
 Dept of CSE

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – I – Operating System – SBS1206

 Dept of CSE

OPERATING SYSTEM:

UNIT I (9 Hrs)

Introduction: Operating system –Views and Goals - Types of System- OS Structure - Components - Services - System Structure -
Layered Approach - Process Management: Process - Process Scheduling - Cooperating Process - Threads - Inter-process Communication.

 UNIT 1

 INTRODUCTION

INTRODUCTION TO THE OS :

 A computer system has many resources (hardware and software), which may be require to

complete a task.

 Operating System is a system software that acts as an intermediary between a user and

ComputerHardware to enable convenient usage of the system and efficient utilization of

resources.

 The commonly required resources are input/output devices, memory, file storage space, CPU

etc.

 The operating system acts as a manager of the above resources and allocates them to specific

programs and users, whenever necessary to perform a particular task.

 Therefore operating system is the resource manager i.e. it can manage the resource of a

computer system internally.

 The resources are processor, memory, files, and I/O devices. In simple terms, an

operating system is the interface between the user and the machine.

 Dept of CSE

Fig:1.1 Architecture of an Operating System

 Operating system is the most important program that runs on a computer. OS is considered as

thebackbone of a computer, managing both software and hardware resources.

 They are responsible foreverything from the control and allocation of memory to recognizing

input from external devices andtransmitting output to computer displays.

 They also manage files on computer hard drives and control peripherals, like printers and

scanners.

 Operating systems monitor different programs and users, making sure everything runs

smoothly,without interference, despite the fact that numerous devices and programs are used

simultaneously.

 An operating system also has a vital role to play in security. Its job includes preventing

unauthorizedusers from accessing the computer system.

GOALS OF OPERATING SYSTEM :

 Execute user programs and make solving user problems easier.

 Make the computer system convenient to use.

 Use the computer hardware in an efficient manner.

FUNCTIONS OF OPERATING SYSTEM / SYSTEM COMPONENTS:

 Dept of CSE

 Main Memory Management

 Processor Management

 Device Management

 File Management

 I/O System Management

 Secondary Management

 Networking

 Protection System

 Command Interpreter System

MEMORY MANAGEMENT:

 Memory management refers to management of Primary Memory or Main Memory. Main

memory is a large array of words or bytes where each word or byte has its own address.

 Main memory provides a fast storage that can be accessed directly by the CPU.

 ACTIVITIES for memory management :

o Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part is

not in use.

o In multiprogramming, the OS decides which process will get memory when and how

much.

o Allocates the memory when a process requests it to do so.

o De-allocates the memory when a process no longer needs it or has been terminated.

PROCESSOR MANAGEMENT:

 In multiprogramming environment, the OS decides which process gets the processor when and

for how much time. This function is called process scheduling.

 ACTIVITIES of processor management

o Keeps tracks of processor and status of process. The program responsible for this task is

known as traffic controller.

o Allocates the processor (CPU) to a process.

o De-allocates processor when a process is no longer required.

DEVICE MANAGEMENT:

 Dept of CSE

 An Operating System manages device communication via their respective drivers.

 ACTIVITIES of device management

o Keeps tracks of all devices. Program responsible for this task is known as the I/O

controller.

o Decides which process gets the device when and for how much time.

o Allocates the device in the efficient way.

o De-allocates devices.

FILE MANAGEMENT:

 A file system is normally organized into directories for easy navigation and usage. These

directories may contain files and other directions.

 ACTIVITIES of file management

o Keeps track of information, location, uses, status etc. The collective facilities are often

known as file system.

o Decides who gets the resources.

o Allocates the resources.

o De-allocates the resources

I/O SYSTEM MANAGEMENT:

 OS hides the peculiarities of specific hardware devices from the user.

 It consists of

o A memory management component that includes buffering, caching and spooling.

o A general device-driver interface

o Drivers for specific hardware devices.

o Only the device driver knows the peculiarities of the specific device to which it is

assigned.

SECONDARY STORAGE MANAGEMENT:

 The main purpose of a computer system is to execute programs. These programs, with the data

they access ,must be in main memory, or primary storage.

 Systems have several levels of storage, including primary storage, secondary storage and cache

storage.

 Dept of CSE

 Since main memory (primary storage) is volatile and too small to accommodate all data and

programs permanently, the computer system must provide secondary storage to back up main

memory.

 Most modern computer systems use disks as the principle on-line storage medium, for both

programs and data.

 ACTIVITIES are,

o Free-space management (paging/swapping)

o Storage allocation (what data goes where on the disk)

o Disk scheduling (Scheduling the requests for memory access).

NETWORKING:

 A distributed systems are a collection of processors that do not share memory, peripheral

devices, or a clock.

 The processors in a distributed system vary in size and function. They may include small

processors,workstations, minicomputers and large, general-purpose computer systems.

 The processors in the system are connected through a communication-network ,which are

configuredin a number of different ways i.e.., Communication takes place using a protocol.The

network may be fully or partially connected .

 The communication-network design must consider routing and connection strategies, and

theproblems of contention and security.

 A distributed system provides user access to various system resources.

 Access to a shared resource allows:

o Computation Speed-up

o Increased functionality

o Increased data availability

o Enhanced reliability

PROTECTION SYSTEM:

 If a computer system has multiple users and allows the concurrent execution of multiple

processes, then the various processes must be protected from one another's activities.

 Protection refers to mechanism for controlling the access of programs, files, memory segments,

processes(CPU) only by the users who have gained proper authorization from the OS.

 The protection mechanism must:

 Dept of CSE

o Distinguish between authorized and unauthorized usage.

o Specify the controls to be imposed.

o Provide a means of enforcement.

COMMAND INTERPRETER SYSTEM:

 A command interpreter is one of the important system programs for an OS. It is an interface of

the operating system with the user. The user gives commands, which are executed by

Operating system (usually by turning them into system calls).

 The main function of a command interpreter is to get and execute the next user specified

command.

 Many commands are given to the operating system by control statements which deal with:

o process creation and management

o I/O handling

o secondary-storage management

o main-memory management

o file-system access

o protection

o networking

CLASSIFICATION OF OPERATING SYSTEM:

 Multi-user OS:

o Allows two or more users to run programs at the same time. This type of operating

system may be used for just a few people or hundreds of them. In fact, there are some

operating systems that permit hundreds or even thousands of concurrent users.

 Multiprocessing OS:

o Support a program to run on more than one central processing unit (CPU) at a time.

This can come in very handy in some work environments, at schools, and even for

some home-computing situations.

 Multitasking OS :

o Allows to run more than one program at a time.

 Multithreading OS:

o Allows different parts of a single program to run concurrently (simultaneously or at the

same time).

 Dept of CSE

 Real time OS:

o These are designed to allow computers to process and respond to input instantly.

Usually, generalpurposeoperating systems, such as disk operating system (DOS), are

not considered real time, as theymay require seconds or minutes to respond to input.

Real-time operating systems are typically usedwhen computers must react to the

consistent input of information without delay.

o General-purpose operating systems, suchas DOS and UNIX, are not real-time. Today’s

operating systems tend to have graphical user interfaces(GUIs) that employ pointing

devices for input. A mouse is an example of such a pointing device, as is astylus.

Commonly used operating systems for IBM-compatible personal computers include

MicrosoftWindows, Linux, and Unix variations. For Macintosh computers, Mac OS X,

Linux, BSD, and someWindows variants are commonly used.

OPERATING SYSTEM STRUCTURES:

 An OS provides the environment within which programs are executed. Internally, Operating

Systems vary greatly in their makeup, being organized along many different lines. The design

of a new OS is a major task. The goals of the system must be well defined before the design

begins. The type of system desired is the basis for choices among various algorithms and

strategies. An OS may be viewed from several vantage ways.

o By examining the services that it provides.

o By looking at the interface that it makes available to users and programmers.

o By disassembling the system into its components and their interconnections.

OPERATING SYSTEM SERVICES:

 An OS provides environment for the execution of programs. It provides certain services to

programsand to the users of those programs. The specific services provided differs from one

OS to another,but we can identify common classes.

 These OS services are provided for the convenience of the programmer, to make the

programming task easier. One set of operating-system services provides functions that are

helpful to the userare,

 Dept of CSE

o Program execution

 The system must be able to load a program into memory and to run that

program.

 The program must be able to end its execution, either normally or abnormally

(indicating error).

o I/O operations

 A running program may require I/O, which may involve a file or an I/O device.

 For specific devices, special functions may be desired (rewind a tape drive, or to

blank a CRT).

 For efficiency and protection, users usually cannot execute I/O operations

directly.Therefore Operating system must provide some means to perform I/O.

o File-system manipulation

 The file system is of particular interest.

 Obviously, programs need to read and write files and directories, create and

delete them, searchthem, list file Information, permission management.

o Communications

 One process needs to exchange information with another process. Such

communication can occurin two ways:

 The first takes place between processes that are executing on the same

computer.

 The second takes place between processes that are executing on different

computers over anetwork.

 Communications may be implemented via shared memory or through message

passing, in whichpackets of information moved between the processes by the

OS.

o Error detection

 OS needs to be constantly aware of possible errors. Errors may occur

 In the CPU and memory hardware (such as a memory error or power failure)

 In I/O devices (such as a parity error on tape, a connection failure on a network

or lack ofpower in the printer).

 And in user program (such as arithmetic overflow, an attempt to access illegal

memorylocation, or a too-great use of CPU time).

 Dept of CSE

 For each type of error, OS should take the appropriate action to ensure correct

andconsistent computing.

 Debugging facilities can greatly enhance the user’s and programmer’s abilities

to efficientlyuse the system

o Resource allocation

 When multiple users logged on the system or multiple jobs running at the same

time, resourcesmust be allocated to each of them.

 Many types of resources are managed by OS. Some (such as CPU cycles, main

memory, and filestorage) may have special allocation code, whereas others

(such as I/O devices) may have generalrequest and release code.

o Protection and security

 The owners of information stored in a multi-user or networked computer system

may want to control the use of that information.

 Protection involves ensuring that all access to system resources is controlled.

Security of the system from outsiders requires user authentication, extends to

defending external I/O devices from invalid access attempts.

 If a system is to be protected and secure, precautions must be instituted

throughout. A chain is only as strong as its weakest link.

SYSTEM CALLS:

 System calls provide the interface between a process and the operating system.

 These calls are generally available as assembly-language instructions.

 Some systems also allow to make system calls from a high level language, such as C, C++and

Perl (have been defined to replace assembly language for systems programming). Asan

example of how system calls are used,consider writing a simple program to read datafrom one

file and to copy them to another file.

 The first input that the program will need is the names of the two files:

o The input file

o The output file

 Once the two file names are obtained, the program must open the input file and create

theoutput file.

 Each of these operations requires another system call and may encounter possible

errorconditions.

 Dept of CSE

o When the program tries to open the file, it may find that no file of that name exists

orthat the file is protected against access.

 If the input file exists, then we must create a new output file.

 We may find an output file with the same name.

o This situation may cause the program to abort (a system call), or

o We may delete the existing file (another system call).

 In an interactive system another option is to ask the user (a sequence of systemcalls to output

the prompting message and to read response from the keyboard)whether to replace the existing

file or to abort the program.

Fig:1.2 Example of System Calls

 Now that both the files are setup, we enter a loop that reads from the input file (a system

call)and writes to the output file (another system call).

 Each read and write must return status information regarding various possible error conditions.

o On input,

 the program may find that the end of file has been reached, or

 that a hardware failure occurred in the read (such as a parity error).

o On output,

 Various errors may occur, depending on the output device (such as no moredisk

space, physical end of tape, printer out of paper).

 Dept of CSE

 Finally, after the entire file is copied, The program may close both files (another system call),

writes a message to theconsole(more system calls), and finally terminates normal (the final

system call).

 System calls occur in different ways, depending on the computer in use.

 Three general methods are used to pass parameters between a running program and the

operating system.

o Simplest approach is to pass parameters in registers.

o Store the parameters in a table in memory, and the table address is passed as aparameter

in a register (in the cases where parameters are more than registers).

o Push (store) the parameters onto the stack by the program, and pop off the stack

byoperating system.

Fig:1.3 Parameter Passing via Table

TYPES OF SYSTEM CALLS

 System calls can be grouped roughly in to five categories:

o Process control:load, execute, abort, end, create process, terminate process, get process

attributes, set process attributes, allocate and free memory, wait event, signal event.

 Dept of CSE

o File management :create file, delete file, open, close, read, write,reposition, get file

attribute,set fileattributes.

o Device management :request device, release device, read, reposition,write,get device

attributes,setdevice attributes, logically attach or detach device.

o Information maintenance :get time and date, set time and date, get system data, set

system data, get process file or device attributes, set process file or device attributes.

o Communications :create, close communication connection, send, receive messages,

transfer status information, attach or detach remote devices. Communication may take

place using:

 message passing model or

 shared memory model

 Dept of CSE

Fig:1.4 Communication models: (a) message passing model (b) shared memory model

SYSTEM STRUCTURE:

 A system as large and complex as a modern operating system must beengineered carefully if it

is to function properly and be modified easily.

 A common approach is to partition the task into small components rather than have one

monolithic system.

 There are four different structures that have shown in this document in order to get some idea

of the spectrum of possibilities.

 These are by no means exhaustive, but they give an idea of somedesigns that have been tried in

practice.

SIMPLE STRUCTURE:

 Many commercial systems do not have well-defined structures. Frequently,such operating

systemsstarted as small, simple, and limited systems and then grew beyond their original

scope.

 MS-DOS is an example of such a system. It was originally designed and implemented by a few

people who had no idea that it would become so popular.

MS-DOS:

 Dept of CSE

Fig:1.5 MS DOS LAYER STRUCTURE

 It was written to provide the most functionality in the least space(because of the

limitedhardware on which it ran)

 So it was not divided into modules carefully.

 MS-DOS has some structure, its interfaces and levels of functionality arenot well separated

UNIX:

 UNIX is the another system limited by hardware functionality. It consists of two separable

parts

o System programs

o Kernel

 Dept of CSE

Fig:1.6 UNIX System Structures

The Kernel :

 The kernel is further separated into a series of interfaces and devicedrivers, which have been

added and expanded over the years as UNIX has evolved.

 Everything below the system call interface and above the physicalhardware is the kernel.

 The kernel provides the file system, CPU scheduling,memorymanagement, and other

operating-system functions through systemcalls.

 Taken in sum, that is an enormous amount of functionality to becombined into one level

 New versions of UNIX are designed to use more advanced hardware.

