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UNIT 1 - INTRODUCTION TO BIOMEDICAL SIGNALS 

1.1 Bioelectric signals 

Living organisms are made up of many component systems: the human body includes several 

systems. Each system is made up of several subsystems that carry on many physiological 

processes. 

Cardiac system: rhythmic pumping of blood throughout the body to facilitate the delivery of 

nutrients, and pumping blood through the pulmonary system for oxygenation of the blood 

itself. 

Physiological processes are complex phenomena, including nervous or hormonal stimulation 

and control; inputs and outputs that could be in the form of physical action that could be 

biochemical material, neurotransmitters, or information; 

Most physiological processes are accompanied by signals of several types that reflect their 

mechanical, electrical, or nature and activities: 

biochemical, in the form of hormones and neurotransmitters, electrical, in the form of 

potential or current, and physical, in the form of pressure or temperature Some examples of 

bioelectric signals are ElectroCardioGram 

ElectroNeuroGram  

ElectroOculoGram  

ElectroEncephaloGram  

ElectroGastroGram 

 

1.1.1 Action potential 

Many cells in the body, and in particular those associated with nerve and muscle fibres, can 

be excited either electrically or chemically. An electrochemical stimulus can induce changes 

in the permeability of the cell membrane to different ions and cause the cell to become active. 

This means that the flow of ions across the cell membrane changes abruptly and hence also 

the volume of charge on each side of the membrane. This is accompanied by a corresponding 

abrupt change in the trans-membrane potential so that the cell becomes depolarised, 

sometimes having a slight change in the potential in the opposite direction to its equilibrium 

state. The cell will eventually repolarise but usually at a slower rate than that at which it 

depolarises. 

Once a cell becomes depolarised, the changes in the conditions surrounding the cell can act as 

a stimulus to adjacent cells and thereby a corresponding activation of these cells takes place 
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also. In nerve and muscle cells the impulse generated by depolarisation of the cells can be 

passed from one cell to the next via axons and synapses, so that the stimulus passes along a 

nerve or muscle fibre as a wave with a repolarisation wave following behind. 

A cell in its resting state is said to be polarized. Most cells maintain a resting potential of the 

order of −60 to −100 mV until some disturbance or stimulus upsets the equilibrium. When a 

cell is excited by ionic currents or an external stimulus, the membrane changes its 

characteristics. It begins to allow Na+ ions to enter the cell.This movement of Na+ ions 

constitutes an ionic current, which further reduces the membrane barrier to Na+ ions. 

K+ ions try to leave the cell as they were in higher concentration inside the cell in the 

preceding resting state, but cannot move as fast as the Na+ ions. Net result is the inside of the 

cell becomes positive 

with respect to the outside due to an imbalance of K+. New state of equilibrium is reached 

after the rush of Na+ ions stops. It represents the beginning of the action potential, with a 

peak value of about +20 mV for most cells. An excited cell displaying an action potential is 

said to be depolarized, this process is called depolarization. 

 

 

            Fig. 1.1 Action Potential 

 

After a certain period of being in the depolarized state the cell becomes polarized again and 

returns to its resting potential via a process known as repolarization. Principal ions involved in 

repolarization are K+. Voltage dependent K+ channels changes membrane permeability for 

K+. K+ concentration is much higher inside the cell: net efflux of K+ from the cell,the inside 

becomes more negative, effecting repolarization back to the resting potential. Nerve and 

muscle cells repolarize rapidly: action potential duration of about 1 ms. Heart muscle cells 

repolarize slowly: action potential duration of 150 − 300 ms 
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1.2 Electro-Neurogram 

The ENG is an electrical signal observed as a stimulus and the associated nerve action 

potential propagate over the length of nerve. ENGs may be recorded using contcentric needle 

electrodes or Ag-AgCl electrodes at the surface of the body. In order to minimize muscle 

contraction strong but short stimulus is applied (100 V amplitude, 100-300 μs). ENGs have 

amplitudes of the order of 10 μV. Conduction velocity in a peripheral nerve measured by 

stimulating a motor nerve and measuring the related activity at two points at known distances 

along its course. 

Stimulus: 100 V , 100 − 300μs. ENG amplitude: 10 μV ; 

Amplifier gain: 2, 000; Bandwidth 10 − 10, 000 Hz. 

 

   Fig. 1.2 Nerve conduction velocity 

Typical nerve conduction velocity: 

45 − 70 m/s in nerve fibers; 

0.2 − 0.4 m/s in heart muscle; 

0.03 − 0.05 m/s in timedelay fibers between the atria and ventricles. Neural diseases may 

cause a decrease in conduction velocity. 

 

 

1.3 Electro-oculogram 

An electrooculogram is a signal that can be used for measuring the resting potential of the 

retina in the eye. The human eye is polarized, with the front of the eye being positive and the 

back of the eye being negative. This is caused by a concentration of negatively charged nerves 

in the retina on the back of the eye. As the eye moves the negative pole moves relative to the 
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face and this change in the dipole potential can be measured on the skin in micro volts. To 

translate this voltage into a position, two sets of electrodes are used to measure the differential 

voltage in the vertical and horizontal direction. 

There are four different types of conjugate eye movements. These eye movements fall into 

two specific categories: 

 

 

 

 

 

 

Fig. 1.3 Structure of eye 

1.4 Eye movements that function to stabilize the position of the eye in space during head 

movements (Reflex eye movements). 

1.5 Eye movements that function to redirect the line of sight to follow a moving target or 

to attend to a new target of interest (Voluntary eye movements). 

The electrical potentials are generated by the permanenet potential difference which 

exists between the the cornea and the ocular fundus (cornea-retinal potential, 10-30mV: the 

cornea being positive). 

This potential difference sets up an electrical field in the tissues surrounding the eye. As the 

eye rotates, the field vector rotates correspondingly. Therefore, eye movements can be 

detected by placing electrodes on the skin in the area of the head around the eyes. Vertical 

movements of the eyes are best measured by placing the electrodes on the lids, while 

horizontal eye movements can be best measured by placing the electrodes on the external 

canthi (the bone on the side of the eye). 
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The underlying assumption of this method of recording eye movements is that the movement of 

the electric field in the conducting tissues surrounding the eye is related, in a simple (usually 

assumed to be linear) way to the movements of the eye itself. Due to the non-uniformity of these 

tissues and the shapes of the tissues surrounding them, this can only be an approximation to the 

biological reality. However, for horizontal eye movements within the range of 30 degrees, the 

potential measured is assumed to be linear to the actual movement of the eye in the orbit. The 

resolution of EOG is considered to be about 1 degree. Because it is a relatively simple technique, 

EOG is still commonly used clinically for testing eye movements in patients. 

For a fixed eye position, the EOG is far from being constant in magnitude, but can be 

influenced by a number of external factors. These factors include 

 

1.5.1 The noise generated between the electrodes' contacts and the skin 

1.5.2 The metabolic state of the tissues (pO2, pCO2, and temperature) 

1.5.3 Visual stimulation 

1.5.4 Contraction of facial muscles 

In addition, recorded EOG, particularly for vertical eye movements, is quite sensitive 

to movements of the eye lids. In summary there are a number of external factors which can 

complicate the interpretation of the EOG, and for that reason EOG is considered highly 

sensitive to artifacts. The considerable artifacts which can be introduced through the contact 

between the electrode contacts and the skin can be minimized by reducing the resistance 

between the electrodes and the skin. 

1.4 Electro-encephalogram 

EEG or brainwaves represent the electricalactivityofthebrain. 

Main parts ofthe brain are :  Zerebrum, 

cerebellum, 

brainstem(midbrain,ponsmedulla, 

reticularformation), 

thalamus 

(betweenthe midbrainandthehemispheres). 
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Fig. 1.4 Structure of Human Brain 

 

Cerebrum is divided into two hemispheres which is separated by a longitudinal fissure with a 

large   connective band of fibers:corpus callosum. Outer surface of the cerebral 

hemispheres(cerebralcortex) compose of neurons(greymatter) in convoluted patterns, 

separated into regions by fissures(sulci). Beneath the cortex lie nerve fibers that lead to other 

parts of the brain and the body (whitematter). Cortical potentials generated due to excitatory 

and inhibitory post-synaptic potentials are developed by cell bodies and dendrites of 

pyramidal neurons. Physiological control processes, thought processes, and external stimuli 

generate signals in the corresponding parts of the brain. 

 

 

            Fig.1.5 10-20 Electrode System 

   Special EEG techniques are: 

Needleelectrodes, 

Naso-pharyngealelectrodes, 

Electrocorticogram(ECoG)fromexposedcortex,  

Intracerebralelectrodes 
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Evocative techniques for recording the EEG are given below: 

Initial recording at rest (eyesopen,eyesclosed), hyperventilation  (after breathing at 20 

respirations per minute for 2–4 minutes), photic stimulation (with 1–50 flashes of light per 

second), auditory stimulation with loud clicks, sleep (different stages),and pharmaceuticals or 

drugs 

EEG rhythms or frequency bands are classified as: 

Delta(δ): 0.5 ≤ f< 4 Hz; Theta(θ): 4 ≤ f< 8 Hz; Alpha(α): 8 ≤ f ≤ 13 Hz;and Beta(β): f> 13 Hz. 

EEG rhythms are associated with physiological and mental processes. Alpha wave represents 

principal resting rhythm of the brain. It is common in wakeful, resting adults, especially in the 

occipital area with bilateral synchrony. Auditory and mental arithmetic tasks with the eyes 

closed lead to strong alpha waves. These are suppressed when the eyes are opened. Alpha 

wave is replaced by slower rhythms at various stages of sleep. Theta waves represents the 

beginning stages of sleep. Delta waves represents deep-sleep stages. High-frequency beta 

waves shows the background activity in tense and anxious subjects. 

Spikes and sharp waves represents epileptogenic regions. 

Fig 6 a) delta rhythm b) theta rhythm c) alpha rhythm d) beta rhythm 

e) blocking of alpha rhythm by eye opening f) 1s time marker and 50µV 

 

1.4.1 Evoked Potential 

Event-related potential is known as evoked potential. It includes the ENG or the EEG in 

response to light, sound, electrical, or other external stimuli.Short-latency ERPs dependent 
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upon the physical characteristics of the stimulus. Longer-latency ERPs are influenced by the 

conditions of presentation of the stimuli. Somato sensory evoked potentials are useful forn on 

invasive evaluation of the nervoussystem from a peripheral receptor to the cerebral cortex. 

Median nerveshort-latency SEPs are obtained by placing stimulating electrodes 2−3 cm apart 

over the median nerve at the wrist with electrical stimulation at 5−10 pps, each stimulus pulse 

less than 0.5 ms,about 100 V (producingavisiblethumbtwitch). SEPs recorded from the 

surface of the scalp. Latency, duration, and amplitude of the response measured. 

 

1.5 Electro-cardiogram 

The cardiovascular system of the human body is essentially one of the heart acting as a 

pump to force blood around the body. The blood acts as a transport system to carry oxygen, 

nutrients and chemical agents to all organs, limbs and tissue in the body as well as to transport 

waste products and toxins to organs for disposal. In fact, the heart actually operates as a 

double pump and the circulatory system consists of two separate circuits as shown in Fig.7. 

The heart has four chambers, the left and right atria on top and the left and right ventricles on 

the bottom. 

