to the right of all 

the nodes that are present. An example is shown in Fig. 3.5. 
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Fig. 3.2.1 A complete binary tree: the only ``missing'' entries can be on the last row. 

Example 3.2.1   Give a space - efficient implementation of a complete binary tree in 

terms of an array A. Describe how to pass from a parent to its two children, and vice- 

versa. 

 

Solution An obvious one, in which no space is wasted, stores the root of the tree in A[1]; 

the two children in A[2] and A[3], the next generation at A[4] up to A[7] and so on. An 

element A[k] has children at A[2k] and A[2k+1], providing they both exists, while the 

parent of node A[k] is at A[k div 2]. Thus traversing the tree can be done very efficiently. 

 

 
 

BINARY TREE NODE DECLARATIONS 

 

Struct TreeNode 

 

{ 

 

int Element; 

 

Struct TreeNode *Left ; 

Struct TreeNode *Right; 

}; 

 

COMPARISON BETWEEN 

GENERAL TREE & BINARY TREE 

General Tree Binary Tree 

 

* General Tree has any * A Binary Tree has not 

number of children. more than two children. 
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FULL BINARY TREE :- 

 

A full binary tree of height h has 2h+1 - 1 nodes. 

 

Here height is 3 No. of nodes in full 

binary tree is = 23+1 -1 

= 15 nodes. 

 

COMPLETE BINARY TREE : 

 

A complete binary tree of height h has between 2h and 2h+1 - 1 nodes. In the bottom level 

the elements should be filled from left to right. 

 

REPRESENTATION OF A BINARY TREE 

 

There are two ways for representing binary tree, they are 

 

* Linear Representation 

 

* Linked Representation 

 

Linear Representation 

 

The elements are represented using arrays. For any element in position i, the left child is 

in position 2i, the right child is in position (2i + 1), and the parent is in position (i/2). 

 

Linked Representation 

 

The elements are represented using pointers. Each node in linked representation has three 

fields, namely, 

 

* Pointer to the left subtree 

 

* Data field 

 

* Pointer to the right subtree 

 

In leaf nodes, both the pointer fields are assigned as NULL. 

 

 EXPRESSION TREE 

 

Expression Tree is a binary tree in which the leaf nodes are operands and the interior 

nodes are operators. Like binary tree, expression tree can also be travesed by inorder, 

preorder and postorder traversal. 
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Constructing an Expression Tree 

 

Let us consider postfix expression given as an input for constructing an expression tree 

by performing the following steps : 

 

1. Read one symbol at a time from the postfix expression. 

 

2. Check whether the symbol is an operand or operator. 

 

(a) If the symbol is an operand, create a one - node tree and push a pointer on to the stack. 

 

(b) If the symbol is an operator pop two pointers from the stack namely T1 and T2 and 

form a new tree with root as the operator and T2 as a left child and T1 as a right child. 

A pointer to this new tree is then pushed onto the stack. 

 The Search Tree ADT : - Binary Search Tree 
 

Definition : - 

 

Binary search tree is a binary tree in which for every node X in the tree, the values of all 

the keys in its left subtree are smaller than the key value in X, and the values of all the 

keys in its right subtree are larger than the key value in X. 

 

Comparision Between Binary Tree & Binary Search Tree 

Binary Tree Binary Search Tree 

* A tree is said to be a binary * A binary search tree is a binary tree in which 

tree if it has atmost two childrens. the key values in the left node is less than the 

root and the keyvalues in the right node is greater than the root. 

* It doesn't have any order. 

 

Note : * Every binary search tree is a binary tree. 

 

* All binary trees need not be a binary search tree. 

 

DECLARATION ROUTINE FOR BINARY SEARCH TREE 

 

Struct TreeNode; 

 

typedef struct TreeNode * SearchTree; 
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SearchTree Insert (int X, SearchTree T); 

SearchTree Delete (int X, SearchTree T); 

int Find (int X, SearchTree T); 

int FindMin (Search Tree T); 

int FindMax (SearchTree T); 

SearchTree MakeEmpty (SearchTree T); 

Struct TreeNode 

{ 
 

int Element ; 

SearchTree Left; 

SearchTree Right; 

}; 

 

Make Empty :- 

 

This operation is mainly for initialization when the programmer prefer to initialize the 

first element as a one - node tree. 

 

ROUTINE TO MAKE AN EMPTY TREE :- 

 

SearchTree MakeEmpty (SearchTree T) 

 

{ 

 

if (T! = NULL) 

 

{ 

 

MakeEmpty (T left); 

MakeEmpty (T Right); 

free (T); 

} 
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return NULL ; 

 

} 

 

Insert : - 

 

To insert the element X into the tree, 

 

* Check with the root node T 

 

* If it is less than the root, 

 

Traverse the left subtree recursively until it reaches 

the T left equals to NULL. Then X is placed in 

T left. 

 

* If X is greater than the root. 

 

Traverse the right subtree recursively until it reaches 

the T right equals to NULL. Then x is placed in 

T Right. 

 

ROUTINE TO INSERT INTO A BINARY SEARCH TREE 

 

SearchTree Insert (int X, searchTree T) 

 

{ 

 

if (T = = NULL) 

 

{ 

 

T = malloc (size of (Struct TreeNode)); 

 

if (T! = NULL) // First element is placed in the root. 

 

{ 

 

T →Element = X; 

 

T→ left = NULL; 
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T →Right = NULL; 

 

} 

 

} 

 

else 

 

if (X < T →Element) 

 

T left = Insert (X, T →left); 

else 

if (X > T →Element) 

 

T Right = Insert (X, T →Right); 

 

// Else X is in the tree already. 

return T; 

} 

 

Example : - 

 

To insert 8, 5, 10, 15, 20, 18, 3 

 

* First element 8 is considered as Root. 

As 5 < 8, Traverse towards left 

10 > 8, Traverse towards Right. 

 

Similarly the rest of the elements are traversed. 

 

Find : - 

 

* Check whether the root is NULL if so then return NULL. 

 

* Otherwise, Check the value X with the root node value (i.e. T data) 

 

(1) If X is equal to T data, return T. 

 

(2) If X is less than T data, Traverse the left of T recursively. 
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(3) If X is greater than T data, traverse the right of T recursively. 

 

ROUTINE FOR FIND OPERATION 

 

Int Find (int X, SearchTree T) 

 

{ 

 

If T = = NULL) 

 

Return NULL ; 

 

If (X < T Element) 

return Find (X, T →left); 

else 

If (X > T→ Element) 

return Find (X, T →Right); 

else 

return T; // returns the position of the search element. 

 

} 

 

Example : - To Find an element 10 (consider, X = 10) 

 

10 is checked with the Root 10 > 8, Go to the right child of 8 

10 is checked with Root 15 10 < 15, Go to the left child of 15. 

10 is checked with root 10 (Found) 

Find Min : 

 

This operation returns the position of the smallest element in the tree. 

 

To perform FindMin, start at the root and go left as long as there is a left child. The 

stopping point is the smallest element. 

 

RECURISVE ROUTINE FOR FINDMIN 

 

int FindMin (SearchTree T) 
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{ 

 

if (T = = NULL); 

 

return NULL ; 

 

else if (T →left = = NULL) 

return T; 

else 

 

return FindMin (T → left); 

Example : - 

Root T 

T 

(a) T! = NULL and T→left!=NULL, (b) T! = NULL and T→left!=NULL, 

Traverse left Traverse left 

Min T 

 

(c) Since T left is Null, return T as a minimum element. 

 

NON - RECURSIVE ROUTINE FOR FINDMIN 

 

int FindMin (SearchTree T) 

 

{ 

 

if (T! = NULL) 

 

while (T →Left ! = NULL) 

T = T →Left ; 

return T; 

 

} 

 

FindMax 
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FindMax routine return the position of largest elements in the tree. To perform a 

FindMax, start at the root and go right as long as there is a right child. The stopping point 

is the largest element. 

 

RECURSIVE ROUTINE FOR FINDMAX 

 

int FindMax (SearchTree T) 

 

{ 

 

if (T = = NULL) 

 

return NULL ; 

 

else if (T →Right = = NULL) 

return T; 

else FindMax (T →Right); 

 

} 

 

Example :- 

 

Root T 

 

(a) T! = NULL and T→Right!=NULL, (b) T! = NULL and T→Right!=NULL, 

Traverse Right Traverse Right 

Max 

 

(c) Since T Right is NULL, return T as a Maximum element. 

 

NON - RECURSIVE ROUTINE FOR FINDMAX 

 

int FindMax (SearchTree T) 

 

{ 

 

if (T! = NULL) 

 

while (T Right ! = NULL) 

T = T →Right ; 
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return T ; 

 

} 

 

Delete : 

 

Deletion operation is the complex operation in the Binary search tree. To delete an 

element, consider the following three possibilities. 

 

CASE 1 Node to be deleted is a leaf node (ie) No children. 

CASE 2 Node with one child. 

CASE 3 Node with two children. 

 

CASE 1 Node with no children (Leaf node) 

 

If the node is a leaf node, it can be deleted immediately. 

Delete : 8 

After the deletion 

 

CASE 2 : - Node with one child 

 

If the node has one child, it can be deleted by adjusting its parent pointer that points to its 

child node. 

 

To Delete 5 

 

before deletion After deletion 

 

To delete 5, the pointer currently pointing the node 5 is now made to to its child node 6. 

 

Case 3 : Node with two children 

 

It is difficult to delete a node which has two children. The general strategy is to replace 

the data of the node to be deleted with its smallest data of the right subtree and 

recursively delete that node. 

 

DELETION ROUTINE FOR BINARY SEARCH TREES 

 

SearchTree Delete (int X, searchTree T) 

 

{ 
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int Tmpcell ; 

 

if (T = = NULL) 

 

Error ("Element not found"); 

else 

if (X < T →Element) // Traverse towards left 

T →Left = Delete (X, T Left); 

else 

 

if (X > T Element) // Traverse towards right 

T →Right = Delete (X, T →Right); 

// Found Element tobe deleted 

else 

// Two children 

 

if (T→ Left && T→ Right) 

 

{ // Replace with smallest data in right subtree 

Tmpcell = FindMin (T→ Right); 

T →Element = Tmpcell Element ; 

 

T →Right = Delete (T → Element; T →Right); 

 

} 

 

else // one or zero children 

 

{ 

 

Tmpcell = T; 

 

if (T →Left = = NULL) 

T = T→ Right; 
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else if (T→ Right = = NULL) 

T = T →Left ; 

free (TmpCell); 

 

} 

 

return T; 
 

} 

 

 Tree Representation 

Tree represents the nodes connected by edges. We will discuss binary tree or binary 

search tree specifically. 

Binary Tree is a special datastructure used for data storage purposes. A binary tree has a 

special condition that each node can have a maximum of two children. A binary tree has 

the benefits of both an ordered array and a linked list as search is as quick as in a sorted 

array and insertion or deletion operation are as fast as in linked list. 
 

Fig.3.4.1 Tree Representation with Levels 
 

Important Terms 

 

Following are the important terms with respect to tree. 

 Path − Path refers to the sequence of nodes along the edges of a tree. 

 Root − The node at the top of the tree is called root. There is only one root per 

tree and one path from the root node to any node. 

 Parent − Any node except the root node has one edge upward to a node called 

parent. 
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struct node { 

int data; 

struct node *leftChild; 

struct node *rightChild; 

}; 

 Child − The node below a given node connected by its edge downward is called 

its child node. 

 Leaf − The node which does not have any child node is called the leaf node. 

 Subtree − Subtree represents the descendants of a node. 

 Visiting − Visiting refers to checking the value of a node when control is on the 

node. 

 Traversing − Traversing means passing through nodes in a specific order. 

 Levels − Level of a node represents the generation of a node. If the root node is 

at level 0, then its next child node is at level 1, its grandchild is at level 2, and so 

on. 

 keys − Key represents a value of a node based on which a search operation is to 

be carried out for a node. 

 

Binary Search Tree Representation 

 

Binary Search tree exhibits a special behavior. A node's left child must have a value less 

than its parent's value and the node's right child must have a value greater than its parent 

value. 
 

Fig.3.4.2 Binary search Tree 

We're going to implement tree using node object and connecting them through 

references. 

 

Tree Node 

 

The code to write a tree node would be similar to what is given below. It has a data part 

and references to its left and right child nodes. 
 

In a tree, all nodes share common construct. 
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If root is NULL 

then create root node 

return 

 

If root exists then 

compare the data with node.data 

while until insertion position is located 

If data is greater than node.data 

goto right subtree 

else 

goto left subtree 

endwhile 

insert data 

 

end If 

BST Basic Operations 

 

The basic operations that can be performed on a binary search tree data structure, are the 

following − 

 Insert − Inserts an element in a tree/create a tree. 