 With proper hardware support, operating systems can be broken into pieces that are smallerand

more appropriate than those allowed by the original MS-DOS or UNIX systems.

 The operating system can then retain much greater control over the computer and over

theapplications that make use of that computer.

 Implementers have more freedom in changing the inner workings of the system and in

creatingmodular operating systems.

 Dept of CSE

LAYERED APPROACH:

 A system can be made modular in many ways. One method is the layered approach, in which

the operating system is broken up into a number of layers (levels), each built on top of lower

layers.

 The bottom layer (layer 0) is the hardware; the highest (layer N) is the user interface as

shownin below. With modularity, layers are selected such that each uses functions (operations)

and services of only lower-level layers.

Fig:1.7 A Layered Operating System

 A layered design was first used in the operating system. Its six layers are as follows:

 LAYER 5 User Programs

LAYER 4 Buffering for Input and Output

LAYER 3 Operator Console Device Driver

LAYER 2 Memory Management

 LAYER 1 CPU Scheduling

LAYER 0 Hardware

 An operating-system layer is an implementation of an abstract object made up of data, and

ofthe operations that can manipulate those data.

 Dept of CSE

 A typical operating-system layer—say, layer M consists of data structures and a set of

routinesthat can be invoked by higher-level layers. Layer M, in turn, can invoke operations on

lowerlevellayers.

Fig:1.8 A typical Operating System Layer

 ADVANTAGE :

o The main advantage of the layered approach is modularity (simplicity of construction

and debugging). The layers are selected so that each uses functions (operations) and

services of only lower-level layers.

 DISADVANTAGE :

o The major difficulty with the layered approach involves appropriately defining the

various layers. Because a layer can use only lower-level layers, careful planning is

necessary.

o A final problem with layered implementations is that they tend to be less efficient than

othertypes.

o Fewer layers with more functionality are being designed, providing most of the

advantages ofmodularized code while avoiding the difficult problems of laver

definition and interaction.

 Dept of CSE

Fig:1.9 OS/2 Layer Structure

o OS/2 layer structure shown in above figure is a descendent of MS-DOS that adds

multitasking and dualmodeoperation, as well as other new features.

KERNELS:

 Dept of CSE

Fig:1.10 Kernels

Fig: 1.11 Overview of a Kernel

 The fundamental part of an Operating system

 Responsible for providing secure access to the machine’s hardware for various programs

 Responsible for deciding when and how long a program can use a certain hardware.

 TYPES:

o Monolithic kernel

o Micro kernel

o Hybrid kernels

o Nano kernels

o Exo kernels

 Dept of CSE

MICRO KERNELS:

 This method structures the operating system by removing all nonessential components from the

kernel and implementing them as system and user-level programs i.e., moves as much from the

kernel into ―user‖ space which results is a smaller kernel.

 Microkernels typically provide minimal process and memory management, in addition to a

communication facility.

 The main function of themicrokernel is to provide a communication facility between the client

program and the variousservices that are also running in user space.

 Communication takes place between user modules using message passing. They communicate

indirectly by exchangingmessages with the microkernel.

 One benefit of the microkernel approach is ease of extending the operating system. All

newservices are added to user space and consequently do not require modification of the

kernel.

 The microkernel also provides more security and reliability, since most services are running

asuser—rather than kernel—processes.

 This micro kernel is a smaller kernel, which allows a only fewer changes in the operating

system.

 BENEFITS :

o Easier to extend a microkernel

o Easier to port the operating system to new architectures

o More reliable (less code is running in kernel mode)

o More secure

 DRAWBACKS:

o Microkernels can suffer from performance decreases due to increased system function

overhead.

Fig:1.12 Micro Kernels

 Dept of CSE

RESOURCES:

 The OS treats an entity as a resource if it satisfies the below characteristics:

o A process must request it from the OS.

o A process must suspend its operation until the entity is allocated to it.

 The most common source is a file. A process must request a file before it can read it orwrite it.

 FILES:

o A sequential file is a named,linear stream bytes of memory.

o You can store information by opening a file

PROCESS:

 A program in execution; process execution must progress in sequential fashion.

 A process is a program execution in OS

 A process is more than the program code, which is sometimes known as thetext section.

 A process includes:

o Program counter -- The current activity, as represented by the value of the Program

counter and the contents of the processor's registers.

o Stack -- The process Stack contains temporary data (such as function parameters,

return addresses, and local variables)

o Data section -- Data section, which contains global variables.

 An operating system executes a variety of programs:

o Batch system – jobs

o Time-shared systems – user programs or tasks

 A process may also include a heap, which is memory that is dynamically allocated

duringprocess run time

Fig:1.13 Process in Memory

 Dept of CSE

THREADS:

 A thread is a flow of execution through the process code, with its own program counter that

keeps track of which instruction to execute next, system registers which hold its current

working variables, and a stack which contains the execution history.

 A thread shares with its peer threads few information like code segment, data segment and

open files.

 A thread is a basic unit of CPU utilization. A thread,sometimes called as light weight process

whereasa process is a heavyweight process.

 Thread comprises:

o A thread ID

o A program counter

o A register set

o A stack.

 A process is a program that performs a single thread of execution i.e., a process is a

executingprogram with a single thread of control.

 This single thread of control allows the process to perform only one task at one time.

 Dept of CSE

Fig:1.14 Single & Multithreaded Processes

DIFFERENCE BETWEEN PROCESS AND THREADS:

ADVANTAGES OF THREAD:

 Threads minimize the context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 It is more economical to create and context switch threads.

 Threads allow utilization of multiprocessor architectures to a greater scale and efficiency.

TYPES OF THREADS:

 User Level Threads − User managed threads.

 Kernel Level Threads − Operating System managed threads acting on kernel, an operating

system core.

USER LEVEL THREADS:

 Dept of CSE

 User threads are supported above the kernel and are managed without kernel support i.e.,

theyare implemented by thread library at the user level.

Fig:1.15 User Level Thread

 The thread library contains code for creating and destroying threads, for passing message and

data between threads, for scheduling thread execution and for saving and restoring thread

contexts. The application starts with a single thread.

 ADVANTAGES OF USER THREADS:

o Thread switching does not require Kernel mode privileges.

o User level thread can run on any operating system.

o Scheduling can be application specific in the user level thread.

o User level threads are fast to create and manage.

 DISADVANTAGES:

o In a typical operating system, most system calls are blocking.

o Multithreaded application cannot take advantage of multiprocessing.

KERNEL LEVEL THREADS:

 Kernel threads are supported and managed directly by the operating system.

 Any application can be programmed to be multithreaded. All of the threads within an

application are supported within a single process.

 The Kernel performs thread creation, scheduling and management in Kernel space. Kernel

threads are generally slower to create and manage than the user threads.

 Dept of CSE

 ADVANTAGES OF KERNEL LEVEL THREADS:

o Kernel can simultaneously schedule multiple threads from the same process on multiple

processes.

o If one thread in a process is blocked, the Kernel can schedule another thread of the

same process.

o Kernel routines themselves can be multithreaded.

 DISADVANTAGES:

o Kernel threads are generally slower to create and manage than the user threads.

o Transfer of control from one thread to another within the same process requires a mode

switch to the Kernel.

MULTI THREADING MODELS:

 Many systems provide support for both user and kernel threads, resulting in different

multithreading models. Three common ways of establishing this relationship are:

o Many to many relationship.

o Many to one relationship.

o One to one relationship.

MANY TO MANY MODEL:

Fig:1.16 Thread-Many to Many Model

 Dept of CSE

 The many-to-many model multiplexes many user-level threads to a smaller or equal number of

kernel threads.

 The many-to-many threading model where 6 user level threads are multiplexing with 6 kernel

level threads.

 In this model, developers can create as many user threads as necessary and the corresponding

Kernel threads can run in parallel on a multiprocessor machine.

 This model provides the best accuracy on concurrency and when a thread performs a blocking

system call, the kernel can schedule another thread for execution.

MANY TO ONE MODEL:

 The many-to-one model maps many user-level threads to one kernel thread. Thread

management is done by the thread library in user space, so it is efficient; but the entire process

will block if a thread makes a blocking system call.

 In addition, user level thread libraries implemented on Operating systems that do notsupport

kernel threads use the many-to-one model.

Fig:1.17 Thread-Many to One Model

 Dept of CSE

ONE TO ONE MODEL:

 There is one-to-one relationship of user-level thread to the kernel-level thread.

 This model provides more concurrency than the many-to-one model.

 It also allows another thread to run when a thread makes a blocking system call.

 It supports multiple threads to execute in parallel on microprocessors.

 Disadvantage of this model is that creating user thread requires the corresponding Kernel

thread. OS/2, Windows NT and windows 2000 use one to one relationship model.

Fig:1.18 Thread-One to One Model

DIFFERENCE BETWEEN USER LEVEL AND KERNEL LEVEL THREADS:

 Dept of CSE

OBJECTS:

 Objects are the basic run time entities in an object-oriented system.

 They may represent a person, a place, a bank account,a table of data or any item that the

program has to handle.

 Programming problem is analyzed in terms of objects and the nature of communication

between them.

 When a program is executed, the objects interact by sending messages to one another.

 Fig:1.19 Object Model

 Real-world objects share two characteristics: They all have state and behavior.

OBJECT :

 Employee

 DATA:

 Name

 DOB

 Designation

FUNCTIONS:

 DOJ

 Branch

 Location

 Dept of CSE

 Desktop lamp may have only two possible states (on and off) and two possible behaviors

(turnon, turn off), but your desktop radio might have additional states (on, off, current volume,

current station) and behavior (turn on, turn off, increase volume, decrease volume, seek, scan,

and tune).

 You may also notice that some objects, in turn, will also contain other objects.

 These real-world observations all translate into the world of object-oriented programming.

DEVICE MANAGEMENT:

 This component of operating system manages hardware devices via their respective drivers.

 The operating system performs the following ACTIVITIES for device management.

o It keeps track of all the devices. The program responsible for keeping track of all the

devices is known as I/O controller.

o It provides a uniform interface to access devices with different physical characteristics.

o It allocates the devices in an efficient manner.

o It de-allocates the devices after usage.

o It decides which process gets the device and how much time it should be used.

o It optimizes the performance of each individual device.

Fig:1.20 Device Management Diagram

 Direct I/O – CPU software explicitly transfer data to and from the controller’s data registers

 Dept of CSE

o Direct I/O with polling – the device management software polls the device

controllerstatus register to detect completion of the operation; device management

isimplemented wholly in the device driver, if interrupts are not used

o Interrupt driven direct I/O – interrupts simplify the software’s responsibility for

detectingoperation completion; device management is implemented through the

interaction of adevice driver and interrupt routine

 Memory mapped I/O – device addressing simplifies the interface (device seen as a range

ofmemory locations)

o Memory mapped I/O with polling – the device management software polls the

devicecontroller status register to detect completion of the operation; device

management is

o implemented wholly in the device driver.

o Interrupt driven I/O – interrupts simplify the software’s responsibility for

detectingoperation completion; device management is implemented through the

interaction of adevice driver and interrupt routine

 Direct memory access– involves designing of hardware to avoid the CPU perform the

transferof information between the device (controller’s data registers) and the memory).

Fig:1.21 Overall Structure of Device Management

I/O SYSTEM ORGANIZATION:

 Dept of CSE

Fig:1.22 I/O System Organization

 An application process uses a device by issuing commands and exchanging data with the

device management (device driver).

 Device drivers are software modules that can be plugged into an OS to handle a particular

device.

 Dept of CSE

 Operating System takes help from device drivers to handle all I/O devices.

 A device driver performs the following jobs –

o To accept request from the device independent software above to it.

o Interact with the device controller to take and give I/O and perform required error

handling

o Making sure that the request is executed successfully

 Since each device controller is specific to a particular device, the device driver implementation

will be device specific,

o Provide correct commands to the controller

o Interpret the controller status register (CSR) correctly

o Transfer data to and from device controller data registers as required for correct

deviceoperation

DEVICE I/O Vs MEMORY MAPPED I/O

Fig:1.23 DEVICE I/O Vs MEMORY MAPPED I/O

I/O WITH POLLING:

 Each I/O operation requires that the software and hardware coordinate their operations to

accomplish desired effect

 In direct I/O pooling this coordination is done in the device driver;

 Dept of CSE

 While managing the I/O, the device manager will poll the busy/done flags to detect the

operation’s completion; thus, the CPU starts the device, then polls the CSR to determine when

the operation has completed

 With this approach is difficult to achieve high CPU utilization, since the CPU must constantly

check the controller status;

Fig:1.24 I/O with Polling-Reading Operation

 Application process requests a read operation

 The device driver queries the CSR to determine whether de device is idle; if device is busy,

thedriver waits for it to become idle

 The driver stores an input command into the controller’s command register, thus starting

thedevice

 The driver repeatedly reads the content of CSR to detect the completion of the read operation

 The driver copies the content of the controller's data register(s) into the main memory user’s

processes space.

 Dept of CSE

Fig:1.25 I/O with Polling-Writing Operation

 The application process requests a write operation

 The device driver queries the CSR to determine if the device is idle; if busy, it will wait

tobecome idle

 The device driver copies data from user space memory to the controller’s data register(s).

 The driver stores an output command into the command register, thus starting the device.

 The driver repeatedly reads the CSR to determine when the device completed its operation.

INTERUPT DRIVEN I/O:

 The application process requests a read operation

 The device driver queries the CSR to find out if the device is idle; if busy, then it waits until

the device becomes idle

 The driver stores an input command into the controller’s command register, thus starting the

device

 The device completes the operation and interrupts the CPU, thereforecausing an interrupt

handler to run

 The interrupt handler determines which device caused the interrupt; it thenbranches to the

device handler for that device

 Dept of CSE

 The device driver retrieves the pending I/O status information from thedevice status table

 The device driver copies the content of the controller’s data register(s)into the user process’s

space

 The device handler returns the control to the application process (knowing thereturn address

from the device status table). Same sequence (or similar) ofoperations will be accomplished for

an output operation.

Fig:1.26 INTERUPT DRIVEN I/O:

DMA – DIRECT MEMORY ACCESS:

 DMA controllers are able to read and write information directly from /to primary memory,

with no software intervention

 The I/O operation has to be initiated by the driver

 DMA hardware enables the data transfer to be accomplished without using the CPU at all

 The DMA controller must include an address register (and address generation hardware loaded

by the driver with a pointer to the relevant memory block; this pointer is used by the DMA

hardware to locate the target block in primary memory

 Traditional I/O

o Polling approach:

 Dept of CSE

 CPU transfer data between the controller data registers and the primary memory

 Output operations - device driver copies data from the application process

dataarea to the controller; vice versa for input operations

o Interrupt driven I/O approach:

 The interrupt handler is responsible for the transfer task.