Blood is gathered from all parts of the body into the right atrium, from whence it is then 

transferred to the right ventricle. The right ventricle contracts to force blood out to the lungs 

where carbon dioxide is removed from it and fresh oxygen is absorbed. From the lungs the re- 

oxygenated blood travels back to the heart and into the left atrium. This loop is called the 

pulmonary circulation. Blood is then transferred to the right ventricle, which contracts with 

strength to force the blood out under pressure to all limbs and organs in the body. Once 

oxygen and nutrients have been distributed via the blood to nourish all of the cells around the 

body and waste products have been collected and delivered for excretion, the blood returns to 

the right atrium again. The continuous rhythmic pumping of the heart is caused by 

contractions of the muscles within the walls of each chamber which pumps blood from 

chamber to chamber and throughout the circulatory system. These cardiac rhythms are 

controlled by specific mechanisms operating within in the heart that transmit action 

potentials or electrical impulses along nerve fibres to the cells within the muscles in order to 

activate them at the appropriate points in the cardiac cycle. 
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   Fig. 1.7 Human Heart 

Electro-stimulation of the Heart 

Figure shows the main elements of the heart’s electro-conduction system. The sino-atrial (SA) 

node is a group of cells located in the upper right atrium. This node contains special  

 

Fig. 1.8 Electro-conduction system of Heart 

Electro chemically stimulated cells which depolarise and repolarise rhythmically without the 

need for external influence. 

Once the trans-membrane potential in the cell reaches a certain threshold, the cell self-

depolarises giving rise to an associated action potential, and then repolarises more gradually. 

It does this in a continuous and rhythmical manner, thus effectively providing the electrical 

oscillator which repeatedly generates the trigger stimulus to operate the nerve fibres of the 

heart and the muscles of the chambers to maintain a regular heartbeat. When the SA node 

‘fires’, the resulting electrochemical stimulus spreads across the muscles in the walls of the 

right and left atria causing them to contract. Blood is consequently forced out of the atria and 

into the lower ventricles on both sides of the heart. The stimulus moves quickly from the sino-

atrial node towards the atrio-ventricular (AV) node in approximately 30 - 50 ms. In order to 
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allow the atria transfer their contents to the ventricles before the latter contract due to the 

approaching action potential, the AV node operates as a delay unit slowing down the 

transmission of the action potential by a further 110 ms before the stimulus is passed on by 

the AV node. The impulse is then transferred from the AV node towards the ventricles via a 

branch of fibres known as the Bundle of His which splits into left and right bundle branches. 

Once the impulse reaches the left and right bundle branches it travels very quickly via 

the Purkinje Fibres which excite the muscles in the walls of the ventricles from the bottom 

upwards. The impulse can reach the furthest fibres just 60 ms after leaving the AV node. The 

action potential now causes ventricular contraction which forces the blood from the ventricles 

out into the pulmonary and systemic circulations. The excitation of such a large number of 

cells at the same time creates a significant electrical signal and a resulting electric field which 

is emitted outward from the heart to the surface of the body. These emanating electric signals 

can be detected using electrodes placed on the surface of the body i.e. on the subject's chest or 

limbs. The recorded electrical signal detected in this manner is what is known today as the 

Electrocardiogram or ECG signal. 

An idealised human ECG is shown in Fig. 9. It can be seen that there are several 

distinct components which make up the entire signal profile that is measured over a single 

complete cardiac cycle. The main components are identified as the P-wave, The QRS 

complex and the T-wave. Other segments and intervals which have a clinical importance from 

a diagnostic are defined. The amplitude of the QRS complex of a signal measured on a 

subject’s chest is typically between 1 – 5 mV. 

 

Fig.1.9 Ideal ECG Signal 

 

The different components of the ECG correspond to different events occurring in the heart 

over a cardiac cycle. The P wave is associated with the depolarisation of the cells in the 

muscles of the atria which  cause the atria to contract and transfer blood to the ventricles. The 

QRS complex corresponds to the sharp depolarisation of the cells in the numerous and strong 
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muscles of the ventricles. This period is known as ventricular systole. The repolarisation of 

the cells in the atrial muscles is masked by the QRS complex and cannot be observed 

independently. The T-wave corresponds to the repolarisation of the cells in the ventricular 

muscles during their resting phase known as ventricular diastole. The duration, shape and 

rhythm of these components and of the segments between them can provide invaluable insight 

into the state of the heart and the cardiovascular system. Einthoven developed the Leads 

known as the Einthoven triangle comprising Lead I, II and III as indicated which represent 

different pairings of the electrodes, each providing a different aspect of the electrical activity 

in the heart. 

 

Fig. 1.10 Einthovan Triangle 

 

These lead configurations are measured as follows: 

Lead I = LA – RA Lead II = LL – RA Lead III = LL - LA 

By averaging the potential measured at the three main locations and using the resultant as a 

new reference, three additional lead configurations known as Augmented Leads can be 

obtained. 

 

1.6 Electro-gastrogram 

EGG, similar to an electorcardiogram (EKG) of the heart, records the electrical signals that 

travel through the muscles of the stomach controlling the muscles’ contractions. Additionally, 

EGG measures stomach wall nerve activity before and after food ingestion. EGG has existed 

in the past, but was cumbersome, recording only one electrical channel at a time. Therefore 

there was little capability for muscle activity comparison and in order to record electrical 

signals in various parts of the stomach needed to be repeated numerous times. The new EGG 
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system records on four channels simultaneously allowing for complete activity recording in a 

short time frame. 

EGG is a non-invasive test, relatively inexpensive, and easy to perform. Electrodes are placed 

cutaniously on the abdominal skin over the stomach. While the patient is lying down relaxing, 

the electrodes record the electrical activity of the stomach. Initially, the gastric electrical 

activity is recorded after fasting, then again after a small meal is ingested. Sometimes EGG is 

done in conjunction with or after gastric emptying studies to diagnose and manage functional 

dyspepsia and idiopathic gastroparesis. The EGG test lasts approximately one hour. 

EGG is an appropriate diagnostic tool when there is a suspicion that the nerves controlling 

stomach muscles or the stomach muscles themselves are not working normally. EGG can be 

used for a variety of gastrointestinal motility disorders or for patients with no known GI 

disorder who are suffering from unexplained nausea. EGG frequently identifies dysrhythmias, 

especially after meals, in patients with gastroparesis, chronic dyspepsia, anorexia nervosa and 

bulimia, cyclic vomiting syndrome, and other conditions characterized by a delayed gastric 

emptying. 

Gastric myoelectric activity is composed of mainly two complementary rhythms; slow 

wave activity, responsible for muscle contraction timing, and electrical response activity, 

responsible for triggering peristaltic contractions. EGG measures too much activity, 

tachygastria, too little activity, bradygastria, or mixed dysfunction of both too much and too 

little activity. 

Utilizing computer analysis, the power of the stomach muscle electrical current is 

measured. In a normal stomach muscle, the regular electrical rhythm generates an increased 

current after a meal. In persons with stomach muscle or nerve irregularities, the post-meal 

electrical rhythm is irregular or voltage does not increase. 

1.7 Bio-impedance signals 

Bioimpedance is a physiological property related to a tissue’s resistance to electrical current 

flow and its ability to storeelectricalcharge. Ininvivohumanapplications,itis typically measured 

through metallic electrodes (transducers) placed on the skin and around an anatomic location 

of interest (e.g., the wrist). These electrical properties are predominantly a function of the 

underlying tissue being gauged, including the specific tissue types present (blood, adipose, 

muscle, bone, etc.), the anatomic configuration (i.e., bone or muscle orientation and quantity), 

and the state of the tissue (normal or osteoporotic bone, edematous vs. normally hydrated 

tissue, etc). Significant impedance differences exist between the varying tissue types, 

anatomic configurations, and tissue state, each of which may provide a unique mechanism for 
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distinguishing between people. 

         Bioimpedance can be measured by applying a small sinusoidal current between a pair of 

electrodes attached to the skin. The injected current establishes an electrical field within the 

tissue and results in a measurable voltage difference between the two electrodes. Thus, 

potential voltage difference is a function of the underlying tissue impedance. Specifically, the 

alternating current version of Ohm’s law, V = IZ, can be used to relate the voltage V and 

current I to the bioimpedance Z of the tissue sample. Many tissues exhibit dispersive 

characteristics, meaning that their electrical properties are dependent on the frequency at 

which they are measured. Typically, the frequency of the alternating current is swept over a 

specific band and enables so- called electrical impedance spectroscopy.

 As a result, complex bioimpedance, Z(ω), combines resistive and reactive 

components, Z(ω) = R(ω)+ jX(ω), where R is the frequency dependent tissue resistance, X is 

the frequency dependent tissue reactance, ω is the signal frequency, and j represents the 

imaginary quantity√−1. 

Resistance and reactance are dependent on the tissue being measured and the configuration 

and geometry of the impedance-measuring probe (i.e., electrode size and electrode spacing). 

In terms of its dependence on the tissue, resistance is primarily associated with the ability of a 

tissue to carry charge (i.e., current flow through ionic solutions, both intra- and extra-cellular), 

and reactance is associated with the ability of a tissue to store charge (i.e., the capacitive 

nature of a cell’s double membrane). The anatomy of the forearm proximal to the wrist 

include skeletal bones (radius and ulna), arteries, veins, nerves, muscles, adipose, skin, and 

interstitial fluids. Over the frequency range of 10 kHz to 10MHz reported values of bone 

conductivity and adipose conductivity are relatively stable. In muscle, skin, and blood, 

however, the conductivity monotonically increases with frequency. Person-to-person 

differences at the wrist include: size, skin thickness, skin water content, bony anatomy (bone 

sizes), vascular branch size and locations, sub-dermal water content, and 

adipose/muscle/bone/vasculature content within the sensing region. All of these parameters 

will have an impact on the actual impedance measured at the wrist. For example, difference in 

wrist size would represent a change in electrode location and difference in the content, size, 

and distribution of the underlying tissue types would represent a person-specific conductivity. 

1.8 Objectives of biomedical signal analysis 

Information Gathering —measurement of phenomena to interpret a system. 

Diagnosis —detection of malfunction, pathology, or abnormality. 
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Monitoring —obtaining continuous or periodic information about a system. 

Therapyandcontrol —modification of th behavior of a system based upon the outcome 

of the activities listed above to ensure a specific result. 

Evaluation —objective analysis to determine the ability to meet functional 

requirements, obtain proof of performance, perform quality control, or quantify the 

effect of treatment. 

Fig.1.11 Computer-aided diagnosis and therapy based upon biomedical signal analysis 

 

1.9 Difficulties in biomedical signal analysis  

Accessibility of the variables to measurement. Variability of the signal source. 

Inter-relationships and interactions among physiological systems.  

Effects of the instrumentation or procedure on the system. 

Physiological artifacts and interference. Energy limitations. 

