
1 
 

 

 

 

    SCHOOL OF ELECTRICAL & ELECTRONICS ENGINEERING 

DEPARTMENT OF ELECTRONICS & INSTRUMENTATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT-I 

                                          EMBEDDED SYSTEM DESIGN– SBMA5201 



2 
 

ARM ARCHITECTURE 

 

ARM Architecture- ARM Design Philosophy, Registers, Program Status Register, 

Instruction Pipeline, Interrupts and Vector Table, Architecture Revision, ARM 

Processor Families. 

 

1.History of the ARM Processor 

 

Developed the first ARM Processor  (Acorn RISC Machine) in 1985 at Acorn 

Computers Limited. 

• Established a new company named Advanced RISC Machine Limited and 

developed ARM6. 

• Continuation of the architecture enhancements from the original architecture 

2.Features of the ARM Processor 
 

Incorporate features of Berkeley RISC design 

 

-a large register file 

 

-a load/store architecture 

 

-uniform and fixed length instruction field 
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-simple addressing mode 

 

• Other ARM architecture features 

 

-Arithmetic Logic Unit and barrel shifter 

 

-auto increment and decrement addressing mode 

 

-conditional execution of instructions 

 

• Based on Von Neumann Architecture or Harvard Architecture 

 

3.The Evolution of the ARM architecture: 
 

 

 

 

 

 Figure 1.1 ARM  Families  
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Architecture V1 was implemented only in the ARM1 CPU and was not utilized in a 

commercial product. Architecture V2 was the basis for the first shipped processors. These two 

architectures were developed by Acorn Computers before ARM became a company in 1990. 

After that introduced ARM the Architecture V3, which included many changes over its 

predecessors .These changes resulted in an extremely small and power-efficient processor 

suitable for embedded systems .Architecture V4, co-developed by ARM and Digital Electronics 

Corporation, resulted in the Strong ARM series of processors. These processors are very 

performance-centric and do not include the on chip debug extensions. 

This architecture was further developed to include the Thumb 16-bitinstruction set 

architecture enabling a 32-bit processor to utilize a 16-bit system. Today, ARM only licenses 

cores based on Architecture V4T or above. 

The latest architectures, version 5TE and 5TEJ, embody added instructions for DSP 

applications and the Jazelle-Java extensions, respectively. 

Currently, the ARM9E and 10E family of processors are theonly implementations of 

these architectures. Details on these architectures and cores will be provided later in the course. 
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4.Architecture basics 

ARM cores use a 32-bit, Load-Store RISC architecture. That means that the core cannot 

directly manipulate the memory. All data manipulation must be done by loading registers with 

information located in memory, performing the data operation and then storing the value back to 

memory. There are 37 total registers in the processor. However, that number is split among seven 

different processor modes. The seven processor modes are used to run user tasks, an operating 

system, and to efficiently handle exceptions such as interrupts. Some of the registers with in each 

mode are reserved for specific use by the core, while  most are available for general use. The 

reserved registers that  are used by the core for specific functions are r13 is commonly used as the 

stack pointer (SP), r14 as a link register (LR), r15as a program counter (PC), the Current Program 

Status Register (CPSR), and the Saved Program Status Register (SPSR). 

The SPSR and the CPSR contain the status and control bits specific to the properties the 

processor core is operating under. These properties define the operating mode, ALU status flags, 

interrupt disable/enable flags and whether the core is operating in 32-bit ARM or 16-bit Thumb 

state. 
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There are 37 total registers divided among seven different processor modes. Figure 09 

shows thebank of registers visible in each mode .User mode, the only non-privileged mode, has 

the least number of total registers visible. It has noSPSR and limited access to the CPSR. FIQ 

and IRQ are the two interrupt modes of the CPU 

 

 

 

Figure 1.2 Different modes of ARM 

 

There are 37 total registers divided among seven different processor modes. Figure 02 

shows the bank of registers visible in each mode. User mode, the only non-privileged mode, has 

the least number of total registers visible. It has no SPSR and limited 
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access to the CPSR. FIQ and IRQ are the two interrupt modes of the CPU.Supervisor mode is the 

default mode of the processor on start up or reset. Undefined mode traps unknown or illegal 

instructions when they are passed through the pipeline. Abort mode traps illegal memory 

accesses as a result of fetching instructions or accessing data. 

Finally, system mode, which uses the user mode bank of registers, was introduced to provide an 

additional privileged mode when dealing with nested interrupts. 

Each additional mode offers unique registers that are available for use by exception handling 

routines. These additional registers are the minimum number of registers required to preserve the 

state of the processor, save the location in code, and switch between modes. 

FIQ mode, however, has an additional five banked registers to provide more flexibility and 

higher performance when handling critical interrupts. 

When the ARM core is in Thumb state, the registers banks are split into low and high register 

domains. The majority of instructions in Thumb state have a 3-bit register specifier. As a result, 

these instructions can only access the low registers in Thumb, R0 through R7. The high 

registers, 
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R8through R15, have more restricted use. Only a few instructions have access to these registers. 

TDMI 

stands for: 

• Thumb, which is a 16-bit instruction set extension to the 32-bit ARM architecture, referred as 

states of the processor. 

• "D" and "I" together comprise the on-chip debug facilities offered on all ARM cores.These 

stand for the Debug signals and EmbeddedICE logic, respectively. 

• The M signifies the support for 64-bit results and an enhanced multiplier, resulting inhigher 

performance. This multiplier is now standard on all ARMv4 architectures and\above. 

 

5. Thumb 16-bit Instructions 

With growing code and data size, memory contributes to the system cost. The need to 

reduce memorycost leads to smaller code size and the use of narrower memory. Therefore ARM 

developed a modified instruction set to give market-leading code density for compiled standard 

C language. 

There is also the problem of performance loss due to using a narrow memory path, such 

as a 16-bitmemory path with a 32-bit processor. 
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The processor must take two memory access cycles to fetch an instruction or read and write data. 

To address this issue, ARM introduced another set of reduced 16-bit instructions labeled Thumb, 

based on the standard ARM 32-bit instruction set. 

For Thumb to be used, the processor must go through a change of state from ARM to Thumb in 

order to begin executing 16-bit code. This is because the default state of the core is ARM. 

Therefore, every application must have code at boot up that is written in ARM. If the 

application code is to be compiled entirely for Thumb, then the segment of ARM boot code 

must change the state of the processor. Once this is done, 16-bit instructions are fetched 

seamlessly into the pipeline without any result. 

It is important to note that the architecture remains the same. The instruction set is actually a 

reduced set of the ARM instruction set and only the instructions are 16-bit; everything else in the 

core still operates as 32-bit.An application code compiled in Thumb is 30% smaller on average 

than the same code compiled in ARM and normally 30% faster when using narrow 16-bit 

memory systems. 
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Figure 1.3  Register Bank  

Figure 1.3 shows the register bank in the center of the diagram, plus the required address bus 

and data bus. The multiplier, in-line barrel shifter, and ALU are also shown. In addition, the 

diagram illustrates the in-line decompression process of Thumb instructions while in the decode 

stage of the pipeline. This process creates a 32-bit ARM equivalent instruction from the 16-bit 

Thumb instruction, decodes the instruction, and passes it on to the execute stage. 
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6.ARM design philosophy 

Small processor for lower power consumption (for embedded system) 

• High  code density for limited memory and Physical size 

restrictions 

• The ability to use slow and low-cost memory 

• Reduced die size  for reducing manufacture cost and 

accommodating more peripherals 

 

6.1 Registers 

ARM has 37 registers all of which are 32-bits long. 1 dedicated program counter 1 dedicated 

current program status register 5 dedicated saved program status registers 30 general purpose 

registers The current processor mode governs which of several banks is accessible. Each 

mode can access a particular set of r0-r12 registers a particular r13 (the stack pointer, sp) and 

r14 (the link register, lr) the program counter, r15 (pc) the current program status register, 

cpsr Privileged modes (except System) can also access a particular spsr (saved program status 

reg 

 

The ARM1136JF-S processor has a total of 37 registers: 

• 31 general-purpose 32-bit registers 
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• six 32-bit status registers. These registers are not all accessible at the same time. The 

processor state and operating mode determine which registers are available to the programmer 

The ARM state register set In ARM state, 16 general registers and one or two status 

registers are accessible at any time. In privileged modes, mode-specific banked registers become 

available. 

The ARM state register set contains 16 directly-accessible registers, r0-r15. Another 

register, the Current Program Status Register (CPSR), contains condition code flags, status bits, 

and current mode bits. Registers r0-r13 are general-purpose registers used to hold either data or 

address values. Registers r14, r15,  and the SPSR have the following special functions 

 

Link Register Register r14 is used as the subroutine Link Register (LR). Register r14 receives 

the return address when a Branch with Link (BL or BLX) instruction is executed. You can treat 

r14 as a general-purpose register at all other times. The corresponding banked registers r14_svc, 

r14_irq, r14_fiq, r14_abt, and r14_und are similarly used to hold the return values when 

interrupts and exceptions arise, or when BL or BLX instructions are executed within interrupt or 

exception routines. 
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Program Counter Register r15 holds the PC: 

• in ARM state this is word-aligned 

• in Thumb state this is halfword-aligned 

• in Java state this is byte-aligned. Saved Program Status Register 

In privileged modes, another register, the Saved Program Status Register (SPSR), is 

accessible. This contains the condition code flags, status bits, and current mode bits saved as a 

result of the exception that caused entry to the current mode. 

Banked registers have a mode identifier that indicates which mode they relate to. These mode 

identifiers are listed in Table Register mode identifiers 

 

 

 

 

FIQ mode has seven banked registers mapped to r8–r14 (r8_fiq– r14_fiq). As a result many FIQ 

handlers do not have to save any 
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registers. The Supervisor, Abort, IRQ, and Undefined modes each have alternative mode-specific 

registers mapped to r13 and r14, permitting a private stack pointer and link register foreach mode 

 

 

 

 

 

Figure 1.4 register set showing banked registers 
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Figure  1.5  ARM register 

7. Thumb state register set 

The Thumb state register set is a subset of the ARM state set. The programmer has direct access 

to: 

• Eight general registers, r0–r7 

• The PC 

• A stack pointer, SP (ARM r13) 

• An LR (ARM r14) 

• The CPSR. 

There are banked SPs, LRs, and SPSRs for each privileged mode.
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Figure 1.6   THUMB register 

 

 

7.1 Accessing high registers in Thumb state 

In Thumb state, the high registers, r8–r15, are not part of the standard register set. You can use 

special variants of the MOV instruction to transfer a value from a low register, in the range r0– 

r7, to a high register, and from a high register to a low register. The CMP instruction enables you 

to compare high register values with low register values. The ADD instruction enables you to 

add high register values to low register values. 

. 
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7.2 ARM state and Thumb state registers relationship 

Figure1. 2-1.6 shows the relationships between the Thumb state and ARM state registers 

 

Registers r0–r7 are known as the low registers. Registers r8–r15 are 

known as the high registers. 

7.3 The program status registers 
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program status registers: 

• hold the condition code flags 

• control the enabling and disabling of interrupts 

• set the processor operating mode. 

The arrangement of bits is shown in Figure 

 

 

 

 

 

 

Figure 1.7 program status registers 
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7.4 The condition code flags 

The N, Z, C, and V bits are the condition code flags, You can set these bits by arithmeticand 

logical operations. The flags can also be set by MSR and LDM instructions. 

TheARM7TDMI-S tests these flags to determine whether to execute an instruction. 

All instructions can execute conditionally in ARM state. In Thumb state, only the Branch 

instruction can be executed conditionally 

 

7.5 The control bits 

The bottom eight bits of a PSR are known collectively as the 

control bits. They are the: 

• Interrupt disable bits 

• T bit 

• Mode bits. 

The control bits change when an exception occurs. When the processor is operating in a 

privileged mode, software can manipulate these bits. 

7.6 Interrupt disable bits 

The I and F bits are the interrupt disable bits: 

• when the I bit is set, IRQ interrupts are disabled 

• when the F bit is set, FIQ interrupts are disabled. 

7.7 T bit 
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The T bit reflects the operating state: 

• when the T bit is set, the processor is executing in Thumb state 

• when the T bit is clear, the processor executing in ARM state. The operating state is 

reflected by the CPTBIT external signal. 

7.8 Mode bits 

The M4, M3, M2, M1, and M0 bits (M[4:0]) are the mode bits. These bits determine the 

processor operating mode . Not all combinations of the mode bits define a valid processor mode, 

so take care to use only the bit combinations shown 

7.9 Reserved bits 

The remaining bits in the PSRs are unused but are reserved. When changing a PSR flag or 

control bits make sure that these reserved bits are not altered. Also, make sure that your program 

does not rely on reserved bits containing specific values because future processors might have 

these bits set to one or zero 

 

The ARM7TDMI-S is a member of the ARM family of general- purpose 32-bit microprocessors. 

The ARM family offers high performance for very low power consumption and gate count. The 

ARM architecture is based on Reduced Instruction Set Computer (RISC) principles. The RISC 

instruction set, and related decode mechanism are much simpler than those of Complex 

Instruction Set Computer (CISC) designs. This simplicity gives: • a high 
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Instruction throughput  

• an excellent real-time interrupt response  

• a small, cost-effective, processor macrocell. 

8.The instruction pipeline 
 

The ARM7TDMI-S uses a pipeline to increase the speed of the flow of instructions to the 

processor. This allows several operations to take place simultaneously, and the processing, and 

memory systems to operate continuously. 

A three-stage pipeline is used, so instructions are executed in three stages: 

• Fetch 

 

• Decode 

 

• Execute. 

 

The three-stage pipeline is shown in Figure . 
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8.1The Program Counter (PC) points to the instruction being fetched rather than to the 

instruction being executed. 

During normal operation, while one instruction is being executed, its successor is being decoded, 

and a third instruction is being fetched from memory 

 

9. The ARM Processor Families (I) 
 

The ARM7 Family 

32-bit RISC Processor. Support three-

stage pipeline 

Uses Von Neumann Architecture. 

 

 

 

 

 Figure 1.8  ARM7TDMI           Figure 1.9 ARM7EJ-S 
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Widely used in many applications such as palmtop computers, portable instruments, smart card. 

9.1 The ARM Processor Families (II) 

The ARM9 Family 

32-bit RISC Processor with ARM and Thumb instruction sets Supports five-stage pipeline 

Uses harvard architecture 

 

 



24 
 

a r 

ARM920T 

- MPU 

ETM Mtsñae 

Uses Harvard architecture 

 

 Figure  1.10  ARM920T Processor  Figure 1.11 ARM946E-S Processor 

 

 
Characteristics of ARM9 Thumb Family 

 Cache 
size(Inst/Data) 

Tightly 

Coupled 

Wemoy 

Memory Mgmt Thumb DSP Jazelle 

ARMD20T 6hl6k  \1\1U Yes No No 

ARMD22T 8W8f  \1\1U Yes No No 

 

Characteristics of ARM9E Family 

 Cache 

size(Inst/ 

Data) 

Tightly 

Couple

d 

Memor

y 

Memor

y 

Mgmt 

Thumb DSP Jazelle 

ARI\1926EJ

-S 

Variable Yes  
 

Yes Yes Yes 

ARL1946E-

S 

Variable Yes MPU Yes Yes No 

ARL1966E-

S 

 Yes  Yes Yes No 

ARL1968E—

S 

N.!a Yes DMA Yes Yes No 

ARL1996H-

S 

  MPU Yes Yes No 
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Widely used in mobile phones, PDAs, digital cameras, automotive systems, 

industrial control systems. 

9.2  ARM Processor Families (III) 

 

The ARM10 Family 

32-bit RISC processor with ARM, Thumb and DSP 

instruction sets. 

Supports six-stage Pipelines Uses 

Harvard Architecture 

 

 

 

 

Figure  1.11 ARM1020E Processor 
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Widely used in videophone, PDAs, set-top boxes, game console, digital video cameras, 

automotive and industrial control systems. 

 

 

9.4 ARM PROCESSOR FAMILIES (IV) 

The ARM11 Family 

 

32-bit RISC processor with ARM, Thumb and DSP instruction sets. 

Uses Harvard Architecture. 

Supports eight-stage Pipelines except ARM1156T2 uses 

nine-stage pipeline. 

Widely used in automotive and industrial control systems, 3D graphics, security critical 

applications 
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10. Characteristics of ARM11 family 

 
 

10.1ARM Pipelines 

Pipeline mechanism to increase execution speed 

• The pipeline design of each processor family is different 

 

10.2 ARM Processor Modes 

 

Unprivileged mode 

 

User mode Privileged mode Abort mode 

Fast Interrupt Request mode Interrupt 

Request mode Supervisor mode 
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System mode 

Undefined mode 

10.3Exceptions 

Exceptions are taken whenever the normal flow of a program must temporarily halt, for 

example, to service an interrupt from a peripheral. Before attempting to handle an exception, the 

processor preserves the critical parts of the current processor state so that the original program 

can resume when the handler routine has finished 

10.4 Exceptions and Interrupts 

 

The ARM processor can work in one of many operating modes. So far we have only considered 

user mode, which is the "normal" mode of operation. 

The processor can also enter "privileged" operating modes which are used to handle exceptions 

and SWIs 

The Current Processor Status Register CPSR has 5 bits [bit4:0] to indicate which mode the 

processor is in:- 
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10.5 How are exceptions generated 

By default, the processor is usually in user mode 

It enters one of the exception modes when unexpected events 

occur. 

There are three different types of exceptions (some are called interrupts):- 

 As a direct result of executing an instruction, such as: Software Interrupt 

Instruction (SWI) 

Undefined or illegal instruction 

Memory error during fetching an instruction 

 As a side-effect of an instruction, such as: Memory fault during 

data read/write from memory Arithmetic error (e.g. divide by zero) 

 As a result of external hardware signals, such as: Reset 

Fast Interrupt (FIQ) Normal 

Interrupt (IRQ) 

10.6 Shadow Registers 

As the processor enters an exception mode, some new registers are automatically switched in:- 

For example, an external event (such as movement of the mouse) occurs that generates a 

Fast Interrupt (on the FIQ pin), the processor enters FIQ operating mode. It sees the same r0 - 
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r7 as before, but sees a new set of r8 - r14, and in addition, an extra register called the Saved 

Processor Status Register (SPSR) stores the value of the CPSR. By swapping to some new 

registers, it makes it easier for the programmer to preserve the state of the processor. 

For example, during FIQ mode, r8 - r14 can be used freely. On returning back to user 

mode, the original values of r8 - r14 will be automatically restored. 

10.7 What happens when an exception occurs 

ARM completes current instruction as best it can. It departs from current instruction sequence to 

handle the exception by performing the following steps:- 

1. It changes the operating mode corresponding to the particular exception. 

2. It saves the current PC in the r14 corresponding to the new mode. For example, if FIQ 

occurs, the PC value is stored in r14(FIQ). 

3. It saves the old value of CPSR in the Saved Processor Status Register of the new mode. 

4. It disables exceptions of lower priority (to be considered later). 

5. It forces the PC to a new value corresponding to the exception. This is effectively a forced 

jump to the Exception Handler or Interrupt Service Routine. 
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10.8 Where is the exception handler routine 

Exceptions can be viewed as "forced" subroutine  calls. When and if an exception occurs is not 

predictable (unless it is a SWI exception). A unique address is pre-defined for each exception 

handler (IRQ, FIQ, etc), and a branch is made to this address. The address to which the processor 

is forced to branch to is called the exception/interrupt vector. 

10.9 Exception vector addresses 

Each vector (except FIQ) is 4 bytes long (i.e. one instruction) You put a branch instruction at this 

address: B exception handler FIQ is special in two ways:- 

1. You can put the actual FIQ handler (also called Fast Interrupt Service Routine) at 

0x0000001C onwards, because FIQ vector occupies the highest address 

2. FIQ has many more shadow registers. So you don‟t have to save as many registers on the 

stack as other exceptions - faster. 

 

10.10Exception Return 

Once the exception has been handled (by the exception handler), 
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the user task is resumed. 

The handler program (or Interrupt Service Routine) must restore the user state exactly as it 

was before the exception occurred: 

1. Any modified user registers must be restored from the 

handlers stack 

2. The CPSR must be restored from the appropriate SPSR 

3. PC must be changed back to the instruction address in the user instruction stream 

Steps 1 and 3 are done by user, step 2 by the processor Restoring registers from the stack would 

be the same as in the case of subroutine Restoring PC value is more complicated. The exact way 

to do it 

depends on which exception you are returning from. 

10.11 Exception Return 

Once the exception has been handled (by the exception handler), the user task is resumed. The 

handler program (or Interrupt Service Routine) must restore the user state exactly as it was 

before the exception occurred 

1. Any modified user registers must be restored from the handler‟s stack 

2. The CPSR must be restored from the appropriate SPSR 
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    PC must be changed back to the instruction address in the user instruction stream Steps 1 and 3 

are done by user, step 2 by the processor 

Restoring registers from the stack would be the same as in the case of subroutines Restoring PC 

value is  more  complicated. The exact way to do it depends on which exception you are 

returning from. 

Remember that the return address was saved in r14 before entering the exception handler. 

To return from a SWI or undefined instruction trap, use: MOVS pc, r14 

To return from an IRQ, FIQ or prefetch abort, use: SUBS pc, r14, #4 

To return from a data abort to retry the data access, use: SUBS pc,  r14,  #8 If  the destination 

register is  the PC,  the „S‟ modifier does NOT mean ―set the flags‖, but ―restore the CPSR‖ 

 

The differences between these three methods of return is due to the pipeline architecture 

of the ARM processor. The PC value stored in r14 can be one or two instructions ahead due to 

the instruction prefetch pipeline. 

10.12Exception Priorities 
 

Since exceptions can arise at the same time, a priority order has to be clearly defined. For the 

ARM processor this is: 

Reset (highest priority) 

Data abort (i.e. Memory fault in read/write data) Fast Interrupt 

Request (FIQ) 

Normal Interrupt Request (IRQ) Prefetch 

abort 

10.13 Software Interrupt (SWI), undefined instruction 

Consider the case of a FIQ and an IRQ occurring at the same time. The processor will process 

the FIQ handler first and ―remember‖ that there is IRQ pending. On return from FIQ, the process 

will immediately go to the IRQ handler. 
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11. Interrupts 

The processor has two interrupt inputs, for normal interrupts (nIRQ) and fast interrupts (nFIQ). 

Each interrupt pin, when asserted and not masked, causes the processor to take the appropriate 

type of interrupt exception..The CPSR.F and CPSR.I bits control masking of fast and normal 

interrupts respectively. 

A number of features exist to improve the interrupt latency, that is, the time taken between the 

assertion of the interrupt input and the execution of the interrupt handler. By default, the 

processor uses the Low Interrupt Latency (LIL) behaviors introduced in version 6 
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and later of the ARM architecture. The processor also has a port for connection of a Vectored 

Interrupt Controller (VIC), and supports Non-Maskable Fast Interrupts (NMFI). 

The following subsections describe interrupts: 

 Interrupt request 

 Fast interrupt request 

 Non-maskable fast interrupts 

 Low interrupt latency 

 Interrupt controller. 

 

 

11.1 Interrupt request 

 

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. An IRQ has 

a lower priority than an FIQ, and is masked on entry to an FIQ sequence.  You  must ensure  that  

the nIRQ input is held LOW until the processor acknowledges the interrupt request, either from 

the VIC interface or the software handler. 

Irrespective of whether the exception is taken from ARM state or Thumb state, an IRQ handler 

returns from the interrupt by executing: 

SUBS PC, R14_irq, #4 

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0363g/BEIDDFBB.html#BEIIBGCG
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You can disable IRQ exceptions within a Privileged mode by setting the CPSR.I bit to b1. See 

Program status registers. IRQ interrupts are automatically disabled when an IRQ occurs, by 

setting the CPSR.I bit. You can use nested interrupts but it is up to you to save any corruptible 

registers and to re-enable IRQs by clearing the CPSR.I bit. 

11.2 Fast interrupt request 

 

The Fast Interrupt Request (FIQ) reduces the execution time of the exception handler relative to 

a normal interrupt. FIQ mode has eight private registers to reduce, or even remove the 

requirement for register saving (minimizing the overhead of context switching). 

An FIQ is externally generated by taking the nFIQ input signal LOW. You must ensure that the 

nFIQ input is held LOW until the processor acknowledges the interrupt request from the 

software handler. 

Irrespective of whether exception entry is from ARM state or Thumb state, an FIQ handler 

returns from the interrupt by executing: 

SUBS PC, R14_fiq, #4 
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If Non-Maskable Fast Interrupts (NMFIs) are not enabled, you can mask FIQ exceptions by 

setting the CPSR.F bit to b1. For more information see: 

 Program status registers 

 Non-maskable fast interrupts. 

 

FIQ and IRQ interrupts are automatically masked by setting the CPSR.F and CPSR.I bits when 

an FIQ occurs. You can use nested interrupts but it is up to you to save any corruptible registers 

and to re-enable interrupts. 

