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INTRODUCTION TO DISCRETE TIME SIGNALS AND 

SYSTEMS 

A signal is a function of independent variables such as time, distance, position, temperature 

and pressure. A signal carries information, and the objective of signal processing is to extract 

useful information carried by the signal. Signal processing is concerned with the mathematical 

representation of the signal and the algorithmic operation carried out on it to extract the 

information present. For most purposes of description and analysis, a signal can be defined 

simply as a mathematical function, y where x is the independent variable . 

y = f (x) 

 

signal e.g.: y=sin(ωt) is a function of a variable in the time domain and is thus a time signal 

X(ω)=1/(-mω2+icω+k) is a frequency domain signal; An image I(x,y) is in the spatial 

domain 

 

 

 

Fig.1:Classification
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at t=0, will have the same motions at all time. There is no place for uncertainty here. If we can 

uniquely specify the value of θ for all time, i.e., we know the underlying functional 

relationship between t andθ, the motion is deterministic or predictable. In other words, a 

signal that can be uniquely determined by a well defined process such as a mathematical 

expression or rule is called a deterministic signal. The opposite situation occurs if we know 

all the physics there is to know, but still cannot say what the signal will be at the next time 

instant-then the signal is random or probabilistic. In other words, a signal that is generated in 

a random fashion and can not be predicted ahead of time is called a random signal. 

1.2 EXAMPLES OF SIGNALS 

For a simple pendulum as shown, basic definition is: where θm is the peak amplitude of 

the motion and ω=√l/g with l the length of the pendulum 

and g the acceleration due to gravity. As the system has a constant amplitude (we assume no 

damping for now), a constant frequency (dictated by physics) and an initial condition (θ=0 

when t=0), we know the value of θ(t) for all time 

 

 

 

 

Fig. 2:Typical examples to deterministic signals are sine chirp and digital stepped sine. 

  

 

 

1.3 Random signals are characterized by having many frequency components present over 
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a wide range of frequencies.The amplitude versus time appears to vary rapidly and 

unsteadily with time. The ‘shhhh’ sound is a good example that is rather easy to observe 

using a 

microphone and oscillloscope. If the sound intensity is constant with time, the random signal 

is stationary, while if the sound intensity varies with time the signal is nonstationary. One 

can easily see and hear this variation while making the ‘shhhh’ sound. 

 

 

Fig. 3: Random signal 

 

Random signals are characterized by analyzing the statistical characteristics across an 

ensemble of records. Then, if the process is ergodic, the time (temporal) statistical 

characteristics are the same as the ensemble statistical characteristics. The word temporal 

means that a time average definition is used in place of an ensemble statistical definition 

 

 

Fig. 4: Transient signal 

 

1.4. Transient signals 

 

may be defined as signals that exist for a finite range of time as shown in the figure. Typical 

examples are hammer excitation of systems, explosion and shock loading etc. It should be 

noted that periodicity does not necessarily mean a sinusoidal signal as shown in the figure. 
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Fig. 6: A signal with a time varying mean is an 

aperiodic signal 
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For a simple pendulum as shown, if we define the period τ by 

, then for the pendulum,and such signals are defined as periodic. 

 

 

 

 

 

Fig. 7: Pendulum 

A periodic signal is one that repeats itself in time and is a reasonable model for many 

real processes, especially those associated with constant speed machinery. 

Stationary signals are those whose average properties do not change with time. 

Stationary signals have constant parameters to describe their behaviour. 

Nonstationary signals have time dependent parameters. In an engine excited vibration where 

the engines speed varies with time; the fundamental period changes with time as well as with 

the corresponding dynamic loads that cause vibration. 

1.5 Deterministic Vs Random Signal: 

The signals can be further classified as monofrequency (sinusoidal) signals and 

multifrequency signals such as the square wave which has a functional form made up of an 

infinite superposition of different sine waves with periods τ,τ/2,τ/3,… 

1 D signals are a function of a single independent variable. The speech signal is an example 

of a 1 D signal where the independent variable is time. 

2D signals are a function of two independent variables. An image signal such as a photograph 

is an example of a 2D signal where the two independent variables are the two spatial variables 
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1.6 CONTINUOUS VERSUS DISCRETE SIGNALS 

 

The value of a signal at a specific value of the independent variable is called its amplitude. 

• The variation of the amplitude as a function of the independent variable is called its 

waveform. 

• For a 1 D signal, the independent variable is usually labelled as time. If the independent 

variable is continuous, the signal is called a continuous-time signal. A continuous time signal 

is defined at every instant of time. 

• If the independent variable is discrete, the signal is called a discrete-time signal. A 

discrete time signal takes certain numerical values at specified discrete instants of time, 

and between 

these specified instants of time, the signal is not defined. Hence, a discrete time signal 

is basically a sequence of numbers. 

 

1.7 ANALOG VERSUS DIGITAL SIGNALS 

 

A continuous-time signal with a continuous amplitude is usually called an analog signal. 

A speech signal is an example of an analog signal. 

A discrete time signal with discrete valued amplitudes represented by a finite number of digits 

is referred to as a digital signal 

 

 

Fig. 8: ADC Conversion 
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1.8 CONVOLUTIONS 

 

The convolution of f and g is written f∗g, using an asterisk or star. It is defined as the integral 

of the product of the two functions after one is reversed and shifted. As such, it is a 

particular kind 

of integral transform: 

 

While the symbol t is used above, it need not represent the time domain. But in that 

context, the convolution formula can be described as a weighted average of the function 

f(τ) at the 

moment t where the weighting is given by g(−τ) simply shifted by amount t. As t 

changes, the weighting function emphasizes different parts of the input function. 

For functions f, g supported on only   (i.e., zero for negative arguments), the 

integration limits can be truncated, resulting in 

 

In this case, the Laplace transform is more appropriate than the Fourier transform 

below and boundary terms become relevant. 

1.8.1 Circular convolution 

When a function gT is periodic, with period T, then for functions, f, such that f∗gT 

exists, the convolution is also periodic and identical to: 

where to is an arbitrary choice. The summation is called a periodic summation of the function f. 

https://en.wikipedia.org/wiki/Asterisk
https://en.wikipedia.org/wiki/Integral_transform
https://en.wikipedia.org/wiki/Support_(mathematics)
https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Periodic_summation
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When gT is a periodic summation of another function, g, then f∗gT is 

known as a circular or cyclic convolution of f and g. 

And if the periodic summation above is replaced by fT, the operation is called a periodic 

convolution of fT and gT 

 

1.9 SAMPLING AND QUANTIZATION 

Nearly all data acquisition systems sample data with uniform time intervals. For evenly sampled 

data, time can be expressed as: 

T = (N 1)Δt 

where N is the sampling index which is the number of equally spaced samples. For most Fourier 

analyzers N is restricted to a power of 2. 

• The sample rate or the sampling frequency is: 

f = 1 = ( N −1)Δf 

Sampling frequency is the reciprocal of the time elapsed Δt from one sample to the next. 

• The unit of the sampling frequency is cycles per second or Hertz (Hz), if the sampling period 

is in seconds. 

• The sampling theorem asserts that the uniformly spaced discrete samples are a complete 

representation of the signal if the bandwidth fmax is less than half the sampling 

rate. The sufficient condition for exact reconstructability from samples at a uniform 

sampling rate fs (in samples per unit time) (fs≥2fmax). 

1.9.1 Aliasing 

One problem encountered in A/D conversion is that a high frequency signal can be falsely 

confused as a low frequency signal when sufficient precautions have been avoided. 

• This happens when the sample rate is not fast enough for the signal and one speaks of 

aliasing. 

• Unfortunately, this problem can not always be resolved by just sampling faster, the signal’s 

frequency content must also be limited. 

• Furthermore, the costs involved with postprocessing and data analysis increase with the 

quantity of data obtained. Data acquisition systems have finite memory, speed and data storage 

capabilities. Highly oversampling a signal can necessitate shorter sample lengths, longer time 

on test, more storage medium and increased database management and archiving requirements 

The central concept to avoid aliasing is that the sample rate must be at least twice the highest 

frequency component of the signal 

(fs≥2fmax). 

We define the Nyquist or cut-off frequency 

• The concept behind the cut-off frequency is often referred to as 2Δt 

Shannon’s sampling criterion. Signal components with frequency content above the cut-off 

frequency are aliased and can not be distinguished from the frequency components below the 

cut-off frequency. Conversion of analog frequency into digital frequency during sampling is 

shown in the figure. Continuous signals with a frequency less than one-half of the sampling 

rate are directly converted into the corresponding digital frequency. Above one-half of the 

sampling rate, aliasing takes place, resulting in the frequency being misrepresented in the 

digital data. Aliasing always changes a higher frequency into a lower frequency between 0 and 

https://en.wikipedia.org/wiki/Periodic_summation
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0.5. In addition, aliasing may also change the phase of the signal by 180 

degrees. 