Patient safety. 
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Questions: 

1.Explain in detailed about the bioelectric signal which give the functions of 

Heart (ECG)  

2. Discuss about the bioelectric signal which is responsible for the electrical 

activity of Neurons (ENG) 

3. Discuss about the bioelectric signal which is responsible for the electrical 

activity of Brain (EEG)  

4. Explain in detailed about the bioelectric signal which give details of  the 

functions of Eye (EOG) 

5. Discuss about the bioelectric signal which is responsible for the electrical 

activity of Nerves and muscles of the stomach (EGG) 

6. There are some difficulties in analysis of the bio electric signal, Discuss the 

problem in detailed also mention about the term action potential and Evoked 

potential. 
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                     UNIT 2 - REAL TIME TRANSFORMS 

 

2.1 Convolution 

Convolution is a mathematical way of combining two signals to form a third signal. It is the 

single most important technique in Digital Signal Processing. Using the strategy of impulse 

decomposition, systems are described by a signal called the impulse response. Convolution is 

important because it relates the three signals of interest: the input signal, the output signal, and 

the impulse response. 

First, the input signal can be decomposed into a set of impulses, each of which can be viewed as a 

scaled and shifted delta function. Second, the output resulting from each impulse is a scaled and 

shifted version of the impulse response. Third, the overall output  

Fig.2.1. Convolution of two signals 

signal can be found by adding these scaled and shifted impulse responses. In other words, if we 

know a system's impulse response, then we can calculate what the output will be for any possible 

input signal. 
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One dimensional linear discrete convolution is defined as: g(x) = X∞ s=−∞ f(s) h(x − s) = f(x) ∗ 

h(x) 

For example, consider the convolution of the following two functions: 

 

 

 

This convolution can be performed graphically by reflecting and shifting h(x),.The samples of 

f(s) and h(s − x) that line up vertically are multiplied and summed: 

g(0) = f(−1)h(1) + f(0)h(0) = 0 + 1 = 1 

g(1) = f(0)h(1) + f(1)h(0) = 1 + 3 = 4 

g(2) = f(1)h(1) + f(2)h(0) = 3 + −2 = 1 

g(3) = f(2)h(1) + f(3)h(0) = −2 + 1 = −1 

g(4) = f(3)h(1) + f(4)h(0) = 1 + 0 = 1 

 

The result of the convolution is as shown below: 
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Notice that when f(x) is of length 4, and h(x) is of length 2,  

the linear convolution is of length 4 + 2 − 1 = 5. 

 

 

 

Fig. 2.2 Linear Convolution using Graphical method 
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 2.1.1 Circular Convolution 

 

One dimensional circular discrete convolution is defined as: 

g(x) = f(s) h((x − s)  

For M = 4, the convolution can be performed using circular reflection and shifts of h(x).T he 

samples of f(s) and h((s − x) mod M) that line up vertically are multiplied and summed: 

g(0) = f(3)h(1) + f(0)h(0) = 1 + 1 = 2 

g(1) = f(0)h(1) + f(1)h(0) = 1 + 3 = 4 

g(2) = f(1)h(1) + f(2)h(0) = 3 + −2 = 1 

g(3) = f(2)h(1) + f(3)h(0) = −2 + 1 = −1 

The result of the convolution is as shown below 

 

 

 

Notice that f(x) and h(x) are both treated as if they are of length 4, and the circular convolution is 

also of length 4. 
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Fig.2.2 Circular convolution using graphical method 

 

2.2.Correlation 

Correlation is used to compare the similarity of two sets of data. Correlation computes a measure 

of similarity of two input signals as they are shifted by one another. The correlation result reaches 

a maximum at the time when the two signals match best. If the two signals are identical, this 

maximum is reached at t = 0 (no delay). If the two signals have similar shapes but one is delayed 

in time and possibly has noise added to it then correlation is a good method to measure that delay. 

Cross Correlation 

The crosscorrelation between two real signals x and y is given by 
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where the time shift or m is called the lag 

 Autocorrelation 

Autocorrelation refers to the correlation of a time series with its own past and future values. 

Autocorrelation is also sometimes called “lagged correlation” or “serial correlation”, which refers 

to the correlation between members of a series of numbers arranged in time. Positive 

autocorrelation might be considered a specific form of “persistence”, a tendency for a system to 

remain in the same state from one observation to the next 

The autocorrelation of a real signal s is given by 

 

 

2.3. Discrete Fourier Transform 

The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier Transform for 

signals known only at N instants separated by sample Times (i.e. a finite sequence of data) 

Let f(t) be the continuous signal which is the source of the data. Let N samples be denoted as f[0], 

f[1], ………f[N-1] 

The Fourier Transform of the original signal, f(t) is given as: 

Each sample f(k) can be regarded as an impulse having area f[k]. Then, since the integrand exists 

only 
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at the sample points: 

The continuous Fourier transform could be evaluated over a finite interval (usually the 

fundamental period T0) rather than from -∞ to +∞, the waveform 

was periodic ,similarly, since there are only a finite number of input data points, the DFT treats 

the data as if it were periodic (i.e.f(N) to f(2N-1)). 

 

 

Fig. 2.3.a) Sequence of n samples b) Periodicity in DFT 

 

 

Since the operation treats the data as if it were periodic, we evaluate the DFT equation for the 

fundamental frequency and its harmonics. 
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F[n] is the discrete Fourier Transform of f(k) 

Inverse Discrete Fourier Transform 

The Inverse transform is given as 
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2.4. FFT algorithm. 

While the DFT transform above can be applied to any complex valued series, in practice for large 

series it can take considerable time to compute, the time taken being proportional to the square of 

the number on points in the series. A much faster algorithm has been developed by Cooley and 

Tukey around 1965 called the FFT (Fast Fourier Transform). The only requirement of the the 

most popular implementation of this algorithm (Radix-2 Cooley-Tukey) is that the number of 

points in the series be a power of 2. The computing time for the radix-2 FFT is proportional to 

 

 

So for example a transform on 1024 points using the DFT takes about 100 times longer than 

using the FFT, a significant speed increase. Note that in reality comparing speeds of various FFT 

routines is problematic, many of the reported timings have more to do with specific coding 

methods and their relationship to the hardware and operating system. 

Sample transform pairs and relationships 

 

 The Fourier transform is linear, that is a f(t) + b g(t) ---> a F(f) + b G(f) 

a xk + b yk ---> a Xk + b Yk 

 

 Scaling relationship f(t / a) ---> a F(a f) f(a t) ---> F(f / a) / a 

 Shifting 

 

f(t + a) ---> F(f) e
-j
 
2
 
pi

 
a
 
f
 

 

 Modulation 

f(t) e
j
 
2
 
pi

 
a
 
t
 ---> F(t - a) 

 Duality 

Xk ---> (1/N) xN-k 
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Applying the DFT twice results in a scaled, time reversed version of the original series. 

The transform of a constant function is a DC value only. 

 

 

· The transform of a delta function is a constant 

 

 

· The transform of an infinite train of delta functions spaced by T is an infinite train of delta 

functions spaced by 1/T. 

 

 

· The transform of a cos function is a positive delta at the appropriate positive and negative 

frequency. 

 

 

· The transform of a sin function is a negative complex delta function at the appropriate positive 

frequency and a negative complex delta at the appropriate negative frequency. 
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· The transform of a square pulse is a sinc function 

 

More precisely, if f(t) = 1 for |t| < 0.5, and f(t) = 0 otherwise then F(f) = sin(pi f) / (pi f) 

· Convolution 

f(t) x g(t) ---> F(f) G(f) 

 

F(f) x G(f) ---> f(t) g(t) xk x yk ---> N Xk Yk 

xk yk ---> (1/N) Xk x Yk 

 

Multiplication in one domain is equivalent to convolution in the other domain and visa versa. For 

example the transform of a truncated sin function are two delta functions convolved with a sinc 

function, a truncated sin function is a sin function multiplied by a square pulse. 

 

The transform of a triangular pulse is a sinc
2
 function. This can be derived from first principles 

but is more easily derived by describing the triangular pulse as the convolution of two square 

pulses and using the convolution-multiplication relationship of the Fourier Transform. 

Decimation in Time 

The radix-2 decimation-in-time algorithm rearranges the discrete Fourier transform (DFT) 

equation into two parts: a sum over the even-numbered discrete-time indices n=[0,2,4,…,N−2] 

and a sum over the odd-numbered indices n=[1,3,5,…,N−1] as in Equation: 

http://cnx.org/contents/01e3cf62-3ba9-4fc9-bbde-d62220112b12%405
http://cnx.org/contents/01e3cf62-3ba9-4fc9-bbde-d62220112b12%405
http://cnx.org/contents/zmcmahhR%407/Decimation-in-time-DIT-Radix-2#eq1
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The mathematical simplifications in Equation reveal that all DFT frequency outputs X(k) can be 

computed as the sum of the outputs of two length-N2 DFTs, of the even-indexed and odd-indexed 

discrete-time samples, respectively, where the odd-indexed short DFT is multiplied by a so-called 

twiddle factor term WkN=e−(i2πkN). This is called a decimation in time because the time samples 

are rearranged in alternating groups, and a radix-2 algorithm because there are two groups. Figure 

graphically illustrates this form of the DFT computation, where for convenience the frequency 

outputs of the length-N2 DFT of the even-indexed time samples are denoted G(k) and those of the 

odd-indexed samples as H(k). Because of the periodicity with N2 frequency samples of these 

length-N2 DFTs, G(k) and H(k) can be used to compute two of the length-N DFT frequencies, 

namely X(k) and X(k+N2), but with a different twiddle factor. This reuse of these short-length 

DFT outputs gives the FFT its computational savings. 

 

 

Fig.2.4 Decimation in time 

 

http://cnx.org/contents/zmcmahhR%407/Decimation-in-time-DIT-Radix-2#eq1
http://cnx.org/contents/zmcmahhR%407/Decimation-in-time-DIT-Radix-2#fig1
http://cnx.org/contents/zmcmahhR%407/Decimation-in-time-DIT-Radix-2#fig1
http://cnx.org/contents/zmcmahhR%407/Decimation-in-time-DIT-Radix-2#fig1
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Decimation in Frequency 

The radix-2 decimation-in-frequency algorithm rearranges the discrete Fourier transform (DFT) 

equation into two parts: computation of the even-numbered discrete-frequency indices X(k) for 

k=[0,2,4,…,N−2] and computation of the odd-numbered indices k=[1,3,5,…,N−1] (or X(2r+1) 

 

The mathematical simplifications in the above equations reveal that both the even-indexed and 

odd-indexed frequency outputs X(k) can each be computed by a length-N2 DFT. The inputs to 

these DFTs are sums or differences of the first and second halves of the input signal, respectively, 

where the input to the short DFT producing the odd-indexed frequencies is multiplied by a so-

called twiddle factor term WkN=e−(i2πkN). This is called a decimation in frequency because the 

frequency samples are computed separately in alternating groups, and a radix-2 algorithm 

because there are two groups. Figure graphically illustrates this form of the DFT computation. 

This conversion of the full DFT into a series of shorter DFTs with a simple preprocessing step 

gives the decimation-in-frequency FFT its computational savings. 

 

http://cnx.org/contents/XaYDVUAS%406/Decimation-in-Frequency-DIF-Ra#eq.dft
http://cnx.org/contents/XaYDVUAS%406/Decimation-in-Frequency-DIF-Ra#eq.dft
http://cnx.org/contents/XaYDVUAS%406/Decimation-in-Frequency-DIF-Ra#fig1
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Fig. 2.5 Decimation in Frequency 

2.5. Real Time Transforms 

 2.5.1 Discrete Cosine Transform 

A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of 

cosine functions oscillating at different frequencies. DCTs are important to numerous 

applications in science and engineering, from lossy compression of audio (e.g. MP3) and images 

(e.g. JPEG) (where small high-frequency components can be discarded), to spectral methods for 

the numerical solution of partial differential equations. The use of cosine rather than sine 

functions is critical for compression, since it turns out (as described below) that fewer cosine 

functions are needed to approximate a typical signal, whereas for differential equations the 

cosines express a particular choice of boundary conditions. 

