

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT- I Advanced Java – SBS1301

J2EE Platform

J2EE Components J2EE applications are made up of components. A J2EE component

is a self-contained functional software unit that is assembled into a J2EE application with its

related classes and files and that communicates with other components. The J2EE

specification defines the following J2EE components:

Application clients and applets are components that run on the client.

• Java Servlet and JavaServer Pages™ (JSP™) technology components are Web

components that run on the server.

• Enterprise JavaBeans™ (EJB™) components (enterprise beans) are business

components that run on the server.

J2EE components are written in the Java programming language and are compiled in

the same way as any program in the language.

The difference between J2EE components and “standard” Java classes is that J2EE

components are assembled into a J2EE application, verified to be well formed and in

compliance with the J2EE specification.

J2EE Platform Roles

The J2EE platform uses a set of defined roles to conceptualize the tasks related to the various

workflows in the development and deployment life cycle of an enterprise application. These

role definitions provide a logical separation of responsibilities for team members involved in

the development, deployment, and management of a J2EE application

The J2EE roles are as follows:

J2EE product provider

Application component provider

Application assembler

Application deplorer

System administrator

Tool provider.

Client Side Programming

• It is the program that runs on the client machine (browser)

• Deals with the user interface/display and any other processing that can happen on

client machine like reading/writing cookies.

Using Client Side Programming we can

1) Interact with temporary storage

2) Make interactive web pages

3) Interact with local storage

4) Sending request for data to server

5) Send request to server

6) work as an interface between server and user

Programming languages for client-side:

1) Javascript

2) VBScript

3) HTML

4) CSS

5) AJAX

Server-side Programming

It is the program that runs on server dealing with the generation of content of web page.

Need for Server side programming

1) Querying the database

2) Operations over databases

3) Access/Write a file on server.

4) Interact with other servers.

5) Structure web applications.

6) Process user input. For example if user input is a text in search box, run a search algorithm

on data stored on server and send the results.

Example Server side programming Languages

The Programming languages for server-side programming are :

1) PHP

2) Java Servlets and Java Server Pages(JSP)

3)Enterprise Java Beans(EJB)

4) Python

5) Ruby on Rails

Server Side programming Overview

Figure 1.1 Server Side programming Overview

Figure 1.2 Server Side programming Overview

Implementation in Java

J2EE Platform-Netbeans IDE

Figure 1.3 Platform-Netbeans IDE

J2EE Platform-Eclipse IDE

Figure 1.4 J2EE Platform-Eclipse IDE

What is IDE?

• An integrated development environment (IDE) is a software application that provides

comprehensive facilities to computer programmers for software development.

• An IDE normally consists of at least a source code editor, build automation tools and

a debugger.

• Some IDEs, such as NetBeans and Eclipse, contain the

necessary compiler, interpreter, or both

J2EE Platform

• A distributed application sever environment

• Provides

 APIs– Programming model

 Runtime Infrastructure-For hosting and managing applications

Enterprise Architecture Styles:

• Two-Tier Architecture

• Three-Tier Architecture

• Multitier Architecture

• J2EE Architecture

Two Tier Architecture

• The two-tier architecture is also known as the client/server architecture.

• It consists mainly of two tiers:

data & client (GUI).

• The application logic can be located in:

 client tier which results in a fat client or

 in the data tier which results in a fat server

Two Tier Architecture

Figure 1.5 Two Tier Architecture

Two Tier Architecture Drawbacks

• This type of architecture suffers from a lack of scalability.

• Because both the client and the server have limited resources.

• Client sends request to server to clear the traffic

• Most time is wasted in request response processing

• Another issue is maintainability.

• Need to update every single client installation

Three Tier Architecture

3-tier schema is an extension of the 2-tier architecture. 3-tier architecture has following layers

1. Presentation layer (your PC, Tablet, Mobile, etc.)

2. Application layer (server)

3. Database Server

The first tier is referred to as the presentation layer, and consists of the application

GUI.The middle tier, or the business layer, consists of the business logic to retrieve data

for the user requests.The back-end tier, or data layer, consists of the data needed by the

application.

Figure 1.6 Three Tier Architecture

This DBMS architecture contains an Application layer between the user and the DBMS,

which is responsible for communicating the user's request to the DBMS system and send the

response from the DBMS to the user.The application layer(business logic layer) also

processes functional logic, constraint, and rules before passing data to the user or down to the

DBMS.Three tier architecture is the most popular DBMS architecture.

The goal of Three-tier architecture is:

 To separate the user applications and physical database

 Proposed to support DBMS characteristics

 Program-data independence

 Support of multiple views of the data

Multitier (n-tier) Architecture:

• Application logic is logically divided rather than physically

• Parts:

 User interface: GUI

 Presentation Logic: User requests are handled

 Business Logic: Business rules are applied

 Infrastructure services: eg. Messaging, transaction support

 Data Layer: Database

• Applies 3 functional components of MVC

• Model View Controller(MVC):

 Model: Data

 View: Presentation Logic

 Controller: Business Logic/Application Logic

Multitier (n-tier) Architecture

Figure 1.7 Multi-Tier Architecture

Figure 1.8 Multi-Tier(n-tier) Architecture

N-tier architecture is also called multi-tier architecture because the software is

engineered to have the processing, data management, and presentation functions physically

and logically separated. That means that these different functions are hosted on several

machines or clusters, ensuring that services are provided without resources being shared and,

as such, these services are delivered at top capacity. The “N” in the name n-tier architecture

refers to any number from 1.

N-tier architecture would involve dividing an application into three different tiers. These

would be the

1. logic tier,

2. the presentation tier, and

3. The data tier.

Enterprise Architecture:

• Generic interfaces are used

• Only objects are modified not the interface

Figure 1.9 Enterprise Architecture

This architecture shows two existing relational databases being used by a J2EE

application server. One database is being accessed using JDO and the other by JDBC. A third

database is being used in the middle tier as an EJB accelerator. The database used as an EJB

accelerator holds data that is a copy of data from one or more of the existing relational

databases. All updates from the EJB components are made directly to this database.

J2EE Architecture

https://msdn.microsoft.com/en-us/library/bb384398.aspx

Figure 1.10 J2EE Architecture

• A distributed application sever environment

• Provides

 APIs– Programming model

 Runtime Infrastructure-For hosting and managing applications

Middleware

• Middleware is software which lies between an operating system and the applications

running on it.

• Essentially functioning as hidden translation layer, middleware enables

communication and data management for distributed applications.

• It is sometimes called plumbing, as it connects two applications together so data and

databases can be easily passed between the “pipe.”

• Using middleware allows users to perform such requests as submitting forms on a

web browser or allowing the web server to return dynamic web pages based on a

user’s profile.

Static and dynamic web page:

• Web pages can be either static or dynamic. "Static" means unchanged or constant,

while "dynamic" means changing or lively. Therefore, static Web pages contain the

same prebuilt content each time the page is loaded, while the content of dynamic Web

pages can be generated on-the-fly.

• Standard HTML pages are static Web pages. They contain HTML code, which

defines the structure and content of the Web page. Each time an HTML page is

loaded, it looks the same. The only way the content of an HTML page will change is

if the Web developer updates and publishes the file.

• Other types of Web pages, such as PHP, ASP, and JSP pages are dynamic Web pages.

These pages contain "server-side" code, which allows the server to generate unique

content each time the page is loaded.

Cookie

• An HTTP cookie (also called web cookie, Internet cookie, browser cookie, or

simply cookie) is a small piece of data stored on the user's computer by the web

browser while browsing a website.

• Cookies were designed to be a reliable mechanism for websites to

remember stateful information (such as items added in the shopping cart in an online

store) or to record the user's browsing activity

J2EE Runtime

• Applications use interfaces to interact with the runtime. There is a clear demarcation

between applications and runtime infrastructure

• Long Term and Short term demands:

– Short term demands ->Short lived internet designs

– Long term demands->Maintainable and reusable

• J2EE is more flexible to build applications including long term and short term

demands

• Layers in J2EE architecture are loosely coupled

• Highly extendable implementation

• J2EE architecture provides uniform means of accessing platform level services via its

runtime environment

• Before J2EE distributed computing was client-server based.

– Server-> implements the interface

– Client->Connect to server

– Eg. CORBA is a distributed application (IDL generates stubs on the client side

and skeletons on the server side)

J2EE Runtime

Enterprise services

• Transaction processing

• Database access

• Messaging

• Multithreading

Distributed transactions needs these services

• To access the above services we need plumbing code or middleware solutions using

APIs

• Server side resources are scarce. We need to concentrate on server side resources:

threads, security, transactions, and database connections

• J2EE is the solution that meets all the above requirements

• It is a platform having built-in solution to meet all the needs

• J2EE does not specify the nature and structure of runtime instead it introduces the

container

Figure 1.11 Distributed transactions

J2EE Container (Runtime)

Figure 1.12 J2EE Containers (Runtime)

J2EE APIs

Application Programming Interface: API

• API is a software intermediary that allows two applications to talk to each other. Each

time you use an app like Facebook, send an instant message, or check the weather on

your phone, you’re using an API

APIs of J2EE platform:

1. Java Database Connectivity(JDBC)

2. Enterprise Java Beans: (EJB)

3. Java Servlets

4. JSP

5. Java Message Services(JMS)

6. Java Transaction API (JTA)

7. Java Mail

8. JavaBeans Activation Framework

9. Java API for XML parsing(JAXP)

10. Java Connector Architecture(JCA)

Java Authentication and Authorization service(JAAS)

J2SE APIs

J2SE (Standard edition) APIs

1. Java IDL API

2. JDBC Core API

3. RMI-IIOP API

4. JNDI API

J2EE APIs

1. Java Database Connectivity(JDBC) : is the Java API that manages connecting to a

database, issuing queries and commands, and handling result sets obtained from the

database.

2. Enterprise Java Beans: (EJB) EJB is a server-side software component that

encapsulates business logic of an application. An EJB web container provides a

runtime environment for web related software components, including computer

security, Java servlet lifecycle management, transaction processing, and other web

services.

3. Java Servlets: Servlet technology is used to create a web application (resides at

server side and generates a dynamic web page).

4. JSP : JavaServer Pages (JSP) is a Java standard technology that enables you to write

dynamic, data-driven pages for your Java web applications.

5. Java Message Services(JMS): JMS API allows applications to create, send, receive,

and read messages using reliable, asynchronous, loosely coupled communication.

6. Java Transaction API (JTA): The Java™ Transaction API (JTA) allows

applications to perform distributed transactions, that is, transactions that access and

update data on two or more networked computer resources.

7. Java Mail : The JavaMail API provides a platform-independent and protocol-

independent framework to build mail and messaging applications.

8. JavaBeans Activation Framework: The JavaBeans Activation Framework (JAF)

is used by the JavaMail API. JAF provides standard services to determine the type of

an arbitrary piece of data, encapsulate access to it, discover the operations available

on it, and create the appropriate JavaBeans component to perform those operations.

9. Java API for XML parsing(JAXP): Java API for XML Processing. Java API for

XML Processing (JAXP) enables applications to parse, transform, validate and query

XML documents using an API that is independent of a particular XML processor

implementation.

10. Java Connector Architecture(JCA): The Java EE Connector Architecture (JCA)

defines a standard architecture for Java EE systems to external heterogeneous

Enterprise Information Systems (EIS). Examples of EISs include Enterprise Resource

Planning (ERP) systems, mainframe transaction processing (TP), databases and

messaging systems.

11. Java Authentication and Authorization service(JAAS): JAAS provides subject-

based authorization on authenticated identities.

J2SE APIs

• Java IDL API: Java IDL technology adds CORBA (Common Object Request Broker

Architecture) capability to the Java platform, providing standards-based

interoperability and connectivity. Java IDL enables distributed Web-enabled Java

applications to transparently invoke operations on remote network services using the

industry standard IDL (Object Management Group Interface Definition Language)

and IIOP (Internet Inter-ORB Protocol) defined by the Object Management Group.

Runtime components include a Java ORB for distributed computing using IIOP

communication.

• JDBC Core API: Provides the API for accessing and processing data stored in a data

source (usually a relational database) using the Java programming language.

• RMI-IIOP API: Java Remote Method Invocation over Internet Inter-ORB Protocol

technology ("RMI-IIOP") is part of the Java Platform, Standard Edition (Java SE).

The RMI Programming Model enables the programming of CORBA servers and

applications via the rmi API

• JNDI API: The Java Naming and Directory Interface (JNDI) provides naming and

directory functionality to applications written in the Java programming language. It is

designed to be independent of any specific naming or directory service

implementation.

J2EE Container Architecture

Definition: A J2EE container is a runtime to manage application components developed

according to the API specifications and provide access to J2EE APIs

Figure 1.13 J2EE Container Architecture

J2EE Container ArchitectureComponent:

Definition:

• J2EE components are also called Managed Objects since they are created and

managed within container runtime

Four Containers:

• Web container: To host Servlets, JSPs

• EJB Container: To host EJB components

• Applet Container-To host Java applets

• Application client- To host standard Java applications

2 Primary types of Clients:

– Web clients

– EJB clients

Web clients:

• Run in web browsers

• For these clients UI is generated on Server side as HTML/XML

• They use HTTP to communicate with server

• Application components in web containers include Java servlets, JSPs whtich

implement functionality required by web clients

• Web containers are responsible for accepting requests from web clients and

generating responses with the help of application components

EJB clients:

• Application that access EJB components in EJB containers are called EJB clients

3 types of EJB clients

• Application clients that are standalone applications accessing EJB components using

RMI-IIOP protocol

• Components in web container (Java servlets, JSP) also access EJB components using

RMI-IIOP protocol

• Other EJBs running within the EJB container. They communicate via standard Java

method calls via local interface

Container Architecture

Figure 1.14 Container Architecture

Application Components:

• Servlets

• JSP

• EJB

•

Deployment Descriptors

• It is an XML file that describes application components

Architecture Container: can be divided into 4 parts

• Component contract

• Container service APIs

• Declarative services

• Other container services

Application Components:

• Servlets

• JSP

• EJB

Deployment Descriptors

• It is an XML file that describes application components

Architecture Container: can be divided into 4 parts

• Component contract

• Container service APIs

• Declarative services

• Other container services

Component contract:

• A set of APIs specified by the container which are commonly required to extend or

implement

• Basic purpose of container is to provide a runt time for application clients

• Instance of application components are created and invoked within JVM of the

container

• This makes container responsible for managing life cycle of application components

and they are required to abide by certain contracts specified by the container.

• Eg. Java applet downloaded by browser and instantiated and initialized in browser’s

JVM

• However the components are required to implement certain interfaces or classes,

• Eg. Java.applet.Applet(Class)->init(),start(), stop(), destroy() methods

J2EE application components are remote to clients. Client can’t directly call methods

on components

Client makes request to application server and it is container that actually invokes

methods. Application components are required to follow contract specified by the container

Figure 1.15 Container Architecture

All J2EE application components are managed which includes:

• Location

• Instantiation

• Pooling

• Initialization

• Service invocation

• Removal of components from service

• Eg. Web containers have interfaces:

• Javax.ejb. EJBHome and javax.ejb.EJBObject implementing either

javax.ejb.SessionBean or javx.ejb.EntityBean interface

• Message Driven Beans implement both: javx.ejb.MessageDrivenBean and

javax.jmx.MessageListener interfaces

Container Service APIs(Additional services required for all applications)

• A container in J2EE architecture provides a consolidated view of various enterprise

APIs specified in J2EE platform

• In J2EE, application components can access APIs via appropriate objects created and

published in JNDI service or implementation

• Eg. Audio component access by remote client in a distributed application

Figure 1.16 Container Service

• Loosely coupling between implementation and client

• Uses delegation (code reusability) instead of inheritance

Declarative services

• Based on deployment description provided for each application component such as

security, transaction etc

• A deployment descriptor defines contract between container and component

Two methods for invoking services

• Explicit invocation

• Declarative invocation

Explicit invocation: It is a standard method. Eg. In DBMS we explicitly invoke

commit/rollback queries

Declarative invocation: These are not explicitly invoked. Instead, we specify

business transaction (start, stop, etc) in deployment descriptor and the container will

automatically start a transaction

• Declarative service is a service performed by the container on our behalf

• Web container receives HTTP request and delegates them to servlets and JSP

Advantages:

• Automatic start and end of business transactions

• We can place new services without changing application component

• So decisions can be postponed to run-time instead of design time

Other container Services

• Lifecycle management of application components

• Resource Pooling

• Populating JNDI namespace based on deployment names associated with EJB

components

• Populating JNDI namespace with objects necessary for utilizing container service

APIs

• Clustering (distributing load of requests across JVMs)

• Enhancing availability and scalability of applications

Java RMI

• RMI stands for Remote Method Invocation. It is a mechanism that allows an object

residing in one system (JVM) to access/invoke an object running on another JVM.

• RMI is used to build distributed applications; it provides remote communication

between Java programs. It is provided in the package java.rmi.