Fig:1.27: Interrupt driven I/O approach:

TYPICAL DMA:

 Dept of CSE

Fig:1.28: Direct Memory Access

 Mimics the processor. Transfers data to/from memory over system bus

 Dept of CSE

BUFFERING:

 Buffering is a technique by which a device manager keeps the slower I/O devices busy when

aprocess is not requiring I/O operations.

 Input buffering is the process of reading the data into the primary memory before the

processrequests it.

 Output buffering is the process of saving the data in the memory and then writing it to

thedevice while the process continues its execution.

HARDWARE LEVEL BUFFERING:

 Consider a simple character device controller that reads a single byte form a modem for each

input operation.

 Two operations

o Normal operation

o Buffered operation

Fig:1.29 HARDWARE LEVEL BUFFERING:

 Dept of CSE

DRIVER LEVEL BUFFERING:

Fig:1.30 DRIVER LEVEL BUFFERING:

DEVICE DRIVER:

 It is a software program that controls a particular type of device attached to thecomputer.

 Dept of CSE

 It provides an interface to the hardware devices without the requirement toknow the precise

information about the hardware.

 A device driver communicates with the device through a bus or communication subsystem.

 RESPONSIBLITIES:

o Initialize devices

o Interpreting the commands from the operating system

o Manage data transfers

o Accept and process interrupts

o Maintain the integrity of driver and kernel data structures

DEVICE DRIVER INTERFACE:

 Each operating system defines an architecture for its device management system. The

designsare different from operating system to operating system; there is no universal

organization

 Each operating system has two major interfaces to the device manager:

o The driver API

o The interface between a driver and the operating system kernel.

DRIVER API

 Provides a set of functions that an programmer can call to manage a device (usually

communicates orstorage). The device manager

o Must track the state of the device: when it is idle, when is being used and by

whichprocess

o Must maintain the information in the device status table

o May maintain a device descriptor to store other information about the device

 OPEN/CLOSE functions to allow initiate/terminate of the device’s use

o open – allocates the device and initializes the tables and the device for use

o close – releases dynamic tables entries and releases the device

THE DRIVER - KERNEL INTERFACE

 Dept of CSE

 The device driver must execute privileged instructions when it starts the device; this means that

the device driver must be executed as part of the operating system rather than part of a user

program.

 The driver must also be able to read/write info from/to the address spaces of differentprocesses,

since same device driver can be used by different processes

 Two ways of dealing with the device drivers

o Old way: Driver is part of the operating system, to add a new device driver, the whole

OSmust have been complied

o Modern way:Drivers installation is allowed without re-compilation of the OS by

usingreconfigurable device drivers; the OS dynamically binds the OS code to the

driverfunctions.

Fig:1.31 Reconfiguring Device Drivers

1
 Dept of CSE

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – II – Operating System – SBS1206

2
 Dept of CSE

OPERATING SYSTEM:

UNIT I I (9 Hrs)

CPU Scheduling: CPU Schedulers - Scheduling Criteria - Scheduling Algorithms.Process Synchronization: Critical-Section Problem -
Synchronization Hardware - Semaphores Classical Problems of Synchronization - Critical Region - Monitors.

UNIT 2

PROCESS MANAGEMENT

INTRODUCTION TO PROCESSES:

 Early computer systems allowed only one program to be executed at a time.

 This program had complete control of the system and had access to all the system's resources.

 In contrast, current-day computer systems allow multiple programs to be loaded into memory

and executed concurrently.

 This evolution required firmer control and more compartmentalization of the various programs;

and these needs resulted in the notion of a process, which is a program in execution.

 A process is basically a program in execution. The execution of a process must progress in a

sequential fashion.

 A process will need certain resources—such as CPU time, memory, files, and I/O devices —to

accomplish its task.

 These resources are allocated to the process either when it is created or while it is executing.

 Definition:A process is defined as an entity which represents the basic unit of work to be

implemented in the system.

 A process is the unit of work in most systems.

 Systems consist of a collection of processes:

o Operating-system processes execute system code, and

o User processes execute user code.

 Although traditionally a process contained only a single thread of control as it ran, most modern

operating systems now support processes that have multiple threads.

 A process is the unit of work in a modern time-sharing system.

 The more complex the operating system is, the more it is expected to do on behalf of its users.

 Although its main concern is the execution of user programs, it also needs to take care of various

system tasks that are better left outside the kernel itself.

3
 Dept of CSE

 A system therefore consists of a collection of processes: operatingsystem processes executing

system code and user processes executing user code.

PROCESSES:

 A process is mainly a program in execution where the execution of a process must progress in a

sequential order or based on some priority or algorithms.

 In other words, it is an entity that represents the fundamental working that has been assigned to a

system.

 When a program gets loaded into the memory, it is said to as process. This processing can be

categorized into 4 sections. These are:

o Heap

o Stack

o Data

o Text

PROCESS CONCEPTS:

 A question that arises in discussing operating systems involves what to call all the CPU

activities.

 A batch system executes jobs, whereas a time-shared system has user programs, or tasks.

 Even on a single-user system such as Microsoft Windows, a user may be able to run several

programs at one time: a word processor, a web browser, and an e-mail package.

 Even if the user can execute only one program at a time, the operating system may need to

support its own internal programmed activities, such as memory management.

 In many respects, all these activities are similar, so we call all of them processes.

 The terms job and process are used almost interchangeably used.

 Although we personally prefer the term process, much of operating-system theory and

terminology was developed during a time when the major activity of operating systems was job

processing.

 It would be misleading to avoid the use of commonly accepted terms that include the word job

(such as job scheduling) simply because process has superseded job.

4
 Dept of CSE

THE PROCESS:

 An operating system executes a variety of programs:

o Batch system – jobs

o Time-shared systems – user programs or tasks

 We use the terms job and process almost interchangeably.

 Process – a program in execution; process execution must progress in sequential fashion.

 A process is a program in execution. A process is more than the program code, which is

sometimes known as the text section.

 A process includes:

o Counter

o Program stack

o Data section

 The current activity, as represented by the value of the program counter and the

contents of the processor's registers.

 The process stack contains temporary data (such as function parameters, return

addresses, and local variables)

 A data section, which contains global variables.

 Process may also include a heap, which is memory that is dynamically allocated during process

run time.

Fig:2.1 The Process

5
 Dept of CSE

 STACK - The process Stack contains the temporary data such as method/function parameters,

return address and local variables.

 HEAP - This is dynamically allocated memory to a process during its run time.

 TEXT - This includes the current activity represented by the value of Program Counter and the

contents of the processor's registers.

 DATA - This section contains the global and static variables.

 We emphasize that a program by itself is not a process; a program is a passive entity, such as a

file containing a list of instructions stored on disk (often called an executable file).

 Whereas a process is an active entity, with a program counter specifying the next instruction to

execute and a set of associated resources.

 A program becomes a process when an executable file is loaded into memory.

PROCESS STATE / PROCESS LIFE CYCLE:

Fig: 2.2-Process State

 When a process executes, it passes through different states.

 These stages may differ in different operating systems, and the names of these states are also not

standardized.

 In general, a process can have one of the following five states at a time.

o New/Start

o Running

o Waiting

o Ready

6
 Dept of CSE

o Terminated

 START / NEW –

o This is the initial state when a process is first started/created.

 READY–

o The process is waiting to be assigned to a processor.

o Ready processes are waiting to have the processor allocated to them by the operating

system so that they can run.

o Process may come into this state after Start state or while running it by but interrupted by

the scheduler to assign CPU to some other process.

 RUNNING –

o Once the process has been assigned to a processor by the OS scheduler, the process state

is set to running and the processor executes its instructions.

 WAITING –

o Process moves into the waiting state if it needs to wait for a resource, such as waiting for

user input, or waiting for a file to become available.

 TERMINATED OR EXIT –

o Once the process finishes its execution, or it is terminated by the operating system, it is

moved to the terminated state where it waits to be removed from main memory.

 These names are arbitrary, and they vary across operating systems.

PROCESS CONTROL BLOCK (PCB):

Fig:2.3 Process Control Block

7
 Dept of CSE

 A Process Control Block is a data structure maintained by the Operating System for every

process.

 The PCB is identified by an integer process ID (PID).

 A PCB keeps all the information needed to keep track of a process as listed below ,

 PROCESS STATE

o The current state of the process i.e., whether it is ready, running, waiting, or whatever.

 PROCESS PRIVILEGES

o This is required to allow/disallow access to system resources.

 PROCESS ID

o Unique identification for each of the process in the operating system.

 POINTER

o A pointer to parent process.

 PROGRAM COUNTER

o Program Counter is a pointer to the address of the next instruction to be executed for this

process.

 CPU REGISTERS

o Various CPU registers where process need to be stored for execution for running state.

 CPU SCHEDULING INFORMATION

o Process priority and other scheduling information which is required to schedule the

process.

 MEMORY MANAGEMENT INFORMATION

o This includes the information of page table, memory limits, Segment table depending on

memory used by the operating system.

 ACCOUNTING INFORMATION

o This includes the amount of CPU used for process execution, time limits, execution ID

etc.

 IO STATUS INFORMATION

8
 Dept of CSE

o This includes a list of I/O devices allocated to the process.

 The architecture of a PCB is completely dependent on Operating System and may contain

different information in different operating systems. (shown in above diagram)

 The PCB is maintained for a process throughout its lifetime, and is deleted once the process

terminates.

DIAGRAM SHOWING CPU SWITCH PROCESS TO PROCESS

Fig:2.4 Diagram Showing CPU Switch Process To Process

PROCESS SCHEDULING:

 A uniprocessor system can have only one running process. If more process exist, the rest must

wait until the CPU is free and can be rescheduled.

 The objective of multiprogramming is to have some process running at all times, to maximize

CPU utilization.

9
 Dept of CSE

 The objective of time sharing is to switch the CPU among processes so frequently that users can

interact with each program while it is running.

 To meet these objectives, the process scheduler selects an available process (possibly from a set

of several available processes) for program execution on the CPU.

PROCESS SCHEDULING QUEUES:

 The OS maintains all PCBs in Process Scheduling Queues.

 The OS maintains a separate queue for each of the process states and PCBs of all processes in the

same execution state are placed in the same queue.

 When the state of a process is changed, its PCB is unlinked from its current queue and moved to

its new state queue.

 Process migration between the various queues:

o Job queue

o Ready queue

o Device queues

Fig:2.5 Process Scheduling Queue

 JOB QUEUE−This queue keeps all the processes in the system.

 READY QUEUE − This queue keeps a set of all processes residing in main memory, ready and

waiting to execute. A new process is always put in this queue.

 DEVICE QUEUES −The processes which are blocked due to unavailability of an I/O device

constitute this queue.

10
 Dept of CSE

 The OS can use different policies to manage each queue (FIFO, Round Robin, Priority, etc.).

 The OS scheduler determines how to move processes between the ready and run queues which

can only have one entry per processor core on the system; in the above diagram, it has been

merged with the CPU.

TWO STATE PROCESS MODEL:

 Two-state process model refers to running and non-running states which are described below

 RUNNING

o When a new process is created, it enters into the system as in the running state.

 NOT RUNNING

o Processes that are not running are kept in queue, waiting for their turn to execute. Each

entry in the queue is a pointer to a particular process. Queue is implemented by using

linked list.

QUEUING DIAGRAM REPRESENTATION FOR PROCESS SCHEDULING

Fig:2.6 Queuing Diagram Representation For Process Scheduling

 Each rectangular box represents a queue.

 Two types of queues are present:

o the ready queue and

o a set of device queues

11
 Dept of CSE

 The circles represent the resources that serve the queues, and the arrows indicate the flow of

processes in the system.

 A new process is initially put in the ready queue.

 It waits there until it is selected for execution, or is dispatched.

 Once the process is allocated the CPU and is executing, one of several events could occur:

o The process could issue an I/O request and then be placed in an I/O queue.

o The process could create a new subprocess and wait for the subprocess's termination.

o The process could be removed forcibly from the CPU, as a result of an

o Interrupt, and be put back in the ready queue.

 In the first two cases, the process eventually switches from the waiting state to the ready state

and is then put back in the ready queue.

 A process continues this cycle until it terminates, at which time it is removed from all queues and

has its PCB and resources de-allocated.

SCHEDULERS:

 Schedulers are special system software which handles the process scheduling in various ways.

 Their main task is to select the jobs to be submitted into the system and to decide which process

to run.

 Schedulers are of three types –

o Long-Term Scheduler

o Short-Term Scheduler

o Medium-Term Scheduler

12
 Dept of CSE

 LONG TERM SCHEDULER:

o It is also called a job scheduler.

o A long-term scheduler determines which programs are admitted to the system for

processing.

o It selects processes from the queue and loads them into memory for execution.

o Process loads into the memory for CPU scheduling.

o The primary objective of the job scheduler is to provide a balanced mix of jobs, such as

I/O bound and processor bound.

o It also controls the degree of multiprogramming. If the degree of multiprogramming is

stable, then the average rate of process creation must be equal to the average departure

rate of processes leaving the system.

13
 Dept of CSE

 SHORT TERM SCHEDULER:

o It is also called as CPU scheduler.

o Its main objective is to increase system performance in accordance with the chosen set of

criteria. It is the change of ready state to running state of the process.

o CPU scheduler selects a process among the processes that are ready to execute and

allocates CPU to one of them.

o Short-term schedulers, also known as dispatchers, make the decision of which process to

execute next.

o Short-term schedulers are faster than long-term schedulers.

 MEDIUM TERM SCHEDULER:

o Medium-term scheduling is a part of swapping.

o It removes the processes from the memory.

o It reduces the degree of multiprogramming. The medium-term scheduler is in-charge of

handling the swapped out-processes.

o A running process may become suspended if it makes an I/O request.

o A suspended process cannot make any progress towards completion.

o In this condition, to remove the process from memory and make space for other

processes, the suspended process is moved to the secondary storage. This process is

called swapping, and the process is said to be swapped out or rolled out. Swapping may

be necessary to improve the process mix.

Fig:2.7 Medium Term Scheduler

14
 Dept of CSE

CONTEXT SWITCH:

Fig:2.8 Context Switch

 A context switch is the mechanism to store and restore the state or context of a CPU in Process

Control block so that a process execution can be resumed from the same point at a later time.

 Using this technique, a context switcher enables multiple processes to share a single CPU.

 Context switching is an essential part of a multitasking operating system features.