 

In particular, a DCT is a Fourier-related transform similar to the discrete Fourier transform 

(DFT), but using only real numbers. DCTs are equivalent to DFTs of roughly twice the length, 

operating on real data with even symmetry (since the Fourier transform of a real and even 

function is real and even), where in some variants the input and/or output data are shifted by half 

a sample. DCT is defined as 

 

for u= 0,1, 2, , N-1. Similarly, the inverse transformation is defined as 

https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Audio_compression_%28data%29
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Image_compression
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Spectral_method
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Sine
https://en.wikipedia.org/wiki/Signal_%28electrical_engineering%29
https://en.wikipedia.org/wiki/Boundary_condition
https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Even_and_odd_functions
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for x= 0, 1, 2,…. ,N-1 

 

There are eight standard DCT variants, of which four are common. 

The most common variant of discrete cosine transform is the type-II DCT, which is often called 

simply "the DCT".
[1][2]

 Its inverse, the type-III DCT, is correspondingly often called simply "the 

inverse DCT" or "the IDCT". Two related transforms are the discrete sine transform (DST), 

which is equivalent to a DFT of real and odd functions, and the modified discrete cosine 

transform (MDCT), which is based on a DCT of overlapping data. 

2.5.2 Walsh Transform: 

The matrix product of a square set of data d and a matrix of basis vectors consisting of 

Walsh functions. By taking advantage of the nested structure of the natural ordering of the Walsh 

functions, it is possible to speed the transform up from O(n
2
) to O(n ln n) steps, resulting in the 

so-called fast Walsh transform. Walsh transforms are widely used for signal and image 

processing, and can also be used for image compression 

The Walsh functions consist of trains of square pulses (with the allowed states being -1 

and 1) such that transitions may only occur at fixed intervals of a unit time step, the initial state is 

always+1, and the functions satisfy certain other orthogonality relations. In particular, the Walsh 

functions of order n are given by the rows of the Hadamard matrix H2n when arranged in so-

called "sequency" order. 

https://en.wikipedia.org/wiki/Discrete_cosine_transform#cite_note-pubDCT-1
https://en.wikipedia.org/wiki/Discrete_cosine_transform#cite_note-pubDCT-1
https://en.wikipedia.org/wiki/Discrete_cosine_transform#cite_note-pubDCT-1
https://en.wikipedia.org/wiki/Discrete_sine_transform
https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
http://mathworld.wolfram.com/MatrixProduct.html
http://mathworld.wolfram.com/WalshFunction.html
http://mathworld.wolfram.com/WalshFunction.html
http://mathworld.wolfram.com/WalshFunction.html
http://mathworld.wolfram.com/WalshFunction.html
http://mathworld.wolfram.com/FastWalshTransform.html
http://mathworld.wolfram.com/HadamardMatrix.html
http://mathworld.wolfram.com/Sequency.html
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                                       Fig.2.6 Walsh Function 

2.5.3 Hadamard Transform 

The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard– 

Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a 

generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear 

operation on real numbers (or complex numbers, although the Hadamard matrices themselves are 

purely real). 

The Hadamard transform can be regarded as being built out of size-2 discrete Fourier 

transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size 2*2. It 

decomposes an arbitrary input vector into a superposition of Walsh functions. 

The Hadamard transform Hm is a 2
m
 × 2

m
 matrix, the Hadamard matrix (scaled by a normalization 

factor), that transforms 2
m
 real numbers xn into 2

m
 real numbers Xk. The Hadamard transform can 

be defined in two ways: recursively, or by using the binary (base-2) representation of the indices 

n and k. 

Recursively, we define the 1 × 1 Hadamard transform H0 by the identity H0 = 1, and then define 

Hm for m > 0 by: 

https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Orthogonal_matrix
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Involution_%28mathematics%29
https://en.wikipedia.org/wiki/Linear_operator
https://en.wikipedia.org/wiki/Linear_operator
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Walsh_function
https://en.wikipedia.org/wiki/Hadamard_matrix
https://en.wikipedia.org/wiki/Recursively
https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/Base_%28exponentiation%29
https://en.wikipedia.org/wiki/Identity_matrix
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where the 1/√2 is a normalization that is sometimes omitted. 

For m > 1, we can also define Hm by: 

 

Thus, other than this normalization factor, the Hadamard matrices are made up entirely of            

1 and −1. 

Equivalently, we can define the Hadamard matrix by its (k, n)-th entry by writing 

and 

 

 

where the kj and nj are the binary digits (0 or 1) of k and n, respectively. Note that for the 

element in the top left corner, we define: . In this case, we have: 

 

This is exactly the multidimensional DFT, normalized to be unitary, if the 

inputs and outputs are regarded as multidimensional arrays indexed by the nj and kj, respectively. 

Some examples of the Hadamard matrices follow. 

https://en.wikipedia.org/wiki/Unitary_operator
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(This H1 is precisely the size-2 DFT. It can also be regarded as the Fourier transform on the two- 

element additive group of Z/(2).) 

https://en.wikipedia.org/wiki/Fourier_transform
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where  is the bitwise dot product of the binary representations of the numbers i and j. For 

example, if , then , agreeing  

with the above (ignoring the overall constant). Note that the first row, first column of the 

matrix is denoted by . 

The rows of the Hadamard matrices are the Walsh functions. 

2.5.4 Wavelet Transform 

A wavelet is a mathematical function used to divide a given function or continuous-

time signal into different scale components. All wavelet transforms may be considered forms 

of time- frequency representation for continuous-time (analog) signals and so are related to 

harmonic analysis. Almost all practically useful discrete wavelet transforms use discrete-time 

filterbanks. These filter banks are called the wavelet and scaling coefficients in wavelets 

nomenclature. These filterbanks may contain either finite impulse response (FIR) or infinite 

impulse response (IIR) filters. The wavelets forming a continuous wavelet transform (CWT) 

are subject to the uncertainty principle of Fourier analysis respective sampling theory: Given a 

signal with some event in it, one cannot assign simultaneously an exact time and frequency 

response scale to that event. The product of the uncertainties of time and frequency response 

scale has a lower bound. Thus, in the scaleogram of a continuous wavelet transform of this 

signal, such an event marks an entire region in the time-scale plane, instead of just one point. 

Also, discrete wavelet bases may be considered in the context of other forms of the 

https://en.wikipedia.org/wiki/Walsh_function
https://en.wikipedia.org/wiki/Time-frequency_representation
https://en.wikipedia.org/wiki/Time-frequency_representation
https://en.wikipedia.org/wiki/Continuous-time
https://en.wikipedia.org/wiki/Harmonic_analysis
https://en.wikipedia.org/wiki/Harmonic_analysis
https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Continuous_wavelet_transform
https://en.wikipedia.org/wiki/Fourier_uncertainty_principle
https://en.wikipedia.org/wiki/Scaleogram
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uncertainty principle. 

Wavelet transforms are broadly divided into three classes: continuous, discrete and 

multiresolution-based. 

Continuous wavelet transforms (continuous shift and scale parameters) 

In continuous wavelet transforms, a given signal of finite energy is projected on a 

continuous family of frequency bands (or similar subspaces of the Lp function space L2(R) ). 

For instance the signal may be represented on every frequency band of the form [f, 2f] for all 

positive frequencies f > 0. Then, the original signal can be reconstructed by a suitable 

integration over all the resulting frequency components. 

The frequency bands or subspaces (sub-bands) are scaled versions of a subspace at 

scale 1. This subspace in turn is in most situations generated by the shifts of one generating 

function ψ in L2(R), the mother wavelet. For the example of the scale one frequency band [1, 

2] this function is 

with the (normalized) sinc function. That, Meyer's, and two other examples of mother 

wavelets are: 

 

Fig.2.7 Meyer 

 

Fig.2.8 Morlet 

https://en.wikipedia.org/wiki/Continuous_wavelet_transform
https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Function_space
https://en.wikipedia.org/wiki/Sinc_function
https://en.wikipedia.org/wiki/Meyer_wavelet
https://en.wikipedia.org/wiki/Morlet_wavelet
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Fig.2.9 Mexican hat 

 

The subspace of scale a or frequency band [1/a, 2/a] is generated by the functions (sometimes 

called child wavelets) 

 

where a is positive and defines the scale and b is any real number and defines the shift. The 

pair (a, b) defines a point in the right halfplane R+ × R. 

The projection of a function x onto the subspace of scale a then has the form 

 

with wavelet coefficients 

 

See a list of some Continuous wavelets. 

For the analysis of the signal x, one can assemble the wavelet coefficients into a scaleogram 

of the signal. 

Discrete wavelet transforms (discrete shift and scale parameters) 

It is computationally impossible to analyze a signal using all wavelet coefficients, so one may 

wonder if it is sufficient to pick a discrete subset of the upper halfplane to be able to 

reconstruct a signal from the corresponding wavelet coefficients. One such system is the 

affine system for 

https://en.wikipedia.org/wiki/Mexican_hat_wavelet
https://en.wikipedia.org/wiki/Continuous_wavelets
https://en.wikipedia.org/wiki/Scaleogram
https://en.wikipedia.org/wiki/Scaleogram
https://en.wikipedia.org/wiki/Scaleogram
https://en.wiktionary.org/wiki/affine
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some real parameters a > 1, b > 0. The corresponding discrete subset of the halfplane consists 

of all the points (am, namb) with m, n in Z. The corresponding baby wavelets are now given 

as 

 

A sufficient condition for the reconstruction of any signal x of finite energy by the formula 

 

 

is that the functions form a orthonormal basis of L2(R). 

Multiresolution based discrete wavelet transform 

 

Fig.2.10 D4 wavelet 

In any discretised wavelet transform, there are only a finite number of wavelet 

coefficients for each bounded rectangular region in the upper halfplane. Still, each coefficient 

requires the evaluation of an integral. In special situations this numerical complexity can be 

avoided if the scaled and shifted wavelets form a multiresolution analysis. This means that 

there has to exist an auxiliary function, the father wavelet φ in L2(R), and that a is an integer. 

A typical choice is a = 2 and b = 1. The most famous pair of father and mother wavelets is the 

Daubechies 4-tap wavelet. Note that not every orthonormal discrete wavelet basis can be 

associated to a multiresolution analysis; for example, the Journe wavelet admits no 

multiresolution analysis.  

 

From the mother and father wavelets one constructs the subspaces 

https://en.wikipedia.org/wiki/Orthonormal_basis
https://en.wikipedia.org/wiki/Multiresolution_analysis
https://en.wikipedia.org/wiki/Daubechies_wavelets


24 

 

 

The father wavelet keeps the time domain properties, while the mother wavelets keeps 

the frequency domain properties. 

From these it is required that the sequence 

 

forms a multiresolution analysis of L2   and that the subspaces 

are the orthogonal "differences" of the above sequence, that is, 

Wm is the orthogonal complement of Vm inside the subspace Vm−1, 

 

In analogy to the sampling theorem one may conclude that the space Vm with sampling 

distance 2m more or less covers the frequency baseband from 0 to 2−m-1. As orthogonal 

complement, Wm roughly covers the band [2−m−1, 2−m]. 

