
1

School of Computing

Department of Computer Science and Engineering

UNIT - I

 Fundamental of Data Structure – SBSA1201

2

UNIT-1

Arrays- Linked List - Single Linked List - Insertion and Deletion - Doubly Linked List.-

Circular Linked List – Stack- Queues- Array implementation of a Stack and queue -

Linked List implementation of a Stack and Queue- Priority Queues

1. INDRODUCTION

ABSTRACT DATA TYPE

In programming each program is breakdown into modules, so that no routine should ever exceed

a page. Each module is a logical unit and does specific job modules which in turn will call

another module.

Modularity has several advantages

1. Modules can be compiled separately which makes debugging process easier.

2. Several modules can be implemented and executed simultaneously.

3. Modules can be easily enhanced.

Abstract Data type is an extension of modular design.

An abstract data type is a set of operations such as Union, Intersection, Complement, Find etc.,

The basic idea of implementing ADT is that the operations are written once in program and can

be called by any part of the program.

 THE LIST ADT

List is an ordered set of elements.

The general form of the list is

A1, A2, A3, ,AN

A1 - First element of the list

AN - Last element of the list

3

N - Size of the list

If the element at position i is Ai then its successor is Ai+1 and its predecessor is Ai-1.

Various operations performed on List

1. Insert (X, 5) - Insert the element X after the position 5.

2. Delete (X) - The element X is deleted

3. Find (X) - Returns the position of X.

4. Next (i) - Returns the position of its successor element i+1.

5. Previous (i) - Returns the position of its predecessor i-1.

6. Print list - Contents of the list is displayed.

7. Makeempty - Makes the list empty.

Implementation of List ADT

1. Array Implementation

2. Linked List Implementation

3. Cursor Implementation.

Array Implementation of List

Array is a collection of specific number of data stored in a consecutive memory locations.

* Insertion and Deletion operation are expensive as it requires more data movement

* Find and Printlist operations takes constant time.

* Even if the array is dynamically allocated, an estimate of the maximum size of the

list is required which considerably wastes the memory space.

Linked List Implementation

Linked list consists of series of nodes. Each node contains the element and a pointer to its

successor node. The pointer of the last node points to NULL.

Insertion and deletion operations are easily performed using linked list.

4

Types of Linked List

1. Singly Linked List

2. Doubly Linked List

3. Circular Linked List.

Singly Linked List

A singly linked list is a linked list in which each node contains only one link field pointing to the

next node in the list.

DECLARATION FOR LINKED LIST

Struct node ;

typedef struct Node *List ;

typedef struct Node *Position ;

int IsLast (List L) ;

int IsEmpty (List L) ;

position Find(int X, List L) ;

void Delete(int X, List L) ;

position FindPrevious(int X, List L) ;

position FindNext(int X, List L) ;

void Insert(int X, List L, Position P) ;

void DeleteList(List L) ;

Struct Node

{

int element ;

position Next ;

};

5

ROUTINE TO INSERT AN ELEMENT IN THE LIST

void Insert (int X, List L, Position P)

/* Insert after the position P*/

{

position Newnode;

Newnode = malloc (size of (Struct Node));

If (Newnode! = NULL)

{

Newnode ->Element = X;

Newnode ->Next = P-> Next;

P-> Next = Newnode;

}

}

INSERT (25, P, L)

ROUTINE TO CHECK WHETHER THE LIST IS EMPTY

int IsEmpty (List L) /*Returns 1 if L is empty */

{

if (L -> Next = = NULL)

return (1);

}

ROUTINE TO CHECK WHETHER THE CURRENT POSITION IS LAST

int IsLast (position P, List L) /* Returns 1 is P is the last position in L */

{

6

if (P->Next = = NULL)

return

}

FIND ROUTINE

position Find (int X, List L)

{

/*Returns the position of X in L; NULL if X is not found */

position P;

P = L-> Next;

while (P! = NULL && P Element ! = X)

P = P->Next;

return P;

}

}

FIND PREVIOUS ROUTINE

position FindPrevious (int X, List L)

{

/* Returns the position of the predecessor */

position P;

P = L;

while (P -> Next ! = Null && P ->Next Element ! = X)

P = P ->Next;

return P;

7

}

FINDNEXT ROUTINE

position FindNext (int X, List L)

{

/*Returns the position of its successor */

P = L ->Next;

while (P Next! = NULL && P Element ! = X)

P = P→Next;

return P→Next;

}

ROUTINE TO DELETE AN ELEMENT FROM THE LIST

void Delete(int X, List L)

{

/* Delete the first occurence of X from the List */

position P, Temp;

P = Findprevious (X,L);

If (!IsLast(P,L))

{

Temp = P→Next;

P →Next = Temp→Next;

Free (Temp);

}

}

8

ROUTINE TO DELETE THE LIST

void DeleteList (List L)

{

position P, Temp;

P = L →Next;

L→Next = NULL;

while (P! = NULL)

{

Temp = P→Next

free (P);

P = Temp;

}

}

Doubly Linked List

A Doubly linked list is a linked list in which each node has three fields namely data field,

forward link (FLINK) and Backward Link (BLINK). FLINK points to the successor node in the

list whereas BLINK points to the predecessor node.

STRUCTURE DECLARATION : -

Struct Node

{

int Element;

Struct Node *FLINK;

Struct Node *BLINK

};

9

ROUTINE TO INSERT AN ELEMENT IN A DOUBLY LINKED LIST

void Insert (int X, list L, position P)

{

Struct Node * Newnode;

Newnode = malloc (size of (Struct Node));

If (Newnode ! = NULL)

{

Newnode →Element = X;

Newnode →Flink = P Flink;

P →Flink →Blink = Newnode;

P →Flink = Newnode ;

Newnode →Blink = P;

}

}

ROUTINE TO DELETE AN ELEMENT

void Delete (int X, List L)

{

position P;

P = Find (X, L);

If (IsLast (P, L))

{

Temp = P;

P →Blink →Flink = NULL;

10

free (Temp);

}

else

{

Temp = P;

P →Blink→ Flink = P→Flink;

P →Flink →Blink = P→Blink;

free (Temp);

}

}

Advantage

* Deletion operation is easier.

* Finding the predecessor & Successor of a node is easier.

Disadvantage

* More Memory Space is required since it has two pointers.

Circular Linked List

In circular linked list the pointer of the last node points to the first node. Circular linked list can

be implemented as Singly linked list and Doubly linked list with or without headers.

Singly Linked Circular List

A singly linked circular list is a linked list in which the last node of the list points to the first

node.

Doubly Linked Circular List

A doubly linked circular list is a Doubly linked list in which the forward link of the last node

points to the first node and backward link of the first node points to the last node of the list.

Advantages of Circular Linked List

11

• It allows to traverse the list starting at any point.

• It allows quick access to the first and last records.

Applications of Linked List

1. Polynomial ADT

2. Radix Sort

3. Multilist

 THE STACK ADT

1.2.1 Stack Model :

A stack is a linear data structure which follows Last In First Out (LIFO) principle, in which both

insertion and deletion occur at only one end of the list called the Top.

Example : -

Pile of coins., a stack of trays in cafeteria.

2.2.2 Operations On Stack

The fundamental operations performed on a stack are

1. Push

2. Pop

PUSH :

The process of inserting a new element to the top of the stack. For every push operation the top is

incremented by 1.

POP :

The process of deleting an element from the top of stack is called pop operation. After every pop

operation the top pointer is decremented by 1.

EXCEPTIONAL CONDITIONS

OverFlow

12

Attempt to insert an element when the stack is full is said to be overflow.

UnderFlow

Attempt to delete an element, when the stack is empty is said to be underflow.

1.2.3 Implementation of Stack

Stack can be implemented using arrays and pointers.

Array Implementation

In this implementation each stack is associated with a pop pointer, which is -1 for an empty

stack.

• To push an element X onto the stack, Top Pointer is incremented and then set Stack [Top] = X.

• To pop an element, the stack [Top] value is returned and the top pointer is decremented.

• pop on an empty stack or push on a full stack will exceed the array bounds.

ROUTINE TO PUSH AN ELEMENT ONTO A STACK

void push (int x, Stack S)

{

if (IsFull (S))

Error ("Full Stack");

else

{

Top = Top + 1;

S[Top] = X;

}

}

int IsFull (Stack S)

{

13

if (Top = = Arraysize)

return (1);

}

ROUTINE TO POP AN ELEMENT FROM THE STACK

void pop (Stack S)

{

if (IsEmpty (S))

Error ("Empty Stack");

else

{

X = S [Top];

Top = Top - 1;

}

}

int IsEmpty (Stack S)

{

if (S Top = = -1)

return (1);

}

ROUTINE TO RETURN TOP ELEMENT OF THE STACK

int TopElement (Stack S)

{

if (! IsEmpty (s))

14

return S[Top];

else

Error ("Empty Stack");

return 0;

}

 LINKED LIST IMPLEMENTATION OF STACK

• Push operation is performed by inserting an element at the front of the list.

• Pop operation is performed by deleting at the front of the list.

• Top operation returns the element at the front of the list.

DECLARATION FOR LINKED LIST IMPLEMENTATION

Struct Node;

typedef Struct Node *Stack;

int IsEmpty (Stack S);

Stack CreateStack (void);

void MakeEmpty (Stack S);

void push (int X, Stack S);

int Top (Stack S);

void pop (Stack S);

Struct Node

{

int Element ;

Struct Node *Next;

};

15

ROUTINE TO CHECK WHETHER THE STACK IS EMPTY

int IsEmpty (Stack S)

{

if (S→Next = = NULL)

return (1);

}

ROUTINE TO CREATE AN EMPTY STACK

Stack CreateStack ()

{

Stack S;

S = malloc (Sizeof (Struct Node));

if (S = = NULL)

Error (" Outof Space");

MakeEmpty (s);

return S;

}

void MakeEmpty (Stack S)

{

if (S = = NULL)

Error (" Create Stack First");

else

while (! IsEmpty (s))

pop (s);

16

}

ROUTINE TO PUSH AN ELEMENT ONTO A STACK

void push (int X, Stack S)

{

Struct Node * Tempcell;

Tempcell = malloc (sizeof (Struct Node));

If (Tempcell = = NULL)

Error ("Out of Space");

else

{

Tempcell Element = X;

Tempcell Next = S Next;

S→Next = Tempcell;

}

}

ROUTINE TO RETURN TOP ELEMENT IN A STACK

int Top (Stack S)

{

If (! IsEmpty (s))

return S→Next→Element;

Error ("Empty Stack");

return 0;

}

17

ROUTINE TO POP FROM A STACK

void pop (Stack S)

{

Struct Node *Tempcell;

If (IsEmpty (S))

Error ("Empty Stack");

else

{

Tempcell = S→Next;

S→Next = S→Next→Next;

Free (Tempcell);

}

}

 The Queue ADT

1.4.1 Queue Model

A Queue is a linear data structure which follows First In First Out (FIFO) principle, in which

insertion is performed at rear end and deletion is performed at front end.

Example : Waiting Line in Reservation Counter,

2.3.2 Operations on Queue

The fundamental operations performed on queue are

1. Enqueue

2. Dequeue

Enqueue :

The process of inserting an element in the queue.

18

Dequeue :

The process of deleting an element from the queue.

Exception Conditions

Overflow : Attempt to insert an element, when the queue is full is said to be overflow condition.

Underflow : Attempt to delete an element from the queue, when the queue is empty is said to be

underflow.

Implementation of Queue

Queue can be implemented using arrays and pointers.

Array Implementation

In this implementation queue Q is associated with two pointers namely rear pointer and front

pointer.

To insert an element X onto the Queue Q, the rear pointer is incremented by 1 and then set

Queue [Rear] = X

To delete an element, the Queue [Front] is returned and the Front Pointer is incremented by 1.

ROUTINE TO ENQUEUE

void Enqueue (int X)

{

if (rear > = max _ Arraysize)

print (" Queue overflow");

else

{

Rear = Rear + 1;

Queue [Rear] = X;

}

19

}

ROUTINE FOR DEQUEUE

void delete ()

{

if (Front < 0)

print (" Queue Underflow");

else

{

X = Queue [Front];

if (Front = = Rear)

{

Front = 0;

Rear = -1;

}

else

Front = Front + 1 ;

}

}

In Dequeue operation, if Front = Rear, then reset both

the pointers to their initial values. (i.e. F = 0, R = -1)

Linked List Implementation of Queue

Enqueue operation is performed at the end of the list.

Dequeue operation is performed at the front of the list.

20

Queue ADT

DECLARATION FOR LINKED LIST IMPLEMENTATION OF QUEUE ADT

Struct Node;

typedef Struct Node * Queue;

int IsEmpty (Queue Q);

Queue CreateQueue (void);

void MakeEmpty (Queue Q);

void Enqueue (int X, Queue Q);

void Dequeue (Queue Q);

Struct Node

{

int Element;

Struct Node *Next;

}* Front = NULL, *Rear = NULL;

ROUTINE TO CHECK WHETHER THE QUEUE IS EMPTY

int IsEmpty (Queue Q) // returns boolean value /

{ // if Q is empty

if (Q→Next = = NULL) // else returns 0

return (1);

}

ROUTINE TO CHECK AN EMPTY QUEUE

Struct CreateQueue ()

{

21

Queue Q;

Q = Malloc (Sizeof (Struct Node));

if (Q = = NULL)

Error ("Out of Space");

MakeEmpty (Q);

return Q;

}

void MakeEmpty (Queue Q)

{

if (Q = = NULL)

Error ("Create Queue First");

else

while (! IsEmpty (Q)

Dequeue (Q);

}

ROUTINE TO ENQUEUE AN ELEMENT IN QUEUE

void Enqueue (int X)

{

Struct node *newnode;

newnode = Malloc (sizeof (Struct node));

if (Rear = = NULL)

{

newnode →data = X;

22

newnode →Next = NULL;

Front = newnode;

Rear = newnode;

}

else

{

newnode → data = X;

newnode → Next = NULL;

Rear →next = newnode;

Rear = newnode;

}

}

ROUTINE TO DEQUEUE AN ELEMENT FROM THE QUEUE

void Dequeue ()

{

Struct node *temp;

if (Front = = NULL)

Error("Queue is underflow");

else

{

temp = Front;

if (Front = = Rear)

{

23

Front = NULL;

Rear = NULL;

}

else

Front = Front →Next;

Print (temp→data);

free (temp);

}

}

Double Ended Queue (DEQUE)

In Double Ended Queue, insertion and deletion operations are performed at both the ends.

Circular Queue

In Circular Queue, the insertion of a new element is performed at the very first location of the

queue if the last location of the queue is full, in which the first element comes just after the last

element.

Advantages

It overcomes the problem of unutilized space in linear queues, when it is implemented as arrays.

To perform the insertion of an element to the queue, the position of the element is calculated by

the relation as

Rear = (Rear + 1) % Maxsize.

and then set

Queue [Rear] = value.

ROUTINE TO INSERT AN ELEMENT IN CIRCULAR QUEUE

void CEnqueue (int X)

{

24

if (Front = = (rear + 1) % Maxsize)

print ("Queue is overflow");

else

{

if (front = = -1)

front = rear = 0;

else

rear = (rear + 1)% Maxsize;

CQueue [rear] = X;

}

}

To perform the deletion, the position of the Front printer is calculated by the relation

Value = CQueue [Front]

Front = (Front + 1) % maxsize.

ROUTINE TO DELETE AN ELEMENT FROM CIRCULAR QUEUE

int CDequeue ()

{

if (front = = -1)

print ("Queue is underflow");

else

{

X = CQueue [Front];

if (Front = = Rear)

25

Front = Rear = -1;

else

Front = (Front + 1)% maxsize;

}

return (X);

}

 Priority Queues

Priority Queue is a Queue in which inserting an item or removing an item can be performed from

any position based on some priority.

1.5.1 Applications of Queue

* Batch processing in an operating system

* To implement Priority Queues.

* Priority Queues can be used to sort the elements using Heap Sort.

* Simulation.

* Mathematics user Queueing theory.

* Computer networks where the server takes the jobs of the client as per the queue strategy.

26

School of Computing

Department of Computer Science and Engineering

UNIT - II

 Fundamental of Data Structure – SBSA1201

UNIT-II

Evaluation of arithmetic expression using stack- Prefix –Infix-Postfix-notations,

Converting infix expressions to postfix-Evaluation of postfix expression,-Towers of Hanoi

problem.

 APPLICATIONS OF STACK

Some of the applications of stack are :

(i) Evaluating arithmetic expression

(ii) Balancing the symbols

(iii) Towers of Hannoi

(iv) Function Calls.

(v) 8 Queen Problem.

Different Types of Notations To Represent Arithmetic Expression

There are 3 different ways of representing the algebraic expression.

They are

* INFIX NOTATION

* POSTFIX NOTATION

* PREFIX NOTATION

INFIX

In Infix notation, The arithmetic operator appears between the two operands to which it is being

applied.

