

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-I- SOFTWARE ENGINEERING– SBS1204

SBS1204 - SOFTWARE ENGINEERING

UNIT 1

Definition of software and software engineering – Software myths –Software Engineering

paradigms: Linear Sequential Model and Prototyping Model-Incremental – Spiral Model-

Iterative Model. Software Project Management. Software Cost Estimation – Software Project

Planning.

SOFTWARE is

 (1) Instructions (computer programs) that when executed provide desired function and performance,

(2) Data structures that enable the programs to adequately manipulate information, and

(3) Documents that describe the operation and use of the programs.

SOFTWARE APPLICATIONS

System software. System software is a collection of programs written to service other programs. Some
system software

e.g., compilers, editors, and file management utilities

Real-time software. Software that monitors/analyzes/controls real-world events as they occur is called
real time

Business software. Business information processing is the largest single software application area.

Discrete "systems" (e.g., payroll, accounts receivable/payable, inventory) have evolved into management

information system (MIS) software that accesses one or more large databases containing business
information.

Engineering and scientific software. Engineering and scientific software have been characterized by

"number crunching" algorithms. Applications range from astronomy to volcanology, from automotive
stress analysis to space shuttle orbital dynamics, and from molecular biology to automated manufacturing.

Embedded software. Intelligent products have become commonplace in nearly every consumer and
industrial market. Embedded software resides in read-only memory and is used to control products and
systems for the consumer and industrial markets.

Personal computer software. The personal computer software market has burgeoned over the past two

decades. Word processing, spreadsheets, computer graphics, multimedia, entertainment, database

management, personal and business financial applications, external network, and database access are only
a few of hundreds of applications.

Web-based software. The Web pages retrieved by a browser are software that incorporates executable

instructions (e.g., CGI, HTML, Perl, or Java), and data (e.g., hypertext and a variety of visual and audio
formats).

Artificial intelligence software. Artificial intelligence (AI) software makes use of nonnumerical
algorithms to solve complex problems that are not amenable to computation or straightforward analysis.

SOFTWARE MYTHS

Many software problems arise due to myths that are formed during the initial stages of software

development. Unlike ancient folklore that often provides valuable lessons, software myths propagate false
beliefs and confusion in the minds of management, users and developers.

Management myths

Myth: We already have a book that's full of standards and procedures for building software, won't that
provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software practitioners aware of its
existence? Does it reflect modern software engineering practice? Is it complete?

Myth: If we get behind schedule, we can add more programmers and catch up

Reality: Software development is not a mechanistic process like manufacturing. adding people to a late

software project makes it later." However, as new people are added, people who were working must

spend time educating the newcomers, thereby reducing the amount of time spent on productive
development effort.

Myth: If I decide to outsource3 the software project to a third party, I can just relax and let that firm build
it.

Reality: If an organization does not understand how to manage and control software projects internally, it
will invariably struggle when it outsources software projects.

Customer myths

Myth: A general statement of objectives is sufficient to begin writing programs— we can fill in the
details later.

Reality: A formal and detailed description of the information domain, function, behavior, performance,
interfaces, design constraints, and validation criteria is essential. These characteristics can be determined
only after thorough communication between customer and developer.

 Myth: Project requirements continually change, but change can be easily accommodated because
software is flexible.

Reality: It is true that software requirements change, but the impact of change varies with the time at
which it is introduced. If serious attention is given to up-front definition, early requests for change can be
accommodated easily.

Practitioner's myths

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that "the sooner you begin 'writing code', the longer it'll take you to get

done." Between 60 and 80 percent of all effort expended on software will be expended after it is delivered
to the customer for the first time.

Myth: Until I get the program "running" I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied from the

inception of a project—the formal technical review. Software reviews are a "quality filter" that have been
found to be more effective than testing for finding certain classes of software defects.

Myth: The only deliverable work product for a successful project is the working program.

Reality: A working program is only one part of a software configuration that includes many elements.

Documentation provides a foundation for successful engineering and, more important, guidance for
software support.

SOFTWARE ENGINEERING

 Software engineering is the establishment and use of sound engineering principles in order to
obtain economically software that is reliable and works efficiently on real machines

 Software Engineering is the application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application of engineering to
software.

 software engineering is a discipline whose aim is the production of fault-free software, delivered
on time and within budget, that satisfies the client’s needs. Furthermore, the software must be
easy to modify when the user’s needs change.

 SOFTWARE ENGINEERING PARADIGM

Software engineering paradigm is refers to the method and steps, which are taken while design the
software. It consists of three parts.

 Software development paradigm

 Software design paradigm

 Programming paradigm

Software development paradigm

Software development paradigm pertains all the engineering concepts which includes Requirements,
software design, programming.

Software design paradigm

Software design paradigm is a part of software development . it includes design, programming,
maintenance.

Programming paradigm

Programming paradigm which concerns about the programming aspect of software development. This
includes coding, testing, integration.

Need for software engineering

Software engineering fulfill the higher rate of change in user requirement and environment. The user
requirement lies on cost, scalability, dynamaic nature of working environments, quality management.

Characteristics of good software

The software product can be judged by what it offer and how well it can be used . furthermore, the
software must satisfied on the following grounds :

 Operational

 Transitional

 Maintainance

a) Operational

Operational defines how well the software works in operations. It can be measure on budget, usability,
efficiency, correctness, functionality, dependability, security, safety.

b) Transitional

This aspect is important if the software is moved from one platform to another.

The key parameters that includes portability, Interoperability, Reusability, Adaptability.

c) Maintenance

Maintenance of the software defines the capabilities to maintain itself in the ever changing environment.
It includes modularity, maintainability, flexibility etc.

SOFTWARE DEVELOPMENT LIFE-CYCLE MODELS

SDLC is a process followed for a software project, within a software organization. It consists of a detailed
plan describing how to develop, maintain, replace and alter or enhance specific software. The life cycle

defines a methodology for improving the quality of software and the overall development process. The

following figure is a graphical representation of the various stages of a typical SDLC. The SDLC consist
of the following phases:

 Communication

 Requirement gathering

 Feasibility study

 System Analysis

 Software design

 Coding

 Testing and Integration

 Operations & maintenance

 Disposition

Process framework: activities

The followings are the key activities of process models:

 Communication: communication and collaboration between developer and customer or
stakeholder.

 Planning: technical task to be conducted, risk analysed, resources required, work schedule.

 Modeling : creation of model for better understanding

 Construction : combination of code generation and testing.

 Deployment software is delivered to customers and getting feedback.

Code-and-Fix Life-Cycle Model

 The product is implemented without requirements or specifications, or any attempt at

design. Instead, the developers simply throw code together and rework it as many times

as necessary to satisfy the client
 Although this approach may work well on short programming exercises 100 or 200 lines

long, the code-and-fix model is totally unsatisfactory for products of any reasonable size.

 The cost of the code-and-fix approach is actually far greater because the change is done

only after the coding is completed.

 Maintenance of a product can be extremely difficult without specification or design

documents, and the chances of a regression fault occurring are considerably greater.

Fig.1.1. Code and Fix Life cycle model

Waterfall Life-Cycle Model

Fig.1.2.Waterfall Life Cycle model

 The classic life cycle suggests a systematic, sequential approach to software

development.

 A critical point regarding the waterfall model is that no phase is complete until the

documentation for that phase has been completed and the products of that phase have

been approved by the software quality assurance (SQA) group.

 Inherent in every phase of the waterfall model is testing. Testing is not a separate phase

to be performed only after the product has been constructed, nor is it to be performed

only at the end of each phase. Instead, testing should proceed continually throughout the

software process.

 In particular, during maintenance, it is necessary to ensure not only that the modified

version of the product still does what the previous version did—and still does it correctly

(regression testing)—but that it also satisfies any new requirements imposed by the

client.

 The feedback loops permits modifications to be made to design documents, the software

project management plan, and even the specification document, if necessary.

 The specification document, design document , code document and other documents

such as database manual, user manual and operational manual are essential tool for

maintaining the product.

Advantage

 Easy to understand and implement.

 Widely used and known

 Reinforces good habits: define-before- design, design-before-code

 Identifies deliverables and milestones

 Document driven

 Maintenance is easier

Disadvantage

 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of

changing.

 Delivered product may not meet client needs

Evolutionary Software Process Models

 Evolutionary models are iterative. They are characterized in a manner that enables

software engineers to develop increasingly more complete versions of the software

Incremental Model

 Software is constructed step by step , in the same way that a building is constructed

 Incremental model in software engineering is a one which combines the elements of

waterfall model which are then applied in an iterative manner. It basically delivers a

series of releases called increments which provide progressively more functionality for

the client as each increment is delivered.

 In incremental model of software engineering, waterfall model is repeatedly applied in

each increment. The incremental model applies linear sequences in a required pattern as

calendar time passes. Each linear sequence produces an increment in the work.

 When an incremental model is used, the first increment is often a core product. That is,

basic requirements are addressed, but many supplementary features (some known, others

unknown) remain undelivered.

 The core product is used by the customer (or undergoes detailed review). As a result of

use and/or evaluation, a plan is developed for the next increment. The plan addresses the

modification of the core product to better meet the needs of the customer and the delivery

of additional features and functionality.

http://www.technotrice.com/what-is-waterfall-model-software-engineering/

Fig.1.3. Incremental Life Cycle model

Advantages Of Incremental Model

 Initial product delivery is faster.

 Lower initial delivery cost.

 Core product is developed first i.e main functionality is added in the first increment.

 After each iteration, regression testing should be conducted. During this testing, faulty

elements of the software can be quickly identified because few changes are made within

any single iteration.

 It is generally easier to test and debug than other methods of software development

because relatively smaller changes are made during each iteration. This allows for more

targeted and rigorous testing of each element within the overall product.

 With each release a new feature is added to the product.

 Customer can respond to feature and review the product.

 Risk of changing requirement is reduced

 Work load is less.

Disadvantages Of Incremental Model

 Needs good planning and design.

 Needs a clear and complete definition of the whole system before it can be broken down

and built incrementally.

 Total cost is higher than waterfall.

http://en.wikipedia.org/wiki/Regression_testing
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/

 Mostly such model is used in web applications and product based companie

Spiral Model

 An element of risk is always involved in the development of software.

 For example, key personnel can resign before the product has been adequately

documented. Too much, or too little, can be invested in testing and quality assurance.

After spending hundreds of thousands of dollars on developing a major software product,

technological breakthroughs can render the entire product worthless.

 An organization may research and develop a database management system, but before the

product can be marketed, a lower-priced, functionally equivalent package is announced

by a competitor.

 For obvious reasons, software developers try to minimize such risks wherever possible.

One way of minimizing certain types of risk is to construct a prototype.

 The idea of minimizing risk via the use of prototypes and other means is the idea

underlying the spiral life-cycle model. A simplified way of looking at this lifecycle model

is as a waterfall model with each phase preceded by risk analysis.

Fig.1.4. A simplified version of the spiral life-cycle model.

Fig.1.5.Full spiral life-cycle model

 In full spiral model the radial dimension represents cumulative cost to date, and the

angular dimension represents progress through the spiral.

 Each cycle of the spiral corresponds to a phase. A phase begins (in the top left quadrant)

by determining objectives of that phase, alternatives for achieving those objectives, and

constraints imposed on those alternatives. This process results in a strategy for achieving

those objectives.

 Attempts are made to mitigate every potential risk, in some cases by building a prototype.

 If certain risks cannot be mitigated, the project may be terminated immediately; under

some circumstances, however, a decision could be made to continue the project but on a

significantly smaller scale.

 If all risks are successfully mitigated, the next development step is started (bottom right

quadrant). This quadrant of the spiral model corresponds to the classical waterfall model.

Finally, the results of that phase are evaluated and the next phase is planned.

Advantages of Spiral model

 High amount of risk analysis hence, avoidance of Risk is enhanced.

 Good for large and mission-critical projects.

 Strong approval and documentation control.

 Additional Functionality can be added at a later date.

 Software is produced early in the software life cycle.

 Project estimates in terms of schedule, cost etc become more and more realistic as the

project moves forward and loops in spiral get completed.

 It is suitable for high risk projects, where business needs may be unstable.

 A highly customized product can be developed using this.

Disadvantages of Spiral model

 Can be a costly model to use.

 Risk analysis requires highly specific expertise.

 Project’s success is highly dependent on the risk analysis phase.

 Doesn’t work well for smaller projects.

 It is not suitable for low risk projects.

 May be hard to define objective, verifiable milestones.

 Spiral may continue indefinitely.

Rapid-Prototyping Life-Cycle Model

 A rapid prototype is a working model that is functionally equivalent to a subset of the

product. For example, if the target product is to handle accounts payable, accounts

receivable, and warehousing, then the rapid prototype might consist of a product that

performs the screen handling for data capture and prints the reports, but does no file

updating or error handling.

 The first step in the rapid-prototyping life-cycle model is to build a rapid prototype and

let the client and future users interact and experiment with the rapid prototype. Once the

client is satisfi ed that the rapid prototype indeed does most of what is required, the

developers can draw up the specification document with some assurance that the product

meets the client’s real needs.

Fig.1.6.The rapidprototyping life cycle model

 A major strength of the rapid-prototyping model is that the development of the product is

essentially linear, proceeding from the rapid prototype to the delivered product; the

feedback loops of the waterfall model are less likely to be needed in the rapid-prototyping

model.

Advantages

 Provides a working model to the user early in the process , enabling early assessment and

increasing user confidence.

 The developer gains experience and insight by developing a prototype , thereby resulting

in better implementation of requirements.

 Helps in reducing risks associated with the project.

 The prototyping model serves to clarify requirements , which are not clear , hence

reducing ambiguity and improving communication between the developer and the user.

 There is a great involvement of users in software development . Hence , the requirement

of the users are met to the greatest extent.

Disadvantages

 If the user is not satisfied with the developed prototype, then a new prototype is

developed . This process goes on until a perfect prototype evolves . Thus , this model is

time consuming and expensive.

 The developer loses focus of the real purpose of prototype and compromises on the

quality of the product . For example , he may apply some of the inefficient algorithms or

inappropriate programming languages used in developing the prototype .

 Prototyping can lead to false expectations. It often creates a situation where the user

belives that the development of the system is finished when it is not.

 The primary goal of prototyping is rapid development. Thus , the design of the system

may suffer as it is built in a series of layers without considering integration of all the

other components.

Object-Oriented Life-Cycle Models

 Need for iteration within and between phases

 Fountain model

 Unified software development process

• All incorporate some form of

 Iteration

 Parallelism

 Incremental development
Fountain Model

Fig.1.7.Fountain Model

 Objetct oriented life cycle model have been proposed that explicitily reflect the need for

iteration

 The circles representing the various phases overlap,explicitly reflecting an overlap

between activities.

 The arrows within a phase represent iteration within that phase.

 The maintenance circle is smaller , to symbolize reduce maintenance effort when the

object oriented paradigm is used.

Advantages

 Support Iteration within phases

 Parallelism between phases

 Disadvantages

 It may be degraded in to CABTAB(code-a-bit test-a-bit) which reuires frequent itreation

and refinements

Unified Process

 Unified process is a framework for OO software engineering using UML (Unified

Modeling Language)

 Unified process (UP) is an attempt to draw on the best features and characteristics of

conventional software process models, but characterize them in a way that implements

many of the best principles of agile software development

Inception phase

 Encompasses the customer communication and planning activities

 Rough architecture, plan, preliminary use-cases

Elaboration phase
 Encompasses the customer communication and modeling activities

 Refines and expands preliminary use-cases

 Expands architectural representation to include: use-case model, analysis model,

design model, implementation model, and deployment model

 The plan is carefully reviewed and modified if needed

Construction phase
 Analysis and design models are completed to reflect the final version of the

software increment

 Using the architectural model as an input develop or acquire the software

components, unit tests are designed and executed, integration activities are

conducted

 Use-cases are used to derive acceptance tests

Transition phase

 Software is given to end-users for beta testing

 User report both defects and necessary changes

 Support information is created (e.g., user manuals, installation procedures)

 Software increment becomes usable software release

 • Production phase
 Software use is monitored

 Defect reports and requests for changes are submitted and evaluated

Fig.1.8. Unified Process Model

UNIFIED PROCESS WORK PRODUCTS

• Tasks which are required to be completed during different phases

• Inception Phase

 Vision document

 Initial Use-Case model

 Initial Risk assessment

 Project Plan

• Elaboration Phase

 Use-Case model

 Analysis model

 Software Architecture description

 Preliminary design model

 • Construction Phase

 Design model

 System components

 Test plan and procedure

 Test cases

 Manual

 • Transition Phase

 Delivered software increment

 Beta test results

 General user feedback

Verification and Validation

 Validation: Are we building the right system?

 Verification: Are we building the system right?

 validation is concerned with checking that the system will meet the customer’s actual

needs, verification is concerned with whether the system is well-engineered, error-free,

and so on.

 Verification will help to determine whether the software is of high quality, but it will not

ensure that the system is useful.

 The distinction between the two terms is largely to do with the role of specifications.

Validation is the process of checking whether the specification captures the customer’s

needs, while verification is the process of checking that the software meets the

specification.

 Verification includes all the activities associated with the producing high quality

software: testing, inspection, design analysis, specification analysis, and so on.

 Validation includes activities such as requirements modelling, prototyping and user

evaluation.

 In a traditional phased software lifecycle, verification is often taken to mean checking

that the products of each phase satisfy the requirements of the previous phase.

 Validation is relegated to just the begining and ending of the project: requirements

analysis and acceptance testing. This view is common in many software engineering

textbooks, and is misguided. It assumes that the customer’s requirements can be captured

completely at the start of a project, and that those requirements will not change while the

software is being developed. In practice, the requirements change throughout a project,

partly in reaction to the project itself: the development of new software makes new things

possible. Therefore both validation and verification are needed throughout the lifecycle.

SOFTWARE PROJECT MANAGEMENT

 Effective software project management focuses on the four P’s: people, product,

process, and project.

The People

The “people factor” is so important that the Software Engineering Institute has developed

a people management capability maturity model (PM-CMM), “to enhance the readiness

of software organizations to undertake increasingly complex applications by helping to

attract, grow, motivate, deploy, and retain the talent needed to improve their software

development capability”.

The people management maturity model defines the following key practice areas for

software people: recruiting, selection, performance management, training, compensation,

career development, organization and work design, and team/culture development.

The Product

Before a project can be planned, product objectives and scope should be established,

alternative solutions should be considered, and technical and management constraints

should be identified.

The software developer and customer must meet to define product objectives and scope.

Objectives identify the overall goals for the product (from the customer’s point of view)

without considering how these goals will be achieved. Scope identifies the primary data,

functions and behaviors that characterize the product, and more important, attempts to

bound these characteristics in a quantitative manner.

Once the product objectives and scope are understood, alternative solutions are

considered.

The Process

A software process provides the framework from which a comprehensive plan for

software development can be established. A small number of framework activities are

applicable to all software projects, regardless of their size or complexity. A number of

different task sets—tasks, milestones, work products, and quality assurance points—

enable the framework activities to be adapted to the characteristics of the software project

and the requirements of the project team. Finally, umbrella activities—such as software

quality assurance, software configuration management,and measurement—overlay the

process model. Umbrella activities are independent of any one framework activity and

occur throughout the process.

The Project

We conduct planned and controlled software projects for one primary reason—it is the

only known way to manage complexity. In order to avoid project failure, a software

project manager and the software engineers who build the product must avoid a set of

common warning signs, understand the critical success factors that lead to good project

management, and develop a commonsense approach for planning, monitoring and

controlling the project.

People

we examine the players who participate in the software process and the manner in which

they are organized to perform effective software engineering.

The Players

The software process (and every software project) is populated by players who can be

categorized into one of five constituencies:

1. Senior managers who define the business issues that often have significant influence

on the project.

