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UNIT - I 

Digital Computer Fundamentals-SBSA1101 
 



 

1.1 NUMBER SYSTEM 

A number system relates quantities and symbols. In digital system how information is 

represented is key and there are different radices, i.e. number bases, which a numbering 

system can use. 

The memory unit stores programs as well as input, output and intermediate data. The 

processor unit performs arithmetic and other data processing tasks as specified by the 

program. The control unit supervises the flow of information between various units. The 

program and data prepared by the user are transferred into the memory unit by means of an 

input device such as punch card reader (or) tele typewriter. An output device, such as printer, 

receives the result of the computations and the printed results are presented to the user. 

It can have different base values like: binary (base-2), octal (base-8), decimal (base 10) and 

hexadecimal (base 16), here the base number represents the number of digits used in that 

numbering system. As an example, in decimal numbering system the digits used are: 0, 1, 2, 

3, 4, 5, 6, 7, 8 and 9. Therefore the digits for binary are: 0 and 1, the digits for octal are: 0, 

1, 2, 3, 4, 5, 6 and 7. For the hexadecimal numbering system, base 16, the digits are: 0, 1, 

2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. 

Numbers that contain only two digit 0 and 1 are called Binary Numbers. Each 0 or 1 is called 

a Bit, from binary digit. A binary number of 4 bits is called a Nibble. A binary number of 8 

bits is called a Byte. A binary number of 16 bits is called a Word on some systems, on others 

a 32-bit number is called a Word while a 16-bit number is called a Halfword. 

Using 2 bit 0 and 1 to form 

a binary number of 1 bit, numbers are 0 and 1 

a binary number of 2 bit, numbers are 00, 01, 10, 11 

a binary number of 3 bit, such numbers are 000, 001, 010, 011, 100, 101, 110, 111 

a binary number of 4 bit, such numbers are 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 

1000, 

1001, 1010, 1011, 1100,1101,1110,1111 

Therefore, using n bits there are 2n binary numbers of n bits 

Each digit in a binary number has a value or weight. The LSB has a value of 1. The second 

from the right has a value of 2, the next 4 , etc., 

Table 1.1 Binary Weights 
 

16 8 4 2 1 

24 23 22 21 20 

 

 



 

Table 1.2 The binary equivalent for some decimal numbers are given below. 
 

 

Decimal 
 

0 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

11 

 

Binary 
 

0 
 

1 
 

10 
 

11 
 

100 
 

101 
 

110 
 

111 
 

1000 
 

1001 
 

1010 
 

1011 

 

 

 

1.2 NUMBER SYSTEM CONVERSIONS 
 

There are many methods or techniques which can be used to convert numbers from one base 

to another. We'll demonstrate here the following − 

 Decimal to Other Base System 

 Other Base System to Decimal 

 Other Base System to Non-Decimal 

 Binary to Octal 

 Octal to Binary 

 Binary to Hexadecimal 

 Hexadecimal to Binary 

 

Decimal to Other Base System 

 Step 1 − Divide the decimal number to be converted by the value of the new base. 

 Step 2 − Get the remainder from Step 1 as the rightmost digit (least significant digit) 

of new base number. 

 Step 3 − Divide the quotient of the previous divide by the new base. 

 Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the new 

base number. 

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero 

in Step 3. 

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base 

number. 

Example: Calculating Binary Equivalent of Decimal Number: 2910 

 

 

 

 

 



 

Table 1.3 Calculating Binary Equivalent of Decimal Number: 2910 

 

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so 

that the first remainder becomes the Least Significant Digit (LSD) and the last remainder 

becomes the Most Significant Digit (MSD). 

Decimal Number − 2910 = Binary Number − 111012. 

Other Base System to Decimal System 

Steps 

 Step 1 − Determine the column (positional) value of each digit (this depends on the 

position of the digit and the base of the number system). 

 Step 2 − Multiply the obtained column values (in Step 1) by the digits in the 

corresponding columns. 

 Step 3 − Sum the products calculated in Step 2. The total is the equivalent value in 

decimal. 

Example 

Binary Number − 111012 

Calculating Decimal Equivalent – 

 

Table 1.4 Calculating Decimal Equivalent of Binary Number − 111012 

 
 
Other Base System to Non-Decimal System 

Steps 

 Step 1 − Convert the original number to a decimal number (base 10). 

 Step 2 − Convert the decimal number so obtained to the new base number. 

Example 



 

Octal Number − 258 

Calculating Binary Equivalent − 

 

Table 1.5 Calculating Decimal Equivalent of Octal Number − 258 

 
Octal Number 258 = Decimal Number 2110 

 

Table 1.6 Decimal to Binary Conversion 

 
 

Decimal Number − 2110 = Binary Number − 101012 

Octal Number − 258 = Binary Number − 101012 

Binary to Octal 

Steps 

 Step 1 − Divide the binary digits into groups of three (starting from the right). 

 Step 2 − Convert each group of three binary digits to one octal digit. 

Example 

Binary Number − 101012 

Calculating Octal Equivalent – 

 

 



 

 

 

 

Table 1.7 Calculating Octal Equivalent of Binary Number − 101012 

 
 

 

Binary Number − 101012 = Octal Number − 258 

Octal to Binary 

Steps 

 Step 1 − Convert each octal digit to a 3 digit binary number (the octal digits may be 

treated as decimal for this conversion). 

 Step 2 − Combine all the resulting binary groups (of 3 digits each) into a single 

binary number. 

Example 

Octal Number − 258 

Calculating Binary Equivalent – 

 

Table 1.8 Calculating the binary equivalent of the Octal number - 258 

 
 

Binary to Hexadecimal 

Steps 

 Step 1 − Divide the binary digits into groups of four (starting from the right). 

 Step 2 − Convert each group of four binary digits to one hexadecimal symbol. 



 

Example 

Binary Number − 101012 

Calculating hexadecimal Equivalent – 

Table 1.9 Calculating the Hexadecimal equivalent of the Binary number - 101012 

 

Binary Number − 101012 = Hexadecimal Number − 1516 

Hexadecimal to Binary 

Steps 

 Step 1 − Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal 

digits may be treated as decimal for this conversion). 

 Step 2 − Combine all the resulting binary groups (of 4 digits each) into a single 

binary number. 

Example 

Hexadecimal Number − 1516 

Calculating Binary Equivalent – 

Table 1.10 Calculating Binary Equivalent of the Hexadecimal Number − 1516 

 

Hexadecimal Number − 1516 = Binary Number − 10101 

 

1.3 COMPLEMENTS 

1's complement 

The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. This is 

called as taking complement or 1's complement. Example of 1's Complement is as follows. 



 

 

Figure 1.1 Finding 1’s complement 

 

2's complement 

The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit 

(LSB) of 1's complement of the number. 

2's complement = 1's complement + 1 

Example of 2's Complement is as follows. 

 
Figure 1.2 Finding 2’s complement 

 

1.4 BINARY CODES 

In the coding, when numbers, letters or words are represented by a specific group of 

symbols, it is said that the number, letter or word is being encoded. The group of symbols is 

called as a code. The digital data is represented, stored and transmitted as group of binary 

bits. This group is also called as binary code. The binary code is represented by the number 

as well as alphanumeric letter. 

Advantages of Binary Code 

Following is the list of advantages that binary code offers. 

 Binary codes are suitable for the computer applications. 

 Binary codes are suitable for the digital communications. 



 

 Binary codes make the analysis and designing of digital circuits if we use the binary 

codes. 

 Since only 0 & 1 are being used, implementation becomes easy. 

Classification of binary codes 

The codes are broadly categorized into following four categories. 

 Weighted Codes 

 Non-Weighted Codes 

 Binary Coded Decimal Code 

 Alphanumeric Codes 

 Error Detecting Codes 

 Error Correcting Codes 

Weighted Codes 

Weighted binary codes are those binary codes which obey the positional weight principle. 

Each position of the number represents a specific weight. Several systems of the codes are 

used to express the decimal digits 0 through 9. In these codes each decimal digit is 

represented by a group of four bits. 

 
Figure 1.3 Weighted codes 

 

Non-Weighted Codes 

In this type of binary codes, the positional weights are not assigned. The examples of non-

weighted codes are Excess-3 code and Gray code. 

Excess-3 code 

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express 

decimal numbers. The Excess-3 code words are derived from the 8421 BCD code words 

adding (0011)2 or (3)10 to each code word in 8421. The excess-3 codes are obtained as 

follows − 

 

 

 

 



 

 

 

 

 

Table 1.11 BCD to Excess-3 Code 

 

Gray Code 

It is the non-weighted code and it is not arithmetic codes. That means there are no specific 

weights assigned to the bit position. It has a very special feature that, only one bit will 

change each time the decimal number is incremented as shown in fig. As only one bit 

changes at a time, the gray code is called as a unit distance code. The gray code is a cyclic 

code. Gray code cannot be used for arithmetic operation. 

Table 1.12 BCD to Gray Code 

 

Application of Gray code 

 Gray code is popularly used in the shaft position encoders. 



 

 A shaft position encoder produces a code word which represents the angular position 

of the shaft. 

Binary Coded Decimal (BCD) code 

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to 

express each of the decimal digits with a binary code. In the BCD, with four bits we can 

represent sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used 

(0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD. 

Table 1.13 Representation of  BCD numbers 

 

Advantages of BCD Codes 

 It is very similar to decimal system. 

 We need to remember binary equivalent of decimal numbers 0 to 9 only. 

Disadvantages of BCD Codes 

 The addition and subtraction of BCD have different rules. 

 The BCD arithmetic is little more complicated. 

 BCD needs more number of bits than binary to represent the decimal number. So 

BCD is less efficient than binary. 

Alphanumeric codes 

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But 

this is not enough for communication between two computers because there we need many 

more symbols for communication. These symbols are required to represent 26 alphabets 

with capital and small letters, numbers from 0 to 9, punctuation marks and other symbols. 

The alphanumeric codes are the codes that represent numbers and alphabetic characters. 

Mostly such codes also represent other characters such as symbol and various instructions 

necessary for conveying information. An alphanumeric code should at least represent 10 

digits and 26 letters of alphabet i.e. total 36 items. The following three alphanumeric codes 

are very commonly used for the data representation. 

 American Standard Code for Information Interchange (ASCII). 

 Extended Binary Coded Decimal Interchange Code (EBCDIC). 

 Five bit Baudot Code. 

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more 

commonly used worldwide while EBCDIC is used primarily in large IBM computers. 

 

 

 



 

Error detection codes − are used to detect the errors present in the received bit stream. 

These codes contain some bits, which are included appended to the original bit stream. These 

codes detect the error, if it is occurred during transmission of the original data bit stream. 

Example − Parity code, Hamming code. 

 

Error correction codes − are used to correct the errors present in the received data bit 

stream so that, we will get the original data. Error correction codes also use the similar 

strategy of error detection codes. Example − Hamming code. 

Therefore, to detect and correct the errors, additional bits are appended to the data bits at the 

time of transmission. 

 

Parity Code 

It is easy to include one parity bit either to the left of MSB or to the right of LSB of original 

bit stream. There are two types of parity codes, namely even parity code and odd parity code 

based on the type of parity being chosen. 

Even Parity Code 

The value of even parity bit should be zero, if even number of ones present in the binary 

code. Otherwise, it should be one. So that, even number of ones present in even parity code. 

Even parity code contains the data bits and even parity bit. 

The following table shows the even parity codes corresponding to each 3-bit binary code. 

Here, the even parity bit is included to the right of LSB of binary code. 

 

 

Table 1.14 Even Parity 

 
 

Here, the number of bits present in the even parity codes is 4. So, the possible even number 

of ones in these even parity codes are 0, 2 & 4. 

 If the other system receives one of these even parity codes, then there is no error in 

the received data. The bits other than even parity bit are same as that of binary code. 



 

 If the other system receives other than even parity codes, then there will be an 

errorss in the received data. In this case, we can’t predict the original binary code 

because we don’t know the bit positions of error. 

Therefore, even parity bit is useful only for detection of error in the received parity code. 

But, it is not sufficient to correct the error. 

Odd Parity Code 

The value of odd parity bit should be zero, if odd number of ones present in the binary code. 

Otherwise, it should be one. So that, odd number of ones present in odd parity code. Odd 

parity code contains the data bits and odd parity bit. 

The following table shows the odd parity codes corresponding to each 3-bit binary code. 

Here, the odd parity bit is included to the right of LSB of binary code. 