 

      Fig. 9: Aliasing 

If any energy in the original signal extends beyond the Nyquist frequency, it is folded back into 

the Nyquist interval in the spectrum of the sampled signal. This folding is called aliasing. 

 

 

 
 

1.9.2 Quantization 

Quantization is involved to some degree in nearly all digital signal processing, as the process 

of representing a signal in digital form ordinarily involves rounding. Quantization also forms 

the core of essentially all lossy compression algorithms. The difference between an input 

value and its quantized value (such as round-off error) is referred to as quantization error. A 

device 

or algorithmic function that performs quantization is called a quantizer. An analog-to-

https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Algorithm_function
https://en.wikipedia.org/wiki/Analog-to-digital_converter
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digital converter is an example of a quantizer. 

Because quantization is a many-to-few mapping, it is an inherently non-linear and irreversible 

process (i.e., because the same output value is shared by multiple input values, it is impossible 

in general to recover the exact input value when given only the output value). 

The set of possible input values may be infinitely large, and may possibly be continuous and 

therefore uncountable (such as the set of all real numbers, or all real numbers within some 

limited range). The set of possible output values may be finite or countably infinite. The input 

and output sets involved in quantization can  be  defined  in  a  rather  general  way.  For 

example, vector quantization is the application of quantization to multi-dimensional (vector- 

valued) input data 

 

 

1.10 CONCEPTS OF SIGNAL PROCESSING 

 

In the case of analog signals, most signal processing operations are usually carried out in the 

time domain. 

• In the case of discrete time signals, both time domain and frequency domain 

applications are employed. 

• In either case, the desired operations are implemented by a combination of some 

elementary operations such as: 

– Simple time domain operations 

– Filtering  

– Amplitude modulation 

The three most basic time-domain signal operations are: 

• Scaling 

• Delay 

• Addition 

Scaling is simply the multiplication of a signal by a positive or a negative constant. In the 

case of analog signals, this operation is usually called amplification if the magnitude of the 

multiplying constant, called gain, is greater than one. If the magnitude of the multiplying 

constant is less than one, the operation is called attenuation. Thus, if x(t) is an analog signal, 

the scaling operation generates a signal y(t)=αx(t), where α is the multiplying constant. 

Delay operation generates a signal that is delayed replica of the original signal. For an 

analog signal x(t), y(t)=x(t-t0) is the signal obtained by delaying x(t) by the amount t0, 

which is assumed to be a positive number. If t0 is negative, then it is an advance operation 

Addition operation generates a new signal by the addition of signals. For instance, 

y(t)=x1(t)+x2(t)-x3(t) is the signal generated by the addition of the three analog signals 

x1(t), x2(t) and x3(t) . 

 

1.11 TYPICAL APPLICATIONS 

 

The main applications of DSP are 

 

https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Nonlinear_system
https://en.wikipedia.org/wiki/Uncountable
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Countable_set
https://en.wikipedia.org/wiki/Vector_quantization
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audio signal processing, 

 

sometimes referred to as audio processing, is the intentional alteration of auditory signals, or 

sound, often through an audio effect oreffects unit. As audio signals may be electronically 

represented in either digital or analog format, signal processing may occur in either domain. 

Analog processors operate directly on the electrical signal, while digital processors operate 

mathematically on the digital representation of that signal. 

audio compression 

 

bit-rate reduction involves encoding information using fewer bits than the original 

representation.[2]Compression can be either lossy or lossless. Lossless compression reduces 

bits by identifying and eliminating statistical  redundancy.  No  information  is  lost  in  

lossless  compression. Lossy compression reduces bits by identifying unnecessary information 

and removing it.[3] The process of reducing the size of a data file is referred to as data 

compression. In the context of data transmission, it is called source coding (encoding done at 

the source of the data before it is stored or transmitted) in opposition to channel coding.[4] 

digital image processing, 

 

is the use of computer algorithms to perform image processing on digital images. As a 

subcategory or field of digital signal processing, digital image processing has many advantages 

over analog image processing. It allows a much wider range of algorithms to be applied to the 

input data and can avoid problems such as the build-up of noise and signal distortion during 

processing. Since images are defined over two dimensions (perhaps more) digital image 

processing may be model in the form of multidimensional systems 

speech processing 

s the study of speech signals and the processing methods of these signals. The signals are 

usually processed in a digital representation, so speech  processing  can  be  regarded  as a 

special  case  of digital signal processing, applied to speech signal. Aspects of speech 

processing includes the acquisition, manipulation, storage, transfer and output of speech 

signals. 

speech recognition, 

 

is the inter-disciplinary sub-field of computational linguistics which incorporates knowledge 

and research in the linguistics, computer science, and electrical engineering fields to develop 

methodologies and technologies that enables the recognition and translation of spoken 

language into text by computers and computerized devices such as those categorized  as Smart  

Technologies and robotics. It is also known as "automatic speech recognition" (ASR), 

"computer speech recognition", or just "speech to text" (STT). 

https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Effects_unit
https://en.wikipedia.org/wiki/Digital_data
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Audio_compression_(data)
https://en.wikipedia.org/wiki/Encoding
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Data_compression#cite_note-mahdi53-2
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Redundancy_(information_theory)
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Data_compression#cite_note-3
https://en.wikipedia.org/wiki/Data_compression#cite_note-3
https://en.wikipedia.org/wiki/Data_compression#cite_note-4
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Analog_image_processing
https://en.wikipedia.org/wiki/Analog_image_processing
https://en.wikipedia.org/wiki/Multidimensional_systems
https://en.wikipedia.org/wiki/Speech_processing
https://en.wikipedia.org/wiki/Speech_communication
https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Digital_data
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Audio_signal
https://en.wikipedia.org/wiki/Audio_signal
https://en.wikipedia.org/wiki/Audio_signal
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Inter-disciplinary
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Translation
https://en.wikipedia.org/wiki/Smart_Technologies
https://en.wikipedia.org/wiki/Smart_Technologies
https://en.wikipedia.org/wiki/Robotics
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digital communications, radar, sonar, financial signal processing seismology and biomedicine. 

Specific examples are speech compression and transmission in digitalmobile phones, room 

correction of sound in hi-fi and sound reinforcement applications, weather 

forecasting,economic forecasting, seismic data processing, analysis and control of industrial 

processes, medical imagingsuch as CAT scans and MRI, MP3 compression, computer 

graphics, image manipulation, hi- fi loudspeakercrossovers and equalization, and audio effects 

for use with electric guitar amplifiers 

1.12 ADVANTAGES OF DIGITAL SIGNAL PROCESSING COMPARED WITH 

ANALOG SIGNAL PROCESSING 

Accracy 

 

Implimentation of sophisticated 

algorithms Storage 

Noise reduction 

 

1.13 APPLICATIONS OF SIGNAL PROCESSING IN BIOMEDICAL ENGINEERING 

 

• io signal processing – for electrical signals representing sound, such as speech or music 

• Speech signal processing – for processing and interpreting spoken words 

• Image processing – in digital cameras, computers and various imaging systems 

• Video processing – for interpreting moving pictures 

• Wireless communication - waveform generations, demodulation, filtering, equalization 

• Control systems 

• Array processing – for processing signals from arrays of sensors 

• Seismology 

• Financial signal processing – analyzing financial data using signal processing 

techniques, especially for prediction purposes. 

• Feature extraction, such as image understanding and speech recognition. 

• Quality improvement, such as noise reduction, image enhancement, and echo cancellation. 

