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Introduction 

 

Contents - Generalized Instrumentation system - Feature of personal computer - PC based 
Instrumentation system – Principle of signal conditioning – Operational Amplifier – 
instrumentation amplifier – Bridge circuits – Half and Full Bridge Circuit, Filters – Noise 
reduction techniques. 

1.1 GENERALIZED INSTRUMENTATION SYSTEM 
 
The basic need of instrumentation in a process is to get the best and most  amount of 
information so as to successfully complete the process. When referring to the completion of 
the project with reference to instrumentation, it basically means maximum efficiency with 
minimum production expense and desired output quality. 
 
The information that is achieved from these processes may be very simple and may mostly 
involve a direct measurement method. But as the process becomes more complex, direct 
measurement may seem to be impracticable and so indirect methods must be used for 
measurements. These methods involve a derived relationship  between the measured quantity 
and the result that is needed. 
 
Most of the indirect methods involve electrical techniques as they have  high speed and also 
simple processing methods. The output from such methods is easier to link to computers. 

The obtained information may not necessarily be the direct value of a measured quantity. That 
is, the value obtained may be a variation of the value with respect to other parameters. It may 
also be a signal corresponding to the end limit. It could also be a specific value with an 
indicating hand over a suitable scale. Thus, one instrument may be needed to perform the 
required operations individually or a number of them at a time. 

 
Basically it can be classified into two types 

 
1. Analog instrumentation system 

 
2. Digital instrumentation system 

 
Analog instrumentation system 

 

Figure 1.1 Analog Instrumentation Systems 
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The Primary Element/Transducer 
 

The input receives the quantity whose value is to be measured and  is  converted  into its 
proportional incremental electrical signal such as voltage, current, resis tance change, 
inductance or even capacitance. Thus, the changed variable contains the information of the 
measured variable. Such a functional element or device is called a transducer. 

 
The Secondary Element/Signal Processing Unit 

 
The output of the transducer is provided to the input of the  signal processing  unit. This unit 
amplifies the weak transducer output and is filtered and modified to a form that is acceptable 
by the output unit. Thus this unit may have devices like: amplifiers, filters, analog to digital 
converters, and so on. 

 
The Final Element/Output Unit 
The output from the signal processing unit is fed to the input of the output unit. The output 
unit measures the signal and indicates the value to the reader. The indication may be either 
through: an indicating instrument, a CRO, digital computer, and so on. 

 
Digital instrumentation system 
All the functional units that were used in an analog system will also be used here. He basic 
operation in a digital system includes the handling of analog signals, making the 
measurements, converting and handling digital data, programming and a lso control. 
The block diagram and functional units are given below 

 

Figure 1.2 Digital Instrumentation system 
 

Transducer 
All the physical input parameters like temperature, pressure, displacement, velocity, 
acceleration and so on will be converted into its proportionate electrical signal. 

 
Signal Conditioning Unit 
This working of this unit is exactly the same as that of a signal processing unit in an analog 
instrumentation system. It includes all the balancing circuits ad calibrating elements along 
with it. 

 
Scanner/Multiplexer 
Multiple analog signals are received by this device  and are sequentially provided on to a 
measuring instrument. 
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Signal Converter 
It is used to convert an analog signal to a form that is acceptable by the analog to digital 
converter. 

 
Analog to (A-D) Digital Converter 
The analog signal is converted into its proportional digital signal. The output of an A- D 
converter is given to a digital display. 

 
Auxiliary Equipment 
All the system programming and digital data processing functions are carried out by this 
unit. The auxiliary equipment may be a single computer or may be a collection of individual 
instruments. Some of its basic functions include linearizing and limit comparison. 

 
Digital Recorder 
It is mostly a CRO or a computer. 

 
1.2 FEATURES OF A PERSONAL COMPUTER 
 
The basic components of IBM PC are system units, monitor, keyboard mouse, hard disk 
drive, floppy disk drive and printer. The visual part of a PC is the mother board which is 
housed in the system unit. It embodies a microprocessor and a few more supporting chips 
such as the RAM, EPROM, floppy disk controller, DMA controller,Priority interrupt 
controller, timer, etc. 

 
Basically, a PC is a powerful data processing tool. Its data processing capabilities tend to 
double or triple with new PCs introduced every year. 

 
Expansion slots: 
For adding additional fearture to the PC the motherboard have various types of empty 
expansion slots and bring out the system bus signals through the slots for interfacing 
additional devices directly to the system. 

 
Ports: 
The basic configuration of a latest desktop PC provides a parallel port, serial port, upto six 
USB ports, mouse ports for connecting peripherals and additional devices for the PC . 
Usually the printer is connected to the parallel port, A modem is connected to a serial port, 
the keyboard is connected to PS/2 keyboard port. 

 
Monitor: 
One of the important feature of a pc is its monitor, A high resolution graphic display system. 
Computer monitors are the most convenient forms of display and are operated in texts or 
graphics mode. 
 

Storage devices: 
The PC have mass storage devices and can store  various programs and  huge amount of data 
on a hard disk or a floppy disk. The PC execute the programs by downloading them from a 
hard disk or a floppy disk into the memory. 
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Software: 
Only the operating system makes the PC functional. Many operating system are available 
today for the PC. Windows 98/2000/XP/NT, UNIX, LINUX. An enormous amount of 
software development tools are available for designing applications for the PC. TurboC, 
Turbo C++, BASICS. 

 
1.3 PC BASED INSTRUMENTATION SYSTEM 
The instrumentation system have evolved over a period of time. they are in standalone and in 
modular types. Traditionally, the measurement and control are done using standalone 
instruments. The measurment and control are automated  by exchanging the data b/w 
instruments & computers. The generalized block diagram is shown in below 

 

Figure 1.3 PC based instrumentation system 

The design of PC based measuring system involves 

 
Data acquisition includes 

1. A/D 
2. D/A 
3. DIGITAL I/O 
4. TIMING I/O 

 
Data acquisition is the process of sampling signals that measure real world physical 
conditions and converting the resulting samples into digital numeric values that can be 
manipulated by a computer. Data acquisition  systems  (abbreviated  with  the acronym DAS 
or DAQ) typically convert analog waveforms into digital values for processing. 

 
PC Interfaces: 
Hardware   interfaces   exist   in  many   of   the   components    such    as    the various 
buses, storage devices, other I/O devices, etc. A hardware interface is described by the 
mechanical, electrical and logical signals at the interface and the protocol for sequencing 
them (sometimes called signalling). A standard interface, such as SCSI, decouples the 
design and  introduction of computing  hardware,  such as I/O devices, from the design and 
introduction of other components of a computing system, thereby allowing users and 
manufacturers great flexibility in the implementation of computing systems. Hardware 
interfaces can be parallel with 
several   electrical   connections   carrying    parts    of   the    data    simultaneously, or serial 
where data is sent one bit at a time. 

 
A key principle of design is to prohibit access to all resources by default, allowing access 
only through well-defined entry points, i.e. interfaces. Software interfaces provide access to 
computer resources (such as memory, CPU, storage, etc.) of the underlying computer system; 
direct access (i.e. not through well designed interfaces) to such resources by software can 
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have major ramifications—sometimes disastrous ones—for functionality and stability. 

Interfaces between software components  can  provide: constants, data  types,  types  of 
procedures, exception specifications   and method    signatures.   Sometimes, public 
variables are also defined as part of an interface. 

An interface is hence a type definition; anywhere an object can be exchanged (for example, 
in a function or method call) the type of the object to be exchanged can be defined in terms 
of its interface rather than specifying a particular class. This means that any class that 
implements that interface can be used. For example, a dummy implementation may be used 
to allow development to progress before the final implementation is available. In another 
case, a fake or mock implementation may be substituted during testing. Such stub 
implementations are replaced by real code  later in the development process. 

 
1.4 SIGNAL CONDITIONING 

 
Principle: 

In control engineering applications, it is common to have a sensing stage (which consists of a 
sensor), a signal conditioning stage (where usually amplification of the signal is done) and a 
processing stage (normally carried out by an ADC and a micro- controller). Operational 
amplifiers (op-amps) are commonly employed to  carry out the amplification of the signal in 
the signal conditioning stage. 

Signal conditioning can include amplification, filtering, converting, range matching, 
isolation and any other processes required to make sensor output suitable for processing 
after conditioning. 

Filtering 

Filtering is the most common signal conditioning function, as usually not all  the signal 
frequency spectrum contains valid data. The common example is 60 Hz AC power lines, 
present in most environments, which will produce noise if amplified. 

Amplifying 

Signal amplification performs two important functions: increases the resolution of the input 
signal, and increases its signal-to- noise ratio. For example, the output of an electronic 
temperature sensor, which is probably in the millivolts range is  probably too low for an 
analog-to-digital converter (ADC) to process directly. In this case it is necessary to bring the 
voltage level up to that required by the ADC. 
Commonly  used  amplifiers   on   signal   on   conditioning   include sample   and hold 
amplifiers, peak detectors, log amplifiers, antilog amplifiers, instrumentation amplifiers and 
programmable gain amplifiers. 

Isolation 

Signal isolation must be used in order to pass the signal from the source to the measurement 
device without a physical connection: it is often used to isolate possible sources of signal 
perturbations. Also notable is that it is important to isolate the potentially expensive 
equipment used to process the signal after conditioning from the sensor. 

Magnetic or optic isolation can be used. Magnetic isolation transforms the signal from 
voltage to a magnetic field, allowing the signal to be transmitted without a physical 
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connection (for example, using a transformer). Optic isolation takes an electronic signal and 
modulates it to a signal coded by light transmission (optical encoding), which is then used 
for input for the next stage of processing. 

 

1.5 OPERATIONAL AMPLIFIERS: 

An operational   amplifier ("op-amp")   is  a DC-coupled high-gain electronic voltage 
amplifier with a differential input and, usually, a single-ended output. In this configuration, 
an op-amp produces an output potential (relative to circuit ground) that is typically hundreds 
of thousands of times larger than the potential difference between its input terminals. 

Operational amplifiers had their origins in analog computers, where they were used to do 
mathematical operations in many linear, non- linear and frequency-dependent circuits. The 
popularity of the op-amp as a building block in analog circuits is due to its versatility. Due to 
negative feedback,  the  characteristics  of  an  op-amp  circuit, its gain, input and output 
impedance, bandwidth etc. are determined by external components and have little 
dependence on temperature coefficients or manufacturing variations in the op-amp itself. 