For example : - A / B + C

POSTFIX

The arithmetic operator appears directly after the two operands to which it applies. Also called

reverse polish notation. ((A/B) + C)

For example : - AB / C +

PREFIX

The arithmetic operator is placed before the two operands to which it applies. Also called as

polish notation. ((A/B) + C)

For example : - +/ABC

INFIX PREFIX (or) POLISH POSTFIX (or) REVERSE

POLISH

1. (A + B) / (C - D) /+AB - CD AB + CD - /

2. A + B*(C - D) +A*B - CD ABCD - * +

3. X * A / B - D - / * XABD X A*B/D-

4. X + Y * (A - B) / +X/*Y - AB - CD XYAB - *CD - / +

(C - D)

5. A * B/C + D + / * ABCD AB * C / D +

2.2. Evaluating Arithmetic Expression

To evaluate an arithmetic expressions, first convert the given infix expression to postfix

expression and then evaluate the postfix expression using stack.

Infix to Postfix Conversion

Read the infix expression one character at a time until it encounters the delimiter. "#"

Step 1 : If the character is an operand, place it on to the output.

Step 2 : If the character is an operator, push it onto the stack. If the stack operator has a higher

or equal priority than input operator then pop that operator from the stack and place it onto the

output.

Step 3 : If the character is a left paraenthesis, push it onto the stack.

Step 4 : If the character is a right paraenthesis, pop all the operators from the stack till it

encounters left parenthesis, discard both the parenthesis in the output.

Evaluating Postfix Expression

Read the postfix expression one character at a time until it encounters the delimiter `#'.

Step 1 : - If the character is an operand, push its associated value onto the stack.

Step 2 : - If the character is an operator, POP two values from the stack, apply the operator to

them and push the result onto the stack.

Recursive Solution

N - represents the number of disks.

Step 1. If N = 1, move the disk from A to C.

Step 2. If N = 2, move the 1st disk from A to B.

Then move the 2nd disk from A to C,

The move the 1st disk from B to C.

Step 3. If N = 3, Repeat the step (2) to more the first 2 disks from A to B using C as

intermediate.

Then the 3rd disk is moved from A to C. Then repeat the step (2) to move 2 disks from

B to C using A as intermediate.

In general, to move N disks. Apply the recursive technique to move N - 1 disks from

A to B using C as an intermediate. Then move the Nth disk from A to C. Then again

apply the recursive technique to move N - 1 disks from B to C using A as an

intermediate.

Evaluation of Postfix Expressions Using Stack [with C program]

How to evaluate postfix expression using stack in C language program?

The compiler finds it convenient to evaluate an expression in its postfix form. The virtues of

postfix form include elimination of parentheses which signify priority of evaluation and the

elimination of the need to observe rules of hierarchy, precedence and associativity during

evaluation of the expression.

As Postfix expression is without parenthesis and can be evaluated as two operands and an

operator at a time, this becomes easier for the compiler and the computer to handle.

Evaluation rule of a Postfix Expression states:

1. While reading the expression from left to right, push the element in the stack if it is an

operand.

2. Pop the two operands from the stack, if the element is an operator and then evaluate it.

3. Push back the result of the evaluation. Repeat it till the end of the expression.

Algorithm

1) Add) to postfix expression.

2) Read postfix expression Left to Right until) encountered

3) If operand is encountered, push it onto Stack

[End If]

4) If operator is encountered, Pop two elements

i) A -> Top element

ii) B-> Next to Top element

iii) Evaluate B operator A

push B operator A onto Stack

5) Set result = pop

6) END

Let's see an example to better understand the algorithm:

Expression: 456*+

#define MAXSTACK 100 /* for max size of stack */

Fig.2.3.1 Evaluating Postfix Expression

Result: 34

Evaluation of Postfix Expressions Using Stack

/* This program is for evaluation of postfix expression

* This program assume that there are only four operators

* (*, /, +, -) in an expression and operand is single digit only

* Further this program does not do any error handling e.g.

* it does not check that entered postfix expression is valid

* or not.

* */

Example

#include <stdio.h>

#include <ctype.h>

/* define pop operation */

#define POSTFIXSIZE 100 /* define max number of charcters in postfix expression */

/* declare stack and its top pointer to be used during postfix expression

evaluation*/

int stack[MAXSTACK];

int top = -1; /* because array index in C begins at 0 */

/* can be do this initialization somewhere else */

/* define push operation */

void push(int item)

{

if (top >= MAXSTACK - 1) {

printf("stack over flow");

return;

}

else {

top = top + 1;

stack[top] = item;

}

}

ch = postfix[i];

int pop()

{

int item;

if (top < 0) {

printf("stack under flow");

}

else {

item = stack[top];

top = top - 1;

return item;

}

}

/* define function that is used to input postfix expression and to evaluate it */

void EvalPostfix(char postfix[])

{

int i;

char ch;

int val;

int A, B;

/* evaluate postfix expression */

for (i = 0; postfix[i] != ')'; i++) {

val = B + A;

if (isdigit(ch)) {

/* we saw an operand,push the digit onto stack

ch - '0' is used for getting digit rather than ASCII code of digit */

push(ch - '0');

}

else if (ch == '+' || ch == '-' || ch == '*' || ch == '/') {

/* we saw an operator

* pop top element A and next-to-top elemnet B

* from stack and compute B operator A

*/

A = pop();

B = pop();

switch (ch) /* ch is an operator */

{

case '*':

val = B * A;

break;

case '/':

val = B / A;

break;

case '+':

break;

case '-':

val = B - A;

break;

}

/* push the value obtained above onto the stack */

push(val);

}

}

printf(" \n Result of expression evaluation : %d \n", pop());

}

int main()

{

int i;

/* declare character array to store postfix expression */

char postfix[POSTFIXSIZE];

printf("ASSUMPTION: There are only four operators(*, /, +, -) in an expression and operand

is single digit only.\n");

printf(" \nEnter postfix expression,\npress right parenthesis ')' for end expression : ");

/* take input of postfix expression from user */

for (i = 0; i <= POSTFIXSIZE - 1; i++) {

scanf("%c", &postfix[i]);

if (postfix[i] == ')') /* is there any way to eliminate this if */

{

break;

} /* and break statement */

}

/* call function to evaluate postfix expression */

EvalPostfix(postfix);

return 0;

}

Output

First Run:

Enter postfix expression, press right parenthesis ')' for end expression : 456*+)

Result of expression evaluation : 34

Second Run:

Enter postfix expression, press right parenthesis ')' for end expression: 12345*+*+)

Result of expression evaluation: 47

 Infix to Postfix Conversion

This problem requires you to write a program to convert an infix expression to a postfix

expression. The evaluation of an infix expression such as A + B * C requires knowledge of

which of the two operations, + and *, should be performed first. In general, A + B * C is to be

interpreted as A + (B * C) unless otherwise specified. We say that multiplication takes

precedence over addition. Suppose that we would now like to convert A + B * C to postfix.

Applying the rules of precedence, we first convert the portion of the expression that is

evaluated first, namely the multiplication. Doing this conversion in stages, we obtain

A + B * C Given infix form
A + B C * Postfix
A B C * + Convert the addition to posfix

The major rules to remember during the conversion process are that the operations with highest

precedence are converted first and that after a portion of an expression has been converted to

postfix, it is to be treated as a single operand. Let us now consider the same example with the

precedence of operators reversed by the deliberate insertion of parentheses.

(A + B) * C Given infix form

A B + * C Convert the addition

A B + C * Convert the multiplication

Note that in the conversion from AB + * C to AB + C *, AB+ was treated as a single

operand. The rules for converting from infix to postfix are simple, provided that you know

the order of precedence.

We consider five binary operations: addition, subtraction, multiplication, division, and

exponentiation. These operations are denoted by the usual operators, +, –, *, /, and ^,

respectively. There are three levels of operator precedence. Both * and / have higher

precedence than + and –. ^ has higher precedence than * and /. Furthermore, when operators of

the same precedence are scanned, +, –, * and / are left associative, but ^ is right associative.

Parentheses may be used in infix expressions to override the default precedence.

The postfix form requires no parentheses. The order of the operators in the postfix expressions

determines the actual order of operations in evaluating the expression, making the use of

parentheses unnecessary.

Input

A collection of error-free simple arithmetic expressions. Expressions are presented one per line.

The input has an arbitrary number of blanks between any two symbols. A symbol may be a

letter (A – Z), an operator (+, – , *, or /), a left parenthesis, or a right parenthesis. Each operand

is composed of a single letter. The input expressions are in infix notation.

Example

A + B – C A + B

* C

(A + B) / (C – D)

((A + B) * (C – D) + E) / (F + G)

Output

Your output will consist of the input expression, followed by its corresponding postfix

expression. All output (including the original infix expression) must be clearly formatted (or

reformatted) and also clearly labeled.

Example

(Only the four postfix expressions corresponding to the above sample input are

shown here.) A B + C –

A B C * +

A B + C D - /

A B + C D - * E + F G + /

In converting infix expressions to postfix notation, the following fact should be taken into

consideration: In infix form, the order of applying operators is governed by the possible

appearance of parentheses and the operator precedence relations; however, in postfix form, the

order is simply the “natural” order – i.e., the order of appearance from left to right.

Accordingly, subexpressions within innermost parentheses must first be converted to postfix, so

that they can then be treated as single operands. In this fashion, parentheses can be

successively eliminated until the entire expression has been converted. The last pair of

parentheses to be opened within a group of nested parentheses encloses the first subexpression

within the group to be transformed. This last-in, first-out behavior should immediately suggest

the use of a stack.

Your program should utilize the basic stack methods. You will need to PUSH certain symbols

on the stack, POP symbols, test to see if the stack is EMPTY, look at the TOP element of the

stack, etc.

In addition, you must devise a boolean method that takes two operators and tells you which has

higher precedence. This will be helpful, because in Rule 3 below, you need to compare the next

symbol to the one on the top of the stack. [Question: what precedence do you assign to ‘(‘? You

need to answer this question since ‘(‘ may be on top of the stack.]

You should formulate the conversion algorithm using the following six rules:

1. Scan the input string (infix notation) from left to right. One pass is sufficient.

2. If the next symbol scanned is an operand, it may be immediately appended to the

postfix string.

3. If the next symbol is an operator,

i. Pop and append to the postfix string every operator on the stack that a. is

above the most recently scanned left parenthesis, and has precedence higher than or is a

right-associative operator of equal precedence to that of the new operator symbol.

ii. Push the new operator onto the stack.

4. When a left parenthesis is seen, it must be pushed onto the stack.

5. When a right parenthesis is seen, all operators down to the most recently scanned left

parenthesis must be popped and appended to the postfix string. Furthermore, this pair of

parentheses must be discarded.

6. When the infix string is completely scanned, the stack may still contain some operators.

[Why are there no parentheses on the stack at this point?] All the remaining operators should be

popped and appended to the postfix string.

Examples

Here are two examples to help you understand how the algorithm works. Each line below

demonstrates the state of the postfix string and the stack when the corresponding next infix

symbol is scanned. The

rightmost symbol of the stack is the top symbol. The rule number corresponding to each line

demonstrates which of the six rules was used to reach the current state from that of the previous

line.

Example 1

Input expression: A + B * C / D - E

A A 2
+ A + 3
B A B + 2
* A B + * 3
C A B C + * 2
/ A B C * + / 3
D A B C * D + / 2
- A B C * D / + - 3
E A B C * D / + E - 2
 A B C * D / + E - 6

Example 2

Input expression: (A + B * (C - D)) / E.

Next Symbol Postfix String Stack Rule

((4
A A (2
+ A (+ 3
B A B (+ 2
* A B (+ * 3
(A B (+ * (4
C A B C (+ * (2
- A B C (+ * (- 3
D A B C D (+ * (- 2
) A B C D - (+ * 5

) A B C D - * + 5
/ A B C D - * + / 3
E A B C D - * + E / 2
 A B C D - * + E / 6

RECURSIVE ROUTINE FOR TOWERS OF HANOI

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more than

one rings is as depicted −

Fig.2.5.1 Tower of Hanoi

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one

sits over the larger one. There are other variations of the puzzle where the number of disks

increase, but the tower count remains the same.

Rules

The mission is to move all the disks to some another tower without violating the sequence of

arrangement. A few rules to be followed for Tower of Hanoi are −

 Only one disk can be moved among the towers at any given time.

 Only the "top" disk can be removed.

 No large disk can sit over a small disk.

Following is an animated representation of solving a Tower of Hanoi puzzle with three disks.

Fig.2.5.2 Tower of Hanoi with 3 Disks

Tower of Hanoi puzzle with n disks can be solved in minimum 2n−1 steps. This presentation

shows that a puzzle with 3 disks has taken 23 - 1 = 7 steps.

Algorithm

To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with

lesser amount of disks, say → 1 or 2. We mark three towers with

name, source, destination and aux (only to help moving the disks). If we have only one disk,

then it can easily be moved from source to destination peg.

If we have 2 disks −

 First, we move the smaller (top) disk to aux peg.

 Then, we move the larger (bottom) disk to destination peg.

 And finally, we move the smaller disk from aux to destination peg.

Fig.2.5.3 Tower of Hanoi with 2 Disks

So now, we are in a position to design an algorithm for Tower of Hanoi with more than two

disks. We divide the stack of disks in two parts. The largest disk (nth disk) is in one part and all

other (n-1) disks are in the second part.

START

Procedure Hanoi(disk, source, dest, aux)

IF disk == 1, THEN

move disk from source to dest

ELSE

Hanoi(disk - 1, source, aux, dest) // Step 1

move disk from source to dest // Step 2

Hanoi(disk - 1, aux, dest, source) // Step 3

END IF

END Procedure

STOP

Our ultimate aim is to move disk n from source to destination and then put all other (n1) disks

onto it. We can imagine to apply the same in a recursive way for all given set of disks.

The steps to follow are −

Step 1 − Move n-1 disks from source to aux

Step 2 − Move nth disk from source to dest

Step 3 − Move n-1 disks from aux to dest

A recursive algorithm for Tower of Hanoi can be driven as follows −

Example:

void hanoi (int n, char s, char d, char i)

{

/* n no. of disks, s source, d destination i intermediate */

if (n = = 1)

{

print (s, d);

return;

}

else

{

hanoi (n - 1, s, i, d);

print (s, d)

hanoi (n-1, i, d, s);

return;

}

}

Function Calls

When a call is made to a new function all the variables local to the calling routine need to be

saved, otherwise the new function will overwrite the calling routine variables. Similarly the

current location address in the routine must be saved so that the new function knows where to go

after it is completed.

RECURSIVE FUNCTION TO FIND FACTORIAL : -

int fact (int n)

{

int s;

if (n = = 1)

return (1);

else

s = n * fact (n - 1);

return (s);

}

1

School of Computing

Department of Computer Science and Engineering

UNIT - III

 Fundamental of Data Structure – SBSA1201

2

UNIT-III

Tree Structures: Binary Trees- Implementation of Binary Trees- Linear

Representation of Binary Tree-Linked representation of a Binary Tree. Binary Tree

Traversal: Pre order – In order - Post order.

3. TREES

PRELIMINARIES:

TREE: A tree is a finite set of one or more nodes such that there is a specially designated

node called the Root, and zero or more non empty sub trees T1, T2 Tk, each of

whose roots are connected by a directed edge from Root R.

The ADT tree

A tree is a finite set of elements or nodes. If the set is non-empty, one of the nodes

is distinguished as the root node, while the remaining (possibly empty) set of nodes are

grouped into subsets, each of which is itself a tree. This hierarchical relationship is

described by referring to each such subtree as a child of the root, while the root is referred

to as the parent of each subtree. If a tree consists of a single node, that node is called a

leaf node.

Figure 3.1.1 A simple tree.

It is a notational convenience to allow an empty tree. It is usual to represent a tree using a

picture such as Fig. 3.1.1, in which the root node is A, and there are three subtrees rooted

at B, C and D. The root of the subtree D is a leaf node, as are the remaining nodes, E, F,

G, H and I. The node C has a single child I, while each of E, F, G and H have the same

parent B. The subtrees rooted at a given node are taken to be ordered, so the tree in

Fig. 3.1.1 is different from the one in which nodes E and F are interchanged. Thus it

makes sense to say that the first subtree at A has 4 leaf nodes.

Example 3.1.1 Show how to implement the Abstract Data Type tree using lists.

3

Solution We write [A B C] for the list containing three elements, and distinguish A from

[A]. We can represent a tree as a list consisting of the root and a list of the subtrees in

order. Thus the list-based representation of the tree in Fig 3.1.1 is

[A [[B [[E] [F] [G] [H]]] [C [I]] [D]]].

ROOT : A node which doesn't have a parent. In the above tree.

NODE : Item of Information.