• (Source coding), including audio compression, image compression, and video 

compression 

 

 

 

 

https://en.wikipedia.org/wiki/Digital_communication
https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Sonar
https://en.wikipedia.org/wiki/Financial_signal_processing
https://en.wikipedia.org/wiki/Seismology
https://en.wikipedia.org/wiki/Biomedicine
https://en.wikipedia.org/wiki/Speech_encoding
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Digital_room_correction
https://en.wikipedia.org/wiki/Digital_room_correction
https://en.wikipedia.org/wiki/Hi-fi
https://en.wikipedia.org/wiki/Sound_reinforcement
https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Economic_forecasting
https://en.wikipedia.org/wiki/Economic_forecasting
https://en.wikipedia.org/wiki/Seismology
https://en.wikipedia.org/wiki/Industrial_process
https://en.wikipedia.org/wiki/Industrial_process
https://en.wikipedia.org/wiki/Medical_imaging
https://en.wikipedia.org/wiki/Medical_imaging
https://en.wikipedia.org/wiki/Computed_axial_tomography
https://en.wikipedia.org/wiki/MRI
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Image_manipulation
https://en.wikipedia.org/wiki/Loudspeaker
https://en.wikipedia.org/wiki/Loudspeaker
https://en.wikipedia.org/wiki/Equalization_(audio)
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Electric_guitar
https://en.wikipedia.org/wiki/Amplifiers
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Speech_signal_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Video_processing
https://en.wikipedia.org/wiki/Wireless_communication
https://en.wikipedia.org/wiki/Control_systems
https://en.wikipedia.org/wiki/Array_processing
https://en.wikipedia.org/wiki/Seismology
https://en.wikipedia.org/wiki/Financial_signal_processing
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Image_understanding
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Noise_reduction
https://en.wikipedia.org/wiki/Image_enhancement
https://en.wikipedia.org/wiki/Echo_cancellation
https://en.wikipedia.org/wiki/Source_coding
https://en.wikipedia.org/wiki/Audio_compression_(data)
https://en.wikipedia.org/wiki/Image_compression
https://en.wikipedia.org/wiki/Video_compression
https://en.wikipedia.org/wiki/Video_compression
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ANALYSIS OF DT LTI SYSTEM 
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Z TRANSFORM 
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Z transform of left hand sequence 
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Z transform of both sided sequence 
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PROPERTIES OF ROC 
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PROPERTIES OF Z TRANSFORM 
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PROBLEMS 
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INVERSE Z TRANSFORM 
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QUESTIONS 

1. Define signal with an example 

2. Distinguish between continuous & discrete time signal 

3. Define sampling & Quantization 

4. Give the merits of digital signal processing compared with analog processing 

5. Define Z transform 

6. Explain in detail about the classification of discrete time signal with an example 

7. Explain in detail about all the applications of digital signal processing 

8. Determine whether the following DT signals or periodic or not 

(i) Cos2πn/5 + cos2πn/7 

(ii) Cos(n/8)cos(nπ/8) 

(iii) Sin(π+0.2n) 

9. Find and sketch the even and odd components of the following 
(i) X(n) = e-(n/4) 

(ii) X(n) = Im [ejnπ/4] 

10. Find the inverse Z transform of X(Z) = z(z2-4z+5)/(z-3)(z-1)(z-2) for ROC 2<|z|<3, | 

z|>3, | z|<1 using partial fraction method 

11. Determine the impulse response h(n) for the system described by the second order 

difference equation  

y(n) = 0.6y(n-1)-0.08y(n-2)+x(n) 
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UNIT – II – Frequency Analysis of signals – SBMA1402 
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FREQUENCY ANALYSIS OF THE SIGNALS 

 

1.1 Discrete Fourier Transform 

 

the discrete Fourier transform (DFT) converts a finite sequence of equally spaced 

samples of a function into the list of coefficients of a finite combination of complex 

sinusoids, ordered by their frequencies, that has those same sample values. It can be said 

to convert the sampled function from its original domain (often time or position along a 

line) to the frequency domain. 

 

The input samples are complex numbers (in practice, usually real numbers), and the 

output coefficients are complex as well. The frequencies of the output sinusoids are 

integer multiples of a fundamental frequency, whose corresponding period is the length 

of the sampling interval. The combination of sinusoids obtained through the DFT is 

therefore periodic with that same period. The DFT differs from the discrete-time Fourier 

transform (DTFT) in that its input and output sequences are both finite; it is therefore 

said to be the Fourier analysis of finite-domain (or periodic) discrete-time functions 

 

The DFT is the most important discrete transform, used to perform Fourier analysis in 

many practical applications.[1] In digital signal processing, the function is any quantity 

or signal that varies over time, such as the pressure of a sound wave, a radio signal, or 

daily temperature readings, sampled over a finite time interval. In image processing, the 

samples can be the values of pixels along a row or column of a raster image.  

1.2 Computation of DFT 

 
 

https://en.wikipedia.org/wiki/Sampling_%28signal_processing%29
https://en.wikipedia.org/wiki/Function_%28mathematics%29
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https://en.wikipedia.org/wiki/Image_processing
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RELATIONSHIP BETWEEN DFT AND Z TRANSFORM 
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COMPARISON BETWEEN DFT AND FFT 
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LINEAR CONVOLUTION 
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CIRCULAR CONVOLUTION 

CONCENTRIC CIRCLE METHOD 

 
MATRIX MULTIPLICATION METHOD 

 

 
 

 

Find the circular convolution of two finite duration sequence  x1(n) = {1,-1,-2,3,-1}, x2(n) = 

{1,2,3} 
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QUESTIONS 

 

1. Give the comparison of DFT & FFT 

2. Find the IDFT of a sequence Y(k) = {1, 0, 1, 0} 

3. Compare DIT & DIF 

4. Define convolution 

5. For 128 point DFT how many complex multiplications are required 

6. Draw the butterfly diagram for four point radix 2 DIT FFT 

7. Determine the 8 point DFT of a sequence  

8. x(n) = {1, 1, 1, 1, 1, 1, 0, 0} 

9. Find IDFT of a sequence X(K) = {5, 0, 1-j, 0, 1, 0, 1+j, 0} 

10. Find the DFT of a sequence x(n) = {1, 2, 3, 4, 4, , 2, 1} using DIT algorithm 

11. Find the IDFT of a sequence X(K) = {10, -2+j2, -2, -2-j2} using DIT & Find the DFT of 

a sequence x(n) = {1, 0, 0, 1} using DIF algorithm 

12. Find the linear convolution of the given sequences  

13. x(n) = {1, 1, 1, 1}, h(n) = {2, 2} 

14. Find the discrete convolution of two finite duration sequences x(n) = {1, 2, -1, 1}, h(n) = 

{1, 0, 1, 1}. 
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FIR FILTER DESIGNING 

 

DIGITAL FILTERS 

 

In signal processing, a digital filter is a system that performs mathematical operations on a 

sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in 

contrast to the other major type of electronic filter, the analog filter, which is an electronic circuit 

operating on continuous-time analog signals. 

 

A digital filter system usually consists of an analog-to-digital converter to sample the input 

signal, followed by a microprocessor and some peripheral components such as memory to store 

data and filter coefficients etc. Finally a digital-to-analog converter to complete the output stage. 

Program Instructions (software) running on the microprocessor implement the digital filter by 

performing the necessary mathematical operations on the numbers received from the ADC. In 

some high performance applications, an FPGA or ASIC is used instead of a general purpose 

microprocessor, or a specialized DSP with specific paralleled architecture for expediting 

operations such as filtering. 

 

Digital filters may be more expensive than an equivalent analog filter due to their increased 

complexity, but they make practical many designs that are impractical or impossible as analog 

filters. When used in the context of real-time analog systems, digital filters sometimes have 

problematic latency (the difference in time between the input and the response) due to the 

associated analog-to-digital and digital-to-analog conversions and anti-aliasing filters, or due to 

other delays in their implementation. 

 

A digital filter is characterized by its transfer function, or equivalently, its difference equation. 

Mathematical analysis of the transfer function can describe how it will respond to any input. As 

such, designing a filter consists of developing specifications appropriate to the problem (for 

example, a second-order low pass filter with a specific cut-off frequency), and then producing a 

transfer function which meets the specifications. 

 

The transfer function for a linear, time-invariant, digital filter can be expressed as a transfer 

function in the Z-domain; if it is causal, then it has the form: 

 

 

where the order of the filter is the greater of N or M. See Z-transform's LCCD equation for 

further discussion of this transfer function. 

 

This is the form for a recursive filter with both the inputs (Numerator) and outputs 

(Denominator), which typically leads to an IIR infinite impulse response behaviour, but if the 
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https://en.wikipedia.org/wiki/Sampling_%28signal_processing%29
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https://en.wikipedia.org/wiki/Electronic_filter
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https://en.wikipedia.org/wiki/Recursive_filter
https://en.wikipedia.org/wiki/Infinite_impulse_response
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denominator is made equal to unity i.e. no feedback, then this becomes an FIR or finite impulse 

response filter. 

 

 ANALYSIS TECHNIQUES 

 

A variety of mathematical techniques may be employed to analyze the behaviour of a given 

digital filter. Many of these analysis techniques may also be employed in designs, and often form 

the basis of a filter specification. 

 

Typically, one characterizes filters by calculating how they will respond to a simple input such as 

an impulse. One can then extend this information to compute the filter's response to more 

complex signals. 

 

IMPULSE RESPONSE 

 

The impulse response, often denoted or , is a measurement of how a filter will respond to 

the Kronecker delta function. For example, given a difference equation, one would set  

and  for and evaluate. The impulse response is a characterization of the filter's 

behaviour. Digital filters are typically considered in two categories: infinite impulse response 

(IIR) and finite impulse response (FIR). In the case of linear time-invariant FIR filters, the 

impulse response is exactly equal to the sequence of filter coefficients: 

 

 

IIR filters on the other hand are recursive, with the output depending on both current and 

previous inputs as well as previous outputs. The general form of an IIR filter is thus: 

 

 

Plotting the impulse response will reveal how a filter will respond to a sudden, momentary 

disturbance. 