 

 

Table 1.15 ODD PARITY 

 
 

Here, the number of bits present in the odd parity codes is 4. So, the possible odd number of 

ones in these odd parity codes are 1 & 3. 

 If the other system receives one of these odd parity codes, then there is no error in the 

received data. The bits other than odd parity bit are same as that of binary code. 

 If the other system receives other than odd parity codes, then there is an errorss in the 

received data. In this case, we can’t predict the original binary code because we don’t know 

the bit positions of error. 

Therefore, odd parity bit is useful only for detection of error in the received parity code. But, 

it is not sufficient to correct the error. 

Hamming Code 



 

Hamming code is useful for both detection and correction of error present in the received 

data. This code uses multiple parity bits and we have to place these parity bits in the 

positions of powers of 2. 

The minimum value of 'k' for which the following relation is correct valid is nothing but the 

required number of parity bits. 

 

 

2k≥n+k+1 

Where, 

 

‘n’ is the number of bits in the binary code information 

‘k’ is the number of parity bits 

Therefore, the number of bits in the Hamming code is equal to n + k. 

Let the Hamming code is bn+kbn+k−1.....b3b2b1& parity bits pk,pk−1,....p1. We can place 

the ‘k’ parity bits in powers of 2 positions only. In remaining bit positions, we can place the 

‘n’ bits of binary code. 

Based on requirement, we can use either even parity or odd parity while forming a Hamming 

code. But, the same parity technique should be used in order to find whether any error 

present in the received data. 

Follow this procedure for finding parity bits. 

 Find the value of p1, based on the number of ones present in bit positions b3, b5, 

b7 and so on. All these bit positions suffixes in their equivalent binary have ‘1’ in the 

place value of 20. 

 Find the value of p2, based on the number of ones present in bit positions b3, b6, 

b7 and so on. All these bit positions suffixes in their equivalent binary have ‘1’ in the 

place value of 21. 

 Find the value of p3, based on the number of ones present in bit positions b5, b6, 

b7 and so on. All these bit positions suffixes in their equivalent binary have ‘1’ in the 

place value of 22. 

 Similarly, find other values of parity bits. 

Follow this procedure for finding check bits. 

 Find the value of c1, based on the number of ones present in bit positions b1, b3, b5, 

b7 and so on. All these bit positions suffixes in their equivalent binary have ‘1’ in the 

place value of 20. 

 Find the value of c2, based on the number of ones present in bit positions b2, b3, b6, 

b7 and so on. All these bit positions suffixes in their equivalent binary have ‘1’ in the 

place value of 21. 

 Find the value of c3, based on the number of ones present in bit positions b4, b5, b6, 

b7 and so on. All these bit positions suffixes in their equivalent binary have ‘1’ in the 

place value of 22. 

 Similarly, find other values of check bits. 



 

The decimal equivalent of the check bits in the received data gives the value of bit position, 

where the error is present. Just complement the value present in that bit position. Therefore, 

we will get the original binary code after removing parity bits. 

Example  

Let us find the Hamming code for binary code, d4d3d2d1 = 1000. Consider even parity bits. 

The number of bits in the given binary code is n=4. 

We can find the required number of parity bits by using the following mathematical relation. 

2k≥n+k+1 

Substitute, n=4 in the above mathematical relation. 

⇒2k≥4+k+1 

⇒2k≥5+k 

The minimum value of k that satisfied the above relation is 3. Hence, we require 3 parity bits 

p1, p2, and p3. Therefore, the number of bits in Hamming code will be 7, since there are 4 

bits in binary code and 3 parity bits. We have to place the parity bits and bits of binary code 

in the Hamming code as shown below. 

The 7-bit Hamming code is b7b6b5b4b3b2b1=d4d3d2p3d1p2bp1 

 

By substituting the bits of binary code, the Hamming code will 

be b7b6b5b4b3b2b1=100p3Op2p. Now, let us find the parity bits. 

 

p1=b7⊕b5⊕b3=1⊕0⊕0=1 

p2=b7⊕b6⊕b3=1⊕0⊕0=1 

p3=b7⊕b6⊕b5=1⊕0⊕0=1 

 

By substituting these parity bits, the Hamming code will be b7b6b5b4b3b2b1=1001011. 

 

1.5 LOGIC GATES 

 

Logic gates are the basic building blocks of any digital system. It is an electronic circuit 

having one or more than one input and only one output. The relationship between the input 

and the output is based on a certain logic. Based on this, logic gates are named as AND 

gate, OR gate, NOT gate etc. 

AND Gate 

A circuit which performs an AND operation is shown in figure. It has n input (n >= 2) and 

one output. 

 

 

 



 

 

Figure 1.4 Logic diagram of AND gate 

 

 

Table 1.16 Truth Table of AND Gate 

 
 

 

OR Gate 

A circuit which performs an OR operation is shown in figure. It has n input (n >= 2) and one 

output. 

 
 

 

Figure 1.5 Logic diagram of OR gate 

 

Table 1.17 Truth Table of OR gate 

 
 

NOT Gate 

NOT gate is also known as Inverter. It has one input A and one output Y. 



 

 

 

 

Figure 1.6 Logic diagram of NOT gate 

 

 

Table 1.18 Truth Table of NOT gate 

 
NAND Gate 

A NOT-AND operation is known as NAND operation. It has n input (n >= 2) and one 

output. 

 

 

 

                             Figure 1.7 Logic diagram of NAND gate 

 

Table 1.19 Truth Table of NAND gate 

 
NOR Gate 



 

A NOT-OR operation is known as NOR operation. It has n input (n >= 2) and one output. 

 

 

 

Figure 1.8 Logic diagram of NOR gate 

 

 

Table 1.20 7Truth Table of NOR gate 

 
XOR Gate 

XOR or Ex-OR gate is a special type of gate. It can be used in the half adder, full adder and 

subtractor. The exclusive-OR gate is abbreviated as EX-OR gate or sometime as X-OR gate. 

It has n input (n >= 2) and one output. 

 

 

 

 

Figure 1.9 Logic diagram of XOR gate 

 

 

 

 



 

 

 

Table 1.21 Truth Table of XOR gate 

 
XNOR Gate 

XNOR gate is a special type of gate. It can be used in the half adder, full adder and 

subtractor. The exclusive-NOR gate is abbreviated as EX-NOR gate or sometime as X-NOR 

gate. It has n input (n >= 2) and one output. 

 

 

 

 

 

 
Figure 1.10 Logic diagram of XNOR gate 

 

Table 1.22 Truth Table of XNOR gate 
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2.1 BOOLEAN ALGEBRA 

 

Boolean algebra is used to analyse and simplify the digital (logic) circuits. It uses only the 

binary numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra. Boolean 

algebra was invented by George Boole in 1854. 

Rule in Boolean algebra 

Following are the important rules used in Boolean algebra. 

 Variable used can have only two values. Binary 1 for HIGH and Binary 0 for LOW. 

 Complement of a variable is represented by an overbar (-). Thus, complement of 

variable B is represented as . Thus if B = 0 then  = 1 and B = 1 then  = 0. 

 ORing of the variables is represented by a plus (+) sign between them. For example 

ORing of A, B, C is represented as A + B + C. 

 Logical ANDing of the two or more variable is represented by writing a dot between 

them such as A.B.C. Sometime the dot may be omitted like ABC. 

Boolean Laws 

There are six types of Boolean Laws. 

Commutative law 

Any binary operation which satisfies the following expression is referred to as commutative 

operation. 

 

Commutative law states that changing the sequence of the variables does not have any effect 

on the output of a logic circuit. 

Associative law 

This law states that the order in which the logic operations are performed is irrelevant as their 

effect is the same. 
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Distributive law 

Distributive law states the following condition. 

 

AND law 

These laws use the AND operation. Therefore they are called as AND laws. 

 

OR law 

These laws use the OR operation. Therefore they are called as OR laws. 

 

Inversion law 

This law uses the NOT operation. The inversion law states that double inversion of a variable 

results in the original variable itself. 

 
 

 

Theorems 

 

 

De Morgan has suggested two theorems which are extremely useful in Boolean Algebra. The 

two theorems are discussed below. 

Theorem 1 

 

 The left hand side (LHS) of this theorem represents a NAND gate with inputs A and 

B, whereas the right hand side (RHS) of the theorem represents an OR gate with inverted 

inputs. 

 This OR gate is called as Bubbled OR. 
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Table showing verification of the De Morgan's first theorem − 

 

Theorem 2 

 

 The LHS of this theorem represents a NOR gate with inputs A and B, whereas the RHS 

represents an AND gate with inverted inputs. 

 This AND gate is called as Bubbled AND. 
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Table showing verification of the De Morgan's second theorem − 

 
 

Consensus Theorem 

 

AB + A C + BC = AB + A C 

 

Proof: 

 

LHS     = AB + A C + BC 

        = AB + A C + BC (A+A) 

        = AB + A C + ABC + ABC 

        = AB (1+C) + A C (1+C) 

        = AB + A C = RHS 

 

 
2.2 AXIOMS 

 

There are some set of logical expressions which we accept as true and upon which we can build 

a set of useful theorems. These sets of logical expressions are known as Axioms or postulates 

of Boolean algebra. An axiom is nothing more than the definition of three basic logic operations 

(AND, OR and NOT). All axioms defined in Boolean algebra are the results of an operation 

that is performed by a logical gate. 
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    Axiom 1: 0.0 = 0    Axiom 6: 0+1 = 1 

    Axiom 2: 0.1 = 0    Axiom 7: 1+0 = 1 

    Axiom 3: 1.0 = 0    Axiom 8: 1+1 = 1 

    Axiom 4: 1.1 = 1    Axiom 9: 0’ = 1 

    Axiom 5: 0+0 = 0    Axiom 10: 1’ = 0 

 
 

2.3 TRUTH TABLE SIMPLIFICATION OF BOOLEAN FUNCTION 

 

Boolean algebra deals with binary variables and logic operation. A Boolean Function is 

described by an algebraic expression called Boolean expression which consists of binary 

variables, the constants 0 and 1, and the logic operation symbols. Consider the following 

example. 

 

Here the left side of the equation represents the output Y. So we can state equation no. 1 

 

Truth Table Formation 

A truth table represents a table having all combinations of inputs and their corresponding 

result. 

It is possible to convert the switching equation into a truth table. For example, consider the 

following switching equation. 

 

The output will be high (1) if A = 1 or BC = 1 or both are 1. The truth table for this equation 

is shown by Table (a). The number of rows in the truth table is 2n where n is the number of 

input variables (n=3 for the given equation). Hence there are 23 = 8 possible input combination 

of inputs. 
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Canonical and Standard Forms 
 

Logical functions are generally expressed in terms of different combinations of logical 

variables with their true forms as well as the complement forms. Binary logic values obtained 

by the logical functions and logic variables are in binary form. An arbitrary logic function can 

be expressed in the following forms. 

(i) Sum of the Products (SOP) 

(ii) Product of the Sums (POS) Product Term: 

In Boolean algebra, the logical product of several variables on which a function depends is 

considered to be a product term. In other words, the AND function is referred to as a product 

term or standard product. The variables in a product term can be either in true form or in 

complemented form. For example, ABC′ is a product term. 

 

 

Sum Term: 

 

An OR function is referred to as a sum term. The logical sum of several variables on which 

a function depends is considered to be a sum term. Variables in a sum term can also be either 

in true form or in complemented form. For example, A + B + C′ is a sum term. 

 

Sum of Products (SOP): 

 

The logical sum of two or more logical product terms is referred to as a sum of products 

expression. It is basically an OR operation on AND operated variables. For example, Y = AB 

+ BC + AC or Y = A′B + BC + AC′ are sum of products expressions. 
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Product of Sums (POS): 

 

Similarly, the logical product of two or more logical sum terms is called a product of sums 

expression. It is an AND operation on OR operated variables. For example, Y = (A + B + C)(A 

+ B′ + C)(A + B + C′) or Y = (A + B + C)(A′ + B′ + C′) are product of sums expressions. 

