
1

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – I – Python Programming – SBS1304

2

I. OVERVIEW OF PROGRAMMING

A programming language is a formal computer language or constructed language designed to

communicate instructions to a machine, particularly a computer. Programming languages can be used

to create programs to control the behaviour of a machine or to express algorithms.

INTRODUCTION OF PYTHON

Python is an object-oriented, high level language, interpreted, dynamic and multipurpose programming

language.

Python is easy to learn yet powerful and versatile scripting language which makes it attractive for

Application Development.

Python's syntax and dynamic typing with its interpreted nature, make it an ideal language for scripting

and rapid application development in many areas.

Python supports multiple programming pattern, including object oriented programming, imperative

and functional programming or procedural styles.

Python is not intended to work on special area such as web programming. That is why it is known as

multipurpose because it can be used with web, enterprise, 3D CAD etc.

We don't need to use data types to declare variable because it is dynamically typed so we can write

a=10 to declare an integer value in a variable.

Python makes the development and debugging fast because there is no compilation step included in

python development and edit-test-debug cycle is very fast.

It is used for GUI and database programming, client- and server-side web programming, and

application testing.

It is used by scientists writing applications for the world's fastest supercomputers and by children first

learning to program.

HISTORY OF PYTHON

Python was conceptualized by Guido Van Rossum in the late 1980s. Rossum published the first version

of Python code (0.9.0) in February 1991 at the CWI (Centrum Wiskunde & Informatica) in the

Netherlands, Amsterdam. Python is derived from ABC programming language, which is a general-

purpose programming language that had been developed at the CWI. Rossum chose the name "Python",

since he was a big fan of Monty Python's Flying Circus. Python is now maintained by a core

development team at the institute, although Rossum still holds a vital role in directing its progress.

COMPILER vs INTERPRETER

An interpreter is a program that reads and executes code. This includes source code, pre-compiled

code, and scripts. Common interpreters include Perl, Python, and Ruby interpreters, which execute

Perl, Python, and Ruby code respectively.

Interpreters and compilers are similar, since they both recognize and process source code.

However, a compiler does not execute the code like and interpreter does. Instead, a compiler simply

converts the source code into machine code, which can be run directly by the operating system as an

executable program.

Interpreters bypass the compilation process and execute the code directly.

3

Interpreters are commonly installed on Web servers, which allows developers to run executable scripts

within their webpages. These scripts can be easily edited and saved without the need to recompile the

code. Without an interpreter, the source code serves as a plain text file rather than an executable

program.

PYTHON VERSIONS

 Python 1.0

 Python 2.0

 Python 3.0

PYTHON FEATURES

 Easy to learn, easy to read and easy to maintain.

 Portable: It can run on various hardware platforms and has the same interface on all

platforms.

 Extendable: You can add low-level modules to the Python interpreter.

4

 Scalable: Python provides a good structure and support for large programs. Python has

support for an interactive mode of testing and debugging.

 Python has a broad standard library cross-platform.

 Everything in Python is an object: variables, functions, even code. Every object has an ID, a

type, and a value.

 Python provides interfaces to all major commercial databases.

 Python supports functional and structured programming methods as well as OOP.

 Python provides very high-level dynamic data types and supports dynamic type checking.

 Python supports GUI applications

 Python supports automatic garbage collection.

 Python can be easily integrated with C, C++, and Java.

APPLICATIONS OF PYTHON

 Machine Learning

 GUI Applications (like Kivy, Tkinter, PyQt etc.)

 Web frameworks like Django (used by YouTube, Instagram, Dropbox)

 Image processing (like OpenCV, Pillow)

 Web scraping (like Scrapy, BeautifulSoup, Selenium)

 Test frameworks

 Multimedia

 Scientific computing

 Text processing

TYPES OF PROGRAM ERRORS

We distinguish between the following types of errors:

1. Syntax errors: errors due to the fact that the syntax of the language is not respected.

2. Semantic errors: errors due to an improper use of program statements.

3. Logical errors: errors due to the fact that the specification is not respected.

From the point of view of when errors are detected, we distinguish:

1. Compile time errors: syntax errors and static semantic errors indicated by the compiler.

2. Runtime errors: dynamic semantic errors, and logical errors, that cannot be detected by the

compiler (debugging).

Syntax errors

Syntax errors are due to the fact that the syntax of the Java language is not respected.

Let us see some examples of syntax errors.

Example 1: Missing semicolon:

int a = 5 // semicolon is missing

Compiler message:

https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/kivy-tutorial/
https://www.geeksforgeeks.org/django-tutorial/
https://www.geeksforgeeks.org/opencv-python-tutorial/

5

Example.java:20: ';' expected

int a = 5

Example 2: Errors in expressions:

x = (3 + 5; // missing closing parenthesis ')'

y = 3 + * 5; // missing argument between '+' and '*'

Semantic errors

Semantic errors indicate an improper use of Java statements.

Let us see some examples of semantic errors.

Example 1: Use of a non-initialized variable:

int i;

i++; // the variable i is not initialized

Example 2: Type incompatibility:

int a = "hello"; // the types String and int are not compatible

Example 3: Errors in expressions:

String s = "...";

int a = 5 - s; // the - operator does not support arguments of type String

Example 4: Unknown references:

Strin x; // Strin is not defined

system.out.println("hello"); // system is not defined

String s;

s.println(); // println is not a method of the class String

Example 5: Array index out of range (dynamic semantic error)

int[] v = new int[10];

v[10] = 100; // 10 is not a legal index for an array of 10 elements

The array v has been created with 10 elements (with indexes ranging from 0 to 9), and we are trying

to access the element with index 10, which does not exist. This type of error is not caught during

compilation, but causes an exception to be thrown at runtime.

Logical errors

Logical errors are caused by the fact that the software specification is not respected. The program is

compiled and executed without errors, but does not generate the requested result.

Let us see some examples of logical errors:

Example 1: Errors in the performed computation:

public static int sum(int a, int b) {

 return a - b ;

}

// this method returns the wrong value wrt the specification that requires

// to sum two integers

Example 2: Non termination:

String s = br.readLine();

while (s != null) {

 System.out.println(s);

} // this loop does not terminate

6

Errors detected by the compiler and runtime errors

All syntax errors and some of the semantic errors (the static semantic errors) are detected by the

compiler, which generates a message indicating the type of error and the position in the Java source

file where the error occurred (notice that the actual error could have occurred before the position

signaled by the compiler).

Other semantic errors (the dynamic semantic errors) and the logical errors cannot be detected by the

compiler, and hence they are detected only when the program is executed.

Let us see some examples of errors detected at runtime:

Example 1: Division by zero:

int a, b, x;

a = 10;

b = Integer.parseInt(kb.readLine());

x = a / b; //ERROR if b = 0

This error occurs only for a certain configuration of the input (b = 0).

Example 2: File does not exist:

FileReader f = new FileReader("pippo.txt");

The error occurs only if the file pippo.txt does not exist on the harddisk.

Example 3: Dereferencing of a null reference:

String s, t;

s = null;

t = s.concat("a");

The concat() method cannot be applied to a reference whose value is null. Note that the

above code is syntactically correct, since the concat() method is correctly applied to a

reference of type String, but it contains a dynamic semantic error due the fact that a

method cannot be applied to a reference whose value is null.

II. STRUCTURE OF A PYTHON PROGRAM

Python Statements

In general, the interpreter reads and executes the statements line by line i.e. sequentially. Though, there

are some statements that can alter this behaviour like conditional statements.

Mostly, python statements are written in such a format that one statement is only written in a single

line. The interpreter considers the ‘new line character’ as the terminator of one instruction.

Example 1:

 print('Welcome to Geeks for Geeks')

Instructions that a Python interpreter can execute are called statements.

For example, a = 1 is an assignment statement.

 if statement,

 for statement,

 while statement etc. 3wexc

7

Multi-line statement

In Python, end of a statement is marked by a newline character. But we can make a statement extend

over multiple lines with the line continuation character (\). For example:

a = 1 + 2 + 3 + \

 4 + 5 + 6 + \

 7 + 8 + 9

This is explicit line continuation. In Python, line continuation is implied inside parentheses (), brackets

[] and braces { }. For instance, we can implement the above multi-line statement as,

a = (1 + 2 + 3 +

 4 + 5 + 6 +

 7 + 8 + 9)

Here, the surrounding parentheses () do the line continuation implicitly. Same is the case with [] and

{ }. For example:

colors = ['red',

 'blue',

 'green']

We could also put multiple statements in a single line using semicolons, as follows:

a = 1; b = 2; c = 3

Python Indentation

Most of the programming languages like C, C++, Java use braces { } to define a block of code. Python

uses indentation.

A code block (body of a function, loop etc.) starts with indentation and ends with the first unindented

line. The amount of indentation is up to you, but it must be consistent throughout that block.

Generally four whitespaces are used for indentation and is preferred over tabs. Here is an example.

for i in range(1,11):

 print(i)

 if i == 5:

 break

https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/for-loop

8

The enforcement of indentation in Python makes the code look neat and clean. This results into Python

programs that look similar and consistent.

Indentation can be ignored in line continuation. But it's a good idea to always indent. It makes the code

more readable. For example:

if True:

 print('Hello')

 a = 5

and

if True: print('Hello'); a = 5

both are valid and do the same thing. But the former style is clearer.

Incorrect indentation will result into IndentationError.

Python Comments

Comments are very important while writing a program. It describes what's going on inside a program

so that a person looking at the source code does not have a hard time figuring it out. You might forget

the key details of the program you just wrote in a month's time. So taking time to explain these concepts

in form of comments is always fruitful.

In Python, we use the hash (#) symbol to start writing a comment.

It extends up to the newline character. Comments are for programmers for better understanding of a

program. Python Interpreter ignores comment.

#This is a comment

#print out Hello

print('Hello')

Multi-line comments

If we have comments that extend multiple lines, one way of doing it is to use hash (#) in the beginning

of each line. For example:

#This is a long comment

#and it extends

#to multiple lines

Another way of doing this is to use triple quotes, either ''' or """.

9

These triple quotes are generally used for multi-line strings. But they can be used as multi-line comment

as well. Unless they are not docstrings, they do not generate any extra code.

"""This is also a

perfect example of

multi-line comments"""

Python Variables

A variable is a named location used to store data in the memory. It is helpful to think of variables as a

container that holds data which can be changed later throughout programming.

Example 1: N1=10

 N2=10.5

Example 2:

x = y = z = "same" # assign the same value to multiple variables at once

print (x)

print (y)

print (z)

Constants

A constant is a type of variable whose value cannot be changed. It is helpful to think of constants as

containers that hold information which cannot be changed later.

Example 1:

PI = 3.14

GRAVITY = 9.8

Literals

Literal is a raw data given in a variable or constant. In Python, there are various types of literals they

are as follows:

Example 1:

a = 0b1010 #Binary Literals

b = 100 #Decimal Literal

c = 0o310 #Octal Literal

d = 0x12c #Hexadecimal Literal

#Float Literal

float_1 = 10.5

float_2 = 1.5e2

#Complex Literal

10

x = 3.14j

Python Operators

Operators are special symbols in Python that carry out arithmetic or logical computation. The value

that the operator operates on is called the operand.

Operators are used to perform operations on variables and values.

 Arithmetic operators

 Relational operators

 Logical operators

 Bitwise operators

 Assignment operators

 Special operators

 Identity operators

 Membership operators

Example:

Python Program to find the area of triangle

a = 5

b = 6

c = 7

Uncomment below to take inputs from the user

a = float(input('Enter first side: '))

b = float(input('Enter second side: '))

c = float(input('Enter third side: '))

calculate the semi-perimeter

s = (a + b + c) / 2

calculate the area

area = (s*(s-a)*(s-b)*(s-c)) ** 0.5

print('The area of the triangle is %0.2f' %area)

Output:

The area of the triangle is 14.70

III. ELEMENTS OF PYTHON

 A Python program, sometimes called a script, is a sequence of definitions and commands.

 These definitions are evaluated and the commands are executed by the Python interpreter in

something called the shell.

 Typically, a new shell is created whenever execution of a program begins. In most cases, a

window is associated with the shell.

11

 A command, often called a statement, instructs the interpreter to do something.

The basic elements of Python are:

1. Keywords: and, assert, break, class, continue, def,del, elif, else, except, exec, finally, for,

from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while, with, yield

2. Operators: + - * / % ** // > & | ^ ~ >= <> != ==

3. Delimiters: () [] { }, :. ' = ; += -= *= /= //= %= &= |= ^= >>= <<= **=

4. Data types: Numeric, Dictionary, Boolean, Set, Strings, List, Tuple

Mutable and Immutable data types/objects:

 Example for mutable data types are: List, Set and Dictionary

 Example for Immutable data types are: Strings, tuple, int, float, bool,Unicode.

Numeric

In Python, numeric data type represent the data which has numeric value. Numeric value can be

interger, floating number or even complex numbers. These values are defined

as int, float and complex class in Python.

 Integers – This value is represented by int class. It contains positive or negative whole numbers

(without fraction or decimal). In Python there is no limit to how long an integer value can be.

 Float – This value is represented by float class. It is a real number with floating point

representation. It is specified by a decimal point. Optionally, the character e or E followed by a

positive or negative integer may be appended to specify scientific notation.

 Complex Numbers – Complex number is represented by complex class. It is specified as (real

part) + (imaginary part)j. For example – 2+3j

Python program to demonstrate numeric value

a = 5

print("Type of a: ", type(a))

b = 5.0

12

print("\nType of b: ", type(b))

c = 2 + 4j

print("\nType of c: ", type(c))

OUTPUT:

Type of a: <class 'int'>

Type of b: <class 'float'>

Type of c: <class 'complex'>

Strings

In Python, Updation or deletion of characters from a String is not allowed. This will cause an error

because item assignment or item deletion from a String is not supported. This is because Strings are

immutable, hence elements of a String cannot be changed once it has been assigned.

Program:

String1 = "IIIBSC STUDENTS"

print("Initial String: ")

print(String1)

Printing First character

print("\nFirst character of String is: ")

print(String1[0])

Printing Last character

print("\nLast character of String is: ")

print(String1[-1])

print("\n8th char: ")

print(String1[8])

Updation or deletion of characters from a String is not allowed

Output:

Initial String:

IIIBSC STUDENTS

First character of String is:

I

Last character of String is:

S

8th char:

T

Lists

Lists are just like the arrays, declared in other languages.

Lists need not be homogeneous always which makes it the most powerful tool in Python.

A single list may contain DataTypes like Integers, Strings, as well as Objects.

13

Lists are mutable, and hence, they can be altered even after their creation.

List in Python are ordered and have a definite count.

The elements in a list are indexed according to a definite sequence and the indexing of a list is done

with 0 being the first index.

Each element in the list has its definite place in the list, which allows duplicating of elements in the

list, with each element having its own distinct place and credibility.

It is represented by list class.

Creating a list

Lists in Python can be created by just placing the sequence inside the square brackets[].