Op-amps are among the most widely used electronic devices today, being used in a vast array 
of consumer, industrial, and scientific devices. Many standard IC op-amps cost only a few 
cents in moderate production volume; however some integrated or hybrid operational 
amplifiers with special performance specifications may cost over 
$100 US in small quantities. Op-amps may be packaged as components, or used as elements 
of more complex integrated circuits. 

Symbol 

 

Figure  1.4 Symbol 

 
When an op-amp operates in linear (i.e., not saturated) mode, the difference in voltage 
between the non- inverting (+) pin and the inverting (−) pin is negligibly small.The 
input impedance between (+) and (−) pins is much larger than other resistances in the circuit. 

The input signal Vin appears at both (+) and (−) pins, resulting in a current i through Rg equal 
to Vin/Rg. 

Since K irchhoff's current law states that the same current must leave a node as enter it, and 
since the impedance into the (−) pin is near infinity, we can assume practically all of the 
same current i flows through Rf, creating an output voltage 
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By combining terms, we determine the closed- loop gain ACL: 

Ideal op-amps 

 
 

 Infinite open- loop gain G = vout / 'vin 
 Infinite input impedance Rin, and so zero input current  

 Zero input offset voltage 

 Infinite voltage range available at the output 
 Infinite bandwidth with zero phase shift and infinite slew rate  

 Zero output impedance Rout 
 Zero noise 
 Infinite Common-mode rejection ratio (CMRR)  

 Infinite Power supply rejection ratio. 
 

AMPLIFIERS 

Differential amplifier (difference amplifier) 

 
 

Figure 1.5 differential amplifier 

Amplifies the difference in voltage between its inputs. 

The name "differential amplifier" must not be confused with the "differentiator," which is 
also shown on this page. 

The "instrumentation amplifier," which is also shown on this page, is a modification of the 
differential amplifier that also provides high input impedance. 

The circuit shown computes the difference of two voltages, multiplied by some gain factor. 
The output voltage: 

An equivalent circuit of an operational amplifier that models some resistive non-ideal 
parameters. An ideal op-amp is usually considered to have the following properties: 
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Or, expressed as a function of the common mode input Vcom and difference input Vdif 

 

the output voltage is 

In order for this circuit to produce a signal proportional to the voltage difference of  the input 
terminals, the coefficient of the Vcom term (the common- mode gain) must be zero, or 

 

With this constraint in place, the common- mode rejection ratio of this circuit is infinitely 
large, and the output 

where the simple expression Rf / R1 represents the closed-loop gain of the differential 
amplifier.The special case when the closed- loop gain is unity is a differential follower, with: 

Inverting amplifier 
An inverting amplifier is a special case of the differential amplifier in which that circuit's 
non- inverting input V2 is grounded,  and  inverting  input V1 is  identified with Vin above. 
The closed-loop gain is Rf / Rin, hence 

. 

The   simplified   circuit   above   is   like  the   differential   amplifier   in  the    limit of R2 
and Rg very small. In this case, though, the circuit will be susceptible to input bias current 
drift because of the mismatch between Rf and Rin.To intuitively see the gain equation above, 
calculate the current in Rin : 

  then  recall  that  this  same  current  must  be  passing  through 
Rf,  therefore  (because V− = V+ = 0): 

 

Figure 1.6 Inverting amplifier 
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A mechanical analogy is a seesaw, with the V− node (between Rin and Rf) as the fulcrum, at 
ground potential. Vin is at a length Rin from the fulcrum; Vout is at a length Rf. When Vin 
descends "below ground", the output Vout rises proportionately to balance the seesaw, and vice 
versa. 

Non-inverting amplifier 

A non- inverting amplifier is a special case of the differential amplifier in which that circuit's 
inverting input V1 is  grounded,  and  non- inverting  input V2 is  identified with Vin above, 
with Rg ≫ R2. Referring to the circuit immediately above, 

 
 

Figure 1.7 Non inverting amplifier 

. 

To intuitively see this gain equation, use the virtual ground technique to calculate the current 
in resistor R1: 

then recall that this same current must be passing through R2, therefore: 

 

A mechanical analogy is a class-2 lever, with one terminal of R1 as the fulcrum, at ground 
potential. Vin is at a length R1 from the fulcrum; Vout is at a length R2 further along. When 
Vinascends "above ground", the output Vout rises proportionately with the lever.The input 
impedance of the simplified non- inverting amplifier is  high,  of order Rdif × AOL times the 
closed- loop gain, where Rdif is the  op  amp's  input impedance to differential signals, and 
AOLis the open- loop voltage gain of the op amp; in the case of the ideal op amp, with AOL 
infinite and Rdif infinite, the input impedance is infinite. In this case, though, the circuit will be 
susceptible to input bias current drift because of the mismatch between the impedances 
driving the V+ and V− op  amp inputs. 
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1.6 INSTRUMENTATION AMPLIFIER: 

Combines very high input impedance, high common- mode rejection, low DC offset, and 
other properties used in making very accurate, low- noise measurements Is made by adding a 
non- inverting buffer to each input of the differential amplifier to increase the input 
impedance. 

 
 

Figure 1.7 Instrumentation amplifier 
 

 

 

 
BRIDGE CIRCUITS 

A bridge circuit is a type of electrical circuit in which two  circuit branches (usually in 
parallel with each other) are "bridged" by a third branch connected between the  first two 
branches at some intermediate point along them. The bridge was originally developed for 
laboratory measurement purposes and one of the intermediate bridging points is often 
adjustable when so used. Bridge circuits now find many applications, both linear and non- 
linear, including in instrumentation, filtering and power conversion 

The best-known bridge circuit, the Wheatstone bridge, was invented by Samuel Hunter 
Christie and popularized by Charles Wheatstone, and is used for measuring resistance. It 
is  constructed  from  four  resistors,  two  of  known  values R1 and R3 (see diagram), one 
whose resistance is  to be determined Rx, and  one which is variable and calibrated R2.  
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Two opposite vertices are connected to a source of electric current, such as a battery, and a 
galvanometer is connected across the other  two vertices. The variable resistor is adjusted 
until the galvanometer reads zero. It is then known that the ratio between the variable resistor 
and its neighbour R1 is equal 
to the ratio between the unknown resistor and its neighbour R3, which enables the value of 
the unknown resistor to be calculated. 

 

Figure 1.8 Basis bridge circuit 

1.7 BRIDGE AMPLIFIER: 

This is the most commonly misunderstood mode of operation and it  requires additional 
circuitry to implement if the pair of amplifiers does not have the facility built in. The image 
shows two identical amplifiers A1 and A2 connected in bridge mode. The signals presented to 
each amplifier of the pair are caused to be in anti- phase. In other words, as the signal in one 
amplifier is swinging positively, the signal in the other is swinging negatively. If, for example 
the maximum  output  voltage swing of each amplifier is between a peak of + and – 10 volts, 
when the output of one amplifier is at + 10 volts the output of the other will be at –10 volts, 
which means that the  load  (a  loudspeaker)  now  sees  a  20  volt  peak  difference  
between  the  ―hot‖ (normally red ) output terminals. The inverting & instrumentation bridge 
amplifie rs are shown in below. 

 

Figure 1.9 Bridge amplifier 
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1.8 FILTERS 

The purpose of the filter as a part of signal conditioning in measurement system is to 
eliminate the noise or undesired frequencies from the measurement signals without altering 
the desired information.Basically it can be classified into two categories, 

RC filters Active filters 

RC FILTERS 

Simple filters can be designed using passive elements like resistors and capacitors.In this 
section we will discuss about the simple RC filter sections. 

Low pass filter: 
 

Figure 1.10 Low pass filter 
 
 
 

 

 

High pass filter: 

Figure 1.11 High pass filter 
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, 

 

ACTIVE FILTERS: 
Active filters are designed using opamp, resistance and Capacitance. There are four types of 
filters are existing. 
Active Low pass filters: Which can be used to remove low frequency components 

 
 

Figure 1.12 : Active High Pass filter 
 
 
 
 

, 

 

Active High pass filter: Which can be used to remove High frequency components 

 
Figure 1.13 band Pass Filter 

 
Band pass filter: Which can be used to remove Particular band of frequency components 
Band Reject Filter: Which removes particular band of frequencies 
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Figure 1.14 Band Stop Filter 
 
 

 
1.9 NOISE & NOISE REDUCTION TECHNIQUES : 
 
In all signal conditioning unwnted noise signals corrupt the weak measurement signals and 
reduce the accuracy of the measurement. The parameter which gives the value of the 
corruption is known as signal to noise ratio (SNR). 

 
 
Induced noise: 
There are several sources are there for induced noise. 

1. Grounding 

2. Shielding Grounding: 
System ground plays a major role in internally generated induced noise. 
Ground and return lines in a system: Ground in electronic system refers to a reference 
potential. 
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Figure 1.15 Band Stop Filter 
 

Grounding in analog circuits: Providing the separate power supply to the devices drawing 
higher currents. 

 
Figure 1.16 Grounding of circuits 

 
SHIELDING: 
Electro magnetic interference: 
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Figure 1.17 Sheiding 
 

 

The strength of magnetic coupling is minimized by proper wiring and shielding techniques. 
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Principle of Data Acquisition  

 

Sampling concepts – DAC- Weighted Resistor Network, R-2R Ladder Network, ADC – 
Successive Approximation ADC - Counting type, Successive approximation, parallel 
comparator, Data acquisition system – Analog Input , Analog Output 
 

2.1 SAMPLING CONCEPTS: 
Signals in digital form are more convenient than analog form for processing and control 
operations. Computers process information represented by digital data. Sampling is a 
process of converting continuous time amplitude into discrete time amplitude. 
 
RECONSTRUCTION: 
Series of digital data obtained by periodic sampling of a continuous analog signal are the 
samples of analog signals. The samples represent the analog signal at specific instants. The 
original analog signal can be reconstructed by applying back the digital data in sequence at 
the same time intervals to a digital to analog converter. The DAC represent the analog signal 
in discrete time and amplitude, it  cannot faithfully represent and reconstruct the original 
without error. 
 