 

DIFFERENCE EQUATION 

 

In discrete-time systems, the digital filter is often implemented by converting the transfer 

function to a linear constant-coefficient difference equation (LCCD) via the Z-transform. The 

discrete frequency-domain transfer function is written as the ratio of two polynomials. For 

example: 

 

https://en.wikipedia.org/wiki/Denominator
https://en.wikipedia.org/wiki/1_%28number%29
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Impulse_response
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https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Z-transform#Linear_constant-coefficient_difference_equation
https://en.wikipedia.org/wiki/Z-transform
https://en.wikipedia.org/wiki/Frequency_domain
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This is expanded: 

 

 

and to make the corresponding filter causal, the numerator and denominator are divided by the 

highest order of : 

 

 

The coefficients of the denominator,   , are the 'feed-backward' coefficients and the coefficients 

of the numerator are the 'feed-forward' coefficients, . The resultant linear difference equation 

is: 

 

 

or, for the example above: 

 

 

rearranging terms: 

 

 

then by taking the inverse z-transform: 

 

 

and finally, by solving for : 

 

 

This equation shows how to compute the next output sample,         , in terms of the past outputs, 

, the present input, , and the past inputs, . Applying the filter to an input 

https://en.wikipedia.org/wiki/Causal_filter
https://en.wikipedia.org/wiki/Difference_equation
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in this form is equivalent to a Direct Form I or II realization, depending on the exact order of 

evaluation. 

 

 

DESIGN OF DIGITAL FILTER FROM ANALOG FILTER 

 

 

 

COMPARISON 
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MERITS AND DEMERITS OF DIGITAL FILTER 

 

 

ANALOG LOW PASS BUTTERWORTH FILTER 
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LIST OF BUTTERWORTH POLYNOMIALS 

 

STEPS TO DESIGN ANALOG LOW PASS BUTTERWORTH FILTER 
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ORDER FORMULA 
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COKPARISON BETWEEN BUTTERWORTH FILTER AND CHEBYSHEV FILTER 
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STEPS TO DESIGN ANALOG LOW PASS CHEBYSHEV FILTER 
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FIR FILTERS & ITS DESIGNING 

 

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or 

response to any finite length input) is of finite duration, because it settles to zero in finite time. 

This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback 

and may continue to respond indefinitely (usually decaying). 

 

The impulse response (that is, the output in response to a Kronecker delta input) of an Nth-order 

discrete-time FIR filter lasts exactly N + 1 samples (from first nonzero element through last 

nonzero element) before it then settles to zero. 

 

FIR filters can be discrete-time or continuous-time, and digital or analog. 

 

For a causal discrete-time FIR filter of order N, each value of the output sequence is a weighted 

sum of the most recent input values: 

 

 

where: 

 

• is the input signal, 

• is the output signal, 

• is the filter order; an th-order filter has terms on the right-hand side 

• is the value of the impulse response at the i'th instant for of an th-order 

FIR filter. If the filter is a direct form FIR filter then is also a coefficient of the filter . 

 

This computation is also known as discrete convolution. 

 

The in these terms are commonly referred to as taps, based on the structure of a tapped 

delay line that in many implementations or block diagrams provides the delayed inputs to the 

multiplication operations. One may speak of a 5th order/6-tap filter, for instance. 

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Filter_%28signal_processing%29
https://en.wikipedia.org/wiki/Impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Impulse_response
https://en.wikipedia.org/wiki/Kronecker_delta
https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Continuous-time
https://en.wikipedia.org/wiki/Digital_data
https://en.wikipedia.org/wiki/Analog_circuits
https://en.wikipedia.org/wiki/Causal_filter
https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Digital_delay_line
https://en.wikipedia.org/wiki/Digital_delay_line
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The impulse response of the filter as defined is nonzero over a finite duration. Including zeros, 

the impulse response is the infinite sequence: 

 

 
LINEAR PHASE FILR FILTER 
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If an FIR filter is non-causal, the range of nonzero values in its impulse response can start before 

n = 0, with the defining formula appropriately generalized. 

 

An FIR filter has a number of useful properties which sometimes make it preferable to an infinite 

impulse response (IIR) filter. FIR filters: 

 

Require no feedback. This means that any rounding errors are not compounded by summed 

iterations. The same relative error occurs in each calculation. This also makes implementation 

simpler. 

 

Are inherently stable, since the output is a sum of a finite number of finite multiples of the input 

values, so can be no greater than times the largest value appearing in the input. 

 

Can easily be designed to be linear phase by making the coefficient sequence symmetric. This 

property is sometimes desired for phase-sensitive applications, for example data 

communications, seismology, crossover filters, and mastering. 

 

The main disadvantage of FIR filters is that considerably more computation power in a general 

purpose processor is required compared to an IIR filter with similar sharpness or selectivity, 

especially when low frequency (relative to the sample rate) cutoffs are needed. However many 

digital signal processors provide specialized hardware features to make FIR filters approximately 

as efficient as IIR for many applications. 

 

An FIR filter is designed by finding the coefficients and filter order that meet certain 

specifications, which can be in the time-domain (e.g. a matched filter) and/or the frequency 

domain (most common). Matched filters perform a cross-correlation between the input signal  

and a known pulse-shape. The FIR convolution is a cross-correlation between the input signal 

and a time-reversed copy of the impulse-response. Therefore, the matched-filter's impulse 

response is "designed" by sampling the known pulse-shape and using those samples in reverse 

order as the coefficients of the filter.[1] 

 

When a particular frequency response is desired, several different design methods are common: 

 

1. Window design method 

2. Frequency Sampling method 

3. Weighted least squares design 

4. Parks-McClellan method (also known as the Equiripple, Optimal, or Minimax method). 

The Remez exchange algorithm is commonly used to find an optimal equiripple set of 

coefficients. Here the user specifies a desired frequency response, a weighting function 

for errors from this response, and a filter order N. The algorithm then finds the set of 

coefficients that minimize the maximum deviation from the ideal. Intuitively, this 

finds the filter that is as close as you can get to the desired response given that you can 

use only coefficients. This method is particularly easy in practice since at least one 

text[2] includes a program that takes the desired filter and N, and returns the optimum 

coefficients. 

https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
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https://en.wikipedia.org/wiki/Linear_phase
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https://en.wikipedia.org/wiki/Audio_crossover
https://en.wikipedia.org/wiki/Audio_mastering
https://en.wikipedia.org/wiki/Selectivity_%28electronic%29
https://en.wikipedia.org/wiki/Matched_filter
https://en.wikipedia.org/wiki/Finite_impulse_response#cite_note-2
https://en.wikipedia.org/wiki/Finite_impulse_response#Window_design_method
https://en.wikipedia.org/wiki/Least_squares#Weighted_least_squares
https://en.wikipedia.org/wiki/Parks-McClellan_method
https://en.wikipedia.org/wiki/Remez_algorithm
https://en.wikipedia.org/wiki/Finite_impulse_response#cite_note-3
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5. Equiripple FIR filters can be designed using the FFT algorithms as well.[3] The algorithm 

is iterative in nature. You simply compute the DFT of an initial filter design that you  

have using the FFT algorithm (if you don't have an initial estimate you can start with 

h[n]=delta[n]). In the Fourier domain or FFT domain you correct the frequency response 

according to your desired specs and compute the inverse FFT. In time-domain you retain 

only N of the coefficients (force the other coefficients to zero). Compute the FFT once 

again. Correct the frequency response according to specs. 

 

Software packages like MATLAB, GNU Octave, Scilab, and SciPy provide convenient ways to 

apply these different methods. 

 

In the window design method, one first designs an ideal IIR filter and then truncates the infinite 

impulse response by multiplying it with a finite length window function. The result is a finite 

impulse response filter whose frequency response is modified from that of the IIR filter. 

Multiplying the infinite impulse by the window function in the time domain results in the 

frequency response of the IIR being convolved with the Fourier transform (or DTFT) of the 

window function. If the window's main lobe is narrow, the composite frequency response 

remains close to that of the ideal IIR filter. 

 

The ideal response is usually rectangular, and the corresponding IIR is a sinc function. The result 

of the frequency domain convolution is that the edges of the rectangle are tapered, and ripples 

appear in the passband and stopband. Working backward, one can specify the slope (or width) of 

the tapered region (transition band) and the height of the ripples, and thereby derive the 

frequency domain parameters of an appropriate window function. Continuing backward to an 

impulse response can be done by iterating a filter design program to find the minimum filter 

order. Another method is to restrict the solution set to the parametric family of Kaiser windows, 

which provides closed form relationships between the time-domain and frequency domain 

parameters. In general, that method will not achieve the minimum possible filter order, but it is 

particularly convenient for automated applications that require dynamic, on-the-fly, filter design. 