#Python program to demonstrate Creation of List

Creating a List

List = []

print("Intial blank List: ")

print(List)

Creating a List with the use of a String

List = ['IIIBSCSTUDENTS']

print("\nList with the use of String: ")

print(List)

Creating a List with the use of multiple values

List = ["III", "BSC", "STUDENTS"]

print("\nList containing multiple values: ")

print(List[0])

print(List[2])

Creating a Multi-Dimensional List (By Nesting a list inside a List)

List = [['III', 'BSC'], ['STUDENTS']]

print("\nMulti-Dimensional List: ")

print(List)

Methods used in a List

#Append an element (ADD an element)

List.append(4)

print("\nList after Adding a number: ")

print(List)

Addition of Element at specific Position (using Insert Method)

List.insert(2, 12)

print(List)

List.insert(0, 'Geeks')

print("\nList after performing Insert Operation: ")

print(List)

14

Addition of multiple elements to the List at the end (using Extend Method)

List.extend([8, 'Geeks', 'Always'])

print("\nList after performing Extend Operation: ")

print(List)

accessing a element from the list using index number

print("Accessing element from the list")

print(List[0])

print(List[2])

accessing a element using negative indexing

print("Accessing element using negative indexing")

print the last element of list

print(List[-1])

print the third last element of list

print(List[-3])

List1=[1,2,3,4,5,6,7,8]

print("Original List")

print(List1)

Removing elements from List using Remove() method

List1.remove(5)

print("\nList after Removal of element: ")

print(List1)

List1.pop()

print("\nList after popping an element: ")

print(List1)

Removing element at a specific location from the set using the pop() method

List1.pop(2)

print("\nList after popping a specific element: ")

print(List1)

Output:

Intial blank List:

[]

List with the use of String:

['IIIBSCSTUDENTS']

List containing multiple values:

III

STUDENTS

15

Multi-Dimensional List:

[['III', 'BSC'], ['STUDENTS']]

List after Adding a number:

[['III', 'BSC'], ['STUDENTS'], 4]

[['III', 'BSC'], ['STUDENTS'], 12, 4]

List after performing Insert Operation:

['Geeks', ['III', 'BSC'], ['STUDENTS'], 12, 4]

List after performing Extend Operation:

['Geeks', ['III', 'BSC'], ['STUDENTS'], 12, 4, 8, 'Geeks', 'Always']

Accessing element from the list

Geeks

['STUDENTS']

Accessing element using negative indexing

Always

8

Original List

[1, 2, 3, 4, 5, 6, 7, 8]

List after Removal of element:

[1, 2, 3, 4, 6, 7, 8]

List after popping an element:

[1, 2, 3, 4, 6, 7]

List after popping a specific element:

[1, 2, 4, 6, 7]

Adding Elements to a List

Elements can be added to the List by using built-in append() function.

Only one element at a time can be added to the list by using append() method.

For addition of element at the desired position, insert() method is used.

Other than append() and insert() methods.

extend() method is used to add multiple elements at the same time at the end of the list.

Removing Elements from the List

Elements can be removed from the List by using built-in remove() function.

 Pop() function can also be used to remove and return an element from the set, but by default it removes

only the last element of the set, to remove element from a specific position of the List, index of the

element is passed as an argument to the pop() method.

Remove method in List will only remove the first occurrence of the searched element.

16

Tuple

Tuple is an ordered collection of Python objects much like a list. The sequence of values stored in a

tuple can be of any type, and they are indexed by integers. The important difference between a list

and a tuple is that tuples are immutable. Also, Tuples are hashable whereas lists are not. It is

represented by tuple class.

Creating a Tuple

In Python, tuples are created by placing sequence of values separated by ‘comma’ with or without the

use of parentheses for grouping of data sequence. Tuples can contain any number of elements and of

any datatype (like strings, integers, list, etc.). Tuples can also be created with a single element, but it is

a bit tricky. Having one element in the parentheses is not sufficient, there must be a trailing ‘comma’

to make it a tuple.

In python, deletion or updation of a tuple is not allowed.

Python program to demonstrate creation of Tuple

Creating an empty tuple

Tuple1 = ()

print("Initial empty Tuple: ")

print (Tuple1)

Creating a Tuple with the use of Strings

Tuple1 = ('Geeks', 'For')

print("\nTuple with the use of String: ")

print(Tuple1)

Creating a Tuple with the use of list

list1 = [1, 2, 4, 5, 6]

print("\nTuple using List: ")

print(tuple(list1))

Creating a Tuple with the use of built-in function

Tuple1 = tuple('Geeks')

print("\nTuple with the use of function: ")

print(Tuple1)

Creating a Tuple with nested tuples

Tuple1 = (0, 1, 2, 3)

Tuple2 = ('python', 'geek')

Tuple3 = (Tuple1, Tuple2)

print("\nTuple with nested tuples: ")

print(Tuple3)

Accessing element using indexing

print("Frist element of tuple")

print(Tuple1[0])

Accessing element from last -- negative indexing

print("\nLast element of tuple")

17

print(Tuple1[-1])

print("\nThird last element of tuple")

print(Tuple1[-3])

OUTPUT:

Initial empty Tuple:

()

Tuple with the use of String:

('Geeks', 'For')

Tuple using List:

(1, 2, 4, 5, 6)

Tuple with the use of function:

('G', 'e', 'e', 'k', 's')

Tuple with nested tuples:

((0, 1, 2, 3), ('python', 'geek'))

Frist element of tuple

0

Last element of tuple

3

Third last element of tuple

1

Boolean

Data type with one of the two built-in values, True or False. Boolean objects that are equal to True are

truthy (true), and those equal to False are falsy (false). But non-Boolean objects can be evaluated in

Boolean context as well and determined to be true or false. It is denoted by the class bool.

Python program to demonstrate boolean type

print(type(True))

print(type(False))

print(type(true)) # Error, Small t for true is wrong

Set

In Python, Set is an unordered collection of data type that is iterable, mutable and has no duplicate

elements. The order of elements in a set is undefined though it may consist of various elements. The

major advantage of using a set, as opposed to a list, is that it has a highly optimized method for checking

whether a specific element is contained in the set.

18

Creating a set

Sets can be created by using the built-in set() function with an iterable object or a sequence by placing

the sequence inside curly braces, separated by ‘comma’. A set contains only unique elements but at the

time of set creation, multiple duplicate values can also be passed. The order of elements in a set is

undefined and is unchangeable. Type of elements in a set need not be the same, various mixed-up data

type values can also be passed to the set.

Set items cannot be accessed by referring to an index, since sets are unordered the items has no index.

Python program to demonstrate Creation of Set in Python

Creating a Set

set1 = set()

print("Intial blank Set: ")

print(set1)

Creating a Set with the use of a String

set1 = set("GeeksForGeeks")

print("\nSet with the use of String: ")

print(set1)

Creating a Set with the use of a List

set1 = set(["Geeks", "For", "Geeks"])

print("\nSet with the use of List: ")

print(set1)

Creating a Set with a mixed type of values (Having numbers and strings)

set1 = set([1, 2, 'Geeks', 4, 'For', 6, 'Geeks'])

print("\nSet with the use of Mixed Values")

print(set1)

Methods used

set1.add(9)

print("\nSet after Addition of Three elements: ")

print(set1)

Addition of elements to the Set using Update function

set1.update([10, 11])

print("\nSet after Addition of elements using Update: ")

print(set1)

Removing elements from Set using Remove() method

set1.remove(9)

print("\nSet after Removal of two elements: ")

print(set1)

Removing elements from Set using Discard() method

set1.discard(4)

print("\nSet after Discarding two elements: ")

19

print(set1)

Removing element from the Set using the pop() method

set1.pop()

print("\nSet after popping an element: ")

print(set1)

Removing all the elements from Set using clear() method

set1.clear()

print("\nSet after clearing all the elements: ")

print(set1)

Output:

Intial blank Set:

set()

Set with the use of String:

{'s', 'k', 'e', 'F', 'o', 'G', 'r'}

Set with the use of List:

{'Geeks', 'For'}

Set with the use of Mixed Values

{1, 2, 4, 'Geeks', 6, 'For'}

Set after Addition of Three elements:

{1, 2, 4, 'Geeks', 6, 'For', 9}

Set after Addition of elements using Update:

{1, 2, 4, 'Geeks', 6, 'For', 9, 10, 11}

Set after Removal of two elements:

{1, 2, 4, 'Geeks', 6, 'For', 10, 11}

Set after Discarding two elements:

{1, 2, 'Geeks', 6, 'For', 10, 11}

Set after popping an element:

{2, 'Geeks', 6, 'For', 10, 11}

Set after clearing all the elements:

set()

Removing elements from a set

Elements can be removed from the Set by using built-in remove() function but a KeyError arises if

element doesn’t exist in the set. To remove elements from a set without KeyError,

use discard(). Pop() function can also be used to remove and return an element from the set, but it

removes only the last element of the set. To remove all the elements from the set, clear() function is

used.

20

Dictionary

Dictionary in Python is an unordered collection of data values, used to store data values like a map,

which unlike other Data Types that hold only single value as an element, Dictionary

holds key:value pair. Key-value is provided in the dictionary to make it more optimized. Each key-

value pair in a Dictionary is separated by a colon :, whereas each key is separated by a ‘comma’.

Creating a dictionary

In Python, a Dictionary can be created by placing a sequence of elements within curly {} braces,

separated by ‘comma’. Dictionary holds a pair of values, one being the Key and the other corresponding

pair element being its Key:value. Values in a dictionary can be of any datatype and can be duplicated,

whereas keys can’t be repeated and must be immutable.

Dictionary can also be created by the built-in function dict(). An empty dictionary can be created by

just placing to curly braces{}.

Note – Dictionary keys are case sensitive, same name but different cases of Key will be treated

distinctly.

Python Program

Creating an empty Dictionary

Dict = {}

print("Empty Dictionary: ")

print(Dict)

Creating a Dictionary with Integer Keys

Dict = {1: 'Geeks', 2: 'For', 3: 'Geeks'}

print("\nDictionary with the use of Integer Keys: ")

print(Dict)

Creating a Dictionary with Mixed keys

Dict = {'Name': 'Geeks', 1: [1, 2, 3, 4]}

print("\nDictionary with the use of Mixed Keys: ")

print(Dict)

Creating a Dictionary with dict() method

Dict = dict({1: 'Geeks', 2: 'For', 3:'Geeks'})

print("\nDictionary with the use of dict(): ")

print(Dict)

Creating a Dictionary with each item as a Pair

Dict = dict([(1, 'Geeks'), (2, 'For')])

print("\nDictionary with each item as a pair: ")

print(Dict)

Adding elements one at a time

Dict[0] = 'Geeks'

Dict[2] = 'For'

Dict[3] = 1

print("\nDictionary after adding 3 elements: ")

print(Dict)

21

Updating existing Key's Value

Dict[2] = 'Welcome'

print("\nUpdated key value: ")

print(Dict)

Methods used

Python program to demonstrate for accessing elements from a Dictionary

Creating a Dictionary

Dict = {1: 'Geeks', 'name': 'For', 3: 'Geeks'}

accessing a element using key

print("Accessing a element using key:")

print(Dict['name'])

accessing a element using get() method

print("Accessing a element using get:")

print(Dict.get(3))

Initial Dictionary

Dict = { 5 : 'Welcome', 6 : 'To', 7 : 'Geeks',

 'A' : {1 : 'Geeks', 2 : 'For', 3 : 'Geeks'},

 'B' : {1 : 'Geeks', 2 : 'Life'}}

print("Initial Dictionary: ")

print(Dict)

Deleting a Key value

del Dict[6]

print("\nDeleting a specific key: ")

print(Dict)

Deleting a Key using pop()

Dict.pop(5)

print("\nPopping specific element: ")

print(Dict)

Deleting an arbitrary Key-value pair using popitem()

Dict.popitem()

print("\nPops an arbitrary key-value pair: ")

print(Dict)

Deleting entire Dictionary

Dict.clear()

print("\nDeleting Entire Dictionary: ")

print(Dict)

22

Output:

Empty Dictionary:

{}

Dictionary with the use of Integer Keys:

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with the use of Mixed Keys:

{'Name': 'Geeks', 1: [1, 2, 3, 4]}

Dictionary with the use of dict():

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with each item as a pair:

{1: 'Geeks', 2: 'For'}

Dictionary after adding 3 elements:

{1: 'Geeks', 2: 'For', 0: 'Geeks', 3: 1}

Updated key value:

{1: 'Geeks', 2: 'Welcome', 0: 'Geeks', 3: 1}

Accessing a element using key:

For

Accessing a element using get:

Geeks

Initial Dictionary:

{5: 'Welcome', 6: 'To', 7: 'Geeks', 'A': {1: 'Geeks', 2: 'For', 3: 'Geeks'}, 'B': {1: 'Geeks', 2:

'Life'}}

Deleting a specific key:

{5: 'Welcome', 7: 'Geeks', 'A': {1: 'Geeks', 2: 'For', 3: 'Geeks'}, 'B': {1: 'Geeks', 2: 'Life'}}

Popping specific element:

{7: 'Geeks', 'A': {1: 'Geeks', 2: 'For', 3: 'Geeks'}, 'B': {1: 'Geeks', 2: 'Life'}}

Pops an arbitrary key-value pair:

{7: 'Geeks', 'A': {1: 'Geeks', 2: 'For', 3: 'Geeks'}}

Deleting Entire Dictionary:

{}

References:

https://www.slideshare.net/rj143/python-by-rj

https://www.slideshare.net/rj143/python-by-rj

23

UNIT I – Question Bank

 PART -A

1. Is Python a compiler or an interpreter?

2. Write the features of python.

3. List few Applications of Python.

4. Compare and Contrast: Syntax Error, Sematic Error.

5. Explain Run time Errors.

6. Find out the use of: type (10).

7. Find the output of:

a. type(“17”)

b. type(“BSC Students”)

8. Differentiate: Script mode and Interactive mode.

9. Give examples of Mutable and Immutable objects in Python.

10. Indentation gains much importance in Python. State True or False.

11. List out the various data types used in python.

12. Write few keywords employed in python.

13. Compare and contrast: Mutable versus Immutable.

14. What is a Boolean value?

15. Differentiate: Tuples and Lists in Python.

16. Create a dictionary with 4 Key-Value Pairs.

17. Mention few methods that are employed over Python Lists.

18. Comment on indexing and negative indexing used in List.

19. What are the built-in functions that are used in Tuple?

20. State the purpose of pop() method.

 PART -B

1. Explain the Structure of a Python Program with an example.

2. List the Elements of Python and give a detailed note on it.

3. Write a menu-driven program, using user-defined functions to find the area of rectangle,

square, circle and triangle by accepting suitable input parameters from user.

4. What is the difference between lists, tuples and dictionaries? Give an example for their usage.

5. What are the basic list operations that can be performed in Python?

6. Write a menu driven program to convert the given temperature from Fahrenheit to Celsius

and vice versa depending upon user’s choice.