11.3 Non-maskable fast interrupts 

 

When NMFI behavior is enabled, FIQ interrupts cannot be  masked by software. Enabling NMFI 

behavior ensures that when the FIQ mask, that is, the CPSR.F bit, is cleared by the reset handler, 

fast interrupts are always taken as quickly as possible, except during handling of a fast interrupt. 

This makes the fast interrupt suitable for signaling critical events. NMFI behavior is controlled 

by a configuration input signal CFGNMFI, that is asserted HIGH to enable NMFI operation. 

There is no software control of NMFI. 

Software can detect whether NMFI operation is enabled by reading the NMFI bit of the SCTLR: 
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NMFI == 0 

Software can mask FIQs by setting the CPSR.F bit to b1. 

 

NMFI == 1 

Software cannot mask FIQs. 

For more information see c1, System Control Register. When the NMFI bit in 

the SCTLR is b1: 

 an instruction writing b0 to the CPSR.F bit clears it to b0 

 an instruction writing b1 to the CPSR.F bit leaves it 

unchanged 

 the CPSR.F bit can be set to b1 only by an FIQ or reset exception entry. 

11.4 Low interrupt latency 

 

Low Interrupt Latency (LIL) is a set of behaviors that reduce the interrupt latency for the 

processor, and is enabled by default. That is, the FI bit [21] in the SCTLR is Read-as-One. 

LIL behavior enables accesses to Normal memory, including multiword accesses and external 

accesses, to be abandoned part-way through execution so that the processor can react to a 

pending interrupt faster than would otherwise be the case. When an instruction is abandoned in 

this way, the processor behaves as 
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if the instruction was not executed at all. If, after handling the interrupt, the interrupt handler 

returns to the program in the normal way using instruction SUBS pc, r14, #4, the abandoned 

instruction is re-executed. This means that some of the memory accesses generated by the 

instruction are performed twice. 

Memory that is marked as Strongly-ordered or Device type is typically sensitive to the number of 

reads or writes performed. Because of this, instructions that access Strongly-ordered or Device 

memory are never abandoned when they have started accessing memory. These instructions 

always complete either all or none of their memory accesses. Therefore, to minimize the interrupt 

latency, you must avoid the use of multiword load/store instructions to memory locations that are 

marked as Strongly- ordered or Device. 

11. Interrupt controller 

 

The processor includes a VIC port for connection of a Vectored Interrupt Controller (VIC). An 

interrupt controller is a peripheral that handles multiple interrupt sources. Features usually found 

in an interrupt controller are: 
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 Multiple interrupt request inputs, one for each interrupt source, and one or more 

amalgamated interrupt request outputs to the processor 

 The ability to mask out particular interrupt requests 

 Prioritization of interrupt sources for interrupt nesting. 

 

In a system with an interrupt controller with these features, 

software is still required to: 

 Determine from the interrupt controller which interrupt source is requesting service 

 Determine where the service routine for that interrupt source is loaded 

 Mask or clear that interrupt source, before re-enabling 

processor interrupts to permit another interrupt to be taken. 

A VIC does all these in hardware to reduce the interrupt latency. It supplies the starting address 

of the service routine corresponding to the highest priority asserted interrupt source directly to 

the processor. When the processor has accepted this address, it masks the interrupt so that the 

processor can re-enable interrupts without clearing the source. The PL192 VIC is an AMBA 

compliant, SoC peripheral that is developed, tested, and licensed by ARM.  
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You can use the VIC port to connect a PL192 VIC to the processor. See the ARM PrimeCell Vectored 

Interrupt Controller (PL192) Technical Reference Manual for more information about the PL192 VIC. 

You can enable the VIC port by setting the VE bit in the SCTLR. When the VIC port is enabled and an 

IRQ occurs, the processor performs an handshake over the VIC interface to obtain the address of the 

handling routine for the IRQ. 

 

11.6 Exception when processor in the Thumb mode 

 

 

Vector table 

 

The vector table All ARM systems have a vector table. The vector table does not form part of the 

initialization sequence, but it must be present for any exception to be serviced. It must be placed at a 

specific address, usually 0x0. 
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Questions  Bank: 

 
1.What are the main features of ARM architecture 

2. Draw and explain the ARM family  Architecture. 

3.Compare ARM7, ARM9 and ARM11 series processors stating features 

 4. Explain the term Banked Register in ARM. 

 5. What is the significance of special purpose registers R13, R14 and R15. 

6. Explain ARM7 Programmers model. 

7. Explain terms: CPSR register and Processor modes. 

8. What is the function of barrel shifter in ARM data flow model 

9. Explain the architecture of ARM 

10. Explain the three stage pipelining implemented in ARM processor 
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1. Arm Instruction Set 
 

Data Processing Instructions, Addressing Modes, Branch, Load, Store Instructions, PSR 

Instructions, Conditional Instructions. Thumb Instruction Set: Register Usage, Other Branch 

Instructions, Data Processing Instructions, Single Register and Multi Register Load -Store 

Instructions, Stack, Software Interrupt Instructions 

 

 

 

Figure  2.1 Arm Architecture 



45 
 

1.1.ARM has 37 registers all of which are 32-bits long. 

 

 1 dedicated program counter 

 1 dedicated current program status register 

 5 dedicated saved program status registers 30 general purpose registers 

The current processor mode governs which of several banks is accessible. Each mode can 

access a particular set of r0-r12 registers a particular r13 (the stack pointer, sp) and r14 (the link 

register, lr) the program counter, r15 (pc) the current program status register, cpsr 

1.2 Privileged modes (except System) can also access 

 

a particular spsr (saved program status register 

 

 ARM processor was designed by Advanced RISC Machine (ARM) Limited Company 

 ARM processors are major used for low-power and low cost applications 

 Mobile phones 

 Communication modems 

 Automotive engine management systems 

 Hand-held digital systems 
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Different versions of ARM processors share the same basic machine instruction sets 

 

2.ARM programmer model 

• The state of an ARM system is determined by the content of visible 

registers and memory. 

• A user-mode program can see 15 32-bit general purpose 

registers (R0-R14), program counter (PC) and CPSR. 

• Instruction set defines the operations that can change the state. 

Memory system Byte 

ordering 
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Byte ordering 

 

ARM programmer model 
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Instruction set 

 

 

 

 

3.Features of ARM instruction set 

• Load-store architecture 

• 3-address instructions 

• Conditional execution of every instruction 

• Possible to load/store multiple registers at once 

• Possible to combine shift and ALU operations in a single instruction 

4.Registers and Memory Access 
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 In the ARM architecture 

 Memory is byte addressable 

 32-bit addresses 

 32-bit processor registers 

 Two operand lengths are used in moving data between the memory and the 

processor registers 

o Bytes (8 bits) and words (32 bits) 

 Word addresses must be aligned, i.e., they must be multiple of 4 

 Both little-endian and big-endian memory addressing are supported 

 When a byte is loaded from memory into a processor register or stored from a 

register into the memory 

 It always located in the low-order byte position of the 

register 

5.ARM Instruction Format 

 Each instruction is encoded into a 32-bit word 

 Access to memory is provided only by Load and Store instructions 

 The basic encoding format for the instructions, such as Load, Store, Move, 

Arithmetic, and Logic instructions, is shown below 
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An instruction specifies a conditional execution code (Condition), the OP code, two or three 

registers (Rn, Rd,and Rm), and some other information 

Conditional Execution of Instructions 

A distinctive and somewhat unusual feature of ARM processors is that all instructions are 

conditionally executed 

 Depending on a condition specified in the instruction 

 The instruction is executed only if the current state of the processor condition code 

flag satisfies the condition specified in bits b31-b28 of the instruction 

 Thus the instructions whose condition is not meet the process or condition code flag are 

not executed 

 One of the conditions is used to indicate that the instruction is always executed 

 

6.Instruction Set of  Arm Processor 
 

 ARM Instruction Set: 

 standard 32-bit Instruction set 

 Thumb Instruction Set: 16-bit instruction set 

 Jazelle Instruction Set: 8-bit instruction set 
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ARM Instruction Set supports six different types of instructions Data Processing 

Instructions 

Branch Instructions Load/Store Instructions 

Software Interrupt Instruction 

Program Status Register Instructions Coprocessor Instructions 

6.1 Data Processing Instructions 

 

The data processing instructions operate on data held in general purpose registers. Of the two 

source operands, one is always a register. 

The other has two basic forms: 

 

• An immediate value 

 

• A register value optionally shifted. 

 

If the operand is a shifted register the shift amount might have an immediate value or the value 

of another register. 

Four types of shift can be specified. Most data processing instructions can perform a shift 

followed by a logical or arithmetic operation. 



52 
 

Multiply instructions come in two classes: 

 

• normal - 32-bit result 

 

• long - 32-bit result variants. 

 

Both types of multiply instruction can optionally perform an 

accumulate operation. 

Used to manipulate data in general-purpose registers, employ a 3-address format, support 

barrel shifter 

6.2 Arithmetic Instructions 

 

ADD, ADC, SUB, SBC, RSB, RSC 

 

Move Instructions MOV, 

MVN 

Bit-Wise Logical Instructions AND, EOR, 

ORR, BIC 

Comparison Instructions TST, TEQ, 

CMP, CMN 

Multiply Instructions: MUL, 

MLA 
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6.3 Addressing modes Load /store instructions  

have three primary addressing modes 

• offset 

 

• pre-indexed 

 

• post-indexed. 

 

offset :They are formed by adding or subtracting an 

immediate or register-based offset to or from a base register 

Register-based offsets can also be scaled with shift 

operations. 

• Preindex 

 

— Memory address is formed as for offset addressing 

 

— Memory address also written back to base register 

 

— So base register value incremented or decremented by offset value 

• Postindex 

 

— Memory address is base register value 

 

— Offsetaddedorsubtracted Result written back to base register 
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• Base register acts as index register for pre index and post index addressing 

Pre-indexed and post-indexed addressing modes update the base register with the 

base plus offset calculation. 

• Offset either immediate value in instruction or another 

register 

• If register scaled register addressing available 

 

— Offset register value scaled by shift operator 

 

— Instruction specifies shift size 

 

As the PC is a general purpose register, a 32-bit value can be loaded directly into the PC to 

perform a jump to any address in the 4GB memory space. 

Branch Instructions 

 

Change the flow of sequencial execution of instructions and force to modify the program counter 

 

 

Branch (B) jumps in a range of +/-32 MB. 

 

Branch with link(BL) suitable for subroutine call by storing the address of next instructions 

after BL into the link register and 
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restore the program counter from the link register while returning from subroutine. 

 

Branch Exchange and Branch Exchange Link Link for switching the 

processor state from Thumb to ARM and vice versa 

 
 

6.4 Load/Store Instructions 

 

The second class of instruction is load and store instructions. These instructions come in 

two main types 

: • load or store the value of a single register or register pair 

 

• load and store multiple register values. 

 

Load and store single register instructions can transfer a 32-bit word, a 16-bit half word and an 

eight-bit byte between memory and a register. 

Byte and half word loads may be automatically zero extended or sign extended as they are 

loaded. 

A preload „hint‟ instruction is available to help minimize memory system latency. 

Swap instructions perform an atomic load and store as 

synchronization primitive 
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Transfer data between memory and registers 

 

6.5 Single Register Transfer Instructions 

 

 Used to move a single data item inand out of register (signed, unsigned, 16-bit half words and 

32-bit word) 

Supports register indirect, base-plus-offset and stack addressing mode LDR, STR, LDRB, 

STRB, LDRH, STRH, LDRSB 

6.6 Multiple Register Transfer Instructions 

 

Any subset or all the 16 registers loaded from or stored to memory but increase interrupt 

latency. 

Addressing modes-IA, IB,DA, DB 

 

Stack operations-FA, FD, EA, ED LDM, STM 

 

Swap Instructions :swap the contect of memory with the content of registers.SWP, SWPB 

Software Interrupt Instruction 

 

 

 

* In effect, a SWI is a user-defined instruction. 
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* It causes an exception trap to the SWI hardware vector (thus causing a change to 

supervisor mode, plus the associated state saving), thus causing the SWI exception 

handler to be called. 

* The handler can then examine the comment field of the instruction to decide what 

operation has been requested. 

* By making use of the SWI mechansim, an operating system can implement a set of 

privileged operations which applications running in user mode can request. 

Software Interrupt Instruction 

 

1 1 0 1 1 1 1 1 8 – Bit Immediate 

• Address of next instruction is saved in r14_svc 

• CPSR is saved in r14_svc 

• Disables IRQ, Clears T bit, Enters Supervisor mode 

• PC is forced to 0x08 

• 8 bit immediate is zero extended to fill the 24-bit field in the ARM instruction. 

Limits SWIs to first 256 of 16 million ARM SWIs 
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6.7 Program Status Register Instructions 

• Used to transfer the content of program status registers to/from a general-purpose register 

.• MRS (copy program status register to a general purpose register), MSR(move a general-

purpose register to a program status register) 

6. Program status registers 

The ARM7TDMI-S contains a CPSR and five SPSRs for exception handlers to 

use. The 

program status registers: 

• Hold the condition code flags 

• Control the enabling and disabling of interrupts 

• Set the processor operating mode. 

The arrangement of bits is shown in Figure
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7.1 condition code flags 

The N, Z, C, and V bits are the condition code flags, You can set these bits by arithmetic 

and logical operations. The flags can also be set by MSR and LDM instructions. The 

ARM7TDMI-S tests these flags to determine whether to execute an instruction. 

All instructions can execute conditionally in ARM state. In Thumb state, only the 

Branch instruction can be executed conditionally 

 

7.2  control bits 

The bottom eight bits of a PSR are known collectively as the 

control bits. They are the: 

• Interrupt disable bits 

• T bit 

• Mode bits. 

The control bits change when an exception occurs. When the processor is operating in 

a privileged mode, software can manipulate these bits. 

 

7.3 Interrupt disable bits 

The I and F bits are the interrupt disable bits: 
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• when the I bit is set, IRQ interrupts are disabled 

• when the F bit is set, FIQ interrupts are disabled. 

T bit 

The T bit reflects the operating state: 

• when the T bit is set, the processor is executing in Thumb state 

• when the T bit is clear, the processor executing in ARM state. The operating state is 

reflected by the CPTBIT external signal. 

Mode bits 

The M4, M3, M2, M1, and M0 bits (M[4:0]) are the mode bits. These bits determine the 

processor operating mode as listed in Table 2-2. Not all combinations of the mode bits define a 

valid processor mode, so take care to use only the bit combinations shown 

Reserved bits 

The remaining bits in the PSRs are unused but are reserved. When changing a PSR flag or 

control bits make sure that these reserved bits are not altered. Also, make sure that your 

program does not rely on reserved bits containing specific values because future processors 

might have these bits set to one or zero Coprocessor Instructions 

Used to extend the instruction set, to control on-chips functions (caches and memory 

management) and for additional computations. 
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• CDP(data processing), MRC/MCR (register transfer), LDC/STC (memory transfer). 

7.4 Program status registers 

 

The processor contains one CPSR and five SPSRs for exception handlers to use. 

The program status registers: 

 

• hold information about the most recently performed ALU operation 

• control the enabling and disabling of interrupts 

 

• set the processor operating mode 

 

8.Addressing modes 
 

Load and store instructions have three primary addressing modes 

• offset 

 

• pre-indexed 

 

• post-indexed. 

 

They are formed by adding or subtracting an immediate or register-based offset to or 

from a base register. Register-based offsets can also be scaled with shift operations. Pre-indexed 

and post-indexed addressing modes update the base register with the 
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base plus offset calculation. As the PC is a general purpose register, a 32-bit value can 

be loaded directly into the PC to perform a jump to any address in the 4GB memory 

space 

8.1 Conditional instructions 

 

ARM and Thumb instructions can execute conditionally on the condition flags set by a previous 

instruction. 

The conditional instruction can occur either: 

 Immediately after the instruction that updated the flags. 

 After any number of intervening instructions that have not updated the flags. 

The instructions that you can make conditional depends on whether the processor is in ARM 

state or Thumb state. 

To make an instruction conditional, you must add a condition code suffix to the instruction 

mnemonic. The condition code suffix enables the processor to test a condition based on the flags. 

If the condition test of a conditional instruction fails, the instruction: 

 Does not execute. 

 Does not write any value to its destination register. 

 Does not affect any of the flags. 

 Does not generate any exception. 
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Conditional execution in ARM state Almost all ARM instructions can be executed conditionally 

on the value of the ALU status flags in the APSR. You can either add a condition code suffix to 

the instruction or you can conditionally skip over the instruction using a conditional branch 

instruction. Using conditional branches instructions to control the flow of execution can be better 

when a series of instructions depend on the same condition. 

            8.2 Conditional instructions to control execution 

ere follows a list of available conditional codes: EQ : Equal 

If the Z flag is set after a comparison. 

NE : Not Equal 

If the Z flag is clear after a comparison. 

VS : Overflow Set 

If the V flag is set after an arithmetical operation, the result of which will not fit into a 32bit 

destination register. 

VC : Overflow Clear 

If the V flag is clear, the reverse of VS. HI : Higher 

Than (unsigned) 

If after a comparison the C flag is set AND the Z flag is clear. 

LS : Lower Than or Same (unsigned) 

If after a comparison the C flag is clear OR the Z flag is set. 
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PL : Plus 

If the N flag is clear after an arithmetical operation. For the purposes of defining 

'plus', zero is positive because it isn't negative... 

MI : Minus 

If the N flag is set after an arithmetical operation. 

CS : Carry Set 

Set if the C flag is set after an arithmetical operation OR a shift operation, the result of 

which cannot be represented in 32bits. You can think of the C flag as the 33rd bit of 

the result. 

CC : Carry Clear 

The reverse of CS. 

GE : Greater Than or Equal (signed) If after a 

comparison... 

the N flag is set AND the V flag is set or... 

the N flag is clear AND the V flag is clear. 

GT : Greater Than (signed) If after a 

comparison... 

the N flag is set AND the V flag is set or... 

the N flag is clear AND the V flag is clear 
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and... 

the Z flag is clear. 

LE : Less Than or Equal To (signed) If after a 

comparison... 

the N flag is set AND the V flag is clear or... 

the N flag is clear AND the V flag is set 

and... 

the Z flag is set. 

LT : Less Than (signed) 

If after a comparison... 

the N flag is set AND the V flag is clear or... 

the N flag is clear AND the V flag is set. 

AL : Always 

The default condition, so does not need to be explicity stated. 

NV : Never Not particularly useful, it states that the instruction should never be executed. 

A kind of Poor Mans' NOP. 

NV was included for completeness (as the reverse of AL), but you should not use it in your own code. 

There is a final conditional code which works in the reverse way. S, when applied to an 

instruction, causes the status flags to 
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be updated. This does not happen automatically - except for those instructions whose 

purpose is to set the status. For example: 

ADD R0, R0, R1 

ADDS  R0, R0, R1 

ADDEQS R0, R0, R1 

The first example shows us a basic addition (adding the value of R1 to R0) which does not affect 

the status registers. 

The second example shows us the same addition, only this time it will cause the status registers 

to be updated. 

The last example shows us the addition again, updating the status registers. The difference here is 

that it is a conditional instruction. It will only be executed if the result of a previous operation 

was EQual (if the Z flag is set). 

Here is an example of conditional execution at work. You want to compare register zero with the 

contents of something stored in register ten. If not equal to R10, then call a software interrupt, 

increment and branch back to do it again. Otherwise clear R10 and return to a calling piece of 

code (whose address is stored in R14) 
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An example of conditional execution 

 

.loop  ; Mark the loop start position  

CMP R0, R10  ; Compare R0 with R10 

SWINE &40017 ; Not equal: Call SWI &40017  

ADDNE  R0, R0, #1  ; Add 1 to R0 

BNE loop ;  Branch to 'loop'  

MOV  R10, #0  ; Equal : Set R10 to zero 

LDMFD R13!, {R0-R12,PC} ; Return to caller Notes: 
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9.The 32 bit PSR 
 

 Processors after the ARM 3 provide a 32 bit addressing space by moving the PSR out of R15 

and giving R15 a full 32 bits in which to store the address of the current position. 

Currently, RISC OS works in 26 bit mode, except for a few special cases which is unlikely to be 

encountered. 

The 32 bit mode is important because 26 bits (as in the old PSR) restricts the maximum amount 

of addressable memory per- application to 28Mb. That is why you can't drag the Next slot 

beyond 28Mb irrespective of how much memory you have installed. 

The allocation of the bits within the CPSR (and the SPSR registers to which it is 

saved) is: 
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31 30 29 28 --- 7 6 - 4 3 2 1 0 

N  Z C V I F M4 M3 M2 M1 M0 

 

 

 

0 0 0 0 0 User26 mode 

0 0 0 0 1 FIQ26 mode 

0 0 0 1 0 IRQ26 mode 

0 0 0 1 1 SVC26 mode 

1 0 0 0 0 User mode 

1 0 0 0 1 FIQ mode 

1 0 0 1 0 IRQ mode 

1 0 0 1 1 SVC mode 

1 0 1 1 1 ABT mode 

1 1 0 1 1 UND mode 

 

Typically, the processor will be operating in User26, FIQ26, IRQ26 or SVC26 mode. It is 

possible to enter a 32 bit mode, but extreme care must be taken. RISC OS won't expect it, and 

will sulk greatly if it finds itself in it! 

(except RISC OS 5 which works totally in 32bit mode - and you cannot enter 26bit as the 

processor doesn't have that anymore...) 

You cannot use MOVS PC, R14 or LDMFD R13!, {registers, PC}^ in 32 bit code. 

Neither can you use ORRS PC, R14, 
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#1<<28 to set the V flag. 

All of this is now possible using MRS and MSR. 

 

 

Copy a register into the PSR 

MSR CPSR, R0 ; Copy R0 into CPSR 

MSR SPSR, R0 ; Copy R0 into SPSR 

MSR CPSR_flg, R0 ; Copy flag bits of R0 into CPSR 

MSR CPSR_flg, #1<<28 ; Copy flag bits (immediate) into 

CPSR   

Copy the PSR into a register 

MRS R0, CPSR ; Copy CPSR into R0 

MRS R0, SPSR ; Copy SPSR into R0 

 

You have two PSRs - CPSR which is the Current Program Status Register and SPSR which is 

the Saved Program Status Register Each privileged mode has its own PSR, so the total available 

selection of PSR is: 

 CPSR_all - current 

 SPSR_svc - saved, SVC(32) mode 

 SPSR_irq - saved, IRQ(32) mode 

 SPSR_abt - saved, ABT(32) mode 

 SPSR_und - saved, UND(32) mode 

 SPSR_fiq - saved, FIQ(32) mode 
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It appears as if you cannot explicitly specify to save the current PSR in, say, SPSR_fiq. Instead, 

you should change to FIQ mode and then save to SPSR. In other words, you can only alter the 

SPSR of the mode you are in. 

Using the _flg suffix allows you to alter the flag bits without affecting the control bits. 

In user(32) mode, the control bits of CPSR are protected, you can only alter the condition flags. 

In other modes, the entire CPSR is available. You should not specify R15 as a source or 

destination register. And finally, you must not attempt to access the SPSR in user(32) mode as it 

doesn't exist! 

To set the V flag: 

 

MSR CPSR_flg, #&10000000 

This sets the V flag and doesn't affect the control bits. 

 

Here, for your delectation, is a way to set the V flag on any ARM processor: 

CMP R0, #1<<31 

CMNVC R0, #1<<31 

Clever, huh? 

 

To change mode: 
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MRS  R0, CPSR_all  ; Copy the PSR BIC R0, 

R0, #&1F ; Clear the mode bits 

ORR R0, R0, #new_mode ; Set bits for new mode 

MSR CPSR_all, R0 ; write PSR back, changing mode 

 

STACK 

 

The ARM architecture offers extensive support for memory stack by allowing programmers to 

chose one of four stack format/orientation. 

● Empty or Full: 

 

● Empty: Stack Pointer points to the next free space on stack 

 

● Full: Stack Pointer points to the last item on the stack 

 

● Ascending or Descending: 

 

● Ascending: Grows from low memory to high memory 

 

● Descending: Grows from high memory to low memory 

 

● I386, Sparc and PowerPC all use a ―Full, Descending‖ stack format. 

We need to store the processor state when making nested calls. 
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The multiple data transfer instructions provide a mechanism for storing state on the stack 

(pointed to by R13). 

The STM and LDM instructions‟ modes have aliases for accessing stacks: 

 FD = Full Descending 

o STMFD/LDMFD = STMDB/LDMIA 

 ED = Empty Descending 

o STMED/LDMED = STMDA/LDMIB 

 FA = Full Ascending 

o STMFA/LDMFA = STMIB/LDMDA 

 EA = Empty Ascending 

o STMEA/LDMEA = STMIA/LDMDB Anything 

but a full descending stack is rare! 