Architecture of an RMI Application

• In an RMI application, we write two programs, a server program (resides on the

server) and a client program (resides on the client).

• Inside the server program, a remote object is created and reference of that object is

made available for the client (using the registry).

• The client program requests the remote objects on the server and tries to invoke its

methods.

Figure 1.17 Architecture of an RMI

Components of an RMI Architecture

• Transport Layer − This layer connects the client and the server. It manages the

existing connection and also sets up new connections.

• Stub − A stub is a representation (proxy) of the remote object at client. It resides in

the client system; it acts as a gateway for the client program.

• Skeleton − This is the object which resides on the server side. stub communicates

with this skeleton to pass request to the remote object.

• RRL(Remote Reference Layer) − It is the layer which manages the references made

by the client to the remote object.

Working of an RMI Application:

• When the client makes a call to the remote object, it is received by the stub which

eventually passes this request to the RRL.

• When the client-side RRL receives the request, it invokes a method called invoke() of

the object remoteRef. It passes the request to the RRL on the server side.

• The RRL on the server side passes the request to the Skeleton (proxy on the server)

which finally invokes the required object on the server.

• The result is passed all the way back to the client.

Serialization and Deserialization in Java:

• Serialization is a mechanism of converting the state of an object into a byte stream.

• Deserialization is the reverse process where the byte stream is used to recreate the

actual Java object in memory.

• This mechanism is used to persist the object.

Figure 1.18 Serialization and Deserialization

Marshalling and Unmarshalling

• Whenever a client invokes a method that accepts parameters on a remote object, the

parameters are bundled into a message before being sent over the network. These

parameters may be of primitive type or objects. In case of primitive type, the

parameters are put together and a header is attached to it. In case the parameters are

objects, then they are serialized. This process is known as marshaling.

• At the server side, the packed parameters are unbundled and then the required method

is invoked. This process is known as unmarshalling.

RMI Registry

• RMI registry is a namespace on which all server objects are placed. Each time the

server creates an object, it registers this object with the RMIregistry

(using bind() or reBind() methods). These are registered using a unique name known

as bind name.

• To invoke a remote object, the client needs a reference of that object. At that time, the

client fetches the object from the registry using its bind name

(using lookup() method).

Figure 1.19 RMI Registry

Goals of RMI

• To minimize the complexity of the application.

• To preserve type safety.

• Distributed garbage collection.

• Minimize the difference between working with local and remote objects.

Java implementation of RMI

• Define the remote interface

• Develop the implementation class (remote object)

• Develop the server program

• Develop the client program

• Compile the application

• Execute the application

Defining the Remote Interface:

• A remote interface provides the description of all the methods of a particular remote

object. The client communicates with this remote interface.

• To create a remote interface −

• Create an interface that extends the predefined interface Remote which belongs to the

package.

• Declare all the business methods that can be invoked by the client in this interface.

• Since there is a chance of network issues during remote calls, an exception

named RemoteException may occur; throw it.

Defining the Remote Interface:

Developing the Implementation Class (Remote Object)

• To develop an implementation class −

• Implement the interface created in the previous step.

• Provide implementation to all the abstract methods of the remote interface.

Developing the Server Program:

• An RMI server program should implement the remote interface or extend the

implementation class. Here, we should create a remote object and bind it to

the RMIregistry.

• To develop a server program −

• Create a client class from where you want invoke the remote object.

• Create a remote object by instantiating the implementation class as shown below.

• Export the remote object using the method exportObject() of the class

named UnicastRemoteObject which belongs to the package java.rmi.server.

• Get the RMI registry using the getRegistry() method of the LocateRegistry class

which belongs to the package java.rmi.registry.

• Bind the remote object created to the registry using the bind() method of the class

named Registry. To this method, pass a string representing the bind name and the

object exported, as parameters.

RMI Server

Developing the Client Program

To develop a client program −

• Create a client class from where your intended to invoke the remote object.

• Get the RMI registry using the getRegistry() method of the LocateRegistry class

which belongs to the package java.rmi.registry.

• Fetch the object from the registry using the method lookup() of the

class Registry which belongs to the package java.rmi.registry.

• To this method, you need to pass a string value representing the bind name as a

parameter. This will return you the remote object.

• The lookup() returns an object of type remote, down cast it to the type Hello.

• Finally invoke the required method using the obtained remote object.

RMI Client code:

Execution of RMI codes in Java:

Step1: Set the current path to jdk bin directory(the path where jdk is installed in your

computer)

Step 2: Compile all the java files in the RMI directory (*.java)

Step 3: Start the rmi registry

Step 4: Run the Server(Sever will wait for client’s request)

Step 5: Run the Client

Step 6: Final output on the server side

JNDI Overview:

• The Java Naming and Directory Interface (JNDI) is an application programming

interface (API) that provides naming and directory functionality to applications

written using the Java programming language.

• It is defined to be independent of any specific directory service implementation.

• Thus a variety of directories--new, emerging, and already deployed--can be accessed

in a common way.

What is a Naming Service?

• Naming service is a service that enables the creation of standard name for given set of

data

• On internet each host has a Fully Qualified domain Name (FQDN)

• Eg. www. apress.com

 Host name: www

 Domain name: apress.com

What is a Directory Service?

• In computing, directory service or name service maps the names of network

resources to their respective network addresses.

• It is a shared information infrastructure for locating, managing, administering and

organizing everyday items and network resources, which can include volumes,

folders, files, printers, users, groups, devices, telephone numbers and other objects.

• A directory service is a critical component of a network operating system.

• A directory server or name server is a server which provides such a service.

• Each resource on the network is considered an object by the directory server.

Information about a particular resource is stored as a collection

of attributes associated with that resource or object.

Directory Service

• A directory service defines a namespace for the network.

• The namespace is used to assign a name (unique identifier) to each of the objects.

• Directories typically have a set of rules determining how network resources are

named and identified, which usually includes a requirement that the identifiers be

unique and unambiguous.

• When using a directory service, a user does not have to remember the physical

address of a network resource; providing a name locates the resource.

• Some directory services include access control provisions, limiting the availability of

directory information to authorized users.

General Purpose Directory Services:

• Novell Directory Service(NDS)-file and print server

• Network information Service (NIS)-email in Linux

• Active Directory Service(ADS)-file encryption, remote desktop service, sharepoint

service

• Windows NT Domain-MS office

Drawbacks:

• Used only for specific purpose

• Lack of security

• No standard API

JNDI Architecture:

• The JNDI architecture consists of an API and a service provider interface (SPI).

• Java applications use the JNDI API to access a variety of naming and directory

services.

• The SPI enables a variety of naming and directory services to be plugged in

transparently, thereby allowing the Java application using the JNDI API to access

their services.

Figure 1:20. JNDI Architecture

Directory Services:

LDAP: Lightweight Directory Access Protocol

DNS: Domain Naming Service

NIS: Network Information System

NDS: Novell Directory Service

RMI : Remote Method invocation

CORBA: Common Object Request Broker Architecture

Lightweight Directory Access Protocol:

LDAP organizes data into a hierarchy, allowing it to be administered based on

company, branch, department or any other method you choose. A wide variety of data can be

served through LDAP, and it has become a standard with medium sized and larger

organizations. As well as the OpenLDAP server that's distributed with Linux, commercial

vendors such as Novell and Microsoft are using the LDAP protocols within their Active

Directory and directory products. Although LDAP can be set up and operated from command

line tools via text files it is found more practically that it's used with graphic tools and editors

such as:

 http://pegacat.com/jxplorer/

 http://www.ldapbrowser.com/

 http://sourceforge.net/projects/gqclient

 http://www-unix.mcs.anl.gov/~gawor/ldap/

 http://www.openldap.org/faq/data/cache/270.html

LDAP:

• LDAP's basic structure is based on a simple information tree metaphor called

a directory information tree (DIT).

• Each leaf in the tree is an entry; the first or top-level entry is the root entry.

• An entry includes a distinguished name (DN) and any number of attribute/value

pairs.

LDAP Data Interchange Format:

uid=styagi,ou=people,o=myserver.com

The leftmost part of the DN, called a relative distinguished name (RDN), is made up

of an attribute/value pair. In the above example, this pair would be uid=styagi.

LDAP Attributes

Figure 1:21 LDAP Attributes

DOMAIN NAME SERVICE

The Domain Name Service - DNS - (or BIND - the Berkeley INternet Domain) is

used to resolve a narrow range of services on a wider (usually worldwide) basis,

based on your fully qualified domain name.

What is a Fully Qualified Domain Name?

• A fully qualified domain name (FQDN) is the complete domain name for a specific

computer, or host, on the internet.

• The FQDN consists of two parts: the hostname and the domain name.

• For example, an FQDN for a hypothetical mail server might be mymail.indiana.edu.

The hostname is mymail, and the host is located within the domain indiana.edu

• In this example, .edu is the top-level domain (TLD).

• This is similar to the root directory on a typical workstation, where all other

directories (or folders) originate.

Simple website login using DNS:

• When connecting to a host you must specify the FQDN.

• The DNS server then resolves the hostname to its IP address by looking at its DNS

table.

• The host is contacted and you receive a login prompt.

NETWORK INFORMATION SERVICE

Originated by Sun Microsystems, the Network Information Service provides for the

provision of a master and slave servers to provide information on a wide range of

databases such as hosts, users, service, email aliases, etc ... and we can add our own

databases too.Known in its very early days as "yellow pages" - that's why all the file

names start with "yp" NIS provided an excellent tool for administering the various

databases centrally. However, it did not provide a distributed administration

capability, and this and other issues lead Sun to introduce a new service called NIS+

or nisplus.

 NIS+ didn't really catch on though.

Novell Directory Service:

• Novell Directory Services (NDS) is a popular software product for managing access

to computer resources and keeping track of the users of a network, such as a

company's intranet, from a single point of administration. Using NDS, a network

administrator can set up and control a database of users and manage them using

a directory with an easy-to-use graphical user interface (GUI).

• Users of computers at remote locations can be added, updated, and managed centrally.

• Applications can be distributed electronically and maintained centrally.

• NDS can be installed to run under Windows NT, Sun Microsystem's Solaris, and

IBM's OS/390 as well as under Novell's own NetWare so that it can be used to control

a multi-platform network.

CORBA

Figure 1:22 CRBA

• Needed by enterprise applications

• These applications need to support existing distributed computing standards

• CORBA uses COSnaming services(CORBA Object Service) to define the location of

available objects

Relation between Directory Services, LDAP and JNDI:

• Drawback: Each directory service requires its own API which adds complexity and

code bloat(swell up) to our client application

Figure 1:23 Simplified JNDI

Advantage:

 Still multiple servers and multiple APIs are there. But for the application developer

it appears as a single API

Drawback:

• Service providers in JNDI are drivers that allows interaction with different directory

services

• Developers still build larger applications and are more prone to failure

• It is difficult to integrate with systems that can understand LDAP but unable to use

Java

Simplified JNDI

Advantage:

 Still multiple servers and multiple APIs are there. But for the application developer

it appears as a single API

Drawback:

• Service providers in JNDI are drivers that allows interaction with different directory

services

• Developers still build larger applications and are more prone to failure

• It is difficult to integrate with systems that can understand LDAP but unable to use

Java

JNDI and LDAP

• It is sufficient for the client to know about LDAP protocol and JNDI API alone

Figure 1:24 JNDI and LDAP

Why we use JNDI when we have LDAP

• LDAP without JNDI

LDAP is a great way to converge access to directory data through a single protocol

LDAP is a great way to provide standards based on network address book or easily

keep track of devices on a network

• JNDI without LDAP

JNDI is useful for Java applications

• LDAP and JNDI:

LDAP is an open standard maintained by IETF(Internet Engineering Task Force)

It is accessible by a variety of clients and vendors.

Role of XML in directory services

• XML is a defacto standard for existing data

• Enables Data transfer between applications written in different languages

• XML specification for LDAP is DSML(Directory Services Markup Language) to

distribute directory information via XML-RPC based protocol like SOAP (Simple

Object Access Protocol)

• Current Standard is LDIP-(LDAP Data Interchange Format.

Java Database Connectivity-JDBC

• Database Vendor: Provides a set of APIs for accessing data managed by database

server. Eg. Oracle, Sybase etc

• Client applications: written in C/C++ can use these vendor specific APIs

• JDBC Driver: A Middleware layer that translates the JDBC calls to vendor Specific

APIs

• Packages: java.sql-----J2SE

 javax.sql---J2EE

JDBC Driver Types

• JDBC Driver is a software component that enables java application to interact with

the database.

• There are 4 types of JDBC drivers:

1. JDBC-ODBC bridge driver

2. Native-API driver (partially java driver)

3. Network Protocol driver (fully java driver)

4. Thin driver (fully java driver)

Type 1-JDBC-ODBC bridge driver

• The JDBC-ODBC bridge driver uses ODBC driver to connect to the database. The

JDBC-ODBC bridge driver converts JDBC method calls into the ODBC function

calls. This is now discouraged because of thin driver.

• In Java 8 and later versions, the JDBC-ODBC Bridge has been removed.

• Oracle does not support the JDBC-ODBC Bridge from Java 8. Oracle recommends

that you use JDBC drivers provided by the vendor of your database instead of the

JDBC-ODBC Bridge.

JDBC-ODBC architecture

Type 2-Native-API driver(Part Java, Part Native Driver)

• The Native API driver uses the client-side libraries of the database. The driver

converts JDBC method calls into native calls of the database API. It is not written

entirely in java.

Native API Driver Architecture

Figure 1:25 Native API Driver Architecture

Advantages and Drawbacks of Type 2 driver

Advantage:

• performance upgraded than JDBC-ODBC bridge driver.

Disadvantage:

• The Native driver needs to be installed on the each client machine.

• The Vendor client library needs to be installed on client machine.

Type 3- Network Protocol driver(Intermediate Database Access Server)

• The Network Protocol driver uses middleware (application server) that converts

JDBC calls directly or indirectly into the vendor-specific database protocol. It is fully

written in java.

Type 3 Drive Architecture

Figure 1:26 Type 3 Drive Architecture

Type 3: Advantages and Drawbacks

Advantage:

• No client side library is required because of application server that can perform many

tasks like auditing, load balancing, logging etc.

Disadvantages:

• Network support is required on client machine.

• Requires database-specific coding to be done in the middle tier.

• Maintenance of Network Protocol driver becomes costly because it requires database-

specific coding to be done in the middle tier.

Type 4- Thin driver (Pure Java Driver)

• The thin driver converts JDBC calls directly into the vendor-specific database

protocol.

• That is why it is known as thin driver.

• It is fully written in Java language.

Figure 1:27 Thin Driver

Advantage:

• Better performance than all other drivers.

• No software is required at client side or server side.

Disadvantage:

• Drivers depend on the Database.

Java.sql package

• Class groups based on functionalities

• Connection Management

• Database Access

• Data Types

• Database MetaData

• Exceptions and Warnings

Connection management classes/interfaces of java.sql Package:

To establish connection to database

Table: 1.1 Connection management classes/interfaces of java.sql Package

Database Access: classes/interfaces of java.sql Package:

To send SQL statement to database for execution and getting results

Table: 1.2 Database Access: classes/interfaces of java.sql Package

Data Types java.sql Package:

For programming the database

Table: 1.3 Data Types java.sql Package

Metadata: java.sql Package: To obtain metadata about database, statements,resultsets

Table: 1.4 Metadata: java.sql Package

JDBC Steps

• Register the Driver class

• Create connection

• Create statement

• Execute queries

• Close connection

Figure 1:28 JDBC Steps

Step 1: Register the driver class

• The forName() method of Class class is used to register the driver class. This method

is used to dynamically load the driver class.

• Syntax:

• Example:

• Class.forName("com.mysql.jdbc.Driver");

DriverManager class

• can manage multiple drivers

• Each driver has to register with DriverManager class

• In JDBC we load database driver using java.lang.Class loader object

• At runtime classloader locates and loads the driver from the class path using bootstrap

class loader

Step 2: Create the connection object

• The getConnection() method of DriverManager class is used to establish connection

with the database.

• Syntax:

1) public static Connection getConnection(String url)throws SQLException

2) public static Connection getConnection(String url,String name,String password) throws

SQLException

• Example

Connection

con=DriverManager.getConnection("jdbc:mysql://localhost:3306/stud","root","");

Establishing a Connection: java.sql.Connection interface:

Table: 1.5 Establishing a Connection: java.sql.Connection interface

Step 3-Create the Statement object:

The createStatement() method of Connection interface is used to create statement. The object

of statement is responsible to execute queries with the database.

• Syntax:

• Example: Statement st=con.createStatement();

Creating and Executing SQL statement

Table: 1.6 Creating and Executing SQL statement

Statement interface Methods

Table: 1.7 Statement interface Methods

Step 4: Execute the query

• The executeQuery() method of Statement interface is used to execute queries to the

database. This method returns the object of ResultSet that can be used to get all the

records of a table.

