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CLASSIFICATION OF SIGNALS AND SYSTEMS
1.INTRODUCTION

1.1.SIGNAL: Any physical quantity if its varies with respect to time it is termed as a
signal.

Eg: time, pressure, velocity, mass, temperature

1.2.SYSTEM: Any physical device which performs an operation on the signal it is
termed as system.

Eg: amplifier system, filter system, rectifier systems

1.3.CONTINUOUS TIME SIGNAL.: If the amplitude of the signal varies
continuously with respect to time then it is termed as continuous time signal. It can be
represented by the symbol x(t).

1.ADISCRETE TIME SIGNAL.: It has got the discrete set of values. It has the
specific amplitude for the specific time intervals. It can be represented by the symbol

x(n).

1.5.CT & DT
WAVEFORMS
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Fig. 1: CT and DT waveforms
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1.6.CLASSIFICATION OF CT AND DT SIGNALS
* Periodic and non periodic signal
« Even and odd signal
* Energy and power signal
* Deterministic and random signal
1.6.1.PERIODIC AND NON PERIODIC SIGNAL

A signal is said to be periodic if it repeats at regular time interval. Non periodic signals do not
repeat at regular intervals
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Fig. 2: Periodic and nonperiodic waveforms

e Condition for periodicity of CT signal»

The CT signal repeat after certain period T, i.e.,
x(t) = I(t'+T0')/
e Condition for periodicity of DT signal
Consider DT cosine wave, x(1) = cos(2n fo1)
x(n + N) = cas[2nfo (n+N)]
cos(2n fon+2mn fo N)

$
For periodicity, x(n) = x(n + N)
cos(2m fon) = cos(2m fonr+ 2x fo N)
Above equation is satisfied only if 2n foN is integer multiple of 2r i.e.,

2nfoN = 2nk, Where k is integer

k‘
fo =5
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* Periodicity of signal x; () +x2()
Let us consider that the signal x(f) =x1(t) +x2(t)
Then x;(f) will be periodic if,

xi(f)

or x(h)

I](t+7:|) = I](t+2T1) = ...

x(t+mTy), Here 'm' is an integer-

Similarly x2(t) will be periodic if,
x2(t)

or x(f)

X (t+T2) = Xa(t+2T3) = ...

xy(t+nTy), Here 'n' is an integer
Then x(t) will be periodic if,
mTy = nT, =Ty, here Ty is period of x(f)

This means 'Ty'is integer multiple of periods of x;(f) and x»(t). For above equation we
have, '

T n . : :
=~ =, ie. ratio of two integers
T, m

\

e Periodicity of x; (1) + x,(n)

Here x(n) = x3(n)+x2(n) is periodic if,
Ny LB i.e. ratio of two i
N i 10 O O integers

The period of x(1) will be least common multiple of N; and N,

1.6.2.EVEN AND ODD SIGNAL

« Asignal is said to be even signal if the inversion of time axis does not change the
amplitude. It is also called as symmetric signal.

© X)) =x(-1)
* x(n) =x(-n)

« Asignal is said to be odd signal if the inversion of time axis also inverts the amplitude
of the signal. It is also called as antisymmetric signal.

X(t) = -x(-t)
x(n) = -x(-n)

Examples of even and odd signal
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Fig. 3: Even and odd waveforms

Representation of signal in even and odd parts
1) Let the signal be represented into its even and odd parts as,

x() = x:(t)+x0(8)
Here x.(#) is even part of x(¢) and
Xo(f) is odd part of x(f)
ii) Substitute —t for t in above equation,
x(—t) = x.(=t)+x.(—0)

Now by definition of even signal, x.(—f) = x.(f) and by definition of odd signal

Xo(—t) = —x, (). Hence above equation will be,

x(—t) = x.(8)—x,(t)
iii) Adding equation (1.2.7) and equation (1.2.8),
MO+X0) = 2x()) = xe() =5 (X(O) +2(~D)

Subtracting equation (1.2.8) from equation (1.2.7).

MO-X(~1) = 2%6(0) = Xo () =5 Ix() —x(~))

Even part : x:(f) = % (x(6) + x(—8))

0Odd part : x,(t) =32-|x(t)-x(-:)|

Similarly for DT signals we can write,

Even part : x.(n) = -li» {x(r1) + x(—n))

Odd part : x,(n) =%{x(n)—.\(—n))




1.6.3.ENERGY AND POWER SIGNAL

it

vt R The instantaneous power

dissipated in the load
resistance R is given as

pt) = E:;Lﬂ- =i2(OR

Normalized power
It is the power dissipated in R = 1Q load.
pit) = (1) = i2(t)
Let v(t) and i(t) denoted by x(t),then the normalized power is
p(t) = x3(t)
Energy

E= j |x(t)|*dt  for CT signal E = Z |x(n)|>  for DT signal
- ==

T{2

P= lim = [ [x(f) |2 dt for CT signal
-T2
: 1 N
P = .'s.'h-lﬂu NI Z | x(m) |2 for DT signal

n=—MN



Power

A signal is said to be power signal, if its normalized power is non zero and finite

For power signal, 0 <P <

A signal is said to be energy signal, if its total energy is finite and nonzero

1.7.COMPARISON

For Energy signal, 0 < E<w

R

Energy signal

Sr. No. Parameter Power signal
 § Definition 0<P<w 0<E<w»
2. Equation T2

1
P= lim = | x2(t)dt
T—.mr —le /
1 N
im oy L X

N n==N

E= j |x(t)Rdt
" /’/

= ¥ xR

3. Periodicity

Most of periodic signals are Power ;

Most of the nonperiodic signals

signals are Energy signals.
4. Energy and power Energy of the power signal is Power of the energy signal is
infinite. zero,
5. Examples x(t) x(t)
i
\/ -
x(n)
1111 xo)
—
¢ I T ik ) ? N
BESERY

Table. 1: Comparison

1.8.DETERMINISTIC AND RANDOM SIGNAL

» Deterministic: If any signal can be represented by proper mathematical equation then
it is termed as deterministic signal

» Eg: sine wave, cosine wave, exponential

7




« Random: It can not be represented by any mathematical equation

* Eg: all kind of noises during electronic experiments
1.9.STANDARD ELEMETRY SIGNALS

* Unit step signal

* Unit Ramp signal

* Unit impulse signal

* Exponential signal

1.9.1.UNIT STEP SIGNAL

1 t=0

Unit step function is denoted by u(t). It is defined as u(t) =
0 t<0

()

2 Itis used as best test signal.

= Area under unit step function is unity.

Fig. 4: Unit step signal
1.9.2.UNIT RAMP SIGNAL

area under unit ramp is unity

Ramp signal is denoted by r(t), and it is defined as r(t) = { t t=0
0 t<0
r(t)
2
1
0 1 2 ’t

Fig. 5: Unit ramp signal



1.9.3.UNIT IMPULSE SIGNAL

1 t=0

Impulse function is denoted by &(1). and it is defined as o(t) =
p y o(t) (t) {0 ££0

5(t)

v

0 t

Fig. 6: Unit impulse signal

1.9.4.EXPONENTIAL SIGNAL

Exponential signal is in the form of x(t) = et

The shape of exponential can be defined by « .

Casei:if @ =0 — x(t)= e =1

s X(1)

Case ii: if a < 0 ie. -ve then x(f) = €



4+ X (t)

1

k

Case iii: if a > 0 ie. +ve then x(t) = e

4 X(t)

t Decaying exponential
at

—t Raising exponential

Fig. 7: Exponential waveforms

1.10.STANDARD ELEMETRY SIGNALS IN DISCRETE TIME

Unit step signal
Unit ramp signal
Unit impulse signal
Exponential signal
Sinusoidal signal

Complex exponential signal
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1.10.1.UNIT STEP SIGNAL

The unit step sequence is defined as

u(n) =1forn >0
=0forn<0

The graphical representation of u(n) is shown in Fig

1.10.2.UNIT RAMP SIGNAL

u(n)

Fig. 8: Unit step signal

The unit ramp sequence is defined as

r(n) =nforn >0

=0forn < (

The graphical representation of 7(n) is shown in Fig

Fig. 9: Unit ramp signal

11



1.10.3.UNIT IMPULSE SIGNAL

The unit-sample sequence is defined as

d(n) =1forn=0
=(forn#0

The graphical representation of ;S(n) is shown in Fig

11 5(n)

. o . o 5.

S5 4 =3 4 94 o0 1 2

[y ]
L 4
w
=

Fig. 10: Unit impulse signal

1.10.4. EXPONENTIALSIGNAL

The exponential signal is of the form r(n) = a" foralln

0, 10 S
§ 8
- b bk ?6 a>1
_:, 4 % 4 T
2 2
0 TTTTT????Q? 0 ocw‘???TTTTT
-10 =7 iE 5 -5 0 5 10
n

Fig. 11: Exponential waveforms

1.10.5.SINUSOIDAL SIGNAL

The discrete-time sinusoidal signal is given by
x(n) = Acos(won + &)

where wy is the frequency (in radians per sample) and ¢ is the phase (in radians).
Using Euler’s identity, we can write

A('os(w(,n -+ (,‘)) = g(}i'bcqu-'ora 4 ﬁc—jOc—J*'o"
2
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Complex Exponential
The discrete-time complex expénential signal is given by
z(n) = q"el(@on+e)’

= a" cos(won + ¢) + ja" sin(won + ¢)

1.11.PERIODICITY PROBLEMS

(i) x(1) = cos 0.01 7 n .
Compare with, x(n) =cos2mfn

L 2nfn=001mn = fa DL e

Here f is expressed as ratio of two integers with k = 1 and N = 200. Hence the signal
periodic with N-= 200. ‘

ii) x(n) =cos3n

is

~

Compare with x(r) =cos 2n i

Yonfn=dmn o f= 'I]\il = -g- i.e. ratio of two integers.

Hence this signal is, | periodic with N = 2

iii) x(n) =sin3n
Compare with x(11) =cos2nfn .

2nfn=3n = f= % = 53-1; which is not ratio of two integers.

13



Hence the signal is not periodic

iv) x(n) = cosZTJ,coszi’_'
Compare with, x(n) = cos2nfi+cos2nfall
2fi = fl.;.ﬁ; 1 B

Here since %’— = ; is the ratio of two integers, the sequence s periodic. The period of
2

x(1) is least common multiple of Ny and Ny, Here least common multiple of Ny =5 and
N, =7 is 35. Therefore this sequence is, | periodic with N = 3.

v) x(n) = cos( Jcosﬂt :
8 8

He 2 4 s E =—L . . .
~ Here nhin 5 :> fi T which is not rational
nm 1 N o o
and nfon = —8-:> fi =i Whlch is rational

Thus cos(g) is not penodlc and cos( 3 ) is periodic. x(n) is non periodic since it is the

product of periodic and nonperiodic signal.
vi) x(n) = sin(n+0 2n)
Compare with, x(n) =sin( (2nf '+ 6)

:.0=nie. phase shxft and

wmfn=02= f 02 _ L ohich is not rational. Hence this signal is iodic
2n 10 g1 not periodic.
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~ wii) xn) = e(j%}

L% W |
n+jsmn-—n

cos =
- 4

4
Compare with, x(n) = cos2n fn+ jsiﬁ 2nfn

o i @
Here 2nfn = %Il = f 5N which is rational.