 Context switches are computationally intensive since register and memory state must be saved

and restored.

 To avoid the amount of context switching time, some hardware systems employ two or more sets

of processor registers.

15
 Dept of CSE

 When the process is switched, the following information is stored for later use.

o Program Counter

o Scheduling information

o Base and limit register value

o Currently used register

o Changed State

o I/O State information

o Accounting information

OPERATIONS ON PROCESSES:

 The processes in the system can execute concurrently, and they must be created and deleted

dynamically.

 Thus, the operating system must provide a mechanism (or facility) for process creation and

termination.

 In this section, we explore the mechanisms involved in creating processes and illustrate process

creation on UNIX and Windows systems.

PROCESS CREATION:

 Parent process creates children processes, which, in turn create other processes, forming a tree of

processes.

Fig:2.9 Process Creation Diagram

 Resource sharing

o Parent and children share all resources.

o Children share subset of parent’s resources.

16
 Dept of CSE

o Parent and child share no resources.

 Execution

o Parent and children execute concurrently.

o Parent waits until children terminate.

 A process may create several new processes, via a create-process system call, during the course

of execution.

 The creating process is called a parent process, and the new processes are called the children of

that process.

Fig:2.10 A tree of Processes on a Typical UNIX System

 Each of these new processes may in turn create other processes, forming a tree of processes.

 When a process creates a subprocess, that subprocess may be able to obtain its resources directly

from the operating system, or it may be constrained to a subset of the resources of the parent

process.

 When a process creates a new process, two possibilities exist in terms of execution:

o The parent continues to execute concurrently with its children.

o The parent waits until some or all of its children have terminated.

 There are also two possibilities in terms of the address space of the new process:

o The child process is a duplicate of the parent process (it has the same

program and data as the parent).

17
 Dept of CSE

COOPERATING PROCESSES:

 Processes executing concurrently in the operating system may be either independent processes or

cooperating processes.

 A process is independent if it cannot affect or be affected by the other processes executing in the

system.

 Any process that does not share data with any other process is independent.

 A process is cooperating if it can affect or be affected by the other processesexecuting in the

system.

 There are several reasons for providing an environment that allows process cooperation:

 INFORMATION SHARING:

o Since several users may be interested in the same piece of information (for instance, a

shared file), we must provide an environment to allow concurrent access to such

information.

 COMPUTATION SPEEDUP:

o If we want a particular task to run faster, we must break it into subtasks, each of which

will be executing in parallel with the others.

 MODULARITY:

o We may want to construct the system in a modular fashion, dividing the system functions

into separate processes or threads.

 CONVENIENCE:

o Even an individual user may work on many tasks at the same time.

 Concurrent execution of cooperating processes requires mechanisms that allow processes to

communicate with one another and to synchronize their actions.

 To illustrate the concept of cooperating processes, let's consider the producer-consumer problem,

which is a common paradigm for cooperating processes.

 A producer process produces information that is consumed by a consumer process.

 To allow producer and consumer processes to run concurrently, we must have available A

BUFFER of items that can be filled by the producer and emptied by the consumer.

 This BUFFER will reside in a region of memory that is shared by the producer and consumer

processes.

 The producer and consumer must be synchronized, so that the consumer does not try to consume

an item that has not yet been produced.

18
 Dept of CSE

 Two types of buffers can be used:

o Unbounded buffer

o Bounded buffer

 UNBOUNDED BUFFER –

o Places no practical limit on the size of the buffer.

o The consumer may have to wait for new items, but the producer can always produce new

items.

 BOUNDED BUFFER –

o It assumes a fixed buffer size.

o In this case, the consumer must wait if the buffer is empty, and the producer must wait if

the buffer is full.

CPU SCHEDULING:

 CPU scheduling is a process which allows one process to use the CPU while the execution of

another process is on hold(in waiting state) due to unavailability of any resource like I/O etc,

thereby making full use of CPU

 Whenever the CPU becomes idle, the operating system must select one of the processes in the

ready queue to be executed.

 The selection process is carried out by the short-term scheduler (or CPU scheduler).

CPU SCHEDULING: DISPATCHER

 Another component involved in the CPU scheduling function is the Dispatcher. The dispatcher is

the module that gives control of the CPU to the process selected by the short-term scheduler.

This function involves:

 Switching context

 Switching to user mode

 Jumping to the proper location in the user program to restart that program from

where it left last time.

 The dispatcher should be as fast as possible, since it is invoked during every process switch.

o The time it takes for the dispatcher to stop one process and start another running is known

as the DISPATCH LATENCY.

19
 Dept of CSE

TYPES OF CPU SCHEDULING:

 CPU scheduling decisions may take place under the following four circumstances:

 When a process switches from the runningstate to the waiting state(for I/O request or

invocation of wait for the termination of one of the child processes).

 When a process switches from the running state to the ready state (for example, when an

interrupt occurs).

 When a process switches from the waiting state to the ready state(for example, completion of

I/O).

 When a process terminates.

CPU SCHEDULING: SCHEDULING CRITERIA

 Different CPU scheduling algorithms have different properties, and the choice of a particular

algorithm may favor one class of processes over another.

 In choosing which algorithm to use in a particular situation, we must consider the properties of

the various algorithms.

 Many criteria have been suggested for comparing CPU scheduling algorithms.

 Which characteristics are used for comparison can make a substantial difference in which

algorithm is judged to be best.

 The criteria include the following

 CPU UTILIZATION:

o We want to keep the CPU as busy as possible.

o Conceptually, CPU utilization can range from 0 to 100 percent.

o In a real system, it should range from 40 percent (for a lightly loaded system) to 90

percent (for a heavily used system).

 THROUGHPUT

o It is the total number of processes completed per unit time or rather say total amount of

work done in a unit of time. This may range from 10/second to 1/hour depending on the

specific processes.

 TURNAROUND TIME

o It is the amount of time taken to execute a particular process, i.e. The interval from time

of submission of the process to the time of completion of the process(Wall clock time).

20
 Dept of CSE

 WAITING TIME

o The sum of the periods spent waiting in the ready queue amount of time a process has

been waiting in the ready queue to acquire get control on the CPU.

 LOAD AVERAGE

o It is the average number of processes residing in the ready queue waiting for their turn to

get into the CPU.

 RESPONSE TIME

o Amount of time it takes from when a request was submitted until the first response is

produced. Remember, it is the time till the first response and not the completion of

process execution (final response).

SCHEDULING ALGORITHMS:

 CPU scheduling deals with the problem of deciding which of the processes in the ready queue is

to be allocated the CPU.

 There are many different CPU scheduling algorithms:

o First Come First Serve(FCFS) Scheduling

o Shortest-Job-First(SJF) Scheduling

o Priority Scheduling

o Shortest Remaining Time (SRT) Scheduling

o Round Robin(RR) Scheduling

o Multilevel Queue Scheduling

o Multilevel Feedback Queue Scheduling

FCFS - FIRST COME FIRST SERVE SCHEDULING:

 In the "First come first serve" scheduling algorithm, as the name suggests, the process which

arrives first, gets executed first, or we can say that the process which requests the CPU first, gets

the CPU allocated first.

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive, pre-emptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

21
 Dept of CSE

 CHECK THE ANOTHER PDF FOR THE CALCULATION OF AVERAGE Turnaround Time

– TAT & Waiting Time – WT

COMMON DEFINITIONS INVOLVED IN CALCULATION PROCESS

 ARRIVAL TIME: Time taken for the arrival of each process in the CPU Scheduling Queue.

 COMPLETION TIME: Time taken for the execution to complete, starting from arrival time.

 TURN AROUND TIME: Time taken to complete after arrival. In simple words, it is the difference

between the Completion time and the Arrival time.

 WAITING TIME: Total time the process has to wait before it's execution begins. It is the

difference between the Turn Around time and the Burst time of the process.

DIFFERENCE BETWEEN PREEMPTIVE AND NON – PREEMPTIVVE

22
 Dept of CSE

SJF – SHORTEST JOB FIRST SCHEDULING:

 This is also known as shortest job next, or SJN

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is known in advance.

 Impossible to implement in interactive systems where required CPU time is not known.

 The processer should know in advance how much time process will take.

PRIORITY BASED SCHEDULING:

 Priority scheduling is a non-preemptive algorithm and one of the most common scheduling

algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed first and so on.

 Processes with same priority are executed on first come first served basis.

 Priority can be decided based on memory requirements, time requirements or any other resource

requirement.

SRT – SHORTEST REMAINING TIME SCHEDULING:

 Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.

 The processor is allocated to the job closest to completion but it can be preempted by a newer

ready job with shorter time to completion.

 Impossible to implement in interactive systems where required CPU time is not known.

 It is often used in batch environments where short jobs need to give preference.

ROUND ROBIN SCHEDULING:

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a quantum.

 Once a process is executed for a given time period, it is preempted and other process executes for

a given time period.

 Context switching is used to save states of preempted processes.

23
 Dept of CSE

MULTIPLE-LEVEL QUEUES SCHEDULING:

Fig:2.11 Multiple-Level Queue Scheduling

 Multiple-level queues are not an independent scheduling algorithm. They make use of other

existing algorithms to group and schedule jobs with common characteristics.

 Multiple queues are maintained for processes with common characteristics.

 Each queue can have its own scheduling algorithms.

 Priorities are assigned to each queue.

MULTILEVEL FEEDBACK QUEUE SCHEDULING:

 Normally, in the multilevel queue scheduling algorithm, processes are permanently assigned to a

queue when they enter to the system.

 The multilevel feedback-queue scheduling algorithm, in contrast, allows a process to move

between queues.

 The idea is to separate processes according to the characteristics of their CPU bursts.

 If a process uses too much CPU time, it will be moved to a lower-priority queue.

 This scheme leaves I/O-bound and interactive processes in the higher-priority queues.

 Similarly, a process that waits too long in a lower-priority queue may be moved to a higher-

priority queue. This form of AGING prevents STARVATION.

24
 Dept of CSE

Fig:2.12 Multilevel Feedback Queues

1
 Dept of CSE

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – III – Operating System – SBS1206

2
 Dept of CSE

 UNIT 3

UNIT I I I (9 Hrs)
 Deadlocks: Characterization- Methods for Handling Deadlocks - Deadlock Prevention - Avoidance - Detection - Recovery.

THE CRITICAL SECTION PROBLEM:

 A Critical Section is a code segment that accesses shared variables and has to be executed as

an atomic action.

 It means that in a group of cooperating processes, at a given point of time, only one process

must be executing its critical section.

 If any other process also wants to execute its critical section, it must wait until the first one

finishes.

Fig:3.1 Critical section problem

THE SOLUTION TO THE CRITICAL SECTION PROBLEM:

 The main solution for the critical section problem is based on the three main ways.

3
 Dept of CSE

1. MUTUAL EXCLUSION:

 Out of a group of cooperating processes, only one process can be in its critical

section at a given point of time.

Fig:3.2 Mutual Exclusion

 If process P1 is executing in its critical section, then no other processes can be

executing in their critical sections.

 IMPLICATIONS:

o Critical sections better be focused and short.

o Better not get into an infinite loop in there.

o If a process somehow halts/waits in its critical section, it must not interfere

with other processes.

2. PROGRESS:

 If no process is in its critical section, and if one or more threads want to execute their

critical section then any one of these threads must be allowed to get into its critical

section.

 If only one process wants to enter, it should be able to.

 If two or more want to enter, one of them should succeed.

3. BOUNDED WAITING:

 After a process makes a request for getting into its critical section, there is a limit for

how many other processes can get into their critical section, before this process's

request is granted.

4
 Dept of CSE

 So after the limit is reached, system must grant the process permission to get into its

critical section.

TWO PROCESS SOLUTIONS:

ALGORITHM 1:

do {

while (turn != 1);

critical section

turn = j;

remainder section

}while (1);

This Algorithm satisfies Mutual exclusion whereas it fails to satisfy progress requirement since it requires

strict alternation of processes in the execution of the critical section.

For example, if turn == 0 and p1 is ready to enter its critical section,p1 cannot do so, even though p0 may

be in its remainder section.

ALGORITHM 2:

do{

flag[i] =true;

while (flag[j]);

critical section

flag[i]= false;

5
 Dept of CSE

remainder section

}while(1);

In this solution, the mutual exclusion is met. But the progress is not met. To illustrate this problem, we

consider the following

Execution Sequence:

To: P0 sets Flag[0] = true

T1: P1 sets Flag[1] = true

Now P0 and P1 are looping forever in their respective while statements.

ALGORITHM 3:

By combining the key ideas of algorithm 1 and 2, we obtain a correct solution.

Do{

Flag[i] = true;

Turn = j;

While (flag[j] && turn == j);

Critical section

Flag[i] = false;

Remainder section

}while(1);

The algorithm does satisfy the three essential criteria to solve the critical section problem. The three criteria

are mutual exclusion, progress, and bounded waiting.

SYNCHRONIZATION HARDWARE:

 Many systems provide hardware support for critical section code.

6
 Dept of CSE

 The critical section problem could be solved easily in a single-processor environment if we could

disallow interrupts to occur while a shared variable or resource is being modified.

 In this manner, we could be sure that the current sequence of instructions would be allowed to

execute in order without pre-emption. Unfortunately, this solution is not feasible in a

multiprocessor environment.

 Disabling interrupt on a multiprocessor environment can be time consuming as the message is

passed to all the processors.

MUTEX LOCKS:

 As the synchronization hardware solution is not easy to implement for everyone, a strict software

approach called Mutex Locks.

do{

Acquire Lock

Critical Section

Release Lock

Remainder Section

}while(TRUE);

MUTEX:

 Mutex is a program object that allows multiple program threads to share the same resource, such as

file access, but not simultaneously.

 When a program is started a mutex is created with a unique name.

 After this stage, any thread that needs the resource must lock the mutex from other threads while it

is using the resource.

 The mutex is set to unlock when the data is no longer needed or the routine is finished.

SOLUTION TO THE CRITICAL - SECTION PROBLEM USING LOCKS

 Hardware features can make any programming task easier and improve system efficiency.

 The critical section problem can be solved simply in a uniprocessor environment if we could

prevent interrupts from occurring while a shared variable was being modified.

 Then we can ensure that the current sequence of instructions would be allowed to execute in order

without pre-emption.

7
 Dept of CSE

 No other instructions would be run, so no unexpected modifications could be made to the shared

variable.

 This solution is not feasible in a multiprocessor environment.

 Disabling interrupts on a multiprocessor can be time consuming, as the message is passed to all the

processors.