• Syntax: public ResultSet executeQuery(String sql)throws SQLException

• Example:

Querying the database: The ResultSet interface

• Methods:

• Execute():

– Syntax:public boolean execute(String sql) throws SQLException

• ExecuteQuery():

– Syntax:public ResultSet executeQuery(String sql) throws SQLException

Methods to retrieve data

• getArray()

• getBlob()

• getBoolean()

• getInt()

• getDate()

• getByte()

• getLong()

• getString()

• getDouble()

• getObject()

getTime

Step 5 :Close the connection object

• By closing connection object statement and ResultSet will be closed automatically.

• The close() method of Connection interface is used to close the connection.

• Syntax: public void close()throws SQLException

• Example: con.close()

JDBC Connectivity using Type 1 – JDBC ODBC Driver

Create a database Student

Figure 1:29 Create a database Student

JDBC Connectivity using Type 1 – JDBC ODBC DriverCreate Table stud

Figure 1:30 JDBC ODBC Driver Create Table stud

JDBC Connectivity using Type 1 – JDBC ODBC DriverCreate new data source

Figure 1:31 – JDBC ODBC DriverCreate new data source

Figure 1:32 – JDBC ODBC DriverCreate new data source

 Figure 1:33 – JDBC ODBC DriverCreate new data source

Output window after Java code execution

Database table update after the Java code execution

Figure 1:34 Data Base

JDBC Connectivity using Type 4 Driver

Step wise Manual:

Step 1: Install XAMPP or WAMP or MySQL server

Step 2 :Go to control panel and start Apache and MySQL.

Figure 1:35 Xampp Control

• Step 3: Click Admin Button.

Figure 1:35 Click Admin Button.

You will be getting PHPMyAdmin in the browser.

Figure 1:36 PHPMyAdmin in the browser

Step 5:

Create the fields in the table and set the primary key and save the changes

http://www.papervisions.com/wp-content/uploads/2013/10/d1.jpg
http://www.papervisions.com/wp-content/uploads/2013/10/d2.jpg
http://www.papervisions.com/wp-content/uploads/2013/10/d3.jpg

Figure 1:37 Create the fields in the table

• Step 6: Open Netbeans editor and do the following:

1. Create a new Project: java->java Application

Figure 1:38 Open Netbeans editor

2. Click next and give any name of the project and click finish

Figure 1:39 Name and Location

• 3. Type the JDBC code:

4. Select the Libraries folder and right click and select Add Jar/folder and browse the path:

A dialog box opens Navigate to the path mentioned above and select mysql-connector-java-

5.1.23-bin

Figure 1:40 dialog box opens Navigate to the path

5. mysql connector is now added in the libraries folder.

5. Now press F6 and run the project. Output will be displayed in the console output

window

Figure 1:41 Output will be displayed in the console output window

http://www.papervisions.com/wp-content/uploads/2013/10/d9.jpg

Prepared statements

• Creating parameterized statement such that data for parameters can be substituted

dynamically

• Creating statement involving data values that can always be represented as character

strings

• Pre-compiling SQL statement to avoid repeated compiling of same SQL statement

• Eg. Select * from <tab> where user_id=?

• If the value is not known then it is replaced by ‘?’ during runtime

• A PreparedStatement object can hold precompiled SQL statements

• Syntax:

public PreparedStatement prepareStatement(String query)throws SQLException{}

Table: 1.8 Prepared statements

Create a table

create table emp(id number(10),name varchar2(50));

Insert the records using PreparedStatement

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT- II Advanced Java – SBS1301

Java Script

JavaScript is a lightweight, interpreted programming language. It is designed for

creating network-centric applications. It is complimentary to and integrated with

Java. JavaScript is very easy to implement because it is integrated with HTML. It is open and

cross-platform.

 Embedding Java Script In HTML:

JavaScript is embedded into HTML and XHTML documents using the <script> element. This

element can be used to embed the JavaScript directly into the web page (also known

as inline), or to specify an external file that contains the JavaScript.

The <script> element is used with a number of attributes:

 defer - used to inform the browser that the script associated with this <script> element

generates content (in other words the document.write() method is used). This can be

either true or false. The default setting (i.e. if this is not specified) is false.

 language - This argument is used to announce the version of JavaScript that is contained

within the corresponding <script> elements. This argument is now deprecated.

 src- Specifies URL of an external file containing the JavaScript. This argument overrides

any JavaScript contained within the body of this <script> element.

 type - Indicates to the browser the type of content contained within the <script> body.

This is typically be set to "text/javascript".

As with most HTML elements the <script> body must always be terminated with

the </script> element.

Example:

<script type="text/javascript">

// JavaScript code goes here

</script>

Example Html File:

<script src="/j-scripts/myjscript.js" type="text/javascript">

</script>

Example JavaScript File:

document.writeln ("This is contained in an external JavaScript file")

Example Program:

<!DOCTYPE html>

<html lang="en-US">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>Today's Date</title>

 <script>

 let d = new Date();

 alert("Today's date is " + d);

 </script>

</head>

<body>

</body>

</html>

Example Program:

<!DOCTYPE html>

<html lang="en-US">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>Today's Date</title>

</head>

<body>

 <script>

 let d = new Date();

 document.body.innerHTML = "<h1>Today's date is " + d + "</h1>"

 </script>

</body> </html>

Variables:

Variables in JavaScript are containers which hold reusable data. It is the basic unit of storage

in a program.

 The value stored in a variable can be changed during program execution.

 A variable is only a name given to a memory location, all the operations done on the

variable effects that memory location.

 In JavaScript, all the variables must be declared before they can be used.

Before ES2015, JavaScript variables were solely declared using the var keyword followed by

the name of the variable and semi-colon. Below is the syntax to create variables in

JavaScript:

var var_name;

var x;

The var_name is the name of the variable which should be defined by the user and should be

unique. These type of names are also known as identifiers. The rules for creating an

identifier in JavaScript are, the name of the identifier should not be any pre-defined

word(known as keywords), the first character must be a letter, an underscore (_), or a dollar

sign ($). Subsequent characters may be any letter or digit or an underscore or dollar sign.

We can initialize the variables either at the time of declaration or also later when we want to

use them. Below are some examples of declaring and initializing variables in JavaScript:

// declaring single variable

var name;

// declaring multiple variables

var name, title, num;

// initializng variables

var name = "Harsh";

name = "Rakesh";

Variable Scope in Javascript
Scope of a variable is the part of the program from where the variable may directly be

accessible.

In JavaScript, there are two types of scopes:

1. Global Scope – Scope outside the outermost function attached to Window.

2. Local Scope – Inside the function being executed.

We have a global variable defined in first line in global scope. Then we have a local variable

defined inside the function fun().

let globalVar = "This is a global variable";

function fun() {

let localVar = "This is a local variable";

console.log(globalVar);

console.log(localVar);

}

fun();

When we execute the function fun(), the output shows that both global as well as local

variables are accessible inside the function as we are able to console.log them. This shows

that inside the function we have access to both global variables (declared outside the

function) and local variables (declared inside the function).

let globalVar = "This is a global variable";

function fun() {

let localVar = "This is a local variable";

}

fun();

console.log(globalVar);

console.log(localVar);

JavaScript Literals:

A JavaScript object literal is a comma-separated list of name-value pairs wrapped in curly

braces. Object literals encapsulate data, enclosing it in a tidy package. This minimizes the use

of global variables which can cause problems when combining code.

The following demonstrates an example object literal:

var myObject = {

 sProp: 'some string value',

 numProp: 2,

 bProp: false

};

Object literal property values can be of any data type, including array literals, functions, and

nested object literals. Here is another object literal example with these property types:

var Swapper = {

 // an array literal

 images: ["smile.gif", "grim.gif", "frown.gif", "bomb.gif"],

 pos: { // nested object literal

 x: 40,

 y: 300

 },

 onSwap: function() { // function

 // code here

 }

};

Object Literal Syntax

Object literals are defined using the following syntax rules:

 A colon separates property name[1] from value.

 A comma separates each name-value pair from the next.

 There should be no comma after the last name-value pair.

Type Conversion

Most of the time, operators and functions automatically convert a value to the correct type.

That’s called “type conversion”.For example, alert automatically converts any value to a

string to show it. Mathematical operations convert values to numbers.There are also cases

when user need to explicitly convert a value to put things right.

String Conversion in Javascript

String conversion happens when we need the string form of a value.

For example, alert(value) does it to show the value. The conversion here is done

automatically. We can also use a call String(value) function for that conversion manually.

 let value = true;

 alert(typeof value); // boolean

 value = String(value); // now value is a string "true"

 alert(typeof value); // string

 String conversion is mostly obvious. A true becomes "true", 0 becomes "0".

Number Conversion

Numeric conversion happens in mathematical functions and expressions automatically.

For example, when division / is applied to non-numbers, which can be converted:

console.log("12"/"2"); //6 – Both strings are converted to Number

https://www.dyn-web.com/tutorials/object-literal/#f1

We can use a Number(value) function to explicitly convert a value to Number. Like below:

let str = "123";

let num = Number(str);

console.log(typeof str); //string

console.log(typeof num); //number

If the string to be converted is not a valid number, the result of such conversion is NaN, for

example:

let str = "One two three";

let num = Number(str);

console.log(num); //NaN

Some other numeric conversion rules for explicit conversation are below

//undefined becomes null

let str;

let num = Number(str);

console.log(str); //undefined

console.log(num); //NaN

//null becomes 0

let str = null;

let num = Number(str);

console.log(str); //null

console.log(num); //0

//true/false becomes 1/0

let str1 = true;

let str2 = false;

let num1 = Number(str1);

let num2 = Number(str2);

console.log(str1); //true

console.log(num1); //1

console.log(str2); //false

console.log(num2); //0

//In strings whitespaces from the start and the end are removed. Then, if //the remaining strin

g is empty, the result is 0. Otherwise, the number is //“read” from the string. An error gives N

aN if the string cannot be //converted.

let str1 = " ";

let str2 = " 123 ";

let str3 = " 123z ";

let num1 = Number(str1);

let num2 = Number(str2);

let num3 = Number(str3);

console.log(num1); //0

console.log(num2); //123

console.log(num3); //NaN

Array:

JavaScript arrays are used to store multiple values in a single variable. An array is a special

variable, which can hold more than one value at a time.

Creating an Array

Using an array literal is the easiest way to create a JavaScript Array.

Syntax:

var array_name = [item1, item2, ...];

Example

var cars = ["Saab", "Volvo", "BMW"];

Example

var cars=[

 "Saab",

 "Volvo",

 "BMW"

];

Using the JavaScript Keyword new

The following example also creates an Array, and assigns values to it:

Example

var cars = new Array("Saab", "Volvo", "BMW");

Access the Elements of an Array

You access an array element by referring to the index number.

This statement accesses the value of the first element in cars:

var name = cars[0];

Array indexes start with 0.

[0] is the first element. [1] is the second element.

Changing an Array Element

This statement changes the value of the first element in cars:

cars[0] = "Opel";

Example

var cars=["Saab", "Volvo", "BMW"];

cars[0]= "Opel";

document.getElementById("demo").innerHTML = cars[0];

Access the Full Array

With JavaScript, the full array can be accessed by referring to the array name:

Example

var cars=["Saab", "Volvo", "BMW"];

document.getElementById("demo").innerHTML = cars;

Java Script Statements:

JavaScript statements are the commands to tell the browser to what action to perform.

Statements are separated by semicolon (;).

Example of JavaScript statement:

document.getElementById("demo").innerHTML = "Welcome";

Script Statements

Sr.No. Statement Description

1. switch
case

A block of statements in which execution of code depends upon different

cases. The interpreter checks each case against the value of the expression

until a match is found. If nothing matches, a default condition will be used.

2. If else The if statement is the fundamental control statement that allows JavaScript
to make decisions and execute statements conditionally.

3. While The purpose of a while loop is to execute a statement or code block

repeatedly as long as expression is true. Once expression becomes false, the
loop will be exited.

4. do while Block of statements that are executed at least once and continues to be

executed while condition is true.

5. for Same as while but initialization, condition and increment/decrement is done

in the same line.

6. for in This loop is used to loop through an object's properties.

7. continue The continue statement tells the interpreter to immediately start the next

iteration of the loop and skip remaining code block.

8. break The break statement is used to exit a loop early, breaking out of the enclosing
curly braces.

9. function A function is a group of reusable code which can be called anywhere in your

programme. The keyword function is used to declare a function.

10. return Return statement is used to return a value from a function.

11. var Used to declare a variable.

12. try A block of statements on which error handling is implemented.

13. catch A block of statements that are executed when an error occur.

14. throw Used to throw an error.

Table 2.1 Script Statements

if statement

The if statement is the fundamental control statement that allows JavaScript to make

decisions and execute statements conditionally.

Syntax

The syntax for a basic if statement is as follows −

if (expression) {

 Statement(s) to be executed if expression is true

}

Here a JavaScript expression is evaluated. If the resulting value is true, the given

statement(s) are executed. If the expression is false, then no statement would be not

executed. Most of the times, you will use comparison operators while making decisions.

<html>

 <body>

 <script type = "text/javascript">

 <!--

 var age = 20;

 if(age > 18) {

 document.write("Qualifies for driving");

 }

 //-->

 </script>

 <p>Set the variable to different value and then try...</p>

 </body>

</html>

Output

Qualifies for driving
Set the variable to different value and then try...

if...else statement

The 'if...else' statement is the next form of control statement that allows JavaScript to

execute statements in a more controlled way.

Syntax

if (expression) {

 Statement(s) to be executed if expression is true

} else {

 Statement(s) to be executed if expression is false

}

<html>

 <body>

 <script type = "text/javascript">

 <!--

 var age = 15;

 if(age > 18) {

 document.write("Qualifies for driving");

 } else {

 document.write("Does not qualify for driving");

 }

 //-->

 </script>

 <p>Set the variable to different value and then try...</p>

 </body>

</html>

Output

Does not qualify for driving
Set the variable to different value and then try...

if...else if... statement

The if...else if... statement is an advanced form of if…else that allows JavaScript to make a

correct decision out of several conditions.

Syntax

The syntax of an if-else-if statement is as follows −

if (expression 1) {

 Statement(s) to be executed if expression 1 is true

} else if (expression 2) {

 Statement(s) to be executed if expression 2 is true

} else if (expression 3) {

 Statement(s) to be executed if expression 3 is true

} else {

 Statement(s) to be executed if no expression is true

}

There is nothing special about this code. It is just a series of if statements, where each if is a

part of the else clause of the previous statement. Statement(s) are executed based on the true

condition, if none of the conditions is true, then the else block is executed.

<html>

 <body>

 <script type = "text/javascript">

 <!--

 var book = "maths";

 if(book == "history") {

 document.write("History Book");

 } else if(book == "maths") {

 document.write("Maths Book");

 } else if(book == "economics") {

 document.write("Economics Book");

 } else {

 document.write("Unknown Book");

 }

 //-->

 </script>

 <p>Set the variable to different value and then try...</p>

 </body>

<html>

Switch statement

Figure 2.1 Flow Chart for Switch Statement

Syntax

The objective of a switch statement is to give an expression to evaluate and several different

statements to execute based on the value of the expression. The interpreter checks

each case against the value of the expression until a match is found. If nothing matches,

a default condition will be used.

switch (expression) {

 case condition 1: statement(s)

 break;

 case condition 2: statement(s)

 break;

 ...

 case condition n: statement(s)

 break;

 default: statement(s)

}

Example:

<html>

 <body>

 <script type = "text/javascript">

 <!--

 var grade = 'A';

 document.write("Entering switch block
");

 switch (grade) {

 case 'A': document.write("Good job
");

 break;

 case 'B': document.write("Pretty good
");

 break;

 case 'C': document.write("Passed
");

 break;

 case 'D': document.write("Not so good
");

 break;

 case 'F': document.write("Failed
");

 break;

 default: document.write("Unknown grade
")

 }

 document.write("Exiting switch block");

 //-->

 </script>

 <p>Set the variable to different value and then try...</p>

 </body>

</html>

While Loop

Figurev2.2 Flow Chart for While loo

Syntax

The syntax of while loop in JavaScript is as follows −

while (expression) {

 Statement(s) to be executed if expression is true

}

<html>

 <body>

 <script type = "text/javascript">

 <!--

 var count = 0;

 document.write("Starting Loop ");

 while (count < 10) {

 document.write("Current Count : " + count + "
");

 count++;

 }

 document.write("Loop stopped!");

 //-->

 </script>

 <p>Set the variable to different value and then try...</p>

 </body>

</html>

The do...while Loop

The do...while loop is similar to the while loop except that the condition check happens at

the end of the loop. This means that the loop will always be executed at least once, even if

the condition is false.

Syntax

The syntax for do-while loop in JavaScript is as follows −

do {

 Statement(s) to be executed;

} while (expression);

Example:

<html>

 <body>

 <script type = "text/javascript">

 <!--

 var count = 0;

 document.write("Starting Loop" + "
");

 do {

 document.write("Current Count : " + count + "
");

 count++;

 }

 while (count < 5);

 document.write ("Loop stopped!");

 //-->

 </script>

 <p>Set the variable to different value and then try...</p>

 </body>

</html>

JavaScript Functions

JavaScript functions are used to perform operations. We can call JavaScript function many

times to reuse the code.