Hence this signal is, periodic with N = 8

x(t) =cost +sin/2 t
Compare with, x(t) = cos 2nfyt + sin 2nfyt

it =t > f; -—n- HenceT1 =2n
' «/5 1 n .
and. 2nfot = 2t == ===
fit = 2t = f T Hence T = 2n
; : i I T
The ratio of two periods is, - = —— = 2. Since the ratio ~- s not ratio of two
T V2n T

integers (i.e. not rational number), the signal is[not periodic.

x(t) =2 cos100nt +5 sin 50¢.

Compare with, x(t) = 4 cos anlt +Agsin 2nft

o 0 SO | 1
2nfit = 1007t = ﬁ-f-SO—T , Hence Ty = %
: : 5 %5 1
and aft = S0t = f2-2n_n_Tz’H eTo-z—5 i
R
The ratio of two peeriods is, o 75 =5 which is not rational. Therefore this

signal is{not periodic.
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x(t) =2cost +3_cos§

Compare with, x(t) = A cos 2nfit+ Bcos2nfpt -

Anfibimr it o f1=711;=;—1,H9nceTl =2n*
t el

fy=— = Ty=6n-
T fa - T2,I~Ience2 n

and . 21tf2f

The ratio of two peeriods is, L l Which is rational.
Tz 6n 3

Hence the signal is| periodic. The fundamental period is least common multiple of
Ty=2nand T, =6n It will beT=6n.

x(t) = cos2(2nt)

o lecoshnt 2 140520
= since cos* = 7
171 :

z §+§cqs4nt

Here -12- is the DC shift added to the signal n(t) = ;c_os 4,

- Butx(f)is periodic. It will remain periodic after adding the DC shift, Hence the signal
is|periodic. ‘ :

And, 2nft=dnt = f=2=71,-, hence period T=l§.

1.11.2.EVEN AND ODD COMPONENTS PROBLEMS
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x(”) - c—(n/41

1u(n)

Even and odd parts of the sequence x(n) are given by equation

Even part, x.(n) = %{x(n) +x(-1)) and

Odd part, x, (1) = %{x(n)—x(—-n)}'

...... ; x(n) X)L : 1

B | B B e =B,
- S e i i Original sequence - - 5 Ofiginal sequence
E=EEREnSe . SEEE DR il o] SO T
¥ MBI BEEET SRR EENEREAEENNE
EERERE ST =2 b o T SN B R MR
éi:x(—,n) _____ e & > b i £ _iX(n) i .
SRR ) = iR !
: =} ! Foided sequence ) Folded sequence

St : v o] i
BEEEECE -5-4=3-2-1

_u,.’ ,(,’ l o SR LSO, ol Lo LU IR S SRS S 41 B! W 1R E v i S R ot S
2 : : T :

0 I B O A 5 O ER G 1o R o 5 kO
! | + Folded sequence : A Folded sequéncg
} . . : 7 1 v ;
15 ¢ e I B o W 62 1l v e O, PO e
097 T r i Y T ? K 3
| =5-4-3-2-1 0. i ] | P~ 2-1 0]

IR ARE RS E D0 K Bl i) =g bl-x] ||
! { : ' L. i i i i i J PR ; i
| Evenpart e dk L

X5 g ; ....... | E ........ , l i

gl § 9 P St 8 I (55 S
3

O
o [O

SR T S -

SUNREETIINNG
i "é ‘é ;

Fig. 12: Even and odd signal
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x(n). - Im[e/nm/4)

nmo . . nmn WL G
I cosT+]smTJ, sin /% =cos6+;jsin O

= sin 2"
= S 4
nn 1
Compare this equation with x(n)=sin2nfn, hence 2nf n=— = f=3 cycles/sample.
Since f =% =%. There will be 8 samples in one period of DT sine wave.

Fig. 1.2.10 shows the waveform of x(n) = sin."—l;:t and its even and odd parts are also

shown. Even and odd parts are given,as,

sinT
x(~n) x(=n)
-~ .
v A VNG
.._“&/ Lo NI T
\'\.‘A/ ; /
BESNEEDENRERAS !
Xen =%[x(n)+x(-n)] =0

i ! i
e o sef $ Zero even part o
i i i j i

18



Even part x,(t) = 5 (x(t) +x(~1)] and

Odd part xy(f) = —12— {x(t) —x(-1)}

Even parnt of x{1) == >
Cox(ty
|
o
> e
i 0 i 2
i i
L ox(=t) | x(—1) ] e =
A \
,,,,, Ml (S i- il =
L D : 1 :
O S B S 9 T 1O s o = e —
£ H 3 3 i t H : x i t
i —2 -1 : 0 i i - £ -—2 H -1 Or< & F - =20 e e
e Lot Sttt e S St S S ¢ :
i i i 1
Xo() = & [x() + X(-O)] xo) = % (x() —x(-1)
Even part | Odd part
e B I s __1;‘.___,3__- ; - .l
05 : : N --0.5 NS S e
- 7 t -2 -1 - .
=2 -1 i 0 A = i R
- i N ! 05| S i 0 =2 vea
! . .
i : i e e g s —

Fig. 14: Even and odd signal
T
xt) = cosz(i t]

_ 1+c§snt by Rl o 1+c3529

+ —cos 7t

N =
N =

Compare this equation with x(t) = A+ Acos2nft. Hence uft=nt > f -% or T=2

Fig.  shows the waveforem of x(t). Even and odd parts are given as,

Even part, x(!) %[x(t) +X(-)} and

L

Odd part, Xo(f) 3
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o | cof2 i
.......... - T =2 : ( :
X P P e X0
1 : { : 1“ .................
; 5 | NG
i i ! |
0 i i t i
! } { i
1 I N N .
xe()=5[x(')+x('t) |' | # 2.= ol .
Pql Even part ! i 4 SN
i ! E | i ( Zer?odd part
X | '
L 9] MENEEEEN
[ i L i ] | i
Fig. 15: Even and odd signal
1.11.3.POWER OF THE ENERGY SIGNAL

Here limits are changed to

—©, ®was T — w©

Let x(t) be an energy signal. The power is given by equation

P

1 T/2
= lm = j|x(t)|2dt
>R Ly
[ T/2

o & I
= lim =| lim J'Ix(t)lzdt
Tow! [Tow.;,

1]
= llm —_— t 2 dt
Tl _‘LIX()l
=. lim l-E ' Since quantity inside brackets is E.
T>ow T
= 0xE=0, since lim -1—=0'

T>w

Thus,

Power of energy signal is zero over infinite time.

1.11.4ENERGY OF THE POWER SIGNAL
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Energy of the signal is given by equation

- [Ixora

Let us change the limits of integration as —Z, Ly and take lim . This will not change
2 2 T oo

meaning of above equation.
ie.,
T)2
lim [ |a(t)|2 dt

—®_Tp

m
Il

1
lim [T-= I | x(t)|% dt by rearranging
T —>» 0 _le

1 T2
lim T-| lm j | x(t)|? dt
Tow |To>wo T

lim TP since quantity inside brackets is P.
T->w

o By takint limits as T = o

Thus, [ Energy of the power signal is infinite over infinite time

1.11.5.PROBLEMS OF ENERGY AND POWER SIGNALS

e

Step 1 Obaewe the SIgnal carefully If it 1s penodnc and infinite durahon then it can be
| power sxgnal Hence calculate its powes directly. |

StepZ e the sxgnal 1s penodlc but of finite duration, then it can be energy slgnal
Hence calculate its energy directly. |

Step3 lf the sngnal is not periodic, then it can be energy s1gnal Hence caloulate its
 energy directly. 3 . ,

21



PROBLEMS

This signal is not periodic. Hence as per-step 3, calculate its energy directly.

E= 3 [+ By definition
" n=-w
o l n
=) (‘) since u(n) = 1 forn = 0 to ©
2
n=0
Here use, Z a" = % for |a| < 1. The above equation will be
n=0
B ot wh
1-1
2

Since energy is finite and non zero, it is|energy signal with E = 2.

x(1) =[%J 1(11)

This signal is periodic (since u(n) repeats after évery sample) and of inifinite duration.
Hence it may be power signal. Therefore let calculate power directly,

1 N
P = lim | x(n) |2
. N-ow 2N+1 n=Z—N
v 1 N
= lim (1)2 Since u(n) =1 for0 <n <
N> 2N +1 ngo

N
Here Z(])2 means 1 + 1 + 1+ 1...... forn =0 to N. In other words, 1 +1 + 1 + 1

n=10 ¢
...... (N + 1) times = (N + 1). Therefore above equation will be,
1
= i ———(N+1
F = Nlinoo 2N +1 ( +)
1
N+1 45

=

N —

The power is finite and non zero, hence unit step function is power signal with P =

22



x(n) = u(n)

x(t) =rect [%ﬂ—)

t 1 for — Ig_ <t< E-
rect(ﬁ,— = 2 2
0 0 elsewhere

It is non periodic. Hence it can be energy signal as per step 3. Hence calculate
energy directly

f |x(t) |2 dt

-00

m
]

(1)2at

1l
Nl 5‘]'—-&‘ a3

)

=0, =T

The energy is finite and nonzero. It is|energy signal with E=T,.
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x(t) =cos? w,t

This is squared cosine wave, hence it is periodic. Therefore this can be periodic
signal. As per step 1, calculate power of this signal directly,

L TR .
P = lim. T I |x(t)|2 dt . By definition
’T‘-»oo T2
The given signal x(t) = cos? wot has some period T, and it is real signal. There above
equation will be, '

To/2
P = lim = I [cos? w,t]?dt
Ta —)ooT To/2

cos* w,t . It can be expanded by standard trigonometric

Here [cos? w,t]?
relations as follows :

To/2 1
P = lim —l- { —[3+4 c0os 2wyt +cos 4 w,t] it
To—» o _T0/28

P- ,af by [ o220 ]" ot

To=rob N
ho/l)
oY}
- XS | ITO/';, 14+ €038 QonL] Ji
A /Ty et
CTo—7d —)"I)., ] y
[ O 2
o i g J-J‘?/» o [ 1r o]t
o~7-U ,mlb
¥ ) de
‘ lo % 9 Eod 2 Wt
= »’QJ\/V‘ ,/r /.)‘I/q L‘*‘ CO"‘S @‘*ga\« ‘f'
Tovw 03 j
"I}lg |y Coalydlot ) 3 wm«s’»oﬂm) dt
- Aira [ . J i '/"1 £\+ ( & Wl
Ko i
o7 “To et | de

» T 2 1)
/(‘:M ) ]/T .h‘ '/? [
To7  ° ZTop - - _
19/, L,@gbwgoi + o3 f/ugoL] de
= Amo J 1/9 [3 $ .