7. Create a Simple Calculator using a python code.

8. How to create a dictionary? What are the methods employed over it.

9. Read the Student Name, ID, Department and marks of five subjects and find the percentage.

10. a. Write a python code to read an integer, float, complex values and display their

 data type.

b. Find the Simple Interest and Compound Interest using a python code.

24

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – II – Python Programming – SBS1304

25

I. PYTHON INTERPRETER

FEATURES OF PYTHON INTERPRETER

Python interpreter offers some pretty cool features:

 Interactive editing

 History substitution

 Code completion on systems with support for readline

INVOKING THE PYTHON INTERPRETER

On your machine, you can find your interpreter at an address like:

C:\Python36

Or it may reside on the location you selected at the time of installation. Add path using this

command:

set path=%path%;C:\python36

INTERACTIVE MODE

Python interpreter is in an interactive mode when it reads commands from a tty. The primary prompt

is the following:

1. >>>

When it shows this prompt, it means it prompts the developer for the next command. This is the

REPL. Before it prints the first prompt, Python interpreter prints a welcome message that also states

its version number and a copyright notice.

This is the secondary prompt:

1. …

This prompt denotes continuation lines.

$ python3.7

Python 3.7 (default, Jul 16 2018, 04:38:07)

[GCC 4.8.2] on Windows

Type "help", "copyright", "credits" or "license" for more information.

>>>

You will find continuation lines when working with a multi-line construct:

>>> it_rains =True

>>> if it_rains:

>>> print("The produce will be good")

Output:

The produce will be good

26

We can also use the Python interpreter as a calculator:

>>> 2*7

14

>>> 4/2

2.0

HOW DOES PYTHON INTERPRETER WORKS?

Four things happen in a REPL:

i. Lexing- The lexer breaks the line of code into tokens.

ii. Parsing- The parser uses these tokens to generate a structure, here, an Abstract Syntax

 Tree, to depict the relationship between these tokens.

iii. Compiling- The compiler turns this AST into code object(s).

iv. Interpreting- The interpreter executes each code object.

USING PYTHON AS A CALCULATOR

Start with simple Python commands. Start the interpreter and wait for the primary prompt, >>>.

Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value.

Expression syntax is straightforward: the operators +, -, * and / work just like in most other languages

(for example, Pascal or C); parentheses (()) can be used for grouping. For example:

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5*6) / 4

5.0

>>> 8 / 5 # division always returns a floating point number

1.6

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part (e.g. 5.0, 1.6) have

type float.

Division (/) always returns a float. To do floor division and get an integer result (discarding any

fractional result) you can use the // operator; to calculate the remainder you can use %:

>>> 17 / 3 # classic division returns a float

5.666666666666667

>>>

>>> 17 // 3 # floor division discards the fractional part

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/glossary.html#term-floor-division

27

5

>>> 17 % 3 # the % operator returns the remainder of the division

2

>>> 5 * 3 + 2 # result * divisor + remainder

17

With Python, it is possible to use the ** operator to calculate powers 1:

>>> 5 ** 2 # 5 squared

25

>>> 2 ** 7 # 2 to the power of 7

128

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed before the

next interactive prompt:

>>> width = 20

>>> height = 5 * 9

>>> width * height

900

Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They

can be enclosed in single quotes ('...') or double quotes ("...") with the same result 2. \ can be used to

escape quotes:

>>>

>>> 'spam eggs' # single quotes

'spam eggs'

>>> s = 'First line.\nSecond line.' # \n means newline

>>> s # without print(), \n is included in the output

'First line.\nSecond line.'

>>> print(s) # with print(), \n produces a new line

First line.

Second line.

>>> # 3 times 'un', followed by 'ium'

>>> 3 * 'un' + 'ium'

'unununium'

https://docs.python.org/3/tutorial/introduction.html#id3
https://docs.python.org/3/tutorial/introduction.html#id4

28

Lists

Python knows a number of compound data types, used to group together other values. The most

versatile is the list, which can be written as a list of comma-separated values (items) between square

brackets. Lists might contain items of different types, but usually the items all have the same type.

>>> squares = [1, 4, 9, 16, 25]

>>> squares

[1, 4, 9, 16, 25]

Like strings (and all other built-in sequence types), lists can be indexed and sliced:

>>> squares[0] # indexing returns the item

1

>>> squares[-1]

25

>>> squares[-3:] # slicing returns a new list

[9, 16, 25]

All slice operations return a new list containing the requested elements.

>>> squares[:]

[1, 4, 9, 16, 25]

Lists also support operations like concatenation:

>>> squares + [36, 49, 64, 81, 100]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here

>>> 4 ** 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

>>> cubes

[1, 8, 27, 64, 125]

#Program 1:

>>> i = 256*256

>>> print('The value of i is', i)

The value of i is 65536

https://docs.python.org/3/glossary.html#term-sequence
https://docs.python.org/3/glossary.html#term-immutable
https://docs.python.org/3/glossary.html#term-mutable

29

#Program 2:

>>> a, b = 0, 1

>>> while a < 1000:

... print(a, end=',')

... a, b = b, a+b

...

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

PYTHON - SHELL (INTERPRETER)

Python is an interpreter language. It means it executes the code line by line. Python provides a Python

Shell (also known as Python Interactive Shell) which is used to execute a single Python command and

get the result.

Python Shell waits for the input command from the user. As soon as the user enters the command, it

executes it and displays the result.

To open the Python Shell on Windows, open the command prompt, write python and press enter.

Python Shell

As you can see, a Python Prompt comprising of three Greater Than symbols (>>>) appears. Now, you

can enter a single statement and get the result. For example, enter a simple expression like 3 + 2, press

enter and it will display the result in the next line.

https://www.tutorialsteacher.com/Content/images/python/python-shell.png

30

Command Execution on Python Shell

Execute Python Script

Python Shell executes a single statement. To execute multiple statements, create a Python file with

extension .py, and write Python scripts (multiple statements).

For example, enter the following statement in a text editor such as Notepad.

Example: myPythonScript.py

print ("This is Python Script.")

print ("Welcome to Python Tutorial by TutorialsTeacher.com")

Save it as myPythonScript.py, navigate command prompt to the folder where you have saved this file

and execute the python myPythonScript.py command, as shown below.

Python Shell

Thus, you can execute Python expressions and commands using Python Shell.

PYTHON – IDLE

IDLE (Integrated Development and Learning Environment) is an integrated development environment

(IDE) for Python. The Python installer for Windows contains the IDLE module by default.

IDLE can be used to execute a single statement just like Python Shell and also to create, modify and

execute Python scripts. IDLE provides a fully-featured text editor to create Python scripts that includes

https://www.tutorialsteacher.com/Content/images/python/execute-python-script.png

31

features like syntax highlighting, autocompletion and smart indent. It also has a debugger with stepping

and breakpoints features.

Goto File->New File and open a new Script page and enter multiple statements and then save the file

with extension .py using File -> Save. For example, save the following code as hello.py.

Python Script in IDLE

Now, press F5 to run the script in the editor window. The IDLE shell will show the output.

Python Script Execution Result in IDLE

Thus, it is easy to write, test and run Python scripts in IDLE.

PYTHON INDENTATION

Most of the programming languages like C, C++, Java use braces { } to define a block of code. Python

uses indentation.

A code block (body of a function, loop etc.) starts with indentation and ends with the first unindented

line. The amount of indentation is up to you, but it must be consistent throughout that block.

Generally four whitespaces are used for indentation and is preferred over tabs. Here is an example.

for i in range(1,11):

 print(i)

 if i == 5:

 break

The enforcement of indentation in Python makes the code look neat and clean. This results into Python

programs that look similar and consistent.

https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/for-loop

32

Indentation can be ignored in line continuation. But it's a good idea to always indent. It makes the code

more readable. For example:

if True:

 print('Hello')

 a = 5

and

if True: print('Hello'); a = 5

both are valid and do the same thing. But the former style is clearer.

Incorrect indentation will result into IndentationError.

ATOMS

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms

enclosed in reverse quotes or in parentheses, brackets or braces are also categorized syntactically as

atoms. The syntax for atoms is:

atom: identifier | literal | enclosure

enclosure: parenth_form|list_display|dict_display|string_conversion

PYTHON IDENTIFIERS

An identifier is a name given to entities like class, functions, variables, etc. It helps to differentiate one

entity from another.

Rules for writing identifiers

1. Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A to Z) or digits (0

to 9) or an underscore _. Names like myClass, var_1 and print_this_to_screen, all are valid

example.

2. An identifier cannot start with a digit. 1variable is invalid, but variable1 is perfectly fine.

3. Keywords cannot be used as identifiers.

>>> global = 1

 File "<interactive input>", line 1

global = 1

 ^

SyntaxError: invalid syntax

4. We cannot use special symbols like !, @, #, $, % etc. in the identifier.

33

>>> a@ = 0

 File "<interactive input>", line 1

 a@ = 0

 ^

 SyntaxError: invalid syntax

5. Identifier can be of any length.

PYTHON KEYWORDS

Keywords are the reserved words in Python.

We cannot use a keyword as a variable name, function name or any other identifier. They are used to

define the syntax and structure of the Python language. In Python, keywords are case sensitive. There

are 33 keywords in Python 3.7. This number can vary slightly in the course of time.

All the keywords except True, False and None are in lowercase and they must be written as it is. The

list of all the keywords is given below.

LITERALS

Literal is a raw data given in a variable or constant. In Python, there are various types of literals they

are as follows:

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/function

34

Example 1:

a = 0b1010 #Binary Literals

b = 100 #Decimal Literal

c = 0o310 #Octal Literal

d = 0x12c #Hexadecimal Literal

#Float Literal

float_1 = 10.5

float_2 = 1.5e2

#Complex Literal

x = 3.14j

STRINGS

In Python, Updation or deletion of characters from a String is not allowed. This will cause an error

because item assignment or item deletion from a String is not supported. This is because Strings are

immutable, hence elements of a String cannot be changed once it has been assigned.

Program:

String1 = "IIIBSC STUDENTS"

print("Initial String: ")

print(String1)

Printing First character

print("\nFirst character of String is: ")

print(String1[0])

Printing Last character

print("\nLast character of String is: ")

print(String1[-1])

print("\n8th char: ")

print(String1[8])

Updation or deletion of characters from a String is not allowed

Output:

Initial String:

IIIBSC STUDENTS

First character of String is:

I

Last character of String is:

S

8th char:

T

35

II. OPERATORS IN PYTHON

Operators are special symbols in Python that carry out arithmetic or logical computation. The value

that the operator operates on is called the operand.

Operators are used to perform operations on variables and values.

 Arithmetic operators

 Relational operators

 Logical operators

 Bitwise operators

 Assignment operators

 Special operators

 Identity operators

 Membership operators

Program:

Examples of Arithmetic Operator

a = 9

b = 4

Addition of numbers

add = a + b

Subtraction of numbers

sub = a - b

Multiplication of number

mul = a * b

Division(float) of number

div1 = a / b

Division(floor) of number

div2 = a // b

36

Modulo of both number

mod = a % b

print results

print(add)

print(sub)

print(mul)

print(div1)

print(div2)

print(mod)

Output:

13

5

36

2.25

2

1

Program:

Examples of Relational Operators

a = 13

b = 33

a > b is False

print(a > b)

a < b is True

print(a < b)

a == b is False

37

print(a == b)

a != b is True

print(a != b)

a >= b is False

print(a >= b)

a <= b is True

print(a <= b)

Output:

False

True

False

True

False

True

Program:

Examples of Logical Operator

a = True

b = False

Print a and b is False

print(a and b)

Print a or b is True

print(a or b)

Print not a is False

print(not a)

Output:

False

True

38

False

Program:

a = 60 # 60 = 0011 1100

b = 13 # 13 = 0000 1101

c = 0

c = a & b; # 12 = 0000 1100

print "Line 1 - Value of c is ", c

c = a | b; # 61 = 0011 1101

print "Line 2 - Value of c is ", c

c = a ^ b; # 49 = 0011 0001

print "Line 3 - Value of c is ", c

c = ~a; # -61 = 1100 0011

print "Line 4 - Value of c is ", c

c = a << 2; # 240 = 1111 0000

print "Line 5 - Value of c is ", c

c = a >> 2; # 15 = 0000 1111

print "Line 6 - Value of c is ", c

Output:

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Line 6 - Value of c is 15

39

40

Program:

Examples of Identity operators

a1 = 3

b1 = 3

a2 = 'GeeksforGeeks'

b2 = 'GeeksforGeeks'

a3 = [1,2,3]

b3 = [1,2,3]

print(a1 is not b1)

print(a2 is b2)

Output is False, since lists are mutable.

print(a3 is b3)

Output:

False

True

False

Program:

Examples of Membership operator

x = 'Geeks for Geeks'

y = {3:'a',4:'b'}

print('G' in x)

print('geeks' not in x)

print('Geeks' not in x)

print(3 in y)

print('b' in y)

x = ["apple", "banana"]

41

print("banana" in x)

returns True because a sequence with the value "banana" is in the list

print("pineapple" not in x)

returns True because a sequence with the value "pineapple" is not in the list

Output:

True

True

False

True

False

True

True

Ternary operator

Ternary operators also known as conditional expressions are operators that evaluate something based

on a condition being true or false. It was added to Python in version 2.5.

It simply allows to test a condition in a single line replacing the multiline if-else making the code

compact.

Syntax :

[on_true] if [expression] else [on_false]

Example 1: Simple Method to use ternary operator

Program to demonstrate conditional operator

a, b = 10, 20

Copy value of a in min if a < b else copy b

min = a if a < b else b

print(min)

Output:

10

Example 2: Python 3 program to find the factorial of given number

 def factorial(n):

 # single line to find factorial

 return 1 if (n==1 or n==0) else n * factorial(n - 1)

Driver Code

num = 5

print ("Factorial of",num,"is", factorial(num))

https://mail.python.org/pipermail/python-dev/2005-September/056846.html

42

Output:

Factorial of 5 is 120

Increment and Decrement Operators in Python

Python is designed to be consistent and readable. One common error by a novice programmer in

languages with ++ and -- operators is mixing up the differences (both in precedence and in return value)

between pre and post increment/decrement operators. Simple increment and decrement operators aren’t

needed as much as in other languages.

for (int i = 0; i < 5; ++i)

In Python, instead we write it like,

A Sample Python program to show loop (unlike many # other languages, it doesn't use

++)

for i in range(0, 5):

 print(i)

Output:

0

1

2

3

4

We can almost always avoid use of ++ and --. For example, x++ can be written as x += 1 and x-

- can be written as x -= 1.

UNIT II – Question Bank

PART -A

1. What operators does python support?

2. Mention the features of identity operators?

3. Give the characteristics of membership operator?

4. What is use of len() function.

5. Describe the function of is and is not operators.

6. List the relational operators used in python.

7. How Logical operators differs from Bitwise operators?

8. Explain about string slicing with examples.

9. How to split strings and what function is used to perform that operation?

10. Given A=60. Find A>>2.

43

PART -B

1. Give an example of how Python can be used as a calculator.

2. How Python Operates over Strings?

3. a. Explain string slicing with examples.

b. How to split strings. Explain with examples.

