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INTRODUCTION TO DISCRETE TIME SIGNALS AND

SYSTEMS

A signal is a function of independent variables such as time, distance, position, temperature
and pressure. A signal carries information, and the objective of signal processing is to extract
useful information carried by the signal. Signal processing is concerned with the mathematical
representation of the signal and the algorithmic operation carried out on it to extract the
information present. For most purposes of description and analysis, a signal can be defined
simply as a mathematical function, y where x is the independent variable .

y=f(x)

signal e.g.: y=sin(wt) is a function of a variable in the time domain and is thus a time signal

X(o)=1/(-mw2+icot+k) is a frequency domain signal; An image I(x,y) is in the spatial
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at t=0, will have the same motions at all time. There is no place for uncertainty here. If we can
uniquely specify the value of 6 for all time, i.e., we know the underlying functional
relationship between t andf, the motion is deterministic or predictable. In other words, a
signal that can be uniquely determined by a well defined process such as a mathematical
expression or rule is called a deterministic signal. The opposite situation occurs if we know
all the physics there is to know, but still cannot say what the signal will be at the next time
instant-then the signal is random or probabilistic. In other words, a signal that is generated in
a random fashion and can not be predicted ahead of time is called a random signal.

1.2 EXAMPLES OF SIGNALS

For a simple pendulum as shown, basic definition is: where Om is the peak amplitude of

the motion and w=\1/g with | the length of the pendulum

and g the acceleration due to gravity. As the system has a constant amplitude (we assume no

damping for now), a constant frequency (dictated by physics) and an initial condition (6=0

when t=0), we know the value of 6(t) for all time
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Fig. 2:Typical examples to deterministic signals are sine chirp and digital stepped sine.
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1.3 Random signals are characterized by having many frequency components present over



a wide range of frequencies.The amplitude versus time appears to vary rapidly and
unsteadily with time. The ‘shhhh’ sound is a good example that is rather easy to observe
using a

microphone and oscillloscope. If the sound intensity is constant with time, the random signal
is stationary, while if the sound intensity varies with time the signal is nonstationary. One
can easily see and hear this variation while making the ‘shhhh’ sound.
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Fig. 3: Random signal

Random signals are characterized by analyzing the statistical characteristics across an
ensemble of records. Then, if the process is ergodic, the time (temporal) statistical
characteristics are the same as the ensemble statistical characteristics. The word temporal
means that a time average definition is used in place of an ensemble statistical definition

Fig. 4: Transient signal

1.4. Transient signals

may be defined as signals that exist for a finite range of time as shown in the figure. Typical
examples are hammer excitation of systems, explosion and shock loading etc. It should be
noted that periodicity does not necessarily mean a sinusoidal signal as shown in the figure.
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aperiodic signal

2 —

=k

]

I T I T I |-|I.F|
bl

nol IR

N “l ||n|- ;\| |||| | Il ||I |||f
'||.|'|.||'||'+

'|| ||||| || |
i

N 'ul I IJ




T

For a simple pendulum as shown, if we define the period t by
, then for the pendulum,and such signals are defined as periodic.
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Fig. 7: Pendulum

A periodic signal is one that repeats itself in time and is a reasonable model for many

real processes, especially those associated with constant speed machinery.

Stationary signals are those whose average properties do not change with time.
Stationary signals have constant parameters to describe their behaviour.

Nonstationary signals have time dependent parameters. In an engine excited vibration where
the engines speed varies with time; the fundamental period changes with time as well as with
the corresponding dynamic loads that cause vibration.

1.5 Deterministic Vs Random Signal:

The signals can be further classified as monofrequency (sinusoidal) signals and
multifrequency signals such as the square wave which has a functional form made up of an
infinite superposition of different sine waves with periods t,1/2,1/3,...

1 D signals are a function of a single independent variable. The speech signal is an example
of a 1 D signal where the independent variable is time.

2D signals are a function of two independent variables. An image signal such as a photograph
is an example of a 2D signal where the two independent variables are the two spatial variables



1.6 CONTINUOUS VERSUS DISCRETE SIGNALS

The value of a signal at a specific value of the independent variable is called its amplitude.

» The variation of the amplitude as a function of the independent variable is called its
waveform.

* For a 1 D signal, the independent variable is usually labelled as time. If the independent

variable is continuous, the signal is called a continuous-time signal. A continuous time signal

is defined at every instant of time.

« If the independent variable is discrete, the signal is called a discrete-time signal. A

discrete time signal takes certain numerical values at specified discrete instants of time,

and between

these specified instants of time, the signal is not defined. Hence, a discrete time signal
is basically a sequence of numbers.

1.7 ANALOG VERSUS DIGITAL SIGNALS
A continuous-time signal with a continuous amplitude is usually called an analog signal.
A speech signal is an example of an analog signal.

A discrete time signal with discrete valued amplitudes represented by a finite number of digits
is referred to as a digital signal
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1.8 CONVOLUTIONS

The convolution of f and g is written fxg, using an asterisk or star. It is defined as the integral
of the product of the two functions after one is reversed and shifted. As such, it is a
particular kind

of integral transform:

(f*g)(t) e /_w f(r) gt —7)dr
= [ fit-m) g ar

While the symbol t is used above, it need not represent the time domain. But in that
context, the convolution formula can be described as a weighted average of the function
f(z) at the

moment t where the weighting is given by g(—7) simply shifted by amount t. As t
changes, the weighting function emphasizes different parts of the input function.

For functions f, g supported on only [U:DG) (i.e., zero for negative arguments), the
integration limits can be truncated, resulting in

(f*g)(t)=[f(ar)gtt—ar)dar for f,9:[0,00) =R

In this case, the Laplace transform is more appropriate than the Fourier transform
below and boundary terms become relevant.

1.8.1 Circular convolution

When a function gT is periodic, with period T, then for functions, f, such that fxgT

to+T =

(Fron)®)= [ | 3 flr+KD)|gr(t—7)dr,

to k=—oa
exists, the convolution is also periodic and identical to:

where to is an arbitrary choice. The summation is called a periodic summation of the function f.
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When gT is a periodic summation of another function, g, then fxgT is

known as a circular or cyclic convolution of fand g.

And if the periodic summation above is replaced by fT, the operation is called a periodic
convolution of fT and gT

1.9 SAMPLING AND QUANTIZATION

Nearly all data acquisition systems sample data with uniform time intervals. For evenly sampled
data, time can be expressed as:

T=(ND)At

where N is the sampling index which is the number of equally spaced samples. For most Fourier
analyzers N is restricted to a power of 2.

* The sample rate or the sampling frequency is:

f=1=(N-1)Af

Sampling frequency is the reciprocal of the time elapsed At from one sample to the next.

« The unit of the sampling frequency is cycles per second or Hertz (Hz), if the sampling period
IS in seconds.

« The sampling theorem asserts that the uniformly spaced discrete samples are a complete
representation of the signal if the bandwidth fmax is less than half the sampling

rate. The sufficient condition for exact reconstructability from samples at a uniform

sampling rate fs (in samples per unit time) (fs>2fmax).

1.9.1 Aliasing

One problem encountered in A/D conversion is that a high frequency signal can be falsely

confused as a low frequency signal when sufficient precautions have been avoided.

* This happens when the sample rate is not fast enough for the signal and one speaks of
aliasing.

» Unfortunately, this problem can not always be resolved by just sampling faster, the signal’s

frequency content must also be limited.

 Furthermore, the costs involved with postprocessing and data analysis increase with the

quantity of data obtained. Data acquisition systems have finite memory, speed and data storage

capabilities. Highly oversampling a signal can necessitate shorter sample lengths, longer time

on test, more storage medium and increased database management and archiving requirements

The central concept to avoid aliasing is that the sample rate must be at least twice the highest

frequency component of the signal

(fs>2fmax).

We define the Nyquist or cut-off frequency

* The concept behind the cut-off frequency is often referred to as 2At

Shannon’s sampling criterion. Signal components with frequency content above the cut-off

frequency are aliased and can not be distinguished from the frequency components below the

cut-off frequency. Conversion of analog frequency into digital frequency during sampling is

shown in the figure. Continuous signals with a frequency less than one-half of the sampling

rate are directly converted into the corresponding digital frequency. Above one-half of the

sampling rate, aliasing takes place, resulting in the frequency being misrepresented in the

digital data. Aliasing always changes a higher frequency into a lower frequency between 0 and
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0.5. In addition, aliasing may also change the phase of the signal by 180
degrees.
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If any energy in the original signal extends beyond the Nyquist frequency, it is folded back into
the Nyquist interval in the spectrum of the sampled signal. This folding is called aliasing.
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1.9.2 Quantization

Quantization is involved to some degree in nearly all digital signal processing, as the process
of representing a signal in digital form ordinarily involves rounding. Quantization also forms
the core of essentially all lossy compression algorithms. The difference between an input
value and its quantized value (such as round-off error) is referred to as quantization error. A
device

or algorithmic function that performs quantization is called a quantizer. An analog-to-
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digital converter is an example of a quantizer.

Because quantization is a many-to-few mapping, it is an inherently non-linear and irreversible
process (i.e., because the same output value is shared by multiple input values, it is impossible
in general to recover the exact input value when given only the output value).

The set of possible input values may be infinitely large, and may possibly be continuous and
therefore uncountable (such as the set of all real numbers, or all real numbers within some
limited range). The set of possible output values may be finite or countably infinite. The input
and output sets involved in quantization can be defined in a rather general way. For
example, vector quantization is the application of quantization to multi-dimensional (vector-
valued) input data

1.10 CONCEPTS OF SIGNAL PROCESSING

In the case of analog signals, most signal processing operations are usually carried out in the
time domain.

«In the case of discrete time signals, both time domain and frequency domain
applications are employed.

* In either case, the desired operations are implemented by a combination of some
elementary operations such as:

— Simple time domain operations

— Filtering

— Amplitude modulation

The three most basic time-domain signal operations are:

* Scaling

* Delay

» Addition

Scaling is simply the multiplication of a signal by a positive or a negative constant. In the
case of analog signals, this operation is usually called amplification if the magnitude of the
multiplying constant, called gain, is greater than one. If the magnitude of the multiplying
constant is less than one, the operation is called attenuation. Thus, if x(t) is an analog signal,
the scaling operation generates a signal y(t)=ax(t), where a is the multiplying constant.
Delay operation generates a signal that is delayed replica of the original signal. For an
analog signal x(t), y(t)=x(t-t0) is the signal obtained by delaying x(t) by the amount tO,
which is assumed to be a positive number. If tO is negative, then it is an advance operation
Addition operation generates a new signal by the addition of signals. For instance,
y(t)=x1(t)+x2(t)-x3(t) is the signal generated by the addition of the three analog signals
x1(t), x2(t) and x3(t) .

1.11 TYPICAL APPLICATIONS

The main applications of DSP are
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audio signal processing,

sometimes referred to as audio processing, is the intentional alteration of auditory signals, or
sound, often through an audio effect oreffects unit. As audio signals may be electronically
represented in either digital or analog format, signal processing may occur in either domain.
Analog processors operate directly on the electrical signal, while digital processors operate
mathematically on the digital representation of that signal.

audio compression

bit-rate reduction involves encoding information using fewer bits than the original

representation.[Z]Compression can be either lossy or lossless. Lossless compression reduces
bits by identifying and eliminating statistical redundancy. No information is lost in
lossless compression. Lossy compression reduces bits by identifying unnecessary information

and removing it.[3] The process of reducing the size of a data file is referred to as data
compression. In the context of data transmission, it is called source coding (encoding done at

the source of the data before it is stored or transmitted) in opposition to channel coding.[4]
digital image processing,

is the use of computer algorithms to perform image processing on digital images. As a
subcategory or field of digital signal processing, digital image processing has many advantages
over analog image processing. It allows a much wider range of algorithms to be applied to the
input data and can avoid problems such as the build-up of noise and signal distortion during
processing. Since images are defined over two dimensions (perhaps more) digital image
processing may be model in the form of multidimensional systems

speech processing

s the study of speech signals and the processing methods of these signals. The signals are
usually processed in a digital representation, so speech processing can be regarded as a
special case of digital signal processing, applied to speech signal. Aspects of speech
processing includes the acquisition, manipulation, storage, transfer and output of speech
signals.

speech recognition,

is the inter-disciplinary sub-field of computational linguistics which incorporates knowledge
and research in the linguistics, computer science, and electrical engineering fields to develop
methodologies and technologies that enables the recognition and translation of spoken
language into text by computers and computerized devices such as those categorized as Smart
Technologies and robotics. It is also known as "automatic speech recognition” (ASR),
"computer speech recognition”, or just "speech to text" (STT).
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digital communications, radar, sonar, financial signal processing seismology and biomedicine.
Specific examples are speech compression and transmission in digitalmobile phones, room
correction of sound in hi-fi and sound reinforcement applications, weather
forecasting,economic forecasting, seismic data processing, analysis and control of industrial
processes, medical imagingsuch as CAT scans and MRI, MP3 compression, computer
graphics, image manipulation, hi- fi loudspeakercrossovers and equalization, and audio effects
for use with electric guitar amplifiers

1.12 ADVANTAGES OF DIGITAL SIGNAL PROCESSING COMPARED WITH
ANALOG SIGNAL PROCESSING

Accracy

Implimentation of sophisticated
algorithms Storage

Noise reduction
1.13 APPLICATIONS OF SIGNAL PROCESSING IN BIOMEDICAL ENGINEERING

« o signal processing — for electrical signals representing sound, such as speech or music

o Speech signal processing — for processing and interpreting spoken words

« Image processing — in digital cameras, computers and various imaging systems

e Video processing — for interpreting moving pictures

e Wireless communication - waveform generations, demodulation, filtering, equalization

o Control systems

o Array processing — for processing signals from arrays of sensors

o Seismology

o Financial signal processing — analyzing financial data using signal processing
techniques, especially for prediction purposes.

« [Feature extraction, such as image understanding and speech recognition.

o Quality improvement, such as noise reduction, image enhancement, and echo cancellation.

e (Source coding), including audio compression, image compression, and video
compression
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ANALYSIS OF DT LTI SYSTEM

The general form of difference equation of a N'th order system is given by
i M )
1+ Z“k!l(" - k) = Zbkx(n -k) N>M
k=1 k=0
For input x(n) ="§(n), we obtain

AV
1+ ay(n— k) = S bib(n - k)
k=0

k=1

Forn > M, Eq. reduces to homogeneous equation

N
Zaky(n ~-k)=0; ao=1
k=1

If N = M, we have to add an impulse function to the homogeneous solution.

Determine the impulse response h(n) for the system described by the
second-order difference equation  y(n) = 0.6y(n — 1) — 0.08y(n — 2) + z(n)
Solution
Given -
y(n) = 0.6y(n — 1) — 0.08y(n — 2) + z(n)
We know the total response
y(n) = yn(n) + yp(n).
For impulse z(n) = §(n), the particular solution
Yp(n) =0
= y(n) = yn(n).
The homogeneous solution can be found by substituting z(n) = 0

= u(n) = 0.6y(n — 1) 4+ 0.08y(n — 2) = 0
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Let the solution
Ya(n) = A"
Substituting we obtain
A" - 060" £ 0,082 =0
A"=2[A2 ~ 0.6 + 0.08] = 0
A2 - 0.6\ +0.08=0

The roots of the characteristic equation are
M =04:02 = 0.2

: i ; : ; ion is
The general form of the solution of the homogencous equati

.'/h(”) = ('l/\’l' 4- {-ZAZ_"’
= (Tl(()..j)n o (;2(0'2)71

y(0) =cy +C2
y(1) = 0.4¢; + 0.2¢2

From the difference equation we have

y(0) = 0.6y(-1) — 0.08_1/(—2) +:r(0)

y(-1)=y(-2) =0

= z(0)= 6(0) = 1

y(1) = 0.64(0) — 0.08y(—1) + z(1)
= 0.6(1) — 0.08(0) +0

= 0.6
= y(0) =1
y(1) = 0.6

Comparing

Cl‘+‘(§2:l

0.1 +0.2¢5 = 0.6
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and solving for ¢} and ) We gel

Substituting the values in Eq. (1.235) yields

y(n) = 2(0.4)"u(n) - (().2)”11(11)

Determine the impulse response h(n) for the system described by
difference equation y¥(n) +y(n—1)-2y(n-2) =z(n - 1) + 2z(n - 2)
Solution

Given
yn)+y(n—1) - 2y(n—2) =z(n— 1) + 2z(n — 2).

Since M = N = 2, the homogeneous solution includes an impulse term.
The total response is given by

y(n) = yn(n) + yp(n)
For input z(n) = 6(n), the particular solution y,(n) = 0
= y(n) = yn(n)
The homogeneous solution can be found by equating the input terms to zero, that is
y(n) +y(n—1)—-2y(n—-2)=0

Let the homogeneous solution y,(n) = A™. Substituting this solution
we obtain the characteristic equation

AR Al a2 =
A2A24+2-2]=0
= AN4+A-2=0

16



Therefore, the roots are 1, —2 and the general form of the scilutitm, to the homoge
neous equation is . '
yr(n) = c1(1)" + c2(—2)" + Ad(n)

From the difference equation

y(0) + y(-1) — 2y(—2) = z(-1) + 2z(-2)

y(0) =0
y(1) + y(0) — 2y(—1) = z(0) + 2z(-1)
y(1) =1
= y(0)=0
y(1) =1
y(2) =1

Substitutingn = 0,n = 1 and n = 2 in Eq.
y(0)=c1+c2+ A
y(l) =c¢; — 2¢2
Y(2) =1 — de2
from which ¢y = 1;¢p =0 A = 1,
Substituting these values in Eq.

y(n) = u(n) - d(n)
=u(n-1)
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Find the impulse response and step response of a discrete-time linear

time invariant system whose difference equation is given by

y(n) = y(n — 1) + 0.5y(n — 2) + z(n) + z(n — 1).

Solution
Given
y(n) = y(n — 1) + 0.5y(n — 2) + z(n) + z(n — 1).

For impulse response the particular solution y,(n) = 0.
Therefore

y(n) = yn(n)
The homogeneous solution can be obtained by solving the homogeneous equation
i A2—-A-05=0

from which

A1 = 1.366
A2 = —0.366
yn(n) = c1(1.366)™ + Cz(—0.366)"

From the difference cquation we can find

y(0) =
y(1)

il

1
2

y(O) =C+ ¢y
y(l) = 1.366¢, — 0.366¢,
Comparing Eq. we get

ci+ec2=1
1.36661 o= 0.30602 =2
= ¢ = 1.366
cp = —0.366

y(n) = 1.366(1.366)" — 0.366(—0.366)"
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Step response
For step input z(n) = u(n), the particular solution y,(n) = ku(n). Substituting
z(n) and y,(n) in difference equation
ku(n) = ku(n — 1) + 0.5ku(n — 2) + u(n) + u(n — 1)
For n = 2 where none of the terms vanish we get
k=k+05k+1+1
= k=-4

Therefore
yp(n) = —4u(n)

The total response

y(n) = ya(n) + yp(n)
= ¢1(1.366)"™ + c2(—0.366)" — 4u(n)

For step input from the difference equation

y(0) =1
y(1) =3
From Eq.
y(0) =c+e—-4
y(1) = 1.366¢; — 0.366¢2 — 4
Comparing Eq.
co+cr=95
1.366c; — 0.3 0c =7
¢; = 5.098
c2 = —0.098
The step response

y(n) = 5.098(1.366)" — 0.098(=0.366)" =4 n >0
= 5.098(1.366)" u(n) — 0.098(~0.366)"u(n) — 4u(n).
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Z TRANSFORM

The z-transform of x(n) is denoted by X(z). It is defined as,

X(z) = ) x(mz™

n=-o '
It is also known as Bilateral Z transform

Here z-is complex variable. x(n) and X(z) is called z-transform pair. It is represented as,

z-transform pair : x(n) «—— X(2)

Unilateral or one sided z-transform : It is defined as,

o}

X(z) ‘= Zx(n)z‘"

n=0
Region of Convergence

Definition : ROC is the region where z-transform converges. From definition, it is
clear that z-transform is an infinite power series. This series is not convergent all values of
z. Hence ROC is useful in mentioning z-transform.

1) ROC gives an idea about values of z for which z-transform can be calculated.

ii) ROC can be used to determine causality of the system.

iif) ROC can be used to determine stability of the system.

20



PROBLEMS

i) x1(n) = (1,2 3,4 5 0.7
Determine z-transform of following sequences ) x1(n) = {1, 2 |

i1) X2(”) = l']_-r 21 31 4/5,1 017.1'
A .

x1(m)=11,23,4507
ie. x1(0) = 1-, x1(1) = 2, x1(2) = 3, x1(3) = 4, x1(4) = 5, x1(6) = 0, x1(6) =-7

o0
By definition, X(z) = > x(mz™"
n=0

' 6
X)(z) = ) xy(mz™"
n=0 ;

Putting for x1(n), 1422714322 +4273 +524 +0275 47276

X1

]
U
+
|
P
g
+
+
irs
|

Result : i) X;(2) is as calculated above.
ii) X1(2) = » for z = 0, i.e. X1(2) is convergent for all values of z, except z = 0.
iii) Hence ROC : Entire z-plane except z = 0.

i) x2(m) ={1,2,3,4,5,0,7}
T

ie. XZ(O).': 4, xz(l) = 5, X2(2) — 0, x2(3) =7 and
xz('—l) = 3,‘x2(—2) =2,x2(-3) =1

3
X2 = D xa(z

n=-3
Putting for x; (1), = 1.z3 +2.22 + 321 +420 +5271 +0z72 +7273

z3 +222 +32+4+§-+Z—.
"%, zo

Result : i) Above equation gives X5 (2).
ii) X5(z) = oo for z =0 and z = o,

iii) Hence ROC : Entire z-plane except z =0 and .
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z-transform of ().

- ) ' 1 for n=0
e know that &(nn) = 0 for n#0
o0
X(z) = D x(mz™"
n=—w

i d(m)z—"

- n=0

= 1zl =1

This is fixed value for any z Hence ROC will be entire z-plane.