Advantage of JavaScript function

There are mainly two advantages of JavaScript functions.

1. Code reusability: We can call a function several times so it save coding.

2. Less coding: It makes our program compact. We don’t need to write many lines of

code each time to perform a common task.

JavaScript Function Syntax

function functionName([arg1, arg2, ...argN]){

 //code to be executed

}

Function Example

<script>

function msg(){

alert("hello! this is message");

}

</script>

<input type="button" onclick="msg()" value="call function"/>

JavaScript Function Arguments

<script>

function getcube(number){

alert(number*number*number);

}

</script>

<form>

<input type="button" value="click" onclick="getcube(4)"/>

</form>

 Function with Return Value

<script>

function getInfo(){

return "hello javatpoint! How r u?";

}

</script>

<script>

document.write(getInfo());

</script>

JavaScript Function Methods

Table 2.2 JavaScript Function Methods

JavaScript Function Object Example

<script>

var add=new Function("num1","num2","return num1+num2");

document.writeln(add(2,5));

</script>

Introduction to Event Handling

 Event Handling is a software routine that processes actions, such as keystrokes and mouse

movements.

 It is the receipt of an event at some event handler from an event producer and subsequent

processes.

Functions of Event Handling

 Event Handling identifies where an event should be forwarded.

 It makes the forward event.

 It receives the forwarded event.

 It takes some kind of appropriate action in response, such as writing to a log, sending an

error or recovery routine or sending a message.

 The event handler may ultimately forward the event to an event consumer.

Event Handlers

Table 2.3 Event Handlers

Example : Simple Program on onload() Event handler

<html>

 <head>

 <scripttype="text/javascript">

 functiontime()

 {

 vard=newDate();

 var ty = d.getHours() + ":"+d.getMinutes()+":"+d.getSeconds();

 document.frmty.timetxt.value=ty;

 setInterval("time()",1000)

 }

 </script>

 </head>

<bodyonload="time()">

 <center><h2>DisplayingTime</h2>

 <formname="frmty">

 <inputtype=textname=timetxtsize="8">

 </form>

 </center>

</body>

</html>

Example: Simple Program on onsubmit() & onfocus() Event handler

<html>

 <body>

 <script>

 functionvalidateform()

 {

 varuname=document.myform.name.value;

 varupassword=document.myform.password.value;

 if(uname==null||uname=="")

 {

 alert("Namecannotbeleftblank");

 returnfalse;

 }

 elseif(upassword.length<6)

 {

 alert("Password must be at least 6 characters long.");

 returnfalse;

 }

 }

 functionemailvalidation()

 {

 vara=document.myform.email.value

 if(a.indexOf("@")==-1)

 {

 alert("Pleaseentervalidemailaddress")

 document.myform.email.focus()

 }

 }

 </script>

 <body>

 <form name="myform" method="post" action="validpage.html" onsubmit="return

validateform()">

 Email: <inputtype="text"size="20" name="email" onblur="emailvalidation()">

 UserName:<inputtype="text"name="name">

 Password:<inputtype="password"name="password">

 <inputtype="submit"value="Submit">

 </form>

 </body>

</html>

validpage.html //Filename

<html>

 <body>

 <scripttype="text/javascript">

 alert("YouareaValidUser!!!");

 </script>

 </body>

</html>

 Working With Objects –

Built-in Objects

 Built-in objects are not related to any Window or DOM object model.

 These objects are used for simple data processing in the JavaScript.

1. Math Object

 Math object is a built-in static object.

 It is used for performing complex math operations.

Math Properties

Table 3.4. Math Properties

 Table 3.5. Math Properties

Example: Simple Program on Math Object Methods

<html>

 <head>

 <title>JavaScriptMathObjectMethods</title>

 </head>

 <body>

 <scripttype="text/javascript">

 varvalue=Math.abs(20);

 document.write("ABSTestValue:"+value+"
");

 varvalue=Math.acos(-1);

 document.write("ACOSTestValue:"+value+"
");

 varvalue=Math.asin(1);

 document.write("ASINTestValue:"+value+"
");

 varvalue=Math.atan(.5);

 document.write("ATANTestValue:"+value+"
");

 </script>

 </body>

</html>

Output

ABSTestValue:20

ACOSTestValue:3.141592653589793

ASINTestValue:1.5707963267948966

ATAN Test Value : 0.4636476090008061

 Date, Math, String, Window, Calendar:

Creating Date Objects

Date objects are created with the new Date() constructor.

There are 4 ways to create a new date object:

new Date()

new Date(year, month, day, hours, minutes, seconds, milliseconds)

new Date(milliseconds)

new Date(date string)

new Date()

new Date() creates a new date object with the current date and time:

Example

var d = new Date();

new Date(year, month, ...)

new Date(year, month, ...) creates a new date object with a specified date and time.

7 numbers specify year, month, day, hour, minute, second, and millisecond (in that order):

Example

var d = new Date(2018, 11, 24, 10, 33, 30, 0);

Example

var d = new Date(2018, 11, 24, 10, 33, 30);

Example

var d = new Date(2018, 11, 24, 10, 33);

Example

var d = new Date(2018, 11, 24, 10);

Example

var d = new Date(2018, 11, 24);

Example

var d = new Date(2018);

new Date(dateString)

new Date(dateString) creates a new date object from a date string:

Example

var d = new Date("October 13, 2014 11:13:00");

new Date(milliseconds)

new Date(milliseconds) creates a new date object as zero time plus milliseconds:

Example

var d = new Date(0);

 Connecting To Search Engines.

JavaScript web apps in three main phases:

1. Crawling

2. Rendering

3. Indexing

Figure 2.3 Search Engines Architecture

When Googlebot fetches a URL from the crawling queue by making an HTTP request it first

checks if you allow crawling. Googlebot reads the robots.txt file. If it marks the URL as

disallowed, then Googlebot skips making an HTTP request to this URL and skips the URL.

Googlebot then parses the response for other URLs in the href attribute of HTML links and

adds the URLs to the crawl queue. To prevent link discovery, use the nofollow mechanism.

Crawling a URL and parsing the HTML response works well for classical websites or server-

side rendered pages where the HTML in the HTTP response contains all content. Some

JavaScript sites may use the app shell model where the initial HTML does not contain the

actual content and Googlebot needs to execute JavaScript before being able to see the actual

page content that JavaScript generates.

https://developers.google.com/search/reference/robots_txt
https://support.google.com/webmasters/answer/96569
https://developers.google.com/web/fundamentals/architecture/app-shell

Googlebot queues all pages for rendering, unless a robots meta tag or header tells Googlebot

not to index the page. The page may stay on this queue for a few seconds, but it can take

longer than that. Once Googlebot's resources allow, a headless Chromium renders the page

and executes the JavaScript. Googlebot parses the rendered HTML for links again and queues

the URLs it finds for crawling. Googlebot also uses the rendered HTML to index the page.

https://developers.google.com/search/reference/robots_meta_tag

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT- III Advanced Java – SBS1301

Servlets

Servlet technology is used to create a web application (resides at server side and generates a

dynamic web page).

Servlet technology is robust and scalable because of java language. Before Servlet, CGI

(Common Gateway Interface) scripting language was common as a server-side programming

language. However, there were many disadvantages to this technology. We have discussed

these disadvantages below.

There are many interfaces and classes in the Servlet API such as Servlet, GenericServlet,

HttpServlet, ServletRequest, ServletResponse, etc.

Servlet can be described in many ways, depending on the context.

o Servlet is a technology which is used to create a web application.

o Servlet is an API that provides many interfaces and classes including documentation.

o Servlet is an interface that must be implemented for creating any Servlet.

o Servlet is a class that extends the capabilities of the servers and responds to the

incoming requests. It can respond to any requests.

o Servlet is a web component that is deployed on the server to create a dynamic web

page.

Figure 3.1 Servlet Technology

The advantages of Servlet are as follows:

1. Better performance: because it creates a thread for each request, not process.

2. Portability: because it uses Java language.

3. Robust: JVM manages Servlets, so we don't need to worry about the memory

leak, garbage collection, etc.

4. Secure: because it uses java language.

Life Cycle of a Servlet:

The web container maintains the life cycle of a servlet instance. Let's see the life cycle of the

servlet:

1. Servlet class is loaded.

2. Servlet instance is created.

3. init method is invoked.

4. service method is invoked.

5. destroy method is invoked.

Figure 3.2 Life Cycle of a Servlet

1) Servlet class is loaded

https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/Garbage-Collection

The classloader is responsible to load the servlet class. The servlet class is loaded when the

first request for the servlet is received by the web container.

2) Servlet instance is created

The web container creates the instance of a servlet after loading the servlet class. The servlet

instance is created only once in the servlet life cycle.

3) init method is invoked

The web container calls the init method only once after creating the servlet instance.

The init method is used to initialize the servlet.

It is the life cycle method of the javax.servlet.Servlet interface.

1. public void init(ServletConfig config) throws ServletException

The web container calls the service method each time when request for the servlet is received.

If servlet is not initialized, it follows the first three steps as described above then calls the

service method. If servlet is initialized, it calls the service method. Notice that servlet is

initialized only once. The syntax of the service method of the Servlet interface is given

below:

1. public void service(ServletRequest request, ServletResponse response)

2. throws ServletException, IOException .

5) destroy method is invoked

The web container calls the destroy method before removing the servlet instance from the

service. It gives the servlet an opportunity to clean up any resource for example memory,

thread

public void destroy()

HTTP is a protocol which allows the fetching of resources, such as HTML documents. It is the

foundation of any data exchange on the Web and it is a client-server protocol, which

HTTP protocol

HTTP is a protocol which allows the fetching of resources, such as HTML documents. It is the

foundation of any data exchange on the Web and it is a client-server protocol, which means

https://developer.mozilla.org/en-US/docs/Glossary/protocol
https://developer.mozilla.org/en-US/docs/Glossary/protocol

requests are initiated by the recipient, usually the Web browser. A complete document is

reconstructed from the different sub-documents fetched, for instance text, layout description,

images, videos, scripts, and more.

Figure 3.4 HTTP protocol

Clients and servers communicate by exchanging individual messages (as opposed to a

stream of data). The messages sent by the client, usually a Web browser, are

called requests and the messages sent by the server as an answer are called responses.

Basic Features

There are three basic features that make HTTP a simple but powerful protocol:

 HTTP is connectionless: The HTTP client, i.e., a browser initiates an HTTP request

and after a request is made, the client waits for the response. The server processes the

request and sends a response back after which client disconnect the connection. So

client and server knows about each other during current request and response only.

Further requests are made on new connection like client and server are new to each

other.

 HTTP is media independent: It means, any type of data can be sent by HTTP as

long as both the client and the server know how to handle the data content. It is

required for the client as well as the server to specify the content type using

appropriate MIME-type.

 HTTP is stateless: As mentioned above, HTTP is connectionless and it is a direct

result of HTTP being a stateless protocol. The server and client are aware of each

other only during a current request. Afterwards, both of them forget about each

other. Due to this nature of the protocol, neither the client nor the browser can retain

information between different requests across the web pages.

HTTP Servlet

If you creating Http Servlet you must extend javax.servlet.http.HttpServlet class, which is an

abstract class. Unlike Generic Servlet, the HTTP Servlet doesn’t override the service()

method. Instead it overrides one or more of the following methods. It must override at least

one method from the list below:

 doGet() – This method is called by servlet service method to handle the HTTP GET

request from client. The Get method is used for getting information from the server

 doPost() – Used for posting information to the Server

 doPut() – This method is similar to doPost method but unlike doPost method where we

send information to the server, this method sends file to the server, this is similar to the

FTP operation from client to server

 doDelete() – allows a client to delete a document, webpage or information from the

server

 init() and destroy() – Used for managing resources that are held for the life of the

servlet

 getServletInfo() – Returns information about the servlet, such as author, version, and

copyright.

In Http Servlet there is no need to override the service() method as this method dispatches the

Http Requests to the correct method handler, for example if it receives HTTP GET Request it

dispatches the request to the doGet() method.

Basic Architecture

The following diagram shows a very basic architecture of a web application and depicts

where HTTP sits:

Figure 3.4 HTTP Protocol

The HTTP protocol is a request/response protocol based on the client/server based

architecture where web browsers, robots and search engines, etc. act like HTTP clients, and

the Web server acts as a server.

Client

The HTTP client sends a request to the server in the form of a request method, URI, and

protocol version, followed by a MIME-like message containing request modifiers, client

information, and possible body content over a TCP/IP connection.

Server

The HTTP server responds with a status line, including the message's protocol version and a

success or error code, followed by a MIME-like message containing server information,

entity meta information, and possible entity-body content.

The Servlet API:

The javax.servlet and javax.servlet.http packages represent interfaces and classes for servlet

api.

The javax.servlet package contains many interfaces and classes that are used by the servlet

or web container. These are not specific to any protocol.

The javax.servlet.http package contains interfaces and classes that are responsible for http

requests only.

Interfaces in javax.servlet package

There are many interfaces in javax.servlet package. They are as follows:

1. Servlet

2. ServletRequest

3. ServletResponse

4. RequestDispatcher

5. ServletConfig

6. ServletContext

7. SingleThreadModel

8. Filter

9. FilterConfig

10. FilterChain

11. ServletRequestListener

12. ServletRequestAttributeListener

13. ServletContextListener

14. ServletContextAttributeListener

Classes in javax.servlet package

There are many classes in javax.servlet package. They are as follows:

1. GenericServlet

2. ServletInputStream

3. ServletOutputStream

4. ServletRequestWrapper

5. ServletResponseWrapper

6. ServletRequestEvent

7. ServletContextEvent

8. ServletRequestAttributeEvent

9. ServletContextAttributeEvent

10. ServletException

11. UnavailableException

Interfaces in javax.servlet.http package

There are many interfaces in javax.servlet.http package. They are as follows:

1. HttpServletRequest

2. HttpServletResponse

3. HttpSession

4. HttpSessionListener

5. HttpSessionAttributeListener

6. HttpSessionBindingListener

7. HttpSessionActivationListener

8. HttpSessionContext (deprecated now)

Classes in javax.servlet.http package

There are many classes in javax.servlet.http package. They are as follows:

1. HttpServlet

2. Cookie

3. HttpServletRequestWrapper

4. HttpServletResponseWrapper

5. HttpSessionEvent

6. HttpSessionBindingEvent

7. HttpUtils (deprecated now)

Generic and Http Servlet:

GenericServlet class implements Servlet, ServletConfig and Serializable interfaces. It

provides the implementation of all the methods of these interfaces except the service method.

GenericServlet class can handle any type of request so it is protocol-independent.

Methods of GenericServlet class

There are many methods in GenericServlet class. They are as follows:

1. public void init(ServletConfig config) is used to initialize the servlet.

2. public abstract void service(ServletRequest request, ServletResponse

response) provides service for the incoming request. It is invoked at each time when

user requests for a servlet.

3. public void destroy() is invoked only once throughout the life cycle and indicates

that servlet is being destroyed.

4. public ServletConfig getServletConfig() returns the object of ServletConfig.

5. public String getServletInfo() returns information about servlet such as writer,

copyright, version etc.

6. public void init() it is a convenient method for the servlet programmers, now there is

no need to call super.init(config)

7. public ServletContext getServletContext() returns the object of ServletContext.

8. public String getInitParameter(String name) returns the parameter value for the

given parameter name.

9. public Enumeration getInitParameterNames() returns all the parameters defined in

the web.xml file.

10. public String getServletName() returns the name of the servlet object.

11. public void log(String msg) writes the given message in the servlet log file.

12. public void log(String msg,Throwable t) writes the explanatory message in the

servlet log file and a stack trace.

Following figure shows the hierarchy of Servlet vs GenericServlet vs HttpServlet and to

know from where HttpServlet comes.

Figure 4.5 Servlet vs GenericServlet vs HttpServlet

ServletConfig and ServletContext:

An object of ServletConfig is created by the web container for each servlet. This object can

be used to get configuration information from web.xml file. If the configuration information

is modified from the web.xml file, we don't need to change the servlet. So it is easier to

manage the web application if any specific content is modified from time to time.

Advantage of ServletConfig

The core advantage of ServletConfig is that you don't need to edit the servlet file if
information is modified from the web.xml file.

Methods of ServletConfig interface

1. public String getInitParameter(String name):Returns the parameter value for the

specified parameter name.

2. public Enumeration getInitParameterNames():Returns an enumeration of all the

initialization parameter names.

3. public String getServletName():Returns the name of the servlet.

4. public ServletContext getServletContext():Returns an object of ServletContext.

How to get the object of ServletConfig

1. getServletConfig() method of Servlet interface returns the object of ServletConfig.