 

Standard form: 

 

The standard form of the Boolean function is when it is expressed in sum of the products or 

product of the sums fashion. The examples stated above, like Y =AB + BC + AC or Y = (A + 

B + C)(A + B′ + C)(A + B + C′) are the standard forms. However, Boolean functions are also 

sometimes expressed in nonstandard forms like F = (AB + CD)(A′B′ + C′D′), which is neither 

a sum of products form nor a product of sums form. However, the same expression can be 

converted to a standard form with help of various Boolean properties, as: 

F = (AB + CD)(A′B′ + C′D′) = A′B′CD + ABC′D′ 

 

 

Minterm 

 

A product term containing all n variables of the function in either true or complemented 

form is called the minterm. Each minterm is obtained by an AND operation of the variables in 

their true form or complemented form. For a two-variable function, four different combinations 

are possible, such as, A′B′, A′B, AB′, and AB. These product terms are called the fundamental 

products or standard products or minterms. In the minterm, a variable will possess the value 1 

if it is in true or uncomplemented form, whereas, it contains the value 0 if it is in complemented 

form. For three variables function, eight minterms are possible as listed in the following table 

 

A B C Minterm 

0 0 0 A’B’C’ 

0 0 1 A’B’C 

0 1 0 A’BC’ 

0 1 1 A’BC 

1 0 0 AB’C’ 

1 0 1 AB’C 

1 1 0 ABC’ 

1 1 1 ABC 

 

 

So, if the number of variables is n, then the possible number of minterms is 2n. The main 

property of a minterm is that it possesses the value of 1 for only one combination of n input 

variables and the rest of the 2n – 1 combinations have the logic value of 0. This means, for the 

above three variables example, if A = 0, B = 1, C = 1 i.e., for input combination of 011, there 

is only one combination A′BC that has the value 1, the rest of the seven combinations have the 

value 0. 
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Canonical Sum of Product Expression: 

 

When a Boolean function is expressed as the logical sum of all the minterms from the rows of 

a truth table, for which the value of the function is 1, it is referred to as the canonical sum of 

product expression. The same can be expressed in a compact form by listing the corresponding 

decimal-equivalent codes of the minterms containing a function value of 1. 

For example, if the canonical sum of product form of a three-variable logic function F has the 

minterms A′BC, AB′C, and ABC′, this can be expressed as the sum of the decimal codes 

corresponding to these minterms as below. 

F (A,B,C) = (3,5,6) 

= m3 + m5 + m6 

= A′BC + AB′C + ABC′ 

where Σ (3,5,6) represents the summation of minterms corresponding to decimal codes 3, 5, 

and 

6. The canonical sum of products form of a logic function can be obtained by using the 

following procedure: 

1. Check each term in the given logic function. Retain if it is a minterm, continue 

to examine the next term in the same manner. 

 

2. Examine for the variables that are missing in each product which is not a 

minterm. If the missing variable in the minterm is X, multiply that minterm with (X+X′). 

 

2. Multiply all the products and discard the redundant terms. 

 

Maxterm 

 

A sum term containing all n variables of the function in either true or complemented form is 

called the maxterm. Each maxterm is obtained by an OR operation of the variables in their true 

form or complemented form. Four different combinations are possible for a two-variable 

function, such as, A′ + B′, A′ + B, A + B′, and A + B. These sum terms are called the standard 

sums or maxterms. Note that, in the maxterm, a variable will possess the value 0, if it is in true 

or uncomplemented form, whereas, it contains the value 1, if it is in complemented form. Like 

minterms, for a three-variable function, eight maxterms are also possible as listed in the 

following table 

A B C Maxterm 

0 0 0 A+B+C 

0 0 1 A+B+C’ 

0 1 0 A+B’+C 

0 1 1 A+B’+C’ 

1 0 0 A’+B+C 

1 0 1 A’+B+C’ 

1 1 0 A’+B’+C 

1 1 1 A’+B’+C’ 
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So, if the number of variables is n, then the possible number of maxterms is 2n. The main 

property of a maxterm is that it possesses the value of 0 for only one combination of n input 

variables and the rest of the 2n –1 combinations have the logic value of 1. This means, for the 

above three variables example, if A = 1, B = 1, C = 0 i.e., for input combination of 110, there 

is only one combination A′ + B′ + C that has the value 0, the rest of the seven combinations 

have the value 1. 

Canonical Product of Sum Expression: 

 

When a Boolean function is expressed as the logical product of all the maxterms from the rows 

of a truth table, for which the value of the function is 0, it is referred to as the canonical product 

of sum expression. The same can be expressed in a compact form by listing the corresponding 

decimal equivalent codes of the maxterms containing a function value of 0. For example, if the 

canonical product of sums form of a three-variable logic function F has the maxterms A + B + 

C, A + B′ + C, and A′ + B + C′, this can be expressed as the product of the decimal codes 

corresponding to these maxterms as below, 

F (A,B,C) = Π (0,2,5) 

 

= M0 M2 M5 

 

= (A + B + C) (A + B′ + C) (A′ + B + C′) 

 

where Π (0,2,5) represents the product of maxterms corresponding to decimal codes 0, 2, and 

5. The canonical product of sums form of a logic function can be obtained by using the 

following procedure. 

1. Check each term in the given logic function. Retain it if it is a maxterm, 

continue to examine the next term in the same manner. 

2. Examine for the variables that are missing in each sum term that is not a 

maxterm. If the missing variable in the maxterm is X, add that maxterm with (X.X′). 

3. Expand the expression using the properties and postulates as described earlier 

and discard the redundant terms. Some examples are given here to explain the above procedure. 

 

Methods to simplify the Boolean function 

The methods used for simplifying the Boolean function are as follows − 

 Karnaugh-map or K-map, and 

 . Mc-Clausky (or) Tabular Method 
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2.4 K MAP 

 

In previous chapters, we have simplified the Boolean functions using Boolean postulates and 

theorems. It is a time consuming process and we have to re-write the simplified expressions 

after each step. 

To overcome this difficulty, Karnaugh introduced a method for simplification of Boolean 

functions in an easy way. This method is known as Karnaugh map method or K-map method. 

It is a graphical method, which consists of 2n cells for ‘n’ variables. The adjacent cells are 

differed only in single bit position. 

K-Maps for 2 to 5 Variables 

K-Map method is most suitable for minimizing Boolean functions of 2 variables to 5 variables. 

Now, let us discuss about the K-Maps for 2 to 5 variables one by one. 

2 Variable K-Map 

The number of cells in 2 variable K-map is four, since the number of variables is two. The 

following figure shows 2 variable K-Map. 

 

 There is only one possibility of grouping 4 adjacent min terms. 

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), 

(m0, m2) and (m1, m3)}. 

3 Variable K-Map 

The number of cells in 3 variable K-map is eight, since the number of variables is three. The 

following figure shows 3 variable K-Map. 

 

 There is only one possibility of grouping 8 adjacent min terms. 

 The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), 

(m4, m5, m7, m6), (m0, m1, m4, m5), (m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, 

m6, m4)}. 
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 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3), 

(m3, m2), (m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) 

and (m2, m6)}. 

 If x=0, then 3 variable K-map becomes 2 variable K-map. 

4 Variable K-Map 

The number of cells in 4 variable K-map is sixteen, since the number of variables is four. The 

following figure shows 4 variable K-Map. 

 

 There is only one possibility of grouping 16 adjacent min terms. 

 Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and 

fourth row respectively. Similarly, C1, C2, C3 and C4 represents the min terms of first 

column, second column, third column and fourth column respectively. The possible 

combinations of grouping 8 adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4, 

R1), (C1, C2), (C2, C3), (C3, C4), (C4, C1)}. 

 If w=0, then 4 variable K-map becomes 3 variable K-map. 

5 Variable K-Map 

The number of cells in 5 variable K-map is thirty-two, since the number of variables is 5. The 

following figure shows 5 variable K-Map. 
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 There is only one possibility of grouping 32 adjacent min terms. 

 There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min 

terms from m0 to m15 and m16 to m31. 

 If v=0, then 5 variable K-map becomes 4 variable K-map. 

In the above all K-maps, we used exclusively the min terms notation. Similarly, you can use 

exclusively the Max terms notation. 

Minimization of Boolean Functions using K-Maps 

If we consider the combination of inputs for which the Boolean function is ‘1’, then we will 

get the Boolean function, which is in standard sum of products form after simplifying the K-

map. 

Similarly, if we consider the combination of inputs for which the Boolean function is ‘0’, then 

we will get the Boolean function, which is in standard product of sums form after simplifying 

the K-map. 

Follow these rules for simplifying K-maps in order to get standard sum of products form. 

 Select the respective K-map based on the number of variables present in the Boolean 

function. 

 If the Boolean function is given as sum of min terms form, then place the ones at 

respective min term cells in the K-map. If the Boolean function is given as sum of 

products form, then place the ones in all possible cells of K-map for which the given 

product terms are valid. 

 Check for the possibilities of grouping maximum number of adjacent ones. It should 

be powers of two. Start from highest power of two and upto least power of two. 

Highest power is equal to the number of variables considered in K-map and least 

power is zero. 

 Each grouping will give either a literal or one product term. It is known as prime 

implicant. The prime implicant is said to be essential prime implicant, if atleast single 

‘1’ is not covered with any other groupings but only that grouping covers. 

 Note down all the prime implicants and essential prime implicants. The simplified 

Boolean function contains all essential prime implicants and only the required prime 

implicants. 

Note 1 − If outputs are not defined for some combination of inputs, then those output values 

will be represented with don’t care symbol ‘x’. That means, we can consider them as either 

‘0’ or ‘1’. 

Note 2 − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of 

K-map. Consider only the don’t cares ‘x’ that are helpful for grouping maximum number of 

adjacent ones. In those cases, treat the don’t care value as ‘1’. 

Example 

Let us simplify the following Boolean function, fW,X,Y,ZW,X,Y,Z= WX’Y’ + WY + 

W’YZ’ using K-map. 
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The given Boolean function is in sum of products form. It is having 4 variables W, X, Y & Z. 

So, we require 4 variable K-map. The 4 variable K-map with ones corresponding to the given 

product terms is shown in the following figure. 

 

Here, 1s are placed in the following cells of K-map. 

 The cells, which are common to the intersection of Row 4 and columns 1 & 2 are 

corresponding to the product term, WX’Y’. 

 The cells, which are common to the intersection of Rows 3 & 4 and columns 3 & 4 are 

corresponding to the product term, WY. 

 The cells, which are common to the intersection of Rows 1 & 2 and column 4 are 

corresponding to the product term, W’YZ’. 

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent ones. There are 

three possibilities of grouping 4 adjacent ones. After these three groupings, there is no single 

one left as ungrouped. So, we no need to check for grouping of 2 adjacent ones. The 4 variable 

K-map with these three groupings is shown in the following figure. 

 

Here, we got three prime implicants WX’, WY & YZ’. All these prime implicants 

are essential because of following reasons. 

 Two ones (m8 & m9) of fourth row grouping are not covered by any other groupings. 

Only fourth row grouping covers those two ones. 

 Single one (m15) of square shape grouping is not covered by any other groupings. Only 

the square shape grouping covers that one. 
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 Two ones (m2 & m6) of fourth column grouping are not covered by any other 

groupings. Only fourth column grouping covers those two ones. 

Therefore, the simplified Boolean function is 

f = WX’ + WY + YZ’ 

Follow these rules for simplifying K-maps in order to get standard product of sums form. 

 Select the respective K-map based on the number of variables present in the Boolean 

function. 

 If the Boolean function is given as product of Max terms form, then place the zeroes at 

respective Max term cells in the K-map. If the Boolean function is given as product of 

sums form, then place the zeroes in all possible cells of K-map for which the given 

sum terms are valid. 

 Check for the possibilities of grouping maximum number of adjacent zeroes. It should 

be powers of two. Start from highest power of two and upto least power of two. 

Highest power is equal to the number of variables considered in K-map and least 

power is zero. 

 Each grouping will give either a literal or one sum term. It is known as prime implicant. 

The prime implicant is said to be essential prime implicant, if atleast single ‘0’ is not 

covered with any other groupings but only that grouping covers. 

 Note down all the prime implicants and essential prime implicants. The simplified 

Boolean function contains all essential prime implicants and only the required prime 

implicants. 

Note − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of K-

map. Consider only the don’t cares ‘x’ that are helpful for grouping maximum number of 

adjacent zeroes. In those cases, treat the don’t care value as ‘0’. 

Example 

Let us simplify the following Boolean 

function, f(X,Y,Z)=∏M(0,1,2,4)f(X,Y,Z)=∏M(0,1,2,4) using K-map. 

The given Boolean function is in product of Max terms form. It is having 3 variables X, Y & 

Z. So, we require 3 variable K-map. The given Max terms are M0, M1, M2 & M4. The 

3 variable K-map with zeroes corresponding to the given Max terms is shown in the following 

figure. 