LEAF : A node which doesn't have children is called leaf or Terminal node.

SIBLINGS : Children of the same parents are said to be siblings,. F, G are siblings.

PATH : A path from node n, to nk is defined as a sequence of nodes n1, n2,n3 nk such

that ni is the parent of ni+1. for . There is exactly only one path from each node to

root.

LENGTH : The length is defined as the number of edges on the path.

DEGREE : The number of subtrees of a node is called its degree.

 BINARY TREE

Definition :-

Binary Tree is a tree in which no node can have more than two children.

Maximum number of nodes at level i of a binary tree is 2i-1.

A binary tree is a tree which is either empty, or one in which every node:

 has no children; or

 has just a left child; or
 has just a right child; or

 has both a left and a right child.

A complete binary tree is a special case of a binary tree, in which all the levels, except

perhaps the last, are full; while on the last level, any missing nodes are to the right of all

the nodes that are present. An example is shown in Fig. 3.5.

4

Fig. 3.2.1 A complete binary tree: the only ``missing'' entries can be on the last row.

Example 3.2.1 Give a space - efficient implementation of a complete binary tree in

terms of an array A. Describe how to pass from a parent to its two children, and vice-

versa.

Solution An obvious one, in which no space is wasted, stores the root of the tree in A[1];

the two children in A[2] and A[3], the next generation at A[4] up to A[7] and so on. An

element A[k] has children at A[2k] and A[2k+1], providing they both exists, while the

parent of node A[k] is at A[k div 2]. Thus traversing the tree can be done very efficiently.

BINARY TREE NODE DECLARATIONS

Struct TreeNode

{

int Element;

Struct TreeNode *Left ;

Struct TreeNode *Right;

};

COMPARISON BETWEEN

GENERAL TREE & BINARY TREE

General Tree Binary Tree

* General Tree has any * A Binary Tree has not

number of children. more than two children.

5

FULL BINARY TREE :-

A full binary tree of height h has 2h+1 - 1 nodes.

Here height is 3 No. of nodes in full

binary tree is = 23+1 -1

= 15 nodes.

COMPLETE BINARY TREE :

A complete binary tree of height h has between 2h and 2h+1 - 1 nodes. In the bottom level

the elements should be filled from left to right.

REPRESENTATION OF A BINARY TREE

There are two ways for representing binary tree, they are

* Linear Representation

* Linked Representation

Linear Representation

The elements are represented using arrays. For any element in position i, the left child is

in position 2i, the right child is in position (2i + 1), and the parent is in position (i/2).

Linked Representation

The elements are represented using pointers. Each node in linked representation has three

fields, namely,

* Pointer to the left subtree

* Data field

* Pointer to the right subtree

In leaf nodes, both the pointer fields are assigned as NULL.

 EXPRESSION TREE

Expression Tree is a binary tree in which the leaf nodes are operands and the interior

nodes are operators. Like binary tree, expression tree can also be travesed by inorder,

preorder and postorder traversal.

6

Constructing an Expression Tree

Let us consider postfix expression given as an input for constructing an expression tree

by performing the following steps :

1. Read one symbol at a time from the postfix expression.

2. Check whether the symbol is an operand or operator.

(a) If the symbol is an operand, create a one - node tree and push a pointer on to the stack.

(b) If the symbol is an operator pop two pointers from the stack namely T1 and T2 and

form a new tree with root as the operator and T2 as a left child and T1 as a right child.

A pointer to this new tree is then pushed onto the stack.

 The Search Tree ADT : - Binary Search Tree

Definition : -

Binary search tree is a binary tree in which for every node X in the tree, the values of all

the keys in its left subtree are smaller than the key value in X, and the values of all the

keys in its right subtree are larger than the key value in X.

Comparision Between Binary Tree & Binary Search Tree

Binary Tree Binary Search Tree

* A tree is said to be a binary * A binary search tree is a binary tree in which

tree if it has atmost two childrens. the key values in the left node is less than the

root and the keyvalues in the right node is greater than the root.

* It doesn't have any order.

Note : * Every binary search tree is a binary tree.

* All binary trees need not be a binary search tree.

DECLARATION ROUTINE FOR BINARY SEARCH TREE

Struct TreeNode;

typedef struct TreeNode * SearchTree;

7

SearchTree Insert (int X, SearchTree T);

SearchTree Delete (int X, SearchTree T);

int Find (int X, SearchTree T);

int FindMin (Search Tree T);

int FindMax (SearchTree T);

SearchTree MakeEmpty (SearchTree T);

Struct TreeNode

{

int Element ;

SearchTree Left;

SearchTree Right;

};

Make Empty :-

This operation is mainly for initialization when the programmer prefer to initialize the

first element as a one - node tree.

ROUTINE TO MAKE AN EMPTY TREE :-

SearchTree MakeEmpty (SearchTree T)

{

if (T! = NULL)

{

MakeEmpty (T left);

MakeEmpty (T Right);

free (T);

}

8

return NULL ;

}

Insert : -

To insert the element X into the tree,

* Check with the root node T

* If it is less than the root,

Traverse the left subtree recursively until it reaches

the T left equals to NULL. Then X is placed in

T left.

* If X is greater than the root.

Traverse the right subtree recursively until it reaches

the T right equals to NULL. Then x is placed in

T Right.

ROUTINE TO INSERT INTO A BINARY SEARCH TREE

SearchTree Insert (int X, searchTree T)

{

if (T = = NULL)

{

T = malloc (size of (Struct TreeNode));

if (T! = NULL) // First element is placed in the root.

{

T →Element = X;

T→ left = NULL;

9

T →Right = NULL;

}

}

else

if (X < T →Element)

T left = Insert (X, T →left);

else

if (X > T →Element)

T Right = Insert (X, T →Right);

// Else X is in the tree already.

return T;

}

Example : -

To insert 8, 5, 10, 15, 20, 18, 3

* First element 8 is considered as Root.

As 5 < 8, Traverse towards left

10 > 8, Traverse towards Right.

Similarly the rest of the elements are traversed.

Find : -

* Check whether the root is NULL if so then return NULL.

* Otherwise, Check the value X with the root node value (i.e. T data)

(1) If X is equal to T data, return T.

(2) If X is less than T data, Traverse the left of T recursively.

10

(3) If X is greater than T data, traverse the right of T recursively.

ROUTINE FOR FIND OPERATION

Int Find (int X, SearchTree T)

{

If T = = NULL)

Return NULL ;

If (X < T Element)

return Find (X, T →left);

else

If (X > T→ Element)

return Find (X, T →Right);

else

return T; // returns the position of the search element.

}

Example : - To Find an element 10 (consider, X = 10)

10 is checked with the Root 10 > 8, Go to the right child of 8

10 is checked with Root 15 10 < 15, Go to the left child of 15.

10 is checked with root 10 (Found)

Find Min :

This operation returns the position of the smallest element in the tree.

To perform FindMin, start at the root and go left as long as there is a left child. The

stopping point is the smallest element.

RECURISVE ROUTINE FOR FINDMIN

int FindMin (SearchTree T)

11

{

if (T = = NULL);

return NULL ;

else if (T →left = = NULL)

return T;

else

return FindMin (T → left);

Example : -

Root T

T

(a) T! = NULL and T→left!=NULL, (b) T! = NULL and T→left!=NULL,

Traverse left Traverse left

Min T

(c) Since T left is Null, return T as a minimum element.

NON - RECURSIVE ROUTINE FOR FINDMIN

int FindMin (SearchTree T)

{

if (T! = NULL)

while (T →Left ! = NULL)

T = T →Left ;

return T;

}

FindMax

12

FindMax routine return the position of largest elements in the tree. To perform a

FindMax, start at the root and go right as long as there is a right child. The stopping point

is the largest element.

RECURSIVE ROUTINE FOR FINDMAX

int FindMax (SearchTree T)

{

if (T = = NULL)

return NULL ;

else if (T →Right = = NULL)

return T;

else FindMax (T →Right);

}

Example :-

Root T

(a) T! = NULL and T→Right!=NULL, (b) T! = NULL and T→Right!=NULL,

Traverse Right Traverse Right

Max

(c) Since T Right is NULL, return T as a Maximum element.

NON - RECURSIVE ROUTINE FOR FINDMAX

int FindMax (SearchTree T)

{

if (T! = NULL)

while (T Right ! = NULL)

T = T →Right ;

13

return T ;

}

Delete :

Deletion operation is the complex operation in the Binary search tree. To delete an

element, consider the following three possibilities.

CASE 1 Node to be deleted is a leaf node (ie) No children.

CASE 2 Node with one child.

CASE 3 Node with two children.

CASE 1 Node with no children (Leaf node)

If the node is a leaf node, it can be deleted immediately.

Delete : 8

After the deletion

CASE 2 : - Node with one child

If the node has one child, it can be deleted by adjusting its parent pointer that points to its

child node.

To Delete 5

before deletion After deletion

To delete 5, the pointer currently pointing the node 5 is now made to to its child node 6.

Case 3 : Node with two children

It is difficult to delete a node which has two children. The general strategy is to replace

the data of the node to be deleted with its smallest data of the right subtree and

recursively delete that node.

DELETION ROUTINE FOR BINARY SEARCH TREES

SearchTree Delete (int X, searchTree T)

{

14

int Tmpcell ;

if (T = = NULL)

Error ("Element not found");

else

if (X < T →Element) // Traverse towards left

T →Left = Delete (X, T Left);

else

if (X > T Element) // Traverse towards right

T →Right = Delete (X, T →Right);

// Found Element tobe deleted

else

// Two children

if (T→ Left && T→ Right)

{ // Replace with smallest data in right subtree

Tmpcell = FindMin (T→ Right);

T →Element = Tmpcell Element ;

T →Right = Delete (T → Element; T →Right);

}

else // one or zero children

{

Tmpcell = T;

if (T →Left = = NULL)

T = T→ Right;

15

else if (T→ Right = = NULL)

T = T →Left ;

free (TmpCell);

}

return T;

}

 Tree Representation

Tree represents the nodes connected by edges. We will discuss binary tree or binary

search tree specifically.

Binary Tree is a special datastructure used for data storage purposes. A binary tree has a

special condition that each node can have a maximum of two children. A binary tree has

the benefits of both an ordered array and a linked list as search is as quick as in a sorted

array and insertion or deletion operation are as fast as in linked list.

Fig.3.4.1 Tree Representation with Levels

Important Terms

Following are the important terms with respect to tree.

 Path − Path refers to the sequence of nodes along the edges of a tree.

 Root − The node at the top of the tree is called root. There is only one root per

tree and one path from the root node to any node.

 Parent − Any node except the root node has one edge upward to a node called

parent.

16

struct node {

int data;

struct node *leftChild;

struct node *rightChild;

};

 Child − The node below a given node connected by its edge downward is called

its child node.

 Leaf − The node which does not have any child node is called the leaf node.

 Subtree − Subtree represents the descendants of a node.

 Visiting − Visiting refers to checking the value of a node when control is on the

node.

 Traversing − Traversing means passing through nodes in a specific order.

 Levels − Level of a node represents the generation of a node. If the root node is

at level 0, then its next child node is at level 1, its grandchild is at level 2, and so

on.

 keys − Key represents a value of a node based on which a search operation is to

be carried out for a node.

Binary Search Tree Representation

Binary Search tree exhibits a special behavior. A node's left child must have a value less

than its parent's value and the node's right child must have a value greater than its parent

value.

Fig.3.4.2 Binary search Tree

We're going to implement tree using node object and connecting them through

references.

Tree Node

The code to write a tree node would be similar to what is given below. It has a data part

and references to its left and right child nodes.

In a tree, all nodes share common construct.

17

If root is NULL

then create root node

return

If root exists then

compare the data with node.data

while until insertion position is located

If data is greater than node.data

goto right subtree

else

goto left subtree

endwhile

insert data

end If

BST Basic Operations

The basic operations that can be performed on a binary search tree data structure, are the

following −

 Insert − Inserts an element in a tree/create a tree.

 Search − Searches an element in a tree.

 Preorder Traversal − Traverses a tree in a pre-order manner.

 Inorder Traversal − Traverses a tree in an in-order manner.

 Postorder Traversal − Traverses a tree in a post-order manner.

We shall learn creating (inserting into) a tree structure and searching a data item in a tree

in this chapter. We shall learn about tree traversing methods in the coming chapter.

Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be

inserted, first locate its proper location. Start searching from the root node, then if the

data is less than the key value, search for the empty location in the left subtree and insert

the data. Otherwise, search for the empty location in the right subtree and insert the data.

Algorithm

Implementation

The implementation of insert function should look like this −

18

Search Operation

void insert(int data) {

struct node *tempNode = (struct node*) malloc(sizeof(struct node));

struct node *current;

struct node *parent;

tempNode->data = data;

tempNode->leftChild = NULL;

tempNode->rightChild = NULL;

//if tree is empty, create root node

if(root == NULL) {

root = tempNode;

} else {

current = root;

parent = NULL;

while(1) {

parent = current;

//go to left of the tree

if(data < parent->data) {

current = current->leftChild;

//insert to the left

if(current == NULL) {

parent->leftChild = tempNode;

return;

}

}

//go to right of the tree

else {

current = current->rightChild;

//insert to the right

if(current == NULL) {

parent->rightChild = tempNode;

return;

}

}

}

}

}

19

If root.data is equal to search.data

return root

else

while data not found

If data is greater than node.data

goto right subtree

else

goto left subtree

If data found

return node

endwhile

return data not found

end if

struct node* search(int data) {

struct node *current = root;

printf("Visiting elements: ");

while(current->data != data) {

if(current != NULL)

printf("%d ",current->data);

//go to left tree

if(current->data > data) {

current = current->leftChild;

}

//else go to right tree

else {

current = current->rightChild;

}

//not found

if(current == NULL) {

return NULL;

}

Whenever an element is to be searched, start searching from the root node, then if the

data is less than the key value, search for the element in the left subtree. Otherwise,

search for the element in the right subtree. Follow the same algorithm for each node.

Algorithm

The implementation of this algorithm should look like this.

20

 TREE TRAVERSAL:

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node. That is, we cannot randomly access a node in a tree. There are three ways which

we use to traverse a tree −

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print

all the values it contains.

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right

sub-tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an

ascending order.

Fig.3.5.1 Inorder Tree

We start from A, and following in-order traversal, we move to its left subtree B. B is

also traversed in-order. The process goes on until all the nodes are visited. The output of

inorder traversal of this tree will be −

D → B → E → A → F → C → G

return current;

}

}

21

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and finally the

right subtree.

Fig.3.5.2 Pre-order Tree

We start from A, and following pre-order traversal, we first visit A itself and then move

to its left subtree B. B is also traversed pre-order. The process goes on until all the nodes

are visited. The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we traverse

the left subtree, then the right subtree and finally the root node.

22

Fig.3.5.3 Post-order Tree

We start from A, and following Post-order traversal, we first visit the left subtree B. B is

also traversed post-order. The process goes on until all the nodes are visited. The output

of post-order traversal of this tree will be −

D → E → B → F → G → C → A

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

 BINARY HEAP

The efficient way of implementing priority queue is Binary Heap. Binary heap is merely

referred as Heaps, Heap have two properties namely

* Structure property

* Heap order property.

Like AVL trees, an operation on a heap can destroy one of the properties, so a heap

operation must not terminate until all heap properties are in order. Both the operations

require the average running time as O(log N).

Structure Property

A heap should be complete binary tree, which is a completely filled binary tree with the

possible exception of the bottom level, which is filled from left to right.

23

A complete binary tree of height H has between 2H and 2H+1 -1 nodes.

For example if the height is 3. Then the numer of nodes will be between 8 and 15. (ie) (23

and 24-1).

For any element in array position i, the left child is in position 2i, the right child is in

position 2i + 1, and the parent is in i/2. As it is represented as array it doesn't require

pointers and also the operations required to traverse the tree are extremely simple and

fast. But the only disadvantage is to specify the maximum heap size in advance.

Heap Order Property

In a heap, for every node X, the key in the parent of X is smaller than (or equal to) the

key in X, with the exception of the root (which has no parent).

This property allows the deletemin operations to be performed quickly has the minimum

element can always be found at the root. Thus, we get the FindMin operation in constant

time.

Declaration for priority queue

Struct Heapstruct;

typedef struct Heapstruct * priority queue;

PriorityQueue Initialize (int MaxElements);

void insert (int X, PriorityQueue H);

int DeleteMin (PriorityQueue H);

Struct Heapstruct

{

int capacity;

int size;

int *Elements;

};

Initialization

PriorityQueue Initialize (int MaxElements)

24

{

PriorityQueue H;

H = malloc (sizeof (Struct Heapstruct));

H Capacity = MaxElements;

H size = 0;

H elements [0] = MinData;

return H;

BASIC HEAP OPERATIONS

To perform the insert and DeleteMin operations ensure that the heap order property is

maintained.