2. Project (technical) managers who must plan, motivate, organize, and control the

practitioners who do software work.

3. Practitioners who deliver the technical skills that are necessary to engineer a product or

application.

4. Customers who specify the requirements for the software to be engineered and other

stakeholders who have a peripheral interest in the outcome.

5. End-users who interact with the software once it is released for production use.

Team Leaders

Project management is a people-intensive activity, and for this reason, competent

practitioners often make poor team leaders.

In an excellent book of technical leadership, Jerry Weinberg suggests a MOI model of

leadership:

Motivation. The ability to encourage technical people to produce to their best ability.

Organization. The ability to mold existing processes (or invent new ones) that will

enable the initial concept to be translated into a final product.

Ideas or innovation. The ability to encourage people to create and feel creative even

when they must work within bounds established for a particular software product or

application.

Weinberg suggests that successful project leaders apply a problem solving management

style. That is, a software project manager should concentrate on understanding the

problem to be solved, managing the flow of ideas, and at the same time, letting everyone

on the team know that quality counts and that it will not be compromised.

Another view of the characteristics that define an effective project manager emphasizes

four key traits:

Problem solving. An effective software project manager can diagnose the technical and

organizational issues that are most relevant, systematically structure a solution or

properly motivate other practitioners to develop the solution, apply lessons learned from

past projects to new situations, and remain flexible enough to change direction if initial

attempts at problem solution are fruitless.

Managerial identity. A good project manager must take charge of the project. She must

have the confidence to assume control when necessary and the assurance to allow good

technical people to follow their instincts.

Achievement. To optimize the productivity of a project team, a manager must reward

initiative and accomplishment and demonstrate through his own actions that controlled

risk taking will not be punished.

Influence and team building. An effective project manager must be able to “read”

people; she must be able to understand verbal and nonverbal signals and react to the

needs of the people sending these signals. The manager must remain under control in

high-stress situations.

The Software Team

The “best” team structure depends on the management style of your organization,the

number of people who will populate the team and their skill levels, and the overall

problem difficulty.

Mantei describes seven project factors that should be considered when planning the

structure of software engineering teams:

• The difficulty of the problem to be solved.

• The size of the resultant program(s) in lines of code or function points

• The time that the team will stay together (team lifetime).

• The degree to which the problem can be modularized.

• The required quality and reliability of the system to be built.

• The rigidity of the delivery date.

• The degree of sociability (communication) required for the project

To achieve a high-performance team:

• Team members must have trust in one another.

• The distribution of skills must be appropriate to the problem.

• Mavericks may have to be excluded from the team, if team cohesiveness is to be

maintained.

Coordination and Communication Issues

Kraul and Streeter examine a collection of project coordination techniques that are

categorized in the following manner:

Formal, impersonal approaches include software engineering documents and

deliverables (including source code), technical memos, project milestones, schedules, and

project control tools, change requests and related documentation, error tracking reports,

and repository data .

Formal, interpersonal procedures focus on quality assurance activities applied to

software engineering work products. These include status review meetings and design

and code inspections.

Informal, interpersonal procedures include group meetings for information

dissemination and problem solving and “collocation of requirements and development

staff.”

 Electronic communication encompasses electronic mail, electronic bulletin boards,

and by extension, video-based conferencing systems.

Interpersonal networking includes informal discussions with team members and those

outside the project who may have experience or insight that can assist team members.

THE PRODUCT

Software Scope

The first software project management activity is the determination of software scope.

Scope is defined by answering the following questions:

Context. How does the software to be built fit into a larger system, product, or business

context and what constraints are imposed as a result of the context?

Information objectives. What customer-visible data objects are produced as output from

the software? What data objects are required for input?

Function and performance. What function does the software perform to transform input

data into output? Are any special performance characteristics to be addressed?

Problem Decomposition

Problem decomposition, sometimes called partitioning or problem elaboration, is an

activity that sits at the core of software requirements analysis. During the scoping activity

no attempt is made to fully decompose the problem. Rather,decomposition is applied in

two major areas: (1) the functionality that must be delivered and (2) the process that will

be used to deliver it.

THE PROCESS

The problem is to select the process model that is appropriate for the software to be

engineered by a project team. software engineering paradigms are

• the linear sequential model

• the prototyping model

• the RAD model

• the incremental model

• the spiral model

• the WINWIN spiral model

• the component-based development model

• the concurrent development model

• the formal methods model

• the fourth generation techniques model

Melding the Product and the Process

Project planning begins with the melding of the product and the process. Each function to

be engineered by the software team must pass through the set of framework activities that

have been defined for a software organization. Assume that the organization has adopted

the following set of framework activities

• Customer communication—tasks required to establish effective requirements

elicitation between developer and customer.

• Planning—tasks required to define resources, timelines, and other projectrelated

information.

• Risk analysis—tasks required to assess both technical and management risks.

• Engineering—tasks required to build one or more representations of the application.

• Construction and release—tasks required to construct, test, install, and provide user

support (e.g., documentation and training).

• Customer evaluation—tasks required to obtain customer feedback based on evaluation

of the software representations created during the engineering activity and implemented

during the construction activity.

Process Decomposition

Process decomposition commences when the project manager asks, “How do we

accomplish this common process framework(CPF) activity?” For example, a

small,relatively simple project might require the following work tasks for the customer

communication activity:

1. Develop list of clarification issues.

2. Meet with customer to address clarification issues.

3. Jointly develop a statement of scope.

4. Review the statement of scope with all concerned.

5. Modify the statement of scope as required.

Now, we consider a more complex project, which has a broader scope and more

significant business impact. Such a project might require the following work tasks for the

customer communication activity:

1. Review the customer request.

2. Plan and schedule a formal, facilitated meeting with the customer.

3. Conduct research to specify the proposed solution and existing approaches.

4. Prepare a “working document” and an agenda for the formal meeting.

5. Conduct the meeting.

6. Jointly develop mini-specs that reflect data, function, and behavioral features

of the software.

7. Review each mini-spec for correctness, consistency, and lack of ambiguity.

8. Assemble the mini-specs into a scoping document.

9. Review the scoping document with all concerned.

10. Modify the scoping document as required.

THE PROJECT

In order to manage a successful software project, we must understand what can go wrong

(so that problems can be avoided) and how to do it right. John Reel defines ten signs that

indicate that an information systems project is in jeopardy:

1. Software people don’t understand their customer’s needs.

2. The product scope is poorly defined.

3. Changes are managed poorly.

4.The chosen technology changes.

5. Business needs change [or are ill-defined].

6. Deadlines are unrealistic.

7. Users are resistant.

8. Sponsorship is lost [or was never properly obtained].

9. The project team lacks people with appropriate skills.

10. Managers [and practitioners] avoid best practices and lessons learned

But enough negativity! How does a manager act to avoid the problems just noted?

Reel suggests a five-part commonsense approach to software projects:

1. Start on the right foot. This is accomplished by working hard (very hard) to

understand the problem that is to be solved . It is reinforced by building the right team

and giving the team the autonomy, authority, and technology needed to do the job.

2. Maintain momentum. Many projects get off to a good start and then slowly

disintegrate. To maintain momentum, the project manager must provide incentives to

keep turnover of personnel to an absolute minimum, the team should emphasize quality

in every task it performs.

3. Track progress. For a software project, progress is tracked as work products (e.g.,

specifications, source code, sets of test cases) are produced and approved (using formal

technical reviews) as part of a quality assurance activity.

4.Make smart decisions. In essence, the decisions of the project manager and the

software team should be to “keep it simple.”

5. Conduct a postmortem analysis. Establish a consistent mechanism for extracting

lessons learned for each project. Evaluate the planned and actual schedules, collect and

analyze software project metrics, get feedback from team members and customers, and

record findings in written form.

SOFTWARE PROJECT PLANNING

Software Project Planning atually encompasses planning involves estimation—your

attempt to determine how much money, how much effort, how many resources, and how

much time it will take to build a specific software-based system or product.

PROJECT PLANNING OBJECTIVES

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of resources, cost, and schedule. These estimates

are made within a limited time frame at the beginning of a software project and should be

updated regularly as the project progresses.

SOFTWARE SCOPE

The first activity in software project planning is the determination of software scope. A

statement of software scope must be bounded.Software scope describes the data and

control to be processed, function, performance, constraints, interfaces, and reliability.

Functions described in the statement of scope are evaluated and in some cases refined to

provide more detail prior to the beginning of estimation. Because both cost and schedule

estimates are functionally oriented, some degree of decomposition is often useful.

Obtaining Information Necessary for Scope

The most commonly used technique to bridge the communication gap between the

customer and developer and to get the communication process started is to conduct a

preliminary meeting or interview.Gause and Weinberg suggest that the analyst start by

asking context-free questions; that is, a set of questions that will lead to a basic

understanding of the problem,For example, the analyst might ask:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution?

The next set of questions enables the analyst to gain a better understanding of the

problem and the customer to voice any perceptions about a solution:

• How would you (the customer) characterize "good" output that would be

generated by a successful solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the environment in which the solution will be

used?

• Will any special performance issues or constraints affect the way the solution

is approached?

The final set of questions focuses on the effectiveness of the meeting. Gause and

Weinberg call these "meta-questions" and propose the following (abbreviated) list:

• Are you the right person to answer these questions? Are answers "official"?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

Feasibility

Once scope has been identified (with the concurrence of the customer), it is reasonable

to ask: “Can we build software to meet this scope? Is the project feasible?”

A feasibility study decides whether or not the proposed system is worthwhile

•A short focused study that checks

•If the system contributes to organisational objectives;

•If the system can be engineered using current technology and within budget;

•If the system can be integrated with other systems that are used.

•In a feasibility study we need to concentrate our attention on four primary areas of

interest:

1.Economic feasibility. An evaluation of development cost weighed against the ultimate

income or benefit derived from the developed system or product.

2.Technical feasibility. A study of function, performance, and constraints that may affect

the ability to achieve an acceptable system.

3.Legal feasibility. A determination of any infringements, violation, or liability that could

result from development of the system.

4.Alternatives. An evaluation of alternative approaches to the development of the system

or product.

A Scoping Example

As an example, consider

software for a conveyor line sorting system (CLSS). The statement of scope for CLSS

follows:

The conveyor line sorting system (CLSS) sorts boxes moving along a conveyor line.

Each box is identified by a bar code that contains a part number and is sorted into one of

six bins at the end of the line. The boxes pass by a sorting station that contains a bar code

reader and a PC. The sorting station PC is connected to a shunting mechanism that sorts

the boxes into the bins. Boxes pass in random order and are evenly spaced. The line is

moving at five feet per minute. CLSS is depicted schematically in Figure.

CLSS software receives input information from a bar code reader at time intervals that

conform to the conveyor line speed. Bar code data will be decoded into box identification

format. The software will do a look-up in a part number database containing a maximum

of 1000 entries to determine proper bin location for the box currently at the reader

(sorting station). The proper bin location is passed to a sorting shunt that will position

boxes in the appropriate bin. A record of the bin destination for each box will be

maintained for later recovery and reporting. CLSS software will also receive input from a

pulse tachometer that will be used to synchronize the control signal to the shunting

mechanism. Based on the number of pulses generated between the sorting station and the

shunt, the software will produce a control signal to the shunt to properly position the box.

Fig.1.9. Conveyor Line Sorting System (CLSS)

The project planner examines the statement of scope and extracts all important software

functions. This process, called decompositionresults in the following functions:4

• Read bar code input.

• Read pulse tachometer.

• Decode part code data.

• Do database look-up.

• Determine bin location.

• Produce control signal for shunt.

• Maintain record of box destinations.

Resources

The second software planning task is estimation of the resources required to accomplish

the software development effort.

Fig.1.10.Project Resources

Human Resources

The planner begins by evaluating scope and selecting the skills required to complete

development. Both organizational position (e.g., manager, senior software engineer) and

specialty (e.g., telecommunications, database, client/server) are specified. The number of people

required for a software project can be determined only after an estimate of development effort

(e.g., person-months) is made.

Reusable Software Resources

Component-based software engineering emphasizes reusability—that is, the creation and reuse

of software building blocks. Such building blocks, often called components, must be cataloged

for easy reference, standardized for easy application, and validated for easy integration.

Bennatan suggests four software resource categories that should be considered as planning

proceeds:

Off-the-shelf components. Existing software that can be acquired from a third party or that has

been developed internally for a past project. are purchased from a third party, are ready for use

on the current project, and have been fully validated.

Full-experience components. Existing specifications, designs, code, or test data developed for

past projects that are similar to the software to be built for the current project. Members of the

current software team have had full experience in the application area represented by these

components.

Partial-experience components. Existing specifications, designs, code, or test data developed

for past projects that are related to the software to be built for the current project but will require

substantial modification. Members of the current software team have only limited experience in

the application area represented by these components.

New components. Software omponents that must be built by the software team specifically for

the needs of the current project.

Environmental Resources

The environment that supports the software project, often called the software engineering

environment (SEE), incorporates hardware and software. Hardware provides a platform that

supports the tools (software) required to produce the work products that are an outcome of good

software engineering practice

SOFTWARE COST ESTIMATION

Predicting the resources required for a software development process.

Fundamental estimation questions

a) How much effort is required to complete an activity?

b) How much calendar time is needed to complete an activity?

c) What is the total cost of an activity?

d) Project estimation and scheduling are interleaved management activities.

The cost in a project is due to:

a. due the requirements for software, hardware and human resources

b. the cost of software development is due to the human resources needed

c. most cost estimates are measured in person-months (PM)

Software cost components

▪ Hardware and software costs

▪ Travel and training costs

▪ Effort costs (the dominant factor in most projects)

 salaries of engineers involved in the project

 Social and insurance costs

▪ Effort costs must take overheads into account

 costs of building, heating, lighting

 costs of networking and communications

 costs of shared facilities (e.g library, staff restaurant, etc.)

Costing and pricing

▪ Estimates are made to discover the cost, to the developer, of producing a software system

▪ There is not a simple relationship between the development cost and the price charged to the

customer

▪ Broader organisational, economic, political and business considerations influence the price

charged

Programmer productivity

▪ A measure of the rate at which individual engineers involved in software development produce

software and associated documentation.

▪ Not quality-oriented although quality assurance is a factor in productivity assessment

▪ Essentially, we want to measure useful functionality produced per time unit Productivity

measures

▪ Size related measures based on some output from the software process. This may be lines of

delivered source code, object code instructions, etc.

▪ Function-related measures based on an estimate of the functionality of the delivered software.

Function-points are the best known of this type of measure

Measurement problems

▪ Estimating the size of the measure

▪ Estimating the total number of programmer months which have elapsed

▪ Estimating contractor productivity (e.g. documentation team) and incorporating this estimate in

overall estimate

Lines of code

▪ What's a line of code?

o The measure was first proposed when programs were typed on cards with one line per card

o How does this correspond to statements as in Java which can span several lines or where there

can be several statements on one line

▪ What programs should be counted as part of the system?

▪ Assumes linear relationship between system size and volume of documentation

Function points

▪ Based on a combination of program characteristics

 external inputs and outputs

 user interactions

 external interfaces

 files used by the system

▪ A weight is associated with each of these

The function point count is computed by multiplying each raw count by the weight and summing

all values

Object points

▪ Object points are an alternative function-related measure to function points

▪ Object points are NOT the same as object classes

▪ The number of object points in a program is a weighted estimate of

 The number of separate screens that are displayed

 The number of reports that are produced by the system

 The number of modules that must be developed

Productivity estimates

▪ Real-time embedded systems, 40-160 LOC/P-month

▪ Systems programs , 150-400 LOC/P-month

▪ Commercial applications, 200-800 LOC/P-month

▪ In object points, productivity has been measured between 4 and 50 object points/month

depending on tool support and developer capability

Quality and productivity

▪ All metrics based on volume/unit time are flawed because they do not take quality into account

▪ Productivity may generally be increased at the cost of quality

▪ It is not clear how productivity/quality metrics are related

▪ If change is constant then an approach based on counting lines of code is not meaningful

Estimation techniques

▪ There is no simple way to make an accurate estimate of the effort required to develop a

software system

 Initial estimates are based on inadequate information in a user requirements definition

 The software may run on unfamiliar computers or use new technology

 The people in the project may be unknown

Project cost estimates may be self-fulfilling

 The estimate defines the budget and the product is adjusted to meet the budget

▪ Algorithmic cost modelling

▪ Expert judgement

▪ Estimation by analogy

▪ Parkinson's Law

▪ Pricing to win

Algorithmic code modelling

A formulaic approach based on historical cost information and which is generally based on the

size of the software

Expert judgement

▪ One or more experts in both software development and the application domain use their

experience to predict software costs. Process iterates until some consensus is reached.

▪ Advantages: Relatively cheap estimation method. Can be accurate if experts have direct

experience of similar systems

▪ Disadvantages: Very inaccurate if there are no experts!

Estimation by analogy

▪ The cost of a project is computed by comparing the project to a similar project in the same

application domain

▪ Advantages: Accurate if project data available

▪ Disadvantages: Impossible if no comparable project has been tackled. Needs systematically

maintained cost database

Parkinson's Law

▪ The project costs whatever resources are available

▪ Advantages: No overspend

▪ Disadvantages: System is usually unfinished

▪ PL states that work expands to fill the time available. The cost is determined by available

resources rather than by objective statement.

▪ Example: Project should be delivered in 12 months and 5 people are available.

Effort = 60 p/m

Pricing to win

▪ The project costs whatever the customer has to spend on it

▪ Advantages: You get the contract

▪ Disadvantages: The probability that the customer gets the system he or she wants is small.

Costs do not accurately reflect the work required

Top-down and bottom-up estimation

▪ Any of these approaches may be used top-down or bottom-up.

▪ Top-down

 Start at the system level and assess the overall system functionality and how this is

delivered through sub-systems.

▪ Bottom-up

 Start at the component level and estimate the effort required for each component. Add

these efforts to reach a final estimate.

Top-down estimation

▪ Usable without knowledge of the system architecture and the components that might be part of

the system.

▪ Takes into account costs such as integration, configuration management and documentation.

▪ Can underestimate the cost of solving difficult low-level technical problems.

Bottom-up estimation

▪ Usable when the architecture of the system is known and components identified.

▪ This can be an accurate method if the system has been designed in detail.

▪ It may underestimate the costs of system level activities such as integration and documentation.

The COCOMO model

• The COstructive COst Model (COCOMO) is the most widely used software estimation model

in the world. It

• The COCOMO model predicts the effort and duration of a project based on inputs relating to

the size of the resulting systems and a number of "cost drives" that affect productivity.

▪ An empirical model based on project experience.

▪ Well-documented, ‘independent’ model which is not tied to a specific software vendor.

▪ Long history from initial version published in 1981 (COCOMO-81) through various

instantiations to COCOMO 2.

▪ COCOMO 2 takes into account different approaches to software development, reuse, etc.

Effort

• Effort Equation

– PM = C * (KDSI)n (person-months)

• where PM = number of person-month (=152 working hours),

C = a constant,

• KDSI = thousands of "delivered source instructions" (DSI) and

• n = a constant.

Productivity

• Productivity equation

– (DSI) / (PM)

• where PM = number of person-month (=152 working hours),

• DSI = "delivered source instructions"

Schedule

• Schedule equation

– TDEV = C * (PM)n (months)

• where TDEV = number of months estimated for software development.

Average Staffing

• Average Staffing Equation

– (PM) / (TDEV) (FSP)

• where FSP means Full-time-equivalent Software Personnel.

COCOMO Models

• COCOMO is defined in terms of three different models:

– the Basic model,

– the Intermediate model, and

– the Detailed model.

• The more complex models account for more factors that influence software projects, and make

more accurate estimates.

