INSTITUTE OF SCIENCE AMD TECHMNOLOGY
IDEEMED TO BE UNIYERSITYI
Accredited "A” Grade by NAAC | 128 Status by UGC | Approved by AICTE

www.sathyabama.ac.in

School of Computing
Department of Computer Science and Engineering
UNIT - |

Fundamental of Data Structure—- SBS1201



UNIT-1

Arrays- Linked List - Single Linked List - Insertion and Deletion - Doubly Linked List.-
Circular Linked List — Stack- Queues- Array implementation of a Stack and queue -
Linked List implementation of a Stack and Queue- Priority Queues

1. INDRODUCTION
ABSTRACT DATA TYPE
In programming each program is breakdown into modules, so that no routine should ever exceed
a page. Each module is a logical unit and does specific job modules which in turn will call
another module.
Modularity has severa advantages
1. Modules can be compiled separately which makes debugging process easier.
2. Several modules can be implemented and executed simultaneously.
3. Modules can be easily enhanced.
Abstract Datatype is an extension of modular design.

An abstract datatypeis a set of operations such as Union, Intersection, Complement, Find etc.,

The basic idea of implementing ADT is that the operations are written once in program and can
be called by any part of the program.

1L1THE LIST ADT
List isan ordered set of elements.
The general form of thelistis
A1, Az Ag, ..... ,An
A1 - First element of thelist

Ay - Last dement of thelist



N - Size of thelist

If the element at positioni is A then its successor is Aj+; and its predecessor iS A.1.
Various operations performed on List

1. Insert (X, 5) - Insert the element X after the position 5.

2. Delete (X) - The element X isdeleted

3. Find (X) - Returns the position of X.

4. Next (i) - Returns the position of its successor element i+1.

5. Previous (i) - Returns the position of its predecessor i-1.

6. Print list - Contents of the list is displayed.

7. Makeempty - Makes the list empty.

1.1.1 Implementation of List ADT

1. Array Implementation

2. Linked List Implementation

3. Cursor Implementation.

Array Implementation of List

Array is acollection of specific number of data stored in a consecutive memory locations.
* |nsertion and Deletion operation are expensive as it requires more data movement
* Find and Printlist operations takes constant time.

* Even if the array is dynamically alocated, an estimate of the maximum size of the
list isrequired which considerably wastes the memory space.

Linked List Implementation

Linked list consists of series of nodes. Each node contains the element and a pointer to its
successor node. The pointer of the last node pointsto NULL.

Insertion and del etion operations are easily performed using linked list.



Typesof Linked List

1. Singly Linked List

2. Doubly Linked List

3. Circular Linked List.
1.1.2 Singly Linked List

A singly linked list isalinked list in which each node contains only one link field pointing to the
next nodein the list.

DECLARATION FOR LINKED LIST
Struct node ;

typedef struct Node *List ;

typedef struct Node * Position ;

int IsLast (ListL);

int IsEmpty (List L) ;

position Find(int X, ListL) ;

void Delete(int X, List L) ;

position FindPrevious(int X, List L) ;
position FindNext(int X, List L) ;
void Insert(int X, List L, Position P) ;
void DeleteList(List L) ;

Struct Node

{

int element ;

position Next ;

};



ROUTINE TO INSERT AN ELEMENT IN THE LIST
void Insert (int X, List L, Position P)

[* Insert after the position P*/

{

position Newnode;

Newnode = malloc (size of (Struct Node));

If (Newnode! = NULL)

{

Newnode ->Element = X;

Newnode ->Next = P-> Next;

P-> Next = Newnode;

}

}

INSERT (25, P, L)

ROUTINE TO CHECK WHETHER THE LIST ISEMPTY
int IsEmpty (List L) /*Returns 1 if L isempty */

{

if (L-> Next==NULL)

return (1);

}

ROUTINE TO CHECK WHETHER THE CURRENT POSITION ISLAST

int IsLast (position P, List L) /* Returns 1 isPisthelast positioninL */

{



if (P->Next ==NULL)

return

}

FIND ROUTINE

position Find (int X, List L)

{

/*Returns the position of X inL; NULL if X isnot found */
position P;

P=L-> Next;

while (P! = NULL && P Element ! = X)
P = P->Next;

return P,

}

}
FIND PREVIOUS ROUTINE

position FindPrevious (int X, List L)

{

[* Returns the position of the predecessor */

position P;

P=L;

while (P-> Next! =Null && P->Next Element! =X)
P =P ->Next;

return P;



FINDNEXT ROUTINE

position FindNext (int X, List L)

{

/* Returns the position of its successor */

P=L ->Next;

while(P Next! =NULL && P Element! = X)
P =P Next;

return P - Next;

}

ROUTINE TO DELETE AN ELEMENT FROM THE LIST
void Delete(int X, List L)

{

[* Delete the first occurence of X from the List */
position P, Temp;

P = Findprevious (X,L);

If (11sLast(P,L))

{

Temp = P- Next;

P — Next = Temp - Next;

Free (Temp);

}

}



ROUTINE TO DELETE THE LIST
void DeleteList (List L)
{

position P, Temp;
P=L - Next,

L — Next = NULL,;
while (P! = NULL)

{

Temp = P- Next

free (P);

P=Temp;

}

}

1.1.3 Doubly Linked List

A Doubly linked list is a linked list in which each node has three fields namely data field,
forward link (FLINK) and Backward Link (BLINK). FLINK points to the successor node in the
list whereas BLINK points to the predecessor node.

STRUCTURE DECLARATION : -

Struct Node

{

int Element;

Struct Node *FLINK;

Struct Node *BLINK

};



ROUTINE TO INSERT AN ELEMENT IN A DOUBLY LINKED LIST
void Insert (int X, list L, position P)

{

Struct Node * Newnode;

Newnode = malloc (size of (Struct Node));
If (Newnode! = NULL)

{

Newnode - Element = X;

Newnode - Flink =P  Hink;

P - Flink - Blink = Newnode;

P — Flink = Newnode ;

Newnode - Blink = P;

}

}
ROUTINE TO DELETE AN ELEMENT

void Delete (int X, List L)
{

position P;

P=Find (X, L);

If (IsLast (P, L))

{

Temp =P,

P - Blink - Flink = NULL;



free (Temp);

}

else

{

Temp =P,

P - Blink—»  Flink = P Flink;
P - Flink - Blink = P Blink;
free (Temp);

}

}

Advantage

* Deletion operation is easier.

* Finding the predecessor & Successor of anodeis easier.
Disadvantage

* More Memory Spaceis required since it has two pointers.
1.1.4 Circular Linked List

In circular linked list the pointer of the last node points to the first node. Circular linked list can
be implemented as Singly linked list and Doubly linked list with or without headers.

Singly Linked Circular List

A singly linked circular list is a linked list in which the last node of the list points to the first
node.

Doubly Linked Circular List

A doubly linked circular list is a Doubly linked list in which the forward link of the last node
points to the first node and backward link of the first node points to the last node of the list.

Advantages of Circular Linked List

10



* It allows to traverse the list starting at any point.
* It allows quick access to the first and last records.
1.1.5 Applicationsof Linked List

1. Polynomial ADT

2. Radix Sort

3. Multilist

1.2 THE STACK ADT
1.2.1 Stack Modd :

A stack is alinear data structure which follows Last In First Out (LIFO) principle, in which both
insertion and deletion occur at only one end of the list called the Top.

Example: -

Pile of coins., astack of traysin cafeteria.

2.2.2 Operations On Stack

The fundamental operations performed on a stack are
1. Push

2. Pop

PUSH :

The process of inserting a new element to the top of the stack. For every push operation thetop is
incremented by 1.

POP :

The process of deleting an element from the top of stack is called pop operation. After every pop
operation the top pointer is decremented by 1.

EXCEPTIONAL CONDITIONS
Over Flow

11



Attempt to insert an element when the stack isfull is said to be overflow.
UnderFlow

Attempt to delete an element, when the stack is empty is said to be underflow.
1.2.3 Implementation of Stack

Stack can be implemented using arrays and pointers.

Array Implementation

In this implementation each stack is associated with a pop pointer, which is -1 for an empty
stack.

* To push an element X onto the stack, Top Pointer is incremented and then set Stack [Top] = X.
* To pop an element, the stack [Top] value is returned and the top pointer is decremented.
* pop on an empty stack or push on afull stack will exceed the array bounds.

ROUTINE TO PUSH AN ELEMENT ONTO A STACK

void push (int x, Stack S)

{

if (IsFull (S))

Error ("Full Stack");

else

{

Top=Top+ 1,

S[Top] = X;

}

}

int IsFull (Stack S)

{

12



if (Top==Arraysize)
return (1);

}

ROUTINE TO POP AN ELEMENT FROM THE STACK
void pop (Stack S)

{

if (IsSEmpty (S))

Error ("Empty Stack");
else

{

X =S[Topl;
Top=Top-1,

}

}

int ISEmpty (Stack S)

{

if (S Top==-1)

return (1);

}

ROUTINE TO RETURN TOP ELEMENT OF THE STACK
int TopElement (Stack S)

{
if (! IsEmpty (9))

13



return §fTop];
else
Error ("Empty Stack");
return O;
}
1.3LINKED LIST IMPLEMENTATION OF STACK
* Push operation is performed by inserting an element at the front of the list.
* Pop operation is performed by deleting at the front of the list.
* Top operation returns the element at the front of the list.
DECLARATION FOR LINKED LIST IMPLEMENTATION
Struct Node;
typedef Struct Node * Stack;
int IsEmpty (Stack S);
Stack CreateStack (void);
void MakeEmpty (Stack S);
void push (int X, Stack S);
int Top (Stack S);
void pop (Stack S);
Struct Node
{
int Element ;

Struct Node * Next;

};

14



ROUTINE TO CHECK WHETHER THE STACK ISEMPTY
int ISEmpty (Stack S)

{

if (S— Next==NULL)

return (1);

}

ROUTINE TO CREATE AN EMPTY STACK
Stack CreateStack ()

{

Stack S;

S=malloc (Sizeof (Struct Node));

if (S==NULL)

Error (" Outof Space');

MakeEmpty (9);

return S;

}
void MakeEmpty (Stack S)

{

if (S==NULL)

Error (" Create Stack First");
else

while (! ISEmpty (S))

pop (s);



}

ROUTINE TO PUSH AN ELEMENT ONTO A STACK
void push (int X, Stack S)

{

Struct Node * Tempcell;

Tempcell = malloc (sizeof (Struct Node));
If (Tempcell = =NULL)

Error ("Out of Space");

else

{

Tempcell Element = X;

Tempcell Next=S Next;

S— Next = Tempcell,

}

}

ROUTINE TO RETURN TOP ELEMENT IN A STACK
int Top (Stack S)

{

If (! ISEmpty (S))

return S— Next - Element;

Error ("Empty Stack");

return O;

}

16



ROUTINE TO POP FROM A STACK
void pop (Stack S)
{
Struct Node * Tempcell;
If (ISEmpty (S))
Error ("Empty Stack");
else
{
Tempcell = S— Next;
S— Next = S - Next — Next;
Free (Tempcell);
}
}
1.4 The Queue ADT
1.4.1 Queue Model

A Queue is a linear data structure which follows First In First Out (FIFO) principle, in which
insertion is performed at rear end and deletion is performed at front end.

Example : Waiting Line in Reservation Counter,
2.3.2 Operations on Queue

The fundamental operations performed on queue are
1. Enqueue

2. Dequeue

Enqueue:

The process of inserting an element in the queue.

17



Dequeue:

The process of deleting an element from the queue.

Exception Conditions

Overflow : Attempt to insert an element, when the queue is full is said to be overflow condition.
Underflow : Attempt to delete an element from the queue, when the queue is empty is said to be
underflow.

1.4.3 Implementation of Queue

Queue can be implemented using arrays and pointers.

Array Implementation

In this implementation queue Q is associated with two pointers namely rear pointer and front
pointer.

To insert an element X onto the Queue Q, the rear pointer isincremented by 1 and then set
Queue [Rear] = X

To delete an element, the Queue [Front] is returned and the Front Pointer is incremented by 1.
ROUTINE TO ENQUEUE

void Enqueue (int X)

{

if (rear >=max _ Arraysize)

print (" Queue overflow");

else

{

Rear = Rear + 1;

Queue [Rear] = X;

}

18



}

ROUTINE FOR DEQUEUE
void delete ()

{

if (Front <0)

print (" Queue Underflow");
else

{

X = Queue [Front];

if (Front = = Rear)

{

Front = 0;
Rear = -1;
}

else

Front=Front+ 1;

}
}

In Dequeue operation, if Front = Rear, then reset both
the pointersto their initial values. (i.e. F=0, R=-1)
Linked List Implementation of Queue

Enqueue operation is performed at the end of the list.

Dequeue operation is performed at the front of the list.

19



Queue ADT

DECLARATION FOR LINKED LIST IMPLEMENTATION OF QUEUE ADT
Struct Node;

typedef Struct Node * Queue;

int IsEmpty (Queue Q);

Queue CreateQueue (void);

void MakeEmpty (Queue Q);

void Enqueue (int X, Queue Q);

void Dequeue (Queue Q);

Struct Node

{

int Element;

Struct Node * Next;

}* Front = NULL, *Rear = NULL,;

ROUTINE TO CHECK WHETHER THE QUEUE ISEMPTY
int IsEmpty (Queue Q) // returns boolean value/
{ I'if Qisempty

if (Q- Next==NULL) //elsereturns 0

return (1);

}

ROUTINE TO CHECK AN EMPTY QUEUE

Struct CreateQueue ()

{



Queue Q;

Q = Malloc (Sizeof (Struct Node));
if (Q==NULL)

Error ("Out of Space");
MakeEmpty (Q);

return Q;

}

void MakeEmpty (Queue Q)

{

if (Q==NULL)

Error ("Create Queue First");

else

while (I IsEmpty (Q)

Dequeue (Q);

}

ROUTINE TO ENQUEUE AN ELEMENT IN QUEUE
void Enqueue (int X)

{

Struct node * newnode;

newnode = Malloc (sizeof (Struct node));
if (Rear == NULL)

{

newnode - data = X;



newnode — Next = NULL;
Front = newnode;
Rear = newnode;

}

else

{

newnode —» data= X;
newnode — Next = NULL,;
Rear - next = newnode;

Rear = newnode;

}
}

ROUTINE TO DEQUEUE AN ELEMENT FROM THE QUEUE
void Dequeue ()

{

Struct node * temp;

if (Front==NULL)

Error("Queue is underflow");

else

{

temp = Front;

if (Front == Rear)

{

22



Front = NULL,;

Rear = NULL,;

}

else

Front = Front — Next;
Print (temp - data);
free (temp);

}

}
1.4.4 Double Ended Queue (DEQUE)

In Double Ended Queue, insertion and deletion operations are performed at both the ends.

1.4.5 Circular Queue

In Circular Queue, the insertion of a new element is performed at the very first location of the
gueue if the last location of the queue is full, in which the first element comes just after the last
element.

Advantages

It overcomes the problem of unutilized space in linear queues, when it isimplemented as arrays.

To perform the insertion of an element to the queue, the position of the element is calculated by
therelation as

Rear = (Rear + 1) % Maxsize.

and then set

Queue [Rear] = value.

ROUTINE TO INSERT AN ELEMENT IN CIRCULAR QUEUE
void CEnqueue (int X)

{

23



if (Front == (rear + 1) % Maxsize)
print ("Queue is overflow");
else

{

if (front ==-1)

front = rear = 0;

else

rear = (rear + 1)% Maxsize;
CQueue [rear] = X;

}

}

To perform the deletion, the position of the Front printer is calculated by the relation
Value = CQueue [Front]

Front = (Front + 1) % maxsize.

ROUTINE TO DELETE AN ELEMENT FROM CIRCULAR QUEUE
int CDequeue ()

{

if (front==-1)

print ("Queueis underflow");

else

{

X = CQueue [Front];

if (Front = = Rear)



Front = Rear = -1,
else
Front = (Front + 1)% maxsize;
}
return (X);
}
1.5 Priority Queues

Priority Queue is a Queue in which inserting an item or removing an item can be performed from
any position based on some priority.

1.5.1 Applications of Queue

* Batch processing in an operating system

* To implement Priority Queues.

* Priority Queues can be used to sort the elements using Heap Sort.
* Simulation.

* Mathematics user Queueing theory.

* Computer networks where the server takes the jobs of the client as per the queue strategy.

25



26



—-

INSTITUTE OF SCIENCE AMD TECHMNOLOGY
IDEEMED TDO BE UNIVERSITYI
Accredited "A” Grade by NAAC | 128 Status by UGC | Approved by AICTE

www.sathyabama.ac.in

School of Computing
Department of Computer Science and Engineering

UNIT - 11

Fundamental of Data Structure - SBS1201




UNIT-II

Evaluation of arithmetic expresson using stack- Prefix -Infix-Postfix-notations,
Converting infix expressions to postfix-Evaluation of postfix expression,-Towers of Hanoi
problem.