Insert Operation

To insert an element X into the heap, we create a hole in the next available location,

otherwise the tree will not be complete. If X can be placed in the hole without violating

heap order, then place the element X there itself. Otherewise, we slide the element that is

in the hole's parent node into the hole, thus bubbling the hole up toward the root. This

process continues until X can be placed in the hole. This general strategy is known as

Percolate up, in which the new element is percolated up the heap until the correct location

is found.

Routine To Insert Into A Binary Heap

void insert (int X, PriorityQueue H)

{

int i;

If (Isfull (H))

{

Error (" priority queue is full");

return;

}

25

for (i = ++H→ size; H→ Elements [i/2] > X; i/=2)

/* If the parent value is greater than X, then place the element of parent

node into the hole */.

H→ Elements [i] = H→Elements [i/2];

H→ elements [i] = X; // otherwise, place it in the hole.

}

DeleteMin

DeleteMin Operation is deleting the minimum element from the Heap.

In Binary heap the minimum element is found in the root. When this minimum is

removed, a hole is created at the root. Since the heap becomes one smaller, makes the last

element X in the heap to move somewhere in the heap.

If X can be placed in hole without violating heaporder property place it.

Otherwise, we slide the smaller of the hole's children into the hole, thus pushing the hole

down one level. We repeat until X can be placed in the hole. This general strategy is

known as perculate down.

ROUTINE TO PERFORM DELETEMIN IN A BINARY HEAP

int Deletemin (PriorityQueue H)

{

int i, child;

int MinElement, LastElement;

if (IsEmpty (H))

{

Error ("Priority queue is Empty");

return H → Elements [0];

}

26

MinElement = H → Elements [1];

LastElement = H→Elements [H→ size - -];

for (i = 1; i * 2 < = H size; i = child)

{

/* Find Smaller Child */

child = i * 2;

if (child ! = H → size && H →Elements [child + 1]

< H →Elements [child])

child + +;

// Percolate one level down

if (LastElement > H →Elements [child])

H→ Elements [i] = H → Elements [child];

else

break ;

}

H → Elements [i] = LastElement;

return MinElement;

}

OTHER HEAP OPERATIONS

The other heap operations are

(i) Decrease - key

(ii) Increase - key

(iii) Delete

27

(iv) Build Heap

DECREASE KEY

The Decreasekey (P, , H) operation decreases the value of the key at position P by a

positive amount . This may violate the heap order property, which can be fixed by

percolate up.

Increase - Key

The increase - key (p, , H) operation increases the value of the key at position p by a

positive amount . This may violate heap order property, which can be fixed by percolate

down.

 HASHING:

Hash Table

The hash table data structure is an array of some fixed size, containing the keys. A key is

a value associated with each record.

Hashing Function

A hashing function is a key - to - address transformation, which acts upon a given key to

compute the relative position of the key in an array.

A simple Hash function

HASH (KEYVALUE) = KEYVALUE MOD TABLESIZE

Example : - Hash (92)

Hash (92) = 92 mod 10 = 2

The keyvalue `92' is placed in the relative location `2'.

ROUTINE FOR SIMPLE HASH FUNCTION

Hash (Char *key, int Table Size)

{

int Hashvalue = 0;

while (* key ! = `\0')

28

Hashval + = * key ++;

return Hashval % Tablesize;

}

Some of the Methods of Hashing Function

1. Module Division

2. Mid - Square Method

3. Folding Method

4. PSEUDO Random Method

5. Digit or Character Extraction Method

6. Radix Transformation.

Collisions

Collision occurs when a hash value of a record being inserted hashes to an address (i.e.

Relative position) that already contain a different record. (ie) When two key values hash

to the same position.

Collision Resolution

The process of finding another position for the collide record.

Some of the Collision Resolution Techniques

1. Seperate Chaining

2. Open Addressing

3. Multiple Hashing

Seperate Chaining

Seperate chaining is an open hashing technique. A pointer field is added to each record

location. When an overflow occurs this pointer is set to point to overflow blocks making

a linked list.

In this method, the table can never overflow, since the linked list are only extended upon

the arrival of new keys.

29

Insertion

To perform the insertion of an element, traverse down the appropriate list to check

whether the element is already in place.

If the element turns to be a new one, it is insertd either at the front of the list or at the end

of the list.

If it is a duplicate element, an extra field is kept and placed.

INSERT 10 :

Hash (k) = k% Tablesize

Hash (10) = 10 % 10

NSERT 11 :

Hash (11) = 11 % 10

Hash (11) = 1

INSERT 81 :

Hash (81) = 81% 10

Hash (81) = 1

The element 81 collides to the same hash value 1. To place the value 81 at this position

perform the following.

Traverse the list to check whether it is already present.

Since it is not already present, insert at end of the list. Similarly the rest of the elements

are inserted.

ROUTINE TO PERFORM INSERTION

void Insert (int key, Hashtable H)

{

Position Pos, Newcell;

List L;

30

/* Traverse the list to check whether the key is already present */

Pos = FIND (Key, H);

If (Pos = = NULL) /* Key is not found */

{

Newcell = malloc (size of (struct ListNode));

If (Newcell ! = NULL)

(

L = H Thelists [Hash (key, H Tablesize)];

Newcell→ Next = L → Next;

Newcell → Element = key;

/* Insert the key at the front of the list */

L →Next = Newcell;

}

}

}

FIND ROUTINE

Position Find (int key, Hashtable H)

{

Position P;

List L;

L = H→ Thelists [Hash (key, H→Tablesize)];

P = L→ Next;

31

while (P! = NULL && P Element ! = key)

P = p→Next;

return p;

}

Advantage

More number of elements can be inserted as it uses array of linked lists.

Disadvantage of Seperate Chaining

* It requires pointers, which occupies more memory space.

* It takes more effort to perform a search, since it takes time to evaluate the hash function

and

also to traverse the list.

OPEN ADDRESSING

Open addressing is also called closed Hashing, which is an alternative to resolve the

collisions with linked lists.

In this hashing system, if a collision occurs, alternative cells are tried until an empty cell

is found. (ie) cells h0(x), h1(x), h2(x) are tried in succession.

There are three common collision resolution strategies. They are

(i) Linear Probing

(ii) Quadratic probing

(iii) Double Hashing.

LINEAR PROBING

In linear probing, for the ith probe the position to be tried is (h(k) + i) mod tablesize,

where F(i) = i, is the linear function.

In linear probing, the position in which a key can be stored is found by sequentially

searching all position starting from the position calculated by the hash function until an

empty cell is found.

32

If the end of the table is reached and no empty cells has been found, then the search is

continued from the beginning of the table. It has a tendency to create clusters in the table.

Advantage :

* It doesn't requires pointers

Disadvantage

* It forms clusters, which degrades the performance of the hash table for storing and

retrieving

School of Computing

Department of Computer Science and Engineering

UNIT - IV

 Fundamental of Data Structure – SBSA1201

UNIT-4

Sorting Techniques: Bubble Sort- Merge Sort - Shell Sort- Insertion Sort- Selection

Sort-Quick Sort- Heap Sort. Searching Techniques: Sequential Search- Binary Search-

Hashing- Indexing.

 SEARCHING AND SORTING

Searching is used to find the location where an element is available. There are two types of

search techniques. They are:

1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure. It is a way

in which the elements are organized systematically for some purpose. For example, a

dictionary in which words are arranged in alphabetical order and telephone director in which

the subscriber names are listed in alphabetical order. There are many sorting techniques out

of which we study the following.

1. Bubble sort

2. Quick sort

3. Selection sort and

4. Heap sort

 LINEAR SEARCH

This is the simplest of all searching techniques. In this technique, an ordered or unordered list

will be searched one by one from the beginning until the desired element is found. If the

desired element is found in the list then the search is successful otherwise unsuccessful.

Suppose there are ‘n’ elements organized sequentially on a List. The number of

comparisons required to retrieve an element from the list, purely depends on where the

element is stored in the list. If it is the first element, one comparison will do; if it is second

element two comparisons are necessary and so on. On an average you need [(n+1)/2]

comparison’s to search an element. If search is not successful, you would need ’n’

comparisons.

The time complexity of linear search is O(n).

Algorithm:

Let array a[n] stores n elements. Determine whether element ‘x’ is present

or not.

Example 1:

Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, 20

If we are searching for: 45, we’ll look at 1 element before

success

39, we’ll look at 2 elements before success

8, we’ll look at 3 elements before success

54, we’ll look at 4 elements before success

77, we’ll look at 5 elements before success

38 we’ll look at 6 elements before success

24, we’ll look at 7 elements before success

16, we’ll look at 8 elements before success

4, we’ll look at 9 elements before success

7, we’ll look at 10 elements before success

9, we’ll look at 11 elements before success

20, we’ll look at 12 elements before success

For any element not in the list, we’ll look at 12 elements before failure

Example 2:

Let us illustrate linear search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8
Elements -15 -6 0 7 9 23 54 82 101

Searching different elements is as follows:

1. Searching for x = 7 Search successful, data found at 3rd position

2. Searching for x = 82 Search successful, data found at 7th position

3. Searching for x = 42 Search un-successful, data not found

A Recursive program for linear search:

include <stdio.h>

include <conio.h>

void linear_search(int a[], int data, int position, int n)
{

int mid;

if(position < n)
{

if(a[position] == data)
printf("\n Data Found at %d ", position);

}
else

else
linear_search(a, data, position + 1, n);

}

void

main()
{

printf("\n Data not found");

int a[25], i, n, data;

clrscr();

printf("\n Enter the number of elements: ");

scanf("%d", &n);

printf("\n Enter the elements: ");

for(i = 0; i < n; i++)
{

scanf("%d", &a[i]);
}
printf("\n Enter the element to be seached: ");

scanf("%d", &data);

linear_search(a, data, 0,

n); getch();
}

 BINARY SEARCH

If we have ‘n’ records which have been ordered by keys so that x 1 < x2 < … < xn . When

we are given a element ‘x’, binary search is used to find the corresponding element from

the list. In case ‘x’ is present, we have to determine a value ‘j’ such that a[j] = x (successful

search). If ‘x’ is not in the list then j is to set to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and compare

‘x’ with a[mid]. If x = a[mid] then the desired record has been found. If x < a[mid]

then ‘x’ must be in that portion of the file that precedes a[mid]. Similarly, if a[mid] > x, then

further search is only necessary in that part of the file which follows a[mid]. If we use

recursive procedure of finding the middle key a[mid] of the un-searched portion of a file,

then every un-successful comparison of ‘x’ with a[mid] will eliminate roughly half the un-

searched portion from consideration.

Since the array size is roughly halved after each comparison between ‘x’ and a[mid], and

since an array of length ‘n’ can be halved only about log2n times before reaching a trivial

length, the worst case complexity of Binary search is about log2n

Algorithm:

Let array a[n] of elements in increasing order, n 0, determine whether ‘x’ is present, and if

so, set j such that x = a[j] else return 0.

binsrch(a[], n, x)
{

low = 1; high = n;

while (low < high) do
{

mid = (low + high)/2
if (x < a[mid])

high = mid – 1;

else if (x > a[mid])

low = mid + 1;

else return mid;
}
return 0;

}

low and high are integer variables such that each time through the loop either ‘x’ is found or

low is increased by at least one or high is decreased by at least one. Thus we have two

sequences of integers approaching each other and eventually low will become greater

than high causing termination in a finite number of steps if ‘x’ is not present.

Example 1:

Let us illustrate binary search on the following 12
elements:

Index 1 2 3 4 5 6 7 8 9 10 11 12
Elements 4 7 8 9 16 20 24 38 39 45 54 77

If we are searching for x = 4: (This needs 3
comparisons)
low = 1, high = 12, mid = 13/2 = 6,

check 20 low = 1, high = 5, mid = 6/2 =

3, check 8

low = 1, high = 2, mid = 3/2 = 1, check 4,

found

If we are searching for x = 7: (This needs 4

comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low = 1, high = 5, mid = 6/2 =

3, check 8

low = 1, high = 2, mid = 3/2 = 1,

check 4

low = 2, high = 2, mid = 4/2 = 2, check 7,

found

If we are searching for x = 8: (This needs 2

comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20

low = 1, high = 5, mid = 6/2 = 3, check 8,

found

If we are searching for x = 9: (This needs 3

comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low = 1, high = 5, mid = 6/2 =

3, check 8

low = 4, high = 5, mid = 9/2 = 4, check 9,

found

If we are searching for x = 16: (This needs 4

comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low = 1, high = 5, mid = 6/2 =

3, check 8

low = 4, high = 5, mid = 9/2 = 4,

check 9

low = 5, high = 5, mid = 10/2 = 5, check 16,

found

If we are searching for x = 20: (This needs 1

comparison)

low = 1, high = 12, mid = 13/2 = 6, check 20,

found

If we are searching for x = 24: (This needs 4

comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low = 7, high = 12, mid = 19/2

= 9, check 39 low = 7, high = 10, mid =

17/2 = 8, check 38

low = 7, high = 7, mid = 14/2 = 7, check 24, found

If we are searching for x = 38: (This needs 3 comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low = 7, high = 12, mid = 19/2

= 9, check 39

low = 7, high = 10, mid = 17/2 = 8, check 38, found

If we are searching for x = 39: (This needs 2 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 7, high = 12, mid = 19/2 = 9, check 39, found

If we are searching for x = 45: (This needs 4 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check

20 low = 7, high = 12, mid = 19/2 = 9,

check 39 low = 10, high = 12, mid = 22/2

= 11, check 54

low = 10, high = 10, mid = 20/2 = 10, check 45, found

If we are searching for x = 54: (This needs 3 comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low = 7, high = 12, mid = 19/2

= 9, check 39

low = 10, high = 12, mid = 22/2 = 11, check 54, found

If we are searching for x = 77: (This needs 4 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check

20 low = 7, high = 12, mid = 19/2 = 9,

check 39 low = 10, high = 12, mid = 22/2

= 11, check 54

low = 12, high = 12, mid = 24/2 = 12, check 77, found

The number of comparisons necessary by search element:

20 – requires 1 comparison; 8 and 39 – requires 2 comparisons;

4, 9, 38, 54 – requires 3 comparisons; and 7, 16, 24, 45, 77 – requires 4 comparisons

Summing the comparisons, needed to find all twelve items and dividing by 12, yielding

37/12 or approximately 3.08 comparisons per successful search on the average.

Time Complexity:

The time complexity of binary search in a successful search is O(log n) and for an

unsuccessful search is O(log n).

A non-recursive program for binary search:

include <stdio.h>
include <conio.h>

main()
{

int number[25], n, data, i, flag = 0, low, high, mid;

clrscr();

printf("\n Enter the number of elements: ");

scanf("%d", &n);

printf("\n Enter the elements in ascending order: ");

for(i = 0; i < n; i++)

scanf("%d",

&number[i]);

printf("\n Enter the element to be searched: ");

scanf("%d", &data); low = 0; high = n-1; while(low <= high)
{
mid = (low + high)/2;

if(number[mid] == data)

{

}

else

{

else

}
}

flag = 1;

break;

if(data < number[mid])

high = mid - 1;

low = mid + 1;

else

}

if(flag == 1)
printf("\n Data found at location: %d", mid + 1);

printf("\n Data Not Found ");

 BUBBLE SORT

The bubble sort is easy to understand and program. The basic idea of bubble sort is to pass

through the file sequentially several times. In each pass, we compare each element in

the file with its successor i.e., X[i] with X[i+1] and interchange two element when they are

not in proper order. We will illustrate this sorting technique by taking a specific example.

Bubble sort is also called as exchange sort.

Consider the array x[n] which is stored in memory as shown
below:

X[0] X[1] X[2] X[3] X[4] X[5]

33 44 22 11 66 55

Suppose we want our array to be stored in ascending order. Then we pass through the array 5
times as described below:

Pass 1: (first element is compared with all other elements)

We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1] if X[i]

> X[i+1]. The process is shown below:

X[0] X[1] X[2] X[3] X[4] X[5] Remarks

33

33

The biggest number 66 is moved to (bubbled up) the right most position in

the array.

Pass 2: (second element is

compared)

We repeat the same process, but this time we don’t include X[5] into our comparisons. i.e.,

we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1] if

X[i] > X[i+1]. The process is shown below:

X[0] X[1] X[2] X[3] X[4] Remarks

44 22 11 66 55

22 44

 11 44

 44 66

 55 66

22 11 44 55 66

33 22 11 44 55

22 33

 11 33

 33 44

 44 55

22 11 33 44 55

The second biggest number 55 is moved now to X[4].

Pass 3: (third element is compared)

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this, we

move the third biggest number 44 to X[3].

X[0] X[1] X[2] X[3] Remarks

22 11 33 44

11 22

 22 33

 33 44

11 22 33 44

Pass 4: (fourth element is compared)

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth

biggest number
33 to X[2].