 Search − Searches an element in a tree. 

 Preorder Traversal − Traverses a tree in a pre-order manner. 

 Inorder Traversal − Traverses a tree in an in-order manner. 

 Postorder Traversal − Traverses a tree in a post-order manner. 

We shall learn creating (inserting into) a tree structure and searching a data item in a tree 

in this chapter. We shall learn about tree traversing methods in the coming chapter. 

 

Insert Operation 

 

The very first insertion creates the tree. Afterwards, whenever an element is to be 

inserted, first locate its proper location. Start searching from the root node, then if the 

data is less than the key value, search for the empty location in the left subtree and insert  

the data. Otherwise, search for the empty location in the right subtree and insert the data. 
 

Algorithm 

 

Implementation 

The implementation of insert function should look like this − 
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Search Operation 

void insert(int data) { 

struct node *tempNode = (struct node*) malloc(sizeof(struct node)); 

struct node *current; 

struct node *parent; 

 

tempNode->data = data; 

tempNode->leftChild = NULL; 

tempNode->rightChild = NULL; 

 

//if tree is empty, create root node 

if(root == NULL) { 

root = tempNode; 

} else { 

current = root; 

parent = NULL; 

 

while(1) { 

parent = current; 

 

//go to left of the tree 

if(data < parent->data) { 

current = current->leftChild; 

 

//insert to the left 

if(current == NULL) { 

parent->leftChild = tempNode; 

return; 

} 

} 

 

//go to right of the tree 

else { 

current = current->rightChild; 

 

//insert to the right 

if(current == NULL) { 

parent->rightChild = tempNode; 

return; 

} 

} 

} 

} 

} 
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If root.data is equal to search.data 

return root 

else 

while data not found 

 

If data is greater than node.data 

goto right subtree 

else 

goto left subtree 

 

If data found 

return node 

endwhile 

return data not found 

end if 

struct node* search(int data) { 

struct node *current = root; 

printf("Visiting elements: "); 

 

while(current->data != data) { 

if(current != NULL) 

printf("%d ",current->data); 

 

//go to left tree 

 

if(current->data > data) { 

current = current->leftChild; 

} 

//else go to right tree 

else { 

current = current->rightChild; 

} 

 

//not found 

if(current == NULL) { 

return NULL; 

} 

Whenever an element is to be searched, start searching from the root node, then if the 

data is less than the key value, search for the element in the left subtree. Otherwise, 

search for the element in the right subtree. Follow the same algorithm for each node. 
 

Algorithm 

The implementation of this algorithm should look like this. 
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 TREE TRAVERSAL: 

Traversal is a process to visit all the nodes of a tree and may print their values too. 

Because, all nodes are connected via edges (links) we always start from the root (head) 

node. That is, we cannot randomly access a node in a tree. There are three ways which 

we use to traverse a tree − 

 

 In-order Traversal 

 Pre-order Traversal 

 Post-order Traversal 

Generally, we traverse a tree to search or locate a given item or key in the tree or to print 

all the values it contains. 

 

In-order Traversal 

 

In this traversal method, the left subtree is visited first, then the root and later the right 

sub-tree. We should always remember that every node may represent a subtree itself. 

If a binary tree is traversed in-order, the output will produce sorted key values in an 

ascending order. 
 

Fig.3.5.1 Inorder Tree 

We start from A, and following in-order traversal, we move to its left subtree B. B is 

also traversed in-order. The process goes on until all the nodes are visited. The output of 

inorder traversal of this tree will be − 

D → B → E → A → F → C → G 

 
return current; 

} 

} 
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Algorithm 

 

Until all nodes are traversed − 

Step 1 − Recursively traverse left subtree. 

Step 2 − Visit root node. 

Step 3 − Recursively traverse right subtree. 

 

Pre-order Traversal 

 

In this traversal method, the root node is visited first, then the left subtree and finally the 

right subtree. 
 

Fig.3.5.2 Pre-order Tree 

We start from A, and following pre-order traversal, we first visit A itself and then move 

to its left subtree B. B is also traversed pre-order. The process goes on until all the nodes 

are visited. The output of pre-order traversal of this tree will be − 

A → B → D → E → C → F → G 

 

Algorithm 

 

Until all nodes are traversed − 

Step 1 − Visit root node. 

Step 2 − Recursively traverse left subtree. 

Step 3 − Recursively traverse right subtree. 

 

Post-order Traversal 

 

In this traversal method, the root node is visited last, hence the name. First we traverse 

the left subtree, then the right subtree and finally the root node. 
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Fig.3.5.3 Post-order Tree 

We start from A, and following Post-order traversal, we first visit the left subtree B. B is 

also traversed post-order. The process goes on until all the nodes are visited. The output 

of post-order traversal of this tree will be − 

D → E → B → F → G → C → A 

 

Algorithm 

 

Until all nodes are traversed − 

Step 1 − Recursively traverse left subtree. 

Step 2 − Recursively traverse right subtree. 

Step 3 − Visit root node. 

 

 
 

 BINARY HEAP 
 

The efficient way of implementing priority queue is Binary Heap. Binary heap is merely 

referred as Heaps, Heap have two properties namely 

 

* Structure property 

 

* Heap order property. 

 

Like AVL trees, an operation on a heap can destroy one of the properties, so a heap 

operation must not terminate until all heap properties are in order. Both the operations 

require the average running time as O(log N). 

 

Structure Property 

 

A heap should be complete binary tree, which is a completely filled binary tree with the 

possible exception of the bottom level, which is filled from left to right. 
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A complete binary tree of height H has between 2H and 2H+1 -1 nodes. 

 

For example if the height is 3. Then the numer of nodes will be between 8 and 15. (ie) (23 

and 24-1). 

 

For any element in array position i, the left child is in position 2i, the right child is in 

position 2i + 1, and the parent is in i/2. As it is represented as array it doesn't require 

pointers and also the operations required to traverse the tree are extremely simple and 

fast. But the only disadvantage is to specify the maximum heap size in advance. 

 

Heap Order Property 

 

In a heap, for every node X, the key in the parent of X is smaller than (or equal to) the 

key in X, with the exception of the root (which has no parent). 

 

This property allows the deletemin operations to be performed quickly has the minimum 

element can always be found at the root. Thus, we get the FindMin operation in constant 

time. 

 

Declaration for priority queue 

 

Struct Heapstruct; 

 

typedef struct Heapstruct * priority queue; 

PriorityQueue Initialize (int MaxElements); 

void insert (int X, PriorityQueue H); 

int DeleteMin (PriorityQueue H); 

Struct Heapstruct 

{ 
 

int capacity; 

int size; 

int *Elements; 

 

}; 

 

Initialization 

 

PriorityQueue Initialize (int MaxElements) 
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{ 

 

PriorityQueue H; 

 

H = malloc (sizeof (Struct Heapstruct)); 

H Capacity = MaxElements; 

H size = 0; 

 

H elements [0] = MinData; 

return H; 

BASIC HEAP OPERATIONS 

 

To perform the insert and DeleteMin operations ensure that the heap order property is 

maintained. 

 

Insert Operation 

 

To insert an element X into the heap, we create a hole in the next available location, 

otherwise the tree will not be complete. If X can be placed in the hole without violating 

heap order, then place the element X there itself. Otherewise, we slide the element that is 

in the hole's parent node into the hole, thus bubbling the hole up toward the root. This 

process continues until X can be placed in the hole. This general strategy is known as 

Percolate up, in which the new element is percolated up the heap until the correct location 

is found. 

 

Routine To Insert Into A Binary Heap 

 

void insert (int X, PriorityQueue H) 

 

{ 

 

int i; 

 

If (Isfull (H)) 

 

{ 

 

Error (" priority queue is full"); 

return; 

} 
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for (i = ++H→ size; H→ Elements [i/2] > X; i/=2) 

 

/* If the parent value is greater than X, then place the element of parent 

node into the hole */. 

H→ Elements [i] = H→Elements [i/2]; 

 

H→ elements [i] = X; // otherwise, place it in the hole. 

 

} 

 

DeleteMin 

 

DeleteMin Operation is deleting the minimum element from the Heap. 

 

In Binary heap the minimum element is found in the root. When this minimum is 

removed, a hole is created at the root. Since the heap becomes one smaller, makes the last  

element X in the heap to move somewhere in the heap. 

 

If X can be placed in hole without violating heaporder property place it. 

 

Otherwise, we slide the smaller of the hole's children into the hole, thus pushing the hole 

down one level. We repeat until X can be placed in the hole. This general strategy is 

known as perculate down. 

 

ROUTINE TO PERFORM DELETEMIN IN A BINARY HEAP 

 

int Deletemin (PriorityQueue H) 

 

{ 

 

int i, child; 

 

int MinElement, LastElement; 

if (IsEmpty (H)) 

{ 

 

Error ("Priority queue is Empty"); 

return H → Elements [0]; 

} 
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MinElement = H → Elements [1]; 

LastElement = H→Elements [H→ size - -]; 

for (i = 1; i * 2 < = H  size; i = child) 

{ 

 

/* Find Smaller Child */ 

child = i * 2; 

if (child ! = H → size && H →Elements [child + 1] 

 

< H →Elements [child]) 

child + +; 

// Percolate one level down 

 

if (LastElement > H →Elements [child]) 

 

H→ Elements [i] = H → Elements [child]; 

else 

break ; 

 

} 

 

H → Elements [i] = LastElement; 

return MinElement; 

} 

 

OTHER HEAP OPERATIONS 

 

The other heap operations are 

 

(i) Decrease - key 

 

(ii) Increase - key 

 

(iii) Delete 
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(iv) Build Heap 

 

DECREASE KEY 

 

The Decreasekey (P, , H) operation decreases the value of the key at position P by a 

positive amount . This may violate the heap order property, which can be fixed by 

percolate up. 

 

Increase - Key 

 

The increase - key (p, , H) operation increases the value of the key at position p by a 

positive amount . This may violate heap order property, which can be fixed by percolate 

down. 
 

 HASHING: 
 

Hash Table 

 

The hash table data structure is an array of some fixed size, containing the keys. A key is 

a value associated with each record. 

 

Hashing Function 

 

A hashing function is a key - to - address transformation, which acts upon a given key to 

compute the relative position of the key in an array. 

 

A simple Hash function 

 

HASH (KEYVALUE) = KEYVALUE MOD TABLESIZE 

 

Example : - Hash (92) 

Hash (92) = 92 mod 10 = 2 

The keyvalue `92' is placed in the relative location `2'. 

 

ROUTINE FOR SIMPLE HASH FUNCTION 

 

Hash (Char *key, int Table Size) 

 

{ 

 

int Hashvalue = 0; 

while (* key ! = `\0') 
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Hashval + = * key ++; 

return Hashval % Tablesize; 

} 

 

Some of the Methods of Hashing Function 

 

1. Module Division 

 

2. Mid - Square Method 

 

3. Folding Method 

 

4. PSEUDO Random Method 

 

5. Digit or Character Extraction Method 

 

6. Radix Transformation. 

 

Collisions 

 

Collision occurs when a hash value of a record being inserted hashes to an address (i.e. 

Relative position) that already contain a different record. (ie) When two key values hash 

to the same position. 

 

Collision Resolution 

 

The process of finding another position for the collide record. 

Some of the Collision Resolution Techniques 

1. Seperate Chaining 

 

2. Open Addressing 

 

3. Multiple Hashing 

 

Seperate Chaining 

 

Seperate chaining is an open hashing technique. A pointer field is added to each record 

location. When an overflow occurs this pointer is set to point to overflow blocks making 

a linked list. 

 

In this method, the table can never overflow, since the linked list are only extended upon 

the arrival of new keys. 
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Insertion 

 

To perform the insertion of an element, traverse down the appropriate list to check 

whether the element is already in place. 

 

If the element turns to be a new one, it is insertd either at the front of the list or at the end 

of the list. 

 

If it is a duplicate element, an extra field is kept and placed. 

INSERT 10 : 

Hash (k) = k% Tablesize 

Hash (10) = 10 % 10 

NSERT 11 : 
 

Hash (11) = 11 % 10 

 

Hash (11) = 1 

 

INSERT 81 : 

 

Hash (81) = 81% 10 

 

Hash (81) = 1 

 

The element 81 collides to the same hash value 1. To place the value 81 at this position 

perform the following. 

 

Traverse the list to check whether it is already present. 

 

Since it is not already present, insert at end of the list. Similarly the rest of the elements 

are inserted. 