 

From those inclusions and orthogonality relations, especially , follows the 

existence of sequences and that satisfy the identities 

 

so that and 

 

so that 

 

The second identity of the first pair is a refinement equation for the father wavelet φ. 

Both pairs of identities form the basis for the algorithm of the fast wavelet transform. 

From the multiresolution analysis derives the orthogonal decomposition of the space 

L2 as 

 

https://en.wikipedia.org/wiki/Multiresolution_analysis
https://en.wikipedia.org/wiki/Sampling_theorem
https://en.wikipedia.org/wiki/Refinable_function
https://en.wikipedia.org/wiki/Fast_wavelet_transform
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For  any  signal  or  function  this gives a representation in basis functions of the 

corresponding subspaces as 

where the coefficients are 

 

and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 
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Questions: 

1.Obtain the Linear Convolution of the following Sequences   

 

2.Find the Circular convolution of the given sequences   

x1(n) = {2, 1, 2, -1} and x2(n) = {1, 2, 3, 4 }. 

 

3.Determine the Autocorrelation of the sequence x(n) = {1, 2, 3, 4 } 

 

4. Obtain the cross correlation of the sequences  

x(n) = {1, 1, 2, 2 } and y(n) = {1, 0.5, 1 }. 

 

5.Find the DFT of the sequence for N=4, also find the magnitude and phase 

response 

 

6.Obtain the DFT of the 8-point sequence by FFT –DIT algorithm  

x(n) = { 2, 1, 2, 1, 1, 2, 1, 2} 

 

7.Obtain the DFT of the 8-point sequence by FFT –DIF algorithm 

x(n) = { 2, 1, 2, 1, 1, 2, 1, 2} 

 

8.Obtain the DCT of the given image  f(x) = {1, 2, 4, 7} 

9. Obtain the DCT of the given image 
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10.Find the Hadamard transform of the image given by  f(x) = {1, 2, 0, 3 } 

 

 

11.Find the Hadamard transform of the image given by 

 

12.Find the Walsh transform of the image given by f(x) = { 1,2,0, 3 } 

 

13.Find the Walsh transform of the image given by 

 

 

 

 

 

 

 



1 

 

 

SCHOOL OF BIO AND CHEMICAL ENGINEERING 

DEPARTMENT OF BIOMEDICAL ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

UNIT 3 – EVENT DETECTION – SBMA5202 



2 

 

 

UNIT 3 - EVENT DETECTION 

3.1Detection of events and waves 

3.1.1 Derivative based operators in QRS detection 

QRS complex has the largest slope (rate of change of voltage) in a cardiac cycle ventricles. As 

the rate of change is given by the derivative operator, the operation would be the most logical 

starting point in an attempt to develop an algorithm to detect the QRS complex. The derivative 

operator enhances the QRS, although the resulting wave does not bear any resemblance to a 

typical QRS complex. The slow P and T waves have been suppressed by the derivative operators, 

while the output is the highest at the QRS. However, given the noisy nature of the results of the 

derivative-based operators, it is also evident that significant smoothing will be required before 

further processing can take place. Derivative-based algorithm for QRS detection progresses as 

follows: the smoothed three-point first derivative yo (n) of the given signal x(n) is approximated 

as 

The second derivative is approximated as 

 

The two results are weighted and combined to obtain 

 

The result y2(n) is scanned with a threshold of 1.0. Whenever the threshold is crossed, the 

subsequent eight samples are also tested against the same threshold. If at least six of the eight 

points pass the threshold test, the segment of eight samples is taken to be a part of a QRS 

complex. The procedure results in a pulse with its width proportional to that of the QRS complex; 

however, the method is sensitive to noise. 
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Fig.3.1. From top to bottom: two cycles of a filtered version of the ECG signal, output 

yo(n)of the first-derivative-based operator, output yl(n) of the second-derivative-based 

operator and the result y3(n) of passing y2(n) through the 8-point MA filter 

3.1.2 Pan Tompkins algorithm 

Pan and Tompkins proposed a real-time QRS detection al- gorithm based on analysis of the 

slope, amplitude, and width of QRS complexes. The algorithm includes a series of filters and 

methods that perform lowpass, high- pass, derivative, squaring, integration, adaptive 

thresholding, and search procedures. 
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Fig. 3.2 Block diagram of the Pan-Tompkins algorithm for QRS detection 

Low pass filter: The recursive lowpass filter used in the Pan-Tompkins algorithm has integer 

coefficients to reduce computational complexity, with the transfer function 

defined as 

The output y(n) is related to the input x(n) as 

The output y(n) is related to the input x(n) as 

 

With the sampling rate being 200 Hz, the filter has a rather low cutoff frequency of fc = 

11 Hz, and introduces a delay of 5 samples or 25 ms.The filter provides an attenuation greater 

than 

35 dB at 60 Hz,and effectively suppresses power-line interference, if present. 

 

Highpass filter: The highpass filter used in the algorithm is implemented as an allpass 

filter minus a lowpass filter. The lowpass component has the transfer function the input - output 

relationship is 

 

the input - output relationship is 

 

The transfer function Hhp(z) of the highpass filter is specified as 

 

Equivalently, the output p(n) of the highpass filter is given by the difference equation 
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The high pass filter has a cutoff frequency of 5 Hz and introduces a delay of 80 ms. 

Derivative operator: The derivative operation used by Pan and Tompkins is specified as 

 

and approximates the ideal operator up to 30 Hz. The derivative procedure suppresses the low-

frequency components of the P and T waves, and provides a large gain to the high-frequency 

components arising from the high slopes of the QRS complex. 

Squaring: The squaring operation makes the result positive and emphasizes large differences 

resulting from QRS complexes; the small differences arising from P and T waves are suppresses. 

The high- frequency components in the signal related to the QRS complex are further enhanced. 

Integration: As observed in the previous subsection, the output of a derivative- based operation 

will exhibit multiple peaks within the duration of a single QRS complex. The Pan-Tompkins 

algorithm performs smoothing of the output of the preceding operations through a moving-

window integration filter as 

The choice of the window width N is to be made with the following considerations: too large a 

value will result in the outputs due to the QRS and T waves being merged, whereas too small a 

value could yield several peaks for a single QRS. A window width of N = 30 was found to be 

suitable for fb = 200 Hz. 

Adaptive thresholding: The thresholding procedure in the Pan-Tompkins algo- rithm adapts to 

changes in the ECG signal by computing running estimates of signal and noise peaks. A peak is 

said to be detected whenever the final output changes direction within a specified interval. In the 

following discussion, SPKI represents the peak level that the algorithm has learned to be that 

corresponding to QRS peaks, and NPKI represents the peak level related to non- QRS events 

(noise, EMG,etc.). 

THRESHOLD I1 and THRESHOLD I2 are two thresholds used to categorize peaks detected as 

signal (QRS) or noise. Every new peak detected is categorized as a signal peak or a noise peak. If 
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a peak exceeds THRESHOLD I1 during the first step of analysis, it is classified as a QRS (signal) 

peak. If the searchback technique the peak.should be above THRESHOLDI2 to be called a 

QRS.The peak levels and thresholds are updated after each peak is detected and classified as if 

PEAKI is a signal peak; if PEAKI 

is a noise peak; 

SPKI = 0.125 PEAKI + 0.875 SPKI NPKI = 0.125 PEAKI + 0.875 NPKI 

THRESHOLD I1 = NPKI + 0.25(SPKI - NPKI); THRESHOLD I2 = 0.5 THRESHOLD II. 

The updating formula for SPKI is changed to SPKI = 0.25 PEAKI + 0.75 SPKI 

If a QRS is detected in the searchback procedure using THRESHOLD 12. 

 

3.1.3 Search back procedure: The Pan-Tompkins algorithm maintains two RR-interval 

averages: RR AVERAGE1 is the average of the eight most-recent beats, and RR AVERAGE2 is 

the average of the eight most-recent beats having RR intervals within the range specified by 

RR LOW LIMIT = 0.92 x RR AVERAGE2 and RR HIGH LIMIT = 1.16 x RR AVERAGE2. 

Whenever a QRS is not detected for a certain interval specified as 

RR MISSED LIMIT = 1.06 x RR AVERAGE2, the QRS is taken to be the peak between the 

established thresh- olds applied in the searchback procedure. 

Correlation analysis 

ACF and CCF in rhythm analysis 

Cross Correlation is defined as 
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Murmur detection 

Cardiac mechanical activity is appraised by auscultation and processing of heart sound recordings 

(known as phonocardiographic signals—PCG), which is an inexpensive and noninvasive 

procedure. The importance of classic auscultation has decreased due to its inherent restrictions: 

the performance of human ear with its physical limitations, the subjectivity of the examiner, 

difficult skills that take years to acquire and refine, etc. Anyway, the PCG has preserved its 

importance in pediatric cardiology, cardiology, and internal diseases, evaluating congenital 

cardiac defects,and primary home health care, where an intelligent stethoscope with decision 

support abilities would be valuable. Mostly, heart sounds consist of two regularly repeated thuds, 

known as S1 and S2, each appearing one after the other, for every heart beat. The time interval 

between S1 and S2 is the systole, while the S2 and next S1 gap corresponds to the diastole. S1 

implies the closing of the tricuspid and mitral valves immediately preceding the systole, while S2 

corresponds to the closing of the aortic and pulmonary valves at the end of systole. The normal 
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blood flow inside the heart is mainly laminar and therefore silent; but when the blood flow 

becomes turbulent it causes vibration of surrounding tissue and hence the blood flow is noisy and 

perceivable, originating the murmur, which according to the instant they appear are sorted into 

systolic or diastolic. Murmurs are some of the basic signs of pathological changes to be  

identified, but they overlap with the cardiac beat and can not be easily separated by the human 

ear. The automatic detection of murmurs strongly depends on the appropriate features (data 

representation), which mostly are related to timing, morphology, and spectral properties of heart 

sounds. Although cardiac murmurs are nonstationary signals and exhibit sudden frequency 

changes and transients, t is common to assume linearity of the feature sets extracted from heart 

sounds (time and spectral features, frequency representation with time resolution, and parametric 

modeling. o capture nonstationary transients and fast changes of PCG, the time–frequency  

features are widely used in heart sound analysis. 
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3.2 Homomorphic filtering 

 

 

1. Matched filters 
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2. Wavelet detection – Spike and wave detection 
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3.3 Extraction of vocal tract response and other applications 
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Questions: 

1. Explain about the Event detection problem with suitable case study. 

2. Explain about derivation based method for QRS detection in ECG signal. 

3. With suitable block diagram explain the  Pan–Tompkins algorithm for QRS 

detection. 

4. Discuss about the Correlation Analysis of EEG Rhythms with suitable example. 

5. Derive the transfer function of the matched filter. 

6. Explain about  Crossspectral  Techniques which are suitable for the event 

detection of  EEG signal .  

7. Design a matched filter to detect spike-and-wave complexes in an EEG signal. A 

reference spike-and-wave complex is available. 

8. Propose an algorithm to detect the P wave in the ECG signal. 

9. Propose a homomorphic filter to separate two signals that have been combined 

through the convolution operation. 