/T,

"

“Top,
24



To/2 To/2 To/2
l 2 o 20,f dt+ i 0s4 w,t dt
= lim = I —dt+ lim = 4 cos w‘,ht+T1m C o
To—» 1o o2 8 To—m Lo B \o —» o/ D
This term will be zero This term w 11l be also zero
since it is integration of since it is mtegnhon of

cosine wave over "full cycles” cosine wave over “full cycles”

13
n 221 74040

Toa Ty 8
= lim = é’r :é
To-MT 8 8
Th onal o fr i TR
¢ power of the signal is finite and nonzero, hence it is| power signal with P = 3
3 i -
x(t) =rect (—-)cos W, t
T,
| | COSs wt I .
S O 1 SN T I e OB TR R NS S (.
~ ‘ ! i ! ! 1
: i ! | 1
- ! /
, t+—
g | | 0 l . |
N D N I B
S LI 1 0 N
' | rect (<) ? '
HEENENESFEEN
e —f— e ]
| | i 14 | i l
NN 1
ST ST TEES: sy ___.{ — ———— !
N | ] I .
f _Jo { 9] To | '
| EE rect{ t)cos;——-t T '
w
! ! | ‘To| 1 |
! ' — - o e ‘k 1 -+ e __AI.. ...... —
u : Jn |
1T 5 S T b S I - ay . G
i, N T /Z7INT AT+ T
L LT NIA T NA T,
TP T3 11T

i
Two full cycles
of cos wgt
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Fig. 16: Rectangular and sine wave

The given function is the product of cosine wave and rect function Fig. show
how x(f)is derived. :

o Cos yt is periodic and infinite duration signal.

o Basically it is power signal.
o cosa,t is multiplied with the rectangular pulse. Hence the resultant signal is a

cosine wave of duration ——i"— <t 57",

o It is assumed that there are multiple number of cycles of cosine wave in
Ty

—LStS

S

The final signal is periodic but of finite duration. Hence it can be energy signal.
Therefore calculate as per step2, energy directly.

E = I | (t) |2 By definition

Tof2 Tof2.

- [ lostodpt - [(lﬂgi%)m
T2 T
To[2 Tof2

1 { 1 T

" 5 dt + 7 I €05 20, =7
T T

This term will be zero
sinceitis integration of
cosine wave over "full cycles"

L
.

Here energy is finite and non zero, hence it is Energy signal with E =

1.12.CLASSIFICATION OF CT & DT SYSTEMS
 Static and dynamic
 Linear and nonlinear
« Time invariant and time variant
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e Causal and noncausal
» Stable and unstable

1.12.1.STATIC AND DYNAMIC SYSTEM

When the output of the system depends only upon the present input sample, then it is
called static system. For example,

1

y() = 10-x(n)
or ym = 15-x2(n) +10 x(n)

are the static systems. Here the y () depends only upon " input sample. Hence such
systems do not need memory for its operation. A system is said to be dynamic if the
output depends upon the past values of input also. For example,

ym = x(m+x(m-1)
This is the dynamic system. In this system the n output sample value depends upon
n" input sample and just previous ie. (n-1)" input sample. This systems needs to store

the previous sample value. Consider the following equation of a system.

1.12.2.TIME INVARIANT AND TIMEVARIANT SYSTEM

To test for shift invariance, excite the system by the input x () and get output y ()
Then delay (or shift) the input by 'k’ samples and calculate the output. Let this output be,

y k) = T[x(r-¥)]
Thus 1 (1, k) = response due to delayed/shifted input.

Now we have y () computed earlier. Hence obtain y (1-k) from Jj (1) by delaying by 'k
samples. ., y(1-k)= output delayed/shifted directly. Then the system is shift invariant
or time invariant if,

y(n k) = y(n=k) for all values of 'k’
And the system is time variant or shift variant if,
y(n, k) # y(n-k) even for single value of 'k’

1.12.3.LINEAR AND NONLINEAR SYSTEM
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ar if it satisfies the superposition principle. Let

. ic said to be line : p )
A system is saic system is said to be linear if and only

1 (1) and x7 (1) be the two input sequences. Then the
if

T xi()+axp () = M T[x (]+ a T [x2 ()]

a4
x1(n) T
Discrete -
o y(n) = T {@1x4(n) + azx(n)}
system
X5(N)
az
T
Discrete a
— time X
x1(n) system
y'(n) = a T [x4(n)] + a,T [x3(n)]
T
Xx5(n) Ditsircnr:te
system ar

Fig. 17: Linear system

1.12.4.CAUSAL AND NONCAUSAL SYSTEM

In the causal system the output depends upon past and present inputs only. That is
the output is the function of 100, X001 x(1-2) x(1-3)... and 50 o, The stom s
noncausal if its output depends upon the future inputs also. i, Xn+1), x(n42) yand 50
on. Thus-the noncausal systems are physically unvealizable The f

_ ollowing example
llustrates cousal and noncausal systems, .
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STABLE AND UNSTABLE SYSTEM

When the every bounded input produces a bounded output, then the system is called
Bounded Input Bounded Output (BIBO) stable. The input x(n) is said to be bounded if
there exists some finite number M, such that,

l.‘((ﬂ)‘l < My<w

Similarly output y(n) is bounded if there exists some finite number M, such that,

v < M, <=

If the output is unbounded for any bounded input, then the system is unstable. The
unstable systems produce erratic outputs. '

1.13.PROBLEMS OF DISCRETE TIME SYSTEMS

y (1) =cos [x (H)]

A system is static if its output depends only upon the present input sample. Here
since y (1) depends upon cosine of x(n), i.e. present input' sample, the system is
static. ‘ .

For two separate inputs the system produces the response of,
T {x; ()} =cos [x1 ()]
T {x; ()} =cos [x2 (0]

n

ya (1)
The response of the system to linear combination of two inputs will be,
y3() = T{a x1 (n)+az xa ()} =cos [m x1 (m) + a2 x2 )]
The linear combination of two outputs will be,
ys(n) = a y (n)+ a2 y2 () =a cos [x; ()]+az cos [xa (n)]

Clearly y3 (1) # y3(n). Hence system is nonlinear.
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The system is said to be shift invariant or time invariant if its characteristics do not
change with shift of time origin. The given system is,

y(n) = T {x(n)}=cos[x(n)]
Let us delay the input by k samples. Then output will be,
y(, k) = T{x(n-k)}=cos [x(n-k)]

Now let us delay the output y(n) given by equation (4.2.25) by 'k’ samples, i.e.
Y (n=k). This is equivalent to replacing 1 by n-k in equation (4.2.25). i.e.,

y(m-k) = cos[x(n-k)]
Comparing above equation with equation (4.2.26) we observe that,
y(n k) = yo-k)

This shows that the system is shift invariant.

The system is said to be causal if output depends upon past and prescat .

; S )4

only. The output is given as, '
y(n) = cos[x(n)] A

Here observe that n" sample of output depends upon n* sample of input +,
Hence the system s a causal system,

For any bounded value of x (i) the cosine function has bounded value. Fence y1,
has bounded value. Therefore the system is said to be BIBO stable.

Thus the given system is,

Static, nonlincar, shift invariant, causal and stable.

30



y (n) =x (1) cos (o 1)

This is a static system since, the output of the system depends only upon the
present input sample. ie, n output sample depends upen n' input sample.

Hence this is a static system.
We know that the given system is,
y(@) = T {x(m}=x ) cos (wo n)
When the two inputs xi (n) andx, (n) are applied separately, the responses
v (1) and y2 (m) will be,
T {xy (n)} =1, () cos (0o )
T {xa (1)} = x2 () cos (o 1)

y ()
2 ()

The response of the system due to lincar combination of inputs will be,
Y3 () =T{a xy () +02 X2 (M} =[ar x () + a2 xa () ]cos (w9 )

=y x; () cos (o 1) + a2 X2 (1) cos (0 1)
Now the lincar combination of the two outputs will be,

s () = gy () 1 az g2 ()

=y Xy () cos (ogn) ay xo (n) coss (o)

From above equation and equation (1.2.28),

ya ) =y (). Hence the system is lincar,

The system equation is,
() = x(n)cos (w0 1)

The response of the system to delayed input will be,

y (1, k)

i1

T {x (1-k)}

x (n-k) cos (my n)

Now let us delay or shift the output y (1) by 'k’ samples. i.c.,
y(1-k) = x(n-k) cos[og (n-k)]

Here every 'if' is replaced by (1-k). On comparing above equation with equatic

(4.2.29) we find that,

y(n, k) # y(n-k) Hence the system is shift variant.
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In the given system, y(n) depends upon x(n), ie. present output depends upo:
present input. Hence the system is causal.

The given system equation is,
y(n) = x(n) cos (wp n)

Here value of cos (g 1) is always bounded. Hence as long as x (1) is bounded, y!
is also bounded. Hence the system is stable.

This system is,

Static, lincar, shift variant, causal and stable.

y(n)=x(-n+2)

It is clear from above equation that nh sample of output is equal to (—n+2)r

sample of input. Hence the

system needs memory storage. Therefor tem ¥
Dynamic. y storag e the sys

Itis very easy to prove that this system is linear,

The output y (i) for delayed input will be, =
ymk) = T (n=k)}
= J_‘(—'” +2 —k)

Now the delayed output will be obtained by replacing n by (1-k) in the system
equation ie.,

y(n-k) = I[—("‘k)+2]
x(-nt+2+ k)

On comparing above equation with equation (4.2.30) we find that,

y(n, k) # y(n-k) Hence the system is shift variant
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In the given system equation, when we put =0 we get,

] (0) = x (2)
Thus the output depends upon future inputs. Hence the system s noncausal,

It is clear from the given system equation that, as long as input s bounded, the
output is bounded. Hence the system is a stable system.

Thus the given system is,

Dynamic, linear, shift variant, noncausal and stable.

y (1) =[x ()|

The output is equal to magnitude of present input sample. Hence the system does
not need memory storage. Therefore the system is static.

The given system -equation is,
y(m = T{x@m}=|x@)
For two separate inputs x; (n) and x; (7) the system has the response of,

T {x1 (W} =|x1 (1) }
T fx2 (1)} =|x2 ()]

1 (1)
y2 (1)

The response of the system to linear combination of two inputs x; (1) and x2 (1) will
be,

T {ay xy () + a2 x2 (m}

]

y3 (1)

lay xy (1) + a2 x2 (”)|

Now the linear combination of two outputs will be,

ya) = @ oy () +az yz ()

a vy ()] + az |x2 (1)

Il

Here observe that y3 (1) # y5 (n). Hence the system is nonlinear.
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Delaying the input by 'k' samples, output wili be,
ym k) = T{x(n-k)}
Jx (1n-k)|

1]

And the delayed output will be,
y(n-k) = |x(n-k)

Since y (1, k) =y (1-k), the system is shift invariant.

The system equation is y (1) =|x (n)]. The output depends upon present input. Hence
the system is causal.

From the given equation it is clear that as long as x(n) is bounded, y (1) will be
bounded. Hence the system is stable.