Syntax of getServletConfig() method

public ServletConfig getServletConfig();

Example of getServletConfig() method

ServletConfig config=getServletConfig();

//Now we can call the methods of ServletConfig interface

Syntax to provide the initialization parameter for a servlet

The init-param sub-element of servlet is used to specify the initialization parameter for a

servlet.

<web-app>

<servlet>

 <init-param>

 <param-name>parametername</param-name>

 <param-value>parametervalue</param-value>

 </init-param>

 </servlet>

</web-app>

Example of ServletConfig to get initialization parameter

ServletContext::

object of ServletContext is created by the web container at time of deploying the project. This

object can be used to get configuration information from web.xml file. There is only one

ServletContext object per web application. If any information is shared to many servlet, it is

better to provide it from the web.xml file using the <context-param> element.

Advantage of ServletContext

Easy to maintain if any information is shared to all the servlet, it is better to make it
available for all the servlet. We provide this information from the web.xml file, so if the
information is changed, we don't need to modify the servlet. Thus it removes
maintenance problem.

Usage of ServletContext Interface

There can be a lot of usage of ServletContext object. Some of them are as follows:

1. The object of ServletContext provides an interface between the container and servlet.

2. The ServletContext object can be used to get configuration information from the

web.xml file.

3. The ServletContext object can be used to set, get or remove attribute from the

web.xml file.

4. The ServletContext object can be used to provide inter-application communication.

Figure 5.6 ServletContext Interface

Commonly used methods of ServletContext interface

There is given some commonly used methods of ServletContext interface.

1. public String getInitParameter(String name):Returns the parameter value for the

specified parameter name.

2. public Enumeration getInitParameterNames():Returns the names of the context's

initialization parameters.

3. public void setAttribute(String name,Object object):sets the given object in the

application scope.

4. public Object getAttribute(String name):Returns the attribute for the specified

name.

5. public Enumeration getInitParameterNames():Returns the names of the context's

initialization parameters as an Enumeration of String objects.

6. public void removeAttribute(String name):Removes the attribute with the given

name from the servlet context.

How to get the object of ServletContext interface

1. getServletContext() method of ServletConfig interface returns the object of

ServletContext.

2. getServletContext() method of GenericServlet class returns the object of

ServletContext.

Syntax of getServletContext() method

public ServletContext getServletContext()

Example of getServletContext() method

//We can get the ServletContext object from ServletConfig object

ServletContext application=getServletConfig().getServletContext();

//Another convenient way to get the ServletContext object

ServletContext application=getServletContext();

Difference between ServletConfig and ServletContext in Java Servlet

ServletConfig and ServletContext, both are objects created at the time

of servlet initialization and used to provide some initial parameters or configuration

information to the servlet. But, the difference lies in the fact that information shared by

ServletConfig is for a specific servlet, while information shared by ServletContext is

available for all servlets in the web application.

Handling HTTP Requests and Responses:

HTTP Requests

The request sent by the computer to a web server, contains all sorts of potentially interesting

information; it is known as HTTP requests.

The HTTP client sends the request to the server in the form of request message which

includes following information:

o The Request-line

https://www.geeksforgeeks.org/introduction-java-servlets/

o The analysis of source IP address, proxy and port

o The analysis of destination IP address, protocol, port and host

o The Requested URI (Uniform Resource Identifier)

o The Request method and Content

o The User-Agent header

o The Connection control header

o The Cache control header

Figure 3.7 HTTP Request

The HTTP request method indicates the method to be performed on the resource identified by

the Requested URI (Uniform Resource Identifier). This method is case-sensitive and

should be used in uppercase.

The HTTP request methods are

Table 3.1 HTTP Request Methods

Get vs. Post

Differences between the Get and Post request

Table 3.2 Differences between the Get and Post request

Figure 3.8 GET vs POST

Some other features of GET requests are:

o It remains in the browser history

o It can be bookmarked

o It can be cached

o It have length restrictions

o It should never be used when dealing with sensitive data

o It should only be used for retrieving the data

Handling form data with get and post request:

There are two ways the browser client can send information to the web server.

 The GET Method

 The POST Method

Before the browser sends the information, it encodes it using a scheme called URL

encoding. In this scheme, name/value pairs are joined with equal signs and different pairs

are separated by the ampersand.

name1=value1&name2=value2&name3=value3

Spaces are removed and replaced with the + character and any other nonalphanumeric

characters are replaced with a hexadecimal values. After the information is encoded it is sent

to the server.

The GET Method

The GET method sends the encoded user information appended to the page request. The

page and the encoded information are separated by the ? character.

http://www.test.com/index.htm?name1=value1&name2=value2

 The GET method produces a long string that appears in your server logs, in the

browser's Location: box.

 The GET method is restricted to send upto 1024 characters only.

 Never use GET method if you have password or other sensitive information to be

sent to the server.

 GET can't be used to send binary data, like images or word documents, to the server.

 The data sent by GET method can be accessed using QUERY_STRING environment

variable.

 The PHP provides $_GET associative array to access all the sent information using

GET method.

Try out following example by putting the source code in test.php script.

<?php

 if($_GET["name"] || $_GET["age"]) {

 echo "Welcome ". $_GET['name']. "
";

 echo "You are ". $_GET['age']. " years old.";

 exit();

 }

?>

<html>

 <body>

 <form action = "<?php $_PHP_SELF ?>" method = "GET">

 Name: <input type = "text" name = "name" />

 Age: <input type = "text" name = "age" />

 <input type = "submit" />

 </form>

 </body>

</html>

It will produce the following result –

The POST Method

The POST method transfers information via HTTP headers. The information is encoded as

described in case of GET method and put into a header called QUERY_STRING.

 The POST method does not have any restriction on data size to be sent.

 The POST method can be used to send ASCII as well as binary data.

 The data sent by POST method goes through HTTP header so security depends on

HTTP protocol. By using Secure HTTP you can make sure that your information is

secure.

 The PHP provides $_POST associative array to access all the sent information using

POST method.

Try out following example by putting the source code in test.php script.

<?php

 if($_POST["name"] || $_POST["age"]) {

 if (preg_match("/[^A-Za-z'-]/",$_POST['name'])) {

 die ("invalid name and name should be alpha");

 }

 echo "Welcome ". $_POST['name']. "
";

 echo "You are ". $_POST['age']. " years old.";

 exit();

 }

?>

<html>

 <body>

 <form action = "<?php $_PHP_SELF ?>" method = "POST">

 Name: <input type = "text" name = "name" />

 Age: <input type = "text" name = "age" />

 <input type = "submit" />

 </form>

 </body>

</html>

It will produce the following result

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT- 4 Advanced Java – SBS1301

Advanced Servlets

Approach to Session Tracking

Session simply means a particular interval of time.Session Tracking is a way to maintain state

(data) of an user. It is also known as session management in servlet.Http protocol is a

stateless so we need to maintain state using session tracking techniques. Each time user

requests to the server, server treats the request as the new request. So we need to maintain the

state of an user to recognize to particular user.HTTP is stateless that means each request is

considered as the new request. It is shown in the figure given below:

Why use Session Tracking?

To recognize the user. It is used to recognize the particular user.

Session Tracking Techniques

There are four techniques used in Session tracking:

1. Cookies

2. Hidden Form Field

3. URL Rewriting

4. HttpSession

Cookies in Servlet

A cookie is a small piece of information that is persisted between the multiple client requests.

A cookie has a name, a single value, and optional attributes such as a comment, path and

domain qualifiers, a maximum age, and a version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique, we add cookie

with response from the servlet. So cookie is stored in the cache of the browser. After that if

request is sent by the user, cookie is added with request by default.

Types of Cookie

There are 2 types of cookies in servlets.

1. Non-persistent cookie

2. Persistent cookie

Non-persistent cookie

It is valid for single session only. It is removed each time when user closes the browser.

Persistent cookie

It is valid for multiple session . It is not removed each time when user closes the browser. It

is removed only if user logout or signout.

Advantage of Cookies

1. Simplest technique of maintaining the state.

2. Cookies are maintained at client side.

Disadvantage of Cookies

1. It will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

Cookie class

javax.servlet.http.Cookie class provides the functionality of using cookies. It provides a lot

of useful methods for cookies.

Constructor of Cookie class

Useful Methods of Cookie class

There are given some commonly used methods of the Cookie class.

Example:

index.html

<form action="servlet1" method="post">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

</form>

FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 Cookie ck=new Cookie("uname",n);//creating cookie object

 response.addCookie(ck);//adding cookie in the response

 //creating submit button

 out.print("<form action='servlet2'>");

 out.print("<input type='submit' value='go'>");

 out.print("</form>");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 Cookie ck[]=request.getCookies();

 out.print("Hello "+ck[0].getValue());

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

web.xml

<web-app>

<servlet>

<servlet-name>s1</servlet-name>

<servlet-class>FirstServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s1</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>s2</servlet-name>

<servlet-class>SecondServlet</servlet-class>

</servlet>

servlet-mapping>

<servlet-name>s2</servlet-name>

<url-pattern>/servlet2</url-pattern>

</servlet-mapping>

</web-app>

2) Hidden Form Field

In case of Hidden Form Field a hidden (invisible) textfield is used for maintaining the state

of an user.In such case, we store the information in the hidden field and get it from another

servlet. This approach is better if we have to submit form in all the pages and we don't want

to depend on the browser.

<input type="hidden" name="uname" value="Vimal Jaiswal">

Here, uname is the hidden field name and Vimal Jaiswal is the hidden field value.

Real application of hidden form field

It is widely used in comment form of a website. In such case, we store page id or page name

in the hidden field so that each page can be uniquely identified.

Advantage of Hidden Form Field

1. It will always work whether cookie is disabled or not.

Disadvantage of Hidden Form Field:

1. It is maintained at server side.

2. Extra form submission is required on each pages.

3. Only textual information can be used.

Example of using Hidden Form Field
In this example, we are storing the name of the user in a hidden textfield and getting that

value from another servlet.

index.html

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

</form>

FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 //creating form that have invisible textfield

 out.print("<form action='servlet2'>");

 out.print("<input type='hidden' name='uname' value='"+n+"'>");

 out.print("<input type='submit' value='go'>");

 out.print("</form>");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 //Getting the value from the hidden field

 String n=request.getParameter("uname");

 out.print("Hello "+n);

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

web.xml

<web-app>

<servlet>

<servlet-name>s1</servlet-name>

<servlet-class>FirstServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s1</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>s2</servlet-name>

<servlet-class>SecondServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s2</servlet-name>

<url-pattern>/servlet2</url-pattern>

</servlet-mapping>

</web-app>

3)URL Rewriting

In URL rewriting, we append a token or identifier to the URL of the next Servlet or the next

resource. We can send parameter name/value pairs using the following format:

url?name1=value1&name2=value2&??

A name and a value is separated using an equal = sign, a parameter name/value pair is

separated from another parameter using the ampersand(&). When the user clicks the

hyperlink, the parameter name/value pairs will be passed to the server. From a Servlet, we

can use getParameter() method to obtain a parameter value.

Advantage of URL Rewriting

1. It will always work whether cookie is disabled or not (browser independent).

2. Extra form submission is not required on each pages.

Disadvantage of URL Rewriting

1. It will work only with links.

2. It can send Only textual information.

Example of using URL Rewriting

In this example, we are maintaning the state of the user using link. For this purpose, we are

appending the name of the user in the query string and getting the value from the query string

in another page.

index.html

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

</form>

FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 //appending the username in the query string

 out.print("visit");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 //getting value from the query string

 String n=request.getParameter("uname");

 out.print("Hello "+n);

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

web.xml

<web-app>

<servlet>

<servlet-name>s1</servlet-name>

<servlet-class>FirstServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s1</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>s2</servlet-name>

<servlet-class>SecondServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s2</servlet-name>

<url-pattern>/servlet2</url-pattern>

</servlet-mapping>

</web-app>

4) HttpSession interface

In such case, container creates a session id for each user.The container uses this id to identify

the particular user.An object of HttpSession can be used to perform two tasks:

1. bind objects

2. view and manipulate information about a session, such as the session identifier,

creation time, and last accessed time.

How to get the HttpSession object ?

The HttpServletRequest interface provides two methods to get the object of HttpSession:

1. public HttpSession getSession():Returns the current session associated with this

request, or if the request does not have a session, creates one.

2. public HttpSession getSession(boolean create):Returns the current HttpSession

associated with this request or, if there is no current session and create is true, returns

a new session.

Commonly used methods of HttpSession interface

1. public String getId():Returns a string containing the unique identifier value.

2. public long getCreationTime():Returns the time when this session was created,

measured in milliseconds since midnight January 1, 1970 GMT.

3. public long getLastAccessedTime():Returns the last time the client sent a request

associated with this session, as the number of milliseconds since midnight January 1,

1970 GMT.

4. public void invalidate():Invalidates this session then unbinds any objects bound to it.

Example of using HttpSession
In this example, we are setting the attribute in the session scope in one servlet and getting that

value from the session scope in another servlet. To set the attribute in the session scope, we

have used the setAttribute() method of HttpSession interface and to get the attribute, we have

used the getAttribute method.

index.html

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

</form>

FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 HttpSession session=request.getSession();

 session.setAttribute("uname",n);

 out.print("visit");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 HttpSession session=request.getSession(false);

 String n=(String)session.getAttribute("uname");

 out.print("Hello "+n);

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

web.xml

<web-app>

<servlet>

<servlet-name>s1</servlet-name>

<servlet-class>FirstServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s1</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>s2</servlet-name>

<servlet-class>SecondServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s2</servlet-name>

<url-pattern>/servlet2</url-pattern>

</servlet-mapping>

</web-app>

Servlet Context Interface:

The object of ServletContext is automatically created by the container when the web

application is deployed. There is only one ServletContext object per web application. It is

available on javax.servlet.* package.

Uses of ServletContext Interface

 It helps to establish communication between container and servlets.

 The ServletContext object also provides inter-application communication.

 ServletContext has init parameter that can be used to get configuration information from

web.xml.

 It provides the accessibility of application level parameter.

ServletContext Interface Methods

Following are the important methods of ServletContext interface:

Getting Object of ServletContext Interface

 The ServletConfig interface provides a getServletContext() method to return the object of

ServletContext.

 The GenericServlet class also provides the getServletContext() method to return the object

of ServletContext.

Example

ServletContext app = getServletConfig().getServletContext();

Or

ServletContext app = getServletContext();

Servlet Context Lifecycle:

Step 1: Servlet container reads the DD (Deployment Descriptor – web.xml) and creates the

name/value string pair for each <context-param> when web application is getting started.

Step 2: Container creates the new Instance of ServletContext.

Step 3: Servlet container gives the ServletContext a reference to each name/value pair of the

context init parameter.

Step 4: Every servlet and JSP in the same web application will now has access to this

ServletContext.

Servlet context lifecycle events

This category of events corresponds to the event receivers on

the javax.servlet.ServletContextListener interface. The event propagated is

a javax.servlet.ServletContext (not a javax.servlet.ServletContextEvent, since

the ServletContext is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet context.

The servlet context lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletContext The servlet context is initialized or destroyed

@Initialized javax.servlet.ServletContext The servlet context is initialized

@Destroyed javax.servlet.ServletContext The servlet context is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers on the observer method:

public void observeServletContext(@Observes ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized or destroyed");

}

If you are interested in only a particular lifecycle phase, use one of the provided qualifiers:

public void observeServletContextInitialized(@Observes @Initialized ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized");

}

Event Handling :

Events are basically occurrence of something. Changing the state of an object is known as an

event.

We can perform some important tasks at the occurrence of these exceptions, such as counting

total and current logged-in users, creating tables of the database at time of deploying the

project, creating database connection object etc.

There are many Event classes and Listener interfaces in the javax.servlet and

javax.servlet.http packages.

Event classes

The event classes are as follows:

1. ServletRequestEvent

2. ServletContextEvent

3. ServletRequestAttributeEvent

4. ServletContextAttributeEvent

5. HttpSessionEvent

6. HttpSessionBindingEvent

Event interfaces

The event interfaces are as follows:

1. ServletRequestListener

2. ServletRequestAttributeListener

3. ServletContextListener

4. ServletContextAttributeListener

5. HttpSessionListener

6. HttpSessionAttributeListener

7. HttpSessionBindingListener

8. HttpSessionActivationListener

Servlet Context Events

Servlet Collaboration:

The Servlet collaboration is all about sharing information among the servlets. Collaborating

servlets is to pass the common information that is to be shared directly by one servlet to

another through various invocations of the methods. To perform these operations, each

servlet need to know the other servlet with which it is collaborated. Here are several ways to

communicate with one another:

 Using RequestDispatchers include() and forward() method;

 Using HttpServletResponse sendRedirect() method;

 Using ServletContext setAttribute() and getAttribute() methods;

 Using Java's system-wide Properties list;

 Using singleton class object.