The Development mode

• the most important factors contributing to a project's duration and cost is the Development

Mode

• Organic Mode: The project is developed in a familiar, stable environment, and the product is

similar to previously developed products. The product is relatively small, and requires little

innovation.

• Semidetached Mode: The project's characteristics are intermediate between Organic and

Embedded.

• Embedded Mode: The project is characterized by tight, inflexible constraints and interface

requirements. An embedded mode project will require a great deal of innovation.

Cost Estimation Process

Cost=SizeOfTheProject x Productivity

Fig.1.11.Estimation Process

Project Size – Metrics

1. Number of functional requirements

2. Cumulative number of functional and non-functional requirements

3. Number of Customer Test Cases

4. Number of ‘typical sized’ use cases

5. Number of inquiries

6. Number of files accessed (external, internal, master)

7. Total number of components (subsystems, modules, procedures, routines, classes, methods)

8. Total number of interfaces

9. Number of System Integration Test Cases

10. Number of input and output parameters (summed over each interface)

11. Number of Designer Unit Test Cases

12. Number of decisions (if, case statements) summed over each routine or method

13. Lines of Code, summed over each routine or method

Table 1.1. Availability of Size Estimation Metrics

Function Points

STEP 1: measure size in terms of the amount of functionality in a system. Function points are

computed by first calculating an unadjusted function point count (UFC). Counts are made for the

following categories

– External inputs – those items provided by the user that describe distinct application-oriented

data (such as file names and menu selections)

– External outputs – those items provided to the user that generate distinct application-oriented

data (such as reports and messages, rather than the individual components of these)

– External inquiries – interactive inputs requiring a response

– External files – machine-readable interfaces to other systems

– Internal files – logical master files in the system

STEP 2: Multiply each number by a weight factor, according to complexity (simple, average or

complex) of the parameter, associated with that number. The value is given by a table:

Table.1.2. Parameters and Complexity

STEP 3: Calculate the total UFP (Unadjusted Function Points)

STEP 4: Calculate the total TCF (Technical Complexity Factor) by giving a value between 0 and

5 according to the importance of the following points:

Technical Complexity Factors:

1. Data Communication

2. Distributed Data Processing

3. Performance Criteria

4. Heavily Utilized Hardware

5. High Transaction Rates

6. Online Data Entry

7. Online Updating

8. End-user Efficiency

9. Complex Computations

10. Reusability

11.Ease of Installation

12. Ease of Operation

13. Portability

14. Maintainability

STEP 5: Sum the resulting numbers too obtain DI (degree of influence)

STEP 6: TCF (Technical Complexity Factor) by given by the formula

– TCF=0.65+0.01*DI

STEP 6: Function Points are by given by the formula

– FP=UFP*TCF

COCOMO 1

Table.1.3. COCOMO 1

COCOMO 2

COCOMO 81 was developed with the assumption that a waterfall process would be used

and that all software would be developed from scratch.

▪Since its formulation, there have been many changes in software engineering practice and

COCOMO 2 is designed to accommodate different approaches to software development.

▪COCOMO 2 incorporates a range of sub-models that produce increasingly detailed software

estimates.

 ▪The sub-models in COCOMO 2 are:

o Application composition model. Used when software is composed from existing

parts.

o Early design model. Used when requirements are available but design has not yet

started.

o Reuse model. Used to compute the effort of integrating reusable components.

Post-architecture model. Used once the system architecture has been designed and

more information about the system is available.

Application composition model

▪ Supports prototyping projects and projects where there is extensive reuse.

▪ Based on standard estimates of developer productivity in application (object) points/month.

▪ Takes CASE tool use into account.

▪ Formula is

 PM = (NAP ´ (1 - %reuse/100)) / PROD

 PM is the effort in person-months, NAP is the number of application points and PROD is

the productivity.

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-II- SOFTWARE ENGINEERING– SBS1204

SBS1204 - SOFTWARE ENGINEERING

UNIT 2

Introduction – The software requirement specifications – Formal specification techniques –

Languages and processors for requirements specification : SDAT, SSA, GIST, PSL/PSA,

REL/REVS- Software prototyping – rapid prototyping techniques- user interface prototyping-

Analysis and modeling – data, functional and behavioral models – Structured analysis and

data dictionary.

REQUIREMENTS ENGINEERING TASKS

 Requirements engineering provides the appropriate mechanism for understanding

what the customer wants, analyzing need, assessing feasibility, negotiating a

reasonable solution, specifying the solution unambiguously, validating the

specification,and managing the requirements as they are transformed into an

operational system

 The Reuirement enginering process is accomplished through the execution of seven

distinct functions

Inception,Elicitation,Elaboration,Negotation,Specification,Validation and

Management

 Inception

• How does a software project get started?

• At project inception, you establish a basic understanding of the problem, the people

who want a solution, the nature of the solution that is desired, and the effectiveness of

preliminary communication and collaboration between the other stakeholders and the

software team.

Elicitation.

• Ask the customer, the users, and others what the objectives for the system or product

are, what is to be accomplished, how the system or product fits into the needs of the

business, and finally, how the system or product is to be used on a day-to-day basis.

 Problems of scope. The boundary of the system is ill-defined or the

customers/users specify unnecessary technical detail that may confuse, rather

than clarify, overall system objectives

 Problems of understanding. The customers/users are not completely sure of

what is needed, have a poor understanding of the capabilities and limitations

of their computing environment, don’t have a full understanding of the

problem domain, have trouble communicating needs to the system engineer.

 Problems of volatility. The requirements change over time.

Elaboration

• The information obtained from the customer during inception and elicitation is

expanded and refined during elaboration.

• This task focuses on developing a refined requirements model that identifies various

aspects of software function, behavior, and information.

Negotiation

• It isn’t unusual for customers and users to ask for more than can be achieved, given

limited business resources.

• It’s also relatively common for different customers or users to propose conflicting

requirements, arguing that their version is “essential for our special needs.”

• You have to reconcile these conflicts through a process of negotiation.

• Using an iterative approach that prioritizes requirements, assesses their cost and risk,

and addresses internal conflicts, requirements are eliminated, combined, and/or

modified so that each party achieves some measure of satisfaction

Specification

• A specification can be a written document, a set of graphical models, a formal

mathematical model, a collection of usage scenarios, a prototype, or any combination

of these.

• The specification is the final work product produced by the reuirement engineer.

Validation

• Requirements validation examines the specification to ensure that all software

requirements have been stated unambiguously; that inconsistencies, omissions, and

errors have been detected and corrected; and that the work products conform to the

standards established for the process, the project, and the product.

• The primary requirements validation mechanism is the formal technical review

Requirements management

• Requirements management is a set of activities that help the project team identify,

control, and track requirements and changes to requirements at any time as the project

proceeds

• Once requirements have been identified, traceability tables are developed Among

many possible traceability tables are the following:

Features traceability table. Shows how requirements relate to important customer

observable system/product features.

Source traceability table. Identifies the source of each requirement.

Dependency traceability table. Indicates how requirements are related to one

another.

Subsystem traceability table. Categorizes requirements by the subsystem(s)

that they govern.

Interface traceability table.Shows how requirements relate to both internaland

external system interfaces.

REQUIREMENTS ANALYSIS

 Requirements analysis is a software engineering task that bridges the gap

betweensystem level requirements engineering and software design

 Requirements engineering activities result in the specification of software’s

operational characteristics, indicate software's interface with other system elements,

and establish constraints that software must meet.

 Requirements analysis allows the software engineer (sometimes called analyst in this

role) to refine the software allocation and build models of the data, functional, and

behavioral domains that will be treated by software.

 Requirements analysis provides the software designer with a representation of

information, function, and behavior that can be translated to data, architectural,

interface, and component-level designs.

 Finally,the requirements specification provides the developer and the customer with

the means to assess quality once software is built.

Fig.2.1. Analysis as a bridge between system engineering and software design

REQUIREMENTS ELICITATION FOR SOFTWARE

 Before requirements can be analyzed, modeled, or specified they must be gathered

through an elicitation process.

Initiating the Process

 The most commonly used requirements elicitation technique is to conduct a meeting

or interview.

 The analyst start by asking context-free questions. For example, the analyst

might ask:

 Who is behind the request for this work?

 Who will use the solution?

 What will be the economic benefit of a successful solution?

 Is there another source for the solution that you need?

 The next set of questions enables the analyst to gain a better understanding of

the problem and the customer to voice his or her perceptions about a solution:

 How would you characterize "good" output that would be generated by a successful

solution?

 What problem(s) will this solution address?

 Can you show me (or describe) the environment in which the solution will be used?

 Will special performance issues or constraints affect the way the solution is

approached?

 The final set of questions focuses on the effectiveness of the meeting.

 Are you the right person to answer these questions? Are your answers "official"?

 Are my questions relevant to the problem that you have?

 Am I asking too many questions?

 Can anyone else provide additional information?

 Should I be asking you anything else?

Facilitated Application Specification Techniques

 Facilitated application specification techniques (FAST), this approach encourages the

creation of a joint team of customers and developers who work together to identify the

problem, propose elements of the solution, negotiate different approaches and specify

a preliminary set of solution requirements . The basic guidelines:

 A meeting is conducted at a neutral site and attended by both software engineers and

customers.

 Rules for preparation and participation are established.

 An agenda is suggested that is formal enough to cover all important points but

informal enough to encourage the free flow of ideas.

 A "facilitator" (can be a customer, a developer, or an outsider) controls the meeting.

 A "definition mechanism" (can be work sheets, flip charts, or wall stickers or an

electronic bulletin board, chat room or virtual forum) is used.

 The goal is to identify the problem, propose elements of the solution, negotiate

different approaches, and specify a preliminary set of solution requirements in an

atmosphere that is conducive to the accomplishment of the goal.

Quality Function Deployment

• Quality function deployment (QFD) is a quality management technique that translates

the needs of the customer into technical requirements for software.

• QFD “concentrates on maximizing customer satisfaction from the software

engineering process”

• QFD identifies three types of requirements

• Normal requirements.

• The objectives and goals that are stated for a product or system during meetings with

the customer. If these requirements are present, the customer is satisfied.

• Examples of normal requirements might be requested types of graphical displays,

specific system functions, and defined levels of performance.

• Expected requirements.

• These requirements are implicit to the product or system and may be so fundamental

that the customer does not explicitly state them. Their absence will be a cause for

significant dissatisfaction.

• Examples of expected requirements are: ease of human/machine interaction, overall

operational correctness and reliability, and ease of software installation.

• Exciting requirements.

• These features go beyond the customer’s expectationsand prove to be very satisfying

when present.

• For example, software for a new mobile phone comes with standard features, but is

coupled with a set of unexpected capabilities (e.g., multitouch screen, visual voice

mail) that delight every user of the product

Use-Cases

• It is difficult to move into more technical software engineering activities until you

understand how these functions and features will be used by different classes of end

users.

• To accomplish this, developers and users can create a set of scenarios that identify a

thread of usage for the system to be constructed. The scenarios, often called use cases

,provide a description of how the system will be used.

• To create a use-case, the analyst must first identify the different types of people (or

devices) that use the system or product. These actors actually represent roles that

people (or devices) play as the system operates.

• An actor is anything that communicates with the system or product and that is

external to the system itself.

The Software Requirements Specification

 The Software Requirements Specification is produced at the culmination of the

analysis task.

 The function and performance allocated to software as part of system engineering are

refined by establishing a complete information description, a detailed functional

description, a representation of system behavior, an indication of performance

requirements and design constraints, appropriate validation criteria, and other

information pertinent to requirements.

 The National Bureau of Standards, IEEE and the U.S. Department of Defense have all

proposed candidate formats for software requirements specifications .

The Introduction of the software requirements specification states the goals and objectives

of the software, describing it in the context of the computer-based system.

The Information Description provides a detailed description of the problem that the

software must solve. Information content, flow, and structure are documented. Hardware,

software, and human interfaces are described for external system elements and internal

software functions.

A description of each function required to solve the problem is presented in the Functional

Description. A processing narrative is provided for each function, design constraints are

stated and justified, performance characteristics are stated, and one or more diagrams are

included to graphically represent the overall structure of the software and interplay among

software functions and other system elements.

The Behavioral Description section of the specification examines the operation of the

software as a consequence of external events and internally generated control characteristics.

Validation Criteria is probably the most important and, ironically, the most often neglected

section of the Software Requirements Specification. How do we recognize a successful

implementation? What classes of tests must be conducted to validate function, performance,

and constraints?

Finally, the specification includes a Bibliography and Appendix. The bibliography contains

references to all documents that relate to the software. These include other software

engineering documentation, technical references, vendor literature, and standards. The

appendix contains information that supplements the specifications. Tabular data, detailed

description of algorithms, charts, graphs, and other material are presented as appendixes.

In many cases the Software Requirements Specification may be accompanied by an

executable prototype, a paper prototype or a Preliminary User's Manual. The Preliminary

User's Manual presents the software as a black box. That is, heavy emphasis is placed on user

input and the resultant output. The manual can serve as a valuable tool for uncovering

problems at the human/machine interface.

SPECIFICATION REVIEW

A review of the Software Requirements Specification (and/or prototype) is conducted by both

the software developer and the customer. Because the specification forms the foundation of

the development phase, extreme care should be taken in conducting the review.

The review is first conducted at a macroscopic level; that is, reviewers attempt to ensure that

the specification is complete, consistent, and accurate when the overall information,

functional, and behavioral domains are considered.

Once the review is complete, the Software Requirements Specification is "signedoff" by both

the customer and the developer. The specification becomes a "contract" for software

development. Requests for changes in requirements after the specification is finalized will not

be eliminated. But the customer should note that each after the-fact change is an extension of

software scope and therefore can increase cost and/or protract the schedule.

Even with the best review procedures in place, a number of common specification problems

persist. The specification is difficult to "test" in any meaningful way, and therefore

inconsistency or omissions may pass unnoticed. During the review, changes to the

specification may be recommended. It can be extremely difficult to assess the global impact

of a change; that is, how a change in one function affects requirements for other functions.

Modern software engineering environments incorporateCASE tools that have been developed

to help solve these problems.

 ANALYSIS PRINCIPLES

All analysis methods are related by a set of operational principles:

1. The information domain of a problem must be represented and understood.

2. The functions that the software is to perform must be defined.

3. The behavior of the software (as a consequence of external events) must be

represented.

4. The models that depict information function and behavior must be partitioned in a

manner that uncovers detail in a layered (or hierarchical) fashion.

5. The analysis process should move from essential information toward implementation

detail.

Davis suggests a set of guiding principles for requirements engineering:

 Understand the problem before you begin to create the analysis model.

 Develop prototypes that enable a user to understand how human/machine

interaction will occur..

 Record the origin of and the reason for every requirement.

 Use multiple views of requirements. Building data, functional, and behavioral

models provide the software engineer with three different views.

 Rank requirements. If an incremental process model is applied, those requirements

to be delivered in the first increment must be identified.

 Work to eliminate ambiguity. Because most requirements are described in a natural

language. The use of formal technical reviews is one way to uncover and eliminate

ambiguity

The Information Domain

 Software is built to process data, to transform data from one form to another; that is,

to accept input,manipulate it in some way, and produce output.

 Software also processes events.

 An event represents some aspect of system control and is really nothing more than

Booleandata—it is either on or off, true or false, there or not there.

 For example, a pressure sensor detects that pressure exceeds a safe value and sends an

alarm signal to monitoring software.

 The information domain contains three differentviews of the data and control as each

is processed by a computer program:

1. Information content and relationships

2. Information flow

3. Information structure

 Information contentrepresents the individual data and control objects that constitute

some larger collection of information transformed by the software.

 For example, the data object, paycheck, is a composite of a number of important

pieces ofdata: the payee's name, the net amount to be paid, the gross pay, deductions,

and so forth.

 Therefore, the content of paycheck is defined by the attributes that are needed to

create it.

 Information flowrepresents the manner in which data and control change as

eachmoves through a system

 Information structurerepresents the internal organization of various data and

controlitems.

Fig.2.2. Information flow and transformation

Modeling

 We create functional models to gain a better understanding of the actual entity to be

built.

 It must be capable of representing the information that software transforms, the

functions that enable the transformation to occur and the behavior of the system as the

transformation is taking place.

Functional models.

 Software transforms information, and in order toaccomplish this, it must perform at

least three generic functions: input, processing,and output.

 The functional model begins with a single context level model. Over a series of

iterations, more and more functional detail is provided, until a thorough delineation of

all system functionality is represented.

Behavioral models.

 Most software responds to events from the outsideworld.

 This stimulus/response characteristic forms the basis of the behavioralmodel.

 A computer program always exists in some state—an externallyobservable mode of

behavior thatis changed only when some event occurs

Models created during requirements analysis serve a number of important roles:

 The model aids the analyst in understanding the information, function, andbehavior of

a system, thereby making the requirements analysis task easierand more systematic.

 The model becomes the focal point for review and, therefore, the key to

adetermination of completeness, consistency, and accuracy of the specifications.

 The model becomes the foundation for design, providing the designer withan essential

representation of software that can be "mapped" into an implementationcontext.

Partitioning

 Problems are often too large and complex to be understood as a whole.

 For this reason, we tend to partition such problems into parts that can be easily

understood and establish interfaces between the parts so that overall function can be

accomplished.

 We establish a hierarchical representation of function or information and then

partition the uppermost element by

(1) Exposing increasing detail by moving verticallyin the hierarchy or

(2) Functionally decomposing the problem by moving horizontallyin the hierarchy.

Fig.2.3. Horizontal partitioning of SafeHome function

Fig.2.4. Vertical partitioning of SafeHome function

LANGUAGES AND PROCESSORS FOR REQUIREMENTS SPECIFICATION

Many other approaches have been proposed for requirements analysis and specification.

These approaches help to arrange information and provide an automated analysis of

requirements specification of the software. In addition, these approaches are used for

organizing and specifying the requirements. The specification language used for modeling

can be either graphical (depicting requirements using diagrams) or textual (depicting

requirements in text form). Generally, the approaches used for analysis and specification

include SADT, PSL/ PSA, RSL/REVS, SSA and GIST

Problem Statement Language (PSL) is a textual language, which is developed to describe

the requirements of information systems. The Problem Statement Analyzer (PSA) is the

processor that processes the requirements specified in PSL and then generates reports.

PSL/PSA helps to document and communicate the software requirements. This approach is

useful for requirements analysis as well as design. An advantage of PSA is that it allows the

system to be customized according to a particular problem domain and particular solution

methods because PSA is capable of defining new PSL constructs and format reports.

PSL/PSA is used in commercial data processing applications, air defense systems, and so on.

PSL consists of a set of objects, where each object has properties and relationships with each

other. The objective of PSL is to describe the information included in software requirements

specification about the system. In PSL, this system description comprises several,

namely, system input/ output flow, system structure, and data structure. System input/output

flow describes the interaction of the system with its environment. It also provides information

about the inputs received and outputs produced. System structure specifies the hierarchies

among objects within the system. Data structure describes the relationships among the data

used within the system and how data is manipulated by the system.

PSA operates on the information stored in the database, which is collected from the PSL

description of requirements.

Fig.2.5. Structure of PSA

The PSA generates the following reports.

1. Database modification report: Specifies the changes made since the last report

including the warning messages. It also provides information about the changes that

have occurred due to the correction of errors.

2. Reference report: Includes several reports such as name list report, formatted

problem statement report, and dictionary report. Name list report describes all the

objects in the database. Formatted problem statement report describes the properties

and relationships of a specific object. Dictionary report provides the data dictionary.

3. Summary report: Specifies the information gathered from various relationships. It

consists of several reports such as database summary report, structure report, and

external picture report. Database summary report provides information about the total

number of objects used within the system including their details. Structure report

represents the information in the form of hierarchy. External picture report describes

the data-flow in a graphical form.