X[0] X[1] X[2] Remarks

11 22 33

11 22

 22 33

Pass 5: (fifth element is compared)

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the fifth

biggest number 22 to X[1]. At this time, we will have the smallest number 11 in X[0].

Thus, we see that we can sort the array of size 6 in 5 passes.

For an array of size n, we required (n-1)

passes.

Program for Bubble Sort:

#include <stdio.h>

#include <conio.h>

void bubblesort(int

x[],int n)
{

int i, j, t;
for (i = 0; i < n; i++)
{

for (j = 0; j <n-i; j++)
{

if (x[j] > x[j+1])
{

}
}

}

main()

{

t = x[j];

x[j] = x[j+1];

x[j+1] = t;

}

int i, n, x[25];

clrscr();

printf("\n Enter the number of elements: ");

scanf("%d",&n); printf("\n

Enter Data:"); for(i = 0; i < n ;

i++)

scanf("%d", &x[i]);

bubblesort(x,n);

printf ("\nArray Elements after sorting: ");

for (i = 0; i < n; i++)

printf ("%5d", x[i]);
}

Time Complexity:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1)

comparisons on each pass. Thus the total number of comparisons is (n-1) * (n-1) = n 2 –

2n + 1, which is O(n2). Therefore bubble sort is very inefficient when there are more

elements to sorting.

 SELECTION SORT

Now, you will learn another sorting technique, which is more efficient than bubble sort

and the insertion sort. This sort, as you will see, will not require no more than n-1

interchanges. The sort we are talking about is selection sort.

Suppose x is an array of size n stored in memory. The selection sort algorithm first

selects the smallest element in the array x and place it at array position 0; then it selects the

next smallest element in the array x and place it at array position 1. It simply continues this

procedure until it places the biggest element in the last position of the array. We will now

present to you an algorithm for selection sort.

The array is passed through (n-1) times and the smallest element is placed in its respective

position in the array as detailed below:

Pass 1:

Find the location j of the smallest element in the array x [0], x[1], x[n-1], and then

interchange x[j]

with x[0]. Then x[0] is

sorted.

Pass 2:

Leave the first element and find the location j of the smallest element in the sub-array x[1],

x[2], x[n-1], and then interchange x[1] with x[j]. Then x[0], x[1] are sorted.

Pass 3:

Leave the first two elements and find the location j of the smallest element in the sub-array

x[2], x[3], .

. . . x[n-1], and then interchange x[2] with x[j]. Then x[0], x[1], x[2]

are sorted.

Pass (n-

1):

Find the location j of the smaller of the elements x[n-2] and x[n-1], and then interchange

x[j] and x[n-

2]. Then x[0], x[1], x[n-2] are sorted. Of course, during this pass x[n-1] will be

the biggest element and so the entire array is sorted.

Time

Complexity:

In general we prefer selection sort in case where the insertion sort or the bubble sort requires

exclusive swapping. In spite of superiority of the selection sort over bubble sort and the

insertion sort (there is significant decrease in run time), its efficiency is also O(n2) for n data

items.

Example:

Let us consider the following example with 9 elements to analyze

selection Sort:

1 2 3 4 5 6 7 8 9 Remark

65 70 75 80 50 60 55 85 45 find the first smallest element

I j swap a[i] & a[j]

45 70 75 80 50 60 55 85 65 find the second smallest

 I j swap a[i] and a[j]

45 50 75 80 70 60 55 85 65 Find the third smallest

 i j swap a[i] and a[j]

45 50 55 80 70 60 75 85 65 Find the fourth smallest

 I j swap a[i] and a[j]

45 50 55 60 70 80 75 85 65 Find the fifth smallest

 i j swap a[i] and a[j]

45 50 55 60 65 80 75 85 70 Find the sixth smallest

 i j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the seventh smallest

 i j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the eighth smallest

 i J swap a[i] and a[j]

45 50 55 60 65 70 75 80 85 The outer loop ends.

Non-recursive Program for selection sort:

include<stdio.h>

include<conio.h>

void selectionSort(int low, int high);

int a[25];

int main()
{

int num, i= 0;

clrscr();

printf("Enter the number of elements: ");

scanf("%d", &num);

printf("\nEnter the elements:\n");

for(i=0; i < num; i++)

scanf("%d", &a[i]);

selectionSort(0, num - 1);

printf("\nThe elements after sorting are: ");

for(i=0; i< num; i++)

printf("%d ", a[i]);

return 0;
}

void selectionSort(int low, int high)
{

int i=0, j=0, temp=0, minindex;

for(i=low; i <= high; i++)
{

minindex = i;
for(j=i+1; j <= high; j++)

if(a[j] < a[minindex])
minindex = j;

temp = a[i];

a[i] = a[minindex];

a[minindex] = temp;

}

}

Recursive Program for selection sort:

#include <stdio.h>

#include<conio.h>

int x[6] = {77, 33, 44, 11, 66};

selectionSort(int);
main()
{

int i, n = 0;

clrscr();

printf (" Array Elements before sorting: ");

for (i=0; i<5; i++)

printf ("%d ", x[i]);

selectionSort(n); /* call selection sort */

printf ("\n Array Elements after sorting: ");

for (i=0; i<5; i++)

printf ("%d ", x[i]);

selectionSort(int n)
{

int k, p, temp, min;

if (n== 4)

return (-1);

min = x[n];

p = n;

for (k = n+1; k<5; k++)
{

if (x[k] <min)
{

min = x[k];

p = k;
}

}
temp = x[n]; /* interchange x[n] and x[p] */
x[n] =

x[p];

x[p] =

temp;

n++ ;

selectionSort(n);
}

 INSERTION SORT

The main idea behin d the inser t i on sort is to inser t the i th eleme n t in

its correct place in the i t h pass. Suppos e an array A with n eleme n t s

A[1], A[2],…A[N] is in mem o r y. The inse r t io n sort algorit h m scans

A from A[1] to A[N], insert ing each element A[K] into its prope r posit ion

in the previously sorted subarr a y A[1], A[2],..A[K- 1].

Prin c i p l e : In Insert ion Sort algorith m, each ele m e n t A[K] in the list is

compare d with all the elem e n t s before it (A[1] to A[K- 1]). If any

elem en t A[I] is found to be greater than A[K] then A[K] is inserted in t

he place of A[I}. This proces s is repeat e d till all the elem e n t s are

sorted.

Algori t h m :

Proce d ur e INSERTIONSORT(A, N)

// A is the array containing the list of data items

// N is the number of data items in the list

Last N – 1

Repeat For Pass = 1 to Last Step 1
Repeat For I = 0 to Pass – 1 Step 1

If A[Pass] < A[I] Then

Temp A[Pa s s]

Repeat For J = Pass -1 to I Step -1

A[J +1] A[J] End Repeat

A[I] Te m p

End If

End Repeat

End Repeat

End

INSERTIONSORT

In Insert ion Sort algorithm, Last is made to point to the last elem

ent in the list and Pass is made to point to the second element in the list.

In every pass the Pass is incre m e n t e d to point to the next elem e n t and

is cont i n u e d till it rea c h e s th e last ele m e n t . Durin g eac h pas s

A[Pa s s] is com p a r e d all ele m e n t s befo r e it. If A[Pas s] is less e r th a n

A[I] in the list, then A[Pass] is inser t e d in posit ion I. Finally, a sorte d

list is obtained.

For performin g the insert ion operat ion, a variable temp is used to safel

y store A[Pass] in it and then shift right elem e n t s start in g from A[I] to

A[Pass- 1].

Exa m p l e:

N = 1 0 N u m b e r of el e m e n t s in t h e list

L La s t

P Pa s s

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

P= 1 A[P] < A[0] In s e r t A[P] at 0 L= 9

23 42 74 11 65 58 94 36 99 87

P= 2 L= 9

A[P] is greater than all elements before it. Hence No Change

23 42 74 11 65 58 94 36 99 87

P= 3 A[P] < A[0] In s e r t A[P] at 0 L= 9

11 23 42 74 65 58 94 36 99 87

P= 4 L= 9

A[P] < A[3] In s e r t A[P] at 3

11 23 42 65 74 58 94 36 99 87

P= 5 L= 9

A[P] < A[3] In s e r t A[P] at 3

11 23 42 58 65 74 94 36 99 87

P= 6 L= 9

A[P] is greater than all elements before it. Hence No Change

11 23 42 58 65 74 94 36 99 87

A[P] < A[2] In s e r t A[P] at 2

P = 7 L = 9

11 23 36 42 58 65 74 94 99 87

P= 8 L= 9

A[P] is greater than all elements before it. Hence No Change

11 23 36 42 58 65 74 94 99 87

P, L=9

A[P] < A[7] In s e r t A[P] at 7

Sorted List:

11 23 36 42 58 65 74 87 94 99

Progr a m :

void array:: sort ()

{

int temp, last=cou n t - 1;

for (int pass = 1 ; pass < = l a s t ; p a s s + +)

{

for (int i=0; i<pass; i+ +)

{

if (a[pass] < a[i])

{

temp = a[p a s s];

for (int j=pass- 1;j> =i; j- -)

a[j+ 1] = a[j];

a[i] =te m p;

}

}

}

}

In the sort funct ion, the intege r var iable last is used to point to the last el

ement in the list. The first pass starts with the var iable pass point ing

to the secon d eleme n t and cont in u e s till pass reach e s the last eleme n t .

In each pass, a[pass] is compa r e d with all the element s before it and if a[p

ass] is lesser than a[i], then it is insert e d in posit ion i. Before insert in g it,

the elements a[i] to a[pass- 1] are shifted right using a tempora r y vari

able.

Advanta g e s :

1. Sorts the list faster when the list has less number of elements.

2. Efficient in cases where a new elemen t has to be inserte d into a sort

ed list.

Disadvan t a g e s :

1. Very slow for large values of n.

2. Poor performa n c e if the list is in almost reverse order.

 QUICK SORT

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960’s. It was one of the first

more efficient sorting algorithms. It is an example of a class of algorithms that work by what is

usually called “divide and conquer”.

In essence, the quick sort algorithm partitions the original array by rearranging it into two

groups. The first group contains those elements less than some arbitrary chosen value taken

from the set, and the second group contains those elements greater than or equal to the chosen

value.

The chosen value is known as the pivot element. Once the array has been rearranged in this

way with respect to the pivot, the very same partitioning is recursively applied to each of

the two subsets. When all the subsets have been partitioned and rearranged, the original array

is sorted.

The function partition() makes use of two pointers up and down which are moved toward

each other in the following fashion:

1. Repeatedly increase the pointer up by one position until a[up] > =pivot.

2. Repeatedly decrease the pointer down by one position until a[down] <=pivot.

3. If down > up, interchange a[down] with a[up]

4. Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’

pointer crosses ‘down’ pointer, the position for pivot is found and place pivot element in

‘down’ pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sort function sorts

all elements in an array ‘a’ between positions ‘low’ and ‘high’.

1. It terminates when the condition low >= high is satisfied. This condition will be

satisfied only when the array is completely sorted.

2. Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it calls

the partition function to find the proper position j of the element x[low] i.e. pivot. Then we will

have two sub-arrays x[low], x[low+1], x[j-1] and x[j+1], x[j+2], . . .x[high].

3. It calls itself recursively to sort the left sub-array x[low], x[low+1], x[j-1]

between positions low and j-1 (where j is returned by the partition function).

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], x[high] between

positions j+1 and high.

Time complexity:

There are several choices for choosing the ‘pivot’ element through which we can improve the

efficiency of quick sort. For example, one may choose the ‘pivot’ element as median or

mean or middle element. Also, a non-recursive method could be developed for execution

efficiency. When these improvements are made, experiments indicate the fact that the total

number of comparisons for quick sort is of O(n log n).

Example:

Select first element as the pivot element. Move ‘up’ pointer from left to right in search of an

element larger than pivot. Move the ‘down’ pointer from right to left in search of an element

smaller than pivot. If such elements are found, the elements are swapped. This process

continues till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer crosses ‘down’

pointer, the position for pivot is found and interchange pivot and element at ‘down’ position.

Let us consider the following example with 13 elements to analyze quick sort:

1
2

3

4

5

6

7

8

9

10

11

12

13

Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot

up

 dow n swap up

& down
 04 79

Up

 dow n swap up

& down
 02 57

 dow n
up

(24

08

16

06

04

02)

38

(56

57

58

79

70

45)

swap

pivot &

pivot

dow n

 swap

pivot &

(02 08 16 06 04) 24

pivot,

down

up swap

pivot &

 down

02 (08 16 06 04)

Pivot

up

 dow n swap up
& down

 04 16

 dow n
Up

(06

04)

08

 swap

pivot &

 pivot,

dow n

up

(04)

06

 swap

pivot &

 04

pivot,

dow n

 16

pivot

, dow

(02 04 06 08 16 24) 38

 (56 57 58 79 70 45)

pivot

up

 dow n swap up

& down

 45 57

 dow n
up

(45)

56

(58

79

70

57)

swap

pivot &

 45

pivot

, dow

n

swap

pivot &

down

(58

pivot

79 up

70

57)

dow n

swap up

& down
 57 79

 dow

(57)

58

(70

79)

swap

pivot &

 57

pivot

, dow

 (70 79)

 pivot

, dow

n

up

swap

pivot &

 70

 7
pivot

, dow

 n

 (45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

Program for Quick Sort (Recursive version):

include<stdio.h>

include<conio.h>

void quicksort(int, int);

int partition(int, int);

void interchange(int, int);

int array[25];

int main()

{

int num, i = 0;

clrscr();

printf("Enter the number of elements: ");

scanf("%d", &num);

printf("Enter the elements: ");

for(i=0; i < num; i++)

scanf("%d", &array[i]);

quicksort(0, num -1);

printf("\nThe elements after sorting are: ");

for(i=0; i < num; i++)

printf("%d ", array[i]);

return 0;

}

void quicksort(int low, int high)

{

int pivotpos;

if(low < high)

{

pivotpos = partition(low, high + 1); quicksort(low, pivotpos - 1); quicksort(pivotpos + 1, high);

}

}

int partition(int low, int high)

{

int pivot = array[low];

int up = low, down = high;

do

{

do

up = up + 1;

while(array[up] < pivot);

do

down = down - 1;

while(array[down] > pivot);

if(up < down)

interchange(up, down);

}while(up < down);

array[low] = array[down]; array[down] = pivot; return down;

}

void interchange(int i, int j)

{

int temp;

temp = array[i]; array[i] = array[j]; array[j] = temp;

}

 MERGE SORT

Princi p l e : The given list is divided into two roughly equal parts called the

left and the right subfiles. These subfiles are sorted using the algorith

m recursively and then the two subfiles are merged togeth er to obtain the

sorted file.

Given a sequ en c e of n elemen t s A[1], ….A[N], the gene r al idea is to imagin

e them split into two sets A[1],…A[N/2] and A[(N/2) + 1],…A[N]. Each se

t is individually sorte d , and the result in g sort ed sequ e n c e s are mer g e d

to produce a single sorted seque nc e of N elemen t s . Thus this sort ing m

ethod follows Divide and Conque r strate gy.

Algori t h m :

Proce d ur e MERGE(A, low, mid, high)

// A is the array containing the list of data items

I low, J mi d + 1 , K low

While I mid and J high

If A[I] < A[J] Then

Temp[K] A[I] I I + 1

K K + 1

Else

End If

End While

If I > mid

Then

Temp[K] A[J] J J + 1

K K + 1

While J high

Temp[K] A[J] K K + 1

J J + 1

End While

Else

While I mid

Temp[K] A[I] K K + 1

I I + 1

End While

End If

Repeat for K = low to high step 1

A[K] Te m p [K] End Repeat

End MERGE

Proce d ur e MERGESORT(A, low, high)

// A is the array containing the list of data items

If low < high

Then

mid (lo w + high)/ 2

MERGESORT(low, high)

MERGESORT(mid + 1, high) MERGE(low, mid, high)

End If

End MERGESORT

The first algorith m MERGE can be applied on two sorted lists to mer ge t

hem. Init ially, the index var iable I points to low and J points to mid + 1.

A[I] is com p a r e d with A[J] an d if A[I] fou n d to be less e r th a n A[J] th e n

A[I] is sto r e d in a te m p o r a r y ar r a y an d I is incr e m e n t e d oth e r w i s e

A[J] is stored in the tempor ar y array and J is increm e n t e d . This compar is

o n is cont inu e d unt il eithe r I crosse s mid or J crosse s high. If I crosse s the

mid first then that implies that all the element s in first list is accom mo d a t e d

in the tempora r y array and hence the remainin g eleme nts in the second

list can be put into the tempor a r y array as it is. If J crosses the high first th

en the remainin g eleme nt s of first list is put as it is in the tempor a r y array.

After this proce s s we get a single sort e d list. Since this meth o d mer g e s 2

lists at a time, this is called 2- way merge sort.