 

The window design method is also advantageous for creating efficient half-band filters, because 

the corresponding sinc function is zero at every other sample point (except the center one). The 

product with the window function does not alter the zeros, so almost half of the coefficients of 

the final impulse response are zero. An appropriate implementation of the FIR calculations can 

exploit that property to double the filter's efficiency. 

 

A moving average filter is a very simple FIR filter. It is sometimes called a boxcar filter, 

especially  when  followed  by  decimation.  The filter coefficients, , are found via the 

following equation: 

 

 

To provide a more specific example, we select the filter order: 

 

https://en.wikipedia.org/wiki/Finite_impulse_response#cite_note-4
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The impulse response of the resulting filter is: 

 

 

The Fig. (a) on the right shows the block diagram of a 2nd-order moving-average filter discussed 

below. The transfer function is: 

 

 

Fig. (b) on the right shows the corresponding pole–zero diagram. Zero frequency (DC) 

corresponds to (1,0), positive frequencies advancing counterclockwise around the circle to the 

Nyquist frequency at (-1,0). Two poles are located at the origin, and two zeros are located at 

, . 

The frequency response, in terms of normalized frequency ω, is: 

 

 

Fig. (c) on the right shows the magnitude and phase components of   But plots like these 

can also be generated by doing a discrete Fourier transform (DFT) of the impulse response.[note 2] 

And because of symmetry, filter design or viewing software often displays only the [0,π] region. 

The magnitude plot indicates that the moving-average filter passes low frequencies with a gain 

near 1 and attenuates high frequencies, and is thus a crude low-pass filter. The phase plot is 

linear except for discontinuities at the two frequencies where the magnitude goes to zero. The 

size of the discontinuities is π, representing a sign reversal. They do not affect the property of 

linear phase. That fact is illustrated in Fig. (d). 

 

The frequency response of an ideal low pass filter is shown in the image below. The frequency 

axis is normalised with respect to the sampling frequency. The cut-off, or transition frequency  

(ft) is always between 0 and 0.5, as 0.5 represents the Nyquist frequency. As you would expect 

from a low pass filter, all frequencies below ft are passed, where-as all those above are stopped. 

 

https://en.wikipedia.org/wiki/Pole%E2%80%93zero_diagram
https://en.wikipedia.org/wiki/Normalized_frequency_%28digital_signal_processing%29
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Finite_impulse_response#cite_note-5
https://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Nyquist_frequency
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Fig. 1: Transition Frequency 

The impulse response of this ideal low pass filter is shown below, it is a sinc function. The 

equation is shown next to the plot. If we could create a filter with this impulse response we 

would have an ideal low pass filter like that shown above. A set of Gnuplot commands are also 

given for recreating this graph. 

 

 

 

Fig. 2: Impulse response of ideal LPF (ft=0.25) 

 

Below is a plot of impulse responses for different values of ft. 

 

 

 

 

 

 

 

" 

 

 

 

 

 

 

 

Fig. 3: Sinc function for different values of normalised transition frequency 

 

Unfortunately it is not as easy as that. Given the non-recursive filter structure like that shown 
below, there are two problems with creating this ideal impulse response. 

 

• First, the sinc function is infinite in the x direction, the ripples keep on going in both 

directions. However, the FIR filter only allows us to create finite impulse responses, the 

number of filter taps must be finite. 

• Second, the impulse response is non-casual, this means an implementation would require 

samples from the future. 
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Fig. 4: Non-Recursive, Finite Impulse Response Filter 

 

Luckily, the solutions to these issues are quite simple. First, a window is applied to the sinc 

function such that only a portion of the impulse response is actually used. Secondly, the impulse 

response is shifted such that the filter only operates on available samples (those from the past). 

These techniques are demonstrated in the the following example. 

 

3.6 LOW PASS FILTER EXAMPLE 

 

 

Fig. 4: Filter weights M=20, ft=0.23 

 

Consider the filter with the properties given below. 

 

• Filter Type: Low Pass 

• Sampling Frequency: 2000 Hz 

• Cut off Frequency: 460 Hz 

• Filter Length (# weights): 21 

 

The plot to the right shows the filter weights that have been calculated using the equations 

below. 

 

• M - This is the filter order, it is always equal to the number of taps minus 1 
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• ft - This is the normalised transition frequency. 

 

There are 21 weights that fit on the ideal impulse response curve. It can be seen how the impulse 

response is effectively cropped by only using 21 weights. 

 

Note: When calculating weight values with an odd number of weights, a divide by zero will 

occur at n=M/2. Therefore, based on l'Hôpital's rule, the value of 2ft is used. 

 

 

 

 
 

Fig. 5: The large amount of ripple visible on the non-dB plot is due to the rather crude approach 

of truncating the infinite ideal impulse response. The approach that has just been used is called 

applying a Rectangular Window. The next section describes different window types that can 

decrease the ripple and improve the attenuation of the stop band. 
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Fig. 6: Windowing 

 

Applying a window to the sinc function weights provides extra control over the characteristics of 

the filter. The image to the right illustrates the process. 

 

First, the normal sinc weights are calculated as described above. Then the window weights are 

calculated, in this case a Hamming Window has been used, the equation is below. The two sets 

of weights are multiplied together to create the final set of filter weights. 
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3.7 Hamming Windowing Equation 

 

Once again, M is the order of the filter, which is equal to the filter length - 1. 

 

The plots below show the effect on the filter's frequency response before applying the Hamming 

Window (green) and after (red). The trick is to select the window type and filter length that will 

give a filter with the correct rate of roll-off and level of attenuation in the stop band. 

 

 

Fig. 7: Different Windows 

 

The table below gives the equations for different window types. 

 

3.8 Window Type Weight Equation 

 

Rectangular  

 

 

Bartlett 

 

 

 

 

Hanning 

 

 

 

 

Hamming 
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Blackman 

 

 

 

 

The image below shows the effect of different windows on the frequency response of a 28th 

Order (29 weights) low pass filter, with a cut-off frequency of 5000Hz and sampling frequency 

of 44100Hz. 

 

 

Fig. 8: Frequency Response and Weight Values of different windows types 
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3.9 HIGH PASS, BAND PASS AND BAND STOP FILTERS 

 

Fig. 9: The high pass filter is made up from a low pass and an all pass filter. The image to the 

right demonstrates how this works. If you take an all pass filter and subtract the output of the low 

pass, you are left with a high pass filter. 

 

The all pass filter is of the same order as the low pass filter. All the weight values are 0.0 apart 

from the centre weight which has a value 1.0. Note: This places the constraint that when creating 

a high pass filter in this way, the order must be even (an odd number of taps). 

 

The equation for calculating the weights (before windowing) is shown below. Comparing this 

equation with the low pass filter it is easy to see the subtraction and the all pass filter's single 1.0 

weight applied in the case of n=M/2. Windows are applied in exactly the same way as with the 

low pass filter. 

 

 

 

Below is a Low Pass and High Pass filter frequency response with the same transition frequency. 



117 

 

 

 
 

 

Fig. 10: Low pass and high pass hamming 

 

 

The band stop and band pass are achieved in a similar way. The equations for calculating the 

weights are shown below. For both band pass and band stop, the filter order needs to be even (an 

odd filter length). Once again, windows are applied across the weights as before. 
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QUESTIONS 

 

1. What are the merits of FIR filters 

2. What are the demerits of FIR filter 

3. Distinguish between FIR & IIR filter 

4. What are the different types of filters based on frequency response 

5. Give any two properties of Butterworth low pass filter 

6. Give the equation for order and cutoff frequency of Butterworth filter 

7. Write the magnitude response of the Chebyshev filter 

8. Give the Butterworth polynomials for the order 1 & 4  

9. Write the transfer function of Butterworth filter 

10. Explain the fourier series method of designing FIR filter in detail 

11. Design an ideal low pass filter with a frequency response 

Hd(ejω) = 1 for – π/2 ≤ω≤ π/2 

                0 for  π/2 ≤|ω|≤ π       

Find the values of h(n) for N = 11. 

 

12. Design an ideal low pass filter with a frequency response 

Hd(ejω) = 1 for – π/2 ≤ω≤ π/2 

                     0 for  π/2 ≤|ω|≤ π       

Find the values of h(n) for N = 11 using Hamming window 

 

13. Design an ideal high pass filter with a frequency response 

Hd(ejω) = 1 for – π/4 ≤ω≤ π 

                 0 for  |ω|≤ π/4       

Find the values of h(n) for N = 11. Using Rectangular window. 