4. Analysis report: Includes information about inputs and outputs and problems related

to inconsistency within the system. Analysis report comprises various reports such as

contents comparison report, data processing interaction report, and processing chain

report. Contents comparison report compares the similarity of inputs and outputs.

Data processing report helps to find inconsistency in information flow and unused

data objects. Processing chain report specifies the dynamic behavior of the system.

The Requirements Statement Language (RSL) is developed for real-time control systems.

The Requirements Validation System (REVS) processes and analyzes the RSL statements.

Note that both RSL and REVS are components of Software Requirements Engineering

Methodology (SREM). SREM helps to generate requirements for real-time systems as these

systems perform critical tasks and hence require that the constraints applied on them be

documented and tracked. Like PSL, RSL also uses basic concepts such as elements (describe

objects), attributes (describe features of elements), relationships (describe relations between

elements), and structures (consist of nodes and processing steps). RSL follows the flow-

oriented approach to describe real-time systems. It represents the process control systems in

terms of stimulus and response. Each flow in RSL starts with a stimulus and continues till the

final response is achieved. When requirements are defined in such a sequence, processing

steps are required. The execution of a processing step may involve various software and

hardware components. REVS operates on the RSL statements. Generally, RSL comprises the

following components.

1. Translator for RSL

2. Abstract system semantic model (ASSM), which is a centralized relational database

and similar to PSL/PSA database

3. A set of automated tools, which is used for processing information in ASSM.

Some examples of automated tools are interactive graphics package, static checker, and

automated simulation package. Interactive graphics package facilitates in describing flow

paths, static checker checks the completeness and consistency of the information within

the system, and automated simulation package generates and executes simulation

models of the system.

Note that REVS is a large and complex software tool. Due to this, its use is cost effective

only for the specification of large and complex real-time systems. However, the RSL notation

can be applied manually to describe the characteristics of a real time system.

Structured Analysis and Design Technique (SADT) uses a graphical notation, and is

generally applied in information processing systems. It comprises two parts, namely,

Structured Analysis (SA) and Design Technique (DT). SA describes the requirements with

the help of diagrams whereas DT specifies how to interpret the results.

The model of SADT consists of an organized collection of SA diagrams. These diagrams

facilitate software engineers to identify the requirements in a structured manner by following

a top-down approach and decomposing system activities, data, and their relationships. The

text embedded in these diagrams is written in natural language, thus, specification language is

a combination of both graphical language and natural language. The commonly-used SA

diagrams include activity diagram (actigram) and data diagram (datagram). Both activity and

data diagrams comprise nodes and arcs. Note that each diagram must consist of 3 to 6 nodes

including the interconnecting arcs. These diagrams are similar to a data-flow diagram as they

follow a top-down approach but differ from DFD as they may use loops, which are not used

in a DFD.

An activity diagram is shown with nodes and arcs. The nodes represent the activities and the

arcs describe the data-flow between the activities. Four different types of arcs can be

connected to each node, namely, input data, control data, processor, and output data. Input

data is the data that are transformed to output(s). Control data is the data that constrain the

kind or extent of process being described. Processor describes the mechanism, which is in

the form of tools and techniques to perform the transformation. Output data is the result

produced after sending input, performing control activity, and mechanism in a system. The

arcs on the left side of a node indicate inputs and the arcs on the right side indicate outputs.

The arcs entering from the top of a node describe the control whereas the arcs entering from

the bottom describe the mechanism. The data-flows are represented with the help of inputs

and outputs while the processors represent the mechanism.

Fig.2.6. Activity Diagram

A data diagram is shown with nodes and arcs, which are similar to that of an activity

diagram. The nodes describe the data objects and the arcs describe the activities. A data

diagram also uses four different types of arcs. The arcs on the left side indicate inputs and the

arcs on the right side indicate the output. Here, input is the activity that creates a data object

whereas output is the activity that uses the data object. The 'control activity' (arcs entering

from top) controls the conditions in which the node is activated and the 'storage device' (arcs

entering from bottom) indicates the mechanism for storing several representations of a data

object. Note that in both the diagrams, controls are provided by the external environment and

by the outputs from other nodes.

Fig.2.7. Data Diagram

Structured analysis and the design technique provide a notation and a set of techniques,

which facilitate to understand and record the complex requirements clearly and concisely.

The top-down approach used in SADT helps to decompose high level nodes into subordinate

diagrams and to differentiate between the input, output, control, and mechanism for each

node. In addition, this technique provides actigrams, datagrams, and the management

techniques to develop and review an SADT model. Note that SADT can be applied to all

types of systems and is not confined only to software applications.

https://ecomputernotes.com/images/Activity-Diagram.jpg
https://ecomputernotes.com/images/Data-Diagram.jpg

Fig.2.8. Order processing

SOFTWARE PROTOTYPING

 Rapid software development to validate requirements

 Prototyping is the process of quickly putting together a working model in order to test

various aspects of a design, illustrate ideas or features and gather early user feedback

Uses of prototypes

 The principal use is to help customers and developers understand the requirements for the

system

 Prototyping can be considered as a risk reduction activity which reduces requirements

risks

Prototyping benefits

 Misunderstandings between software users and developers are exposed

 Missing services may be detected and confusing services may be identified

 A working system is available early in the process

 The prototype may serve as a basis for deriving a system specification

 The system can support user training and system testing

Prototyping process

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
report

Fig.2.9. Prototyping process

http://www.youtube.com/watch?v=JvLW51zLTVg

Types of prototyping

Evolutionary prototyping

 An open-ended approach, calledevolutionary prototyping, uses the prototype as the

first part of an analysis activity thatwill be continued into design and construction.

 The prototype of the software is thefirst evolution of the finished system.

Build prototype
system

Develop abstract
specification

Use prototype
system

Deliver
system

System
adequate?

YES

N

Fig.2.10. Evolutionary prototyping

Throw-away prototyping

 The close-endedapproach is often called throwaway prototyping.

 Using this approach, a prototypeserves solely as a rough demonstration of

requirements. It is then discarded, and thesoftware is engineered using a different

paradigm.

Outline

requirements

Develop

prototype

Evaluate

prototype

Specify

system

Develop
software

Validate
system

Delivered
software
system

Reusable
components

Fig.2.11. Throw-away prototyping

Table.2.1. Selecting the appropriate prototyping approach

Prototyping Methods and Tools

To conduct rapid prototyping,three generic classes of methods and tools areavailable:

Fourth generation techniques.

 Fourth generation techniques (4GT)encompass a broad array of database query and

reporting languages, programand application generators, and other very high-level

nonprocedurallanguages.

 Because 4GT enable the software engineer to generate executablecode quickly, they

are ideal for rapid prototyping.

Reusable software components.

 Another approach to rapid prototypingis to assemble, rather than build, the prototype

by using a set of existing softwarecomponents.

 It should be noted that an existing softwareproduct can be used as a prototype for a

"new, improved" competitiveproduct.

Formal specification and prototyping environments.

 Developers of these formal languages are in the process of developinginteractive

environments that

1. Enable an analyst to interactively createlanguage-based specifications of a system or

software,

2. Invoke automated tools that translate the language-based specifications into

executable code,and

3. Enable the customer to use the prototype executable code to refine formal

requirements.

USER INTERFACE PROTOTYPING

 It is impossible to pre-specify the look and feel of a user interface in an effective way.

prototyping is essential

 UI development consumes an increasing part of overall system development costs

 User interface generators may be used to ‘draw’ the interface and simulate its

functionality with components associated with interface entities

 Web interfaces may be prototyped using a web site editor

Techniques

1. Work with the real users. The best people to get involved in prototyping are the

ones who will actually use the application when it is done. These are the people who

have the most to gain from a successful implementation; these are the people who

know their own needs best.

2. Get your stakeholders to work with the prototype. Just as if you want to take a car

for a test drive before you buy it, your users should be able to take an application for a

test drive before it is developed. Furthermore, by working with the prototype hands-

on, they can quickly determine whether the system will meet their needs. A good

approach is to ask them to work through some use case scenarios using the prototype

as if it were the real system.

3. Understand the underlying business. You need to understand the underlying

business before you can develop a prototype that will support it. The more you know

about the business, the more likely it is you can build a prototype that supports it.

Once again, active stakeholder participation is critical to your success.

4. You should only prototype features that you can actually build. If you cannot

possibly deliver the functionality, do not prototype it.

5. You cannot make everything simple. Sometimes your software will be difficult to

use because the problem it addresses is inherently difficult. Your goal is to make your

user interface as easy as possible to use, not simplistic.

6. It's about what you need. Their point is a good user interface fulfills the needs of

the people who work with it. It isn’t loaded with a lot of interesting, but unnecessary,

features.

7. Get an interface expert to help you design it. User interface experts understand how

to develop easy-to-use interfaces, whereas you probably do not. A generalizing

specialist with solid UI skills would very likely be an ideal member of your

development team.

8. Explain what a prototype is. The biggest complaint developers have about UI

prototyping is their users say “That’s great. Install it this afternoon.” This happens

because users do not realize more work is left to do on the system. The reason this

happens is simple: From your user's point-of-view, a fully functional application is a

bunch of screens and reports tied together by a menu.

9. Consistency is critical. Inconsistent user interfaces lead to less usable software, more

programming, and greater support and training costs.

10. Avoid implementation decisions as long as possible. Be careful about how you

name these user interface items in your requirements documents. Strive to keep the

names generic, so you do not imply too much about the implementation technology.

11. Small details can make or break your user interface. Have you ever used some

software, and then discarded it for the product of a competitor because you didn’t like

the way it prints, saves files, or some other feature you simply found too annoying to

use? I have. Although the rest of the software may have been great, that vendor lost

my business because a portion of its product’s user interface was deficient.

http://www.agilemodeling.com/essays/activeStakeholderParticipation.htm
http://www.agilemodeling.com/essays/generalizingSpecialists.htm
http://www.agilemodeling.com/essays/generalizingSpecialists.htm
http://www.agilemodeling.com/essays/agileRequirements.htm

ANALYSIS MODELING

Goals of Analysis Modeling

• Provides the first technical representation of a system

• Is easy to understand and maintain

• Deals with the problem of size by partitioning the system

• Uses graphics whenever possible

• Differentiates between essential information versus implementation information

• Helps in the tracking and evaluation of interfaces

• Provides tools other than narrative text to describe software logic and policy

• Elements of the Analysis Model

Fig.2.12. Elements of the Analysis Model

Data Modeling

• Examines data objects independently of processing

• Focuses attention on the data domain

• Creates a model at the customer’s level of abstraction

• Indicates how data objects relate to one another

Data modeling concepts

Data Objects

 A data object can be an external entity , a thing ,an occurrence or event ,a role, an

organizational unit, a place, or a structure.

Data Attributes

 Data attributes define the properties of a data object

 They can be used to

 (1) name an instance of the data object,

(2) describe the instance, or

 (3) make reference to another instance in another table

 In addition, one or more of the attributes must be defined as an identifier—that is, the

identifier attribute becomes a "key" when we want to find an instance of the data

object.

Fig.2.13. Tabularrepresentationof data objects

• Relationships

Fig.2.14. Relationships

 Data objects are connected to one another in different ways.

 Consider the two objects person and car ,a connection is established between

them because they are related.

 For example

 A person owns a car

 A person is insured to drive a car

Cardinality and Modality

 We have defined a set of objects and represented the object/relationship pairs thatbind

them. But a simple pair that states: object X relates to object Y does not

provideenough information for software engineering purposes. We must

understandhow many occurrences of object X are related to how many occurrences of

objectY. This leads to a data modeling concept called cardinality.

Cardinality.

 The data model must be capable of representing the number of occurrencesobjects in

a given relationship. The cardinality of anobject/relationship pair in the following

manner:

 Cardinality is the specification of the number of occurrences of one [object] that can

berelated to the number of occurrences of another [object].

 Cardinality is usually expressedas simply 'one' or 'many.Taking into consideration all

combinationsof 'one' and 'many,' two [objects] can be related as

 One-to-one (l:l)—An occurrence of [object] 'A' can relate to one and only one

occurrenceof [object] 'B,' and an occurrence of 'B' can relate to only one occurrence of

'A.'

 One-to-many (l:N)—One occurrence of [object] 'A' can relate to one or many

occurrencesof [object] 'B,' but an occurrence of 'B' can relate to only one occurrence

of 'A.’

 Many-to-many (M:N)—An occurrence of [object] 'A' can relate to one or more

occurrencesof 'B,' while an occurrence of 'B' can relate to one or more occurrences of

'A.'

 Cardinality defines “the maximum number of objects that can participate in a

relationship”It does not, however, provide an indication of whether or not a

particulardata object must participate in the relationship.

 Modality.

 The modality of a relationship is 0 if there is no explicit need for the relationshipto

occur or the relationship is optional. The modality is 1 if an occurrence ofthe

relationship is mandatory.

 Scenario based Modeling

 If the software engineer understand how end users want to interact with a system,the

software team will be able to properly charectrize requirements and build meaningful

analysis and design models.

 Analysis modeling with UML begins with the creation of scenarios in the form of

uses-cases,activity diagram and swimlane diagrams.

• Use-case Diagram

• In general, use cases are written first in an informal narrative fashion

• Use case: Access camera surveillance via the Internet—display camera views

• (ACS-DCV)

• Actor: homeowner

• The homeowner logs onto the SafeHome Products website.

• The homeowner enters his or her user ID.

• The homeowner enters two passwords (each at least eight characters in length).

• The system displays all major function buttons.

• The homeowner selects the “surveillance” from the major function buttons.

• The homeowner selects “pick a camera.”

• The system displays the floor plan of the house.

• The homeowner selects a camera icon from the floor plan.

• The homeowner selects the “view” button.

• The system displays a viewing window that is identified by the camera ID.

• The system displays video output within the viewing window at one frame per

second.

Fig.2.15. Preliminary use-case diagram for the safehome software

Alternative Actions

• Can the actor take some other action at this point?

• Is it possible that the actor will encounter some error condition at this point?

• Is it possible that the actor will encounter behavior invoked by some event outside the

actor’s control?

Activity diagram

 The UML activity diagram supplements the use-case by providing a graphical

representation of the flow of interaction within a specific scenario

 Similar to flowchart an activity diagram uses rounded rectangles to imply a

specify system functions,arrows to represent flow through the system,decision

diamonds to depict a branching decision and solid horizontal lines to indicate

that parallel activities are occurring

Fig.2.16. Activity diagram for access camera surveillance-display camera view

functions

Swimlane diagram

Fig.2.17. Swimlane diagram for Access camera surveillance-diplay camera views

function

 The UML Swimlane diagram is a useful variation of the activity diagram and

allows the modeler to represent the flow of activites described by the use-case

and at the same time indicate which actor or analysis class has responsibility

for the action described by an activity rectangle.

 Responsiblities are represented as parallel segments that divide the diagram

vertically ,like the lanes in a swimming pool.

Flow-Oriented Modeling

Data Flow Model

• The DFD takes an input-process-output view of a system. That is data objects flow

into the software ,transformed by processing elements,and resultant data objects flow

out of the software

Fig.2.18.Context level DFD for the SafeHome security function

Guideliness

 The level 0 data flow diagram should epict the software /system as a single

bubble.

 Primary input and output should be carefully noted.

 Refinement should begin by isolating candidate processes ,data objects and

data stores to be represented at the next level.

 All arrows and bubbles should be labelled with meaningful names

 Information flow through continuity must be maintained from level to level

and

 One bubble at a time should be refined.

Flow Modeling Notation

Fig.2.19. Flow modeling notation

 The level 0 DFD is now expanded into a level 1 data flow model.

 An effective approach is to perform a “grammatical parse” on the narrative

that describes the context level bubble. That is we isolate all nouns and verbs

in a safehome processing narrative derived during the first requirement

gathering meeting.

 verbs are safehome processes,that is they may represented as bubbles in a

subsequent DFD.

 Nouns are either external entities (boxes),data or control objects(arrows) or

data stores(double lines).

Fig.2.20. Level 1 DFD for Safe Home security function

Fig.2.21. Level 2 DFD that refines the monitor sensors process

Contol Flow Model

 Large class of applications are driven by events rather than data,produce

control information rather than reports or displays and process information

with heavy concern for time and performance .

 Such application require the use of control flow modeling in addition to the

data flow modeling .

 To select potential candidate events, the following guidelines are suggested:

 List all sensors that are “read” by the software.

 List all interrupt conditions.

 List all “switches” that are actuated by an operator.

 List all data conditions.

 Recalling the noun/verb parse that was applied to the processing

narrative,review all “control items” as possible control specification

inputs/outputs.

 Describe the behavior of a system by identifying its states, identify how each

state is reached, and define the transitions between states.

 Focus on possible omissions—a very common error in specifying control; for

example, ask: “Is there any other way I can get to this state or exit from it?”

The Control Specification

 A control specification (CSPEC) represents the behavior of the system in two

different ways.

 The CSPEC contains a state diagram that is a sequential specification of behavior.

 It can also contain a program activation table—a combinatorial specification of

behavior.

Behavioral modeling

• The behavioral model indicates how software will respond to external events or

stimuli.

• To create the model, you should perform the following steps:

 Evaluate all use cases to fully understand the sequence of interaction within the

system.

 Identify events that drive the interaction sequence and understand how these events

relate to specific objects.

 Create a sequence for each use case.

 Build a state diagram for the system.

 Review the behavioral model to verify accuracy and consistency.

Identifying Events with the Use Case

 In general, an event occurs whenever the system and an actor exchange information.

 “homeowner uses the keypad to key in a four-digit password.” In the context of the

requirements model, the object, Homeowner, transmits an event to the object

ControlPanel. The event might be called password entered.

 The information transferred is the four digits that constitute the password, but this is

not an essential part of the behavioral model.

 It is important to note that some events have an explicit impact on the flow of control

of the use case, while others have no direct impact on the flow of control.

 For example, the event password entered does not explicitly change the flow of

control of the use case, but the results of the event password compared (derived from

the interaction “password is compared with the valid password stored in the system”)

will have an explicit impact on the information and control flow of the SafeHome

software.

State Representations

 In the context of behavioral modeling, two different characterizations of states must

be considered: (1) the state of each class as the system performs its function and (2)

the state of the system as observed from the outside as the system performs its

function.

 The state of a class takes on both passive and active characteristics.

 A passive state is simply the current status of all of an object’s attributes. For

example,the passive state of the class Player (in the video game application discussed

in would include the current position and orientation attributes of Player as well as

other features of Player that are relevant to the game (e.g., an attribute that indicates

magic wishes remaining).

 The active state of an object indicates the current status of the object as it undergoes a

continuing transformation or processing. The class Player might have the following

active states: moving, at rest, injured, being cured; trapped, lost, and so forth.

 An event (sometimes called a trigger) must occur to force an object to make a

transition from one active state to another.

Fig.2.22. State diagrams for analysis classes

Sequence diagrams.

 The second type of behavioral representation, called a sequence diagram in UML,

indicates how events cause transitions from object to object.

 Once events have been identified by examining a use case, the modeler creates a

sequence diagram—a representation of how events cause flow from one object to

another as a function of time.

 In essence, the sequence diagram is a shorthand version of the use case. It represents

key classes and the events that cause behavior to flow from class to class.

Fig.2.23. Sequence diagram

Class based modeling
 Class-based modeling represents the objects that the system will manipulate, the

operations that will be applied to the objects to effect the manipulation, relationships

between the objects, and the collaborations that occur between the classes that are

defined.