In the MERGESORT algorith m, the given unsorted list is first split into N n

umbe r of lists, each list consist ing of only 1 elemen t . Then the MERGE al

gorithm is applied for first 2 lists to get a single sorted list. Then the sam

e thing is done on the next two lists and so on. This process is cont inue d till

a single sorted list is obtained.

Exa m p l e:

Le t L low , M mi d , H hi g h

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

U M H

In each pass the mid value is calculated and based on that the list is split int

o two. This is done recursively and at last N number of lists each having

only one element is produce d as shown.

Now merging opera t ion is called on first two lists to produc e a single

sorted list, then the same thing is done on the next two lists and so on.

Finally a single sorted list is obtained.

Progr a m :

void array:: sort(int low, int high)

{

int mid;

if (low<high)

{

mid=(low + hi gh)/ 2 ;

sort(low, mid);

sort(mid + 1 , high);

merge(low, mid, high);

}

}

void array:: mer ge(in t low, int mid, int high)

{

int i=low, j=mid + 1 , k=low, temp[MAX];

while (i< = mid && j<=hi gh)

if (a[i] <a[j])

temp[k + +] = a [i + +] ;

else

temp[k + +] = a [j + +] ;

if (i>mid)

while (j< = hi gh)

temp[k + +] = a [j + +] ;

else

while (i< = mid)

temp[k + +] = a [i + +] ;

for (k=low; k< = hi gh; k+ +)

a[k] =te m p[k];

}

Advanta g e s :

1. Very useful for sort ing bigger lists.

2. Applicable for external sort ing also.

Disadvan t a g e s :

1. Needs a tempor ar y array every time, for storing the new sorted

list.

 SHELL SORT

The shell sort , somet ime s called the “diminishing increm e n t sort,”

improves on the insert ion sort by breaking the original list into a numbe r

of smaller sublists, each of which is sorted using an insert ion sort. The

unique way that these sublists are chosen is the key to the shell sort.

Instead of breaking the list into sublists of cont iguous items, the shell

sort uses an increm e n t i, sometim e s called the gap , to create a sublist by

choosing all items that are i items apart.

Example of shell Sort : Use Shell sort for the following array : 18, 32, 12,

5, 38, 30, 16, 2

Compar e the elemen t s at a gap of 4. i.e 18 with 38 and so on and swap if

first number is great er than second.

47

Compare the elemen t s at a gap of 2 i.e 18 with 12 and so on.

Now the gap is 1. So now use insert ion sort to sort this array.

After insert ion sort. The final array is sorted.

 HEAP SORT ALGORITHM

Heap Sort is a popular and efficient sorting algorithm in computer programming. Learning how

to write the heap sort algorithm requires knowledge of two types of data structures - arrays and

trees.

The initial set of numbers that we want to sort is stored in an array e.g. [10, 3, 76, 34, 23, 32] and

after sorting, we get a sorted array [3,10,23,32,34,76]

Heap sort works by visualizing the elements of the array as a special kind of complete binary tree

called a heap.

As a prerequisite, you must know about a complete binary tree and heap data structure.

Relationship between Array Indexes and Tree Elements

A complete binary tree has an interesting property that we can use to find the children and

parents of any node.

If the index of any element in the array is i, the element in the index 2i+1 will become the left

child and element in 2i+2 index will become the right child. Also, the parent of any element at

index i is given by the lower bound of (i-1)/2.

48

Fig.4.10.1 Relationship between array and heap indices

Let's test it out,

Left child of 1 (index 0)

= element in (2*0+1) index

= element in 1 index

= 12

Right child of 1

= element in (2*0+2) index

= element in 2 index

= 9

Similarly,

Left child of 12 (index 1)

= element in (2*1+1) index

= element in 3 index

= 5

Right child of 12

= element in (2*1+2) index

= element in 4 index

= 6

Let us also confirm that the rules hold for finding parent of any node

Parent of 9 (position 2)

= (2-1)/2

= ½

= 0.5

~ 0 index

= 1

Parent of 12 (position 1)

49

= (1-1)/2

= 0 index

= 1

Understanding this mapping of array indexes to tree positions is critical to understanding how the

Heap Data Structure works and how it is used to implement Heap Sort.

What is Heap Data Structure?

Heap is a special tree-based data structure. A binary tree is said to follow a heap data structure if

it is a complete binary tree

All nodes in the tree follow the property that they are greater than their children i.e. the largest

element is at the root and both its children and smaller than the root and so on. Such a heap is

called a max-heap. If instead, all nodes are smaller than their children, it is called a min-heap

The following example diagram shows Max-Heap and Min-Heap.

Fig.4.10.2 Max Heap and Min Heap

To learn more about it, please visit Heap Data Structure.

How to "heapify" a tree

Starting from a complete binary tree, we can modify it to become a Max-Heap by running a

function called heapify on all the non-leaf elements of the heap.

Since heapify uses recursion, it can be difficult to grasp. So let's first think about how you would

heapify a tree with just three elements.

heapify(array)

Root = array[0]

Largest = largest(array[0] , array [2*0 + 1]. array[2*0+2])

if(Root != Largest)

Swap(Root, Largest)

50

Fig.4.10.3 Heapify base cases

The example above shows two scenarios - one in which the root is the largest element and we

don't need to do anything. And another in which the root had a larger element as a child and we

needed to swap to maintain max-heap property.

If you're worked with recursive algorithms before, you've probably identified that this must be

the base case.

Now let's think of another scenario in which there is more than one level.

Fig.4.10.4 How to heapify root element when its subtrees are already max heaps

The top element isn't a max-heap but all the sub-trees are max-heaps.

To maintain the max-heap property for the entire tree, we will have to keep pushing 2

downwards until it reaches its correct position.

51

Fig.4.10.5 How to heapify root element when its subtrees are max-heaps

Thus, to maintain the max-heap property in a tree where both sub-trees are max-heaps, we need

to run heapify on the root element repeatedly until it is larger than its children or it becomes a

leaf node.

We can combine both these conditions in one heapify function as

void heapify(int arr[], int n, int i) {

// Find largest among root, left child and right child

int largest = i;

int left = 2 * i + 1;

int right = 2 * i + 2;

if (left < n && arr[left] > arr[largest])

largest = left;

if (right < n && arr[right] > arr[largest])

largest = right;

// Swap and continue heapifying if root is not largest

if (largest != i) {

swap(&arr[i], &arr[largest]);

heapify(arr, n, largest);

}

}

This function works for both the base case and for a tree of any size. We can thus move the root

element to the correct position to maintain the max-heap status for any tree size as long as the

sub-trees are max-heaps.

52

Build max-heap

To build a max-heap from any tree, we can thus start heapifying each sub-tree from the bottom

up and end up with a max-heap after the function is applied to all the elements including the root

element.

In the case of a complete tree, the first index of a non-leaf node is given by n/2 - 1. All other

nodes after that are leaf-nodes and thus don't need to be heapified.

So, we can build a maximum heap as

// Build heap (rearrange array)

for (int i = n / 2 - 1; i >= 0; i--)

heapify(arr, n, i);

Fig.4.10.6 Create array and calculate i

53

Fig.4.10.7 Steps to build max heap for heap sort

Fig.4.10.8 Steps to build max heap for heap sort

As shown in the above diagram, we start by heapifying the lowest smallest trees and gradually

move up until we reach the root element.

If you've understood everything till here, congratulations, you are on your way to mastering the

Heap sort.

How Heap Sort Works?

Since the tree satisfies Max-Heap property, then the largest item is stored at the root node.

Swap: Remove the root element and put at the end of the array (nth position) Put the last item of

the tree (heap) at the vacant place.

Remove: Reduce the size of the heap by 1.

Heapify: Heapify the root element again so that we have the highest element at root.

The process is repeated until all the items of the list are sorted.

54

Fig.4.10.9Swap, Remove, and Heapify

55

The code below shows the operation.

// Heap sort

for (int i = n - 1; i >= 0; i--) {

swap(&arr[0], &arr[i]);

// Heapify root element to get highest element at root again

heapify(arr, i, 0);

}C++

def heapify(arr, n, i):

Find largest among root and children

largest = i

l = 2 * i + 1

r = 2 * i + 2

if l < n and arr[i] < arr[l]:

largest = l

if r < n and arr[largest] < arr[r]:

largest = r

If root is not largest, swap with largest and continue heapifying

if largest != i:

arr[i], arr[largest] = arr[largest], arr[i]

heapify(arr, n, largest)

def heapSort(arr):

n = len(arr)

Build max heap

for i in range(n//2, -1, -1):

heapify(arr, n, i)

for i in range(n-1, 0, -1):

Swap

arr[i], arr[0] = arr[0], arr[i]

Heapify root element

heapify(arr, i, 0)

56

arr = [1, 12, 9, 5, 6, 10]

heapSort(arr)

n = len(arr)

print("Sorted array is")

for i in range(n):

print("%d " % arr[i], end='')

Heap Sort Complexity

Heap Sort has O(nlog n) time complexities for all the cases (best case, average case, and worst

case).

Let us understand the reason why. The height of a complete binary tree containing n elements is

log n

As we have seen earlier, to fully heapify an element whose subtrees are already max-heaps, we

need to keep comparing the element with its left and right children and pushing it downwards

until it reaches a point where both its children are smaller than it.

In the worst case scenario, we will need to move an element from the root to the leaf node

making a multiple of log(n) comparisons and swaps.

During the build_max_heap stage, we do that for n/2 elements so the worst case complexity of

the build_heap step is n/2*log n ~ nlog n.

During the sorting step, we exchange the root element with the last element and heapify the root

element. For each element, this again takes log n worst time because we might have to bring the

element all the way from the root to the leaf. Since we repeat this n times, the heap_sort step is

also nlog n.

Also since the build_max_heap and heap_sort steps are executed one after another, the

algorithmic complexity is not multiplied and it remains in the order of nlog n.

Also it performs sorting in O(1) space complexity. Compared with Quick Sort, it has a better

worst case (O(nlog n)). Quick Sort has complexity O(n^2) for worst case. But in other cases,

Quick Sort is fast. Introsort is an alternative to heapsort that combines quicksort and heapsort to

retain advantages of both: worst case speed of heapsort and average speed of quicksort.

Heap Sort Applications

Systems concerned with security and embedded systems such as Linux Kernel use Heap Sort

because of the O(n log n) upper bound on Heapsort's running time and constant O(1) upper

bound on its auxiliary storage.

Although Heap Sort has O(n log n) time complexity even for the worst case, it doesn't have more

applications (compared to other sorting algorithms like Quick Sort, Merge Sort). However, its

underlying data structure, heap, can be efficiently used if we want to extract the smallest (or

largest) from the list of items without the overhead of keeping the remaining items in the sorted

order. For e.g Priority Queues.

1

School of Computing

Department of Computer Science and Engineering

UNIT - V

 Fundamental of Data Structure – SBSA1201

2

B

A
D

C

UNIT-V

Graphs and Networks: Implementation of Graphs - Adjacency Matrix- Depth First Search-

Breath First Search. Networks: Minimum Spanning Tree - The Shortest path Algorithm.

GRAPH, HASHING & INDEXING

A graph is an abstract data structure that is used to implement the mathematical concept

of graphs. It is basically a collection of vertices (also called nodes) and edges that connect

these vertices. A graph is often viewed as a generalization of the tree structure, where

instead of having a purely parent-to- child relationship between tree nodes, any kind of

complex relationship can exist.

Graphs - Terminology and Representation

Definitions: Graph, Vertices, Edges

 Define a graph G = (V, E) by defining a pair of sets:

V = a set of vertices

E = a set of edges

 Edges:

o Each edge is defined by a pair of vertices

o An edge connects the vertices that define it

 Vertices:

o Vertices also called nodes

o Denote vertices with labels

Representation:

 Represent vertices with circles, perhaps containing a label

 Represent edges with lines between circles

Example:

 V = {A,B,C,D}

 E = {(A,B),(A,C),(A,D),(B,D),(C,D)}

Fig. 5.1.1 Many algorithms use a graph representation to represent data

or the problem to be solved

3

Examples of Graph applications:

 Cities with distances between

 Roads with distances between intersection points
 Course prerequisites

 Network and shortest routes

 Social networks

 Electric circuits, projects planning and many more...

Graph Classifications

 There are several common kinds of graphs

 Weighted or unweighted

 Directed or undirected
 Cyclic or acyclic

 Multigraphs

Kinds of Graphs: Weighted and Unweighted

 Graphs can be classified by whether or not their edges have weights

 Weighted graph: edges have a weight

Weight typically shows cost of traversing

Example: weights are distances between cities

 Unweighted graph: edges have no weight of Edges simply show connections

Example: course prerequisites

Kinds of Graphs: Directed and Undirected

Graphs can be classified by whether or their edges are have direction

o Undirected Graphs: each edge can be traversed in either direction

o Directed Graphs: each edge can be traversed only in a specified direction

Undirected Graphs

 Undirected Graph: no implied direction on edge between nodes

 The example from above is an undirected graph

Fig.5.1.2 .In diagrams, edges have no direction (ie there are no arrows)

Can traverse edges in either directions

B

A
D

C

4

In an undirected graph, an edge is an unordered pair

o Actually, an edge is a set of 2 nodes, but for simplicity we write it with

parenthesis

For example, we write (A, B) instead of {A, B}

Thus, (A,B) = (B,A), etc

If (A,B) ∈ E then (B,A) ∈ E

Directed Graphs

Digraph: A graph whose edges are directed (ie have a direction)

 Edge drawn as arrow

 Edge can only be traversed in direction of arrow

 Example: E = {(A,B), (A,C), (A,D), (B,C), (D,C)}

Fig.5.1.3 In a digraph, an edge is an ordered pair

o Thus: (u,v) and (v,u) are not the same edge

o In the example, (D,C) ∈ E, (C,D) ∉ E

Degree of a Node

 The degree of a node is the number of edges incident on it.

 In the example above:

 Degree 2: B and C
 Degree 3: A and D

 A and D have odd degree, and B and C have even degree

 Can also define in-degree and out-degree

 In-degree: Number of edges pointing to a node
 Out-degree: Number of edges pointing from a node

Graphs: Terminology Involving Paths

 Path: sequence of vertices in which each pair of successive vertices is

connected by an edge

 Cycle: a path that starts and ends on the same vertex

 Simple path: a path that does not cross itself

 That is, no vertex is repeated (except first and last)

 Simple paths cannot contain cycles

5

 Length of a path: Number of edges in the path

 Examples

Cyclic and Acyclic Graphs

□ ACyclic graph contains cycles

o Example: roads (normally)

□ An acyclic graph contains no cycles

o Example: Course prerequisites

Multigraph: A graph with self loops and parallel edges is called a multigraph.

Fig.5.1.4 Connected and Unconnected Graphs and Connected Components

□ An undirected graph is connected if every pair of vertices has a path between it

o Otherwise it is unconnected

o A directed graph is strongly connected if every pair of vertices has a

path between them, in both directions

Data Structures for Representing Graphs

Two common data structures for representing graphs:

o Adjacency lists

o Adjacency matrix

 Adjacency List Representation

An adjacency list is a way in which graphs can be represented in the computer’s

memory. This structure consists of a list of all nodes in G. Furthermore, every node is in

turn linked to its own list that contains the names of all other nodes that are adjacent to it.

The key advantages of using an adjacency list are:

o It is easy to follow and clearly shows the adjacent nodes of a particular node.

o It is often used for storing graphs that have a small-to-moderate number of edges.

That is, an adjacency list is preferred for representing sparse graphs in the

computer’s memory; otherwise, an adjacency matrix is a good choice.

o Adding new nodes in G is easy and straightforward when G is represented using an

6

B A D

adjacenc y list. Adding new nodes in an adjacency matrix is a difficult task, as

to be

Fig.5.2.1 Adjaceny List Representation

Adjacency Matrix Representation

An adjacency matrix is used to represent which nodes are adjacent to one another. By

definition, two nodes are said to be adjacent if there is an edge connecting them. In

a directed graph G, if node v is adjacent to node u, then there is definitely an edge

from u to v. That is, if v is adjacent to u, we can get from u to v by traversing one

edge. For any graph G having n nodes, the adjacency matrix will have the

dimension of n * n. In an adjacency matrix, the rows and columns are labelled by

graph vertices. An entry aij in the adjacency matrix will contain 1, if vertices vi and

vj are adjacent to each other. However, if the nodes are not adjacent, aij will be set to

zero. It. Since an adjacency matrix contains only 0s and 1s, it is called a bit matrix or

a Boolean matrix. The entries in the matrix depend on the ordering of the nodes in

G. Therefore, a change in the order of nodes will result in a different adjacency

matrix.