 

14. Obtain an analog Chebyshev filter transfer function that satisfies the constraints 

1/√2 ≤|H(jΩ) | ≤ 1;     0  ≤ Ω ≤  2                      

|H(jΩ) | ≤ 0.1;   Ω ≥ 4 

 

15.For the given specifications design an analog Butterworth filter 

0.9 ≤|H(jΩ) | ≤ 1;     0  ≤ Ω ≤  0.2 π                      

|H(jΩ) | ≤ 0.2;   0.4 π ≤ Ω ≤  π 
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Detection of events and waves 

Derivative based operators in QRS detection 

QRS complex has the largest slope (rate of change of voltage) in a cardiac cycle 

ventricles. As the rate of change is given by the derivative operator, the operation would 

be the most logical starting point in an attempt to develop an algorithm to detect the QRS 

complex. The derivative operator enhances the QRS, although the resulting wave does not 

bear any resemblance to a typical QRS complex. The slow P and T waves have been 

suppressed by the derivative operators, while the output is the highest at the QRS. 

However, given the noisy nature of the results of the derivative-based operators, it is also 

evident that significant smoothing will be required before further processing can take 

place. Derivative-based algorithm for QRS detection progresses as follows: the smoothed 

three-point first derivative yo (n) of the given signal x(n) is approximated as 

The second derivative is approximated as 

 

The two results are weighted and combined to obtain 

 

The result y2(n) is scanned with a threshold of 1.0. Whenever the threshold is crossed, the 

subsequent eight samples are also tested against the same threshold. If at least six of the 

eight points pass the threshold test, the segment of eight samples is taken to be a part of a 

QRS complex. The procedure results in a pulse with its width proportional to that of the 

QRS complex; however, the method is sensitive to noise. 
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Fig.1. From top to bottom: two cycles of a filtered version of the ECG 

signal, output yo(n)of the first-derivative-based operator, output yl(n) 

of the second-derivative-based operator and the result y3(n) of passing 

y2(n) through the 8-point MA filter 

Pan Tompkins algorithm 

Pan and Tompkins proposed a real-time QRS detection al- gorithm based on analysis of the 

slope, amplitude, and width of QRS complexes. The algorithm includes a series of filters 

and methods that perform lowpass, high- pass, derivative, squaring, integration, adaptive 

thresholding, and search procedures. 

 

Fig.2 Block diagram of the Pan-Tompkins algorithm for QRS detection 
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Low pass filter: The recursive lowpass filter used in the Pan-Tompkins algorithm has integer 

coefficients to reduce computational complexity, with the transfer function 

defined as 

The output y(n) is related to the input x(n) as 

The output y(n) is related to the input x(n) as 

 

With the sampling rate being 200 Hz, the filter has a rather low cutoff frequency of fc = 

11 Hz, and introduces a delay of 5 samples or 25 ms.The filter provides an attenuation 

greater than 

35 dB at 60 Hz,and effectively suppresses power-line interference, if present. 

 

Highpass filter: The highpass filter used in the algorithm is implemented as an allpass 

filter minus a lowpass filter. The lowpass component has the transfer function the input - 

output relationship is 

 

the input - output relationship is 

 

The transfer function Hhp(z) of the highpass filter is specified as 

 

Equivalently, the output p(n) of the highpass filter is given by the difference equation 
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The high pass filter has a cutoff frequency of 5 Hz and introduces a delay of 80 ms. 

Derivative operator: The derivative operation used by Pan and Tompkins is specified as 

 

and approximates the ideal operator up to 30 Hz. The derivative procedure suppresses the 

low-frequency components of the P and T waves, and provides a large gain to the high-

frequency components arising from the high slopes of the QRS complex. 

Squaring: The squaring operation makes the result positive and emphasizes large 

differences resulting from QRS complexes; the small differences arising from P and T 

waves are suppresses. The high- frequency components in the signal related to the QRS 

complex are further enhanced. 

Integration: As observed in the previous subsection, the output of a derivative- based 

operation will exhibit multiple peaks within the duration of a single QRS complex. The 

Pan-Tompkins algorithm performs smoothing of the output of the preceding operations 

through a moving-window integration filter as 

The choice of the window width N is to be made with the following considerations: too large 

a value will result in the outputs due to the QRS and T waves being merged, whereas too 

small a value could yield several peaks for a single QRS. A window width of N = 30 was 

found to be suitable for fb = 200 Hz. 

Adaptive thresholding: The thresholding procedure in the Pan-Tompkins algo- rithm 

adapts to changes in the ECG signal by computing running estimates of signal and noise 

peaks. A peak is said to be detected whenever the final output changes direction within a 

specified interval. In the following discussion, SPKI represents the peak level that the 

algorithm has learned to be that corresponding to QRS peaks, and NPKI represents the 

peak level related to non- QRS events (noise, EMG,etc.). 

THRESHOLD I1 and THRESHOLD I2 are two thresholds used to categorize peaks 

detected 
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as signal (QRS) or noise. Every new peak detected is categorized as a signal peak or a 

noise peak. If a peak exceeds THRESHOLD I1 during the first step of analysis, it is 

classified as a QRS (signal) peak. If the searchback technique the peak.should be above 

THRESHOLDI2 to be called a QRS.The peak levels and thresholds are updated after each 

peak is detected and classified as if PEAKI is a signal peak; if PEAKI 

is a noise peak; 

SPKI = 0.125 PEAKI + 

0.875 SPKI NPKI = 0.125 

PEAKI + 0.875 NPKI 

THRESHOLD I1 = NPKI + 

0.25(SPKI - NPKI); THRESHOLD 

I2 = 0.5 THRESHOLD II. 

The updating formula for SPKI is 

changed to SPKI = 0.25 PEAKI + 

0.75 SPKI 

If a QRS is detected in the searchback procedure using THRESHOLD 12. 

 

Searchback procedure: The Pan-Tompkins algorithm maintains two RR-interval 

averages: RR AVERAGE1 is the average of the eight most-recent beats, and RR 

AVERAGE2 is the average of the eight most-recent beats having RR intervals within the 

range specified by 

RR LOW LIMIT = 0.92 x RR 

AVERAGE2 and RR HIGH LIMIT 

= 1.16 x RR AVERAGE2. 

Whenever a QRS is not detected for a certain interval specified as 

RR MISSED LIMIT = 1.06 x RR AVERAGE2, the QRS is taken to be the peak between 

the established thresh- olds applied in the searchback procedure. 

1. Correlation analysis 

ACF and CCF in rhythm analysis 

Cross Correlation is defined as 
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1. Murmur detection 

Cardiac mechanical activity is appraised by auscultation and processing of heart sound 

recordings (known as phonocardiographic signals—PCG), which is an inexpensive and 

noninvasive procedure. The importance of classic auscultation has decreased due to its 

inherent restrictions: the performance of human ear with its physical limitations, the 

subjectivity of the examiner, difficult skills that take years to acquire and refine, etc. 

Anyway, the PCG has preserved its importance in pediatric cardiology, cardiology, and 

internal diseases, evaluating congenital cardiac defects,and primary home health care, 

where an intelligent stethoscope with decision support abilities would be valuable. Mostly, 

heart sounds consist of two regularly repeated thuds, known as S1 and S2, each appearing 

one after the other, for every heart beat. The time interval between S1 and S2 is the systole, 

while the S2 and next S1 gap corresponds to the diastole. S1 implies the closing of the 
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tricuspid and mitral valves immediately preceding the systole, while S2 corresponds to the 

closing of the aortic and 

laminar and therefore silent; but when the blood flow becomes turbulent it causes vibration 

of surrounding tissue and hence the blood flow is noisy and perceivable, originating the 

murmur, which according to the instant they appear are sorted into 

systolic or diastolic. Murmurs are some of the basic signs of pathological changes to be  

identified, but they overlap with the cardiac beat and can not be easily separated by the 

human ear. The automatic detection of murmurs strongly depends on the appropriate 

features (data representation), which mostly are related to timing, morphology, and spectral 

properties of heart sounds. Although cardiac murmurs are nonstationary signals and exhibit 

sudden frequency changes and transients, t is common to assume linearity of the feature 

sets extracted from heart sounds (time and spectral features, frequency representation with 

time resolution, and parametric modeling. o capture nonstationary transients and fast 

changes of PCG, the time–frequency features are widely used in heart sound analysis. 
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ECG DATA REDUCTION 

1. Direct data compression Techniques: 

A data reduction algorithm seeks to minimize the number of code bits stored by reducing 

the redundancy present in the original signal. We obtain the reduction ratio by dividing the 

number of bits of the original signal by the number saved in the compressed signal. A data 

reduction algorithm must also represent the data with acceptable fidelity. 