Example of using RequestDispatcher for Servlet Collaboration

The following example explains how to use RequestDispatcher interface to achieve Servlet

Collaboration:

index.html

<html>

<head>

<body>

<form action="login" method="post">

Name:<input type="text" name="userName"/>

Password:<input type="password" name="userPass"/>

<input type="submit" value="login"/>

</form>

</body>

</html>

Login.java

// First java servlet that calls another resource

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Login extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

throws ServletException, IOException

 {

 // The method to receive client requests

 // which are sent using 'post'

 res.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // fetches username

 String n = request.getParameter("userName");

 // fetches password

 String p = request.getParameter("userPass");

 if(p.equals("Thanos"){

 RequestDispatcher rd = request.getRequestDispatcher("servlet2");

 // Getting RequestDispatcher object

 // for collaborating with servlet2

 // forwarding the request to servlet2

 rd.forward(request, response);

 }

 else{

 out.print("Password mismatch");

 RequestDispatcher rd = request.getRequestDispatcher("/index.html");

 rd.include(request, response);

 }

 }

}

Welcome.java

// Called servlet in case password matches

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Welcome extends HttpServlet {

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // fetches username

 String n = request.getParameter("userName");

 // prints the message

 out.print("Welcome " + n);

 }

}

web.xml

<web-app>

<servlet>

 <servlet-name>Login</servlet-name>

 <servlet-class>Login</servlet-class>

</servlet>

<servlet>

 <servlet-name>WelcomeServlet</servlet-name>

 <servlet-class>Welcome</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>Login</servlet-name>

 <url-pattern>/servlet1</url-pattern>

</servlet-mapping>

<servlet-mapping>

 <servlet-name>WelcomeServlet</servlet-name>

 <url-pattern>/servlet2</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

Servlet Chaining

Servlet Chaining means the output of one servlet act as a input to another servlet. Servlet

Aliasing allows us to invoke more than one servlet in sequence when the URL is opened with

a common servlet alias. The output from first Servlet is sent as input to other Servlet and so

on. The Output from the last Servlet is sent back to the browser. The entire process is called

Servlet Chaining.

Example

public class Test1 extends HttpServlet {

String name ;

ServletConfig config;

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException , IOException {

res.setContentType("text/plain");

PrintWriter out = res.getWriter();

name = req.getParameter("name");

RequestDispatcher rd = config.

getServletContext().getRequestDispatcher("SecondServlet");

if(name!=null) {

request.setAttribute("MyName",name);

rd.forward(req , res);

// Forward this value to another Servlet

} else {

res.sendError(res.SC_BAD_REQUEST,

"MyName Required");

}

}

}

public class Test2 extends HttpServlet {

public void doGet(HttpServletRequest req ,

HttpServletResponse res)

throws ServletException , IOException {

res.setContentType("text/plain");

PrintWriter out = res.getWriter();

String myname = (String)req.getAttribute("MyName");

// Extracting the value which is set in Test1

out.println("MyName is "+ myname);

}

}

Servlet chaining

Request Dispatching. :

The RequestDispatcher interface provides the facility of dispatching the request to another

resource it may be html, servlet or jsp. This interface can also be used to include the content

of another resource also. It is one of the way of servlet collaboration.

There are two methods defined in the RequestDispatcher interface.

Methods of RequestDispatcher interface

The RequestDispatcher interface provides two methods. They are:

1. public void forward(ServletRequest request,ServletResponse response)throws

ServletException,java.io.IOException:Forwards a request from a servlet to another

resource (servlet, JSP file, or HTML file) on the server.

2. public void include(ServletRequest request,ServletResponse response)throws

ServletException,java.io.IOException:Includes the content of a resource (servlet,

JSP page, or HTML file) in the response

Response of second servlet is sent to the client. Response of the first servlet is not displayed

to the user.

How to get the object of RequestDispatcher

The getRequestDispatcher() method of ServletRequest interface returns the object of

RequestDispatcher. Syntax:

Syntax of getRequestDispatcher method

public RequestDispatcher getRequestDispatcher(String resource);

Example of using getRequestDispatcher method

RequestDispatcher rd=request.getRequestDispatcher("servlet2");

//servlet2 is the url-pattern of the second servlet

rd.forward(request, response);//method may be include or forward

Example of RequestDispatcher interface

In this example, we are validating the password entered by the user. If password is servlet, it

will forward the request to the WelcomeServlet, otherwise will show an error message: sorry

username or password error!. In this program, we are cheking for hardcoded information

 In this example, we have created following files:

o index.html file: for getting input from the user.

o Login.java file: a servlet class for processing the response. If password is servet, it

will forward the request to the welcome servlet.

o WelcomeServlet.java file: a servlet class for displaying the welcome message.

o web.xml file: a deployment descriptor file that contains the information about the

servlet.

index.html

<form action="servlet1" method="post">

Name:<input type="text" name="userName"/>

Password:<input type="password" name="userPass"/>

<input type="submit" value="login"/>

</form>

Login.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Login extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 String p=request.getParameter("userPass");

 if(p.equals("servlet"){

 RequestDispatcher rd=request.getRequestDispatcher("servlet2");

 rd.forward(request, response);

 }

 else{

 out.print("Sorry UserName or Password Error!");

 RequestDispatcher rd=request.getRequestDispatcher("/index.html");

 rd.include(request, response);

 }

 }

}

WelcomeServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class WelcomeServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 }

}

web.xml

<web-app>

 <servlet>

 <servlet-name>Login</servlet-name>

 <servlet-class>Login</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>WelcomeServlet</servlet-name>

 <servlet-class>WelcomeServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Login</servlet-name>

 <url-pattern>/servlet1</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>WelcomeServlet</servlet-name>

 <url-pattern>/servlet2</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

web-app>

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT- 5 Advanced Java – SBS1301

Java Server Pages

JSP technology is used to create web application just like Servlet technology. It can be

thought of as an extension to Servlet because it provides more functionality than servlet such

as expression language, JSTL, etc.

A JSP page consists of HTML tags and JSP tags. The JSP pages are easier to maintain than

Servlet because we can separate designing and development. It provides some additional

features such as Expression Language, Custom Tags, etc.

Advantages of JSP over Servlet

There are many advantages of JSP over the Servlet. They are as follows:

1) Extension to Servlet

JSP technology is the extension to Servlet technology. We can use all the features of the

Servlet in JSP. In addition to, we can use implicit objects, predefined tags, expression

language and Custom tags in JSP, that makes JSP development easy.

2) Easy to maintain

JSP can be easily managed because we can easily separate our business logic with

presentation logic. In Servlet technology, we mix our business logic with the presentation

logic.

3) Fast Development: No need to recompile and redeploy

If JSP page is modified, we don't need to recompile and redeploy the project. The Servlet

code needs to be updated and recompiled if we have to change the look and feel of the

application.

4) Less code than Servlet

In JSP, we can use many tags such as action tags, JSTL, custom tags, etc. that reduces the

code. Moreover, we can use EL, implicit objects, etc.

Features of JSP

 Coding in JSP is easy :- As it is just adding JAVA code to HTML/XML.

 Reduction in the length of Code :- In JSP we use action tags, custom tags etc.

 Connection to Database is easier :-It is easier to connect website to database and

allows to read or write data easily to the database.

 Make Interactive websites :- In this we can create dynamic web pages which helps

user to interact in real time environment.

 Portable, Powerful, flexible and easy to maintain :- as these are browser and server

independent.

 No Redeployment and No Re-Compilation :- It is dynamic, secure and platform

independent so no need to re-compilation.

 Extension to Servlet :- as it has all features of servlets, implicit objects and custom tags

Difference between Servlets and JSP:

Table 5.1 Difference between Servlets and JSP:

Table 5.2 Difference between Servlets and JSP:

A JSP is just another servlet, and like HTTP servlets, a JSP is a server-side Web

component that can be used to generate dynamic Web pages. The fundamental difference

between servlets and JSPs is

• Servlets generate HTML from Java code.

• JSPs embed Java code in static HTML.

A JavaServer Pages (JSP) component is a type of Java servlet that is designed to

fulfill the role of a user interface for a Java web application. Web developers write JSPs as

text files that combine HTML or XHTML code, XML elements, and embedded JSP actions

and commands. JSPs were originally designed around the model of embedded server-side

scripting tools such as Microsoft Corporation's ASP technology; however, JSPs have evolved

to focus on XML elements, including custom-designed elements, or custom tags , as the

principal method of generating dynamic web content.

JSP files typically have a .jsp extension, as in mypage.jsp. When a client requests the

JSP page for the first time, or if the developer precompiles the JSP the web container

translates the textual document into a servlet.

A JSP compiler (such as Tomcat's Jasper component) automatically converts the text-

based document into a servlet. The web container creates an instance of the servlet and makes

the servlet available to handle requests. These tasks are transparent to the developer, who

never has to handle the translated servlet source code

The developer focuses on the JSP's dynamic behavior and which JSP elements or

custom-designed tags she uses to generate the response.

A JSP file that displays the date

<%-- use the 'taglib' directive to make the JSTL 1.0 core tags available; use the uri

"http://java.sun.com/jsp/jstl/core" for JSTL 1.1 --%>

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<%-- use the 'jsp:useBean' standard action to create the Date object; the object is set as an

attribute in page scope --%>

<jsp:useBean id="date" class="java.util.Date" />

<html>

<head><title>First JSP</title></head>

<body>

<h2>Here is today's date</h2>

<c:out value="${date}" />

</body>

</html>

JSP Syntax and Structure

Before writing your first JSP, you need to gain an understanding of the syntax and the

structure of a JSP.

As you have seen, JSP elements are embedded in static HTML. Like HTML, all JSP

elements are enclosed in open and close angle brackets (< >). Unlike HTML, but like XML,

all JSP elements are case sensitive.

JSP elements are distinguished from HTML tags by beginning with either <% or

<jsp:.

JSPs follow XML syntax, they all have a start tag (which includes the element name)

and a matching end tag. Like XML tags, a JSP tag with an empty body can combine the start

and end tags into a single tag. The following is an empty body tag:

<jsp:useBean id=”agency” class=”web.AgencyBean”>

</jsp:useBean>

The following tag is equivalent to the previous example:

<jsp:useBean id=”agency” class=”web.AgencyBean”/>

Optionally, a JSP element may have attributes and a body. You will see examples of

all these types during today’s lesson. See Appendix C, “An Overview of XML,” for more

information on XML and the syntax of XML elements.

JSP Elements

The basic JSP elements are summarised in following Table

Element Type JSP Syntax Description

Directives <%@Directive…%> Information used to control the translation of the JSP

text into Java code

Scripting <% %> Embedded Java code

Actions <jsp: > JSP-specific tags primarily used to support JavaBeans

Table 5.3 The basic JSP elements are summarised Action

Actions are specific tags that affect the run-time behaviour of the JSP and affect the

response sent back to the client.

 <jsp:useBean>

 <jsp:param>

 <jsp:setProperty>

 <jsp:getProperty>

 <jsp:include>

 <jsp:forward>

 <jsp:plugin>

- jsp:setProperty:

 This standard action is used in conjunction with the useBean action described in the

preceding section and sets the values of simple and included properties in a bean.

 <jsp:setProperty name=”beanname” propertydetail/>

attribute name: The name of the bean instance defined by a <jsp:useBean> tag.

attribute property: The name of the bean property whose value is being set.

- jsp:include:

This action allows a static or dynamic remote to be included in the current jsp at

request time. The resource is specified using the URL format described in the earlier section

on the include directive.

<jsp:include page=”FILE NAME” flush=”true”/>

true: The buffer in the output stream is flushed.

- jsp:forward

This action allows a request to be forward to another jsp, a servlet, or a static

resource.

<jsp:forward page=”URL”/>

- jsp:plugin

 This action is used to generate client browser specific HTML tags that ensure the

JavaPlugin software in available, followed by execution of the applet or JavaBean component

specified in the tag.

Scripting Elements

Scripting elements contain the code logic. It is these elements that get translated into a

Java class and compiled. There are three types of scripting elements—declarations,

scriptlets, and expressions. They all start with <% and end with %>.

1. Expressions of the form <%= expression %>, which are evaluated and inserted into the

servlet’s output

2. Scriptlets of the form <% code %>, which are inserted into the servlet’s _jspService

method (called by service)

3. Declarations of the form <%! code %>, which are inserted into the body of the servlet

class, outside of any existing methodsDeclarations

Declarations are used to introduce one or more variable or method declarations, each

one separated by semicolons. A variable must be declared before it is used on a JSP page.

Declarations are differentiated from other scripting elements with a <%! start tag. An

example declaration that defines two variables is as follows:

<%! String color = “blue”; int i = 42; %>

You can have as many declarations as you need. Variables and methods defined in

declarations are declared as instance variables outside of any methods in the class.

Expressions

JSP expressions are single statements that are evaluated, and the result is cast into a

string and placed on the HTML page. An expression is introduced with <%= and must not be

terminated with a semi-colon. The following is an expression that will put the contents of the

i element in the items array on the output page.

<%= items[i] %>

JSP expressions can be used as values for attributes in JSP tags. The following

example shows how the i element in the items array can be used as the value for a submit

button on a form:

<INPUT type=submit value=”<%= items[i] %>”>

Scriptlets

Scriptlets contain code fragments that are processed when a request is received by the

JSP. Scriptlets are processed in the order they appear in the JSP. They need not produce

output. Scriptlets can be used to create local variables, for example

<% int i = 42;%>

<BIG>The answer is <%= i %></BIG>

The difference between scriptlet variables and declarations is that scriptlet variables

are scoped for each request. Variables created in declarations can retain their values between

requests (they are instance variables).

JSP scriptlets let you insert arbitrary code into the servlet’s _jspService method

(which is called by service). Scriptlets have the following form:

<% Java Code %>

Scriptlets have access to the same automatically defined variables as expressions

(request, response, session, out, etc.; see Section 10.5). So, for example, if you want output to

appear in the resultant page, you would use the out variable, as in the following example.

<%

String queryData = request.getQueryString();

out.println("Attached GET data: " + queryData);

%>

In this particular instance, you could have accomplished the same effect more easily

by using the following JSP expression:

Attached GET data: <%= request.getQueryString() %>

In general, however, scriptlets can perform a number of tasks that cannot be

accomplished with expressions alone. These tasks include setting response headers and status

codes, invoking side effects such as writing to the server log or updating a database, or

executing code that contains loops, conditionals, or other complex constructs. For instance,

the following snippet specifies that the current page is sent to the client as plain text, not as

HTML (which is the default).

<% response.setContentType("text/plain"); %>

JSP Comments

There are three types of comments in a JSP page. The first type is called a JSP

comment. JSP comments are used to document the JSP page. A JSP comment is completely

ignored; it is not included in the generated code. A JSP comment looks like the following:

<%-- this is a JSP comment --%>

An alternative way to comment a JSP is to use the comment mechanism of the

scripting language, as in the following:

<% /* this is a java comment */ %>

This comment will be placed in the generated Java code. The third mechanism for

adding comments to a JSP is to use HTML comments.

<!-- this is an HTML comment -->

HTML comments are passed through to the client as part of the response. As a result,

this form can be used to document the generated HTML document. Dynamic information can

be included in HTML comments as shown in the following:

<!-- comment <%= expression %> comment -->

JSP Declarations

A JSP declaration lets you define methods or fields that get inserted into the main

body of the servlet class (outside of the _jspService method that is called by service to

process the request). A declaration has the following form:

<%! Java Code %>

Since declarations do not generate any output, they are normally used in conjunction

with JSP expressions or scriptlets. For example, here is a JSP fragment that prints the number

of times the current page has been requested since the server was booted (or the servlet class

was changed and reloaded). Recall that multiple client requests to the same servlet result only

in multiple threads calling the service method of a single servlet instance.

They do not result in the creation of multiple servlet instances except possibly when

the servlet implements SingleThreadModel. For a discussion of SingleThreadModel,

Instance variables (fields) of a servlet are shared by multiple requests and

accessCount does not have to be declared static below.

<%! private int accessCount = 0; %>

Accesses to page since server reboot:

<%= ++accessCount %>

JSP Directives

Directives are used to define information about your page to the translator, they do

not produce any HTML output. All directives have the following syntax:

<%@ directive [attr=”value”] %>

where directive can be page, include, or taglib.

The include Directive

You use the include directive to insert the contents of another file into the JSP. The

included file can contain HTML or JSP tags or both. It is a useful mechanism for including

the same page directives in all your JSPs or reusing small pieces of HTML to create common

look and feel.

If the include file is itself a JSP, it is standard practice to use .jsf or .jspf, as suggested

in the JSP specification, to indicate that the file contains a JSP fragment. These extensions

show that the file is to be used in an include directive (and does not create a wellformed

HTML page). “.jsp” should be reserved to refer to standalone JSPs.

dateBanner.jsp

<HTML> <HEAD>

<TITLE>JSP Date Example with common banner</TITLE>

</HEAD> <BODY>

<%@ include file=”banner.html” %>

<BIG> Today’s date is <%= new java.util.Date() %> </BIG>

</BODY> </HTML>

banner.html

<TABLE border=”0” width=”600” cellspacing=”0” cellpadding=”0”>

<TR> <TD width=”350”><H1>Temporal Information </H1> </TD>

<TD align=”right” width=”250”> </TD> </TR>

 </TABLE>

The page Directive

Page directives are used to define page-dependent properties. You can have more than

one page directive in the JSP. A page directive applies to the whole JSP, together with any

files incorporated via the include directive.