 

There are no possibilities of grouping either 8 adjacent zeroes or 4 adjacent zeroes. There are 

three possibilities of grouping 2 adjacent zeroes. After these three groupings, there is no single 
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zero left as ungrouped. The 3 variable K-map with these three groupings is shown in the 

following figure. 

 

Here, we got three prime implicants X + Y, Y + Z & Z + X. All these prime implicants 

are essential because one zero in each grouping is not covered by any other groupings except 

with their individual groupings. 

Therefore, the simplified Boolean function is 

f = X+YX+Y.Y+ZY+Z.Z+XZ+X 

In this way, we can easily simplify the Boolean functions up to 5 variables using K-map 

method. For more than 5 variables, it is difficult to simplify the functions using K-Maps. 

Because, the number of cells in K-map gets doubled by including a new variable. 

 

 

2.5 Mc-CLUSKEY 

 

Quine-McClukey tabular method is a tabular method based on the concept of prime implicants. 

We know that prime implicant is a product or sum term, which can’t be further reduced by 

combining with any other product or sum terms of the given Boolean function. 

This tabular method is useful to get the prime implicants by repeatedly using the following 

Boolean identity. 

xy + xy’ = xy+y′= x.1 = x 

Procedure of Quine-McCluskey Tabular Method 

Follow these steps for simplifying Boolean functions using Quine-McClukey tabular method. 

Step 1 − Arrange the given min terms in an ascending order and make the groups based on the 

number of ones present in their binary representations. So, there will be at most ‘n+1’ groups if 

there are ‘n’ Boolean variables in a Boolean function or ‘n’ bits in the binary equivalent of 

min terms. 

Step 2 − Compare the min terms present in successive groups. If there is a change in only one-

bit position, then take the pair of those two min terms. Place this symbol ‘_’ in the differed bit 

position and keep the remaining bits as it is. 

Step 3 − Repeat step2 with newly formed terms till we get all prime implicants. 
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Step 4 − Formulate the prime implicant table. It consists of set of rows and columns. Prime 

implicants can be placed in row wise and min terms can be placed in column wise. Place ‘1’ 

in the cells corresponding to the min terms that are covered in each prime implicant. 

Step 5 − Find the essential prime implicants by observing each column. If the min term is 

covered only by one prime implicant, then it is essential prime implicant. Those essential 

prime implicants will be part of the simplified Boolean function. 

Step 6 − Reduce the prime implicant table by removing the row of each essential prime 

implicant and the columns corresponding to the min terms that are covered in that essential 

prime implicant. Repeat step 5 for reduced prime implicant table. Stop this process when all 

min terms of given Boolean function are over. 

Example 

Let us simplify the following Boolean function, f(W,X,Y,Z)=∑m(2,6,8,9,10,11,14,15) using 

Quine-McClukey tabular method. 

The given Boolean function is in sum of min terms form. It is having 4 variables W, X, Y & 

Z. The given min terms are 2, 6, 8, 9, 10, 11, 14 and 15. The ascending order of these min 

terms based on the number of ones present in their binary equivalent is 2, 8, 6, 9, 10, 11, 14 

and 15. The following table shows these min terms and their equivalent binary representations. 

Group Name Min terms W X Y Z 

GA1 

2 0 0 1 0 

8 1 0 0 0 

GA2 

6 0 1 1 0 

9 1 0 0 1 

10 1 0 1 0 

GA3 

11 1 0 1 1 

14 1 1 1 0 

GA4 15 1 1 1 1 
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The given min terms are arranged into 4 groups based on the number of ones present in their 

binary equivalents. The following table shows the possible merging of min terms from 

adjacent groups. 

Group Name Min terms W X Y Z 

GB1 

2,6 0 - 1 0 

2,10 - 0 1 0 

8,9 1 0 0 - 

8,10 1 0 - 0 

GB2 

6,14 - 1 1 0 

9,11 1 0 - 1 

10,11 1 0 1 - 

10,14 1 - 1 0 

GB3 

11,15 1 - 1 1 

14,15 1 1 1 - 

The min terms, which are differed in only one-bit position from adjacent groups are merged. 

That differed bit is represented with this symbol, ‘-‘. In this case, there are three groups and 

each group contains combinations of two min terms. The following table shows the 

possible merging of min term pairs from adjacent groups. 
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Group Name Min terms W X Y Z 

GB1 

2,6,10,14 - - 1 0 

2,10,6,14 - - 1 0 

8,9,10,11 1 0 - - 

8,10,9,11 1 0 - - 

GB2 

10,11,14,15 1 - 1 - 

10,14,11,15 1 - 1 - 

The successive groups of min term pairs, which are differed in only one-bit position are 

merged. That differed bit is represented with this symbol, ‘-‘. In this case, there are two groups 

and each group contains combinations of four min terms. Here, these combinations of 4 min 

terms are available in two rows. So, we can remove the repeated rows. The reduced table after 

removing the redundant rows is shown below. 

Group Name Min terms W X Y Z 

GC1 2,6,10,14 - - 1 0 

 8,9,10,11 1 0 - - 

GC2 10,11,14,15 1 - 1 - 

Further merging of the combinations of min terms from adjacent groups is not possible, since 

they are differed in more than one-bit position. There are three rows in the above table. So, 

each row will give one prime implicant. Therefore, the prime implicants are YZ’, WX’ & WY. 
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The prime implicant table is shown below. 

Min terms / Prime 

Implicants 

2 6 8 9 10 11 14 15 

YZ’ 1 1   1  1  

WX’   1 1 1 1   

WY     1 1 1 1 

The prime implicants are placed in row wise and min terms are placed in column wise. 1s are 

placed in the common cells of prime implicant rows and the corresponding min term columns. 

The min terms 2 and 6 are covered only by one prime implicant YZ’. So, it is an essential 

prime implicant. This will be part of simplified Boolean function. Now, remove this prime 

implicant row and the corresponding min term columns. The reduced prime implicant table is 

shown below. 

Min terms / Prime 

Implicants 

8 9 11 15 

WX’ 1 1 1  

WY   1 1 

The min terms 8 and 9 are covered only by one prime implicant WX’. So, it is an essential 

prime implicant. This will be part of simplified Boolean function. Now, remove this prime 

implicant row and the corresponding min term columns. The reduced prime implicant table is 

shown below. 

Min terms / Prime 

Implicants 

15 

WY 1 

The min term 15 is covered only by one prime implicant WY. So, it is an essential prime 

implicant. This will be part of simplified Boolean function. 

In this example problem, we got three prime implicants and all the three are essential. 

Therefore, the simplified Boolean function is 
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fW,X,Y,Z = YZ’ + WX’ + WY. 
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3.1 SEQUENTIAL LOGIC CIRCUITS 

 

Unlike Combinational Logic circuits that change state depending upon the actual signals 

being applied to their inputs at that time, Sequential Logic circuits have some form of 

inherent “Memory” built in to them as they are able to take into account  their  previous  

input  state  as  well  as  those  actually  present,  a  sort   of “before” and “after” effect is 

involved with sequential logic circuits. 

 

In other words, the output state of a “sequential logic circuit” is a function of the following 

three states, the “present input”, the “past input” and/or the “past output”. Sequential Logic 

circuits remember these conditions and stay fixed in their current state until the next clock 

signal changes one of the states, giving sequential logic circuits “Memory”. 

Sequential logic circuits are generally termed as two state or Bistable devices which can 

have their output or outputs set in one of two basic states, a logic level “1” or a logic level 

“0” and will remain “latched” (hence the name latch) indefinitely in this current state or 

condition until some other input trigger pulse or signal is applied which will cause the 

bistable to change its state once again. 

The word “Sequential” means that things happen in a “sequence”, one after another and in 

Sequential Logic circuits, the actual clock signal determines when things will happen next. 

Simple sequential logic circuits can be constructed from standard Bistable circuits such as: 

Flip-flops, Latches and Counters and which themselves can be made by simply connecting 

together universal NAND Gates and/or NOR Gates in a particular combinational way to 

produce the required sequential circuit. 

Flip-Flop 

http://www.electronics-tutorials.ws/combination/comb_1.html
http://www.electronics-tutorials.ws/waveforms/bistable.html
http://www.electronics-tutorials.ws/logic/logic_5.html
http://www.electronics-tutorials.ws/logic/logic_6.html


In electronics, a flip-flop or latch is a circuit that has two stable states and can be used to 

store state information. Flip-flops and latches are used as data storage elements. A flip-flop 

stores a single bit (binary digit) of data; one of its two states represents a "one" and the other 

represents a "zero". Such data storage can be used for storage of state, and such a circuit is 

described as sequential logic. When used in a finite-state machine, the output and next state 

depend not only on its current input, but also on its current state (and hence, previous 

inputs). It can also be used for counting of pulses, and for synchronizing variably-timed 

input signals to some reference timing signal. 

 

Flip-flops can be either simple (transparent or opaque) or clocked (synchronous or edge-

triggered). Although the term flip-flop has historically referred generically to both simple 

and clocked circuits, in modern usage it is common to reserve the term flip-flop exclusively 

for discussing clocked circuits; the simple ones are commonly called latches. 

 

Using this terminology, a latch is level-sensitive, whereas a flip-flop is edge- sensitive. That 

is, when a latch is enabled it becomes transparent, while a flip flop's output only changes on 

a single type (positive going or negative going) of clock edge. 

 

Flip-flop types 

 

Flip-flops can be divided into common types 

SR ("set-reset") 

D ("data" or "delay") 

T ("toggle") 

JK types are the common ones. 

3.2 SR Flip-Flop 

The SR flip-flop, also known as a SR Latch, can be considered as one of the most basic 

sequential logic circuit possible. This simple flip-flop is basically a one- bit memory 

bistable device that has two inputs, one which will “SET” the device (meaning the output = 

“1”), and is labelled S and another which will “RESET” the device (meaning the output = 

“0”), labelled R. 

Then the SR description stands for “Set-Reset”. The reset input resets the flip-flop back to 

its original state with an output Q that will be either at a logic level “1” or logic “0” 

depending upon this set/reset condition. 

A basic NAND gate SR flip-flop circuit provides feedback from both of its outputs back to 

its opposing inputs and is commonly used in memory circuits to store a single data bit. Then 

the SR flip-flop actually has three inputs, Set, Reset and its current output Q relating to it’s 

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Binary_digit
https://en.wikipedia.org/wiki/State_%28computer_science%29
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Clock_signal


current state or history. The term “Flip- flop” relates to the actual operation of the device, as 

it can be “flipped” into one logic Set state or “flopped” back into the opposing logic Reset 

state. 

 

The Basic SR Flip-flop 

 

 

The Set State 

 

Consider the circuit shown above. If the input R is at logic level “0” (R = 0) and input S is at 

logic level “1” (S = 1), the NAND gate Y has at least one of its inputs at logic “0” therefore, 

its output Q must be at a logic level “1” (NAND Gate principles). Output Q is also fed back 

to input “A” and so both inputs to NAND gate X are at logic level “1”, and therefore its 

output Q must be at logic level “0”. 

Again NAND gate principals. If the reset input R changes state, and goes HIGH to logic “1” 

with S remaining HIGH also at logic level “1”, NAND gate Y inputs are now R = “1” and B 

= “0”. Since one of its inputs is still at logic level “0” the output at Q still remains HIGH at 

logic level “1” and there is no change of state. Therefore, the flip-flop circuit is said to be 

“Latched” or “Set” with Q = “1” and Q = “0”. 

Reset State 

In this second stable state, Q is at logic level “0”, (not Q = “0”) its inverse output at Q is at 

logic level “1”, (Q = “1”), and is given by R = “1” and S = “0”. As gate X has one of its 

inputs at logic “0” its output Q must equal logic level “1” (again NAND gate principles). 

Output Q is fed back to input “B”, so both inputs to NAND gate Y are at logic “1”, 

therefore, Q = “0”. 

If the set input, S now changes state to logic “1” with input R remaining at logic “1”, output 

Q still remains LOW at logic level “0” and there is no change of state. Therefore, the flip-

flop circuits “Reset” state has also been latched and we can define this “set/reset” action in 

the following truth table. 



Truth Table for this Set-Reset Function 

It can be seen that when both inputs S = “1” and R = “1” the outputs Q and Q can be at 

either logic level “1” or “0”, depending upon the state of the inputs S or R BEFORE this 

input condition existed. Therefore the condition of S = R = “1” does not change the state of 

the outputs Q and Q. 