2.1 APPLICATIONSOF STACK
Some of the applications of stack are:
(i) Evaluating arithmetic expression
(if) Balancing the symbols
(iii) Towers of Hannoi
(iv) Function Calls.
(v) 8 Queen Problem.
Different Types of Notations To Represent Arithmetic Expression
There are 3 different ways of representing the algebraic expression.
They are
* INFIX NOTATION
* POSTFIX NOTATION
* PREFIX NOTATION
INFIX

In Infix notation, The arithmetic operator appears between the two operands to which it is being
applied.

For example:-A/B+C

POSTFIX



The arithmetic operator appears directly after the two operands to which it applies. Also called
reverse polish notation. ((A/B) + C)

For example: - AB/C +
PREFIX

The arithmetic operator is placed before the two operands to which it applies. Also called as
polish notation. ((A/B) + C)

For example: - +/ABC
INFIX PREFIX (or) POLISH POSTFIX (or) REVERSE
POLISH
1.(A+B)/(C-D)/+AB-CDAB+CD-/
2.A +B*(C-D)+A*B-CD ABCD - * +
3.X*A/B-D-/* XABD X A*B/D-
4. X +Y* (A-B)/+X/*Y -AB-CD XYAB-*CD-/+
(C-D)
5. A*B/IC+D+/* ABCDAB*C/D+
2.2. Evaluating Arithmetic Expression

To evaluate an arithmetic expressions, first convert the given infix expression to postfix
expression and then eval uate the postfix expression using stack.

Infix to Postfix Conversion

Read the infix expression one character at atime until it encounters the delimiter. "#"

Step 1 : If the character is an operand, place it on to the output.

Step 2 : If the character is an operator, push it onto the stack. If the stack operator has a higher

or equal priority than input operator then pop that operator from the stack and place it onto the
output.

Step 3 : If the character is aleft paraenthesis, push it onto the stack.



Step 4 : If the character isaright paraenthesis, pop all the operators from the stack till it

encounters left parenthesis, discard both the parenthesis in the output.

2.3 Evaluating Postfix Expression
Read the postfix expression one character at atime until it encounters the delimiter “#.
Step 1 : - If the character is an operand, push its associated value onto the stack.
Step 2 : - If the character is an operator, POP two values from the stack, apply the operator to

them and push the result onto the stack.

Recursive Solution

N - represents the number of disks.

Step 1. If N =1, move the disk from A to C.

Step 2. If N = 2, move the 1% disk from A to B.

Then move the 2™ disk from A to C,

The move the 1% disk from B to C.

Step 3. If N = 3, Repeat the step (2) to more thefirst 2 disksfrom A to B using C as
intermediate.

Then the 3" disk is moved from A to C. Then repeat the step (2) to move 2 disks from
B to C using A asintermediate.

In general, to move N disks. Apply the recursive technique to move N - 1 disks from
A to B using C as an intermediate. Then move the N™ disk from A to C. Then again
apply the recursive technique to move N - 1 disksfrom B to C using A asan
intermediate.

2.3.1 Evaluation of Postfix Expressions Using Stack [with C program]



How to evaluate postfix expression using stack in C language program?

The compiler finds it convenient to evaluate an expression in its postfix form. The virtues of
postfix form include elimination of parentheses which signify priority of evaluation and the
elimination of the need to observe rules of hierarchy, precedence and associativity during
evaluation of the expression.

As Postfix expression is without parenthesis and can be evaluated as two operands and an
operator at atime, this becomes easier for the compiler and the computer to handle.

Evaluation rule of a Postfix Expression states:

1. While reading the expression from left to right, push the element in the stack if it is an
operand.

2. Pop the two operands from the stack, if the element is an operator and then evaluate it.

3. Push back the result of the evaluation. Repeat it till the end of the expression.

Algorithm

1) Add) to postfix expression.

2) Read postfix expression Left to Right until ) encountered
3) If operand is encountered, push it onto Stack
[End If]

4) If operator is encountered, Pop two el ements
1) A ->Top element

i) B-> Next to Top element

iii) Evaluate B operator A

push B operator A onto Stack

5) Set result = pop

6) END

Let's see an exampleto better understand the algorithm:

Expression: 456* +

4 8 N




Fig.2.3.1 Evaluating Postfix Expression

Step Input Operation Stack Calculation
Symbol
1. 4 Push )
2. 5 Push 4,5
3. 6 Push 45,6
4. - Popl2 elements) 4 5%6=30
& Evaluate
Push result{30) 4,30
+ Pop(2 elements) Empty 4+30=34
& Evaluate
F Push result{34) 34
8 No-more elements(pop) Empty 34(Result)

Result: 34

Evaluation of Postfix Expressions Using Stack

/* This program is for evaluation of postfix expression

* This program assume that there are only four operators
* (*,/, +,-) inan expression and operand is single digit only
* Further this program does not do any error handling e.g.
* it does not check that entered postfix expression isvalid
* or not.

oy

Example

#include <stdio.h>

#include <ctype.h>

#define MAXSTACK 100 /* for max size of stack */



#define POSTFIXSIZE 100 /* define max number of charcters in postfix expression */

[* declare stack and its top pointer to be used during postfix expression
evaluation*/

int stackf MAXSTACK];

int top = -1; /* because array index in C beginsat 0 */

/* can be do thisinitialization somewhere else */

[* define push operation */
void push(int item)

{

if (top>=MAXSTACK - 1){
printf("stack over flow");
return;

}

else{
top=top + 1;

stack[top] = item;

[* define pop operation */



int pop()
{
int item;
if (top<0){
printf("stack under flow");
}
ese{
item = stack[top];
top =top - 1;

return item;

[* define function that is used to input postfix expression and to evaluate it */
void EvalPostfix(char postfix[])
{

inti;

char ch;

int val,

int A, B;

[* evaluate postfix expression */

for (i = 0; postfix[i] 1=")"; i++) {

ch = postfix][i];



if (isdigit(ch)) {
[* we saw an operand,push the digit onto stack
ch-'0"isused for getting digit rather than ASCII code of digit */
push(ch - '0");
}
elseif (ch=="+"|[ch==""| | ch==""| ch==""){
[* we saw an operator
* pop top element A and next-to-top elemnet B
* from stack and compute B operator A
*/
A = pop();

B = pop();

switch (ch) /* chisan operator */
{
case ™"
va =B*A;
break;
case'l"
va =B/A;
break;
case'+"

vad =B+ A;



break;

va =B -A;
break;
}
/* push the value obtained above onto the stack */
push(val);
}
}
printf(" \n Result of expression evaluation : %d \n", pop());
}
int main()
{
inti;

[* declare character array to store postfix expression */
char postfix[POSTFIXSIZE];

printf("ASSUMPTION: There are only four operators(*, /, +, -) in an expression and operand
issingledigit only.\n");

printf(" \nEnter postfix expression,\npress right parenthesis ')’ for end expression : ");
[* take input of postfix expression from user */

for (i = 0; i <= POSTFIXSIZE - 1; i++) {



scanf("%c", & postfix[i]);
if (postfix[i] ==")") /* isthere any way to eliminate thisif */
{
break;
} I* and break statement */
}
[* call function to evaluate postfix expression */
EvalPostfix(postfix);
return 0;
}
Output
First Run:
Enter postfix expression, press right parenthesis ')’ for end expression : 456* +)
Result of expression evaluation : 34
Second Run:
Enter postfix expression, press right parenthesis ')’ for end expression: 12345* +* +)

Result of expression evaluation: 47

2.4 Infix to Postfix Conversion

This problem requires you to write a program to convert an infix expression to a postfix
expression. The evaluation of an infix expression such as A + B * C requires knowledge of
which of the two operations, + and *, should be performed first. In general, A + B * Cisto be
interpreted as A + ( B * C ) unless otherwise specified. We say that multiplication takes
precedence over addition. Suppose that we would now like to convert A + B * C to postfix.
Applying the rules of precedence, we first convert the portion of the expression that is
evaluated first, namely the multiplication. Doing this conversion in stages, we obtain



A +B *C  Giveninfix form
A +BC* Postfix
ABC* + Convert the addition to posfix

The mgjor rules to remember during the conversion process are that the operations with highest
precedence are converted first and that after a portion of an expression has been converted to
postfix, it is to be treated as a single operand. Let us now consider the same example with the
precedence of operators reversed by the deliberate insertion of parentheses.

(A+B)*C Given infix form
AB+* C Convert the addition
AB+C* Convert the multiplication

Note that in the conversion from AB + * C to AB + C *, AB+ was treated as a single
operand. The rules for converting from infix to postfix are ssmple, provided that you know
the order of precedence.

We consider five binary operations. addition, subtraction, multiplication, division, and
exponentiation. These operations are denoted by the usual operators, +, —, *, /, and 7,
respectively. There are three levels of operator precedence. Both * and / have higher
precedence than + and —. " has higher precedence than * and /. Furthermore, when operators of
the same precedence are scanned, +, —, * and / are left associative, but ” is right associative.
Parentheses may be used in infix expressions to override the default precedence.

The postfix form requires no parentheses. The order of the operators in the postfix expressions
determines the actual order of operations in evaluating the expression, making the use of
parentheses unnecessary.

I nput

A collection of error-free simple arithmetic expressions. Expressions are presented one per line.
The input has an arbitrary number of blanks between any two symbols. A symbol may be a
letter (A — Z), an operator (+, —, *, or /), aleft parenthesis, or aright parenthesis. Each operand
is composed of asingle letter. The input expressions are in infix notation.

Example
A+B-CA+B
*C

(A+B)/(C-D)
((A+B)*(C-D)+E)/(F+G)



Output

Your output will consist of the input expression, followed by its corresponding postfix
expression. All output (including the origina infix expression) must be clearly formatted (or
reformatted) and also clearly |abeled.

Example

(Only the four postfix expressions corresponding to the above sample input are
shown here) AB +C—

ABC*+

AB+CD-/

AB+CD-*E+FG+/

In converting infix expressions to postfix notation, the following fact should be taken into
consideration: In infix form, the order of applying operators is governed by the possible
appearance of parentheses and the operator precedence relations; however, in postfix form, the
order issimply the “natural” order — i.e., the order of appearance from left to right.

Accordingly, subexpressions within innermost parentheses must first be converted to postfix, so
that they can then be treated as single operands. In this fashion, parentheses can be
successively eliminated until the entire expression has been converted. The last pair of
parentheses to be opened within a group of nested parentheses encloses the first subexpression
within the group to be transformed. This last-in, first-out behavior should immediately suggest
the use of a stack.

Y our program should utilize the basic stack methods. Y ou will need to PUSH certain symbols
on the stack, POP symbols, test to see if the stack is EMPTY, look at the TOP element of the
stack, etc.

In addition, you must devise a boolean method that takes two operators and tells you which has
higher precedence. Thiswill be helpful, because in Rule 3 below, you need to compare the next
symbol to the one on the top of the stack. [Question: what precedence do you assignto “(*? You
need to answer this question since “‘(* may be on top of the stack.]

Y ou should formul ate the conversion algorithm using the following six rules:

1. Scantheinput string (infix notation) from left to right. One passis sufficient.
2. If the next symbol scanned is an operand, it may be immediately appended to the



postfix string.
3. If the next symbol is an operator,
i Pop and append to the postfix string every operator on the stack that a.  is
above the most recently scanned left parenthesis, and has precedence higher than or is a
right-associative operator of equal precedence to that of the new operator symbol.
ii.  Pushthe new operator onto the stack.
4. When aleft parenthesisis seen, it must be pushed onto the stack.
5. When a right parenthesis is seen, al operators down to the most recently scanned |left
parenthesis must be popped and appended to the postfix string. Furthermore, this pair of
parentheses must be discarded.
6. When the infix string is completely scanned, the stack may still contain some operators.
[Why are there no parentheses on the stack at this point?] All the remaining operators should be
popped and appended to the postfix string.

Examples

Here are two examples to help you understand how the algorithm works. Each line below
demonstrates the state of the postfix string and the stack when the corresponding next infix
symbol isscanned. The

rightmost symbol of the stack is the top symbol. The rule number corresponding to each line
demonstrates which of the six rules was used to reach the current state from that of the previous
line.

Example 1
Input expression: A+B* C/D-E

A A 2
+ A + 3
B A B + 2
* A B + * 3
C ABC +* 2

ABC* +/ 3
D ABC*D +/ 2
- ABC*D/+ - 3
E ABC*D/+E - 2

ABC*D/+E- 6
Example 2

Input expression: (A+B*(C-D))/E.



INext Symbol |Postfix Sring |Stack |Ru|e |

( ( 4
( 2

+ A (+ 3
B A B (+ 2
* A B (+* 3
( A B (+*( 4
C ABC (+*( 2
- ABC (+* (- 3
D ABCD (+* (- 2
) ABCD - (+* S
) ABCD-*+ 5
/ ABCD-*+ 3
E ABCD-*+E 2
ABCD-*+E/ 6

2.5RECURSIVE ROUTINE FOR TOWERS OF HANOI

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more than
oneringsis as depicted -

Fig.2.5.1 Tower of Hanoi

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one
sits over the larger one. There are other variations of the puzzle where the number of disks
increase, but the tower count remains the same.

Rules

The mission is to move al the disks to some another tower without violating the sequence of
arrangement. A few rules to be followed for Tower of Hanoi are -

Only one disk can be moved among the towers at any given time.
Only the "top" disk can be removed.



No large disk can sit over asmall disk.

Following is an animated representation of solving a Tower of Hanoi puzzle with three disks.

Step: 0

Fig.2.5.2 Tower of Hanoi with 3 Disks
Tower of Hanoi puzzle with n disks can be solved in minimum 2"-1 steps. This presentation
shows that a puzzle with 3 disks has taken 2° - 1 = 7 steps.

Algorithm

To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with
lesser amount of diskss, say - 1 or 2. We mark three towers with

name, sour ce, destination and aux (only to help moving the disks). If we have only one disk,
then it can easily be moved from source to destination peg.

If we have 2 disks —

First, we move the smaller (top) disk to aux peg.
Then, we move the larger (bottom) disk to destination peg.
And finally, we move the smaller disk from aux to destination peg.

Stop: 0

Source = Destination = = Ausilary

Fig.2.5.3 Tower of Hanoi with 2 Disks

So now, we are in a position to design an algorithm for Tower of Hanoi with more than two

disks. We divide the stack of disks in two parts. The largest disk (n"" disk) isin one part and all
other (n-1) disks are in the second part.



Our ultimate aim is to move disk n from source to destination and then put all other (n1) disks
onto it. We can imagine to apply the samein arecursive way for al given set of disks.

The steps to follow are -

Step 1 — Move n-1 disks from sour ce to aux
Step 2 - Move n™ disk from sour ce to dest
Step 3 — Move n-1 disks from aux to dest

A recursive agorithm for Tower of Hanoi can be driven as follows -

START
Procedure Hanoi (disk, source, dest, aux)

IFdisk ==1, THEN
move disk from source to dest
ELSE
Hanoi(disk - 1, source, aux, dest) // Step 1
move disk from source to dest Il Step 2
Hanoi(disk - 1, aux, dest, source) // Step 3
END IF

END Procedure
STOP

Example:

void hanoi (int n, char s, char d, char i)

{

[*n no.of disks,s source, d destinationi intermediate */
if(n==1)

{

print (s, d);

return;

}

ese

{

hanoi (n- 1, s, 1, d);




print (s, d)

hanoi (n-1,1,d, s);
return;

}

}

Function Calls

When a call is made to a new function all the variables local to the calling routine need to be
saved, otherwise the new function will overwrite the calling routine variables. Similarly the
current location address in the routine must be saved so that the new function knows where to go
after it is completed.

RECURSIVE FUNCTION TO FIND FACTORIAL : -

int fact (int n)

{

ints;

if (n==1)
return (1);
dse

s=n* fact (n-1);
return (s);

}



=

:: q - '}
SATHYABAMA

INSTITUTE OF SCIENMCE AND TECHNODOLOGY
IDEEMED TDO BE UNIVERSITYI
Accredited "A” Grade by NAAC | 128 Status by UGC | Approved by AICTE
whww. sathyabama.ac.in

School of Computing

Department of Computer Science and Engineering
UNIT - 111

Fundamental of Data Structure — SBS1201




UNIT-I11

Tree Structures. Binary Treess Implementation of Binary Trees- Linear
Representation of Binary Tree-Linked representation of a Binary Tree. Binary Tree
Traversal: Preorder — In order - Post order.

3. TREES

3.1 PRELIMINARIES:
TREE: A treeisafinite set of one or more nodes such that thereis a specialy designated
node called the Root, and zero or more non empty sub trees T4, T».... Tk, each of
whose roots are connected by a directed edge from Root R.
The ADT tree

A treeisafinite set of elements or nodes. If the set is non-empty, one of the nodes
is distinguished as the root node, while the remaining (possibly empty) set of nodes are
grouped into subsets, each of which is itself a tree. This hierarchical relationship is

described by referring to each such subtree as a child of the root, while the root is referred
to as the parent of each subtree. If atree consists of a single node, that node is called a

noae. e
(B) ©
O © W O

Figure3.1.1 A simple tree.