SHANNON SAMPLING THEOREM: 
The Shannon sampling theorem relates the sampling rate and maximum frequency 
component present in the signal to completely recover the original signal from its sampled 
data without loss of information. 
 
DISCRETE TIME REPRESENTATION: 
Consider two signals, one varying smoothly in time,x(t), and another a train of equally 
spaced pulses with constant amplitude,p(t). Let the signal x(t) be band limited and let the 
highest frequency component in the band limited signal be fH. Let the period of  the signal 
p(t) be T. 
 
FREQUENCY SPECTRUM: 
The signals x(t), p(t) and xp(t) are represented in time domain. Fourier transforms are X(f), 
P(f) and Xp(f) describe the frequency content s of the respective signals. To completely 
recover the CT signal x(t) from its sampled representation xp(t), the spectrum X(f) should be 
recovered totally from Xp(f). X(f) is complete ly recovered from Xp(f) by filtering all 
frequencies. The frequency 2fH is referred to as the Nyquist frequency. 
 
ALIASING: 
Sampling at frequency less than twice the high frequency component is known as 
undersampling. Undersampling results in the phenomena called aliasing. 
 
 
INTERPOLATION: 
A DAC generates quantized analog outputs for the digital inputs. The quantized analog 
output of the DAC for discrete digital input reconstructs the original signal only in discrete 
time and there are gaps between the data points. The process of reconstructing the signal 
between the data point is called interpolation. 



2.2 DIGITAL TO ANALOG CONVERTERS 
There are two basic type of converters, digital-to-analog (DACs or D/As) and analog- to 
digital (ADCs or A/Ds). Their purpose is fairly straightforward. In the case of DACs, they 
output an analog voltage that is a proportion of a reference voltage, the proportion based on 
the digital word applied. In the case of the ADC, a digital representation of the analog 
voltage that is applied to the ADCs input is outputted, the representation proportional to a 
reference voltage. In both cases the digital word is almost always based on a binarily 
weighted proportion. The digital input or output is arranged in words of varying widths, 
referred to as bits, typically anywhere  from 6 bits to 24 bits. In a binarily weighted system 
each bit is worth half of the bit to its left and twice the bit to its right. The greater the number 
of bits in the digital word,  the  finer the resolution. These bits are typically arranged in 
groups of four, called bytes, for convenience 
 

 
Figure 2.1 basic DAC 

 
BINARY WEIGHTED CURRENT SOURCE 
The voltage- mode binary-weighted resistor DAC shown in Figure, is usually the simplest 
textbook example of a DAC. However, this DAC is not inherently monotonic and is actually 
quite hard to manufacture successfully at high resolutions due to the large spread in 
component (resistor) values. In addition, the output impedance of the voltagemode binary 
DAC changes with the input code. 



 
Figure 2.2 Digital Switch 

 
Current- mode binary weighted DACs are shown in Figure (resistor-based), (current- source 
based). An N-bit DAC of this type consists of N weighted current sources (which may 
simply be resistors and a voltage reference) in the ratio 1:2:4:8 2N–1. The LSB switches the 
2N–1 current, the MSB the 1 current, etc. The theory is simple but the practical problems of 
manufacturing an IC of an economical size with current or resistor ratios of even 128:1 for 
an 8-bit DAC are enormous, especially as they must have matched temperature coefficients. 
This architecture is virtually never used on its own in integrated circuit DACs, although, 
again, 3-bit or 4-bit versions have  been  used as components in more complex structures. For 
example, the AD550  mentioned at the beginning of this section is an example of a binary-
weighted DAC. 
 
R-2R LADDER 
One of the most common DAC building-block structures is the R-2R resistor ladder network 
shown in Figure . It uses resistors of only two different values, and their ratio is 2:1. An N-bit 
DAC requires 2N resistors, and they are quite easily trimmed. There are also relatively few 
resistors to trim. 

 
 

Figure 2.3 R-2R ladder Network 
 

Note the extra resistor added at the RFEEDBACK pin. This is designed to be the feedback 
resistor for the I/V op amp. This resistor is  trimmed along with the rest of the resistors so it 
tracks. Also, since it is made of the same material as the rest of the resistors, therefore having 
the same temperature coefficient, and is on the same substrate, hence at the same 
temperature, it will track over temperature. 
  



2.3 ANALOG TO DIGITAL CONVERTER 
The basic ADC function is shown in Figure . This could also be referred to as a quantizer. 
Most ADC chips also include some of the support circuitry, such as clock oscillator for the 
sampling clock, reference (REF), the sample and hold function, and output data latches. In 
addition to these basic functions, some ADCs have additional circuitry built in. These 
functions could include multiplexers, sequencers, auto- calibration circuits, programmable 
gain amplifiers (PGAs). 
 

 
 

Figure 2.4 basic ADC 
 

The sampling clock input is a critical function in an ADC and a source of some confusion. 
It could truly be the sampling clock. This frequency would typically be several times 
higher than the sampling rate of the converter. It could also be a convert start (or encode) 
command which would happen once per conversion. Pipeline architecture devices and 
sigma delta (Σ-Δ) converters are continuously converting and have no convert start 
command. 

 
THE COMPARATOR: A 1-BIT ADC 
A comparator is a 1-bit ADC , If the input is above a threshold, the output has one logic 
value, below it has another. There is no ADC architecture which does not use at least one 
comparator of some sort. So while a 1 bit ADC is of very limited usefulness it is a building 
block for other architectures. 

 
Comparators used as building blocks in ADCs need good  resolution which implies high 
gain. This can lead to uncontrolled oscillation when the differential input approaches zero. 
In order to prevent this, hysteresis is often added to comparators using a small amount of 
positive feedback. Figure shows the effects of hysteresis on the overall transfer function. 
Many comparators have a milli volt or two of hysteresis to encourage ―snap‖ action and to 
prevent local feedback from causing instability in the transition region. Note that the 
resolution of the comparator can be no less than the hysteresis, so large values of hysteresis 
are generally not useful. 



 

 
 

Figure 2.5 Hysteresis Curve 
 

SUCCESSIVE APPROXIMATION ADCS 
The successive approximation ADC has been the mainstay of data acquisition for many 
years. Recent design improvements have extended the sampling frequency of these ADCs 
into the megahertz region. The basic successive approximation ADC is shown in Figure, It 
performs conversions on command. On the assertion of the CONVERT START command, 
the sample-and-hold (SHA) is placed in the hold mode, and all the bits of the successive 
approximation register (SAR) are reset to ―0‖ except the MSB which is set to ―1.‖ The 
SAR output drives the internal DAC. If the DAC output is greater than the analog input, 
this bit in the SAR is reset, otherwise it is left set. The next most significant bit is then set 
to ―1.‖ If the DAC output is greater than the analog input, this bit in the SAR is reset, 
otherwise it  is  left set. The process  is repeated with each bit in turn. When all the bits have 
been set, tested, and reset or not as appropriate, the contents of the SAR correspond to the 
value of the analog input, and the conversion is complete. These bit ―tests‖ can form the 
basis of a serial output version SAR-based ADC. 

 
The fundamental timing diagram for a typical SAR ADC is shown in Figure, The end of 
conversion is generally indicated by an end-of-convert (EOC), data-ready (DRDY), or a 
busy signal (actually, not-BUSY indicates end of conversion). The polarities and name of 
this signal may be different for different SAR ADCs, but the fundamental concept is the 
same. At the beginning of the conversion interval, the signal goes high (or low) and 
remains in that state until the conversion is completed, at which time it goes low (or high). 
The trailing edge is generally an indication of valid output 



 

 
 

Figure 2.6 SAR ADC 
 

data, but the data sheet should be carefully studied—in some  ADCs additional delay is 
required before the output data is valid. 

 
FLASH CONVERTERS 
Flash ADCs (sometimes called parallel ADCs) are the fastest type of ADC and use large 
numbers of comparators. An N-bit flash ADC consists of 2N resistors and 2N–1 
comparators arranged as in Figure Each comparator has a reference voltage which is 1 
LSB higher than that of the one below it in the chain. For a given input voltage, all the 
comparators below a certain point will have their input voltage larger than their reference 
voltage and a ―1‖ logic output, and all the comparators above that point will have a 
reference  voltage larger than the input voltage and a ―0‖ logic output. The 2N– 1 
comparator outputs therefore behave in a way analogous to a mercury thermometer, and 
the output code at this point is sometimes called a thermometer code. Since 2N–1 data 
outputs are not really practical, they are processed by a decoder to generate an N- bit 
binary output. 

 
The input signal is applied to all the comparators at once, so the thermometer output is 
delayed by only one comparator delay from the input, and the encoder N-bit output by only 
a few gate delays on top of that, so the process is very fast. However, the architecture uses 
large numbers of resistors and comparators and is limited to low resolutions, and if it is to be 
fast, each comparator must run at relatively high power levels. Hence, the problems of 
flash ADCs include limited resolution, high power dissipation because of the large number 
of high speed comparators (especially at sampling rates greater than 50 MSPS), and 
relatively large (and therefore expensive) chip sizes. In addition, the resistance of the 
reference resistor chain must be kept low to supply adequate bias current to the fast 
comparators, so the voltage reference has to source quite large currents (typically > 10 
mA). 



 

 
 

Figure 2.7 Parallel ADC 
 

Each comparator has a voltage-variable junction capacitance, and this signal- dependent 
capacitance results in most flash ADCs having reduced ENOB and higher distortion at 
high input frequencies. For this reason, most flash converters must be driven with a 
wideband op amp which is tolerant to the capacitive load presented by the converter as 
well as high speed transients developed on the input. 

 
COUNTING AND INTEGRATING ADC ARCHITECTURES 
Although counting-based ADCs are not well suited for high speed applications, they are 
ideal for high resolution, low frequency applications, especially when combined with 
integrating techniques. 