 

STMFD r13!, {r4-r7} – Push R4,R5,R6 and R7 onto thstack. 

 
                  Figure : 2.2 Register  File
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LDMFD r13!, {r4-r7} – Pop R4,R5,R6 and R7 from the stack 

 

 

 

 

                                            Figure 2.3 Register file 

 

9.Thumb Instruction Set 

• ARM architecture versions v4T and above define a 16-bit instruction set called the 

Thumb instruction set. The functionality of the Thumb instruction set is a subset of 

the functionality of the 32-bit ARM instruction set. 

• A processor that is executing Thumb instructions is operating in Thumb state. A 

processor that is executing ARM instructions is operating in ARM state. 

• A processor in ARM state cannot execute Thumb instructions, and a processor in 

Thumb state cannot execute ARM instructions. You must ensure that the processor never 
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receives instructions of the wrong instruction set for the current state. 

• Each instruction set includes instructions to change processor state. 

• Note: ARM processors always start executing code in ARM state. 

• Thumb is a 16-bit instruction set 

• Optimized for code density from C code 

• Improved performance form narrow memory 

• Subset of the functionality of the ARM instruction set 

• Core has two execution states – ARM and Thumb 

• Switch between them using BX instruction 

• Thumb has characteristic features: 

• Most Thumb instruction are executed unconditionally 

• Many Thumb data process instruction use a 2-address format 

• Thumb instruction formats are less regular than ARM instruction formats, as a 

result of the dense encoding. 

 

 

• The processor in Thumb mode uses same eight general- purpose integer

registers that are available ARM 
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mode.Some Thumb instructions also access the PC(ARM register 15),the Link 

Register(ARM register 14) and Stack Pointer(ARM register 13). 

• When R15 is read, bit[0] is zero and bits[31:1]contain the PC. when R15 is written ,bit[0] 

is IGNORED and bits[31:1] are written to the PC. 

• Thumb does not provide direct access to the CPSR or any SPSR. 

• Thumb execution is flagged by the T bit(bit[5]) in the CPSR. T==0 32-bit instructions 

are fetched(ARM instruction) 

T==1 16-bit instructions are fetched(Thumb instruction) 

9.1 Thumb applications 

In a typical embedded system: 

 

• use ARM code in 32-bit on-chip memory for small speed- critical 

routines 

• use Thumb code in 16-bit off-chip memory for large non-critical control 

routines 

Note:Switching between ARM and Thumb States of Execution Using BX 

Instruction
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                                                           Figure  2.5  Thumb Instructions  

  

 

For Most Instruction Generated by the Compiler 

• Condition Execution is not used. 

• Source and Destination Registers are identical 

• Only low registers used 

• Constants are limited size 

• Inline barrel shifter not used 

Data Types 

Byte (8-bit): placed on any byte boundary. 

Half-word (16-bit): aligned to two-byte boundaries. Word (32-bit): 

aligned to four- byte boundaries 

Thumb Programmers Model 

 

• Registers r0 to r7 are accessible (Lo) 

 

• Few instructions require r8 to r15 to be specified 
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• r13 is used as the stack pointer 

• r14 is used as the link register 

• r15 is used as the program counter 

9.2 THUMB Register Organization 
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ARM-Thumb differences 

• Unconditional Execution of instruction 

• 2-address format for data processing 

• Less regular instruction formats. 

Thumb exception 

• With exception processor is returned to ARM mode. 

• While returning previous mode is restored as SPSR is transferred to CPSR 

Thumb Branching 

• Short conditional branches 

• Medium range unconditional branches 

• Long range Subroutine calls 

• Branch to change to ARM Mode 

• Thumb-ARM Decompression 

• Translation from 16-bit Thumb instruction to 32-bit ARM instruction 

• Condition bits changed to „always‟ 

• Lookup to translate major and minoropcodes 
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• Zero extending 3-bit register specifiers to give 4-bit specifiers 

• Zero extending immediate values 

• Implicit „S‟(affecting condition codes) should be explicitly 

specified. 

• Thumb 2-address format must be mapped to ARM 3- address format 

Properties 

• Thumb code requires 70% of space of ARM code 

• Thumb code uses 40% more instructions than the ARM code 

• With 32-bit memory ARM code is 40% faster 

• With 16-bit memory Thumb code is 45% faster than ARM code 

Thumb code uses 30% less external memory power than ARM code 

Question Bank: 

1. Explain the different addressing modes of the Arm processor 

2. What are the features   of thumb instructions 

3. Write an assembly program of HEX TO ASCII conversion for ARM  

4. Write an assembly program to divide a 32-bit number by an 8-bit numb 

5. Draw the architectural block diagram of ARM and explain data flow of  each unit.  

6. Explain the working of "Barrel shifter" with an example instruction and diagram.  

7. Explain the function of following instructions one by one: 

i) SUB r0, r1, #5  

ii) ADD r2, r3, r3, LSL, #2  

iii) iii) LOR r0, [r1]  

                iv) SWP r3, r2, [r1]  

                v) ADDEQ r5, r5, r6 
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8.How ZIGBEE can be interfaced with an ARM processor Draw and explain an 

interfacing diagram.  

 9.Explain the need for a fast interrupt service and a normal interrupt service in ARM 

programmer model with proper diagram. 

10.What do you mean by addressing mode? Describe any four. 
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REAL TIME OPERATING SYSTEM 

Real time operating systems (RTOS) – real time kernel – OS tasks – task states – task 

scheduling – interrupt processing – clocking communication and synchronization – control 

blocks – memory requirements and control – kernel services 

1. RTOS 

 

A Real-Time Operating System (RTOS) comprises of two components, viz., ―Real- Time‖ 

and ―Operating System‖.An Operating system (OS) is nothing but a collection of system calls 

or functions which provides an interface between hardware and application programs. It 

manages the hardware resources of a computer and hosting applications that run on the 

computer. An OS typically provides multitasking, synchronization, Interrupt and Event 

Handling, Input/ Output, Inter-task Communication, Timers and Clocks and Memory 

Management. Core of the OS is the Kernel which is typically a small, highly optimized set of 

libraries. 

Real-time systems are those systems in which the correctness of the  system depends not only 

on the logical result of computation, but also on the time at which the results are produced. 

 

 

Figure  3.1 real time embedded system with RTOS 

 

RTOS is key to many embedded systems and provides a platform to build applications. All 

embedded systems are not designed with RTOS. Embedded systems with relatively 

simple/small hardware/code might not require an RTOS. Embedded systems withmoderate-to-

large software applications require some form of scheduling, and hence RTOS. 

 

 

2.Difference: RTOS v/s General Purpose OS 

http://www.engineersgarage.com/articles/operating-systems-tutorial
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Determinism - The key difference between general-computing operating 

systems and real-time operating systems is the ―deterministic " timing behavior in the real-

time operating systems. "Deterministic" timing means that OS consume only known and 

expected amounts of time. RTOS have their worst case latency defined. Latency is not of a 

concern for General Purpose OS. 

Task Scheduling - General purpose operating systems are optimized to run a 

variety of applications and processes simultaneously, thereby ensuring that all tasks receive at 

least some processing time. As a consequence, low-priority tasks may have  their priority 

boosted above other higher priority tasks, which the designer may not want. However, RTOS 

uses priority-based preemptive scheduling, which allows high-priority threads to meet their 

deadlines consistently. All system calls are deterministic, implying time bounded operation for 

all operations and ISRs. This is important for embedded systems where delay could cause a 

safety hazard. The scheduling in RTOS is time based. In case of General purpose OS, like 

Windows/Linux, scheduling is process based. 

· Preemptive kernel - In RTOS, all kernel operations are preemptible 

· Priority Inversion - RTOS have mechanisms to prevent priority 

inversion 

· Usage - RTOS are typically used for embedded applications, while 

General Purpose OS are used for Desktop PCs or other generally purpose PCs. 

3.RTOS CLASSFICATION 

RTOS specifies a known maximum time for each of the operations that it 

performs. Based upon the degree of tolerance in meeting deadlines, RTOS are classified into 

following categories 

· Hard real-time: Degree of tolerance for missed deadlines is negligible. 

A missed deadline can result in catastrophic failure of the system 

· Firm  real-time: Missing a deadly ne might result in an 

unacceptable quality reduction but may not lead to failure of the complete system 

· Soft real-time: Deadlines may be missed occasionally, but system 
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doesn‘t fail and also, system quality is acceptable 

 

For a life saving device, automatic parachute opening device for skydivers, 

delay can be fatal. Parachute opening device deploys the parachute at a specific altitude based 

on various conditions. If it fails to respond in specified time, parachute may not get deployed 

at all leading to casualty. Similar situation exists during inflation of air bags, used in cars, at 

the time of accident. If airbags don‘t get inflated at appropriate time, it may be fatal for a 

driver. So such systems must be hard real time systems, whereas for TV live broadcast, delay 

can be acceptable. In such cases, soft real time systems can be used 

 

 

 

 

 

Fig 3. 2 Jitter 

Jitter: Jitter is an indirect information obtained from several latency measures, 

consisting of a random variation between each latency value. In a RTOS, the jitter impact 

could be notorious, as it is analyzed by Proctor when trying to control step motors. For 

example, the pulses duration controls the motor rotation, but the jitter induce the torque to 

vary, causing step losses in the motor [Proctor and Shackleford 2001]. To compute jitter, the 

time difference between two 
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consecutive interrupt latency measures is calculated. Finally, the greatest 

encountered difference is selected as the worst jitter of this system; 

3.1Important terminologies used in context of real time systems 

Determinism: An application is referred to as deterministic if its timing can be 

guaranteed within a certain margin of error. 

Jitter: Timing error of a task over subsequent iterations of a program or loop is 

referred to as jitter. RTOS are optimized to minimize jitte 

 

4.RTOS Features 

i. Multithreading and preemptability - The scheduler should be able to 

preempt any task in the system and allocate the resource to the thread that needs it most even 

at peak load. 

ii. Thread Priority - All tasks are assigned priority level to facilitate pre-

emption.The highest priority task that is ready to run will be the task that will be running. 

iii. Inter Task Communication & Synchronization - Multiple tasks pass 

information among each other in a timely fashion and ensuring data integrity 

iv. Priority Inheritance - RTOS should have large number of priority levels 

& should prevent priority inversion using priority inheritance. 

v. Short Latencies - The latencies are short and predefined. 

• Task switching latency: The time needed to save the context of a 

currently executing task and switching to another task. 

• Interrupt latency: The time elapsed between execution of the last 

instruction of the interrupted task and the first instruction in the interrupt handler. 

• Interrupt dispatch latency: The time from the last instruction in the 

interrupt handler to the next task scheduled to run. 
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5.RTOS Architecture 

For simpler applications, RTOS is usually a kernel but as complexity increases, 

various modules like networking protocol stacks debugging facilities, device I/Os are includes 

in addition to the kernel The general architecture of RTOS is shown in the fig.3.3 

 

5.1KERNEL 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.3  RTOS  Architecture 
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Fig3.4 kernel 

  

Kernel" – the part of an operating system that provides the most basic services to application software 

running on a processor. The "kernel" of a real-time operating system ("RTOS") provides an 

"abstraction layer" that hides from application software the hardware details of the processor (or set of 

processors) upon which the application software will run 

 

A kernel connects the application software to the hardware of a computer With 

the aid  of the firmware and device drivers, the kernel provides the most basic level of control 

over all of the computer's hardware devices. It manages memory access for programs 
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in the RAM, it determines which programs get access to which hardware 

resources, it sets up or resets the CPU's operating states for optimal operation at all times, and 

it organizes the data for long-term non-volatile storage with file systems on such media as 

disks, tapes, flash memory, etc RTOS kernel acts as an abstraction layer between the hardware 

and the applications. 

There are three broad categories of kernels 

 

· Monolithic kernel 

A monolithic  kernel executes  all  the  operating  system instructions in  the  

same address space in order to improve the performance of the system. 

Monolithic kernels are part of Unix-like operating systems like Linux, FreeBSD 

etc. A monolithic kernel is one single program that contains all of the code necessary to 

perform every kernel related task. It runs all basic system services (i.e. process and memory 

management, interrupt handling and I/O communication, file system, etc) and provides 

powerful abstractions of the underlying hardware. Amount of context switches and messaging 

involved are greatly reduced which makes it run faster than microkernel. 

 

  Figure 3.5  Diagram of a monolithic kernel  

In a monolithic kernel, all OS services run along with the main kernel thread, 

thus also residing in the same memory area. This approach provides rich and powerful 

hardware access.. The main disadvantages of monolithic kernels are the dependencies between 
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system components — a bug in a device driver might crash the entire system — 

and  the fact that large kernels can become very difficult to maintain. 

. In the monolithic kernel, some advantages hinge on these points: 

 

 Since there is less software involved it is faster. 

 As it is one single piece of software it should be smaller both in source and compiled 

forms. 

 Less code generally means fewer bugs which can translate to fewer security problems 

 This design has several flaws and limitations: 

 

Coding in kernel can be challenging, in part because one cannot use common libraries and 

because one needs to use a source-level debugger. Rebooting the computer is often required. 

This is not just a problem of convenience to the developers. When debugging is harder, and as 

difficulties become stronger, it becomes more likely that code will be "buggier". 

 

Bugs in one part of the kernel have strong side effects; since every function in  the kernel has 

all the privileges, a bug in one function can corrupt data structure of another, totally unrelated 

part of the kernel, or of any running program. 

Kernels often become very large and difficult to maintain. 

Even if the modules servicing these operations are separate from the whole, the code 

integration is tight and difficult to do correctly. 

Since the modules run in the same address space, a bug can bring down the entire system. 

Monolithic kernels are not portable; therefore, they must be rewritten for each new architecture 

that the operating system is to be used on. 

5.2 Microkernel 

A microkernel runs most of the operating system's background processes in user 

space, to make the operating system more modular and, therefore, easier to maintain.It runs 

only basic process communication (messaging) and I/O control. It normally provides only the 

minimal services such as managing memory protection, Inter process communication and the 

process management. The other functions such as running the hardware processes are not 
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handled directly by microkernels. Thus, micro kernels provide a smaller set of simple 

hardware abstractions. It is more stable than monolithic as the kernel is unaffected even if the 

servers failed (i.e.File System). Microkernels are part of the operating systems like AIX, 

BeOS, Mach, Mac OS X, MINIX, and QNX. Etc 

 

Figure3.6 Microkernel 

The very essence of the microkernel architecture illustrates some of its advantages: 

 

 Maintenance is generally easier. 

 Patches can be tested in a separate instance, and then swapped in to take 

over a production instance. 

 Rapid development time and new software can be tested without having 

to reboot the kernel. 

 More persistence in general, if one instance goes hay-wire, it is often 

possible to substitute it with an operational mirror 

Disadvantages in the microkernel exist however. Some are: 

 Larger running memory footprint 

 More software for interfacing is required, there is a potential for 

performance loss. 

 

 Messaging bugs can be harder to fix due to the longer trip they have to 

take versus the one off copy in a monolithic kernel. 

https://en.wikipedia.org/wiki/Memory_footprint
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 Process management in general can be very complicated 

 

5.3 Hybrid Kernel 

Hybrid kernels are extensions of microkernels with some properties of 

monolithic kernels. Hybrid kernels are similar to microkernels, except that they include 

additional code in kernel space so that such code can run more swiftly than it would were it in 

user space. These are part of the operating systems such as Microsoft Windows NT, 2000 and 

XP. DragonFly BSD, etc 

 

 

 

Figure 3.7  Hybrid kernel 

Hybrid kernels are micro kernels that have some "non-essential" code in kernel-

space in order for the code to run more quickly than it would were it to be in user-space. 

Hybrid kernels are a compromise between the monolithic and microkernel designs. This 

implies running some services (such as the network stack or the file system) in kernel space to 

reduce the performance overhead of a traditional microkernel, but still running kernel code 

(such as device drivers) as servers in user space 

A few advantages to the modular (or) Hybrid kernel are: 
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 Faster development time for drivers that can operate from within 

modules. No reboot required for testing (provided the kernel is not 

destabilized). 

 On demand capability versus spending time recompiling a whole kernel 

for things like new drivers or subsystems. 

 Faster integration of third party technology (related to development but 

pertinent unto itself nonetheless) 

 Some of the disadvantages of the modular approach are: 

 With more interfaces to pass through, the possibility of increased bugs 

exists (which implies more security holes). 

 Maintaining modules can be confusing for some administrators when 

dealing with problems like symbol differences 

 

5.4 Nano Kernels 

 

A nanokernel delegates virtually all services — including even the  most basic  

ones  like interrupt controllers or the timer — to device drivers to make the kernel memory 

requirement even smaller than a traditional microkernel 

5.6 Exokernel 

 

Exokernels provides efficient control over hardware. It runs only services 

protecting the resources (i.e. tracking the ownership, guarding the usage, revoking access to 

resources, etc) by providing low-level interface for library operating systems and leaving the 

management to the application. 

Exokernels are a still-experimental approach to operating system design. They 

differ from the other types of kernels in that their functionality is limited to the protection and 

multiplexing of the raw hardware, providing no hardware abstractions on top of which to 

develop applications. This separation of hardware protection from hardware management 
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enables application developers to determine how to make the most efficient use of the 

available hardware for each specific program. 

 

Exokernels in themselves are extremely small. However, they are accompanied by library 

operating systems providing application developers with the functionalities of a conventional 

operating system. A major advantage of exokernel-based systems is that they can incorporate 

multiple library operating systems, each exporting a different API, for example one  for  high  

level UI development  and  one  for real-time control 

5.7 Kernel Services 

Six types of common services are shown in the following figure below and explained in 

subsequent sections 

 

 

 

                                               Figure 3.8 kernel service 

 

RTOS is therefore an operating system that supports real-time applications by 

providing logically correct result within the deadline required. Basic Structure is similar to 
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regular OS but, in addition, it provides mechanisms to allow real time scheduling of tasks. 

 

Though real-time operating systems may or may not increase the speed of 

execution, they can provide much more precise and predictable timing characteristics than 

general-purpose OS. 

5.8 Real Time Kernel 

The heart of a real-time OS (and the heart of every OS,  for that matter) is the kernel. A kernel 

is the central core of an operating system, and it takes care of all the OS jobs: 

 

1. Booting 

2. Task Scheduling 

3. Standard Function Libraries 

In an embedded system, frequently the kernel will boot the system, initialize the ports and the global 

data items. Then, it will start the scheduler and instantiate any hardware timers that need to be started. 

After all that, the Kernel basically gets dumped out of memory (except for the library functions, if 

any), and the scheduler will start running the child tasks. 

A real-time kernel is software that manages the time

 and resources of a 

microprocessor, microcontroller or Digital Signal Processor (DSP), and 

provides indispensable services to your applications. 

A Real Time Operating System (RTOS) generally contains a real-time kernel 

and other higher-level services such as file management, 

 

6.TASK MANAGEMENT 

Task Object 

In RTOS, The application is decomposed into small, schedulable, and 

sequential program units known as ―Task‖, a basic unit of execution and is governed by three 

time-critical properties; release time, deadline and execution time. Release time refers to the 
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Task States: – Running – Ready (possibly: suspended, pended) – Blocked (possibly: waiting, 

dormant, delayed) – Scheduler – schedules/shuffles tasks between Running and Ready states – 

Blocking is self-blocking by tasks, and moved to Running state via other tasks‘ interrupt 

signaling (when block-factor is removed/satisfied) – When a task is unblocked with a 

higher priority over the ‗running‘ task, the scheduler ‗switches‘ context 

immediately 

point in time from which the task can be executed. Deadline is the point in time by which the 

task must complete. Execution time denotes the time the task takes to execute. 

 

 

 

Figure 3.9  basic unit of execution 

 

Each task may exist in following states 

 

OS tasks Task States 

 

Running: This is the task which has control of the CPU. It will normally be the task which has 

the highest current priority of the tasks which are ready to run. 

Ready: There may be several tasks in this state. The attributes of the task and the resources 

required to run it must be available for it to be placed in the 'ready' state. 

Waiting: The execution of tasks placed in this state has been suspended because the task 

requires some resources which is not available or because the task is waiting for some signal 

from the plant, e.g., input from the analog-to-digital converter, or the task is waiting for the 

elapse of time. 

New: The operating system is aware of the existence of this task, but the task has not been 

allocated a priority and a context and has not been included into the list of schedulable tasks 
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Terminated: The operating system has not as yet been made aware of the existence of this 

task, although it may be resident in the memory of the computer. 

 

 

Figure 3. 10 task state 

When a task is ―spawned‖, either by the operating system, or another task, it is 

to be created, which involves loading it into the memory, creating and updating certain OS 

data structures such as the Task Control Block, necessary for running the task within the 

multi-tasking environment. 

During such times the task is in the new state. Once these are over, it enters the 

ready state where it waits. At this time it is within the view of the scheduler and is considered 

for execution according to the scheduling policy. 

A task is made to enter the running state from the ready state by the operating 

system dispatcher when the scheduler determines the task to be the one to be run according to 

its scheduling policy. While the task is running, it may execute a normal or abnormal exit 

according to the program logic, in which case it enters the terminated state and then removed 

from the view of the OS.Software or hardware interrupts may also occur while the task is 

running. 

In such a case, depending on the priority of the interrupt, the current task may be transferred to 

the ready state and wait for its next time allocation by the scheduler 
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Finally, a task may need to wait at times during its course of execution, either 

due to requirements of synchronization with other tasks or for completion of some service 

such as I/O that it has requested for. 

During such a time it is in the waiting state. Once the synchronization 

requirement is fulfilled, or the requested service is completed, it is returned to the ready state 

to again wait its turn to be scheduled. 

During the execution of an application program, individual tasks are 

continuously changing from one state to another. However, only one task is in the running 

mode (i.e. given CPU control) at any point of the execution. In the process where CPU control 

is change from one task to another, context of the to-be-suspended task will be saved while 

context of the to-be-executed task will be retrieved, the process referred to as context 

switching.A task object is defined by the following set of component 

 

7. TASK CONTROL BLOCK (TCB)  

Task uses TCBs to remember its context. TCBs  are data structures residing in 

RAM, accessible only by RTOS 

 

Task_ID 

Task_State 

Task_Priority 

Task_Stack_Pointer 

Task_Prog 

_Counter 

 

· Task Stack: These reside in RAM, accessible by stack pointer. 

· Task Routine: Program code residing in ROM 
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Scheduler 

The scheduler keeps record of the state of each task and selects from among 

them that are ready to execute and allocates the CPU to one of them. Various scheduling 

algorithms are used in RTOS 

· Polled Loop: Sequentially determines if specific task requires time. 

 

Figure 3.11 polled loop 

 

Polled System with interrupts. In addition to polling, it takes care of critical tasks 

 

Figure 3.12 polled with interrupts 

 

Round Robin : Sequences from task to task, each task getting a slice of time 

Hybrid System: Sensitive to sensitive interrupts, with Round Robin system working in 

background. 

Interrupt Driven: System continuously wait for the interrupts 
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Non pre-emptive scheduling or Cooperative Multitasking: Highest priority task executes for 

some time, then relinquishes control, re-enters ready state. 

 

 

 

Fig 3.13 Non pre-emptive scheduling 

 

Preemptive scheduling Priority multitasking: Current task is immediately 

suspended Control is given to the task of the highest priority at all time 

Figure 3.14 Non pre-emptive scheduling 

Dispatcher 

The dispatcher gives control of the CPU to the task selected by the scheduler by 

performing context switching and changes the flow of execution. 
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8.TASK SCHEDULING 

 
Scheduling 

 

The data structure of the ready list in the scheduler is designed so as to 

minimize the worst-case length of time spent in the scheduler's critical section • The critical 

response time, sometimes called the flyback time, is the time it takes to queue a new ready 

task and restore the state of the highest priority task. In a well-designed RTOS, readying a 

newtask will take 3-20 instructions per ready queue entry, and restoration of the highest 

priority ready task will take 5-30 instructions. 

 

Inter task Comm. & resource sharing 

 

It is "unsafe" for two tasks to access the same specific data or hardware resource simultaneously.  

• 3 Ways to resolve this: 

 

• Temporarily masking/disabling interrupts 

 

• Binary Semaphores 

 

• Message passing 

 

Memory Allocation 

 

• Speed of allocation 

 

• Memory can become fragmented 

 

Interrupt Handling 

 

• Interrupts usually block the highest priority tasks 
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Task Scheduling Rules 

 

The T-Kernel adopts a preemptive priority-based scheduling method based on 

priority levels assigned to each task. Tasks having the same priority are scheduled on a FCFS 

(First Come First Served) basis. Specifically, task precedence is used as the task scheduling 

rule, and precedence among tasks is determined as follows based on the priority of each task. 