Thus the given system is,

Static, nonlinear, shift invariant, causal and stable.

y(n) =x(n) u(n)
The output depends upon present input only. Hence the system is static.
The given system equation is,
y(m = T{H@}=x0)un)

The response of this system to the two inputs x; (1) and x, () when applied
separately will be,

y1 (1)
y2 (n)

T {x1 (M} =x1 (1) u(n) }
T {x2 ()} =x2 (n) u(n)

The response of the system to linear combination of inputs x; (1) and x, (1) will be,

T {ay x; (n) +az x, ()}

Y3 ()

[a1 x1 () + a3 x> (1) Jue (1)

ay xy (M) u () + ax xa (1) u(n)
The linear combination of two outputs of equation
Y300 = ap vy (1) + a4z v (n)

= apxy (M un) +az xa (n) 1 (1)

From above equation

¥3 (M) = y3(n), hence the system is linear.
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The response of the system to delayed input will be,

T{x -k}

y(n, k)

x(n-k)u (”).

The delayed output will be obtained by replacing "i' by n-k. ie.,

y(n-k) = .\'(n—k)u(n-k)
\
Here, on comparing above equation and equation (4.2.35), we find that,

y(n, k) # y(u—k) Hence the system is shift variant.

The system equation is, y (1) =x(m)u(n). The output depends upon present input
only. Hence the system is causal.

We know that u(i)=1forn>0 and u(n) =0 forn<0. This means u(1) is a bounded
sequence. Hence as long as x(n) is bounded, y(n) is also bounded. Hence this

system is stable.

Thus, the given system is,

Static, linear, shift variant, causal and stable.

y(m) =x(n)+nx(n+1)

From the given equation it is clear that, the output depends upon the present
input and next input. Hence system is dynamic.

The given system equation is,
y( = T{x@}=x@m)+nx@m+1)
If we apply two inputs x; (1) and x, (11) separately, then the outputs become,
yi () = T M}=xi () +nx (n+1) 1
and y2 (1) = T{x, (M}=x2 () +nx; (n+1) }

Response of the system to linear combination of inputs x; (1) and x5 (1) will be,

]

T {ay xy (1) + a2 x2 (M}

ay [xy () +nxy (n4+ )]+ a2 [x2 (1) +nxz (n+ 1]

y3 ()

i

The linear combination of two outputs given by equation (4.2.37) (a) wili be,

ya() = ayi (0) +ay ya (1)

= m [x) () +nx, (n+ 1]+ az [x2 () +nx2 (n+1)]
On comparing above equation with equation (4.2.38) we observe that,

y3 (n) = Y3 (1), Hence the system is linear.
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The given system equation s,
yly = Thelnf=xtm vnxiny 1)
Response of the system to delayed input will be,
yOLk) = Tlem-F)
= x(n=k)vnxm=k +1)
Now let us delay the output of equation (4.2.39) by 'K samples. i.c.,
y(i=k) = x(m=k)+(n-k)x(n-k +1)

Here we have replaced 'i by ‘n-K. On comparing above equation with
cquation (4.2.40) we observe that,

y(n, k) # y(n-k), Hence the system is shift variant.
"he given system equation s,
ym) = x(m+nxmn+1)

Here observe that n™ output sample depends upon (n+l)”' i.e. next input sample.

That is the output depends upon future input. Hence the system is noncausal.

In the given system equation observe that as n—m, y(n) > even if x(n) is
bounded. Hence the system unstable,

Thus the given system is,

Dynamic, linear, shift variant, noncausal and unstable.

1.14. REPRESENTATION OF DISCRETE TIME SIGNALS

» Graphical Representation
» Functional Representation
» Tabular Representation

» Sequence Representation
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Graphical Representation Functional Representation

x[n]

3forn=0
§ 5forn=1
s x(n) =
5forn=2
I 3forn=3
01 2 3 n
Sequence Representation

x(n) = {3,5,5,3}

Fig. 18: Representation of signals
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Tabular Representation

x(n) | 3 5 [5 |3




‘( :) )
INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING
DEPARTMENT OF BIOMEDICAL ENGINEERING

UNIT — Il — Analysis of Continuous Time Signals — SBMA1304




ANALYSIS OF CONTINUOUS TIME SIGNALS

Analysis of CT signals and systems can be performed using following tools :

i) Fourier transform
i) Laplace transform

iii) Various properties ~of systems

iv) Characterization of LTI systems
In this chapter we will study following topics :

i) Properties and examples of Fourier transform

ii) Properties and examples on Laplace transform

iii) Properties of systems such as causality, linearity, time invariance stabxht} etc.
iv) Convolution integral for LTI systems.

v) Use of Fourier and Laplace transforms for systems analysis.

2.1. FOURIER TRANSFORM

Periodic signals which extend over the interval (-, ) can be effectively represented
with the help of fourier series. A periodic signals which are strictly time limited can also
be represented by fourier series. A time limited signal means it has zero value outside the
specified interval. And asymptotically time limited means as time approaches to infinity
(0), the value of signal becomes zero [i.c.x () = 0 as|t| =] Such time limited signals can
be more conveniently represented by fourier transform in frequency domain. These signals
are aperiodic because their period Ty — . #

Fourier transform can also be found for periodic signals. It provides effective reversible
transformation link between frequency domain and time domain representation of the
signal. We have seen previously that for nonperiodic signals Ty — . As the period of the
signal Ty >, fo=0. Therefore the spacing between the spectral components becomes
infinitesimal and hence the frequency spectrum appears to be continuons. Whereas periodic

w
signals has fixed period Ty. Therefore their frequency spectrum is discontinuous as We
have seen in the examples in the last section.



2.2. DEFINITION

Let x (t) be the signal which is function of time t. The fourier transform of x(f) is given

Fourier Transform : X (0) = I x() e-lot g or

X(f)-“-j x(t)e-i2=ft 4t since ©=27f

Similarly x (f) can be recovered from its fourier transform X (f) by using inverse fourier
transform.

Inverse Fourier Transform : x(f) J' X(wei® do

L
T 2n

]

x() = | X(f)eift df

-

The functions x(f) and X (f) form a fourier trahsform.pair is written by a shorthand
symbol as shown below, :

x(t) © X(f)
Other shorthand notatior{ for fourier transform is as-shown below,
X() = Flo)
and x(t) = FX(f)]

Fourier transform thus can be considered as a linear operator as shown in Fig.

NG X(f) X(f) L x(t)
U (T T B — R
(a) Fourier transformation and (b) Inverse fourier transformation



2.3. PROPERTIES OF FOURIER TRANSFORM

Linearity _(Superposition)

Let x1 (f) ©Xi (f) represent a fourier transform pair and x» (f) <>Xa (f) represent
another fourier transform pair. Then for all constants like C; and C; we have,

C1 X1 (t)+C2.X2 (t) Lo d C] X1 (f)+C2 XQ_ (f)

Proof : By definition of Fourier transform,

FICi x1 () +Cy xp ()] T [Cix () +Coxy ()] e-i2eSt dt

-0

G I xp (f)ei2nft dt+C, I Xy (t)e-i2nft gt

- -0

Ci X (f)+Ca Xz (f) : By definition of FT

Linearity CixnM+Cxne G X (f) +Cy X, (f)

Time Scaling
Let x(t) and X (f) be a fourier transform pair and "a’ is some constant.

Then by time scaling property,

x(at) H—Lx(é]

|al

Solution : By definition of fourier transform

Flx(at)] = j x(at) e-i2=ft gt
Let t = gt.. then
} P e
a



Here two cases are possible ; a>0and a < 0 ;

For a >

Flx(at)]

For ’ . a <

Flx(at)]

&

o

-jrf=x

%J‘x(t)e-a dt

Q|-
—

|-
>
N

Combining equation above two equations,

1
x(at) < l-a—lx (

]

Thus the time scaling property is proved.



Duality or Symmetry Property
Duality property of fourier transform states that if

x(t) & X(f)

then X)) © x(—f]

Proof : By definition of inverse| fourier transform in equation

o0

x@®) = [ X(Meizt df

-0

for t = -t
x (—t)

o

[ X(fre-izn gf

-0

Interchanging t and f we get,

o0

N = [ XOe ar=ppxp)

-

(= )& XK(t)

Time Shifting
If x(t) & X(f), then

Time shifting : x(t —to) <> X(f) e7/3=/10

Proof ; By definition of fourier transform

I x(t=tg) e~ dt

-0

f{x(t-to)}

Let t—t[) -



Then s pyper ottt

Fe-f) = | 10 el s

T (Y o1 1B
B (/I . ffniton o fT.

3 phase
o the amplitude P& P

| um but there
Thus a time shift " has 10 change
shift of -2ﬂff0. .

Frequency Shifting
If x(f) e X(f) then

Frequency shifting : el 17 fe! i(t) a X(f-f l

ed modulation theorem.

Here f; is real constant. Thils property is also call

Prodf : By definition of FT.

[ et x() it dt = | (0 g-inf -t dt

X(f-fo)

Multiplication of the function (¢
X (f) in positive side by fe.

Fei® x(0)]

-0

) by elZle! resuls in shifting of fourier spectrum



Area Under x (f)
fx) © X() then

Area under x(t.'): I x(t) dt = X(O)

-0

That is area under x (£) is equal to its fourier transform at zero frequency.
Proof : By definition of FT,

o0

X(f) = | x®e-in gt

Let f=0

X(0) = T x(t) dt

Area under X (f)
Ifx(t) X(f), then

o

Area under X(f) : _[ X(f) df =x(0)

-o

That is the area under fourier spectrum of a signal is equal to its value at t =0
Proof : By definition of IFT,

x(t) = T X(f)ei®t df

Let b =0,



Differentiation in Time Nomain

If x(t) X (f) and first derivative of x (t)is fourier transformable, then

L x0-o (j2eNX() | -

Differentiation of function x(t) in time domain is equivalent to multiplying its fourier
transform by (j2n f).

Proof : By definition of FT,

d Siid v
F[Ex(t):’ = j S x@)e jaft gy

- 00

Integrating by parts,

d
E [d—t x (t)}

e'iz"ﬂ.[x(t)]fw - _T x(t) (—}'an)c‘i"ﬂ dt

j2nf J' x(t) e- /2 dt

= j2rfX(f)

Similarly it can be easily shown that

F {%} = .(j"’an)z)\’(f)

(j0) X(f)=-* X(f)
(j27f)" X(f)

Hence F {dn x(t)}
dt"

= (j(o)"X(f)



Integration in Time Domain
If x(t) < X(f), and provided that X (0) = 0, then,

[ x@dr & ;7117 X(f)

—

I = : ffect of
Assuming that X (0)=0, the integration of x(t) in time domain has the effe

dividing its fourier transform by (j2 7 f).