4. List out the various operators used in python and explain them.

5. Give a detailed note on:

a. Identity operators

b. Membership operators

c. Boolean operators

6. Given A=60, B=13. Using A and B, explain all the bitwise operators used in python.

44

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – III– Python Programming – SBS1304

45

I. INPUT AND OUTPUT STATEMENTS

Input Statement:

Input means the data entered by the user of the program. In python, we have input() and raw_input (

) function available for Input.

1) input() function

Syntax:

 input (expression)

If prompt is present, it is displayed on monitor, after which the user can provide data from keyboard.

Input takes whatever is typed from the keyboard and evaluates it. As the input provided is evaluated,

it expects valid python expression. If the input provided is not correct then either syntax error or

exception is raised by python.

Example 1:

python input operations

user input

x = input("Enter any value: ")

printing value

print("Entered value is: ", x)

Output

RUN 1:

Enter any value: 12345

Entered value is: 12345

RUN 2:

Enter any value: IncludeHelp

Entered value is: IncludeHelp

RUN 3:

Enter any value: Python is a progamming language.

Entered value is: Python is a progamming language.

Example 2:

python input operations

just provide a value and entered value prints

print(input())

provide another value

x = input()

print("Your input is: ", x)

46

prompting message for input

val1 = input("Enter a value: ")

val2 = input("Enter another value: ")

val3 = input("Enter another value: ")

printing values

print("val1 =", val1)

print("val2 =", val2)

print("val3 =", val3)

Output

Hello

Hello

I'm Shivang!

Your input is: I'm Shivang!

Enter a value: 100

Enter another value: 23.45

Enter another value: Helllooooooo

val1 = 100

val2 = 23.45

val3 = Helllooooooo

2) raw_input() function

This input method fairly works in older versions (like 2.x).

Syntax:

 raw_input (expression)

If prompt is present, it is displayed on the monitor after which user can provide the data from

keyboard. The function takes exactly what is typed from keyboard, convert it to string and then return

it to the variable on LHS of '='.

Example: In interactive mode

>>>x=raw_input ('Enter your name: ')

Enter your name: ABC

x is a variable which will get the string (ABC), typed by user during the execution of program.

Typing of data for the raw_input function is terminated by enter key.

We can use raw_input() to enter numeric data also. In that case we typecast, i.e., change the data type

using function, the string data accepted from user to appropriate Numeric type.

Example:

47

>>>y=int(raw_input("Enter your roll no."))

Enter your roll no. 5

It will convert the accepted string i.e., 5 to integer before assigning it to 'y'.

Output Statement:

1). print() function/statement

print evaluates the expression before printing it on the monitor. Print statement outputs an entire

(complete) line and then goes to next line for subsequent output (s). To print more than one item on a

single line, comma (,) may be used.

Syntax:

 print (expression/constant/variable)

Example 1:

print() example in Python

using single quotes

print('Hello!')

print('How are you?')

using double quotes

print("Hello!")

print("How are you?")

using triple single quotes

those can be used to print multiple line string

print('''Hello!''')

print('''How are you?''')

printing multiline string

print('''Hello... how are you?

Hey! I am good, what about you?

I am good also, thanks.''')

Output

Hello!

How are you?

Hello!

How are you?

Hello!

How are you?

48

Hello... how are you?

Hey! I am good, what about you?

I am good also, thanks.

Example 2:

print() example in Python

printing values

print("Printing direct values...")

print(10) # printing an integer

print(10.2345) # printing a float

print([10, 20, 30, 40, 50]) # printing a list

print({10, 20, 30, 40, 50}) # printing a set

printing variables

a = 10

b = 10.2345

c = [10, 20, 30, 40, 50]

d = {10, 20, 30, 40, 50}

print("Printing variables...")

print(a)

print(b)

print(c)

print(d)

printing message with variables

print("Printing message variables...")

print("a = ", a)

print("b = ", b)

print("c = ", c)

print("d = ", d)

Output

Printing direct values...

10

10.2345

[10, 20, 30, 40, 50]

{40, 10, 50, 20, 30}

Printing variables...

10

10.2345

[10, 20, 30, 40, 50]

{40, 10, 50, 20, 30}

Printing message variables...

a = 10

b = 10.2345

c = [10, 20, 30, 40, 50]

d = {40, 10, 50, 20, 30}

49

II. CONTROL STATEMENTS

(BRANCHING, LOOPING, CONDITIONAL STATEMENT, EXIT FUNCTION,

DIFFERENCE BETWEEN BREAK, CONTINUE AND PASS)

The if statement

if statement is the most simple decision making statement. It is used to decide whether a certain

statement or block of statements will be executed or not i.e if a certain condition is true then a block

of statement is executed otherwise not.

Syntax:

if condition:

 # Statements to execute if

 # condition is true

Ex 1:

x = eval(input("Enter x: "))

if x>0:

 print("x is positive")

The if else statement with multiple statements

The if statement alone tells us that if a condition is true it will execute a block of statements and if the

condition is false it won’t. But what if we want to do something else if the condition is false. Here

comes the else statement. We can use the else statement with if statement to execute a block of code

when the condition is false.

Syntax:

if (condition):

 # Executes this block if

 # condition is true

else:

 # Executes this block if

 # condition is false

Ex 1:

x = 'spam'

if x == 'spammy':

50

 print 'Hi spam\n'

 print "Nice weather we're having"

 print 'Have a nice day!'

else:

 print 'not spam'

 print 'Not having a good day?'

A nested if example

(an if statement within another if statement)

nested-if

A nested if is an if statement that is the target of another if statement. Nested if statements means an

if statement inside another if statement. Yes, Python allows us to nest if statements within if

statements. i.e, we can place an if statement inside another if statement.

Syntax:

if (condition1):

 # Executes when condition1 is true

 if (condition2):

 # Executes when condition2 is true

 # if Block is end here

if Block is end here

Ex 1:
score=raw_input("Enter score: ")

score=int(score)

if score>=80:

 grade='A'

else:

 if score>=70:

 grade='B'

 else:

 grade='C'

print "Grade is:" +grade

A nested if example - using if/else

Ex 1:

score = raw_input("Enter score: ")

score = int(score)

if score >= 80:

 grade = 'A'

else:

 if score >= 70:

 grade = 'B'

 else:

 if score >= 55:

 grade = 'C'

 else:

 if score >= 50:

51

 grade = 'Pass'

 else:

 grade = 'Fail'

print "\n\nGrade is: " + grade

A nested if example - using if/elif/else

if-elif-else ladder

Here, a user can decide among multiple options. The if statements are executed from the top down.

As soon as one of the conditions controlling the if is true, the statement associated with that if is

executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final else

statement will be executed.

Syntax:-

if (condition):

 statement

elif (condition):

 statement

.

.

else:

 statement

Ex 1:

score = raw_input("Enter score: ")

score = int(score)

if score >= 80:

 grade = 'A'

elif score >= 70:

 grade = 'B'

elif score >= 55:

 grade = 'C'

elif score >= 50:

 grade = 'Pass'

else:

 grade = 'Fail'

print "\n\nGrade is: " + grade

Examples of while loops

While Loop

Syntax :

while expression:

52

 statement(s)

Example:

x = 1

while x <= 5:

 print ('Hi spam')

 x = x + 1

 print ('I love spam')

print ('done')

print ('gone')

Output:

Hi spam

I love spam

Hi spam

I love spam

Hi spam

I love spam

Hi spam

I love spam

Hi spam

I love spam

done

gone

Examples : Using else Statement with Loops(while)

Python supports to have an else statement associated with a loop statement.

 If the else statement is used with a for loop, the else statement is executed when the loop has

exhausted iterating the list.

 If the else statement is used with a while loop, the else statement is executed when the

condition becomes false.

Ex:

count = 0

while count < 5:

 print (count, " is less than 5")

 count = count + 1

else:

 print (count, " is not less than 5")

Output:

0 is less than 5

1 is less than 5

2 is less than 5

3 is less than 5

4 is less than 5

5 is not less than 5

53

Examples of while loops - the infinite loop

x = 1

while x:

 print 'Hi spam'

 x = x + 1

 print 'I love spam'

 print 'Press the Ctrl key and the C key together'

 print 'to interupt this program...'

print 'done'

print 'gone'

Example: use of break to end an infinite loop

while 1:

 print 'Spam'

 answer = raw_input('Press y to end this loop')

 if answer == 'y':

 print 'Fries with that?'

 break

print 'Have a '

print 'nice day!'

Example: use of continue in a loop

while 1:

 print 'Spam'

 answer = raw_input('Press y for large fries ')

 if answer == 'y':

 print 'Large fries with spam, mmmm, yummy '

 continue

 answer = raw_input('Had enough yet? ')

 if answer == 'y':

 break

print 'Have a '

print 'nice day!'

Example: the counter-controlled for loop

For Loop

Syntax:

for iterator_var in sequence:

 statements(s)

Example:

for c in range (10):

 print c

Note: range (10) is 0 through 9

54

Example: the counter-controlled for loop

for c in range (5,10):

 print c

Note: range (5,10) is 5 through 9

Output:

5

6

7

8

9

Example: how to use a for loop in computing

n = [6,4,5,7,8,6,2,3,1]

s = 0

for val in n:

 s=s+val

print(s)

Output:

42

Example: For loop with strings

for letter in 'Python': # First Example

 print ('Current Letter :', letter)

fruits = ['banana', 'apple', 'mango']

for fruit in fruits: # Second Example

 print ('Current fruit :', fruit)

print ("Good bye!")

Output:

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : h

Current Letter : o

Current Letter : n

Current fruit : banana

Current fruit : apple

Current fruit : mango

Good bye!

Example: 'break' with the for loop

for c in range (1,6):

 if c == 3:

 break

 print c

Output:

1

2

55

Example: how to use a loop within a loop a nested for loop

print ("This is the start of the program")

for i in range (1,3):

 for j in range (1,3):

 for k in range (1,3):

 print ("i: " + str(i) + " j: " + str(j) + " k: " + str(k))

 print ("Hi")

Output:

This is the start of the program

i: 1 j: 1 k: 1

i: 1 j: 1 k: 2

i: 1 j: 2 k: 1

i: 1 j: 2 k: 2

i: 2 j: 1 k: 1

i: 2 j: 1 k: 2

i: 2 j: 2 k: 1

i: 2 j: 2 k: 2

EXIT() FUNCTION

exit()

exit() is defined in site.py and it works only if the site module is imported so it should be used in the

interpreter only. It is like a synonym of quit() to make the Python more user-friendly. It too gives a

message when printed:

Example:

Python program to demonstrate

exit()

for i in range(10):

 # If the value of i becomes

 # 5 then the program is forced

 # to exit

 if i == 5:

 # prints the exit message

 print(exit)

 exit()

 print(i)

Output:

0

1

2

3

4

Use exit() or Ctrl-D (i.e. EOF) to exit

56

DIFFERENCE BETWEEN BREAK, CONTINUE AND PASS

Break statement

The break statement is used to terminate the loop or statement in which it is present. After that, the

control will pass to the statements that are present after the break statement, if available. If the break

statement is present in the nested loop, then it terminates only those loops which

contains break statement.

Syntax:

break

Continue statement

This statement is used to skip over the execution part of the loop on a certain condition. After that, it

transfers the control to the beginning of the loop. Basically, it skips its following statements and

continues with the next iteration of the loop.

Syntax:

continue

Pass statement

As the name suggests pass statement simply does nothing. We use pass statement to write empty

loops. Pass is also used for empty control statements, functions and classes.

Syntax:

pass

Example:

Python program to demonstrate

difference between pass and

continue statements

s = "geeks"

Pass statement

for i in s:

 if i == 'k':

 print('Pass executed')

 pass

 print(i)

print()

Continue statement

for i in s:

57

 if i == 'k':

 print('Continue executed')

 continue

print(i)

OUTPUT:

g

e

e

Pass executed

k

s

g

e

e

Continue executed

s

Break Statement : It brings control out of the loop

Pass Statement:

We use pass statement to write empty loops. Pass is also used for empty control statement, function

and classes.

Continue statement: forces the loop to continue or execute the next iteration.

III. FUNCTIONS

A function is a block of organized, reusable code that is used to perform a single, related action.

Functions provide better modularity for your application and a high degree of code reusing. Python

gives many built-in functions like print(), etc. but you can also create your own functions. These

functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to define a

function in Python.

 Function blocks begin with the keyword def followed by the function name and parentheses

(()).

 Any input parameters or arguments should be placed within these parentheses. You can also

define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the documentation string of the

function or docstring.

 The code block within every function starts with a colon (:) and is indented.

 The statement return [expression] exits a function, optionally passing back an expression to the

caller. A return statement with no arguments is the same as return None.

58

Syntax:

def functionname(parameters):

 "function_docstring"

 function_suite

 return [expression]

By default, parameters have a positional behavior and you need to inform them in the same order that

they were defined.

Calling a Function:

Defining a function only gives it a name, specifies the parameters that are to be included in the function

and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from another function

or directly from the Python prompt.

Ex 1: The following function takes a string as input parameter and prints it on standard screen.

Function definition is here

def fun1(str):

 "This prints a passed string into this function"

 print (str)

 return;

Now you can call fun1 function

fun1("III CSE")

fun1("M SEction-python class")

 Output:

 III CSE

 M SEction-python class

Ex 2: Arithmetical Operations using functions

def add(x,y):

 return (x+y)

def sub(x,y):

 return (x-y)

def mul(x,y):

 return (x*y)

def div(x,y):

 return (x/y)

n1=40; n2=20

print("Sum=",add(n1,n2))

print("Sub=",sub(n1,n2))

print("Multiplication=",mul(n1,n2))

mylist = [10,20,30]

changeme(mylist)

print("Values outside the function: ",mylist)print("Division=",div(n1,n2))

Output:

Sum= 60

Sub= 20

59

Multiplication= 800

Division= 2.0

Function Arguments

You can call a function by using the following types of formal arguments −

 Required arguments

 Keyword arguments

 Default arguments

 Variable-length arguments

Required Arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the

number of arguments in the function call should match exactly with the function definition.

To call the function fun1(), you definitely need to pass one argument, otherwise it gives a syntax error

as follows:

Ex 1:

Function definition is here

def fun1(str):

 "This prints a passed string into this function"

 print (str)

 return;

Now you can call fun1() function

fun1()

fun1("M SEction-python class")

Output:

TypeError Traceback (most recent call last)

<ipython-input-72-671f9452cf1c> in <module>

 6

 7 # Now you can call printme function

----> 8 fun1()

 9 fun1("M SEction-python class")

 10

TypeError: fun1() missing 1 required positional argument: 'str'

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a function

call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is able to

use the keywords provided to match the values with parameters. You can also make keyword calls to

the printme() function in the following ways:

Ex 1:

Function definition is here

def fun1(str):

 "This prints a passed string into this function"

 print (str)

 return;

60

fun1(str="III CSE")

fun1(str="M SEction-python class")

Output:

III CSE

M SEction-python class

Ex 2: Note that the order of parameters does not matter.