3(n) «= 1, ROC : Entire z-plane

z-transform of unit step sequence, u(n).

ikt (n) = 1 for. n20
nit step sequence, u(n) = 0 st
) : ;
X(z) = Zu(n)z'"
n=-x
o0 ’ 0
Putting u(n), = Y1z = ) e
n=0 S on=0
. 1+(z'1)+(z“1)2 +(z‘1)3 +(z‘1)4 e
Here use, 1+ A+ A2 + A3 + A4 4. = ﬁ, | A| < 1. Then above equation will be,
X(z) = |27 < 1
X0 = ol
u(n) «— g ROC :|z| > 1
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1| Imaginaryz | 1| | lm

_L-This shaded area _
is |z| > 1. Itis
rout side of the circle.-

,2 : -.‘::.h.'._,;M l
4 Thisis called

T T ] .l' T unitcircle °

H
]

z-transform of right hand sided sequence x(n) = a" u(n).

o
By definition of z-transform, X(z) = x(n)z™"
n=-w
@0
= Y au(mz™"
n=—o
- .
= D>.a"z™" since u(n) =1 forn=0to w
n=0 ‘
o0
- Z(nz—l)n
n=0

= 1+(az 1) +(az71)2 +(az71)3 +(az71)4 +...

Here use 1+ A+ A2+ A3+ = —1—, |A| < 1. Then above equation will be,

1-A
ROC of the right hand sided sequence (i.e. causal sequence) is outside the circle.
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Imaginary z

‘ I __|-This shaded area __
*’*‘”; SRk %~ is |21 > lal. Itis ROC

PRSI ASSCOR) SRER %{ A7 e G ,

o % Real z |
..... B ST 1 - N ; e

e é’\ ; \ ‘Z :_’ ¥ ai é

o ATTE S #aaN i Circle of radius |

O I O
: i H 1 i !
" 1(n) 2 1
a ‘"‘—'—"1—_—“;_-1': ROC :|z| > |a|

Z transform of left hand sequence
x(n) = —a™u(-n-1)
—-a" for ns-1

u(-n-1)=1forn=-1to - »
0  for n20 %

Here x(n) = {

X@ = 3 )z

n=-—a
r

-Zl —al z=N

n=-w
v

1-
no= -l X@z=% alzl
O foin

Let .
= =2 (a2

I=1

:‘,{(a-l_z) +(“’12)2'+(a‘1 z) 3 +(a-l 2)4 +}

-(a~12) {1 +a71z+(a712)2 +(a~12)3 4 (a-12)4 +}
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For the term in bracket use,

1+A+A2+A3+... ‘= ._1_—,|A|<1 Le.,
1-A
= (a2 a1zl < 1
X(Z) (a )l—a‘lz l Zl
= _l.__,|a‘lz|<1
1-az7!

Here [a~'z|< 1 is equal to |z|<|a|. This ROC is the area that lies inside the circle of
radius | a|. It is shown in Fig.

ROC of left sided sequence

is an area inside the circle.

Imaginary z
[

Real z

This shéded area |

inside the circle of

= radius |a| is ROC -
et SV SO A

Z transform of both sided sequence
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x(n) = a" u(n) +b" u(=-n=-1)
Here let x1(n) = a” u(n) and x2(n) = b" u(-n-1)

x(n) = x100)+x2(1)

S [y + 22 00)z"

X(z) =
n=-—®o
- i x1(mz~" + i xp(mz™"

Nn=-w N==0

From the previous problem's result
1 1

X(z) = + L ROC : |z|>|a| and |z|<]|b|
1-az-1 1-bz71

ie |a| < |z| < |b]
When |a|>]|b]|

As shown Fig. there is no overlap between the shaded areas for |z|>|a| and

|z|<|a|. Hence both the terms of X(z) do not converge simultaneously. Therefore ROC is
not possible. :

[_lal>1b] | |Imaginary (2)
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When |a|<|b]

For this case, as shown in Fig. the shaded area shows the overlap of |z|>|a|
and |z|<|b]|. This area is |aj<|z|<|b]. In this area both the terms of X(z) converge
simultaneously. Hence the ring shown by |a|<|z|<|b| is ROC of X(2).

[“fal<ibl | |imaginary (2)

lzl < b

Real (2)

|z > Jal and |z] < |b] .
This is possible ROC

H

PROPERTIES OF ROC

Property 1 : The ROC for aMinite duration sequence mcludes entire z-plane, except
z=0, and/or |z| = . -

Proof : Consider the finite duration sequence x(n) = (121 2

T
X(z) = 1.22+2-z+120 4221 =z2+2z+1+§

Here X(z) = o for z = 0 and «. This proves first property.
Property 2 : ROC does not contain any poles.
Proof : The z-transform of a" u(n) is calculated as,

1
1-az"1

X(z)

Z. Y Roc: |z|>|al
z-a

This function has pole at z = a. Note that ROC is |z|>|a|. This means poles do not
lie in ROC. Actually X(z) = o at poles by definition of pole.
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Property 3 : ROC is the ring in the z-plane centered about origin.

Proof : Consider a u(n) <=— ;-1 , ROC : |z|>]a|

or —a"u(-n-1) &> -I-——I—_T , ROC : |z |a]

Here observe that |z| is always a circular region (ring) centered around origin.
Property 4 : ROC of causal sequence (right hand sided sequence) is of the form |z|>r.

Proof : Consider right hand sided sequence a"u(n). It's ROC is |z| > |a|. Thus the ROC
of right hand sided sequence is of the form of [z|>r where 'r" is the radius of the circle.

Property 5 : ROC of left sided sequence is of the form |z|<r.

Proof : Consider left sided sequence -a" u(—n'—l).- Its ROC is |z|< |a. Thus the ROC of
left sided sequence is inside the circle of radius . o

Property 6 : ROC of two sided sequence is'the concentric ring Tn z-plane.

Proof : We know that ROC of x() = a" u(n)#b" u(-n-1) is |a|<|z|<[b] , which is the
concentric ring

PROPERTIES OF Z TRANSFORM

Linearity

ay x1(n) +a2 o (n) <> M 1@ +a2 xz(Z)“l

o0

Y xmz ™"

==

Proof : X(z)

i [al xq(m) + a3 X3 (m)]z™"

n=-w

= i‘ alxl(n)z'"i + iﬂzxz (mz™

nN==-w' : n=-w

) o0
=M le(n)z’" +0ap sz(n)z‘" Since a; and ap are constants

n=-o0 n=-om

= m X1(@)+a2 X3 (2)
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Time Shifting

x(n-k) <>z % X(z)

Proof : Z{x(n-k)}= ix(n—k)z:” ..

n=—o

Let n—k =m. Hence n = k+mand m = - to +. ie.,

x(m)z~(k+m)
o0

Z{x(n-k)} =

m

III Ms

= ix(r;z)z"‘ ™M = zk i'x(m)z”"

" m=-w M=-0c0
= z7¥ X(2)

Scaling in z-Domain

Let x(n) +25X(2), >ROC i <|z|<rp
then a" x(n) «—> X(%) ; ROC : |a|r <|z|<|a|r;
o
Proof :  Z{a" x(n)} = Za" x(m)z "
==

= i x(n) (a-1 2)

11==—00

X(a™2)

= X('z‘)/ ROC:r1<
a

Z
a

29
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Time Reversal
Let  x(m«<>X(z), ROC : r, <|z|<n,

then

Proof :

x(=1) <> X(z‘l) X ROC : ;1—<|z|<711-
)

Z \x(-n))

withn=-m,

Differentiation

Proof :

or

-0

Zx(m)z’" = ix(m)(z‘l)""

n=ow m=-aw

= ‘X(z) ROC :n<|z7l| <n ie L <|z| < =
2 n
in z-Domain
nx(n) <L> -Z—d-X(z)
. dz
w0
X@ = Y. xz"
n=-aPC
d g < d ’ - ._. 3 3 d =1l
H-Z-X(z) = "’Z_wd—z[.x(n)z ]= ;;:z_:m x(1i) 72
w0 . o0
= Z.\‘(n)-(-n)-z""l = - Zn.\'(n)z‘" .21
N=-w n=-c _
on
= =271 Y [nx(m)z™" = -z71-Z{n )
N==—w
= —ziX(z) ,  ROC : Same as that of x(n)
z

Z{n x(n))

d
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Convolution in Time Domain

x1(n)* x2(n) > X1(29)- X2 ()

Proof : x1(n)*xo(n) = i?‘l(k) xz (n—k)

=-—00

n=-—owlk=—mw

o0 o0 V
Zi{x1(n)*xa(n)) = Z [ Z xl(k)xZ.()z-k}]z’"
Interchanging orders of summation,

= i .\‘l(k){ i X2 (n-k)z‘"}

k=-=w N=-—o0

Since xp (n—k) <« z7%¥X5(2),

= 3 a0 @)
k==m

- { 3 xl(k)Z""}-Xz(Z) = X1(2)-X2(2)

k=—w
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Correlation of Two Sequences

S w32 (1-) o Xy Xae)

n=-m

Proof : Correlation of two sequences is given as,

2

mx () = Z x1(n) x (n-1)

n=-w

= Z x1(mxy [<X1=m)] = xq()*x2(=1)

n=-w

0

Z{ Y xixy (n-)

N==mn

Zlxy(h* xa (=D

= ZIvy(D)-Z b (-D)

= X1(2-X,(z 1)
Multiplication of Two Sequences

sl s mjs X, (U)Xz( ) .

Here 'c' is the closed contour. It encloses the origin and lies in the ROC which is

1
common to both X;(v) and X (5

Proof : Inverse z-transform is given as, x(n) = z—lnﬁx @v"1dv

Let x(n) = x;(n) xy(n)

Putting inverse z-transform of x;(n) in above equation,

1

x(n) = Z—Mf X1 @v"1dv-xy(n)

X(z) = Z {%ﬂ}f Xi (v)v""‘dv-xz(n)}z“"
n=-ow ¢

Interchanging the order of integration and summation,-

X(z) = § X1 (@) Z v" v~ xp(n)z™" dv
il 5‘_ f X (v){"-z-:z(n)(;-) }:;-1 dv

—1—§ 1(v)X2() -1 do

N
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Conjugation of a Cdmplex Sequence

’ Al

() < X*'")

S ez = Y Mo)e)

nN=-=m l==~w

Proof: Z {x‘ (n)}

[ 3 x(n)(r)-"]

X@*)© =X )

z-Transform of Real Part of a Sequence

Refx(n)] +=— % [X(2) + X* ()]

Proo_f: x(n) = R(’[.\'(H)l +j Im I.\.(")] and x* (”) = Re {.\'(")1 —j Im [.\'(")l

Re[x(n)]

-‘12- [x(n) + x* (m)]

]

Z [Re[x(n)] Z {15 [-\(:n) +x* (n)l}
= 1ZI)]+ Z I o))
= FX@+X* @)

z-Transform of Imaginary Part of Sequence

Im[x(n)] «=—> —217[)((2) -X* (z¢)]

Proof : Im [x(1)] Zi; [x(11) = x* (11)]

Zm{x) = {51500 01} = - {(Z 160D -Z bxx )

J

1 . -
E{X(z)fx =)}
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Parseval's Relation

N==m

le(n)x; (n = i}‘;f X1 (@) X; (vl_)v‘l dv

Proof : Inverse z-transform of X;(z) is, x;(n) = 2—1{—}§ X; ()o"-1do
¢

0 ao
Y xim () = —f) X1 @01 dvx; (i)
n=-mw N==00
1 o, oo
= g M) Xxeeid
c hn=--t:t>
{ -n
Here v"~1 = v" vl = (p-1)~" 071 = \%) -v~1 then above equation will be,

N=-—m NnN=-w

PRI ——§ A <v>{ NACLE ) v-l}dv

-2-157? X1 (v) le(n)( ) ]v“dv

n-——-oo

1 S B
77# X160 ()] ol

- 1 - . 1 -1
= 2—“—}{ Xl(u)X2 (-l-);-)v dp
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Initial Value Theorem

A0) = lim X@)

Z=-rw

Proof : z-transform of a causal sequence is given as,

X@ =. ) x(m)z™, since x(n) = 0 for n < 0
n=0
= x(0)+x(1)z7 1 +x(2)z72 +x(3)z73 +---
lim X = lim x(0)+ lim x(1)z7! + lim x(2)z72 +---
L zo® 2w zm
= x(0)+0+0+0+0--
10 = lim X(2)
2=>m

PROBLEMS
x1(n) = &(n —k)

8(n) «£-5 1, ROC : entire z-plane
A(n-k) <25 z-k X(z), By time delay property.

Z8(n-k)} = z7% Z{5(n))

= z7k.1=2-k,  ROC : entire z-plane except z = 0.

x2(n) = 8(n+k)
Z {d(n+k))

zk Z (8(n))

= zk.1 =2k,  ROC : entire z-plane except z =
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x3(n) = u(-n)

x(n) <> X(z), ROC :r <|z|<r

x(-H) «— X(z-1), ROC : —!—<|z| <rl, By time reversal property
- 1

r2
u(n) «=—> %, ROC :|z|>1. Herery = 1
su(-n) < IL-Z' ROC : |z| <1, By time reversal property

xg3(n) = na” u(n)

Zia"u(m)} = ——, ROC :|z|>|a|
1-az"1

And Z{n x(n)) = —;%X(z), differentiation in z-domain property

' d 1
.an = —Z—
Z {n-a"u(n)) zdz P

Here x(n) = a™ u(n)

"3k 4 d
T b Pl (S L R |
.(1 az )dzl ldz(l az™')

(1-az™1)2

‘O-f-a(-])Z‘2
(1-az1)2

az~1
= m, ROC :|z|>|a|

az-1

m ’ ROC : |z|>|a|

Thus , na" u(n) «=—
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x(1) = cos(wp 1) 1(n)

el won 4 o= joon

= 5 1(n)

eJoon 4 o= joon
X(2) { ]

5 I 1(n)

%z {eiwon u(n)} +-12.z [e=] @0 (1))

Here use a" u(n) «—> ke , ROC |z|>|a] i.e.,
1-az-1
1 1 1 1 i
i L _ s ' , ROC :|z|>|eJ®0| and
@ 2 1—_el‘°02'1 21-p-jowpz-1 I21>1 |
J2]>]e~iv0]
1 1 1
X)) = = : + - ROC :|z|>1
< 2{1-e1m02-l 1—e‘l‘°Oz‘1} &

AR Jser
{ 1-e-/©0z-1 +1-¢j©0z"1 }

N| =

(1-ej©0z-1)(1-¢~j®0z"1)

HA | 2-z"1(ej®0 +¢-j®0) e ] 2-z"1.2cos wy ;
2|1-z"1(ef00 +e-j©0)+2-2 [~ 2|1-z-1-Z2coswg +2z-2

| :
R e , ROC :|z|>1

1-2z71 coswg +22
x(n) = sin wg 1 u(n)

jogn _p-joon
I 2; )u(n)
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ejwon —e—in")

X(z) = Z{ 5 }u(n)

= -211- [Zleiwom u@u))~Z (e-iwon u(n)]]

1 SRR
2j|1—-¢j®w0z-1 1—pg—-jwoz-1|"’

ROC : |z|>|e/®0| and |z| >|e—i®0|
ie. |z|>1

1[1-e77902-1 -1, pjo0z-1

. 2j| @ -eiv0z 1) —e'i‘°Qz‘1)J b el

1[  (ei©0 —e=jwp)z-1
2jl1-z"1(e/w0 +e=j©0) 422

-

1
2j|1-z"1-2cos wy +2-2

2jsin wg z~1 }

z~1 sin wy
= 1 , -ROC :|z]|>1
1-2z"1 coswy +z2
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x(n) ="a" cos(wg n)u(n)

1-271 cos

Let x1(n) = cos(wgn)u(n), hence X;(2) =
1-2z71 cos g +272

From above equations, X = a'xy(n)

X@) = Z{a" xi(n)

= Xl(g), ROC :|a|ry <|z|<|a|ra, By scaling in z-domain

1- f -lcos
P )

Replacing z by % in X1(2), = = ROC:[z]> 1 |af ie.[2] > [a]

X(m) = a™ sin (wq 1) 1 (1)

z71 sin (0N

' Let xy(n) = sin(wg n)i(n), hence X;(2) = 1-22-1 coswp +2°2

From above equations, x(1) = " x(1

X()

zla" xy ()

Xl(g)' ROC:: [alry <fz|<]a|ry, By scaling in z-domain

A
<) siny
| :
Z Z
1-1 -] Cosay +(E

Replacing z by % in X)) = o, ROC:[2|> 1a]ie.[2| > |a]
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INVERSE Z TRANSFORM '
The inverse z-transform can be obtained by,

i) Power series expansion
if) Partial fraction expansion
iii) Contour integration.

iv) Convolution method
Inverse z-Transform using Power Series Expansion

By definition z-transform of the sequence x(n) is given as,

0

Y. i)z

=~

X2

ot (=222 +x(=1)z+x(0)+2(1)27 #2227 4+
From above expansion of z-transform, the sequence X(n) can be obtained as,
) = b0 50,020,

The power series expansion can be obtained directly or by long division method.
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Determine inverse z-trhnsfbrm of the ‘follow'ing 5

1+az71 402272 43273 « Negative power of 'z

1-az*1)1/_
1z077
R
X(2) = —— , ROC : |2]5]] v
C1-az 1’ el az-1 - a2 272
a2z
a2z72 - q32-3
adz-3
Bl
adz4
. i S =3 it
Thus we have, X(z) = 1—-—;—2—_—1- —1+az 1 +a2z 2 +a3277 +

Taking inverse z-transform, x(nz =11, a, a%, a3,

= a"u(n)
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1

, ROC : |z|<|a|
-1

X2 =

—a-12-0-222 —q-3 33 _g~4 74 « Positive powers of 'Z
-az71+1)1.

1-a-1z

a1z

a"l z sl a"z Z2

a-2z2

a=22z2 — =323

a-323

a~%2% ...
|

Thus we have, X@) = I

|-az7)

07 =272 g3 3 g4 A

Rearranging above equation, O AR PN PV IS P

Taking inverse z-transform, 1)

o743 ,-a'z,-a'll

1

~t"u-n-1)
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Inyerse z-Transform .using Partial Fraction Expansion

Following steps are to be performed for partial fraction expansions :

Step 1 : Arrange the given X(z) as,

X() Numerator polynomial
z  @-p))e-P2)G-py)
X(Z) _ Aq + Aj & A3 i AN
tepss z  z-py Z-P2 2-p,3 Z=PN
X(2)
Where, A, = (Z'Pk)'T il T2 s N
Z=pk

If\-{(g has the pole of multiplicity 'n' i.e.,

X(z) _ Numerator polynomial

z G-p"

Aq As Ap-
+ Fonee
=P et s ep)®

Where A1, A; ,---Ay are given as,

n-k X
b e o 28]

(ll—k)!.dzn'kz z z=p
k=123 .:n
Step 3 : Equation (3.7.1) can be written as,
X(z) = ﬂq.ﬁ.‘....*. AN 2
=Py 2P Z=PN
- Al Az AN

i ekt
1-p;z71 1-p,z 1-py 2~

Step 4 : All the terms in above step are of the form : A 7+ Depending upon ROC,

following standard z-transform pairs must be used.

p;: H(ny <= ‘ROC : |z| > |a| i.e. causal sequence

I—Pk z-1 ,I

=P )" u(-n-1) <

. ROC :|z| <|a| i.e. noncausal sequence
. 1 —Pk Z—‘
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1
1-1.5z71 +0.5z72

Determine inverse z-transform of X(z) =

For (i) ROC : |z| > 1, (ii) ROC : |z|< 0.5 and (iii) ROC : 0.5 < |z|< 1

Step 1: First convert X(z) to positive powers of z. i.e.,

5
e 2 z2-1.5z+0.5
X(2) z'

.z z2-1.52+0.5
" ; Z
(z-1)(z-0.5) .

X(2) A A
Step 2: M S | 2
J 2y z 12205

-

Ry -'~ 75 A4 | £ 1 2
A= D09 . T 1-05 - 2
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- 0.5
and A 2 (z-0.5)-(z_‘1)(z_.0.5)z=0.5 ST =1

_ S () Ry I |
Equation will be, 'Z‘:-Z'_‘.l -z—p.S
22 332>
Step 3 : X(zi = z_——1|—m
= p
1-z71 1-0.5z1

Step 4 : i) x(n) for ROC of |z| >1

¢ Here the poles are at z = 1 and z = 0.5 from equation
* Now ROC of |z|> 1 indicates that sequence corresponding to the term l_—% in
equation (3.7.7) must be causal. -

v l|~‘ig|. 37.1 shows the ROCs of |z|>1 and |z|> 05, Observe that |z|>1 include
z|>05.
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| imaginaryi(z)

This area is |z|>1

It also includes
|z| >0.5

I

Rqal (2)

In this‘area —
|z >1and|z] > 0.5
:botlh are tnlxe :

|

Hence the sequence corresponding to the term

Therefore from equation (3.7.7) inverse z-transform becomes,
2(1)" u(n)J—? (0.5)" u(n)
[2-(0.5)"Ju(n)

x(n)

x(n) for ROC: |z|< 0.5

1-0.5z"1

in equation

: ! H ¥ 3 ' l ; I
7 Imaginary (z) i
........ rcle of ~of 0T L :
Cz':g g = | ‘This area is |2]<0.5
—— It also includes
..... IS & 2] <1
circle of %
: g =~ Real (2)
: Inthis area .-
2| <0.5 &|z| < 1
i both are true
‘ = SO o0 (N, S KON
Wi} = 2[-1"1(-n-1)]-[-0.5" u(-n-1] -

= [—2+0.5"]“(_”_])




\(n) for ROC: 0.5 <|z|< 1

e This ROC can be written as |[z[> 0.5 and |z[< 1.7

A

e The sequence corresponding to -7 in equation
ROCis |z]|< 1.

 The sequence corresponding to T oA in equation

ROCis |z|> 0.5.

Taking inverse z-transform of equation
x(n) = 2[-1"u(-n-=1)]-(0.5)" u(n)
= =2u(-n-1)-(0.5)" u(n)

Inverse z-Transform using Contour Integration

Cauchy integral theorem is used to calculate inverse z-transform. Following steps are
to be followed :

Step 1: Define the function Xy(2), which is rational and its denominator is expanded
into product of poles.

1.6, X(2)

X2z
N(z)

[T G-pi)
Ju]

Here 'm" is order of the pole.

Step 2 : i) For simple poles, i.e. m = 1, the residue of Xy(z) at pole p; is given as,
ResXp@) = lim[(z-p;)Xo(2)]
=p; 29,

" (Z'P,')XO(Z)L:},',
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ii) For multiple poles of order m, the residue of X(z) can be calculated as,

1 )amr
Re;on(Z) = (m_lﬁlEZ""_l(z i) Xo(z)]
Z=p,°
i) 1 Xy(z) has simple pole at the origin, ie. n = 0, then x(0) can be calculated
independently.