Aij = 1 if there is an edge from Vi to Vj

0 otherwise

Adjacency Matrix: 2D array containing weights on edges

o Row for each vertex

o Column for each vertex

o Entries contain weight of edge from row vertex to column vertex

o Entries contain ∞ if no edge from row vertex to column vertex

o Entries contain 0 on diagonal (if self edges not allowed)

Example undirected graph (assume self-edges not allowed):

D A B C

C A D

the size of the matrix needs to be changed and existing nodes may have

reordered. Each node has a list of

adjacent

nodes.

A B C D

7

A

C

Fig.5.2.2 Undirected graph

Example directed graph (assume self-edges allowed):

Fig.5.2.3 Directed Graph

Disadv:Adjacency matrix representation is easy to represent and feasible as long as

the graph is small and connected. For a large graph ,whose matrix is sparse, adjacency

matrix representation wastes a lot of memory. Hence list representation is preferred

over matrix representation.

Graph traversal algorithms

Traversing a graph, is the method of examining the nodes and edges of the graph.

There are two standard methods of graph traversal. These two methods are:

1. Breadth-first search 2. Depth-first search

While breadth-first search uses a queue as an auxiliary data structure to store nodes for

further processing, the depth-first search scheme uses a stack.

Breadth-first search algorithm

Breadth-first search (BFS) is a graph search algorithm that begins at the root node

and explores all the neighbouring nodes. Then for each of those nearest nodes, the

algorithm explores their unexplored neighbour nodes, and so on, until it finds the

goal. That is, we start examining the node A and then all the neighbours of A

are examined. In the next step, we examine the neighbours of neighbours of A,

so on and so forth. This means that we need to track the neighbours of the node

and guarantee that every node in the graph is processed and no node is processed more

B

D

A

B

C

D
 A 0 1 1 1
 B 1 0 ∞ 1
 C 1 ∞ 0 1
 D 1 1 1 0

8

than once. This is accomplished by using a queue that will hold the nodes that are

waiting for further processing.

Algorithm for BFS traversal

Step 1: Define a Queue of size total number of vertices in the graph.

Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert

it into the Queue.

Step 3: Visit all the adjacent vertices of the vertex which is at front of the Queue

which is not visited and insert them into the Queue.

Step 4: When there is no new vertex to be visit from the vertex at front of the Queue

then delete that vertex from the Queue.

Step 5: Repeat step 3 and 4 until queue becomes empty.

Step 6: When queue becomes Empty, then the enqueue or dequeue order gives the BFS

traversal order.

9

Fig.5.3.1 Example for BFS

10

Depth-first Search Algorithm

Depth-first search begins at a starting node A which becomes the current node. Then, it

examines each node N along a path P which begins at A. That is, we process a neighbour

of A, then a neighbour of neighbour of A, and so on.

During the execution of the algorithm, if we reach a path that has a node N that has

already been processed, then we backtrack to the current node. Otherwise, the unvisited

(unprocessed) node becomes the current node. The algorithm proceeds like this until

we reach a dead-end (end of path P). On reaching the deadend, we backtrack to find

another path P. The algorithm terminates when backtracking leads back to the starting

node A.

In this algorithm, edges that lead to a new vertex are called discovery edges and edges that

lead to an already visited vertex are called back edges. Observe that this algorithm is

similar to the in- order traversal of a binary tree. Its implementation is similar to that

of the breadth-first search algorithm but here we use a stack instead of a queue.

We use the following steps to implement DFS traversal...

Step 1: Define a Stack of size total number of vertices in the graph.

Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it

on to the Stack.

Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack which

is not visited and push it on to the stack.

Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the

stack. Step 5: When there is no new vertex to be visit then use back tracking and pop

one vertex from

the stack.

Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty.

Step 7: When stack becomes Empty, then produce final spanning tree by removing

unused edges from the graph

11

Fig.5.3.2 Example for DFS

12

Applications OF graphs

 Graphs are constructed for various types of applications such as:

 In circuit networks where points of connection are drawn as vertices and component

wires become the edges of the graph.

 In transport networks where stations are drawn as vertices and routes become the edges

of the graph.

 In maps that draw cities/states/regions as vertices and adjacency relations as edges.

 In program flow analysis where procedures or modules are treated as vertices and

calls to these procedures are drawn as edges of the graph.

 Once we have a graph of a particular concept, they can be easily used for finding

shortest paths, project planning, etc.

 In flowcharts or control-flow graphs, the statements and conditions in a
program are

o represented as nodes and the flow of control is represented by the edges.

 In state transition diagrams, the nodes are used to represent states and the edges

represent legal moves from one state to the other.

 Graphs are also used to draw activity network diagrams. These diagrams are

extensively used as a project management tool to represent the interdependent

relationships between groups, steps, and tasks that have a significant impact on the

project.

 Hashing

Why

Hashing?

Internet has grown to millions of users generating terabytes of content every day.

According to internet data tracking services, the amount of content on the internet doubles

every six months. With this kind of growth, it is impossible to find anything in the internet,

unless we develop new data structures and algorithms for storing and accessing data. So

what is wrong with traditional data structures like Arrays and Linked Lists? Suppose we

have a very large data set stored in an array. The amount of time required to look up an

element in the array is either O(log n) or O(n) based on whether the array is sorted or not.

If the array is sorted then a technique such as binary search can be used to search the array.

Otherwise, the array must be searched linearly. Either case may not be desirable if we

need to process a very large data set. Therefore we discuss a new technique called hashing

that allows us to update and retrieve any entry in constant time O(1). The constant time or

O(1) performance means, the amount of time to perform the operation does not depend on

data size n.

The Map Data Structure(Hash Map)(Hash function)

13

In a mathematical sense, a map is a relation between two sets. We can define Map M as a set

of pairs, where each pair is of the form (key, value), where for given a key, we can find a

value using some kind of a “function” that maps keys to values. The key for a given object

can be calculated using a function called a hash function. In its simplest form, we can think

of an array as a Map where key is the index and value is the value at that index. For

example, given an array A, if i is the key, then we can find the value by simply looking up

A[i]. The idea of a hash table is more generalized and can be described as follows.

The concept of a hash table is a generalized idea of an array where key does not have

to be an integer. We can have a name as a key, or for that matter any object as the key. The

trick is to find a hash function to compute an index so that an object can be stored at a

specific location in a table such that it can easily be found.

STATIC HASHING

Fig.5.4.1 This kind of hashing is called static hashing since the size of the hash table is fixed.(an

array)

Example:

Suppose we have a set of strings {“abc”, “def”, “ghi”} that we’d like to store in a table. Our

objective here is to find or update them quickly from a table, actually in O(1). We are

not concerned about ordering them or maintaining any order at all. Let us think of a simple

schema to do this. Suppose we assign “a” = 1, “b”=2, … etc to all alphabetical characters.

We can then simply compute a number for each of the strings by using the sum of the

characters as follows.

“abc” = 1 + 2 + 3=6, “def” = 4 + 5 + 6=15 , “ghi” = 7 + 8 + 9=24

If we assume that we have a table of size 5 to store these strings, we can compute the

location of the string by taking the sum mod 5. So we will then store “ abc” in 6 mod 5 =

1, “def” in 15 mod 5 = 0,

and “ghi” in 24 mod 5 = 4 in locations 1, 0 and 4 as
follows.

14

Now the idea is that if we are given a string, we can immediately compute the location using

a simple hash function, which is sum of the characters mod Table size. Using this hash

value, we can search for the string.

Problem with Hashing -collision

The method discussed above seems too good to be true as we begin to think more about the

hash function. First of all, the hash function we used, that is the sum of the letters, is a bad

one. In case we have permutations of the same letters, “abc”, “bac” etc in the set, we will

end up with the same value for the sum and hence the key. In this case, the strings would

hash into the same location, creating what we call a “collision”. This is obviously not a

good thing. Secondly, we need to find a good table size, preferably a prime number so that

even if the sums are different, then collisions can be avoided, when we take mod of the sum

to find the location. So we ask two questions.

Question 1: How do we pick a good hash function?

Question 2: How do we deal with collisions?

The problem of storing and retrieving data in O(1) time comes down to answering the

above questions. Picking a “good” hash function is key to successfully implementing a hash

table. What we mean by “good” is that the function must be easy to compute and avoid

collisions as much as possible. If the function is hard to compute, then we lose the

advantage gained for lookups in O(1). Even if we pick a very good hash function, we still

will have to deal with “some” collisions.

The process where two records can hash into the same location is called collision. We can deal

with collisions using many strategies, such as linear probing (looking for the next available

location i+1, i+2, etc. from the hashed value i), quadratic probing (same as linear probing,

except we look for available positions i+1 , i + 4, i + 9, etc from the hashed value i and

separate chaining, the process of creating a linked list of values if they hashed into the same

location.This is called collision resolution.

Popular hash functions

Hash functions that use numeric keys are very popular.. However, there can be cases in real-

world applications where we can have alphanumeric keys rather than simple numeric keys.

In such cases, the ASCII value of the character can be used to transform it into its

equivalent numeric key. Once this transformation is done, any hash function can be applied

to generate the hash value.

Division Method

It is the most simple method of hashing an integer x. This method divides x by M and then

15

uses the remainder obtained. In this case, the hash function can be given as

h(x) = x mod M

The division method is quite good for just about any value of M and since it requires only a

single division operation, the method works very fast. However, extra care should be

taken to select a suitable value for M. Generally, it is best to choose M to be a prime

number because making M a prime number increases the likelihood that the keys are

mapped with a uniformity in the output range of values.

A potential drawback of the division method is that while using this method, consecutive keys

map to consecutive hash values. On one hand, this is good as it ensures that consecutive keys

do not collide, but on the other, it also means that consecutive array locations will be

occupied. This may lead to degradation in performance.

Example :

Calculate the hash values of keys 1234 and 5462. Solution Setting M = 97, hash values

can be calculated as:

h(1234) = 1234 % 97 = 70

h(5642) = 5642 % 97 = 16

Mid-Square Method

The mid-square method is a good hash function which works in two steps:

Step 1: Square the value of the key. That is, find k2.

Step 2: Extract the middle r digits of the result obtained in

Step 1.

The algorithm works well because most or all digits of the key value contribute to the result.

This is because all the digits in the original key value contribute to produce the middle digits

of the squared value. Therefore, the result is not dominated by the distribution of the bottom

digit or the top digit of the original key value. In the mid-square method, the same r digits

must be chosen from all the keys. Therefore, the hash function can be given as:

h(k) = s where s is obtained by selecting r digits

from k2.

Example Calculate the hash value for keys 1234 and 5642 using the mid-square method.

The hash table has 100 memory locations. Solution Note that the hash table has 100 memory

locations whose indices vary from 0 to 99.

This means that only two digits are needed to map the key to a location in the hash table,

16

so r = 2. When k = 1234, k2 = 1522756, h (1234) = 27

When k = 5642, k2 = 31832164, h (5642)

= 21

Observe that the 3rd and 4th digits starting from the right are

chosen.

Folding Method

The folding method works in the following two steps:

Step 1: Divide the key value into a number of parts. That is, divide k into parts k1, k2, ...,

kn, where each part has the same number of digits except the last part which may have

lesser digits than the other parts.

Step 2: Add the individual parts. That is, obtain the sum of k1 + k2 + ... + kn. The hash

value is produced by ignoring the last carry, if any. Note that the number of digits in each

part of the key will vary depending upon the size of the hash table. .

Example Given a hash table of 100 locations, calculate the hash value using folding method

for keys

5678, 321, and 34567. Solution Since there are 100 memory locations to address, we will

break the key into parts where each part (except the last) will contain two digits. The

hash values can be obtained as shown below:

key 5678 321 34567

Parts 56 and 78 32 and 1 34, 56 and 7

Sum 134 33 97

Hash value 34 (ignore the last carry) 33 97

Collision Resolution Strategies

1. Open Addressing/Closed Hashing

2. Chaining

Once a collision takes place, open addressing or closed hashing computes new positions

using a probe sequence and the next record is stored in that position

The process of examining memory locations in the hash table is called probing. Open

addressing technique can be implemented using linear probing, quadratic probing, double

hashing.

Linear Probing

When using a linear probe to resolve collision, the item will be stored in the next available

17

slot in the table, assuming that the table is not already full.

This is implemented via a linear search for an empty slot, from the point of collision. If the

physical end of table is reached during the linear search, the search will wrap around to the

beginning of the table and continue from there.If an empty slot is not found before reaching

the point of collision, the table is full.

If h is the point of collision, probe through h+1,h+2,h+3..................h+i. till an empty slot

is found

Fig.5.4.2 Searching a Value using Linear Probing

The procedure for searching a value in a hash table is same as for storing a value in a

hash table. While searching for a value in a hash table, the array index is re-computed and the

key of the elementstored at that location is compared with the value that has to be searched. If

a match is found, then the search operation is successful. The search time in this case is

given as O(1). If the key does not match, then the search function begins a sequential

search of the array that continues until:

□ the value is found,or

□ the search function encounters a vacant location in the array, indicating that the

value is not present, or

□ the search function terminates because it reaches the end of the table and the value

is not present.

Probe Sequence ::(h+i)%Table

size

Disadvantage:

18

As the hash table fills, clusters of consecutive cells are formed and the time required for a

search increases with the size of the cluster. It is possible for blocks of data to form when

collisions are resolved. This means that any key that hashes into the cluster will require

several attempts to resolve the collision. More the number of collisions, higher the probes that

are required to find a free location and lesser is the performance. This phenomenon is

called clustering. To avoid clustering, other techniques such as quadratic probing and

double hashing are used.

Quadratic Probing

A variation of the linear probing idea is called quadratic probing. Instead of using a constant

“skip” value, if the first hash value that has resulted in collision is h, the successive values

which are probed are h+1, h+4, h+9, h+16, and so on. In other words, quadratic probing uses

a skip consisting of successive perfect squares.

Fig.5.4.3 Quadratic Probing

19

Probe sequence

:h,h+12,h=22,h=32 h+i2

H(k)=(h+i2)%Tablesize

Double Hashing

In double hashing, we use two hash functions rather than a single function. Double hashing

uses the idea of applying a second hash function to the key when a collision occurs. The

result of the second hash function will be the number of positions form the point of collision

to insert.There are a couple of requirements for the second function:

o it must never evaluate to 0

o must make sure that all cells can be probed

A popular second hash function is: Hash2(key) = R - (key % R) where R is a prime number

that is smaller than the size of the table.But any independent hash function may also be used.

Fig.5.4.4 Double hashing minimizes repeated collisions and the

effects of clustering.

Chaining

Chaining is another approach to implementing a hash table; instead of storing the data directly

inside the structure, have a linked list structure at each hash element. That way, all the

collision, retrieval and deletion functions can be handled by the list, and the hash function's

20

role is limited mainly to that of a guide to the algorithms, as to which hash element's list to

operate on.

The linked list at each hash element is often called a chain. A chaining hash table gets its

name because of the linked list at each element -- each list looks like a 'chain' of data strung

together.Operations on the data structure are made far simpler, as all of the data storage

issues are handled by the list at the hash element, and not the hash table structure itself.

Drawbacks of static hashing

1. Table size is fixed and hence cannot accommodate data growth.

2. Collsions increases as data size grows.

Avoid the above conditions by doubling the hash table size. This increase in hash table size is

taken up, when the number of collisions increase beyond a certain threshold. The threshold

limit is decided by the load factor.

Load factor

The load factor α of a hash table with n key elements is given by α= n / hash

table size

The probability of a collision increases as the load factor increases. We cannot just double the

size of the table and copy the elements from the original table to the new table, since when the

table size is doubled from N to 2N+1, the hash function changes. It requires reinserting each

element of the old table into the new table (using the modified hash function).This is called

Rehashing. Rehashing in large databases is a tedious process and hence dynamic hashing.

Dynamic hashing schemes

21

Dynamically increases the size of the hash table as collision occurs. There are two

types:

Extendible hashing (directory): uses a directory that grows or shrinks depending on the

data distribution. No overflow buckets

Linear hashing(directory less): No directory. Splits buckets in linear order, uses overflow

buckets.

Extendible hashing :

o Uses a directory of pointers to buckets/bins which are collections of records

o The number of buckets are doubled by doubling the directory, and splitting just

the bin that overflowed.

o Directory much smaller than file, so doubling it is much cheaper. Only one bin

of data entries is split and rehashed.

Fig.5.4.5 Extendible Hashing

Global Depth

– Max number of bits needed to tell which bucket an entry

belongs to. Local Depth

- The number of least significant digits that is common for all the numbers sharing the

same bin. On overflow:

If global depth =Local depth

1. Double the hash directory

2. Split the overflowing bin

3. Redistribute elements of the overflowing bin

4. Increment the global and local depth

If global depth >Local depth

22

1. Split the overflowing bin

2. Redistribute elements of the overflowing bin

3. Increment the local depth

Linear Hashing

Basic Idea:

□ Pages are split when overflows occur – but not necessarily the page with the

overflow.