However, the input state of S = “0” and R = “0” is an undesirable or invalid condition and 

must be avoided. The condition of S = R = “0” causes both outputs Q and Q to be HIGH 

together at logic level “1” when we would normally want Q to be the inverse of Q. The 

result is that the flip-flop looses control of Q and Q, and if the two inputs are now switched 

“HIGH” again after this condition to logic “1”, the flip-flop becomes unstable and switches 

to an unknown data state based upon the unbalance as shown in the following switching 

diagram. 

 

S-R Flip-flop Switching Diagram 

 

This unbalance can cause one of the outputs to switch faster than the other resulting in the 

flip-flop switching to one state or the other which may not be the required state and data 

corruption will exist. This unstable condition is generally known as its Meta-stable state. 

Then, a simple NAND gate SR flip-flop or NAND gate SR latch can be set by applying a 

logic “0”, (LOW) condition to its Set input and reset again by then applying a logic “0” to 

its Reset input. The SR flip-flop is said to be in an “invalid” condition (Meta-stable) if both 

the set and reset inputs are activated simultaneously. 

Latch Flip Flop 



The R-S (Reset Set) flip flop is the simplest flip flop of all and easiest to understand. It is 

basically a device which has two outputs one output being the inverse or complement of the 

other, and two inputs. A pulse on one of the inputs to take on a particular logical state. The 

outputs will then remain in this state until a similar pulse is applied to the other input. The 

two inputs are called the Set and Reset input (sometimes called the preset and clear inputs). 

Such flip flop can be made simply by cross coupling two inverting gates either NAND or 

NOR gate could be used Figure 1(a) shows on RS flip flop using NAND gate and Figure 

1(b) sh ows the same circuit using NOR gate. 

 

 

Figure 1: Latch R-S Flip Flop Using NAND and NOR Gates 

To describe the circuit of Figure 1(a), assume that initially both R and S are at the logic 1 

state and that output is at the logic 0 state. 

Now, if Q = 0 and R = 1, then these are the states of inputs of gate B, therefore the outputs 

of gate B is at 1 (making it the inverse of Q i.e. 0). The output of gate B is connected to an 

input of gate A so if S = 1, both inputs of gate A are at the logic 1 state. This means that the 

output of gate A must be 0 (as was originally specified). In other words, the 0 state at Q is 

continuously disabling gate B so that 



any change in R has no effect. Also the 1 state at   is continuously enabling gate A so that 

any change S will be transmitted through to Q. The above conditions constitute one of the 

stable states of the device referred to as the Reset state since  Q = 0. 

 

Now suppose that the R-S flip flop in the Reset state, the S input goes to 0. The output of 

gate A i.e. Q will go to 1 and with Q = 1 and R = 1, the output of gates   B   (  )   will   go   

to   0   with      now 0 gate A is disabled keeping Q at 1. Consequently, when S returns to 

the 1 state it has no effect on the flip flop whereas a change in R will cause a change in the 

output of gate B. The above conditions constitute the other stable state of the device, called 

the Set state since Q = 1. Note that the change of the state of S from 1 to 0 has caused the 

flip flop to change from the Reset state to the Set state. 

There is another input condition which has not yet been considered. That is when both the R 

and S inputs are taken to the logic state 0. When this happens both Q and    will be forced 

to 1 and will remain so far as long as R and S are kept at 0. However when both inputs 

return to 1 there is no way of knowing whether the flip flop will latch in the Reset state or 

the Set state. The condition is said to be indeterminate because of this indeterminate state 

great care must be taken when using R-S flip flop to ensure that both inputs are not 

instructed simultaneously. 

 

Table 1: The truth table for the NAND R-S flip flop 

 

Table 2: Simple NAND R-S Flip Flop Truth Table 

 

 
 



Table 3: NOR Gate R-S Flip Flop Truth Table 

 

Clocked RS Flip Flop 

 

The RS latch flip flop required the direct input but no clock. It is very use full to add clock 

to control precisely the time at which the flip flop changes the state of its output. 

In the clocked R-S flip flop the appropriate levels applied to their inputs are blocked till the 

receipt of a pulse from an other source called clock. The flip flop changes state only when 

clock pulse is applied depending upon the inputs. The basic circuit is shown in Figure 2. 

This circuit is formed by adding two AND gates at inputs to the R-S flip flop. In addition to 

control inputs Set (S) and Reset (R), there is a clock input (C) also. 

 

Figure 2: Clocked RS Flip Flop 

 

Table 4: The truth table for the Clocked R-S flip flop 

 

 



Table 5: Excitation table for R-S Flip Flop 

 

3.3 D FLIP FLOP 

A D type (Data or delay flip flop) has a single data input in addition to the clock input as 

shown in Figure 3. 

 

 

Figure 3: D Flip Flop 

Basically, such type of flip flop is a modification of clocked RS flip flop gates from a 

basic Latch flip flop and NOR gates modify it in to a clock RS flip flop. The D input goes 

directly to S input and its complement through NOT gate, is applied to the R input. 

This kind of flip flop prevents the value of D from reaching the output until a clock pulse 

occurs. The action of circuit is straight forward as follows. 

When the clock is low, both AND gates are disabled, there fore D can change values with 

out affecting the value of Q. On the other hand, when the clock is high, both AND gates 

are enabled. In this case, Q is forced equal to D when the clock again goes low, Q retains 

or stores the last value of D. The truth table for such a flip flop is as given below in table 

6. 

 

Table 6: Truth table for D Flip Flop 



 

 

Table 7: Excitation table for D Flip Flop 

 

3.4 JK FLIP FLOP 

One of the most useful and versatile flip flop is the JK flip flop the unique features of a JK 

flip flop are: 

If the J and K input are both at 1 and the clock pulse is applied, then the output will 

change state, regardless of its previous condition. 

If both J and K inputs are at 0 and the clock pulse is applied there will be no change in the 

output. There is no indeterminate condition, in the operation of JK flip flop i.e. it has no 

ambiguous state. The circuit diagram for a JK flip flop is shown in Figure 4. 



 

 
 

Figure 4: JK Flip Flop 

When J = 0 and K = 0 

 

These J and K inputs disable the NAND gates, therefore clock pulse have no effect on the 

flip flop. In other words, Q returns it last value. 

When J = 0 and K = 1, 

The upper NAND gate is disabled the lower NAND gate is enabled if Q is 1 therefore, flip 

flop will be reset (Q = 0 ,    =1)if not already in thatstate. 

When J = 1 and K = 0 

The lower NAND gate is disabled and the upper NAND gate is enabled if   is at 1, As a 

result we will be able to set the flip flop ( Q = 1,    = 0) if not alreadyset 

When J = 1 and K = 1 

If Q = 0 the lower NAND gate is disabled the upper NAND gate is enabled. This will set 

the flip flop and hence Q will be 1. On the other hand if Q = 1, the lower NAND gate is 

enabled and flip flop will be reset and hence Q will be 0. In other words , when J and K 

are both high, the clock pulses cause the JK flip flop to toggle. Truth table for JK flip flop 

is shown in table 8. 

Table 8: The truth table for the JK flip flop 

 



Table 6: Excitation table for JK Flip Flop 

 

3.5 T FLIP FLOP 

A method of avoiding the indeterminate state found in the working of RS flip flop is to 

provide only one input ( the T input ) such, flip flop acts as a toggle switch. Toggle means 

to change in the previous stage i.e. switch to opposite state. It can be constructed from 

clocked RS flip flop be incorporating feedback from output to input as shown in Figure 5. 

 

 

Figure 5: T Flip Flop 

Such a flip flop is also called toggle flip flop. In such a flip flop a train of extremely 

narrow triggers drives the T input each time one of these triggers, the output of the flip 

flop changes stage. For instance Q equals 0 just before the trigger. Then the upper AND 

gate is enable and the lower AND gate is disabled. When the trigger arrives, it results in a 

high S input. 

This sets the Q output to 1. When the next trigger appears at the point T, the lower AND 

gate is enabled and the trigger passes through to the R input this forces the flip flop to 

reset. 

Since each incoming trigger is alternately changed into the set and reset inputs the flip 

flop toggles. It takes two triggers to produce one cycle of the output waveform. This 

means the output has half the frequency of the input stated another way, a T flip flop 

divides the input frequency by two. Thus such a circuit is also called a divide by two 

circuits. 



A disadvantage of the toggle flip flop is that the state of the flip flop after a trigger pulse 

has been applied is only known if the previous state is known. The truth table for a T flip 

flop is as given table 7. 

 

           Table 7: Truth table for T Flip Flop 

 
 

Table 8: Excitation table for T Flip Flop 

 

Generally T flip flop ICs are not available. It can be constructed using JK, RS or D flip 

flop. Figure 6 shows the relation of T flip flop using JK flip flop. 

 

A D-type flip flop may be modified by external connection as a T-type stage as shown in 

Figure 7. Since the Q logic is used as D-input the opposite of the Q output is transferred into 

the stage each clock pulse. Thus the stage having Q - 0 transistors     = 1, Providing a toggle 

action, if the stage had Q = 1 the clock pulse would result in Q = 0 being transferred, again 

providing the toggle operation. The D-type flip flop connected as in Figure 6 will thus 

operate as a T-type stage, complementing each clock pulse. 

Master Slave Flip Flop 

Figure 8 shows the schematic diagram of master sloave J-K flip flop 



 

Figure 8: Master Slave JK Flip Flop 

A master slave flip flop contains two clocked flip flops. The first is called master and the 

second slave. When the clock is high the master is active. The output of the master is set or 

reset according to the state of the input. As the slave is inactive during this period its output 

remains in the previous state. When clock becomes low the output of the slave flip flop 

changes because it become active during low clock period. The final output of master slave 

flip flop is the output of the slave flip flop. So the output of master slave flip flop is available 

at the end of a clock pulse. 

 

3.6 SHIFT REGISTER 

In digital circuits, a  shift  register  is  a  cascade  of flip flops, sharing the same clock, in 

which the output of each flip-flop is connected to the "data" input of the next flip-flop in the 

chain, resulting in a circuit that shifts by one position the "bit array" stored in it, "shifting in" 

the data present at its input and 'shifting out' the last bit in the array, at each transition of the 

clock input. 

What is Shift Register: 

Shift Registers are sequential logic circuits, capable of storage and transfer of data. They are 

made up of Flip Flops which are connected in such a way that the output of one flip flop 

could serve as the input of the other flip-flop, depending on the type of shift registers being 

created. 

Types of Shift Registers 

Shift registers are categorized into types majorly by their mode of operation, either serial or 

parallel. There are six (6) basic types of shift registers which are listed below although some 

of them can be further divided based on direction of data flow either shift right or shift left. 

 

Serial in – Serial out Shift Register (SISO) 

Serial In – Parallel out shift Register (SIPO) 

Parallel in – Parallel out Shift Register (PIPO) 

https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Bit_array


Parallel in – Serial out Shift Register (PISO) 

Bidirectional Shift Registers 

Serial In − Serial Out SISO Shift Register 

The shift register, which allows serial input and produces serial output is known as Serial In – 

Serial Out SISOSISO shift register. The block diagram of 3-bit SISO shift register is shown 

in the following figure. 

 

This block diagram consists of three D flip-flops, which are cascaded. That means, output of 

one D flip-flop is connected as the input of next D flip-flop. All these flip-flops are 

synchronous with each other since, the same clock signal is applied to each one. 

In this shift register, we can send the bits serially from the input of left most D flip-flop. 

Hence, this input is also called as serial input. For every positive edge triggering of clock 

signal, the data shifts from one stage to the next. So, we can receive the bits serially from the 

output of right most D flip-flop. Hence, this output is also called as serial output. 

Example 

Let us see the working of 3-bit SISO shift register by sending the binary 

information “011” from LSB to MSB serially at the input. 

Assume, initial status of the D flip-flops from leftmost to rightmost is Q2Q1Q0=000. We can 

understand the working of 3-bit SISO shift register from the following table. 

 



The initial status of the D flip-flops in the absence of clock signal is Q2Q1Q0=000. Here, the 

serial output is coming from Q0. So, the LSB 11 is received at 3rd positive edge of clock and 

the MSB 0 is received at 5th positive edge of clock. 

Therefore, the 3-bit SISO shift register requires five clock pulses in order to produce the valid 

output. Similarly, the N-bit SISO shift register requires 2N-1 clock pulses in order to shift 

‘N’ bit information. 