 The elements of a class-based model include classes and objects, attributes,

operations, classresponsibility- collaborator (CRC) models, collaboration diagrams, and

packages

Identifying Analysis Classes

 External entities (e.g., other systems, devices, people)

 Things (e.g., reports, displays, letters, signals)

 Occurrences or events (e.g., a property transfer or the completion of a series of robot

movements)

 Roles (e.g., manager, engineer, salesperson)

 Organizational units (e.g., division, group, team)

 Places (e.g., manufacturing floor or loading dock)

 Structures (e.g., sensors, four-wheeled vehicles, or computers

Table 2.2. Potential classes and general classification

Specifying Attributes

• System class defined for SafeHome. A homeowner can configure the security

function to reflect sensor information, alarm response information,

activation/deactivation information, identification information.

Defining Operations

• Operations define the behavior of an object

Fig.2.24. Class representation

Class-Responsibility-Collaborator (CRC) Modeling

• A CRC model is really a collection of standard index cards that represent classes.

Fig.2.26. CRC model index card for floor plan

• Collaborations.

• A class can use its own operations to manipulate its own attributes, thereby fulfilling a

particular Responsibility

• A class can collaborate with other classes.

Data Dictionary

The data dictionary is an organized listing of all data elements that are pertinent to the

system, with precise, rigorous definitions so that both user and system analyst will

have a common understanding of inputs, outputs, components of stores and [even]

intermediate calculations. the data dictionary is always implemented as part of a

CASE "structured analysis and design tool." Although the format of dictionaries

varies from tool to tool, most contain the following information:

· Name—the primary name of the data or control item, the data store or an external

entity.

· Alias—other names used for the first entry.

· Where-used/how-used—a listing of the processes that use the data or control item

and how it is used (e.g., input to the process, output from the process, as a store, as an

external entity.

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-III- SOFTWARE ENGINEERING– SBS1204

SBS1204 - SOFTWARE ENGINEERING

UNIT 3

Abstraction – Modularity – Software architecture – Cohesion, coupling – Various design

concepts and notations – Real time and distributed system – Design – Documentation – Data

flow oriented design – Jackson system development – Design for reuse – Programming

standards. User interface Design- principles- SCM- Need for SCM- Version control –

Introduction to SCM process – software configuration items

THE DESIGN PROCESS

Software design is an iterative process through which requirements are translated into a

“blueprint” for constructing the software.

Design and Software Quality

The quality of the evolving design is assessed with a series of formal technical reviews or

design walkthroughs McGlaughlin three characteristics that serve as a guide for the

evaluation of a good design:

 The design must implement all of the explicit requirements contained in the analysis

model, and it must accommodate all of the implicit requirements desired by the

customer.

 The design must be a readable, understandable guide for those who generate code and

for those who test and subsequently support the software.

 The design should provide a complete picture of the software, addressing the data,

functional, and behavioral domains from an implementation perspective.

Design Principles
 Design process should not suffer from “tunnel vision”

 The design should be traceable to the analysis model

 The design should not reinvent the wheel; Time is short

 The design should “minimize intellectual distance” between the software and the

problem in the real world

 The design should exhibit uniformity and integration

 The design should be structured to accommodate change

 The design should be structured to degrade gently.

 Design is not coding, coding is not design

 The design should be assessed for quality as it is being created, not after the fact

 The design should be reviewed to minimize conceptual errors

Design Concepts

Fundamental concepts which provide foundation to design correctly:

• Abstraction

• Refinement

• Modularity

• Software Architecture

• Control Hierarchy

• Structural Partitioning

• Data Structure

• Software Procedure

• Information Hiding

Abstraction

• Identifying important features for representation

• There are many levels of abstraction depending on how detailed the representation is

required

• Data abstraction - representation of data objects

• Procedural abstraction - representation of instructions

Refinement

• Stepwise refinement - top-down design strategy by Niklaus Wirth

• Refinement is actually a process of elaboration

• Starting at the highest level of abstraction, every step of refinement „decompose‟

instructions into more detailed instructions

• Complementary to abstraction

Modularity

Software is divided into separately named and addressable components, often called modules,

that are integrated to satisfy problem requirements.

• “Divide and conquer” approach - problem is broken into manageable pieces

• Solutions for the separate pieces then integrated into the whole system

Divide and Conquer

Fig.3.1. Divide and Conquer

Software Architecture

• Modules can be integrated in many ways to produce the system

• Software architecture is the overall structure of the software

• The hierarchy of components and how they interact, and the structure of data used by the

components

• Use of framework models, and possible reuse of architectural patterns

Fig.3.2. Software Architecture

Control Hierarchy

• Control hierarchy, also called program structure, represents the organization of program

components (modules) and implies a hierarchy of control.

• Hierarchy of modules representing the control relationships

• A super-ordinate module controls another module

• A subordinate module is controlled by another module

• Measures relevant to control hierarchy: depth, width, fan-in, fan-out

• Depth and width provide an indication of the number of levels of control and overall span of

control.

• Fan-out is a measure of the number of modules that are directly controlled by

anothermodule. Fan-in indicates how many modules directly control a given module.

Fig.3.3. Control Hierarchy

Structural Partitioning

• Program structure partitioned horizontally and vertically

• Horizontal partitioning defines separate branches for each major program function - input,

process, output

• Vertical partitioning defines control (decision-making) at the top and work at the bottom

 Fig.3.3. Structural Partitioning

Software Procedure

• Processing details of individual modules

• Precise specification of processing, including sequence of events, exact decision points,

repetitive operations, and data organization/structure

• Procedure is layered - subordinate modules must be referenced in processing details

Information Hiding

• Information (procedure and data) contained within a module is inaccessible to other

modules that have no need for such information

• Effective modularity is achieved by independent modules, that communicate only

necessary information

• Ease of maintenance - testing, modification localized and less likely to propagate

Data Structure

• Data structure is a representation of the logical relationship among individual elements

of data.

Modular Design

• Functional Independence

• Designing modules in such a way that each module has specific functional requirements.

Functional independence is measured using two terms cohesion and coupling.

Cohesion

 Internal interaction of the module.

 Cohesion is a measure of relative functional strength of a module

 The degree to which all elements of a component are directed towards a single task and all

elements directed towards that task are contained in a single component.

Types of cohesion

 Logical Cohesion

 Coincidental cohesion

 Temporal Cohesion

 Procedure Cohesion

 Communication Cohesion

 Sequential cohesion

 Informational cohesion

 Functional cohesion

 Coincidental cohesion

Fig.3.4. Range of Cohesion types

Coincidental cohesion

 Parts of a component are simply bundled together

 The result of randomly breaking the project into modules to gain the benefits of

having multiple smaller files/modules to work on

 Usually worse than no modularization

 A module has coincidental cohesion if it performs multiple, completely unrelated

actions

Fig.3.5. Coincidental cohesion

Logical Cohesion

 Elements of component are related logically and not functionally

 Results in hard to understand modules with complicated logic

Fig.3.6. Logical cohesion

Temporal Cohesion

 Elements of a component are related by timing

Fig.3.7. Temporal cohesion

Procedural Cohesion

Elements of a component are related only to ensure a particular order of execution.

Fig.3.8. Procedural Cohesion

Communicational Cohesion

 Module performs a series of actions related by a sequence of steps to be followed by

the product and all actions are performed on the same data

Fig.3.9. Communicational Cohesion

Sequential Cohesion

 The output of one component is the input to another.

 Occurs naturally in functional programming languages

Fig.3.10. Sequential Cohesion

Informational Cohesion

 Module performs a number of actions, each with its own entry point, with

independent code for each action, all performed on the same data.

Functional Cohesion

 Module with functional cohesion focuses on exactly one goal or “function”

 Every essential element to a single computation is contained in the component.

 Every element in the component is essential to the computation

Fig.3.11. Functional Cohesion

Coupling

• Coupling is a measure of relative independence among modules, that is it

is a measure of interconnection among modules.

• Loose coupling means component changes are unlikely to affect other

components.

• Shared variables or control information exchange lead to tight coupling.

• Loose coupling can be achieved by state decentralization (as in objects)

and component communication via parameters or message passing.

Tight Coupling

Module A Module B

Module C Module D

Shared data
area

Fig.3.12. Tight Coupling

Loose Coupling

Fig.3.13. Loose Coupling

Types of coupling

 Content coupling

 Common Coupling

 Control Coupling

 Stamp Coupling

 Data Coupling

Content coupling

• One module directly refers to the content of the other

– Module a modifies statement of module b

Common Coupling

• Common coupling exists when two or more modules have read and write

access to the same global data.

Fig.3.14. Common Coupling

Control Coupling

• Two modules are control-coupled if module 1 can directly affect the

execution of module 2

Stamp Coupling

• It is a case of passing more than the required data values into a module

• Two modules are stamp coupled if a data structure is passed as a

parameter, but the called module operates on some but not all of the

individual components of the data structure

Data Coupling

• Two modules are data coupled if all parameters are homogeneous data

items [simple parameters, or data structures all of whose elements are

used by called module]

SOFTWARE ARCHITECTURE

• Software architecture is the fundamental organization of a system,

embodied in its components, their relationships to each other and the

environment, and the principles governing its design and evolution

• The architecture of a software system defines that system in terms of

computational components and interactions among those components.

ARCHITECTURAL STYLES

 An architectural style is a description of component and connector

types and a pattern of their runtime control and/or data transfer.

 An architectural style, sometimes called an architectural pattern, is

a set of principles—a coarse grained pattern that provides an

abstract framework for a family of systems.

 Defines ways of selecting and presenting architectural building

blocks

Benefits

 Design Reuse

 Code Reuse (may be domain dependant)

 Communication among colleagues

 Interoperability

 System Analysis

Data-centered architectures

 Fig.3.15. Data-centered architecture

• A data store (e.g., a file or database) resides at the center of this

architecture and is accessed frequently by other components that update,

add, delete, or otherwise modify data within the store.

• Client software accesses a central repository.

• client software accesses the data independent of any changes to the data

or the actions of other client software.

• Existing components can be changed and new client components can be

added to the architecture without concern about other clients (because the

client components operate independently)

Data-flow architectures

Fig.3.16. Data-flow architecture

• This architecture is applied when input data are to be transformed through

a series of computational or manipulative components into output data.

• A pipe and filter pattern has a set of components, called filters,

connected by pipes that transmit data from one component to the next.

• Each filter works independently of those components upstream and

downstream, is designed to expect data input of a certain form, and

produces data output (to the next filter) of a specified form.

• The filter does not require knowledge of the working of its neighboring

filters.

Call and return architectures

• This architectural style enables a software designer to achieve a program

structure that is relatively easy to modify and scale.

• Main program/subprogram architectures. This classic program

structure decomposes function into a control hierarchy where a “main”

program invokes a number of program components, which in turn may

invoke still other components.

• Remote procedure call architectures. The components of a main

program/ subprogram architecture are distributed across multiple

computers on a network

Fig.3.17. Call and return architecture

Object-oriented architectures

• The components of a system encapsulate data and the operations that

must be applied to manipulate the data.

• Communication and coordination between components is accomplished

via message Passing.

Fig.3.18. Object-oriented architecture

Layered architectures

Fig.3.19. Layered architecture

• A number of different layers are defined, each accomplishing operations

that progressively become closer to the machine instruction set.

• At the outer layer, components service user interface operations.

• At the inner layer, components perform operating system interfacing.

• Intermediate layers provide utility services and application software

functions.

DESIGN DOCUMENTATION

• First, the overall scope of the design effort is described. Much of the

information presented here is derived from the System Specification and

the analysis model (Software Requirements Specification).

• Next, the data design is specified. Database structure, any external file

structures,internal data structures, and a cross reference that connects data

objects to specific files are all defined

• The architectural design indicates how the program architecture has

been derived from the analysis model. In addition, structure charts are

used to represent the module hierarchy

• The design of external and internal program interfaces is represented

and a detailed design of the human/machine interface is described. In

some cases, a detailed prototype of a GUI may be represented.

• Components—separately addressable elements of software such as

subroutines, functions, or procedures—are initially described with an

English-language processing narrative.

• The processing narrative explains the procedural function of a

component (module). Later, a procedural design tool is used to translate

the narrative into a structured description.

• The Design Specification contains a requirements cross reference. The

purpose of this cross reference is (1) to establish that all requirements are

satisfied by the software design and (2) to indicate which components are

critical to the implementation of specific requirements.

• The final section of the Design Specification contains supplementary

data. Algorithm descriptions, alternative procedures, tabular data,

excerpts from other documents, and other relevant information

MAPPING REQUIREMENTS INTO A SOFTWARE

ARCHITECTURE

• Transform Flow

• Data “continuously” moves through a collection of incoming flow

processes, transform center processes, and finally outgoing flow

processes.

• Incoming flow: Information enters the system along paths that transform

external data into internal data

• Transform flow: Internal data is processed

• Outgoing flow: Internal data are transformed into external data

 Fig.3.20. Transform Flow

Transactional Flow

Data “continuously” moves through a collection of incoming flow

processes, reaches a particular transaction center process, and then follows one

of anumber of actions paths. Each action path is again a collection of processes.

Fig.3.21. Transactional Flow

Transform Mapping

• Mapping the transform data flow diagram into software architecture

design model

• Input: transform data flow diagram

• Output: software architecture

Fig.3.22. Transform Mapping

Fig.3.23. Process of Transform Mapping

Step1:Review the fundamental system model

• What is fundamental system model?

 Top-level or 0-level data flow diagram

• Why reviewing the fundamental system model?

 To evaluate the SRS in order to guarantee that the system model

conforms to the real system

Level 0 DFD

Fig.3.24. Level 0 DFD

Step2: Review and Refine Data Flow Diagram for the Software

• DFD is correct

• Produce greater detail

• Each transform in the data flow diagram exhibits relatively high

cohesion that can be implemented as a component in software

Level 1 DFD

Fig.3.25. Level 1 DFD

Level 2 DFD Refine monitor sensor process

Fig.3.26. Level 2 DFD

Step 3: Determine the type of data flow

• Transform flow or transaction flow

• Different type of data flow corresponds to different mapping approach

Step 4:Isolate the flow boundaries

• Incoming flow

• Transform center

• Outgoing flow

• Different designers may select slightly different points in flow as

boundary location, and therefore have different design

Fig.3.27. Isolate the flow boundaries

Level 3 DFD for monitor sensors with flow boundaries

Fig.3.28. Level 3 DFD for monitor sensors with flow boundaries

Step5. Perform First-level Factoring

 Top-level modules: decision making

 Middle-level modules: some control and some work

 Low-level modules: perform most input, computational, and

output work

• The generated software structure can be specified by hierarchy diagram

or structure diagram

Fig.3.29. First-level Factoring

• First-level Factoring of monitor sensor

Fig.3.30. First-level Factoring of monitor sensor

Step 6. Perform second-level Factoring

• Mapping individual transforms of a DFD into aappropriate modules with

the architecture

• Approach

• Beginning at the transform center boundary and moving outward along

incoming and then outgoingpaths, transforms are mapped into sub-

ordinate levels of the software architecture, transforms aremapped into

sub-ordinate levels of the software structure

• Second level factoring of monitor sensor

Fig.3.31. Second level factoring of monitor sensor

First iteration program structure for monitor sensor

Fig.3.32. First iteration program structure for monitor sensor

Refine the software Architecture

• Applying principles of “modular”

 Components are exploded or imploded to produce sensible factoring,

good cohesion, minimal coupling.

 A good structure can be implemented without any difficulty, tested

without confusion, and maintained without grief

Refined program structure

Fig.3.33. Refined program structure

Transaction Mapping

• Mapping the transaction data flow diagram into software architecture

design model

 Input: transaction data flow diagram

 Output: software architecture

Fig.3.34. Transaction Mapping

Fig.3.35. Process of Transaction Mapping

Level 1 DFD

Fig.3.36. Level 1 DFD

Level 2 DFD for user interaction sub system

Fig.3.37. Level 2 DFD for user interaction sub system

• Step 3. Determine whether the DFD has transform or transaction

flow characteristics.

• Steps 1, 2, and 3 are identical to corresponding steps in transform

mapping.

• The DFD shown in Figure has a classic transaction flow characteristic.

However, flow along two of the action paths emanating from the invoke

command processing bubble appears to have transform flow

characteristics.

• Flow boundaries must be established for both flow types.

Fig.3.38. Flow boundaries

Step 4:Identify the transaction centre and action path

• Three parts of transaction DFD

 Input flow

 Transaction center

 Action path

• Evaluate the flow characteristics of each action path

 Transaction flow or transform flow

• Each action path must be evaluated for its individual flow characteristic.

For example, the "password" path has transform characteristics.

Incoming, transform, and outgoing flow are indicated with boundaries

Step 5: Map DFD in program structure

 Fig.3.39. Map DFD in program structure

• Transaction flow is mapped into an architecture that contains an incoming

branch and a dispatch branch

• The structure of the incoming branch is developed in much the same way

as transform mapping. Starting at the transaction center, bubbles along

the incoming path are mapped into modules.

• The structure of the dispatch branch contains a dispatcher module that

controls all subordinate action modules.

• Each action flow path of the DFD is mapped to a structure that

corresponds to its specific flow characteristics.

First level factoring for user interaction sub system

Fig.3.40. First level factoring for user interaction sub system

Step 6:Factor and Refine the Transaction Structure and Each Action Path

Fig.3.41. Factor and Refine the Transaction Structure and Each Action

Path

• Step 7. Refine the first-iteration architecture using design heuristics

for improved software quality.

USER INTERFACE DESIGN

User Interface Design Models

• User model—a profile of all end users of the system

• Design model—a design realization of the user model

• Mental model (system perception)—the user’s mental image of what the

interface is

• Implementation model—the interface “look and feel” coupled with

supporting information that describe interface syntax and semantics

User Interface Design Process

Fig.3.42. User Interface Design Process

Interface Analysis

• Interface analysis means understanding

 (1) the people (end-users) who will interact with the system through the

interface;

 (2) the tasks that end-users must perform to do their work,

 (3) the content that is presented as part of the interface

 (4) the environment in which these tasks will be conducted.

User Analysis

• Are users trained professionals, technician, clerical, or manufacturing

workers?

• What level of formal education does the average user have?

• Are the users capable of learning from written materials or have they

expressed a desire for classroom training?

• Are users expert typists or keyboard phobic?

• What is the age range of the user community?

• Will the users be represented predominately by one gender?

• How are users compensated for the work they perform?

• Do users work normal office hours or do they work until the job is done?

• Is the software to be an integral part of the work users do or will it be

used only occasionally?

• What is the primary spoken language among users?

• What are the consequences if a user makes a mistake using the system?

• Are users experts in the subject matter that is addressed by the system?

• Do users want to know about the technology the sits behind the interface

Task Analysis and Modeling

• Answers the following questions…

 What work will the user perform in specific circumstances?

 What tasks and subtasks will be performed as the user does the work?

 What specific problem domain objects will the user manipulate as work is

performed?

 What is the sequence of work tasks—the workflow?

 What is the hierarchy of tasks?

 Use-cases define basic interaction

 Task elaboration refines interactive tasks

 Object elaboration identifies interface objects (classes)

 Workflow analysis defines how a work process is completed

 when several people (and roles) are involved

INTERFACE DESIGN ACTIVITIES

• The first interface design steps can be accomplished using the following

approach:

 Establish the goals and intentions for each task.

 Map each goal and intention to a sequence of specific actions.

 Specify the action sequence of tasks and subtasks, also called a user

scenario, as it will be executed at the interface level.

 Indicate the state of the system; that is, what does the interface look like

at the time that a user scenario is performed?

 Define control mechanisms; that is, the objects and actions available to

the user to alter the system state.

 Show how control mechanisms affect the state of the system.

 Indicate how the user interprets the state of the system from information

provided through the interface.

IMPLEMENTATION TOOLS

• Called user- interface toolkits or user-interface development systems

(UIDS), these tools provide components or objects that facilitate creation

of windows, menus, device interaction, error messages, commands, and

many other elements of an interactive environment.