 
The counting ADC technique basically uses a sampling pulse to take a sample of the analog 
signal, set an R/S flip- flop, and simultaneously start a controlled ramp voltage. The ramp 
voltage is compared with the input, and when they are equal, a pulse is generated which 
resets the R/S flip- flop. The output of the flip- flop is a pulse whose width is proportional to 
the analog signal at the sampling instant. This pulse width modulated (PWM) pulse 
controls a gated oscillator, and the number of pulses out of the gated oscillator represents 
the quantized value of the analog signal. This  pulse train can be easily converted to a 
binary word by driving a counter. In Reeves' system, a master clock of 600 kHz was used, 
and a 100:1 divider generated the 6-kHz sampling pulses. The system uses a 5-bit counter, 
and 31 counts (out of the  100 counts between sampling pulses) therefore represents a full-
scale signal.  The technique can obviously be extended to higher resolutions. 
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Figure 2.8 Single mode Flash ADC 

 

DUAL SLOPE/MULTI-SLOPE ADCS 
 
 

 
Figure 2.9 Dual mode Flash ADC 

 

The dual-slope ADC architecture was truly a breakthrough in ADCs for high resolution 
applications such as digital voltmeters (DVMs), etc. A simplified diagram is shown in 
Figure. the integrating capacitor is proportional to  the average  value  of the input over the 
interval T. The integral of the reference is an opposite- going ramp having a slope of 
VREF/RC. At the same time, the counter is again counting from zero. When the integrator 
output reaches zero, the count is stopped, and the analog circuitry is reset. Since the charge 
gained is proportional to VIN · T, and the equal amount of charge lost is proportional to 
VREF · tx, then the number of counts relative to the full scale count is proportional to tx/T, 
or VIN/VREF. If the output of the counter is a binary number, it will therefore be a binary 
representation of the input voltage. Dual-slope integration has many advantages. 
Conversion accuracy is independent of both the capacitance and the clock frequency, 
because they affect both the up-slope and the down-slope by the same ratio. 
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HARDWARE ORGANIZATION OF PC  

 

Motherboard components – Microprocessor, memory, Chipset Chips, Interrupts, DMA Channel, 
System Control Chip , Peripheral Control Chip- Peripherals , Features of ISA and PCI buses. 
 
3.1 MOTHERBOARD COMPONENTS 
 
A PC in general, consists of central processing unit (CPU), monitor, keyboard, mouse and 
printer. The basic block diagram of motherboard is shown in below. Components directly 
attached to or part of the motherboard include, The CPU (Central Processing Unit) performs 
most of the calculations which enable a computer to function, and is sometimes referred to as 
the "brain" of the computer. It is usually cooled by a heat sink and fan. Most newer CPUs 
include an on-die Graphics Processing Unit (GPU).The Chipset, which includes the north 
bridge, mediates communication between the CPU and the other components of the system, 
including main memory.The Random-Access Memory (RAM) stores the code and data that 
are being actively accessed by the CPU. The Read-Only Memory (ROM) stores the BIOS that 
runs when the computer is powered on or otherwise begins execution, a process known as 
Bootstrapping, or "booting" or "booting up". The BIOS (Basic Input Output System) includes 
boot firmware and power management firmware. 
 
 

 
Figure 3.1 GPIB Architecture  

 

Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead  of  BIOS.  
Buses connect the CPU to various internal components and to expand cards for graphics and 
sound. The CMOS battery is also attached to the motherboard. This battery is the same as a 
watch battery or a battery for a remote to a car's central locking system. Most batteries are 
CR2032, which powers the memory for date and time in the BIOS chip. 



 

 
Figure 3.2 Unified Extensible Firmware Interface  

 

3.2 SYSTEM RESOURCES 
 
Systems programming, an interrupt is a signal to the processor emitted by hardware or 

software indicating an event that needs immediate attention. An interrupt alerts the processor to 

a high- priority condition requiring the interruption of the current code the processor is 

executing. The processor  responds   by  suspending   its  current   activities,   saving   its state,   

and   executing a function called an interrupt handler (or an interrupt service routine, ISR) to 

deal with the event. This interruption is temporary, and, after the interrupt handler finishes, the 

processor resumes normal activities. There are two types of interrupts: hardware interrupts and 

software interrupts. 

Hardware interrupts are used by devices to communicate that they require  attention from     

the operating system. Internally, hardware interrupts are implemented using electronic alerting 

signals that are sent to the processor from an external device, which is either a part of the 

computer itself, such as a disk controller, or an external peripheral. For example, pressing a key 

on the keyboard or moving the mouse triggers hardware interrupts that cause the processor to 

read the keystroke or mouse position. Unlike the software type (described below), hardware 

interrupts are asynchronous and can occur in the middle of instruction execution, requiring 

additional care in programming. The act of  initiating  a  hardware interrupt  is  referred  to  as  

an interrupt request(IRQ). A software interrupt is caused either by an exceptional condition in 

the processor itself, or a special instruction in the instruction set which causes an interrupt 

when it is executed. The former is often called a trap or exception and is used for errors or 

events occurring during program 



execution that are exceptional enough that they cannot be handled within the program itself. 

For example, if the processor's arithmetic logic unit is commanded to divide a number by 

zero, this impossible demand will cause a divide-by-zero exception, perhaps causing the 

computer to abandon the calculation or display an error message. Software interrupt 

instructions function similarly to subroutine calls and are used for a variety of purposes, such 

as to request services from low-levelsystem software such as device drivers. For example, 

computers often use software interrupt instructions to communicate with the disk controller to 

request data be read or written to the disk. 

Each interrupt has its own interrupt handler. The number of hardware interrupts is limited by 

the number of interrupt request (IRQ) lines to the processor, but there may be hundreds of 

different software interrupts. Interrupts are a commonly used technique for computer 

multitasking, especially in real-time computing. Such a system is said to be interrupt-driven. 

Level-triggered 

A level-triggered interrupt is an interrupt signalled by maintaining the interrupt line at a high 

or low level. A device wishing to signal a Level-triggered interrupt drives the interrupt 

request line to its active level (high or low), and then holds it at that level until it is serviced. 

It ceases asserting the line when the CPU commands it to or otherwise handles the condition 

that caused it to signal the interrupt. Typically, the processor samples the interrupt input at 

predefined times during each bus cycle such as state T2 for the Z80 microprocessor. If the 

interrupt isn't active when the processor samples it, the CPU doesn't see it. One possible use 

for this type of interrupt is to minimize spurious signals from a noisy interrupt line: a spurious 

pulse will often be so short that it is not noticed. 

Multiple devices may share a level-triggered interrupt line if they are designed to. The 

interrupt line must have a pull-down or pull-up resistor so that when not actively driven it 

settles to its inactive state. Devices actively assert the line to indicate an outstanding interrupt, 

but let the line float (do not actively drive it) when not signalling an interrupt. The line is then 

in its asserted state when any (one or more than one) of the sharing devices is signalling an 

outstanding interrupt. 

Level-triggered interrupt is favored by some because it is easy to share the interrupt request 

line without losing the interrupts, when multiple shared devices interrupt at the same time. 

Upon detecting assertion of the interrupt line,  the  CPU  must  search  through  the  devices  

sharing the interrupt request line until one who triggered the interrupt is detected. After 

servicing this device, the CPU may recheck the interrupt line status to determine whether any 

other devices also needs service. If the line is now de-asserted, the CPU avoids checking the 

remaining devices on the line. Since some devices interrupt more frequently than others, and 

other device interrupts 



are particularly expensive, a careful ordering of device checks is employed to increase  

efficiency. The original PCI standard mandated level-triggered interrupts because of this 

advantage of sharing interrupts. 

There are also serious problems with sharing level-triggered interrupts. As long as any device on 

the line has an outstanding request for service the line remains asserted, so it is not possible to 

detect a change in the status of any other device. Deferring servicing a low-priority device is not 

an option, because this would prevent detection of service requests from higher-priority devices. 

If there is a device on the line that the CPU does not know how to service, then any interrupt 

from that device permanently blocks all interrupts from the other devices. 

Edge-triggere 

An edge-triggered interrupt is an interrupt signalled by a level transition on the interrupt line, 

either a falling edge (high to low) or a rising edge (low to high). A device, wishing to signal an 

interrupt, drives a pulse onto the line and then releases the line to its inactive state. If the pulse is 

too short to be detected by polled I/O then special hardware may be required to detect the edge. 

Multiple devices may share an edge-triggered interrupt line if they are designed to. The interrupt 

line must have a pull-down or pull-up resistor so that when not actively driven it settles to one 

particular state. Devices signal an interrupt by briefly driving the line to its non-default state, and 

let the line float (do not actively drive it) when not signalling an interrupt. This type of 

connection is also referred to as open collector. The line then carries all the pulses generated by 

all the devices. (This is analogous to the pull cord on some buses and trolleys that any passenger 

can pull to signal the driver that they are requesting a stop.) However, interrupt pulses from 

different devices may merge if they occur close in time. To avoid losing interrupts the CPU must 

trigger on the trailing edge of the pulse (e.g. the rising edge if the line is pulled up and driven 

low). After detecting an interrupt the CPU must check all the devices for service requirements. 

Edge-triggered interrupts do not suffer the problems that level-triggered interrupts have with 

sharing. Service of a low-priority device can be postponed arbitrarily, and interrupts will 

continue to be received from the high-priority devices that are being serviced. If there is a device 

that the CPU does not know how to service, it may cause a spurious interrupt, or even periodic 

spurious interrupts, but it does not interfere with the interrupt signalling of the other devices. 

However, it is fairly easy for an edge triggered interrupt to be missed - for example if interrupts 

have to be masked for a period - and unless there is some type of hardware latch that records the 

event it is impossible to recover. Such problems caused many "lockups" in early computer 

hardware because the processor did not know it was expected to do something. More modern 

hardware often has one or more interrupt status registers that latch the interrupt requests; well 

written edge-driven interrupt software often checks such registers to ensure events are not 

missed. 



The elderly Industry Standard Architecture (ISA) bus uses edge-triggered interrupts, but does 

not mandate that devices be able to share them. The parallel port also uses edge-triggered 

interrupts. Many older devices assume that they have exclusive use of their interrupt line, 

making it electrically unsafe to share them. However, ISA motherboards include pull-up 

resistors on the IRQ lines, so well-behaved devices share ISA interrupts just fine. 

 
 

3.3 SYSTEM AND PERIPHERAL CONTROL CHIPS 
 

Keyboard controller 
 

n computing, a keyboard controller is a device that interfaces a keyboard to a computer. Its 

main function is to inform the computer when a key is pressed or released. When data from 

the keyboard arrives, the controller raises an interrupt (akeyboard interrupt) to allow the CPU 

to handle the input. 