 

ROUTINE TO PERFORM INSERTION 

 

void Insert (int key, Hashtable H) 

 

{ 

 

Position Pos, Newcell; 

List L; 
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/* Traverse the list to check whether the key is already present */ 

Pos = FIND (Key, H); 

If (Pos = = NULL) /* Key is not found */ 

 

{ 

 

Newcell = malloc (size of (struct ListNode)); 

If (Newcell ! = NULL) 

( 

 

L = H Thelists [Hash (key, H Tablesize)]; 

Newcell→ Next = L → Next; 

Newcell → Element = key; 

 

/* Insert the key at the front of the list */ 

L →Next = Newcell; 

} 

 

} 

 

} 

 

 
 

FIND ROUTINE 

 

Position Find (int key, Hashtable H) 

 

{ 

 

Position P; 

List L; 

L = H→  Thelists [Hash (key, H→Tablesize)]; 

P = L→ Next; 
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while (P! = NULL && P Element ! = key) 

P = p→Next; 

return p; 

 

} 

 

Advantage 

 

More number of elements can be inserted as it uses array of linked lists. 

 

Disadvantage of Seperate Chaining 

 

* It requires pointers, which occupies more memory space. 

 

* It takes more effort to perform a search, since it takes time to evaluate the hash function 

and 

 

also to traverse the list. 

 

OPEN ADDRESSING 

 

Open addressing is also called closed Hashing, which is an alternative to resolve the 

collisions with linked lists. 

 

In this hashing system, if a collision occurs, alternative cells are tried until an empty cell 

is found. (ie) cells h0(x), h1(x), h2(x) .... are tried in succession. 

 

There are three common collision resolution strategies. They are 

 

(i) Linear Probing 

 

(ii) Quadratic probing 

 

(iii) Double Hashing. 

 

LINEAR PROBING 

 

In linear probing, for the ith probe the position to be tried is (h(k) + i) mod tablesize, 

where F(i) = i, is the linear function. 

 

In linear probing, the position in which a key can be stored is found by sequentially 

searching all position starting from the position calculated by the hash function until an 

empty cell is found. 
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If the end of the table is reached and no empty cells has been found, then the search is 

continued from the beginning of the table. It has a tendency to create clusters in the table. 

 

Advantage : 

 

* It doesn't requires pointers 

 

Disadvantage 

 

* It forms clusters, which degrades the performance of the hash table for storing and 

retrieving 
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 SEARCHING AND SORTING 

 
Searching is used to find the location where an element is available. There are two types of 

search techniques. They are: 

1. Linear or sequential search 

2. Binary search 

 
Sorting allows an efficient arrangement of elements within a given data structure. It is a way 

in which the elements are organized systematically for some purpose. For example, a 

dictionary in which words are arranged in alphabetical order and telephone director in which 

the subscriber names are listed in alphabetical order. There are many sorting techniques out 

of which we study the following. 

1. Bubble sort 

2. Quick sort 

3. Selection sort and 

4. Heap sort 

 
 

 LINEAR SEARCH 

This is the simplest of all searching techniques. In this technique, an ordered or unordered list  

will be searched one by one from the beginning until the desired element is found. If the 

desired element is found in the list then the search is successful otherwise unsuccessful. 

Suppose there are ‘n’ elements organized sequentially on a List. The number of 

comparisons required to retrieve an element from the list, purely depends on where the 

element is stored in the list. If it is the first element, one comparison will do; if it is second 

element two comparisons are necessary and so on. On an average you need [(n+1)/2] 

comparison’s to search an element. If search is not successful, you would need ’n’ 

comparisons. 
 

The time complexity of linear search is O(n). 

Algorithm: 

Let array a[n] stores n elements. Determine whether element ‘x’ is present 

or not. 

 
Example 1: 

Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, 20 

If we are searching for: 45, we’ll look at 1 element before 

success 



39, we’ll look at 2 elements before success 

8, we’ll look at 3 elements before success 

54, we’ll look at 4 elements before success 

77, we’ll look at 5 elements before success 

38 we’ll look at 6 elements before success 

24, we’ll look at 7 elements before success 

16, we’ll look at 8 elements before success 

4, we’ll look at 9 elements before success 

7, we’ll look at 10 elements before success 

9, we’ll look at 11 elements before success 

20, we’ll look at 12 elements before success 

For any element not in the list, we’ll look at 12 elements before failure 

 

Example 2: 

Let us illustrate linear search on the following 9 elements: 
 

Index 0 1 2 3 4 5 6 7 8 
Elements -15 -6 0 7 9 23 54 82 101 

Searching different elements is as follows: 

1. Searching for x = 7 Search successful, data found at 3rd position 

2. Searching for x = 82 Search successful, data found at 7th  position 

3. Searching for x = 42 Search un-successful, data not found 

 

A Recursive program for linear search: 

# include <stdio.h> 

# include <conio.h> 

void linear_search(int a[], int data, int position, int n) 
{ 

int mid; 

if(position < n) 
{ 

if(a[position] == data) 
printf("\n Data Found at %d ", position); 

 
} 
else 

else 
linear_search(a, data, position + 1, n); 

} 

void 

main() 
{ 

printf("\n Data not found"); 



int a[25], i, n, data; 

clrscr(); 

printf("\n Enter the number of elements: "); 

scanf("%d", &n); 

printf("\n Enter the elements: "); 

for(i = 0; i < n; i++) 
{ 

scanf("%d", &a[i]); 
} 
printf("\n Enter the element to be seached: "); 

scanf("%d", &data); 

linear_search(a, data, 0, 

n); getch(); 
} 

 

 BINARY SEARCH 

If we have ‘n’ records which have been ordered by keys so that x 1 < x2 < … < xn . When 

we are given a element ‘x’, binary search is used to find the corresponding element from 

the list. In case ‘x’ is present, we have to determine a value ‘j’ such that a[j] = x (successful 

search). If ‘x’ is not in the list then j is to set to zero (un successful search). 

In Binary search we jump into the middle of the file, where we find key a[mid], and compare 

‘x’ with a[mid]. If x = a[mid] then the desired record has been found. If x < a[mid] 

then ‘x’ must be in that portion of the file that precedes a[mid]. Similarly, if a[mid] > x, then 

further search is only necessary in that part of the file which follows a[mid]. If we use 

recursive procedure of finding the middle key a[mid] of the un-searched portion of a file, 

then every un-successful comparison of ‘x’ with a[mid] will eliminate roughly half the un- 

searched portion from consideration. 

Since the array size is roughly halved after each comparison between ‘x’ and a[mid], and 

since an array of length ‘n’ can be halved only about log2n times before reaching a trivial 

length, the worst case complexity of Binary search is about log2n 

 
Algorithm: 

Let array a[n] of elements in increasing order, n  0, determine whether ‘x’ is present, and if 

so, set j such that x = a[j] else return 0. 

binsrch(a[], n, x) 
{ 

low = 1; high = n; 

while (low < high) do 
{ 

mid =  (low + high)/2 
if (x < a[mid]) 

high = mid – 1; 

else if (x > a[mid]) 

low = mid + 1; 

else return mid; 
} 
return 0; 

} 
 

low and high are integer variables such that each time through the loop either ‘x’ is found or 



low is increased by at least one or high is decreased by at least one. Thus we have two 

sequences of integers approaching each other and eventually low will become greater 

than high causing termination in a finite number of steps if ‘x’ is not present. 

 

Example 1: 
 

Let us illustrate binary search on the following 12 
elements: 

 

Index 1 2 3 4 5 6 7 8 9 10 11 12 
Elements 4 7 8 9 16 20 24 38 39 45 54 77 

If we are searching for x = 4: (This needs 3 
comparisons) 
low = 1, high = 12, mid = 13/2 = 6, 

check 20 low = 1, high = 5, mid = 6/2 = 

3, check 8 

low = 1, high = 2, mid = 3/2 = 1, check 4, 

found 

If we are searching for x = 7: (This needs 4 

comparisons) 

low = 1, high = 12, mid = 13/2 = 6, 

check 20 low = 1, high = 5, mid = 6/2 = 

3, check 8 

low = 1, high = 2, mid = 3/2 = 1, 

check 4 

low = 2, high = 2, mid = 4/2 = 2, check 7, 

found 

If we are searching for x = 8: (This needs 2 

comparisons) 

low = 1, high = 12, mid = 13/2 = 6, 

check 20 

low = 1, high = 5, mid = 6/2 = 3, check 8, 

found 

If we are searching for x = 9: (This needs 3 

comparisons) 

low = 1, high = 12, mid = 13/2 = 6, 

check 20 low = 1, high = 5, mid = 6/2 = 

3, check 8 

low = 4, high = 5, mid = 9/2 = 4, check 9, 

found 

If we are searching for x = 16: (This needs 4 

comparisons) 

low = 1, high = 12, mid = 13/2 = 6, 

check 20 low = 1, high = 5, mid = 6/2 = 

3, check 8 

low = 4, high = 5, mid = 9/2 = 4, 

check 9 

low = 5, high = 5, mid = 10/2 = 5, check 16, 

found 

If we are searching for x = 20: (This needs 1 



comparison) 

low = 1, high = 12, mid = 13/2 = 6, check 20, 

found 

If we are searching for x = 24: (This needs 4 

comparisons) 

low = 1, high = 12, mid = 13/2 = 6, 

check 20 low = 7, high = 12, mid = 19/2 

= 9, check 39 low = 7, high = 10, mid = 

17/2 = 8, check 38 

low = 7, high = 7, mid = 14/2 = 7, check 24, found 

If we are searching for x = 38: (This needs 3 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, 

check 20 low = 7, high = 12, mid = 19/2 

= 9, check 39 

low = 7, high = 10, mid = 17/2 = 8, check 38, found 

If we are searching for x = 39: (This needs 2 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, check 20 

low = 7, high = 12, mid = 19/2 = 9, check 39, found 

If we are searching for x = 45: (This needs 4 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, check 

20 low = 7, high = 12, mid = 19/2 = 9, 

check 39 low = 10, high = 12, mid = 22/2 

= 11, check 54 

low = 10, high = 10, mid = 20/2 = 10, check 45, found 

If we are searching for x = 54: (This needs 3 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, 

check 20 low = 7, high = 12, mid = 19/2 

= 9, check 39 

low = 10, high = 12, mid = 22/2 = 11, check 54, found 

If we are searching for x = 77: (This needs 4 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, check 

20 low = 7, high = 12, mid = 19/2 = 9, 

check 39 low = 10, high = 12, mid = 22/2 

= 11, check 54 

low = 12, high = 12, mid = 24/2 = 12, check 77, found 

The number of comparisons necessary by search element: 

20 – requires 1 comparison; 8 and 39 – requires 2 comparisons; 

4, 9, 38, 54 – requires 3 comparisons; and 7, 16, 24, 45, 77 – requires 4 comparisons 

Summing the comparisons, needed to find all twelve items and dividing by 12, yielding 

37/12 or approximately 3.08 comparisons per successful search on the average. 

 

 
Time Complexity: 

The time complexity of binary search in a successful search is O(log n) and for an 

unsuccessful search is O(log n). 



A non-recursive program for binary search: 
 

# include <stdio.h> 
# include <conio.h> 

main() 
{ 

int number[25], n, data, i, flag = 0, low, high, mid; 

clrscr(); 

printf("\n Enter the number of elements: "); 

scanf("%d", &n); 

printf("\n Enter the elements in ascending order: "); 

for(i = 0; i < n; i++) 

scanf("%d", 

&number[i]); 

printf("\n Enter the element to be searched: "); 

scanf("%d", &data); low = 0; high = n-1; while(low <= high) 
{ 
mid = (low + high)/2; 

if(number[mid] == data) 
 

{ 

 

} 

else 

{ 

 
else 

} 
} 

 
flag = 1; 

break; 

 

 
if(data < number[mid]) 

high = mid - 1; 

low = mid + 1; 

 

else 

} 

if(flag == 1) 
printf("\n Data found at location: %d", mid + 1); 

printf("\n Data Not Found "); 



 BUBBLE SORT 

The bubble sort is easy to understand and program. The basic idea of bubble sort is to pass 

through the file sequentially several times. In each pass, we compare each element in 

the file with its successor i.e., X[i] with X[i+1] and interchange two element when they are 

not in proper order. We will illustrate this sorting technique by taking a specific example. 

Bubble sort is also called as exchange sort. 
 

Consider the array x[n] which is stored in memory as shown 
below: 

 

X[0] X[1] X[2] X[3] X[4] X[5] 

33 44 22 11 66 55 

Suppose we want our array to be stored in ascending order. Then we pass through the array 5 
times as described below: 

 

 
Pass 1: (first element is compared with all other elements) 

We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1] if X[i] 

> X[i+1]. The process is shown below: 
 

X[0] X[1] X[2] X[3] X[4] X[5] Remarks 

33 

 

 

 

 
 

33 
 

 
 

The biggest number 66 is moved to (bubbled up) the right most position in 

the array. 