If there are multiple tasks that can be run, the one with the highest precedence goes to 

RUNNING state and the others go to READY state. In determining precedence among tasks, 

of those tasks having different priority levels, that with the highest priority has the highest 

precedence. Among tasks having the same priority, the one that entered a run state 

(RUNNING state or READY state) first has the highestprecedence. It is possible, however, to 

use a system call to change the precedence among tasks having the same priority.When the 

task with the highest precedence changes from one task to another, a dispatch occurs 

immediately and the task in RUNNING state is switched. If no dispatch occurs (during 

execution of a handler, during dispatch disabled state, etc.), however, the switching of the task 

in RUNNING state is held off until the next dispatch occurs.According to the scheduling rules 

adopted in the T-Kernel, so long as there is a higher precedence task in a run state, a task with 

lower precedence will simply not run. That is, unless the highest-precedence task goes to 

WAITING state or for other reason cannot run, other tasks are not run. This is a fundamental 

difference from TSS (Time Sharing System) scheduling in which multiple tasks are treated 

equally.It is possible, however, to issue a system call changing the precedence among tasks 

having the same priority. An application can use such a system call to realize round-robin 

scheduling, which is a typical kind of TSS scheduling.Examples in figures below illustrate 

how the task that first goes to a run state (RUNNING state or READY state) gains precedence 

among tasks having the same priority  figure  shows the precedence among tasks after Task A 

of priority 1, Task E of priority 3, and Tasks B, C and D of priority 2 are started in that order. 

The task with the highest precedence, Task A, goes to RUNNING state.When Task A exits, 

Task B. with the next-highest precedence goes to RUNNING state (Figure 3). When Task A is 

again started, Task B is preempted and reverts to READY state; but since Task B went to a 

run state earlier than Task C and Task D, it still has the highest precedence among tasks with 

the same priority. In other words, the task precedence reverts to that in Figure 2. 

http://www.tron.org/wp-content/themes/dp-magjam/pdf/t-kernel_2.0/html_en/task_states_and_scheduling_rules.html#figure_a_task_scheduling
http://www.tron.org/wp-content/themes/dp-magjam/pdf/t-kernel_2.0/html_en/task_states_and_scheduling_rules.html#figure_b_task_scheduling
http://www.tron.org/wp-content/themes/dp-magjam/pdf/t-kernel_2.0/html_en/task_states_and_scheduling_rules.html#figure_a_task_scheduling
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Next, consider what happens when Task B goes to WAITING state in the 

conditions in Figure 3. Since task precedence is defined among tasks that can be run, the 

precedence among tasks becomes as shown in 3.15. Thereafter when the Task 

B waiting state is released, Task B goes to run state after Task C and Task D, and thus assumes 

the lowest precedence among tasks of the same priority  

 

Summarizing the above, immediately after a task that goes from READY state 

to RUNNING state reverts to READY state, it has the highest precedence among tasks of the 

same priority; but after a task goes from RUNNING state to WAITING state and then the wait 

is released, its precedence is the lowest among tasks of the same priority. 

 

Note that after a task goes from SUSPENDED state to a run state, it has the 

lowest precedence among tasks of the same priority. In a virtual memory system, if a task is 

made to wait for paging by putting the task in SUSPENDED state, in such a system the task 

precedence changes as a result of a paging wait. 

 

 

Figure 3.15 Precedence in Initial State 

 

 

http://www.tron.org/wp-content/themes/dp-magjam/pdf/t-kernel_2.0/html_en/task_states_and_scheduling_rules.html#figure_b_task_scheduling
http://www.tron.org/wp-content/themes/dp-magjam/pdf/t-kernel_2.0/html_en/task_states_and_scheduling_rules.html#figure_c_task_scheduling
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Figure 3.16 Precedence after Task B Goes To RUNNING State 
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Figure  3.17. Precedence after Task B Goes To WAITING State 

 

 

 

 

Figure 3.18Precedence After Task B WAITING State Is Released 

 

Synchronisation and communication 

Task Synchronisation & intertask communication serves to pass information 

amongst tasks. 

Task Synchronisation 

Synchronization is essential for tasks to share mutually exclusive resources 

(devices, buffers, etc) and/or allow multiple concurrent tasks to be executed (e.g. Task A 

needs a result from task B, so task A can only run till task B produces it). 
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Task synchronization is achieved using two types of mechanisms: 

Event Objects 

Event objects are used when task synchronization is required without resource 

sharing. They allow one or more tasks to keep waiting for a specified event to occur. Event 

object can exist either in triggered or non-triggered state. Triggered state indicates resumption 

of the task. 

Semaphores. 

A semaphore has an associated resource count and a wait queue. The resource 

count indicates availability of resource. The wait queue manages the tasks waiting for 

resources from the semaphore. A semaphore functions like a key that define whether a task 

has the access to the resource. A task gets an access to the resource when it acquires the 

semaphore. 

There are three types of semaphore: 

· Binary Semaphores 

· Counting Semaphores 

 

· Mutually Exclusion(Mutex) Semaphores 

 

Semaphore functionality (Mutex) represented pictorially in the following figure 

 

Figure 3.19. semaphore 
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Intertask communication 

Intertask communication involves sharing of data among tasks through sharing 

of memory space, transmission of data, etc. Intertask communications is executed using 

following mechanisms 

Message queues - A message queue is an object used for intertask 

communication through which task send or receive messages placed in a shared memory. The 

queue may follow 

1) First In First Out (FIFO), 

2) Last in First Out(LIFO) or 
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3) Priority (PRI) sequence. 

Usually, a message queue comprises of an associated queue control block 

(QCB), name, unique ID, memory buffers, queue length, maximum message length and one or 

more task waiting lists. A message queue with a length of 1 is commonly known as a mailbox. 

Pipes - A pipe is an object that provide simple communication channel used for 

unstructured data exchange among tasks. A pipe does not store multiple messages but stream 

of bytes. Also, data flow from a pipe cannot be prioritize 

 

 

Figure 3.20 inter task communication 

Remote procedure call (RPC) - It permits distributed computing where task can invoke the 

execution of another task on a remote computer. 

 Intertask communication and resource sharing  Multitasking systems must manage 

sharing data and hardware resources among multiple tasks. It is usually "unsafe" for two tasks 

to access the same specific data or hardware resource simultaneously. "Unsafe" means the 

results are inconsistent or unpredictable. There are three common approaches to resolve this 

problem: 

Temporarily masking/disabling interrupts 

 

General-purpose operating systems usually do not allow user programs to mask 

(disable) interrupts, because the user program could control the CPU for as long as it wishes. 

Some modern CPUs don't allow user mode code to disable interrupts as such control is 

considered a key operating system resource. Many embedded systems and RTOSs, however, 

allow the application itself to run in kernel mode for greater systecall efficiency and also to 

permit the application to have greater control of the operating environment without requiring 
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OS intervention.On single-processor systems, if the application runs in kernel mode and can 

mask interrupts, this method is the solution with the lowest overhead to prevent simultaneous 

access to a shared resource. While interrupts are masked and the current task does not make a 

blocking OS call, then the current task has exclusive use of the CPU since no other task or 

interrupt can take control, so the critical section is protected. When the task exits its critical 

section, it must unmask interrupts; pending interrupts, if any, will then execute. Temporarily 

masking interrupts should only be done when the longest path through the critical section is 

shorter than the desired maximum interrupt latency. Typically this method of protection is 

used only when the critical section is just a few instructions and contains no loops. This 

method is ideal for protecting hardware bit- mapped registers when the bits are controlled by 

different tasks. 

Binary semaphores 

When the shared resource must be reserved without blocking all other tasks (such as waiting 

for Flash memory to be written), it is better to use mechanisms also available on general-

purpose operating systems, such as semaphores and OS-supervised interprocess messaging. 

Such mechanisms involve system calls, and usually invoke the OS's dispatcher code on exit, 

so they typically take hundreds of CPU instructions to execute, while masking interrupts may 

take as few as one instruction on some processors. 

A binary semaphore is either locked or unlocked. When it is locked, tasks must 

wait for the semaphore to unlock. A binary semaphore is therefore equivalent to a mutex. 

Typically a task will set a timeout on its wait for a semaphore. There are several well- known    

problems    with    semaphore    based     designs     such     as priority inversion and deadlocks. 

In priority inversion a high priority task waits because a low priority task has a 

semaphore, but the lower priority task is not given CPU time to finish its work. A typical 

solution is to have the task that owns a semaphore run at, or 'inherit,' the priority of the highest 

waiting task. But this simple approach fails when there are multiple levels of 

https://en.wikipedia.org/wiki/Interrupt_latency
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Priority_inversion
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waiting: task Awaits for a binary semaphore locked by task B, which waits for a 

binary semaphore locked by task C. Handling multiple levels of inheritance without 

introducing instability in cycles is complex and problematic. 

In a deadlock, two or more tasks lock semaphores without timeouts and then 

wait forever for the other task's semaphore, creating a cyclic dependency. The simplest 

deadlock scenario occurs when two tasks alternately lock two semaphores, but in the opposite 

order. Deadlock is prevented by careful design or by having floored semaphores, which pass 

control of a semaphore to the higher priority task on defined conditions. 

Message passing 

The other approach to resource sharing is for tasks to send messages  in  an  

organized message passing scheme. In this paradigm, the resource is managed directly by only 

one task. When another task wants to interrogate or manipulate the resource, it sends a 

message to the managing task. Although their real-time behavior is less crisp than semaphore 

systems, simple message-based systems avoid most protocol deadlock hazards, and are 

generally better-behaved than semaphore systems. However, problems like those of 

semaphores are possible. Priority inversion can occur when a task is working on a low-priority 

message and ignores a higher-priority message (or a message originating indirectly from a 

high priority task) in its incoming message queue. Protocol deadlocks can occur when two or 

more tasks wait for each other to send response messages 

Memory Management 

Two types of memory managements are provided in RTOS – Stack and Heap.Stack 

management is used during context switching for TCBs. Memory other than memory used for 

program code, program data and system stack is called heap memory and it is used for 

dynamic allocation of data space for tasks. Management of this memory is called heap 

management. Memory allocation is more critical in a real-time operating system than in other 

operating systems. 

First, for stability there cannot be memory leaks (memory that is allocated, then unused but 

never freed). The device should work indefinitely, without ever a need for a reboot. 

 

For this reason, dynamic memory allocation is frowned upon. Whenever possible, allocation 

https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Memory_allocation
https://en.wikipedia.org/wiki/Memory_leak
https://en.wikipedia.org/wiki/Dynamic_memory_allocation
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of all required memory is specified statically at compile time. 

Another reason to avoid dynamic memory allocation is memory fragmentation. 

With frequent allocation and releasing of small chunks of memory, a situation may occur 

when the memory is divided into several sections, in which case the RTOS cannot allocate a 

large continuous block of memory, although there is enough free memory. Secondly, speed of 

allocation is important. A standard memory allocation scheme scans a linked list of 

indeterminate length to find a suitable free memory block, which is unacceptable in an RTOS 

since memory allocation has to occur within a certain amount of time. Because mechanical 

disks have much longer and more unpredictable response times, swapping to disk files is not 

used for the same reasons as RAM allocation discussed above. 

The simple fixed-size-blocks algorithm  works  quite  well  for  simple 

embedded systems because of its low overhead 

Memory management 

Among other things, a multiprogramming operating system kernel must be responsible for 

managing all system memory which is currently in use by programs. This ensures that a 

program does not interfere with memory already in use by another program. Since programs 

time share, each program must have independent access to memory. 

Cooperative memory management, used by many early operating systems, assumes that all 

programs make voluntary use of the kernel's memory manager, and do not exceed their 

allocated memory. This system of memory management is almost never seen any more, since 

programs often contain bugs which can cause them to exceed their allocated memory. If a 

program fails, it may cause memory used by one or more other programs to be affected or 

overwritten. Malicious programs or viruses may purposefully alter another program's memory, 

or may affect the operation of the operating system itself. With cooperative memory 

management, it takes only one misbehaved program to crash the system. 

Memory protection enables the kernel to limit a process' access to the computer's memory. 

Various methods of memory protection exist, including memory 

https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Kernel_(computer_science)
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segmentation and paging. All methods require some level of hardware support 

(such as the 80286 MMU), which doesn't exist in all computers.In both segmentation and 

paging, certain protected mode registers specify to the CPU what memory address it should 

allow a running program to access. Attempts to access other addresses trigger an interrupt 

which cause the CPU to re-enter supervisor mode, placing the kernel in charge. This is called 

a segmentation violation or Seg-V for short, and since it is both difficult to assign a 

meaningful result to such an operation, and because it is usually a sign of a misbehaving 

program, the kernel generally resorts to terminating the offending program, and reports the 

error.Windows versions 3.1 through ME had some level of memory protection, but programs 

could easily circumvent the need to use it. A general protection fault would be produced, 

indicating a segmentation violation had occurred; however, the system would often crash 

anyway 

 

Virtual memory 

 

Many operating systems can "trick" programs into using memory scattered around the hard 

disk and RAM as if it is one continuous chunk of memory, called virtual memory.The use of 

virtual memory addressing (such as paging or segmentation) means that the kernel can choose 

what memory each program may use at any given time, allowing the operating system to use 

the same memory locations for multiple tasks.If a program tries to access memory that isn't in 

its current range of accessible memory, but nonetheless has been allocated to it, the kernel is 

interrupted in the same way as it would if the program were to exceed its allocated memory. 

(See section on memory management.) Under UNIX this kind of interrupt is referred to as a 

page fault.When the kernel detects a page fault it generally adjusts the virtual memory range of 

the program which triggered it, granting it access to the memory requested. This gives the 

kernel discretionary power over where a particular application's memory is stored, or even 

whether or not it has actually been allocated yet.In modern operating systems, memory which 

is accessed less frequently can be temporarily stored on disk or other media to make that space 

available for use by other programs. This is called swapping, as an area of memory can be used 

by multiple programs, and what that memory area contains can be swapped or exchanged on 

demand. 

https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Paging


113 
 

"Virtual memory" provides the programmer or the user with the perception that 

there is a much larger amount of RAM in the computer than is really there 

                 Figure 3.21 virtual memory 

Timer Management 

Tasks need to be performed after scheduled durations. To keep track of the 

delays, timers- relative and absolute- are provided in RTOS. 



114 
 

Interrupt and event handling 

RTOS provides various functions for interrupt and event handling, viz., 

Defining interrupt handler, creation and deletion of ISR, referencing the state of an ISR, 

enabling and disabling of an interrupt, etc. It also restricts interrupts from occurring when 

modifying a data structure, minimize interrupt latencies due to disabling of interrupts when 

RTOS is performing critical operations, minimizes interrupt response times. 

Interrupts are central to operating systems, as they provide an efficient way for 

the operating system to interact with and react to its environment. The alternative – having the 

operating system "watch" the various sources of input for events (polling) that require action – 

can be found in older systems with very small stacks (50 or 60 bytes) but is unusual in modern 

systems with large stacks. Interrupt-based programming is directly supported by most modern 

CPUs. Interrupts provide a computer with a way of automatically saving local register 

contexts, and running specific code in response to events. Even very basic computers support 

hardware interrupts, and allow the programmer to specify code which may be run when that 

event takes place. 

When an interrupt is received, the computer's hardware automatically suspends 

whatever program is currently running, saves its status, and runs computer code previously 

associated with the interrupt; this is analogous to placing a bookmark in a book in response to 

a phone call. In modern operating systems, interrupts are handled by the operating system's 

kernel. Interrupts may come from either the computer's hardware or the running program. 

When a hardware device triggers an interrupt, the operating system's kernel 

decides how to deal with this event, generally by running some processing code. The amount 

of code being run depends on the priority of the interrupt (for example: a person usually 

responds to a smoke detector alarm before answering the phone). The processing of hardware 

interrupts is a task that is usually delegated to software called a device driver, which may be 

part of the operating system's kernel, part of another program, or both. Device drivers may 

then relay information to a running program by various means. 
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A program may also trigger an interrupt to the operating system. If a program 

wishes to access hardware, for example, it may interrupt the operating system's kernel, which 

causes control to be passed back to the kernel. The kernel then processes the request. If a 

program wishes additional resources (or wishes to shed resources) such as memory, it triggers 

an interrupt to get the kernel's attention 

 

 

9.HANDLING THE INTERRUPT 

 

 

 

Figure 2.22  interrupt handling 
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Most interrupt routines: Copy peripheral data into a buffer Indicate to other 

code that data has arrived 

Acknowledge the interrupt (tell hardware) 

Longer reaction to interrupt performed outside interrupt routine 

                       E.g., causes a process to start or resume running  

 

9.1 Interrupt Handling 

One of the central tasks of real-time software is the processing of interrupts. As 

soon as several tasks run in a program, it is virtually impossible to achieve good response 

times by polling (continuous enquiry of an event). Continuous polling would prevent tasks 

with lower priorities from running and thus waste precious CPU time. 

Therefore, it should always be attempted to replace polling by interrupts. This 

leads to the best response times and optimal use of the hardware available. 

RTKernel-32 uses the timer interrupt to activate tasks waiting for a certain point 

in time. Module RTCom provide interrupt support for serial ports. This section discusses how 

to implement a handler for any interrupt source. 

An interrupt handler may be thought of as a task running with a priority higher 

than all other tasks. However, there are some important considerations to keep in mind. 

Interrupt handlers usually have little stack space. Therefore, interrupt handlers 

should be very economical in their stack usage (e.g., refrain from using functions like sprintf 

by all means). 

While an interrupt handler is active, no other interrupts with lower priorities can 

be processed. Therefore, it is important to minimize the execution times of interrupt handlers, 

because otherwise the interrupt response time for other interrupts might suffer. The handler 

should avoid any processing not immediately required and delegate it to a task. 

Interrupt handlers under RTKernel-32 are never directly addressed by the 

hardware; instead, they are called by the low-level handlers or dispatchers of the kernel (see 

http://www.on-time.com/rtos-32-docs/rtkernel-32/programming-manual/supplemental-modules/rtcom.htm
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section Module RTKernel-32, Interrupt Handling). While the handler is being executed, the 

scheduler is disabled; thus, the handler need not consider being disrupted by a task switch (it 

can, however, be interrupted by interrupts of higher priority). Since the scheduler is disabled, 

interrupt handlers  must  not  force  blocking task switches. 

An interrupt handler may: 

 

 declare and use local variables, 

 

 call other functions, 

 

 call functions RTKSignal or RTKWaitCond to activate other tasks, 

 

 callthe conditional mailbox and message `passing operations 

(RTKPutCond, RTKGetCond, RTKSendCond,RTKReceiveCond) to 

exchange data with tasks. 

 An interrupt handler must not: 

 

 use the coprocessor or emulator without saving/restoring its state, 

 

 use more than 512 bytes of stack (the less, the better), 

 

 cause blocking task switches. 

 

9.2 Types of interrupts 

Asynchronous (or hardware interrupt) by hardware event the interrupt handler as a separated 

task in a different context.Synchronous by software instructi a divide by zero, a memory 

segmentation fault, etc. The interrupt handler runs in the context of the interrupting task 

 

 

 

 

http://www.on-time.com/rtos-32-docs/rtkernel-32/programming-manual/module/
http://www.on-time.com/rtos-32-docs/rtkernel-32/programming-manual/module/
http://www.on-time.com/rtos-32-docs/rtkernel-32/programming-manual/tasking/task-switches.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/reference-manual/rtkernel-32/semaphores/rtksignal.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/reference-manual/rtkernel-32/semaphores/rtkwaitcond.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/programming-manual/module/mailbox.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/programming-manual/module/message-passing.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/reference-manual/rtkernel-32/mailboxes/rtkputcond.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/reference-manual/rtkernel-32/mailboxes/rtkputcond.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/reference-manual/rtkernel-32/mailboxes/rtkputcond.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/reference-manual/rtkernel-32/mailboxes/rtkputcond.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/reference-manual/rtkernel-32/mailboxes/rtkputcond.htm
http://www.on-time.com/rtos-32-docs/rtkernel-32/reference-manual/rtkernel-32/message-passing/rtkreceivecond.htm
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Interrupt latency 

 The time delay between the arrival of interrupt and the start of corresponding ISR. 

 Modern processors with multiple levels of caches and instruction pipelines that need to 

be reset before ISR can start might result in longer latency.  

 The ISR of a lower-priority interrupt may be blocked by the ISR of a high-priority 

 

9.3 Interrupt handlers and the scheduler 

Since an interrupt handler blocks the highest priority task from running, and since real time 

operating systems are designed to keep thread latency to a minimum, interrupt handlers are 

typically kept as short as possible. The interrupt handler defers allinteraction with the hardware 

if possible; typically all that is necessary is to acknowledge or disable the interrupt (so that it 

won't occur again when the interrupt handler returns) and notify a task that work needs to be 

done. This can be done by unblocking a driver task through releasing a semaphore, setting a 

flag or sending a message. A scheduler often provides the ability to unblock a task from 

interrupt handler context. 

An OS maintains catalogues of objects it manages such as threads, mutexes, 

memory, and so on. Updates to this catalogue must be strictly controlled. For this reason it can 

be problematic when an interrupt handler calls an OS function while the application is in the 

act of also doing so. The OS function called from an interrupt handler could find the object 

database to be in an inconsistent state because of the application's update. There are two major 

approaches to deal with this problem: the unified architecture and the segmented architecture. 

RTOSs implementing the unified architecture solve the problem by simply disabling interrupts 

while the internal catalogue is updated. The downside of this is that interrupt latency 

increases, potentially losing interrupts. The segmented architecture does not make direct OS 

calls but delegates the OS related work to a separate handler. This handler runs at a higher 

priority than any thread but lower than the interrupt handlers. The advantage of this 

architecture is that it adds very few cycles to interrupt latency. As a result, OSes which 

implement the segmented architecture are more predictable and can deal with higher interrupt 

rates compared to the unified architecture. 
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10.Device I/O Management 

RTOS generally provides large number of APIs to support diverse hardware 

device drivers. 

A device driver is a specific type of computer software developed to allow 

interaction with hardware devices. Typically this constitutes an interface for communicating 

with the device, through the specific computer bus or communications subsystem that the 

hardware is connected to, providing commands to and/or receiving data from the device, and 

on the other end, the requisite interfaces to the operating system and software applications. It 

is a specialized hardware-dependent computer program which 
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is also operating system specific that enables another program, typically an 

operating system or applications software package or computer program running under the 

operating system kernel, to interact transparently with a hardware device, and usually provides 

the requisite interrupt handling necessary for any necessary asynchronous time-dependent 

hardware interfacing needs. 

The key design goal of device drivers is abstraction. Every model of hardware 

(even within the same class of device) is different. Newer models also are released by 

manufacturers that provide more reliable or better performance and these newer  models are 

often controlled differently. Computers and their operating systems cannot be expected to 

know how to control every device, both now and in the future. To solve this problem, 

operating systems essentially dictate how every type of device should be controlled. The 

function of the device driver is then to translate these operating system mandated function 

calls into device specific calls. In theory a new device, which is controlled in a new manner, 

should function correctly if a suitable driver is available. This new driver ensures that the 

device appears to operate as usual from the operating system's point of view. 

Under versions of Windows before Vista and versions of Linux before 2.6, all 

driver execution was co-operative, meaning that if a driver entered an infinite loop it would 

freeze the system. More recent revisions of these operating systems incorporate kernel 

preemption, where the kernel interrupts the driver to give it tasks, and then separates itself 

from the process until it receives a response from the device driver, or gives it more tasks to 

do. 

11.NETWORKING 

 

Currently most operating systems support a variety of networking protocols, 

hardware, and applications for using them. This means that computers running dissimilar 

operating systems can participate in a common network for sharing resources such as 

computing, files, printers, and scanners using either wired or wireless connections. Networks 

can essentially allow a computer's operating system to access the resources of a remote 

computer to support the same functions as it could if those resources were connected directly 

to the local computer. This includes everything from simple communication, to 

https://en.wikipedia.org/wiki/Abstraction_(computer_science)


121 
 

 

using networked file systems or even sharing another computer's graphics or 

sound hardware. Some network services allow the resources of a computer to be accessed 

transparently, such as SSH which allows networked users direct access to a computer's 

command line interface. 

Client/server networking allows a program on a computer, called a client, to 

connect via a network to another computer, called a server. Servers offer (or host) various 

services to other network computers and users. These services are usually provided through 

ports or numbered access points beyond the server's network address. Each port number is 

usually associated with a maximum of one running program, which is responsible for handling 

requests to that port. A daemon, being a user program, can in turn access the local hardware 

resources of that computer by passing requests to the operating system kernel. 

Many operating systems support one or more vendor-specific or open 

networking protocols as well, for example, SNA on IBM systems, DECnet on systems from 

Digital Equipment Corporation, and Microsoft-specific protocols (SMB) on Windows. 

Specific protocols for specific tasks may also be supported such as NFS for file access. 

Protocols like ESound, or esd can be easily extended over the network to provide sound from 

local applications, on a remote system's sound hardware. 