 Definition of TestAndSet:

boolean TestAndSet (boolean *target)

{

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

 Shared boolean variable lock., initialized to false.

 Solution:

 do {

while (TestAndSet (&lock))

; /* do nothing

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

 Solution using Swap:

 Definition of Swap:

void Swap (boolean *a, boolean *b) {

boolean temp = *a;

*a = *b;

*b = temp:

}

8
 Dept of CSE

 Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable

key.

 Solution:

do {

 key = TRUE;

 while (key == TRUE)

 Swap (&lock, &key);

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

 Solution with TestAndSet and bounded wait

 boolean waiting[n]; boolean lock; initialized to false Pi can enter critical section iff waiting[i]

== false or key == false

do {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && key)

key = TestAndSet (&lock);

waiting[i] = FALSE;

// critical section

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = FALSE;

else

waiting[j] = FALSE;

// remainder section

} while (TRUE);

SEMAPHORES

9
 Dept of CSE

 It‘s a very significant technique for managing concurrent processes by using the value of a

simple integer variable to synchronize the progress of interacting processes. This integer

variable is called semaphore.

 In very simple words, semaphore is a variable which can hold only a non-negative Integer

value, shared between all the threads, with operations wait and signal,

o P(S): if S ≥ 1 then S := S - 1

else <block and enqueue the process>;

o V(S): if <some process is blocked on the queue>

then <unblock a process>

else S := S + 1;

 Wait: Decrements the value of its argument S, as soon as it would become non-negative

(greater than or equal to 1).

 Signal: Increments the value of its argument S, as there is no more process blocked on the

queue.

PROPERTIES OF SEMAPHORES

 It's simple and always have a non-negative Integer value.

 Works with many processes.

 Can have many different critical sections with different semaphores.

 Each critical section has unique access semaphores.

 Can permit multiple processes into the critical section at once, if desirable.

TYPES OF SEMAPHORES

 BINARY SEMAPHORE:

o It is a special form of semaphore used for implementing mutual exclusion, hence it is

often called a MUTEX.

o A binary semaphore is initialized to 1 and only takes the values 0 and 1 during

execution of a program.

 COUNTING SEMAPHORES:

o These are used to implement bounded concurrency.

 EXAMPLE:

10
 Dept of CSE

LIMITATIONS OF SEMAPHORES

 Priority Inversion is a big limitation of semaphores.

 Their use is not enforced, but is by convention only.

 With improper use, a process may block indefinitely. Such a situation is called Deadlock.

We will be studying deadlocks in details in coming lessons.

BINARY SEMAPHORE:

USAGE:

 OS‘s distinguish between counting and binary semaphores.

 The value of a counting semaphore can range over an unrestricted domain.

 The value of a binary semaphore can range only between 0 and 1.

 Binary semaphores are known as mutex locks as they are locks that provide mutual

exclusion.

 Binary semaphores are used to deal with the critical section problem for multiple processes.

 Counting semaphores can be used to control access to a given resource consisting of a finite

number of instances.

 The semaphore is initialized to the number of resources available.

 Each process that wishes to use a resource performs a wait() operation on the semaphore.

 When a process releases a resource, it performs a signal() operation.

11
 Dept of CSE

Fig:3.3 Binary Semaphore Usage

Fig:3.4 Binary Semaphore

12
 Dept of CSE

Fig:3.5 Counting Semaphore

IMPLEMENTATION

 The main disadvantage of the semaphore is that it requires busy waiting. While a process is

in its critical section, any other process that tries to enter its critical section must loop

continuously in the entry code.

 Busy waiting wastes CPU cycles that some other process might be able to use productively.

This type of semaphore is called a SPINLOCK because the process spins while waiting for

the lock.

 To overcome, the need for busy waiting the definition of wait () and signal() semaphore

operations can be modified.

 When a process executes the wait() operation and finds that the semaphore value is not

positive, it must wait.

PROBLEMS WITH SEMAPHORE:

13
 Dept of CSE

DEADLOCKS AND STARVATION:

DEADLOCK:

 Deadlocks are a set of blocked processes each holding a resource and waiting to acquire a

resource held by another process.

Fig:3.6 Deadlocks

14
 Dept of CSE

Fig:3.7 Deadlock Example with T0 and T1 Thread

STARVATION

 Starvation, process with high priorities continuously uses the resources preventing low

priority process to acquire the resources.

 Starvation can be defined as when a process request for a resource and that resource has

been continuously used by the other processes then the requesting process faces starvation.

 In starvation, a process ready to execute waits for CPU to allocate the resource. But the

process has to wait indefinitely as the other processes continuously block the requested

resources.

AGING

 Aging can resolve the problem of starvation. Aging gradually increases the priority of the

process that has been waiting long for the resources. Aging prevents a process with low

priority to wait indefinitely for a resource.

15
 Dept of CSE

DIFFERENCE BETWEEN DEADLOCKS & STARVATION

CLASSIC PROBLEMS OF SYNCHRONIZATION

 These synchronization problems are examples of large class of concurrency control

problems. In solutions to these problems, we use semaphores for synchronization.

o Bounded buffer problem / Producer consumer problem

o Readers-writer problem

o Dining-philosophers problem

BOUNDED BUFFER / PRODUCER CONSUMER PROBLEM

 This problem is generalized in terms of the Producer Consumer problem, where a finite

buffer pool is used to exchange messages between producer and consumer processes.

16
 Dept of CSE

 Because the buffer pool has a maximum size, this problem is often called the Bounded

buffer problem.

 Solution to this problem is, creating two counting semaphores "full" and "empty" to keep

track of the current number of full and empty buffers respectively.

 The code below can be interpreted as the producer producing full buffers for the consumer

or as the consumer producing empty buffers for the producer.

do

{

// produce an item in nextp

wait(empty);

wait(mutex);

// add the item to the buffer

signal(mutex);

signal(full);

}while(TRUE);

 The structure of the Producer Process

do

{

wait(full);

wait(mutex);

// remove an item from buffer into nextc

signal(mutex);

signal(empty);

// consume the item in nextc

}while(TRUE);

 The structure of the Consumer Process

17
 Dept of CSE

EXAMPLE CODE:

 #include<stdio.h>

#include<conio.h>

int main()

{

int s,n,b=0,p=0,c=0;

clrscr();

printf("\n producer and consumer problem");

do

{

printf("\n menu");

printf("\n 1.producer an item");

printf("\n 2.consumer an item");

printf("\n 3.add item to the buffer");

printf("\n 4.display status");

printf("\n 5.exit");

printf("\n enter the choice");

scanf("%d",&s);

switch(s)

{

case 1:

p=p+1;

printf("\n item to be produced");

break;

 case 2:

if(b!=0)

{

18
 Dept of CSE

c=c+1;

b=b-1;

printf("\n item to be consumed");

}

else

{

printf("\n the buffer is empty please wait...");

}

break;

case 3:

if(b<n)

{

if(p!=0)

{

b=b+1;

printf("\n item added to buffer");

}

else

printf("\n no.of items to add...");

}

else

printf("\n buffer is full,please wait");

break;

case 4:

printf("no.of items produced :%d",p);

printf("\n no.of consumed items:%d",c);

printf("\n no.of buffered item:%d",b);

break;

case 5:exit(0);

19
 Dept of CSE

}

}

while(s<=5);

getch();

return 0;

}

THE READERS WRITERS PROBLEM

 In this problem there are some processes(called readers) that only read the shared data, and

never change it, and there are other processes(called writers) who may change the data in

addition to reading, or instead of reading it.

 There are various type of readers-writers problem, most centered on relative priorities of

readers and writers.

SOLUTION:

 From the above problem statement, it is evident that readers have higher priority than writer.

If a writer wants to write to the resource, it must wait until there are no readers currently

accessing that resource.

 Here, we use one mutex m and a semaphore w. An integer variable sread is used to

maintain the number of readers currently accessing the resource. The variable swrite is

initialized to 0. A value of 1 is given initially to m and w.

 Instead of having the process to acquire lock on the shared resource, we use the mutex m to

make the process to acquire and release lock whenever it is updating the sread variable.

EXAMPLE CODE

 #include<stdio.h>

#include<conio.h>

#include<process.h>

void main()

{

typedef int semaphore;

semaphore sread=0, swrite=0;

20
 Dept of CSE

int ch,r=0;

clrscr();

printf("\nReader writer");

do

{

printf("\nMenu");

printf("\n\t 1.Read from file");

printf("\n \t2.Write to file");

printf("\n \t 3.Exit the reader");

printf("\n \t 4.Exit the writer");

printf("\n \t 5.Exit");

printf("\nEnter your choice:");

scanf("%d",&ch);

switch(ch)

{

case 1: if(swrite==0)

{

sread=1;

r+=1;

printf("\nReader %d reads",r);

}

else

{

printf("\n Not possible");

}

break;

case 2: if(sread==0 && swrite==0)

{

swrite=1;

21
 Dept of CSE

printf("\nWriter in Progress");

}

else if(swrite==1)

{

printf("\nWriter writes the files");

}

else if(sread==1)

{

printf("\nCannot write while reader reads the file");

}

else

printf("\nCannot write file");

break;

case 3: if(r!=0)

{

printf("\n The reader %d closes the file",r);

r-=1;

}

else if(r==0)

{

printf("\n Currently no readers access the file");

sread=0;

}

else if(r==1)

{

printf("\nOnly 1 reader file");

}

else

printf("%d reader are reading the file\n",r);

22
 Dept of CSE

break;

case 4: if (swrite==1)

{

printf("\nWriter close the file");

swrite=0;

}

else

printf("\nThere is no writer in the file");

break;

case 5: exit(0);

}

}

while(ch<6);

getch();

}

DINING PHILOSOPHERS PROBLEM:

 The dining philosopher's problem involves the allocation of limited resources to a group of

processes in a deadlock-free and starvation-free manner.

 There are five philosophers sitting around a table, in which there are five chopsticks/forks

kept beside them and a bowl of rice in the center.

 When a philosopher wants to eat, he uses two chopsticks - one from their left and one from

their right.

 When a philosopher wants to think, he keeps down both chopsticks at their original place.

23
 Dept of CSE

Fig:3.8 Dining Philosophers Problem

SOLUTION:

 From the problem statement, it is clear that a philosopher can think for an indefinite amount

of time.

 But when a philosopher starts eating, he has to stop at some point of time.

 The philosopher is in an endless cycle of thinking and eating.

 An array of five semaphores, stick[5], for each of the five chopsticks.

EXAMPLE CODE:

 #include<stdio.h>

#include<conio.h>

#define LEFT (i+4) %5

#define RIGHT (i+1) %5

#define THINKING 0

#define HUNGRY 1

#define EATING 2

int state[5];

void put_forks(int);

void test(int);

24
 Dept of CSE

void take_forks(int);

void philosopher(int i)

{

if(state[i]==0)

{

take_forks(i);

if(state[i]==EATING)

printf("\n Eating in process....");

put_forks(i);

}

}

void put_forks(int i)

{

state[i]=THINKING;

printf("\n philosopher %d completed its works",i);

test(LEFT);

test(RIGHT);

}

void take_forks(int i)

{

state[i]=HUNGRY;

test(i);

}

void test(int i)

{

if(state[i]==HUNGRY && state[LEFT]!=EATING && state[RIGHT]!=EATING)

{

printf("\n philosopher %d can eat",i);

state[i]=EATING;

25
 Dept of CSE

}

}

void main()

{

int i;

clrscr();

for(i=1;i<=5;i++)

state[i]=0;

printf("\n\t\t\t Dining Philosopher Problem");

printf("\n\t\t...........");

for(i=1;i<=5;i++)

{

printf("\n\n the philosopher %d falls hungry\n",i);

philosopher(i);

}

getch();

}

CRITICAL REGIONS:

 A critical region is a section of code that is always executed under mutual exclusion.

 Critical regions shift the responsibility for enforcing mutual exclusion from the programmer

(where it resides when semaphores are used) to the compiler.

 They consist of two parts:

o Variables that must be accessed under mutual exclusion.

o A new language statement that identifies a critical region in which the variables

are accessed.

 EXAMPLE var

v : shared T;

...

region v do

26
 Dept of CSE

begin

...

end;

 All critical regions that are ‗tagged‘ with the same variable have compiler-enforced mutual.

 Exclusion so that only one of them can be executed at a time:

Process A:

region V1 do

begin

{ Do some stuff. }

end;

region V2 do

begin

{ Do more stuff. }

end;

Process B:

region V1 do

begin

{ Do other stuff. }

end;

 Here process A can be executing inside its V2 region while process B is executing inside its

V1 region, but if they both want to execute inside their respective V1 regions only one will

be permitted to proceed.

 Each shared variable (V1 and V2 above) has a queue associated with it. Once one process is

executing code inside a region tagged with a shared variable, any other processes that

attempt to enter a region tagged with the same variable are blocked and put in the queue.

CONDITIONAL CRITICAL REGIONS:

 Critical regions aren‘t equivalent to semaphores.

 As described so far, they lack condition synchronization.

 We can use semaphores to put a process to sleep until some condition is met (e.g. see the

bounded-buffer Producer-Consumer problem), but we can‘t do this with critical regions.

27
 Dept of CSE

 Conditional critical regions provide condition synchronization for critical regions

region v when B do

begin

...

end;

 where B is a boolean expression (usually B will refer to v).

 Conditional critical regions work as follows:

o A process wanting to enter a region for v must obtain the mutex lock. If it

cannot, then it is queued.

o Once the lock is obtained the boolean expression B is tested. If B evaluates to

true then the process proceeds, otherwise it releases the lock and is queued.

When it next gets the lock it must retest B.

IMPLEMENTATION:

 Each shared variable now has two queues associated with it.

 The MAIN QUEUE is for processes that want to enter a critical region but find it locked.

 The EVENT QUEUE is for the processes that have blocked because they found the

condition to be false.

 When a process leaves the conditional critical region the processes on the event queue join

those in the main queue.

LIMITATIONS:

 Conditional critical regions are still distributed among the program code.

 There is no control over the manipulation of the protected variables — no information

hiding or encapsulation.

 Once a process is executing inside a critical region it can do whatever it likes to the

variables it has exclusive access to.

 Conditional critical regions are more difficult to implement efficiently than semaphores.

28
 Dept of CSE

MONITORS:

 Consist of private data and operations on that data.

 Can contain types, constants, variables and procedures.

 Only the procedures explicitly marked can be seen outside the monitor.

 The monitor body allows the private data to be initialized.

 The compiler enforces mutual exclusion on a particular monitor.