10. Explain the Operations involved in a homomorphic filter for convolved signal 

with suitable block diagram 
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UNIT 4 - ECG DATA REDUCTION 

4.1 Direct data compression Techniques: 

A data reduction algorithm seeks to minimize the number of code bits stored by reducing the 

redundancy present in the original signal. We obtain the reduction ratio by dividing the number 

of bits of the original signal by the number saved in the compressed signal. A data reduction 

algorithm must also represent the data with acceptable fidelity. 

In biomedical data reduction, we usually determine the clinical acceptability of the 

reconstructed signal through visual inspection. We may also measure the residual, that is, the 

difference between the reconstructed signal and the original signal. Such a numerical measure is 

the percent root-mean-square difference, PRD, given by 

where n is the number of samples and xorg and xrec are samples of the original and 

reconstructed data sequences. 

 Turning Point 

The original motivation for the turning point (TP) algorithm was to reduce the sampling 

frequency of an ECG signal from 200 to 100 samples/s .The algorithm developed from the 

observation that, except for QRS complexes with large amplitudes and slopes, a sampling rate 

of 100 samples/s is adequate.TP is based on the concept that ECG signals are normally 

oversampled at four or five times faster than the highest frequency present. For example, an 

ECG used in monitoring may have a bandwidth of 50 Hz and be sampled at 200 sps in order to 

easily visualize the higher- frequency attributes of the QRS complex. Sampling theory tells us 

that we can sample such a signal at 100 sps. TP provides away to reduce the effective sampling 

rate by half to 100 sps by selectively saving important signal points (i.e., the peaks and valleys 

or turning points). 
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The algorithm processes three data points at a time. It stores the first sample point and assigns it 

as the reference point X0. The next two consecutive points become X1 and X2. The algorithm 

retains either X1 or X2, depending on which point preserves the turning point (i.e., slope 

change) of the original signal. Fig. shows all the possible configurations of three consecutive 

sample points. In each frame, the solid point preserves the slope of the original three points. 

The algorithm saves this point and makes it the reference point X0 for the next iteration. It then 

samples the next two points, assigns them to X1 and X2, and repeats the process. 

We use a simple mathematical criterion to determine the saved 

point. First consider a sign(x) operation 

 

 

 

 

 

Fig. 4.1. Turning point Algorithm 

 

We then obtain s1 = sign(X1 – X0) and s2 = sign(X2 – X1), where (X1 – X0) and (X2 – X1) 
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are the slopes of the two pairs of consecutive points. If a slope is zero,this operator produces a 

zero result. For positive or negative slopes, it yields +1 or–1 respectively. A turning point 

occurs only when a slope changes from positive to negative or vice versa. We use the logical 

Boolean operators, NOT and OR, as implemented in the C language to make the final judgment 

of when a turning point occurs. In the C language, NOT(c) = 1 if c = 0; otherwise NOT(c) = 0. 

Also logical OR means that (a OR b ) = 0 only if a and b are both 0. Thus, we retain X1 only if 

{NOT(s1) OR (s1 + s2)} is zero, and save X2 otherwise. In this expression, (s1 + s2) is the 

arithmetic sum of the signs produced by the sign function. The final effect of this processingis a 

Boolean decision whether to save X1 or X2. Point X1 is saved only when the slope changes 

from positive to negative or vice versa. This computation could be easily done arithmetically, 

but the Boolean operation is computationally much faster. 

The TP algorithm is simple and fast, producing a fixed reduction ratio of 2:1. After selectively 

discarding exactly half the sampled data, we can restore the original resolution by interpolating 

between pairs of saved data points. A second application of the algorithm to the already reduced 

data increases the reduction ratio to 4:1. Using data acquired at a 200-sps rate, this produces 

compressed data with a 50-sps effective sampling rate. If the bandwidth of the acquired ECG is 

50 Hz, this approach violates sampling theory since the effective sampling rate is less than 

twice the highest frequency present in the signal. The resulting reconstructed signal typically 

has a widened QRS complex and sharp edges that reduce its clinical acceptability. Another 

disadvantage of this algorithm is that the saved points do not represent equally spaced time 

intervals. This introduces short term time distortion. However, this localized distortion is not 

visible when the reconstructed signal is viewed on the standard clinical monitors and paper 

recorders. 

 AZTEC 

Originally developed to preprocess ECGs for rhythm analysis, the AZTEC (Amplitude Zone 

Time Epoch Coding) data reduction algorithm decomposes raw ECG sample points into 

plateaus and slopes.It provides a sequence of line segments that form a piecewise-linear 

approximation to the ECG. The algorithm consists of two parts—line detection and line 

processing. Figure(a) shows the line detection operation which makes use of zero-order 

interpolation (ZOI) to produce horizontal lines. Two variables Vmx and Vmn always reflect the 

highest and lowest elevations of the current line. Variable LineLen keeps track of the number of 
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samples examined. We store a plateau if either the difference between Vmxi and Vmni is 

greater than a predetermined threshold Vth or if LineLen is greater than 50. The stored values 

are the length (LineLen – 1) and the average amplitude of the plateau (Vmx + Vmn)/2. 

Figure (b) shows the line processing algorithm which either produces a 

plateau or a slope depending on the value of the variable LineMode. We initialize LineMode to 

_PLATEAU in order to begin by producing a plateau. The production 

of an AZTEC slope begins when the number of samples needed to form a plateau is less than 

three. Setting LineMode to _SLOPE indicates that we have entered slope production mode. We 

then determine the direction or sign of the current slope by subtracting the previous line 

amplitude V1 from the current 
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amplitude Vsi. We also reset the length of the slope Tsi. The variable Vsi records the current 

line amplitude so that any change in the direction of the slope can be tracked. Note that Vmxi 

and Vmni are always updated to the latest sample before line detection begins. This forces ZOI 

to begin from the value of the latest sample. 

 

 

Fig. 2(a) Flowchart for the line detection operation of the AZTEC algorithm 
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Fig. 4.2(b) Flowchart of the line processing operation of the AZTEC algorithm 

 

When we reenter line processing with LineMode equal to _SLOPE, we either save or update the 

slope. The slope is saved either when a plateau of more than three samples can be formed or 

when a change in direction is detected. If we detect a new plateau of more than three samples, 

we store the current slope  and the new plateau. For the slope, the stored values are its length 
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Tsi and its final elevation V1. Note that Tsi is multiplied by –1 to differentiate a slope from a 

plateau (i.e., the minus sign serves as a flag to indicate a slope). We also store the length and 

the amplitude of the new plateau, then reset all parameters and return to plateau production. 

If a change in direction is detected in the slope, we first save the parameters for the current 

slope and then reset sign, Vsi, Tsi, Vmxi, and Vmni to produce a new AZTEC slope. Now the 

algorithm returns to line detection but remains in slope production mode. When there is no new 

plateau or change of direction, we simply update the slope’s parameters, Tsi and Vsi, and return 

to line detection with LineMode remaining set to _SLOPE. AZTEC does not produce a constant 

data reduction ratio. The ratio is frequently as great as 10 or more, depending on the nature of 

the signal and the value of the empirically determined threshold. 

 Cortes Algorithm 

              The CORTES (Coordinate Reduction Time Encoding System) algorithm is a hybrid of 

the TP and AZTEC algorithms. It attempts to exploit the strengths of each while sidestepping 

the weaknesses. 

CORTES uses AZTEC to discard clinically insignificant data in the isoelectric region with a 

high reduction ratio and applies the TP algorithm to the clinically significant high-frequency 

regions (QRS complexes). It executes the AZTEC and TP algorithms in parallel on the incoming 

ECG data. Whenever an AZTEC line is produced, the CORTES algorithm decides, based on the 

length of the line, whether the AZTEC data or the TP data are to be saved. If the line is longer 

than an empirically determined threshold, it saves the AZTEC line. Otherwise it saves the TP 

data points. Since TP is used to encode the QRS complexes, only AZTEC plateaus, not slopes, 

are implemented. The CORTES algorithm reconstructs the signal by expanding the AZTEC 

plateaus and interpolating between each pair of the TP data points. It then applies parabolic 

smoothing to the AZTEC portions to reduce discontinuities. 

 FAN Algorithm 

Originally used for ECG telemetry, the Fan algorithm draws lines between pairs of starting and 

ending points so that all intermediate samples are within some specified error tolerance. We 

start  by accepting the first sample X0 as the nonredundant permanent point. It functions as the 

origin and is also called the originating point.We then take the second sample X1 and draw two 

slopes {U1, L1}. U1 passes 

through the point (X0, X1 + ε), and L1 passes through the point (X0, X1 – ε). If the third 
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sample X2 falls within the area bounded by the two slopes, we generate two new slopes {U2, 

L2} that pass through points (X0, X2 + ε) and (X0, X2 – ε). We compare the two pai rs of 

slopes and retain the most converging (restrictive) slopes (i.e., {U1, L2} in our example). Next 

we assign the value of X2 to X1 and read the next sample into X2. As a result, X2 always holds 

the most recent sample and X1 holds the sample immediately preceding X2. We repeat the 

process by comparing X2 to the values of the most convergent slopes. If it falls outside this 

area, we save 

the length of the line T and its final amplitude X1 which then becomes the new originating 

point X0, and the process begins anew. The sketch of the slopes drawn from the originating 

sample to future samples forms a set of radial lines similar to a fan, giving this algorithm its 

name. When adapting the Fan algorithm to C-language implementation, we create the variables, 

XU1, XL1, XU2, and XL2, to determine the bounds of X2. 
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Fig. 4.3 a) Upper and lower slopes (U and L) are drawn within error threshold ε 

around sample points taken at t1, t2, … (b) Extrapolation of XU2 and XL2 from XU1, 

XL1, and X0. 

        We reconstruct the compressed data by expanding the lines into discrete points. The Fan 

algorithm guarantees that the error between the line joining any two permanent sample points 

and any actual   

(redundant) sample along the line is less than or equal to the magnitude of the preset error 

tolerance. The algorithm’s reduction ratio depends on the error tolerance. When compared to 

the TP and AZTEC algorithms, the Fan algorithm produces better signal fidelity for the same 

reduction ratio 

1. Transformation Compression Techniques: 

 Karhunen-Loeve Transform 

 The Karhunen-Loeve Transform (KLT) (also known as Hotelling Transform and 

Eigenvector Transform) is closely related to the Principal Component Analysis (PCA) and 

widely used in data analysis in many fields. 
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or in matrix form: 

 

As the covariance matrix is Hermitian (symmetric ifis real), its eigenvector 's are orthogonal: 

 

 

 

 

The  eigenequations above can be combined to be expressed as: 

 

 

or in matrix form: 

Here is a diagonal matrix . Left multiplying on  

 

both sides, the covariance matrix can be diagonalized: 
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Now, given a signal vector , we can define a unitary (orthogonal if is real) Karhunen- 

Loeve Transform of as: 

 

 

 

where the ith component of the transform vector is the projection of onto : 

 

 

Left multiplying on both sides of the transform, we get the inverse transform: 

 

Other data compression Techniques: 

 DPCM 

Differential pulse code modulation (DPCM) is a procedure of converting an analog into a digital 

signal in which an analog signal is sampled and then the difference between the actual sample 

value and its 

predicted value (predicted value is based on previous sample or samples) is quantized and then 

encoded forming a digital value. DPCM code words represent differences between samples 

unlike PCM where code words represented a sample value. Basic concept of DPCM - coding a 

difference, is based on the fact that most source signals show significant correlation between 

successive samples so encoding uses redundancy in sample values which implies lower bit rate. 