 

12.POPULAR RTOS 

There are number of commercially available RTOS, each with some distinct 

features and targeted for a specific set of applications. Following table lists some of the widely 

used commercially available RTOS. 

RTOS Applications/Features 

Windows CE Used for Small footprint, mobile and connected devices Supported by 

ARM,MIPS, SH4 & x86 architectures 

 

LynxOS 

Complex, hard real-time applications 

POSIX-compatible, multiprocess, multithreaded OS. Supported by x86, 

ARM, PowerPC architectures 

https://en.wikipedia.org/wiki/ESound
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VxWorks Most widely adopted RTOS in the embedded industry. Used in famous 

NASA rover robots Spirit and Opportunity 

Micrium µC/OS-

II 

Ported to more than a hundred architectures including x86, mainly used 

in microcontrollers with low resources. 

certified by rigorous standards, such as RTCADO-178B 

 

QNX 

Most traditional RTOS in the market. 

Microkernel architecture; completely compatible with the POSIX 

Certified by FAADO-278 and MIL-STD-1553 standards. 

RT Linux Hard realtime kernel 

Good real time performance, but no certification 

 

 

Jbed 

Developed for embedded systems and Internet applications under the 

Java platform. 

Allows an entire application including the device drivers to be 

written using Java 

Symbian Designed for Smartphones Supported by ARM, x86 architecture 

 

VRTX 

Suitable for traditional board based embedded systems and SoC 

architectures 

Supported by ARM, MIPS, PowerPC & other RISC architectures 

 

 

RTOS Kernel Services 

 

 The services provided by the embedded RTOS kernel can be divided 

into the following areas: 

 

 Multitasking 

o Tasks 

o Timers 
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o Time-triggered tasks 

 Synchronisation 

o Semaphores 

o Mutexes 

o Flags 

 Intertask Communication 

o Mailboxes 

o Signals 

 Error Detection 

 Interrupt Services 

 

 Memory Allocation 

 

 Event Logging 

 Statistics 

 

Multitasking is a way of letting several different execution units, or tasks, share a single 

processor so that all tasks can be said to run in parallel. In reality the RTOS scheduler chooses 

which task it should run according to the scheduling policy, but because tasks can be swapped 

in and out of the processor at a high rate, the illusion of parallelism occurs. 

Timers are a simpler form of tasks that are invoked periodically by the RTOS, as defined by 

the application. 

Time-triggered tasks are tasks that are activated according to cyclic schedules defined by   

the   application.   Time-triggered   tasks   have   priority   over   normal   tasks.   The schedule 

defines a set of time-triggered tasks, along with activation points and deadlines for each task. 

The RTOS monitors time-triggered tasks for missed deadlines. 

 

Semaphores, mutexes and flags provide     synchronisation     between      tasks,   while 

mailboxes and signals also provide a way of exchanging data. 

 

The rt-kernel embedded RTOS performs error detection when running in the RTOS kernel. 
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Unlike many traditional embedded RTOS, rt-kernel services do not return error codes. Instead, 

a common error handling routine is invoked whenever the RTOS kernel detects an error 

condition. This simplifies application code as the tedious and error- prone checking of return 

values is eliminated.Interrupt services are for the most part provided by the architecture layers 

of each processor. The RTOS provides a unified mechanism for enabling, disabling and 

attaching to interrupts, thereby making it possible to reuse drivers regardless of the system they 

were originally written for.The RTOS supports dynamic memory allocation. It can also be 

configured for static memory allocation.An optional event logging mechanism is provided. All 

application interactions with the RTOS kernel can be logged. A host tool is used to present the 

collected data. This is normally used during debugging when it can be a great help to visualise 

the behaviour of the real-time system.The RTOS can optionally continually monitor the 

processor load to provide some run- time statistics. There is also functionality for measuring 

the processor load over a given block of code. 

 

Memory Allocation Strategies 

 

The RTOS provides the functionality needed for creating a dynamic real-time 

system. Tasks and all kernel objects can be created and destroyed at run-time. This provides a 

lot of flexibility for many types of applications. A server could for instance create a new task 

to handle each new session. When the session finishes, the task and all its resources can be 

returned to the system.The drawback to a completely dynamic system is the memory 

fragmentation problem. The memory is said to be fragmented when a request to allocate 

memory fails because there is no contiguous memory area large enough to satisfy the request, 

even though there is enough free memory in the memory heap.The dynamic memory 

allocation algorithm used by the rt-kernel RTOS is not particularly prone to memory 

fragmentation, but for some applications it can nevertheless be an issue. For this type of 

application the RTOS also provides a static memory heap. 

 

An application using the static memory heap must create all resources (tasks, 

semaphores, etc) when the system starts up. No resources should be dynamically created when 

the system is running. Likewise, no resources should be destroyed. The static memory heap 
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will not reuse any memory that is returned to it. Fragmentation willnot be an issue because 

once the system is running, no extra memory will be allocated from the heap.The heap can be 

further subdivided into pools suitable for allocation of fixed size messages. This allows 

dynamic allocation of data for signals and mailboxes even in an otherwise completely static 

systems. A default pool for signals is allocated when the system boots 

 

Time-triggered Tasks 

 

Time-triggered tasks are defined statically according to a set of schedules 

provided by the user. It is not possible to create time-triggered tasks dynamically at run-time. 

However, it is possible to change schedules during run-time.Time-triggered tasks have priority 

over normal tasks and interrupts. They are started at the times given by the schedule. The 

schedule also defines a stopping point, or a deadline, by which time the task must have 

finished executing. The RTOS will call an error routine if a task misses its deadline.The 

schedule also defines a set of interrupts that are managed by the time-triggered subsystem. 

These time-triggered interrupts have priority over time-triggered tasks. Each time-triggered 

interrupt is allowed to fire only once after it has been activated, to stop a misfiring interrupt 

from damaging the performance of the system. It is then disabled until the next cycle or until it 

is explicitly re-enabled later in the schedule.The figure below shows the different processing 

levels of the RTOS when the time- triggered subsystem is being used. 
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Figure 2.23  RTOS processing levels 

 

Conceptually, time-triggered tasks execute at priority level 31. Normal tasks 

should not use this priority level when time-triggered tasks are also being used. 

 

13.Timers 

A timer is a function that is called by the RTOS kernel at intervals defined by the application. 

The timer function can be called periodically or one time only. The timer can be thought of as a 

simplified task that may be invoked periodically.The RTOS will call the timer function from 

interrupt context. This means that timers are subject to the same restrictions as interrupt service 

routines. In particular, the timer function must not call any function that may block, such as 

sem_wait(), mtx_lock(),  and others. See Interrupt Services for further details on interrupt 

services.Timers offer a simple, low-overhead mechanism for periodic execution compared to 

tasks. However, a timer is more restricted than a task. Timers and tasks can work in unison; a 

timer can for instance perform some initial work and then signal a task to perform the 

remainder of the work from task context instead. 

 

 

 

http://www.rt-labs.com/refman/rt-kernel/group___semaphores.html#ga85ca67864bb0af1966a5c2463bd16fe8
http://www.rt-labs.com/refman/rt-kernel/group___mutexes.html#gaad3b3c8dcc218f80e32cd7b81f06f1e2
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Semaphores:Semaphores are used for synchronisation in real-time systems. A 

semaphore is essentially a counter with atomic updates. The value of the counter determines if 

the semaphore is available. In order to proceed a task using the semaphore must first read, 

then write the counter. The RTOS guarantees that access to the counter is atomic.A semaphore 

can be used to guard access to shared resources. The semaphore is initialised to the number of 

resources it protects. This type of semaphore is called a counting semaphore. A task trying to 

take the semaphore will be blocked if the value of the counter is less than 1, indicating that 

there are no free resources, otherwise it will decrease the counter and proceed. When it has 

finished with the resource it signals the semaphore, and in doing so it increases the value of 

the counter and unblocks the first task that may have been blocked on the semaphore.A 

semaphore that can only have the values 1 and 0 is a binary semaphore and can be used to 

implement mutual exclusion, however mutexes are optimised for that type of operation and 

should be used instead. 

 

Mutexes:Mutexes are binary semaphores optimised for mutual exclusion. They are typically 

used to guard a critical region in an application against simultaneous execution by multiple 

tasks. 

 

Flags:Flags are used to synchronise a task to external events. Unlike semaphores, it is 

possible to wait for many events at the same time. A flag object is usually made up of  32 

individual flags and the application can choose to wait for any combination of the flags to 

occur. (The number of flags in a flag object is equal to the number of bits in an integer for the 

current architecture. The size of an int is 32 bits on most architectures). 

 

Mailboxes:Mailboxes are RTOS kernel objects that can hold messages to be delivered 

between tasks. Mailboxes have a finite size. The size is configured when the mailbox is 

created. A task that tries to post a message to a mailbox that is full will be blocked. A task that 

tries to fetch from a mailbox that is empty will also be blocked.A mailbox can hold any type 

of message. The message is just a pointer to a data structure. All tasks that access the mailbox 
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must agree on the representation of the data. The RTOS transfers the value of the pointer 

between the posting and fetching tasks. The message itself is not copied. The posting task 

must not use the message after posting it to the mailbox. The fetching task should free the 

message if it was dynamically allocated 

 

Signals:Signals are messages that can be sent directly from task to task. Unlike mailboxes 

there is no need to provide a RTOS kernel object to hold undelivered messages.Signals can 

represent any kind of data structure. Each type of signal is associated with a number. The 

number is chosen by the application when the signal is created. The number should be unique, 

so that no two types of signals share the same number. When a task receives a signal it can 

decide what course of action to take based on the number identifying the signal type.Signals 

can be filtered. A task can choose to receive only certain types of signals. Signals that are sent 

to the task while the filter is being used will be kept in a queue, and can be received later. This 

mechanism can for instance be used in a subroutine to only deal with the types of signals that 

are of interest for the subroutine. Signals that were delivered while in the subroutine can be 

received by the main task when execution returns from the subroutine.The type of the signal 

must be defined so that the first member of the signal data structure is the signal number. This 

is the only information about the signal that is of interest to the RTOS. The number will be 

used to match against the filter if one has 
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been applied by the receiving task. The signal number 0 is used to terminate filter lists 

and is therefore reserved. 

 

Error Detection 

Unlike many traditional embedded RTOS, rt-kernel services do not return error codes. 

Errors that are detected by the RTOS kernel are with few exceptions fatal errors. There is 

very little the application can do to handle the error gracefully. In a production system, 

the only possible course of action is often to reset the system and start over.When the 

RTOS detects an error, it calls a common error handler. The default error handler will halt 

the system in a busy loop. This is normally used during development, when a debugger is 

used to load and run code. If an error occurs, the debugger will be in the busy loop, the 

error code can be inspected, and the debugger backtrace function can be used to find out 

exactly where in the application the RTOS detected the error.Alternatively, the 

application can install its own error handler. The error handler can attempt to handle the 

error. For instance, if an out of memory error was detected, the application could attempt 

to free memory if it is known that some memory area can be safely deallocated. If there is 

no safe way to handle the error, the application should reset the system.The approach 

taken by the rt-kernel RTOS also has the beneficial side effect that the application does 

not have to check return values from RTOS services. This is a tedious and error-prone 

procedure that can lead to errors going undetected. 

 

Interrupt Services 

 

Interrupt Service Routines (ISRs), are subroutines that are called by the 

RTOS kernel to handle interrupts. Each Interrupt Request Line (IRQ) can be mapped to 

an ISR that handles the interrupt.The rt-kernel embedded RTOS supports nested 

interrupts, i.e. interrupts of higher priority can preempt lower priority interrupts. A 

dedicated interrupt stack is used to store the state of nested interrupts.The application 

should call int_connect() to install the interrupt service routine. The RTOS will store the 

address of the ISR in an internal table. When the interrupt occurs, the RTOS kernel will 

first swap out the currently running task, then call the ISR.Lower level interrupts are 

disabled while the ISR is running. To maintain a low interrupt latency for the system, it 

http://www.rt-labs.com/refman/rt-kernel/group___interrupts.html#ga4c7fbce2d14fbd49dbcbd87eaf19e178
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is important that all interrupts are handled as quickly as possible. A common design 

pattern for complex peripherals is to let the ISR clear the interrupt source, then notify a 

task that handles the higher level processing of the interrupt. 

 

Memory Allocation 

The rt-kernel embedded RTOS supports dynamic memory allocation from a heap. The 

standard C memory allocation functions malloc() and free() are supported. The malloc 

functions executes with interrupts locked and are therefore thread-safe. The heap is 

created when the system boots and will fill the available RAM. 

Memory Pools 

 

The RTOS memory pools support allocation of fixed size messages. They are primarily 

intended for allocating signal and mailbox payloads, but can be used to allocate any 

object. The sig_create()call allocates signals from the default signal pool, which is 

created when the system boots.A memory pool can be used to allocated messages of up to 

8 user-definable sizes. The buffer that is returned will be of the smallest available size 

that will hold the requested number of bytes. 

 

Event Logging 

All RTOS kernel events can be logged. An event is in this context defined as any 

interaction with the RTOS kernel. Examples of events are tasks being swapped in and out, 

calling RTOS kernel services, interrupts occurring, etc. User-defined events can also be 

logged.Event logging is useful as a complement to traditional debugging tools. The event 

log offers insight into how the system behaves over a period of time, which traditional 

debuggers can not do. It should be noted that there is an overhead associated with 

collecting the log data. This may cause systems running under tight margins to behave 

differently when the events are being logged.Event logging can be completely disabled by 

setting the size of the event log buffer to zero.  Event  logging  is  always  disabled  

initially,  and   must   be   enabled   by   calling log_enable().Note that currently the rt-

kernel RTOS is only shipped with event logging compiled in. This increases the size of 

the the RTOS libraries. Contact rt-labs if you have no need for event logging and prefer 

the space savings instead. 

http://www.rt-labs.com/refman/rt-kernel/group___signals.html#ga0de8e85d2811d57db47588dd4f68cfb9
http://www.rt-labs.com/refman/rt-kernel/group___log.html#ga3679e585bdabee5e4b0f7338ee87c45e


131 
 

 

Board Support Packages 

The Board Support Package is responsible for configuring the board and initialising the 

RTOS. The BSP will normally contain an assembly file that sets up the board so that the 

RTOS can run, a timer driver, and a driver for the interrupt controller. 

 

Boot Sequence 

The boot sequence is the time from power-on until the RTOS starts 

executing the first task 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 boot sequence 

The following events take place. 

Boot sequence 

The target's reset vector should be mapped so that it starts to execute the 

function 

_start in the assembler file crt0.S. This function is responsible for setting 

up the embedded target to a point where it can execute C code. At a minimum, this 

consists of: 

 Disabling interrupts 

 Configuring a stack for the RTOS kernel 
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 Copying data section to RAM (if running from ROM) 

 Clearing the BSS 

 Jump to the RTOS kernel init function 

Question  Bank  

 

Write a short note about  

 a) Time services b) Scheduling Mechanisms  

2. a) Explain the overview of Threads and Tasks.  

     b) Draw the structure of Micro kernel and explain in brief.  

 3. a) Discuss in brief about the Interrupt services.  

     b) Mention the Importance of Memory management  

 4. Discuss the Communication and Synchronization issues.  

 5. a) Describe the Threads and Tasks functionality  

      b) Name some of the Scheduling mechanisms with an example.  

 6. Discuss how kernel plays an important role in the Operating systems  

 7. Write a short note about  

      a) Message Queue b) Message Priority Inheritance  

8. Describe the Capabilities of commercial real time operating systems  

9. a) Name the Features Real time operating Systems.  

     b) Define an Operating system? Specify the comparisons between General and Real 

time  
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Embedded Networks 

Embedded Networks - Distributed Embedded Architecture – Hardware and Software 

Architectures, Networks for embedded systems– I2C, CAN Bus, Ethernet, Internet, Network–

Based design– Communication Analysis, system performance Analysis, Hardware platform 

design, Allocation and scheduling, Design Example: Elevator Controller 

 

 

1.Introduction 

In a distributed embedded system, several processing elements (PEs) (either microprocessors 

o ASICs) are connected by a network that allows them to communicate .The application is 

distributed over the PEs, and some of the work is done at each node in the network are 

several reasons to build network-based embedded systems. When the processing tasks are 

physically distributed, it may be necessary to put some of the computing power near where 

the events occur. 

Consider, for example an automobile: the short time delays required for tasks such as engine 

control generally mean that at least parts of the task are done physically close to the engine. 

 

Data reduction is another important reason for distributed processing. It may be possible to 

perform some initial signal processing on captured data to reduce its volume—for example, 

detecting a certain type of event in a sampled data stream. Reducing the data on a separate 

processor may significantly reduce the load on the processor that makes use of that data. 

Modularity is another motivation for network-based design. For instance, when a large 

system is assembled out of existing components, those components may use a network port 

as a clean interface that does not interfere with the internal operation of the component tin 

ways that using the microprocessor bus would. A distributed system can also be easier to 

debug—the microprocessors in one part of the network can be used to probe components in 

another part of the network. Finally, in some cases, networks are used to build fault tolerance

 into systems. Distributed embedded system design is another example

 of hardware/software co-design, since we must design the network topology as 

well as the software running on the network nodes. Of course, the microprocessor bus is a 

simple type of network. However, we use the term network to mean an interconnection 

scheme that does not provide shared memory communication 

 

2.Distributed Embedded Architectures 

A distributed embedded system can be organized in many different ways, but its basic units 

are the PE and the network as illustrated in Figure4.1. A PE may be an instruction set 

processor such as a DSP, CPU, or microcontroller, as well as a nonprogrammable unit such 

as the ASICs used to implement PE 4. An I/O device such as PE 1 (which we call here a 

sensor or actuator, depending on whether it provides input or output) may also be a PE, so 

long as it can speak the network protocol to communicate with other PEs. The network in this 

case is a bus, but other network topologies are also possible. It is also possible that the system 

can use more than one network, such as when relatively independent functions require 

relatively little communication among them. We often refer to the connection between PEs 

provided by the network as a communication link 
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The system of PEs and networks forms the hardware platform on which the application runs. 

the distributed embedded system does not have memory on the bus (unless a memory unit is 

organized as an I/O device that speaks the network protocol). In particular, PEs do not fetch 

instructions over  the network as they do on the microprocessor bus. We take advantage of 

this fact when analyzing network performance—the speed at which PEs can communicate 

over the bus would be difficult if not impossible to predict if we allowed arbitrary instruction 

and data fetches as we do on microprocessor buses 

 
 

Figure 4.1 Distributed embedded system. 

 

Building an embedded system with several PEs talking over a network is definitely 

more complicated than using a single large microprocessor to perform the same tasks. So why 

would anyone build a distributed embedded system? All the reasons for designing accelerator 

systems also apply to distributed embedded systems, and several more reasons are unique to 

distributed systems. 

 

In some cases, distributed systems are necessary because the devices that the PEs 

communicate with are physically separated. If the deadlines for processing the data are short, 

it may be more cost-effective to put the PEs where the data are located rather than build a 

higher-speed network to carry the data to a distant, fast PE. An important advantage of a 

distributed system with several CPUs is that one part of the system can be used to help 

diagnose problems in another part. Whether you are debugging a prototype or diagnosing a 

problem in the field, isolating the error to one part of the system can be difficult when 

everything is done on a single CPU. If you have several CPUs in the system ,you can use one 

to generate inputs for another and to watch its output. 

 

3.Network Abstractions 

 

Networks are complex systems. Ideally, they provide high-level services while hiding 

many of the details of data transmission from the other components in the system. In order to 

help understand (and design) networks, the International Standards Organization has 

developed a seven- layer model for networks known as Open Systems Interconnection (OSI ) 

models [Sta97A]. Understanding the OSI layers will help us to understand the details of real 

networks. 

 

The seven layers of the OSI model, shown in Figure 4.2, are intended to cover a 

broad spectrum of networks and their uses. Some networks may not need the services of one 
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or more layers because the higher layers may be totally missing or an intermediate layer may 

not be necessary. However, any data network should fit into the OSI model. The OSI layers 

from lowest to highest level of abstraction are described below. 

 
■ Physical: 

The physical layer defines the basic properties of the interface between systems, 

including the physical connections ( plugs and wires), electrical properties, basic functions of 

the electrical and physical components, and the basic procedures for exchanging bits. 

 

■ Data link: 

The primary purpose of this layer is error detection and control across a single 

link.However,if the network requires multiple hops over several data links, the data link 

layer does not define the mechanism for data integrity between hops, but only within a 

single hop. 

Network: 

This layer defines the basic end-to-end data transmission service. The network layer is 

particularly important in multihop networks. 

 

■ Transport: 

The transport layer defines connection-oriented services that ensure that data are 

delivered in the proper order and without errors across multiple links. This layer may also try 

to optimize network resource utilization. 

 

■ Session: 

A session provides mechanisms for controlling the interaction of end user services 

across a network, such as data grouping and check pointing. 

 

■ Presentation: 

 

This layer defines data exchange formats and provides transformation utilities to application 

programs. 

 

■ Application: 

The application layer provides the application interface between the network and end-

user programs. 

 

Although it may seem that embedded systems would be too simple to require use of the OSI 

model, the model is in fact quite useful. Even relatively simple embedded networks provide 

physical, data link, and network services. An increasing number of embedded systems 

provide Internet service that requires implementing the full range of functions in the OSI 

model. 
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                                 Figure 4.2   OSI model layers. 

 

4.Hardware and Software Architectures 

 

Distributed embedded systems can be organized in many different ways depending upon the 

needs  of the application and cost constraints. One good way to understand possible 

architectures is to consider the different types of interconnection networks that can be used. 

 

A point-to-point link establishes a connection between exactly two PEs. Point to-point links 

are simple to design precisely because they deal with only two components. We do not have 

to worry about other PEs interfering with communication on the link. 
 

Figure4.3 A signal processing system built from print-to-point links shows a simple example 

of a distributed embedded system built from point-to-point links. The input signal is sampled 

by the input device and passed to the first digital filter, F1, over a point-to-point link. The 

results of that filter are sent through a second point-to-point link to filter F2. The results in 

turn are sent to the output device over a third point-to-point link. A digital filtering system 

requires that its outputs arrive at strict intervals, which means that the filters must process 

their inputs in a timely fashion. Using point-to- point connections allows both F1 and F2 to 

receive a new sample and send a new output at the same time without worrying about 

collisions on the communications network. 

It is possible to build a full-duplex, point-to-point connection that can be used for 

simultaneous communication in both directions between the two PEs. (A half duplex 

connection allows for only one- way communication.)A bus is a more general form of 

network since it allows multiple devices to 

be connected to it. Like a microprocessor bus, PEs connected to the bus have addresses. 

Communications on the bus generally take the form of packets as illustrated in Figure4.4 

Format of a typical message on a bus. 

 

 

                      Figure  4.3 A signal processing system built from print-to-point links 



138 
 

Figure  4. 4 Format of a typical message on a bus. 

 

A packet contains an address for the destination and the data to be delivered. It frequently 

includes error detection/correction information such as parity. It also may include bits that 

serve to signal to other PEs that the bus is in use, such as the header shown in the figure. The 

data to be transmitted from one PE to another may not fit exactly into the size of the data 

payload on the packet. It is the responsibility of the transmitting PE to divide its data into 

packets; the receiving PE must of course reassemble the complete data message from the 

packets. 

 

Distributed system buses must be arbitrated to control simultaneous access, justas with 

microprocessor buses. Arbitration scheme types are summarized below. 

 

■ Fixed-priority arbitration always gives priority to competing devices in the same way. If a 

high- priority and a low-priority device both have long data transmissions ready at the same 

time, it is quite possible that the low-priority device will not be able to transmit anything until 

the high-priority device has sent all its data packets. 

 

■ Fair arbitration schemes make sure that no device is starved. 

Round-robin arbitration is the most commonly used of the fair arbitration schemes The 

PCI bus requires that the arbitration scheme used on the bus must be fair, although it does not 

specify a particular arbitration scheme. Most implementations of PCI use round-robin 

arbitration. 

A bus has limited available bandwidth. Since all devices connect to the bus, communications 

can interfere with each other. Other network topologies can be used to reduce communication 

conflicts .At 

the opposite end of the generality spectrum from the bus is the crossbar network shown in 

Figure 

4.5.A crossbar not only allows any input to be connected to any output, it also allows all 

combinations of input/output connections to be made. 

 

 

 

 

 

Figure 4. 5 A crossbar network. 
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Thus, for example, we can simultaneously connect in1 to out4, in2 to out3, in3 to out2, and in4 

to out1 

or any other combinations of inputs. (Multicast connections can also be made from one input 

to several outputs.) A crosspoint is a switch that connects an input to an output. To connect 

an input to an output, we activate the cross point at the intersection between the 

corresponding input and output lines in the crossbar. For example, to connect in2 and out3 in 

the figure, we would activate crossbar A as shown. The major drawback of the crossbar 

network is expense: The size of the network grows as the square of the number of inputs 

(assuming the numbers of inputs and output sare equal). 