Serial In - Parallel Out SIPOSIPO Shift Register 

The shift register, which allows serial input and produces parallel output is known as Serial In 

– Parallel Out SIPO SIPO shift register. The block diagram of 3-bit SIPO shift register is 

shown in the following figure. 

 

This circuit consists of three D flip-flops, which are cascaded. That means, output of one D 

flip-flop is connected as the input of next D flip-flop. All these flip-flops are synchronous 

with each other since, the same clock signal is applied to each one. 

In this shift register, we can send the bits serially from the input of left most D flip-flop. 

Hence, this input is also called as serial input. For every positive edge triggering of clock 

signal, the data shifts from one stage to the next. In this case, we can access the outputs of 

each D flip-flop in parallel. So, we will get parallel outputs from this shift register. 

Example 

Let us see the working of 3-bit SIPO shift register by sending the binary 

information “011” from LSB to MSB serially at the input. 

 

 

 

 

 

 

 



Assume, initial status of the D flip-flops from leftmost to rightmost is Q2Q1Q0=000. 

Here, Q2Q2 & Q0Q0 are MSB & LSB respectively. We can understand the working of 3-bit 

SIPO shift register from the following table. 

 

No of positive edge of Clock Serial Input Q2MSBMSB Q1 Q0LSBLSB 

0 - 0 0 0 

1 1LSBLSB 1 0 0 

2 1 1 1 0 

3 0MSBMSB 0 1 1 

 

 

The initial status of the D flip-flops in the absence of clock signal is Q2Q1Q0=000. The 

binary information “011” is obtained in parallel at the outputs of D flip-flops for third 

positive edge of clock. 

So, the 3-bit SIPO shift register requires three clock pulses in order to produce the valid 

output. Similarly, the N-bit SIPO shift register requires N clock pulses in order to shift ‘N’ 

bit information. 

Parallel In − Serial Out PISOPISO Shift Register 

The shift register, which allows parallel input and produces serial output is known as 

Parallel In − Serial Out PISOPISO shift register. The block diagram of 3-bit PISO shift 

register is shown in the following figure. 

 

 

 



This circuit consists of three D flip-flops, which are cascaded. That means, output of one D 

flip-flop is connected as the input of next D flip-flop. All these flip-flops are synchronous 

with each other since, the same clock signal is applied to each one. 

In this shift register, we can apply the parallel inputs to each D flip-flop by making Preset 

Enable to 1. For every positive edge triggering of clock signal, the data shifts from one stage 

to the next. So, we will get the serial output from the right most D flip-flop. 

Example 

Let us see the working of 3-bit PISO shift register by applying the binary 

information “011” in parallel through preset inputs. 

Since the preset inputs are applied before positive edge of Clock, the initial status of the D 

flip-flops from leftmost to rightmost will be Q2Q1Q0=011. We can understand the working 

of 3-bit PISO shift register from the following table. 

 

No of positive edge of Clock Q2 Q1 Q0 

0 0 1 1LSBLSB 

1 - 0 1 

2 - - 0LSBLSB 

 

Here, the serial output is coming from Q0. So, the LSB 1 is received before applying positive 

edge of clock and the MSB 00 is received at 2nd positive edge of clock. 

Therefore, the 3-bit PISO shift register requires two clock pulses in order to produce the 

valid output. Similarly, the N-bit PISO shift register requires N-1 clock pulses in order to 

shift ‘N’ bit information. 

Parallel In - Parallel Out PIPOPIPO Shift Register 

The shift register, which allows parallel input and produces parallel output is known as 

Parallel In − Parallel Out PIPO PIPO shift register. The block diagram of 3-bit PIPO shift 

register is shown in the following figure. 



 

This circuit consists of three D flip-flops, which are cascaded. That means, output of one D 

flip-flop is connected as the input of next D flip-flop. All these flip-flops are synchronous 

with each other since, the same clock signal is applied to each one. 

In this shift register, we can apply the parallel inputs to each D flip-flop by making Preset 

Enable to 1. We can apply the parallel inputs through preset or clear. These two are 

asynchronous inputs. That means, the flip-flops produce the corresponding outputs, based on 

the values of asynchronous inputs. In this case, the effect of outputs is independent of clock 

transition. So, we will get the parallel outputs from each D flip-flop. 

Example 

Let us see the working of 3-bit PIPO shift register by applying the binary 

information “011” in parallel through preset inputs. 

Since the preset inputs are applied before positive edge of Clock, the initial status of the D 

flip-flops from leftmost to rightmost will be Q2Q1Q0=011. So, the binary 

information “011” is obtained in parallel at the outputs of D flip-flops before applying 

positive edge of clock. 

Therefore, the 3-bit PIPO shift register requires zero clock pulses in order to produce the 

valid output. Similarly, the N-bit PIPO shift register doesn’t require any clock pulse in order 

to shift ‘N’ bit information. 

3.7 COUNTERS 

Counter is a sequential circuit. A digital circuit which is used for a counting pulses is known 

counter. Counter is the widest application of flip-flops. It is a group of flip-flops with a 

clock signal applied. Counters are of two types. 

 Asynchronous or ripple counters. 

 Synchronous counters 

 



3.8 RIPPLE COUNTER 

The logic diagram of a 2-bit ripple up counter is shown in figure. The toggle (T) flip-flop are 

being used. But we can use the JK flip-flop also with J and K connected permanently to 

logic 1. External clock is applied to the clock input of flip-flop A and QA output is applied to 

the clock input of the next flip-flop i.e. FF-B. 

Logical Diagram 

 

Operation 

S.N. Condition Operation 

1 Initially let both the FFs be in the reset state QBQA = 00 initially 

2 After 1st negative clock edge 
As soon as the first negative clock edge is 

applied, FF-A will toggle and QA will be 

equal to 1. 

QA is connected to clock input of FF-B. 

Since QA has changed from 0 to 1, it is 

treated as the positive clock edge by FF-B. 

There is no change in QB because FF-B is 

a negative edge triggered FF. 

QBQA = 01 after the first clock pulse. 

3 After 2nd negative clock edge 
On the arrival of second negative clock 

edge, FF-A toggles again and QA = 0. 

The change in QA acts as a negative clock 

edge for FF-B. So it will also toggle, and 

QB will be 1. 

QBQA = 10 after the second clock pulse. 



4 After 3rd negative clock edge 
On the arrival of 3rd negative clock edge, 

FF-A toggles again and QA become 1 from 

0. 

Since this is a positive going change, FF-B 

does not respond to it and remains inactive. 

So QB does not change and continues to be 

equal to 1. 

QBQA = 11 after the third clock pulse. 

5 After 4th negative clock edge 
On the arrival of 4th negative clock edge, 

FF-A toggles again and QA becomes 1 

from 0. 

This negative change in QA acts as clock 

pulse for FF-B. Hence it toggles to change 

QB from 1 to 0. 

QBQA = 00 after the fourth clock pulse. 

Truth Table 

 

 

3.9 SYNCHRONOUS COUNTER 

If the "clock" pulses are applied to all the flip-flops in a counter simultaneously, then such a 

counter is called as synchronous counter. 

2-bit Synchronous up counter 

The JA and KA inputs of FF-A are tied to logic 1. So FF-A will work as a toggle flip-flop. 

The JB and KB inputs are connected to QA. 



Logical Diagram 

 

Operation 

S.N. Condition Operation 

1 Initially let both the FFs be in the reset state QBQA = 00 initially. 

2 After 1st negative clock edge 
As soon as the first negative clock edge is 

applied, FF-A will toggle and QA will 

change from 0 to 1. 

But at the instant of application of negative 

clock edge, QA , JB = KB = 0. Hence FF-B 

will not change its state. So QB will remain 

0. 

QBQA = 01 after the first clock pulse. 

3 After 2nd negative clock edge 
On the arrival of second negative clock 

edge, FF-A toggles again and QA changes 

from 1 to 0. 

But at this instant QA was 1. So JB = KB= 1 

and FF-B will toggle. Hence QB changes 

from 0 to 1. 

QBQA = 10 after the second clock pulse. 

4 After 3rd negative clock edge 
On application of the third falling clock 

edge, FF-A will toggle from 0 to 1 but there 

is no change of state for FF-B. 

QBQA = 11 after the third clock pulse. 



5 After 4th negative clock edge 
On application of the next clock pulse, 

QA will change from 1 to 0 as QB will also 

change from 1 to 0. 

QBQA = 00 after the fourth clock pulse. 
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4.1 ADDERS 

 

Half adder 

Half adder is a combinational logic circuit with two inputs and two outputs. The half adder 

circuit is designed to add two single bit binary number A and B. It is the basic building 

block for addition of two single bit numbers. This circuit has two outputs carry and sum. 

 

   

 

Full Adder 

Full adder is developed to overcome the drawback of Half Adder circuit. It can add two 

one-bit numbers A and B, and carry c. The full adder is a three input and two output 

combinationalcircuit. 
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4.2 SUBTRACTORS 

Half Subtractors 

Half subtractor is a combination circuit with two inputs and two outputs (difference and 

borrow). It produces the difference between the two binary bits at the input and also 

produces an output (Borrow) to indicate if a 1 has been borrowed. In the subtraction (A-B), 

A is called as Minuend bit and B is called as Subtrahend bit. 
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Full Subtractors 

The disadvantage of a half subtractor is overcome by full subtractor. The full subtractor is a 

combinational circuit with three inputs A,B,C and two output D and C'. A is the 'minuend', 

B is 'subtrahend', C is the 'borrow' produced by the previous stage, D is the difference 

output and C' is the borrow output. 

 

 

 

The circuit for subtracting A - B consists of an adder with inverters placed between each 

data input B and the corresponding input of the full adder. The input carry C0 must be 

equal to 1 when subtraction is performed. The operation thus performed becomes A, plus 

the 1’s complement of B, plus 1. This is equal to A plus the 2’s complement of B. 

  

4.3 ENCODER 
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An Encoder is a combinational circuit that performs the reverse operation of Decoder. It has 

maximum of 2n input lines and ‘n’ output lines. It will produce a binary code equivalent to 

the input, which is active High. Therefore, the encoder encodes 2n input lines with ‘n’ bits. It 

is optional to represent the enable signal in encoders. 

4 to 2 Encoder 

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The block 

diagram of 4 to 2 Encoder is shown in the following figure. 

 

At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary code at 

the output. The Truth table of 4 to 2 encoder is shown below. 

 

From Truth table, we can write the Boolean functions for each output as 

A1=Y3+Y2 

A0=Y3+Y1 

We can implement the above two Boolean functions by using two input OR gates. The circuit 

diagram of 4 to 2 encoder is shown in the following figure. 
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Priority Encoder 

 4 to 2 priority encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. Here, the 

input, Y3 has the highest priority, whereas the input, Y0 has the lowest priority. In this case, 

even if more than one input is ‘1’ at the same time, the output will be the binarybinary code 

corresponding to the input, which is having higher priority. 

We considered one more output, V in order to know, whether the code available at outputs is 

valid or not. 

 If at least one input of the encoder is ‘1’, then the code available at outputs is a valid 

one. In this case, the output, V will be equal to 1. 

 If all the inputs of encoder are ‘0’, then the code available at outputs is not a valid 

one. In this case, the output, V will be equal to 0. 

The Truth table of 4 to 2 priority encoder is shown below. 

 

Use 4 variable K-maps for getting simplified expressions for each output. 

 

The simplified Boolean functions are 

A1=Y3+Y2A1=Y3+Y2 

A0=Y3+Y2′Y1 
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milarly, we will get the Boolean function of output, V as 

V=Y3+Y2+Y1+Y0V=Y3+Y2+Y1+Y0 

We can implement the above Boolean functions using logic gates. The circuit diagram of 4 to 

2 priority encoder is shown in the following figure. 

 

The above circuit diagram contains two 2-input OR gates, one 4-input OR gate, one 2input 

AND gate & an inverter. Here AND gate & inverter combination are used for producing a 

valid code at the outputs, even when multiple inputs are equal to ‘1’ at the same time. Hence, 

this circuit encodes the four inputs with two bits based on the priority assigned to each input. 

 

4.4 DECODER 

Decoder is a combinational circuit that has ‘n’ input lines and maximum of 2n output lines. 

One of these outputs will be active High based on the combination of inputs present, when 

the decoder is enabled. That means decoder detects a particular code. The outputs of the 

decoder are nothing but the min terms of ‘n’ input variables lines lines, when it is enabled. 