Step 3: ) Using residue theorem, calculate x(n) for poles inside the unit circle. i.e,,

x(n) = Z Reps Xo(2)
l = 1

ii) For poles outside the contour of integration,

x(n) = Z Rcs Xo(2) withn < 0
i=1 2=hi

~2

Determine the inverse z-transform of X(z) = R,

ROC : |z|>|a| using contour integration (i.e. residue method).

Zu-l

X(z) Zn-l =

: X,(z
Step 1 o(2) T

zn+l
(z-a)?

Step 2 : Here the pole is at z = a and it has order m = 2. Hence using equation
we can calculate residue of Xy(z) at z = a as,

d2-1
Res Xo(2) = (‘2_1)'{,1 ——-02 Xy (2)

Z=a
e | (n+1)z"|_ = (@n+1)a"
dz " lz=a
Z=q
Step 3 : By equation the sequence x(n) is given as,
x(n) = ) Res Xo(2)
jm] %8

= (n+1)a"u(n) since ROC: |z|>|a|
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Using residue method find the inverse z-transform of X(z) = ?ﬁ%—%m; |z| > 1

) =

n-1
e X(2)2"dz
c

=Y residues of  X(2)2"! at polesof X(z)z"~! withinC
B . (z+1)z"! -
= Z residues of m at poles of same within C

The closed contour C, begin in the ROC |z| > 1 encloses the poles at z = —0.2,
z = 1and, for n = 0 the pole is at z = 0. Therefore forn =0

A “"(0)=E residues of 4+ atpoles 2 =0,z =1and 2 = —0.2

2(z+0.2)(z+1)
o e z+1 (z+1)
(2203 ——ne—=
(’é(,l)(z+02)(z— T 02 — 1) le=02
(z+1)
+Mz(z+02)§;,/l’) 2=1
=-5+ 1;) +§ =0
ie,z(0) =
Forn 2> 1
+1)z"1
z(n) = Z residues of G (i 0. 2)) =) atpoles 2=-02 and z=1
, (z + 1)z N _0 9
= residue of G+02)(z - 1) at 2=
) (z+ 1)z"1 - _
+ residue of = +02)(z- ) a z=1
= (2402 (z+1)2"" (z+1)z™!
_()Oé)"(z—l z--02+M( ;
5
n-1_, Y
(02" 43

Therefore, z(n) = —%_(—0.2)""11:(11 -1)+ gu(n -1).
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Convolu}ion Method

In this method the given X (2) is split into X(z) and Xy(2) such that X(z) =
. Xy(2)Xa(2). Next we find ) (n) and z(n) by taking inverse 2-transform of X1 (2)
and X5(2) respectively. From convolution property of 2-transform we know

Z[zy(n) * z9(n)] = X1(2)Xa2(2) = X(2)

v

Find the inverse z-transform of

' 1
X(z) = 1—3z1 o3 using convolution method

1
Xe) = 1-3271 4222
1

T @=a -z

= Xl (Z)X2(Z)

‘where X (z) = 1=L=1 and X5(z) = =T FromTable  we find z;(n) = u(n)
and z2(n) = 2™u(n). We know

z(n) = z1(n) * z2(n) .
o s
= Y zi(k)za(n - k)
= f: u(k)2""‘y(n—- k)
k=-o00

- 2n-k — 2n E 2-k
k=0 =0

] ,l+l
P

7 1
1-3

u(n)

= [2"*! — 1]u(n)
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QUESTIONS

1. Define signal with an example
Distinguish between continuous & discrete time signal
Define sampling & Quantization
Give the merits of digital signal processing compared with analog processing
Define Z transform
Explain in detail about the classification of discrete time signal with an example
Explain in detail about all the applications of digital signal processing
Determine whether the following DT signals or periodic or not
Q) Cos2nn/5 + cos2nn/7

O N U~ WD

(i) Cos(n/8)cos(nm/8)
(iii)  Sin(n+0.2n)

9. Find and sketch the even and odd components of the following
(i X(n) = g™

(ii) X(n) = Im [e"™4]

10. Find the inverse Z transform of X(Z) = z(z?-4z+5)/(z-3)(z-1)(z-2) for ROC 2<|z|<3, |
z|>3, | z|<1 using partial fraction method

11. Determine the impulse response h(n) for the system described by the second order
difference equation
y(n) = 0.6y(n-1)-0.08y(n-2)+x(n)
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FREQUENCY ANALYSIS OF THE SIGNALS
1.1 Discrete Fourier Transform

the discrete Fourier transform (DFT) converts a finite sequence of equally spaced
samples of a function into the list of coefficients of a finite combination of complex
sinusoids, ordered by their frequencies, that has those same sample values. It can be said
to convert the sampled function from its original domain (often time or position along a
line) to the frequency domain.

The input samples are complex numbers (in practice, usually real numbers), and the
output coefficients are complex as well. The frequencies of the output sinusoids are
integer multiples of a fundamental frequency, whose corresponding period is the length
of the sampling interval. The combination of sinusoids obtained through the DFT is
therefore periodic with that same period. The DFT differs from the discrete-time Fourier
transform (DTFT) in that its input and output sequences are both finite; it is therefore
said to be the Fourier analysis of finite-domain (or periodic) discrete-time functions

The DFT is the most important discrete transform, used to perform Fourier analysis in
many practical applications.™! In digital signal processing, the function is any quantity
or signal that varies over time, such as the pressure of a sound wave, a radio signal, or
daily temperature readings, sampled over a finite time interval. In image processing, the
samples can be the values of pixels along a row or column of a raster image.

1.2 Computation of DFT
Let, x(n) = Discrete time signal of length L

X(k)= DFT of x(n)

Now, the N-peint DFT of x(n), where N 2 L, is defined as,
N-l ~)2rkn
X(k) = z,\'(n)c N = fork=012,...., N-1

n=0

Symbolically, the N-point DFT of x(n) can be expressed as,
DFTIx(n)!

where, DFT is the operator that represents discrete Fourier transform.

N-I -2 rtkn
5 DFT {x(n)} = X(k) me)c N o+ fork=0,12...,N-1

n=0
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Let, x(n) = Discrete time signal
X(k) = N-point DFT of x(n)
The inverse DFT of the sequence X(k) of length N is defined as,

| o 2xkn
) = < Y XKe N ; forn=0,1,..,N-1I
k=0

Symbolically the inverse DFT of x(n) can be expressed as,
DFT"{X(k)}

where, DFT “!is the operator that represents inverse DFT.

» e o )
DFT{X(K)} =x(n) = = éX(k)e : forn=0,1,...,N-1

RELATIONSHIP BETWEEN DFT AND Z TRANSFORM

The Z-transform of N-point sequence x(n) is given by,

N-1
Z{x(n)} = X(z) = ZX(n)z'"

n=0 J2nk
Let us evaluate X(z) at N equally spaced points on unit circle, i.e., at z=e¢ ¥

2k

jxk
; s 2k
Note : Since,|e ¥ | = Tand Le N = e

J2nk

the term, z=e¢ N |, fork=0,123....N~-1
represents N equally spaced points on unit circle in = plane.

N-1 N-1 —j2xkn
s X(2) o = Z x(n)z™" s = z x(n)e N
zme N n=0 zme N n=0
By the definition of N-point DFT we get,
N-1 - j2nkn
X(k)= Y x(nye N
n=0

From equations (5.19) and (5.20) we can say that,
X(k) = X(z)| 2=
z=¢ N
From equation , we can conclude that the N-point DFT of a finite duration sequence can be obtained
from the Z-transform of the sequence, by evaluating the Z-transform of the sequence at N equally spaced points
around the unit circle. Since the evaluation is performed on unit circle the ROC of X(z) should include unit circle.
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Compute 4-point DFT and 8-point DFT of causal three sample sequence given by,

x(n)

o wl—

; 0= n<?2

; else

Show that DFT coefficients are samples of Fourier transform of x(n), (Refer example 4.6 of Chapter 4 for
Fourier transform).

Solution
By the definition of N-point DFT, the k™ complex coefficient of X(k), for 0 £ k € N -1, is given by,
N -1 —i)lﬁn
Xk) = Y xme N
n=0
a) 4-point DFT(\ N =4)
41 =xkn 2 o s .3 .
X(k) = z x(nNNe 4 = Z xmMe 2 =x(0)e’+x(Ne 2 +x(2) e ™ |e'w= cosqg t jsing
n=0 n=0
-]
s dpled g lieia 1[l+cosﬁ - jsin"—k + cos ik — isinnk]
373 3 2 2

For 4-point DFT, X(k) has to be evaluated fork=0, 1, 2, 3.

When k

0; X(0) = %ll + cos0 — jsin0 + cosO — jsinO]
- %(l +1-j0+1-j0) = 1 = 120
1 n - o
Whenk = 1; X(1) = —3—[1 + cos — jsing + cosx - |smn]

1 T
= —(140-j-1-j0)=—j—=—<4-n/2=0333£-0.5
3( +0-j jo) 53 n/ n

Whenk = 2; X(2) = %[I + cos m — jsinn + cos2m - jsiant]
= l111—1—il|‘.'!l+1—j|2l]= 1 = 0.33320
3 3
Whenk = 3; X(3) = %[I + cos%‘ - jsin% + cos3n - jsin3u]

Zn/2=0.33320.5n

- %{1+0+j—1—j0)=i

| -
W=

\ The 4-point DFT sequence X(k) is given by,

X(k) = {120, 0.3332-0.5r, 0.33320, 0.33320.5n) Phase angles
*. Magnitude Function, [X(k)|={1, 0.333, 0.333, 0.333) are in radians.

Phase Function, 2X(k)={0, -0.5n, 0, 0.5n)
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b) 8-point DFT (\ N = 8)

8-1 ~j2nkn 2 ~jekn —ink —izk
X(k) = Z x(nNNe 8 = Z xnNNe + =x(0)e’+x(Me * +x(2e 2 Ie!ie= cosq:jsinq]
n=0 n=0
1 1 g ok oo.oak nk .
= —+—e* +—e 2 =—|1+cos— —jsin— + cos— — jsin—
3 3 3 3 4 4 2 2

For 8-point DFT, X(k) hasto be evaluated fork=0,1,2,3,4,5,6, 7.
When k = 0; X(0) = %Il+coso—isin0+coso—jsin0]

= -;-(1+1-50+1-j0)=1 = 120

Whenk = 1; X(1)

l[ LT n < s n]
—-|1 + cos— - jsin— + cos— - jsin—
3 4 4 2 2

= 0.333 (1 + 0.707 - jO.707 + O0- j1)

= 0.568 - j0.568 = 0.803~2 - 0.785 = 0.8032 - 0.25n

0.785
Whenk = 2; X(2) = -l-[l + cosg - jsing- - cosﬂ - jsing} b =2
3 4 4 7. 2
=03330+0-jl-1-jo)
= - j0.333 = 0.333£-n/2 = 0.333£-0.5n
Whenk = 3; X(3) = %[1 + coss%’E - isin%’i - cos-:%n- - jsin%n—]

= 0.333(1 — 0.707 — j0.707 + O + j1)
= 0.098 + j0.098 = 0.139.20.785 = 0.139.20.25x

When k = 4; X(4)

2 2
= 0.333 (1-1-jO+ 1- j0) = 0.333 = 0.33320

1 Ar . . AR 4r . . An
—|1 + cos— - jsin— + cos— - jsin—
3 4 4
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Whenk = 5; X(5) = L 1+ coss—n - jsinE - cosz - jsins—’t
3 4 4 2 2
= 0.333 (1 - 0.707 + j0.707 + 0 - j))
= 0.098 - j0.098 = 0.1392 - 0.785 = 0.139£ - 0.25n
Whenk = 6; X(6) = d 1+ cos(’—’t - jsinb—’t + cos()—’t - isinb—’t
3 4 4 2 2
=03330+0+j1-1-j0)
= j0.333 = 0.3334n/2 = 0.333£0.5x
Whenk = 7; X(7) = \ I+cosl1£—jsin—7—’£+cos-7—£—jsin—7—’-t-
3 4 4 2 2

Phase angles
are in radians.

0.333 (1+ 0.707 + j0.707 + 0 + j1)

0.568 + j0.568 = 0.80320.785 = 0.80320.25n
\ The 8-point DFT sequence X(k) is given by,
X(k) = {1£0, 0.8032 - 0.25r, 0.333Z - 0.5%, 0.139£0.25%, 0.33320, 0.139Z - 0.25x,
0.33320.5n, 0.80320.25r)
. Magpnitude Function, |X(kx ={1,0.803, 0.333, 0.139, 0.333, 0.139, 0.333, 0.803 )

Phase Function, 2X(k) = {0, -0.25x, - 0.5%, 0.25%, 0, - 0.25x, 0.57, 0.25x )

] 4 X (k) &
1.0 4. S 0.75 x =
. ~
'YL / el s N
N i 0.25 7 o / e
e\ / i
3 i b 1l .: ‘z;\ .I 3 dEe
0.4+ 4 / g ok
ik -0.25% N £
i Ey
0.2 (i s | -0.50% s
A NG N
0 : i ! > -0.75x >
! ? ’ s Fig 4 : Ph trum of X(k) for N=4
. . , . g 4. rase specirum of A(K) Jor N=4.
Fig I : Magnitude spectrum of X(k) for N=4. g F ’ ’
Ix‘kllll A‘k)ll
104, 0.75 x =
b . i
i 0.50
0.8+ s
[\
g \ ; 0.25 %
0.6 '\ /

I 0+
0.4+ f

\ P {
A ¢
A f . 3 ¥
3 il -0.25x o
0.2+ R '// N ] 3 :
e Vi -0.50% 2 il
1 T T T T > 0.75x% >
1 2 3 4 5 6

e »
7 8 K

Fig 5 : Phase spectrum of X(k) for N=8.
Fig 2 : Magnitude spectrum of X(k) for N=8.
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Compute the DFT of the sequence, x(n) = {0, 1, 2, 1). Sketch the magnitude and phase spectrum.
Solution
The given signal x(n) is 4-point signal and so, let us compute 4-point DFT.

By the definition of DFT, the 4-point DFT is given by,

4-1 j2xkn 3 Zjxkn
Xk = Y xte + = Y xine 2
n=0 n=0
ik i3nk izk Bk
=x0e’ + xNe 2 +xe™ +xB)e 2 =0+e2 +2e™ 4+ ¢ 2

ik
2

(cos % +2cosxk+cos¥) -j(sin% +sin %] |sinnk=0for integer k

When k = 0 ; X(0) =(cos0+2cos0+cos0)-j(sin0+ sin0)

cos % - jsin n—:+2(cos nk - jsin k) + cos % - jsin

=(14+2+1)-j0+0)=4=4p0

When k

1; X(1) = (cosE + 2 cosm + cos3—n -i(sin£+sin3—n)
2 2 2 2

= (0-2+0)-j(1-1)=-2=22180" =24n

When k = 2; X(2)

(cosm + 2 cos2n+cos3x) - j(sinx + sin3r)
(-1 +2 -1) -j(0+0) = 0

Whenk = 3; X(3) = (cos:%t +2cos3n +c0597n] —j(sin%t + sing?n)

=(0-2+0) -j(-1+10)=-2=2/£180" = 24n
\ X(k)={4p0, 2pp, O, 2bp)
Magpnitude Spectrum, IX(k)I={4, 2, 0, 2}

Phase Spectrum, pX(k)={0, p, 0, p}
X (o] 2X(k) 4
n "
44 rr 3 ’
0.75x ]
3
057}
Jd 2
0.25%+
1
o 1 2 3 =k S 1 2 3 i
Fig 1 : Magnitude Spectrum. Fig 2 : Phase Spectrum.
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Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is a method (or algorithm) for computing the discrete Fourier
transform (DFT) with reduced number of calculations. The computational efficiency is achieved if we adopt
a divide and conquer approach. This approach is based on the decomposition of an N-point DFT into
successively smaller DFTs. This basic approach leads to a family of an efficient computational algorithms
known collectively as FFT algorithms.

Radix-r FFT

In an N-point sequence, if N can be expressed as N = r™, then the sequence can be decimated into
r-point sequences. For each r-point sequence, r-point DFT can be computed. From the results of r-point DFT,
the r’-point DFTs are computed. From the results of r’-point DFTs, the r'-point DFTs are computed and so on,
until we get r” point DFT. This FFT algorithm is called radix-r FFT. In computing N-point DFT by this method
the number of stages of computation will be m times.

Radix-2 FFT

For radix-2 FFT, the value of N should be such that, N = 2, so that the N-point sequence is decimated
into 2-point sequences and the 2-point DFT for each decimated sequence is computed. From the results of
2-point DFTs, the 4-point DFTs can be computed. From the results of 4-point DFTS, the 8-point DFTs can be
computed and so on, until we get N-point DFT.

COMPARISON BETWEEN DFT AND FFT

Direct Computation Radix-2 FFT
Number of
umim:o Complex Complex Complex Complex
o | additions | Multplications additions Multiplications
N(N-1) N2 Nlog,N (N/2)log,N
4 , 4
4(=2) 12 16 4" log2=4"2=8 5 X logy2'=2x2=4
8 , 8
8(=2Y) 56 o4 8 “log,2’=8 “3=24 g Xhg2 =oxi=ia
16 s 16
16(=2") 240 256 16"log,2'=16"4=64 | = X logy2'=—-X4=32
32 32
32(=29 92 1,024 32 log2'=32"5=160 | = X log,2° =5 x5=80
64 64
64(=29) 4032 409 64 “log2'=64"6=384 | = X logzZ"=7><6=l92
128 128
128(=2)) | 16256 16384 128 “log,2'=128 ~ 7=896 | — X log327=7x7=448
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Phase or Twiddle Factor

By the definition of DFT, the N-point DFT is given by,

N-1 - 2mnk
X(k) = zx(n)e N :fork=0,1,2,..N-1

n=0
To simplify the notation it is desirable to define the complex valued phase factor W (also called as
twiddle factor) which is an N* root of unity as,
:E:
Wy =eN
Here, W represents a complex number 1D -2p. Hence the phase or argument of W is ~2p. Therefore,
when a number is multiplied by W, only its phase changes by —~2p but magnitude remains same.

744

“W=e

The phase value -2p of W can be multiplied by any integer and it is represented as prefix
in W. For example multiplying ~2p by k can be represented as W*.

=2nxk
Jo @ = W

The phase value ~2p of W can be divided by any integer and it is represented as suffix in W.
For example dividing -2p by N can be represented as W,..

-2x +N REx=
ne = = Wy
!ank ok
e V= (e PN = w

Using equation (5.25) the equation (5.24) can be written as,

The equation (5.26) is the definition of N-point DFT using phase factor, and this equation is popularly
used in FFT.
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8-Point DFT Using Radix-2 DIT FFT

The input sequence is 8-point sequence. Therefore, N =8 =2*=r Here,r=2andm=3.

Therefore, the computation of 8-point DFT using radix-2 FFT, involves three stages of computation.
The given 8-point sequence is decimated to 2-point sequences. For each 2-point sequence, the 2-point DFT
is computed. From the results of 2-point DFT, the 4-point
DFT can be computed. From the results of 4-point DFT,
the 8-point DFT can be computed.

Let the given sequence be x(0), x(1), x(2), x(3),
x(4),x(5), x(6), x(7), which consists of 8 samples. The
8-samples should be decimated into sequences of
2-samples. Before decimation they are arranged in bit

reversed order, as shown in table 5.3.

The x(n) in bit reversed order is decimated into 4
numbers of 2-point sequences as shown below.

Sequence-1: {x(0),x(4)}
Sequence-2: {x(2),x(6)}
Sequence-3: {x(1),x(5)}
Sequence-4: {x(3),x(7)}

Normal order Bit reversed order
x(0) x(000) x(0) x(000)
x(1) x(001) x(4) x(100)
X2) x(010) X2) x(010)
x(3) x(011) X(6) x(110)
x(4) x(100) x(1) x(001)
X(5) x(101) X(5) x(101)
x(6) x(110) x(3) x(011)
X(7) x(111) xX(7) x(111)

Using the decimated sequences as input the 8-point DFT is computed.The fig

stages of computation of an 8-point DFT.

v

Combine
4-point

DFTsto

get 8-point
DFT

= X(0)
—>X(1)
—> X(2)
— X(3)
> X(4)

—>X(5)

—> X(6)

— X(7)

o) —* Compute
x(4) —»| 2-point DFT »| Combine
2-point DFTs
lo
R get 4-point
x2) Compute DFT
x(6) —) 2-point DFT R
| >
1h— Compute S
2-point DFT N ombine
3(0) —» ?| 2-point DFTs
to
.| getd-point
= Compute DFT
X(7) —| 2-POiNtDFT
Fig

Three stages of computations in 8-point DFT.
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Flow Graph for 8-Point DFT using Radix-2 DIT FFT

If we observe the basic computation performed at every stage of radix-2 DIT FFT in previous section,
we can arrive at the following conclusion.

1. In each computation two complex numbers "a" and "b" are considered.
2. The complex number "b" is multiplied by a phase factor "W¥" .
3. The product "bWx" is added to complex number "a" to form new complex number "A".

4. The product "bWY" is subtracted from complex number "a" to form new complex number "B".

k
a A=a+bWy

The signal flow graph is also called butterfly diagram since it W) !
resembles a butterfly. In radix-2 FFT, N/2 butterflies per stage are ° -
required to represent the computational process. The butterﬂy e
diagram used to compute the 8-point DFT via radix-2 DIT FFT can be F
arrived as shown below, using the computations shown in previous
section.

k
B=a-bWy

Basic butterfly or flow graph
of DIT radix-2 FFT.

Flow Graph For 8-point DFT using Radix-2 DIF FFT

If we observe the basic computation performed at every stage of radix-2 DIF FFT in previous section,
we can arrive at the following conclusion.

l. Ineach computation two complex numbers "a" and "b" are considered.
2. The sum of the two complex numbers is computed which forms a new complex number "A".

3. Then subtract complex number "b" from "a" to get the term "a-b". The difference term "a-b" is

multiplied with the phase factor or twiddle factor " W: " to form a new complex number "B".

1 a+b
a A=a+b

1 k
b N B=(a h:\-’«'k
- -1 a-b - N

Fig  :Basic butterfly or flow graph
of DIF radix-2 FFT.