 

Many other networks have been designed that provide varying amounts of parallel 

communication at varying hardware costs. Figure 6 shows an example multistage network. 

The crossbar of Figure 5 is a direct network in which messages go from source to 

destination without going through any memory element. Multistage networks have 

intermediate routing nodes to guide the data packets. Most networks are blocking, meaning 

that there are some combinations of sources and destinations for which messages cannot be 

delivered simultaneously. 

 

A bus is a maximally blocking network since any message on the bus blocks messages from 

any other node. A crossbar is non-blocking. In general, networks differ from microprocessor 

buses in how they implement communication protocols. Both need handshaking to ensure 

that PEs do not interfere with each other. But in most networks, most of the protocol is 

performed in software. Microprocessors rely on bus hardware for fast transfers of instructions 

and data to and from the CPU. Most embedded network ports on microprocessors implement 

the basic communication functions (such as driving 
the communications medium) in hardware and implement many other operations in software. 
 

An alternative to a non-bus network is to use multiple networks. As with PEs, it may be 

cheaper to use two slow, inexpensive networks than a single high performance, expensive 

network. If we can segregate critical and noncritical communications onto separate networks, 

it may be possible to use simpler topologies such as buses. Many systems use serial links for 

low-speed communication and CPU buses for higher speed and volume data transfers 
 

 
 

 

Figure  4.6 A multistage network. 
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. 

5.Networks For Embedded Systems 

Networks for embedded computing span a broad range of requirements; many of 

Those requirements are very different from those for general-purpose networks. Some  

networks are used   in safety-critical applications, such as automotive control. Some 

networks, such as those used in consumer electronics systems, must be very inexpensive. 

Other networks , such as industrial control networks ,must be extremely rugged and reliable 

. 

Several interconnect networks have been developed especially for distributed embedded 

computing: 

 

■ The I2C bus is used in microcontroller-based systems. 

 
■ The Controller Area Network (CAN) bus was developed for automotive electronics. It 

provides megabit rates and can handle large numbers of devices. 

 
■ Ethernet and variations of standard Ethernet are used for a variety of 

control Applications 
. 
5.The I2C Bus 
 

The I 2C bus [Phi92] is a well-known bus commonly used to link microcontrollers 

into systems. It has even been used for the command interface in an MPEG-2video chip 

[van97]; while a separate bus was used for high-speed video data, setup information was 

transmitted to the on-chip controller through an I2C bus interface. I2C is designed to be low 

cost, easy to implement, and of moderate speed (up to100 KB/s for the standard bus and up to 

400 KB/s for the extended  bus). As a result, it uses only two lines: the serial data line (SDL) 

for data and the serial clock 

line (SCL), which indicates when valid data are on the data line. Figure 4.7 shows the 

structure of a typical I2C bus system. Every node in the network is connected to both SCL 

and SDL. Some nodes may be able to act as bus masters and the bus 
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                        Figure  4.7 shows the structure of a typical I2C bus system. 

 

 

A pull-up resistor keeps the default state of the signal high, and transistors are used in 

each bus device to pull down the signal when a 0 is to be transmitted. Open collector/open 

drain signaling allows several devices to simultaneously write the bus without causing 

electrical damage. The open collector/open drain circuitry allows a slave device to stretch a 

clock signal during a read from a slave. The master is responsible for generating the SCL 

clock ,but the slave can stretch the low period of the clock (but not the high period)if 

necessary .The I2C bus is designed as a multi master bus—any one of several different 

devices may act as the master at various times. As a result, there is no global masterto 

generate the clock signal on SCL. Instead, a master drives both SCL and SDL when it is 

sending data .When the bus is idle, both SCL and SDL remain high .When two devices try to 

drive either SCL or SDL to different values, the open collector/open drain circuitry prevents 

errors, but each master device must listen to the bus while transmitting to be sure that it is not 

interfering with another message—if the device receives a different value than it is trying to 

transmit, then it knows that it is interfering with another message. 

 

 

 

Figure  4.8 Electrical interface to the I2C bus. 
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Every I2C device has an address. The addresses of the devices are determined by the system 

designer, usually as part of the program for the I2C driver. The addresses must of course be 

chosen so that no two devices in the system have the same address. A device address is 7 bits 

in the standard I2C definition (the extended I2Callows 10-bit addresses). The address 

0000000 is used to signal a general call or bus broadcast, which can be used to signal all 

devices simultaneously. The address 11110XX is reserved for the extended 10-bit addressing 

scheme; there are several other reserved addresses as well. 

 

A bus transaction comprised a series of 1-byte transmissions and an address followed by 

one or more data bytes. I2C encourages a data-push programming style. When a master wants 

to write a slave, it transmits the slave‘s address followed by the data. Since a slave cannot 

initiate a transfer,  the master must send a read request with the slave‘s address and let the 

slave transmit the data. Therefore, an address transmission includes the 7-bit address and 1 bit 

for data direction: 0 for writing from the master to the slave and 1 for reading from the slave 

to the master. (This explains the 7-bit addresses on the bus.) The format of an address 

transmission is shown in Figure 9. 

 

A bus transaction is initiated by a start signal and completed with an end signal as follows: 

 

■ A start is signalled by leaving the SCL high and sending a 1 to 0 transition on SDL. 

■ A stop is signalled by setting the SCL high and sending a 0 to 1 transition on SDL. 

 

However, starts and stops must be paired. A master can write and then read(or read and then 

write) by sending a start after the data transmission, followed by another address transmission 

and then more data. The basic state transition graph for the master‘s actions in a bus 

transaction is shown in Figure 8.10.The formats of some typical complete bus transactions 

are shown in Figure 4.11.In the first example, the master writes 2 bytes to the addressed 

slave. In the second, the master requests a read from a slave. In the third, the master writes1 

byte to the slave, and then sends another start to initiate a read from the slave. 

 

Figure 8.12 shows how a data byte is transmitted on the bus, including start and stop events. 

The transmission starts when SDL is pulled low while SCL remains high. 

 

 

Figure 4. 9 Format of an I2C address transmission. 
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                      Figure 4.10 State transition graph for an I2C bus master. 

 

 
 

 

 

Figure 4.11 Typical bus transactions on the I2C bus. 

 

 

 

 

Figure 4. 12 Transmitting a byte on the I2C bus. 

 

After this start condition, the clock line is pulled low to initiate the data transfer. At each bit, 
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the clock line goes high while the data line assumes its proper value of0 or 1.An 

acknowledgment is sent at the end of every 8-bit transmission, whether it is an address or 

data. For acknowledgment, the transmitter does not pull down the SDL, allowing the receiver 

to set the SDL to 0 if it properly received the byte. After acknowledgment, the SDL goes 

from low to high while the SCL is high, signalling the stop condition. 

 

The bus uses this feature to arbitrate on each message. When sending, devices listen to the 

bus as well. If a device is trying to send a logic 1 but hears a logic 0,it immediately stops 

transmitting and gives the other sender priority. (The devices should be designed so that they 

can stop transmitting in time to allow a valid bit to be sent.) In many cases, arbitration will be 

completed during the address portion of a transmission, but arbitration may continue into the 

data portion. If two devices are trying to send identical data to the same address, then of 

course they never interfere and both succeed in sending their message. 

 

The I2C interface on a microcontroller can be implemented with varying percentages of the 

functionality in software and hardware [Phi89]. As illustrated in Figure 13, a typical system 

has a 1-bit hardware interface with routines for byte level functions. The I2C device takes 

care of generating the clock and data. The application code calls routines to send an address, 

send a data byte, and so on, which then generates the SCL and SDL, acknowledges, and so 

forth. One of the microcontroller‘s timers is typically used to control the length of bits on the 

bus. Interrupts may be used to recognize 
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bits. However, when used in master mode, polled I/O may be acceptable if no other pending 

tasks can be performed, since masters initiate their own transfers. 

 

 

 

Figure 4.13 An I2C interface in a microcontroller. 

 

6.Ethernet 

Ethernet is very widely used as a local area network for general-purpose computing. 

Because of its ubiquity and the low cost of Ethernet interfaces, it has seen significant use as a 

network for embedded computing. Ethernet is particularly useful when PCsare used as 

platforms, making it possible to use standard components, and when the network does not 

have to meet rigorous real- time requirements. The physical organization of an Ethernet is 

very simple, as shown in Figure 4.14. 

 

 

The network is a bus with a single signal path; the Ethernet standard allows for 

several different implementations such as twisted pair and coaxial cable. Unlike the I2C bus, 

nodes on the Ethernet are not synchronized—they can send their bits at any time. I2C relies 

on the fact that a collision can be detected and quashed within a single bit time thanks to 

synchronization. But since Ethernet nodes are not synchronized, if two nodes decide to 

transmit at the same time, the message will be ruined. The Ethernet arbitration scheme is 

known as Carrier Sense Multiple Access with Collision Detection (CSMA/CD). 

 

 

The algorithm is outlined in Figure 4.15. A node that has a message waits for the bus 

to become silent and then starts transmitting. It simultaneously listens, and if it hears another 

transmission that interferes with its transmission, it stops transmitting and waits to retransmit. 

The waiting time is random, but weighted by an exponential function of the number of times 

the message has been aborted. Figure 8.16 shows the exponentialbackoff function both before 

and after it is modulated by the random wait time. Since a message may be interfered with 

several times before it is successfully transmitted, the exponential backoff technique helps to 

ensure that the network does not become overloaded at high demand factors. The random 

factor in the wait time minimizes the chance that two messages will repeatedly interfere with 

each other. The maximum length of an Ethernet is determined by the nodes ‘ability to detect 
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collisions. The worst case occurs when two nodes at opposite ends of the bus are transmitting 

simultaneously. For the collision to be detected by both nodes, each node‘s signal must be 

able to travel to the opposite end of the bus so that it can 

can run be heard by the other node. In practice, Ethernets up to several hundred meters. 

 

 
 

Figure 4.14 Ethernet organization. 

 

 

 

 

Figure 4. 15The Ethernet CSMA/CD algorithm. 
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Figure 4.16Exponential backoff times. 

 

Figure 4.17 shows the basic format of an Ethernet packet. It provides addresses of both the 

destination and the source. It also provides for a variable-length data payload. The fact that it 

may take several attempts to successfully transmit a message and that the waiting time 

includes a random factor makes Ethernet performance difficult to analyze. It is possible to 

perform data streaming and other real-time activities on Ethernets particularly when the total 

network load is kept to a reasonable level, but care must be taken in designing such systems. 

 

Ethernet was not designed to support real-time operations; the exponentialbackoff scheme 

cannot guarantee delivery time of any data. Because so much Ethernet hardware and software 

is available 

,many different approaches have been developed to extend Ethernet to real-time operation; 

some of these are compatible with the standard while others are not. As Decotignie points out 

[Dec05],there are three ways to reduce the variance in Ethernet‘s packet delivery time: 

suppress collisions on the network ,reduce the number of collisions,or resolve collisions 

deterministically. 

Felser [Fel05] describes several real-time Ethernet architectures 

 

 

 

 

 

7.Internet 

Figure 4.17 Ethernet packet format. 
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The Internet Protocol (IP)  is the fundamental protocol on the Internet. It provides 

connectionless, packet-based communication. Industrial automation has long been a good 

application area for Internet-based embedded systems. Information appliances that use the 

Internet are rapidly becoming another use of IP in embedded computing. Internet protocol is 

not defined over a particular physical implementation—it is an internetworking standard. 

Internet packets are assumed to be carried by some other network, such as an Ethernet. In 

general, an Internet packet will travel over several different networks from source to 

destination. The IP allows data to flow seamlessly through these networks from one end user 

to another. The relationship between IP and individual networks is illustrated in Figure 19. 

IP works at the network layer. When node A wants to send data to node B, the 

application‘s data pass through several layers of the protocol stack to send to the IP. IP 

creates packets for routing to the destination, which are then sent to the data link and physical 

layers. 

 

A node that transmits data among different types of networks is known as a router. 

The router‘s functionality must go up to the IP layer, but since it is not running applications, 

it does not need to go to higher levels of the OSI model. In general, a packet may go through 

several routers to get to its destination. At the destination, the IP layer provides data to the 

transport layer and ultimately the receiving application. As the data pass through several 

layers of the protocol stack, the IP packet data are encapsulated in packet formats appropriate 

to each layer. The basic format of an IP packet is shown in Figure 20. The header and data 

payload are both of variable length. The maximum total length of the header and data payload 

is 65,535 bytes. 

 

An Internet address is a number (32 bits in early versions of IP, 128 bits inIPv6). The 

IP address is typically written in the form xxx.xx.xx.xx. The names by which users and 

applications typically refer to Internet nodes. 

 

 

 

 

Figure4.19 Protocol utilization in Internet 

communication. 
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Figure 4.20  IP packet structure. 

 

are translated into IP addresses via calls to a Domain Name Server, one of thehigher-level 

services built on top of IP. The fact that IP works at the network layer tells us that it does not 

guarantee that a packet is delivered to its destination. Furthermore, packets that do arrive may 

come out of order. This is referred to as best-effort routing. Since routes for data may 

change quickly with subsequent packets being routed along very different paths with different 

delays, real-time performance of IP can 
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be hard to predict. When a small network is contained totally within the embedded system, 

performance can be evaluated through simulation or other methods because the possible 

inputs are limited. Since the performance of the Internet may depend on worldwide usage 

patterns, its real-time performance is inherently harder to predict. The Internet also provides 

higher-level services built on top of IP. The Transmission Control Protocol (TCP) is one 

such example. It provides a connection oriented service that ensures that data arrive in the 

appropriate order, and it uses an acknowledgment protocol to ensure that packets arrive. 

Because many higher level services are built on top of TCP, the basic protocol is often 

referred to as TCP Thus, for example, we can simultaneously /IP. 

 

Figure 4. 21 shows the relationships between IP and higher-level Internet 

services.Using IP as the foundation, TCP is used to provide File Transport Protocolfor batch 

file transfers, Hypertext Transport Protocol (HTTP) forWorldWideWeb service, Simple Mail 

Transfer Protocol for email, and Telnet for virtualterminals. A separate transport protocol, 

User Datagram Protocol, is used as the basis for the network management services provided 

by the Simple Network 

Management Protocol. 

 

 

 

 

 

Figure 4.21 The Internet service stack. 

8.Internet Applications 
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The Internet provides a standard way for an embedded system to act in concert with other 

devices and with users, such as: 

■ One of the earliest Internet-enabled embedded systems was the laser printer. High-end 

laser printers often use IP to receive print jobs from host machines. 

■ Portable Internet devices can display Web pages, read email, and synchronize calendar 

information with remote computers. 

■ A home control system allows the homeowner to remotely monitor and control home 

cameras, lights, and so on. 

 

The CAN bus 

 

The CAN bus [Bos07] was designed for automotive electronics and was first used in 

production cars in 1991. CAN is very widely used in cars as well as in other applications. 

 

The CAN bus uses bit-serial transmission. CAN runs at rates of 1 MB/s over a twisted pair 

connection of 40 m. An optical link can also be used .The bus protocol supports multiple 

masters on the bus. Many of the details of the CAN and I2C buses are similar, but there are 

also significant differences. 

As shown in Figure 4.22,each node in the CAN bus has its own electrical drivers and 

receivers that connect the node to the bus in wired-AND fashion. In CAN terminology, a 

logical 1 on the bus is  called recessive and a logical 0 is dominant. The driving circuits on 

the bus cause the bus to be pulled down to 0 if any node on the bus pulls the bus down 

(making 0 dominant over 1). When all nodes are transmitting 1s, the bus is said to be in the 

recessive state ;when a node transmits a0, the bus is in the dominant state. Data are sent on 

the network in packets known as data frames. CAN is a synchronous bus—all transmitters 

must send at the same time for bus arbitration to work. Nodes synchronize themselves to the 

bus by listening to the bit transitions on the bus .The first bit of a data frame provides the first 

synchronization opportunity in a frame. The nodes must also continue to synchronize 

themselves against later transitions in each frame 

 

For example, you cannot use an identifier to specify a device and provide a parameter to say 

which data value you want from that device. Instead ,each possible data request must have its 

own identifier. An error frame can be generated by any node that detects an error on the bus 

.Upon detecting an error, a node interrupts the current transmission with an error frame, 

which consists of an error flag field followed by an error delimiter field of8 recessive bits. 

The error delimiter field allows the bus to return to the quiescent state so that data frame 

transmission can resume. The bus also supports an overload frame, which is a special error 

frame sent during the interframe quiescent period 
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.An overload frame signals that a node is overloaded and will not be able to handle the next 

message. The node can delay the transmission of the next frame with up to two overload 

frames in a row, hopefully giving it enough time to recover from its overload. The CRC field 

can be used to check a message‘s data field for correctness .If a transmitting node does not 

receive an acknowledgment for a data frame, it should retransmit the data frame until the 

frame is acknowledged. This action corresponds to the data link layer in the OSI model. 

 

Figure 4.24 shows the basic architecture of a typical CAN controller. The controller 

implements the physical and data link layers; since CAN is a bus, it does not need network 

layer services to establish end-to-end connections. The protocol control block is responsible 

for determining when to send messages, when a message must be resent due to arbitration 

losses, and when a message should be received. The FlexRay network has been designed as 

the next generation of system buses for cars. FlexRay provides high data rates—up to 10 

MB/s—with deterministic communication. It is also designed to be fault –tolerant .The Local 

Interconnect Network ( LIN) bus [Bos07] was created to connect components in a small area, 

such as a single door. The physical medium is a single wire that provides data rates of up to 

20 KB/s for up to 16 bus subscribers. All transactions are initiated by the master and 

responded to by a frame. The software for the network is often generated from a LIN 

description file that describes the network subscribers, the signals to be generated, and the 

frames. Several buses have come into use for passenger entertainment.  Bluetooth is 

becoming the standard mechanism for cars to interact with consumer electronics devices such 

as audio players or phones. The Media Oriented Systems Transport(MOST) bus [Bos07] was 

designed for entertainment and multimedia information. 

 

The basic MOST bus runs at 24.8 MB/s and is known as MOST 25; 50 and 150 MB/s 

versions have also been developed. MOST can support up to 64 devices. The network is 

organized as a ring. Data transmission is divided into channels. A control channel transfers 

control and system management data. Synchronous channels are used to transmit multimedia 

data; MOST 25 provides up to 15 audio channels. An asynchronous channel provides high 

data rates but without the quality-of- service guarantees of the synchronous channels 

 

 

 

 

 

Figure 4.23 The CAN data frame format. 
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Figure 4.24 Architecture of a CAN controller. 

 

9.NETWORK-BASED DESIGN 

 

Designing a distributed embedded system around a network involves some of the same 

design tasks we faced in accelerated systems. We must schedule computations in time and 

allocate them to PEs. Scheduling and allocation of communication are important additional 

design tasks required for many distributed networks. Many embedded networks are designed 

for low cost and therefore do not provide excessively high communication speed. If we are 

not careful, the network can become the bottleneck in system design. In this section we 

concentrate on design tasks unique to network-based distributed embedded systems. 

 

10.COMMUNICATIONAL ANALYSIS 

 

We know how to analyze the execution time of programs and systems of processes on single 

CPUs, but to analyze the performance of networks we must know how to determine the delay 

incurred by transmitting messages. Let us assume for the moment that messages are sent 

reliably—we do not have to retransmit a message. 

 

The message delay for a single message with no contention (as would be the case in a point-

to-point connection) can be modeled as 

 
 

where tx is the transmitter-side overhead, tn is the network transmission time, and tr is the 

receiver- side overhead. In I2C, tx and tr are negligible relative to tn, as illustrated by 

Example . 
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If messages can interfere with each other in the network, analyzing communicationdelay 

becomes difficult. In general, because we must wait for the networkto become available and 
then transmit the message, we can write the message delay as 

 

 

where td is the network availability delay incurred waiting for the network to become 

available. The main problem, therefore ,is calculating td. That value depends on the type of 

arbitration used in the network. 

 
■ If the network uses fixed-priority arbitration, the network availability delay is unbounded 

for all but the highest-priority device. Since the highest-priority device always gets the 

network first, unless there is an application-specific limit on how long it will transmit before 

relinquishing the network, it can keep blocking the other devices indefinitely. 

 

■ If the network uses fair arbitration, the network availability delay is bounded 

 

In the case of round-robin arbitration, if there are N devices, then the worst case 

network availability delay is N(tx _tarb),where tarb is the delay incurred for arbitration. tarb 

is usually small compared to transmission time. Even when round-robin arbitration is used to 

bound the network availability delay, the waiting time can be very long. If we add 

acknowledgment and data corruption into the analysis, figuring network delay is more 

difficult. Assuming tha terrors are random, we cannot predict a worst-case delay since every 

packet may contain an error. We can, however, compute the probability that a packet will be 

delayed for more than a given amount of time. However, such analysis is beyond the scope of 

this book. 

 

Arbitration on networks is a form of prioritization. In a rate-monotonic 

communication scheme, the task with the shortest deadline should be assigned the highest 

priority in the network. Our process scheduling model assumed tha twe could interrupt 

processes at any point. But network communications are organized into packets. In most 
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networks we cannot interrupt a packet transmission to take over the network for a higher 

priority packet .When a low-priority message is on the network the network is effectively 

allocated to that low-priority message ,allowing it to block higher-priority messages. 

 

This cannot cause deadlock since each message has a bounded length, but it can slow 

 

down critical communications. The only solution is to analyze network behaviour to 

determine whether priority inversion causes some messages to be delayed for too long. Of 

course, a round-robin arbitrated network puts all communications at the same priority. This 

does not eliminate the priority inversion problem because processes still have priorities. Thus 

far we have assumed a single-hop network: A message is received at its intended destination 

directly from the source, without going through any other network node. It is possible to 

build multihop networks in which messages are routed through network nodes to get to their 

destinations. (Using a multistage network does not necessarily mean using a multihop 

network—the stages in a multistage network are generally much smaller than the network 

PEs.) 

 

Figure 4.18 shows an example of a multihop communication. The hardware platform has two  

separate networks( perhaps so that communications between subsets of the PEs do not 

interfere),but there is no direct path from M1 to M5.The message is therefore routed through 

M3,which reads it from one network and sends it on to the other one. 

 

 

 

Figure 4.18 A multihop communication. 

 
Analyzing delays through multihop systems is very difficult. For example ,the time that the 

message is held at M3 depends on both the computational load of M3 and the other messages 
that it must handle 

.If there is more than one network we must allocate communications to the networks .We 

may establish multiple networks so that lower-priority communications can be handled 

separately without interfering with high-priority communications on the primary network. 

Scheduling and allocation of computations and communications are clearly interrelated. If we 

change the allocation of computations, we change not onlythe scheduling of processes on 
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those PEs but also potentially the schedules of PEs with which they communicate. For 

example, if we move a computation to a slower PE, its results will be available later, which 

may mean rescheduling both the process that uses the value and the communication that 

sends the value to its destination. 

 

 

11.Hardware Platform Design, Allocation and Scheduling 

 

Now that we know how to compute delay for messages we can develop strategies for 

designing the schedule and allocation of process and communication . designing the hardware 

platform is necessarily closely related to our choice in scheduling  and allocating  processes 

.we want to  use only as much hardware as is necessary , but we cannot know how much 

hardware to use until we  can construct a system schedule . Creating that schedule requires an 

allocation of process to PEs , which in turn requires knowing the available hardware . 

 

When designing the hardware platform, we have the following design choice to make : 

 

 Number of PEs required 

 

 Types of all PEs 

 

 Number of network required 

 

 Types (and data rates) of the networks 

 

In making these choices , we need to construct allocations and schedules for the processes to 

evaluate the platform. In turn , allocation and scheduling are driven by system performance 

analysis. 

 

It helps to start with a basic assessment of the computation and communication needs of the 

system. A lower bound on the computational needs of the system can be obtained by 

summing up the worst case execution times of the processes

Where Tpi is the execution time of process Pi and Tl is the least – common multiple of all the 

periods T1 . This formula computes the total execution time over the schedule unrolled to the 

least-common multiple periods .Similarly, we can compute the communication volume over 

the least – common multiple of the periods . 
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The above formula computes the total number of bytes transmitted in the unrolled schedule 

by counting the output bytes of all the processes in the system . Of course , these figures do 

not account for overheads such as operating system scheduling or communication 

interference . They simply provide lower bounds on our needs . 

 

Depending n the types of system we are designing , the following two strategies may be 

useful to help as quickly come up with efficient system : 

 

For I/O intensive systems we will start with the I/O devices and their associated processing . 

 

For computation – intensive systems we will start with the processes . For systems hat do a lot 

of I/O 

, we definitely need to support I/O devices themselves and perhaps do some processing of the 

data locally before shipping the data over the network . 

 Inventory the required I/O devices 

 

 Determine which processing has deadlines short enough that they cannot be met by 

any network within your price range . I/O devices that do not require local processing 

may be attached to the network with simplest available interface . 