TABLE JSP Page Directives

Directive Example Effect info

<%@ page info=”my first JSP Example” %>

Defines text string that is placed in the Servlet.getServletInfo() method in the

translated code LISTING 13.4 Continued import <%@ page import=” java.math.*” %> A

comma-separated list of package names to be imported for this JSP. The default

import list is java.lang.*,

javax.servlet.*,

javax.servlet.jsp.*, and

javax.servlet.http.*.

isThreadSafe <%@ page isThreadSafe=”true” %> If set to true, this indicates that

<%@ page isThreadSafe=”false” %> this page can be run multithreaded.

This is the default, so you should ensure that access to shared objects (such as

instance variables) is synchronized.

errorPage <%@ page errorPage=”/agency/error.jsp” %> The client will be redirected

to the specified URL when an exception occurs that is not caught by the current page.

isErrorPage <%@ page isErrorPage=”true” %> Indicates whether this page is

<%@ page isErrorPage=”false” %> the target URL for an errorPage directive. If true, an

implicit scripting variable called “exception” is defined and references the exception

thrown in the source JSP. The default is false.

name.jsp

<%@page import=”java.util.*, javax.naming.*, agency.*” %>

<%@page errorPage=”errorPage.jsp” %>

<HTML> <TITLE>Agency Name</TITLE> <BODY>

<% InitialContext ic = null;

 ic = new InitialContext();

AgencyHome agencyHome = (AgencyHome)ic.lookup(“java:comp/env/ejb/Agency”);

Agency agency = agencyHome.create(); %>

<H1><%= agency.getAgencyName() %> </H1>

</BODY> </HTML>

Accessing HTTP Servlet Variables

The JSP pages you write are translated into servlets that process the HTTP GET and

POST requests. The JSP code can access servlet information using implicit objects defined

for each page. These implicit objects are pre-declared variables that you can reference from

the Java code on your JSP.

JSP Implicit Objects

Reference

Name

Class Description

config javax.servlet.ServletConfig The servlet configuration information for

the page

request A subclass of

javax.servlet.ServletRequest

Request information for the current

HTTP request

session javax.servlet.http.HttpSession The servlet session object for the client

out javax.servlet.jsp.JspWriter

 A subclass of java.io.Writer

that is used to output text for inclusion on

the Web page

pageContext javax.servlet.jsp.PageContext The JSP page context used primarily

when implementing custom tags

application

javax.servlet.ServletContext The context for all Web components in

the same application

Table 5.4 JSP Implicit Objects

These implicit objects can be used on any JSP page. Using the date JSP shown in

Listing 13.3 as an example, an alternative way of writing the date to the page is as follows:

<BIG> Today’s date is <% out.print(new java.util.Date()); %> </BIG>

Predefined Variables

To simplify code in JSP expressions and scriptlets, you are supplied with eight

automatically defined variables, sometimes called implicit objects. Since JSP declarations

(see Section 10.4) result in code that appears outside of the _jspService method, these

variables are not accessible in declarations. The available variables are request, response, out,

session, application, config, pageContext, and page. Details for each are given below.

request

This variable is the HttpServletRequest associated with the request; it gives you

access to the request parameters, the request type (e.g., GET or POST), and the incoming

HTTP headers (e.g., cookies). Strictly speaking, if the protocol in the request is something

other than HTTP, request is allowed to be a subclass of ServletRequest other than

HttpServletRequest. However, few, if any, JSP servers currently support non-HTTP servlets.

response

This variable is the HttpServletResponse associated with the response to the client.

Note that since the output stream (see out) is normally buffered, it is legal to set HTTP status

codes and response headers in JSP pages, even though the setting of headers or status codes is

not permitted in servlets once any output has been sent to the client.

out

This is the PrintWriter used to send output to the client. However, to make the

response object useful, this is a buffered version of Print-Writer called JspWriter. You can

adjust the buffer size through use of the buffer attribute of the page directive that out is used

almost exclusively in scriptlets, since JSP expressions are automatically placed in the output

stream and thus rarely need to refer to out explicitly.

session

This variable is the HttpSession object associated with the request. Recall that

sessions are created automatically, so this variable is bound even if there is no incoming

session reference. The one exception is if you use the session attribute of the page directive

(see Section 11.4) to turn sessions off. In that case, attempts to reference the session variable

cause errors at the time the JSP page is translated into a servlet.

application

This variable is the ServletContext as obtained via

getServletConfig().

getContext().

Servlets and JSP pages can store persistent data in the ServletContext object rather

than in instance variables. ServletContext has setAttribute and getAttribute methods that let

you store arbitrary data associated with specified keys. The difference between storing data in

instance variables and storing it in the Servlet-Context is that the ServletContext is shared by

all servlets in the servlet engine (or in the Web application, if your server supports such a

capability).

config

This variable is the ServletConfig object for this page.

pageContext

JSP introduced a new class called PageContext to give a single point of access to

many of the page attributes and to provide a convenient place to store shared data. The

pageContext variable stores the value of the PageContext object associated with the current

page.

page

This variable is simply a synonym for this and is not very useful in the Java

programming language. It was created as a place holder for the time when the scripting

language could be something other than Java.

Using HTTP Request Parameters

The next requirement for many JSP pages is to be able to use request parameters to

configure the behavior of the page. Using the Agency case study as an example, you will

develop a simple JSP to display the contents of a named database table.

The first step is to define a simple form to allow the user to select the table to display.

tableForm.jsp

<HTML> 2: <TITLE>Agency Tables</TITLE> 3: <BODY>

<FORM action=table>

Select a table to display:

<SELECT name=table>

<OPTION>Applicant <OPTION>ApplicantSkill <OPTION>Customer

<OPTION>Job <OPTION>JobSKill <OPTION>Location

<OPTION>Matched <OPTION>Skill </SELECT><P>

<INPUT type=submit> </FORM> </BODY> </HTML>

You will need to add this JSP to the simple Web application and define an alias of

/tableForm to use it. The actual JSP to display the table is shown in Listing 13.8. LISTING

13.8 Full Text of table.jsp

<%@page import=”java.util.*, javax.naming.*, agency.*” %>

<%@page errorPage=”errorPage.jsp” %>

<% String table=request.getParameter(“table”); %>

<HTML> <TITLE>Agency Table: <%= table %></TITLE>

<BODY> <H1>Data for table <%= table %> </H1>

<TABLE border=1>

<%InitialContext ic = null;

ic = new InitialContext();

AgencyHome agencyHome = (AgencyHome)ic.lookup(“java:comp/env/ejb/Agency”);

Agency agency = agencyHome.create();

Collection rows = agency.select(table);

Iterator it = rows.iterator();

while (it.hasNext()) {

out.print(“<TR>”);

String[] row = (String[])it.next();

for (int i=0; i<row.length; i++)

out.print(“<TD>”+row[i]+”</TD>”);

out.print(“</TR>”);

 } %>

</TABLE> </BODY> </HTML>

JSP Problems

There are three types of errors you can make with JSP pages:

• JSP errors causing the translation to fail

• Java errors causing the compilation to fail

• HTML errors causing the page to display incorrectly

Finding and correcting these errors can be quite problematic because the information

you need to discover the error is not readily available. Before looking at resolving errors, you

will need to understand the JSP lifecycle.

JSP Lifecycle

As has already been stated, JSPs go through a translation and compilation phase prior

to processing their first request.

The Web server automatically translates and compiles a JSP; you do not have to

manually run any utility to do this. JSP translation and compilation can occur at any time

prior to the JSP first being accessed. It is implementation dependent when this translation and

compilation occurs but it is usually either

• On deployment

• When the first request for the JSP is received

If the latter strategy is used, not only is there a delay in processing the first request

because the page is translated and compiled, but if the compilation fails, the client will be

presented with some unintelligible error. If your server uses this strategy, ensure that you

always force the translation and compilation of your JSP, either by making the first page

request after it has been deployed or by forcing the page to be pre-compiled. With J2EE RI,

the translation and compilation only takes place when the page is first accessed. You can find

the translated JSP in <J2EE installation>\repository\ <machine name>\web\<context root>\.

You may find it useful to refer to the translated

JSP to understand any compilation errors.

Detecting and Correcting JSP Errors

Realistically, you are going to make errors when writing JSPs. These errors can be

quite

difficult to comprehend because of the way they are detected and reported. There are three

categories of error:

• JSP translation

• Servlet compilation

• HTML presentation

The first two categories of error are detected by the Web server and sent back to the client

browser instead of the requested page. The last type of error (HTML) is detected by the Web

browser. Correcting each category of error requires a different technique

Translation Errors

If you mistype the JSP tags or fail to use the correct attributes for the tags, you will

get a translation error returned to your browser. With the simple date example, missing the

closing % sign from the JSP expression, as in the following code

Today’s date is <%= new java.util.Date() >

It will generate a translation error. Using the Web browser to report errors is an

expedient solution to the problem of reporting errors, but this approach is not used by all Web

servers. Some simply write the error to a log file and return an HTTP error to the browser.

The JSP specification simply requires the Web server to report an HTTP 500 problem if there

is an error on the JSP.

This shows all of the useful information for determining the error. The first part of the

line tells you the exception that occurred:

org.apache.jasper.compiler.ParseException:

In this case, a generic parsing exception reported by the JSP translator. The J2EE RI

includes a version of the Apache Tomcat Web server and it is the Jasper parser of Tomcat

that has reported the error.

The second part of the error identifies the JSP page: /date.jsp and the third part

specifies the line and column number: (8,0)

You know that the error is on line 8 of the date.jsp page. The column number is often

misleading and is best ignored when looking for the error. The final part of the error message

is a brief description of the problem:

Unterminated <%= tag

The rest of the error information returned to the Web browser is a stack trace of where

the exception occurred in the Jasper translator. This is of no practical use to you and can be

ignored. From the error information you should be able to identify the problem on the

original JSP. Depending on the nature of the error, you may need to look at JSP lines prior to

the one with the reported error. Sometimes errors are not reported until much later in the JSP.

The worst scenario is when the error is reported on the very last line because this means the

error could be practically anywhere in the JSP.

Compilation Errors

Compilation errors can occur when you mistype the Java code in a Java scripting

element or when you omit necessary page directives, such as import package lists.

Compilation errors are shown on the page returned to the browser and show the line

number in error in the generated file. Figure 13.7 shows compilation error that occurs if you

mistype Date as Datex in the date example show in Listing 13.3. The following is the error

line:

Today’s date is <%= new java.util.Datex() %>

The information provided identifies the line in error in the JSP file and the

corresponding line in error in the generated Java file. If you cannot determine the error from

the JSP file, you will need to examine the generated file.

As stated earlier, the J2EE RI saves the generated Java file in the repository directory

in the J2EE installation directory. The actual location is in a directory hierarchy named after

the current workstation, the application name, and the Web application name. The filename is

generated from the original JSP name.

In the example error, if the current host is ABC123, the file will be stored as <J2EE

home>\repository\ABC123\web\simple\0002fdate_jsp.java The following code fragment

shows the generated code containing the Java error:

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

// HTML // begin [file=”/date.jsp”;from=(0,0);to=(4,20)]

out.write(”<HTML>\r\n<TITLE>JSP Date Example</TITLE>\r\n<BODY>\r\n <BIG>\r\n

Today’s date is “);

// end

// begin [file=”/date.jsp”;from=(4,23);to=(4,46)]

out.print(new java.util.Datex());

// end

// HTML // begin [file=”/date.jsp”;from=(4,48);to=(8,0)]

out.write(“\r\n </BIG>\r\n</BODY>\r\n</HTML>\r\n”);

// end

As you can see, comments are inserted into the generated code to tie the Java code

back to the original JSP code.

Session Tracking

It is similar to servlet session tracking. Take example as shoping cart prog.

Scope

 The scope of JSP object- JavaBeans, and implicit objects

1 Pages scope

It is bounded to javax.servlet.jsp.PageContext and invoking getAttribute()

on implicit request object.

2 Request scope

 It is bounded to javax.servlet.ServletRequest

3 Session scope

It is bounded to javax.servlet.jsp.PageContext and invoking setAttribute()

on implicit session object.

4 Application scope

It is bounded to javax.servlet.ServletContext and invoking getAttribute() on

implicit application object.

EJB(Enterprise JavaBeans)

The Enterprise JavaBeans architecture is a component architecture for the

development and deployment of component-based distributed business applications.

Applications written using the Enterprise JavaBeans architecture are scalable, transactional,

and multiuser secure. These applications may be written once, and then deployed on any

server platform that supports the Enterprise JavaBeans specification.3

Enterprise JavaBeans (EJB) defines a server-side component model that allows

business objects to be developed and moved from one brand of EJB container to another. A

component (an enterprise bean) presents a simple programming model that allows the

developer to focus on its business purpose. An EJB server is responsible for making the

component a distributed object and for managing services such as transactions, persistence,

concurrency, and security. In addition to defining the bean’s business logic, the developer

defines the bean’s runtime attributes in a way that is similar to choosing the display

properties of visual widgets. The transactional, persis tence, and security behaviors of a

component can be defined by choosing from a list of properties. The end result is that

Enterprise JavaBeans makes developing distributed component systems that are managed in a

robust transactional environment much easier. For developers and corporate IT shops that

have struggled with the complexities of delivering mission-critical, high-performance

distributed systems using CORBA, DCOM, or Java RMI, Enterprise JavaBeans provides a

far simpler and more productive platform on which to base development efforts.

Server-Side Components

A server-side component model may define an architecture for developing distributed

business objects. They combine the accessibility of distributed object systems with the

fluidity of objectified business logic. Server-side component models are used on the middle-

tier application servers, which manage the components at runtime and make them available to

remote clients. They provide a baseline of functionality that makes it easy to develop

distributed business objects and assemble them into business solutions.

Server-side components can also be used to model other aspects of a business system,

such as presentation and routing. The Java Servlet for example is a server-side component

that is used to generate HTML and XML data for presentation layer of a three-tier

architecture. The EJB 2.0 message-driven beans, which are discussed later, are aserver-side

components that is used for routing asynchronous messages from one source to

another.Server-side components, like other components, can be bought and sold as

independent pieces of executable software.

 There are three types of Enterprise Java Beans namely,

 a) Session beans

 b) Entity beans

 c) Message-driven beans

Thus , we have two interfaces and a class in any EJB program. The

'Remote Interface' for describing the job to be done. The 'Home Interface '

for locating the manager for creating the bean

 The 'bean' class which provides the object for carrying out the job. EJB

can be thought of as Enterprise-level RMI/RMI-IIOP. If the EJB is invoked by

using a servlet and the end-user is using a browser , there are no questions

about platform and language of the client, because the client for the EJB is only

the servlet.

 But, if the EJB is being invoked from a standalone program, the client

may be a java-program or non-java program.If the client is not a java program,

the question of lient's platform raises its head. So, once again we need the

OMG-IDL for our ejb service. incorporates concepts of RMI, Session-

tracking servlet and plain Javabean.

An instance of Entity bean can be thought of as a record(row) in a

table of a relational database. Such Entity beans can be of two types.

 a) CMP (EntityBean with Container-Manged Persistence)

 b) BMP(EntityBean with Bean-Managed Persistence)

 In CMP, we do not need to write any sql-realted code for adding a

new record, editing a record or deleting a record. or querying a table. The

creation of the table,and appropriate sql statements is automatically

managed by the ejb server itself. This is not only very simple but is

recommended as well because, it abstracts the details about the underlying

database.

 On the other hand, we also saw that a javabean may be simply a class

with some general functionality. That part of the bean is offered as 'Session

bean' in EJB. Session beans can be either Stateless beans or Stateful beans.

 'Stateless session beans' are very much like RMI.

 'Stateful session beans' are like session-tracking servlets but in RMI style.!

We will now consider simplest demo for the following types., one by

one.

 a) stateless session bean

 b) stateful session bean

c) container-managed Entity bean

 d) bean managed entity bean

 EXAMPLE FOR STATELESS SESSION BEAN

====================================

 Reverting back to our greeter example, it is a typical candidate for

'Stateless Session bean'.

A stateless session bean is just some encapsulated functionality but

invoked in RMI style.

 *It should not have any general variables .All the data required for

the method should be passed as parameters only!

 We will create three files .

 a) The Remote-Interface

 b) The Home-interface

 c) The Bean.