Function definition is here

def printinfo(name, pyt):

 "This prints a passed info into this function"

 print ("Name: ", name)

 print ("Python Subject% ", pyt)

 return;

Now you can call printinfo function

printinfo(pyt=100, name="M Section")

Output:

Name: M Section

Python Subject% 100

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the

function call for that argument. The following example gives an idea on default arguments, it prints

default age if it is not passed –

Ex 1:
Function definition is here

def printinfo(name, pyt = 95):

 "This prints a passed info into this function"

 print ("Name: ", name)

 print ("Python Subject% ", pyt)

 return;

Now you can call printinfo function

printinfo(pyt=100, name="M Section")

#printinfo(pyt, name="M Section") Error stmt --as keyword argument should compulsorily

have a value--pyt=99

printinfo(name="M Section" , pyt=80)

printinfo(name="M Section")

Output:

Name: M Section

Python Subject% 100

Name: M Section

Python Subject% 80

Name: M Section

Python Subject% 95

61

Variable-length arguments

You may need to process a function for more arguments than you specified while defining the

function. These arguments are called variable-length arguments and are not named in the function

definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

 "function_docstring"

 function_suite

 return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword variable

arguments. This tuple remains empty if no additional arguments are specified during the function call.

Following is a simple example –

Ex 1: # Function definition is here

def printinfo(arg1, *vartuple):

 "This prints a variable passed arguments"

 print ("Output is: ")

 print (arg1)

 for var in vartuple:

 print (var)

 return;

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

Output:

Output is:

10

Output is:

70

60

50

Anonymous Functions – Lambda Functions

These functions are called anonymous because they are not declared in the standard manner by using

the def keyword. You can use the lambda keyword to create small anonymous functions.

 Lambda forms can take any number of arguments but return just one value in the form of an

expression. They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an expression

 Lambda functions have their own local namespace and cannot access variables other than those

in their parameter list and those in the global namespace.

 Although it appears that lambda's are a one-line version of a function, they are not equivalent

to inline statements in C or C++, whose purpose is by passing function stack allocation during

invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows −

62

lambda [arg1 [,arg2,.....argn]]:expression

Following is the example to show how lambda form of function works –

Ex 1:

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function

print ("Value of total : ", sum(10, 20))

print ("Value of total : ", sum(20, 20))

Output:

Value of total : 30

Value of total : 40

The return Statement

The statement return [expression] exits a function, optionally passing back an expression to the caller.

A return statement with no arguments is the same as return None.

Scope of Variables

All variables in a program may not be accessible at all locations in that program. This depends on

where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a particular

identifier. There are two basic scopes of variables in Python −

 Global variables

 Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined outside have a

global scope.

This means that local variables can be accessed only inside the function in which they are declared,

whereas global variables can be accessed throughout the program body by all functions. When you

call a function, the variables declared inside it are brought into scope. Following is a simple example

–

Ex 1:

total = 0; # This is global variable.

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2 # Here total is local variable.

 print ("Inside the function local total : ", total)

Now you can call sum function

sum(10, 20)

print ("Outside the function global total : ", total)

Output:

Inside the function local total : 30

Outside the function global total : 0

63

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the

function call for that argument. The following example gives an idea on default arguments, it prints

default age if it is not passed –

Ex 1:

Function definition is here

def printinfo(name, pyt = 95):

 "This prints a passed info into this function"

 print ("Name: ", name)

 print ("Python Subject% ", pyt)

 return;

Now you can call printinfo function

printinfo(pyt=100, name="M Section")

#printinfo(pyt, name="M Section") Error stmt --as keyword argument should compulsorily

have a value--pyt=99

printinfo(name="M Section" , pyt=80)

printinfo(name="M Section")

Output:

Name: M Section

Python Subject% 100

Name: M Section

Python Subject% 80

Name: M Section

Python Subject% 95

IV. Python Errors and Exceptions Handling

Try Except

When an error occurs, or exception as we call it, Python will normally stop and generate an error

message.

 The try block lets you test a block of code for errors.

 The except block lets you handle the error.

 The finally block lets you execute code, regardless of the result of the try- and except blocks.

Example 1:

The try block will generate an exception, because z is not defined

Since the try block raises an error, the except block will be executed.

Without the try block, the program will crash and raise an error

try:

 print(z)

except:

 print("An exception occurred")

Output:

runfile('C:/Users/others/.spyder-py3/ex2.py', wdir='C:/Users/others/.spyder-py3')

64

An exception occurred

Suppose, if we only execute the following statement, then,

Example 2:

print(z)

Output:

NameError: name 'z' is not defined

Many Exceptions

You can define as many exception blocks as you want, e.g. if you want to execute a special block of

code for a special kind of error:

Example 3: # Print one message if the try block raises a NameError and another for other errors:

try:

 print(z)

except NameError:

 print("Variable z is not defined")

except:

 print("Something else went wrong")

Output:

Variable z is not defined

Else

You can use the else keyword to define a block of code to be executed if no errors were raised:

Example 4: # Here, the try block does not generate any err:

try:

 print("Hello")

except:

 print("Something went wrong")

else:

 print("Nothing went wrong")

Output:

Hello

Nothing went wrong

Example 5: # since a is not defined, it generates exception

 try:

 print(a)

except:

 print("Something went wrong")

else:

 print("Nothing went wrong")

Output:

 Something went wrong

65

Finally

The finally block, if specified, will be executed regardless if the try block raises an error or not. This

can be useful to close objects and clean up resources

Example 6:

try:

 print(z)

except:

 print("Something went wrong")

finally:

 print("The 'try except' is finished")

Output:

Something went wrong

The 'try except' is finished

Try to open and write to a file that is not writable:

Example 7: # The try block will raise an error when trying to write to a read-only file:

try:

 f = open("cse.txt")

 f.write("M SECTION STUDENTS")

except:

 print("Something went wrong when writing to the file")

finally:

 f.close()

Output:

Something went wrong when writing to the file

Example 8: Divide by zero

def divide(x,y):

 try:

 res=x/y

 except ZeroDivisionError:

 print ("Exception occured")

 else:

 print(res)

 finally:

 print("Program is complete")

Output:
>>> divide(2,1)

2.0

Program is complete
>>> divide(2,0)

Exception occured

Program is complete

66

List of Standard Exceptions

Sr.No. Exception Name & Description

1 Exception

Base class for all exceptions

2 StopIteration

Raised when the next() method of an iterator does not point to any object.

3 SystemExit

Raised by the sys.exit() function.

4 StandardError

Base class for all built-in exceptions except StopIteration and SystemExit.

5 ArithmeticError
Base class for all errors that occur for numeric calculation.

6 OverflowError
Raised when a calculation exceeds maximum limit for a numeric type.

7 FloatingPointError
Raised when a floating point calculation fails.

8 ZeroDivisionError
Raised when division or modulo by zero takes place for all numeric types.

9 AssertionError

Raised in case of failure of the Assert statement.

10 AttributeError

Raised in case of failure of attribute reference or assignment.

11 EOFError

Raised when there is no input from either the raw_input() or input() function and

the end of file is reached.

12 ImportError
Raised when an import statement fails.

13 KeyboardInterrupt

Raised when the user interrupts program execution, usually by pressing Ctrl+c.

14 LookupError

Base class for all lookup errors.

15 IndexError

67

Raised when an index is not found in a sequence.

16 KeyError
Raised when the specified key is not found in the dictionary.

17 NameError
Raised when an identifier is not found in the local or global namespace.

18 UnboundLocalError
Raised when trying to access a local variable in a function or method but no value has

been assigned to it.

19 EnvironmentError
Base class for all exceptions that occur outside the Python environment.

20 IOError
Raised when an input/ output operation fails, such as the print statement or the open()
function when trying to open a file that does not exist.

21 IOError
Raised for operating system-related errors.

22 SyntaxError
Raised when there is an error in Python syntax.

23 IndentationError
Raised when indentation is not specified properly.

24 SystemError
Raised when the interpreter finds an internal problem, but when this error is
encountered the Python interpreter does not exit.

25 SystemExit
Raised when Python interpreter is quit by using the sys.exit() function. If not handled
in the code, causes the interpreter to exit.

26 TypeError
Raised when an operation or function is attempted that is invalid for the specified data

type.

27 ValueError
Raised when the built-in function for a data type has the valid type of arguments, but

the arguments have invalid values specified.

28 RuntimeError
Raised when a generated error does not fall into any category.

29 NotImplementedError
Raised when an abstract method that needs to be implemented in an inherited class is

not actually implemented.

68

UNIT III – Question Bank

PART -A

1. What is a function?

2. Mention the types of function arguments in python.

3. What is meant by conditional if statement.

4. What is the difference between break and continue statement?

5. What is python pass statement?

6. What is an exception? Explain with an example.

7. List some few common Exception types and explain when they occur.

8. Give an example of lambda function.

9. State the use of Exit function.

10. Find the difference between break, continue and pass.

11. Give an example of Input and Output Statements.

12. Give the syntax of if else statement.

13. State the use of range function.

14. Explain for loop with an example.

15. Write the syntax of while loop with example.

16. Does Python support the concept of Default arguments?

17. Write a simple program which illustrates Handling Exceptions.

PART -B

1. Narrate the types of Function arguments with examples.

2. Narrate the importance of Default arguments with a python code.

3. Give a detailed note on the branching and looping control statements.

4. Using a python code, display the first n terms of Fibonacci series.

5. Using a python code, find the factorial of the given number.

6. Write a program to print the sum of the following series 1 + 1/2 + 1/3 +. …. + 1/n.

7. How Exceptions are handled using python. Give Examples.

8. Calculate the total marks, percentage and grade of a student. Marks obtained in each of the three

subjects are to be input by the user. Assign grades according to the following criteria :

 Grade A: Percentage >=80,

 Grade B: Percentage >=70 and <80

 Grade C: Percentage >=60 and <70

 Grade D: Percentage >=50 and <60

 Fail: Percentage<50

69

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – IV – Python Programming – SBS1304

70

I. ITERATION AND RECURSION

Iteration

An iteration is a single pass through a group/set of instructions. Most programs often contain loops of

instructions that are executed over and over again. The computer repeatedly executes the loop, iterating

through the loop.

Iteration is the act of repeating a process, either to generate an unbounded sequence of outcomes, or

with the aim of approaching a desired goal, target or result. Each repetition of the process is also called

an "iteration", and the results of one iteration are used as the starting point for the next iteration.

Example:

a = 0

for i from 1 to 3 // loop three times

{

a = a + i // add the current value of i to a

}

print a // the number 6 is printed (0 + 1; 1 + 2; 3 + 3)

Recursive Functions

A recursive function is a function that calls itself. To prevent a function from repeating itself

indefinitely, it must contain at least one selection statement. This statement examines a condition called

a base case to determine whether to stop or to continue with another recursive step.

The process in which a function calls itself directly or indirectly is called recursion and the

corresponding function is called as recursive function. Using recursive algorithm, certain problems can

be solved quite easily.

Examples of such problems are Towers of Hanoi (TOH), In order/Preorder/Post order Tree Traversals,

DFS of Graph, etc.

1. Program for finding the factorial of a given no

def fact(n):

if n==0:

return 1

else:

return n*fact(n-1)

print("The factorial of a given no is",fact(5))

Output:

The factorial of a given no is:120

2. Finding nth Fibonacci Number

def fib(n):

if n<3:

return 1

else:

return fib(n-1)+fib(n-2)

print("The nth fibbonacci no is",fib(10))

71

Output:

The nth Fibonacci series is 55.

Disadvantages of Recursion over iteration

Note that both recursive and iterative programs have same problem solving powers, i.e., every recursive

program can be written iteratively and vice versa is also true. Recursive program has greater space

requirements than iterative program as all functions will remain in stack unt il base case is reached. It

also has greater time requirements because of function calls and return overhead.

Advantages of Recursion over iteration

Recursion provides a clean and simple way to write code. Some problems are inherently recursive like

tree traversals, Tower of Hanoi, etc. For such problems it is preferred to write recursive code. We can

write such codes also iteratively with the help of stack data structure. For example refer Inorder Tree

Traversal without Recursion, Iterative Tower of Hanoi.

CONDITIONAL EXECUTION

In order to write useful programs, we almost always need the ability to check conditions and change

the behavior of the program accordingly. Conditional statements give us this ability. The simplest

form is the if statement:

if x > 0:

 print "x is positive"

The boolean expression after the if statement is called the condition. If it is true, then the indented

statement gets executed. If not, nothing happens.

Like other compound statements, the if statement is made up of a header and a block of statements:

HEADER:

 FIRST STATEMENT

 ...

 LAST STATEMENT

The header begins on a new line and ends with a colon (:). The indented statements that follow are

called a block. The first unindented statement marks the end of the block. A statement block inside a

compound statement is called the body of the statement.

There is no limit on the number of statements that can appear in the body of an if statement, but there

has to be at least one. Occasionally, it is useful to have a body with no statements. In that case, you can

use the pass statement, which does nothing.

ALTERNATIVE EXECUTION

A second form of the if statement is alternative execution, in which there are two possibilities and the

condition determines which one gets executed. The syntax looks like this:

72

if x%2 == 0:

 print x, "is even"

else:

 print x, "is odd"

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program displays a

message to that effect. If the condition is false, the second set of statements is executed. Since the

condition must be true or false, exactly one of the alternatives will be executed. The alternatives are

called branches, because they are branches in the flow of execution.

As an aside, if you need to check the parity (evenness or oddness) of numbers often, you might "wrap"

this code in a function:

def printParity(x):

 if x%2 == 0:

 print x, "is even"

 else:

 print x, "is odd"

For any value of x, printParity displays an appropriate message. When you call it, you can provide any

integer expression as an argument.

>>> printParity(17)

17 is odd

>>> y = 17

>>> printParity(y+1)

18 is even

CHAINED CONDITIONALS

Sometimes there are more than two possibilities and we need more than two branches. One way to

express a computation like that is a chained conditional:

if x < y:

 print x, "is less than", y

elif x > y:

 print x, "is greater than", y

else:

 print x, "and", y, "are equal"

elif is an abbreviation of "else if." Again, exactly one branch will be executed. There is no limit of the

number of elif statements, but the last branch has to be an else statement:

if choice == 'A':

 functionA()

elif choice == 'B':

 functionB()

elif choice == 'C':

 functionC()

73

else:

 print "Invalid choice."

Each condition is checked in order. If the first is false, the next is checked, and so on. If one of them is

true, the corresponding branch executes, and the statement ends. Even if more than one condition is

true, only the first true branch executes.

NESTED CONDITIONALS

One conditional can also be nested within another. We could have written the trichotomy example as

follows:

if x == y:

 print x, "and", y, "are equal"

else:

 if x < y:

 print x, "is less than", y

 else:

 print x, "is greater than", y

The outer conditional contains two branches. The first branch contains a simple output statement. The

second branch contains another if statement, which has two branches of its own. Those two branches

are both output statements, although they could have been conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested conditionals become

difficult to read very quickly. In general, it is a good idea to avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements. For example, we can

rewrite the following code using a single conditional:

if 0 < x:

 if x < 10:

 print "x is a positive single digit."