Realization of basic concept (described above) is based on a technique in which we have to 

predict current sample value based upon previous samples (or sample) and we have to encode 

the difference between actual value of sample and predicted value (the difference      between      

samples      can      be       interpreted       as       prediction       error).       Because it's necessary 

to predict sample value DPCM is form of predictive coding. 
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DPCM compression depends on the prediction technique, well-conducted prediction techniques 

lead to good compression rates, in other cases DPCM could mean expansion comparing to 

regular PCM encoding. 

 

 

                              Fig.4.4 DPCM encoder (transmitter) 

 

 Huffman coding 

 

Huffman coding exploits the fact that discrete amplitudes of quantized signal do not occur with 

equal probability (Huffman, 1952). It assigns variable-length code words to a given quantized 

data sequence according to their frequency of occurrence. Data that occur frequently are 

assigned shorter code words. 

Static Huffman coding 

As an example, assume that we wish to transmit the set of 28 data points 

{1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7} 

The set consists of seven distinct quantized levels, or symbols. For each symbol, Si, we 

calculate its probability of occurrence Pi by dividing its frequency of occurrence by 28, the total 

number of data points. Consequently, the construction of a Huffman code for this set begins 

with seven nodes, one associated with each Pi. At each step we sort the Pi list in descending 

order, breaking the ties arbitrarily. 
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The two nodes with smallest probability, Pi and Pj, are merged into a new node 

with probability Pi + Pj. This process continues until the probability list contains 

a single value. 

 

Fig.4. 5 Illustration of Huffman coding. (a) At each step, Pi are sorted in descending order 

and the two lowest Pi are merged. (b) Merging operation depicted in a binary tree. (c) 

Summary of Huffman coding for the data set. 
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The process of merging nodes produces a binary tree as in Figure (b). When we merge two 

nodes with probability Pi + Pj, we create a parent node with two children represented by Pi and 

Pj. The root of the tree has probability 1.0. We obtain the Huffman code of the symbols by 

traversing down the tree, assigning 1 to the left child and 0 to the right child. The resulting code 

words have the prefix property (i.e., no code word is a proper prefix of any other code word). 

This property ensures that a coded message is uniquely decodable without the need for 

lookahead. 

Figure (c) summarizes the results and shows the Huffman codes for 

the seven symbols. We enter these code word mappings into a translation table and use the table 

to pad the appropriate code word into the output bit stream in the reduction process. The 

reduction ratio of Huffman coding depends on the distribution of the source symbols. In our 

example, the original data requires three bits to represent the seven quantized levels. After 

Huffman coding, we can calculate the expected code word 

length 

 

in our example, resulting in an expected reduction ratio of 3:2.65. 

The reconstruction process begins at the root of the tree. If bit 1 is received, we traverse down 

the left branch, otherwise the right branch. We continue traversing until we reach a node with 

no child. We then output the symbol corresponding to this node and begin traversal from the 

root again. 

The reconstruction process of Huffman coding perfectly recovers the original data. Therefore it 

is a lossless algorithm. However, a transmission error of a single bit may result in more than 

one decoding error. This propagation of transmission error is a consequence of all algorithms 

that produce variable- length code words. 
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Questions: 

1. With suitable example discuss about the direct data compression techniques. 

2. Give a detailed view of AZTEC algorithm. 

3. Explain in detailed about the Cortes Algorithm for data reduction. 

4. Explain the different steps of Karhunen-Loeve Transform. 

5.Explain data compression techniques  using Differential pulse code 

modulation (DPCM) 

6. Discuss in details the procedures for data compression using Huffman coding. 
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UNIT 5 - FILTERING 

5.1.Time domain filtering 

Certain types of noise may be filtered directly in the time domain using digital filters. Advantage 

is spectral characterization of the signal and noise not required—atleast in a direct manner.Time-

domain processing may also be faster than frequency-domain filtering. 

Synchronous averaging 

Linear filters fail when the signal and noise spectra overlap. Synchronized signal averaging can 

separate are repetitive signal from noise without distorting the signal. ERP or SEP epochs may 

be obtained a number of times by repeated application of the stimulus; averaged using the 

stimulus as trigger to align the epochs. If noise is random with zero mean, uncorrelated with 

signal, averaging will improve the SNR. yk(n): one realization of a signal, with k =1,2,...,M 

representing the ensemble index, 

n =1,2,...,N representing the time-sample index. M:number of copies, events, epochs, or 

realizations. 

N:number of samples in each signal. yk(n)= xk(n)+ ηk(n), xk(n):original uncorrupted signal, 

ηk(n):noise in kth copy of signal. 

For each instant of time n,add M copies of signal: 

If the repetitions of the signal are identical and aligned, 

 

If noise is random, has zero mean and variance σ2, 

 

as M increases, with a variance of Mσ2. 

RMS value of noise in the averaged signal = √Mση. Thus SNR of signal increases by M √M or 

√M. 

Larger the number of epochs or realizations averaged, better the SNR of the result. Synchronized 
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averaging is a type of ensemble averaging. Algorithmic description of synchronized averaging: 

Obtain number of realizations of signal or event. 

Determine reference point for each realization. Trigger, stimulus, QRS in ECG, etc. 3.Extract 

parts of the signal corresponding to the events and add them to a buffer. Various parts may have 

different durations. Alignment of copies at trigger point is important; the tail ends of all parts 

may not be aligned. 4.Divide the result by the number of events added. 

Moving average filters 

When ensemble of several realizations are not available, synchronized averaging is not possible. 

Temporal averaging for nois eremoval is used. Temporal statistics used instead of ensemble 

statistics Temporal window of samples moved to obtain 

Output at various points of time: moving-window averaging or moving-average (MA) filter. 

Average weighted combination of samples General form of MA filter: 

 

x and y: input and output of filter. 

bk: filter coefficients or tap weights. N:order of filter. 

Effect of division by the number of samples used (N +1) Included in the values of the filter 

coefficients 

 

Fig. 5.1 Signal-flowdiagram of a moving-average filter of order N. Applying the z-

transform, we get the transfer function 
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X(z) and Y (z): z-transforms of x(n) and y(n) 

MA filter to remove noise—on Hann or Hanning filter 

 

Impulse response: let x(n)= δ(n).  

 

Transfer function of the Hanning filter: 

 

 

Double-zero at z = −1. 

Fig.5.2 Signal-flow diagram of the Hanning filter 

 

An MA filter is a finite impulse response (FIR) filter: 

Impulse response h(k) has a finite number of terms: h(k)= bk, k =0,1,2,...,N. An FIR filter may be 

realized non-recursively with no feedback. 

Output depends only on the present input sample and a few past input samples. 

Filter is a set of tap weights of the delay stages. Transfer function has no poles except at z =0: the 

filter is inherently stable. 

Filter has linear phase if the series of tap weights is symmetric or antisymmetric. Frequency 

response: 

substitute z = exp(jωT) in H(z), 

T: sampling interval in seconds, T =1/fs, f:frequencyin Hz, fs: sampling frequency, ω:radian 
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frequency, ω =2πf 

Set T =1 anddeal with normalized frequency in the range 0 ≤ ω ≤ 2π or 0 ≤ f ≤ 1; 

then f =1 or ω =2π represents the sampling frequency, lower frequency values r epresented as 

normalized fraction of fs. 

Frequency response of the Hanning filter: 

Letting exp(−jω) =cos(ω)−j sin(ω), 

 

 

Magnitude and phase responses: 

Fig. 5.3 Magnitude and phase responses of the Hanning (smoothing) filter 
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5.2 Frequency domain filters 

Filters may be designed in the frequency domain to provide specific low pass, highpass, 

bandpass, or band-reject (notch) characteristics. Implemented in software after obtaining FT of 

input signal, or converted into equivalent time-domain filters. Most commonly used designs are 

Butterworth, Chebyshev, elliptic, and Besselfilters.Well-established in the analog-filter domain: 

commence with ananalog design H(s) and apply the bilinear transformation to obtain a digital 

filter H(z) Frequency-domain filters may also be specified directly in terms of the values of the 

desired frequency response at certain frequency samples only, then transformed into the 

equivalent time-domain filter coefficients via the inverse Fourier transform. 

Design of Butterworth filters 

Removal of high frequency noise: Butterworth low pass filter 

Butterworth filters has maximally flat magnitude response in the pass-band. For butterworth 

lowpass filter of order N, frst 2N −1 derivatives of squared magnituderesponse are zero at 

Ω=0,where Ω =analog radian frequency. Butterworth filter response is monotonic in the pass-

band as well as in the stop-band. 

Basic Butterworth low pass filter function is given as 

 

| 

where Ha is the frequency response of the analog filter and 

Ωc is the cut off frequency in radians/s. Butterworth filter completely specified by Cut off 

frequency Ωc andorder N. As the order N increases, the filter response becomes more flat in the 

pass-band, and transition to the stop-band becomesfaster or sharper. 

 

ChangingtotheLaplacevariable s, 
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Polesofsquaredtransferfunctionlocatedwithequalspacingaroundacircleofradius Ωc in the s-plane, 

distributed symmetrically on either side of imaginary axis s = jΩ. Nopole on imaginary axis; 

poles on real axis for odd N. Angular spacing between poles is π N.If Ha(s)Ha(−s) has a pole at    

s = sp, it will have a pole at s = −sp as well. 

For the filter coefficients to be real,complex poles must appear in conjugate pairs. 

To obtain a stable and causal filter, form Ha(s) with only the N poles on the left- handside of the 

s-plane. Pole positions in the s-plane given by 

 

k =1,2,...,2N 

Once pole positions obtained in the s-plane, derive the transfer function in the analog Laplace 

domain 

 

 

where pk, k =1,2,...,N,are the N poles in the left-half of the s-plane, and G is again factor 

specified as needed or to normalize the gain at DC(s =0) to be unity. 

Bilineartransformation(BLT): 

 

Butterworth circle in the s-plane maps to a circle in the z-plane with real axis intercepts at           

z = 2−ΩcT /2+ΩcT and z = 2+ΩcT/ 2−ΩcT 

Polesat s = sp and s = −sp inthe s-plane map to z = zp and z =1/zp. 
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Poles in the z-plane not uniformly spaced around the transformed Butterworth circle. For 

stability, all poles of H(z) must lie within the unit circle in the z-plane. 

Unit circle in the z-plane: z = exp(jω). For points on the unit circle, we have 

 

For the unit circle, σ =0; therefore, continuous-time(s-domain) frequency variable Ω Related to 

discrete-time (z-domain) frequency variable ω as 

Ω=2 Ttan(ω/2) and ω =2tan−1(ΩT/ 2) 

Non linear relationship warps frequency values: mapped from the imaginary (vertical) axis in the 

s-plane to the unit circle in the z-plane should be taken in to account in specifying cut off 

frequencies. 

Removal of low-frequency noise: Butterworth high pass filters 

Butterworth high pass filter is specified directly in the discrete-frequency domain as 

|H(k)|2 = 1/(1+ kc/ k)2N 

 

Optimal filtering: WienerFilter 

Wiener filter theory provides for optimal filtering by taking into account the statistical 

characteristics of the signal and noise processes. The filter parameters are optimized with 

reference to a performance criterion. The output is guaranteed to be the best achievable result 

under the conditions imposed and the information provided. 