The signal flow graph is also called butterfly diagram since it resembles a butterfly. In radix-2 FFT,
N/2 butterflies per stage are required to represent the computational process. The butterfly diagram used to
compute the 8-point DFT via radix-2 DIF FFT can be arrived as shown below, using the computations shown

in previous section.
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Comparison of DIT and DIF Radix-2 FFT
Differences in DIT and DIF

o InDIT the time domain sequence is decimated, whereas in DIF the frequency domain sequence
is decimated.

o  In DIT the input should be in bit-reversed order and the output will be in normal order.
For DIF the reverse is true, i.¢., input is normal order, while output is bit reversed.

o  Considering the butterfly diagram, in DIT the complex multiplication takes place before the
add-subtract operation, whereas in DIF the complex multiplication takes place after the add-
subtract operation.

Similarities in DIT and DIF

o Forboth the algorithms the value of N should be such that, N = 2", and there will be m stages
of butterfly computations, with N/2 butterfly per stage.

o Bothalgorithms involve same number of operations. The total number of complex additions
are Nlog, N and total number of complex multiplications are (N/2) log N.

o Bothalgorithms require bit reversal at some place during computation.

Computation of Inverse DFT Using FFT
Let, x(n) and X(k) be N-point DFT pair.
Now by the definition of inverse DFT,

= j2%nk
x(n) =% NZI X(k)e}:‘_ :forni= 0;1, 2w N=1
k=0
N-1 —p2mnk \* N-1 5 N-1 .
A3 -2 -5 ]

In equation the expression inside the bracket is similar to that of DFT computation of a
sequence, with following differences.

1. The summation index is k instead of n.
2. The input sequence is X(k) instead of x(n).
3. The phase factors are conjugate of the phase factor used for DFT.

Hence, in order to compute inverse DFT of X(k), the FFT algorithm can be used by taking the conjugate of
phase factors. Also from equation it is observed that the output of FFT computation should be divided
by N to get x(n).

The following procedure can be followed to compute inverse DFT using FFT algorithm.

1. Take N-point frequency domain sequence X(k) as input sequence.
2. Compute FFT by using conjugate of phase factors.
3. Divide the output sequence obtained in FFT computation by N, to get the sequence x(n).

Thus a single FFT algorithm can be used for evaluation of both DFT and inverse DFT.

63



An 8-point sequence is given hy x(n) = {2, 1, 2, 1, 1, 2, 1, 2). Compute 8-paint DFT of x(n) hy
a) radix-2 DIT-FFT and b) radix-2 DIF-FFT. Also sketch the magnitude and phase spectrum.

Solution
a) 8-point DFT by Radix-2 DIT-FFT

The given sequence is first arranged in the bit reversed order.

The sequence x(n) The sequence x(n) in 1
in normal order bit reversed order | (072 2+1% 3
x(0) =2 x(0)=2 )= 1 XH. |
x(M=1 x(4)=1 x(2)=2 K 241z 3

x(2)=2 x(2)=2 1 g
x(3)=1 X(6)=1 )1 e

1
x(4) =1 X(1)=1 Hf)e1 e
x(5)=2 x(5)=2 x(5)=2 . 1-2=-1
x(6) =1 x(3)=1 x(3) =1 1422 3

x(7)=2 x(7)=2 1

X(7)=2 qu

The 8-point DFT by radix-2 FFT involve 3 stages of computation with -1
4-butterfly computations in each stage. The sequence rearranged in the bit Fig I : Butterfly diagram for
reversed order forms the input to the first stage. For other stages of computation fiyst stage of radix-2 DIT FFT.
the output of previous stage will be the input for current stage. ' '

First stage computation

The input sequence of first stage computation = {2, 1,2,1,1,2, 1,2} | The phase factor involved in first

. - u
The butterfly computations of first stage are shown in fig 1. stage of computation is W, .

Since, W, =1,itis not considered
for computation.
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Second stage computation

The input sequence to second stage computation = {3, 1, 3, 1, 3, -1, 3, -1}

The phase factors involved in second stage computation are W, and W, .

The butterfly computations of second stage are shown in fig 2.

3-320
A1) 14
The output sequence of Secf’"d = (6,1, 0, 14, 6, ~14j,0,-1-j) Fig 2 : Butterfly diqgram for
stage of computation second stage of radix-2 DIT FFT.
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Third stage computation

The input sequence to third stage computation = {6, 1 j, 0, 1+j, 6,

14,0, 1)
The phase factors involved in third stage computation are W, W,, W; and W;.

The butterfly computations of third stage are shown in fig 3.

i 0
~j2x x s 0

1

1
axxd  -jx X os(—n) "( n] il
W, =e 8 ¢ 4 =cosl—| + jsinl — |= -
’ T Bt W L
2 2 =
T O, s TR s[;’i)+-s-,.(;’£)=_-
s =e e cos{ - jsin — i

3 Iz
“j2m x = “fx = -3r = -3r 1 1
Wl!=¢e 8= 4 =C0$(—)+ si|{_)=_ i
o 4 ) 4 32 '32

6 o—a \ /.s‘s =12 = X(0)
| @ity - D*(-t«o[ﬁ-—iﬁ-]-l—rﬁnf;ﬂv’;vf—-w{—v 22] 1+0.414 = X(1)

040 x(—) =0 = X(2)

D l=t 1 L+ _1_-;-1‘{1 _2-]-1“ A14 = X(3
R B i & o b ’

6-6=0=X(4)
(1-1)—(—1+|)[7£--17‘2-]=1-1—(- ‘24 ;q "2¢ "2]=1-{u 22]=1-,2.414=x(5)
0-0x(—j) =0 =X(6)

1 .1 -
_——= .
\"2 \"2/ \ [ ) ' ( 1 . ) ( J 4
(1+)—(1-})) -j—= 1+j- _+] +-———— =1-j0.414 = X(7)
vz 2 v2 J— 2 2

Fig 3 : Butterfly diagram for third stage of radix-2 DIT FFT of X(k) .

The output sequence of third
=012, 140414, 0, 14]2.414,0, 1-j2414, 0, 1-j0.414)
stage of computation
The output sequence of third stage of computation is the 8-point DFT of the given sequence in normal

order,

& DFT (x(n) =X(k) = {12, 1+]0.414, 0, 1+j2414,0, 1-j2414, 0, 1-j0.414)
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b) 8-point DFT by Radix-2 DIF-FFT

For 8-point DFT by radix-2 FFT we require 3-stages of computation with 4-butterfly computation in each
stage. The given sequence is the input to first stage. For other stages of computations, the output of previous stage
will be the input for current stage.

First stage computation

The input sequence for first stage of computation = {(2,1,2,1,1,2,1, 2}
The phase factors involved in first stage computation are Wy, Wy, W and W,

The butterfly computations of first stage are shown in fig 4.
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The output sequence of first

3.8 s W e
stage of computation = 33331, ‘7;*17;: ) 77"*]7;
Second stage computation

The input sequence for second g . " ;
stage of computation ={3' 3,331, ‘_ﬁ*’iﬁ' =i 'ﬁ*i“ﬁ}

The phase factors involved in second stage computation are W) and W, .
The butterfly computations of second stage are shown in fig 5.

1

3+3:6

1
]
\/

i 0 1 1

“j2x x = 3 - e 31+3=6
w, = Rt L 3./_1/\ =)

ot
. 3 . (3-3)(4)=0

1 1
1 o 014+ (-)=1~j

QAL N Al
o 1—()=1+]

AT R

V2
Fig 5 : Butterfly diagram for second stage of radix-2 DIF FFT.

The output sequence of second 2 .
fhic . =16,6,0,0,1-j, j—7=, 1+, j—=
ge of computation JZ \5
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Third stage computation
The input sequence to third

p - . o &
stage of computation _16' 6 9,0 1=p 2’ 1+) '3[

The butterfly computations of third stage are shown in fig 6.

6 ] 6+6=12=X(0)
X

6 —e6-6=0=X(4)
1

0 0+0=0=X(2)
X
0 0-0=0=X(6)

)

The phase factor involved in third
stage of computation is Wj .

Since, Wy =1, it is not
considered for computation.

1-) . (1-—])&]722-=1¢10“4=X(1)
1
LXU-»—n—z—ﬂ—;zm = X(5)

I\fz— -11 z

1+ (h;)n-j?cn,uuaxw)
1

2 (14 )2 = 110414 = X(7)

- = 2

Fig 6 : Butterfly diagram for lh;rd stage of radix-2 DIF FFT.

The output sequence of third stage of computation={12, 0, 0, 0, 1+j0.414, 1-j2.414,1+j2.414,1-j0.414}

The output sequence of third stage of computation is the 8-point DFT of the given sequence in bit
reversed order.

In DIF-FFT algorithm the input to first stage is in normal order and the output of third stage will be in the
bit reversed order. Hence the actual result is obtained by arranging the output sequence of third stage in normal

order as shown below.

The sequence X(k) The sequence X(k)
in bit reversed order in normal order
X(0)=12 X(0)=12
X(4)=0 X(1)=1+j0.414
X(2)=0 X(2)=0
X(6) =0 X(3)=1+j2.414
X(1)=1+j0.414 X(4)=0
X(5) = 1-j2.414 X(5)=1-j2.414
X(3)=1+j2.414 X(6)=0
X(7) = 1-j0.414 X(7) = 1-j0.414

\ DFT{x(n)} = X(k) = {12, 1+j0.414, 0, 1+j2.414, 0, 1-j2.414, 0, 1-j0.414)
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Magnitude and phase specturm

Each element of the sequence X(k) is a complex number and they are expressed in rectangular coordinates.
If they are converted to polar coordinates then the magnitude and phase of each element can be obtained.

INole : The rectangular to polar conversion can be obtained by using R ® P conversion in calculator. l

X(k) = {12, 1+j0.414, 0, 1+j2414, 0, 1-j2.414, 0, 1-j0.414}
= {12£0°, 1.08.222°, 0£0°, 2.61£67°, 0£0°, 2.61£-67°, 020°, 1.08 £-22°}

1220, 1.08422°x—x-, 0£0, 161£67°X-L-, 0Z£0,
180° 180°

2.612-67°x——, 0D, 1.08 £-22°x
180°

180°

{1220, 1.08.0.12%, 020, 2.6120.37x, 0£0, 2.61Z- 037%, 020, 1.08 Z- 0.12x}
“IX() = {12, 1.08, 0, 2.61,0, 2.61, 0, 1.08}

2Xk) ={0, 0.12%, 0, 0.37%, 0, -0.37x, 0, -0.12x}

"

The magnitude specturm is the plot of the magnitude of each sample of X(k) as a function of k as shown
in fig 7. The phase spectrum is the plot of phase of X(k) as a function of k as shown in fig 8.

When N-point DFT is performed on a sequence x(n) then the DFT sequence X(k) will have a periodicity of

N. Hence in this example the magnitude and phase specturm will have a periodicity of 8 as shown in fig 7 and
fig 8.

|X(k)|“ ZX(k)a

12 12

o 0.37x 0.37x
N=8 0251 o1lzx 0.12x
M1 2 3 4 56 J7 8 9 10 1
0.5x4 -0.12x
261 261 261
j o I I O o
0 1 2 3 4 5 6 7 8 9 10 1 k

Fig 7 : Magnitude spectrum. Fig 8: Phase spectrum.
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To determine inverse DFT of Y(k)

The 8-pointinverse DFT of Y(k) can be computed using radix-2 DIT FFT by taking conjugate of the phase
factors and then dividing the output sequence of FFT by 8.

The 8-point inverse DFT of Y(k) using radix-2 DIT FFT involves three stages of computations with
4-butterflies in each stage. The sequence Y(k) is arranged in bit reversed order as shown in the following table.

The sequence arranged in bit reversed order forms the input sequence to first stage computation.

Y(k) Y(k)
Normal order Bit reversed order
Y =0 e =
Y(1) =-2+j4.828 Y(4) =16
Y(2) =0 Y2) = 0
Y(3) =-2+j0.828 Y(6) = 0
Y4) =16 Y(1) = -2+4.828
Y(5) =-2-j0.828 Y(5) = -2-j0.828
Y6) =0 _ Y(3) = -2+j0.828
Y(7) =-2-j4.828 Y(7) = -2-j4.828
First stage computation

0, 16, 0, 0, —-2+j4.828, —-2+j0.828, }

Input n f first st =
put sequence of first stage {-2+i0.828, 2-j4.828

The butterfly computations of first stage are shown in fig 7.

1 The phase factor involved in first
Y(0)=0 0+16=16 o n TS
1 stage of computation is (Wz) .
=
Y(4) = 16 0-16=-16 ) s
() _11 S"‘ce’ (w:) =€ 4=e°=l'
Y(2)=0 0+0=0 - :
@ X it is not considered for
1 -
computation.
Y(6)20 #&—p—D0-020 i
1
Y(1) =-2+)4.828 (<2 +)4.828) +(-2~]0.828) = -4 + 4
1
V(8) -2+ 0828 WL (244826 -(-2-0828) =]5 656
1
Y(3)=-2-j0.828 (~2+0828) +(-2-j4.828) = 4 - |4
1
Y(3)=-2-j4.828 1 (~2+]0.828) - (-2 ~j4.828) = |5 656

Fig 7: Butterfly diagram for first stage of inverse DFT of Y (k).

Output sequence of first stage = {16, -16, 0, 0, -4+ 4, j5.656, -4-j4, j5.656)
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Second stage computation

Input sequence of second stage = {16, -16, 0, 0, —4+j4, j5.656, —4—j4, j5.656 |

The butterfly computation of second stage is shown in fig 8.

The phase factors involved are (W?)" and (W))".

16+0=16

~16 + (0)(+) =16

16 -0=16

0
LA \
16 - (0)(+)) = ~16
4454
1
; \/

15.656

4-j4

5.656

Fig 8: Butterfly diagram for second stage of inverse DFT of Y(k)

(4 +4)+(—4—ja)=-8
§5.656 + 5.656(j) = —5.656 + 5.656
(4+4)—(-4-j4)=j8

§5.656 — j5.656 (j) = 5.656 + |5.656

Output sequence of second X
={16,-16, 16,-16, -8, —5.656 +j5 .656, j8, 5.656 +j5.656 }

stage computation

Third stage computation

Input sequence of third

stage computation

The butterfly computation of third stage is shown in fig 9.
The phase factors involved are (Wy)", (W;)", (W) and (W;)".

72

} ={16,-16, 16,~16, -8, —5.656 +5.656, 8, 5.656 +j5.656 }




[4)
W) =e  8=1

1 x
j2r x — jx = T T 1 1
W) =e =g 4 =cos(—]+'sir(—)=—+'—=0.707+'0.707
8 2 J a > lf—z J
(W2)°—ei2‘x§—eix§—cos(£ +'sir{£)—'
8) = = = 2 J > =)
1

3
W 1o 38
wy) =e 8=e 4 =cos(¥)+isir{¥)=—7; + j7';=—0.707+j0.707

16 o 16 + (-8) = 8 = 8y(0)

-16 ~16 +(~5.656 + 5.656)(0.707 +0.707) = —24 = 8y(1)
16 0—d :\ 16 + j8(j) = 16 —8 = 8y(2)

~16 +(5.656 + j5.656) x(~0.707 +j0.707) = —24 = 8y(3)

16 — (-8) = 24 = By(4)

0.707

+j0.707

-5.656 + j5.656 o ~16 —(~5.656 +5.656)(0.707 +j0.707) = -8 = 8 y(5)

8 16 —j8(j) = 16 + 8 = 24 = 8y(6)

-0.707

+j0.707
5.656 + |5.656 © o % —16 —(5.656 + j5.656) x(~0.707 + j0.707) = -8 = 8y(7)

Fig 9 : Butterfly diagram for third stage of inverse DFT of Y(k).

Output sequence of third stage computation ={8, -24, 8, -24, 24, -8, 24, -8}
The sequence y(n) is obtained by dividing each sample of output sequence of third stage by 8.

\ The response of the LTl system, y(n) = {1, -3, 1, -3, 3, -1, 3, -1}

LINEAR CONVOLUTION
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Linear convolution is a very powertul technique used for the analysis of LTI systems
In the last subsection we have seen that how the sequence x(n) can be expressed as sum of
weightéd impulses. It is given by equation

on

x(n) = Z x (k) 8(n-k)

= -0

If x(n) is applied as an input to the discrete time system, then response y(n) of the
system is given as,

ym) = Tlx()

Pu?ﬁng for x(n) in above equation from equation (4.3.7),

y(n) = T{ i x(k)8(n-k)}

k=-n

e written on the basis of scaling property. It states thyy ¢

The above equation W€ hav - ’
] for a= constant. The above equation can be written j,

y(n) =T[ax(n) then y(n) =aT[x(n) ra=
compact form with the help of 'Y sign. ie,

on

g = Y x (k) T [30n=K)]

k=-m

The response of the system to unit sample sequence (1) is given as,

T[30)] = 1)
Here h(n) is called unit sample response or impulse response of the system. If the
discrete time system is shift invariant, then above equation can be written as,

T[8(1-k)] = h(n-k)

Here 'k'is some shift in samples. The above equation indicates that; if the excitation of
the shift invariant system is delayed, then its response- is also delayed by the same

amount. Putting for T[3(1-k)]=h(n=k) in equation we get,
ym = ), x(k) h(n-k)
k==-o
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This equation gives the response of linear shift invariant (LTI) system or LTI system to
an input x(1). The behaviour of the LTI system is completely characterized by the unt
sample response /(1) The above equation is basically linear convolution of x (i) and 1)

This linear convolution gives y(r). Thus,

Comvolution st : y(n) = x () *h )

0

yi= Y x®h{-K)

k==

Convolve the following two sequences x (n) and h (n) to get y(n) % m={,1, 1, 1}
W =1{2, 2}

Solution : Here upward arrow (T) is not shown in x(i) as well as /() means, the first

sample in the sequence is 0" sample. Thus the sample values are :

x(k=0) = 1
x(k=1) = 1
x(k=2 =1
x(k=3) = 1
and hk=0 = 2
hk=1 = 2

The convolution of x(1) and h(n) is given by equation

o

ya) = 2, x(kyh(i=k)

k==uw
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(a). Sequence x(k)
x(k)

11 1 1 .
M N5 .
-1 Io 1 2 3
(b). Sequence h(k)
h(k) =
. |
‘o 1
(c). Folded h—k) 3
sequence
h(~k)

(e). h(-k) shifted

h(1-k) U"-;,')

to right by
one sample 28
——r T o—o >k
lo 1 2°3
(g). h(=k) shifted h(2-k)
to right by
two samples 2 2
S £ &
Io 1 2 3
(i). h(=k) shifted
to right by h(3-k)
three samples ?
2 2
-1 |01 2 3
(k). h(=k) shifted  h(4-k)
to right by 1;
four samples 2 2
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(d). Ex(k) h(~k)
= 0+2+0+0+0
=2

x(k) h(=k)

1x2=2
5
1x0=0

2

Ofgéo

© -k
-1 |o 1

wd

(f). Tx(k) h(1-k)
= 0+2+2+0+0
=4

x(k) h(1-k)

2].2

lo

x(K) h(2-k)

1x2=2

1x0=0
—O
1 2

[}

|
-
wo

(h). =x(k) h(2-k)
= 0+2+2+0
=4

- f— N
qu

wo

To

(). Ex(k)“h(:i-k)

2
-
3

). .‘Zx(k)zh(4-k)

x(k) h(3-k)
4

1

-1 [0 1 2

h(k) h(4-k)
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CIRCULAR CONVOLUTION
CONCENTRIC CIRCLE METHOD

Given two sequences z1(n) and z2(n), the circular convolution of these two sc-

quences z3(n) = z1(n) @ x2(n) can be found by using the following steps.

1. Graph N samples of z;(n) as equally spaced points around an outer circle in
counterclockwise direction. '

© 2. Start at the same point as z1(n) graph N samples of z2(n) as equally spaced
points around an inner circle in clockwise direction.

3. Multiply corresponding samples on the two circles and sum the products to
produce output.

4. Rotate the inner circle one sample at a time in counterclockwise direction and-
g0 to step 3 to obtain the next value of output.

5. Repeat step No.4 until the inner circle first sample lines up with the first sample
of the exterior circle once again. Y

MATRIX MULTIPLICATION METHOD

In this method, the circular convolution of two sequences x

- - n
~ obtained by representing the sequences in matrix form as shol( ) and z3(n) can be

wnbcl_ow
[ 22(0)  maN-1) 2(N-2) ... z(2 T oz 1 r :
o) ) VD oy o mapet .
22(2)  22(1)  22(0) .. za(d)  gy(3) 1(2) 25(2)
.‘rz(f\}—Q) 332(}”}"‘3) 372(1’\‘}"4) .(0 & :- i
V=Y oD =y Lom) he ) 2] [20-2)

d via circular shift of samples and represented in

The sequence z2(n) is repeate .
: 2 o umn matrix. The

N x N matrix form. The sequence z1(n) is represented as col
multiplication of these two matrices gives the sequences I3 (n).

Find the circular convolution of two finite duration sequence xi(n) = {1,-1,-2,3,-1}, x2(n) =
{1,2,3}
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Solution To find circular convolution, both sequences must be of same length. There-

fore we append two zeros to the sequence zz(n) and use concentric circle method to
find circular convolution.

We have -1 x,(1)

z1(n) = {1,-1,-2,3, -1} HE
$2(n) = {11_2: 3:010}

Graph all the points of z;(n) on the
outer circle in the counterclockwise di- 20)] x1(0)
rection. Starting at same pointas z;(n)
graph all points of z3(n) on the inner x,(3)
circle in clockwise direction. 8 _
Multiply corresponding samples on the -1 xy(4)
circle and add to obtain

y(0) = 1(1) +0(=1) +0(—2) +3(3) + 2(-1)
e

Rotate the inner circle in counterclockwise direction by one sample, multiply the
corresponding samples to obtain y (1).