If a keyboard is a separate peripheral system unit (such as in most modern desktop 

computers), the  keyboard  controller  is  not  directly  attached  to  the  keys,  but  receives 

scancodes from    a microcontroller embedded in the keyboard via some kind ofserial 

interface. In this case, the controller usually also controls the keyboard's LEDs by sending 

data back to keyboard through the wire. 

The IBM PC AT used an Intel 8042 chip to interface to the keyboard. This computer also 
controlled access to the A20 line in order to implement a workaround for a chip bug in the 

Intel 80286.[1] The keyboard controller was also used to initiate a software CPU reset in order 

to allow the CPU to transition from protected mode to real mode because the 286 did not 

allow the CPU to go from protected mode to real mode unless the CPU is reset. This was a 
problem because the BIOS and the operating system services could only be called by 

programs in real mode. These behaviors have been used by plenty of software that expects 

this behavior, and therefore keyboard controllers have continued controlling the A20 line and 

performing software CPU resets even when the need for a reset via the keyboard controller 

was obviated by the Intel 80386's ability to switch to real mode from protected mode without 

a CPU reset. The keyboard controller also handles PS/2 mouse input if a PS/2 mouse port is 

present. Today the keyboard controller is either a unit inside a Super I/O device or is missing, 

having its keyboard and mouse functions handled by a USB controller and its role in 

controlling the A20 line handled by the chipset. 

  



3.4 Chip set 
 

In a computer system, a chipset is a set of electronic components in an integrated circuit that 
manages the data flow between the processor, memory and peripherals. It is usually found on 
the motherboard. Chipsets are usually designed to work with a specific family of 
microprocessors. Because it controls communications between the processor and external 
devices, the chipset plays a crucial role in determining system performance. In computing,  
the term chipset commonly refers to a set of specialized chips on a computer's 
motherboard or an expansion card. In personal computers,  the  first  chipset  for  the IBM PC 
AT of 1984  was  the NEAT  chipset developed  by Chips  and  Technologies for  the Intel 
80286 CPU. 

 
3.5 PERIPHERALS 

 
Input devices allow the user to enter information into the system, or control its operation. 

Most personal   computers   have    a mouse and keyboard,    but    laptop    systems    

typically    use   a touchpad instead of a mouse. Other input devices include webcams, 

microphones, joysticks, and image scanners. A peripheral is a "device that is used to put 

information into or get information out of the computer. 

There are two different types of peripherals: input devices, which interact with or send data to  

the computer (mouse, keyboards, etc.), and output devices, which provide output to the user 

from the computer (monitors, printers, etc.). Some peripherals, such as touchscreens, can be 

used both as input and output devices. 

A peripheral  device  is  generally  defined  as  any  auxiliary  device  such  as  a computer  

mouse or keyboard that connects to and works with the computer in some way. Other 

examples of peripherals are image scanners, tape drives, microphones, loudspeakers, 

webcams, and digital cameras. Many modern devices, such as digitalwatches, smartphones 

and tablet computers, have interfaces that allow them to be used as a peripheral by desktop 

computers, although they are not host-dependent in the same way as other peripheral devices. 

Common input peripherals include keyboards, , graphic tablets, touchscreens, barcode 

readers,image scanners, microphones, webcams, game controllers, light pens, and digital 

cameras.    Common    output    peripherals    include computer    displays, printers,projectors, 

and computer speakers. 

 
Output device 

Output  devices display  information  in  a  human  readable  form.  Such  devices   could  

include printers, speakers, monitors or a Braille embosser. Data is stored by a computer using 

a variety of media. Hard disk drives are found in virtually all older computers, due to their 



high capacity and low cost, but solid-state drives are faster and more power efficient, 

although currently more expensive than hard drives, so are often found in more expensive 

computers. Some systems may use a disk array controller for greater performance or 

reliability. 

 
 
3.6 BIOS SERVICES 
 
The BIOS an acronym for Basic  Input/Output  System and  also  known  as  the System 

BIOS, ROM BIOS or PC BIOS) is a type of firmware used during the booting process (power-

on startup) on IBM PC compatible computers. The BIOS firmware is  built  into personal  

computers (PCs), and it is the first software they run when powered on. The name itself 

originates  from  the  Basic  Input/Output  System  used  in  the CP/M operating  system   in 

1975. Originally proprietary to the IBM PC, the BIOS has been reverse engineered by 

companies looking to create compatible systems and the interface of that original system serves 

as a de facto standard. 

The fundamental purposes of the BIOS in modern PCs are to initialize and test the system 

hardware components, and to load a boot loader or an operating system from a mass memory 

device. The BIOS additionally provides an abstraction layer for the hardware, i.e., a consistent 

way for application programs and operating systems to interact with the keyboard, display, and 

other input/output (I/O) devices. Variations in the system hardware are hidden by the BIOS 

from programs that use BIOS services instead of directly accessing the hardware. MS-DOS 

(PC  DOS), which was the dominant PC operating system from the early 1980s until the mid 

1990s, relied on BIOS services for disk, keyboard, and text display functions. MS Windows 

NT, Linux, and other protected mode operating systems in general ignore the abstraction layer 

provided by the BIOS and do not use it after loading, instead accessing the hardware 

components directly. 

Every BIOS  implementation  is  specifically  designed  to  work  with  a  particular  computer  

or motherboard model, by interfacing with various devices that make up the complementary 

system chipset. Originally, BIOS firmware was stored in a ROM chip on the PC motherboard; 

in modern computer systems, the BIOS contents are stored on flash memory so it can be 

rewritten without removing the chip from the motherboard. This allows easy updates to the 

BIOS firmware so new features can be added or bugs can be fixed, but it also creates a 

possibility for the computer to become infected with BIOS rootkits. 

Unified Extensible Firmware Interface (UEFI) was designed as a successor to BIOS, aiming to 

address its technical shortcomings. As of 2014, new PC hardware predominantly ships with 

UEFI firmware. 

 



 

3.7 EXPANSION BUSES 
 
An expansion card in computing is a printed circuit board that can be inserted into an 
expansion slot of a computer motherboard or backplane to add functionality to a computer 
system via the expansion bus. Expansions cards can be used to obtain or expand on features 
not offered by the motherboard. Computer data storage, often called storage or memory, refers 
to computer components and recording media that retain digital data. Data storage is a core 
function and fundamental component of computers. The price of solid-state drives (SSD), 
which store data on flash memory, has dropped a lot in recent years, making them a better 
choice than ever to add to a computer to make booting up and accessing files faster. 

3.8 PARALLEL PORT 
 

Figure 3.3: Parallel Port Pin Diagram 

A parallel port is a type of interface found on computers (personal and otherwise) for 

connecting peripherals. Incomputing, a parallel port is a parallel communication physical 

interface.  It  is  also  known  as  a printer  port orCentronics  port.  It  was  an  industry de  

facto standard for many years, and was finally standardized as IEEE 1284 in the late 1990s, 

which defined the Enhanced Parallel Port (EPP) and Extended Capability Port (ECP) bi- 

directional versions. Today, the parallel port interface is seeing decreasing use because of the 

rise of Universal Serial Bus (USB) devices, along with network printing using Ethernet. 

The parallel port interface was originally known as the Parallel Printer Adapter on IBM PC- 

compatible computers. It was primarily designed to  operate  a line  printer that  used IBM's  8- 

bit extended ASCII character set to print text, but could also be used to adapt other peripherals. 

Graphical printers, along with a host of other devices, have been designed to communicate with 

the system. Most PC-compatible systems in the 1980s and 1990s had one to three ports, with 

communication interfaces defined like this: 

Logical parallel port 1: I/O port 0x3BC, IRQ 7 (usually in monochrome graphics adapters) 
Logical parallel port 2: I/O port 0x378, IRQ 7 (dedicated IO cards or using a controller built into 

the mainboard) 



Logical parallel port 3: I/O port 0x278, IRQ 5 (dedicated IO cards or using a controller built into 

the mainboard) 

If no printer port is present at 0x3BC, the second port in the row (0x378) becomes logical 

parallel port 1 and 0x278 becomes logical parallel port 2 for the BIOS. Sometimes, printer ports 

are jumpered to share an interrupt despite having their own IO addresses (i.e. only one can be 

used interrupt-driven at a time). In some cases, the BIOS supports a fourth printer port as well, 

but the base address for it differs significantly between vendors. Since the reserved entry for a 

fourth logical printer port in the BIOS Data Area (BDA) is shared with other uses on PS/2 

machines and with S3 compatible graphics cards, it typically requires special drivers in most 

environments. Under DR-DOS 7.02 the BIOS port assignments can be changed and overridden 

using the LPT1, LPT2, LPT3 (and optionally LPT4)CONFIG.SYS directives. 

 
 
3.9 Features of ISA & PCI Buses: 
 
ISA is still a commonplace technology in embedded systems, despite being an obsolete 
expansion bus technology in the sphere of personal computing. Due to the long lifetimes of 
embedded systems and the need to re-use existing system peripherals, it is often attractive for 
system designers to retain ISA compatibility in their system, despite the availability of newer 
and more advanced expansion bus technology. The purpose of this document is to highlight any 
limitations in implementing an ISA expansion bus on a modern Intel® Express Chipset that a 
system designer may face. 

ISA Bridge Support and Limitations This chapter summarizes the two methods available to 
system designers for implementing an ISA bus in their design. It also describes the limitations 
that system designers will face in the implementation of each method. In both cases, system 
designers should work with the ISA bridge vendor to fully understand the impact on their design. 
A list of vendors who provide bridges for each method is also provided. These lists are provided 
as a reference only and do not constitute a guarantee of operability with the Intel® Express 
Chipsets. 

 

 
3.10 PCI/ISA Bridge 
 
PCI to ISA bridge is the most common method of interfacing ISA devices to modern chipsets. In 
most respects, these devices perform like a standard PCI device. As such, it is a relatively simple 
for system designers to use such a bridge in their design. However, there are limitations in the 
PCI interface of Intel® Express chipsets that could limit the usefulness of a PCI to ISA bridge in 
the system’s application. System designers should be aware of these limitations before 
proceeding with their design. 