 

 Determine which devices can share a processing element or network interface . 

 

 Analyze communication times to determine whether critical communications may 

interfere whith each other . Determine whether a complex network or multiple 

networks may be required to satisfy communication deadlines 

 

 Allocate the minimum required PE to go with each I/O device 

 

 Design the rest of the system using the procedure for computation intensive systems 

 

11.1Computation intensive system design 

 

For computation – intensive systems , we want to consider the process and their deadlines 

and communication as follows : 

 Start with the tasks with the shortest deadlines . The shorter the deadline for a task , 

the more likel it is to require its own processing element or elements . IF a high 

priority task shares a PE with a low – priority task not only will a more expensive PE 

be required , but scheduling overhead will be paid for at the nn linear rate . 

 Analyze communication times to determine whether critical communications may 

interfere with each other 

 

 Allocate lower – priority tasks to shared PEs where possible 
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After we have designed a basic system that meets our performance goals , we can improve 

it to satisfy power consumption or other requirements . 

 

Once you have an initial allocation , use the system schedule as a guide for fine tuning . By 

reallocating processes you may be able to improve one or more attributes , such as hardware 

cost , slack time in the schedule , power consumption and so on . In particular , load 

balancing is oten a good idea . If you have some PEs that are more heavily loaded than others 

, it may be possible to move some of those processes to other PEs . Doing so can reduce the 

chance that the system fails to meet a deadline due to mistaken estimation of run times 

 

11.2ELEVATOR CONTROLLER 

We will use the principles of distributed system design by designing an elevator 

controller. The components are physically distributed among the elevators and floors of the 

building, and the system must meet both hard (making sure the elevator stops at the right 

point) and soft (responding  to requests for elevators)deadlines. 

 

11.3 Theory of Operation and Requirements 

 

We design a multiple elevator system to increase the challenge. The configuration of 

a bank of elevators is shown in Figure 4.25.The elevator car is the unit that runs up and down 

the hoistway (also known as the shaft) carrying passengers; we will use N to represent the 

number of hoistways. Each car runs in a hoist way and can stop at any of F floors. (For 

convenience we will number the floors 1 through F, although some of the elevator doors may 

in fact be in the basement.) Every elevator car has a car control panel that allows the 

passengers to select floors to stop at. Each floor has a single floor control panel that calls for 

an elevator. Each floor also has a set of displays to show the current state of the elevator 

systems. The user interface consists of the elevator control panels, floor control panels, and 

displays.The car control panels have F buttons to request the floors plus an emergency stop 

button. Each floor control panel has an up button and a down button that request an elevator 

going in the chosen direction. There is one display 
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Figure 4.19 A bank of elevators. 

 

per hoistway on each floor. Each display has an up light and a down light; if theelevator is 

idle,neither light is on.The displays for a hoistway always show the same state on all floors. 

 

 

The elevator control system consists of two types of components. 
 First, a singlemaster controller governs the overall behavior of all elevators, and 
 second,on eachelevator a car controller runs everything that must be done within the car. 

 

Thecar controller must of course sense button presses on the car control panel, but it must 

also sense the current position of the elevator. 

 

As shown in Figure 8.26, thecar controller reads two sets of indicators on the wall of the 

elevator hoistway tosense position. 

The coarse indicators run the entire length of the hoistway and a sensor determines when the 

elevator passes each one. 

Fine indicators are locate only around the stopping point for each floor. There are 2S _ 1 fine 

indicators on each floor, one at the exact stopping point and S on each side of it. The sensor 

also reads fine indicators; it puts out separate signals for the coarse and fine indicators. The 

elevator system can stop at the proper position by counting coarse and fineindicators. 

 

The elevator‘s movement is controlled by two motor control inputs: one for up and 

one for down. When both are disabled, the elevator does not move. The system should not 

enable both up and down on a single hoistway simultaneously. The master controller has 

several tasks—it must read inputs fromthe floor control panels, send signals to the lights on 

the floor displays, read floor requests from the car controllers, and take inputs from the car 
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sensors. Most importantly, it must tell the elevators when to move and when to stop. It must 

also schedule the elevators to efficiently answer passenger requests. 
 

The basic requirements for the elevator system follow 

 

 

In this design ,we are much more aware of the surrounding mechanical elements than we 

have been in previous examples. The electronics are clearly a small part of the cost and bulk 

of the elevator system. But because the elevators are controlled by the computers, the proper 

operation of the embedded hardware and software is very important. 

 

 

Figure 4.20 Sensing elevator position. 
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Figure 4.21 Basic class diagram for the elevator system. 
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Specification 

The basic class diagram for the elevator system is shown in Figure 4.27.This diagram concentrates 

on the relationships among the classes and the number of objects of each type that the system 

requires. 

 

The physical interface classes are defined in more detail in Figure 4.28.We have used inheritance to 

define the sensors, even though these classes represent physical objects.The only difference among 

the sensors to the elevator controller is whether they indicate coarse or fine positions;other physical 

distinctions among the sensors do not matter. 

 

 
Figure 4.22 Physical interface classes for the elevator system. 

 

 

The Car and Floor classes, which describe the control panels on the floors and in the cars, are 

shown in Figure 4 .29.These classes define the basic attributes of the car and floor control panels.  

 

The Controller class is defined in Figure 4.30. This class defines attributes that describe the state of 

the system, including where each car is and whether the system has made an emergency stop. It 

also defines several behaviors, such as an operate behavior and behaviors to check the state of parts 

of the system 

 

Architecture 

 

Computation and I/O occur at three major locations in this system:the floor control 

panels/displays,the elevator cabs,and the system controller. Let‘s consider the basic operation of 

each of these subsystems one at a time and then go back and design the network that connects them 
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.  

 

 
 

Figure 4.23 The Car and Floor classes. 

 

 

 

 

Figure 4.24 The Controller class for the elevator system. 

 

. 

The floor control panels and displays are relatively simple since they have no hard real-time 

requirements. Each one takes a set of inputs for the up/down indicators and lights the appropriate 

lights. Each also watches for button events and sends the results to the system controller.We can 

use a simple microcontroller for all these tasks. 

 

The cab controller must read the cab‘s buttons and send events to the system controller. It must also 

read the sensor inputs and send them to the system controller. Reading the sensors is a hard real- 

time task—proper operation of the elevator requires that the cab controller not miss any of the 

indicators.We have to decide whether to use one or two PEs in the cab.A conservative design 

would use separate PEs for the button panel and the sensor. We could also use a single processor to 

handle both the buttons and the sensor. 

 

The system controller must take inputs from all these units. Its control of the elevators has both 

hard and soft real-time aspects: It must constantly monitor all moving elevators to be sure they stop 

properly, as well as choose which elevator to dispatch to a request. Figure 8.31 shows the set of 

networkswe will use in the system.The floor control panels/displays are connected along a single 

bus network. Each elevator car has its own point-to-point link with the system controller 
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12.Testing 

 

The simplest way to test the controllers is to build an elevator simulator using an FPGA. We 

can easily program an FPGA to simulate several elevators by keeping registers for the current 

position of each elevator and using counters to control how often the elevators change state. Using 

an FPGA-based elevator simulator provides good motivation for this example because we can 

design the FPGA to indicate when an elevator has crashed through the floor or the ceiling of its 

shaft. Working with a real-time-oriented elevator simulator helps illustrate the challenges presented 

by real-time control. We can use a serial link from a PC to provide button inputs, or we can wire up 

panels of buttons and indicators ourselves 

. 

 

 

 

 

 
 

Figure 4.25 The networks in the elevator 
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Questions Bank 

1. Explain in detail the design process in embedded system.  

2. What are the challenges of Embedded System  

3. Discuss the complete design of typical embedded system 

4. What do you mean by embedded systems, Explain in brief with an example 

5. Discuss  the different challenges related to embedded software development 

6. Describe  the different issues related to embedded software development 

7. Explain  the different models and languages for embedded software 
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SYSTEM DESIGN 

 

Switches and LED interfacing-LCD Display interfacing- Analog sensors interfacing for 

digital data conversion - Access control using analog keypad - Pulse width modulation 

technique for motor speed control 

 

 

1.Switch Interfaces 

Input/output devices are critical components of an embedded system. The first input 

device we will study is the switch. It allows the human to input binary information into the 

computer. Typically we define the asserted state, or logic true, when the switch is pressed. 

Contact switches can also be used in machines to detect mechanical contact (e.g., two parts 

touching, paper present in the printer, or wheels on the ground etc.) A single pole single 

throw (SPST) switch has two connections. The switches are shown as little open circles in 

Figure 8.2. In a normally open switch (NO), the resistance between the connections is infinite 

(over 100 MΩ on the B3F tactile switch) if the switch is not pressed and zero (under 0.1 Ω on 

the B3F tactile switch) if the switch is pressed. To convert the infinite/zero resistance into a 

digital signal, we can use a pull-down resistor to ground or a pull-up resistor to +3.3V as 

shown in Figure 8.2. Notice that 10 kΩ is 100,000 times larger than the on-resistance of the 

switch and 10,000 times smaller than its off-resistance. Another way to choose the pull-down 

or pull-up resistor is to consider the input current of the microcontroller input pin. The 

current into the microcontroller will be less than 2µA (shown as IIL and IIH in the data 

sheet). So, if the current into microcontroller is 2µA, then the voltage drop across the 10 kΩ 

resistor will be 0.02 V, which is negligibly small. With a pull-down resistor, the digital signal 

will be low if the switch is not pressed and high if the switch is pressed (right Figure 8.2). 

This is defined as positive logic because the asserted state is a logic high. Conversely, with a 

pull-up resistor, the digital signal will be high if the switch is not pressed and low if  the 

switch is pressed (middle of Figure 8.2). This is defined  as negative  logic because the 

asserted state is a logic low. 

 

 

Figure 5.1 Single Pole Single Throw (SPST) Switch interface. 

 

One of the complicating issues with mechanical switches is they can bounce (oscillate on and 
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off) when touched and when released. The contact bounce varies from switch to switch and 

from time to time, but usually bouncing is a transient event lasting less than 5 ms. We can 

eliminate the effect of bounce if we design software that waits at least 10 ms between times 

we read the switch values. 

To interface a switch we connect it to a pin (e.g., Figure 8.3) and initialize the pin as an input. 

The initialization function will enable the clock, set the direction register to input, turn off the 

alternative function, and enable the pin. Notice the software is friendly because it just affects 

PA5 without affecting the other bits in Port A. The input function reads Port A and returns a 

true (0x20) if the switch is pressed and returns a false (0) if the switch is not pressed. Figure 

8.4 shows how we could build this circuit with a protoboard and a LaunchPad. 

 

Figure 5.2. Interface of a switch to a microcomputer input 

 
Figure 5.3. Construction of the interface of a switch to a microcomputer input. The 

brown-black-orange resistor is 10k. The switches in the lab-kit should plug into the 

protoboard. The switch is across the two pins that are closer to each other. It doesn't 

matter what color the wires are, but in this figure the wires are black, red and green. 

The two black wires are ground, the red wire is +3.3V, and the green wire is the  signal 

in, which connects the switch to PA5 of the microcontroller. 

 

The software in Program 5.1 is called a driver, and it includes an initialization, which is 

called once, and a second function that can be called to read the current position of the 

switch. Writing software this way is called an abstraction, because it separates what the 

switch does (Init, On, Off) from how it works (PortA, bit 5, TM4C123). The first input 

function uses the bit-specific address to get just PA5, while the second reads the entire port 

and selects bit 5 using a logical AND. 



169 
 

#define PA5 (*((volatile unsigned long *)0x40004080)) 

void Switch_Init(void){ volatile unsigned long delay; 

SYSCTL_RCGC2_R |= 0x00000001; // 1) activate clock 

for Port A delay = SYSCTL_RCGC2_R; // allow time for 

clock to start 

// 2) no need to unlock GPIO Port A 

GPIO_PORTA_AMSEL_R &= ~0x20; // 3) disable analog 

on PA5 GPIO_PORTA_PCTL_R &= ~0x00F00000; // 4) 

PCTL GPIO on PA5 

GPIO_PORTA_DIR_R &= ~0x20;  // 5) direction PA5 

input GPIO_PORTA_AFSEL_R &= ~0x20;  

 // 6) PA5 regular port 

function GPIO_PORTA_DEN_R |= 0x20; // 7) enable PA5 

digital port 

} 

unsigned long Switch_Input(void){ 

return PA5; // return 0x20(pressed) or 0(not pressed) 

}unsigned long Switch_Input2(void){ 

return (GPIO_PORTA_DATA_R&0x20); // 0x20(pressed) or 0(not pressed) 

} 

Program 5.1. Software interface for a switch on PA5 (C8_Switch). 

 

Maintenance Tip: When interacting with just some of the bits of an I/O register it is 

better to modify just the bits of interest, leaving the other bits unchanged. In this way, 

the action of one piece of software does not undo the action of another piece. 

 

 

2.LED Interfaces 

Driving LEDs 

Light emitting diodes (LEDs) are often used as indicators in digital systems and in many 

cases can simply be directly driven from a logic output provided there is sufficient current 

and voltage drive .The voltage drive is necessary to get the LED to illuminate in the first 

place. LEDs will only light up when their diode reversebreakdown voltage is exceeded. This 

is usually about 2 to 2.2 volts and less than the logic high voltage. The current drive 

determine show bright the LED will appear and it is usual to have a current limiting resistor 

in series with the LED to prevent it from drawing too much current and overheating. For a 

logic device with a 5 vol t supply a 300 resistor will limit the current to about 10  mA. The 

problem comes if the logic output is only 2.4 or 2.5 volts and not the expected 5 volts. This 

means that the resistor is sufficient to drop enough voltage so that the LED does not light up. 
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The solution is to use a buffer so that there is sufficient current drive or alternatively use a 

transistor to switch on the LED. There are special LED driver circuits packs available that are 

designed to connect directly to an LED without the need for the current limiting resistor. 

The resistor or current limiting circuit is included inside the device. 

 

A light emitting diode (LED) emits light when an electric current passes through it. 

LEDs have polarity, meaning current must pass from anode  to  cathode  to  activate.  The  

anode is  labelled a or + , and cathode is labelled kor -. The cathode is the short lead and 

there may be a slight flat spot on the body of round LEDs. Thus, the anode is the longer lead. 

The brightness of an LED depends on the applied electrical power (P=I*V). Since the LED 

voltage is approximately constant in the active region (see left side of Figure 8.5), we can 

establish the desired brightness by setting the current. 

 

 

Figure 5.4 Positive logic LED interface (Lite-On LTL-10223W). 

 

 

If the LED current is above 8 mA, we cannot connect it directly to the microcontroller 

because the high currents may damage the chip. Figure 8.5 shows two possible interface 

circuits we could use. In both circuits if the software makes its output high the LED will be 

on. If the software makes its output low the LED will be off (shown in Figure 5.5 with 

italics). When the software writes a logic 1 to the output port, the input to the 7405/PN2222 

becomes high, output from the 7405/PN2222 becomes low, 10 mA travels through the LED, 

and the LED is on. When the software writes a logic 0 to the output port, the input to the 

7405/PN2222 becomes low, output from the 7405/PN2222 floats (neither high nor low),  no 

current travels through the LED, and the LED is dark. The value of the resistor is selected to 
 

establish the proper LED current. When active, the LED voltage will be about 2 V, and the 

power delivered to the LED will be controlled by its current. If the desired brightness 

requires an operating point of 1.9 V at 10 mA, then the resistor value should be 

 

 

where Vd, Id is the desired LED operating point, and VOL is the output low voltage of the 

LED driver. If we use a standard resistor value of 100Ω in place of the 90Ω, then the current 
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will be (3.3-1.9- 0.5V)/100Ω, which is about 9 mA. This slightly lower current is usually 

acceptable. 

 

Figure 5.5. Low current LED interface (Agilent HLMP-D150). 

 

When the LED current is less than 8 mA, we can interface it directly to an output pin without 

using a driver. The LED shown in Figure 5.6a has an operating point of 1.7 V and 1 mA. For 

the positive logic interface (Figure 5.6b) we calculate the resistor value based on the desired 

LED voltage and current 

 

 
where VOH is the output high voltage of the microcontroller output pin. Since VOH can vary from 
2.4 to 
3.3 V, it makes sense to choose a resistor from a measured value of VOH, rather than the 

minimum value of 2.4 V. Negative logic means the LED is activated when the software 

outputs a zero. For the negative logic interface (Figure 5.6c) we use a similar equation to 

determine the resistor value 

 

 

where VOL is the output low voltage of the microcontroller output pin. 

If we use a 1.2 kΩ in place of the 1.3 kΩ, then the current will be (3.3-1.6-0.4V)/1.2kΩ, which is 

about 

1.08 mA. This slightly higher current is usually acceptable. If we use a standard resistor value 

of 1.5 kΩ in place of the 1.3 kΩ, then the current will be (3.3-1.6-0.4V)/1.5kΩ, which is 

about 0.87 mA. This slightly lower current is usually acceptable. 

 

The software in Program 5.2 is called a driver, and it includes an initialization, which is 

called once, and two functions that can be called to turn on and off the LED. Writing 

software this way is called an abstraction, because it separates what the LED does (Init, On, 

Off) from how it works (PortA, TM4C123). 

 

Checkpoint 8.2: What resistor value in of Figure 8.6 is needed if the desired LED operating 

point is 1.7V and 2 mA? Use the negative logic interface and, VOL of 0.4V. 
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void LED_Init(void){ volatile unsigned long delay; 

SYSCTL_RCGC2_R |= 0x01; // 1) activate clock for Port A 

delay = SYSCTL_RCGC2_R; // allow time for clock to 

start 

// 2) no need to unlock PA2 

GPIO_PORTA_PCTL_R &= ~0x00000F00; // 3) regular 

GPIO 

GPIO_PORTA_AMSEL_R &= ~0x04;   // 4) disable analog function 

on PA2 GPIO_PORTA_DIR_R |= 0x04; // 5) set direction to output 

GPIO_PORTA_AFSEL_R &= ~0x04;   // 6) regular port function 

GPIO_PORTA_DEN_R |= 0x04;  // 7) enable digital port 

} 

// Make PA2 high 

void 

LED_On(void){ 

GPIO_PORTA_DATA_R |= 0x04; 

} 

// Make PA2 low 

void 

LED_Off(void){ 

GPIO_PORTA_DATA_R &= ~0x04; 

} 

 

 

Figure 5.6. Construction of the interface of an LED to a microcomputer output  
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The yellow-purple-brown resistor is 470ohm. It doesn't matter what color the   wires are, 

but in this figure the wires are black, red and green. The two black wires are ground, the 

red wire is +3.3V, and the green wire is the signal Out, which connects PA2 of the 

microcontroller to the positive side of the LED. 

 

3.LCD Display Interface 

 

Liquid Crystal Display (LCD) consists of rod-shaped tiny molecules sandwiched between a 

flat piece of glass and an opaque substrate. These rod-shaped molecules in between the plates 

align into two different physical positions based on the electric charge applied to them. When 

electric charge is applied they align to block the light entering through them, where as when 

no-charge is applied they become transparent. 

 

Light passing through makes the desired images appear. This is the basic concept behind 

LCD displays. LCDs are most commonly used because of their advantages over other display 

technologies. They are thin and flat and consume very small amount of power compared to 

LED displays and cathode ray tubes (CRTs). 

 

ackground Microprocessor controlled LCD displays are widely used, having replaced most 

of their LED counterparts, because of their low power and flexible display graphics. This 

experiment will illustrate how a handshaked parallel port of the microcomputer will be used 

to output to the LCD display. The hardware for the display uses an industry standard 

HD44780 controller. The low-level software initializes and outputs to the HD44780 

controller. 

 
 

Figure 5.7 - 16 LCD display. 

 

 

There are four types of access cycles to the HD44780 depending on RS and 

R/W RS R/W Cycle 
0 0 Write to Instruction Register 
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0 1 Read Busy Flag (bit 7) 

1 0 Write data from μP to the 

HD44780 1 1 Read data from 

HD44780 to the μP 

 

Two types of synchronization can be used, blind cycle and gadfly. Most operations 

require 40 μs to complete whilesome require 1.64 ms. The example implementation shown in 

the LCD12.H, LCD12.C uses OC5 to create the blind cycle wait. A gadfly interface provides 

feedback to detect a faulty interface, but has the problem of creating a software crash if the 

LCD never finishes. The best interface utilized both gadfly and blind cycle, so that the 

software can return with an error code if a display operation does not finish on time (due to a 

broken wire or damaged display.) 

 

In embedded systems like we use, it is OK to provide LCD12.H and LCD12.C files 

which the user can compile with their application. In our embedded system, linking will 

performed by the compiler. You are encouraged to modify/extend this example, and 

define/develop/test your own format. Normally, we group the device driver software into four 

categories. We will use interrupts in the later labs. 

 

4.Data structures: global, protected 

Open Flag Boolean that is true if the display port is open initially false, set to true by LCD 

Open, set  to false by LCD Close static storage (or dynamically created at bootstrap time, i.e., 

when loaded into memory) 

 

1. Initialization routines (called by user 

#define LCDscroll 8 

#define LCDnoscroll 0 

#define LCDleft 0 

#define LCDright 4 

 

LCDOpen Initialization of display 

port Sets OpenFlag to true 

Initialize hardware, other data structures 

Returns an error code if unsuccessfull 

hardware non-existent, already open, out of memory, hardware failure, illegal 

parameter Input Parameters(mode) see the LCD data sheets for various options, 

e.g., scrolling Output Parameter(none) 
Typical calling sequence 

 

if(!LCDOpen(LCDscroll|LCDright)) 

error(); LCDClose Release of display 

port 
Sets OpenFlag to false 
Release any dynamically allocated 

memory Returns an error code if not 

previously open Output Parameter(error 

code) 

Typical calling 

sequence 



175 
 

if(!LCDClose()) 

error(); 

 

2. Regular I/O calls (called by user to perform I/O) 

LCDPutChar Output an ASCII character to the 

LCD port Returns an error code if unsuccessful 

device not open, hardware failure (happens when a wire is 

loose) Input Parameter(ASCII character) 
Output Parameter(error code) 
Typical calling sequence (you are free to 

change) if(LCDPutChar(letter)) error(); 

 

3. Support software (protected, not directly accessible by the user). 

None in this category for this lab, but there will be in later labs. 

Preparation 

Show the required hardware connections. Label all hardware chips, pin numbers, and resistor values.  

Write the 

low-level LCD device driver. You must have a separate LCD12.H and LCD12.C files to 

simplify the reuse of theseroutines. Write a main program that tests all features of the 

interface. 

 

Procedure 

You should look at the +5 V voltage versus time signal on a scope when power is first turned 

on to determine 

if the LCD ―power on reset‖ circuit will be properly activated. The LCD data sheet specifies 

it needs from 0.1 ms to10 ms rise time from 0.2 V to 4.5 V to generate the power on reset. 

Connect the LCD to your microcomputer. Usethe scope to verify the sharpness of the digital 

inputs/outputs. Adjust the contrast potentiometer for the best lookingdisplay. Test the device 

driver software and main program in small pieces. 

Checkout 
You should be able to demonstrate all the ―cool‖ features of your LCD display system. 

 

Hints 

1) Make sure the 14 wires are securely attached to your board. 

2) One way to test for the first call to open is to test the direction register. After reset, the 

direction registers areusually zero, after a call to open, some direction register bits will be 

one. 

3) Download from the class web site the files LCDTEST.C LCD12.H and LCD12.C files. 

These C languageroutine to do low level LCD output to Port H/J. Notice that it does not 

perform any input (either status or data),therefore it leaves DDRJ=0xFF, DDRH=0xFF. If 

you wish to include inputs, then you will have to toggle DDRH, so that PORTH is an output 

for writes and an input for reads. 

4 ) Although many LCD displays use the same HD44780 controller, the displays come in 

various sizes ranging from1 row by 16 columns up to 4 rows by 40 columns. 
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Analog to Digital Conversion, Data Acquisition and Control 

we have seen that an embedded system uses its input/output devices to interact with the 

external world. In this chapter we will focus on input devices that we use to gather 

information about the world. More specifically, we present a technique for the system to 

measure analog inputs using an analog to digital converter (ADC). We will use periodic 

interrupts to sample the ADC at a fixed rate. We will then 
 

combine sensors, the ADC, software, PWM output and motor interfaces to implement 

intelligent control on our robot car. 

 

5.Analog to Digital Conversion 

An analog to digital converter (ADC) converts an analog signal into digital form, 

shown in Figure 5.9 An embedded system uses the ADC to collect information about the 

external world (data acquisition system.) The input signal is usually an analog voltage, and 

the output is a binary number. The ADC precision is the number of distinguishable ADC 

inputs (e.g., 4096 alternatives, 12 bits). The ADC range is the maximum and minimum ADC 

input (e.g., 0 to +3.3V). The ADC resolution is the smallest distinguishable change in input 

(e.g., 3.3V/4096, which is about 0.81 mV). The resolution is the change in input that causes 

the digital output to change by 1. 