In biomedical data reduction, we usually determine the clinical acceptability of the 

reconstructed signal through visual inspection. We may also measure the residual, that is, 

the difference between the reconstructed signal and the original signal. Such a numerical 

measure is the percent root-mean-square difference, PRD, given by 

where n is the number of samples and xorg and xrec are samples of the original and 

reconstructed data sequences. 
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 Turning Point 

The original motivation for the turning point (TP) algorithm was to reduce the sampling 

frequency of an ECG signal from 200 to 100 samples/s .The algorithm developed from the 

observation that, except for QRS complexes with large amplitudes and slopes, a sampling 

rate of 100 samples/s is adequate.TP is based on the concept that ECG signals are normally 

oversampled at four or five times faster than the highest frequency present. For example, 

an ECG used in monitoring may have a bandwidth of 50 Hz and be sampled at 200 sps in 

order to easily visualize the higher- frequency attributes of the QRS complex. Sampling 

theory tells us that we can sample such a signal at 100 sps. TP provides away to reduce the 

effective sampling rate by half to 100 sps by selectively saving important signal points 

(i.e., the peaks and valleys or turning points). 

The algorithm processes three data points at a time. It stores the first sample point and 

assigns it as the reference point X0. The next two consecutive points become X1 and X2. 

The algorithm retains either X1 or X2, depending on which point preserves the turning 

point (i.e., slope change) of the original signal. Fig. shows all the possible configurations of 

three consecutive sample points. In each frame, the solid point preserves the slope of the 

original three points. The algorithm saves this point and makes it the reference point X0 for 

the next iteration. It then samples the next two points, assigns them to X1 and X2, and 

repeats the process. 

We use a simple mathematical criterion to determine the 

saved point. First consider a sign(x) operation 
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Fig. 3. Turning point Algorithm 

We then obtain s1 = sign(X1 – X0) and s2 = sign(X2 – X1), where (X1 – X0) and (X2 – 

X1) are the slopes of the two pairs of consecutive points. If a slope is zero,this operator 

produces a zero result. For positive or negative slopes, it yields +1 or–1 respectively. A 

turning point occurs only when a slope changes from positive to negative or vice versa. We 

use the logical Boolean operators, NOT and OR, as implemented in the C language to 

make the final judgment of when a turning point occurs. In the C language, NOT(c) = 1 if c 

= 0; otherwise NOT(c) = 0. Also logical OR means that (a OR b ) = 0 only if a and b are 

both 0. Thus, we retain X1 only if {NOT(s1) OR (s1 + s2)} is zero, and save X2 otherwise. 

In this expression, (s1 + s2) is the arithmetic sum of the signs produced by the sign 

function. The final effect of this processingis a Boolean decision whether to save X1 or X2. 

Point X1 is saved only when the slope changes from positive to negative or vice versa. This 

computation could be easily done arithmetically, but the Boolean operation is 

computationally much faster. 

The TP algorithm is simple and fast, producing a fixed reduction ratio of 2:1. After 

selectively discarding exactly half the sampled data, we can restore the original resolution 

by interpolating between pairs of saved data points. A second application of the algorithm 

to the already reduced data increases the reduction ratio to 4:1. Using data acquired at a 

200-sps rate, this produces compressed data with a 50-sps effective sampling rate. If the 

bandwidth of the acquired ECG is 50 Hz, this approach violates sampling theory since the 

effective sampling rate is less than twice the highest frequency present in the signal. The 
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resulting reconstructed signal typically has a widened QRS complex and sharp edges that 

reduce its clinical acceptability. Another disadvantage of this algorithm is that the saved 

points do not represent equally spaced time intervals. This introduces short term time 

distortion. However, this localized distortion is not visible when the reconstructed signal is 

viewed on the standard clinical monitors and paper recorders. 

 AZTEC 

Originally developed to preprocess ECGs for rhythm analysis, the AZTEC (Amplitude 

Zone Time Epoch Coding) data reduction algorithm decomposes raw ECG sample points 

into plateaus and slopes.It provides a sequence of line segments that form a piecewise-

linear approximation to the ECG. The algorithm consists of two parts—line detection and 

line processing. Figure(a) shows the line detection operation which makes use of zero-

order interpolation (ZOI) to produce horizontal lines. Two variables Vmx and Vmn always 

reflect the highest and lowest elevations of the current line. Variable LineLen keeps track 

of the number of samples examined. We store a plateau if either the difference between 

Vmxi and Vmni is greater than a predetermined threshold Vth or if LineLen is greater than 

50. The stored values are the length (LineLen – 1) and the average amplitude of the plateau 

(Vmx + Vmn)/2. 

Figure (b) shows the line processing algorithm which either produces a 

plateau or a slope depending on the value of the variable LineMode. We initialize LineMode 

to 

_PLATEAU in order to begin by producing a plateau. The production 

of an AZTEC slope begins when the number of samples needed to form a plateau is less 

than three. Setting LineMode to _SLOPE indicates that we have entered slope production 

mode. We then determine the direction or sign of the current slope by subtracting the 

previous line amplitude V1 from the current amplitude Vsi. We also reset the length of the 

slope Tsi. The variable Vsi records the current line amplitude so that any change in the 

direction of the slope can be tracked. Note that Vmxi and Vmni are always updated to the 

latest sample before line detection begins. This forces ZOI to begin from the value of the 

latest sample. 
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Fig. 4(a) Flowchart for the line detection operation of the AZTEC algorithm 

 

Fig. 4(b) Flowchart of the line processing operation of the AZTEC algorithm 

When we reenter line processing with LineMode equal to _SLOPE, we either save or 

update the slope. The slope is saved either when a plateau of more than three samples can 

be formed or when a change in direction is detected. If we detect a new plateau of more 

than three samples, we store the current slope  and the new plateau. For the slope, the 

stored values are its length Tsi and its final elevation V1. Note that Tsi is multiplied by –1 

to differentiate a slope from a plateau (i.e., the minus sign serves as a flag to indicate a 
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slope). We also store the length and the amplitude of the new plateau, then reset all 

parameters and return to plateau production. 

If a change in direction is detected in the slope, we first save the parameters for the current 

slope and then reset sign, Vsi, Tsi, Vmxi, and Vmni to produce a new AZTEC slope. Now 

the algorithm returns to line detection but remains in slope production mode. When there is 

no new plateau or change of direction, we simply update the slope’s parameters, Tsi and 

Vsi, and return to line detection with LineMode remaining set to _SLOPE. AZTEC does 

not produce a constant data reduction ratio. The ratio is frequently as great as 10 or more, 

depending on the nature of the signal and the value of the empirically determined 

threshold. 

 

 Cortes Algorithm 

 

The CORTES (Coordinate Reduction Time Encoding System) algorithm is a hybrid of the 

TP and AZTEC algorithms. It attempts to exploit the strengths of each while sidestepping 

the weaknesses. 

CORTES uses AZTEC to discard clinically insignificant data in 

the isoelectric region with a high reduction ratio and applies the TP algorithm to the 

clinically significant high-frequency regions (QRS complexes). It executes the AZTEC and 

TP algorithms in parallel on the incoming ECG data. Whenever an AZTEC line is 

produced, the CORTES algorithm decides, based on the length of the line, whether the 

AZTEC data or the TP data are to be saved. If the line is longer than an empirically 

determined threshold, it saves the AZTEC 

line. Otherwise it saves the TP data points. Since TP is used to encode the QRS complexes, 

only AZTEC plateaus, not slopes, are implemented. The CORTES algorithm reconstructs 

the signal by expanding the AZTEC plateaus and interpolating between each pair of the TP 

data points. It then applies parabolic smoothing to the AZTEC portions to reduce 

discontinuities. 

 FAN Algorithm 

 

Originally used for ECG telemetry, the Fan algorithm draws lines between pairs of starting 

and ending points so that all intermediate samples are within some specified error 
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tolerance. We start  by accepting the first sample X0 as the nonredundant permanent point. 

It functions as the origin and is also called the originating point.We then take the second 

sample X1 and draw two slopes {U1, L1}. U1 passes 

through the point (X0, X1 + ε), and L1 passes through the point (X0, X1 – ε). If the third 

sample X2 falls within the area bounded by the two slopes, we generate two new slopes 

{U2, L2} that pass through points (X0, X2 + ε) and (X0, X2 – ε). We compare the two pai 

rs of slopes and retain the most converging (restrictive) slopes (i.e., {U1, L2} in our 

example). Next we assign the value of X2 to X1 and read the next sample into X2. As a 

result, X2 always holds the most recent sample and X1 holds the sample immediately 

preceding X2. We repeat the process by comparing X2 to the values of the most convergent 

slopes. If it falls outside this area, we save 

the length of the line T and its final amplitude X1 which then becomes the new originating 

point X0, and the process begins anew. The sketch of the slopes drawn from the originating 

sample to future samples forms a set of radial lines similar to a fan, giving this algorithm its 

name. When adapting the Fan algorithm to C-language implementation, we create the 

variables, XU1, XL1, XU2, and XL2, to determine the bounds of X2. 
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Fig. 5 a) Upper and lower slopes (U and L) are drawn within error threshold 

ε around sample points taken at t1, t2, … (b) Extrapolation of XU2 and XL2 

from XU1, XL1, and X0. 