It is anotational convenience to alow an empty tree. It is usual to represent atree using a
picture such as Fig. 3.1.1, in which the root node is A, and there are three subtrees rooted
at B, C and D. The root of the subtree D is a leaf node, as are the remaining nodes, E, F,
G, H and I. The node C has a single child I, while each of E, F, G and H have the same
parent B. The subtrees rooted at a given node are taken to be ordered, so the tree in
Fig. 3.1.1 is different from the one in which nodes E and F are interchanged. Thus it
makes sense to say that the first subtree at A has 4 leaf nodes.

Example 3.1.1 Show how to implement the Abstract Data Type tree using lists.



Solution We write [A B C] for the list containing three elements, and distinguish A from
[A]. We can represent a tree as a list consisting of the root and a list of the subtrees in
order. Thusthe list-based representation of thetreein Fig 3.1.1is

[A [[B [[E] [F] [G] [HI]T [C [1]] [DI]].

ROOT : A node which doesn't have a parent. In the above tree.

NODE : Item of Information.

LEAF : A node which doesn't have childrenis called leaf or Terminal node.

SIBLINGS : Children of the same parents are said to be siblings,. F, G are siblings.
PATH : A path from node n, to ny is defined as a sequence of nodes ny, Ny,N3....Nk such
that n; is the parent of nj.;. for . There is exactly only one path from each node to
root.

LENGTH : Thelength is defined as the number of edges on the path.

DEGREE : The number of subtrees of anodeis called its degree.

3.2BINARY TREE
Definition :-
Binary Treeisatree in which no node can have more than two children.
Maximum number of nodes at level i of abinary treeis 2'™.
A binary treeisatree which is either empty, or one in which every node:
has no children; or
has just aleft child; or
has just aright child; or
has both a left and aright child.
A complete binary tree is a specia case of a binary tree, in which al the levels, except

perhaps the last, are full; while on the last level, any missing nodes are to the right of all
the nodes that are present. An example is shown in Fig. 3.5.



Fig. 3.2.1 A complete binary tree: theonly “"missing'’ entries can be on the last row.
Example 3.2.1 Give a space - efficient implementation of a complete binary tree in
terms of an array A. Describe how to pass from a parent to its two children, and vice-
versa

Solution An obvious one, in which no space is wasted, stores the root of the tree in A[1];
the two children in A[2] and A[3], the next generation at A[4] up to A[7] and so on. An

element A[k] has children at A[2k] and A[2k+1], providing they both exists, while the
parent of node A[K] isat A[k div 2]. Thustraversing the tree can be done very efficiently.

BINARY TREE NODE DECLARATIONS
Struct TreeNode

{

int Element;

Struct TreeNode * Left ;

Struct TreeNode *Right;

i

COMPARISON BETWEEN

GENERAL TREE & BINARY TREE
General TreeBinary Tree

* General Tree hasany * A Binary Tree has not

number of children. more than two children.



FULL BINARY TREE :-

2" _ 1 nodes.

A full binary tree of height h has
Here heightis3 No. of nodesin full
binary treeis=2%"* -1

= 15 nodes.

COMPLETE BINARY TREE:

A complete hinary tree of height h has between 2" and 2™ - 1 nodes. In the bottom level
the elements should be filled from left to right.

3.2.1 REPRESENTATION OF A BINARY TREE
There are two ways for representing binary tree, they are
* Linear Representation

* Linked Representation

Linear Representation

The elements are represented using arrays. For any element in position i, the left child is
in position 2i, the right child isin position (2i + 1), and the parent isin position (i/2).

Linked Representation

The elements are represented using pointers. Each node in linked representation has three
fields, namely,

* Pointer to the left subtree

* Datafield

* Pointer to the right subtree

In leaf nodes, both the pointer fields are assigned as NULL.

3.2.2 EXPRESSION TREE

Expression Tree is a binary tree in which the leaf nodes are operands and the interior

nodes are operators. Like binary tree, expression tree can aso be travesed by inorder,
preorder and postorder traversal.



Constructing an Expression Tree

Let us consider postfix expression given as an input for constructing an expression tree
by performing the following steps :

1. Read one symbol at atime from the postfix expression.

2. Check whether the symbol is an operand or operator.

(a) If the symbol is an operand, create a one - node tree and push a pointer on to the stack.
(b) If the symbol is an operator pop two pointers from the stack namely T, and T, and
form a new tree with root as the operator and T, as aleft child and T, asaright child.

A pointer to this new tree is then pushed onto the stack.
3.3TheSearch Tree ADT : - Binary Search Tree
Definition : -
Binary search tree is a binary tree in which for every node X in the tree, the values of all
the keys in its left subtree are smaller than the key value in X, and the values of all the
keysinitsright subtree are larger than the key valuein X.
Comparision Between Binary Tree & Binary Search Tree
Binary TreeBinary Search Tree
* A treeissaid to beabinary * A binary search treeisabinary tree in which
treeif it has atmost two childrens. the key values in the left node is less than the
root and the keyvalues in the right node is greater than the root.
* |t doesn't have any order.
Note: * Every binary search treeisabinary tree.
* All binary trees need not be a binary search tree.
DECLARATION ROUTINE FOR BINARY SEARCH TREE

Struct TreeNode;

typedef struct TreeNode * SearchTreg;



SearchTree Insert (int X, SearchTree T);
SearchTree Delete (int X, SearchTree T);
int Find (int X, SearchTree T);

int FindMin (Search Tree T);

int FindMax (SearchTree T);
SearchTree MakeEmpty (SearchTree T);
Struct TreeNode

{

int Element ;

SearchTree Left;

SearchTree Right;

i

Make Empty :-

This operation is mainly for initialization when the programmer prefer to initiaize the
first element as aone - node tree.

ROUTINE TO MAKE AN EMPTY TREE :-
SearchTree MakeEmpty (SearchTree T)

{

if (T! = NULL)

{

MakeEmpty (T  left);

MakeEmpty (T  Right);

free (T);

}



return NULL ;

}

Insert : -

Toinsert the element X into the tree,

* Check with the root node T

* If it isless than the root,

Traverse the | eft subtree recursively until it reaches
theT left equalsto NULL. Then X isplacedin

T left.

* |f X isgreater than the root.

Traverse the right subtree recursively until it reaches
theT right equasto NULL. Thenx isplacedin

T Right.

ROUTINE TO INSERT INTO A BINARY SEARCH TREE
SearchTree Insert (int X, searchTreeT)

{

if (T==NULL)

{

T = malloc (size of (Struct TreeNode));

if (T!'=NULL) // First element is placed in the root.
{

T - Element = X;

T left = NULL;



T Right = NULL;
}
}

else

if (X<T - Element)

T left=Insert (X, T - left);

else

if (X>T - Element)

T Right=Insert (X, T - Right);

/I Else X isin the tree aready.

return T,

}

Example: -

Toinsert 8, 5, 10, 15, 20, 18, 3

* First element 8 is considered as Root.

As5< 8, Traverse towards | eft

10 > 8, Traverse towards Right.

Similarly the rest of the elements are traversed.

Find : -

* Check whether the root isNULL if so then return NULL.
* Otherwise, Check the value X with the root node value (i.e. T  data)
(D If XisequaltoT data, returnT.

(2) If Xislessthan T  data, Traversetheleft of T recursively.



(3) If X isgreater than T data, traverse theright of T recursively.
ROUTINE FOR FIND OPERATION

Int Find (int X, SearchTree T)

{

If T==NULL)

Return NULL ;

If (X<T Element)

return Find (X, T - left);

else

If (X>T- Element)

return Find (X, T - Right);

else

return T; // returns the position of the search element.

}

Example: - To Find an element 10 (consider, X = 10)

10 is checked with the Root 10 > 8, Go to theright child of 8

10 is checked with Root 15 10 < 15, Go to the l€eft child of 15.

10 is checked with root 10 (Found)

Find Min :

This operation returns the position of the smallest element in the tree.

To perform FindMin, start at the root and go left as long as there is a left child. The
stopping point is the smallest element.

RECURISVE ROUTINE FOR FINDMIN

int FindMin (SearchTreeT)

10



{

if (T ==NULL);

return NULL ;

elseif (T —left ==NULL)

return T,

else

return FindMin (T - left);

Example: -

Root T

T

(@) T! =NULL and T  left!=NULL, (b) T! = NULL and T - left!=NULL,
Traverse |eft Traverse |eft

MinT

(c) Since T leftisNull, return T as a minimum element.
NON - RECURSIVE ROUTINE FOR FINDMIN
int FindMin (SearchTreeT)

{

if (T!=NULL)

while (T - Left! = NULL)

T=T - Left;

return T,

}

FindM ax

11



FindMax routine return the position of largest elements in the tree. To perform a
FindMax, start at the root and go right as long as thereis aright child. The stopping point
isthe largest el ement.

RECURSIVE ROUTINE FOR FINDMAX

int FindMax (SearchTree T)

{

if (T==NULL)

return NULL ;

elseif (T - Right ==NULL)

return T;

else FindMax (T - Right);

}

Example :-

Root T

(@ T! =NULL and T - Right!=NULL, (b) T! = NULL and T - Right!=NULL,
Traverse Right Traverse Right

Max

(c) SinceT RightisNULL, return T as a Maximum element.

NON - RECURSIVE ROUTINE FOR FINDMAX

int FindMax (SearchTree T)

{

if (T' =NULL)

while (T Right! =NULL)

T=T - Right;

12



return T ;
}
Delete:

Deletion operation is the complex operation in the Binary search tree. To delete an
element, consider the following three possibilities.

CASE1 Nodeto bedeletedisaleaf node (ie) No children.
CASE 2 Node with one child.

CASE 3 Node with two children.

CASE 1 Nodewith no children (L eaf node)

If the node is aleaf node, it can be deleted immediately.
Delete: 8

After the deletion

CASE 2: - Nodewith one child

If the node has one child, it can be deleted by adjusting its parent pointer that pointsto its
child node.

To Delete5

before deletion After deletion

To delete 5, the pointer currently pointing the node 5 is now made to to its child node 6.
Case 3: Nodewith two children

It is difficult to delete a node which has two children. The general strategy is to replace
the data of the node to be deleted with its smallest data of the right subtree and
recursively delete that node.

DELETION ROUTINE FOR BINARY SEARCH TREES

SearchTree Delete (int X, searchTree T)

{

13



int Tmpcell ;

if (T ==NULL)

Error ("Element not found");

else

if (X <T - Element) // Traverse towards left
T - Left=Delete (X, T Left);

else

if (X>T Element) // Traverse towards right
T - Right = Delete (X, T — Right);

// Found Element tobe deleted

else

// Two children

if (T-> Left&& T— Right)

{ I/ Replace with smallest datain right subtree
Tmpcell = FindMin (T -  Right);

T - Element = Tmpcell Element ;

T - Right =Delete (T -~ Element; T - Right);

}

else// one or zero children
{

Tmpcel =T;

if (T - Left==NULL)

T=T- Right;

14



dseif (T- Right==NULL)
T=T - Left;
free (TmpCdl);

}

return T;

3.4 Tree Representation

Tree represents the nodes connected by edges. We will discuss binary tree or binary
search tree specificaly.

Binary Treeis aspecia datastructure used for data storage purposes. A binary tree has a
specia condition that each node can have a maximum of two children. A binary tree has
the benefits of both an ordered array and a linked list as search is as quick as in a sorted
array and insertion or deletion operation are asfast asin linked list.

Roct
A Laval U
P
- .
- S
o
B C anl
= 5
. *u - -ku
. " g n
Parant Moce (| E F Shiings - @ ) Lewel
SN /
£ i
Ll Moace H | 1 J Lavel &
cln-tres Loal Mods

Fig.3.4.1 Tree Representation with Levels

Important Terms

Following are the important terms with respect to tree.
Path — Path refers to the sequence of nodes along the edges of a tree.

Root — The node at the top of the tree is called root. There is only one root per
tree and one path from the root node to any node.

Parent — Any node except the root node has one edge upward to a node called
parent.

15



Child — The node below a given node connected by its edge downward is called
its child node.

L eaf — The node which does not have any child node is called the leaf node.
Subtree — Subtree represents the descendants of a node.

Visiting — Visiting refers to checking the value of a node when control is on the
node.

Traversing — Traversing means passing through nodes in a specific order.

Levels— Level of a node represents the generation of a node. If the root node is
a level 0, then its next child nodeis at level 1, its grandchild is at level 2, and so
on.

keys — Key represents a value of a node based on which a search operation is to
be carried out for a node.

Binary Search Tree Representation

Binary Search tree exhibits a specia behavior. A node's left child must have a value less
than its parent's value and the node's right child must have a value greater than its parent

14 /\ a5
" s

Fig.3.4.2 Binary search Tree
Were going to implement tree using node object and connecting them through
references.

TreeNode

The code to write a tree node would be similar to what is given below. It has a data part
and referencesto its left and right child nodes.

struct node {

int data;

struct node *leftChild;
struct node *rightChild;

};

In atree, all nodes share common construct.

16



BST Basic Operations
The basic operations that can be performed on a binary search tree data structure, are the
following —

Insert — Inserts an element in atree/create atree.

Search — Searches an element in a tree.

Preorder Traversal — Traverses a tree in a pre-order manner.

Inorder Traversal — Traverses a tree in an in-order manner.

Postorder Traversal — Traverses a tree in a post-order manner.
We shall learn creating (inserting into) a tree structure and searching adataitem in atree
in this chapter. We shall learn about tree traversing methods in the coming chapter.

Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be
inserted, first locate its proper location. Start searching from the root node, then if the
dataisless than the key value, search for the empty location in the left subtree and insert
the data. Otherwise, search for the empty location in the right subtree and insert the data.

Algorithm

If rootisNULL
then create root node
return

If root exists then
compare the data with node.data

while until insertion position is located
If datais greater than node.data
goto right subtree
else
goto left subtree
endwhile

insert data

end If

I mplementation
The implementation of insert function should look like this —

17



void insert(int data) {
struct node *tempNode = (struct node*) malloc(sizeof (struct node));
struct node * current;
struct node * parent;

tempNode->data = data;
tempNode->leftChild = NULL;
tempNode->rightChild = NULL,;

//if tree is empty, create root node
if(root == NULL) {

root = tempNode;
} else{

current = root;

parent = NULL,;

while(1) {

parent = current;

//go to left of the tree
if(data < parent->data) {
current = current->leftChild;

/linsert to the left
if(current == NULL) {
parent->leftChild = tempNode;
return;
}
}

//go to right of the tree
else{
current = current->rightChild,;

/linsert to the right

if(current == NULL) {
parent->rightChild = tempNode;
return;

Sear ch Operation

18




Whenever an element is to be searched, start searching from the root node, then if the
data is less than the key value, search for the element in the left subtree. Otherwise,
search for the element in the right subtree. Follow the same algorithm for each node.

Algorithm

If root.datais equal to search.data
return root

ese
while data not found

If datais greater than node.data
goto right subtree

else
goto left subtree

If datafound
return node
endwhile
return data not found

end if

The implementation of this algorithm should look like this.

struct node* search(int data) {
struct node * current = root;
printf("Visiting elements: ");

while(current->data ! = data) {
if(current I= NULL)
printf("%d ",current->data);
/lgo to left tree

if(current->data > data) {
current = current->leftChild,;

}
/lelse go toright tree
else{
current = current->rightChild,;
}

//not found

if(current == NULL) {
return NULL;

}

19




return current;

}
}

3.5 TREE TRAVERSAL:

Traversal is a process to visit al the nodes of a tree and may print their values too.
Because, al nodes are connected via edges (links) we always start from the root (head)
node. That is, we cannot randomly access a node in atree. There are three ways which
we useto traverse atree —

In-order Traversal
Pre-order Traversal
Post-order Traversa

Generadly, we traverse atree to search or locate a given item or key in the tree or to print
all thevaluesit contains.

In-order Traversal
In this traversal method, the left subtree is visited first, then the root and later the right

sub-tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an
ascending order.

Root

2
A
] SN 3
‘.."'j \\'\x
s . 5
B | C
.:;,w 5 2 =%
P / 1\
/ \ / \
\ ! \
INGS e NG o o
L=ft Subtree Hgnt Subtree

Fig.3.5.1Inorder Tree

We start from A, and following in-order traversal, we move to its left subtree B. B is
also traversed in-order. The process goes on until all the nodes are visited. The output of
inorder traversal of thistree will be -

D-B-E-A-F-C-G
20




Algorithm

Until al nodes are traversed —

Step 1 — Recursively traverse left subtree.
Step 2 - Visit root node.

Step 3 — Recursively traverse right subtree.

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and finally the
right subtree.

Hoot
1
A
9 /f, —A, 3
s
B [+
[ o
£ e
i b ‘,.'r \
/ , ] 5\
(1] E o e a
2 2 | R 2 3
| eft Subtrae Right &iihtras

Fig.3.5.2 Pre-order Tree

We start from A, and following pre-order traversal, we first visit A itself and then move
to its left subtree B. B isaso traversed pre-order. The process goes on until all the nodes
arevisited. The output of pre-order traversal of thistree will be -

Algorithm

Until al nodes are traversed -

Step 1 - Visit root node.