Proof : Let x () be expressed as,

: S aF
x(t) = - | x(v) d=

-0

We know that, x(t)e X(f )

FIxol = F {%{ Lx(r) dTH - jZth{F{ ._i x (%) dTH

By differentiation property

j2%f [F{ L x(1) dtH

1
w57 AU

ic. | X(f)

F[ j x (1) d'r:|

Conjugate Functions

If x(t) <> X (f), then tor complex valued time function x(t) h
we have

x'(t) & X" (-f)

Proof : By definition of IFT,

o

x@#) = [ X(f) eim gf

By taking complex conjugates of both sides

Xt (t) = T X* f) e-ivft gf

Now by replacing f wit' - * gives,

x* (f)

T X. ("f) el df

= F-1 [X’(—f)]
x'(t) o X' (-f)

10



Multiplication in Time Domain (Multiplication Theorem)
Let the two fourier transform pairs be x; (f) & X; (f)andxz (t) © X3 (f), then

1) x )y o jx1 WXz (f-2) dA

That is multiplication of two signals in time domain is transformed mto convolution of
their fourier transforms in frequency domain.

The short hand notation for this property is,

x () x2(t) o X (f)* X2 (f)

" Proof :  Let us write the RHS of equation 2.2.49 as follows,
xn)xt) o X (f)
ie. F[x, (f) X2 (t)] - Xn (f)

L]

j xi (t)x2 () e~/ dt by definition of FT

- 0

Let A=f— f then by arranging above equation,

«©

I Xp (f-M dX I

- 00

o () eI EEY T e BT

1l

X2 (f)

[ X2 (=M d> [ mgeisred

-

Il

The second integral above is X; () from definition of FT

[ Xa(f-» dr XM ¥

-0

X2 ()

]’ X, () Xa(f -0 d M

- 00

aB)nE) o [ X X(-Ndr

This property is some times called as rpultiplication theorem.

Since convolution is commutative, equation (2.2.50) can also be written as,

x (t)x2 () © X (f) * X2 ()

11



Convolution in Time Domain (Convolution Theorem)
If x () oX (f) and 0 ()X (f)

ten, [ 50 -9 de 0% ()% ()

-0
This property states that convolution of two signals in time domain is transformed in®
multiplication of their individual fourier transforms in frequency domain.

The short hand notation of convolution can be used to represent this property .
follows,

1.e. X (f)' X3 (f) (—)Xl(f)X2(f)

Proof :  Convolution of x, (t) and x, (t) as given equahon 2250 is

Jll (t) * xa (¢ I % (1) xo (¢~ t)d

-0

Fla(t)*x )] = I [I x () x2(t-1) df]e'iz"ﬂ dt By definition of FT
= I x (e i2rfr gy I Xy (t-Tt)el 2t e-j2nft gy

I x ()e )2 de I xg (t=-1) e~ i 2 f(t-1)gy

-0

Let4-t=a in the second integral.
CFm® @] = [ n@e i [ xp ()it da
From definition of FT applied to RHS

Fla(t)*x )] = X (f) X2 (f)

ie. [x@xE-9d o X (f) X, (f)

-0

12



Find the fourier transform of the decaying exponential as shown in

x(t) A}

1.0

0 1/a t

Fig. 1: Decaying Exponential
Normally to show time delays in the function and sign of time, use of unit
step function #[(t)] is made. The value of unit step function is always unity i.e.
u(t) = 1 fort>= 0
The exponential pulse in Fig. 2.2.2 is represented as,
@) = e "u(t) Here u(t) =1

By definition of fourier transform yye have,

X (f)

j x(t) e Jz St dt

-0

I et u(t)-e-j2~ft d¢
0

- J‘ e-a+j2nf)t 4
0

The lower limit is taken "0’ since x (t) =0, fort <0. And (t) = 1 for t 20

1 -(a+j2n o~
O S e L

13



1

a+j2nf
Thus the fourier transform pair becomes,
p . 1
Decaying exponential pulse : e~ "' u(t) & —————
ying exp P ® avj2nf

To calculate magnitude and phase spectrum :
The function X (f ) is expressed as,

X(f) = A(f)+jB(U)
Here A (f) is real part of X (f) and B(f) is imaginary part of X (f).

Therefore magnitude spectrum of X (f) is given as,

IX(f)l = JA2(f)+B2(f)

And phase spectrum is given as,

0(f) = tan™! i(&))

“Consider the equation

= 1
b e a+j2nf

Multiply and divide RHS by a-j2nf,

1 a—j2nf
X =
& a+j21tfxa—j27tf

a-j2nf
a2 +(2nf)?

5 . a = el
S aZ+@nf)? ! Zr@af)?

= el
Here real part A(f) = i 2nf)

-2nf

and imaginary part B(f) P +(2nf)?

14



From equation magnitude of X(f) will be,

i .C2xnf)2

X - a7
R e e

PR
- Ja2+anV
From equation 2.2.18 phase spectrum will be,

—2nf/[a2+<2nf>2]}

0 N -1
) tan { a/[a?+@2nf)?]

tan-1 (-—21{}')
a

Enf
= Sl |
= —fan ( = ]

16



f . 1 » 3y 2nf
|X (f)|—'\[————_“'a'5'+( 2_11:f ')2 0 (f)=-tan™ (—a—)
s R = —tan' (2nf)
J 1+ (2nf)? : since a =1
since a =1
0 |X(f)|=51=1 v 0(f)=0
0.1 Hz IX (F)]= - (102 . — 0846 0(f)=-tan(02n)=—32.14°
J + L& TU
gok="1 X (f)|=—r*'1+1<n‘)—z‘ = 03033 0 (f)=—tan~! (n) = - 7234°
1.0 Hz P( (f ),= = :2 n)z = 0157 e(f )=—tan'1 (2 Tl)= - 80.95°
10.0 Hz Ix (f)l= - (120 )2 — 00159 0(' )=—tan_1 (201!):—'89.08
:/ + Tt
- 0.1 Hz IX (F)]= 1~ _osss | @(f)=—tan' (- 02m)=3214°
J 1+ (-02n)?
- 0.5 Hz 1 0(f)= —tan'i (- m)=72.34°
X (f ) |= —== = 03033
O
K IX () |= e = Q167 | O(f)=-tam (- 27)=8085°
:/ 1+ (- 2n)?
_ = 10.00 Hz X ()= 1 - 00159 0(f)=—tan"! (- 20 n) = 89.08°
:[ 1+ (- 20 n)?

17



X

e 0

—f

-

Amplitude spectrum of decaying exponential pulse of Fig.
Here a=1 (assumed). It is even function of frequency.

o(f)
/2

e -

Phase spectrum. It is odd function of frequency.

Obtain the Fourier transform of Raising Exponential as shown in the figure

x(t)

x(t) = 0.3678

x(t) = e u(-t)

-1/a

18
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Sign of t in u(-t) is negative and it represents negative time of the pulse. It is zero for
positive time (f>0). Therefore integration can be performed from - to 0 instead of

—o0 to+00.
... Fourier transform of x (f) becomes

X(f)-=—[-x@®eiz=ft dt

- 00

0 0
= j pltoy (=) e- ] 2800 di-s = J' elt@@=j2nf)] g¢
T a-j2nf [e : ]—aijnf

This fourier transform pair for rising exponential pulse .can be represented by

following equation,

Rising exponential pulse : e®' u (-1) Hn_—_le_n_f

: 1
X = A .. W T
X = s

b X

-

(a) Amplitude spectrum and

ﬂ‘ 6(f)

T2 ===

-

----- —n/2

(b) Phase spectrum of rising exponential pulse

19



S
-—  -la 0 7
-t

t

obtain the Fourier transform of double exponential signal as shown in the figure

Solution : The double exponential pulse of above figure can be represented as,

) = a2 t>0
= 1 ,' t=0
= L’n' 3 t<0

I
—3

Fourier transform : X (f) x(t)e=i:f g by equation |

0- 0+ » =

et e~inf dt+J' 1. dt + _[ e~at grimt g
0- 0+

1l
oy

-0

0+ 0+ =
[ veimt ar =1 [ eizt dt =1 [e9+ —e2-]=1[1-1]=0
0- 0-

Or in other words integration at single point with upper and lower limits same is zero
. only.

: o | 1
X i o e e
) 1‘1—1’21:)‘-+ +a+j21tf
& 2a
T oa2+(2nf)?
Equation can be written in short hand as e-9'li(t). [Here when t<0 ;

e M=Dy(~) = ety(~4)).

~.Fourier transform pair is represented as shown below,

Symmetric double exponential pulse : el T o +:(Z;nf)z
2a
Here X S Tt
| (f)l n2+(2nf)2
and 0(f) = 0

20



(0

-{ OI

Fig. 2: Magnitude response
1 x(t)

1.0

Obtain the Fourier transform of antisymmetric exponential pulse as shown in the figure

Solution : This pulse can be very easily represented with the hel i
. of
have used in last problem. Here overall value of the pulse is negaptive ig: ?\tlon We
egative time.

x).= e >0
= |1] ; t=0
= —CM,' t<0

21



~. Fourier transform will be,
oo

X(f) = j x(t) emi2*ft dt - from equation

0- 0+ )
I —et emiB gt 4 Illl em izt dt + I i b F
i .

- 00

0+
1 Ik 1
= - - +
a-j2nf a+j2nf
janf
a2 +(2nf)?

Signum function can be used to represent equation

compactly, A signum
function is defined as,

sgn (t) 7 & t>0
=-=1; t<0
- Equation can be written as,
x(t)-=-e-ltlsgn(t)
~.Fourier transform pair becomes,

-janf
a2 +(2nf)?

e~ sen(t) &

f@t) = e ®tu(t)

Using scaling property find the Fourier transform of

22



1 (S
x(at) < mx (HJ

Now consider the given example. FT can be obtained directly as,
1
X() = o5+j2=f

1

We know that Fle~!] = W

Now by scaling property and a=0.5
1 1

g 1+j21t(0;%)

1
05+j2nf

F [e—O.St] i

Obtain the fourier transform of rectangular pulse of duration T and

amplitude A" as shown in F1g' telow.

§ x()
A
- —t—
e T 0 T2 t

Fig. 3: Rectangular pulse

Solution : This réctangular pulse is defined as,
2 2

rect (T) {
(0 elsewhere

!A for L <t< =
x(t) = A rect L
ez g T

23



| x(t) e/ at

-

FT of x (1) X(f)

T/2 _
= _[ A e iTf - dt
-T/2

_ =A% [e'jZFI,ﬂ]T/Z

~Tj2nf ~T/2
A - ;

—] —]2 nf [C }“ﬂ- —e’"ﬂ]

A ejnfT _e—jnfT
PR 7 2]

A . - o 3
- Yy sin (nfT) By Euler’s theorem.

T
= AT SRl By rearranging the equation.

xf T
= ATsinc(fT) Since sinc x = b
X
ﬂl IX(NI
AT

\/\/\m/\

§ -3/T -2/ 1T 0 1T 2/T
| Negative amplitude of this

ulse is made positive by
g phase shift of 180°

Fig. 4: Amplitude spectrum

-y

Phase shift of 180°to
—-180° make |X(f)| positive

Fig. 5: Phase spectrum spectrum

24



The fourier transform pair of sinc and rectangular function i,

Arec (-,;—,)H AT sine (1)

ie. Rectangular pulse esinc pulse.