-1 -1

-] 5]

y(1) = 1(22) + (=114 (=2)0+3(0) +3(-1);  y(2) =3(1) +2(-1) + 1(-2) + 0(3) + —1(0)
L= =-1

Obtain remaining samples by repeating above procedure until the inner circle first
sample lines up with the first sample of the exterior circle.
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-1 ‘
_1)+2(-2)+103)+ (DO ¥(4) =0(1) +0(=1) +3(~2) +3(2) +1(-1)

y(3) = (0)1 + 3(

4

y(n) = {8,-2,-1,—4,~1}
Matrix Method
Given

z1(n) = {1,-1,-2,3, -1}
.’L‘2(n) - {1’ 2a 37 }

By adding two zeros to the sequence z2(n), we bring the length of the sequence
zo(n)to 5. : =
" Now i
z2(n) = {1,2,3,0,0}

The matrix form can be written by substituting N = 5 in Eq. (3.55).

z2(0) z2(4) 22(3) x2(2) =z2(1)] [z1(0)] [y(0) E
2a(1) z2(0) z2(4) 22(3) =2(2)| :(1)| |y(1)
z2(2) z2(1) z2(0) 22(4) =2(3)| |z1(2)| = y(2) e
z2(3) z2(2) z2(1) z2(0) x2(4)| [z1(3) y(3)

z2(4) 2(3) z2(2) 22(1) z2(0)] [z1(4) y(4)]

Represent the sequence z2(n) in N X N matrix form and z,(n) in column matrix
form and multiply to get y(n). ,

.’122(17,) 1(n
100327 T 1( ') "y(Sn)‘
2100 3 =1 la 9 |
3 21 0, 0 ) | o= =1
03 210 3 -4
008 2 1 A \\_ - | =

y_(n) ={8,-2,-1,-4,-1}
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QUESTIONS

Give the comparison of DFT & FFT

Find the IDFT of a sequence Y(k) ={1, 0, 1, 0}

Compare DIT & DIF

Define convolution

For 128 point DFT how many complex multiplications are required

Draw the butterfly diagram for four point radix 2 DIT FFT

Determine the 8 point DFT of a sequence

x(n)={1,1,1,1,1,1,0, 0}

. Find IDFT of a sequence X(K) = {5, 0, 1-}, 0, 1, 0, 1+j, 0}

0. Find the DFT of a sequence x(n) = {1, 2, 3, 4, 4, , 2, 1} using DIT algorithm

1. Find the IDFT of a sequence X(K) = {10, -2+j2, -2, -2-j2} using DIT & Find the DFT of
a sequence x(n) ={1, 0, 0, 1} using DIF algorithm

12. Find the linear convolution of the given sequences

13.x(n) ={1, 1, 1, 1}, h(n) = {2, 2}

14. Find the discrete convolution of two finite duration sequences x(n) = {1, 2, -1, 1}, h(n) =
{1,0,1, 1}.
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FIR FILTER DESIGNING

DIGITAL FILTERS

In signal processing, a digital filter is a system that performs mathematical operations on a
sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in
contrast to the other major type of electronic filter, the analog filter, which is an electronic circuit
operating on continuous-time analog signals.

A digital filter system usually consists of an analog-to-digital converter to sample the input
signal, followed by a microprocessor and some peripheral components such as memory to store
data and filter coefficients etc. Finally a digital-to-analog converter to complete the output stage.
Program Instructions (software) running on the microprocessor implement the digital filter by
performing the necessary mathematical operations on the numbers received from the ADC. In
some high performance applications, an FPGA or ASIC is used instead of a general purpose
microprocessor, or a specialized DSP with specific paralleled architecture for expediting
operations such as filtering.

Digital filters may be more expensive than an equivalent analog filter due to their increased
complexity, but they make practical many designs that are impractical or impossible as analog
filters. When used in the context of real-time analog systems, digital filters sometimes have
problematic latency (the difference in time between the input and the response) due to the
associated analog-to-digital and digital-to-analog conversions and anti-aliasing filters, or due to
other delays in their implementation.

A digital filter is characterized by its transfer function, or equivalently, its difference equation.
Mathematical analysis of the transfer function can describe how it will respond to any input. As
such, designing a filter consists of developing specifications appropriate to the problem (for
example, a second-order low pass filter with a specific cut-off frequency), and then producing a
transfer function which meets the specifications.

The transfer function for a linear, time-invariant, digital filter can be expressed as a transfer
function in the Z-domain; if it is causal, then it has the form:

B(z) b+ bz bzt 4 p by

H(z)=——+=
(2) Alz) 1+azt+az2+ - +ayzM

where the order of the filter is the greater of N or M. See Z-transform's LCCD equation for
further discussion of this transfer function.

This is the form for a recursive filter with both the inputs (Numerator) and outputs
(Denominator), which typically leads to an IIR infinite impulse response behaviour, but if the
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denominator is made equal to unity i.e. no feedback, then this becomes an FIR or finite impulse
response filter.

ANALYSIS TECHNIQUES

A variety of mathematical techniques may be employed to analyze the behaviour of a given
digital filter. Many of these analysis techniques may also be employed in designs, and often form
the basis of a filter specification.

Typically, one characterizes filters by calculating how they will respond to a simple input such as
an impulse. One can then extend this information to compute the filter's response to more
complex signals.

IMPULSE RESPONSE

The impulse response, often denoted h[k]or hk, is a measurement of how a filter will respond to
the Kronecker delta function. For example, given a difference equation, one would set ¥o = 1
and T = Dor k # I]and evaluate. The impulse response is a characterization of the filter's
behaviour. Digital filters are typically considered in two categories: infinite impulse response
(IIR) and finite impulse response (FIR). In the case of linear time-invariant FIR filters, the
impulse response is exactly equal to the sequence of filter coefficients:

Jﬁkr
Un = Z thn—k
k=0

IIR filters on the other hand are recursive, with the output depending on both current and
previous inputs as well as previous outputs. The general form of an IIR filter is thus:

M N
Z UmlYn—m = Z DT
k=0

m=0

Plotting the impulse response will reveal how a filter will respond to a sudden, momentary
disturbance.

DIFFERENCE EQUATION

In discrete-time systems, the digital filter is often implemented by converting the transfer
function to a linear constant-coefficient difference equation (LCCD) via the Z-transform. The
discrete frequency-domain transfer function is written as the ratio of two polynomials. For
example:

(z+1)°

SR e
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This is expanded:

224+ 2241
H[:Z): 32+4lz_§

and to make the corresponding filter causal, the numerator and denominator are divided by the
highest order of z

14+2z1+272  Y(2)
H(z) = 1+ 1—3—1 — %z—g — X(2)

The coefficients of the denominator, @k are the 'feed-backward' coefficients and the coefficients

of the numerator are the 'feed-forward' coefficients, Dr.. The resultant linear difference equation
is:

yn| = — Eaky[n — k] + Ebkx[n — k]

or, for the example above:

Y(z) 1+ 2271 4 2

X(z) 143z1—%222

rearranging terms:

1 3
= (1+ Ez_l — gz_g}lf(z} =(1+22"4+29)X(2)
then by taking the inverse z-transform:
1 3
= yln] + 7yl — 1] = gyln — 2] = z[n] + 22[n — 1] + z{n - 2]

and finally, by solving for y[n].

vlin] = = Juin — 1] + Syl — 2 + afn] + 22l — 1] + 2l — 2

This equation shows how to compute the next output sample, y[n], in terms of the past outputs,
y[” - P], the present input, I[”] and the past inputs, I[” - P]. Applying the filter to an input
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in this form is equivalent to a Direct Form | or Il realization, depending on the exact order of
evaluation.

DESIGN OF DIGITAL FILTER FROM ANALOG FILTER

The most common technique used for designing IIR digital filters known as indirect
method, involves first designing an analog prototype filter and then transforming the
prototype to a digital filter. For the given specifications of a digital filter, the deriva-
tion of the digital filter transfer function requires three steps.

L

Map the desired digital filter specifications into those for an equivalent analog

filter.

Derive the analog transfer function for the analog prototype.

ital filter transfer function.

COMPARISON

. Transform the transfer function of the analog prototype into an equivélent dig-

Analog Filter

Digital Filter

Analog filter processes analog in-
puts and generates analog outputs.
Analog filters are constructed from
active or passive electronic compo-
nents. s
Analog filter is described by a dif-
ferential equation.

The frequency response of an ana-
log filter can be modified by chang-
ing the components.

A digital filter processes and gener-
ates digital data.

A digital filter consists of elements
like adder, multiplier and delay
unit.

Digital filter is described by a dif-
ference equation.

The frequency response can be
changed by changing the - filter
coefficients.
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MERITS AND DEMERITS OF DIGITAL FILTER
Advantages

1. Unlike analog filter, the digital filter performance is not influenced by compo-
" nent ageing, temperature and power supply variations.

2. A digital'ﬁ]tcr is highly immune to noise and possesses cor:siderable parameter
stability. '

3. Digital filters afford a wide variety of shapes for the amplitude and phase re-
sponses. '

4. There are no problems of input or output impedance matching with digital
filters. '

5. Digital filters can be operated over a wide range of frequencies.

6. The coefficients of digital filter can be programmed and altered any time to
obtain the desired characteristics.

7. Multiple filtering is possible only in'digital filter.
Disadvantage

1. The quantization error arises due to finite word length in the representation of
signals and parameters.

ANALOG LOW PASS BUTTERWORTH FILTER
The magnitude function of the Butterworth lowpass filter is given by
|H(59)| = Y N =12,3,..
[1+ (@/2:)*"]

where N is the order of the filter and ), is the cutoff frequency. As shown in Fig. 5.5
~ the function is monotonically decreasing, where the maximum response is unity at
2 = 0. The ideal response is shown by the dash line. It can be seen that the magnitude
response approaches the’ideal lowpass characteristics as the order IV increases. For
values 2 < Q¢; |[H(j92)| ~ 1, for values 2 > €, the value of |H(j§2)| decreases

rapidly. At 2 = Q, the curves pass through 0.707, which corresponds to - 3dB
point.
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= - -

[H( )l
08

707

06 |

Magnitude

02

s 2 25 3 3.5

1
Q. frequency in radians/sec Q

LIST OF BUTTERWORTH POLYNOMIALS

N Denominator of H (s)

1 s+1 |

2 $2+v2s+1

3 (s+1)(s?2+s+1)

4 (s +0.76537s +1)(s® + 1.8477s + 1)

5 (s +1)(s? + 0.61803s + 1)(s? + 1.61803s + 1)

6 |  (s2+1.9318555+1)(s? + v2s + 1)(s? + 0.51764s + 1)

7 | (s +1)(s% + 1.80194s + 1)(s* + 1.247'3 + 1)(s% + 0.445s + 1)

STEPS TO DESIGN ANALOG LOW PASS BUTTERWORTH FILTER

oW N

From the given specifications find the order of the filter N.
Round off it to the next higher integer.

_Find the transfer function H (s) for Q. = 1 rad/sec for the value of N.

Calculate the value of cutoff frequency Q..

Fmd the transfer function H,(s) for the above value of §2,. by substltutmg 5
o in H(s).

~
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ORDER FORMULA
10 Ao 1 .

"~ log 0.1 '
N> 10 Q:ftv—l
log —
Qp
log [é]
B s OB
& lo &
80,

€ = (100.10:,, . 1)0.5
A= (1004ee . )08

A 100-1es _ 1' 0.5
A e —_—
€ [100-19;: =] ]

Q
-
&

- log A
~ log(1/k)

fois s £ -
= (10098, — 1)I/2N — (1001as — 1)1/2N

Qe
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Example = 30dB; £2p = 200 rad/se

Given the specification o, = 1dB; o
2 = 600 rad/sec. Determine the order of the filter.

Ao f 100er — 1.7 05
4=¢ = lim= 1

3. 0.5 S
= [T%H] = 62.115

- = 3.758
. log3

Rounding off N to the next higher integer we get N = 4.

Example

Determine the order and the
has a3 dB atte

that
poles of lowpass Butterworth filter
nuation at 500 Hz and an attenuation of 40 dB at 1000 Hz.
Solution

Given data (o MET

AB; a, =40dB;Q,,
s =2 x7 %100

=2 X m x 500 = 10007 rad/sec-
0 = 20007 rad/sec. ' '

10 dag _ 1

Rounding ‘N’ to nearest higher value we get N = 7.
The poles of Butterworth filter are given by

Sk = Qee?% = 10007/ k=1,2,...7

71' 2k—1
where ¢y, = 5+ ( 2N)W ks 1,2, 7.
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Example Design an analog Butterworth filter that has a — 2dB passbanda'

tenuation at a frequency of 20 rad/sec and atleast — 10dB stopband attenuatlond
30rad/sec. :

Solution '
Given @ =2dB; €y = 20rad/sec
4 as = 10dB; Q, = 30rad/sec

lo —Lu'—l
N> ) 1001&,,__1

Rounding off N to the next highest i mteger we get
N=4

The normalized lowpass Butterworth filter for N = 4 c¢an be found from table

as - .
(e) = (52 +0.76537s + 1)(s2 + 1.8477s + 1)
From Eq. (5.31) we have

= = = 21.3868
Qe = (100.10,, 3% 1)1/2N o (100.2 s 1)1/8 21 3?
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— 21.3868 can be obtained by substituting " .

H(s)

The transfer function for _Qc
' d in

0 L

® 7 21.3868

1

( 21.::868 )'2 T 0'765371( 21.::868) 2

=) 1 (=5 ) +1
[21.3868] 1550 | 913868

0.20021 x 10°

= (377 16.36865 + 457.394)(s” + 3951765+ 457.394)

ie, H(s) =

ns design an analog Butterworth filter..

Exam e F ; . W
or the given s ecificatio ,
i dpesiir e, |H(G)| < 0.2 for 0.47 < Q < .

09 < |H(jQ)| < 1 for 0 < 2 < 0.27.

Solution

From the data we find 2p

e 1 -
— 0.2m Qs = 04T A5 = 0.9 and =53 = 0.2
from which we obtain |

HG)] |

1.0
0.9

————————

D2 Luowwmwim e

R B S A - S
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e = 0.484 and \ = 4.898
o ( A ] 4898
Ny —te) . 0481 _ 33

0.4
log% log[027r]
P

1.6, N =4
From the table 5 1, for N = 4, the transfer function of normalised Butterwort
filter is
H(s) = 1
(s%2 +0.76537s + 1)(s? + 1.8477s + 1)
we know 0, = L2 L = 0.24m.

(100 dap _ 1)1/2N gl/N — (0.484)1/4

H (s) for Q. = 0.247 can be obtained by substituting s — 5 ; o in H(s)ie,
H(s) = .
Ao ]2+'0.‘76537 (5] +1
0.247 0.247) =
y !
s s
(0.247r] +18477 (o) +1
0.323

(2 +0.577s + 0.057672)(s2 + 1.393s + 0.0576m2)
COKPARISON BETWEEN BUTTERWORTH FILTER AND CHEBYSHEV FILTER

1. The magnitude response of Butterworth filter decreases monotonically as the
frequency {2 increases from 0 to oo, whereas the magnitude response of the
Chebyshev ﬁlter exhibits npples in the passband or stopband according to the

type.

2. The transmon band is more in Butterworth filter when compared to Chebyshev

filter.

3. The poles of the Butterworth filter lie on a c1rcle, whereas the poles of the

Chebyshev filter lie on an ellipse.

4. For the same specifications, the number of poles in Butterworth are more when
- compared to the Chebyshev filter i.e., the order of the Chebyshev filter is less
than that of Butterworth. This is a great advantage because less number of

discrete components will be necessary to construct the filter.

92



STEPS TO DESIGN ANALOG LOW PASS CHEBYSHEV FILTER
1. From the given specifications find the order of the filter V.

2. Round off it to the next higher integer.

3. Using the following formulas find the values of a and b, which are minor and
major axis of the ellipse respectively.

[#I/N o ”-1/N]. g ul/N'+”—1/N i
2 : P 2

a=8y

where

p=el+Ve2+1
e =1/1001ep — 1
{1, = Passband frequency
= Maximum allowable attenuation in the passband

(.- For normalized Chebyshev filter Qp = 1 rad/sec)

4. Calculate the poles of Chebyshev filter which lie on an ellipse by using the
formula.

Sk =acos¢ + jbsingy k=1,2,...,N

2k -1 -
-whcre¢k=g-+[ o ]7r Besl. 200N

5. Find the denominator polynomial of_ the transfer function using the above poles',

6. The numerator of the transfer function depends on the value of N,
ute s = 0 in the denominator polynomial anqd fin

odd substit o
) Tar Y S equal to the numerator of the transfer functiop

value. This value i
(- For N odd the magnitude response |H (j$2)| starts at 1.)

d the

(b) For N even substitute s = 0 in the denominator polynomial anq dlvd
the result by v/1 + €2. This value is equal to the numerator.
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Example  Given the specifications o, = 3dB; as = 16dB; f, = 1KH; ang
fs = 2 KHz. Determine the order of the filter using Chebyshev approximation, Fiy

H(s).

Solution

From the given data we can find

Q, = 27 x 1000 Hz = 2000 7 rad/sec
Qs = 27 x 2000 Hz = 4000 7 rad/sec

and o, = 3dB; a5 = 1GdB.

Step 1:
- ~ cosh™ 1=l | 1051
i il 100-1ap — 1 & 1003 — 1
N > 0 = cosh™! 10 0 !
; cosh™! == | cosh™! i
Qp e 20007
=119] '

Step 2: Rounding N to next higher value we get N'= 2,

For N even, the oscillatory curve starts from —1—

i V14 g2

ep 3: The values of minor axis and major axis can be found as below
€ = (100.1.,03, _ 1)0.5 s (100.3 = 1)0.5 =1
p=el+1+e2=2414

7 S 1] ;

U 22

A i) e [BA1R) o 1ay-1)

2

= 20007 @ L b i
: : 2"
oA S

= 9107

B [IJ'I/N + y."I/N]
. « . 21977r
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step 4: The poles are given by

Sk = acos ¢y, tJbsingy, k=12

=gt k=12

72r 2N
h1=g+ =135

™ 3w
¢z-§+7—225°

S1=acos¢; + j bsin ¢; = —643.467 + j15547
52 = acos ¢z + j bsin ¢y = —643.467 — 715547

Step S: The denominator of H (s) = (s +.643.467r)2 + (15547)?

643.467)2 + (15547)2

Step 6: The numerator of H(s) = ( = (1414.38)272
(=) V14 g2 ( )
(1414.38)272

s2 + 1287ms + (1682)272

The transfer function H(s) =
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Example  Obtain an analog Chebyshev filter transfer function that satisfies the
constraints o <|H{HN)|<1; 0<N<2

V2

m}

|H(iQ)| <0.1; Q>4

Solution

Step 1: From the given data we can find that

dg= 1 I

= y =01,
Vi+el V2 V142

% =2and , = 4, from which we can obtain € = 1 and A = 9.95.

We know
A

cosh™ = cosh™19.95
£ = = —— =2.269
N 2 e Sl cosh™!2
il

Step 2: Rounding N to next higher value we get N = 3. For V odd, the oscillétory
Curve starts from unity as shown in Fig. .

[HGEY)|
1.0

0.707

0.1
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Step 3: Finding the values of a and b

p=el4V/1+e2=2414

1/N _ ,,—1/N s : 1/3 _ (2.414 /8]
e, B0 _, [ea19)/ - (2.419)
2 2
= 0.596 _ |
[ N [(2.414)18 4 (2.414)7173
g 2
= 2.087

Step 4: To calculate the poles of Chebyshev filter

Cm (2k-Dm
¢k—§+T k=1,2,3

b1 = 120°, ¢y = 180°, ¢ = 240°
We know s = acos ¢k + jbsingr k= 1,2, 3 from which we get

81 = acos ¢ + jbsin@; = 0.596 cos 120° + 72.087sin 120° = —0.298 +j1.807
82 = acos @2 + jbsin ¢2 = 0.596 cos 180° + 52,087 sin 180° = —0.596
8 = acos ¢3 + jbsin ¢3 = 0.596 cos 240° + j2.087 sin 240° = —0.298 — j1.807

S‘ep S: The denominator polynomial is giv'en by

| (s + o'.sge){(s +0.208) - j1.807}{(s + 0.298) + j1.807}
13 +0.596)((s + 0.298)2 + (1.807)?)
= (s +0.596)(s* + 0.596s + 3.354)
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Step 6: The numerator of H (s) can be obtained by substituting s = 0 (for N odd) in
the denominator.

Therefore the numerator of H (s) =2
i gf Chebyshev filter for the given specifications is given by

H(s) =

(s + 0.596) (s + 0.5965 + 3.354)

FIRFILTERS & ITS DESIGNING

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or
response to any finite length input) is of finite duration, because it settles to zero in finite time.
This is in contrast to infinite impulse response (1IR) filters, which may have internal feedback
and may continue to respond indefinitely (usually decaying).

The impulse response (that is, the output in response to a Kronecker delta input) of an Nth-order
discrete-time FIR filter lasts exactly N + 1 samples (from first nonzero element through last
nonzero element) before it then settles to zero.

FIR filters can be discrete-time or continuous-time, and digital or analog.

For a causal discrete-time FIR filter of order N, each value of the output sequence is a weighted
sum of the most recent input values:

y[n] = bpx[n] + bizn — 1] +--- + byz[n — N|

N
= th--:t[n — 1],
i=0

where:
« =[nlis the input signal,
« u[nlis the output signal,
« Nis the filter order; an ~th-order filter has (V' + 1)terms on the right-hand side
« biis the value of the impulse response at the i'th instant for ' = i = Nof an nth-order

FIR filter. If the filter is a direct form FIR filter then &iis also a coefficient of the filter .
This computation is also known as discrete convolution.

The =[n—ilin these terms are commonly referred to as taps, based on the structure of a tapped
delay line that in many implementations or block diagrams provides the delayed inputs to the
multiplication operations. One may speak of a 5th order/6-tap filter, for instance.
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The impulse response of the filter as defined is nonzero over a finite duration. Including zeros,

the impulse response is the infinite sequence:

. FIR filters are always stable.

2. FIR filters with exactly linear phase can easily be designed.

3. FIR filters can be realized in both recursive and non-recursive structures.

4. FIR filters are free of limit cycle oscxl]anons when implemented on a finite-
word length digital system. '

5. Excellent design methods are ;Nailab]e for various kinds of FIR filters.

The disadvaritages of FIR filter are

. The implementation of narrow transition band FIR filters are very costly, as
it requires considerably more arithmetic operations and hardware Lomponents

such as multipliers, adders and delay elements.