 Each monitor has a boundary queue, and processes wanting to call a monitor routine join

this queue if the monitor is already in use.

 Monitors are an improvement over conditional critical regions because all the code that

accesses the shared data is localized.

 Although semaphores provide a convenient and effective mechanism for process

synchronization, using them incorrectly can result in timing errors that are difficult to detect

since these errors happen only if some particular execution sequences take place and these

sequences do not always occur.

 Suppose that a process interchanges the order in which the wait () and signal () operations

on the semaphore mutex are executed.

 Here several processes may be executing in their critical sections simultaneously, violating

the mutual exclusion requirement.

 Suppose that a process replaces signal (mutex) with wait (mutex) that is it executes

29
 Dept of CSE

 Here a deadlock will occur.

 Suppose that a process omits the wait(mutex), or the signal(mutex) or both. Here, either

mutual exclusion is violated or a dead lock will occur.

 To deal with such errors, a fundamental high level synchronization construct called

MONITORS type is used.

Fig:3.9 Monitors

USAGE OF MONITORS:

 A monitor type presents a set of programmer defined operations that are provided mutual

exclusion within the monitor.

 The monitor type also contains the declaration of variables whose values define the state of

an instance of that type, along with the bodies of the procedures or functions that operate on

those variables.

 The representation of a monitor type cannot be used directly by the various processes.

 Thus, a procedure defined within a monitor can access only those variables declared locally

within the monitor and its formal parameters.

30
 Dept of CSE

 The local variables of a monitor can be accessed by only the local procedures.

 When x.signal() operation is invoked by a process P, there is a suspended process Q

associated with condition x.

 If suspended process Q is allowed to resume its execution, the signaling process P must

wait.

 Otherwise, both P and Q would be active simultaneously within the monitor.

Fig:3.10 Monitors with shared data

 However, both processes can conceptually continue with their execution. Two possibilities

exist:

o Signal and wait – P either waits until Q leaves the monitor or waits for another

condition.

o Signal and condition – Q either waits until P leaves the monitor or waits for another

condition.

DINING PHILOSOPHERS SOLUTION USING MONITORS:

31
 Dept of CSE

 This solution imposes the restriction that a philosopher may pick up her chopsticks only if

both of them are available.

 To code this solution, we need to distinguish among three states in which we may find a

philosopher.

 For this purpose, we use this data structure enum {thinking, hungry, eating } state[5];

32
 Dept of CSE

IMPLEMENTING A MONITOR USING SEMAPHORES

 For each monitor, a semaphore mutex initialized to 1 is provided.

 A process must execute wait(mutex) before entering the monitor and must execute(signal)

after leaving the monitor.

 Since a signaling process must wait until the resumed process either leaves or waits, an

additional semaphore next initialized to 0, on which the signaling processes may suspend

themselves.

 An integer variable next_count is used to count the number of processes suspended on next.

33
 Dept of CSE

 We can now describe how condition variables are implemented.

 For each condition x, we introduce a semaphore x_sem and an integer variable x_count,

both initialized to 0.

 The operation x. wait () can now be implemented as

RESUMING PROCESSES WITHIN A MONITOR

 If several processes are suspended on condition x, and an x.signal() operation is executed by

some process, then for determining which suspended process should be resumed next, we

use FCFS ordering so that the process waiting the longest is resumed first.

 Or conditional wait construct() can be used as x.wait(c); where c is an integer expression

that is evaluated when the wait () operation is executed.

 The value of c, which is called a PRIORITY NUMBER, is then stored with the name of

the process that is suspended.

 When x. signal () is executed, the process with the smallest associated priority number is

resumed next.

34
 Dept of CSE

A MONITOR TO ALLOCATE A SINGLE RESOURCE

monitor ResourceAllocator

boolean busy;

condition x;

void acquire(int time)

if (busy)

x.wait(time);

busy = TRUE;

void release() {

busy = FALSE;

x.signal();

initialization_code

busy = FALSE;

 A process that needs to access the resource in question must observe the following

sequence:

R.acquire(t);

access the resource;

R. release O ;

 where R is an instance of type Resource Allocator.

 Unfortunately, the monitor concept cannot guarantee that the preceding access sequence will

be observed. In particular, the following problems can occur:

o A process might access a resource without first gaining access permission to the

resource.

o A process might never release a resource once it has been granted access to the

resource.

 Synchronization Example

o A process might attempt to release a resource that it never request

o A process might request the same resource twice (without first releasing the

resource).

35
 Dept of CSE

DEADLOCKS:

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

THE DEADLOCK PROBLEM

 A set of blocked processes each holding a resource and waiting to acquire a resource held by

another process in the set.

 Example

o System has 2 tape drives.

o P0 and P1 each hold one tape drive and each needs another one.

 Example

o semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

Bridge Crossing Example

Fig:3.11 Bridge Crossing Example for Deadlock

36
 Dept of CSE

 Traffic only in one direction.

 Each section of a bridge can be viewed as a resource.

 If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback).

 Several cars may have to be backed up if a deadlock occurs.

 Starvation is possible.

SYSTEM MODEL

 Resource types R1, R2, . . ., Rm

 CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

o request

o use

o release

DEADLOCK CHARACTERIZATION

 Deadlock can arise if four conditions hold simultaneously.

 Mutual exclusion:

Only one process at a time can use a resource.

 Hold and wait:

A process holding at least one resource is waiting to acquire additional resource held

by other processes.

 No preemption:

A resource can be released only voluntarily by the process holding it, after that

process has completed its task.

 Circular wait:

There exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting for a

resource that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn–1

37
 Dept of CSE

is waiting for a resource that is held by Pn, and P0 is waiting for a resource that is

held by P0.

RESOURCE-ALLOCATION GRAPH

 A set of vertices V and a set of edges E.

 V is partitioned into two types:

o P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

o R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.

 Request edge – directed edge P1 → Rj

 Assignment edge – directed edge Rj → Pi

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

38
 Dept of CSE

EXAMPLE OF A RESOURCE ALLOCATION GRAPH

Fig:3.12 RAG with multiple instances

Will there be a deadlock here?

Fig:3.13 RAG with Deadlock

39
 Dept of CSE

Resource Allocation Graph With A Cycle But No Deadlock

Fig:3.14 RAG with a cycle but No Deadlock

Basic Facts

 If graph contains no cycles ⇒ no deadlock.

 If graph contains a cycle ⇒

o if only one instance per resource type, then deadlock.

o if several instances per resource type, possibility of deadlock.

METHODS FOR HANDLING DEADLOCKS

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Prevention

DEADLOCK DETECTION

 Restrain the ways request can be made.

 Mutual Exclusion – not required for sharable resources; must hold for non-sharable

resources.

 Hold and Wait – must guarantee that whenever a process requests a resource, it does not

hold any other resources. Low resource utilization; starvation possible.

40
 Dept of CSE

 No Preemption – If a process that is holding some resources requests another resource that

cannot be immediately allocated to it, then all resources currently being held are released.

Preempted resources are added to the list of resources for which the process is waiting.

Process will be restarted only when it can regain its old resources, as well as the new ones

that it is requesting.

 Circular Wait – impose a total ordering of all resource types, and require that each process

requests resources in an increasing order of enumeration.

DEADLOCK AVOIDANCE

 Requires that the system has some additional a priori information available.

 Simplest and most useful model requires that each process declare the maximum number of

resources of each type that it may need.

 The deadlock-avoidance algorithm dynamically examines the resource-allocation state to

ensure that there can never be a circular-wait condition.

 Resource-allocation state is defined by the number of available and allocated resources, and

the maximum demands of the processes.

DEADLOCK DETECTION

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

Basic Facts

 If a system is in safe state ⇒ no deadlocks.

 If a system is in unsafe state ⇒ possibility of deadlock.

 Avoidance ⇒ ensure that a system will never enter an unsafe state.

Safe, Unsafe , Deadlock State

41
 Dept of CSE

Fig:3.15 Deadlock with safe and unsafe state

RESOURCE-ALLOCATION GRAPH ALGORITHM

 Claim edge Pi → Rj indicated that process Pj may request resource Rj; represented by a

dashed line.

 Claim edge converts to request edge when a process requests a resource.

 When a resource is released by a process, assignment edge reconverts to a claim edge.

 Resources must be claimed a priori in the system.

Resource-Allocation Graph For Deadlock Avoidance

Fig:3.16 RAG for Deadlock Avoidance

42
 Dept of CSE

Unsafe State In Resource-Allocation Graph

Fig:3.17 Unsafe state in RAG

EXAMPLE:

 Banker‘s Algorithm

 Resource-Request Algorithm

BANKER’S ALGORITHM

 Multiple instances.

 Each process must a priori claim maximum use.

 When a process requests a resource it may have to wait.

 When a process gets all its resources it must return them in a finite amount of time.

43
 Dept of CSE

Data Structures for the Banker’s Algorithm

Safety Algorithm

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi

 If Requesti [j] = k then process Pi wants k instances of resource type Rj.

 If Requesti ≤ Needi go to step 2. Otherwise, raise error condition, since process has

exceeded its maximum claim.

44
 Dept of CSE

 If Requesti ≤ Available, go to step 3. Otherwise Pi must wait, since resources are

not available.

 If safe ⇒ the resources are allocated to Pi.

 If unsafe ⇒ Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm

Example request (contd)

45
 Dept of CSE

DEADLOCK DETECTION

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

Resource-Allocation Graph and Wait-for Graph

46
 Dept of CSE

Fig:3.18 Wait-For Graph

Several Instances of a Resource Type

 Available: A vector of length m indicates the number of available resources of each type.

 Allocation: An n x m matrix defines the number of resources of each type currently

allocated to each process.

 Request: An n x m matrix indicates the current request of each process. If Request [ij] = k,

then process Pi is requesting k more instances of resource type. Rj.

DETECTION ALGORITHM

47
 Dept of CSE

DETECTION-ALGORITHM USAGE

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back? one for each disjoint cycle If detection

algorithm is invoked arbitrarily, there may be many cycles in the resource graph and so we

would not be able to tell which of the many deadlocked processes ―caused‖ the deadlock.

RECOVERY FROM DEADLOCK: PROCESS TERMINATION

 Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle is eliminated.

 In which order should we choose to abort?

 Priority of the process.

 How long process has computed, and how much longer to completion.

 Resources the process has used. Resources process needs to complete.

48
 Dept of CSE

 How many processes will need to be terminated.

 Is process interactive or batch?

RECOVERY FROM DEADLOCK: RESOURCE PREEMPTION

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart process for that state.

 Starvation – same process may always be picked as victim, include number of rollback in

cost factor.

1
 dept of CSE

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – IV – Operating System – SBS1206

2
 dept of CSE

OPERATING SYSTEM:

UNIT IV (9 Hrs)

Memory Management: Address Binding - Dynamic Loading and Linking - Overlays - Logical and Physical Address Space -
Contiguous Allocation- Non-Contiguous Allocation.

 UNIT 4

STORAGE / MEMORY MANAGEMENT

STORAGE / MEMORY MANAGEMENT:

 Memory management is the functionality of an operating system which handles or manages

primary memory.

 Memory management keeps track of each and every memory location either itis allocated to

some process or it is free.

 It checks how much memory is to be allocated toprocesses. It decides which process will get

memory at what time.

 It tracks whenever somememory gets freed or unallocated and correspondingly it updates

the status.

 Memory management provides protection by using two registers, a base register and a

limitregister.

 The base register holds the smallest legal physical memory address and the limitregister

specifies the size of the range.

 For example, if the base register holds 300000 and thelimit register is 1209000, then the

program can legally access all addresses from 300000through 411999

Fig:4.1 Storage/Memory Management

3
 dept of CSE

GOALS OF MEMORY MANAGEMENT:

 Allocate available memory efficiently to multiple processes

 Main functions

 Allocate memory to processes when needed

 Keep track of what memory is used and what is free

 Protect one process’s memory from another

MEMORY ALLOCATION STRATEGIES:

 CONTIGUOUS ALLOCATION :

o In contiguous memory allocation each process is contained in a single contiguous

block of memory.

o Memory is divided into several fixed size partitions.

o Each partition contains exactly one process.

o When a partition is free, a process is selected from the input queue and loaded into it.

o The free blocks of memory are known as holes.

o The set of holes is searched to determine which hole is best to allocate.

4
 dept of CSE

Fig:4.2 Continuous Memory Management

 NON-CONTIGUOUS ALLOCATION:

o Parts of a process can be allocated noncontiguous chunks of memory.

o In context to memory organization, non contiguous memory allocation means the

available memory space is scattered here and there it means all the free available

memory space is not together at one place.

5
 dept of CSE

Fig:4.3 Non-Continuous Memory Management

CONTAGIOUS Vs NON CONTAGIOUS

Fig:4.4 Continuous Vs Non Continuous Memory Management

6
 dept of CSE

FIXED PARTITION SCHEME:

 Memory is broken up into fixed size partitions

 But the size of two partitions may be different

 Each partition can have exactly one process

 When a process arrives, allocate it a free partition

 Easy to manage

 Problems - Maximum size of process bound by max. partition size, Largeinternal

fragmentation possible

7
 dept of CSE

VARIABLE PARTITION SCHEME

 Hole – block of available memory; holes of various size are scattered throughout memory

 When a process arrives, it is allocated memory from a hole large enough to accommodate it

 Operating system maintains information about:

o allocated partitions

o free partitions (hole)

MULTIPROGRAMMING:

 To overcome the problem of underutilization of CPU and main memory, the

multiprogramming was introduced.

 The multiprogramming is interleaved execution of multiple jobs by the samecomputer.

 In multiprogramming system, when one program is waiting for I/O transfer, there isanother

program ready to utilize the CPU.

 SO it is possible for several jobs to share the time ofthe CPU.

 But it is important to note that multiprogramming is not defined to be the execution ofjobs at

the same instance of time.

 Rather it does mean that there are a number of jobsavailable to the CPU (placed in main

memory) and a portion of one is executed then a segmentof another and so on.

8
 dept of CSE

Fig:4.5 Multiprogramming Memory Management

 At the particular situation, job' A' is not utilizing the CPU time because it is busy in I/ 0

operations.

 Hence the CPU becomes busy to execute the job 'B'. Another job C is waiting for the CPU

for getting its execution time.

 So in this state the CPU will never be idle and utilizes maximum of its time.

 A program in execution is called a "Process", "Job" or a "Task".

 The concurrent execution of programs improves the utilization of system resources and

enhances the system throughput as compared to batch and serial processing.

 In this system, when a process requests some I/O to allocate; meanwhile the CPU time is

assigned to another ready process.