□ Directory avoided in LH by using overflow pages. (chaining approach)

□ Splitting occurs in turn, in a round robin fashion.one by one from the first bucket

to the last bucket.

□ Use a family of hash functions h0, h1, h2, ...

– Each function’s range is twice that of its predecessor.

□ When all the pages at one level (the current hash function) have been split, a new

level is applied.

□ Insert in Order using linear hashing: 1,7,3,8,12,4,11,2,10,13.....

After insertion till

12:

When 4 inserted overflow occurred. So we split the bucket (no matter it is full or partially

empty). And increment pointer.

So we split bucket 0 and rehashed all keys in it. Placed 3 to new bucket as (3 mod 6 = 3)

and (12 mod 6 = 0). Then 11 and 2 are inserted. And now overflow. s is pointing to bucket

1, hence split bucket 1 by re- hashing it.

After split:

23

Insertion of 10 and 13: as (10 mod 3 = 1) and bucket 1 < s, we need to hash 10 again using

h1(10) =

10 mod 6 = 4th

bucket.

 INDEXING

The indexing technique based on factors such as access type, access time, insertion

time, deletion time, and space overhead involved. There are two kinds of indices:

 Ordered indices that are sorted based on one or more key values

 Hash indices that are based on the values generated by applying a hash function

1. Ordered Indices

Indices are used to provide fast random access to records. An index of a file may be a primary

index or a secondary index.

Primary Index

In a sequentially ordered file, the index whose search key specifies the sequential order of the

file is defined as the primary index.

Example: suppose records of students are stored in a STUDENT file in a sequential order

starting from roll number 1 to roll number 60. Now, if we want to search a record for, say, roll

number 10, then the student’s roll number is the primary index.

Secondary Index

24

An index whose search key specifies an order different from the sequential order of the file is

called as the secondary index.

Example: If the record of a student is searched by his name, then the name is a secondary

index. Secondary indices are used to improve the performance of queries on non-primary

keys.

2. Dense and Sparse Indices

Dense index

 In adense index, the index table stores the address of every record in the file.

 Dense index would be more efficient to use than a sparse index if it fits in the memory

 By looking at the dense index, it can be concluded directly whether the record exists in
the file or not.

Sparse index

 In asparse index, the index table stores the address of only some of the records in the

file.

 Sparse indices are easy to fit in the main memory,

 In a sparse index, to locate a record, first find an entry in the index table with the
largest search key value that is either less than or equal to the search key value of the
desired record. Then, start at that record pointed to by that entry in the index
table and then proceed searching the record using the sequential pointers in the
file, until the desired record is obtained.

Example: If we need to access record number 40, then record number 30 is the largest key

value that is less than 40. So jump to the record pointed by record number 30 and move along

the sequential pointer to reach record number 40.

Below figure shows a dense index and a sparse index for an indexed sequential file.

Fig.5.5.1 Dense index and sparse index

25

3. Cylinder Surface Indexing

Cylinder surface indexing is a very simple technique used only for the primary key index of a

sequentially ordered file.

The index file will contain two fields—cylinder index and several surface indices. There are

multiple cylinders, and each cylinder has multiple surfaces. If the file needs m cylinders for

storage then the cylinder index will contain m entries.

Fig.5.5.2 Physical and logical organization of disk

When a record with a particular key value has to be searched, then the following steps are

performed:

 First the cylinder index of the file is read into memory.

 Second, the cylinder index is searched to determine which cylinder holds the

desired record. For this, either the binary search technique can be used or the

cylinder index can be made to store an array of pointers to the starting of

individual key values. In either case the search will takeO (log m) time. After

 the cylinder index is searched, appropriate cylinder is determined.

 Depending on the cylinder, the surface index corresponding to the cylinder is then
retrieved from the disk

 Once the cylinder and the surface are determined, the corresponding track is read and

searched for the record with the desired key.

Hence, the total number of disk accesses is three—first, for accessing the cylinder index,

second for accessing the surface index, and third for getting the track address.

26

4. Multi-level Indices

Consider very large files that may contain millions of records. For such files, a simple

indexing technique will not suffice. In such a situation, we use multi-level indices.

Below figure shows a two-level multi-indexing. Three-level indexing and so, can also be used

In the figure, the main index table stores pointers to three inner index tables. The inner index

tables are sparse index tables that in turn store pointers to the records.

Fig.5.5.3 Multi-level indices

5. Inverted Indices

 Inverted files are used in document retrieval systems for large textual databases.

 An inverted file reorganizes the structure of an existing data file in order to provide

fast access to all records having one field falling within the set limits.

 When a term or keyword specified in the inverted file is identified, the record number

is given and a set of records corresponding to the search criteria are created.

 For each keyword, an inverted file contains an inverted list that stores a list of pointers

to all occurrences of that term in the main text. Therefore, given a keyword, the

addresses of all the documents containing that keyword can easily be located.

There are two main variants of inverted indices:

 A record-level inverted index (inverted file index or inverted file) stores a list of
references to documents for each word

 A word-level inverted index (full inverted index or inverted list) in addition to a list of

references to documents for each word also contains the positions of each word within a

document.

7. Hashed Indices

Hashing is used to compute the address of a record by using a hash function on the search key value.

The hashed values map to the same address, then collision occurs and schemes to resolve these

collisions are applied to generate a new address

Choosing a good hash function is critical to the success of this technique. By a good hash function, it

mean two things.

1. First, a good hash function, irrespective of the number of search keys, gives an average-case

lookup that is a small constant.

2. Second, the function distributes records uniformly and randomly among the buckets, where a bucket is

defined as a unit of one or more records

The worst hash function is one that maps all the keys to the same bucket.

The drawback of using hashed indices includes:

□ Though the number of buckets is fixed, the number of files may grow with time.

□ If the number of buckets is too large, storage space is wasted.

□ If the number of buckets is too small, there may be too many collisions.

The following operations are performed in a hashed file organization.

1. Insertion

To insert a record that has ki as its search value, use the hash function h(ki) to compute the address

of the bucket for that record.

If the bucket is free, store the record else use chaining to store the record.

2. Search

To search a record having the key value ki, use h(ki) to compute the address of the bucket where

the record is stored.

The bucket may contain one or several records, so check for every record in the bucket to retrieve the
desired record with the given key value.

3. Deletion

To delete a record with key value ki, use h(ki) to compute the address of the bucket where the

record is stored. The bucket may contain one or several records so check for every record in the

bucket, and then delete the record.

27

	School of Computing
	UNIT - I
	UNIT-1
	1. INDRODUCTION
	ABSTRACT DATA TYPE

	THE LIST ADT
	Various operations performed on List
	Implementation of List ADT
	Array Implementation of List
	Linked List Implementation
	Types of Linked List
	Singly Linked List
	DECLARATION FOR LINKED LIST
	ROUTINE TO INSERT AN ELEMENT IN THE LIST
	INSERT (25, P, L)
	ROUTINE TO CHECK WHETHER THE CURRENT POSITION IS LAST
	FIND ROUTINE
	FIND PREVIOUS ROUTINE
	FINDNEXT ROUTINE
	ROUTINE TO DELETE AN ELEMENT FROM THE LIST
	ROUTINE TO DELETE THE LIST
	Doubly Linked List
	STRUCTURE DECLARATION : -
	ROUTINE TO INSERT AN ELEMENT IN A DOUBLY LINKED LIST
	ROUTINE TO DELETE AN ELEMENT
	Advantage
	Disadvantage
	Circular Linked List
	Singly Linked Circular List
	Doubly Linked Circular List
	Advantages of Circular Linked List
	Applications of Linked List

	THE STACK ADT
	1.2.1 Stack Model :
	2.2.2 Operations On Stack
	PUSH :
	POP :
	EXCEPTIONAL CONDITIONS
	UnderFlow
	1.2.3 Implementation of Stack
	Array Implementation
	ROUTINE TO PUSH AN ELEMENT ONTO A STACK
	ROUTINE TO POP AN ELEMENT FROM THE STACK
	ROUTINE TO RETURN TOP ELEMENT OF THE STACK

	LINKED LIST IMPLEMENTATION OF STACK
	DECLARATION FOR LINKED LIST IMPLEMENTATION
	ROUTINE TO CHECK WHETHER THE STACK IS EMPTY
	ROUTINE TO CREATE AN EMPTY STACK
	ROUTINE TO PUSH AN ELEMENT ONTO A STACK
	ROUTINE TO RETURN TOP ELEMENT IN A STACK
	ROUTINE TO POP FROM A STACK

	The Queue ADT
	1.4.1 Queue Model
	2.3.2 Operations on Queue
	Enqueue :
	Dequeue :
	Exception Conditions
	Implementation of Queue
	Array Implementation
	ROUTINE TO ENQUEUE
	ROUTINE FOR DEQUEUE
	Queue ADT
	ROUTINE TO CHECK WHETHER THE QUEUE IS EMPTY
	ROUTINE TO CHECK AN EMPTY QUEUE
	ROUTINE TO ENQUEUE AN ELEMENT IN QUEUE
	ROUTINE TO DEQUEUE AN ELEMENT FROM THE QUEUE
	Double Ended Queue (DEQUE)
	Circular Queue
	Advantages
	ROUTINE TO INSERT AN ELEMENT IN CIRCULAR QUEUE
	ROUTINE TO DELETE AN ELEMENT FROM CIRCULAR QUEUE

	Priority Queues
	1.5.1 Applications of Queue

	School of Computing (1)
	UNIT - II
	UNIT-II
	APPLICATIONS OF STACK
	Different Types of Notations To Represent Arithmetic Expression
	INFIX
	POSTFIX
	PREFIX
	INFIX PREFIX (or) POLISH POSTFIX (or) REVERSE POLISH

	2.2. Evaluating Arithmetic Expression
	Infix to Postfix Conversion

	Evaluating Postfix Expression
	Recursive Solution
	Evaluation of Postfix Expressions Using Stack [with C program]
	Evaluation rule of a Postfix Expression states:
	Let's see an example to better understand the algorithm: Expression: 456*+
	Result: 34
	Example
	return;
	else {
	else { (1)
	break;
	break; (1)
	Output
	Second Run:

	Infix to Postfix Conversion
	Input
	Example
	Output
	Example (1)
	Examples
	Example 1
	Example 2

	RECURSIVE ROUTINE FOR TOWERS OF HANOI
	Fig.2.5.1 Tower of Hanoi
	Rules
	Fig.2.5.2 Tower of Hanoi with 3 Disks
	Algorithm
	Fig.2.5.3 Tower of Hanoi with 2 Disks
	Example:
	Function Calls
	RECURSIVE FUNCTION TO FIND FACTORIAL : -

	School of Computing (2)
	UNIT - III
	3. TREES
	PRELIMINARIES:
	The ADT tree

	BINARY TREE
	Definition :-
	BINARY TREE NODE DECLARATIONS
	COMPARISON BETWEEN GENERAL TREE & BINARY TREE
	FULL BINARY TREE :-
	COMPLETE BINARY TREE :
	REPRESENTATION OF A BINARY TREE
	Linear Representation
	Linked Representation
	EXPRESSION TREE
	Constructing an Expression Tree

	The Search Tree ADT : - Binary Search Tree
	Definition : -
	Comparision Between Binary Tree & Binary Search Tree Binary Tree Binary Search Tree
	DECLARATION ROUTINE FOR BINARY SEARCH TREE
	Make Empty :-
	ROUTINE TO MAKE AN EMPTY TREE :-
	Insert : -
	ROUTINE TO INSERT INTO A BINARY SEARCH TREE
	Find : -
	ROUTINE FOR FIND OPERATION
	Find Min :
	RECURISVE ROUTINE FOR FINDMIN
	NON - RECURSIVE ROUTINE FOR FINDMIN
	FindMax
	RECURSIVE ROUTINE FOR FINDMAX
	NON - RECURSIVE ROUTINE FOR FINDMAX
	Delete :
	CASE 1 Node with no children (Leaf node)
	CASE 2 : - Node with one child
	To Delete 5
	Case 3 : Node with two children
	DELETION ROUTINE FOR BINARY SEARCH TREES

	Tree Representation
	Fig.3.4.1 Tree Representation with Levels
	Binary Search Tree Representation
	Fig.3.4.2 Binary search Tree
	Tree Node
	BST Basic Operations
	Insert Operation
	Algorithm
	Search Operation
	Algorithm (1)

	TREE TRAVERSAL:
	In-order Traversal
	Fig.3.5.1 Inorder Tree
	Algorithm
	Pre-order Traversal
	Fig.3.5.2 Pre-order Tree
	Algorithm (1)
	Post-order Traversal
	Fig.3.5.3 Post-order Tree
	Algorithm (2)

	BINARY HEAP
	Structure Property
	Heap Order Property
	Declaration for priority queue
	Initialization
	BASIC HEAP OPERATIONS
	Insert Operation
	Routine To Insert Into A Binary Heap
	DeleteMin
	ROUTINE TO PERFORM DELETEMIN IN A BINARY HEAP
	OTHER HEAP OPERATIONS
	DECREASE KEY
	Increase - Key

	HASHING:
	Hash Table
	Hashing Function
	ROUTINE FOR SIMPLE HASH FUNCTION
	}
	Collisions
	Collision Resolution
	Seperate Chaining
	Insertion
	ROUTINE TO PERFORM INSERTION
	FIND ROUTINE
	Advantage
	Disadvantage of Seperate Chaining
	OPEN ADDRESSING
	LINEAR PROBING
	Advantage :
	Disadvantage

	School of Computing (3)
	UNIT - IV
	SEARCHING AND SORTING
	LINEAR SEARCH
	The time complexity of linear search is O(n). Algorithm:
	Example 1:
	Example 2:
	Searching different elements is as follows:
	A Recursive program for linear search:

	BINARY SEARCH
	Algorithm:
	Example 1:
	Time Complexity:

	BUBBLE SORT
	Program for Bubble Sort:
	Time Complexity:

	SELECTION SORT
	Example:
	Non-recursive Program for selection sort:

	INSERTION SORT
	Algori t h m :
	Exa m p l e:
	Progr a m :

	QUICK SORT
	Time complexity:
	Example:
	Program for Quick Sort (Recursive version):

	MERGE SORT
	Algori t h m :
	Exa m p l e:
	Progr a m :

	SHELL SORT
	HEAP SORT ALGORITHM
	Fig.4.10.1 Relationship between array and heap indices
	Fig.4.10.2 Max Heap and Min Heap
	Fig.4.10.3 Heapify base cases
	Fig.4.10.4 How to heapify root element when its subtrees are already max heaps
	Fig.4.10.5 How to heapify root element when its subtrees are max-heaps
	Build max-heap
	Fig.4.10.6 Create array and calculate i
	Fig.4.10.8 Steps to build max heap for heap sort
	How Heap Sort Works?
	Fig.4.10.9Swap, Remove, and Heapify
	Heap Sort Complexity

	School of Computing (4)
	UNIT - V
	UNIT-V
	GRAPH, HASHING & INDEXING
	Graphs - Terminology and Representation
	Definitions: Graph, Vertices, Edges
	Representation:
	Example:
	Fig. 5.1.1 Many algorithms use a graph representation to represent data or the problem to be solved
	Graph Classifications
	Kinds of Graphs: Weighted and Unweighted
	Kinds of Graphs: Directed and Undirected
	Undirected Graphs
	Fig.5.1.2 .In diagrams, edges have no direction (ie there are no arrows) Can traverse edges in either directions
	Directed Graphs
	Fig.5.1.3 In a digraph, an edge is an ordered pair
	Degree of a Node
	Graphs: Terminology Involving Paths
	Cyclic and Acyclic Graphs
	Multigraph: A graph with self loops and parallel edges is called a multigraph.
	Data Structures for Representing Graphs

	Adjacency List Representation
	Fig.5.2.1 Adjaceny List Representation
	Aij = 1 if there is an edge from Vi to Vj 0 otherwise
	Fig.5.2.2 Undirected graph
	Fig.5.2.3 Directed Graph

	Graph traversal algorithms
	1. Breadth-first search 2. Depth-first search
	Breadth-first search algorithm
	Algorithm for BFS traversal
	Fig.5.3.1 Example for BFS
	We use the following steps to implement DFS traversal...
	Fig.5.3.2 Example for DFS

	Hashing
	Division Method
	Mid-Square Method
	Folding Method
	Collision Resolution Strategies
	Linear Probing
	Fig.5.4.2 Searching a Value using Linear Probing
	Disadvantage:
	Quadratic Probing
	Fig.5.4.3 Quadratic Probing
	Double Hashing
	Fig.5.4.4 Double hashing minimizes repeated collisions and the effects of clustering.
	Drawbacks of static hashing
	Load factor
	Dynamic hashing schemes
	Extendible hashing :
	Fig.5.4.5 Extendible Hashing
	Linear Hashing Basic Idea:
	Fig.5.5.1 Dense index and sparse index
	Fig.5.5.3 Multi-level indices