Pass 2: (second element is 

compared) 

We repeat the same process, but this time we don’t include X[5] into our comparisons. i.e., 

we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1] if 

X[i] > X[i+1]. The process is shown below: 
 

X[0] X[1] X[2] X[3] X[4] Remarks 

44 22 11 66 55 

22 44    

 11 44   

  44 66  

   55 66 

22 11 44 55 66 

 



33 22 11 44 55 

22 33   

 11 33  

  33 44 

   44 55 

22 11 33 44 55 

 
 

The second biggest number 55 is moved now to X[4]. 

Pass 3: (third element is compared) 

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this, we 

move the third biggest number 44 to X[3]. 
 

X[0] X[1] X[2] X[3] Remarks 
 

22 11 33 44 

11 22   

 22 33  

  33 44 

11 22 33 44 

 
 

Pass 4: (fourth element is compared) 

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth 

biggest number 
33 to X[2]. 

 

 
 

X[0] X[1] X[2] Remarks 
 

11 22 33 

11 22  

 22 33 

 

Pass 5: (fifth element is compared) 

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the fifth 

biggest number 22 to X[1]. At this time, we will have the smallest number 11 in X[0]. 

Thus, we see that we can sort the array of size 6 in 5 passes. 

For an array of size n, we required (n-1) 

passes. 
 

Program for Bubble Sort: 

#include <stdio.h> 

#include <conio.h> 



void bubblesort(int 

x[],int n) 
{ 

int i, j, t; 
for (i = 0; i < n; i++) 
{ 

for (j = 0; j <n-i; j++) 
{ 

if (x[j] > x[j+1]) 
{ 

 

 

 

} 
} 

} 

main() 

{ 

t = x[j]; 

x[j] = x[j+1]; 

x[j+1] = t; 

} 

int i, n, x[25]; 

clrscr(); 

printf("\n Enter the number of elements: "); 

scanf("%d",&n); printf("\n 

Enter Data:"); for(i = 0; i < n ; 

i++) 

scanf("%d", &x[i]); 

bubblesort(x,n); 

printf ("\nArray Elements after sorting: "); 

for (i = 0; i < n; i++) 

printf ("%5d", x[i]); 
} 

 
Time Complexity: 

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1) 

comparisons on each pass. Thus the total number of comparisons is (n-1) * (n-1) = n 2 – 

2n + 1, which is O(n2). Therefore bubble sort is very inefficient when there are more 

elements to sorting. 
 

 SELECTION SORT 

Now, you will learn another sorting technique, which is more efficient than bubble sort 

and the insertion sort. This sort, as you will see, will not require no more than n-1 

interchanges. The sort we are talking about is selection sort. 

Suppose x is an array of size n stored in memory. The selection sort algorithm first 

selects the smallest element in the array x and place it at array position 0; then it selects the 

next smallest element in the array x and place it at array position 1. It simply continues this 

procedure until it places the biggest element in the last position of the array. We will now 

present to you an algorithm for selection sort. 

The array is passed through (n-1) times and the smallest element is placed in its respective 

position in the array as detailed below: 



Pass 1: 

Find the location j of the smallest element in the array x [0], x[1], . . . . x[n-1], and then 

interchange x[j] 

with x[0]. Then x[0] is 

sorted. 

Pass 2: 

Leave the first element and find the location j of the smallest element in the sub-array x[1], 

x[2], ........ x[n-1], and then interchange x[1] with x[j]. Then x[0], x[1] are sorted. 

Pass 3: 

Leave the first two elements and find the location j of the smallest element in the sub-array 

x[2], x[3], . 

. . . x[n-1], and then interchange x[2] with x[j]. Then x[0], x[1], x[2] 

are sorted. 

Pass (n- 

1): 

Find the location j of the smaller of the elements x[n-2] and x[n-1], and then interchange 

x[j] and x[n- 

2]. Then x[0], x[1], . . . . x[n-2] are sorted. Of course, during this pass x[n-1] will be 

the biggest element and so the entire array is sorted. 

Time 

Complexity: 

In general we prefer selection sort in case where the insertion sort or the bubble sort requires 

exclusive swapping. In spite of superiority of the selection sort over bubble sort and the 

insertion sort (there is significant decrease in run time), its efficiency is also O(n2) for n data 

items. 

Example: 

Let us consider the following example with 9 elements to analyze 

selection Sort: 
 

1 2 3 4 5 6 7 8 9 Remark 

65 70 75 80 50 60 55 85 45 find the first smallest element 

I        j swap a[i] & a[j] 

45 70 75 80 50 60 55 85 65 find the second smallest 

 I   j     swap a[i] and a[j] 

45 50 75 80 70 60 55 85 65 Find the third smallest 

  i    j   swap a[i] and a[j] 



45 50 55 80 70 60 75 85 65 Find the fourth smallest 

   I  j    swap a[i] and a[j] 

45 50 55 60 70 80 75 85 65 Find the fifth smallest 

    i    j swap a[i] and a[j] 

45 50 55 60 65 80 75 85 70 Find the sixth smallest 

     i   j swap a[i] and a[j] 

45 50 55 60 65 70 75 85 80 Find the seventh smallest 

      i j   swap a[i] and a[j] 

45 50 55 60 65 70 75 85 80 Find the eighth smallest 

       i J swap a[i] and a[j] 

45 50 55 60 65 70 75 80 85 The outer loop ends. 
 

Non-recursive Program for selection sort: 

# include<stdio.h> 

# include<conio.h> 

void selectionSort( int low, int high ); 

int a[25]; 

int main() 
{ 

int num, i= 0; 

clrscr(); 

printf( "Enter the number of elements: " ); 

scanf("%d", &num); 

printf( "\nEnter the elements:\n" ); 

for(i=0; i < num; i++) 

scanf( "%d", &a[i] ); 

selectionSort( 0, num - 1 ); 

printf( "\nThe elements after sorting are: " ); 

for( i=0; i< num; i++ ) 

printf( "%d ", a[i] ); 

return 0; 
} 

 

void selectionSort( int low, int high ) 
{ 

int i=0, j=0, temp=0, minindex; 

for( i=low; i <= high; i++ ) 
{ 

minindex = i; 
for( j=i+1; j <= high; j++ ) 

if( a[j] < a[minindex] ) 
minindex = j; 

temp = a[i]; 

a[i] = a[minindex]; 

a[minindex] = temp; 

} 



} 

 
Recursive Program for selection sort: 

#include <stdio.h> 

#include<conio.h> 

int x[6] = {77, 33, 44, 11, 66}; 
 

selectionSort(int); 
main() 
{ 

int i, n = 0; 

clrscr(); 

printf (" Array Elements before sorting: "); 

for (i=0; i<5; i++) 

printf ("%d ", x[i]); 

selectionSort(n); /* call selection sort */ 

printf ("\n Array Elements after sorting: "); 

for (i=0; i<5; i++) 

printf ("%d ", x[i]); 

selectionSort( int n) 
{ 

int k, p, temp, min; 

if (n== 4) 

return (-1); 

min = x[n]; 

p = n; 

for (k = n+1; k<5; k++) 
{ 

if (x[k] <min) 
{ 

min = x[k]; 

p = k; 
} 

} 
temp = x[n]; /* interchange x[n] and x[p] */ 
x[n] = 

x[p]; 

x[p] = 

temp; 

n++ ; 

selectionSort(n); 
} 

 

 INSERTION  SORT 
 

The  main  idea  behin d the  inser t i on  sort  is to inser t the  i th eleme n t in 

its correct  place  in the  i t h pass.  Suppos e an array  A with  n eleme n t s 

A[1],   A[2],…A[ N]   is in   mem o r y.    The  inse r t io n   sort   algorit  h m    scans 

A from  A[1] to A[N], insert ing  each  element   A[K] into  its prope r   posit ion 

in the  previously sorted subarr a y A[1], A[2],..A[K- 1]. 



 

Prin c i p l e : In Insert ion Sort algorith m, each ele m e n t A[K] in the list is 

compare d with  all the   elem e n t s   before   it   ( A[1]   to   A[K- 1]).   If   any 

elem en t   A[I] is found  to   be   greater  than  A[K] then  A[K] is inserted   in t 

he  place  of A[I}. This  proces s is repeat  e d till all the  elem e n t s   are 

sorted. 

 
 

Algori t h m : 

Proce d ur e INSERTIONSORT( A,  N) 
 

// A is the array containing  the  list of data  items 

// N is the number of data items in the list 

Last  N – 1 

Repeat For Pass  = 1 to Last Step  1 
Repeat For I = 0 to Pass  – 1 Step  1 

If A[Pass] < A[I] Then 

Temp   A[Pa s s ] 

Repeat For J = Pass -1 to I Step -1 

A[J +1 ]  A[J] End Repeat 

A[I]  Te m p 

End If 

End Repeat 

End Repeat 

 

End 

 

INSERTIONSORT 

 

 

In   Insert ion   Sort   algorithm,   Last   is   made   to   point   to   the   last elem 

ent  in the  list and  Pass  is made  to point  to the  second  element   in the list. 

In every  pass  the  Pass  is incre m e n t e d to point  to the  next  elem e n t and 

is   cont i n u e d   till   it   rea c h e s   th e   last   ele m e n t .   Durin g    eac h    pas s 

A[Pa s s ] is com p a r e d all ele m e n t s befo r e it. If A[Pas s ]   is less e r   th a n 

A[I] in the  list,  then  A[Pass]  is inser t e d in posit ion  I.   Finally,   a sorte d 

list is obtained.  

For  performin g the  insert ion  operat ion,   a variable  temp  is used  to safel 

y store A[Pass] in it and then shift  right  elem e n t s start in g from  A[I] to 

A[Pass- 1]. 

 

Exa m p l e: 

 

N = 1 0  N u m b e r of el e m e n t s in t h e list 

L  La s t 

P  Pa s s 

 

i = 0 i = 1   i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 



42 23 74 11 65 58 94 36 99 87 

P= 1 A[P] < A[0]  In s e r t  A[P] at 0 L= 9 

 

23 42 74 11 65 58 94 36 99 87 

P= 2 L= 9 

A[P] is greater  than  all elements  before  it. Hence  No  Change 

 

23 42 74 11 65 58 94 36 99 87 

P= 3 A[P] < A[0]  In s e r t A[P] at 0 L= 9 

 

11 23 42 74 65 58 94 36 99 87 

P= 4 L= 9 

A[P] < A[3]  In s e r t A[P] at 3 
 

 
11 23 42 65 74 58 94 36 99 87 

P= 5 L= 9 

A[P] < A[3]  In s e r t A[P] at 3 

 

11 23 42 58 65 74 94 36 99 87 

P= 6 L= 9 

A[P] is greater  than  all elements  before  it. Hence  No  Change 

 

11 23 42 58 65 74 94 36 99 87 

 

A[P] < A[2]  In s e r t A[P] at 2 

P = 7 L = 9 

 

11 23 36 42 58 65 74 94 99 87 

P= 8 L= 9 

A[P] is greater  than  all elements  before  it. Hence  No  Change 
 

 
11 23 36 42 58 65 74 94 99 87 

P, L=9 

A[P] < A[7]  In s e r t A[P] at 7 

 

Sorted  List: 



11 23 36 42 58 65 74 87 94 99 

 

Progr a m : 

 
 

void array::  sort () 

{ 

int temp,  last=cou n t - 1; 

for (int pass = 1 ; pass < = l a s t ; p a s s + + ) 

{ 

for (int i=0;  i<pass;  i+ +) 

{ 

if (a[pass] < a[ i]) 

{ 

temp = a[ p a s s]; 

for (int j=pass- 1;j> =i; j- -) 

a[j+ 1 ] = a[ j]; 

a[i] =te m p; 

} 

} 

} 

} 

 

In the sort funct ion,  the intege r var iable last  is used  to point  to the last  el 

ement    in   the   list.   The  first   pass   starts   with  the  var iable   pass point ing 

to the  secon d eleme n t and  cont in u e s   till pass  reach e s   the  last eleme n t . 

In each pass, a[ pass] is compa r e d with  all the  element  s before it and  if a[ p 

ass]  is lesser  than  a[i], then  it is insert e d in posit ion  i.   Before insert in g   it, 

the  elements  a[i]  to a[ pass- 1] are  shifted   right   using   a tempora r y vari 

able.  

 

Advanta  g e s : 

1. Sorts the  list faster  when  the  list has  less  number  of elements.  

2. Efficient  in cases  where a new  elemen t has  to be inserte d into a sort 

ed list. 