The print statement is executed only if we make it past both the conditionals, so we can use

the and operator:

if 0 < x and x < 10:

 print "x is a positive single digit."

These kinds of conditions are common, so Python provides an alternative syntax that is similar to

mathematical notation:

if 0 < x < 10:

 print "x is a positive single digit."

This condition is semantically the same as the compound boolean expression and the nested

conditional.

74

THE return STATEMENT

The return statement allows you to terminate the execution of a function before you reach the end. One

reason to use it is if you detect an error condition:

import math

def printLogarithm(x):

 if x <= 0:

 print "Positive numbers only, please."

 return

 result = math.log(x)

 print "The log of x is", result

The function printLogarithm has a parameter named x. The first thing it does is check whether x is less

than or equal to 0, in which case it displays an error message and then uses return to exit the function.

The flow of execution immediately returns to the caller, and the remaining lines of the function are not

executed.

II. RECURSION

We mentioned that it is legal for one function to call another, and you have seen several examples of

that. We neglected to mention that it is also legal for a function to call itself. It may not be obvious why

that is a good thing, but it turns out to be one of the most magical and interesting things a program can

do. For example, look at the following function:

def countdown(n):

 if n == 0:

 print "Blastoff!"

 else:

 print n

 countdown(n-1)

countdown expects the parameter, n, to be a positive integer. If n is 0, it outputs the word, "Blastoff!"

Otherwise, it outputs n and then calls a function named countdown itself passing n-1 as an

argument.

What happens if we call this function like this:

>>> countdown(3)

The execution of countdown begins with n=3, and since n is not 0, it outputs the value 3, and then calls

itself...

The execution of countdown begins with n=2, and since n is not 0, it outputs the value 2, and then calls

itself...

The execution of countdown begins with n=1, and since n is not 0, it outputs the value 1, and then calls

itself...

75

The execution of countdown begins with n=0, and since n is 0, it outputs the word, "Blastoff!" and then

returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you're back in __main__ (what a trip). So, the total output looks like this:

3

2

1

Blastoff!

As a second example, look again at the functions newLine and threeLines:

def newline():

 print

def threeLines():

 newLine()

 newLine()

 newLine()

Although these work, they would not be much help if we wanted to output 2 newlines, or 106. A better

alternative would be this:

def nLines(n):

 if n > 0:

 print

 nLines(n-1)

This program is similar to countdown; as long as n is greater than 0, it outputs one newline and then

calls itself to output n-1 additional newlines. Thus, the total number of newlines is 1 + (n - 1) which, if

you do your algebra right, comes out to n.

The process of a function calling itself is recursion, and such functions are said to be recursive.

STACK DIAGRAM

Stack Diagram

A graphical representation of a stack of functions, their variables, and the values to which they

refer.

To keep track of which variables can be used where, it is sometimes useful to draw a stack diagram.

Like state diagrams, stack diagrams show the value of each variable, but they also show the function

to which each variable belongs.

76

Each function is represented by a frame. A frame is a box with the name of a function beside it and

the parameters and variables of the function inside it. The stack diagram for the previous example looks

like this:

The order of the stack shows the flow of execution. printTwice was called by catTwice,

and catTwice was called by __main__, which is a special name for the topmost function. When you

create a variable outside of any function, it belongs to __main__.

Each parameter refers to the same value as its corresponding argument. So, part1 has the same value

as chant1, part2 has the same value as chant2, and bruce has the same value as cat.

If an error occurs during a function call, Python prints the name of the function, and the name of the

function that called it, and the name of the function that called that, all the way back to __main__.

For example, if we try to access cat from within printTwice, we get a NameError:

Traceback (innermost last):

 File "test.py", line 13, in __main__

 catTwice(chant1, chant2)

 File "test.py", line 5, in catTwice

 printTwice(cat)

 File "test.py", line 9, in printTwice

 print cat

NameError: cat

This list of functions is called a traceback. It tells you what program file the error occurred in, and

what line, and what functions were executing at the time. It also shows the line of code that caused the

error.

Notice the similarity between the traceback and the stack diagram. It's not a coincidence.

77

STACK DIAGRAMS FOR RECURSIVE FUNCTIONS

We can use a stack diagram to represent the state of a program during a function call. The same kind

of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a new function frame, which contains the function's

local variables and parameters. For a recursive function, there might be more than one frame on the

stack at the same time.

This figure shows a stack diagram for countdown called with n = 3:

As usual, the top of the stack is the frame for __main__. It is empty because we did not create any

variables in __main__ or pass any arguments to it.

The four countdown frames have different values for the parameter n. The bottom of the stack,

where n=0, is called the base case. It does not make a recursive call, so there are no more frames.

INFINITE RECURSION

If a recursion never reaches a base case, it goes on making recursive calls forever, and the program

never terminates. This is known as infinite recursion, and it is generally not considered a good idea.

Here is a minimal program with an infinite recursion:

def recurse():

 recurse()

In most programming environments, a program with infinite recursion does not really run forever.

Python reports an error message when the maximum recursion depth is reached:

 File "<stdin>", line 2, in recurse

 (98 repetitions omitted)

 File "<stdin>", line 2, in recurse

RuntimeError: Maximum recursion depth exceeded

78

This traceback is a little bigger than the one we saw in the previous chapter. When the error occurs,

there are 100 recurse frames on the stack!

ABBREVIATED ASSIGNMENT

Incrementing a variable is so common that Python provides an abbreviated syntax for it:

>>> count = 0

>>> count += 1

>>> count

1

>>> count += 1

>>> count

2

count += 1 is an abreviation for count = count + 1 . We pronounce the operator as “plus-equals”. The

increment value does not have to be 1:

>>> n = 2

>>> n += 5

>>> n

7

There are similar abbreviations for -=, *=, /=, //= and %=:

>>> n = 2

>>> n *= 5

>>> n

10

>>> n -= 4

>>> n

6

>>> n //= 2

>>> n

3

>>> n %= 2

>>> n

1

III. THE while STATEMENT

Here is a fragment of code that demonstrates the use of the while statement:

def sum_to(n):

 """ Return the sum of 1+2+3 ... n """

 ss = 0

 v = 1

 while v <= n:

 ss = ss + v

79

 v = v + 1

 return ss

For your test suite

test(sum_to(4) == 10)

test(sum_to(1000) == 500500)

While v is less than or equal to n, continue executing the body of the loop. Within the body, each time,

increment v. When v passes n, return your accumulated sum.

More formally, here is precise flow of execution for a while statement:

 Evaluate the condition at line 5, yielding a value which is either False or True.

 If the value is False, exit the while statement and continue execution at the next statement (line

8 in this case).

 If the value is True, execute each of the statements in the body (lines 6 and 7) and then go back

to the while statement at line 5.

The body consists of all of the statements indented below the while keyword.

Notice that if the loop condition is False the first time we get loop, the statements in the body of the loop

are never executed.

The body of the loop should change the value of one or more variables so that eventually the condition

becomes false and the loop terminates. Otherwise the loop will repeat forever, which is called an infinite

loop. An endless source of amusement for computer scientists is the observation that the directions on

shampoo, “lather, rinse, repeat”, are an infinite loop.

In the case here, we can prove that the loop terminates because we know that the value of n is finite, and

we can see that the value of v increments each time through the loop, so eventually it will have to

exceed n. In other cases, it is not so easy, even impossible in some cases, to tell if the loop will ever

terminate.

What you will notice here is that the while loop is more work for you — the programmer — than the

equivalent for loop. When using a while loop one has to manage the loop variable yourself: give it an

initial value, test for completion, and then make sure you change something in the body so that the loop

terminates. By comparison, here is an equivalent function that uses for instead:

def sum_to(n):

 """ Return the sum of 1+2+3 ... n """

 ss = 0

 for v in range(n+1):

 ss = ss + v

 return ss

80

IV. TABLES

One of the things loops are good for is generating tables. Before computers were readily available, people

had to calculate logarithms, sines and cosines, and other mathematical functions by hand. To make that

easier, mathematics books contained long tables listing the values of these functions. Creating the tables

was slow and boring, and they tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This is great! We can use the

computers to generate the tables, so there will be no errors.” That turned out to be true (mostly) but

shortsighted. Soon thereafter, computers and calculators were so pervasive that the tables became

obsolete.

Well, almost. For some operations, computers use tables of values to get an approximate answer and then

perform computations to improve the approximation. In some cases, there have been errors in the

underlying tables, most famously in the table the Intel Pentium processor chip used to perform floating-

point division.

Although a log table is not as useful as it once was, it still makes a good example of iteration. The

following program outputs a sequence of values in the left column and 2 raised to the power of that value

in the right column:

for x in range(13): # Generate numbers 0 to 12

 print(x, "\t", 2**x)

The string "\t" represents a tab character. The backslash character in "\t" indicates the beginning of

an escape sequence. Escape sequences are used to represent invisible characters like tabs and newlines.

The sequence \n represents a newline.

An escape sequence can appear anywhere in a string; in this example, the tab escape sequence is the only

thing in the string. How do you think you represent a backslash in a string?

As characters and strings are displayed on the screen, an invisible marker called the cursor keeps track

of where the next character will go. After a print function, the cursor normally goes to the beginning of

the next line.

The tab character shifts the cursor to the right until it reaches one of the tab stops. Tabs are useful for

making columns of text line up, as in the output of the previous program:

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

81

Because of the tab characters between the columns, the position of the second column does not depend

on the number of digits in the first column.

TWO-DIMENSIONAL TABLES

A two-dimensional table is a table where you read the value at the intersection of a row and a column. A

multiplication table is a good example. Let’s say you want to print a multiplication table for the values

from 1 to 6.

A good way to start is to write a loop that prints the multiples of 2, all on one line:

for i in range(1, 7):

 print(2 * i, end=" ")

print()

Here we’ve used the range function, but made it start its sequence at 1. As the loop executes, the value

of i changes from 1 to 6. When all the elements of the range have been assigned to i, the loop terminates.

Each time through the loop, it displays the value of 2 * i, followed by three spaces.

Again, the extra end=" " argument in the print function suppresses the newline, and uses three spaces

instead. After the loop completes, the call to print at line 3 finishes the current line, and starts a new line.

The output of the program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

Encapsulation and generalization

Encapsulation is the process of wrapping a piece of code in a function, allowing you to take advantage

of all the things functions are good for. You have already seen some examples of encapsulation,

including is_divisible in a previous chapter.

Generalization means taking something specific, such as printing the multiples of 2, and making it more

general, such as printing the multiples of any integer.

This function encapsulates the previous loop and generalizes it to print multiples of n:

def print_multiples(n):

 for i in range(1, 7):

 print(n * i, end=" ")

 print()

To encapsulate, all we had to do was add the first line, which declares the name of the function and the

parameter list. To generalize, all we had to do was replace the value 2 with the parameter n.

82

If we call this function with the argument 2, we get the same output as before. With the argument 3, the

output is:

3 6 9 12 15 18

With the argument 4, the output is:

4 8 12 16 20 24

By now you can probably guess how to print a multiplication table — by

calling print_multiples repeatedly with different arguments. In fact, we can use another loop:

for i in range(1, 7):

 print_multiples(i)

Notice how similar this loop is to the one inside print_multiples. All we did was replace

the print function with a function call.

The output of this program is a multiplication table:

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

More encapsulation

To demonstrate encapsulation again, let’s take the code from the last section and wrap it up in a function:

def print_mult_table():

 for i in range(1, 7):

 print_multiples(i)

This process is a common development plan. We develop code by writing lines of code outside any

function, or typing them in to the interpreter. When we get the code working, we extract it and wrap it

up in a function.

This development plan is particularly useful if you don’t know how to divide the program into functions

when you start writing. This approach lets you design as you go along.

83

Python Program to print the following multiplication table.

Program:

Output:

References:

http://openbookproject.net/thinkcs/python/english3e/iteration.html

https://www.greenteapress.com/thinkpython/thinkCSpy/html/chap04.html

https://www.greenteapress.com/thinkpython/thinkCSpy/html/chap03.html#11

http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings

http://openbookproject.net/thinkcs/python/english3e/iteration.html
https://www.greenteapress.com/thinkpython/thinkCSpy/html/chap04.html
https://www.greenteapress.com/thinkpython/thinkCSpy/html/chap03.html#11
http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings

84

UNIT IV – Question Bank

PART -A

1. Compare and Contrast: Iteration and Recursion.

2. Define Recursion.

3. State the purpose of a Stack Diagram.

4. Give an example of Conditional Execution.

5. Give an example of Alternative Execution.

6. Mention the disadvantages of Recursion over iteration.

7. Mention the advantages of Recursion over iteration.

8. Write an example of Nested Conditionals.

9. Print a 5*5 table.

10. Write a python program to print the multiplication table of 6.

11. Give few examples of Abbreviated Assignments.

12. Create a two dimensional table.

PART -B

1. Write a python program to create a Two Dimensional Table.

2. Find the factorial of a number using recursion.

3. Print the following multiplication table using a Python code.

4. Implement the concept of chained conditionals using a Python Program.

5. Illustrate Conditional Execution and Alternative Execution using a Python code.

6. Implement the concept of chained conditionals using a Python Program.

7. Illustrate the recursive function using a stack diagram.

85

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – V – Python Programming – SBS1304

86

I. STRINGS

A COMPOUND DATA TYPE

So far we have seen built-in types like int, float, bool, str and we’ve seen lists and pairs. Strings, lists,

and pairs are qualitatively different from the others because they are made up of smaller pieces. In the

case of strings, they’re made up of smaller strings each containing one character.

Types that comprise smaller pieces are called compound data types. Depending on what we are doing,

we may want to treat a compound data type as a single thing, or we may want to access its parts. This

ambiguity is useful.

WORKING WITH STRINGS AS SINGLE THINGS

We previously saw that each turtle instance has its own attributes and a number of methods that can be

applied to the instance. For example, we could set the turtle’s color, and we wrote tess.turn(90).

Just like a turtle, a string is also an object. So each string instance has its own attributes and methods.

For example:

>>> ss = "Hello, World!"

>>> tt = ss.upper()

>>> tt

'HELLO, WORLD!'

upper is a method that can be invoked on any string object to create a new string, in which all the

characters are in uppercase. (The original string ss remains unchanged.)

WORKING WITH THE PARTS OF A STRING

The indexing operator (Python uses square brackets to enclose the index) selects a single character

substring from a string:

>>> fruit = "banana"

>>> m = fruit[1]

>>> print(m)

The expression fruit[1] selects character number 1 from fruit, and creates a new string containing just

this one character. The variable m refers to the result. When we display m,

a

The letter at subscript position zero of "banana" is b. So at position [1] we have the letter a.