Obtain the fourier transform of the impulse function shown in pelow

*x(t) = 3(t)

Fig. 6: Impulse Function

25



Solution : By definition of FT,

X(F) = [ 2@ eianse a

— 00 -

j 8(f) e-i2nft gt

- 00

The sifting property of impulse function is given as,

i | f@®) 8¢-to) = f(ko) ]

Here f@® = ei2cf  and t°=0 ) \
X(f) = [ ei2sf 5 (-0 at
By rearranging equation
= e-2xf-0 By applying sifting property.
= ]
Delta Function : 5(t) o1
Fig shows the amplitude spectrum of delta function. It shows that delta function

Or unit impulse contains all the frequencies with same amplitude in its spectrum.

26



Obtain the fourier transform of the unit step function shown in Fig

Ax(t)

1.0

20 0 et

By definition of FT, X(f) = [ x(t) ¢7/2+/! dt

-0

I 1e-j2nft d¢
0

1 Cinf11®
Sjanf [e-/? ﬂ]o

27



Obtain the fourier transform of DC signal shown in Fig.

4 x(1)
1
X 0 A
3(t) © 1
Here X(f) =1
ie. 5(t) & X(f)

By applying duality property of equation 2239
X(t) o x=f)

Here X(t) = 1 and 8(- f)=38(f) since 8(f) is even function.

Therefore, 16 3(f)

a function [0 ()

Above equation states that dc signal [x (f) =1] is transformed into delt
domain form a

in frequency domain. Thus dc signal and delta function in frequency

fourier transform pair.

ie., X(f) = [ x@)e-izmst dt
Here if x(t) =1, then X (f) =8(f) from equation
o

[ tei/t dt = §(f)

-

J et dt=5()

-0

This is the important relation and gives result of integration of exponential function

If1 & 8(t) form a fourier transform pair of dc signal in time domain
and delta function in frequency domain, then

28



T cos(2nft) dt = 8(f)

ol -

Solution : By definition of FT,

X(f)

j x(tye-i2nft dy

- 00

Now if x() = 1,X(f)=8(f) from the given condition in example.

| el it iR ()

-0

or f e-i2xft df = §(f)

ei2nft 4 e—j2nft
cos(2Qnft) = 5 and
ei2nft _ e—j2nft

2j

sin (2 'nf t) =

From above two equations we have,
e2nft 4 p—j2nflt el2nft _p—j2nrft

cosnft)y—jsin(2nft) = 2 > -

e c—j’_’nfl

Now substitute value of e~/ 27f! from above equation in equation

| lcos@nfty—jsin(@rfD] dt = 8(f)

00

Now since 8(f) is real valued, complex function will have zero value In above

expression,

T cos(2nft) = 3(f)

Hence the result is proved.

29



Obtain the fourier transform of x(t) = ei2nfet

Solution : By definition of FT,

j x(t)e-i2xft 4t

- 00

X(f)

I ei2nfet p-j2nft ¢

= I e=j2n(f=f)t gt

- - 0

= 8 (f-fo)

Find out the fourier transform of cosine wave shown in Fig. pelow

x(t)

\j/.\,

— N\
J \/

-

-
=
(2]
g

|

30



ei2nfct 4 o-j2nfet

x(t) = cos(2mnfct) =
() @2nfet) BN By Euler’s theorem.

By definition of FT,

X() = J' x(t) e-i2nft gy

N =

& I [eiz"fc" + e—i2ﬂfcf] e-i2nft 4t

T {e—j2n(f-fc)t & e-jz::(pfm} dt

- 0

N =

N =

= { J. e-j2n(f-ft dt + J' e—J2r(f + fo)t dt}

- 00

[ (f-fo)+8 (f+f)] from equation 2.2..61

oo s

Thus, Cosine wave : cos (2nf.t) < % [8(f-f)+3(f +£0)]

Find out the fourier transform of sine function sin(2x f t) shown in Fig
x(t) = sin(2nf.t)
X(t)

C

Lo

P — v ’
Solution : Here since V,, = 1;

x(t) = sin (2nf.t)
ei2nfet _ p-j2rfect

sin2nfct) = X
]

By Euler’s theorem
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B definition of FT, X (f) = j x(t) e-i2=ft dt

= f sin2nf.t).ei2=ft dt

. Li2nfet — p-j2mfct
=[S £ ey
2j ;

- 00

3 _21_] T [ei2sU =t — e-izs(f+for] at

- 00

= 5 BU-f)-5(+£]

Thus, | Sifte wave : sin(2nf. t) © -21—] [8¢f-f) “s(f‘*‘fc)]

2.4 LAPLACE TRANSFORM

Fourier transform represents continuous time signal in terms of complex sinusoidals,
ie. e/o!. The laplace transform provides broader characterization compared to fourier
transform. Laplace transform represents continuous time signals in terms of complex
exponentials, ie. e-*'. Hence laplace transform can be used to analyze the signals or
functions which are not absolutely integrable. Continuous time systems are also analyzed
more effectively using laplace transforms. Laplace transform can be applied to the analysis
of unstable systems also. Laplace transform of the impulse response is called system
function or transfer function. ‘

i) Bilateral or two sided laplace transform and

ii) Unilateral or one sided laplace transform.
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Consider the continuous time signal x(f). It's laplace transform is denoted by X(s)

Then the laplace transform is given as,

X(s) = T.\'(t) e~ dt

-0

Here the independent variable ‘s’ is complex in nature and it is given as,
§ = 0+j0

Here o is the real part of 's'. It is called attenuation constant. And jo is the imaginary
part of 's' and it is called complex frequency. In equation 2.3.1 observe that the mtegratlon
is taken from - to +oo. Hence it is called bilateral or double sided laplace transform.

The laplace transform pair x(t) and X(s) is represented as,
x(t) = X(s5)

The unilateral laplace transform is given as,

X(s) = Tx(t) et dt
0-

2.5. INVERSE LAPLACE TRANSFORM

This laplace transform is mainly used for causal signals. The lower limit is taken from
0- This is to include the time just before zero. Thus for the continuous function,
integration is effectively taken from 0 to . Unilateral laplace transform is useful in the

analysis of networks and solving differential equations.

The inverse laplace transform is given as,

! u+jm' .
W) = 77 [ X(s)e ds

o=jn

This formula involves complex integration. Inverse laplace transform can also be
obtained using partial fraction expansion. ¢
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We know that fourier transform is given as,

o

X(jo) = [ x(t)eiot dt

-0

Fourier transform can be calculated only if x(t) is absolutely integrable. i.e,,

Relationship between Fourier Transform and Laplace Transform

j () dt < o
We know that s =c+jw. Hence equation can be written as,
X(S) s J- x(t) e—(O‘"-j(O)f dt

= I () et e1® gt

€0

= j {x(t)e~o | aot g

-

Comparing above equation with equation 2.3.6 we find that, laplace transform of x(t)
is basically the fourier transform of x(t)e-°'. If s=jo , ie. 6=0, then above equation
becomes,

X(s) = ]? x(E)y e 1ot df
X(jo)

Thus X(s) = X(jo) when s=jo

This means laplace transform is same as fourier transform when s=jwo . Above
equation shows that fourier transform is special case of laplace transform. Thus laplace
transform provides broader characterization compared to fourier transform. s =jw indicates
imaginary axis in complex s-plane. Thus laplace transform is basically fourier transform on
imaginary (j®) axis in the s-plane.
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2.6.CONVERGENCE

From equation we know that laplace transform is basically the fourier transform
of x(t)e**", Hence if fourier transform of x(t)e~°" exists, then laplace transform of x(t)
exists. For fourier transform to exist, x(t)e°" must be absolutely integrable. ie,

o

[ Jr(yeot| dt <0

-0

If this condition is satisfied, then fourier transform of x(f)e=c" will exist. In other
words we can say that laplace transform of x(t) will exist, if above condition is satisfied.
Thus above equation gives necessary condition for laplace transform to exist. The range of
values of o' for which laplace transform converges is called region of convergence ot ROC.

Calculate the laplace transform of x(t)=e® u(t) and plot the ROC.

Solution : We know that laplace transform is given as,

0

X(s) = Ix(t) e~ di

-0

0
= j e u(t) e~ dt
-0

u(t)=1 for t20. Hence above equation will be,

X(s) = I et eadl
0

= [ e-G-9tqt
0

2 —e“(s—ﬂ)f ]w
_—-(s—a) 0
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Above equation can be written as,

et et (s-a)t
X() i L [4(s—n):|?lrl-];% t-(s—a)}'

We know that e* converges if X is negative. Hence the first term in above equation
will converge if (s-a)>0.ie; |

; ~(s-a)t j
lhn[cxs) }=0if@-ﬁ)>0
[ —(S —ﬂ) :

Thus the first term will be zero as f .

Therefore equation 2.3.11 can be written as,

X(s) 0-{ . } for (s-a)>0

)

1

E%_a for (s-a)>0 or s>a

For s <a, the laplace transform cannot be calculated since the integral is unbounded.
Therefore the region of convergence is s >a. This is shown in Fig. The shaded area
shows the ROC. Thus the laplace transform pair is,

'emzqo et 4

S$—a

.. RO s>n.

lr jo

Fig. 7. Region of Convergence
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Determine the laplace trdnsfonﬁ and ROC for the signal
x(t) = —e u(-4)

Solution : Laplace transform is given as,

o

f x(t) e~ dt

-0

X(s)

J. —edt u(—t) e st dt

-0

We know that,

{0 for t20

By = 1 for t<0

Hence the integration limits of laplace transform will be changed as follows :

0
I ~e® e~% g

-0

X(s)

I

0
- I c’“(s:”)' dt

-0
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1

|

The second term will converge if power of exponent is negative. Note that 't tends to
-, Hence (s-a) must be negative to make overall exponent negative. Therefore we can
write,

e-(-00 = (-0(-7)

ag) = s—a s-a
1 .8
H patey for (s-a)<0
3

for s-a<0 or s<a
s-a

Thus the laplace transform will converge if s<a. For s>4, the iritegration will be
unbounded. Fig. shows the ROC of X(s).

) jo

s-plane

Fig. 8. Region of Convergence
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x(t) = e u(-t)
We have obtained the laplace transform of e u(t) in example From equation
it is given as,
1

e u(t) <—-“[—>—sTa » ROC s>a

Hence laplace transform of e~ u(t) will be,

et u(t) L L « ROC 35~
s+a

x(t)=-e* u(-t)
We have obtained laplace transform of e u(~t) in example From equation

it is given as,

—ent u(—t)@ﬁ , ROC s<a

Hence laplace transform of =e=® u(-t) will be,

-e~ % u(-t) PN L , ROC s<-a
s+a

2.7.PROPERTIES OF LAPLACE TRANSFORM
Linearity
Let x, (t)<—‘[——>X1 (s) . ROC : R,
and x; (t)«£—>X,(s), ROC:R,

Then linearity property states that,

J[ﬂ] A ¢ (t)+(13 X2 (t)] =m Xi (S)+az X (S) , ROC : RiN R,
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Proof : By definition of laplace transform we can write,

o0

La xy ()+az2 x2 ") = I [ x (t)+a2 x2 (t)]e dt

-0

= m J xp (t)e s dt+a; j xp (H)es" dt

= mXy (S)+ﬂ2 X5 (S) ROC : R;yNR;

Here ROC : R; nR, indicates the intersection of R; and R;.