Step 2 — Recursively traverse left subtree.
Step 3 — Recursively traverse right subtree.

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we traverse
the left subtree, then the right subtree and finally the root node.

21



Moot

1 o s 2
r__./ '.“.,L
54 5
B =
3. 3 r—
N ! %
! L] o \
i \"'. ’_"' ‘-\._"
0 £ F [}
1 ‘ Iy s
Let Suktree Hight Subires

Fig.3.5.3 Post-order Tree

We start from A, and following Post-order traversal, we first visit the left subtree B. B is
also traversed post-order. The process goes on until all the nodes are visited. The output
of post-order traversal of thistree will be -

DoE-B-F-G-CsSA
Algorithm

Until al nodes are traversed —

Step 1 — Recursively traverse left subtree.

Step 2 — Recursively traverse right subtree.
Step 3 - Visit root node.

3.6 BINARY HEAP

The efficient way of implementing priority queue is Binary Heap. Binary heap is merely
referred as Heaps, Heap have two properties namely

* Structure property

* Heap order property.

Like AVL trees, an operation on a heap can destroy one of the properties, so a heap
operation must not terminate until all heap properties are in order. Both the operations
require the average running time as O(log N).

Structure Property

A heap should be complete binary tree, which is a completely filled binary tree with the
possible exception of the bottom level, which isfilled from left to right.

22



A complete binary tree of height H has between 2" and 2 -1 nodes.

For eﬁample if the height is 3. Then the numer of nodes will be between 8 and 15. (ie) (2°
and 2°-1).

For any element in array position i, the left child is in position 2i, the right child isin
position 2i + 1, and the parent is in i/2. As it is represented as array it doesn't require
pointers and also the operations required to traverse the tree are extremely simple and
fast. But the only disadvantage is to specify the maximum heap size in advance.

Heap Order Property

In a heap, for every node X, the key in the parent of X is smaller than (or equal to) the
key in X, with the exception of the root (which has no parent).

This property allows the deletemin operations to be performed quickly has the minimum
e]ement can always be found at the root. Thus, we get the FindMin operation in constant
time.

Declaration for priority queue

Struct Heapstruct;

typedef struct Heapstruct * priority queue;

PriorityQueue Initialize (int MaxElements);

void insert (int X, PriorityQueue H);

int DeleteMin (PriorityQueue H);

Struct Heapstruct

{

int capacity;

int size;

int * Elements,

H

Initialization

PriorityQueue Initialize (int MaxElements)

23



{

PriorityQueue H;

H = malloc (sizeof (Struct Heapstruct));
H Capacity = MaxElements,

H size=0;

H eements[0] = MinDatg;

return H;

BASIC HEAP OPERATIONS

To perform the insert and DeleteMin operations ensure that the heap order property is
maintained.

Insert Operation

To insert an element X into the heap, we create a hole in the next available location,
otherwise the tree will not be complete. If X can be placed in the hole without violating
heap order, then place the element X there itself. Otherewise, we slide the element that is
in the hole's parent node into the hole, thus bubbling the hole up toward the root. This
process continues until X can be placed in the hole. This general strategy is known as
Percolate up, in which the new element is percolated up the heap until the correct location
isfound.

Routine To Insert Into A Binary Heap

void insert (int X, PriorityQueue H)

{

inti;

If (Isfull (H))

{

Error (" priority queueisfull");

return;

}

24



for(i=++H- sizee H- Elements[i/2] > X; i/=2)

[* 1f the parent value is greater than X, then place the element of parent
node into the hole */.

H-  Elements[i] = H- Elements[i/2];

H- eements|i] = X; // otherwise, placeit in the hole.

}

DeleteMin

DeleteMin Operation is deleting the minimum element from the Heap.

In Binary heap the minimum element is found in the root. When this minimum is
removed, aholeis created at the root. Since the heap becomes one smaller, makes the last

element X in the heap to move somewhere in the heap.

If X can be placed in hole without violating heaporder property placeit.

Otherwise, we dlide the smaller of the hole's children into the hole, thus pushing the hole
down one level. We repeat until X can be placed in the hole. This general strategy is

known as percul ate down.

ROUTINE TO PERFORM DELETEMIN IN A BINARY HEAP
int Deletemin (PriorityQueue H)

{

inti, child;

int MinElement, LastElement;

if (IsEmpty (H))

{

Error ("Priority queue is Empty");

reeurnH - Elements[Q];

}

25



MinElement=H - Elements[1];

LastElement =H - Elements[H-  size- -];

for(i=1i*2<=H size i =child)
{
/* Find Smaller Child */

child=i* 2;

if (child! =H — size&& H — Elements[child + 1]

<H - Elements[child])
child + +;
/I Percolate one level down

if (LastElement > H — Elements[child])

H_ Elements[ij=H - Elements[child];

else

break ;

}

H - Elements[i] = LastElement;
return MinElement;

}

OTHER HEAP OPERATIONS
The other heap operations are

(i) Decrease - key

(ii) Increase - key

(iii) Delete

26



(iv) Build Heap

DECREASE KEY

The Decreasekey (P, , H) operation decreases the value of the key at position P by a
positive amount . This may violate the heap order property, which can be fixed by
percolate up.

Increase - Key

The increase - key (p, , H) operation increases the value of the key at position p by a

positive amount . This may violate heap order property, which can be fixed by percolate
down.

3.7HASHING:

Hash Table

The hash table data structure is an array of some fixed size, containing the keys. A key is
avalue associated with each record.

Hashing Function

A hashing function is akey - to - address transformation, which acts upon a given key to
compute the relative position of the key in an array.

A simple Hash function

HASH (KEYVALUE) = KEYVALUE MOD TABLESIZE
Example: - Hash (92)

Hash (92) = 92 mod 10 = 2

The keyvalue "92' is placed in the relative location "2'.
ROUTINE FOR SIMPLE HASH FUNCTION

Hash (Char *key, int Table Size)

{

int Hashvalue = 0;

while (* key ! =\0")

27



Hashval + = * key ++;

return Hashval % Tablesize;

}

Some of the Methods of Hashing Function

1. Module Division

2. Mid - Square Method

3. Folding Method

4. PSEUDO Random Method

5. Digit or Character Extraction Method

6. Radix Transformation.

Callisions

Collision occurs when a hash value of a record being inserted hashes to an address (i.e.
Relative position) that already contain a different record. (ie) When two key values hash
to the same position.

Collison Resolution

The process of finding another position for the collide record.

Some of the Collision Resolution Techniques

1. Seperate Chaining

2. Open Addressing

3. Multiple Hashing

Seperate Chaining

Seperate chaining is an open hashing technique. A pointer field is added to each record
location. When an overflow occurs this pointer is set to point to overflow blocks making

alinked list.

In this method, the table can never overflow, since the linked list are only extended upon
the arrival of new keys.

28



Insertion

To perform the insertion of an element, traverse down the appropriate list to check
whether the element is aready in place.

If the element turns to be anew one, it isinsertd either at the front of thelist or at the end
of thelist.

If it isaduplicate element, an extrafield is kept and placed.
INSERT 10:

Hash (k) = k% Tablesize

Hash (10) = 10 % 10

NSERT 11:

Hash (11) = 11 % 10

Hash (11) = 1

INSERT 81 :

Hash (81) = 81% 10

Hash (81) =1

The element 81 collides to the same hash value 1. To place the value 81 at this position
perform the following.

Traverse thelist to check whether it is already present.

Since it is not already present, insert at end of the list. Similarly the rest of the elements
areinserted.

ROUTINE TO PERFORM INSERTION
void Insert (int key, Hashtable H)

{

Position Pos, Newcell;

List L;

29



[* Traversethelist to check whether the key is aready present */
Pos = FIND (Key, H);

If (Pos==NULL) /* Key isnot found */

{

Newcell = malloc (size of (struct ListNode));
If (Newcell | = NULL)

(

L=H Theists[Hash (key, H Tablesize)];
Newcell - Next=L - Next;

Newcell - Element = key;

[* Insert the key at the front of thelist */

L — Next = Newcdll;

}

}
}

FIND ROUTINE

Position Find (int key, Hashtable H)

{

Position P;

ListL;

L=H- Theists[Hash (key, H - Tablesize)];

P=L- Next;

30



while (P! = NULL && P Element ! = key)

P=p- Next;

return p;

}

Advantage

More number of elements can be inserted asiit uses array of linked lists.
Disadvantage of Seperate Chaining

* |t requires pointers, which occupies more memory space.

* |t takes more effort to perform a search, since it takes time to evaluate the hash function
and

aso to traverse thelist.
OPEN ADDRESSING

Open addressing is aso caled closed Hashing, which is an alternative to resolve the
collisions with linked lists.

In this hashing system, if a collision occurs, aternative cells are tried until an empty cell
isfound. (ie) cells ho(x), hy(x), ha(X).....are tried in succession.

There are three common collision resolution strategies. They are
() Linear Probing

(i) Quadratic probing

(iii) Double Hashing.

LINEAR PROBING

In linear probing, for the i™ probe the position to be tried is (h(k) + i) mod tablesize,
where F(i) =i, isthe linear function.

In linear probing, the position in which a key can be stored is found by sequentially

searching all position starting from the position calculated by the hash function until an
empty cell isfound.

31



If the end of the table is reached and no empty cells has been found, then the search is
continued from the beginning of the table. It has a tendency to create clustersin the table.

Advantage:
* |t doesn't requires pointers
Disadvantage

* It forms clusters, which degrades the performance of the hash table for storing and
retrieving

32



EED)
SATHYABAMA

INSTITUTE OF SCIENGCE AND TECHNOLOGY
IDEEMED TO BE UNIVERSITYI]
Accredited "A” Grade by NAAC | 128 Status by UGC | Approved by AICTE

www.sathyabama.ac.in

School of Computing

Department of Computer Science and Engineering

UNIT -1V

Fundamental of Data Structure—- SBS1201




UNIT-4

Sorting Techniques. Bubble Sort- Merge Sort - Shell Sort- Insertion Sort- Selection
Sort-Quick Sort- Heap Sort. Searching Techniques: Sequential Search- Binary Search-
Hashing- Indexing.

4.1 SEARCHING AND SORTING

Searching is used to find the location where an element is available. There are two types of
search techniques. They are:

1 Linear or sequentia search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure. It is a way
in which the elements are organized systematically for some purpose. For example, a
dictionary in which words are arranged in aphabetical order and telephone director in which
the subscriber names are listed in aphabetical order. There are many sorting techniques out
of which we study the following.

Bubble sort
Quick sort

Selection sort and

A wWwDdN P

Heap sort

4.2 LINEAR SEARCH

Thisisthe ssimplest of all searching techniques. In this technique, an ordered or unordered list
will be searched one by one from the beginning until the desired element is found. If the
desired element isfound in the list then the search is successful otherwise unsuccessful.

Suppose there are ‘n’ elements organized sequentiadly on a List. The number of
comparisons required to retrieve an element from the list, purely depends on where the
element is stored in the list. If it is the first element, one comparison will do; if it is second
element two comparisons are necessary and so on. On an average you need [(n+1)/2]
comparison’s to search an element. If search is not successful, you would need ’n’
comparisons.

Thetime complexity of linear search isO(n).
Algorithm:

Let array a[n] stores n elements. Determine whether element “x’ is present
or not.

Example 1:
Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4,7, 9, 20

If we are searching for: 45, we’ll look at 1 element before
success



39, we'll look at 2 e ements before success
8, we'll look at 3 elements before success
54, we'll look at 4 e ements before success
77, we'll look at 5 elements before success
38 we’ll look at 6 elements before success
24, we'll look at 7 elements before success
16, we'll look at 8 elements before success
4, we’ll look at 9 elements before success
7, we'll look at 10 elements before success
9, we'll look at 11 elements before success
20, we'll look at 12 elements before success

For any element not in thelist, we’ll look at 12 elements before failure

Example 2:

Let usillustrate linear search on the following 9 elements:

I ndex 0 1 2 3 4 5 6 7 8
Elements | -15| -6 0 7 9 23 | 54 | 82 | 101

Sear ching different elementsisasfollows:
1. Searching for x =7  Search successful, data found at 3rd position

2. Searching for x =82 Search successful, datafound at 7th position

3. Searching for x =42 Search un-successful, data not found

A Recursive program for linear search:

#include <stdio.h>
# include <conio.h>

void linear_search(int &], int data, int position, int n)

r
int mid;
if(position < n)
if(a[ position] == data)
printf("\n Data Found at %d ", position);
else
| linear_search(a, data, position + 1, n);
else
printf("\n Data not found");
}
void

main()



int a[25], i, n, data;

clrscr();

printf("\n Enter the number of elements: *);
scanf("%d", &n);

printf("\n Enter the elements: ");

for(i =0;i<n;i++)

scanf("%d", &&[i]);

printf("\n Enter the element to be seached: ");

scanf("%d", & data);
linear_search(a, data, O,
n); getch();

4.3 BINARY SEARCH

If we have ‘n’ records which have been ordered by keys so that x1 <x2 < ... <xn . When
we are given aelement ‘x’, binary search is used to find the corresponding element from
the list. In case ‘X’ is present, we have to determine avalue ‘j” such that aj] = x (successful
search). If ‘X’ isnot in the list then | isto set to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key amid], and compare
‘x” with afmid]. If x =g mid] then the desired record has been found. If x < amid]
then ‘X’ must be in that portion of the file that precedes afmid]. Similarly, if amid] > x, then
further search is only necessary in that part of the file which follows gmid]. If we use
recursive procedure of finding the middle key afmid] of the un-searched portion of a file,
then every un-successful comparison of ‘x’ with afmid] will eliminate roughly half the un-
searched portion from consideration.

Since the array size is roughly halved after each comparison between ‘x’ and g mid], and
since an array of length ‘n’ can be halved only about log2n times before reaching a trivial
length, the worst case complexity of Binary search is about log2n

Algorithm:
Let array an] of elementsin increasing order, n = 0, determine whether ‘X’ is present, and if
S0, set j such that x = &j] elsereturn 0.

binsrch(d[], n, x)
{

low = 1; high=n;
while (low < high) do
{

mid =| (low + high)/2 |

if (x <a[mid])
high=mid -1,
elseif (x > amid])
low =mid + 1;
el se return mid;
Eeturn 0;

}

low and high are integer variables such that each time through the loop either “x’ is found or



low is increased by at least one or high is decreased by at least one. Thus we have two
sequences of integers approaching each other and eventually low will become greater
than high causing termination in afinite number of stepsif ‘X’ is not present.

Example 1:

Let usillustrate binary search on the following 12
elements:

| ndex 1 2 3
Elements | 4 7 8
If we are searching for X

comparisons)

low = 1, high = 12, mid = 13/2 = 6,
check 20 low =1, high =5, mid = 6/2 =

3, check 8

low = 1, high = 2, mid = 3/2 = 1, check 4,
found

5|6 |7 |8 |9 |[10]11] 12
16 | 20 | 24 | 38 | 39 | 45 | 54 | 77
4: (This needs 3

Mol s

If we are searching for x = 7: (This needs 4
comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low =1, high =5, mid = 6/2 =

3, check 8

low = 1, high = 2, mid = 3/2 = 1,
check 4

low = 2, high = 2, mid = 4/2 = 2, check 7,
found

If we are searching for x = 8: (This needs 2

comparisons)

low = 1, high = 12, mid = 13/2 = 6,
check 20

low = 1, high =5, mid = 6/2 = 3, check 8,
found

If we are searching for x = 9: (This needs 3
comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low =1, high =5, mid = 6/2 =

3, check 8

low = 4, high =5, mid = 9/2 = 4, check 9,

found

If we are searching for x = 16: (This needs 4
comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low =1, high =5, mid = 6/2 =

3, check 8

low = 4, high = 5, mid = 9/2 = 4,

check 9

low = 5, high =5, mid = 10/2 = 5, check 16,
found

If we are searching for x = 20: (This needs 1



comparison)
low = 1, high = 12, mid = 13/2 = 6, check 20,
found

If we are searching for x = 24: (This needs 4
comparisons)

low = 1, high = 12, mid = 13/2 = 6,

check 20 low = 7, high = 12, mid = 19/2

=9, check 39 low = 7, high = 10, mid =

17/2 = 8, check 38

low =7, high=7, mid = 14/2 = 7, check 24, found

If we are searching for x = 38: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6,

check 20 low =7, high = 12, mid = 19/2

=9, check 39

low =7, high =10, mid = 17/2 = 8, check 38, found

If we are searching for x = 39: (This needs 2 comparisons)
low =1, high =12, mid = 13/2 = 6, check 20
low =7, high=12, mid = 19/2 = 9, check 39, found

If we are searching for x = 45: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check

20 low = 7, high = 12, mid = 19/2 = 9,

check 39 low = 10, high = 12, mid = 22/2

=11, check 54

low = 10, high = 10, mid = 20/2 = 10, check 45, found

If we are searching for x = 54: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6,

check 20 low = 7, high = 12, mid = 19/2

=9, check 39

low = 10, high = 12, mid = 22/2 = 11, check 54, found

If we are searching for x = 77: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check

20 low = 7, high = 12, mid = 19/2 = 9,

check 39 low = 10, high = 12, mid = 22/2

=11, check 54

low = 12, high = 12, mid = 24/2 = 12, check 77, found
The number of comparisons necessary by search element:

20 - requires 1 comparison; 8 and 39 — requires 2 comparisons,
4,9, 38, 54 — requires 3 comparisons; and 7, 16, 24, 45, 77 — requires 4 comparisons

Summing the comparisons, needed to find al twelve items and dividing by 12, yielding
37/12 or approximately 3.08 comparisons per successful search on the average.