• A UIDS provides built-in mechanisms for

 managing input devices (such as a mouse or keyboard)

 validating user input

 handling errors and displaying error messages

 providing feedback (e.g., automatic input echo)

 providing help and prompts

 handling windows and fields, scrolling within windows

 establishing connections between application software and the interface

 insulating the application from interface management functions

 allowing the user to customize the interface

DESIGN EVALUATION

Fig.3.43. Design Evaluation

Jackson System Development (JSD) is a method of system development that

covers the software life cycle either directly or by providing a framework into

which more specialized techniques can fit. JSD can start from the stage in a

project when there is only a general statement of requirements.

However many projects that have used JSD actually started slightly later in the

life cycle, doing the first steps largely from existing documents rather than

directly with the users.

Phases of JDS:

JSD has 3 phases:

Modelling Phase:

In the modelling phase of JSD the designer creates a collection of entity

structure diagrams and identifies the entities in the system, the actions they

perform, the attributes of the actions and time ordering of the actions in the life

of the entities.

Specification Phase:

This phase focuses on actually what is to be done? Previous phase provides the

basic for this phase. An sufficient model of a time-ordered world must itself be

time-ordered. Major goal is to map progress in the real world on progress in the

system that models it.

Implementation Phase:

In the implementation phase JSD determines how to obtain the required

functionality. Implementation way of the system is based on transformation of

specification into efficient set of processes. The processes involved in it should

be designed in such a manner that it would be possible to run them on available

software and hardware.

JSD Steps:

Initially there were six steps when it was originally presented by Jackson, they

were as below:

 Entity/action step

 Initial model step

 Interactive function step

 Information function step

 System timing step

 System implementation step

Later some steps were combined to create method with only three steps:

 Modelling Step

 Network Step

 Implementation Step

Merits of JSD:

 It is designed to solve real time problem.

 JSD modelling focuses on time.

 It considers simultaneous processing and timing.

 It is a better approach for micro code application.

Demerits of JSD:

 It is a poor methodology for high level analysis and data base design.

 JSD is a complex methodology due to pseudo code representation.

 It is less graphically oriented as compared to SA/SD or OMT.

 It is a bit complex and difficult to understand.

Design for reuse

 Design reuse is the process of building new software applications and

tools by reusing previously developed designs. New features and

functionalities may be added by incorporating minor changes.

 Design reuse involves the use of designed modules, such as logic and

data, to build a new and improved product.

 The reusable components, including code segments, structures, plans and

reports, minimize implementation time and are less expensive. This

avoids reinventing existing software by using techniques already

developed and to create and test the software.

 Design reuse involves many activities utilizing existing technologies to

cater to new design needs.

 The ultimate goal of design reuse is to help the developers create better

products maximizing it's value with minimal resources, cost and effort.

 Today, it is almost impossible to develop an entire product from scratch.

Reuse of design becomes necessary to maintain continuity and

connectivity.

 In the software field, the reuse of the modules and data helps save

implementation time and increases the possibility of eliminating errors

due to prior testing and use.

 Design reuse requires that a set of designed products already exist and the

design information pertaining to the product is accessible.

 Large software companies usually have a range of designed products.

Hence the reuse of design facilitates making new and better software

products.

 Many software companies have incorporated design reuse and have seen

considerable success.

 The effectiveness of design reuse is measured in terms of production,

time, cost and quality of the product. These key factors determine

whether a company has been successful in making design reuse a solution

to its new software needs and demands.

 With proper use of existing technology and resources, a company can

benefit in terms of cost, time, performance and product quality.

 A proper process requires an intensive design reuse process model. There

are two interrelated process methodologies involved in the systematic

design reuse process model.

The data reuse process is as follows:

1. Gathering Information: This involves the collection of information,

processing and modeling to fetch related data.

2. Information Reuse: This involves the effective use of data.

The design reuse process has four major issues:

1. Retrieve

2. Reuse

3. Repair

4. Recover

These are generally referred to as the four Rs. In spite of these challenges,

companies have used the design reuse concept as a successfully implemented

concept in the software field at different levels, ranging from low level code

reuse to high level project reuse.

Software Configuration Management

• Why Software Configuration Management ?

• The problem:

– Multiple people have to work on software that is changing

– More than one version of the software has to be supported:

• Released systems

• Custom configured systems (different functionality)

• System(s) under development

– Software must run on different machines and operating systems

Need for coordination

• Software Configuration Management

– manages evolving software systems

– controls the costs involved in making changes to a system

• Definition:

– A set of management disciplines within the software engineering process to

develop a baseline.

 Description:

– Software Configuration Management encompasses the disciplines and

techniques of initiating, evaluating and controlling change to software products

during and after the software engineering process.

SCM Activities

• Configuration item identification

– modeling of the system as a set of evolving components

• Promotion management

– is the creation of versions for other developers

• Release management

– is the creation of versions for the clients and users

• Branch management

– is the management of concurrent development

• Variant management

– is the management of versions intended to coexist

• Change management

– is the handling, approval and tracking of change requests

SCM Roles

• Configuration Manager

– Responsible for identifying configuration items. The configuration manager

can also be responsible for defining the procedures for creating promotions and

releases

• Change control board member

– Responsible for approving or rejecting change requests

• Developer

– Creates promotions triggered by change requests or the normal activities of

development. The developer checks in changes and resolves conflicts

Auditor

– Responsible for the selection and evaluation of promotions for release and for

ensuring the consistency and completeness of this release

Terminology and Methodology

– Configuration Items

– Baselines

– SCM Directories

– Versions, Revisions and Releases

Configuration Item

“An aggregation of hardware, software, or both, that is designated for

configuration management and treated as a single entity in the configuration

management process.”

▪ Software configuration items are not only program code segments but all type

of documents according to development, e.g

▪ all type of code files

▪ drivers for tests

▪ analysis or design documents

▪ user or developer manuals

▪ system configurations (e.g. version of compiler used)

▪ In some systems, not only software but also hardware configuration items

(CPUs, bus speed frequencies) exist!

• Large projects typically produce thousands of entities (files, documents, ...)

which must be uniquely identified.

But not every entity needs to be configured all the time. Issues:

– What: Selection of CIs (What should be managed?)

– When: When do you start to place an entity under configuration control?

– Starting too early introduces too much bureaucracy

▪ Starting too late introduces chaos

▪ Some of these entities must be maintained for the lifetime of the software.

This includes

also the phase, when the software is no longer developed but still in use;

perhaps by industrial customers who are expecting proper support for lots of

years.

▪ An entity naming scheme should be definedso that related documents have

related names.

▪ Selecting the right configuration items is a skill that takes practice

▪ Very similar to object modeling

▪ Use techniques similar to object modeling for finding Cis

Fig.3.44. Configuration Objects

Baseline

A specification or product that has been formally reviewed and agreed to by

responsible management, that thereafter serves as the basis for further

development, and can be changed only through formal change control

procedures.”

Examples:

Baseline A: The API of a program is completely defined; the bodies of the

methods are empty.

Baseline B: All data access methods are implemented and tested; programming

of the GUI can start.

Baseline C: GUI is implemented, test-phase can start.

• As systems are developed, a series of baselines is developed, usually after a

review (analysis review, design review, code review, system testing, client

acceptance, ...)

– Developmental baseline (RAD, SDD, Integration Test, ...)

• Goal: Coordinate engineering activities.

Many naming scheme for baselines exist (1.0, 6.01a, ...)

SCM Directories

• Programmer’s Directory (IEEE: Dynamic Library)

– Library for holding newly created or modified software entities. The

programmer’s workspace is controlled by the programmer only.

• Master Directory (IEEE: Controlled Library)

– Manages the current baseline(s) and for controlling changes made to

them. Entry is controlled, usually after verification. Changes must be

authorized.

• Software Repository (IEEE: Static Library)

– Archive for the various baselines released for general use. Copies of

these baselines may be made available to requesting organizations.

Change management

• Change management is the handling of change requests

– A change request leads to the creation of a new release

• General change process

– The change is requested (this can be done by anyone including users

and developers)

– The change request is assessed against project goals

– Following the assessment, the change is accepted or rejected

– If it is accepted, the change is assigned to a developer and implemented

The implemented change is audited.

• The complexity of the change management process varies with the

project. Small projects can perform change requests informally and fast while

complex projects require detailed change request forms and the official approval

by one more managers.

Controlling Changes

• Two types of controlling change:

– Promotion: The internal development state of a software is changed.

– Release: A set of promotions is distributed outside the development

organization.

• Approaches for controlling change to libraries (Change Policy)

– Informal (good for research type environments)

– Formal approach (good for externally developed CIs and for releases)

Change Policies

• Whenever a promotion or a release is performed, one or more policies

apply. The purpose of change policies is to guarantee that each version, revision

or release conforms to commonly accepted criteria.

• Examples for change policies:

“No developer is allowed to promote source code which cannot be

compiled without errors and warnings.”

“No baseline can be released without having been beta-tested by at least

500 external persons.”

 Version: Version vs. Revision vs. Release

• Version: Version vs. Revision vs. Release

– An initial release or re-release of a configuration item associated with a

complete compilation or recompilation of the item. Different versions have

different functionality.

• Revision:

– Change to a version that corrects only errors in the design/code, but

does not affect the documented functionality.

• Release:

– The formal distribution of an approved version.

SCM planning

• Software configuration management planning starts during the early

phases of a project.

• The outcome of the SCM planning phase is the Software Configuration

Management Plan (SCMP) which might be extended or revised during the rest

of the project.

• The SCMP can either follow a public standard like the IEEE 828, or an

internal (e.g. company specific) standard.

The Software Configuration Management Plan

• Defines the types of documents to be managed and a document naming

scheme.

• Defines who takes responsibility for the CM procedures and creation of

baselines.

• Defines policies for change control and version management.

• Describes the tools which should be used to assist the CM process and

any limitations on their use.

• Defines the configuration management database used to record

configuration information.

Outline of a Software Configuration Management Plan

1. Introduction

Describes purpose, scope of application, key terms and references

2. Management (WHO?)

Identifies the responsibilities and authorities for accomplishing the

planned configuration management activities

3. Activities (WHAT?)

Identifies the activities to be performed in applying to the project.

4. Schedule (WHEN?)

Establishes the sequence and coordination of the SCM activities with

project mile stones.

5. Resources (HOW?)

Identifies tools and techniques required for the implementation of the

SCMP

6. Maintenance

Identifies activities and responsibilities on how the SCMP will be kept

current during the life-cycle of the project.

Tools for Software Configuration Management

Software configuration management is normally supported by tools with

different functionality.

• Examples:

– RCS

• very old but still in use; only version control system

– CVS

• based on RCS, allows concurrent working without locking

– Perforce

• Repository server; keeps track of developer’s activities

– ClearCase

• Multiple servers, process modeling, policy check mechanisms

Programming standards

• Coding standards are guidelines for code style and documentation.

• They may be formal (IEEE) standards, or company specific standards.

• The aim is that everyone in the organization will be able to read and work

on the code.

• Coding standards cover a wide variety of areas:

– Program design

– Naming conventions

– Formatting conventions

– Documentation

– Use (or not) of language specific features

• Why bother with a coding standard?

– Consistency between developers

– Ease of maintenance and development

– Readability, usability

• Example should make this obvious!

• No standard is perfect for every application.

– If you deviate from the standard for any reason, document it!

Coding style

• There are several examples of coding styles. Often they differ from

company to company.

• They typically have the following in common:

– Names

• Use full English descriptors

• Use mixed case to make names readable

• Use abbreviations sparingly and consistently

• Avoid long names

• Avoid leading/trailing underscores

– Documentation

• Document the purpose of every variable

• Document why something is done, not just what

– Member function documentation

• What & why member function does what it does

• Parameters/return value

• How function modifies object

• Preconditions/postconditions

• Concurrency issues

• Restrictions

– Document why the code does things as well as what it does.

Rules

• Coding standards need not be onerous – find out what works for your

organization/team and stick to it.

• Standardize early – the cost of retrofitting a standard is prohibitive.

• Encourage a culture where a standard is followed.

• The more commonly accepted the standard is, the easier it is for the team

members to communicate.

• Invent standards where necessary, but do not waste time creating a

standard you won’t ever use again!

• All languages have recommended coding standards available. It is

worthwhile finding out about these industry standards.

• Push for organizational standards wherever possible.

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-IV- SOFTWARE ENGINEERING– SBS1204

SBS1204 - SOFTWARE ENGINEERING

UNIT 4
Levels - Test activities - Types of s/w test - Black box testing - Testing boundary condition -

Structural testing- Test coverage criteria based on data flow mechanisms - Regression testing -

Testing in the large- S/W testing strategies - Strategic approach and issues - Unit testing -

Integration testing - Validation testing - System testing and debugging. Case studies – Writing

black box and white box testing

 Software Testing Fundamentals

• Software Testing is the process of executing a program or system with the intent of

finding errors

• Software testing is any activity aimed at evaluating an attribute or capability of a program

or system and determining that it meets its required results

• Testing software is operating the software under controlled conditions, to (1) verify that

it behaves ―as specified‖; (2) to detect errors, and (3) to validate that what has been

specified is what the user actually wanted.

Testing Objectives

• Testing is a process of executing a program with the intent of finding an error.

• A good test case is one that has a high probability of finding an as-yet undiscovered

error.

• A successful test is one that uncovers an as-yet-undiscovered error

Testing Principles

• All tests should be traceable to customer requirements.

• Tests should be planned long before testing begins.

• The Pareto principle applies to software testing

• Testing should begin ―in the small‖ and progress toward testing ―in the large.

• Exhaustive testing is not possible

• To be most effective, testing should be conducted by an independent third party.

Testability

• Software testability is simply how easily [a computer program] can be tested

• The checklist that follows provides a set of characteristics that lead to testable software.

• Operability. "The better it works, the more efficiently it can be tested.”

• Observability. "What you see is what you test."

• Controllability. "The better we can control the software, the more the testing can be

automated and optimized."

• Decomposability. "By controlling the scope of testing, we can more quickly isolate

problems and perform smarter retesting.”

• Simplicity. "The less there is to test, the more quickly we can test it.”

• Stability. "The fewer the changes, the fewer the disruptions to testing.”

• Understandability. "The more information we have, the smarter we will test."

 White-Box Testing

 White-box testing, sometimes called glass-box testing, is a test case design method that

uses the control structure of the procedural design to derive test cases.

 Using white-box testing methods, the software engineer can derive test cases that

o guarantee that all independent paths within a module have been exercised at least

once,

o exercise all logical decisions on their true and false sides,

o execute all loops at their boundaries and within their operational bounds, and

o exercise internal data structures to ensure their validity

Basis Path Testing

• The basis path method enables the test case designer to derive a logical complexity

measure of a procedural design and use this measure as a guide for defining a basis set of

execution paths.

Flow Graph Notation

• The flow graph depicts logical control flow ,Each structured construct has a

corresponding flow graph symbol.

Fig.4.1. Flow Graph Notation

Cyclomatic Complexity

• Cyclomatic complexity is a software metric that provides a quantitative measure of the

logical complexity of a program

• When used in the context of the basis path testing method, the value computed for

cyclomatic complexity defines the number of independent paths in the basis set of a

program

Flow chart

Fig.4.2. Flow chart

Fig.4.3. Flow Graph

Paths

• path 1: 1-11

• path 2: 1-2-3-4-5-10-1-11

• path 3: 1-2-3-6-8-9-10-1-11

• path 4: 1-2-3-6-7-9-10-1-11

Cyclomatic Complexity

• The number of regions of the flow graph correspond to the cyclomatic complexity.

• The flow graph has four regions.

• Cyclomatic complexity, V(G), for a flow graph, G, is defined as V(G) = E - N + 2

where E is the number of flow graph edges, N is the number of flow graph nodes.

• V(G) = 11 edges - 9 nodes + 2 = 4.

• Cyclomatic complexity, V(G), for a flow graph, G, is also defined as V(G) = P + 1

where P is the number of predicate nodes contained in the flow graph G.

• V(G) = 3 predicate nodes + 1 = 4

Graph Matrices

• A graph matrix is a square matrix whose size (i.e., number of rows and columns) is

equal to the number of nodes on the flow graph.

• Each row and column corresponds to an identified node, and matrix entries correspond

to connections (an edge) between nodes.

• A simple example of a flow graph and its corresponding graph matrix

Graph matrix

Fig.4.4. Flow Graph Fig.4.5.Graph Matrix

Connection matrix

Fig.4.6 Connection matrix

• Each node on the flow graph is identified by numbers, while each edge is identified by

letters.

• A letter entry is made in the matrix to correspond to a connection between two nodes.

node 3 is connected to node 4 by edge b

• The graph matrix is nothing more than a tabular representation of a flow graph. by

adding a link weight to each matrix entry, the graph matrix can become a powerful tool

for evaluating program control structure during testing.

• The link weight provides additional information about control flow. form, the link weight

is 1 (a connection exists) or 0 (a connection does not exist).

• Each letter has been replaced with a 1, indicating that a connection exists (zeros have

been excluded for clarity).Represented in this form, the graph matrix is called a

connection matrix.

• Each row with two or more entries represents a predicate node. Therefore, performing

the arithmetic shown to the right of the connection matrix provides us with still

another method for determining cyclomatic complexity

 Control Structure Testing

Condition Testing

• Condition testing is a test case design method that exercises the logical conditions

contained in a program module

• A simple condition is a Boolean variable or a relational expression, possibly preceded

with one NOT (¬) operator. A relational expression takes the form

• E1 <relational-operator> E2

• where E1 and E2 are arithmetic expressions and <relational-operator> is one of the

following: <, ≤, =, ≠ (nonequality), >, or ≥.

• A compound condition is composed of two or more simple conditions,

Boolean operators, and parentheses

Types of errors in a condition include the following:

 Boolean operator error (incorrect/missing/extra Boolean operators).

 Boolean variable error.

 Boolean parenthesis error.

 Relational operator error.

 Arithmetic expression error

Data Flow Testing

• The data flow testing method selects test paths of a program according to the locations

of definitions and uses of variables in the program

• It is a form of structural testing and a White Box testing technique that focuses on

program variables and the paths:

 From the point where a variable, v, is defined or assigned a value

 To the point where that variable, v, is used

• predicate use (p-use) for a variable that indicates its role in a predicate.

• A computational use (c-use) indicates the variable’s role as a part of a computation. In

both cases the variable value is unchanged.

• For example, in the statement

• Y = 26 * X ,the variable X is used. Specifically it has a c-use.

• In the statement if (X= 98)

• Y =max , X has a predicate or p-use.

The following combinations of paths are tested:

• All p-uses

• All c-uses/some p-uses

• All p-uses/some c-uses

• All uses

• All def-use paths

Loop Testing

• Loop testing is a white-box testing technique that focuses exclusively on the validity

of loop constructs.

• Four different classes of loops can be defined:

o Simple loops

o concatenated loops

o nested loops

o unstructured loops

Simple loops

Fig.4.7 Simple loop

The following set of tests can be applied to simple loops, where n is the maximum number

of allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n 1, n, n + 1 passes through the loop.

Nested loops

Fig.4.7. Nested loop

• Start at the innermost loop. Set all other loops to minimum values.

• Conduct simple loop tests for the innermost loop while holding the outer loops at their

minimum iteration parameter (e.g., loop counter) values. Add other tests for out-of-range

or excluded values.

• Work outward, conducting tests for the next loop, but keeping all other outer loops at

minimum values and other nested loops to "typical" values.

• Continue until all loops have been tested.

Concatenated loops

Fig.4.8. Concatenated loops

Unstructured loop

Fig.4.9. Unstructured loop

Test Case

A test case in a practical sense is a test-related item which contains the following

information:

 A set of test inputs. These are data items received from an external source by the code

under test. The external source can be hardware, software, or human.