 

Disadvan t a g e s : 

1. Very slow for large  values  of n. 

2. Poor  performa n c e if the  list is in almost  reverse  order. 



 QUICK SORT 

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960’s. It was one of the first  

more efficient sorting algorithms. It is an example of a class of algorithms that work by what is 

usually called “divide and conquer”. 

 
In essence, the quick sort algorithm partitions the original array by rearranging it into two 

groups. The first group contains those elements less than some arbitrary chosen value taken 

from the set, and the second group contains those elements greater than or equal to the chosen 

value. 

 
The chosen value is known as the pivot element. Once the array has been rearranged in this 

way with respect to the pivot, the very same partitioning is recursively applied to each of 

the two subsets. When all the subsets have been partitioned and rearranged, the original array 

is sorted. 

The function partition() makes use of two pointers up and down which are moved toward 

each other in the following fashion: 

 
1. Repeatedly increase the pointer up by one position until a[up] > =pivot. 

 
2. Repeatedly decrease the pointer down by one position until a[down] <=pivot. 

 
3. If down > up, interchange a[down] with a[up] 

 
4. Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ 

pointer crosses ‘down’ pointer, the position for pivot is found and place pivot element in 

‘down’ pointer position. 

 
The program uses a recursive function quicksort(). The algorithm of quick sort function sorts 

all elements in an array ‘a’ between positions ‘low’ and ‘high’. 

 
1. It terminates when the condition low >= high is satisfied. This condition will be 

satisfied only when the array is completely sorted. 

 
2. Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it calls 

the partition function to find the proper position j of the element x[low] i.e. pivot. Then we will 

have two sub-arrays x[low], x[low+1], . . . . . . . x[j-1] and x[j+1], x[j+2], . . .x[high]. 

 
3. It calls itself recursively to sort the left sub-array x[low], x[low+1], ................ x[j-1] 

between positions low and j-1 (where j is returned by the partition function). 

 
4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], ...... x[high] between 

positions j+1 and high. 

 

 
Time complexity: 



There are several choices for choosing the ‘pivot’ element through which we can improve the 

efficiency of quick sort. For example, one may choose the ‘pivot’ element as median or 

mean or middle element. Also, a non-recursive method could be developed for execution 

efficiency. When these improvements are made, experiments indicate the fact that the total 

number of comparisons for quick sort is of O(n log n). 

 

 
Example: 

 
Select first element as the pivot element. Move ‘up’ pointer from left to right in search of an 

element larger than pivot. Move the ‘down’ pointer from right to left in search of an element 

smaller than pivot. If such elements are found, the elements are swapped. This process 

continues till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer crosses ‘down’ 

pointer, the position for pivot is found and interchange pivot and element at ‘down’ position. 

 

 
Let us consider the following example with 13 elements to analyze quick sort: 

 
 

1  
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 
11 

 
12 
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Program for Quick Sort (Recursive version): 

 
# include<stdio.h> 

# include<conio.h> 

 
void quicksort(int, int); 

int partition(int, int); 

void interchange(int, int); 

int array[25]; 

int main() 

{ 

int num, i = 0; 

clrscr(); 

printf( "Enter the number of elements: " ); 

scanf( "%d", &num); 

printf( "Enter the elements: " ); 

for(i=0; i < num; i++) 

scanf( "%d", &array[i] ); 

quicksort(0, num -1); 

printf( "\nThe elements after sorting are: " ); 

for(i=0; i < num; i++) 

printf("%d ", array[i]); 

return 0; 

} 

void quicksort(int low, int high) 

{ 

int pivotpos; 

if( low < high ) 

{ 

pivotpos = partition(low, high + 1); quicksort(low, pivotpos - 1); quicksort(pivotpos + 1, high); 

} 

} 

 
int partition(int low, int high) 

{ 

int pivot = array[low]; 

int up = low, down = high; 

 
do 

{ 

do 

up = up + 1; 



while(array[up] < pivot ); 

 
do 

down = down - 1; 

while(array[down] > pivot); 

 
if(up < down) 

interchange(up, down); 

 
}while(up < down); 

array[low] = array[down]; array[down] = pivot; return down; 

} 

 
void interchange(int i, int j) 

{ 

int temp; 

temp = array[i]; array[i] = array[j]; array[j] = temp; 

} 



 MERGE SORT 

 
Princi p l e : The given  list is divided  into  two  roughly  equal  parts  called the 

left   and   the  right   subfiles.    These  subfiles   are   sorted   using   the algorith 

m recursively and then the two subfiles  are merged  togeth er  to obtain  the 

sorted file. 

 

 
Given  a sequ en c e of n elemen t s   A[1], ….A[N], the  gene r al  idea  is to imagin 

e   them  split  into  two  sets  A[1],…A[N/2]  and  A[(N/2)  + 1],…A[N]. Each  se 

t is individually  sorte d , and  the  result in g   sort ed   sequ e n c e s   are mer g e d 

to produce a single  sorted  seque nc e of N elemen t s . Thus  this sort ing  m 

ethod follows Divide and Conque r strate gy. 

 
Algori t h m : 

 

 
Proce d ur e MERGE( A, low,  mid,  high)  

// A is the array containing the list of data items 

I  low, J  mi d + 1 , K  low 

While I  mid and J  high 

If A[I] < A[J] Then 

Temp[K]  A[I] I  I + 1 

K  K + 1 

 

 

 
Else 

End If 

End  While 

 
If I > mid 

Then 

Temp[K]  A[J] J  J + 1 

K  K + 1 

While J  high 

Temp[K]  A[J] K  K + 1 

J  J + 1 

End While 
 

 

 
Else 

While I  mid 

Temp[K]  A[I] K  K + 1 

I  I + 1 

End While 



End If 

 
Repeat for K = low to high step 1 

A[K]  Te m p [ K ] End Repeat 

End MERGE 

 

 
Proce d ur e MERGESORT( A,  low,  high ) 

// A is the  array  containing  the  list of data  items 

If low  < high 

Then 

mid  (lo w + high)/ 2 

MERGESORT(low,  high) 

MERGESORT( mid + 1, high) MERGE(low, mid, high) 

End If 

End MERGESORT 

 
The first  algorith m MERGE  can  be  applied  on two  sorted  lists  to mer ge  t 

hem.   Init ially,  the  index  var iable  I points  to low and  J points  to mid  +   1. 

A[I] is com p a r e d with  A[J] an d if A[I] fou n d to be  less e r th a n A[J] th e n 

A[I] is sto r e d   in   a   te m p o r a r y   ar r a y   an d   I   is   incr e m e n t e d oth e r w i s e 

A[J] is stored  in   the  tempor ar y   array  and  J is increm e n t e d . This  compar is  

o n is cont inu e d unt il eithe r I crosse s mid  or J crosse s high. If I crosse s the 

mid first then  that  implies  that  all the  element  s in first  list is accom mo d a t e d 

in the  tempora r y array   and   hence   the   remainin g eleme nts  in the  second 

list can  be put  into  the  tempor a r y array  as it is.   If J crosses  the  high  first  th 

en the remainin g eleme nt s of first  list is put  as it is in the  tempor a r y array.  

After this proce s s we get a  single sort e d list. Since  this  meth o d mer g e s 2 

lists at a time, this is called 2- way merge sort. 

 
In the MERGESORT algorith m, the  given  unsorted  list is first  split into  N n 

umbe r of lists, each list consist ing of only  1 elemen t . Then  the MERGE  al 

gorithm  is applied  for first  2 lists  to get  a single  sorted  list. Then  the  sam 

e thing  is done  on the  next  two  lists  and  so on.  This  process is cont inue d   till 

a single sorted list is obtained.  

 
Exa m p l e: 

 
Le t L  low ,  M  mi d ,  H  hi g h 

 
i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 



42 23 74 11 65 58 94 36 99 87 

U M H 

 
In each  pass  the  mid  value  is calculated  and  based  on that  the  list is split int 

o   two.    This   is done  recursively  and  at   last  N number  of lists each having 

only one element  is produce d as shown. 



 
 

Now merging opera t ion  is called  on first  two  lists  to produc e a single 

sorted list, then the same thing  is done  on the  next  two  lists  and  so on. 

Finally a single sorted list is obtained.  
 

 
 

Progr a m : 

 
void array::  sort( int   low, int high) 

{ 

int mid; 

if ( low<high) 

{ 

mid=( low + hi gh)/ 2 ; 

sort(low, mid);  

sort( mid + 1 , high); 

merge( low, mid, high); 

} 

} 
 

void array::  mer ge( in t low, int mid,  int high) 

{ 

int i=low, j=mid + 1 , k=low, temp[ MAX]; 

 

while (i< = mid && j<=hi gh) 

if (a[i] <a[ j]) 

temp[ k + + ] = a [ i + + ] ; 

else 

temp[ k + + ] = a [ j + + ] ; 
 

if (i>mid) 

while (j< = hi gh)  

temp[ k + + ] = a [ j + + ] ; 

else  

while (i< = mid)  

temp[ k + + ] = a [ i + + ] ; 



for (k=low; k< = hi gh; k+ +) 

a[k] =te m p[ k]; 

} 

 

 
Advanta  g e s : 

 

1. Very useful for sort ing  bigger  lists. 

2. Applicable for external sort ing  also. 

 

Disadvan t a g e s : 

 
1.   Needs a tempor ar y array  every  time,  for storing the new sorted 

list. 
 

 SHELL SORT 
 

The shell sort , somet ime s called  the “diminishing  increm e n t sort,” 

improves on the  insert ion  sort  by breaking  the  original  list into  a numbe r 

of smaller  sublists, each of which  is sorted  using  an insert ion  sort.  The 

unique way that these  sublists  are  chosen  is the  key  to the  shell  sort.  

Instead  of breaking  the  list into  sublists  of cont iguous   items,   the  shell 

sort uses an increm e n t i, sometim e s called the gap , to create a sublist  by 

choosing all items that are i items apart. 

 

Example  of shell  Sort  : Use  Shell  sort  for the  following  array  : 18,  32,  12, 

5, 38, 30, 16, 2 

 
 

Compar e the elemen t s at a gap  of 4. i.e 18 with  38 and  so on and  swap  if 

first number is great er than second. 

 



47  

Compare  the  elemen t s at a gap  of 2 i.e 18 with  12 and  so on. 

 
 

Now the gap  is 1. So now use insert ion  sort  to sort  this array. 

 
 

After insert ion  sort.  The final array is sorted. 

 
 HEAP SORT ALGORITHM 

Heap Sort is a popular and efficient sorting algorithm in computer programming. Learning how 

to write the heap sort algorithm requires knowledge of two types of data structures - arrays and 

trees. 

The initial set of numbers that we want to sort is stored in an array e.g. [10, 3, 76, 34, 23, 32] and 

after sorting, we get a sorted array [3,10,23,32,34,76] 

Heap sort works by visualizing the elements of the array as a special kind of complete binary tree 

called a heap. 

As a prerequisite, you must know about a complete binary tree and heap data structure. 

Relationship between Array Indexes and Tree Elements 

A complete binary tree has an interesting property that we can use to find the children and 

parents of any node. 

If the index of any element in the array is i, the element in the index 2i+1 will become the left 

child and element in 2i+2 index will become the right child. Also, the parent of any element at 

index i is given by the lower bound of (i-1)/2. 
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Fig.4.10.1 Relationship between array and heap indices 

Let's test it out, 

Left child of 1 (index 0) 

= element in (2*0+1) index 

= element in 1 index 

= 12 

 

 
Right child of 1 

= element in (2*0+2) index 

= element in 2 index 

= 9 

 
Similarly, 

Left child of 12 (index 1) 

= element in (2*1+1) index 

= element in 3 index 

= 5 

 
Right child of 12 

= element in (2*1+2) index 

= element in 4 index 

= 6 

Let us also confirm that the rules hold for finding parent of any node 

Parent of 9 (position 2) 

= (2-1)/2 

= ½ 

= 0.5 

~ 0 index 

= 1 

 
Parent of 12 (position 1) 



49  

= (1-1)/2 

= 0 index 

= 1 

Understanding this mapping of array indexes to tree positions is critical to understanding how the 

Heap Data Structure works and how it is used to implement Heap Sort. 

What is Heap Data Structure? 

Heap is a special tree-based data structure. A binary tree is said to follow a heap data structure if 

it is a complete binary tree 

All nodes in the tree follow the property that they are greater than their children i.e. the largest  

element is at the root and both its children and smaller than the root and so on. Such a heap is 

called a max-heap. If instead, all nodes are smaller than their children, it is called a min-heap 

The following example diagram shows Max-Heap and Min-Heap. 

Fig.4.10.2 Max Heap and Min Heap 

To learn more about it, please visit Heap Data Structure. 