2. Memory requirement and execution time are very Ihigh.
LINEAR PHASE FILR FILTER

" Table

Summary. of characteristics of linear phase FIR fi

Iters
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Applications
. Phase response
. Magnitude response 3
Frequency response bk J
Type q ) [H(e™)| LH(E)
Symmetncal i Sl ]ow‘ i,
impulse response N by a4x where 8 = 0 for H (e’“') >0 higlf’pass,
odd e—jw(N—l)/2 Z a(n) coswn ,?;0 a(n)coswn 9 =  for H(C‘Jw) <0 'bandpass,r
S = bandstop,
N-1
a(0) =h (T3~ )
N-1 2

a(n) =2h [ '—2—-' ] i3 ]
Symmetrical - e o W
impulss Tespanes, ¥ ' 1 i 1 ] ol | where 6 = 0 for H(e?) > 0 lowpass,
N even ¢34 (N=1/2 | $™ b(n) cos [n 3 _] wl| |D b(m)cos [" =3 6 = 7 for H(e) < 0 bandpass

n=1 . ek
N -
b(n)=2h[—2-—n] »
- (Continuous)



- Table: . Continuous
Type Frequency response Magnitude response Phase response Applications
H(e) o . |H(EY)) . ZH(e) k

fxntisl)'mmetricgl " e N1 N—1 B _;[ +0 gflf;r;ntiator.
::;gu SR TERRoLS I™/2emiw(N=1)/2 Z ¢(n)sinwn Z ¢(n)sinwn where = 0 for H(e’*) > 0 tr;nsi'o;mcr

el — 0 = m for H(e') < 0

c(n)=2h(N“1 —.n)
2.5 G
- &

3 i 4 —ow+ = +0 “di ;
Antisymmetrical ; ¥ T 1 2 ) differentiator,
impulse response N | i7/2,—jw(N-1)/2 3 d(n)sinw [n . l] > d(n)sinw [n = 5] where 6 = 0 for H(e’*) >0 | Hilbert-
even n=1 A 0 = for H(e’”) <0 | transformer

d(n) = 2h [%-n] |
i

‘The Fourier Series Method of Designing FIR Filters'

The frequency response H (eJ“’) of a system is periodic in 27. From Founer series
analysis we know that any periodic function can be expressed as a linear combination
of complex exponentials. Therefore, the desired frequency response of an FIR filter

can be represented by the Fourier series
. w .
Hy(e?’) = Z hd(n)e‘J“"‘
. N=-=00 °
where the Fourier cocfficients hy(n) are the desired impulse response sequence of
the filter 1
ha(n) = — H (e"")e"""dw

Tt

The z-transform of the sequence is given by

H(z) = f: hqg(n)z™"

n=-00

The Eq. (6.47) represents a non-causal digital fil*er of infinite duration. To get an
FIR filter transfer function, the series can be truncated by assigning

31

h(n) = hd(nj for In| < Al

=0 * otherwise
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N-1
2

H(z) = 'Z h(n)z"

()

=h [%] 2NN 4+ h(1)27 + h(0) + R(-1)z + R(=2)2" + ...

2
= h(0) + D _ [h(n)z™" + h(-n)2"]
n=1 ; 7 b : :
For a symmetrical impulse response having symmetry atn = 0
h(—n) = h(n)

Therefore, Eq (6.50) can be written as
N-1

H(z) = h(0) + 22: h(n)[z" + 27"
n=1 ;

The above transfcr function is not physically realizable. Realizability can -be

brought by multiplying Eq. (6.52) by 2~ (¥ ~1)/2 where

is delay in samples.

H'(z2) = 2z~ (N-12H(2)

. N-=1

_ D72 () + 3 hm) (4 2|

n=1
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Example = Designan ideal lowpass filter with a f;'equency response

w0 T <.7T
Hy(e’ )=lfor-—§ﬁw_§'

— Oforg <lw| <=
Find the values of h(n) for N = 11. Find H(z). Plot the magnitude response,

Solution
The frequency response-6rlowpass filter with we = 7 is shown in Fig,
Given - A

Hd(ej“.’):lfor:; gwgg

=0 for ~ <lw| <

2
A A
l—ld(ejm)
1.0
-n ~n/2 a2 ' n ;

From the frequency response we can find th
. at @ = 0. Theref: non-
cau;gl ﬁlter coefficients symmetrical about 1, — 0,ie., hy(n) = ::(3,_‘:)3 8;;1: filter
cocilicients can be obtained by using the formula given in table 6.2 for .zero phas

frequency response (or) we can proceed as follows
We know .
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hd(n) = —‘” Hd(e‘lw)e"”"dw

.,
27r ey wndw
2
e 1‘ o n/2
2mjn —m/2
1
== Jmn/2 s
7rn(23 [ e i a/2]
_ sin 7—2rn
T “REn=E oo
Truncating hgq(n) to 11 samples, we have
sin Zn
h(n) = 2_ for Inl<56

= (0 otherwise

For n = 0 Eq. (6.56) becomes indeterminate. So

.. sinZn- .1 sin §n . sinf
= = - : _— 1
A0) rlll—lol}) TN 2 rlz = ' ;g»r(l) 0
1
)
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R e Gy U o RN
(0) N d( ) & —2; \/_,‘./2 e %w -/2 27
Forn=1 . " 1
CR(1) =h(=1) =—2% = = = 0.3183
Similarly |
' . sin7
h(2) = h(-2) = 5% =0
' 2. 3T
_ sin - 1
= h(-3) = = —— = —(.106
h(3) = h(-3) - 3
. o 47|-
. _ - s sm—2- &
h(4) = h(~4) = 22 =0
. . 5—7‘. . 4
h(5) = h(-5) = 222 _ 1 - 406366,

om om

The transfer function of the filter is given by

N-1

H(z) = h(0) + 3 [h(n) (" + 2]

n=1

=0.5 + Z h(n) (2" +2z7")
n=1

=05+0.3183 (2" + 27") - 0.106 (2° + 2~%) + 0.06366 (= + z™%)

The transfer function of the realizable filter is

H'(z) = z=N=-D12 ()
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=275 [0.5+0.3183 (2 + 27!) — 0.106 (2% + 27%) 4 0.06366 (2° + )
— 0.06366 — 0.1062~2 + 0.3183z™* + 0.527° + 0.3183z
— 0.1062~8 +0.063662~10

From the above Eq. (6.57) the filter coefficients of causal filter are given by

h(0) = h(10) = 0.06366; h(1) = h(9) = 0; h(2) = A(8) = ~0.108
h(3)=h(7)=0; h(4)=h(6) =0.3183; h(5)=0.5

The frequency response is given by

£
H(e) = Za(n) coswn where -
n=0 :
al0) = [-]Y-Q‘_l] = h(5) = 0.5

a(n) '='_.2h [N; = n]
a(1) = 2h(5 ~ 1) = 2h(4) = 0.6366
- a(2) =2h(5=2) = 25(3) =0
(3) = 2h(5 — 3) = 2h(2) =~.—0'.212.
a(4) =2h(5 ~ 4) = 2h(1) = 0
a(5) = 2h(5 - 5) = 2h(0) = 0.127

a

-

H(e7) = 0.5+ 0.6366 cosw — 0.212 cos 3w + 0,127 cos 5w
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The magnitude in dB is calculated by varying w from 0 tc; 7;- and tabulated belo"
The magnitude |H (e7%)|45 = 20 log [H (e7w)|.

w(in degrees) 0 10 20 13p

40 50 60 70 80
)

i 04 021 -0.26-0.517-0.2] 0.42 077 021 -1.79

\

20 100 110 120-130 140 150 160 170 180

-6 -14.56-31.89-20.6 -26 -32 -24.7-30.55 .32 -26

HE)e 1
- 10

0

0.5 £+ 0 =
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If an FIR filter is non-causal, the range of nonzero values in its impulse response can start before
n = 0, with the defining formula appropriately generalized.

An FIR filter has a number of useful properties which sometimes make it preferable to an infinite
impulse response (1IR) filter. FIR filters:

Require no feedback. This means that any rounding errors are not compounded by summed
iterations. The same relative error occurs in each calculation. This also makes implementation
simpler.

Are inherently stable, since the output is a sum of a finite number of finite multiples of the input
values, so can be no greater than 2 Ibiltimes the largest value appearing in the input.

Can easily be designed to be linear phase by making the coefficient sequence symmetric. This
property is sometimes desired for phase-sensitive applications, for example data
communications, seismology, crossover filters, and mastering.

The main disadvantage of FIR filters is that considerably more computation power in a general
purpose processor is required compared to an IR filter with similar sharpness or selectivity,
especially when low frequency (relative to the sample rate) cutoffs are needed. However many
digital signal processors provide specialized hardware features to make FIR filters approximately
as efficient as IIR for many applications.

An FIR filter is designed by finding the coefficients and filter order that meet certain
specifications, which can be in the time-domain (e.g. a matched filter) and/or the frequency
domain (most common). Matched filters perform a cross-correlation between the input signal
and a known pulse-shape. The FIR convolution is a cross-correlation between the input signal
and a time-reversed copy of the impulse-response. Therefore, the matched-filter's impulse
response is "designed” by sampling the known pulse-shape and using those samples in reverse
order as the coefficients of the filter.[!]

When a particular frequency response is desired, several different design methods are common:

Window design method

Frequency Sampling method

Weighted least squares design

Parks-McClellan method (also known as the Equiripple, Optimal, or Minimax method).
The Remez exchange algorithm is commonly used to find an optimal equiripple set of
coefficients. Here the user specifies a desired frequency response, a weighting function
for errors from this response, and a filter order N. The algorithm then finds the set of
(N +1)coefficients that minimize the maximum deviation from the ideal. Intuitively, this
finds the filter that is as close as you can get to the desired response given that you can
use only (N +1jcoefficients. This method is particularly easy in practice since at least one
text?l includes a program that takes the desired filter and N, and returns the optimum
coefficients.

roOdE
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5. Equiripple FIR filters can be designed using the FFT algorithms as well.! The algorithm
is iterative in nature. You simply compute the DFT of an initial filter design that you
have using the FFT algorithm (if you don't have an initial estimate you can start with
h[n]=delta[n]). In the Fourier domain or FFT domain you correct the frequency response
according to your desired specs and compute the inverse FFT. In time-domain you retain
only N of the coefficients (force the other coefficients to zero). Compute the FFT once
again. Correct the frequency response according to specs.

Software packages like MATLAB, GNU Octave, Scilab, and SciPy provide convenient ways to
apply these different methods.

In the window design method, one first designs an ideal IIR filter and then truncates the infinite
impulse response by multiplying it with a finite length window function. The result is a finite
impulse response filter whose frequency response is modified from that of the IIR filter.
Multiplying the infinite impulse by the window function in the time domain results in the
frequency response of the IIR being convolved with the Fourier transform (or DTFT) of the
window function. If the window's main lobe is narrow, the composite frequency response
remains close to that of the ideal IIR filter.

The ideal response is usually rectangular, and the corresponding IIR is a sinc function. The result
of the frequency domain convolution is that the edges of the rectangle are tapered, and ripples
appear in the passband and stopband. Working backward, one can specify the slope (or width) of
the tapered region (transition band) and the height of the ripples, and thereby derive the
frequency domain parameters of an appropriate window function. Continuing backward to an
impulse response can be done by iterating a filter design program to find the minimum filter
order. Another method is to restrict the solution set to the parametric family of Kaiser windows,
which provides closed form relationships between the time-domain and frequency domain
parameters. In general, that method will not achieve the minimum possible filter order, but it is
particularly convenient for automated applications that require dynamic, on-the-fly, filter design.

The window design method is also advantageous for creating efficient half-band filters, because
the corresponding sinc function is zero at every other sample point (except the center one). The
product with the window function does not alter the zeros, so almost half of the coefficients of
the final impulse response are zero. An appropriate implementation of the FIR calculations can
exploit that property to double the filter's efficiency.

A moving average filter is a very simple FIR filter. It is sometimes called a boxcar filter,
especially when followed by decimation. The filter coefficients, bo..-.bn | are found via the
following equation:

1
h_N+1

To provide a more specific example, we select the filter order:
N=2
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The impulse response of the resulting filter is:

h[n] = %5[}1] + %5[}1 — 1]+ %5[}1 — 2]

The Fig. (a) on the right shows the block diagram of a 2nd-order moving-average filter discussed
below. The transfer function is:

1 1 , 1 _ 1z22+2z+4+1
Hiz)=3+32 437 =373 —

Fig. (b) on the right shows the corresponding pole-zero diagram. Zero frequency (DC)

corresponds to (1,0), positive frequencies advancing counterclockwise around the circle to the

Nyquist frequgency at (-1,0)£ wo poles are located at the origin, and two zeros are located at
1

1 . N
1=-—gtly,f2=-3-0T,
The frequency response, in terms of normalized frequency w, is:

H (E.j“) = % + %E_j“ + %e_ﬁ“.

Fig. (c) on the right shows the magnitude and phase components of H(E‘M)- But plots like these
can also be generated by doing a discrete Fourier transform (DFT) of the impulse response.["°t 2l
And because of symmetry, filter design or viewing software often displays only the [0,x] region.
The magnitude plot indicates that the moving-average filter passes low frequencies with a gain
near 1 and attenuates high frequencies, and is thus a crude low-pass filter. The phase plot is
linear except for discontinuities at the two frequencies where the magnitude goes to zero. The
size of the discontinuities is 7, representing a sign reversal. They do not affect the property of
linear phase. That fact is illustrated in Fig. (d).

The frequency response of an ideal low pass filter is shown in the image below. The frequency
axis is normalised with respect to the sampling frequency. The cut-off, or transition frequency
(ft) is always between 0 and 0.5, as 0.5 represents the Nyquist frequency. As you would expect
from a low pass filter, all frequencies below f; are passed, where-as all those above are stopped.

1 Pass Band
Transition
h(n) Frequency
0 5 Stop Band
0 fi

(Half Sampling
. Freqguency)
Normalised Frequency
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Fig. 1: Transition Frequency

The impulse response of this ideal low pass filter is shown below, it is a sinc function. The
equation is shown next to the plot. If we could create a filter with this impulse response we
would have an ideal low pass filter like that shown above. A set of Gnuplot commands are also
given for recreating this graph.

0.5
{

0.4 i h(x) = 2f; sinc(2r fix)
E; H _op, sin (2 fix)
G& H 2w frx

I .A\.hln|||ﬂ||||nl||ﬁﬁ4 —M

0= AT ER T ' - T
0.1 Uy

-40 -20 0 20 40

Fig. 2: Impulse response of ideal LPF (ft=0.25)

Below is a plot of impulse responses for different values of f:.

0.8 T T |
ft=0.1

07 | .
[ ft=0.25
06 | fr=0.4

Fig. 3: Sinc function for different values of normalised transition frequency

Unfortunately it is not as easy as that. Given the non-recursive filter structure like that shown
below, there are two problems with creating this ideal impulse response.

o First, the sinc function is infinite in the x direction, the ripples keep on going in both
directions. However, the FIR filter only allows us to create finite impulse responses, the
number of filter taps must be finite.

« Second, the impulse response is non-casual, this means an implementation would require
samples from the future.
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Fig. 4: Non-Recursive, Finite Impulse Response Filter

Luckily, the solutions to these issues are quite simple. First, a window is applied to the sinc
function such that only a portion of the impulse response is actually used. Secondly, the impulse
response is shifted such that the filter only operates on available samples (those from the past).
These techniques are demonstrated in the the following example.

3.6 LOW PASS FILTER EXAMPLE

0.6 - 1
0s L ldeal Impulse _
G Response S~ A
s 04 1Y |
So3t - |
S (.
£ 0.2 nght w(0) Weight w(20) ]
@ 0.1 / [ N |
= h AN I NP N
0 \' \ .:' P
0.1 F | SR R | ]
5 0 5 10 15 20 25

Weight number n
Fig. 4: Filter weights M=20, ft=0.23
Consider the filter with the properties given below.

Filter Type: Low Pass
Sampling Frequency: 2000 Hz
Cut off Frequency: 460 Hz
Filter Length (# weights): 21

The plot to the right shows the filter weights that have been calculated using the equations
below.

e« M- This is the filter order, it is always equal to the number of taps minus 1
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o fi- This is the normalised transition frequency.

There are 21 weights that fit on the ideal impulse response curve. It can be seen how the impulse
response is effectively cropped by only using 21 weights.

Note: When calculating weight values with an odd number of weights, a divide by zero will
occur at n=M/2. Therefore, based on I'Hopital's rule, the value of 2f; is used.

M = filter length — 1 = 20

Cut off frequency 460
Sampling Frequency 2000

=023

sin Qﬂ'fg(ﬂ—%) n ?é M

wipf(n) = m(n—4) 2
2f; n=4
1.2 10
— n 0
o L= e 8 1 %
T 08 o -20 Vo
= i e '3':' ] i \Ilr,-\.\ S
c 06 . 2 40 N O AT VA
o c - i i
T 0.4 | 5 29 k |
z m |
0.2 \ = ég
0 e -90
0 200 400 600 800 1000 0 200 400 600 800 1000
Frequency (Hz) Frequency (Hz)

Fig. 5: The large amount of ripple visible on the non-dB plot is due to the rather crude approach
of truncating the infinite ideal impulse response. The approach that has just been used is called
applying a Rectangular Window. The next section describes different window types that can
decrease the ripple and improve the attenuation of the stop band.
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Applying a window to the sinc function weights provides extra control over the characteristics of

10
Weight number, n

15 20

Fig. 6: Windowing

the filter. The image to the right illustrates the process.

First, the normal sinc weights are calculated as described above. Then the window weights are
calculated, in this case a Hamming Window has been used, the equation is below. The two sets
of weights are multiplied together to create the final set of filter weights.

w(n) = 0.54 — 0.46 cos (Q?Tn.)

M
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3.7 Hamming Windowing Equation
Once again, M is the order of the filter, which is equal to the filter length - 1.
The plots below show the effect on the filter's frequency response before applying the Hamming

Window (green) and after (red). The trick is to select the window type and filter length that will
give a filter with the correct rate of roll-off and level of attenuation in the stop band.

1.2 | 20
1 Rectangular ___| 0 _
o ~N Window B o B
T 08 . Response — 9 N
T 08 A\ 3 0 VAR T
o . ' T 60 v Y v
T g4 |- Hamming = IV
2 Window \ g 80
0.2 —Response N 100
0 ' = 1120
0 200 400 800 800 1000 0 200 400 800 800 1000
Frequency (Hz) Frequency (Hz)

Fig. 7: Different Windows
The table below gives the equations for different window types.

3.8 Window Type Weight Equation

Rectangular () = 1

B 2‘?1—%‘

(n) =1
Bartlett w(n) M

w(n) = 0.5 —0.5 cos (Qfm)

Hanning M

Hamming

4

w(n) = 0.54 — 0.46 cos (Q?Tn)

114



w(n) =042 — 0.5 cos (@) 1+ 0.08 cos (4?1’71)

Blackman M M

The image below shows the effect of different windows on the frequency response of a 28th
Order (29 weights) low pass filter, with a cut-off frequency of 5000Hz and sampling frequency
of 44100Hz.
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Fig. 8: Frequency Response and Weight Values of different windows types
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3.9 HIGH PASS, BAND PASS AND BAND STOP FILTERS

= All Pass —\
+
. | Z —_—

— | ow Pass —/

All Pass - = High Pass

e

Freq

Gain

Fig. 9: The high pass filter is made up from a low pass and an all pass filter. The image to the
right demonstrates how this works. If you take an all pass filter and subtract the output of the low
pass, you are left with a high pass filter.

The all pass filter is of the same order as the low pass filter. All the weight values are 0.0 apart
from the centre weight which has a value 1.0. Note: This places the constraint that when creating
a high pass filter in this way, the order must be even (an odd number of taps).

The equation for calculating the weights (before windowing) is shown below. Comparing this
equation with the low pass filter it is easy to see the subtraction and the all pass filter's single 1.0
weight applied in the case of n=M/2. Windows are applied in exactly the same way as with the
low pass filter.

; _M
sm[??rft(r;f 5 ” n.# M

wipg (n) = w(n-7)
1—2f; n= %

Below is a Low Pass and High Pass filter frequency response with the same transition frequency.
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Fig. 10: Low pass and high pass hamming

The band stop and band pass are achieved in a similar way. The equations for calculating the
weights are shown below. For both band pass and band stop, the filter order needs to be even (an
odd filter length). Once again, windows are applied across the weights as before.

sin[2m fuo(n— 42 )] _ sin[2m for (n— 4 )] n+# M
wigln) = | 0= ) "

Q(ftz _ftl) n = %

sin [2ﬂfg1(ﬂ—£)j| sin [QTI',&Q(TI—E)] n 7{ M

wye(n) = m(n-%) m(n—4)
M
L —2(fi2 — fu) n=
20 | |
0 Band Pass Hamming
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QUESTIONS
1. What are the merits of FIR filters
2. What are the demerits of FIR filter
3. Distinguish between FIR & IIR filter
4. What are the different types of filters based on frequency response
5. Give any two properties of Butterworth low pass filter
6. Give the equation for order and cutoff frequency of Butterworth filter
7. Write the magnitude response of the Chebyshev filter
8. Give the Butterworth polynomials for the order 1 & 4
9. Write the transfer function of Butterworth filter

10. Explain the fourier series method of designing FIR filter in detail
11. Design an ideal low pass filter with a frequency response
Hd(e'®) = 1 for — n/2 <w< n/2
0 for /2 <o|<®
Find the values of h(n) for N = 11.

12. Design an ideal low pass filter with a frequency response
Hd(e'®) = 1 for — n/2 <0< n/2
0 for /2 <jo|<m
Find the values of h(n) for N = 11 using Hamming window

13. Design an ideal high pass filter with a frequency response
Hd(e'®) = 1 for — n/4 <o<n
0 for |o|<m/4
Find the values of h(n) for N = 11. Using Rectangular window.

14. Obtain an analog Chebyshev filter transfer function that satisfies the constraints
1N2<H({Q)|<1; 0<Q<?2
HGRQ) |<0.1; Q>4

15.For the given specifications design an analog Butterworth filter

0.9 <HGQ)|<1; 0<Q<02n
HGQR) [|<0.2; 04n<Q<n
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Detection of events and waves
Derivative based operators in QRS detection
QRS complex has the largest slope (rate of change of voltage) in a cardiac cycle
ventricles. As the rate of change is given by the derivative operator, the operation would
be the most logical starting point in an attempt to develop an algorithm to detect the QRS
complex. The derivative operator enhances the QRS, although the resulting wave does not
bear any resemblance to a typical QRS complex. The slow P and T waves have been
suppressed by the derivative operators, while the output is the highest at the QRS.
However, given the noisy nature of the results of the derivative-based operators, it is also
evident that significant smoothing will be required before further processing can take

yo(n) = |z(n) — z(n - 2)|.
place. Derivative-based algorithm for QRS detection progresses as follows: the smoothed

three-point first derivative yo (n) of the given signal x(n) is approximated as
The second derivative is approximated as

vi(n) = |z(n) - 2z(n - 2) + z(n - 4)|.