Single-input,single-output,FIR filter with real input signal values and real coefficients. Figure 

shows the signal-flow diagram of a transversal filter with coefficients or tap weights wi , i 

=0,1,2,...,M −1, input x(n),andoutput ˜ d(n). 

Output d(n) =an estimate of some “desired” signal d(n) that represents the ideal, uncorrupted 

signal. If we assume that the desired signal is available, estimation error between the output and 

the desired signal: 

e(n)= d(n)− ˜ d(n). 
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Fig.5.4 Block diagram of the Wiener filter 

 

d(n) =output of a linear FIR filter = convolution of the input x(n) with the tap-weight sequence 

wi: 

 

wi is also the impulse response of the filter. 

For easier handling of the optimization procedures, the tap-weight sequence may be written as an 

M ×1tap-weightvector: 

w =[w0,w1,w2,...,wM−1]T, where the bold-faced character w represents a vector; superscript T: 

vector transposition. 

Tap weights convolved with M values of input. Write the M input values as an M ×1 vector: 

x(n)=[x(n),x(n−1),...,x(n−M +1)]T. Vector x(n) varies with time: at a given instant n the vector 

contains the current input sample x(n) and the 

preceding (M−1) input samples x(n−1) to x(n−M +1). 

Wiener filter theory estimates the tap-weight sequence that minimizes the MS value of the 

estimation error; 

output= minimum mean-squared error (MMSE) estimate of the desired response: optimal filter. 

Mean-squarederror (MSE) defined as J(w)= E[e2(n)] 

= E[{d(n)−wTx(n)}{d(n)−xT (n)w}]  

= E[d2 (n)]−w TE[x(n)d(n)]−E[d(n)xT(n)]w + wT E[x(n)xT(n)]w. 



10 

 

Assumption: input vector x(n) and desired response d(n) are jointly stationary. Then: E[d2(n)] 

=variance of d(n) = σ2 d, assuming that the meanof d(n) is zero. 

E[x(n)d(n)] = M×1 vector=cross-correlation between input vector x(n) and desired response d(n): 

Θ = E[x(n)d(n)] 

Θ =[θ(0),θ(−1),...,θ(1−M)]T, where 

θ(−k)= E[x(n−k)d(n)],k =0,1,2,...,M −1 

E[d(n)xT(n)] is the transpose of E[x(n)d(n)]; therefore ΘT = E[d(n)xT(n)]. 

E[x(n)xT(n)]= autocorrelation of input vector x(n) computed as the outer product of the vector 

with itself: 

Φ = E[x(n)xT(n)] 

MSE expression is simplified to 

MSE is a second-order function of the tap-weight vector w. To determine the optimal tap- weight 

vector, denoted by wo, differentiate J(w) with respect to w, set it to zero, and solve the resulting 

equation 

 

Condition for the optimal filter: 

Φwo = Θ. 

Wiener-Hopf equation or the normal equation. Optimal Wiener filter: 

wo = Φ−1 Θ. 

Adaptive noise cancellation 

Primary input orobservedsignal x(n) is a mixture of the signal of interest v(n) and the“primary 

noise” m(n): 

x(n)= v(n)+ m(n) 

It is desired that the interference or noise m(n) be estimated and removed from x(n) In order to 

obtain the signal of interest v(n) 
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Fig.5.5 :Block diagram of a generic adaptive noise canceler (ANC) or adaptive filter 

 

It is assumed that v(n) and m(n) are uncorrelated. ANC requires a second input:“reference input” 

r(n), uncorrelated with the signal of interest  v(n) but closely related to or correlated with the 

interference or noise m(n) in some manner that need not be known. The ANC filters or modifies 

the reference input r(n) to obtain a signal y(n) as close to noise m(n) as possible y(n) is 

subtracted from primary input to estimate desired signal: 

˜v(n) = e(n) = x(n) − y(n). 

Assume that the signal of interest v(n), the primary noise m(n), the reference input r(n), and the 

primary noise estimate y(n) are statistically stationary and have zero means. 

Because v(n) is uncorrelated with m(n) and y(n) and all of them have zero means, we have 

E[v(n){m(n) − y(n)}] = E[v(n)] E[m(n) − y(n)]= 0. 

E[e2(n)] = E[v2(n)] + E[{m(n) − y(n)}2]. 

Output e(n) used to control the adaptive filter. In ANC, the objective is to obtain an output e(n) 

that is a least squares fit to the desired signal v(n). Achieved by feeding the output back to the 

adaptive filter and adjusting the filter to minimize the total output power. 

System output: error signal for the adaptive process. Signal power E[v2(n)] unaffected as the 

filter is adjusted to minimize E[e2(n)]; the minimum output power is min E[e2(n)] = E[v2(n)] + 

min E[{m(n) − y(n)}2].As the filter is adjusted so that E[e2(n)] is minimized, E[{m(n) − y(n)}2] 

is minimized. 
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Thus the filter output y(n) is the MMSE estimate of the primary noise m(n). Moreover, when 

E[{m(n) − y(n)}2] is minimized, E[{e(n) − v(n)}2] is minimized, because e(n) − v(n) = m(n) − 

y(n). Adapting the filter to minimize the total output power is equivalent to causing the output 

e(n) to be the MMSE estimate of the signal of interest v(n) for the given structure and 

adjustability of the adaptive filter and for the  given reference input. Output e(n) contains signal 

of interest v(n) and noise. The output noise is given by e(n) − v(n) = ˜v(n) − v(n) = m(n) − y(n). 

Minimizing E[e2(n)] minimizes E[{m(n) − y(n)}2]; 

Therefore minimizing the total output power minimizes the output noise power. Because the 

signal component v(n) in the output remains unaffected, minimizing the total output power 

maximizes the output SNR. output power is minimum when E[e2(n)] = E[v2(n)]. 

When this condition is achieved, E[{m(n) − y(n)}2] = 0.  

We then have y(n) = m(n) and e(n) = v(n): 

then, the output is a perfect and noise free estimate of the desired signal. Optimization of the 

filter may be performed by expressing the error in terms of the tap weight vector and applying 

the procedure of choice. 

 

wk, k = 0, 1, 2, . . . ,M − 1, are the tap weights, and M is the order of the filter. 

Estimation error e(n) or output of ANC: 

e(n) = x(n) − y(n).Define the tap weight 

vector at time n as w(n) = [w0(n),w1(n), . . . ,wM−1(n)]T . Tap input vector at each time instant 

n: r(n) = [r(n), r(n − 1), . . . , r(n −M + 1)]T. Then, estimation error e(n): 

e(n) = x(n) − wT (n) r(n). 

5.3 LMS and RLS algorithms in adaptive filtering LMS Algorithm 

Adjust the tapweight vector to minimize the MSE. Squaring the estimation error e(n) 
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Squared error is a second order or quadratic function of the tap weight vector and the inputs, and 

may be depicted as a concave hype rparaboloidal, bowl like surface. Aim of optimization: reach 

the bottom of the bowl like function. Gradient based methods may be used for this purpose. 

Taking the expected values of the entities and the derivative with respect to the tap weight 

vector, we may derive the WienerHopf equation for the ANC. The LMS algorithm takes a 

simpler approach: assume the square of the instantaneous error to stand for an estimate of the 

MSE. 

LMS algorithm based on the method of steepest descent: 

new tapweight vector w(n + 1) given by the present tapweight vector w(n) plus a correction 

proportional to the negative of the gradient Δ(n) of the squared error: 

w(n + 1) = w(n) − μ Δ (n). Parameter μ controls stability and rate of convergence: larger the 

value of μ, larger is the gradient of the error 

that is introduced, and the faster is the convergence. LMS algorithm approximates Δ (n) by the 

derivative of the squared error with respect to the tapweight vector as 

 

 

Using this estimate of the gradient we get w(n + 1) = w(n) + 2 μ e(n) r(n).This is known as the 

WidrowHoff LMS algorithm. 

Advantages of LMS algorithm: 

simplicity and ease of implementation. Although the method is based on the MSE and gradient 

based optimization, the filter expression itself is free of  differentiation, squaring, or averaging. 
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RLS Algorithm 

 

RLS was discovered by Gauss but laid unused or ignored until 1950 when Plackett rediscovered 

the original work of Gauss from 1821. In general, the RLS can be used to solve any problem that 

can be solved by adaptive filters. For example, suppose that a signal d(n) is transmitted over an 

echoey, noisy channel that causes it to be received as 

 

 

where  represents additive noise. We will attempt to recover the desired signal  by use 

of a  -tap FIR filter 

 

 

where  is the vector containing the 

most recent samples of  . Our goal is to estimate the parameters of the filter , and at each 

time n we refer to the new least squares estimate by    . As time evolves, we would like to    

avoid completely redoing the least squares  algorithm to find the new estimate for  , in 

terms of . 

 

The benefit of the RLS algorithm is that there is no need to invert matrices, thereby saving 

computational power. Another advantage is that it provides intuition behind such results as the 

Kalman filter. 

 

he idea behind RLS filters is to minimize a cost function  by appropriately selecting the filter 

coefficients        , updating the filter as new data arrives. The error signal  and desired signal 

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Adaptive_filter
https://en.wikipedia.org/wiki/Noisy_channel
https://en.wikipedia.org/wiki/Additive_noise
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Loss_function
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are defined in the negative feedback diagram below: 

 

 

 

 

Fig.5.5. Block diagram for RLS algorithm 

 

The error implicitly depends on the filter coefficients through the estimate : 

 

 

 

The weighted least squares error function  —the cost function we desire to minimize—being a 

function of e(n) is therefore also dependent on the filter coefficients: 

 

 

where  is the "forgetting factor" which gives exponentially less weight to older error 

samples. 

 

The cost function is minimized by taking the partial derivatives for all entries  of the coefficient 

vector and setting the results to zero 

https://en.wikipedia.org/wiki/Negative_feedback
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Next, replace  with the definition of the error signal 

 

 

Rearranging the equation yields 

 

 

This form can be expressed in terms of matrices 

 

where  is the weighted sample covariance matrix for , and is the equivalent 

estimate for the cross-covariance between  and  . Based on this expression we find the 

coefficients which minimize the cost function as 

 

6 Application of these techniques in removal of artifacts in bio-signals. 

Adaptive Cancellation of the Maternal ECG to Obtain the Fetal ECG 

Widrow et al. proposed a multiple reference ANC for removal of the maternal ECG in order 

to obtain the fetal ECG. Combined ECG obtained from a single abdominal lead. Maternal ECG 

was obtained via four chest leads 

https://en.wikipedia.org/wiki/Sample_mean_and_sample_covariance
https://en.wikipedia.org/wiki/Cross-covariance
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Fig.5.6 Result of adaptive cancellation of the maternal chest ECG from 
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Questions: 

1. Explain about the Linear shift invariant filters with block diagram. 

2. Give the function of individual block of Moving average filters with block 

diagram. 

3. Explain in detail about the Signal  flow  diagram  and transfer function of 

Hanning filter 

4. Justify how the LMS algorithms is used in the removal of artifacts 

5. Justify how the RLS algorithms is used in the removal of artifacts 

6. Give the block diagram of Wiener filter 

7. Explain  in different steps that how the Adaptive filter is work for noise 

cancellation 

8. Design a butterworth filter for the removal of high frequency noise and low 

frequency noise.  