How to "heapify" a tree 

Starting from a complete binary tree, we can modify it to become a Max-Heap by running a 

function called heapify on all the non-leaf elements of the heap. 

Since heapify uses recursion, it can be difficult to grasp. So let's first think about how you would 

heapify a tree with just three elements. 

heapify(array) 

Root = array[0] 

Largest = largest( array[0] , array [2*0 + 1]. array[2*0+2]) 

if(Root != Largest) 

Swap(Root, Largest) 
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Fig.4.10.3 Heapify base cases 

The example above shows two scenarios - one in which the root is the largest element and we 

don't need to do anything. And another in which the root had a larger element as a child and we 

needed to swap to maintain max-heap property. 

If you're worked with recursive algorithms before, you've probably identified that this must be 

the base case. 

Now let's think of another scenario in which there is more than one level. 

Fig.4.10.4 How to heapify root element when its subtrees are already max heaps 

The top element isn't a max-heap but all the sub-trees are max-heaps. 

To maintain the max-heap property for the entire tree, we will have to keep pushing 2 

downwards until it reaches its correct position. 
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Fig.4.10.5 How to heapify root element when its subtrees are max-heaps 

 
Thus, to maintain the max-heap property in a tree where both sub-trees are max-heaps, we need 

to run heapify on the root element repeatedly until it is larger than its children or it becomes a 

leaf node. 

We can combine both these conditions in one heapify function as 

void heapify(int arr[], int n, int i) { 

// Find largest among root, left child and right child 

int largest = i; 

int left = 2 * i + 1; 

int right = 2 * i + 2; 

 
if (left < n && arr[left] > arr[largest]) 

largest = left; 

 
if (right < n && arr[right] > arr[largest]) 

largest = right; 

 

// Swap and continue heapifying if root is not largest 

if (largest != i) { 

swap(&arr[i], &arr[largest]); 

heapify(arr, n, largest); 

} 

} 

This function works for both the base case and for a tree of any size. We can thus move the root 

element to the correct position to maintain the max-heap status for any tree size as long as the 

sub-trees are max-heaps. 
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Build max-heap 

To build a max-heap from any tree, we can thus start heapifying each sub-tree from the bottom 

up and end up with a max-heap after the function is applied to all the elements including the root 

element. 

In the case of a complete tree, the first index of a non-leaf node is given by n/2 - 1. All other 

nodes after that are leaf-nodes and thus don't need to be heapified. 

So, we can build a maximum heap as 

// Build heap (rearrange array) 

for (int i = n / 2 - 1; i >= 0; i--) 

heapify(arr, n, i); 

 

 
Fig.4.10.6 Create array and calculate i 
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Fig.4.10.7 Steps to build max heap for heap sort 

Fig.4.10.8 Steps to build max heap for heap sort 

 
As shown in the above diagram, we start by heapifying the lowest smallest trees and gradually 

move up until we reach the root element. 

If you've understood everything till here, congratulations, you are on your way to mastering the 

Heap sort. 

 
How Heap Sort Works? 

Since the tree satisfies Max-Heap property, then the largest item is stored at the root node. 

Swap: Remove the root element and put at the end of the array (nth position) Put the last item of 

the tree (heap) at the vacant place. 

Remove: Reduce the size of the heap by 1. 

Heapify: Heapify the root element again so that we have the highest element at root. 

The process is repeated until all the items of the list are sorted. 
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Fig.4.10.9Swap, Remove, and Heapify 
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The code below shows the operation. 

// Heap sort 

for (int i = n - 1; i >= 0; i--) { 

swap(&arr[0], &arr[i]); 

 
// Heapify root element to get highest element at root again 

heapify(arr, i, 0); 

}C++ 
 

def heapify(arr, n, i): 

# Find largest among root and children 

largest = i 

l = 2 * i + 1 

r = 2 * i + 2 

 
if l < n and arr[i] < arr[l]: 

largest = l 

 
if r < n and arr[largest] < arr[r]: 

largest = r 

 
# If root is not largest, swap with largest and continue heapifying 

if largest != i: 

arr[i], arr[largest] = arr[largest], arr[i] 

heapify(arr, n, largest) 

 

 
def heapSort(arr): 

n = len(arr) 

 
# Build max heap 

for i in range(n//2, -1, -1): 

heapify(arr, n, i) 

 
for i in range(n-1, 0, -1): 

# Swap 

arr[i], arr[0] = arr[0], arr[i] 

 
# Heapify root element 

heapify(arr, i, 0) 
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arr = [1, 12, 9, 5, 6, 10] 

heapSort(arr) 

n = len(arr) 

print("Sorted array is") 

for i in range(n): 

print("%d " % arr[i], end='') 

 
Heap Sort Complexity 

Heap Sort has O(nlog n) time complexities for all the cases ( best case, average case, and worst 

case). 

Let us understand the reason why. The height of a complete binary tree containing n elements is 

log n 

As we have seen earlier, to fully heapify an element whose subtrees are already max-heaps, we 

need to keep comparing the element with its left and right children and pushing it downwards 

until it reaches a point where both its children are smaller than it. 

In the worst case scenario, we will need to move an element from the root to the leaf node 

making a multiple of log(n) comparisons and swaps. 

During the build_max_heap stage, we do that for n/2 elements so the worst case complexity of 

the build_heap step is n/2*log n ~ nlog n. 

During the sorting step, we exchange the root element with the last element and heapify the root 

element. For each element, this again takes log n worst time because we might have to bring the 

element all the way from the root to the leaf. Since we repeat this n times, the heap_sort step is 

also nlog n. 

Also since the build_max_heap and heap_sort steps are executed one after another, the 

algorithmic complexity is not multiplied and it remains in the order of nlog n. 

Also it performs sorting in O(1) space complexity. Compared with Quick Sort, it has a better 

worst case ( O(nlog n) ). Quick Sort has complexity O(n^2) for worst case. But in other cases, 

Quick Sort is fast. Introsort is an alternative to heapsort that combines quicksort and heapsort to 

retain advantages of both: worst case speed of heapsort and average speed of quicksort. 

Heap Sort Applications 

Systems concerned with security and embedded systems such as Linux Kernel use Heap Sort 

because of the O(n log n) upper bound on Heapsort's running time and constant O(1) upper 

bound on its auxiliary storage. 

Although Heap Sort has O(n log n) time complexity even for the worst case, it doesn't have more 

applications ( compared to other sorting algorithms like Quick Sort, Merge Sort ). However, its 

underlying data structure, heap, can be efficiently used if we want to extract the smallest (or 

largest) from the list of items without the overhead of keeping the remaining items in the sorted 

order. For e.g Priority Queues. 
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UNIT-V 

Graphs and Networks: Implementation of Graphs - Adjacency Matrix- Depth First Search- 

Breath First Search. Networks: Minimum Spanning Tree - The Shortest path Algorithm. 

 

GRAPH, HASHING & INDEXING 

A graph is an abstract data structure that is used to implement the mathematical concept 

of graphs. It is basically a collection of vertices (also called nodes) and edges that connect 

these vertices. A graph is often viewed as a generalization of the tree structure, where 

instead of having a purely parent-to- child relationship between tree nodes, any kind of 

complex relationship can exist. 

Graphs - Terminology and Representation 

Definitions: Graph, Vertices, Edges 

 Define a graph G = (V, E) by defining a pair of sets: 

V = a set of vertices 

E = a set of edges 

 Edges: 

o Each edge is defined by a pair of vertices 

o An edge connects the vertices that define it 

 Vertices: 

o Vertices also called nodes 

o Denote vertices with labels 

Representation: 
 

 Represent vertices with circles, perhaps containing a label 

 Represent edges with lines between circles 
 

Example: 
 

 V = {A,B,C,D} 

 E = {(A,B),(A,C),(A,D),(B,D),(C,D)} 
 

 

Fig. 5.1.1 Many algorithms use a graph representation to represent data 

or the problem to be solved 



3  

Examples of Graph applications: 

 Cities with distances between 

 Roads with distances between intersection points 
 Course prerequisites 

 Network and shortest routes 

 Social networks 

 Electric circuits, projects planning and many more... 
 

Graph Classifications 

 There are several common kinds of graphs 

 Weighted or unweighted 

 Directed or undirected 
 Cyclic or acyclic 

 Multigraphs 

Kinds of Graphs: Weighted and Unweighted 

 Graphs can be classified by whether or not their edges have weights 

 Weighted graph: edges have a weight 

Weight typically shows cost of traversing 

Example: weights are distances between cities 

 Unweighted graph: edges have no weight of Edges simply show connections 

Example: course prerequisites 

Kinds of Graphs: Directed and Undirected 

Graphs can be classified by whether or their edges are have direction 
 

o Undirected Graphs: each edge can be traversed in either direction 

o Directed Graphs: each edge can be traversed only in a specified direction 
 

Undirected Graphs 

 Undirected Graph: no implied direction on edge between nodes 

 The example from above is an undirected graph 

 

Fig.5.1.2 .In diagrams, edges have no direction (ie there are no arrows) 

Can traverse edges in either directions 

B 

A 
D 

C 
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In an undirected graph, an edge is an unordered pair 

o Actually, an edge is a set of 2 nodes, but for simplicity we write it with 

parenthesis 

For example, we write (A, B) instead of {A, B} 

Thus, (A,B) = (B,A), etc 

If (A,B) ∈ E then (B,A) ∈ E 

 

Directed Graphs 

Digraph: A graph whose edges are directed (ie have a direction) 

 Edge drawn as arrow 

 Edge can only be traversed in direction of arrow 

 Example: E = {(A,B), (A,C), (A,D), (B,C), (D,C)} 

 

Fig.5.1.3 In a digraph, an edge is an ordered pair 
 

o Thus: (u,v) and (v,u) are not the same edge 

o In the example, (D,C) ∈ E, (C,D) ∉ E 

 
Degree of a Node 

 

 The degree of a node is the number of edges incident on it. 

 In the example above: 

 Degree 2: B and C 
 Degree 3: A and D 

 A and D have odd degree, and B and C have even degree 

 Can also define in-degree and out-degree 

 In-degree: Number of edges pointing to a node 
 Out-degree: Number of edges pointing from a node 

Graphs: Terminology Involving Paths 
 

 Path: sequence of vertices in which each pair of successive vertices is 

connected by an edge 

 Cycle: a path that starts and ends on the same vertex 

 Simple path: a path that does not cross itself 

 That is, no vertex is repeated (except first and last) 

 Simple paths cannot contain cycles 
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 Length of a path: Number of edges in the path 

 Examples 

 
Cyclic and Acyclic Graphs 

□ ACyclic graph contains cycles 

o Example: roads (normally) 

□ An acyclic graph contains no cycles 

o Example: Course prerequisites 

Multigraph: A graph with self loops and parallel edges is called a multigraph. 
 

 
Fig.5.1.4 Connected and Unconnected Graphs and Connected Components 

 

□ An undirected graph is connected if every pair of vertices has a path between it 

o Otherwise it is unconnected 

o A directed graph is strongly connected if every pair of vertices has a 

path between them, in both directions 

Data Structures for Representing Graphs 

 
Two common data structures for representing graphs: 

 

o Adjacency lists 
 

o Adjacency matrix 

 

 Adjacency List Representation 

An adjacency list is a way in which graphs can be represented in the computer’s 

memory. This structure consists of a list of all nodes in G. Furthermore, every node is in 

turn linked to its own list that contains the names of all other nodes that are adjacent to it. 

The key advantages of using an adjacency list are: 

o It is easy to follow and clearly shows the adjacent nodes of a particular node. 

o It is often used for storing graphs that have a small-to-moderate number of edges. 

That is, an adjacency list is preferred for representing sparse graphs in the 

computer’s memory; otherwise, an adjacency matrix is a good choice. 

o Adding new nodes in G is easy and straightforward when G is represented using an 
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B A D 

adjacenc y list. Adding new nodes in an adjacency matrix is a difficult task, as 

to be 
 

 

 

 

 

 
 

 

 
 

 

 

Fig.5.2.1 Adjaceny List Representation 

 
Adjacency Matrix Representation 

An adjacency matrix is used to represent which nodes are adjacent to one another. By 

definition, two nodes are said to be adjacent if there is an edge connecting them. In 

a directed graph G, if node v is adjacent to node u, then there is definitely an edge 

from u to v. That is, if v is adjacent to u, we can get from u to v by traversing one 

edge. For any graph G having n nodes, the adjacency matrix will have the 

dimension of n * n. In an adjacency matrix, the rows and columns are labelled by 

graph vertices. An entry aij in the adjacency matrix will contain 1, if vertices vi and 

vj are adjacent to each other. However, if the nodes are not adjacent, aij will be set to 

zero. It. Since an adjacency matrix contains only 0s and 1s, it is called a bit matrix or 

a Boolean matrix. The entries in the matrix depend on the ordering of the nodes in 

G. Therefore, a change in the order of nodes will result in a different adjacency 

matrix. 