We reconstruct the compressed data by expanding the lines into discrete points. The Fan 

algorithm guarantees that the error between the line joining any two permanent sample 

points and any actual 



141 

 

redundant) sample along the line is less than or equal to the magnitude of the preset error 

tolerance. The algorithm’s reduction ratio depends on the error tolerance. When compared 

to the TP and AZTEC algorithms, the Fan algorithm produces better signal fidelity for the 

same reduction ratio 

2. Transformation Compression Techniques: 

 Karhunen-Loeve Transform 

The Karhunen-Loeve Transform (KLT) (also known as Hotelling Transform and Eigenvector 

Transform) is closely related to the Principal Component Analysis (PCA) and widely used in 

data analysis in many fields 

 

 

Other data compression Techniques: 

 DPCM 

Differential pulse code modulation (DPCM) is a procedure of converting an analog into a 

digital signal in which an analog signal is sampled and then the difference between the 

actual sample value and its 

predicted value (predicted value is based on previous sample or samples) is quantized and 

then encoded forming a digital value. DPCM code words represent differences between 

samples unlike PCM where code words represented a sample value. Basic concept of 
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DPCM - coding a difference, is based on the fact that most source signals show significant 

correlation between successive samples so encoding uses redundancy in sample values 

which implies lower bit rate. Realization of basic concept (described above) is based on a 

technique in which we have to predict current sample value based upon previous samples 

(or sample) and we have to encode the difference between actual value of sample and 

predicted value (the difference      between      samples      can      be       interpreted       as       

prediction       error).       Because it's necessary to predict sample value DPCM is form of 

predictive coding. 

DPCM compression depends on the prediction technique, well-conducted prediction 

techniques lead to good compression rates, in other cases DPCM could mean expansion 

comparing to regular PCM encoding. 

 

 

Fig.6 DPCM encoder (transmitter) 

 Huffman coding 

 

Huffman coding exploits the fact that discrete amplitudes of quantized signal do not occur 

with equal probability (Huffman, 1952). It assigns variable-length code words to a given 

quantized data sequence according to their frequency of occurrence. Data that occur 

frequently are assigned shorter code words. 

Static Huffman coding 

As an example, assume that we wish to transmit the set of 28 data points 

{1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7} 
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The set consists of seven distinct quantized levels, or symbols. For each symbol, Si, we 

calculate its probability of occurrence Pi by dividing its frequency of occurrence by 28, the 

total number of data points. Consequently, the construction of a Huffman code for this set 

begins with seven nodes, one associated with each Pi. At each step we sort the Pi list in 

descending order, breaking the ties arbitrarily. 

The two nodes with smallest probability, Pi and Pj, are merged into a new node with 

probability Pi + Pj. This process continues until the probability list contains a single value 
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Fig. 7 Illustration of Huffman coding. (a) At each step, Pi are sorted in descending 
order 

and the two lowest Pi are merged. (b) Merging operation depicted in a binary tree. (c) 
Summary of Huffman coding for the data set. 

The process of merging nodes produces a binary tree as in Figure (b). When we merge two 

nodes with probability Pi + Pj, we create a parent node with two children represented by Pi 

and Pj. The root of the tree has probability 1.0. We obtain the Huffman code of the symbols 

by traversing down the tree, assigning 1 to the left child and 0 to the right child. The 

resulting code words have the prefix property (i.e., no code word is a proper prefix of any 

other code word). This property ensures that a coded message is uniquely decodable 

without the need for lookahead. 

Figure (c) summarizes the results and shows the Huffman codes for 

the seven symbols. We enter these code word mappings into a translation table and use the 

table to pad the appropriate code word into the output bit stream in the reduction process. 

The reduction ratio of Huffman coding depends on the distribution of the source 

symbols. In our example, the original data 

requires three bits to represent the seven quantized levels. After Huffman coding, we can 

calculate the expected code word length in our example, resulting in an expected reduction 

ratio of 3:2.65. 

 

The reconstruction process begins at the root of the tree. If bit 1 is received, we traverse 
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down the left branch, otherwise the right branch. We continue traversing until we reach a 

node with no child. We then output the symbol corresponding to this node and begin 

traversal from the root again. 

The reconstruction process of Huffman coding perfectly recovers the original data. 

Therefore it is a lossless algorithm. However, a transmission error of a single bit may result 

in more than one decoding error. This propagation of transmission error is a consequence 

of all algorithms that produce variable- length code words. 
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QUESTIONS 

 

1. Develop signal processing techniques to facilitate detection of QRS complex. 

2. Describe about the data reduction algorithms 

3. Write notes on FAN algorithm. 

4. Write notes on AZTEC algorithm. 

5. Write short notes on Turning point algorithm. 

6. Write notes on Huffman coding 

7. Write notes on DPCM. 

8. Propose an algorithm to detect QRS complexes in an ongoing ECG signal. 

9. Describe the function of matched filter in detecting spike and wave complexes of EEG 

signal. 
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10. With neat block diagram explain the working of homomorphic filtering for multiplied 

signals. 

11.  Design a homomorphic filter to separate two signals that have been combined through 

convolution operation. 

12. Explain the filtering technique used to study the presence of EEG rhythms in multiple 

channel. 

13. Explain the filtering technique used to extract the vocal tract response. 

14. Explain in detail about the turning point algorithm. 

15. Write notes on  

(i) CORTES algorithm 

(ii) AZTEC algorithm 

Explain in detail about the concepts of the Huffman coding 
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UNIT – V – Biosignal Analysis Using Wavelets – SBMA1402 
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NEED FOR WAVELETS 
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TYPES OF WAVELETS 

 

HAAR WAVELETS 
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DISCRETE WAVELET TRANSFORM 
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DAUBECHIES WAVELETS 

 

 

 
 

DECOMPOSITION AND RECONSTRUCTION OF SIGNALS USING WAVELETS 
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DENOISING USING WAVELETS 
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WAVELET SELECTION 

 

 

 
 

THRESHOLD LIMITS 
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LEVEL OF DECOMPOSITION 
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TYPICAL MEDICAL APPLICATIONS 

 

 
wavelets are applied to the analysis of two types of medical signals, namely infant breathing 

signals and ultrasound images. One-dimensional wavelets are used to quantify amplitude 

modulation of infant breathing that occurs during quiet sleep. Two-dimensional wavelets are 

used to develop enhancement techniques in the wavelet domain, tailored to ultrasound images. 

The development of wavelets is described from the backgrounds of mathematics, signal 

processing and sub-band coding. One-dimensional wavelets are defined for both continuous and 

discrete cases. Two-dimensional wavelets are developed for both separable and non-separable 

classes. The construction of both one- and two-dimensional wavelets is described, and examples 

of wavelets that are used in subsequent analyses are presented. The analysis of breathing signals 

provides information for understanding the physiology of breathing. The wavelet domain is 

shown to isolate frequency characteristics of breathing signals, as well as indicating the temporal 

position of those characteristics in the signal. Some of the characteristics that were measured 

were not distinguished in the original signals. The extent of constant frequency components due 

to amplitude modulation of the principal breathing rate is quantified. Breathing in infants is of 

particular interest, as it may provide insight into the cause of Sudden Infant Death Syndrome 

(SIDS), or cot death. Studies of infants who later succumbed to SIDS, or were at high risk for 

SIDS, and infants at low risk for SIDS were carried out. The infants who later succumbed to 

SIDS and those at high risk for SIDS showed different characteristics in the wavelet domain 

compared to infants at low risk for SIDS. As well as implying that there may be a difference in 

the physiologies of infants at high and low risk for SIDS, this result confirms that wavelets can 

be used to analyse breathing signals and produce meaningful results. Ultrasound images typically 

contain artefacts and low contrast between features of interest and often exhibit a noisy 

background. The aim of any enhancement procedure is to reduce the contributions from noise 

and artefacts and increase the contrast between the features of interest and the background. A 

method to objectively measure improvements in image quality is described, although this attempt 

achieved mixed results. Separable and non-separable two-dimensional wavelets are used with 

enhancement functions to improve the image quality. Enhancement schemes, including noise 

reduction and contrast enhancement, are developed. A spatially varying contrast enhancement 

function is also developed. Noise reduction, in combination with the spatially varying contrast 

enhancement function, produces an image that reduces the existing artefacts in the image and 

increases the contrast for the features of interest. Wavelets are shown to be a useful tool for the 

analysis of infant breathing signals and for improvement of image quality in ultrasound images. 
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QUESTIONS 

 

1. Define wavelet 

2. What is the need for wavelet 

3. Give the types of wavelets 

4. Write the equation of Haar wavelet 

5. Define decomposition 

6. Define reconstruction 

7. Mention some medical application of wavelets 

8. Explain in detail about the decomposition and reconstruction procedure of wavelets 

9. Write about the denoising concepts of wavelets in detail 

10. Classify wavelets and explain its classification with necessary waveforms 

 

 

 

 

 

 