 So, here when a process is switched to an I/O operation, the CPU is not set idle.

 Multiprogramming is a common approach to resource management.

 The essential components of a single-user operating system include a command processor,

an input/ output control system, a file system, and a transient area.

9
 dept of CSE

 A multiprogramming operating system builds on this base, subdividing the transient area to

hold several independent programs and adding resource management routines to the

operating system's basic functions.

STORAGE HIERARCHY

Fig:4.6 Storage Hierarchy

 The wide variety of storage systems in a computer system can be organized in a

hierarchyaccording to their speed and their cost.

 The higher levels are expensive but fast. As we movedown the hierarchy, the cost per bit

decreases, whereas the access time increases.

 The reasonfor using the slower memory decives is that they are cheaper than the faster ones.

 Many early storage devices, including paper tape and core memories, are found only in

museums now that magnetic tape and semiconductor memory have become faster and

cheaper.

DYNAMIC LOADING

 In dynamic loading, a routine of a program is not loaded until it is called by the program.

10
 dept of CSE

 Allroutines are kept on disk in a re-locatable load format.

 The main program is loaded intomemory and is executed.

 Other routines methods or modules are loaded on request.

 Dynamicloading makes better memory space utilization and unused routines are never

loaded.

DYNAMIC LINKING

 Linking is the process of collecting and combining various modules of code and data into

aexecutable file that can be loaded into memory and executed.

 Operating system can linksystem level libraries to a program.

 When it combines the libraries at load time, the linking iscalled static linking and when this

linking is done at the time of execution, it is called asdynamic linking.

LOGICAL vs PHYSICAL ADDRESS SPACE:

 An address generated by the CPU is a logical address whereas address actually available

onmemory unit is a physical address.

 Logical address is also known a Virtual address.

 Virtual and physical addresses are the same in compile-time and load-time address-binding

schemes.

 Virtual and physical addresses differ in execution-time address-binding scheme.

11
 dept of CSE

SWAPPING

 Swapping is a mechanism in which a process can be swapped temporarily out of main

memoryto a backing store, and then brought back into memory for continued execution.

 Backing storeis a usually a hard disk drive or any other secondary storage which fast in

access and largeenough to accommodate copies of all memory images for all users.

 It must be capable ofproviding direct access to these memory images.

 Major time consuming part of swapping is transfer time.

 Total transfer time is directlyproportional to the amount of memory swapped.

 Let us assume that the user process is of size100KB and the backing store is a standard hard

disk with transfer rate of 1 MB per second.

 The actual transfer of the 100K process to or from memory will take

 100KB / 1000KB per second = 1/10 second = 100 milliseconds

12
 dept of CSE

Fig:4.7 Swapping Process

MULTIPLE-PARTITION ALLOCATION

FIXED PARTITION ALLOCATION

 One memory allocation method is to divide the memory into a number of fixed-size

partitions.

 Each partition may contain exactly one process. Thus the degree of multiprogramming is

boundby the number of partitions.

 When a partition is free, a process is selected from the input queueand is loaded into the free

partition.

 When the process terminates, the partition becomesavailable for another process.

DYNAMIC ALLOCATION

 The operating system keeps a table indicating which parts of memory is available (called

holes)are available and which are occupied.

 Initially, all memory is available for user processes (i.e.,there is one big hole).

 When a process arrives, we select a hole which is large enough to holdthis process.

13
 dept of CSE

 We allocate as much memory is required for the process and the rest is kept as a hole which

can be used for later requests.

Selection of a hole to hold a process can follow the following algorithms

 FIRST-FIT:

o Allocate the first hole that is big enough. Searching can start at the beginning ofthe

set of holes or where the previous first-fit search ended. There may be many holes in

the memory, so the operating system, to reduce the amount of time it spends

analyzing the available spaces, begins at the start of primary memory and allocates

memory from the first hole it encounters large enough to satisfy the request.

 BEST-FIT:

o Allocate the smallest hole that is big enough. We must search the entire list,unless

the list is kept ordered by size. This strategy produces the smallest leftover hole.

 WORST-FIT:

o Allocate the largest hole that is big enough. We must search the entire list,unless the

list is kept ordered by size. This strategy produces the largest leftover hole.

o The idea is that this placement will create the largest hold after the allocations, thus

increasing the possibility that compared to best fit, another process can use the

remaining space.

14
 dept of CSE

Fig:4.8 Dynamic Allocation

FRAGMENTATION:

 As processes are loaded and removed from memory, the free memory space is broken into

little pieces.

 It happens after sometimes that processes cannot be allocated to memory blocks considering

their small size and memory blocks remains unused. This problem is known as

Fragmentation.

OR

15
 dept of CSE

TYPES:

 External fragmentation

 Internal fragmentation

EXTERNAL FRAGMENTATION:

 External Fragmentation happens when a dynamic memory allocation algorithm allocates

some memory and a small piece is left over that cannot be effectively used.

 If too much external fragmentation occurs, the amount of usable memory is drastically

reduced.

 Total memory space exists to satisfy a request, but it is not contiguous.

 The problem of fragmentation can be solved by COMPACTION.

 The goal is to shuffle the memorycontents to place all free memory together in one large

block.

 For a relocated process to beable to execute in its new location, all internal addresses (e.g.,

pointers) must be relocated.

 Ifthe relocation is static and is done at assembly or load time, compaction cannot be done.

 Compaction is possible only if relocation is dynamic and is done at execution time.

 If addressesare relocated dynamically, relocation requires only moving the program and

data, and thenchanging the base register to reflect the new base address.

There may be many compaction algorithms:

 Simply move all processes toward one end of the memory; all holes move in the other

direction producing one large hole of available memory.

16
 dept of CSE

 Create a large hole big enough anywhere to satisfy the current request.

INTERNAL FRAGMENTATION

 Internal fragmentation is the space wasted inside of allocated memory blocks because of

restriction on the allowed sizes of allocated blocks.

 Allocated memory may be slightly larger than requested memory; this size difference is

memory internal to a partition, but not being used.

Fig:4.9 Internal Vs External Fragmentation

17
 dept of CSE

PAGING

 Paging is a memory management scheme that eliminates the need for contiguous allocation

of physical memory.

 This scheme permits the physical address space of a process to be non – contiguous.

 Logical Address or Virtual Address (represented in bits): An address generated by the CPU

 Logical Address Space or Virtual Address Space(represented in words or bytes): The set of

all logical addresses generated by a program

 Physical Address (represented in bits): An address actually available on memory unit

 Physical Address Space (represented in words or bytes): The set of all physical addresses

corresponding to the logical addresses

 Physical memory is broken into fixed-size blocks called FRAMES.

 Logical memory is also brokeninto blocks of the same size called PAGES.

18
 dept of CSE

 When a process is to be executed, its pages (whichare in the backing store) are loaded into

any available memory frames. Thus the pages of aprocess may not be contiguous.

19
 dept of CSE

Fig:4.10 Paging

Address Translation

 Page address is called logical address and represented by page number and the offset.

o Logical Address = Page number + page offset

 Frame address is called physical address and represented by a frame number and the

offset.

o Physical Address = Frame number + page offset

 Paging eliminates external fragmentation altogether but there may be a little

internalfragmentation.

Fig:4.11 Address Translation

20
 dept of CSE

ADVANTAGES AND DISADVANTAGES OF PAGING

 Paging reduces external fragmentation, but still suffer from internal fragmentation.

 Paging is simple to implement and assumed as an efficient memory management technique.

 Due to equal size of the pages and frames, swapping becomes very easy.

 Page table requires extra memory space, so may not be good for a system having small

RAM.

MULTILEVEL PAGING

 Most computer systems support a very large logical address space (232 to 264). In such a

case, the page table itself becomes very very large.

 E.g., consider a 32-bit logical address space. If the page size is 4K bytes (212), then a page

table may consist of up to (232 / 212) = 1 millionentries. If each entry consists of 4 bytes,

each process may need 4 megabytes of physicaladdress alone for the page table

 DISADVANTAGE: Page tables consume a large amount of physical memory because each

page table canhave millions of entries.

INVERTED PAGE TABLE

 To overcome the disadvantage of page tables given above, an inverted page table could be

used.An inverted page table has one entry for each (frame) of memory.

21
 dept of CSE

 Each entry consists ofthe logical (or virtual) address of the page stored in that memory

location, with information aboutthe process that owns it.

 Thus there is only one inverted page table in the system, and it hasonly one entry for each

frame of physical memory.

 DISADVANTAGE:

o The complete information about the logical address space of a process, which is

required if a referenced page is not currently in memory is no longer kept.

o To overcome this, anexternal page table (one per process) must be kept. Each such

table looks like thetraditional per-process page table, containing information on

where each logical page islocated.

o These external page tables need not be in the memory all the time, because theyare

needed only when a page fault occurs.

Fig:4.12 Inverted Page Table

PROTECTION

22
 dept of CSE

 Memory protection in a paged environment is accomplished by protection bits that

areassociated with each frame. Normally, they are kept in the page table.

 One bit can define apage to be read-and-write or read-only.

SHARED PAGES

 Another advantage of paging is the possibility of sharing common code.

 Consider a system that supports 40 users, each of which executes a text editor.

 If the text editor consists of 150K of code and 50K of data space, then we would need

8000K to support the 40 users.

 If the code is reentrant (non-self-modifying), then it can be shared between the 40 users.

SEGMENTATION:

 Segmentation is a memory management technique in which each job is divided into several

segments of different sizes, one for each module that contains pieces that perform related

functions.

 Each segment is actually a different logical address space of the program.

 When a process is to be executed, its corresponding segmentations are loaded into non-

contiguous memory though every segment is loaded into a contiguous block of available

memory.

 Segmentation memory management works very similar to paging but here segments are of

variable-length where as in paging pages are of fixed size.

 A program segment contains the program's main function, utility functions, data structures,

and so on.

 The operating system maintains a segment map table for every process and a list of free

memory blocks along with segment numbers, their size and corresponding memory

locations in main memory.

23
 dept of CSE

Fig:4.13 Segmentation

 Segmentation is a memory-management scheme that suggests that a logical address space

bedivided into a collection of segments. Each segment has a name and a length.

 Addressesspecify both the segment name and the offset within the segment.

 The user therefore specifieseach address by two quantities: a segment name (or segment

number) and an offset.

 SEGMENT NUMBER (S) -- segment number is used as an index into a segment

tablewhich contains base address of each segment in physical memory and a limit

ofsegment.

 SEGMENT OFFSET (O) -- segment offset is first checked against limit and then is

combinedwith base address to define the physical memory address.

24
 dept of CSE

 Therefore logical addresses consist of two tuples:

o <segment-number, offset>

TUPLES:

 In the context of relational databases, a tuple is one record (one row).

 The information in a database can be thought of as a spreadsheet, with columns (known as

fields or attributes) representing different categories of information, and tuples (rows)

representing all the information from each field associated with a single record.

SEGMENTATION HARDWARE:

Fig:4.14 Segmentation Hardware

 Each entry of the segment table has a segment base and segment limit.

 The segment basecontains the starting physical address where the segment resides in the

main memory, whereasthe segment limit specifies the length of the segment.

 The main difference between the segmentation and multi-partition schemes is that one

programmay consist of several segments.

 The segment table can be kept either in fast registers or inmemory.

25
 dept of CSE

 In case a program consists of several segments, we have to keep them in the memory and

asegment-table base register (STBR) points to the segment table.Moreover, because

thenumber of segments used by a program may vary widely, a segment-table length

register (STLR) is used.

 One advantage of segmentation is that it automatically provides protection of memory

becauseof the segment-table entries (base and limit tuples).

 Segments also can be shared in asegmented memory system. Segmentation may cause

external fragmentation.

PAGED-SEGMENTATION

26
 dept of CSE

Fig:4.15 Paged Segmentation

MULTICS:

ADVANTAGES OF SEGMENTATION

 No Internal fragmentation.

 Segment Table consumes less space in comparison to Page table in paging.

DISADVANTAGE OF SEGMENTATION

 As processes are loaded and removed from the memory, the free memory space is broken

into little pieces, causing External fragmentation.

27
 dept of CSE

PAGE REPLACEMENT

 In a operating systems that use paging for memory management, page replacement

algorithm are needed to decide which page needed to be replaced when new page comes in.

 Whenever a new page is referred and not present in memory, page fault occurs and

Operating System replaces one of the existing pages with newly needed page.

 Different page replacement algorithms suggest different ways to decide which page to

replace. The target for all algorithms is to reduce number of page faults.

PAGE FAULT

 A page fault is a type of interrupt, raised by the hardware when a running program accesses

a memory page that is mapped into the virtual address space, but not loaded in physical

memory

PAGE REPLACEMENT ALGORITHMS

 There are many page-replacement algorithms. We select a particular replacement algorithm

based on the one with the lowest page-fault rate.

 An algorithm is evaluated by running it on a particular string of memory references (called a

reference string) and computing the number of page-faults.

 Reference strings are generatedartificially (by a random-number generator, for example) or

by tracing a given system andrecording the address of each memory reference.

TYPES OF REPLACEMENT ALGORITHMS

 FIFO – First In First Out

 LRU – Least Recently Used

 Optimal Algorithm

 LFU - Least Frequently Used

 MFU - Least Frequently Used

28
 dept of CSE

FIRST THREE ALGORITHMS - EXAMPLES ARE GIVEN IN ANOTHER PDF

LFU (Least Frequently Used) ALGORITHM

 Replace the least frequently used page

 Disadvantages:

o This algorithm suffers from the situation in which a page is used heavily during the

initial phaseof a process, but then is never used again. Since it was used heavily, it

has a large count andremains in memory even though it is no longer needed.

MFU (Least Frequently Used) ALGORITHM

 Replace the most frequently used page

 Disadvantage:

o This algorithm is based on the argument that the page with the smallest count was

probablyjust brought in and has yet to be used. Neither MFU nor LFU replacement

is common. Theirimplementation is fairly expensive.

VIRTUAL MEMORY

 Virtual memory is a technique that allows the execution of processes that may not

becompletely in memory.

 In many cases, in the course of execution of a program, some part of theprogram may never

be executed.

 The advantages of virtual memory are:

o Users would be able to write programs whose logical address space is greater than

thephysical address space.

o More programs could be run at the same time thus increasing the degree

ofmultiprogramming.

o Less I/O would be needed to load or swap each user program into memory, so

eachprogram would run faster.

29
 dept of CSE

Fig:4.16 Virtual Memory Management

 Virtual memory is the separation of logical memory from physical memory.

 Virtual memory iscommonly implemented by demand paging. It can also be implemented in

a segmentationsystem.