Aij = 1 if there is an edge from Vi to Vj 

0 otherwise 

Adjacency Matrix: 2D array containing weights on edges 

o Row for each vertex 

o Column for each vertex 

o Entries contain weight of edge from row vertex to column vertex 

o Entries contain ∞ if no edge from row vertex to column vertex 

o Entries contain 0 on diagonal (if self edges not allowed) 

Example undirected graph (assume self-edges not allowed): 

D A B C 

C A D 

the size of the matrix needs to be changed and existing nodes may have 

reordered. Each node has a list of 

adjacent 

nodes. 

A B C D 
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A 

 
C 

 

 

 

Fig.5.2.2 Undirected graph 

Example directed graph (assume self-edges allowed): 
 

 

Fig.5.2.3 Directed Graph 

 

 
Disadv:Adjacency matrix representation is easy to represent and feasible as long as 

the graph is small and connected. For a large graph ,whose matrix is sparse, adjacency 

matrix representation wastes a lot of memory. Hence list representation is preferred 

over matrix representation. 

Graph traversal algorithms 

Traversing a graph, is the method of examining the nodes and edges of the graph. 

There are two standard methods of graph traversal. These two methods are: 

1. Breadth-first search 2. Depth-first search 

While breadth-first search uses a queue as an auxiliary data structure to store nodes for 

further processing, the depth-first search scheme uses a stack. 

Breadth-first search algorithm 
 

Breadth-first search (BFS) is a graph search algorithm that begins at the root node 

and explores all the neighbouring nodes. Then for each of those nearest nodes, the 

algorithm explores their unexplored neighbour nodes, and so on, until it finds the 

goal. That is, we start examining the node A and   then   all   the   neighbours   of   A 

are examined. In the   next step, we examine   the neighbours of neighbours of A, 

so on and so forth. This means that we need to track the neighbours of the node 

and guarantee that every node in the graph is processed and no node is processed more 

B  

D 

 

A 

 

B 

 

C 

  

D 
  A 0 1 1 1 
  B 1 0 ∞ 1 
  C 1 ∞ 0 1 
  D 1 1 1 0 
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than once. This is accomplished by using a queue that will hold the nodes that are 

waiting for further processing. 

Algorithm for BFS traversal 

Step 1: Define a Queue of size total number of vertices in the graph. 
 

Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert 

it into the Queue. 
 

Step 3: Visit all the adjacent vertices of the vertex which is at front of the Queue 

which is not visited and insert them into the Queue. 

Step 4: When there is no new vertex to be visit from the vertex at front of the Queue 

then delete that vertex from the Queue. 

Step 5: Repeat step 3 and 4 until queue becomes empty. 
 

Step 6: When queue becomes Empty, then the enqueue or dequeue order gives the BFS 

traversal order. 
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Fig.5.3.1 Example for BFS 



10  

Depth-first Search Algorithm 

Depth-first search begins at a starting node A which becomes the current node. Then, it 

examines each node N along a path P which begins at A. That is, we process a neighbour 

of A, then a neighbour of neighbour of A, and so on. 

During the execution of the algorithm, if we reach a path that has a node N that has 

already been processed, then we backtrack to the current node. Otherwise, the unvisited 

(unprocessed) node becomes the current node. The algorithm proceeds like this until 

we reach a dead-end (end of path P). On reaching the deadend, we backtrack to find 

another path P. The algorithm terminates when backtracking leads back to the starting 

node A. 

In this algorithm, edges that lead to a new vertex are called discovery edges and edges that 

lead to an already visited vertex are called back edges. Observe that this algorithm is 

similar to the in- order traversal of a binary tree. Its implementation is similar to that 

of the breadth-first search algorithm but here we use a stack instead of a queue. 

We use the following steps to implement DFS traversal... 

Step 1: Define a Stack of size total number of vertices in the graph. 
 

Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it 

on to the Stack. 
 

Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack which 

is not visited and push it on to the stack. 

Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the 

stack. Step 5: When there is no new vertex to be visit then use back tracking and pop 

one vertex from 

the stack. 

Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty. 
 

Step 7: When stack becomes Empty, then produce final spanning tree by removing 

unused edges from the graph 
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Fig.5.3.2 Example for DFS 
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Applications OF graphs 

 Graphs are constructed for various types of applications such as: 

  In circuit networks where points of connection are drawn as vertices and component 

wires become the edges of the graph. 

 In transport networks where stations are drawn as vertices and routes become the edges 

of the graph. 

 In maps that draw cities/states/regions as vertices and adjacency relations as edges. 

 In program flow analysis where procedures or modules are treated as vertices and 

calls to these procedures are drawn as edges of the graph. 

 Once we have a graph of a particular concept, they can be easily used for finding 

shortest paths, project planning, etc. 

 In flowcharts or control-flow graphs, the statements and conditions in a 
program are 

o represented as nodes and the flow of control is represented by the edges. 

 In state transition diagrams, the nodes are used to represent states and the edges 

represent legal moves from one state to the other. 

 Graphs are also used to draw activity network diagrams. These diagrams are 

extensively used as a project management tool to represent the interdependent 

relationships between groups, steps, and tasks that have a significant impact on the 

project. 

 

 Hashing 

Why 

Hashing? 

Internet has grown to millions of users generating terabytes of content every day. 

According to internet data tracking services, the amount of content on the internet doubles 

every six months. With this kind of growth, it is impossible to find anything in the internet, 

unless we develop new data structures and algorithms for storing and accessing data. So 

what   is wrong   with traditional   data structures like Arrays and Linked Lists? Suppose we 

have a very large data set stored in an array. The amount of time required to look up an 

element in the array is either O(log n) or O( n) based on whether the array is sorted or not. 

If the array is sorted then a technique such as binary search can be used to search the array. 

Otherwise, the array must be searched linearly. Either case may not be desirable if we 

need to process a very large data set. Therefore we discuss a new technique called hashing 

that allows us to update and retrieve any entry in constant time O(1). The constant time or 

O(1) performance means, the amount of time to perform the operation does not depend on 

data size n. 

The Map Data Structure(Hash Map)(Hash function) 
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In a mathematical sense, a map is a relation between two sets. We can define Map M as a set 

of pairs, where each pair is of the form (key, value), where for given a key, we can find a 

value using some kind of a “function” that maps keys to values. The key for a given object 

can be calculated using a function called a hash function. In its simplest form, we can think 

of an array as a Map where key is the index and value is the value at that index. For 

example, given an array A, if i is the key, then we can find the value by simply looking up 

A[i]. The idea of a hash table is more generalized and can be described as follows. 

The concept of a hash table is a generalized   idea of an array where key does not have 

to be an integer. We can have a name as a key, or for that matter any object as the key. The 

trick is to find a hash function to compute an index so that an object can be stored at a 

specific location in a table such that it can easily be found. 

STATIC HASHING 
 

Fig.5.4.1 This kind of hashing is called static hashing since the size of the hash table is fixed.(an 

array) 

Example: 
 

Suppose we have a set of strings {“abc”, “def”, “ghi”} that we’d like to store in a table. Our 

objective here is to find or update them quickly from a table, actually in O(1). We are 

not concerned about ordering them or maintaining any order at all. Let us think of a simple 

schema to do this. Suppose we assign “a” = 1, “b”=2, … etc to all alphabetical characters. 

We can then simply compute a number for each of the strings by using the sum of the 

characters as follows. 

“abc” = 1 + 2 + 3=6, “def” = 4 + 5 + 6=15 , “ghi” = 7 + 8 + 9=24 
 

If we assume that we have a table of size 5 to store these strings, we can compute the 

location of the string by taking the sum mod 5. So we will then store “ abc” in 6 mod 5 = 

1, “def” in 15 mod 5 = 0, 

and “ghi” in 24 mod 5 = 4 in locations 1, 0 and 4 as 
follows. 
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Now the idea is that if we are given a string, we can immediately compute the location using 

a simple hash function, which is sum of the characters mod Table size. Using this hash 

value, we can search for the string. 

Problem with Hashing -collision 
 

The method discussed above seems too good to be true as we begin to think more about the 

hash function. First of all, the hash function we used, that is the sum of the letters, is a bad 

one. In case we have permutations of the same letters, “abc”, “bac” etc in the set, we will 

end up with the same value for the sum and hence the key. In this case, the strings would 

hash into the same location, creating what we call a “collision”. This is obviously not a 

good thing. Secondly, we need to find a good table size, preferably a prime number so that 

even if the sums are different, then collisions can be avoided, when we take mod of the sum 

to find the location. So we ask two questions. 

Question 1: How do we pick a good hash function? 

Question 2: How do we deal with collisions? 

The problem of storing and retrieving data in O(1) time comes down to answering the 

above questions. Picking a “good” hash function is key to successfully implementing a hash 

table. What we mean by “good” is that the function must be easy to compute and avoid 

collisions as much as possible. If the function is hard to compute, then we lose the 

advantage gained for lookups in O(1). Even if we pick a very good hash function, we still 

will have to deal with “some” collisions. 

The process where two records can hash into the same location is called collision. We can deal 

with collisions using many strategies, such as linear probing (looking for the next available 

location i+1, i+2, etc. from the hashed value i), quadratic probing (same as linear probing, 

except we look for available positions i+1 , i + 4, i + 9, etc from the hashed value i and 

separate chaining, the process of creating a linked list of values if they hashed into the same 

location.This is called collision resolution. 

 

 
Popular hash functions 

 

Hash functions that use numeric keys are very popular.. However, there can be cases in real- 

world applications where we can have alphanumeric keys rather than simple numeric keys. 

In such cases, the ASCII value of the character can be used to transform it into its 

equivalent numeric key. Once this transformation is done, any hash function can be applied 

to generate the hash value. 

Division Method 

It is the most simple method of hashing an integer x. This method divides x by M and then 
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uses the remainder obtained. In this case, the hash function can be given as 

h(x) = x mod M 

The division method is quite good for just about any value of M and since it requires only a 

single division operation, the method works very fast. However, extra care should be 

taken to select a suitable value for M. Generally, it is best to choose M to be a prime 

number because making M a prime number increases the likelihood that the keys are 

mapped with a uniformity in the output range of values. 

A potential drawback of the division method is that while using this method, consecutive keys 

map to consecutive hash values. On one hand, this is good as it ensures that consecutive keys 

do not collide, but on the other, it also means that consecutive array locations will be 

occupied. This may lead to degradation in performance. 

Example : 
 

Calculate the hash values of keys 1234 and 5462. Solution Setting M = 97, hash values 

can be calculated as: 

h(1234) = 1234 % 97 = 70 
 

h(5642) = 5642 % 97 = 16 

 
Mid-Square Method 

The mid-square method is a good hash function which works in two steps: 
 

Step 1: Square the value of the key. That is, find k2. 
 

Step 2: Extract the middle r digits of the result obtained in 

Step 1. 
 

The algorithm works well because most or all digits of the key value contribute to the result. 

This is because all the digits in the original key value contribute to produce the middle digits 

of the squared value. Therefore, the result is not dominated by the distribution of the bottom 

digit or the top digit of the original key value. In the mid-square method, the same r digits 

must be chosen from all the keys. Therefore, the hash function can be given as: 

h(k) = s where s is obtained by selecting r digits 

from k2. 
 

Example Calculate the hash value for keys 1234 and 5642 using the mid-square method. 

The hash table has 100 memory locations. Solution Note that the hash table has 100 memory 

locations whose indices vary from 0 to 99. 

This means that only two digits are needed to map the key to a location in the hash table, 
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so r = 2. When k = 1234, k2 = 1522756, h (1234) = 27 
 

When k = 5642, k2 = 31832164, h (5642) 

= 21 

Observe that the 3rd and 4th digits starting from the right are 

chosen. 
 

Folding Method 

The folding method works in the following two steps: 
 

Step 1: Divide the key value into a number of parts. That is, divide k into parts k1, k2, ..., 

kn, where each part has the same number of digits except the last part which may have 

lesser digits than the other parts. 

Step 2: Add the individual parts. That is, obtain the sum of k1 + k2 + ... + kn. The hash 

value is produced by ignoring the last carry, if any. Note that the number of digits in each 

part of the key will vary depending upon the size of the hash table. . 