Time Shifting
Let x()«=— X(s), ROC:R

then | £ [x(t-to)]=e50X(s) ROC:R

Proof : By definition, laplace transform of x(t—to) will be,

o0

L[x(t-to)] = [ x(t—to) e~ dt

Let T = t-tp
dt = dt and t=1t+t

And when t = -0, t=—00—fyg=—c0 and

when t = 0, tT=w-fy=0o

Hence laplace transform becomes,

n

L [x(t=to)] = [ x(1) e=3C+10) dq

-

40



o

I x(1) e=5% =510 g+

- e

w0

= e~sl0 I X('C) et dr

-

= ¢ X(5) , ROC:R

Thus delay of fy in time domain is equivalent to multiplication of laplace transform by
c-sfo' :

Shifting in s-domain
Let x(t) «*— X(s), ROC :R

then L[e0t x(t)] = X(s-50) .. ROC : R+ Re(so)

Proof : By definition of laplace transform,

L[e0t x(1)]

[ e x()est dt

[ x(t) e-C-0tar

-0

X(s=so) with ROC : R+Re(so)

Thus the frequency shift of 'so' is equivalent to multiplying x(t) by e%0*. The ROC is
also shifted by Re(sg).
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Time Scaling
Let x(t)«=— X(s), with ROC:R

. 1 s R
then x(at) > Tl X(E) : ROC:;

Proof : By definition of laplace transform,

L[x(at)] = I x(at) et dt
Let at = 1 t—_—l
a
and dt = 3 dr
a

Limits of integration will remain same. Hence laplace transform becomes,

w

L[x(at)] = I x(7) &% %dr

-0
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- 1] ik as

Now let us consider negative value of a. i.e.,

o['[x(—at)] = j x(-at) est dt
Let —at = T, s t="‘£
a
and dt = _ldt
a

Limits of integration will interchange. i.e.,

Lx(-at)] = | x(t)e—s(-%) (-%)dt

w©

= | -

T x(x) 5k

-0

lx(i), roc : K
a“\-a -a

From above equation and equation 2.4.5 we can write,

L[x(a)] = ﬁx(i) , ROC: %

Thus the time scaling property is proved. This property shows that expanding time
axis is equivalent to compression in frequency domain. The ROC is also compressed or
expanded depending upon value of a.

As a special case with a=-1 we have,
x(-t) «* X(-s) , ROC: R

This result shows that inverting the time axis inverts frequency axis as well as ROC.
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Differentiation in Time Domain
Let x(t) << X(s) , ROC:R

d L ;
dsan = x(t) <= sX(s), ROC:R

Proof : Consider the inverse laplace transform given by equation

otj o
1 2\ pst
x(t) = E?]-,“:[wX(b) est ds

Differentiate both sides of above equation with respect to 't' i.e.,

L a+jm

" | 3 =1 "
a*® = 35 ] X(s)sg' ds ~ 5] ] [SX(S)]"'d,S‘

o-j® . o-jo

This equation shows that inverse laplace transform of sX(s) is %x(t) . This prove;s

- N >

n

then . x(t) L snx (s) , ROC containing R

Differentiation in s-domain

Let x(t)«£> X(s), ROC:R
z d
then =t 2(f) %> e X(s), ROC:R

Proof : By definition of laplace transform,

X(s) = [ x(t)eat
-™
differentiating above equation with respect to 's’,
w

%X(s) = |

-

x(t) (—t)cr-sfdt = f[—! x(t)] e~ at

.~
This equation shows that the laplace transform of -tx(t) is ‘;—Ql\(.s) Hence

fquation 2.4.10 is proved. ROC is unchanged. Above result can be extended easily for
Multiple s-domain differentiations i.c.,

n L dn .
(—t) x(t) «—— -J;TX(S) , ROC:R
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Convolution in Time Domain

Let x (ty_f_, X;(s) » ROC:R

and X (%> X2(s), ROC: Ry

then x1(t)*x2(t) «£5 X1 (s) X2(s) » ROC: containing Ry N Rz

That is, the laplace transform of convolution of two functions is equivalent to

multiplication of their laplace transforms.

Proof : By definition of convolution,
o

n)rx() = [ n@xE-1d

-

Taking laplace transform of both the sides,

- | -

Lx (H)*x2(H)] = f { f x (1) x2 (t-71) dt} e-st dt

changing the order of integration,

o0 o0

L[x ()*x2 ()] = [ xi(v)de [ xa(t-v)edt

- -0

The second integration in above equation represents laplace transform of x; () with i
delay of 't. Hence applying the time delay property we can write second integration term

as,

j? n(t)dv- e X (s)

-0

Lx (B)*x2 (1))

Xa(s) f x(r)estds

-0

Above integration represents laplace transform of x; (1),
L)) = X (s) % ()
= X (s)X2(s) , ROC : Ry R,

Thus convolution property can be proved. The ROC is at least intersection of Ri and
Ry. |
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Integration in Time Domain

Let : x(t)é—-‘ﬁ—-) X(s) » ROC:R

then j x(1) E Z(_gs_)_ , ROC: RN [Re(s)>0]

-0

Proof : Let us consider the convolution of x(#) with u(t).

o

Ac(t)*u(t) = [ u(t-v)x(x)dr

-

1 for t2t ie tst

We - =
know that u(*-7) . {0 elsewhere
Hence convolution becomes,

i 1 x(x)de= [ x(v)dr

- -0

-

x(t)*u(t)

t

ie. j x(t)dr

-

x(t)*u(t)

Taking laplace transform of both sides,

E, {j x(r)dr} = L{x(t)*u(t))

-0

Using convolution property we can write RHS as,

J‘{j x(t)dt}

L fe(®) oL {u)}

1
X(s) 5
_ X() :
= —5— ’ ROC.Rn[Re(S)>0]
Thus integration property is proved. The ROC is intersection of ROC of X(s) and ROC

of u(t) i.e. Re(s)>0.

The relation of equation 2.4.15 can be generalized further for multiple integrations. i.e.,

21 ] o f sttty =25

-0 - -0
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Integration in s-domain

Let x(t)«<> X(s), ROC:R

t xn
then x—f—)@ [ X(s)ds, ROC:R

S

Proof : Consider the RHS of above equation,

[ X(s)ds f [f 2(t)e* dt:\ ds

s s

-

Changing the order of integration and rearranging the terms,

]? X(s)ds = j? x(t) j? e"s’ds] dt

f x(t) —"::' Jw dt

= pr i
= [ x@) [limﬁ - Q] dt
= s—® t
o= Sl
In above equation lim e becomes zero in specified ROC.
Hence,
o 0 e_s'
[ X(s)as = [ x(t) —dt*, ROC:R

= I-@e‘“dt, ROC : R

-0 -

T
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2.8 LAPLACE TRANSFORM OF STANDARD ELEMETRY SIGNALS

Determine the laplace transform of unit step function. The unit step

: 1 fort20
u(t)=
0 otherwise

Solution : By definition of laplace transform,
L[u(t)] = I u(t) e~ dt
changing the limits from 0 to e, since u(t)=1 for £ 20 above equation will be,

o ; e—sf @ l' e’sf l' e-sf
= “stdt=|—] = — |[=lim | —
2] = fretae( ] <im o im S
First term in above equation will be zero as - if sign of exponent is negative. This

is possible if s >0. Hence above equation becomes,

Lpu(t)] = 0-= for 5>0=< for >0

jo

s>0 ie.0>0

Here s>0 indicates ROC of laplace transform. Fig. 25.1 indicates this ROC. Here
observe that s >0 means ¢>0. Hence sometimes ROC is also written as Re(s) '

, >0 or >0
Thus we obtained the laplace transform pair as, 720

u(t)<—‘[—> %, ROC:s5>0 or 0>0
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Determine the laplace transform of impulse function, 5(t) .

Solution : The impulse function is defined as,
3(t) = 0 for t=0
And at t =0, area under §(t) is equal to '1".

By definition of laplace transform,

0

LI3(1)] = [ 8(t) et at

-0

From definition of laplace transform,
L] = [ 8(t) es0dt
t=0

Above integral is evaluated only at t =0 since §(t) is non zero only at t =0. And 3(t)=0
for t # 0. Hence above equation becomes,

L[®] = [ 8(t)1at

t=0

[ROL:
t=0

Above integral indicates area under the unit impulse as t (. The area under the unit
impulse is equal to '1' at t=(. Hence above equation becomes,

L[5()] = 1

Here note that ROC will be entire s-plane, since there is no cendition for evaluation of
Integration, Thus the laplace transform pair is,

3(t) <=1, ROC : entire s-plane
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Determine the laplace transform of the ramp function. The unit ramp
ﬁknction_
b afor 120

t)=
"(f) 0 otherwise

or r(t)=tu(t)

Solution : By definition of the laplace transform,
L] = [ r(e)yea

Since r(t) =t for £ 20, the limits of above integration will be changed as 0 to . Hence,

Lr(t)] = T s dt
0

Integrating above equation by parts we get,

HON —7]0{1 o
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Consider the first term in above equation,

~st 2 : ~st ; K —st
{ e—] = lim [t -e—'—]—]im [t Q_J
=5 0 t— -8 -0 =S

The first term in above equation will be zero if s>0. For negative values of 's, first
term will be unbounded. And as t -0, second term will be zero. Hence above equation
becomes,

-t 1%
[5——] =0 for s>0

Therefore equation 2.5.3 becomes,

R st

0-{ Lts—dt for s>0

1[e-st]”
s |,
1 . L""' 1 . c'bl
- lim |—|== lim [—
S tow| =S S 10| =8

The first term in above equation will be zero if s >0. For negative values of ') first
term will be unbounded. Hence above equation becomes,

0]

L[r(h)] %xO—% [E_;] for 550

11

—12-for s>0 or ROC: >0
§

Above laplace transform exists only for $>(0. Hence ROC is s >0. It is also written as
o> 0. Thus the laplace transform pair s,

4

X ROC:s>0 or >0
S

r(t) <
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(i) x(t)=Asinwot u(t)
By definition of laplace transform{;

o

X(s) = [ x(t)eat

-0

= [ Asin oot u(t) e dt

-0

; LiERe = .
We know that sinwp t = % [e/«0! ~¢-i0t] Hence above equation becomes,

X(s) j' A-21—}. [e/ o0t —e=ie0t Ju(t)e~s dt

-0

A T : t —st __w -)(J)Of - st
-27 jelm u(t)e dt Ie u(t_)e dt

- -

1l

p——

1l
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We know that,

1
L[e® u(®)] = ~—;+ ROC s>a oro>k
1

,Z’[eioptu(t)] = =l ROC : s >jwg

1
s+jwy

and L[e-iotu(t)] = , ROC :s>—jwo
Here note that ROC : s >jwp means,
ROC:oc+jw> 0+jwy
| Normally we consider only real part for ROC.
Hence above equation can be written as,
ROC:o>0ie. Re(s)>0
Similarly for the second term s >—jwy we can write,
ROC : o+jo>0-juyg
ROC : >0 or Re(s)>b

Thus the ROC for both the terms is Re (s)>0.