If we want to access the zero-eth letter of a string, we just place 0, or any expression that evaluates to 0,

in between the brackets:

87

>>> m = fruit[0]

>>> print(m)

b

The expression in brackets is called an index. An index specifies a member of an ordered collection, in

this case the collection of characters in the string. The index indicates which one you want, hence the

name. It can be any integer expression.

We can use enumerate to visualize the indices:

>>> fruit = "banana"

>>> list(enumerate(fruit))

[(0, 'b'), (1, 'a'), (2, 'n'), (3, 'a'), (4, 'n'), (5, 'a')]

Note that indexing returns a string — Python has no special type for a single character. It is just a string

of length 1.

The same indexing notation works to extract elements from a list:

>>> prime_nums = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

>>> prime_nums[4]

11

>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]

>>> friends[3]

'Angelina'

LENGTH

The len function, when applied to a string, returns the number of characters in a string:

>>> fruit = "banana"

>>> len(fruit)

6

To get the last letter of a string, you might be tempted to try something like this:

1

2

sz = len(fruit)

last = fruit[sz] # ERROR!

It causes the runtime error IndexError: string index out of range. The reason is that there is no character

at index position 6 in "banana". Because we start counting at zero, the six indexes are numbered 0 to 5.

To get the last character, we have to subtract 1 from the length of fruit:

1

2

sz = len(fruit)

last = fruit[sz-1]

88

Alternatively, we can use negative indices, which count backward from the end of the string. The

expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and so on.

TRAVERSAL AND THE FOR LOOP

A lot of computations involve processing a string one character at a time. Often they start at the beginning,

select each character in turn, do something to it, and continue until the end. This pattern of processing is

called a traversal. One way to encode a traversal is with a while statement:

1

2

3

4

5

ix = 0

while ix < len(fruit):

 letter = fruit[ix]

 print(letter)

 ix += 1

This loop traverses the string and displays each letter on a line by itself. The loop condition

is ix < len(fruit), so when ix is equal to the length of the string, the condition is false, and the body of the

loop is not executed. The last character accessed is the one with the index len(fruit)-1, which is the last

character in the string.

But we’ve previously seen how the for loop can easily iterate over the elements in a list and it can do so

for strings as well:

1

2

for c in fruit:

 print(c)

Each time through the loop, the next character in the string is assigned to the variable c. The loop

continues until no characters are left. Here we can see the expressive power the for loop gives us

compared to the while loop when traversing a string.

The following example shows how to use concatenation and a for loop to generate an abecedarian series.

Abecedarian refers to a series or list in which the elements appear in alphabetical order. For example, in

Robert McCloskey’s book Make Way for Ducklings, the names of the ducklings are Jack, Kack, Lack,

Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in order:

1

2

3

4

5

prefixes = "JKLMNOPQ"

suffix = "ack"

for p in prefixes:

 print(p + suffix)

The output of this program is:

Jack

Kack

Lack

89

Mack

Nack

Oack

Pack

Qack

SLICES

A substring of a string is obtained by taking a slice. Similarly, we can slice a list to refer to some sublist

of the items in the list:

>>> s = "Pirates of the Caribbean"

>>> print(s[0:7])

Pirates

>>> print(s[11:14])

the

>>> print(s[15:24])

Caribbean

>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]

>>> print(friends[2:4])

['Brad', 'Angelina']

The operator [n:m] returns the part of the string from the n’th character to the m’th character, including

the first but excluding the last. This behavior makes sense if you imagine the indices pointing between the

characters, as in the following diagram:

If you imagine this as a piece of paper, the slice operator [n:m] copies out the part of the paper between

the n and m positions. Provided m and n are both within the bounds of the string, your result will be of

length (m-n).

Three tricks are added to this: if you omit the first index (before the colon), the slice starts at the beginning

of the string (or list). If you omit the second index, the slice extends to the end of the string (or list).

Similarly, if you provide value for n that is bigger than the length of the string (or list), the slice will take

all the values up to the end. (It won’t give an “out of range” error like the normal indexing operation

does.) Thus:

>>> fruit = "banana"

>>> fruit[:3]

'ban'

>>> fruit[3:]

'ana'

>>> fruit[3:999]

'ana'

90

What do you think s[:] means? What about friends[4:]?

STRING COMPARISON

The comparison operators work on strings. To see if two strings are equal:

1

2

if word == "banana":

 print("Yes, we have no bananas!")

Other comparison operations are useful for putting words in lexicographical order:

1

2

3

4

5

6

if word < "banana":

 print("Your word, " + word + ", comes before banana.")

elif word > "banana":

 print("Your word, " + word + ", comes after banana.")

else:

 print("Yes, we have no bananas!")

This is similar to the alphabetical order you would use with a dictionary, except that all the uppercase

letters come before all the lowercase letters. As a result:

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard format, such as all lowercase,

before performing the comparison. A more difficult problem is making the program realize that zebras

are not fruit.

STRINGS ARE IMMUTABLE

It is tempting to use the [] operator on the left side of an assignment, with the intention of changing a

character in a string. For example:

1

2

3

greeting = "Hello, world!"

greeting[0] = 'J' # ERROR!

print(greeting)

Instead of producing the output Jello, world!, this code produces the runtime

error TypeError: 'str' object does not support item assignment.

Strings are immutable, which means you can’t change an existing string. The best you can do is create

a new string that is a variation on the original:

1

2

3

greeting = "Hello, world!"

new_greeting = "J" + greeting[1:]

91

print(new_greeting)

The solution here is to concatenate a new first letter onto a slice of greeting. This operation has no effect

on the original string.

THE in and not in OPERATORS

The in operator tests for membership. When both of the arguments to in are strings, in checks whether

the left argument is a substring of the right argument.

>>> "p" in "apple"

True

>>> "i" in "apple"

False

>>> "ap" in "apple"

True

>>> "pa" in "apple"

False

Note that a string is a substring of itself, and the empty string is a substring of any other string. (Also note

that computer scientists like to think about these edge cases quite carefully!)

>>> "a" in "a"

True

>>> "apple" in "apple"

True

>>> "" in "a"

True

>>> "" in "apple"

True

The not in operator returns the logical opposite results of in:

>>> "x" not in "apple"

True

Combining the in operator with string concatenation using +, we can write a function that removes all

the vowels from a string:

 1

 2

 3

 4

 5

 6

 7

 8

 9

def remove_vowels(s):

 vowels = "aeiouAEIOU"

 s_sans_vowels = ""

 for x in s:

 if x not in vowels:

 s_sans_vowels += x

 return s_sans_vowels

test(remove_vowels("compsci") == "cmpsc")

92

10 test(remove_vowels("aAbEefIijOopUus") == "bfjps")

A FIND FUNCTION

What does the following function do?

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

def find(strng, ch):

 """

 Find and return the index of ch in strng.

 Return -1 if ch does not occur in strng.

 """

 ix = 0

 while ix < len(strng):

 if strng[ix] == ch:

 return ix

 ix += 1

 return -1

test(find("Compsci", "p") == 3)

test(find("Compsci", "C") == 0)

test(find("Compsci", "i") == 6)

test(find("Compsci", "x") == -1)

In a sense, find is the opposite of the indexing operator. Instead of taking an index and extracting the

corresponding character, it takes a character and finds the index where that character appears. If the

character is not found, the function returns -1.

This is another example where we see a return statement inside a loop. If strng[ix] == ch, the function

returns immediately, breaking out of the loop prematurely.

If the character doesn’t appear in the string, then the program exits the loop normally and returns -1.

This pattern of computation is sometimes called a eureka traversal or short-circuit evaluation, because

as soon as we find what we are looking for, we can cry “Eureka!”, take the short-circuit, and stop looking.

LOOPING AND COUNTING

The following program counts the number of times the letter a appears in a string.

def count_a(text):

 count = 0

 for c in text:

 if c == "a":

 count += 1

 return(count)

93

test(count_a("banana") == 3)

OPTIONAL PARAMETERS

To find the locations of the second or third occurrence of a character in a string, we can modify

the find function, adding a third parameter for the starting position in the search string:

1

2

3

4

5

6

7

8

9

def find2(strng, ch, start):

 ix = start

 while ix < len(strng):

 if strng[ix] == ch:

 return ix

 ix += 1

 return -1

test(find2("banana", "a", 2) == 3)

The call find2("banana", "a", 2) now returns 3, the index of the first occurrence of “a” in “banana”

starting the search at index 2. What does find2("banana", "n", 3) return? If you said, 4, there is a good

chance you understand how find2 works.

Better still, we can combine find and find2 using an optional parameter:

1

2

3

4

5

6

7

def find(strng, ch, start=0):

 ix = start

 while ix < len(strng):

 if strng[ix] == ch:

 return ix

 ix += 1

 return -1

When a function has an optional parameter, the caller may provide a matching argument. If the third

argument is provided to find, it gets assigned to start. But if the caller leaves the argument out, then start

is given a default value indicated by the assignment start=0 in the function definition.

So the call find("banana", "a", 2) to this version of find behaves just like find2, while in the

call find("banana", "a"), start will be set to the default value of 0.

Adding another optional parameter to find makes it search from a starting position, up to but not

including the end position:

1

2

3

4

5

6

7

def find(strng, ch, start=0, end=None):

 ix = start

 if end is None:

 end = len(strng)

 while ix < end:

 if strng[ix] == ch:

 return ix

94

8

9

 ix += 1

 return -1

The optional value for end is interesting: we give it a default value None if the caller does not supply any

argument. In the body of the function we test what end is, and if the caller did not supply any argument,

we reassign end to be the length of the string. If the caller has supplied an argument for end, however,

the caller’s value will be used in the loop.

The semantics of start and end in this function are precisely the same as they are in the range function.

Here are some test cases that should pass:

1

2

3

4

5

6

ss = "Python strings have some interesting methods."

test(find(ss, "s") == 7)

test(find(ss, "s", 7) == 7)

test(find(ss, "s", 8) == 13)

test(find(ss, "s", 8, 13) == -1)

test(find(ss, ".") == len(ss)-1)

THE BUILT-IN FIND METHOD

Now that we’ve done all this work to write a powerful find function, we can reveal that strings already

have their own built-in find method. It can do everything that our code can do, and more!

1

2

3

4

5

test(ss.find("s") == 7)

test(ss.find("s", 7) == 7)

test(ss.find("s", 8) == 13)

test(ss.find("s", 8, 13) == -1)

test(ss.find(".") == len(ss)-1)

The built-in find method is more general than our version. It can find substrings, not just single

characters:

>>> "banana".find("nan")

2

>>> "banana".find("na", 3)

4

THE SPLIT METHOD

One of the most useful methods on strings is the split method: it splits a single multi-word string into a

list of individual words, removing all the whitespace between them. (Whitespace means any tabs,

newlines, or spaces.) This allows us to read input as a single string, and split it into words.

>>> ss = "Well I never did said Alice"

>>> wds = ss.split()

95

>>> wds

['Well', 'I', 'never', 'did', 'said', 'Alice']

THE STRING FORMAT METHOD

The easiest and most powerful way to format a string in Python 3 is to use the format method. To see

how this works, let’s start with a few examples:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

s1 = "His name is {0}!".format("Arthur")

print(s1)

name = "Alice"

age = 10

s2 = "I am {1} and I am {0} years old.".format(age, name)

print(s2)

n1 = 4

n2 = 5

s3 = "2**10 = {0} and {1} * {2} = {3:f}".format(2**10, n1, n2, n1 * n2)

print(s3)

Running the script produces:

His name is Arthur!

I am Alice and I am 10 years old.

2**10 = 1024 and 4 * 5 = 20.000000

The template string contains place holders, ... {0} ... {1} ... {2} ... etc. The format method substitutes

its arguments into the place holders. The numbers in the place holders are indexes that determine which

argument gets substituted — make sure you understand line 6 above!

But there’s more! Each of the replacement fields can also contain a format specification — it is always

introduced by the : symbol (Line 11 above uses one.) This modifies how the substitutions are made into

the template, and can control things like:

 whether the field is aligned to the left <, center ^, or right >

 the width allocated to the field within the result string (a number like 10)

 the type of conversion (we’ll initially only force conversion to float, f, as we did in line 11 of the

code above, or perhaps we’ll ask integer numbers to be converted to hexadecimal using x)

 if the type conversion is a float, you can also specify how many decimal places are wanted

(typically, .2f is useful for working with currencies to two decimal places.)

96

II. LISTS

A list is an ordered collection of values. The values that make up a list are called its elements, or

its items. We will use the term element or item to mean the same thing. Lists are similar to strings, which

are ordered collections of characters, except that the elements of a list can be of any type. Lists and strings

— and other collections that maintain the order of their items — are called sequences.

LIST VALUES

There are several ways to create a new list; the simplest is to enclose the elements in square brackets

([and]):

1

2

ps = [10, 20, 30, 40]

qs = ["spam", "bungee", "swallow"]

The first example is a list of four integers. The second is a list of three strings. The elements of a list don’t

have to be the same type. The following list contains a string, a float, an integer, and another list:

1
zs = ["hello", 2.0, 5, [10, 20]]

A list within another list is said to be nested.

Finally, a list with no elements is called an empty list, and is denoted [].

We have already seen that we can assign list values to variables or pass lists as parameters to functions:

1

2

3

4

5

>>> vocabulary = ["apple", "cheese", "dog"]

>>> numbers = [17, 123]

>>> an_empty_list = []

>>> print(vocabulary, numbers, an_empty_list)

["apple", "cheese", "dog"] [17, 123] []

ACCESSING ELEMENTS

The syntax for accessing the elements of a list is the same as the syntax for accessing the characters of a

string — the index operator: [] (not to be confused with an empty list). The expression inside the brackets

specifies the index. Remember that the indices start at 0:

>>> numbers[0]

17

Any expression evaluating to an integer can be used as an index:

97

>>> numbers[9-8]

5

>>> numbers[1.0]

Traceback (most recent call last):

 File "<interactive input>", line 1, in <module>

TypeError: list indices must be integers, not float

If you try to access or assign to an element that does not exist, you get a runtime error:

>>> numbers[2]

Traceback (most recent call last):

 File "<interactive input>", line 1, in <module>

IndexError: list index out of range

It is common to use a loop variable as a list index.

1

2

3

4

horsemen = ["war", "famine", "pestilence", "death"]

for i in [0, 1, 2, 3]:

 print(horsemen[i])

Each time through the loop, the variable i is used as an index into the list, printing the i‘th element. This

pattern of computation is called a list traversal.

The above sample doesn’t need or use the index i for anything besides getting the items from the list, so

this more direct version — where the for loop gets the items — might be preferred:

1

2

3

4

horsemen = ["war", "famine", "pestilence", "death"]

for h in horsemen:

 print(h)

LIST LENGTH

The function len returns the length of a list, which is equal to the number of its elements. If you are going

to use an integer index to access the list, it is a good idea to use this value as the upper bound of a loop

instead of a constant. That way, if the size of the list changes, you won’t have to go through the program

changing all the loops; they will work correctly for any size list:

1

2

3

4

horsemen = ["war", "famine", "pestilence", "death"]

for i in range(len(horsemen)):

 print(horsemen[i])

98

The last time the body of the loop is executed, i is len(horsemen) - 1, which is the index of the last

element.