The two results are weighted and combined to obtain
y2(n) = 1.3yo(n) + 1.1y1(n).

The result y2(n) is scanned with a threshold of 1.0. Whenever the threshold is crossed, the

subsequent eight samples are also tested against the same threshold. If at least six of the
eight points pass the threshold test, the segment of eight samples is taken to be a part of a
QRS complex. The procedure results in a pulse with its width proportional to that of the

QRS complex; however, the method is sensitive to noise.
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Fig.1. From top to bottom: two cycles of a filtered version of the ECG
signal, output yo(n)of the first-derivative-based operator, output yl(n)
of the second-derivative-based operator and the result y3(n) of passing

y2(n) through the 8-point MA filter

Pan Tompkins algorithm

Pan and Tompkins proposed a real-time QRS detection al- gorithm based on analysis of the
slope, amplitude, and width of QRS complexes. The algorithm includes a series of filters
and methods that perform lowpass, high- pass, derivative, squaring, integration, adaptive

thresholding, and search procedures.

Bandpass .' ’ Squaring Moving-window

T filter JIL. Diffescatiator y operation integrator B

Fig.2 Block diagram of the Pan-Tompkins algorithm for QRS detection
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Low pass filter: The recursive lowpass filter used in the Pan-Tompkins algorithm has integer
coefficients to reduce computational complexity, with the transfer function

defined as

The output y(n) is related to the input x(n) as

1 (1-279)2
HiE) =g G=r1p"

The output y(n) is related to the input x(n) as
1
yin)=2y(n—-1) —y(n-2) + 33 [z(n) — 22(n — 6) + z(n — 12)].

With the sampling rate being 200 Hz, the filter has a rather low cutoff frequency of fc =

11 Hz, and introduces a delay of 5 samples or 25 ms.The filter provides an attenuation

greater than

35 dB at 60 Hz,and effectively suppresses power-line interference, if present.

Highpass filter: The highpass filter used in the algorithm is implemented as an allpass

filter minus a lowpass filter. The lowpass component has the transfer function the input -

output relationship is

H,,,(z) =

the input - output relationship is
y(n) =y(n - 1) + 2(n) — z(n — 32).

The transfer function Hhp(z) of the highpass filter is specified as

1

_ ,-16 _ L
Hpp(z) = 2 3%

Htp(z)

Equivalently, the output p(n) of the highpass filter is given by the difference equation
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p(n) = z(n - 16) - -,%2— [y(n - 1) + z(n) — z(n — 32)].

The high pass filter has a cutoff frequency of 5 Hz and introduces a delay of 80 ms.

Derivative operator: The derivative operation used by Pan and Tompkins is specified as

y(n) = -;— [2z(n) + z(n — 1) — z(n — 3) — 2z(n — 4)],

and approximates the ideal operator up to 30 Hz. The derivative procedure suppresses the
low-frequency components of the P and T waves, and provides a large gain to the high-
frequency components arising from the high slopes of the QRS complex.

Squaring: The squaring operation makes the result positive and emphasizes large
differences resulting from QRS complexes; the small differences arising from P and T
waves are suppresses. The high- frequency components in the signal related to the QRS

complex are further enhanced.

Integration: As observed in the previous subsection, the output of a derivative- based
operation will exhibit multiple peaks within the duration of a single QRS complex. The
Pan-Tompkins algorithm performs smoothing of the output of the preceding operations

through a moving-window integration filter as

y(n) = 5 [en — (N = 1)) + a(n = (N = 2)) + - + 2(n)]
The choice of the window width N is to be made with the following considerations: too large
a value will result in the outputs due to the QRS and T waves being merged, whereas too
small a value could yield several peaks for a single QRS. A window width of N = 30 was
found to be suitable for fb = 200 Hz.

Adaptive thresholding: The thresholding procedure in the Pan-Tompkins algo- rithm
adapts to changes in the ECG signal by computing running estimates of signal and noise
peaks. A peak is said to be detected whenever the final output changes direction within a
specified interval. In the following discussion, SPKI represents the peak level that the
algorithm has learned to be that corresponding to QRS peaks, and NPKI represents the
peak level related to non- QRS events (noise, EMG,etc.).
THRESHOLD I1 and THRESHOLD 12 are two thresholds used to categorize peaks
detected
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as signal (QRS) or noise. Every new peak detected is categorized as a signal peak or a
noise peak. If a peak exceeds THRESHOLD I1 during the first step of analysis, it is
classified as a QRS (signal) peak. If the searchback technique the peak.should be above
THRESHOLDIZ to be called a QRS.The peak levels and thresholds are updated after each
peak is detected and classified as if PEAKI is a signal peak; if PEAKI

is a noise peak;

SPKI =0.125 PEAKI +

0.875 SPKI NPKI =0.125

PEAKI + 0.875 NPKI

THRESHOLD I1 = NPKI +

0.25(SPKI - NPKI); THRESHOLD

12 =0.5 THRESHOLD II.

The updating formula for SPKI is

changed to SPKI = 0.25 PEAKI +

0.75 SPKI

If a QRS is detected in the searchback procedure using THRESHOLD 12.

Searchback procedure: The Pan-Tompkins algorithm maintains two RR-interval
averages: RR AVERAGEL1 is the average of the eight most-recent beats, and RR
AVERAGE? is the average of the eight most-recent beats having RR intervals within the
range specified by

RR LOW LIMIT =0.92 x RR
AVERAGE?2 and RR HIGH LIMIT
=1.16 x RR AVERAGE?2.

Whenever a QRS is not detected for a certain interval specified as

RR MISSED LIMIT =1.06 x RR AVERAGEZ2, the QRS is taken to be the peak between
the established thresh- olds applied in the searchback procedure.

1. Correlation analysis
ACF and CCF in rhythm analysis

Cross Correlation is defined as
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N—1
z-y=(2,y) = Z x(n) y(n).
n=0
where the signals @(n) and y(n) have N samples each. The dot product represents
the projection of one signal on to the other, with each signal being viewed as an N -
dimensional vector. The dot product may be normalized by the geometric mean of
the energies of the two signals to obtain a correlation coefficient as

B oo x(n) y(n)
N — e l/2
[820 22(n) T8 v3 ()]

The means of the signals may be subtracted out, if desired, as in Equation
In the case of two continuous-time signals x(¢) and y(?), the projection of one
signal on to the other is defined as

Txy

Ory = ‘/_%;t(t)y(t)dt.

When a shift or time delay may be present in the occurrence of the epoch of interest
in the two signals being compared, it becomes necessary to introduce a time-shift
parameter to compute the projection for every possible position of overlap. The shift
parameter facilitates searching one signal for the occurrence of an event matching
that in the other signal at any time instant within the available duration of the signals.
The CCF between two signals for a shift or delay of 7 seconds or & samples may be
obtained as

Oxy(7) = /"x x(t) y(t + 7) dt,
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y(n) with the most-recent N samples being available in each signal at the time instant
n. If x(n) and y(n) are sample observations of random processes, their CCF is
defined as

Oy = E[x(u)y'r(n)].

The outer product, which is an
N x N matrix, provides the cross-terms that include all possible delays (shifts) within
the duration of the given signals.

All of the equations given above may be modified to obtain the ACF by replacing
the second signal y with the first signal . The signal 2 is then compared with itself.

The ACF displays peaks at intervals corresponding to the period (and integral
multiples thereof) of any periodic or repetitive pattern present in the signal. This
property facilitates the detection of rhythms in signals such as the EEG: The pres-
ence of the a rhythm would be indicated by a peak in the neighborhood of 0.1 s.
The ACF of most signals decays and reaches negligible values after delays of a few
milliseconds, except for periodic signals of infinite or indefinite duration for which
the ACF will also exhibit periodic peaks. The ACF will also exhibit multiple peaks
when the same event repeats itself at regular or irregular intervals. One may need
to compute the ACF only up to certain delay limits depending upon the expected
characteristics of the signal being analyzed.

The CCF displays peaks at the period of any periodic pattern present in both of the
signals being analyzed. The CCF may, therefore, be used to detect rhythms present
in common between between two signals, for example, between two channels of
the EEG.

1. Murmur detection
Cardiac mechanical activity is appraised by auscultation and processing of heart sound
recordings (known as phonocardiographic signals—PCG), which is an inexpensive and
noninvasive procedure. The importance of classic auscultation has decreased due to its
inherent restrictions: the performance of human ear with its physical limitations, the
subjectivity of the examiner, difficult skills that take years to acquire and refine, etc.
Anyway, the PCG has preserved its importance in pediatric cardiology, cardiology, and
internal diseases, evaluating congenital cardiac defects,and primary home health care,
where an intelligent stethoscope with decision support abilities would be valuable. Mostly,
heart sounds consist of two regularly repeated thuds, known as S1 and S2, each appearing
one after the other, for every heart beat. The time interval between S1 and S2 is the systole,
while the S2 and next S1 gap corresponds to the diastole. S1 implies the closing of the
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tricuspid and mitral valves immediately preceding the systole, while S2 corresponds to the

closing of the aortic and

laminar and therefore silent; but when the blood flow becomes turbulent it causes vibration
of surrounding tissue and hence the blood flow is noisy and perceivable, originating the

murmur, which according to the instant they appear are sorted into

systolic or diastolic. Murmurs are some of the basic signs of pathological changes to be
identified, but they overlap with the cardiac beat and can not be easily separated by the
human ear. The automatic detection of murmurs strongly depends on the appropriate
features (data representation), which mostly are related to timing, morphology, and spectral
properties of heart sounds. Although cardiac murmurs are nonstationary signals and exhibit
sudden frequency changes and transients, t is common to assume linearity of the feature
sets extracted from heart sounds (time and spectral features, frequency representation with
time resolution, and parametric modeling. o capture nonstationary transients and fast

changes of PCG, the time—frequency features are widely used in heart sound analysis.
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or
Ory(k) = Z;v(n) y(n + k).
n
As in the case of the multiplicative homomorphic system, our goal is to convert
the convolution operation to addition. From the convolution property of the Fourier

transform, we know that
Y(w) = X(w) H(w).

Thus, application of the Fourier transform converts convolution to multiplication.
Now, it is readily seen that the multiplicative homomorphic system may be applied
to convert the multiplication to addition. Taking the complex logarithm of Y (w), we
have

loglY (w)] = log[X (w)] + log[H(w)]: X(w) # 0. H(w) # 0 Vw.

[Note: log, [X(w)] = X(w) = log,[|X ()| £X ()] = log,[|X ()] + j£X (w).
where | X (w)| and ZX (w) are the magnitude and phase spectra of z(t).]

A linear filter may now be used to separate the transformed components of 2 and
h, with the assumption as before that they are separable in the transformed space. A
series of the inverses of the transformations applied initially will take us back to the
original domain.

While the discussion here has been in terms of application of the Fourier trans-
form, the general formulation of the homomorphic filter by Oppenheim and Schafer
[174] is in terms of the z-transform. However, the Fourier transform is equivalent to
the z-transform evaluated on the unit circle in the z-plane, and the Fourier transform
is more commonly used in signal processing than the z-transform,

Figure - gives a block diagram of the steps involved in a homomorphic filter
for convolved signals. The path formed by the first three blocks (in the top row)
transforms the convolution operation at the input to addition. The third block with
the inverse Fourier transform is used to move back to a pseudo time domain. The
last three blocks (in the bottom row) perform the reverse transformation, converting
addition to convolution. The filter in between deals with (transformed) signals that

Derivation of the transfer function of the matched filter
In order to derive the transfer function, H(w), of the matched filter |et the
signal xz(f) be the input to the matched filter. The Fourier transform of x(#) is

X(w) = /-x x(t) exp(—jwt) dt.

0
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The output of the matched filter, y(t), is given by the inverse Fourier transform of
Y(w) = X(w)H(w), as follows:

y(t) 2%_ / X(w) H(w) exp(+jwt) dw

= [ X() H(f) exp(+j2n ft) df.

In the second expression of the equation given above, the frequency variable has
been changed from w in radians per second to f in Hz.
Consider the presence of white noise at the input, with the PSD

Py
Sm‘(f) = %-
where P,; is the average noise power at the input. Then, the noise PSD at the output
1S

l)m'

= L |H()P.

Sw)o(f )

The average output noise power is

Po="2 [ HU)P

The RAM S value of the noise in the absence of any signal is \/FP,,.
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Letting t = {, the magnitude of the instantaneous output signal
att =ty is

My = Jy(to)| = |/_ X(f) H(f) exp(+j 27 fto) df |.

Thus, the SN R at the output is VJ‘TIDL.

no
To derive the optimal transfer function of the matched filter, we could maximize

the SN R, which is equivalent to maximizing the expression

M?  instantaneous peak power of signal
FPyo noise mean power i

which represents peak-power SN R [212].
For a given signal z(t), the total energy is a constant, given by

EI=/_x xz(t)cll.=/_x |X(f)|? df.

x >~

Let us consider the following ratio:

2
M2 | HO) X () expiom fto) df
Ex Ppo Lo (* \H(OPRA [, IX(NEA

The quantity E, is a constant for a given input signal; hence, maximizing the
expression in Equation is equivalent to maximizing the expression in Equa-
tion -

In order to determine the condition for maximization of the expression in Equa-
tion recall Schwarz’s inequality for two arbitrary complex functions A( f) and

B(f):

| /_ A(f) B(Sf) df

2 oo ~
< [/_ A2 df] [/_ B2 df]

For any two real functions a(t) and b(¢), the corresponding inequality is

>0 2 o o)
[/ a(t) b(t) (11] < [/ az(t)dt] [/ b2(1)¢ll.].

For any two vectors a and b, Schwarz’s inequality states that

la.b| < |a| |b].

and
la+ b| < |a] + |b].
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Wavelet detection — Spike and wave detection

Problem: Propose a method to detect spike-and-wave complexes in an EEG sig-
nal. You may assume that a sample segment of a spike-and-wave complex is avail-
able.

Solution: A spike-and-wave complex is a well-defined event in an EEG signal.
The complex is composed of a sharp spike followed by a wave with a frequency
of about 3 Hz; the wave may contain a half period or a full period of an almost-
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sinusoidal pattern. One may. therefore, extract an epoch of a spike-and-wave com-
plex from an EEG channel and use it for template matching with the same formula

131



7. Extraction of vocal tract response and other applications

Problem: Design a homomorphic filter to extract the basic wavelet corresponding
to the vocal-tract response from a voiced speech signal.

Solution: . voiced speech is generated by excita-
tion of the vocal tract, while it is held in a particular form, with a glottal waveform
that may be approximated as a series of pulses. The voiced speech signal may, there-
fore, be expressed in discrete-time terms as y(n) = x(n) * h(n), where y(n) is the
speech signal, z(n) is the glottal waveform (excitation sequence), and h(n) is the
impulse response of the vocal tract (basic wavelet). The * symbol represents con-
volution, with the assumption that the vocal-tract filter may be approximated by an
LSI filter. We may, therefore, use the homomorphic filter for convolved signals as
introduced in the preceding section to separate /i(n) and z(n).

The glottal excitation sequence may be further expressed as x(n) = p(n) * g(n),
where p(n) is a train of ideal impulses (Dirac delta functions) and g(n) is a smooth-
ing function, to indicate that the physical vocal-cord system cannot produce ideal
impulses but rather pulses of finite duration and slope

ECG DATA REDUCTION
1. Direct data compression Techniques:

A data reduction algorithm seeks to minimize the number of code bits stored by reducing
the redundancy present in the original signal. We obtain the reduction ratio by dividing the
number of bits of the original signal by the number saved in the compressed signal. A data
reduction algorithm must also represent the data with acceptable fidelity.

In biomedical data reduction, we usually determine the clinical acceptability of the
reconstructed signal through visual inspection. We may also measure the residual, that is,

the difference between the reconstructed signal and the original signal. Such a numerical

n

Y Lorg) — xrecd1? |2
~
PRD = | —— x 100 %]

Y Leorg(]2

i=1
measure is the percent root-mean-square difference, PRD, given by

where n is the number of samples and xorg and xrec are samples of the original and

reconstructed data sequences.

132



Turning Point
The original motivation for the turning point (TP) algorithm was to reduce the sampling
frequency of an ECG signal from 200 to 100 samples/s .The algorithm developed from the
observation that, except for QRS complexes with large amplitudes and slopes, a sampling
rate of 100 samples/s is adequate.TP is based on the concept that ECG signals are normally
oversampled at four or five times faster than the highest frequency present. For example,
an ECG used in monitoring may have a bandwidth of 50 Hz and be sampled at 200 sps in
order to easily visualize the higher- frequency attributes of the QRS complex. Sampling
theory tells us that we can sample such a signal at 100 sps. TP provides away to reduce the
effective sampling rate by half to 100 sps by selectively saving important signal points

(i.e., the peaks and valleys or turning points).

The algorithm processes three data points at a time. It stores the first sample point and
assigns it as the reference point X0. The next two consecutive points become X1 and X2.
The algorithm retains either X1 or X2, depending on which point preserves the turning
point (i.e., slope change) of the original signal. Fig. shows all the possible configurations of
three consecutive sample points. In each frame, the solid point preserves the slope of the
original three points. The algorithm saves this point and makes it the reference point X0 for
the next iteration. It then samples the next two points, assigns them to X1 and X2, and
repeats the process.

We use a simple mathematical criterion to determine the

saved point. First consider a sign(x) operation

0 x =0
ng”(_r) — l +1 x>0 [
-1 x <0
o O @] P
1 o 4 7 o o
5 [ ] 5 O 3 © O
O O @ @
o e O
3 0 6 o e 90 O e
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Pattern | 51 =sign(X]-Xp) | s2=sign(X2 —X1) | NOT(s1) OR (5] + 52)| Saved sample
1 +1 +1 1 X
2 1 1 0 X1
3 +1 0 1 X2
4 1 +1 0 X1
5 -1 -1 1 X
6 -1 0 1 b6
7 0 +1 1 X2
8 0 -1 1 X
9 0 0 1 X

Fig. 3. Turning point Algorithm

We then obtain s1 = sign(X1 — X0) and s2 = sign(X2 — X1), where (X1 — X0) and (X2 —
X1) are the slopes of the two pairs of consecutive points. If a slope is zero,this operator
produces a zero result. For positive or negative slopes, it yields +1 or—1 respectively. A
turning point occurs only when a slope changes from positive to negative or vice versa. We
use the logical Boolean operators, NOT and OR, as implemented in the C language to
make the final judgment of when a turning point occurs. In the C language, NOT(c) =1 ifc
= 0; otherwise NOT(c) = 0. Also logical OR means that (a OR b ) = 0 only if a and b are
both 0. Thus, we retain X1 only if {NOT(s1) OR (sl + s2)} is zero, and save X2 otherwise.
In this expression, (s1 + s2) is the arithmetic sum of the signs produced by the sign
function. The final effect of this processingis a Boolean decision whether to save X1 or X2.
Point X1 is saved only when the slope changes from positive to negative or vice versa. This
computation could be easily done arithmetically, but the Boolean operation is
computationally much faster.

The TP algorithm is simple and fast, producing a fixed reduction ratio of 2:1. After
selectively discarding exactly half the sampled data, we can restore the original resolution
by interpolating between pairs of saved data points. A second application of the algorithm
to the already reduced data increases the reduction ratio to 4:1. Using data acquired at a
200-sps rate, this produces compressed data with a 50-sps effective sampling rate. If the
bandwidth of the acquired ECG is 50 Hz, this approach violates sampling theory since the

effective sampling rate is less than twice the highest frequency present in the signal. The
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resulting reconstructed signal typically has a widened QRS complex and sharp edges that
reduce its clinical acceptability. Another disadvantage of this algorithm is that the saved
points do not represent equally spaced time intervals. This introduces short term time
distortion. However, this localized distortion is not visible when the reconstructed signal is
viewed on the standard clinical monitors and paper recorders.
AZTEC

Originally developed to preprocess ECGs for rhythm analysis, the AZTEC (Amplitude
Zone Time Epoch Coding) data reduction algorithm decomposes raw ECG sample points
into plateaus and slopes.It provides a sequence of line segments that form a piecewise-
linear approximation to the ECG. The algorithm consists of two parts—Iline detection and
line processing. Figure(a) shows the line detection operation which makes use of zero-
order interpolation (ZOI) to produce horizontal lines. Two variables Vmx and Vmn always
reflect the highest and lowest elevations of the current line. Variable LineLen keeps track
of the number of samples examined. We store a plateau if either the difference between
Vmxi and Vmni is greater than a predetermined threshold Vth or if LineLen is greater than
50. The stored values are the length (LineLen — 1) and the average amplitude of the plateau
(Vmx +Vmn)/2,

Figure (b) shows the line processing algorithm which either produces a

plateau or a slope depending on the value of the variable LineMode. We initialize LineMode

to
_PLATEAU in order to begin by producing a plateau. The production

of an AZTEC slope begins when the number of samples needed to form a plateau is less
than three. Setting LineMode to _SLOPE indicates that we have entered slope production
mode. We then determine the direction or sign of the current slope by subtracting the
previous line amplitude V1 from the current amplitude Vsi. We also reset the length of the
slope Tsi. The variable Vsi records the current line amplitude so that any change in the
direction of the slope can be tracked. Note that Vmxi and Vmni are always updated to the
latest sample before line detection begins. This forces ZOI to begin from the value of the

latest sample.
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Fig. 4(a) Flowchart for the line detection operation of the AZTEC algorithm
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Fig. 4(b) Flowchart of the line processing operation of the AZTEC algorithm

When we reenter line processing with LineMode equal to _SLOPE, we either save or
update the slope. The slope is saved either when a plateau of more than three samples can
be formed or when a change in direction is detected. If we detect a new plateau of more
than three samples, we store the current slope and the new plateau. For the slope, the
stored values are its length Tsi and its final elevation V1. Note that Tsi is multiplied by —1

to differentiate a slope from a plateau (i.e., the minus sign serves as a flag to indicate a
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slope). We also store the length and the amplitude of the new plateau, then reset all

parameters and return to plateau production.

If a change in direction is detected in the slope, we first save the parameters for the current
slope and then reset sign, Vsi, Tsi, Vmxi, and Vmni to produce a new AZTEC slope. Now
the algorithm returns to line detection but remains in slope production mode. When there is
no new plateau or change of direction, we simply update the slope’s parameters, Tsi and
Vsi, and return to line detection with LineMode remaining set to SLOPE. AZTEC does
not produce a constant data reduction ratio. The ratio is frequently as great as 10 or more,
depending on the nature of the signal and the value of the empirically determined
threshold.