Example Given a hash table of 100 locations, calculate the hash value using folding method 

for keys 

5678, 321, and 34567. Solution Since there are 100 memory locations to address, we will 

break the key into parts where each part (except the last) will contain two digits. The 

hash values can be obtained as shown below: 
 

key 5678 321 34567 

Parts 56 and 78 32 and 1 34, 56 and 7 

Sum 134 33 97 

Hash value 34 (ignore the last carry) 33 97 

 

Collision Resolution Strategies 

1. Open Addressing/Closed Hashing 

2. Chaining 
 

Once a collision takes place, open addressing or closed hashing computes new positions 

using a probe sequence and the next record is stored in that position 

The process of examining memory locations in the hash table is called probing. Open 

addressing technique can be implemented using linear probing, quadratic probing, double 

hashing. 

Linear Probing 

When using a linear probe to resolve collision, the item will be stored in the next available 
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slot in the table, assuming that the table is not already full. 
 

This is implemented via a linear search for an empty slot, from the point of collision. If the 

physical end of table is reached during the linear search, the search will wrap around to the 

beginning of the table and continue from there.If an empty slot is not found before reaching 

the point of collision, the table is full. 

If h is the point of collision, probe through h+1,h+2,h+3..................h+i. till an empty slot 

is found 
 

Fig.5.4.2 Searching a Value using Linear Probing 
 

The procedure for searching a value in a hash table is same as for storing a value in a 

hash table. While searching for a value in a hash table, the array index is re-computed and the 

key of the elementstored at that location is compared with the value that has to be searched. If 

a match is found, then the search operation is successful. The search time in this case is 

given as O(1). If the key does not match, then the search function begins a sequential 

search of the array that continues until: 
 

□ the value is found,or 

□  the search function encounters a vacant location in the array, indicating that the 

value is not present, or 

□  the search function terminates because it reaches the end of the table and the value 

is not present. 

Probe Sequence ::(h+i)%Table 

size 
 

Disadvantage: 
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As the hash table fills, clusters of consecutive cells are formed and the time required for a 

search increases with the size of the cluster. It is possible for blocks of data to form when 

collisions are resolved. This means that any key that hashes into the cluster will require 

several attempts to resolve the collision. More the number of collisions, higher the probes that 

are required to find a free location and lesser is the performance.   This phenomenon   is 

called clustering. To avoid   clustering,   other techniques such as quadratic probing and 

double hashing are used. 

Quadratic Probing 

A variation of the linear probing idea is called quadratic probing. Instead of using a constant 

“skip” value, if the first hash value that has resulted in collision is h, the successive values 

which are probed are h+1, h+4, h+9, h+16, and so on. In other words, quadratic probing uses 

a skip consisting of successive perfect squares. 
 

Fig.5.4.3 Quadratic Probing 



19  

Probe sequence 

:h,h+12,h=22,h=32 ............................. h+i2 

H(k)=(h+i2)%Tablesize 
 

Double Hashing 

In double hashing, we use two hash functions rather than a single function. Double hashing 

uses the idea of applying a second hash function to the key when a collision occurs. The 

result of the second hash function will be the number of positions form the point of collision 

to insert.There are a couple of requirements for the second function: 

o it must never evaluate to 0 

o must make sure that all cells can be probed 

A popular second hash function is: Hash2(key) = R - ( key % R ) where R is a prime number 

that is smaller than the size of the table.But any independent hash function may also be used. 
 

Fig.5.4.4 Double hashing minimizes repeated collisions and the 

effects of clustering. 
 

Chaining 

Chaining is another approach to implementing a hash table; instead of storing the data directly 

inside the structure, have a linked list structure at each hash element. That way, all the 

collision, retrieval and deletion functions can be handled by the list, and the hash function's 
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role is limited mainly to that of a guide to the algorithms, as to which hash element's list to 

operate on. 

The linked list at each hash element is often called a chain. A chaining hash table gets its 

name because of the linked list at each element -- each list looks like a 'chain' of data strung 

together.Operations on the data structure are made far simpler, as all of the data storage 

issues are handled by the list at the hash element, and not the hash table structure itself. 
 

Drawbacks of static hashing 

1. Table size is fixed and hence cannot accommodate data growth. 
 

2. Collsions increases as data size grows. 
 

Avoid the above conditions by doubling the hash table size. This increase in hash table size is 

taken up, when the number of collisions increase beyond a certain threshold. The threshold 

limit is decided by the load factor. 

Load factor 

The load factor α of a hash table with n key elements is given by α= n / hash 

table size 
 

The probability of a collision increases as the load factor increases. We cannot just double the 

size of the table and copy the elements from the original table to the new table, since when the 

table size is doubled from N to 2N+1, the hash function changes. It requires reinserting each 

element of the old table into the new table (using the modified hash function).This is called 

Rehashing. Rehashing in large databases is a tedious process and hence dynamic hashing. 

Dynamic hashing schemes 
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Dynamically increases the size of the hash table as collision occurs. There are two 

types: 
 

Extendible hashing (directory): uses a directory that grows or shrinks depending on the 

data distribution. No overflow buckets 

Linear hashing(directory less): No directory. Splits buckets in linear order, uses overflow 

buckets. 

Extendible hashing : 
 

o Uses a directory of pointers to buckets/bins which are collections of records 

o The number of buckets are doubled by doubling the directory, and splitting just 

the bin that overflowed. 

o Directory much smaller than file, so doubling it is much cheaper. Only one bin 

of data entries is split and rehashed. 
 

Fig.5.4.5 Extendible Hashing 

Global Depth 

– Max number of bits needed to tell which bucket an entry 

belongs to. Local Depth 

- The number of least significant digits that is common for all the numbers sharing the 

same bin. On overflow: 

If global depth =Local depth 
 

1. Double the hash directory 

2. Split the overflowing bin 

3. Redistribute elements of the overflowing bin 

4. Increment the global and local depth 

If global depth >Local depth 
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1. Split the overflowing bin 

2. Redistribute elements of the overflowing bin 

3. Increment the local depth 

 
Linear Hashing 

Basic Idea: 

□ Pages are split when overflows occur – but not necessarily the page with the 

overflow. 

□ Directory avoided in LH by using overflow pages. (chaining approach) 

□ Splitting occurs in turn, in a round robin fashion.one by one from the first bucket 

to the last bucket. 

□ Use a family of hash functions h0, h1, h2, ... 

– Each function’s range is twice that of its predecessor. 

□ When all the pages at one level (the current hash function) have been split, a new 

level is applied. 

□ Insert in Order using linear hashing: 1,7,3,8,12,4,11,2,10,13..... 

After insertion till 

12: 

When 4 inserted overflow occurred. So we split the bucket (no matter it is full or partially 

empty). And increment pointer. 

 

 

 

 

 
So we split bucket 0 and rehashed all keys in it. Placed 3 to new bucket as (3 mod 6 = 3 ) 

and (12 mod 6 = 0 ). Then 11 and 2 are inserted. And now overflow. s is pointing to bucket 

1, hence split bucket 1 by re- hashing it. 

 

 

 

 

 

 
 

After split: 
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Insertion of 10 and 13: as (10 mod 3 = 1) and bucket 1 < s, we need to hash 10 again using 

h1(10) = 

10 mod 6 = 4th 

bucket. 

 
 INDEXING 

 

The indexing technique based on factors such as access type, access time, insertion 

time, deletion time, and space overhead involved. There are two kinds of indices: 

 Ordered indices that are sorted based on one or more key values 

 Hash indices that are based on the values generated by applying a hash function 

 

 
1. Ordered Indices 

Indices are used to provide fast random access to records. An index of a file may be a primary 

index or a secondary index. 

 
Primary Index 

In a sequentially ordered file, the index whose search key specifies the sequential order of the 

file is defined as the primary index. 

Example: suppose records of students are stored in a STUDENT file in a sequential order 

starting from roll number 1 to roll number 60. Now, if we want to search a record for, say, roll 

number 10, then the student’s roll number is the primary index. 

Secondary Index 
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An index whose search key specifies an order different from the sequential order of the file is 

called as the secondary index. 

Example: If the record of a student is searched by his name, then the name is a secondary 

index. Secondary indices are used to improve the performance of queries on non-primary 

keys. 

 
2. Dense and Sparse Indices 

 

Dense index 

 In adense index, the index table stores the address of every record in the file. 

 Dense index would be more efficient to use than a sparse index if it fits in the memory 

 By looking at the dense index, it can be concluded directly whether the record exists in 
the file or not. 

 
Sparse index 

 In asparse index, the index table stores the address of only some of the records in the 

file. 

 Sparse indices are easy to fit in the main memory, 

 In a sparse index, to locate a record, first find an entry in the index table with the 
largest search key value that is either less than or equal to the search key value of the 
desired record. Then, start at that record pointed to by that entry in the index 
table and then proceed searching the record using the sequential pointers in the 
file, until the desired record is obtained. 

 
Example: If we need to access record number 40, then record number 30 is the largest key 

value that is less than 40. So jump to the record pointed by record number 30 and move along 

the sequential pointer to reach record number 40. 

 
Below figure shows a dense index and a sparse index for an indexed sequential file. 

 
 

 

Fig.5.5.1 Dense index and sparse index 
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3. Cylinder Surface Indexing 
 

Cylinder surface indexing is a very simple technique used only for the primary key index of a 

sequentially ordered file. 

The index file will contain two fields—cylinder index and several surface indices. There are 

multiple cylinders, and each cylinder has multiple surfaces. If the file needs m cylinders for 

storage then the cylinder index will contain m entries. 

Fig.5.5.2 Physical and logical organization of disk 

 
When a record with a particular key value has to be searched, then the following steps are 

performed: 

 First the cylinder index of the file is read into memory. 

 Second, the cylinder index is searched to determine which cylinder holds the 

desired record. For this, either the binary search technique can be used or the 

cylinder index can be made to store an array of pointers to the starting of 

individual key values. In either case the search will takeO (log m) time. After 

 the cylinder index is searched, appropriate cylinder is determined. 

 Depending on the cylinder, the surface index corresponding to the cylinder is then 
retrieved from the disk 

 

 Once the cylinder and the surface are determined, the corresponding track is read and 

searched for the record with the desired key. 

 
Hence, the total number of disk accesses is three—first, for accessing the cylinder index, 

second for accessing the surface index, and third for getting the track address. 
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4. Multi-level Indices 

Consider very large files that may contain millions of records. For such files, a simple 

indexing technique will not suffice. In such a situation, we use multi-level indices. 

Below figure shows a two-level multi-indexing. Three-level indexing and so, can also be used 

In the figure, the main index table stores pointers to three inner index tables. The inner index 

tables are sparse index tables that in turn store pointers to the records. 

 

Fig.5.5.3 Multi-level indices 

 
5. Inverted Indices 

 Inverted files are used in document retrieval systems for large textual databases. 

 An inverted file reorganizes the structure of an existing data file in order to provide 

fast access to all records having one field falling within the set limits. 

 When a term or keyword specified in the inverted file is identified, the record number 

is given and a set of records corresponding to the search criteria are created. 

  For each keyword, an inverted file contains an inverted list that stores a list of pointers 

to all occurrences of that term in the main text. Therefore, given a keyword, the 

addresses of all the documents containing that keyword can easily be located.  

 
There are two main variants of inverted indices: 

 A record-level inverted index (inverted file index or inverted file) stores a list of 
references to documents for each word 

 A word-level inverted index (full inverted index or inverted list) in addition to a list of 

references to documents for each word also contains the positions of each word within a 

document. 



 

7. Hashed Indices 

Hashing is used to compute the address of a record by using a hash function on the search key value. 

The hashed values map to the same address, then collision occurs and schemes to resolve these 

collisions are applied to generate a new address 

 
Choosing a good hash function is critical to the success of this technique. By a good hash function, it 

mean two things. 

1. First, a good hash function, irrespective of the number of search keys, gives an average-case 

lookup that is a small constant. 

2. Second, the function distributes records uniformly and randomly among the buckets, where a bucket is 

defined as a unit of one or more records 

 
The worst hash function is one that maps all the keys to the same bucket. 

 

The drawback of using hashed indices includes: 

□ Though  the number of buckets is fixed, the number of files may grow with time.  

□ If the number of buckets is too large, storage space is wasted.  

□ If the number of buckets is too small, there may be too many collisions.  

 

 
The following operations are performed in a hashed file organization. 

 

1. Insertion 

To insert a record that has ki as its search value, use the hash function h(ki) to compute the address 

of the bucket for that record. 

If the bucket is free, store the record else use chaining to store the record. 

 
2. Search 

To search a record having the key value ki, use h(ki) to compute the address of the bucket where 

the record is stored. 

The bucket may contain one or several records, so check for every record in the bucket to retrieve the 
desired record with the given key value. 

 
3. Deletion 

To delete a record with key value ki, use h(ki) to compute the address of the bucket where the 

record is stored. The bucket may contain one or several records so check for every record in the 

bucket, and then delete the record. 
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