2 to 4 Decoder 

Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y0. The block 

diagram of 2 to 4 decoder is shown in the following figure. 

 

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is ‘1’. 

The Truth table of 2 to 4 decoder is shown below. 
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From Truth table, we can write the Boolean functions for each output as 

Y3=E.A1.A0Y3=E.A1.A0 

Y2=E.A1.A0′Y2=E.A1.A0′ 

Y1=E.A1′.A0 

Y0=E.A1′.A0′ 

Each output is having one product term. So, there are four product terms in total. We can 

implement these four product terms by using four AND gates having three inputs each & two 

inverters. The circuit diagram of 2 to 4 decoder is shown in the following figure. 

 

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input variables 

A1 & A0, when enable, E is equal to one. If enable, E is zero, then all the outputs of decoder 

will be equal to zero. 

Similarly, 3 to 8 decoder produces eight min terms of three input variables A2, A1 & A0 and 4 

to 16 decoder produces sixteen min terms of four input variables A3, A2, A1 & A0. 

Implementation of Higher-order Decoders 

3 to 8 Decoder 

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders. We know that 2 to 4 

Decoder has two inputs, A1 & A0 and four outputs, Y3 to Y0. Whereas, 3 to 8 Decoder has 

three inputs A2, A1 & A0 and eight outputs, Y7 to Y0.We can find the number of lower order 

decoders required for implementing higher order decoder using the following formula. 
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Required number of lower order decoders= m2/m1 

Where, 

m1is the number of outputs of lower order decoder. 

m2 is the number of outputs of higher order decoder. 

Here, m1 = 4 and m2 = 8. Substitute, these two values in the above formula. 

Required number of 2to4 decoders = 8/4  

Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder. The block 

diagram of 3 to 8 decoder using 2 to 4 decoders is shown in the following figure. 

 

The parallel inputs A1 & A0 are applied to each 2 to 4 decoder. The complement of input 

A2 is connected to Enable, E of lower 2 to 4 decoder in order to get the outputs, Y3 to Y0. 

These are the lower four min terms. The input, A2 is directly connected to Enable, E of upper 

2 to 4 decoder in order to get the outputs, Y7 to Y4. These are the higher four min terms. 

4.5 MULTIPLEXER 

Multiplexer is a combinational circuit that has maximum of 2n data inputs, ‘n’ selection lines 

and single output line. One of these data inputs will be connected to the output based on the 

values of selection lines.Since there are ‘n’ selection lines, there will be 2n possible 

combinations of zeros and ones. So, each combination will select only one data input. 

Multiplexer is also called as Mux. 

4x1 Multiplexer 

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one output 

Y. The block diagram of 4x1 Multiplexer is shown in the following figure. 
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One of these 4 inputs will be connected to the output based on the combination of inputs 

present at these two selection lines. Truth table of 4x1 Multiplexer is shown below. 

 

From Truth table, we can directly write the Boolean function for output, Y as 

Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3 

We can implement this Boolean function using Inverters, AND gates & OR gate. The circuit 

diagram of 4x1 multiplexer is shown in the following figure. 

 

we can easily understand the operation of the above circuit. Similarly, you can implement 

8x1 Multiplexer and 16x1 multiplexer by following the same procedure. 

Implementation of Higher-order Multiplexers 

Now, let us implement the following two higher-order Multiplexers using lower-order 

Multiplexers. 

 8x1 Multiplexer 

 16x1 Multiplexer 
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8x1 Multiplexer 

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 

Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one 

output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output.So, we 

require two 4x1 Multiplexers in first stage in order to get the 8 data inputs. Since, each 4x1 

Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by 

considering the outputs of first stage as inputs and to produce the final output. 

Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0 and one 

output Y. The Truth table of 8x1 Multiplexer is shown below. 

 

16x1 Multiplexer 

In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1 

Multiplexer. We know that 8x1 Multiplexer has 8 data inputs, 3 selection lines and one 

output. Whereas, 16x1 Multiplexer has 16 data inputs, 4 selection lines and one output. So, 

we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs. Since, each 

8x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by 

considering the outputs of first stage as inputs and to produce the final output. 

Let the 16x1 Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0 and one 

output Y. The Truth table of 16x1 Multiplexer is shown below. We can implement 16x1 

Multiplexer using lower order Multiplexers easily by considering the above Truth table. 

The block diagram of 16x1 Multiplexer is shown in the following figure. 
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The same selection lines, s2, s1 & s0 are applied to both 8x1 Multiplexers. The data inputs of 

upper 8x1 Multiplexer are I15 to I8 and the data inputs of lower 8x1 Multiplexer are I7 to I0. 

Therefore, each 8x1 Multiplexer produces an output based on the values of selection lines, s2, 

s1 & s0. 

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is 

present in second stage. The other selection line, s3 is applied to 2x1 Multiplexer. 

 If s3 is zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is7 to 

I0 based on the values of selection lines s2, s1 & s0. 

 If s3 is one, then the output of 2x1 Multiplexer will be one of the 8 inputs I15 to 

I8 based on the values of selection lines s2, s1 & s0. 

Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer 

performs as one 16x1 Multiplexer. 
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4.6 De-MULTIPLEXER  

De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. 

It has single input, ‘n’ selection lines and maximum of 2n outputs. The input will be 

connected to one of these outputs based on the values of selection lines. Since there are ‘n’ 

selection lines, there will be 2n possible combinations of zeros and ones. So, each 

combination can select only one output. De-Multiplexer is also called as De-Mux. 

1x4 De-Multiplexer 

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four outputs Y3, Y2, 

Y1 &Y0. The block diagram of 1x4 De-Multiplexer is shown in the following figure. 

 

The single input ‘I’ will be connected to one of the four outputs, Y3 to Y0 based on the values 

of selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown below. 

 

From the above Truth table, we can directly write the Boolean functions for each output as 

Y3=s1s0IY3=s1s0I 

Y2=s1s0′IY2=s1s0′I 

Y1=s1′s0IY1=s1′s0I 

Y0=s1′s0′I 

We can implement these Boolean functions using Inverters & 3-input AND gates. The circuit 

diagram of 1x4 De-Multiplexer is shown in the following figure. 
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We can easily understand the operation of the above circuit. Similarly, you can implement 

1x8 De-Multiplexer and 1x16 De-Multiplexer by following the same procedure. 

Implementation of Higher-order De-Multiplexers 

Now, let us implement the following two higher-order De-Multiplexers using lower-order 

De-Multiplexers. 

 1x8 De-Multiplexer 

 1x16 De-Multiplexer 

1x8 De-Multiplexer 

In this section, let us implement 1x8 De-Multiplexer using 1x4 De-Multiplexers and 1x2 De-

Multiplexer. We know that 1x4 De-Multiplexer has single input, two selection lines and four 

outputs. Whereas, 1x8 De-Multiplexer has single input, three selection lines and eight 

outputs. 

So, we require two 1x4 De-Multiplexers in second stage in order to get the final eight 

outputs. Since, the number of inputs in second stage is two, we require 1x2 DeMultiplexer in 

first stage so that the outputs of first stage will be the inputs of second stage. Input of this 1x2 

De-Multiplexer will be the overall input of 1x8 De-Multiplexer. 

Let the 1x8 De-Multiplexer has one input I, three selection lines s2, s1 & s0 and outputs Y7 to 

Y0. The Truth table of 1x8 De-Multiplexer is shown below. 
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We can implement 1x8 De-Multiplexer using lower order Multiplexers easily by considering 

the above Truth table. The block diagram of 1x8 De-Multiplexer is shown in the following 

figure. 

 

The common selection lines, s1 & s0 are applied to both 1x4 De-Multiplexers. The outputs of 

upper 1x4 De-Multiplexer are Y7 to Y4 and the outputs of lower 1x4 De-Multiplexer are Y3 to 

Y0.The other selection line, s2 is applied to 1x2 De-Multiplexer. If s2 is zero, then one of the 

four outputs of lower 1x4 De-Multiplexer will be equal to input, I based on the values of 

selection lines s1 & s0. Similarly, if s2 is one, then one of the four outputs of upper 1x4 

DeMultiplexer will be equal to input, I based on the values of selection lines s1 & s0. 

1x16 De-Multiplexer 

In this section, let us implement 1x16 De-Multiplexer using 1x8 De-Multiplexers and 1x2 

De-Multiplexer. We know that 1x8 De-Multiplexer has single input, three selection lines and 

eight outputs. Whereas, 1x16 De-Multiplexer has single input, four selection lines and sixteen 

outputs. 

So, we require two 1x8 De-Multiplexers in second stage in order to get the final sixteen 

outputs. Since, the number of inputs in second stage is two, we require 1x2 DeMultiplexer in 

first stage so that the outputs of first stage will be the inputs of second stage. Input of this 1x2 

De-Multiplexer will be the overall input of 1x16 De-Multiplexer. Let the 1x16 De-

Multiplexer has one input I, four selection lines s3, s2, s1 & s0 and outputs Y15 to Y0. 

The block diagram of 1x16 De-Multiplexer using lower order Multiplexers is shown in the 

following figure. 
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The common selection lines s2, s1 & s0 are applied to both 1x8 De-Multiplexers. The outputs 

of upper 1x8 De-Multiplexer are Y15 to Y8 and the outputs of lower 1x8 DeMultiplexer are 

Y7 to Y0.The other selection line, s3 is applied to 1x2 De-Multiplexer. If s3 is zero, then one 

of the eight outputs of lower 1x8 De-Multiplexer will be equal to input, I based on the values 

of selection lines s2, s1 & s0. Similarly, if s3 is one, then one of the 8 outputs of upper 1x8 De-

Multiplexer will be equal to input, I based on the values of selection lines s2, s1 & s0. 

4.7 ROM 

ROM stands for Read Only Memory. The memory from which we can only read but cannot 

write on it. This type of memory is non-volatile. The information is stored permanently in 

such memories during manufacture. A ROM stores such instructions that are required to start 

a computer. This operation is referred to as bootstrap. ROM chips are not only used in the 

computer but also in other electronic items like washing machine and microwave oven. 

MROM (Masked ROM) 

The very first ROMs were hard-wired devices that contained a pre-programmed set of data or 

instructions. These kind of ROMs are known as masked ROMs, which are inexpensive. 

PROM (Programmable Read Only Memory) 

PROM is read-only memory that can be modified only once by a user. The user buys a blank 

PROM and enters the desired contents using a PROM program. Inside the PROM chip, there 

are small fuses which are burnt open during programming. It can be programmed only once 

and is not erasable. 

EPROM (Erasable and Programmable Read Only Memory) 

EPROM can be erased by exposing it to ultra-violet light for a duration of up to 40 minutes. 

Usually, an EPROM eraser achieves this function. During programming, an electrical charge 

is trapped in an insulated gate region. The charge is retained for more than 10 years because 

the charge has no leakage path. For erasing this charge, ultra-violet light is passed through a 

quartz crystal window (lid). This exposure to ultra-violet light dissipates the charge. During 

normal use, the quartz lid is sealed with a sticker. 

EEPROM (Electrically Erasable and Programmable Read Only Memory) 

EEPROM is programmed and erased electrically. It can be erased and reprogrammed about 

ten thousand times. Both erasing and programming take about 4 to 10 ms (millisecond). In 

EEPROM, any location can be selectively erased and programmed. EEPROMs can be erased 

one byte at a time, rather than erasing the entire chip. Hence, the process of reprogramming is 

flexible but slow. 

Advantages of ROM 

The advantages of ROM are as follows − 
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 Non-volatile in nature 

 Cannot be accidentally changed 

 Cheaper than RAMs 

 Easy to test 

 More reliable than RAMs 

 Static and do not require refreshing 

 Contents are always known and can be verified 

4.8 PLA 

PLA is a programmable logic device that has both Programmable AND array & 

Programmable OR array. Hence, it is the most flexible PLD. The block diagram of PLA is 

shown in the following figure. 

 

Here, the inputs of AND gates are programmable. That means each AND gate has both 

normal and complemented inputs of variables. So, based on the requirement, we can program 

any of those inputs. So, we can generate only the required product terms by using these AND 

gates. 

Here, the inputs of OR gates are also programmable. So, we can program any number of 

required product terms, since all the outputs of AND gates are applied as inputs to each OR 

gate. Therefore, the outputs of PAL will be in the form of sum of products form. 

Example 

Let us implement the following Boolean functions using PLA. 