Cortes Algorithm

The CORTES (Coordinate Reduction Time Encoding System) algorithm is a hybrid of the
TP and AZTEC algorithms. It attempts to exploit the strengths of each while sidestepping
the weaknesses.

CORTES uses AZTEC to discard clinically insignificant data in

the isoelectric region with a high reduction ratio and applies the TP algorithm to the
clinically significant high-frequency regions (QRS complexes). It executes the AZTEC and
TP algorithms in parallel on the incoming ECG data. Whenever an AZTEC line is
produced, the CORTES algorithm decides, based on the length of the line, whether the
AZTEC data or the TP data are to be saved. If the line is longer than an empirically
determined threshold, it saves the AZTEC

line. Otherwise it saves the TP data points. Since TP is used to encode the QRS complexes,
only AZTEC plateaus, not slopes, are implemented. The CORTES algorithm reconstructs
the signal by expanding the AZTEC plateaus and interpolating between each pair of the TP
data points. It then applies parabolic smoothing to the AZTEC portions to reduce
discontinuities.

FAN Algorithm

Originally used for ECG telemetry, the Fan algorithm draws lines between pairs of starting

and ending points so that all intermediate samples are within some specified error
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tolerance. We start by accepting the first sample X0 as the nonredundant permanent point.
It functions as the origin and is also called the originating point.We then take the second
sample X1 and draw two slopes {U1, L1}. U1 passes

through the point (X0, X1 + €), and L1 passes through the point (X0, X1 — ¢). If the third
sample X2 falls within the area bounded by the two slopes, we generate two new slopes
{U2, L2} that pass through points (X0, X2 + €) and (X0, X2 — &). We compare the two pai
rs of slopes and retain the most converging (restrictive) slopes (i.e., {U1, L2} in our
example). Next we assign the value of X2 to X1 and read the next sample into X2. As a
result, X2 always holds the most recent sample and X1 holds the sample immediately
preceding X2. We repeat the process by comparing X2 to the values of the most convergent

slopes. If it falls outside this area, we save

the length of the line T and its final amplitude X1 which then becomes the new originating
point X0, and the process begins anew. The sketch of the slopes drawn from the originating
sample to future samples forms a set of radial lines similar to a fan, giving this algorithm its
name. When adapting the Fan algorithm to C-language implementation, we create the
variables, XU1, XL1, XU2, and XL2, to determine the bounds of X2.

X11-X0
Xp=—"7  +in

X1 -Xo

Xm=—"71  +Xm

where T =11 -10.
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Fig. 5 a) Upper and lower slopes (U and L) are drawn within error threshold
€ around sample points taken at t1, t2, ... (b) Extrapolation of XU2 and XL2
from XU1, XL1, and XO.

We reconstruct the compressed data by expanding the lines into discrete points. The Fan
algorithm guarantees that the error between the line joining any two permanent sample

points and any actual
140



redundant) sample along the line is less than or equal to the magnitude of the preset error
tolerance. The algorithm’s reduction ratio depends on the error tolerance. When compared
to the TP and AZTEC algorithms, the Fan algorithm produces better signal fidelity for the
same reduction ratio

2. Transformation Compression Techniques:

Karhunen-Loeve Transform

The Karhunen-Loeve Transform (KLT) (also known as Hotelling Transform and Eigenvector
Transform) is closely related to the Principal Component Analysis (PCA) and widely used in

data analysis in many fields

Let be the eigenvector corresponding to the kth eigenvalue  of the covariance matrix

1e.,

E.r'ok = ’\L‘OL' “. =1, .\.J

Dy — /\;‘. Dy (}\ =1,--, \J
or in matrix form:

As the covariance matrixis Hermitian (symmetric ifis real), its eigenvector'sare orthogonal:

Other data compression Techniques:

DPCM
Differential pulse code modulation (DPCM) is a procedure of converting an analog into a
digital signal in which an analog signal is sampled and then the difference between the
actual sample value and its
predicted value (predicted value is based on previous sample or samples) is quantized and
then encoded forming a digital value. DPCM code words represent differences between

samples unlike PCM where code words represented a sample value. Basic concept of
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DPCM - coding a difference, is based on the fact that most source signals show significant
correlation between successive samples so encoding uses redundancy in sample values
which implies lower bit rate. Realization of basic concept (described above) is based on a
technique in which we have to predict current sample value based upon previous samples
(or sample) and we have to encode the difference between actual value of sample and
predicted value (the difference  between  samples can  be interpreted as
prediction error). Because it's necessary to predict sample value DPCM is form of
predictive coding.

DPCM compression depends on the prediction technique, well-conducted prediction
techniques lead to good compression rates, in other cases DPCM could mean expansion

comparing to regular PCM encoding.

x, + a2 . e
»( —»| quantize e | entropy | %
- . coder

L)

s predictor

L=2"

Fig.6 DPCM encoder (transmitter)

Huffman coding

Huffman coding exploits the fact that discrete amplitudes of quantized signal do not occur
with equal probability (Huffman, 1952). It assigns variable-length code words to a given
quantized data sequence according to their frequency of occurrence. Data that occur

frequently are assigned shorter code words.
Static Huffman coding
As an example, assume that we wish to transmit the set of 28 data points

{1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,6, 6, 7}
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The set consists of seven distinct quantized levels, or symbols. For each symbol, Si, we
calculate its probability of occurrence Pi by dividing its frequency of occurrence by 28, the
total number of data points. Consequently, the construction of a Huffman code for this set
begins with seven nodes, one associated with each Pi. At each step we sort the Pi list in

descending order, breaking the ties arbitrarily.

The two nodes with smallest probability, Pi and Pj, are merged into a new node with

probability Pi + Pj. This process continues until the probability list contains a single value

Si Lists of Fi'

1 25 25 25 32 57 :| r 10
2 21 21 22 25 ]j

3 18 18 21 22

4 14 14 18 21

5 _11 11 14

6 1

Yt

(b)
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Probability of
Symbols, S; 3-bit bimary code occurrence, Pj Huffman code
1 001 0.25 10
2 010 0.21 00
3 011 0.18 111
4 100 0.14 110
5 101 0.11 011
6 110 0.07 0101
7 111 0.04 0100
(c)

Fig. 7 lllustration of Huffman coding. (a) At each step, Pi are sorted in descending
order

and the two lowest Pi are merged. (b) Merging operation depicted in a binary tree. (c)
Summary of Huffman coding for the data set.

The process of merging nodes produces a binary tree as in Figure (b). When we merge two
nodes with probability Pi + Pj, we create a parent node with two children represented by Pi
and Pj. The root of the tree has probability 1.0. We obtain the Huffman code of the symbols
by traversing down the tree, assigning 1 to the left child and O to the right child. The
resulting code words have the prefix property (i.e., no code word is a proper prefix of any
other code word). This property ensures that a coded message is uniquely decodable
without the need for lookahead.

Figure (c) summarizes the results and shows the Huffman codes for

the seven symbols. We enter these code word mappings into a translation table and use the
table to pad the appropriate code word into the output bit stream in the reduction process.
The reduction ratio of Huffman coding depends on the distribution of the source

symbols. In our example, the original data

requires three bits to represent the seven quantized levels. After Huffman coding, we can
calculate the expected code word length in our example, resulting in an expected reduction
ratio of 3:2.65.

7
E[N= % IiP;
i=1

The reconstruction process begins at the root of the tree. If bit 1 is received, we traverse
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down the left branch, otherwise the right branch. We continue traversing until we reach a
node with no child. We then output the symbol corresponding to this node and begin
traversal from the root again.

The reconstruction process of Huffman coding perfectly recovers the original data.
Therefore it is a lossless algorithm. However, a transmission error of a single bit may result
in more than one decoding error. This propagation of transmission error is a consequence

of all algorithms that produce variable- length code words.
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QUESTIONS
1. Develop signal processing techniques to facilitate detection of QRS complex.
2. Describe about the data reduction algorithms
3. Write notes on FAN algorithm.
4. Write notes on AZTEC algorithm.
5. Write short notes on Turning point algorithm.
6. Write notes on Huffman coding
7. Write notes on DPCM.
8. Propose an algorithm to detect QRS complexes in an ongoing ECG signal.
9. Describe the function of matched filter in detecting spike and wave complexes of EEG

signal.
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10. With neat block diagram explain the working of homomorphic filtering for multiplied
signals.
11. Design a homomorphic filter to separate two signals that have been combined through
convolution operation.
12. Explain the filtering technique used to study the presence of EEG rhythms in multiple
channel.
13. Explain the filtering technique used to extract the vocal tract response.
14. Explain in detail about the turning point algorithm.
15. Write notes on
Q) CORTES algorithm
(i)  AZTEC algorithm

Explain in detail about the concepts of the Huffman coding
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NEED FOR WAVELETS

The Fourier transform is an useful tool to analyze the frequency components
of the signal. However, if we take the Fourier transform over the whole time
axis, we cannot tell at what instant a particular frequency rises. Short-time
Fourier transform (STFT) uses a sliding window to find spectrogram, which
gives the information of both time and frequency. But still another problem
exists: The length of window limits the resolution in frequency. Wavelet
transform seems to be a solution to the problem above. Wavelet transforms
are based on small wavelets with limited duration. The translated-version
wavelets locate where we concern. Whereas the scaled-version wavelets allow
us to analyze the signal in different scale.

The first literature that relates to the wavelet transform is Haar wavelet. It
was proposed by the mathematician Alfrd Haar in 1909. However, the con-
cept of the wavelet did not exist at that time. Until 1981, the concept was
proposed by the geophysicist Jean Morlet. Afterward, Morlet and the physi-
cist Alex Grossman invented the term wavelet in 1984. Before 1985, Haar
wavelet was the only orthogonal wavelet people know. A lot of researchers
even thought that there was no orthogonal wavelet except Haar wavelet. For-
tunately, the mathematician Yves Meyer constructed the second orthogonal
wavelet called Meyer wavelet in 1985. As more and more scholars joined in
this field, the 1st international conference was held in France in 1987.

In 1988, Stephane Mallat and Meyer proposed the concept of multireso-
lution. In the same year, Ingrid Daubechies found a systematical method to
construct the compact support orthogonal wavelet. In 1989, Mallat proposed
the fast wavelet transform. With the appearance of this fast algorithm, the
wavelet transform had numerous applications in the signal processing field.

t—u

Wi = [ )0 (e

Wavelet transform overcomes the previous problem. The wavelet function
is designed to strike a balance between time domain (finite length) and fre-
quency domain (finite bandwidth). As we dilate and translate the mother
wavelet, we can see very low frequency components at large s while very high
frequency component can be located precisely at small s.
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Fourier transform based spectral analysis 1s the dominant analytical tool for frequency
domain analysis. However, Fourier transform cannot provide any information of the
spectrum changes with respect to time. Fourler transform assumes the signal is
stationary, but PD signal is always non-stationary. To overcome this deficiency, a
modified method-short time Fourier transform allows to represent the signal in both time
and frequency domain through time windowing function [29]. The window length
determines a constant time and frequency resolution. Thus, a shorter time windowing is
used in order to capture the transient behavior of a signal; we sacrifice the frequency
resolution. The nature of the real PD signals is nonperiodic and transient as shown in Fig
18, Fig 19; such signals cannot easily be analyzed by conventional transforms. So, an

alternative mathematical tool- wavelet transform must be selected to extract the relevant

time-amplitude information from a signal. In the meantime, we can improve the signal to

noise ratio based on prior knowledge of the signal characteristics.
TYPES OF WAVELETS

HAAR WAVELETS
Now define the desired wavelet ()

1 ifo<z<1/2 —-1ifl/2<z<1
0 otherwise
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DISCRETE WAVELET TRANSFORM

One drawback of the CWT is that the representation of the signal is often redundant,

since @ and b are continuous over R (the real number). The original signal can be

completely reconstructed by a sample version of W, (b,a). Typically, we sample

W,(b,a) in dyadic grid, i.e.,
a=2"  and b=n2"

DWT, f(m,n)= [ (), (t)dt

where () =2""w(2"t —n) is the dilated and translated version of the mother

wavelet (1) .

The family of dilated mother wavelets of selected @ and b constitute an orthonormal basis

of L*(R). In addition, we sample W ,(b,a) in dyadic grid, this wavelet transform is also

called dyadic-orthonormal wavelet transform. Due to the orthonormal properties, there is
no information redundancy in the discrete wavelet transform. In addition, with this choice
of @ and b, there exists the multiresolution analysis (MRA) algorithm, which decompose
a signal into scales with different time and frequency resolution. MRA is designed to give
good time resolution and poor frequency resolution at high frequencies and good

frequency resolution and poor time resolution at low frequencies.

The differences between different mother wavelet functions (e.g. Haar, Daubechies,
Coiflets, Symlet, Biorthogonal and etc.) consist in how these scaling signals and the
wavelets are defined. The choice of wavelet determines the final waveform shape;
likewise, for Fourier transform, the decomposed waveforms are always sinusoid. To
have a unique reconstructed signal from wavelet transform, we need to select the

orthogonal wavelets to perform the transforms.
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DAUBECHIES WAVELETS

Based on these equation, Daubechies [9], designed a type of wavelet for a
given vanishing moment p and find the minimum size discrete filter. The
conclusion is that if we want the wavelet function with p vanishing moments,
the minimum filter size is 2p. The derivation first starts from 5.17, rewrite
as ‘ _
,—jw

Hy(e™) = V3(——

The absolute-square of this function is

Hy(e) = Hy(e™)Hy(e)
l1+e 71+ e
2 2
24+ el¥ + e
4
w

= 2(cos 5)2”P(sin

VP R(ei).

= 2 )’ R(e’*)R*(e’*)

= 2 ) 7| R(e)|?

1

2)'

DECOMPOSITION AND RECONSTRUCTION OF SIGNALS USING WAVELETS

151



The wavelet decomposition results in levels of approximated and detailed coefficients.
The algorithm of wavelet signal decomposition is illustrated in Fig 22. Reconstruction
of the signal from the wavelet transform and post processing, the algorithm is shown in
Fig 23. This multi-resolution analysis enables us to analyze the signal in different
frequency bands; therefore, we could observe any transient in time domain as well as in

frequency domain.

I @—»rﬂm I
| | g (,/8-1,/4)
—(: —D')
| LS a2l |
|

Fig. '~ Multi-resolution wavelet decomposition. h = low-pass decomposition filter; g = high-pass

Original Level 1 | Level 2 |
Signal
| | Azt |
| | h @ ©-L/®)
| |
|

Al
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decomposition filter; *~/o= down-sampling operation. A'(t), A%(t)are the approximated coefficient of
the original signal at levels 1, 2 etc. D (t), Dz(t) are the detailed coefficient at levels 1,2.

Reconstructed

Level 2 Level 1 Signal

- ALY __@ h!
DZ(”- @ g!

A'(ty @ h’

D'(ty —@—- g

Fig  Multi-resolution wavelet reconstruction. h® = low pass reconstruction filter; g’ = high-pass

— A%t)

— — — —— — — — — —

reconstruction filter; = up-sampling operation. A'(t), A%(t)' are the processed or non-processed
approximated coefficient of the original signal at levels 1, 2 etc. D1(t)', D?(t) are the processed or non-
processed detailed coefficient at levels 1,2.
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The relation between the low-pass and high-pass filter and the scalar function y/(¢) and

the wavelet ¢(7)can be states as following:
#(0) = ) hkg[2t — k]

k
w(t)=Y glklg[2t —k]

k

The relation between the low-pass filter and high-pass filter is not independent to each
other, they are related by:
g[L—1-n]=(-1)"hln]
where g[n] is the high-pass, h[n] is the low-pass filter, L is the filter length (total number
of points). Filters satisfying this condition are commonly used in signal processing, and
they are known as the Quadrature Mirror Filters (QMF). The two filtering and down-

sampling operation can be expressed by:

A'lk]=> A" (t)- h[2k — n]

D'[k]= Y. 4" (1) g[2k ~n]

The reconstruction in this case is very easy since the halfband filters form the
orthonormal bases. The above procedure is followed in reverse order for the
reconstruction. The signals at every level are upsampled by two, passed through the
synthesis filters g’[n], and h’[n] (highpass and lowpass, respectively), and then added.
The interesting point here is that the analysis and synthesis filters are identical to each
other, except for a time reversal. Therefore, the reconstruction formula becomes (for each

layer)

DENOISING USING WAVELETS
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Apply wavelet transform to the noisy signal to produce the noisy wavelet
coefficients to the level which we can properly distinguish the PD occurrence.
Select appropriate threshold limit at each level and threshold method (hard or soft
thresholding) to best remove the noises.

Inverse wavelet transform of the thresholded wavelet coefficients to obtain a
denoised signal.

WAVELET SELECTION
To best characterize the PD spikes in a noisy signal, such as Fig 18, and Fig 20, we

should select our “mother wavelet” carefully to better approximate and capture the
transient spikes of the original signal. “Mother wavelet” will not only determine how
well we estimate the original signal in terms of the shape of the PD spikes, but also, it
will affect the frequency spectrum of the denoised signal. The choice of mother wavelet
can be based on eyeball inspection of the PD spikes [29], or it can be selected based on
correlation ¥ (21) between the signal of interest and the wavelet-denoised signal [38], or

based on the cumulative energy (22) over some interval where PD spikes occur.

. (X -X)Y-Y)
V(X = X) (¥ =¥’

where X and Y are the mean value of set X' and Y, respectively.

E=Y X

where E is the energy and X is the signal vector.

We choose to select the mother wavelet based on the last two methods: correlation
between two signals and cumulative energy over some interval of PD spike occurrence.

We found that the two methods give us a very similar outcome.

THRESHOLD LIMITS
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Many methods for setting the threshold have been proposed. The most time-consuming
way 1s to set the threshold limit on a case-by-case basis. The limit is selected such that
satisfactory noise removal is achieved. For a Gaussian noise [39]; if we apply orthogonal
wavelet transform to the noise signal, the transformed signal will preserve the Gaussian
nature of the noise, which the histogram of the noise will be a symmetrical bell-shaped
curve about its mean value. From theory, four times the standard deviation would cover
99.99% of the noise. Therefore, we could set the threshold be 4.5 times of the standard

deviation of the wavelet-transformed signal to remove the Gaussian noise in the signal.

We have found that for the fiber optic signals, we could simply apply the standard
deviation methods, since the signal is mostly white noises (see Fig 18 and Appendix B),
however for the PZT signals, we should set the threshold case-by-case to best denoise the
signals.

Two rules are generally used for thresholding the wavelet coefficients (soft/hard
thresholding). Hard thresholding sets zeros for all wavelet coefficients whose absolute
value 1s less than the specified threshold limit. It has shown that hard thresholding

provides an improved signal to noise ratio [29]. In this study, we adopt the hard

thresholding method.

LEVEL OF DECOMPOSITION

From the previous section, we have known that the wavelet transform is constituted by
different levels. The maximum level to apply the wavelet transform depends on how
many data points contain in a data set, since there 1s a down-sampling by 2 operation
from one level to the next one. In our experience, one factor that affects the number of
level we can reach to achieve the satisfactory noise removal results is the signal-to-noise
ratio (SNR) in the original signal. Generally, the measured signals from the PZT sensors
have higher SNR than that of the measured signals from fiber optic sensors. So to
process the PZT data, we need more level of wavelet transform (e.g. 12) to remove most
of its noise. For the fiber optic sensor data, we could only go up to 4 or 5 level otherwise

we would remove much of the PD signal, therefore the PD spikes wouldn’t be captured.
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TYPICAL MEDICAL APPLICATIONS

An ECG is not smooth with many sudden transitions. If we analyze the
spectrum, noises and desired signal transitions cannot be separated using or-
dinary filters. Here wavelet transform can also remove the noise and preserve
the features of ECG.

There are still another applications which are not noted. In short, the
wavelet transform is a powerful tool solving the problems beyond the scope
of Fourier transform.
wavelets are applied to the analysis of two types of medical signals, namely infant breathing
signals and ultrasound images. One-dimensional wavelets are used to quantify amplitude
modulation of infant breathing that occurs during quiet sleep. Two-dimensional wavelets are
used to develop enhancement techniques in the wavelet domain, tailored to ultrasound images.
The development of wavelets is described from the backgrounds of mathematics, signal
processing and sub-band coding. One-dimensional wavelets are defined for both continuous and
discrete cases. Two-dimensional wavelets are developed for both separable and non-separable
classes. The construction of both one- and two-dimensional wavelets is described, and examples
of wavelets that are used in subsequent analyses are presented. The analysis of breathing signals
provides information for understanding the physiology of breathing. The wavelet domain is
shown to isolate frequency characteristics of breathing signals, as well as indicating the temporal
position of those characteristics in the signal. Some of the characteristics that were measured
were not distinguished in the original signals. The extent of constant frequency components due
to amplitude modulation of the principal breathing rate is quantified. Breathing in infants is of
particular interest, as it may provide insight into the cause of Sudden Infant Death Syndrome
(SIDS), or cot death. Studies of infants who later succumbed to SIDS, or were at high risk for
SIDS, and infants at low risk for SIDS were carried out. The infants who later succumbed to
SIDS and those at high risk for SIDS showed different characteristics in the wavelet domain
compared to infants at low risk for SIDS. As well as implying that there may be a difference in
the physiologies of infants at high and low risk for SIDS, this result confirms that wavelets can
be used to analyse breathing signals and produce meaningful results. Ultrasound images typically
contain artefacts and low contrast between features of interest and often exhibit a noisy
background. The aim of any enhancement procedure is to reduce the contributions from noise
and artefacts and increase the contrast between the features of interest and the background. A
method to objectively measure improvements in image quality is described, although this attempt
achieved mixed results. Separable and non-separable two-dimensional wavelets are used with
enhancement functions to improve the image quality. Enhancement schemes, including noise
reduction and contrast enhancement, are developed. A spatially varying contrast enhancement
function is also developed. Noise reduction, in combination with the spatially varying contrast
enhancement function, produces an image that reduces the existing artefacts in the image and
increases the contrast for the features of interest. Wavelets are shown to be a useful tool for the
analysis of infant breathing signals and for improvement of image quality in ultrasound images.
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QUESTIONS

1. Define wavelet

2. What is the need for wavelet

3. Give the types of wavelets

4. Write the equation of Haar wavelet

5. Define decomposition

6. Define reconstruction

7. Mention some medical application of wavelets

8. Explain in detail about the decomposition and reconstruction procedure of wavelets
9. Write about the denoising concepts of wavelets in detail

10. Classify wavelets and explain its classification with necessary waveforms
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