Time Complexity:

The time complexity of binary search in a successful search is O(log n) and for an
unsuccessful search is O(log n).



A non-recursive program for binary search:

#include <stdio.h>
# include <conio.h>

main()

{

ese

int number[25], n, data, i, flag = 0, low, high, mid;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elementsin ascending order: ");
for(i=0;1<n;i++)
scanf("%d",
&number[i]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data); low = 0; high = n-1; while(low <= high)

{
mid = (low + high)/2;
if(number[mid] == data)

flag =1,
break;

if(data < number[mid])
high =mid - 1;

low =mid + 1;

}

}
if(flag==1)
printf("\n Data found at location: %d", mid + 1);

printf("\n Data Not Found ");



4.4 BUBBLE SORT

The bubble sort is easy to understand and program. The basic idea of bubble sort is to pass
through the file sequentially severa times. In each pass, we compare each element in
the file with its successor i.e., X[i] with X[i+1] and interchange two element when they are
not in proper order. We will illustrate this sorting technique by taking a specific example.
Bubble sort is also called as exchange sort.

gelonsi der the array x[n] which is stored in memory as shown
OW:

X[0] | X[ | X[2] | X[3] | X[4] | X[5]
33 44 22 11 66 55

Suppose we want our array to be stored in ascending order. Then we pass through the array 5
times as described below:

Pass 1: (first element is compared with all other elements)

We compare X[i] and X[i+1] fori =0, 1, 2, 3, and 4, and interchange X[i] and X[i+1] if X[i]
> X[i+1]. The process is shown below:

x[o] | xpa [ xi21 | x[31 | x[4 | x[5]| Remarks
33 4 22 11 6 55

2 M

11

44

44 66
55 66

3. 2 11 s 55 66

The biggest number 66 is moved to (bubbled up) the right most position in
the array.

Pass 2. (second element is
compared)

We repeat the same process, but this time we don’t include X[5] into our comparisons. i.e.,
we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1] if
X[i] > X[i+1]. The processis shown below:

| xror | xrar!| xr21 | xr31 ! Xx[41| Remarks |




33 22 11 44 55

22 33
11 33
33 44
44 55
22 11 33 44 25

The second biggest number 55 is moved now to X[4].
Pass 3: (third element is compared)

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this, we
move the third biggest number 44 to X[3].

| xo1 | xa1] x721| x[3]| Remarks |
22 11 33 44
11 22
22 33
33
11 22 33

44
44

Pass 4: (fourth element is compared)

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth
biggest number
33to X[2].

| X101 | X[a1! X[21 | Remarks |
11 22 33

11 22
22 33

Pass 5: (fifth element is compared)

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the fifth
biggest number 22 to X[1]. At this time, we will have the smallest number 11 in X][0].
Thus, we see that we can sort the array of size 6 in 5 passes.

For an array of size n, we required (n-1)
passes.

Program for Bubble Sort:

#include <stdio.h>
#include <conio.h>



void bubblesort(int
X[],int n)

inti, j, t;
for (I=0;i<n;i++)

for (j =0;j <n-i; j++)
if (x[j] > x[j+1])

t=x[jl;
X[j] = x[j+1];
X[j+1] =t;

}

main()

{
inti, n, x[25];
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d",&n);  printf("\n
Enter Data"); for(i=0;i<n;
i++)

scanf("%d", &X[i]);
bubblesort(x,n);
printf ("\nArray Elements after sorting: ");
for (i=0;i<n;i++)
printf ("%5d", x[i]);

Time Complexity:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1)
comparisons on each pass. Thus the total number of comparisons is (n-1) * (n-1) = n2 -

2n + 1, which is O(n2). Therefore bubble sort is very inefficient when there are more
elements to sorting.

4.5 SELECTION SORT

Now, you will learn another sorting technique, which is more efficient than bubble sort
and the insertion sort. This sort, as you will see, will not require no more than n-1
interchanges. The sort we are talking about is selection sort.

Suppose X is an array of size n stored in memory. The selection sort agorithm first
selects the smallest element in the array x and place it a array position O; then it selects the
next smallest element in the array x and place it at array position 1. It smply continues this
procedure until it places the biggest element in the last position of the array. We will now
present to you an algorithm for selection sort.

The array is passed through (n-1) times and the smallest element is placed in its respective
position in the array as detailed below:



Pass 1:

Find the location j of the smallest element in the array x [0], x[1], . . . . x[n-1], and then
interchange X[j]

with x[0]. Then x[0] is

sorted.

Pass 2:

Leave the first element and find the location | of the smallest element in the sub-array x[1],
X[2], ... .X[n-1], and then interchange x[ 1] with X[j]. Then x[0Q], x[1] are sorted.

Pass 3:

Leave the first two elements and find the location j of the smallest element in the sub-array
xX[2], X[3], .

... X[n-1], and then interchange x[2] with X[j]. Then x[0], x[1], X[2]

are sorted.

Pass (n-

1):

Find the location j of the smaller of the elements x[n-2] and x[n-1], and then interchange
X[j] and X[ n-

2]. Then x[0], x[1], . . . . X[n-2] are sorted. Of course, during this pass x[n-1] will be
the biggest element and so the entire array is sorted.

Time
Complexity:

In general we prefer selection sort in case where the insertion sort or the bubble sort requires
exclusive swapping. In spite of superiority of the selection sort over bubble sort and the

insertion sort (there is significant decrease in run time), its efficiency is also O(n2) for n data
items.

Example:

Let us consider the following example with 9 elements to analyze
selection Sort:

1 2 3 4 5 6 7 8 9 Remark
65| 70| 75| 80 | 50 | 60 | 55 | 8 | 45 find the first smallest e ement
I j swap d[i] & &[j]
45 | 70| 75| 8 | 50| 60 | 55 | 8 | 65 find the second smallest]
I j swap g[i] and a[j]
45 | 50| 75| 8 | 70| 60 | 55 | 8 | 65 Find the third smallest
i j swap g[i] and a[j]




45| 50| 55| 80| 70| 60 | 75 | 85 | 65 Find the fourth smallest
! | swap &[i] and aj]

45| 50| 55| 60 | 70 | 80 | 75 | 85 | 65 Find the fifth smallest
i | swap &[i] and aj]

45| 50 | 55| 60 | 65| 8 | 75| 8 | 70 Find the sixth smallest
i | swap &[i] and aj]

45| 50 | 55| 60 | 65| 70 | 75 | 85 | 80 Find the seventh smallest
I swap &[i] and aj]

45| 50 | 55| 60 | 65| 70 | 75 | 85 | 80 Find the eghth smallest
i Jd swap &[i] and aj]

45| 50 | 55| 60| 65| 70 | 75 | 80 | 85 The outer loop ends.

Non-recursive Program for selection sort:

# include<stdio.h>
# include<conio.h>

void selectionSort( int low, int high);

int a[25];

int main()

}

int num, i=0;
clrscr();
printf( "Enter the number of elements:. " );
scanf("%d", &num);
printf( "\nEnter the el ements:\n" );
for(i=0; i < num; i++)

scanf( "%d", &di] );
selectionSort( 0, num - 1);
printf( "\nThe elements after sorting are: " );
for(1=0; i< num; i++)

printf("%d ", di] );
return O,

void selectionSort( int low, int high)

{

int i=0, j=0, temp=0, minindex;
for(i=low; i <= high; i++)
{

minindex =1i;

for(j=i+1; j <= high; j++)

if( aj] <aminindex] )
minindex = j;

temp = 4[i;

a[i] = aminindex];

a minindex] = temp;



Recursive Program for selection sort:

#include <stdio.h>
#include<conio.h>

int x[6] = {77, 33, 44, 11, 66} ;

selectionSort(int);
main()
{
inti,n=0;
clrscr();
printf (" Array Elements before sorting: ");
for (1=0; i<5; i++)
printf ("%d ", X[i]);
selectionSort(n); [* call selection sort */
printf ("\n Array Elements after sorting: ");
for (1=0; i<5; i++)
printf ("%d ", X[i]);
selectionSort( int n)

{ int k, p, temp, min;
if (n==4)
return (-1);
min = x[nJ;
p=n
for (k = nt1; k<5; k++)
if (X[k] <min)
{ min = x[K];
p=k
}
temp = x[n]; [* interchange x[n] and x[p] */
x[n =
x[pl;
X[pl =
temp;
n++ :
selectionSort(n);
}

46 INSERTION SORT

The main idea behind the insertion sort is to insert the ith elementin

its correct place in the ith pass. Suppose an array A with n elements
A[l], A[2],...A[N] is in memory. The insertion sort algorithm scans
A from A[1] to A[N], inserting each element A[K] into its proper position
inthe previously sorted subarray A[1l], A[2],..A[K-1].



Principle: In Insertion Sort algorithm, each element A[K] in the list is
compared with al the elements before it ( A[1] to A[K-1]). If any
element A[l] is found to be greater than A[K] then A[K] is inserted int
he place of A[l}. This process is repeated till all the elements are
sorted.

Algorithm:
Procedure INSERTIONSORT(A, N)

/I A'is the array containing the list of data items
/I N is the number of data items in the list

Last UN -1

Repeat For Pass = 1 to Last Step 1
Repeat For | = O to Pass -1 Step 1
If A[Pass] < A[l] Then

Temp U A[Pass]

Repeat For J= Pass -1 to | Step -1
A[J +1] U A[J End Repeat

Alll U Temp

End If

End Repeat

End Repeat

End

INSERTIONSORT

In Insertion Sort algorithm, Last is made to point to the lastelem
ent in the list and Pass is made to point to the second element in thelist.
In every pass the Pass is incremented to point to the next elementand
is continued till it reaches the last element. During each pass
A[Pass] is compared all elements before it. If A[Pass] is lesser than
A[l]lin the list, then A[Pass] is inserted in position |. Finally, a sorted
list isobtained.

For performing the insertion operation, a variable temp is used tosafel
y store A[Pass] in it and then shift right elements starting from A[l] to
A[Pass- 1].

Example:

N=10 ¢Number ofd ementsinthe list
L 0 Last
PO Pass



42 23 74 11 65 58 94 36 99 87

P=1 APl < A0 CInsert APl at 0 L=9

23 42 74 11 65 58 94 36 99 87

P=2 L=9
A[P] is greater than all elements before it. Hence No Change

23 42 74 11 65 58 94 36 99 87
P=3 A[P] < Al0] CInsert AP] at OL=9

11 23 42 74 65 58 94 36 99 87

P=4 L=9
A[P] <A[3]¢Insert A[P] a 3

11 23 42 65 74 58 94 36 99 87

P=5 L=9
A[P] <A[3]¢Insert A[P] a 3

11 23 42 58 65 74 94 36 99 87

P=6 L=9
A[P] is greater than all elements before it. Hence No Change

11 3 42 B8 [65 [74 P4 [36 99 87
P=7 L=9

A[P] <A[2] ¢Insert A[P] a2

11 23 36 42 58 65 74 94 99 87

P=8 L=9
A[P] is greater than all elements before it. Hence No Change

11 23 36 42 58 65 74 94 99 87
P, L=9

APl < A7l ¢ Insert AP at 7

Sorted List:



11 23 36 42 58 65 74 87 94 99

Program:

void array::sort()

{
int temp, last=count- 1,
for (int pass=1; pass<=last;pass++)

{
for (int i=0; i<pass; i++)

{
if (a[pass]<ali])
{

temp=a[pass];
for (int j=pass- 1;j>=i;j--)

a[j+1]=aljl;
a[i]=temp;
}

}

}

}

In the sort function, the integer variable last is used to point to thelast el
ement in the list. The first pass starts with the variable passpointing
to the second element and continues till pass reaches the lastelement.
In each pass, a[pass] is compared with all the elements beforeit and if a[p
ass] is lesser than a[i], then it isinserted in position i. Beforeinserting it,
the elements a[i] to a[pass-1] are shifted right using atemporary vari
able.

Advantages:

1. Sorts the list faster when the list has less number of elements.

2. Efficient in cases where a new element has to be inserted into asort
ed list.

Disadvantages:
1. Very slow for large values of n.
2. Poor performance if the list isin aimost reverse order.



4.7 QUICK SORT

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960’s. It was one of the first
more efficient sorting algorithms. It is an example of a class of algorithms that work by what is
usually called “divide and conquer”.

In essence, the quick sort algorithm partitions the origina array by rearranging it into two
groups. The first group contains those elements less than some arbitrary chosen value taken
from the set, and the second group contains those elements greater than or equal to the chosen
value.

The chosen value is known as the pivot element. Once the array has been rearranged in this
way with respect to the pivot, the very same partitioning is recursively applied to each of
the two subsets. When all the subsets have been partitioned and rearranged, the original array
IS sorted.

The function partition() makes use of two pointers up and down which are moved toward
each other in the following fashion:

1. Repeatedly increase the pointer up by one position until a/up] > =pivot.

2. Repeatedly decrease the pointer down by one position until afdown] <=pivot.

3. If down > up, interchange a[down] with aup]

4, Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’

pointer crosses ‘down’ pointer, the position for pivot is found and place pivot element in
‘down’ pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sort function sorts
al elementsin an array ‘a’ between positions ‘low’ and ‘high’.

1 It terminates when the condition low >= high is satisfied. This condition will be
satisfied only when the array is completely sorted.

2. Here we choose the first element as the “pivot’. So, pivot = x[low]. Now it calls
the partition function to find the proper position j of the element x[low] i.e. pivot. Then we will

have two sub-arrays x[low], x[low+1], ....... X[j-1] and x[j+1], x[j+2], . . .x[high].

3. It calls itself recursively to sort the left sub-array x[low], x[low+1], ..... .. X[j-1]
between positions low and j-1 (where j is returned by the partition function).

4, It callsitself recursively to sort the right sub-array x[j+1], X[j+2], . . .X[high] between
positions j+1 and high.

Time complexity:



There are severa choices for choosing the ‘pivot’ element through which we can improve the
efficiency of quick sort. For example, one may choose the ‘pivot’ element as median or
mean or middle element. Also, a non-recursive method could be developed for execution
efficiency. When these improvements are made, experiments indicate the fact that the total
number of comparisons for quick sort is of O(n log n).

Example:

Select first element as the pivot element. Move ‘up’ pointer from left to right in search of an
element larger than pivot. Move the ‘down’ pointer from right to left in search of an element
smaller than pivot. If such elements are found, the elements are swapped. This process
continues till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer crosses ‘down’
pointer, the position for pivot is found and interchange pivot and element at “down’ position.

Let us consider the following example with 13 elements to analyze quick sort:

1
2 3 4 5 6 7 8 9 10 |11 12 (13 Remarks
38 08 (16 06 [7/9 57 24 B6 02 58 04 (710 45
dow n Sswap up
pivot up & down
04 79
dow n Sswap up
Up & down
02 57
dow n
up
Swap
(24 08 (16 (06 04 |02) 38 |56 57 B8 |79 |70 45) |pivot&
Swap
pivot dow n pivot &
(02 08 16 |06 [04) 24
pivot, {up Sswap
down pivot &
down
02 (08 16 1|06 |04)
dow n Sswap up
Pivot lup & down
04 16
dow n
Up
swap
(06 04) (08 pivot &




pivot,

dow n
up
Swap
(04) |06 pivot &
04
pivot,
dow n
16
pivot
, dow
(02 04 (06 08 (16 [24) 38
(56 B57 (B8 [719 [70 45)
dow nswap up
pivot up & down
45 57
dow n
up
Swap
(45) 56 (58 [79 [70 |57) |pivot &
45
pivot swap
, dow pivot &
n down
57)
(58 [79up[70 | dow niswap up
pivot & down
57 79
dow
Swap
(57) B8 (70 [79) |pivot &
57
pivot
, dow
(70 [79)
pivot
, dow Sswap
n up [pivot &
70
7
pivot
, dow
n
45 56 b7 B8 [70 [79)




02 04 o6 08 16 24 B8 45 6 |57 |58 [70 [79 |

Program for Quick Sort (Recursive version):

# include<stdio.h>
# include<conio.h>

void quicksort(int, int);
int partition(int, int);
void interchange(int, int);

int array[25];

int main()

{

int num, i =0;

clrscr();

printf( "Enter the number of elements: " );
scanf( "%d", &num);

printf( "Enter the elements. " );

for(i=0; i < num; i++)

scanf( "%d", &array[i] );

quicksort(0, num -1);

printf( "\nThe elements after sorting are: " );
for(i=0; i < num; i++)

printf("%d ", array[i]);

return O;

}

void quicksort(int low, int high)

{

int pivotpos;

if(low < high)

{

pivotpos = partition(low, high + 1); quicksort(low, pivotpos - 1); quicksort(pivotpos + 1, high);
}

}

int partition(int low, int high)
{

int pivot = array[low];

int up = low, down = high;

do

{
do

up=up+1,



while(array[up] < pivot );

do
down =down - 1;
while(array[down] > pivot);

if (up < down)
interchange(up, down);

}while(up < down);
array[low] = array[down]; array[down] = pivot; return down;

}

void interchange(int i, int j)

{

int temp;

temp = array[i]; array(i] = array[j]; array(j] = temp;

}



4.8 MERGE SORT

Principle: The given list is divided into two roughly equal parts calledthe
left and the right subfiles. These subfiles are sorted using thealgorith
m recursively and then the two subfiles are merged together toobtain the
sorted file.