A=XY+XZ′ 

 B=XY′+YZ+XZ′ 

The given two functions are in sum of products form. The number of product terms present in 

the given Boolean functions A & B are two and three respectively. One product term, Z′X is 

common in each function. 

So, we require four programmable AND gates & two programmable OR gates for producing 

those two functions. The corresponding PLA is shown in the following figure. 
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The programmable AND gates have the access of both normal and complemented inputs of 

variables. In the above figure, the inputs X, X′, Y, Y′, Z & Z′, are available at the inputs of 

each AND gate. So, program only the required literals in order to generate one product term 

by each AND gate. 

All these product terms are available at the inputs of each programmable OR gate. But, only 

program the required product terms in order to produce the respective Boolean functions by 

each OR gate. The symbol ‘X’ is used for programmable connections. 

4.9 DESIGNING OF CIRCUITS USING PLA 

Basic block diagram for PLA:  

  

 

 

 

Following Truth table will be helpful in understanding function on no of inputs-  

  

 

F1 = AB’C’ + AB’C + ABC’ + ABC  

on simplifying we get : F1 = AB + AC’  
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F2 = A’BC + AB’C + ABC  

on simplifying we get: F2 = BC + AC  

For realization of above function following circuit diagram will be used.  

  

 

PLA is used for implementation of various combinational circuits using buffer, AND gate and 

OR gate. In PLA, all the minterms are not realized but only required minterms are 

implemented. As PLA has programmable AND gate array and programmable OR gate array, it 

provides more flexibility but disadvantage is, it is not easy to use.  

Applications:  

  

 PLA is used to provide control over datapath. 

 PLA is used as a counter. 

 PLA is used as a decoders. 

 PLA is used as a BUS interface in programmed I/O. 

 

 

 

 

 

 



20 
 

4.10 DESIGNING OF CIRCUITS USING MUX 

Given a SOP function and a multiplexer is also given. We will need to implement the given 

SOP function using the given MUX. 

There are certain steps involved in it: 

Step 1: Draw the truth table for the given number of variable function. 

Step 2: Consider one variable as input and remaining variables as select lines. 

Step 3: Form a matrix where input lines of MUX are columns and input variable and its 

compliment are rows. 

Step 4: Find AND between both rows on the basis of the truth table. 

Step 5: Hence whatever is found is considered as input of MUX. 

We will illustrate it with an example: 

Example: 
Given SOP function f(A, B, C) = m(0, 1, 4, 6, 7) and MUX is 

 

 

 

 

 

For 3 variable function, the truth table is 

https://www.geeksforgeeks.org/multiplexers-in-digital-logic/
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Let A and B are the select lines and C be the input, 

 

 

Thus, for the implementation of given logical function, required is one 4×1 MUX and and 

inverter. 
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5.1 DESIGN OF ALU  

Microprocessors tend to have a single module that performs arithmetic operations on integer 

values. This is because many of the different arithmetic and logical operations can be 

performed using similar (if not identical) hardware. The component that performs the 

arithmetic and logical operations is known as the Arithmetic Logic Unit, or ALU.  

The ALU is one of the most important components in a microprocessor, and is typically the 

part of the processor that is designed first. Once the ALU is designed, the rest of the 

microprocessor is implemented to feed operands and control codes to the ALU.An arithmetic 

logic unit (ALU) performs arithmetic and logic operations. 

 

 

A and B are the inputs to the ALU (aka operands),  R is the Output or Result,  F is the  Code 

or Instruction from the Control Unit (aka as op-code),  D is the Output status; it indicates 

cases such as: carry-in, carry-out, overflow, division-by-zero, etc. 

 

 

ALU has 3 Main Parts: 

 1. An arithmetic circuit (add, subtract) 

 2. A logic circuit (bitwise operation) 

 3. A selector to choose between the two circuits 
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To Design a ALU, the arithmetic section, logic section and the selector Section hast obe 

designed and all the three sections has to be Combined. 

Arithmetic Section 
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Logic Section 
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Selector Section 

 

 

 

5.2 DESIGN OF STATUS REGISTER 

A status register, flag register, or condition code register (CCR) is a collection of 

status flag bits for a processor. Examples of such registers include FLAGS register in the x86 

architecture. The status register is a hardware register that contains information about the 

state of the processor. Individual bits are implicitly or explicitly read and/or written by 

the machine code instructions executing on the processor. The status register lets an 

instruction take action contingent on the outcome of a previous instruction. 

Typically, flags in the status register are modified as effects of arithmetic and bit 

manipulation operations. For example, a Z bit may be set if the result of the operation is zero 

and cleared if it is nonzero. Other classes of instructions may also modify the flags to indicate 

status. For example, a string instruction may do so to indicate whether the instruction 

terminated because it found a match/mismatch or because it found the end of the string. The 

flags are read by a subsequent conditional instruction so that the specified action (depending 

on the processor, a jump, call, return, or so on) occurs only if the flags indicate a specified 

result of the earlier instruction. A status register may often have other fields as well, such as 

more specialized flags, interrupt enable bits, and similar types of information. During an 

interrupt, the status of the thread currently executing can be preserved (and later recalled) by 

storing the current value of the status register along with the program counter and other active 

registers into the machine stack or some other reserved area of memory. 

Common flags 

This is a list of the most common CPU status register flags, implemented in almost all 

modern processors. 

Flag Name Description 

Z Zero flag Indicates that the result of an arithmetic or logical operation (or, 

sometimes, a load) was zero. 

https://en.wikipedia.org/wiki/Hardware_register
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Zero_flag
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C Carry flag Enables numbers larger than a single word to be 

added/subtracted by carrying a binary digit from a less 

significant word to the least significant bit of a more significant 

word as needed. It is also used to extend bit shifts and rotates in 

a similar manner on many processors (sometimes done via a 

dedicated X flag). 

S / N Sign flag 

Negative flag 

Indicates that the result of a mathematical operation is negative. 

In some processors,[2] the N and S flags are distinct with 

different meanings and usage: One indicates whether the last 

result was negative whereas the other indicates whether a 

subtraction or addition has taken place. 

V / O / W Overflow 

flag 

Indicates that the signed result of an operation is too large to fit 

in the register width using two's complement representation. 

Other flags 

On some processors, the status register also contains flags such as these: 

Flag Name Description 

H / A / DC Half-carry 

flag 

Auxiliary flag 

Digit Carry 

Decimal 

adjust flag 

Indicates that a bit carry was produced between 

the nibbles (typically between the 4-bit halves of a byte 

operand) as a result of the last arithmetic operation. Such a flag 

is generally useful for implementing BCD arithmetic operations 

on binary hardware. 

P Parity flag  Indicates whether the number of set bits of the last result is odd 

or even. 

I Interrupt flag  On some processors, this bit indicates whether interrupts are 

enabled or masked.[3] If the processor has 

multiple interrupt priority levels, such as the PDP-11, several 

bits may be used to indicate the priority of the current thread, 

allowing it to be interrupted only by hardware set to a higher 

priority. On other architectures, a bit may indicate that an 

interrupt is currently active, and that the current thread is part 

https://en.wikipedia.org/wiki/Carry_flag
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Bit_shift
https://en.wikipedia.org/wiki/Negative_flag
https://en.wikipedia.org/wiki/Status_register#cite_note-2
https://en.wikipedia.org/wiki/Overflow_flag
https://en.wikipedia.org/wiki/Overflow_flag
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Half-carry_flag
https://en.wikipedia.org/wiki/Half-carry_flag
https://en.wikipedia.org/wiki/Nibble
https://en.wikipedia.org/wiki/Binary-coded_decimal
https://en.wikipedia.org/wiki/Parity_flag
https://en.wikipedia.org/wiki/Interrupt_flag
https://en.wikipedia.org/wiki/Status_register#cite_note-3
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/PDP-11_architecture#Interrupts
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of an interrupt handler. 

S Supervisor 

flag 

On processors that provide two or more protection rings, one or 

more bits in the status register indicate the ring of the current 

thread (how trusted it is, or whether it must use the operating 

system for requests that could hinder other threads). On a 

processor with only two rings, a single bit may distinguish 

Supervisor from User mode. 

 

 

 

5.3 DESIGN OF ACCUMULATOR 

It is an 8-bit register that is part of ALU. This register is used to store 8-bit data & in 
performing arithmetic & logic operation. The result of operation is stored in 
accumulator. 

 

 

 

  

Register A is an 8-bit register used in 8085 to perform arithmetic, logical, I/O & 

LOAD/STORE operations. Register A is quite often called as an Accumulator. An 

accumulator is a register for short-term, intermediate storage of arithmetic and logic data in a 

computer's CPU (Central Processing Unit).In an arithmetic operation involving two operands, 

one operand has tobe in this register. And the result of the arithmetic operation will be stored 

https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Protection_ring
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or accumulated in this register. Similarly, in a logical operation involving two operands, one 

operand has to be in the accumulator. Also, some other operations, like complementing and 

decimal adjustment, can be performed only on the accumulator. 

Let us now consider a program segment which involves the content of Accumulate only. In 

8085 Instruction set, STA is a mnemonic that stands for STore Accumulator contents in 

memory. In this instruction, Accumulator 8-bit content will be stored in a memory location 

whose 16-bit address is indicated in the instruction as a16. This instruction uses absolute 

addressing for specifying the destination. This instruction occupies 3-Bytes of memory. First 

Byte is required for the opcode, and next successive 2-Bytes provide the 16-bit address 

divided into 8-bits each consecutively. 

Mnemonics, Operand Opcode (in HEX) Bytes 

STA Address 32 3 

Let us consider STA 4050 Has an example instruction of this type. It is a 3-Byte instruction. 

The first Byte will contain the opcode hex value 32H. As in 8085 assembly language coding 

supports low order Byte of the address should be mentioned at first then the high order Byte 

of the address should be mentioned next. So next Byte in memory will hold 50H and after 

that 40H will be kept in the last third Byte. Let us suppose the initial content of Accumulator 

is ABH and initial content of memory location 4050H is CDH. So after execution, 

Accumulator content will remain as ABH and 4050H location’s content will become ABH 

replacing its previous content CDH. The content tracing of this instruction has been shown 

below –  

 Before After 

(A) ABH ABH 

(4050H) CDH ABH 

 

Address Hex Codes Mnemonic Comment 

2008 2A STA 4050H The content of the memory location 4050H ← A 

2009 50  Low-order Byte of the address 

200A 40  High order Byte of the address 
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5.4 INTRODUCTION TO COMPUTER DESIGN. 

What a computer is used for, what tasks it must perform, and how it interacts with humans 

and other systems determine the functionality of the machine and, therefore, its architecture, 

memory, and I/O. An arbitrary desktop computer (not necessarily a PC) is shown in Figure 1-

11. It has a large main memory to hold the operating system, applications, and data, and an 

interface to mass storage devices (disks and DVD/CD-ROMs). It has a variety of I/O devices 

for user input (keyboard, mouse, and audio), user output (display interface and audio), and 

connectivity (networking and peripherals). The fast processor requires a system manager to 

monitor its core temperature and supply voltages, and to generate a system reset. 

 

https://www.oreilly.com/library/view/designing-embedded-hardware/0596007558/ch01.html#dbhardware2-CHP-1-FIG-11
https://www.oreilly.com/library/view/designing-embedded-hardware/0596007558/ch01.html#dbhardware2-CHP-1-FIG-11
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Large-scale embedded computers may also take the same form. For example, they may act as 

a network router or gateway, and so will require one or more network interfaces, large 

memory, and fast operation. They may also require some form of user interface as part of 

their embedded application and, in many ways, may simply be a conventional computer 

dedicated to a specific task. Thus, in terms of hardware, many high-performance embedded 

systems are not that much different from a conventional desktop machine. 

Smaller embedded systems use microcontrollers as their processor, with the advantage that 

this processor will incorporate much of the computer’s functionality on a single chip. An 

arbitrary embedded system, based on a generic microcontroller, is shown in Figure 1-12. 

The microcontroller has, at a minimum, a CPU, a small amount of internal memory (ROM 

and/or RAM), and some form of I/O, which is implemented within a microcontroller as 

subsystem blocks. These subsystems provide the additional functionality for the processor 

and are common across many processors. The subsystems that you will typically find in 

microcontrollers will be discussed in the coming chapters. 

https://www.oreilly.com/library/view/designing-embedded-hardware/0596007558/ch01.html#dbhardware2-CHP-1-FIG-12
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