11 
 

 

ISA DMA ISA DMA or Bus Master transactions are not supported through the standard PCI 
Bus Master functionality. Instead, PCI/ISA bridges will implement the PC/PCI DMA and/or 
Distributed DMA specification to fulfill these transactions. As a result, it is necessary for the 
PCI controller to implement support for at least one of these specifications to facilitate ISA 
DMA or Bus Master support. 

Distributed DMA Distributed DMA is not supported in any of Intel’s I/O Controller Hub 
variants. 

3.11 PC/PCI DMA 
 
The PC/PCI DMA protocol is supported on all I/O Controller Hubs from ICH to ICH5 
(excluding 6300ESB). These parts have dedicated Request and Grant signals – REQ[A:B] and 
GNT[A:B] – to implement the hardware aspect of the protocol. From ICH6 onwards these 
signals have been removed and, therefore, these devices no longer support the PC/PCI 
protocol. As a result, it is no longer possible to support ISA DMA or Bus Master transactions 
using a PCI/ISA bridge. A system designer should be aware of this limitation before using 
such a bridge. 
 
If a system designer does not require ISA DMA or Bus Master functionality then it may still be 
possible to use the PCI/ISA bridge without the presence of the PC/PCI Request and Grant signals. It is 
recommended that a system designer works with the bridge vendor to understand if this approach is 
fea 
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Computer Based Medical Instrumentaion – SBMA7006 



COMPUTERISED DATA ACQUISITION 

Overview of GPIB – System and Implementation, commands – primary command, secondary 
commands, evice specific commands, expanding GPIB, Sharing GPIB,SCPI- Generalized 
Instrument Model. 

4.1 overview of GPIB 

The GPIB refers to general purpose interface bus. It is one of the standard interfaces available in 
many standalone, general purpose, high performance instruments for data acquisition and control, 
employing PC. In 1965, Hewlett-Packard designed the Hewlett-Packard  Interface Bus   ( HP-IB ) 
to connect their line of programmable instruments to their computers. Because of its high transfer 
rates (nominally 1 Mbytes/s), this interface bus quickly gained popularity. It was later accepted as 
IEEE Standard 488-1975, and has evolved to ANSI/IEEE Standard 488.1-1987. Today, the name 
G eneral Purpose Interface Bus (GPIB) is more widely used than HP-IB. ANSI/IEEE 488.2-1987 
strengthened the original standard by defining precisely how controllers and instruments 
communicate. Standard Commands for Programmable Instruments (SCPI ) took the command 
structures defined in IEEE 488.2 and created a single, comprehensive programming command set 
that is used with any SCPI instrument. The below figure shows the minimum requirement of a 
GPIB system and minimal system configuration respectively. 
 

Figure 4.1 : GPIB Architecture 

GPIB devices communicate with other GPIB devices by sending device-dependent messages and 
interface  messages  through  the  interface   system.   Device-dependent messages,   often  called 
data or data messages, contain device-specific information, such as programming instructions, 
measurement results, machine status, and data files. Interface messages manage the 

bus. Usually called commands or command messages, interface messages perform such functions 
as initializing the bus, addressing and unaddressing devices, and setting device modes for remote 
or local programming.  

 
  



The term "command" as used here should not be confused with some device instructions that are 
also called commands. Such device-specific commands are actually data messages as far as the 
GPIB interface system itself is concerned. 

 
GPIB Devices can be Talkers, Listeners, and/or Controllers. A Talker sends data messages to one 
or more Listeners, which receive the data. The Controller manages the flow of information on 
the GPIB by sending commands to all devices. A digital voltmeter, for example, is a Talker and is 
also a Listener. The figure shows the general view of GPIB interface, outline of the GPIB 
interface functions. 
 

Figure 4.2 : GPIB Interface 

 
The GPIB is like an ordinary computer bus, except that a computer has its circuit cards 
interconnected via a backplane - the GPIB has stand-alone devices interconnected by standard 
cables. The role of the GPIB Controller is comparable to the role of a computer CPU, but a better 
analogy is to compare the Controller to the switching center of a city telephone system.The 
switching center (Controller) monitors the communications network (GPIB). When the center 
(Controller) notices that a party (device) wants to make a call (send a data message), it connects 
the caller (Talker) to the receiver (Listener).The Controller usually addresses (or enables) a Talker 
and a Listener before the Talker can send its message to the Listener. After the message is 
transmitted, the Controller may address other Talkers and Listeners. 
 



 
Figure 4.3 : GPIB device function 

 

Some GPIB configurations do not require a Controller. For example, a device that is always a 
Talker, called a talk-only device, is connected to one or more listen-only devices. A Controller is 
necessary when the active or addressed Talker or Listener must be changed. The Controller 
function is usually handled by a computer. A computer with the appropriate hardware and 
software could perform the roles of Talker/Listener and Controller. 

 
Data Lines 

 
The eight data lines, DIO1 through DIO8, carry both data and command messages. The state of 
the Attention (ATN) line determines whether the information is data or commands. All 
commands and most data use the 7-bit ASCII or ISO code set, in which case the eighth bit, 
DIO8, is either unused or used for parity. 

 
Handshake Lines 

 
Three lines asynchronously control the transfer of message bytes between devices. The process 
is called a 3-wire interlocked handshake. It guarantees that message bytes on the data lines are 
sent and received without transmission error. 

 
NRFD (not ready for data) - Indicates when a device is ready or not ready to receive a message 
byte. The line is driven by all devices when receiving commands, by Listeners when receiving 
data messages, and by the Talker when enabling the HS488 protocol. 

 
NDAC (not data accepted) - Indicates when a device has or has not accepted a message byte. 
The line is driven by all devices when receiving commands, and by Listeners when receiving 
data messages. 



DAV (data valid) - Tells when the signals on the data lines are stable (valid) and can be accepted 
safely by devices. The Controller drives DAV when sending commands, and the Talker drives 
DAV when sending data messages. 

 
The standard IEEE 488.1 3-wire handshake (shown in Figure 9) requires the Listener to unassert 
Not Ready for Data (NRFD), the Talker to assert the Data Valid (DAV) signal to indicate to the 
Listener that a data byte is available, and for the Listener to unassert the Not Data Accepted 
(NDAC) signal when it has accepted that byte. A byte cannot transfer in less than the time it 
takes for the following events to occur: 

 
 NRFD to propagate to the Talker, 
 DAV signal to propagate to all Listeners, 
 the Listeners to accept the byte and assert NDAC, 
 the NDAC signal to propagate back to the Talker, and 
 the Talker to allow a settling time (T1) before asserting DAV again. 

 

Figure 4.4 : GPIB Timing Diagram 

 
Interface Management Lines 
 
Five lines manage the flow of information across the interface: 
 

 ATN (attention) - The Controller drives ATN true when it uses the data lines to send 
commands, and drives ATN false when a Talker can send data messages. 

 IFC (interface clear) - The System Controller drives the IFC line to initialize the bus 
and become CIC. 

 REN (remote enable) - The System Controller drives the REN line, which is used to 
place devices in remote or local program mode. 

 SRQ (service request) - Any device can drive the SRQ line to asynchronously request 
service from the Controller. 

 EOI (end or identify) - The EOI line has two purposes - The Talker uses the EOI line to 
mark the end of a message string, and the Controller uses the EOI line to tell devices 
to identify their response in a parallel poll. 

 
To achieve the high data transfer rate for which the GPIB was designed, the physical distance 
between devices and the number of devices on the bus are limited. 

 
The following restrictions are typical for normal operation: 



ACQuire:MODe 

DCPSUPPLY 

CONFigure 

A maximum separation of 4 m between any two devices and an average separation of 2 m over 
the entire bus. A maximum total cable length of 20 m. No more than 15 device loads connected 
to each bus, with no less than two-thirds powered on For higher speed systems using the 3-wire 
IEEE 488.1 handshake (T1 delay = 350 ns), and HS488 systems, the following restrictions 
apply. A maximum total cable length of 15 m with a device load per 1 m cable. All devices 
should be powered on. All devices should use 48 mA three-state drivers. Device capacitance on 
each GPIB signal should be less than 50 pF per device. 

 

4.2 COMMANDS 
 

SCPI  became  defined  with  the IEEE  488.2 specification. The  standard   specifies   a  

common syntax, command structure,  and data  formats,  to  be  used  with  all  instruments.  

It 
introduced generic commands (such as and  MEASure ) that could be used with any 

instrument. These commands are grouped into subsystems. SCPI also defines several classes of 

instruments. For example, any controllable power supply would implement the 
same base functionality class. Instrument classes specify which subsystems they 

implement, as well as any instrument-specific features. 

The physical communications link is not defined by SCPI. While originally created for IEEE- 

488 (GPIB), it can also be used with RS-232, Ethernet, USB, VXIbus,HiSLIP, etc. 

SCPI commands are ASCII textual strings, which are sent to the instrument over the physical 
layer (e.g., IEEE-488). Commands are a series of one or more keywords, many of which take 
parameters. In the specification, keywords are written CONFigure : The entire keyword can be 

used, or it can be abbreviated to just the uppercase portion. Responses to query commands are 

typically ASCII strings. However, for bulk data, binary formats can be used. 

Command syntax 
 

SCPI commands to an instrument may either perform a set operation (e.g. switching a power 

supply on) or a query operation (e.g. reading a voltage). Queries are issued to an instrument by 

appending a question-mark to the end of a command. Some commands can be used for both 

setting and querying an instrument. For example, the data-acquisition mode of an 

instrument 
could   be   set   by using  the command   or   it   could   be   queried   by using 
the 

Fo

r 

command. Some commands can both set and query an instrument at once. 

command runs a self-calibration routine on some equipment, and then 

returns the results of the calibration. 

Similar commands are grouped into a hierarchy or "tree" structure. For example, any instruction 
to read a measurement from an instrument will begin with " MEASure ". Specific sub-
commands within the hierarchy are nested with a colon ( : ) character. For example, the 
command to 

ACQuire:MODe?  

example, the *CAL? 

 



“ SYST:COMM:SER:BAUD 2400 ”. 

"Measure a DC voltage" would take the form 

"Measure an AC current" would take the form 

Arguments 

, and the command to 

. 