Given a sequence of n elements A[l], ....A[N], the general idea is toimagin
e them split into two sets A[1],...A[N/2] and A[(N/2) + 1],...A[N].Each se
t is individually sorted, and the resulting sorted sequences aremerged
to produce a single sorted sequence of N elements. Thus thissorting m
ethod follows Divide and Conquer strategy.

Algorithm:

Procedure MERGE(A, low, mid, high)
/I A'is the array containing the list of data items

| Ulow, JUmid+ 1, KU low
While | < mid and J < high
If A[I] < A[J] Then
Temp[K] UA[1 U1+ 1
KUK+1

Temp[K] UA[JQJUJ+ 1

KUK+ 1
Else
End If
End While
If 1 > mid
Then
While J < high
Temp[K] UA[JJK UK + 1
JUJ+1
End While
While | < mid

Temp[K] UA[NK UK+ 1
Else LU+ 1
End While



End If

Repeat for K = low to high step 1
A[K] U Temp[ K]End Repeat
End MERGE

Procedure MERGESORT (A, low, high)
/I A'is the array containing the list of data items

If low < high

Then

mid U (low + high)/2

MERGESORT (low, high)

MERGESORT(mid + 1, high) MERGE(low, mid, high)
End If

End MERGESORT

The first algorithm MERGE can be applied on two sorted lists tomerge t
hem. Initially, the index variable | points to low and J points tomid + 1.
A[l] is compared with A[J] and if A[l] found to be lesser thanA[J] then
A[l] is stored in a temporary array and | is incrementedotherwise
A[J] is stored in the temporary array and J is incremented. This comparis
on is continued until either | crosses mid or Jcrosses high.If | crosses the
mid first then that implies that all the elements in first listis accommodated
in the temporary array and hence the remainingelements in the second
list can be put into the temporary array as it is. If Jcrosses the high first th
en the remaining elements of first list is put asit isin the temporary array.
After this process we get a single sorted list. Since this method merges 2
lists at a time, this is called 2-way mergesort.

In the MERGESORT algorithm, the given unsorted list is first splitinto N n
umber of lists, each list consisting of only 1 element. Then the MERGE al
gorithm is applied for first 2 lists to get a single sorted list. Then the sam
e thing is done on the next two lists and so on. This processis continued till
a single sorted list is obtained.

Example:

Let LOlow, MOmid, HOhigh



42 23 74 11 65 58 94 36 99 87
U M H

In each pass the mid value is calculated and based on that the list is splitint
o two. This is done recursively and at last N number of listseachhaving
only one element is produced as shown.



42 23 || 74 1 65 | | 58 94 36 99 | | 87

Now merging operation is called on first two lists to produce a single
sorted list, then the same thing is done on the next two lists and so on.
Finally a single sorted list is obtained.

23 42 11 74 98 65 36 94 87 99

11 23 42 74 36 58 65 94 87 99

1" 23 36 42 68 65 T4 94 87 99

11 23 36 42 58 65 74 87 94 99

Program:

void array::sort(int low, int high)

{
int mid;
if (low<high)
{
mid=(low+high)/2;
sort(low,mid);
sort(mid+1, high);
merge(low, mid, high);
}
}
void array::merge(int low, int mid, int high)
{

int i=low, j=mid+1, k=low, temp[MAX];

while (i<=mid && j<=high)
if (ali]<a[j])
temp[k++]=a[i++];
else
temp[k++]=a[j++];

if (i>mid)
while (j<=high)
temp[k++]=a[j++];
else
while (i<=mid)
temp[k++]=a[i++];



for (k=low; k<=high; k++)
a[k] =temp[K];
}

Advantages:

1. Very useful for sorting bigger lists.
2. Applicable for external sorting also.

Disadvantages:

1. Needs a temporary array every time, for storing the new sorted
list.

49 SHELL SORT

The shell sort, sometimes called the “diminishing increment sort,”
improves on the insertion sort by breaking the original list into a number
of smaller sublists, each of which is sorted using an insertion sort. The
unique way that these sublists are chosen is the key to the shell sort.
Instead of breaking the list into sublists of contiguous items, the shell
sort uses an increment i, sometimes called the gap, to create a sublist by
choosing all items that are i items apart.

Example of shell Sort : Use Shell sort for the following array : 18, 32, 12,
5, 38, 30, 16, 2
0 1 2 3 - 5 6 7

(o] (2 (2] (s ) oo (0] (] (2]

Compare the elements at a gap of 4. i.e 18 with 38 and so on and swap if
first number is greater than second.

0 1 2 3 - 9 6 7

1) (32 ) (2 (s ) (s8] (130 (1) [ 2]

B e -
>
>
->
>
>

..........................



Compare the elements at a gap of 2 i.e 18 with 12 and so on.

0 1 2 3 - 5 6 7

L) (o] (o) (2] o] 2] (o] [ 5]

—————————————————————————

Now the gap is 1. So now use insertion sort to sort this array.

0 1 2 3 4 5 6 7

L2 ) (2 ) (e ] [0 (1) [[s ] [3e] (=2

L

~

After insertion sort. The final array is sorted.

410 HEAP SORT ALGORITHM
Heap Sort is a popular and efficient sorting algorithm in computer programming. Learning how
to write the heap sort algorithm requires knowledge of two types of data structures - arrays and
trees.
Theinitia set of numbers that we want to sort is stored in an array e.g. [10, 3, 76, 34, 23, 32] and
after sorting, we get a sorted array [3,10,23,32,34,76]
Heap sort works by visualizing the elements of the array as a special kind of complete binary tree
called a heap.
As aprerequisite, you must know about a complete binary tree and heap data structure.
Relationship between Array Indexes and Tree Elements
A complete binary tree has an interesting property that we can use to find the children and
parents of any node.
If the index of any element in the array isi, the element in the index 2i+1 will become the left
child and element in 2i+2 index will become the right child. Also, the parent of any element at
index i is given by the lower bound of (i-1)/2.

47



Fig.4.10.1 Relationship between array and heap indices
Let'stest it out,
Left child of 1 (index 0)
= element in (2*0+1) index
= element in 1 index
=12

Right child of 1

= element in (2* 0+2) index
= element in 2 index

=9

Similarly,

Left child of 12 (index 1)
= element in (2* 1+1) index
= element in 3 index

=5

Right child of 12

= element in (2* 1+2) index
= element in 4 index

=6

Let us aso confirm that the rules hold for finding parent of any node
Parent of 9 (position 2)
=(2-1)/2

=15

=05

~ 0 index

=1

Parent of 12 (position 1)



=(1-1)/2

= 0index

=1

Understanding this mapping of array indexes to tree positions is critical to understanding how the
Heap Data Structure works and how it is used to implement Heap Sort.

What is Heap Data Structure?

Heap is a special tree-based data structure. A binary treeis said to follow a heap data structure if
it isacomplete binary tree

All nodes in the tree follow the property that they are greater than their children i.e. the largest
element is at the root and both its children and smaller than the root and so on. Such a heap is
called amax-heap. If instead, all nodes are smaller than their children, it is called amin-heap

The following example diagram shows Max-Heap and Min-Heap.

Max Heap Min Heap

Fig.4.10.2 Max Heap and Min Heap

To learn more about it, please visit Heap Data Structure.
How to "heapify" atree
Starting from a complete binary tree, we can modify it to become a Max-Heap by running a
function called heapify on all the non-leaf elements of the heap.
Since heapify uses recursion, it can be difficult to grasp. So let's first think about how you would
heapify atree with just three el ements.
heapify(array)

Root = array[ 0]

Largest = largest( array[0] , array [2*0 + 1]. array[2*0+2])

if(Root != Largest)

Swap(Root, Largest)

49



Scenario-1

parent is already
the largest

Scenario-2

parent is now
the largest

child is greater
than the parent

Fig.4.10.3 Heapify base cases
The example above shows two scenarios - one in which the root is the largest element and we
don't need to do anything. And another in which the root had a larger element as a child and we
needed to swap to maintain max-heap property.
If you're worked with recursive algorithms before, you've probably identified that this must be
the base case.
Now let's think of another scenario in which there is more than one level.

both subtrees of the root
are already max-heaps

Fig.4.10.4 How to heapify root element when its subtrees are already max heaps
The top element isn't amax-heap but all the sub-trees are max-heaps.
To maintain the max-heap property for the entire tree, we will have to keep pushing 2
downwards until it reaches its correct position.

50



2
L6

Fig.4.10.5 How to heapify root element when its subtrees are max-heaps

Thus, to maintain the max-heap property in a tree where both sub-trees are max-heaps, we need

to run heapify on the root element repeatedly until it is larger than its children or it becomes a
leaf node.

We can combine both these conditions in one heapify function as
void heapify(int arr[], int n, int i) {

Il Find largest among root, left child and right child

int largest =1i;

intleft=2*1i+1,

intright=2*1+2;

if (left <n && arr[left] > arr[largest])
largest = | eft;

if (right <n&& arr[right] > arr[largest])
largest = right;

I/ Swap and continue heapifying if root is not largest
if (largest =) {
swap(&arr[i], &arr[largest]);
heapify(arr, n, largest);
}
}
This function works for both the base case and for a tree of any size. We can thus move the root

element to the correct position to maintain the max-heap status for any tree size as long as the
sub-trees are max-heaps.

51



Build max-heap
To build a max-heap from any tree, we can thus start heapifying each sub-tree from the bottom
up and end up with a max-heap after the function is applied to all the elements including the root
element.
In the case of a complete tree, the first index of a non-leaf node is given by n/2 - 1. All other
nodes after that are leaf-nodes and thus don't need to be heapified.
So, we can build a maximum heap as

// Build heap (rearrange array)

for(inti=n/2-1;i>=0;i--)

heapify(arr, n, i);
L0 ] 1 2 3 - | 5
AT
n = &5
F = &K/2 -1 =22 W loop runs frogsnm 2 o O
Fig.4.10.6 Create array and calculatei
i=2 heapifylarr, &, 2)
o o
5 © 5 @
3 4 5 3 4 5
1] 1 2 3 a 5 i ] 1 2 3 &4 5

52



Fig.4.10.7 Stepsto build max heap for heap sort

i=0 heapify{arr, 6, 0)
(4] L]
= 1 2
12 €D
3 4 5| 3 r 5
o 1 2z 3 a s [} 1 2 3 a 5
o o
1 .. 1 -
3 <3 S | 3 " | 5
(5] 1 2 a a 5 i) 1 2 = a 5

Fig.4.10.8 Stepsto build max heap for heap sort

As shown in the above diagram, we start by heapifying the lowest smallest trees and gradually
move up until we reach the root element.

If you've understood everything till here, congratulations, you are on your way to mastering the
Heap sort.

How Heap Sort Works?

Since the tree satisfies Max-Heap property, then the largest item is stored at the root node.

Swap: Remove the root element and put at the end of the array (nth position) Put the last item of
the tree (heap) at the vacant place.

Remove: Reduce the size of the heap by 1.

Heapify: Heapify the root element again so that we have the highest element at root.

The process is repeated until al the items of the list are sorted.

53



& > T & @

L= e 8 I I :.-DI 1 AW = 4 = = == =5
Fig.4.10.9Swap, Remove, and Heapify



The code below showsthe operation.
// Heap sort
for(inti=n-1;i>=0;i--){

swap(&arr[0], &arr[i]);

I/ Heapify root element to get highest element at root again
heapify(arr, i, 0);
}C++

def heapify(arr, n, i):
# Find largest among root and children
largest =i
[=2*i+1
r=2*i+2

if | <nandarr[i] <arr[l]:
largest =1

if r<nandarr[largest] < arr(r]:
largest =r

# If root is not largest, swap with largest and continue heapifying
if largest !=1:

arr[i], arr[largest] = arr[largest], arr|i]

heapify(arr, n, largest)

def heapSort(arr):
n = len(arr)

# Build max heap
for i inrange(n//2, -1, -1):
heapify(arr, n, 1)

for i inrange(n-1, O, -1):
# Swap
arr[i], arr[Q] = arr[0], arr[i]

# Heapify root element
heapify(arr, i, 0)

55



ar=[1,12,9,5, 6, 10]
heapSort(arr)
n = len(arr)
print("Sorted array is")
for i in range(n):
print("%d " % arr[i], end=")

Heap Sort Complexity

Heap Sort has O(nlog n) time complexities for al the cases ( best case, average case, and worst
case).

Let us understand the reason why. The height of a complete binary tree containing n elementsis
log n

As we have seen earlier, to fully heapify an element whose subtrees are already max-heaps, we
need to keep comparing the element with its left and right children and pushing it downwards
until it reaches a point where both its children are smaller than it.

In the worst case scenario, we will need to move an element from the root to the leaf node
making a multiple of log(n) comparisons and swaps.

During the build_max_heap stage, we do that for n/2 elements so the worst case complexity of
the build_heap step isn/2¥log n ~ nlog n.

During the sorting step, we exchange the root el ement with the last element and heapify the root
element. For each element, this again takes log n worst time because we might have to bring the
element all the way from the root to the leaf. Since we repeat this n times, the heap_sort step is
also nlog n.

Also since the build max_heap and heap sort steps are executed one after another, the
algorithmic complexity is not multiplied and it remainsin the order of nlog n.

Also it performs sorting in O(1) space complexity. Compared with Quick Sort, it has a better
worst case ( O(nlog n) ). Quick Sort has complexity O(n2) for worst case. But in other cases,
Quick Sort is fast. Introsort is an aternative to heapsort that combines quicksort and heapsort to
retain advantages of both: worst case speed of heapsort and average speed of quicksort.

Heap Sort Applications

Systems concerned with security and embedded systems such as Linux Kernel use Heap Sort
because of the O(n log n) upper bound on Heapsort's running time and constant O(1) upper
bound on its auxiliary storage.

Although Heap Sort has O(n log n) time complexity even for the worst case, it doesn't have more
applications ( compared to other sorting algorithms like Quick Sort, Merge Sort ). However, its
underlying data structure, heap, can be efficiently used if we want to extract the smallest (or
largest) from the list of items without the overhead of keeping the remaining items in the sorted
order. For e.g Priority Queues.

56



S AT H YA B A MA

IMSTITWTE OF SCIENCE ANMD TECHRMDLDGOGY
IDEEMED TO EF UMIVERSITYI
Soccraditod “A” Grade by BHNAAC | 128 Statu=s by UODC | Approved hy AICTE
wrvwrw.malhyabama. ac. in

School of Computing

Department of Computer Science and Engineering

UNIT -V

Fundamental of Data Structure - SBS1201




UNIT-V

Graphs and Networks: Implementation of Graphs- Adjacency Matrix- Depth First Search-
Breath First Search. Networks: Minimum Spanning Tree - The Shortest path Algorithm.

5.1 GRAPH, HASHING & INDEXING

A graph is an abdtract data structure that is used to implement the mathematical concept
of graphs. It is basicaly a collection of vertices (also called nodes) and edges that connect
these vertices. A graph is often viewed as a generdization of the tree structure, where
instead of having a purely parent-to- child relationship between tree nodes, any kind of
complex relationship can exist.

Graphs - Terminology and Representation
Definitions Graph, Vertices, Edges

Define agraph G = (V, E) by defining a pair of sets:
V = a st of vertices
E = aset of edges
Edges:

0 Each edge isdefined by a pair of vertices

0 An edge connects the vertices that define it
Vertices:

0 Vertices aso called nodes

0 Denote vertices with labels

Representation:

Represent vertices with circles, perhaps containing alabel
Represent edges with lines between circles

Example:

V ={A,B,C,D}
E={(AB),(A,C),(A,D),(B,D),(CD)}

Fig. 5.1.1 Many algorithms use a graph representation to represent data
or the problem to be solved




Examples of Graph applications:

Cities with distances between

Roads with distances between intersection points
Course prerequisites

Network and shortest routes

Socia networks

Electric circuits, projects planning and many more...