 

 

Range(volts) = Precision(alternatives) • Resolution(volts) 

 

 

 

Figure 5.8 A 12-bit ADC converts 
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The most pervasive method for ADC conversion is the successive approximation technique, 

as illustrated in Figure 5. 10 . A 12-bit successive approximation ADC is clocked 12 times. 

At each clock another bit is determined, starting with the most significant bit. For each clock, 

the successive approximation hardware issues a new "guess" on Vdac by setting the bit under 

test to a "1". If Vdac is now higher than the unknown input,Vin, then the bit under test is 

cleared. If Vdac is less than Vin, then the bit under test is remains 1. In this description, bit is 

an unsigned integer that specifies the bit under test. For a 12-bit ADC, bit goes 2048, 1024, 

512, 256,...,1. Dout is the ADC digital output, and Z is the binary input that is true if Vdac is 

greater than Vin. 0 to 3.3V on its input into a digital number  from 0 to 4095 

 

 
Figure 5.9 A 12-bit successive approximation ADC. 

 

Normally we don‘t specify accuracy for just the ADC, but rather we give the accuracy of the 

entire system (including transducer, analog circuit, ADC and software). An ADC is 

monotonic if it has no missing codes as the analog input slowly rises. This means if the 

analog signal is a slowly rising voltage, then the digital output will hit all values one at a 

time, always going up, never going down. The figure of merit of an ADC involves three 

factors: precision (number of bits), speed (how fast can we sample), and power (how much 

energy does it take to operate). How fast we can sample involves both the ADC conversion 

time (how long it takes to convert), and the bandwidth (what frequency components can be 

recognized by the ADC). The ADC cost is a function of the number and quality of internal 

components. Two 12-bit ADCs are built into the TM4C123/LM4F120 microcontroller. You 

will use ADC0 to collect data and we will use ADC1 and the PD3 pin to implement a 

voltmeter and oscilloscope. 

 

 

6.ADC on the TM4C123/LM4F120 

Table 1 shows the ADC0 register bits required to perform sampling on a single 

channel. There are two ADCs; you will use ADC0 and the grader uses ADC1. For more 

complex configurations refer to the specific data sheet. Bits 8 and 9 of the 

SYSCTL_RCGC0_R specify the maximum sampling rate, see Table 14.2. The TM4C123 

can sample up to 1 million samples per second. Bits 8 and 9 of the SYSCTL_RCGC0_R 

specify how fast it COULD sample; the actual sampling rate is determined by the rate at 

which we trigger the ADC. In this chapter we will use software trigger mode, so the actual 

sampling rate is determined by the SysTick periodic interrupt rate; the SysTick ISR will take 

one ADC sample. On the TM4C123, we will need to set bits in the AMSEL register  to 

activate the analog interface. 
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Table5. 1. The TM4C ADC0 registers. Each register is 32 bits wide.  

 

Address 31-

17 

16 15-

10 

9 8  7-

0 

 Name 

0x400F.E

100 

 AD

C 

 MA

XA 

DCS

PD 

   SYSCTL_RCGC0

_R 

  

31-

14 

 

13-

12 

 

11-

10 

 

9-8 

 

7-6 

 

5-4 

 

3-

2 

 

1-

0 

 

0x4003.80

20 

 SS3  SS2  SS1  SS0 ADC0_SSPRI_R 

31-16 15-12 11-8 7-4 3-0 

0x4003.80

14 

 EM3 EM2 EM1 EM0 ADC0_EMUX_R 

 

31-4 3 2 1 0 

0x4003.8

000 

 ASE

N3 

ASE

N2 

ASE

N1 

ASE

N0 

ADC0_ACTSS_R 

0x4003.8

0A0 

 MU

X0 

ADC0_SSMUX3

_R 

0x4003.8

0A4 

 TS0 IE0 END

0 

D0 ADC0_SSCTL3_

R 

0x4003.8

028 

 SS3 SS2 SS1 SS0 ADC0_PSSI_R 

0x4003.8

004 

 INR3 INR2 INR1 INR0 ADC0_RIS_R 

0x4003.8

00C 

 IN3 IN2 IN1 IN0 ADC0_ISC_R 

 
31-12 11-0 

0x4003.80
A8  DA

TA 
ADC0_SSFIFO3 

 

 

Table 5.2 . The ADC MAXADCSPD bits in the SYSCTL_RCGC0_R register. 

 

Value Description 
0x3 1M samples/second 
0x2 500K samples/second 
0x1 250K samples/second 
0x0 125K samples/second 
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Table5 .3 shows which I/O pins on the TM4C123 can be used for ADC analog input channels. 

 

IO Ain 0 1 2 3 4 5 6 7 8 9 1

4 

PB

4 

Ain

10 

Por

t 

 SSI2C

lk 

 M0PW

M2 

  T1CC

P0 

CAN0R

x 

  

PB

5 
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11 
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t 

 SSI2F

ss 

 M0PW

M3 

  T1CC

P1 

CAN0T

x 

  

PD

0 

Ain

7 
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t 

SSI3

Clk 

SSI1C

lk 

I2C3S

CL 

M0PW

M6 

M1PW

M0 

 WT2C

CP0 

   

PD

1 

Ain

6 
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t 

SSI3

Fss 

SSI1F

ss 

I2C3S

DA 

M0PW

M7 

M1PW

M1 

 WT2C

CP1 

   

PD
2 

Ain
5 

Por
t 

SSI3
Rx 

SSI1R
x  M0Fau

lt0   WT3C
CP0 

USB0e
pen   

PD

3 

Ain

4 

Por

t 

SSI3

Tx 

SSI1T

x 

   ID

X0 

WT3C

CP1 

USB0pf

lt 

  

PE

0 

Ain

3 

Por

t 

U7R

x 

         

PE

1 

Ain

2 

Por

t 

U7T

x 

         

PE

2 

Ain

1 

Por

t 

          

PE

3 

Ain

0 

Por

t 

          

PE

4 

Ain

9 

Por

t 

U5R

x 

 I2C2S

CL 

M0PW

M4 

M1PW

M2 

  CAN0R

x 

  

PE

5 

Ain

8 

Por

t 

U5T

x 

 I2C2S

DA 

M0PW

M5 

M1PW

M3 

  CAN0T

x 

  

 

The ADC has four sequencers, but  you  will  use  only sequencer  3  in  Labs  14 and 15. 

We set  the ADC0_SSPRI_R register to 0x0123 to make sequencer 3 the highest priority. 

Because we are using just one sequencer, we just need to make sure each sequencer has a 

unique priority. We set bits 15–12 (EM3) in the ADC0_EMUX_R register to specify how the 

ADC will be triggered. 

Table .4 shows the various ways to trigger an ADC conversion. More advanced ADC 

triggering techniques are presented in the book Embedded Systems: Real-Time Interfacing to 

ARM® Cortex™- M Microcontrollers. However in this course, we use software start 

(EM3=0x0). The software writes an 8 (SS3) to the ADC0_PSSI_R to initiate a conversion on 

sequencer 3. We can enable and disable the sequencers using the ADC0_ACTSS_R register. 

There are twelve ADC channels on the LM4F120/TM4C123.     Which     channel     we     

sample     is      configured      by      writing      to the ADC0_SSMUX3_R register. The 

mapping between channel number and the port pin is shown in Table .3. For example channel 

9 is connected to the pin PE4. The ADC0_SSCTL3_R register specifies the mode of the ADC 

sample. We set TS0 to measure temperature and clear it to measure the analog voltage on the 

ADC input pin. We set IE0 so that the INR3 bit is set when the ADC conversion is complete, 

and clear it when no flags are needed. When using sequencer 3, there is only one sample, so 

END0 will always be set, signifying this sample is the end of the sequence. In this class, the 
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sequence will be just one ADC conversion. We set the D0 bit to activate differential 

sampling, such as measuring the analog difference between two ADC  pins. In our  example, 

we  clear D0 to sample a  single-ended  analog  input.  Because  we  set  the IE0 bit,  the 

INR3 flag  in  the ADC0_RIS_R register will be set when the ADC conversion is complete, 

We clear the INR3 bit by writing an 8 to the 8 to theADC0_ISC_R register. 

 

Table 5.4. The ADC EM3, EM2, EM1, and EM0 bits in the ADC_EMUX_R register 
Value Event 
0x0 Software start 
0x1 Analog Comparator 0 
0x2 Analog Comparator 1 
0x3 Analog Comparator 2 
0x4 External (GPIO PB4) 
0x5 Timer 
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0x6 PWM0 
0x7 PWM1 
0x8 PWM2 
0x9 PWM3 
0xF Always (continuously sample) 

. 

 

We perform the following steps to configure the ADC for software start on one channel. 

Program 14.1 shows a specific details for sampling PE4, which is channel 9. The  function 

ADC0_InSeq3 will sample PE4 using software start and use busy-wait synchronization to 

wait for completion. 

Step 1. We enable the port clock for the pin that we will be using for the ADC input. 

Step 2. Make that pin an input by writing zero to the DIR register. 

Step 3. Enable the alternative function on that pin by writing one to the AFSEL register. 

Step 4. Disable the digital function on that pin by writing zero to the DEN register. 

Step 5. Enable the analog function on that pin by writing one to the AMSEL register. 

Step 6. We enable the ADC clock by setting bit 16 of the SYSCTL_RCGC0_R register. 

Step 7. Bits 8 and 9 of the SYSCTL_RCGC0_R register specify the maximum sampling 

rate of the ADC. In this example, we will sample slower than 125 kHz, so the maximum 

sampling rate is set at 125 kHz. This will require less power and produce a longer sampling 

time, creating a more accurate conversion. 

Step 8. We will set the priority of each of the four sequencers. In this case, we are using just 

one sequencer, so the priorities are irrelevant, except for the fact that no two sequencers 

should have the same priority. 

Step 9. Before configuring the sequencer, we need to disable it. To disable sequencer 3, we 

write a 0 to bit 3 (ASEN3) in the ADC_ACTSS_R register. Disabling the sequencer during 

programming prevents erroneous execution if a trigger event were to occur during the 

configuration process. 

Step 10. We configure the trigger event for the sample sequencer in the ADC_EMUX_R 

register. For this example, we write a 0000 to bits 15–12 (EM3) specifying software start 

mode for sequencer 3. 

Step 11. Configure the corresponding input source in the ADCSSMUXn register. In this 

example, we write the channel number to bits 3–0 in the ADC_SSMUX3_R register. In this 

example, we sample channel 9, which is PE4. 

Step 12. Configure the sample control bits in the corresponding nibble in the ADC0SSCTLn 

register. When programming the last nibble, ensure that the END bit is set. Failure to set the 

END bit causes unpredictable   behavior.   Sequencer   3   has   only   one   sample,   so   we   

write   a    0110   to  the ADC_SSCTL3_R register. Bit 3 is the TS0 bit, which we clear 

because we are not measuring temperature. Bit 2 is the IE0 bit, which we set because we 

want to the RIS bit to be set when the sample is complete. Bit 1 is the END0 bit, which is set 

because this is the last (and only) sample in  the sequence. Bit 0 is the D0 bit, which we clear 

because we do not wish to use differential mode. 

Step 13. We enable the sample sequencer logic by writing a 1 to the corresponding ASENn. 

To enable sequencer 3, we write a 1 to bit 3 (ASEN3) in the ADC_ACTSS_R register. 
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void ADC0_InitSWTriggerSeq3_Ch9(void){ volatile unsigned long delay; 

SYSCTL_RCGC2_R |= 0x00000010; // 1) activate clock for Port 

E delay = SYSCTL_RCGC2_R; //  allow time for clock to 

stabilize GPIO_PORTE_DIR_R &= ~0x04;  // 2) make 

PE4 input 

GPIO_PORTE_AFSEL_R |= 0x04; // 3) enable alternate function on 

PE2 GPIO_PORTE_DEN_R &= ~0x04; // 4) disable digital I/O on 

PE2 GPIO_PORTE_AMSEL_R |= 0x04;  // 5) enable analog 

function on PE2 SYSCTL_RCGC0_R |= 0x00010000; // 6) activate 

ADC0 

delay = SYSCTL_RCGC2_R 

 

SYSCTL_RCGC0_R &= ~0x00000300; // 7) configure for 125K 

ADC0_SSPRI_R = 0x0123;  // 8) Sequencer 3 is highest 

priority ADC0_ACTSS_R &= ~0x0008;    

 // 9) disable sample sequencer 3 

ADC0_EMUX_R &= ~0xF000;    // 10) seq3 is software trigger 

ADC0_SSMUX3_R &= ~0x000F;     

  // 11) clear SS3 field 

ADC0_SSMUX3_R += 9; //    set channel Ain9 (PE4) 

ADC0_SSCTL3_R = 0x0006;   // 12) no TS0 D0, yes IE0 END0 

ADC0_ACTSS_R |= 0x0008; // 13) enable sample sequencer 3 

} 

Program 5.3Initialization of the ADC using software start and busy-wait 

(C14_ADCSWTrigger). 

 

 

Program 5.4gives a function that performs an ADC conversion. There are four steps required 

to perform a software-start conversion. The range is 0 to 3.3V. If the analog input is 0, the 

digital output will be 0, and if the analog input is 3.3V, the digital output will be 4095. 

Digital Sample = (Analog Input (volts) • 4095) / 3.3V(volts) 

 

Step 1. The ADC is started using the software trigger. The channel to sample was specified 

earlier in the initialization. 

Step 2. The function waits for the ADC to complete by polling the RIS 

register bit 3. 

Step 3. The 12-bit digital sample is read out of sequencer 3. 
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Step 4. The RIS bit is cleared by writing to the ISC register. 

 

 

Figure 5.10. The four steps of analog to digital conversion: 1) initiate conversion, 2) wait 

for the ADC to finish, 3) read the digital result, and 4) clear the completion flag.  
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7 .Interfacing to DC motors 

 

So far with controlling DC motors, the emphasis has been simple on-off type switching. It 

is possible with a digital system to actually provide speed control using a technique called 

pulse width modulation 

 

 

 

    Figure  5.11. Using different PWM waveforms to control a DC motor speed 

 

With a DC motor, there are two techniques for controlling the motor speed: the first is to 

reduce the DC voltage to the motor. The higher the voltage, the faster it will turn. At low 

voltages, the control can be a bit hit and miss and the power control is inefficient. The 

alternative technique called pulse width modulation(PWM) will control a motor speed not by 

reducing the voltage to the motor but by reducing the time that the motor is switched on. 

This is done by generating a square wave at a frequency of several hundred hertz and 

changing the mark/space ratio of the wave form. With a large mark and a low space, the 

voltage is applied to the motor for almost all of the cycle time, and thus the motor will rotate 

very quickly. With a small mark and a large space, the opposite is true. The diagram shows 

the waveforms for medium, slow and fast motor control. The only difference between this 

method of control and that for a simple on-off switch  is the timing of the pulses from the 

digital output to switch the motor on and off. There are several methods that can be used to 

generate these waveforms. 

 

Software only 

With a software-only system, the waveform timing is done by creating some loops that 

provide the timing functions. The program pseudo code shows a simple structure for this. The 

first action is to switch the motor on and then to start counting through a delay loop. The 

length of time to count through the delay loop determines the motor-on period. When the 
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count is finished, the motor is switched off. The next stage is to count through a second delay 

loop to determine the motor-off period. 

 

repeat (forever) 

{ 

} 

 

This whole procedure is repeated for as long as the motor needs to be driven. By changing 

the value of the two delays, the mark/space ratio of the waveform can be altered. The total 

time taken to execute the repeat loop gives the frequency of the waveform. This method is 

processor intensive in that the program has to run while the motor is running. On first 

evaluation, it may seem that while the motor is running, nothing else can be done. This is not 

the case. Instead of simply using delay loops, other work can be inserted in here whose 

duration now becomes part of the timing for the PWM waveform. If the work is short, then 

the fine control over the mark/space ratio is not lost because the contribution that the work 

delay makes compared to the delay loop is small. If the work is long, then the minimum 

motor-on time and thus motor speed is determined by this period. 

 

 

repeat (forever) 

{ 

switch on 

motor perform 

task a delay 

loop1 switch 

off motor 

delay loop2 

} 

 

 

 

 

Figure  5.12 The timing diagrams for the software PWM implementation 
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The timing diagrams for the software loop PWM waveforms are shown in the diagrams 

above. In general, software only timing loops are not efficient methods of generating PWM 

waveforms for motor control. The addition of a single timer greatly improves the 

mechanism. 
Using a single timer 

By using a single timer, PWM waveforms can be created far easier and free up the processor 

to do other things without impacting the timing. There are several methods that can be used 

to do this. The key principle is that the timer can be programmed to create a periodic 

interrupt. 
Method 1 — using the timer to define the on period 

With this method, the timer is used to generate the onperiod. The processor switches the 

motor on and then starts thetimer to count down. While the timer is doing this, the processor 

is free to do what ever work is needed. The timer will eventually time out and generate a 

processor interrupt. The processor services the interrupt and switches the motor off. It then 

goes into a delay loop still within the service routine until the time period 

arrives to switch the motor on again. The processor switches the motor on, resets the timer 

and starts it counting and continues with its work by returning from the interrupt service 

routine. 

Method — using the timer to define frequency period 
With this method, the timer is used to generate a periodicinterrupt whose frequency is set by 

the timer period. When theprocessor services the interrupt, it uses a software loop to 

determinethe on period. The processor switches on the motor and usesthe software delay to 

calculate the on period. When the delay loop 

is completed, it switches off the motor and can continue with otherwork until the timer 

generates the next interrupt. 

Method 3 — using the timer to define both the on and off periods 
With this method, the timer is used to generate both the on and off periods. The processor 

switches the motor on, loads the timer with the on-period value and then starts the timer to 

count down. While the timer is doing this, the processor is free to do what ever work is 

needed. The timer will eventually time out and 

generate a processor interrupt, as before. The processor services the interrupt and switches 

the motor off. It then loads the timer with the value for the off period. The processor then 

starts the timer counting and continues with its work by returning from the interrupt service 

routine. The timer now times out and generates an interrupt. The 

processor services this by switching the motor on, loading the timer with the one delay 

value and setting the timer counting before returning from the interrupt. 

As a result, the processor is only involved when interruptedby the timer to switch the 

motor on or off and load the timer withthe appropriate delay value and start it counting. Of all 

these threemethods, this last method is the most processor efficient. Withmethods 1 and 2, 

the processor is only free to do other work when 

the mark/space ratio is such that there is time to do it. With a longmotor-off period, the 

processor performs the timing in softwareand there is little time to do anything else. With a 

short motor-offperiod, there is more processing time and far more work can bedone. The 

problem is that the work load that can be achieved is 

dependent on the mark/space ratio of the PWM waveform andengine speed. This can be 
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a major restriction and this is why thethird method is most commonly used. 

 

Using multiple timers 

With two timers, it is possible to generate PWM waveformswith virtually no software 

intervention. One timer is setup togenerate a periodic output at the frequency of the required 

PWMwaveform. This output is used to trigger a second timer which isconfigured as a 

monostable. The second timer output is used toprovide the motor-on period. If these timers 

are set to automaticallyreload, the first timer will continually trigger the second andthus 

generate a PWM waveform. By changing the delay value inthe second timer, the PWM 

mark/space ratio can be altered as needed. 

 

 

8.DAC  and ADC 

Suppose a system needs to give an analog output of a control circuit for automation. The 

analog output may be to a power system for a d.c. motor or furnace. A Pulse Width 

Modulator (PWM) unit in the microcontroller operates as follows: Pulse width is made 

proportional to the analog-output needed. PWM inputs are from 00000000 to 11111111 for 

an 8-bit DAC operation. The PWM unit outputs to an external integrator and then provides 

 

the desired analog output. Suppose an integrator circuit (external to the microcontroller) 

gives an output of 1.024 Volt when the pulse width is 50% of the total pulse time period, and 

2.047V when the width is 100%. When the width is made 25% by reducing by half the value 

in PWM output control-register, the integrator output will become 0.512 Volt. 

Now assume that the integrator operates with a dual (plus-minus) supply. Also assume that 

when an integrator circuit gives an output of 1.023 Volt, the pulse width is 100% of total 

pulse time period and –1.024 Volt when the width is 0%. When the width is made 25% by 

reducing by half the value in an output control register, the integrator output will be 0.512 

Volt; at 50% the output will be 0.0 Volt. From this information, finding the formulae to 

obtain converted bits for a given PWM register bits ranging from 00000000 to 11111111 in 

both the situations is left as an exercise for the reader. The ADC in the system 

microcontroller can be used in many applications such as Data Acquisition System (DAS), 

analog control system and voice digitizing system. Suppose a system needs to read an analog 

input from a sensor or transducer circuit. If converted to bits by the ADC unit in the system, 

then these bits, after processing, can also give an output. This provides a control for 

automation by a combined use of ADC and DAC features. The converted bits can be given to 

the port meant for digital display. The bits may be transferred to a memory address, a serial 

port or a parallel port. A processor may process the converted bits and generate a Pulse Code 

Modulated (PCM) output. PCM signals are used digitizing the voice in the digital format]. 
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Important points about the ADC are as follows: 

1. Either a single or dual analog reference voltage source is required in the ADC. It sets 

either the analog input‘s upper limit only or the lower and upper limits both. For a single 

reference source, the lower limit is set to 0V (ground potential). When the analog input 

equals the lower limit the ADC generates all bits as 0s, and when it equals the upper 

limit it generates all bits as 1s. [As an example, suppose in an ADC the upper limit or 

reference voltage is set as 2.255 Volt. Let the lower limit reference Voltage be 0.255V. 

Difference in the limits is 2 Volt. Therefore, the resolution will be (2/256) Volt. If the 8-

bit ADC analog-input is 0.255V, the converted 8 bits will be 00000000. When the input 

is (0.255V + 1.000V) = 1.255V, the bits will be 10000000. When the analog input is 

(0.255V + 0.50V), the converted bits will be 01000000. [From this information, finding 

a formula to obtain converted bits for a given analog input = v Volt is left as an exercise 

for the reader]. 

2. An ADC may be of eight, ten, twelve or sixteen bits depending upon the 

resolution needed for conversion. 

3. The start of the conversion signal (STC) signal or input initiates the conversion to 8 bits. 

In a system, an instruction or a timer signals the STC 

. 4. There is an end of conversion (EOC) signal. In a system, a flag in a register is set to 

indicate the end of conversion and generate an interrupt. 

5. There is a conversion time limit in which the conversion is definite. 
6. A Sample and Hold (S/H) unit is used to sample the input for a fixed time and hold till 

conversion is over. An ADC unit in the embedded system microcontroller may have multi- 

channels. It can then take the inputs in succession from the various pins interconnected to 

different analog sources 

 

9.LCD and LED displays 

A system requires an interfacing circuit and software to display the status or message 

for a line, for multi-line displays, or flashing displays. An LCD screen may show up a multi-

line display of characters or also show a small graph or icon (called pictogram). A recent 

innovation in the mobile phone system turns the screen blue to indicate an incoming call. 

Third generation system phones have both image and graphic displays. An LCD needs little 

power. It is powered by a supply or battery (a solar panel in the calculator). LCD is a diode 

that absorbs or emits light on application of 3 V to 4 V and 50 or 60 Hz voltage-pulses with 

currents less than ~50 mA. The pulses are applied with the same polarity on crystal front and 

back plane for no light, or with opposite polarity for light. Here polarity at annstance means 

logic ‗1‘ or ‗0‘]. An LSI (Lower Scale Integrated Circuit) display-controller is often used in 

the case of matrix displays. For indicating ON status of the system there may be an LED, 

which glows when it is ON. A flashing LED may indicate that a specific task is under 

completion or is running. It may indicate a wait status for a message. The LED is a diode 

that emits yellow, green, red (or infrared light in a remote controller), on application of a 

forward voltage of 1.6 to 2 V. An LED needs current up to 12 mA above 5 mA (less in 
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flashing display mode) and is much brighter than the LCD. Therefore, for flashing display 

and for display limited to few digits, LEDs are used in a system 

 

10.keypad or keyboard 

 

The keypad or keyboard is an important device for getting user inputs. The system 

must provide the necessary interfacing and key-debouncing circuit as well as the software 

for the system to receive input from a set of keys or from a keyboard or keypad. A keypad 

has up to a maximum of 32 keys. A keyboard may have 104 or more keys. The keypad or 

keyboard may interface serially or as parallel to rocessor directly through a parallel or serial 

port or through a controller. 
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Question Bank 

1. Explain the  LED  interfacing with ARM Processor 

2. Explain with neat diagram  the analog to digital data conversion 

3. Explain the Pulse width modulation technique for motor speed control 

4. Discuss about the motor interfacing techniques. 

5. Describe the LCD interfacing Techniques 
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