Some commands require an additional argument. Arguments are given after the command, and 

are separated by a space. For example, the command to set the trigger mode of an instrument to 

"normal" may be given as " TRIGger:MODe NORMal ". Here, the word " NORMal " is used as 

the argument to the " TRIGger:MODe " command. The below figure shows the GPIB 

commands and its address code. 

Table 4.1 GPIB commands 
 

Concatenating commands 
Multiple commands can be issued to an instrument in a single string. Each command must be 

separated by a semicolon character ( ; ). Additionally, all commands except the first must be 

prefixed by a colon (unless they already begin with an asterisk). For example, the command to 

"Measure a DC voltage then measure an AC current" would be issued 
 
 

Abbreviating commands 
 

The command syntax shows some characters in a mixture of upper and lower case. Abbreviating 

the command to only sending the upper case has the same meaning as sending the upper and 

lower case command. 

For example, the command “ SYSTem:COMMunicate:SERial:BAUD 2400 ” would set an RS- 

232 serial communications interface to 2400 bit/s. This could also alternatively be 

abbreviated 
The query command 

as MEASure:VOLTage:DC?;:MEASure:CURRent:AC? . 

MEASure:CURRent:AC? 

MEASure:VOLTage:DC? 



“ SYSTem:COMMunicate:SERial:BAUD? ” or “ SYST:COMM:SER:BAUD? ” would instruct 

the instrument to report its current baud rate.. The below figure shows that summary of GPIB 

address group. 

 

Figure 4.5 : GPIB Commands 

The figure shows the Example of code transfer with a secondary address 
 

Figure 4.6 : GPIB Commands Examples 

 

 
PROGRAMMING 

 
The transmission of ASCII characters from talkers to listeners via the GPIB. In practice the 
situation is more complicated, Because some characters sent down the bus are not the ASCII 
code. The below figure shows the different types of eight bit characters that can be sent on the 
GPIB. The type of character sent depends on the voltage condition on the ATN line. 



 
Figure 4.7 : GPIB communication 

 
 

4.3 EXPANDING GPIB 
 

Five lines manage the flow of information across the interface: 
 

 ATN (attention) - The Controller drives ATN true when it uses the data lines to send 
commands, and drives ATN false when a Talker can send data messages. 

 IFC (interface clear) - The System Controller drives the IFC line to initialize the bus and 
become CIC. 

 REN (remote enable) - The System Controller drives the REN line, which is used to place 
devices in remote or local program mode. 

 SRQ (service request) - Any device can drive the SRQ line to asynchronously request 
service from the Controller. 

 EOI (end or identify) - The EOI line has two purposes - The Talker uses the EOI line to 
mark the end of a message string, and the Controller uses the EOI line to tell devices to 
identify their response in a parallel poll. 

 
Devices are usually connected with a shielded 24-conductor cable with both a plug and 
receptacle connector at each end You can link devices in either a linear configuration a star 
configuration or a combination of the two. 



 
 

 

Figure 4.8 : Sharing devices 

4.4 SCPI 
 

The SCPI and IEEE 488.2 standards addressed the limitations and ambiguities of the original 
IEEE 488 standard. IEEE 488.2 makes it possible to design more compatible and productive test 
systems. SCPIsimplifies the programming task by defining a single comprehensive command 
set for programmable instrumentation, regardless of type or manufacturer. The scope of each of 
the IEEE 488, IEEE 488.2, and SCPI standards is shown in Figure 



 
 

Figure 4.9 : SPCI 
 

The ANSI/IEEE Standard 488-1975, now called IEEE 488.1, greatly simplified the 
interconnection of programmable instrumentation by clearly defining mechanical, electrical, and 
hardware protocol specifications. For the first time, instruments from different manufacturers 
were interconnected by a standard cable. Although this standard went a long way towards 
improving the productivity of test engineers, the standard did have a number of shortcomings. 
Specifically, IEEE 488.1 did not address data formats, status reporting, message exchange 
protocol, common configuration commands, or device-specific commands. As a result, each 
manufacturer implemented these items differently, leaving the test system developer with a 
formidable task. 

 

Figure 4.10 : SPCI instrument Model 

 
IEEE 488.2 enhanced and strengthened IEEE 488.1 by standardizing data formats, status 
reporting, error handling, Controller functionality, and common commands to which all 
instruments must respond in a defined manner. By standardizing these issues, IEEE 488.2 
systems are much more compatible and reliable. The IEEE 488.2 standard focuses mainly on the 
software protocol issues and thus maintains compatibility with the hardware-oriented IEEE 
488.1 standard. 

 
SCPI built on the IEEE 488.2 standard and defined device-specific commands that standardize 
programming instruments. SCPI systems are much easier to program and maintain. In many 
cases, you can interchange or upgrade instruments without having to change the test program. 
The combination of SCPI and IEEE 488.2 offers significant productivity gains, and finally, 
delivers as sound a software standard as IEEE 488.1 did a hardware standard. 
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IEEE 488.2 
 

IEEE 488.2-1987 encouraged a new level of growth and acceptance of the IEEE 488 bus or 
GPIB by addressing problems that had arisen from the original IEEE 488 standard. IEEE 488.2 
was drafted on the premise that it stay compatible with the existing IEEE 488.1 standard. The 
overriding concept used in the IEEE 488.2 specification for the communication between 
Controllers and instruments is that of "precise talking" and "forgiving listening." In other words, 
IEEE 488.2 exactly defined how both IEEE 488.2 Controllers and IEEE 488.2 instruments talk 
so that a completely IEEE 488.2-compatible system can be highly reliable and efficient. The 
standard also required that IEEE 488.2 devices be able to work with existing IEEE 488.1 devices 
by accepting a wide range of commands and data formats as a Listener. You obtain the true 
benefits of IEEE 488.2 when you have a completely IEEE 488.2-compatible system. 

On April 23, 1990, a group of instrument manufacturers announced the SCPI specification, 
which defines a common command set for programming instruments. Before SCPI, each 
instrument manufacturer developed its own command sets for its programmable instruments. 
This lack of standardization forced test system developers to learn a number of different 
command sets and instrument-specific parameters for the various instruments used in an 
application, leading to programming complexities and resulting in unpredictable schedule delays 
and development costs. By defining a standard programming command set, SCPI decreases 
development time and increases the readability of test programs and the ability to interchange 
instruments. 

 
SCPI is a complete, yet extendable, standard that unifies the software programming commands 
for instruments. The first version of the standard was released in mid-1990. Today, the SCPI 
Consortium continues to add commands and functionality to the SCPI standard. SCPI has its  
own set of required common commands in addition to the mandatory IEEE 488.2 common 
commands and queries. Although IEEE 488.2 is used as its basis, SCPI defines programming 
commands that you can use with any type of hardware or communication link. 

 
SCPI specifies standard rules for abbreviating command keywords and uses the IEEE 488.2 
message exchange protocol rules to format commands and parameters. You may use command 
keywords in their long form (MEASure) or their short form shown in capital letters (MEAS). 

 
SCPI offers numerous advantages to the test engineer. One of these is that SCPI provides a 
comprehensive set of programming functions covering all the major functions of an instrument. 
This standard command set ensures a higher degree of instrument interchangeability and 
minimizes the effort involved in designing new test systems. The SCPI command set is 
hierarchical, so adding commands for more specific or newer functionality is easily 
accommodated. 
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DATA ACQUISTION USING SERIAL INTERFACE 

Serial Communication–Features and Formats, Interface standard–RS232,RS-422,RS-
485,PC,serial port UART, Micro controller serial interface–USB System and USB Transfer.. 

5.1 SERIAL COMMUNICATION 
 
In serial communication, data bytes from a transmitting system are converted to a stream of bits 
and transferred to receiving system one bit at a time. The receiving system collects the bits and 
reassembles them back into original data bytes. In data parallel communication, all bits of a byte 
are transferred at the same instant. This makes parallel communication faster than serial 
communication. However, parallel communication cannot be used in all Serial applications. 
communication is preferred in many applications, particularly when Over transferring data long 
distances, since it has the following advantages. 
 
Features of serial communication  
 
a) In parallel communication, since all bits of a data byte are transferred at the same instant, 
separate wires are used to carry each bit. Hence parallel communication cables use many wires. 
Serial communication cables use only limited number of Wires, usually four: two for 
transmission and two for reception.  
 
b) Parallel communication cannot use long cables. When signals are carried over long stances 
using cables, electromagnetic interference creates problems at higher data ister rates. Each wire 
in the communication cable acts as antenna and captures lot O1Se from environment. It corrupts 
the data being transferred. Since serial  Lunication uses only limited wires, it can use long wires. 
The signals can be Orected from electromagnetic interference by shielding the wires. 
 
(c) Another problem with parallel communication is that though all bits of a data are transmitted 
at the same instant by transmitter, the bits do not reach the Toe  the same instant. Hence the 
receiver should wait till all bits to arrive in. It o causes  delay in communication.  

 
(d) Parallel communication is not always faster than serial communication. Serial  
communication today transfers data at faster rate than parallel communication Hence serial 
communication gains more and more importance today. For example  traditional data transfer 
between hard disk and PC via IDE interface is in parall  form at the speed of 133 MB/s. It is 
being replaced by serial interface known as Serial  ATA (SATA) interface, which can transfer at 
the speed up to 150 MB/s. Similarly, PCI  bus is being transformed into serial bus called PCI 
Express. SCSI bus is also being  transformed into serial form 
 
A popular way to transfer commands and data between a personal computer and a 
microcontroller is the use of standard interface, like the one described by protocols RS232 (olde 
R) or USB (newer). This chapter is devoted to communication conforming to RS232 protocol, th 
e hardware for such interface is provided on board. An example will be presented showing the pr 
ocessing of commands received through RS232 interface, and sending of a string of numbers usi 
ng the same interface. 
 



The protocol RS232 defines the signals used in communication, and the hardware to transfer 
signals between devices. The time diagram of the typical signal used to transfer character ‘A’ (A 
SCII: 6510 or 0x41) from device A to device B is given in Fig. 1, and would appear on the upper 
line TX ‐> RX between devices. 
 