Graph Classfications

There are several common kinds of graphs
» Weighted or unweighted
» Directed or undirected
» Cyclic or acyclic
» Multigraphs

Kinds of Graphs: Weighted and Unweighted

» Graphs can be classified by whether or not their edges have weights

» Weighted graph: edges have a weight
Weight typically shows cost of traversing
Example: weights are distances between cities

» Unweighted graph: edges have no weight of Edges simply show connections
Example: course prerequisites

Kinds of Graphs: Directed and Undirected
Graphs can be classified by whether or their edges are have direction

o Undirected Graphs: each edge can be traversed in either direction
o Directed Graphs. each edge can be traversed only in a specified direction

Undirected Graphs

Undirected Graph: no implied direction on edge between nodes
The example from above is an undirected graph

Fig.5.1.2 .In diagrams, edges have no direction (iethere are no arrows)
Can traverse edgesin either directions



In an undirected graph, an edge isan unordered pair

o Actualy, an edgeisaset of 2 nodes, but for simplicity we write it with

parenthesis
For example, we write (A, B) instead of {A, B}

Thus, (A,B) = (B,A), etc
If (A,B) € Ethen (B,A) € E

Directed Graphs
Digraph: A graph whose edges are directed (ie have a direction)

Edge drawn as arrow
Edge can only be traversed in direction of arrow

Example: E = {(A,B), (A,C), (A,D), (B,C), (D,C)}

O— >

IR

Fig.5.1.3 In adigraph, an edgeisan ordered pair

o Thus: (u,v) and (v,u) are not the same edge
o In the example, (D,C) € E, (C,D) ¢ E

Degree of a Node

The degree of anode is the number of edges incident onit.
In the example above:
» Degree2: Band C
> Degree3: Aand D

» A and D have odd degree, and B and C have even degree

Can aso define in-degree and out-degree
» In-degree. Number of edges pointing to a node
» Out-degree: Number of edges pointing from a node

Graphs. Terminology Involving Paths

Path: sequence of vertices in which each pair of successive vertices is

connected by an edge
Cycle: apath that starts and ends on the same vertex

Simple path: a path that does not cross itself
That is, no vertex is repeated (except first and last)
Simple paths cannot contain cycles



Length of apath: Number of edges in the path
Examples

Cyclic and Acyclic Graphs

1 ACyclic graph contains cycles
o Example: roads (normally)

1 An acyclic graph contains no cycles
o Example: Course prerequisites

Multigraph: A graph with self loops and parallel edgesiscalled a multigraph.

Y s b)
| a -_|- = }f_. o
T l__."'” ;_'

N !

1Y .Y ;
A Y] ’{

Fig.5.1.4 Connected and Unconnected Graphs and Connected Components

) Anundirected graph is connected if every pair of vertices has a path between it

o Otherwise it is unconnected
o0 A directed graph is strongly connected if every pair of vertices has a
path between them, in both directions

Data Structuresfor Representing Graphs

Two common data structures for representing graphs:
o Adjacency lists

0 Adjacency matrix

5.2 Adjacency List Representation

An adjacency list is a way in which graphs can be represented in the computer’s
memory. This structure consists of alist of al nodes in G. Furthermore, every node isin
turn linked to its own list that contains the names of all other nodes that are adjacent to it.

The key advantages of using an adjacency list are:

o Itiseasy to follow and clearly shows the adjacent nodes of a particular node.

o It is often used for storing graphs that have a small-to-moderate number of edges.
That is, an adjacency list is preferred for representing sparse graphs in the
computer’s memory; otherwise, an adjacency matrix is agood choice.

0 Adding new nodesin G is easy and straightforward when G is represented using an
5



adjacenc y list. Adding new nodes in an adjacency matrix is a difficult task, as

B > A R D
c N A R D
D A > B > C

Fig.5.2.1 Adjaceny List Representation

Adjacency Matrix Representation

An adjacency matrix is used to represent which nodes are adjacent to one another. By
definition, two nodes are said to be adjacent if there is an edge connecting them. In
a directed graph G, if node v is adjacent to node u, then there is definitely an edge
fromutov. That is, if vis adjacent to u, we can get from u to v by traversing one
edge. For any graph G having n nodes, the adjacency matrix will have the
dimension of n * n. In an adjacency matrix, the rows and columns are labelled by
graph vertices. An entry aij in the adjacency matrix will contain 1, if vertices vi and
vj are adjacent to each other. However, if the nodes are not adjacent, aij will be set to
zero. It. Since an adjacency matrix contains only Os and 1s, it is called a bit matrix or
a Boolean matrix. The entries in the matrix depend on the ordering of the nodes in
G. Therefore, a change in the order of nodes will result in a different adjacency
matrix.

Aij = 1if thereisan edge from Vi to V]
0 otherwise
Adjacency Matrix: 2D array containing weights on edges

Row for each vertex

Column for each vertex

Entries contain weight of edge from row vertex to column vertex
Entries contain « if no edge from row vertex to column vertex
Entries contain O on diagonal (if self edges not alowed)

O O 0O oo

Example undirected graph (assume self-edges not allowed):



D A B C D

A O 1 1 1

B 1 0 00 1

C c 1 o 0 1
D 1 1 1 0

Fig.5.2.2 Undirected graph
Example directed graph (assume self-edges allowed):

,\/(E)\
A B C D
A = o A o 1 1 1
B o0 © 1
C o0 00 00 00
D o 0 1 0

Fig.5.2.3 Directed Graph

Disadv:Adjacency matrix representation is easy to represent and feasble as long as
the graph is smal and connected. For alarge graph ,whose matrix is sparse, adjacency
matrix representation wastes a lot of memory. Hence list representation is preferred
over matrix representation.

5.3 Graph traversal algorithms

Traversing a graph, is the method of examining the nodes and edges of the graph.
There are two standard methods of graph traversal. These two methods are:

1. Breadth-first search 2. Depth-fir st search

While breadth-first search uses a queue as an auxiliary data structure to store nodes for
further processing, the depth-first search scheme uses a stack.

Breadth-first search algorithm

Breadth-first search (BFS) is a graph search algorithm that begins at the root node
and explores al the neighbouring nodes. Then for each of those nearest nodes, the
algorithm explores their unexplored neighbour nodes, and so on, until it finds the
goal. That is, we start examining the node A and then al the neighbours of A
are examined. In the next step, we examine the neighbours of neighbours of A,
so on and so forth. This means that we need to track the neighbours of the node
and guarantee that every node in the graph is processed and no node is processed more

7



than once. This is accomplished by using a queue that will hold the nodes that are
waiting for further processing.

Algorithm for BFStraversal
Step 1: Define a Queue of size total number of vertices in the graph.

Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert
it into the Queue.

Step 3: Visit all the adjacent vertices of the vertex which is at front of the Queue
which is not visited and insert them into the Queue.

Step 4: When there is no new vertex to be visit from the vertex at front of the Queue
then delete that vertex from the Queue.

Step 5: Repeat step 3 and 4 until queue becomes empty.

Step 6: When queue becomes Empty, then the enqueue or dequeue order gives the BFS
traversal order.



Eesramboder thoe Fodllcoesirg exiarripele grapib G perfcorom BFS Lraswormesl

Sxeage L1
~ St ther wertess Boas wtactiog oot [wisit A
Trsert @ Iryno the e e

L= TVE-TVEY

a1 T 1 1T 1

L r—
- Afimir all adjacent sortices of M sehich sre reot wvisited (D B BB,
- Irmart cereely wisiled wortices ko e OQuercis arce] clefotoe & frcseny EPe Clueriim.
=
L =TT
[ Iel=]=] 1 [ |
3
Erags W
wimit all acdjacent wertices of B which s ot visited (there s s sertss),
Chaslere 0 Froa the s
b=
L= TR TR
1 J=je=)] | 1 1
[
ET—
Wisin all ad]ecent warrtices of B wwhich are reot visitool (2, F).
- Tevmert Mty wisiteo werfices Nt the Queues ancd oleslete Eiromm thm e e
L= FE 2T E.
(S L1 | Iesjcir] |
HEkege S
WAl bl aeljacerivl e irticdss oof B bbby aves sl swlsitec] (Blhare 5 v warTams ]
~ Delste B frorm thes Cuasiaes,
[=TEE ST}
L1 1 1 les]l®] |
SEwpr G
Windt @l addjecerl vwerticas of © which mme ot visitarc (630
— FrimErt ety wisitecl et It e Ruiesiie prcl delete £ frorn thee e e
(= INE- 20T
L1 1 1 | |*Frl=s]
g ¥
wislt all adjacent werticos of Fwhich are notl visitod (there is mo vaertaes)
- Dmlete F irorm fhe C3oeses
TFramrnes
L1 1 1 1 1 Is]
SNy B

- WimiE @il sdjmcmnt vertlces of & which are not visited (thars e no wertes)
- Delete & froam fhe Cumies,

L= PRI E

1 1 1 1

- Cumuss Bocarms Empty. So, stops thes BPS%S procsms.
- Fimal rosult of BFS = 8 Spanning Tres as showwe Baeiow.

Fig.5.3.1 Examplefor BFS



Depth-first Search Algorithm

Depth-first search begins at a starting node A which becomes the current node. Then, it
examines each node N along a path P which begins at A. That is, we process a neighbour
of A, then aneighbour of neighbour of A, and so on.

During the execution of the agorithm, if we reach a path that has a node N that has
aready been processed, then we backtrack to the current node. Otherwise, the unvisited
(unprocessed) node becomes the current node. The algorithm proceeds like this until
we reach a dead-end (end of path P). On reaching the deadend, we backtrack to find
another path P. The algorithm terminates when backtracking leads back to the starting
node A.

In this a gorithm, edges that lead to a new vertex are called discovery edges and edges that
lead to an dready visited vertex are caled back edges. Observe that this agorithm is
similar to the in- order traversal of a binary tree. Its implementation is similar to that
of the breadth-first search algorithm but here we use a stack instead of a queue.

We use thefollowing sepsto implement DFS traversal...
Step 1: Define a Stack of size tota number of vertices in the graph.

Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it
on to the Stack.

Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack which
is not visited and push it on to the stack.

Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the
stack. Step 5: When there is no new vertex to be visit then use back tracking and pop

one vertex from
the stack.

Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty.

Step 7: When stack becomes Empty, then produce final spanning tree by removing
unused edges from the graph

10



Slrarrminime Bfime freifesceieins etk sgrespebs See passrdmes res EFEES s oren el

e
=

= e

.

-

Wome T ® A arm vl M s wEenr B rna prrrira¥ fecrmiE Y
Fa e S AR BT BERAR TR T e
P

N i P

e

e e omD sl ebal i i FReel wlmiEsead rms

i e ST AR el R G L o b el B s 5. Shae sl Deaheacie G e b
Framan r Tressty pbves fvamarie

—
[

i = =
= =

S e s el ke
B e ]

I‘"‘H\I, —

L N ..

i m o
Bidremipmsr im dies sarrwvmd Sweei fivrm s Pers wlmifered Proensd W Thrw remer Foemdc b § i ewe &
CRRRT AR TSR
— ——
L—
— =]

v
L T LU R e

- W
R

s wimrd Timem Gan Eies wedmd Beeid Fee
WA e rama-m

e S L L R ST TR R I PR i =
s mn

B o e

i L L T
i e e L

T =

WAamebms bE i  §
= Beegs s fEesyEe B

A Sa R i e AR T o S e bedachn el
=

Bt B e B A e T g ESHEER T e i
Finyenl ey iy aRE ERE S e s S Prabbeeead | PRy SEeeren iesey e

b=
== -r“"""'d-
Fig.5.3.2 Example for DFS




Applications OF graphs

Graphs are constructed for various types of gpplications such as:
In circuit networks where points of connection are drawn as vertices and component

wires become the edges of the graph.

In transport networks where stations are drawn as vertices and routes become the edges
of the graph.

In maps that draw cities/states/regions as vertices and adjacency relations as edges.

In program flow analysis where procedures or modules are treated as vertices and
calls to these procedures are drawn as edges of the graph.

Once we have a graph of a particular concept, they can be easily used for finding
shortest paths, project planning, etc.

In flowcharts or control-flow graphs, the statements and conditions in a
program are
0 represented as nodes and the flow of control is represented by the edges.

In state transition diagrams, the nodes are used to represent states and the edges
represent legal moves from one state to the other.

Graphs are dso used to draw activity network diagrams. These diagrams are
extensively used as a project management tool to represent the interdependent
relaionships between groups, steps, and tasks that have a significant impact on the
project.

5.4 Hashing

Why
Hashing?

Internet has grown to millions of users generating terabytes of content every day.
According to internet data tracking services, the amount of content on the internet doubles
every six months. With this kind of growth, it is impossible to find anything in the internet,
unless we develop new data structures and agorithms for storing and accessing data. So
what is wrong with traditional data structures like Arrays and Linked Lists? Suppose we
have a very large data set stored in an array. The amount of time required to look up an
element in the array is either O(log n) or O( n) based on whether the array is sorted or not.
If the array is sorted then a technique such as binary search can be used to search the array.
Otherwise, the array must be searched linearly. Either case may not be desirable if we
need to process a very large data set. Therefore we discuss a new technique called hashing
that allows us to update and retrieve any entry in constant time O(1). The constant time or
O(1) performance means, the amount of time to perform the operation does not depend on
data size n.

The Map Data Structure(Hash Map)(Hash function)
12



In a mathematical sense, a map is a relation between two sets. We can define Map M as a set
of pairs, where each pair is of the form (key, value), where for given a key, we can find a
value usng some kind of a “function” that maps keys to vaues. The key for a given object
can be calculated usng a function called a hash function. In its simplest form, we can think
of an array as a Map where key is the index and vaue is the value at that index. For
example, given an array A, if i is the key, then we can find the value by simply looking up
A[i]. The idea of a hash table is more generalized and can be described as follows.

The concept of a hash table is a generalized idea of an array where key does not have
to be an integer. We can have a name as a key, or for that matter any object as the key. The
trick is to find a hash function to compute an index so that an object can be stored a a
specific location in atable such that it can easily be found.

STATIC HASHING

Hash

Function

Fig.5.4.1 Thiskind of hashing is called static hashing since the size of the hash table isfixed.(an
array)

Example:

Suppose we have a set of strings {““abc”, “def”, “ghi”’} that we’d like to store in a table. Our
objective here is to find or update them quickly from a table, actualy in O(1). We are
not concerned about ordering them or maintaining any order at all. Let us think of a smple
schema to do this. Suppose we assign “a” = 1, “b”=2, ... etc to all aphabetical characters.
We can then simply compute a number for each of the strings by using the sum of the
characters as follows.

“abc” =1+ 2+ 3=6, “def” =4+5+6=15, “ghi” =7+ 8+ 9=24

If we assume that we have atable of size 5 to store these strings, we can compute the
location of the string by taking the sum mod 5. So we will then store “ abc” in 6 mod 5 =
1, “def” in 15 mod 5 = 0,

and “ghi” in 24 mod 5 = 4 in locations 1, 0 and 4 as
follows.

13



Now theideaisthat if we are given a string, we can immediately compute the location using
a simple hash function, which is sum of the characters mod Table size. Using this hash
value, we can search for the string.

Problem with Hashing -collison

The method discussed above seems too good to be true as we begin to think more about the
hash function. First of all, the hash function we used, that is the sum of the Ietters, is a bad
one. In case we have permutations of the same letters, “abc”, “bac” etc in the set, we will
end up with the same value for the sum and hence the key. In this case, the strings would
hash into the same location, creating what we call a “collision”. This is obvioudy not a
good thing. Secondly, we need to find a good table sze, preferably a prime number so that
even if the sums are different, then collisions can be avoided, when we take mod of the sum
to find the location. So we ask two questions.

Question 1: How do we pick a good hash function?
Question 2: How do we deal with collisions?

The problem of storing and retrieving data in O(1) time comes down to answering the
above questions. Picking a “good” hash function is key to successfully implementing a hash
table. What we mean by “good” is that the function must be easy to compute and avoid
collisions a much as possible. If the function is hard to compute, then we lose the
advantage gained for lookups in O(1). Even if we pick a very good hash function, we till
will have to deal with “some” collisions.

The process where two records can hash into the same location is called collision. We can ded
with collisions using many strategies, such as linear probing (looking for the next available
location i+1, i+2, etc. from the hashed value i), quadratic probing (same as linear probing,
except we look for available positions i+1 , i + 4, i + 9, etc from the hashed value i and
Sseparate chaining, the process of creating a linked list of vaues if they hashed into the same
location.This is called collision resolution.

Popular hash functions

Hash functions that use numeric keys are very popular.. However, there can be cases in real-
world applications where we can have alphanumeric keys rather than simple numeric keys.
In such cases, the ASCIl vaue of the character can be used to transform it into its
equivalent numeric key. Once this transformation is done, any hash function can be applied
to generate the hash value.

Division M ethod

It is the most simple method of hashing an integer x. This method divides x by M and then
14



uses the remainder obtained. In this case, the hash function can be given as
h(x) =x mod M

The division method is quite good for just about any value of M and since it requires only a
single division operation, the method works very fast. However, extra care should be
taken to sdect a wuitable value for M. Generally, it is best to choose M to be a prime
number because making M a prime number increases the likelihood that the keys are
mapped with a uniformity in the output range of values.

A potential drawback of the division method is that while using this method, consecutive keys
map to consecutive hash values. On one hand, this is good as it ensures that consecutive keys
do not collide, but on the other, it also means that consecutive array locations will be
occupied. This may lead to degradation in performance.