Although a list can contain another list, the nested list still counts as a single element in its parent list.

The length of this list is 4:

>>> len(["car makers", 1, ["Ford", "Toyota", "BMW"], [1, 2, 3]])

4

LIST MEMBERSHIP

in and not in are Boolean operators that test membership in a sequence. We used them previously with

strings, but they also work with lists and other sequences:

>>> horsemen = ["war", "famine", "pestilence", "death"]

>>> "pestilence" in horsemen

True

>>> "debauchery" in horsemen

False

>>> "debauchery" not in horsemen

True

students = [

 ("John", ["CompSci", "Physics"]),

 ("Vusi", ["Maths", "CompSci", "Stats"]),

 ("Jess", ["CompSci", "Accounting", "Economics", "Management"]),

 ("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),

 ("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

Count how many students are taking CompSci

counter = 0

for (name, subjects) in students:

 if "CompSci" in subjects:

 counter += 1

print("The number of students taking CompSci is", counter)

LISTS AND FOR LOOPS

The for loop also works with lists, as we’ve already seen. The generalized syntax of a for loop is:

for VARIABLE in LIST:

 BODY

So, as we’ve seen

99

1

2

3

friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]

for friend in friends:

 print(friend)

Any list expression can be used in a for loop:

1

2

3

4

5

6

for number in range(20):

 if number % 3 == 0:

 print(number)

for fruit in ["banana", "apple", "quince"]:

 print("I like to eat " + fruit + "s!")

The first example prints all the multiples of 3 between 0 and 19. The second example expresses

enthusiasm for various fruits.

Since lists are mutable, we often want to traverse a list, changing each of its elements. The

following squares all the numbers in the list xs:

1

2

3

4

xs = [1, 2, 3, 4, 5]

for i in range(len(xs)):

 xs[i] = xs[i]**2

Take a moment to think about range(len(xs)) until you understand how it works.

In this example we are interested in both the value of an item, (we want to square that value), and

its index (so that we can assign the new value to that position). This pattern is common enough

that Python provides a nicer way to implement it:

1

2

3

4

xs = [1, 2, 3, 4, 5]

for (i, val) in enumerate(xs):

 xs[i] = val**2

enumerate generates pairs of both (index, value) during the list traversal. Try this next example to

see more clearly how enumerate works:

1

2

for (i, v) in enumerate(["banana", "apple", "pear", "lemon"]):

 print(i, v)

100

0 banana

1 apple

2 pear

3 lemon

LIST OPERATIONS

The + operator concatenates lists:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> c

[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats [0] four times. The second example repeats the list [1, 2, 3] three times.

LIST SLICES

The slice operations we saw previously with strings let us work with sublists:

>>> a_list = ["a", "b", "c", "d", "e", "f"]

>>> a_list[1:3]

['b', 'c']

>>> a_list[:4]

['a', 'b', 'c', 'd']

>>> a_list[3:]

['d', 'e', 'f']

>>> a_list[:]

['a', 'b', 'c', 'd', 'e', 'f']

LISTS ARE MUTABLE

Unlike strings, lists are mutable, which means we can change their elements. Using the index operator

on the left side of an assignment, we can update one of the elements:

>>> fruit = ["banana", "apple", "quince"]

101

>>> fruit[0] = "pear"

>>> fruit[2] = "orange"

>>> fruit

['pear', 'apple', 'orange']

The bracket operator applied to a list can appear anywhere in an expression. When it appears on the left

side of an assignment, it changes one of the elements in the list, so the first element of fruit has been

changed from "banana" to "pear", and the last from "quince" to "orange". An assignment to an element

of a list is called item assignment. Item assignment does not work for strings:

>>> my_string = "TEST"

>>> my_string[2] = "X"

Traceback (most recent call last):

 File "<interactive input>", line 1, in <module>

TypeError: 'str' object does not support item assignment

but it does for lists:

>>> my_list = ["T", "E", "S", "T"]

>>> my_list[2] = "X"

>>> my_list

['T', 'E', 'X', 'T']

With the slice operator we can update a whole sublist at once:

>>> a_list = ["a", "b", "c", "d", "e", "f"]

>>> a_list[1:3] = ["x", "y"]

>>> a_list

['a', 'x', 'y', 'd', 'e', 'f']

We can also remove elements from a list by assigning an empty list to them:

>>> a_list = ["a", "b", "c", "d", "e", "f"]

>>> a_list[1:3] = []

>>> a_list

['a', 'd', 'e', 'f']

And we can add elements to a list by squeezing them into an empty slice at the desired location:

>>> a_list = ["a", "d", "f"]

>>> a_list[1:1] = ["b", "c"]

>>> a_list

['a', 'b', 'c', 'd', 'f']

>>> a_list[4:4] = ["e"]

>>> a_list

['a', 'b', 'c', 'd', 'e', 'f']

102

LIST DELETION

Using slices to delete list elements can be error-prone. Python provides an alternative that is more

readable. The del statement removes an element from a list:

>>> a = ["one", "two", "three"]

>>> del a[1]

>>> a

['one', 'three']

As you might expect, del causes a runtime error if the index is out of range.

You can also use del with a slice to delete a sublist:

>>> a_list = ["a", "b", "c", "d", "e", "f"]

>>> del a_list[1:5]

>>> a_list

['a', 'f']

As usual, the sublist selected by slice contains all the elements up to, but not including, the second index.

OBJECTS AND REFERENCES

After we execute these assignment statements

1

2

a = "banana"

b = "banana"

we know that a and b will refer to a string object with the letters "banana". But we don’t know yet

whether they point to the same string object.

There are two possible ways the Python interpreter could arrange its memory:

In one case, a and b refer to two different objects that have the same value. In the second case, they refer

to the same object.

We can test whether two names refer to the same object using the is operator:

>>> a is b

True

This tells us that both a and b refer to the same object, and that it is the second of the two state snapshots

that accurately describes the relationship.

103

Since strings are immutable, Python optimizes resources by making two names that refer to the same

string value refer to the same object.

This is not the case with lists:

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a == b

True

>>> a is b

False

The state snapshot here looks like this:

a and b have the same value but do not refer to the same object.

ALIASING

Since variables refer to objects, if we assign one variable to another, both variables refer to the same

object:

>>> a = [1, 2, 3]

>>> b = a

>>> a is b

True

In this case, the state snapshot looks like this:

Because the same list has two different names, a and b, we say that it is aliased. Changes made with one

alias affect the other:

>>> b[0] = 5

>>> a

[5, 2, 3]

Although this behavior can be useful, it is sometimes unexpected or undesirable. In general, it is safer to

avoid aliasing when you are working with mutable objects (i.e. lists at this point in our textbook, but

we’ll meet more mutable objects as we cover classes and objects, dictionaries and sets). Of course, for

104

immutable objects (i.e. strings, tuples), there’s no problem — it is just not possible to change something

and get a surprise when you access an alias name. That’s why Python is free to alias strings (and any

other immutable kinds of data) when it sees an opportunity to economize.

CLONING LISTS

If we want to modify a list and also keep a copy of the original, we need to be able to make a copy of the

list itself, not just the reference. This process is sometimes called cloning, to avoid the ambiguity of the

word copy.

The easiest way to clone a list is to use the slice operator:

>>> a = [1, 2, 3]

>>> b = a[:]

>>> b

[1, 2, 3]

Taking any slice of a creates a new list. In this case the slice happens to consist of the whole list. So now

the relationship is like this:

Now we are free to make changes to b without worrying that we’ll inadvertently be changing a:

>>> b[0] = 5

>>> a

[1, 2, 3]

LIST METHODS

The dot operator can also be used to access built-in methods of list objects. We’ll start with the most

useful method for adding something onto the end of an existing list:

>>> mylist = []

>>> mylist.append(5)

>>> mylist.append(27)

>>> mylist.append(3)

>>> mylist.append(12)

>>> mylist

[5, 27, 3, 12]

append is a list method which adds the argument passed to it to the end of the list.

>>> mylist.insert(1, 12) # Insert 12 at pos 1, shift other items up

>>> mylist

[5, 12, 27, 3, 12]

105

>>> mylist.count(12) # How many times is 12 in mylist?

2

>>> mylist.extend([5, 9, 5, 11]) # Put whole list onto end of mylist

>>> mylist

[5, 12, 27, 3, 12, 5, 9, 5, 11])

>>> mylist.index(9) # Find index of first 9 in mylist

6

>>> mylist.reverse()

>>> mylist

[11, 5, 9, 5, 12, 3, 27, 12, 5]

>>> mylist.sort()

>>> mylist

[3, 5, 5, 5, 9, 11, 12, 12, 27]

>>> mylist.remove(12) # Remove the first 12 in the list

>>> mylist

[3, 5, 5, 5, 9, 11, 12, 27]

III. STRINGS AND LISTS

Two of the most useful methods on strings involve conversion to and from lists of substrings.

The split method (which we’ve already seen) breaks a string into a list of words. By default, any number

of whitespace characters is considered a word boundary:

>>> song = "The rain in Spain..."

>>> wds = song.split()

>>> wds

['The', 'rain', 'in', 'Spain...']

An optional argument called a delimiter can be used to specify which string to use as the boundary

marker between substrings. The following example uses the string ai as the delimiter:

>>> song.split("ai")

['The r', 'n in Sp', 'n...']

Notice that the delimiter doesn’t appear in the result.

The inverse of the split method is join. You choose a desired separator string, (often called the glue)

and join the list with the glue between each of the elements:

>>> glue = ";"

>>> s = glue.join(wds)

>>> s

'The;rain;in;Spain...'

The list that you glue together (wds in this example) is not modified. Also, as these next examples show,

you can use empty glue or multi-character strings as glue:

>>> " --- ".join(wds)

106

'The --- rain --- in --- Spain...'

>>> "".join(wds)

'TheraininSpain...'

LIST AND RANGE

Python has a built-in type conversion function called list that tries to turn whatever you give it into a list.

>>> xs = list("Crunchy Frog")

>>> xs

["C", "r", "u", "n", "c", "h", "y", " ", "F", "r", "o", "g"]

>>> "".join(xs)

'Crunchy Frog'

One particular feature of range is that it doesn’t instantly compute all its values: it “puts off” the

computation, and does it on demand, or “lazily”. We’ll say that it gives a promise to produce the values

when they are needed. This is very convenient if your computation short-circuits a search and returns

early, as in this case:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

def f(n):

 """ Find the first positive integer between 101 and less

 than n that is divisible by 21

 """

 for i in range(101, n):

 if (i % 21 == 0):

 return i

test(f(110) == 105)

test(f(1000000000) == 105)

In the second test, if range were to eagerly go about building a list with all those elements, you would

soon exhaust your computer’s available memory and crash the program. But it is cleverer than that! This

computation works just fine, because the range object is just a promise to produce the elements if and

when they are needed. Once the condition in the if becomes true, no further elements are generated, and

the function returns.

>>> range(10) # Create a lazy promise

range(0, 10)

>>> list(range(10)) # Call in the promise, to produce a list.

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

107

NESTED LISTS

A nested list is a list that appears as an element in another list. In this list, the element with index 3 is a

nested list:

>>> nested = ["hello", 2.0, 5, [10, 20]]

If we output the element at index 3, we get:

>>> print(nested[3])

[10, 20]

To extract an element from the nested list, we can proceed in two steps:

>>> elem = nested[3]

>>> elem[0]

10

Or we can combine them:

>>> nested[3][1]

20

Bracket operators evaluate from left to right, so this expression gets the 3’th element of nested and

extracts the 1’th element from it.

UNIT V – Question Bank

PART -A

1. Given Str=”BSC STUDENTS”, Find Str[-4].

2. Find the output of the following:

 s = "We are BSC Students of Sathyabama"

 print(s[0:7])

3. State True or False: Strings are Immutable.

4. Identify the use of in and not in Operators.

5. How do you compare strings?

6. What is the output of the following:

 "Sathyabama".find("ab")

7. What is the use of split method in strings?

8. Define Lists.

9. Create a list with 5 integers, 2 floats, 3 strings.

10. State the functionality of len() function.

11. State how membership operators operates over lists?

12. What are List operations?

13. State True or False: Lists are Immutable.

14. Narrate how Slicing is carried out in Lists.

108

15. How to Clone the lists. Give an example.

16. Give examples of Nested Lists?

PART -B

1. How Python operates over Strings?

a. Explain Slicing in Strings.

b. How String Comparison is done?

c. How in and not in Operators are employed over strings?

2. Create lists with 10 values and explain the following using them:

a. Positive and negative Indexing

b. List Traversal

c. List Slicing

d. Membership Operations

3. Create lists with 10 values and explain the following using them:

a. Employ + and * and print the results.

b. List Slicing

c. List deletion

d. Aliasing

4. List out few List methods. Explain them with examples.

5. Narrate the purpose of find function and Split method employed over strings?

6. a. Demonstrate with examples, how Cloning of lists can be done?

b. Comment on: Lists and for loops.

	Syntax errors
	Semantic errors
	Logical errors
	Errors detected by the compiler and runtime errors
	Python Variables
	Constants
	Literals
	Python Operators
	Mutable and Immutable data types/objects:
	Numeric
	Strings
	Lists
	Tuple
	Creating a Tuple
	Boolean
	Set
	Creating a set
	Dictionary
	Numbers
	Strings (1)
	Lists (1)
	Execute Python Script
	PYTHON – IDLE
	ATOMS
	PYTHON IDENTIFIERS
	Rules for writing identifiers

	PYTHON KEYWORDS
	LITERALS
	STRINGS
	2) raw_input() function

	1). print() function/statement
	Examples : Using else Statement with Loops(while)
	Examples of while loops - the infinite loop
	Example: use of break to end an infinite loop
	Example: use of continue in a loop
	Example: the counter-controlled for loop
	For Loop
	Example:
	Example: the counter-controlled for loop (1)
	Example: how to use a for loop in computing
	Example: For loop with strings
	Example: 'break' with the for loop
	Example: how to use a loop within a loop a nested for loop
	DIFFERENCE BETWEEN BREAK, CONTINUE AND PASS
	Break statement
	Continue statement
	Pass statement

	Defining a Function
	Required Arguments
	Required arguments are the arguments passed to a function in correct positional order. Here, the number of arguments in the function call should match exactly with the function definition.
	Keyword arguments
	Default arguments
	Variable-length arguments
	Anonymous Functions – Lambda Functions
	Syntax
	The return Statement
	Scope of Variables
	Global vs. Local variables
	Default arguments (1)

	Try Except
	Many Exceptions
	Else
	Finally
	STACK DIAGRAM
	STACK DIAGRAMS FOR RECURSIVE FUNCTIONS
	INFINITE RECURSION
	ABBREVIATED ASSIGNMENT
	TWO-DIMENSIONAL TABLES
	Encapsulation and generalization
	More encapsulation