Figure 5.1 Serial Communication Architecture 
 
In serial communication, data is in the form of binary pulses. In other words, we can say 
Binary One represents a logic HIGH or 5 Volts, and zero represents a logic LOW or 0 
Volts. Serial communication can take many forms depending on the type of transmission 
mode and data transfer. The transmission modes are classified as Simplex, Half Duplex, 
and Full Duplex. There will be a source (also known as a sender) and destination (also 
called a receiver) for each transmission mode. 
 

 
Figure 5.2 : serial communication transmission modes 

 
The Simplex method is a one-way communication technique. Only one client (either the 
sender or receiver is active at a time). If a sender transmits, the receiver can only accept. 
Radio and Television transmission are the examples of simplex mode. 

In Half Duplex mode, both sender and receiver are active but not at a time, i.e. if a 
sender transmits, the receiver can accept but cannot send and vice versa. A good example 
is an internet. If a client (laptop) sends a request for a web page, the web server processes 
the application and sends back the information. 



The Full Duplex mode is widely used communication in the world. Here both sender and 
receiver can transmit and receive at the same time. An example is your smartphone. 
Beyond the transmission modes, we have to consider the endianness and protocol design 
of the host computer (sender or receiver). Endianness is the way of storing the data at a 
particular memory address. Depending on the data alignment endian is classified as 
 Little Endian and 
 Big Endian. 

Take this example to understand the concept of endianness. Suppose, we have a 32-bit 
hexadecimal data ABCD87E2. How is this data stored in memory? To have a clear idea, 
I have explained the difference between Little Endian and Big Endian. 
 

 

Figure 5.3 Little and Big Indian 

Data transfer can happen in two ways. They are serial communication and parallel 
communication. Serial communication is a technique used to send data bit by bit using a 
two-wires i.e. transmitter (sender) and receiver. 

For example, I want to send an 8-bit binary data 11001110 from the transmitter to the 
receiver. But, which bit goes out first? Most Significant Bit – MSB (7 th bit) or Least 
Significant Bit- LSB (0th Bit). We cannot say. Here I am considering LSB is moving first 
(for little Endian). 
 



 

Figure 5.4 Serial Communication Example 

From the above diagram, for every clock pulse; the transmitter sends a single bit of data 
to the receiver. 

Parallel communication moves 8,16, or 32 bits of data at a time. Printers and Xerox 
machines use parallel communication for faster data transfer. 

 

Figure 5.5 Parallel Communication  

 

  



Difference between Serial and Parallel communication 

Serial communication sends only one bit at a time. so, these require fewer I/O (input-
output) lines. Hence, occupying less space and more resistant to cross-talk. The main 
advantage of serial communication is, the cost of the entire embedded system becomes 
cheap and transmits the information over a long distance. Serial transfer is used in DCE 
(Data communication Equipment) devices like a modem. 
 

In parallel communication, a chunk of data (8,16 or 32 bit) is sent at a time. So, each bit 
of data requires a separate physical I/O line. The advantage of parallel communication is 
it is fast but its drawback is it use more number of I/O (input-output) lines. Parallel 
transfer is used in PC (personal computer) for interconnecting CPU (central processing 
unit), RAM (random access memory), modems, audio, video and network hardware. 

For easy understanding, here is the comparison of serial and parallel communication. 

Serial Communication Parallel Communication 

Sends data bit by bit at one clock pulse Transfers a chunk of data at a time 

Requires one wire to transmit the data Requires ‘n’ number of lines for transmitting ‘n’ bits 

Communication speed is slow Communication speed is fast 

Installation cost is low Installation cost is high 

Preferred for long distance communication Used for short distance communication 

Example: Computer to Computer Computer to multi function printer 

 

Clock Synchronization 

For efficient working of serial devices, the clock is the primary source. Malfunction of 
the clock may lead to unexpected results. The clock signal is different for each serial 
device, and it is categorized as synchronous protocol and asynchronous protocol. 

Synchronous serial interface 
All the devices on Synchronous serial interface use the single CPU bus to share both 
clock and data. Due to this fact, data transfer is faster. The advantage is there will be no 
mismatch in baud rate. Moreover, fewer I/O (input-output) lines are required to interface 
components. Examples are I2C, SPI etc. 
  



Asynchronous serial interface 
The asynchronous interface does not have an external clock signal, and it relies on four 
parameters namely 
 

1. Baud rate control 
2. Data flow control 
3. Transmission and reception control 
4. Error control. 

Asynchronous protocols are suitable for stable communication. These are used for long 
distance applications. Examples of asynchronous protocols are RS-232, RS-422, and RS-
485. 
 

Asynchronous Serial Protocols 
The most common question that will come to mind when you start working on 
the embedded system is why to use Asynchronous protocols? 
 To move around the information at a longer distance and 
 For more reliable data transfer. 

Some of the asynchronous communication protocols are: 

 

RS-232 protocol 

 RS232 is the first serial protocol used for connecting modems for telephony. RS 
stands for Recommended Standard, and now it has changed to EIA (Electronic 
Industries Alliance ) / TIA ( Telecommunication Industry Association). 

 It is also used in modem, mouse, and CNC (computed numerical computing) 
machines. You can connect only a single transmitter to a single receiver. 

 It supports full duplex communication and allows baud rate up to 1Mbps. 
 Cable length is limited to 50 feet. 

As you know, the data stored in the memory are in the form of bytes. You may have a 
doubt How is the byte-wise data converted to binary bits? The answer is a Serial port. 

The serial port has an internal chip called UART. UART is an acronym for Universal 
Asynchronous Receiver Transmitter which converts the parallel data (byte) into the 
bitwise serial form. 
 



 

Figure 5.6 RS232 Serial Port 

RS-232 Wiring Connection 
The RS232 serial port has nine pins, male or female type models. RS 232C serial 
communication interface is the later version of RS232. 
All the features present in RS232 is present in the RS232C model except it has 25 pins. 
Out of 25 or 9 pins, we use only three pins for the connection of terminal devices. 

 

Figure 5.7 RS232 Wiring  

RS422 Interface 

We can transfer data only up to 1Mpbs limit using RS232. To overcome this problem 
RS422 comes into the picture. RS422 is a multi-drop serial interface. we can connect ten 
transmitters to 10 receivers at a time using the single bus. It sends data using two twisted 
pair cables ( differential configuration). Cable length is 4000 feet with a baud rate of 
10Mbps. 
 



 

Figure 5.8 RS422 Wiring 

RS485 Interface 

RS485 is the industry preferred protocol. Unlike RS422, you can connect 32 line drivers 
and 32 receivers in a differential configuration. The transmitter is also called Line driver. 
However, only one transmitter is active at a time. 
 

 

Figure 5.9 RS485 Wiring 

  



5.2 PC SERIAL PORT 
 

Figure 5.10 PC serial port 
The standard defines voltage levels V(0) to be at least +5V at the transmitting end of the line TX, 
and can be degraded along the line to become at least +3V at the receiving and of the line. Simila 
rly voltage level V(1) must be at least ‐5V at TX, and at least ‐3V at RX. The standard also defin 
ed the upper limit for these voltages to be up to ±15V. Logic high is transferred as V(0). The mic 
rocontroller cannot handle such voltage levels, so typically a voltage  level  translator  is  
inserted between the microcontroller and the connector where the RS232 signals are available. T 
he connectors are typically so‐called D9 connectors, and the electric wiring in between two conn 
ectors at devices A and B is shown in Fig. 2, for two female type connectors at both devices. 
 
To verify the validity of the transmission the protocol RS232 provides a so called “parity bit”. A 
single bit is added by the transmitter before the stop bit, and its value is selected to give either od 
d or even number of ones in a string. The number of ones in a string can be verified at the receivi 
ng end, and if it does not match the required value, the transmission should be repeated. Other, hi 
gher level protocols to ensure the valid transmission, can be implemented in software. The 
protocol 
 
RS232 also accounts for testing if the receiver is capable of receiving incoming bytes and defines 
two additional wires called RTS (Request To Send) and CTS (Clear To Send) between devices. 
We will not use either of these options in our experiments. 

 

To verify the validity of the transmission the protocol RS232 provides a so called “parity bit”. 
A single bit is added by the transmitter before the stop bit, and its value is selected to give either 
od d or even number of ones in a string. The number of ones in a string can be verified at the 
receivi ng end, and if it does not match the required value, the transmission should be repeated. 
Other, hi gher level protocols to ensure the valid transmission, can be implemented in software. 
The protocol RS232 also accounts for testing if the receiver is capable of receiving incoming 
bytes an d defines two additional wires called RTS (Request To Send) and CTS (Clear To 
Send) between devices. We will not use either of these options in our experiments. 
 
 
  



5.3 INTERFACE STANDARD & MICROCONTROLLER SERIAL INTERFACE: 
 

Figure 5.11 Interface of MAX to microcontroller 

Fig. 1 shows how to interface the UART to microcontroller. To communicate over UART or 
USART, we just need three basic signals which are namely, RXD (receive), TXD (transmit), 
GND (common ground). So to interface UART with 8051, we just need the basic signals. Fig. 1 
shows how to interface the UART to microcontroller. To communicate over UART or USART, 
we just need three basic signals which are namely, RXD (receive), TXD (transmit), GND 
(common ground). So to interface UART with 8051, we just need the basic signals. 

 
 
Logic thresholds are dictated by the process and design implemented on each product. On some 
products, SPI inputs are 5 V or 3.3 V tolerant. However, other products may only accept 
smaller voltages (for example, 1.8 V). In this case, it might be necessary to incorporate a 
voltage level translator to adapt the levels from the microcontroller to levels acceptable to the 
inputs of the DUT. It is recommended that the customer uses the ADG3304 which is a four-
channel bidirectional level translator. The translator can be customized to perform bidirectional 
logic level translation without an additional signal to set the direction in which the translation 
takes place. For instance, if the microcontroller is operating at 5 V supply and the SPI port 
is 1.8 V 
 

tolerant, the ADG3304 can be set so that it translates the SCLK, SDI, and CSB signals from 5 
V to 1.8 V. The ADG3304 is an easy-to-use solution that requires very few external 
components. Moreover, the user can disable the outputs from the translator at any time by 
pulling Pin 8 (EN) low. Figure 5 shows the implementation of the SPI boot circuit with the 
voltage level translator. 
 
 

 