Example :

Cdculate the hash vaues of keys 1234 and 5462. Solution Setting M = 97, hash values
can be calculated as:

h(1234) = 1234 % 97 = 70

h(5642) = 5642 % 97 = 16

Mid-Square Method
The mid-square method is a good hash function which worksin two steps:
Step 1: Square the value of the key. That is, find k2.

Step 2: Extract the middle r digits of the result obtained in
Step 1.

The algorithm works well because most or dl digits of the key value contribute to the result.
This is because al the digits in the original key value contribute to produce the middle digits
of the squared value. Therefore, the result is not dominated by the distribution of the bottom
digit or the top digit of the original key value. In the mid-square method, the same r digits
must be chosen from all the keys. Therefore, the hash function can be given as:

h(k) = s where s is obtained by selecting r digits
from k2.

Example Calculate the hash value for keys 1234 and 5642 usng the mid-square method.
The hash table has 100 memory locations. Solution Note that the hash table has 100 memory
locations whose indices vary from 0 to 99.

This means that only two digits are needed to map the key to alocation in the hash table,

15



S0 r = 2. When k = 1234, k2 = 1522756, h (1234) = 27

When k = 5642, k2 = 31832164, h (5642)
=21

Observe that the 3rd and 4th digits starting from the right are
chosen.

Folding Method
The folding method works in the following two steps:

Step 1: Divide the key value into a number of parts. That is, divide k into parts k1, k2, ...,
kn, where each part has the same number of digits except the last part which may have
lesser digits than the other parts.

Step 2: Add the individua parts. That is, obtain the sum of k1 + k2 + ... + kn. The hash
value is produced by ignoring the last carry, if any. Note that the number of digits in each
part of the key will vary depending upon the size of the hash table. .

Example Given a hash table of 100 locations, calculate the hash value using folding method
for keys

5678, 321, and 34567. Solution Since there are 100 memory locations to address, we will
break the key into parts where each part (except the last) will contain two digits. The
hash values can be obtained as shown below:

key 5678 321 34567

Parts 56 and 78 32and 1 34, 56 and 7
Sum 134 33 97
Hash value 34 (ignore the last carry) 33 97

Collision Resolution Strategies
1. Open Addressing/Closed Hashing
2. Chaining

Once a collision takes place, open addressing or closed hashing computes new positions
using a probe sequence and the next record is stored in that position

The process of examining memory locations in the hash table is called probing. Open
addressing technique can be implemented using linear probing, quadratic probing, double
hashing.

Linear Probing

When using a linear probe to resolve collision, the item will be stored in the next available
16



slot in the table, assuming that the table is not aready full.

This is implemented via a linear search for an empty slot, from the point of collision. If the
physical end of table is reached during the linear search, the search will wrap around to the
beginning of the table and continue from there.lf an empty slot is not found before reaching
the point of collision, the table isfull.

If histhe point of collision, probe through h+1,h+2,h+3.................. h+i. till an empty slot

is found
[0] 72 [ 72
' Addthe keys 10, 5, and 15 to the | 15
(1] previous table (1 -
[£] 18 Hash key = key % table size | 18
[3] 43 2 =10 % 2 (3] 43
[4] 36 = = 5% 8 [4] 26
(5] 7 =15 % B (5] 10
]| 6 6] 5
7 [7] 5

Fig.5.4.2 Searching a Value using Linear Probing

The procedure for searching a value in a hash table is same as for storing a value in a
hash table. While searching for avalue in a hash table, the array index is re-computed and the
key of the elementstored at that location is compared with the value that has to be searched. If
amatch is found, then the search operation is successful. The search time in this case is
given as O(1). If the key does not match, then the search function begins a sequential

search of the array that continues until

"1 tevaue isfound,or

1 te search function encounters a vacant location in the array, indicating that the
value is not present, or

"1 te search function terminates because it reaches the end of the table and the vaue
IS not present.

Probe Sequence ::(h+i)%Table
size

Disadvantage:

17



As the hash table fills, clusters of consecutive cells are formed and the time required for a
search increases with the size of the cluster. It is possible for blocks of data to form when
collisions are resolved. This means that any key that hashes into the cluster will require
several attempts to resolve the collision. More the number of collisions, higher the probes that
are required to find a free location and lesser is the performance. This phenomenon is
caled clugering. To avoid clustering, other techniques such as quadratic probing and
double hashing are used.

Quadratic Probing

A variation of the linear probing idea is called quadratic probing. Instead of using a constant
“skip” value, if the first hash value that has resulted in collision is h, the successive values
which are probed are h+1, h+4, h+9, h+16, and so on. In other words, quadratic probing uses
askip consisting of successive perfect squares.

Quadratic Probing Example

insert( 76) msert(10) msert( 1) mnsert( 5) insert(55)
T6%%T =6 40BeT =35 A8%T7 =6 %% T=35 55%%7 =06
Sy P o . — -
i 0 4% 0f 47 0 4
1 1 1 | 1 1 |
s N 51 Al - | s |
- - - | - -"| - -b.’ |
3 3| 3 | 3 3 55
1 4| il | d| A |
5 | 5 ' 5 5
10 40 | 40 40 |
sl - 6 - 6 i 6 -,
3 i 6 6 &
probes: 1 ] 2 3 3

Fig.5.4.3 Quadratic Probing

18



Probe sequence
'h,h+12,h=22,h=32......cccvvriiriirr . h+i2

H(K)=(h+i2)%Tablesize
Double Hashing

In double hashing, we use two hash functions rather than a single function. Double hashing
uses the idea of applying a second hash function to the key when a collision occurs. The
result of the second hash function will be the number of positions form the point of collision
to insert.There are a couple of requirements for the second function:

0 it must never evaluate to 0
0 must make sure that all cells can be probed

A popular second hash function is: Hash2(key) = R - ( key % R ) where R is a prime number
that is smaller than the size of the table.But any independent hash function may aso be used.

Table Size = 10 elements [0] 49
Hashi(key) = key % 10
Hash.(key)=7— (k% 7)

[1]

Insert keys: 89, 18, 49, 58, 69

[2]
Hash(89) = 89% 10 =9

[3] | 69
Hash(18) = 18 % 10 = 8

[4]

Hash(49) = 49 % 10 = 9 a collision | e
= 7—-(49%7) [5]
7 positions from [9]

Hash(58)=58% 10=8 . [6]
: g;ésﬁigﬂﬁs?f}rom [3] (7 58
Hash(69)=69% 10=9 (8] 18
: :;&Eignﬁfgm [l [<] 89

Fig.5.4.4 Double hashing minimizes repeated collisons and the
effects of clustering.

Chaining

Chaining is another approach to implementing a hash table; instead of storing the data directly
inside the structure, have a linked list structure a each hash element. That way, all the
collision, retrieval and deletion functions can be handled by the list, and the hash function's

19



role is limited mainly to that of a guide to the algorithms, as to which hash element's list to
operate on.

The linked list at each hash element is often called a chain. A chaining hash table gets its
name because of the linked list at each element -- each list looks like a ‘chain’ of data strung
together.Operations on the data structure are made far simpler, as all of the data storage
issues are handled by the list at the hash element, and not the hash table structure itself.

’ : ] g
O BnpRA

Drawbacks of static hashing
1. Table size isfixed and hence cannot accommodate data growth.
2. Collsions increases as data size grows.

Avoid the aove conditions by doubling the hash table size. This increase in hash table size is
taken up, when the number of collisions increase beyond a certain threshold. The threshold
limit is decided by the load factor.

L oad factor

The load factor a of a hash table with n key elements is given by a= n / hash
table size

The probability of a collision increases as the load factor increases. We cannot just double the
size of the table and copy the elements from the original table to the new table, snce when the
table size is doubled from N to 2N+1, the hash function changes. It requires reinserting each
element of the old table into the new table (using the modified hash function).This is called
Rehashing. Rehashing in large databases is a tedious process and hence dynamic hashing.

Dynamic hashing schemes

20



Dynamically increases the size of the hash table as collision occurs. There are two

types:

Extendible hashing (directory): uses a directory that grows or shrinks depending on the

data distribution. No overflow buckets

Linear hashing(directory less): No directory. Splits buckets in linear order, uses overflow

buckets.

Extendible hashing :

0 Uses adirectory of pointers to bucketgbins which are collections of records
0 The number of buckets are doubled by doubling the directory, and splitting just

the bin that overflowed.

0 Directory much smaller than file, so doubling it is much cheaper. Only one bin

of data entries is split and rehashed.

3 'Ii’ Bucket A Loca. perni-Z-+11 |
3216 .
GLOBAL DEPTH GLOBAL DEFTH | R167 Bueket A

. 4
i vy - B4 i I —
™ vl 5 214954 Bkt oo | - 1* & 21° 0 BueketB
" g
pe 0ol = /
in — = o = !.-’.f o
= . E Buchet C -l
11 . "k_]. . ol " ’_-' "--: m* Bwlks C
100 \‘.-" e
DIRECTORY ™ ol oo o) BucketD w1 | NN i -
—_— e [ 7N _HET B | Bukad
T =1 %
—\
o 13vms | BucletA2 Y i
SR Gt DIRECTORY Y4 T30 | Bucket A2
of Bulet A) ) *
b frbs

Fig.5.4.5 Extendible Hashing

Global Depth
— Max number of bits needed to tell which bucket an entry
belongs to. Loca Depth

- The number of least significant digits that is common for al the numbers sharing the

same bin. On overflow:

If global depth =Local depth

1. Double the hash directory
2. Split the overflowing bin
3. Redistribute elements of the overflowing bin
4. Increment the global and local depth
If global depth >Local depth

21



1. Split the overflowing bin
2. Redistribute elements of the overflowing bin
3. Increment the loca depth

Linear Hashing
Basic Idea:

1 Pages are split when overflows occur — but not necessarily the page with the
overflow.

1 Directory avoided in LH by using overflow pages. (chaining approach)

1 Splitting occurs in turn, in around robin fashion.one by one from the first bucket
to the last bucket.

1 Useafamily of hash functions hO, hi, h2, ...
— Each function’s range is twice that of its predecessor.

) When all the pages at one level (the current hash function) have been split, a new
level isapplied.

7 Insert in Order using linear hashing: 1,7,3,8,12,4,11,2,10,13.....

After insertion till
12:

s =>| 0 - 3| [2

I - 1]

=]

2 = 8]

When 4 inserted overflow occurred. So we split the bucket (no matter it is full or partialy
empty). And increment pointer.

So we split bucket 0 and rehashed al keys in it. Placed 3 to new bucket as (3 mod 6 = 3)
and (12 mod 6 = 0). Then 11 and 2 are inserted. And now overflow. s is pointing to bucket
1, hence split bucket 1 by re- hashing it.

0 —= 12
5 == | - | J —= 4
2 (— 8111} 2

[3 |—3]
After split:

22



Insertion of 10 and 13: as (10 mod 3 = 1) and bucket 1 < s, we need to hash 10 again using
h1(10) =

10 mod 6 = 4th

bucket.

5.5 INDEXING

The indexing technique based on factors such as access type, access time, insertion
time, deletion time, and space overhead involved. There are two kinds of indices:

Ordered indices that are sorted based on one or more key vaues

Hash indices that are based on the vaues generated by applying a hash function

1. Ordered Indices
Indices are used to provide fast random access to records. An index of afile may be aprimary
index or asecondary index.

Primary Index
In asequentialy ordered file, the index whose search key specifies the sequential order of the

fileis defined as the primary index.

Example: suppose records of students are stored in a STUDENT file in a sequential order
starting from roll number 1 to roll number 60. Now, if we want to search a record for, say, roll
number 10, then the student’s roll number isthe primary index.

Secondary Index

23



An index whose search key specifies an order different from the sequential order of the file is
called asthe secondary index.

Example: If the record of a student is searched by his name, then the name is a secondary
index. Secondary indices are used to improve the performance of queries on non-primary
keys.

2. Dense and Sparse Indices

Dense index
In adense index, the index table stores the address of every record in thefile.
Derse index would be more efficient to use than a sparse index if it fits in the memory

By looking at the dense index, it can be concluded directly whether the record exists in
thefile or not.

Sparse index

In asparse index, the index table stores the address of only some of the records in the

file.

Spase indices are easy to fit in the main memory,

In a sparse index, to locate a record, first find an entry in the index table with the
largest search key value that is either less than or equal to the search key vaue of the
desired record. Then, start at that record pointed to by that entry in the index

table and then proceed searching the record using the sequential pointers in the
file, until the desired record is obtained.

Example: If we need to access record number 40, then record number 30 is the largest key
value that is less than 40. So jump to the record pointed by record number 30 and move aong
the sequential pointer to reach record number 40.

Below figure shows adense index and a sparse index for an indexed sequential file.

e ey | [ [ e[| [Fewnl[Shes
10 —4—»| Record 10 - 10 ——» Record 10 :
20 —+—+ Record 20 = 30 —t- | Record 20 -
30 ——= Record 30 —% | 80 — -=| Record 30 —%
40 ——+—= Record 40 e Record 40 ‘
50 ———»{ Record 50 |« " Record 50 e
60 ——»{ Record 60 2 L= Record 60 B

(@) Donsa index (b) Sparse index

Fig.5.5.1 Denseindex and spar seindex

24



3. Cylinder Surface Indexing

Cylinder surface indexing is avery simple technique used only for the primary key index of
sequentialy ordered file.
The index file will contain two fields—cylinder index and several surface indices. There are

multiple cylinders, and each cylinder has multiple surfaces. If the file needs m cylinders for
storage then the cylinder index will contain m entries.

. — Surfaca 0
Multple
tracks o
= e e —
onao - = *, Surfaca 1
cyfindot | e
Surfacn 2
Surface 3
= Surface 4
Sl;rfnc.c 5

Soctors

Fig.5.5.2 Physical and logical organization of disk

When arecord with aparticular key value has to be searched, then the following steps are
performed:
Firg the cylinder index of the fileis read into memory.
Second, the cylinder index is searched to determine which cylinder holds the
desired record. For this, either the binary search technique can be used or the
cylinder index can be made to store an array of pointers to the starting of
individual key values. In either case the search will takeO (log m) time. After
the cylinder index is searched, appropriate cylinder is determined.

Depending on the cylinder, the surface index corresponding to the cylinder isthen
retrieved from the disk

Once the cylinder and the surface are determined, the corresponding track is read and
searched for the record with the desired key.

Hence, the total number of disk accesses is three—first, for accessing the cylinder index,
second for accessing the surface index, and third for getting the track address.

a

25



4. Multi-level Indices

Consider very large files that may contain millions of records. For such files, a smple
indexing technigue will not suffice. In such a situation, we use multi-level indices.
Below figure shows a two-level multi-indexing. Three-level indexing and so, can also beused

In the figure, the main index table stores pointers to three inner index tables. The inner index
tables are sparse index tables that in turn store pointers to the records.

F_tewd
mumibeer

Pointer to |
record

10

20

———

Record

10

riarm ber

Painler o
record |

60

" Record
_Mumber

250

Pointer to |
record

Recornds

250

175

500

200

5. Inverted Indices

" Record

number

Pointer to
record

475

625

L

500

Fig.5.5.3 Multi-level indices

Inverted files are used in document retrieval systems for large textual databases.

An inverted file reorganizes the structure of an existing data file in order to provide
fast access to al records having one field falling within the set limits.

When aterm or keyword specified in the inverted file is identified, the record number
is given and a set of records corresponding to the search criteria are created.

For each keyword, an inverted file contains an inverted list that stores alist of pointers
to al occurrences of that term in the main text. Therefore, given a keyword, the
addresses of all the documents containing that keyword can easily be located.[

There are two main variants of inverted indices:

A record-level inverted index (inverted file index or inverted file) stores a list of

references to documents for each word

A word-leve inverted index (full inverted index or inverted list) in addition to alist of
references to documents for each word also contains the positions of each word within a

document.

26



O OO

7. Hashed Indices
Hashing is used to compute the address of a record by using a hash function on the search key value.

The hashed values map to the same address, then collision occurs and schemes to resolve these
collisions are applied to generate a new address

Choosing a good hash function is critical to the success of this technique. By a good hash function, it
mean two things.

First, a good hash function, irrespective of the number of search keys, gives an average-case

lookup that isasmall constant.

Second, the function distributes records uniformly and randomly among the buckets, where a bucket is
defined as a unit of one or more records

The worst hash function isone that maps al the keys to the same bucket.

The drawback of using hashed indices includes:
Though the number of bucketsis fixed, the number of files may grow with time.[!

If the number of buckets istoo large, storage space is wasted. [
If the number of buckets is too small, there may be too many collisions.

The following operations are performed in a hashed file organization.

1. Insertion

To insert arecord that has ki as its search value, use the hash function h(ki) to compute the address
of the bucket for that record.

If the bucket is free, store the record else use chaining to store the record.

2. Search

To search a record having the key value ki, use h(ki) to compute the address of the bucket where

therecord is stored.

The bucket may contain one or several records, so check for every record in the bucket to retrieve the

desired record with the given key vaue.

3. Ddletion

To delete a record with key value ki, use h(ki) to compute the address of the bucket where the
record is stored. The bucket may contain one or severa records so check for every record in the

bucket, and then delete the record.

27