We will follow the naming convention as:

 a) greeterRemote.java

 b) greeterHome.java

 c) greeterBean.java

As in RMI, we should always begin with the remote-interface, then

write the home-interface and only then write the implementation as a bean.

greeterRemote.java

 ================

 import javax.ejb.*;

 import java.rmi.*;

 public interface greeterRemote extends EJBObject

 {

 public String greetme (String s) throws RemoteException;

 }

 greeterHome.java

 ==============

 import java.io.*;

 import java.rmi.*;

 import javax.ejb.*;

 public intrerface greeterHome extends EJBHome

 {

 greeterRemote create() throws RemoteException, CreateException;

 }

 greeterBean.java

 ===============

 import java.rmi.*;

 import javax.ejb.*;

 public class greeterBean implements SessionBean

 {

 public String greetme(String s)

 {

 return "How are you?...." + s;

 }

 public greeterBean() { }

 public void ejbCreate() { }

 public void ejbRemove() { }

 public void ejbActivate() { }

 public void ejbPassivate(){ }

 public void setSessionContext(SessionContext sc) { }

 }

 greeterClient.java (CONSOLE-MODE)

 ================================

import javax.ejb.*;

import java.rmi.*;

import javax.rmi.*;

import javax.naming.*;

import java.util.*;

import helloRemote;

import helloHome;

import java.io.*;

public class helloClient

{

 public static void main(String args[])

 {

 try

 {

 System.out.println("please wait!");

 Properties props = new Properties();

 props.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 props.put(Context.PROVIDER_URL,

 "t3://127.0.0.1:7001");

 Context ctx = new InitialContext(props);

 greeterhome home = (greeterHome)ctx . lookup("helloJndi");

 greeterRemote remote = home.create();

 String s1= remote.greetme(args[0]);

 System.out.println(s1);

 }

 catch(Exception e1)

 {

 System.out.println(" " + e1);

 }

 }

ENTITY BEANS

=============

Entity beans are characterized by the following 3 features.

 a) They are 'Persistent'. (they are stored in hard-disk)

 b) They are shared by many clients.

 c) They have , 'Primary key'.

 As already mentioned ,Entity beans can be thought of as a record (or

row) in a table of a relational database. (This is just for easy understanding

because, the database can also be Object Database, XML database etc.)

 Let us consider a simple Java class named 'customer'. Let this class have

just three attributes ,namely,'key', 'Name' and 'Place'. In a javabean, we

would provide accessor methods, such as 'getName()' & 'setName(String

s)etc. for each attribute. The same method is employed in Entity bean. (

Roughly).

Thus, we deal with Java idiom only and this is more intuitive.

If we have an account bean, we can write code for deposit as follows:

 int n = account1. getBalance();

 n=n+400;

 account1.setBalance(n);

Doubtless, this is much simpler and easier than writing sql code.

 Entity beans 'persist' (ie) they are stored in Enterprise server's hard

disk and so even if there is a shutdown of the server, the beans 'survive' and

can be created again from the hard disk storage.[A session bean is not stored

in hard disk].

A Session bean , whether it is stateless or stateful is meant for a

single client. But Entity bean , being a record in a table of a database, is likely

to be accessed by a number of clients . So, they are typically shared by a

number of clients. For the same reason, entity beans should work within

'Transaction'.management as specified. in the Deployment descriptor.

But, typically in an enterprise situation, a database will be accessed by

thousands of clients concurrently, and the very rationale for the development

of EJB is to tackle the problems which arise then. That is why, Entity beans

are the correct choice for Enterprise situations.

If we think of an entity bean instance as a record in a table of database,

it automatically follows that it should have a primary key for unique

identification of the record..[Many books provide a 'primary key class'. But

it is not atall necessary.] But carefully note that it should be a serializable java

class. So, if we provide a primary key as 'int' type, we will have to provide a

wrapper class (ie) Integer. This is clumsy. The best and easiest method is to

provide a string type as the primary key. (String class). This is the method that

we will be following in our illustarations. So, in our example, we are having

an Access database named 'customer'.

This database has a table known as 'table1'. The table has three columns .

 a) 'key' (primary key field)

 b) 'name'

 c) 'place'

 (all of them are of String type)

 We create a table like this without any entries and then register it in

ODBC. (this is the most familiar and easy approach.We can also use other

types of jdbc drivers.)

Entity beans can have two types of Persistence.

 a) Container-managed Persistence (CMP)

 b) Bean-managed Persistence type (BMP)

 We can declare the type of persistence required by us in the

'Deployment Descriptor'.

In CMP, the bean designer does not have to write any sql-related code

atall. The necessary sql statements are automatically generated by the

container.

The container takes care of synchronizing the entity bean's attributes

with the corresponding columns in the table of the database. Such variables

are referred to as 'container-managed fields'.

This requirement also is declared by us in the Deployment

descriptor.

With CMP, the entity bean class does not contain the code that

connects to a database. . So, we are able to get flexibility by simply editing

the deployment descriptors and weblogic.properties files, without editing

and recompiling the java class files.

What are the advantages of CMP?

CMP beans have two advantages:

 i) less code.

 ii) the code is independent of the type of data store such as

Relational database.

What are the limitations of CMP?

 If we want to have complex joins between different tables, CMP is not

suitable. In such cases, we should use BMP .

 EXAMPLE FOR CMP -ENTITY BEAN

=================================

As before we begin with the Remote Interface file.

 // **********customerRemote.java**********

import javax.ejb.*;

import java.rmi.*;

public interface customerRemote extends EJBObject

{

 public String getName() throws RemoteException;

 public void setName(String s) throws RemoteException;

 public String getPlace() throws RemoteException;

 public void setPlace(String s) throws RemoteException;

}

Next we write the home interfcae.

 // **********customerHome.java *******************

import javax.ejb.*;

import java.rmi.*;

public interface customerHome extends EJBHome

{

public customerRemote create(String a, String b, String c) throws

RemoteException, CreateException;

 public customerRemote findByPrimaryKey(String a) throws

 RemoteException, FinderException;

}

--

 // ********** customerBean.java**********

 import javax.ejb.*;

import java.rmi.*;

public class customerBean implements EntityBean

{

 public String key;

 public String name;

 public String place;

 public String getName()

 {

 return name;

 }

 public String getPlace()

 {

 return place;

 }

 //---------------------------

 public void setName(String b)

 {

 name=b;

 }

 public void setPlace(String c)

 {

 place=c;

 }

 //-------------------------------

 public String ejbCreate(String a, String b, String c)

throws CreateException

 {

 this.key = a;

 this.name= b;

 this.place = c;

 return null;

 }

 public void ejbPostCreate(String a,String b,String c)throws

CreateException {}

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void ejbRemove() {}

 public void ejbLoad() {}

 public void ejbStore() {}

 public void setEntityContext(EntityContext ec) { }

 public void unsetEntityContext() { }

}

--

We now create three xml files as given below.

 1) ejb-jar. xml

 2) weblogic-ejb-jar.xml

 3) weblogic-cmp-rdbms-jar.xml

These three files are very important and should be created with

utmost care. Remember that XML is case-sensitive and the DTD

(Deployment descriptor) for each file expects the correct structure of the

document. So type exactly as given.(No formatting..shown here for clarity

only)

// customerClient.java

import customerRemote;

import customerHome;

import javax.ejb.*;

import java.rmi.*;

import javax.rmi.*;

import javax.naming.*;

import java.util.*;

import java.io.*;

public class customerclient

{

 public static void main(String args[])

 {

 try

 {

 System.out.println("please wait!");

 Properties props = new Properties();

 props.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 props.put(Context.PROVIDER_URL,

 "t3://127.0.0.1:7001");

 Context ctx = new InitialContext(props);

 customerHome home =

 (customerHome)ctx.lookup("customerJndi");

 DataInputStream ins =

 new DataInputStream(System.in);

 String s;

 do

 {

 System.out.println("add or find or update or delete?");

 s=ins.readLine();

 if(s.equals("add"))

 {

 System.out.println("what key");

 String a=ins.readLine();

 System.out.println("what name");

 String b=ins.readLine();

 System.out.println("what place");

 String c=ins.readLine();

 home.create(a,b,c);

 System.out.println("record created");

 System.out.println("=============");

 }

 if(s.equals("find"))

 {

 System.out.println("what key?");

 String pk=ins.readLine();

 customerRemote remote =

 home.findByPrimaryKey(pk);

 System.out.println(remote.getName());

 System.out.println(remote.getPlace());

 System.out.println("===============");

 }

 if(s.equals("update"))

 {

 System.out.println("what key?");

 String pk=ins.readLine();

 customerRemote remote=

 home.findByPrimaryKey(pk);

 System.out.println("you want to change name or place?");

 String v=ins.readLine();

 if(v.equals("name"))

 {

 System.out.println("what new name?");

 String b = ins.readLine();

 remote.setName(b);

 }

 if(v.equals("place"))

 {

 System.out.println("what new place?");

 String c = ins.readLine();

 remote.setPlace(c);

 }

 System.out.println("record updated!");

 System.out.println("==============");

 }

 if(s.equals("delete"))

 {

 System.out.println("what key?");

 String pk=ins.readLine();

 customerRemote remote=

 home.findByPrimaryKey(pk);

 remote.remove();

 System.out.println("record removed");

 System.out.println("============");

 }

 }while(!s.equals("over"));

 } catch(Exception e1){ System.out.println(""+e1); }

 }

}

ENTITY BEAN WITH BEAN-MANAGED PERSISTENCE

==

Thus far, we acquainted ourselves with Sessionbeans (both stateless & stateful) and

also CMP Entity bean.In this instalment, we take up the most difficult type, (ie) Bean-

Managed Persistent Entity bean.(BMP)

Example for Bean-Managed Entity Bean

====================================

 We have to write the SQL code for Persistence ,ourselves, in the case of Bean-Managed

persistence. In our example,If we consider a single instance of the bean, it exists as an object

in memory with 3 attributes (key,name,place) At the same time, it should also be persisted

as a row, with corresponding fields, in 'table1' of 'customer' database in hard disk.They

should match. This is known as 'Synchronization'.

 The mechanism by which Synchronization is achieved by various vendors may vary. It is

known as 'Object-relational mapping'.

 Whether, it is CMP or BMP, the process of synchronising is done by the container.The

only difference is that , in CMP , we do not write any SQL for Storing (memory to hard

disk)or for 'Loading' (hard disk to memory).In BMP, we have to write the SQL for these

tasks.

 However, the client cannot explicitly , call either 'load' or 'store' functions. This job is

taken care of by the Container.Depending on a number of factors such as Transaction

monitoring, the container chooses the appropriate moment to synchronize the data in

memory with the data in table of hard disk storage.

 This process, is transparent ,(ie) the programmer need not know about it. The methods

are 'callback' methods. Such methods are called by the container by itself without explicit

user program or interaction.

In CMP, we just deal with the objects in memory. The task of persistence is automatically

done by the container, at the appropriate time. The container itself generates the required

SQL code to perform this task. But, in BMP , we should write the necessary SQL code for

Store and Load.

This is the difference between CMP and BMP.

 Which is better? Opinions differ.One camp claims that CMP is better because,it

abstracts the details about the underlying database and deals only with objects in memory.

 The other camp feels that CMP is useful only for very simple cases and most of the

real life applications are complex, requiring joins from different tables and CMP is not

suitable for real life situations.

 It will be safer for us to be conversant with BMP , in case it is needed by our

application.

 As before (as in the case of CMP), we begin with :

 i) customerRemote.java

 ii) customerHome.java

A DEMO FOR BEAN-MANAGED PERSISTENT ENTITY-BEAN

==

 Access Database name : Customer

 table name : table1

 Three fields (key, name, place) (all String type).

 (Primary key field is 'key').

 For our example, remember to register the database 'customer' with ODBC.Let us create

our source files in the following folder:

c:\weblogic\beans\bmpdemo

As before remember to set JAVA_HOME, WL_HOME.

 Also, set path & classpath;

c:\weblogic\beans\bmpdemo>set JAVA_HOME=C:\JDK1.3

 ...bmpdemo>set WL_HOME=C:\WEBLOGIC

 ...bmpdemo>set path=c:\windows\command;

 c:\jdk1.3\bin;

 c:\weblogic\bin

 ...bmpdemo>set classpath=c:\weblogic\beans\bmpdemo;

 c:\weblogic\classes;

 c:\weblogic\lib\weblogicaux.jar;

 customerRemote.java

 ===================

import javax.ejb.*;

import java.rmi.*;

public interface customerRemote extends EJBObject

{

 public String getName() throws RemoteException;

 public void setName(String s)throws RemoteException;

 public String getPlace() throws RemoteException;

 public void setPlace(String s) throws RemoteException;

}

 customerHome.java

 =================

import javax.ejb.*;

import java.rmi.*;

public interface customerHome extends EJBHome

{

 public customerRemote create(String a, String b, String c) throws RemoteException,

CreateException;

 public customerRemote findByPrimaryKey(String a) throws RemoteException,

FinderException;

}

We now take up customerBean.java

 As this is a lenthy file, it is always good practice to list the sequence in which the

functions appear in code file:(This is just for convenience in code-reading).

 1) setName(

 2) getName()

 3) setPlace(

 4) getPlace()

 5) getConnection () (this is defined by us)

 6) ejbCreate()

 7) ejbFindByPrimaryKey()

 8) ejbLoad()

 9) ejbStore()

 10) ejbRemove()

 11) ejbPostCreate(

 12) ejbSetEntityContext(

 13) ejbUnsetEntityContext()

 14) ejbActivate()

 15) ejbPassivate()

It will necessary to give very brief note on the purpose of these various methods.

a) The important function is 'getConnection'. This is written by us.The purpose is to to

get connection to the database.

b) 'ejbCreate' method is called when the client invokes 'create' method. Its purpose is to

create a new object in memory with the parameters passed by the client and also create the

corresponding row in the database table.

c) 'ejbPostCreate' is called after 'ejbCreate' by the container.This can be used for any desired

tasks.It should have the same parameters as the 'ejbCreate' method.

d) 'ejbLoad' is meant for bringing a row from table into the memory.depending on the

primary key in the current context.

 (context.getPrimaryKey()).and setting the attributes of the object accordingly. This is a

'callback' method (ie) it is invoked at the appropriate time by the container.

e) 'ejbStore' is meant for storing the state of the bean specified by the primary key in the

current context and updating the row in the table accordingly.This also is a callback method.

f) 'ejbActivate' is a callback method which brings a bean into the bean-pool.

g) `ejbPassivate' is a callback method which removes a bean from the bean-pool.

Remote Method Invocation (RMI)

Java is a distributed application.

Distributed application

 A distributed application is an application whose processing is distributed across

multiple computer networks.

Rmi Architecture

Figure 5.1 Rmi Architecture

Server object:

 Server object is a object whose methods are invoked by client object.

 This distributed object model used by java allows objects that execute in JVM to

invoke the methods of object that execute in other JVMS.

 These other JVMS may execute as separate process on the same computer or other

remote computers. The object making the method invocation is referred to as client

application. The object whose methods are being invoked is referred as server object. The

client object is local object and remote object is called server object.

 In this model a client object never references a remote object directly. Instead, it

references a remote interface i.e., implemented by the remote object. The use of remote

interface allows server objects to differentiate between their local and remote interfaces.

 In addition to a remote interface this model makes use of stub and skeleton classes.

Stub class serves as local proxies for the remote object skeleton acts a remote proxies. Both

stub and skeleton implemented the remote interface the server object. The client interface

object invokes the methods of the local stub object. The local stub communicates this method

invocation to the skeleton via remote reference layer. The remote reference layer is used to

active the server object when they are invoked remotely. The remote reference layer on the

local host communicates with the remote reference layer on the remote host via the RMI

transport layer. The transport layer sets up & manages the connection between the address

spaces of the local & remote host, keeps track of object that can be accessed remotely &

determines when connections have been timed out. The transport layer uses the TCP Sockets

by default to communicate between local & remote host. The transport layer on the remote

host identifies the server object instance by using remote registry it forwards method

invocation to the skeleton via remote reference layer. Then the skeleton forwards this call to

the server object. The server object process the function and results back to the client object

via stub and skeletons.

 The remote registry is process which maintains database objects and names by which

these objects can be referenced.

Courses.java

import java.rmi.*;

public interface Courses extends Remote

{

 public String PGDCA() throws RemoteException;

}

//Client.java

import java.rmi.*;

import java.rmi.server.*;

class Client

{

 public static void main(String args[])

 {

 try

 {

 Courses c=(Courses)Naming.lookup("//Sunil/Courses");

 System.out.println("\n Subjects in PGDCA are : " + c.PGDCA());

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

}

//Server.java

import java.rmi.*;

import java.rmi.server.*;

public class SunilServer extends UnicastRemoteObject

 implements Courses

{

 SunilServer() throws RemoteException

 {

 super();

 }

 public String PGDCA() throws RemoteException

 {

 return "Ms-office\t C with DS, Java, VB, Oracle, Unix, Web Designing";

 }

 public static void main(String args[])

 {

 try

 {

 SunilServer gs=new SunilServer();

 Naming.rebind("//Sunil/Courses",gs);

 System.out.println("\n SunilServer is Ready.");

 }

 catch(Exception e)

 { System.out.println(e);

 }

 }

}