 Execution conditions. These are conditions required for running the test, for example, a

certain state of a database, or a configuration of a hardware device.

 Expected outputs. These are the specified results to be produced by the code under test.

 Software Testing Strategies Strategic

Approach to Software Testing

 Testing begins at module level and works outward towards the of integration entire

computer based system.

 Different testing techniques are required at different points in time.

 Testing is conducted by the s/w developer and ITG(Independent Test Group) for large

projects.

 Testing and Debugging are different and Debugging is essential in any testing strategy.

Verification and Validation

• Verification is the process of evaluating a software system or component to determine

whether the products of a given development phase satisfy the conditions imposed at

the start of that phase .

• Does the product meet its specifications?

• Are we building the product right?

• Validation is the process of evaluating a software system or component during, or at the

end of, the development cycle in order to determine whether it satisfies specified

requirements

• Does the product perform as desired?

• Are we building the right product

A Software Testing Strategy

Fig.4.10. Software Testing Strategy

• A strategy for software testing may also be viewed in the context of the spiral

• Unit testing begins at the vortex of the spiral and concentrates on each unit of the

software as implemented in source code.

• Testing progresses by moving outward along the spiral to integration testing, where the

focus is on design and the construction of the software architecture.

• Taking another turn outward on the spiral, we encounter validation testing, where

requirements established as part of software requirements analysis are validated against

the software that has been constructed.

• Finally, we arrive at system testing, where the software and other system elements are

tested as a whole.

Software testing steps

Fig.4.11. Software testing steps

 Unit Testing

Unit testing focuses on the smallest element of software design viz. the module.

 Fig.4.12. Unit Testing

• The module interface is tested to ensure that information properly flows into and out of

the program unit under test.

• The local data structure is examined to ensure that data stored temporarily maintains

its integrity during all steps in an algorithm's execution.

• Boundary conditions are tested to ensure that the module operates properly at

boundaries established to limit or restrict processing.

• All independent paths (basis paths) through the control structure are exercised to

ensure that all statements in a module have been executed at least once.

• And finally, all error handling paths are tested.

Unit Test Procedures

 Fig.4.13. Unit Test Environment

Stubs and Drivers

 Fig.4.14. stubs and Drivers

Unit Testing: Using stubs and drivers to isolate the module under unit test

Fig.4.15. Using stubs and drivers to isolate the module under unit test

• A driver is nothing more than a "main program" that accepts test case data, passes

such data to the component (to be tested), and prints relevant results.

• Stubs serve to replace modules that are subordinate (called by) the component to be

tested. A stub or "dummy subprogram" uses the subordinate module's interface, may do

minimal data manipulation, prints verification of entry, and returns control to the module

undergoing testing.

 Integration Testing

Integration testing is the phase in software testing in which individual software modules

are combined and tested as a group.

• It occurs after unit testing and before validation testing.

• Integration testing takes as its input modules that have been unit tested, groups them in

larger aggregates, applies tests defined in an integration test plan to those aggregates, and

delivers as its output the integrated system ready for system testing.

• Nonincremental integration; that is, to construct the program using a "big bang"

approach. All components are combined in advance. The entire program is tested as a

whole. And chaos usually results! A set of errors is encountered. Correction is difficult

because isolation of causes is complicated by the vast expanse of the entire program

• In Incremental integration The program is constructed and tested in small increments,

where errors are easier to isolate and correct; interfaces are more likely to be tested

completely; and a systematic test approach may be applied.

Top-down Integration

• Top-down integration testing is an incremental approach to construction of program

structure.

• Modules are integrated by moving downward through the control hierarchy

,beginning with the main control module (main program).

• Modules subordinate (and ultimately subordinate) to the main control module are

incorporated into the structure in either a depth-first or breadth-first manner.

Top-down Integration

Level 3 stubs

Level 1
Testing

sequence
Level 1 . . .

Level 2 Level 2 Level 2 Level 2

Level 2
stubs

Fig.4.16. Top-down Integration

• Depth-first integration would integrate all components on a major control path of the

structure. selecting the lefthand path, components M1, M2 , M5 would be integrated first.

Next, M8 or M6 would be integrated. Then, the central and righthand control paths are

built.

• Breadth-first integration incorporates all components directly subordinate at each

level, moving across the structure horizontally. components M2, M3, and M4 would be

integrated first. The next control level, M5, M6, and so on, follows.

The integration process is performed in a series of five steps:

 The main control module is used as a test driver and stubs are substituted for all

components directly subordinate to the main control module.

 Depending on the integration approach selected (i.e., depth or breadth first), subordinate

stubs are replaced one at a time with actual components.

 Tests are conducted as each component is integrated.

 On completion of each set of tests, another stub is replaced with the real component.

 Regression testing may be conducted to ensure that new errors have not been

introduced.

Bottom-up Integration

• Bottom-up integration testing, as its name implies, begins construction and testing with

atomic modules (i.e., components at the lowest levels in the program structure).

• Because components are integrated from the bottom up, processing required for

components subordinate to a given level is always available and the need for stubs is

eliminated.

Testing

sequence

Fig.4.17. Bottom-Up Integration

Test
drivers

Test
drivers

Level N–1 Level N–1 Level N–1

Level N Level N Level N Level N Level N

• Components are combined to form clusters 1, 2, and 3.

• Each of the clusters is tested using a driver (shown as a dashed block). Components in

clusters 1 and 2 are subordinate to Ma. Drivers D1 and D2 are removed and the clusters

are interfaced directly to Ma.

• Similarly, driver D3 for cluster 3 is removed prior to integration with module Mb.

• Both Ma and Mb will ultimately be integrated with component Mc, and so forth

Bottom-up integration strategy may be implemented with the following steps:

 Low-level components are combined into clusters (sometimes called builds) that

perform a specific software subfunction.

 A driver (a control program for testing) is written to coordinate test case input and output.

 The cluster is tested.

 Drivers are removed and clusters are combined moving upward in the program

structure.

 Regression Testing

 Re-executing all prior tests after a code change

o often done by scripts, automated testing

o used to ensure that old fixed bugs are still fixed

 a new feature or a fix for one bug can cause a new bug or reintroduce an

old bug

 especially important in evolving object-oriented systems

Smoke test

• Borrowed from hardware testing

A relatively simple check to see whether the product

―smokes‖

• Check basic functionality of software

• Daily/nightly build

Software is compiled, linked and (re)tested on a daily Basis ―Good‖ build if pass all smoke

tests

• Software components that have been translated into code are integrated into a ―build.‖ A

build includes all data files, libraries, reusable modules, and engineered components that

are required to implement one or more product functions.

• A series of tests is designed to expose errors that will keep the build from properly

performing its function. The intent should be to uncover ―show stopper‖ errors that have

the highest likelihood of throwing the software project behind schedule.

• The build is integrated with other builds and the entire product (in its current form)

is smoke tested daily. The integration approach may be top down or bottom up.

 Validation Testing

• validation succeeds when software functions in a manner that can be reasonably

expected by the customer.

Validation Test Criteria

• Software validation is achieved through a series of black-box tests that demonstrate

conformity with requirements.

• A test plan outlines the classes of tests to be conducted and a test procedure defines

specific test cases that will be used to demonstrate conformity with requirements.

• Both the plan and procedure are designed to ensure that all functional requirements are

satisfied, all behavioral characteristics are achieved, all performance requirements are

attained, documentation is correct, and human engineered and other requirements are

met

• After each validation test case has been conducted, one of two possible conditions exist:

o The function or performance characteristics conform to specification and are

accepted or

o a deviation from specification is uncovered and a deficiency list is created.

Configuration Review

• The intent of the review is to ensure that all elements of the software configuration have

been properly developed, are cataloged, and have the necessary detail to bolster the

support phase of the software life cycle.

Alpha and Beta Testing

• The alpha test is conducted at the developer's site by a customer. The software is used

in a natural setting with the developer "looking over the shoulder" of the user and

recording errors and usage problems. Alpha tests are conducted in a controlled

environment.

• The beta test is conducted at one or more customer sites by the end-user of the

software. Unlike alpha testing, the developer is generally not present. Therefore, the

beta test is a "live" application of the software in an environment that cannot be

controlled by the developer. The customer records all problems that are encountered

during beta testing and reports these to the developer at regular intervals. As a result of

problems reported during beta tests, software engineers make modifications and then

prepare for release of the software product to the entire customer base.

 System Testing

• System testing is actually a series of different tests whose primary purpose is to fully

exercise the computer-based system

Recovery Testing

• Recovery testing is a system test that forces the software to fail in a variety of ways and

verifies that recovery is properly performed.

• If recovery is automatic , reinitialization, checkpointing mechanisms, data recovery, and

restart are evaluated for correctness.

• If recovery requires human intervention, the mean-time-to-repair (MTTR) is evaluated

to determine whether it is within acceptable limits

Security Testing

• Security testing attempts to verify that protection mechanisms built into a system will,

in fact, protect it from improper penetration. "The system's security must, of course, be

tested for invulnerability from frontal attack—but must also be tested for

invulnerability from flank or rear attack."

• During security testing, the tester plays the role(s) of the individual who desires to

penetrate the system.

Stress Testing

Stress testing executes a system in a manner that demands resources in abnormal

quantity, frequency, or volume.

 special tests may be designed that generate ten interrupts per second, when one or two is

the average rate,

 input data rates may be increased by an order of magnitude to determine how input

functions will respond,

 test cases that require maximum memory or other resources are executed,

 test cases that may cause thrashing in a virtual operating system are designed,

 test cases that may cause excessive hunting for disk-resident data are created.

Essentially, the tester attempts to break the program.

Performance Testing

• The testing to evaluate the response time (speed), throughput and utilization of system

to execute its required functions in comparison with different versions of the same

product or a different competitive product is called Performance Testing.

• Performance testing is done to derive benchmark numbers for the system.

• Heavy load is not applied to the system

• Tuning is performed until the system under test achieves the expected levels of

performance.

Load Testing

• Process of exercising the system under test by feeding it the largest tasks it can operate

with.

• Constantly increasing the load on the system via automated tools to simulate real time

scenario with virtual users.

Examples:

• Testing a word processor by editing a very large document.

• For Web Application load is defined in terms of concurrent users or HTTP connections.

 Debugging

• Debugging is the process that results in the removal of the error.

The Debugging Process

Fig.4.18. The Debugging Process

• The debugging process begins with the execution of a test case. Results are assessed

and a lack of correspondence between expected and actual performance is encountered.

• In many cases, the noncorresponding data are a symptom of an underlying cause as yet

hidden. The debugging process attempts to match symptom with cause, thereby leading

to error correction.

• The debugging process will always have one of two outcomes: (1) the cause will be

found and corrected, or (2) the cause will not be found. In

Black box Testing

 Black box approach, a tester consider the software under test to be an opaque box. There is

no knowledge of its internal structure.

 The tester only has the Knowledge of what it does.

 It is often called as functional or specification based testing.

Random Testing

 Each software module or system has an input domain from which test input data is selected.

If a tester randomly selects inputs from the domain, this is called random testing.

 For example, if the valid input domain for a module is all positive integers between 1 and

100, the tester using this approach would randomly, or unsystematically, select values from

within that domain; for example, the values 55, 24, 3 might be chosen

Issues

 Are the three values adequate to show that the module meets its specification when the tests

are run? Should additional or fewer values be used to make the most effective use of

resources?

 Are there any input values, other than those selected, more likely to reveal defects? For

example, should positive integers at the beginning or end of the domain be specifically

selected as inputs?

 Should any values outside the valid domain be used as test inputs? For example, should test

data include floating point values, negative values, or integer values greater than 100?

Equivalence Class Partitioning

 Equivalence class partitioning results in a partitioning of the input domain of the

softwareunder-test.

 Using equivalence class partitioning a test value in a particular class is equivalent to a

test value of any other member of that class.

 Therefore, if one test case in a particular equivalence class reveals a defect, all the

other test cases based on that class would be expected to reveal the same defect.

 We can also say that if a test case in a given equivalence class did not detect a

particular type of defect, then no other test case based on that class would detect the

defect

List of Conditions

1. ‘‘If an input condition for the software-under-test is specified as a range of values, select

one valid equivalence class that covers the allowed range and two invalid equivalence

classes, one outside each end of the range.’’

For example, suppose the specification for a module says that an input, the length of a widget

in millimeters, lies in the range 1–499; then select one valid equivalence class that includes

all values from 1 to 499. Select a second equivalence class that consists of all values less

than 1, and a third equivalence class that consists of all values greater than 499.

2. ‘‘If an input condition for the software-under-test is specified as a number of values, then

select one valid equivalence class that includes the allowed number of values and two

invalid equivalence classes that are outside each end of the allowed number.’’

For example, if the specification for a real estate-related module say that a house can have one

to four owners, then we select one valid equivalence class that includes all the valid

number of owners, and then two invalid equivalence classes for less than one owner and

more than four owners.

3.‘‘If an input condition for the software-under-test is specified as a set of valid input values,

then select one valid equivalence class that contains all the members of the set and one

invalid equivalence class for any value outside the set.’’

For example, if the specification for a paint module states that the colors RED, BLUE,

GREEN and YELLOW are allowed as inputs,then select one valid equivalence class that

includes the set RED,BLUE, GREEN and YELLOW, and one invalid equivalence class

for all other inputs.

4. ‘‘If an input condition for the software-under-test is specified as a “must be” condition,

select one valid equivalence class to represent the “must be” condition and one invalid

class that does not include the “must be” condition.’’

For example, if the specification for a module states that the first character of a part identifier

must be a letter, then select one valid equivalence class where the first character is a letter,

and one invalid class where the first character is not a letter.

Boundary Value Analysis

 For reasons that are not completely clear, a greater number of errors tends to occur at

the boundaries of the input domain rather than in the "center." It is for this reason that

boundary value analysis (BVA) has been developed as a testing technique.

 Boundary value analysis leads to a selection of test cases that exercise bounding

values.

 Fig.4.19. Boundaries of an Equivalence Partition

1. If an input condition for the software-under-test is specified as a range of values, develop valid

test cases for the ends of the range, and invalid test cases for possibilities just above and below the

ends of the range.

2. If an input condition for the software-under-test is specified as a number of values, develop valid

test cases for the minimum and maximum numbers as well as invalid test cases that include one

lesser and one greater than the maximum and minimum.

3.If the input or output of the software-under-test is an ordered set, such as a table or a linear list,

develop tests that focus on the first and last elements of the set

 The input specification for the module states that a widget identifier should consist of 3–15

alphanumeric characters of which the first two must be letters. We have three separate conditions

that apply to the input: (i) it must consist of alphanumeric characters, (ii) the range for the total

number of characters is between 3 and 15, and, (iii) the first two characters must be letters.

First we consider condition 1, the requirement for alphanumeric characters.This is a “must be”

condition. We derive two equivalence classes.

EC1. Part name is alphanumeric, valid.

EC2. Part name is not alphanumeric, invalid.

Then we treat condition 2, the range of allowed characters 3–15.

EC3. The widget identifier has between 3 and 15 characters, valid.

EC4. The widget identifier has less than 3 characters, invalid.

EC5. The widget identifier has greater than 15 characters, invalid.

Finally we treat the “must be” case for the first two characters.

EC6. The first 2 characters are letters, valid.

EC7. The first 2 characters are not letters, invalid.

Table.4.1. Example Equivalence class reporting table

A simple set of abbreviations can be used to represent the bounds groups. For example:

BLB—a value just below the lower bound

LB—the value on the lower boundary

ALB—a value just above the lower boundary

BUB—a value just below the upper bound

UB—the value on the upper bound

AUB—a value just above the upper bound

For our example module the values for the bounds groups are:

BLB—2

 BUB—14

LB—3

UB—15

ALB—4

AUB—16

Table.4.2.Summary of test inputs using equivalence class partitioning and boundary

value analysis for sample module

C a u s e - a n d - E f f e c t G r a p h i n g

 A major weakness with equivalence class partitioning is that it does not allow testers

to combine conditions.

 Cause-and-effect graphing is a technique that can be used to combine conditions and

derive an effective set of test cases that may disclose inconsistencies in a

specification.

 However, the specification must be transformed into a graph that resembles a digital

logic circuit.

 The graph must be converted to a decision table that the tester uses to develop test

cases.

 The steps in developing test cases with a cause-and-effect graph are as follows

1. The tester must decompose the specification of a complex software component into

lower-level units.

2. For each specification unit, the tester needs to identify causes and their effects. A

cause is a distinct input condition or an equivalence class of input conditions. An

effect is an output condition or a system transformation. Putting together a table of

causes and effects helps the tester to record the necessary details. The logical

relationships between the causes and effects should be determined. It is useful to

express these in the form of a set of rules.

3. From the cause-and-effect information, a Boolean cause-and-effect graph is created.

Nodes in the graph are causes and effects. Causes are placed on the left side of the

graph and effects on the right. Logical relationships are expressed using standard

logical operators such as AND, OR, and NOT, and are associated with arcs.

4. The graph may be annotated with constraints that describe combinations of causes

and/or effects that are not possible due to environmental or syntactic constraints.

5. The graph is then converted to a decision table.

6. The columns in the decision table are transformed into test cases.

 Fig.4.20. Sample of cause and effect graph notations

 Suppose we have a specification for a module that allows a user to perform a search

for a character in an existing string.

 The specification states that the user must input the length of the string and the

character to search for. If the string length is out-of-range an error message will

appear.

 If the character appears in the string, its position will be reported. If the character is

not in the string the message “not found” will be output.

 The input conditions, or causes are as follows:

C1: Positive integer from 1 to 80

C2: Character to search for is in string

The output conditions, or effects are:

E1: Integer out of range

E2: Position of character in string

E3: Character not found

The rules or relationships can be described as follows:

If C1 and C2, then E2.

If C1 and not C2, then E3.

If not C1, then E1.

 Fig.4.21. cause and effect graph for character search example

 A decision table will have a row for each cause and each effect.

 The entries are a reflection of the rules and the entities in the cause and effect

graph. Entries in the table can be represented by a “1” for a cause or effect that is

present, a “0” represents the absence of a cause or effect, and a “—” indicates a

“don’t care” value.

 A decision table for our simple example is shown in Table 4.3 where C1, C2, C3

represent the causes, E1, E2, E3 the effects, and columns T1, T2, T3 the test cases.

The tester can use the decision table to consider combinations of inputs to generate

the actual tests. In this example, three test cases are called for. If the existing string

is “abcde,” then possible tests are the following:

Table.4.3. Decision Table

S t a t e T r a n s i t i o n T e s t i n g

 State transition testing is useful for both procedural and object-oriented development. It is

based on the concepts of states and finite-state machines, and allows the tester to view the

developing software in term of its states, transitions between states, and the inputs and

events that trigger state changes.

 A state is an internal configuration of a system or component. It is defined in terms of the

values assumed at a particular time for the variables that characterize the system or

component.

 A finite-state machine is an abstract machine that can be represented by a state graph

having a finite number of states and a finite number of transitions between states.

 During the specification phase a state transition graph (STG) may be generated for the

system as a whole and/or specific modules. In objectoriented development the graph may

be called a state chart. STG/state charts are useful models of software (object) behavior.

 STG/state charts are commonly depicted by a set of nodes (circles, ovals, rounded

rectangles) which represent states. These usually will have a name or number to identify the

state.

 A set of arrows between nodes indicate what inputs or events will cause a transition or

change between the two linked states. Outputs/actions occurring with a state transition are

also depicted on a link or arrow.

Fig.4.22. A simple state transition graph

 A simple state transition diagram is shown in Figure S1 and S2 are the two states of

interest. The black dot represents a pointer to the initial state from outside the machine.

Many STGs also have “error” states and “done” states, the latter to indicate a final state for

the system.