DEMAND PAGING

 A demand-paging system is similar to a paging system with swapping.

 When a process is to be swapped in, the pager guesses which pages will be used before the

process is swapped out again.

 Instead of swapping in a whole process, the pager brings only those necessary pages into the

memory.

 Thus, it avoids reading into memory pages that will not be used anyway, decreasing the

swap time and the amount of physical memory needed.

30
 dept of CSE

Fig:4.17 Demand Paging –Swap-in and out

 To distinguish between those pages that are in memory and those that are on disk, we use an

invalid-valid bit which is a field in each page-table entry.

 When this bit is set to “valid”, this value indicates that the associated page is both legal and

in memory.

 If the bit is set to “invalid”, itindicates that the page is either not valid (i.e., not in logical

address space of the process), or isvalid but is currently on the disk.

 The page-table entry for a page that is not currently in memoryis simple marked invalid, or

contains the address of the page on disk.

 Access to a page markedinvalid causes a page-fault trap. The procedure for handling page

fault is given below:

31
 dept of CSE

Fig:4.18 Demand Paging Process

ADVANTAGES

 Large virtual memory.

 More efficient use of memory.

 Unconstrained multiprogramming.

 There is no limit on degree of multiprogramming.

DISADVANTAGES

 Number of tables and amount of processor overhead for handling page interrupts aregreater

than in the case of the simple paged management techniques.

 Due to the lack of explicit constraints on jobs address space size.

PURE DEMAND PAGING

 In the extreme case, we could start executing a process with no pages in memory.

 When theoperating system set the instruction pointer to the first instruction of the process

which is on a non-memory-resident page, the process would immediately fault for the page.

 After this page was brought into memory, the process would continue to execute, faulting as

necessary until every page that is needed was actually in memory.

 Then, it could execute with no more faults. This scheme is called pure demand paging.

32
 dept of CSE

DEMAND PAGING vs ANTICIPATORY PAGING

DEMAND PAGING

 When a process first executes, the system loads into main memory the page that contains its

first instruction

 After that, the system loads a page from secondary storage to main memory onlywhen the

process explicitly references that page

 Requires a process to accumulate pages one at a time

ANTICIPATORY PAGING

 Operating system attempts to predict the pages a process will need and preloads these pages

when memory space is available

 Anticipatory paging strategies must be carefully designed so that overheadincurred by the

strategy does not reduce system performance.

1
 dept of CSE

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – V – Operating System – SBS1206

2
 dept of CSE

OPERATING SYSTEM:

UNIT V (9 Hrs)

File System: File Concepts - Access Methods - Directory Structures - Protection Consistency Semantics - File System Structures -
Allocation Methods - Free Space Management.

UNIT 5

FILE SYSTEMS

FILE CONCEPT

 A file is a named collection of related information that is recorded on secondary storage.

 Data can NOT be written to secondary storage unless they are within a file.

FILE STRUCTURE

 A text file is a sequence of characters organized into lines.

 A source file is a sequence of subroutines and function.

 An object file is a sequence of bytes organized into blocks understandable by thesystem’s

linker

 An executable file is a series of code sections that the loader can bring into memory

andexecute.

FILE ATTRIBUTES

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security, and usage monitoring

 Information about files are kept in the directory structure, which is maintained on the disk

FILE OPERATIONS

3
 dept of CSE

 The operating system provides system calls to create, write, read, reposition, delete, and

truncate files. We look at what the operating system must do for each of these basic file

operations.

 CREATING A FILE

o Firstly, space in the file system must be found for the file. Secondly, an entryfor the

new file must be made in the directory. The directory entry records the name of

thefile and the location in the system.

 WRITING A FILE.

o In the system call for writing in a file, we have to specify the name of the fileand the

information to be written to the file.

o The operating system searches the directory tofind the location of the file.

o The system keeps a write pointer to the location in the file wherethe next write is to

take place.

o The write pointer must be updated whenever a write occurs.

 READING A FILE

o To read a file, we make a system call that specifies the name of the file andwhere (in

memory) the next block of the file should be put.

o As in writing, the systemsearches the directory to find the location of the file, and

the system keeps a read pointer tothe location in the file where the next read is to

take place.

o The read pointer must beupdated whenever a read occurs.

 REPOSITIONING WITHIN A FILE

o In this operation, the directory is searched for the named file, and the current-file-

position is set to a given value. This file operation is called a FILE SEEK.

 DELETING A FILE

o We search the directory for the appropriate entry.

o Having found it, we release all the space used by this file and erase the directory

entry.

4
 dept of CSE

 TRUNCATING A FILE

o This operation is used when the user wants to erase the contents of the file but keep

the attributes the file intact

MEMORY-MAPPED FILES

 Some operating systems allow mapping sections of file into memory on virtual-memory

systems.

 It allows part of the virtual address space to be logically associated with a section of a file.

 Reads and writes to that memory region are then treated as reads and writes to the

file,greatly simplifying the file use.

 Closing the file results in all the memory-mapped data beingwritten back to the disk and

removed from the virtual memory of the process.

OPEN FILES

 File pointer: pointer to last read/write location, per process that has the file open

 File-open count: the counter tracks the number of opens and closes, and reaches zero on the

last close. The system can then remove the entry.

 Disk location of the file: the info needed to locate the file on disk.

 Access rights: per-process access mode information so OS can allow or denysubsequent I/O

request

FILE TYPES – NAME, EXTENSION

5
 dept of CSE

ACCESS METHODS

 Sequential Access

Fig:5.1 Sequential Access

6
 dept of CSE

 Direct Access

 Simulation of Sequential Access on Direct-access File

 Index and Relative Files

7
 dept of CSE

Fig:5.2 Indexing & Relative Files

o The index contains pointers to the various blocks.

o To find a record in the file, we first search the index and then use the pointer to

access the file directly and to find the desired record

DISK STRUCTURE

 Disk can be subdivided into partitions

 Disks or partitions can be Redundant Arrays of Independent Disks (RAID)

protectedagainst failure

 Disk or partition can be used raw – without a file system, or formatted with a file system

 Partitions also known as minidisks, slices

 Entity containing file system known as a volume

 Each volume containing file system also tracks that file system’s info in device directoryor

volume table of contents

 There are five commonly used directorystructures:

o Single-Level Directory

o Two-Level Directory

o Tree-Structure Directories

o Acyclic-Graph Directories

8
 dept of CSE

o General Graph Directories

A TYPICAL FILE-SYSTEM ORGANIZATION

Fig:5.3 A Typical File-System Organization

Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

SINGLE-LEVEL DIRECTORY

 All files are contained in the same directory.

 It is difficult to maintain file name uniqueness.

 CP/M-80 and early version of MS-DOS use this directory structure.

9
 dept of CSE

Fig:5.4 Single-Level Directory

TREE-STRUCTURED DIRECTORIES

Fig:5.5 Tree-Structure Directory

 ABSOLUTE PATH: begins at the root and follows a path down to the specified file.

o root/spell/mail/prt/first

 RELATIVE PATH: defines a path from the current directory.

o prt/first given root/spell/mail ascurrent path

10
 dept of CSE

ACYCLIC-GRAPH DIRECTORY

 This type of directories allows a file/directory to be shared by multipledirectories.

 This is different from two copies of the same file or directory.

 An acyclic-graph directory is more flexible than a simple tree structure.

Fig:5.6 Acyclic Graph Directory

GENERAL GRAPH DIRECTORY

 It is easy to traverse the directories of a tree or an acyclic directory system.

 However, if links are added arbitrarily, the directory graph becomes arbitrary and

maycontain cycles

 Creating a new file is done in current directory

o Delete a file

 rm<file-name>

11
 dept of CSE

o Creating a new subdirectory is done in current directory

 mkdir<dir-name>

Fig:5.7 General Graph Directory

Example:

12
 dept of CSE

Fig:5.8 General Graph Directory

 Efficient searching

 Grouping Capability

o pwd

o cd /spell/mail/prog

o New directory entry type

o Link – another name (pointer) to an existing file

o Resolve the link – follow pointer to locate the file

FILE SHARING

 When a file is shared by multiple users, how can we ensure its consistency

 If multiple users are writing to the file, should all of the writers be allowed to

write?Or,should the operating system protect the user actions from each other?

 This is the file consistency semantics

FILE CONSISTENCY SEMANTICS

 Consistency semantics is a characterization of the system that specifies the semantics

ofmultiple users accessing a shared file simultaneously.

 Consistency semantics is an important criterion for evaluating any file system that supports

filesharing.

 There are three commonly used semantics

13
 dept of CSE

o Unix semantics

o Session Semantics

o Immutable-Shared-Files Semantics

Unix Semantics

 Writes to an open file by a user are visible immediately to other users have the file openat

the same time.All users share the file pointer.

 A file has a single image that interleaves all accesses, regardless of their origin

Session Semantics

 Writes to an open file by a user are not visible immediately to other users that have thesame

file open simultaneously

 Once a file is closed, the changes made to it are visible only insessions started later.

 Already-open instances of the file do not affect these changes

 Multiple users are allowed to perform both readand write concurrently on their image of the

file without delay.

 The Andrew File System (AFS) uses this semantics.

Immutable-Shared-Files Semantics

 Once a file is declared as shared by its creator, it cannot be modified.

 An immutable file has two important properties:

o Its name may not be used

o Its content may not be altered

FILE PROTECTION

 We can keep files safe from physical damage (i.e.,reliability) and improper access

(i.e.,protection).

 Reliability is generally provided by backup.

 The need for file protection is a directresult of the ability to access files.

 Access control may be a complete protection by denyingaccess. Or, the access may be

controlled.

14
 dept of CSE

TYPES OF ACCESS

 Read: read from the file

 Write: write or rewrite the file

 Execute: load the file into memory and execute it

 Append: write new info at the end of a file

 Delete: delete a file

 List: list the name and attributes of the file

FILE-SYSTEM STRUCTURE

 Logical storage unit

 Collection of related information

Fig:5.9 Layered File System

15
 dept of CSE

Fig:5.10 A Typical File Control Block

Fig:5.11 In-Memory File System Structures

VIRTUAL FILE SYSTEMS

 Virtual File Systems (VFS) provide an object-oriented way of implementing file systems.

 VFS allows the same system call interface (the API) to be used for different types of

filesystems.

16
 dept of CSE

 The API is to the VFS interface, rather than any specific type of file system.

Fig:5.12 Virtual File System

17
 dept of CSE

Fig:5.13 Schematic View of Virtual File System

ALLOCATION METHODS

 An allocation method refers to how disk blocks are allocated for files:

o Contiguous allocation

o Linked allocation

o Indexed allocation

Contiguous Allocation

 Each file occupies a set of contiguous blocks on the disk.

 Simple – only starting location (block #) and length (number of blocks) are required.

 Random access.

 Wasteful of space (dynamic storage-allocation problem).

 Files cannot grow.

18
 dept of CSE

Fig:5.14 Contiguous Allocation of Disk Space

Linked Allocation

Fig:5.15 Linked Allocation

19
 dept of CSE

 Simple – need only starting address

 Free-space management system – no waste of space

 No random access

 Space waste for pointer (e.g. 4byte of 512 B)

 Reliability

Indexed Allocation

 Brings all pointers together into the index block.

Fig:5.16 Indexed Allocation

 Need index table

20
 dept of CSE

 Random access

 Dynamic access without external fragmentation, but have overhead of index block

Indexed Allocation – Mapping

Fig:5.17 Indexed Allocation – Mapping

Free-Space Management

21
 dept of CSE

22
 dept of CSE

Fig:5.18 Linked Free Space List on Disk

EFFICIENCY AND PERFORMANCE

 Efficiency dependent on:

 disk allocation and directory algorithms

types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently used blocks

 free-behind and read-ahead – techniques to optimize sequential access

 improve PC performance by dedicating section of memory as virtual disk, orRAM disk.

23
 dept of CSE

Fig:5.19 Various Disk-Caching Locations

PAGE CACHE

 A page cache caches pages rather than disk blocks using virtual memory techniques.

 Memory-mapped I/O uses a page cache.

 Routine I/O through the file system uses the buffer (disk) cache.

 This leads to the following figure.

24
 dept of CSE

Fig:5.20 Page Cache

Unified Buffer Cache

 A unified buffer cache uses the same page cache to cache both memory-mapped pagesand

ordinary file system I/O.

Fig:5.21 I/O Using a Unified Buffer Cache

RECOVERY

 Consistency checking – compares data in directory structure with data blocks on disk,and

tries to fix inconsistencies.

 Use system programs to back up data from disk to another storage device (floppy

disk,magnetic tape).

 Recover lost file or disk by restoring data from backup.

LOG STRUCTURED FILE SYSTEMS

25
 dept of CSE

 Log structured (or journaling) file systems record each update to the file system as

atransaction.

 All transactions are written to a log. A transaction is considered committed once it iswritten

to the log.

 The transactions in the log are asynchronously written to the file system. When the

filesystem is modified, the transaction is removed from the log.

 If the file system crashes, all remaining transactions in the log must still be performed

THE SUN NETWORK FILE SYSTEM (NFS)

 An implementation and a specification of a software system for accessing remote filesacross

LANs (or WANs).

 The implementation is part of the Solaris and SunOS operating systems running on

Sunworkstations using an unreliable datagram protocol (UDP/IP protocol and Ethernet.

 NFS is designed to operate in a heterogeneous environment of different machines operating

systems, and network architectures; the NFS specifications independent ofthese media.

 The NFS specification distinguishes between the services provided by a mountmechanism

and the actual remote-file-access services.

Three Major Layers of NFS Architecture

 UNIX file-system interface (based on the open, read, write, and close calls, and

filedescriptors).

 Virtual File System (VFS) layer – distinguishes local files from remote ones, and localfiles

are further distinguished according to their file-system types.

 The VFS activates file-system-specific operations to handle local requests according totheir

file-system types.

 Calls the NFS protocol procedures for remote requests.

 NFS service layer – bottom layer of the architecture; implements the NFS protocol

26
 dept of CSE

Fig:5.22 Schematic View of NFS Architecture

NFS PROTOCOL

 Provides a set of remote procedure calls for remote file operations. The proceduressupport

the following operations:

o searching for a file within a directory

o reading a set of directory entries

o manipulating links and directories

o accessing file attributes

o reading and writing files

 NFS servers are stateless; each request has to provide a full set of arguments.

 Modified data must be committed to the server’s disk before results are returned to theclient

(lose advantages of caching).

 The NFS protocol does not provide concurrency control mechanisms

27
 dept of CSE