 The arrows display inputs/actions that cause the state transformations in the arrow

directions. For example, the transition from S1 to S2 occurs with input, or event B. Action 3

occurs as part of this state transition. This is represented by the symbol “B/act3.”

 The state table lists the inputs or events that cause state transitions. For each state and each

input the next state and action taken are listed. Therefore, the tester can consider each entity

as a representation of a state transition.

Table.4.4. State Table

E r r o r G u e s s i n g

 Designing test cases using the error guessing approach is based on the tester’s/developer’s

past experience with code similar to the code-under test, and their intuition as to where

defects may lurk in the code.

 Code similarities may extend to the structure of the code, its domain, the design approach

used, its complexity, and other factors.

 The tester/developer is sometimes able to make an educated “guess” as to which types of

defects may be present and design test cases to reveal them.

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-V- SOFTWARE ENGINEERING– SBS1204

SBS1204 - SOFTWARE ENGINEERING

UNIT 5
Introduction – Quality assurance – Walk through and inspections – Static analysis – Symbolic

execution- Software Maintenance: Introduction – Enhancing maintainability during development-

Managerial aspects of software maintenance – Configuration management – Source code metrics –

Other maintenance tools and techniques

Software quality

 The degree to which a system, component, or process meets specified requirements.

 The degree to which a system, component, or process meets customer or user needs or

expectations.

 Conformance to explicitly stated functional and performance requirements, explicitly

documented development standards, and implicit characteristics that are expected of all

professionally developed software

Software Quality Assurance (SQA)

 A planned and systematic pattern of all actions necessary to provide adequate

confidence that an item or product conforms to established technical requirements.

 A set of activities designed to evaluate the process by which the products are

developed or manufactured. Contrast with: quality control.

Quality Control

 Ensure that procedures and standards are followed by the software development team.

 Quality control involves the series of inspections, reviews, and tests used throughout

the software process

SQA Group Activities

 Prepare SQA plan for the project.

 Participate in the development of the project's software process description.

 Review software engineering activities to verify compliance with the defined software

process.

 Audit designated software work products to verify compliance with those defined as

part of the software process.

 Ensure that any deviations in software or work products are documented and handled

according to a documented procedure.

 Record any evidence of noncompliance and reports them to management

Software Reviews

 Purpose is to find defects (errors) before they are passed on to another software

engineering activity or released to the customer.

 Software engineers (and others) conduct formal technical reviews (FTR) for software

engineers.

 Using formal technical reviews (walkthroughs or inspections) is an effective means for

improving software quality.

Review Roles

• Presenter (designer/producer).

• Coordinator (not person who hires/fires).

• Recorder

– records events of meeting

– builds paper trail

• Reviewers

– maintenance oracle

– standards bearer

– user representative

– others

Formal Technical Reviews

 Involves 3 to 5 people (including reviewers)

 Advance preparation (no more than 2 hours per person) required

 Duration of review meeting should be less than 2 hours

 Focus of review is on a discrete work product

 Review leader organizes the review meeting at the producer's request.

 Reviewers ask questions that enable the producer to discover his or her own error (the

product is under review not the producer)

 Producer of the work product walks the reviewers through the product

 Recorder writes down any significant issues raised during the review

 Reviewers decide to accept or reject the work product and whether to require

additional reviews of product or not.

Need

• To improve quality.

• Catches 80% of all errors if done properly.

• Catches both coding errors and design errors.

• Enforce the spirit of any organization standards.

• Training

Formality and Timing

• Formal review presentations

– resemble conference presentations.

• Informal presentations

– less detailed, but equally correct.

• Early

– tend to be informal

– may not have enough information

• Later

– tend to be more formal

– Feedback may come too late to avoid rework

• Analysis is complete.

• Design is complete.

• After first compilation.

• After first test run.

• After all test runs.

• Any time you complete an activity that produce a complete work product.

Review Guidelines

• Keep it short (< 30 minutes).

• Don’t schedule two in a row.

• Don’t review product fragments.

• Use standards to avoid style disagreements.

• Let the coordinator run the meeting and maintain order.

Walkthroughs
• A walkthrough team should consist of four to six individuals.

• An analysis walkthrough team should include at least one representative from the team

responsible for drawing up the specifications, the manager responsible for the analysis

workfl ow, a client representative, a representative of the team that will perform the next

workfl ow of the development (in this instance the design team), and a representative of the

software quality assurance group.

• SQA group member should chair the walkthrough.

• The members of the walkthrough team should, as far as possible, be experienced senior

technical staff members because they tend to find the important faults.

• The material for the walkthrough must be distributed to the participants well in advance to

allow for thorough preparation.

• Each reviewer should study the material and develop two lists: a list of items the reviewer

does not understand and a list of items the reviewer believes are incorrect.

Managing Walkthroughs

 The walkthrough should be chaired by the SQA representative because the SQA

representative has the most to lose if the walkthrough is performed poorly and faults slip

through.

 In contrast, the representative responsible for the analysis workfl ow may be eager to have

the specifi cation document approved as quickly as possible to start some other task.

 The client representative may decide that any faults not detected at the review probably will

show up during acceptance testing and be fi xed at that time at no cost to the client

organization.

 But the SQA representative has the most at stake: The quality of the product is a direct refl

ection of the professional competence of the SQA group.

 The person leading the walkthrough guides the other members of the walkthrough team

through the document to uncover any faults.

• It is not the task of the team to correct faults, but merely to record them for later correction.

There are four reasons for this:

 1.A correction produced by a committee (that is, the walkthrough team) within the time

constraints of the walkthrough is likely to be lower in quality than a correctionn produced

by an individual trained in the necessary techniques.

 2. A correction produced by a walkthrough team of fi ve individuals takes at least as much

time as a correction produced by one person and, therefore, costs five times as much when

the salaries of the fi ve participants are considered.

 3. Not all items fl agged as faults actually are incorrect. In accordance with the dictum,“If it

ain’t broke, don’t fi x it,” it is better for faults to be analyzed methodically and corrected

only if there really is a problem, rather than have a team attempt to “fi x” something that is

completely correct.

 4. There simply is not enough time in a walkthrough to both detect and correct faults. No

walkthrough should last longer than 2 hours. The time should be spent detecting and

recording faults, not correcting them.

 There are two ways of conducting a walkthrough.

 The first is participant driven. Participants present their lists of unclear items and items they

think are incorrect. The representative of the analysis team must respond to each query,

clarifying what is unclear to the reviewer and either agreeing that indeed there is a fault or

explaining why the reviewer is mistaken.

 The second way of conducting a review is document driven. A person responsible for the

document, either individually or as part of a team, walks the participants through that

document, with the reviewers interrupting either with their prepared comments or

comments triggered by the presentation. This second approach is likely to be more

thorough.

 In addition, it generally leads to the detection of more faults because the majority of faults

at a document-driven walkthrough are spontaneously detected by the presenter.

 Time after time, the presenter will pause in the middle of a sentence, his or her face will

light up, and a

 fault, one that has lain dormant through many readings of the document, suddenly becomes

obvious.

 A fruitful fi eld for research by a psychologist would be to determine why verbalization so

often leads to fault detection during walkthroughs of all kinds, including requirements

walkthroughs, analysis walkthroughs, design walkthroughs, plan walkthroughs, and code

walkthroughs.

 Not surprisingly, the more thorough document-driven review is the technique prescribed in

the IEEE Standard for Software Reviews [IEEE 1028, 1997].

 The primary role of the walkthrough leader is to elicit questions and facilitate discussion.

 A walkthrough is an interactive process; it is not supposed to be one-sided instruction by

the presenter.

 It also is essential that the walkthrough not be used as a means of evaluating the

participants.

 If that happens, the walkthrough degenerates into a point-scoring session and does not

detect faults, no matter how well the session leader tries to run it.

 It has been suggested that the manager who is responsible for the document being reviewed

should be a member of the walkthrough team.

 If this manager also is responsible for the annual evaluations of the members of the

walkthrough team (and particularly of the presenter), the fault detection capabilities of the

team will be compromised, because the primary motive of the presenter will be to minimize

the number of faults that show up.

 To prevent this confl ict of interests, the person responsible for a given workfl ow should

not also be directly responsible for evaluating any member of the walkthrough team for that

workfl ow.

Inspections
• Inspections were fi rst proposed by Fagan [1976] for testing designs and code. An

inspection goes far beyond a walkthrough and has fi ve formal steps.

 1. An overview of the document to be inspected (requirements, specifi cation, design,

code, or plan) is given by one of the individuals responsible for producing that document.

At the end of the overview session, the document is distributed to the participants.

 2. In the preparation, the participants try to understand the document in detail. Lists

of fault types found in recent inspections, with the fault types ranked by frequency, are

excellent aids. These lists help team members concentrate on the areas where the most

faults have occurred.

 3. To begin the inspection, one participant walks through the document with the inspection

team, ensuring that every item is covered and that every branch is taken at least once. Then

fault fi nding commences. As with walkthroughs, the purpose is to fi nd and document the

faults, not to correct them. Within one day the leader of the inspection team (the

moderator) must produce a written report of the inspection to ensure meticulous

follow-through.

 4. In the rework, the individual responsible for the document resolves all faults and

problems noted in the written report.

 5. In the follow-up, the moderator must ensure that every issue raised has been

resolved satisfactorily, by either fi xing the document or clarifying items incorrectly fl

agged as faults. All fi xes must be checked to ensure that no new faults have been

introduced [Fagan, 1986]. If more than 5 percent of the material inspected has been

reworked, then the team must reconvene for a 100 percent reinspection.

 The inspection should be conducted by a team of four. For example, in the case of a design

inspection, the team consists of a moderator, designer, implementer, and tester.

 The moderator is both manager and leader of the inspection team. There must be a

representative of the team responsible for the current workfl ow as well as a representative

of the team responsible for the next workfl ow.

 The designer is a member of the team that produced thedesign, whereas the implementer is

responsible, either individually or as part of a team, for translating the design into code.

 Fagan suggests that the tester be any programmer responsible for setting up test cases; it is,

of course, preferable that the tester be a member of the SQA group.

 The IEEE standard recommends a team of between three and six participants [IEEE 1028,

1997]. Special roles are played by the moderator, the reader who leads the team through

the design, and the recorder responsible for producing a written report of the detected

faults.

 An essential component of an inspection is the checklist of potential faults. For example,the

checklist for a design inspection should include items such as these: Is each item of the

specifi cation document adequately and correctly addressed? For each interface, do the

actual and formal arguments correspond? Have error-handling mechanisms been adequately

identifi ed? Is the design compatible with the hardware resources or does it require more

hardware than actually is available? Is the design compatible with the software resources;

for example, does the operating system stipulated in the analysis artifacts have the

functionality required by the design?

 An important component of the inspection procedure is the record of fault statistics. Faults

must be recorded by severity (major or minor; an example of a major fault is one that

causes premature termination or damages a database) and fault type.

 In the case of a design inspection, typical fault types include interface faults and logic

faults. This information can be used in a number of useful ways:

 The number of faults in a given product can be compared with averages of faults detected at

the same stage of development in comparable products, giving management an early

warning that something is amiss and allowing timely corrective action to be taken.

 If inspecting two or three code artifacts results in the discovery of a disproportionate

number of faults of a particular type, management can begin checking other code artifacts

and take corrective action.

 If the inspection of a particular code artifact reveals far more faults than were found in any

other code artifact in the product, there is usually a strong case for redesigning that artifact

from scratch and implementing the new design.

 Information regarding the number and types of faults detected at an inspection of a design

artifact aids the team performing the code inspection of the implementation of that artifact

at a later stage.

Comparison of Inspections and Walkthroughs

• Superfi cially, the difference between an inspection and a walkthrough is that the inspection

team uses a checklist of queries to aid it in finding the faults. But the difference goes deeper

than that.

• A walkthrough is a two-step process: preparation followed by team analysis of the

document.

• An inspection is a fi ve-step process: overview, preparation, inspection, rework, and follow-

up; and the procedure to be followed in each step is formalized. Examples of such

formalization are the methodical categorization of faults and the use of that information in

inspection of the documents of the succeeding workfl ows as well as in inspections of future

products.

• The inspection process takes much longer than a walkthrough. Is inspection worth the

additional time and effort? The data of Section 6.2.3 clearly indicate that inspections are a

powerful, cost-effective tool to detect faults.

Software Maintenance
 Software maintenance is often considered to be an unpleasant, time consuming, expensive

and unrewarding occupation - something that is carried out at the end of development only

when absolutely necessary

 Modification of a software product after delivery, to correct faults, to improve performance

or other attributes, or to adapt the product to a modified environment

 Modifying a program after it has been put into use

 Maintenance management is concerned with planning and predicting the process of change

 Configuration management is the management of products undergoing change.

Enhancing Maintainability

 Many activities during software development enhance the maintainability of software

product.

 Analysis activities

 Standards and guidelines

 Design activities

 Implementation activities

 Supporting documents

 From maintenance view point, the most important activities that occur during analysis are

establishing standards and guidelines for the project and the work products to ensure

uniformity of the products, setting of milestones to ensure that the work products are

produced on schedule, specifying quality assurance etc.

 Software maintenance may be performed by the developing organization, by the customer,

or by a third party on behalf of the customer. In any case the customer must be given an

estimate of the resources required and likely costs to be incurred in maintaining the system.

 Standards and guidelines: various types of standards and guidelines can be developed to

enhance the maintainability of software. Standard formats for requirements documents and

design specifications, structured coding conventions and standardized formats for the

supporting documents like users manual etc will contribute to the understandability and

hence maintainability of the software. Standards can be specified by the software quality

group

 Design activities: Architectural design is concerned with developing the functional

components, conceptual data structures and interconnections in software system. Detailed

design is concerned with specifying algorithmic details, concrete data representations and

details of the interfaces among routines and data structures.

 Implementation activities: Implementation, like design, should have the primary goal of

producing software that is easy to understand and easy to modify.

 Supporting documents: Maintenance guide and test suite description are the two important

supporting documents that should be prepared during the software development cycle in

order to ease maintenance activities.

Managerial Aspects of Software Maintenance

 Successful software maintenance, like all software engineering activities, requires a

combination of managerial skills and technical expertise. One of the most important aspects

of software maintenance involves tracking and control of maintenance activities.

Maintenance activity for a software product usually occurs in response to a change request

filed by a user of the product.

 Change requests are usually initiated by users. A change request may entail enhancement,

adaptation or error correction. A change request is first reviewed by an analyst, either closes

the change request or submits to the control board the change request, the proposed fix, and

an estimate of the resources required to satisfy the request.

 Change control board: The control board reviews and approves all change requests. The

board may deny, recommend a modified version of change, or approve the change as

submitted. The analyst provides liaison between the change control and the request initiator.

Approved changes are forwarded to the maintenance programmers for action in accordance

with the priority and constrains established by the change control board. The software is

modified, revalidated and submitted to the change control board for approval. If the change

control board approves, the master tapes and external documents are updated to reflect the

changes, and the modified software is distributed to user sites as specified by the control

board.

 Change Request Summaries: The status of the change requests and software maintenance

activities should be summarized on a weekly or monthly basis. The summary should report

emergency problems and temporary fix in effect since the last report; new change requests

received and their probable dispositional ole open requests, along with the status of

progress and probable closing date for each; and change requests that have been closed

since the last summary report, including a description of each closed request and its

disposition. In addition, a maintenance trends summary should be included in each change

request summary; a trends summary graph showing the number of new requests and the

total number of open requests as a function of time.

 Quality Assurance Activities: The quality assurance group should conduct audits and spots

checks to determine that external documents are properly updated to reflect modifications.

Quality assurance group monitors change requests, prepares change request summaries,

performs regression testing of software modifications, provides configuration management,

and retains and protects the physical media for software products. The group should be

represented on the change control board and should have sign-off authority for new releases

of modified software products. Change control is administered by quality assurance

personnel.

 Organizing maintenance programmers: Software maintenance can be performed by the

development team or my members of separate organization. There are advantages and

disadvantages to both approaches. Members of the development team will be intimately

familiar with the product; they will understand the design philosophy of the system and

why it functions as it does. Also they will take great care to design and implement the

system to enhance maintainability. On the other hand they will probably be less careful in

preparing the supporting documentation. Also they may be assigned to new project while

retaining the responsibility for maintenance of the released product.

 Maintenance by a separate group forces more attention to standards and high quality

documentation. It is also has the advantage of releasing the development team to pursue

other activities. They can become highly expert on various details of the product because

they devote their full attention to the product. However, a morale problem associated with

maintenance programming, and rightly or wrongly a stigma is often associated with being a

“maintenance programmer”.

 A desirable method of organizing maintenance programming is to periodically rotate

programmers between development and maintenance.

Configuration Management

 Configuration management is concerned with tracking and controlling of the work products

that constitute a software product. Software tools to support configuration management

include configuration management data base and version control. A configuration

management data base can provide information concerning product structure, current

revision number, current status and change request history for each product version.

 A version control library may be part of a configuration management data base or it may be

used as a stand-alone tool.

Source-Code Metrics

 A software metric is a measure of some property of a piece of software or its

specifications. Most of the metrics incorporate easily computed properties of the source

code, such as the number of operators and operands, the complexity of the control flow

graph, the number of parameters and global variables in routines and the number of levels

and manner of interconnection of call graph. The approaches taken to compute a number or

set of numbers that measures the complexity of the code. Thus a program with measure 10

would be more complex than a program with measure 5.

The maintenance process

 Maintenance is triggered by change requests from customers or marketing requirements

Changes are normally batched and implemented in a new release of the system

 Programs sometimes need to be repaired without a complete process iteration but this is

dangerous as it leads to documentation and programs getting out of step

 The maintenance process

System release
planning

Change
implementa tion

System
release

Impact
analysis

Change
requests

Adaptive
maintenance

Corrective
maintenance

Perfective
maintenance

Fig.5.1. The maintenance process

Change processes

Fig.5.2. Change processes

System documentation

 Requirements document

 System architecture description

 Program design documentation

 Source code listings

 Test plans and validation reports

 System maintenance guide

The Maintenance Lifecycle

Fig.5.3. The Maintenance Life cycle

Types of Software Maintenance
 In order for a software system to remain useful in its environment it may be necessary to

carry out a wide range of maintenance activities upon it. Swanson (1976) was one of the

first to examine what really happens during maintenance and was able to identify three

different categories of maintenance activity:

 Corrective

 Changes necessitated by actual errors (defects or residual "bugs") in a system are termed

corrective maintenance. These defects manifest themselves when the system does not

operate as it was designed or advertised to do

 Adaptive

 Any effort that is initiated as a result of changes in the environment in which a software

system must operate is termed adaptive change. Adaptive change is a change driven by the

need to accommodate modifications in the environment of the software system, without

which the system would become increasingly less useful until it became obsolete.

 Perfective

 The third widely accepted task is that of perfective maintenance. This is actually the most

common type of maintenance encompassing enhancements both to the function and the

efficiency of the code and includes all changes, insertions, deletions, modifications, ex-

tensions, and enhancements made to a system to meet the evolving and/or expanding needs

of the user. A successful piece of software tends to be subjected to a succession of changes

resulting in an increase in its requirements. This is based on the premise that as the software

becomes useful, the users tend to experiment with new cases beyond the scope for which it

was initially developed. Expansion in requirements can take the form of enhancement of

existing system functionality or improvement in computational efficiency

 Preventive

 The long-term effect of corrective, adaptive and perfective change is expressed in Lehman's

law of increasing entropy:

 As a large program is continuously changed, its complexity, which reflects deteriorating

structure, increases unless work is done to maintain or reduce it.

Distribution of maintenance effort

Perfective
maintenance

(65%)

Corrective
maintenance

(17%)

Adaptive
maintenance

(18%)

Fig.5.4. Distribution of maintenance effort