Hence equation 2.5.5 becomes,

_ A 1 1 _
X(s) = 2—] {S—jmo —S+jmo} ROC : Re(s)>0
A 2jwo

2j s? +

A(Do

$2 + w}

Thus we obtained the laplace transform pair as,

Ao ey R
. L 0
Asinwg t u(t)(——)m » ROC :Re(s)>0
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(i) x(t)=Acoswgtu (1)
By definition of laplace transform,

o0

X(s) =_ | x(t)e-s dt

-0

= I A cos wo tu(t) e~st dt

1, . :
We know that coswot =5 [e/«0t +¢-i®0t] Hence above equation becomes,

o0 1 ] X
X(E) = [ Aglimver o ]ue) et

)

Al % 5 i ¢
= —2— I el“’o'll(t)e st dt+I C-I“’O‘u(t)c—st dt}

= A (et u®]r L eIt u)])

We know that,

L[e® u(t)] = ﬁ , ROC : s>a or Re(s)>a
L[eiw0ot u(t)] = s—}mo , ROC : Re(s)>0
and £ [e-io0t u(t)] = S+}w0 , ROC : Re(s)>0

Hence equation 2.5.7 becomes,

= A 1 1
X(ﬁs) = -Z—{S—j(no +s+jmo} 7~ROC .-Re(s)\>0
LA Bids o s
T2 gAtad.  sP g

Thus we obtained the laplace transform pair as,

A-s

Acos wg tu(t) <« —
52 +wj

i ROC >z Re(g)>0
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Find out the laplace transform of impulse function using differentiation
property.

The differentiation of unit step function gives unit impulse fuﬂctiom,
d
5(t) = pr u(t)
Taking laplace transform of both sides,
d
J’[S(t)] = J [—c—i; ll(t)]

We know that u(t)¢L> % . Using differentiation property of laplace transform above

equation can be written as,
L[3(1)] = s

L[3(t)]) = 1. ROC : entire s-plane

w | —
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A damped sine wave is given as,

f@) = e sinwt

Find laplace transform of this signal.
Solution : With the help of Euler’s identity,

F = e [elml :_;-/mt] 3 %{e’(“'l’“’” _e-(a+jm)l}
] ]

By taking laplace transform of both sides,

LIO = g L (e eterion)

Sk 1 - 1
2 |s+(@a-jo s+@+jo

1 2jo
TG Y ’ O : > — -
2] (s+a)? + »? ROC:s>-a or Re(s)>-a

®
(s +a)? + 0?

Thus, L [e~sin wt] = ( =

Gt ROC : Re(s)>-a I

¥ . - — n— ﬂl >
A damped cosine wave is given as, f() = ¢ cos wt

find out laplace transform of this signal.
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Solution : With the help of Euler’s identity,

elwt +c—jmf]

f = e""[ 5

= }2_.[0‘(“"1"0)' + ¢~ (a+jw)t ]

By-tnking laplace transform of both sides,

.-,[’f(f) = .i,,['{c'(""l'“’)‘+c-(a+ju))f}

1 .
T 2 )s+@@-jo) s+(a+jo)

1 2(s+a)
(s +0)? + ©?

, ROC:s>-a or Re(s)>-n

(]

s+a
(s +a)? + 0?

s+a
(s +a)? + w?

[e‘“'gos ot] = , ROC : Re(s)>-a
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Determine the laplace transform of x(t) .=t e~ u(t)

Solution : We know that,

-at L : 1 - =
e~ " u(t)—— —s+aROC" Re(s)>-a
From differentiation in s-domain

~tx(t) < % X(s): .
=t &= u(t) PR Ziés- [—51—5]

1
(s+a)

teat u(t) «=— ROC : Re(s)>-a

2

This is the laplace transform of given equation.

The same result can be extended as,

b [t e~ u(t)] s Eds- [(s :a)z}

2 b, 1
= ¢ u(t)
g (s+a)’
Hence the general equation becomes,
=1
t—'e"" u(t) < i , ROC: Re(s)>-a
(n-1)! (s+a)"
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Table. 1: Laplace Transform Formula

3:;. Time domain signal x(f) Laplace transform X (s) ROC
1. 5(t) 1 entire s-plane
2

u(t) 1 Re(s)>0
s
3.
r(t) 1 Re(s)>0
s2
4. etu(t) 1 Re(s)>a
s-a
5. -edty(-t
(-t) é Re(s)<a
6. Asinwgtu(t) Aw
o Z)g Re(s)>0
7. Acos wgt u(t) - As
s_2+‘mg Re(s)>0
8. e~ sinwgt ®,
0
(s+a)’ + w2 Ao
9. e~ cos wyt S+a
(s+a)+ o} () e
10. 0l 1
o= 5 u(t) =5 Re(s)>0
1. e
> 1
e (=
(n-) ( ) o Re(s)<o
12 o
' — ™8 1
(-9 (t) W Re(s)>-a
13. S s
- g~ 8y (-t —_
(n - 1)' ( ) (S i a)n Re(s)< -a
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LINEAR TIME INVARIENT CONTINUOUS TIME SYSTEMS

3.1. FOURIER METHOD FOR ANALYSIS

consider the convolution,

y(t) = x(t) «h(t)

By convolution property of fourier transform we can write above equation as,

Y(f) = X(f) H(f) }

or Y(m) = X((x)) H((n))
_Y(O))
H(m)—m
=20

X(f)

Here ”((:)) or ”(f) represent the fr(’(]ucncy response of the LTICT svstem. These

funct;
H - .
‘NS are also called as system transfer functions.

The impulse response of the continuous Hme systenn is Qioen as.
1 1/ RC
L e )

Determine the frequency response and plol the magnitude phase plots.

1 M I e >,
Take fourier transform of the given impuise response. 1.¢.,

H(w) = J‘h(t) c-iot dt

- n

= g~ HRC 3¢ty e—Tot dt

1 on
= _J’ e-t/RC o-jot A
0

= 1 Jf' e—l(i‘MT‘%) dt
0

RC
,. l o
e Y
RCL j(o+—R1C Jdo
1/ RC 1

= Jo+1/RC ~ 1+jwRC

2



Now let us determine the magnitude and phase of H(w). Let us rearrange above
equation as,

1 Xl—ijC__ 1-joRC
1+j(0RC ' ]—j(DRC - 1+ ((DRC)l

H(w) =

1 . =0RC
= +

+ (RO 14 (wRC)’

Thus H(w) is expressed into its real and imaginary parts. Now maenitude can be
obtained as, oy

H(w) = J ] — __(oRey’ ]
I[li-(mRC) 1 m[‘C ‘
) ]
1+(mRC)2

This is the magnitue response of the given system. And the phase response will be,
(-0RC)/ [l +(mRC)2]]
[ 1+(oRc |

= - fim'l ('”RC)

Lot RC =1, then magnitude and phase response will be

l
Hlo - e

and LH(o) = —hm’l((n)



| T o S SR

£ 154 I "?c n H._’.'__f'__. Cid I /2 I
Eabip A__; Lol 415 _>_- o ] _‘
] J aans

A G R

Fig. 1: Magnitude and Phase Response

The slp-fun produces the outpnt of u(t)=e 'H‘f} for an inpu!

- r L o e mam e s maa - .

(! 'J =Y u(a‘} Deternune the nupuise n«pon«c ana fre }..Ln' ¥ response of tie Susd

Soluticn : Here  y(t) =¢ ' u(t)
and x(t)y = e * u(t)

Consider the standard fourier transform pair,

1

et ”(t): A8 » ﬂ+j21’ff

Hence fourier transforms of y(t) and x(t) will be,

1
Y (t e
(*) 1+j2nf
’ 1
and }\(f) == m

From equation 2.11.3 we can obtain the transfer function as,

Y ()
"0 = 35

Putling the values of X(f) and Y (f),

_1/Q+j2xf)
H() = 1/(2+j2xf)



L.et us multiply the numerator and denominator by 1 -j2=xf. ie

2.5, 5P L e
H() = S2E 2w
+j2=nf 1-j2xf

n

_ 2+(2nf)3+j -2xnf
1+@rf)° T 14@2rs)’

Hence magnitude of H(f) will be,

I U)' l_1+(2nf): |

—_
12
-
~
N

Simplifying the above equation we get,

This is the magnitude response of the system. And the phase respense wil

(-2=f)/ [1 +(2 ;_rf]
[2—(2 :f):]/ [1 +(2=f)°]

tan !

£ H(f)

—tan-*

Now consider the transfer function of equation 2.11.8. i.e,

T—
" _ _-r]...,..f
H(f) = 1+-i2=f

Let us rearrange the above equation as,

1+j2=f+1



] 1+ -
+j2zf
Using the fourier transform pair of equation we get,
h(t) = IFT {H(f)}

= §(H)+ et u(t)

This is the impulse response of the given svstem.

3.2. DIFFERENTIAL EQUATIONS

"o
.

i i : ssented  in four
Now let us see how the differential equation can be represented in o .L{
‘ 1 f 1 nt e MCV response ang
(frequency domain). This representation is useful in obtaining frequency response
impulse response of the system.
Consider the differential equation,

o
N

LA PO e
Zm;wa-gu‘wxn

k=0 t

fouri nsform 15
The differentiation property of fourier tra ’

-t . (!) (__’l_) 72 :{_/. X((l)) l

dt “
or -i{- x(t)« L2 )jm.\'(ﬂ‘) . ‘J
(t

Let us appdy this property to the differential equation. 1.e.,

, \
i i (v;“‘)‘ Y(w) =Y by (i(o)‘ X (fo)

=0 A=0

3 b (o
L W
Y (w) im0

X () }i a (jo)*

A=0

This is the system transfer function. Le,,

M

b (i k
o Y3409
XO) S o

) k=0

The impulse response as well as frequency response can be obtained from above
equation.



The differential equation of the system is given as,

d2y(t) _ dy(1) dx(t)
S5t ——=+ 6 y(f)= -
dt? 7 dt +ou(h) dt

Determine the frequency response and impulse response of this systen.

The differential equation is,

d2u(t)y dy () :r’.r(f)
—— a)  — ( r = e—
e ’ dt *oud) ot

Taking fourier transform of above cquation

aS per equation
(7o) Y (m)+5 (10) Y ()

+6Y (w)

= -'j(l) X(m]
V() {(i) +5 jun 4 o} = jwX(w)
Hence system transfer tunction is,
Hl(l]‘} == “l._l(ﬁﬂ = :iill_____

X)) (jo) +5jw+6



Frequency response can be obtaived from above by separating the real and imaginary
parts. Magnitude and phase are then calculated, .
Let us expand above equation in partial fractions, -
-j®
H(w) = (jor2) (jo+ 3)
2 3
',"J:z jo+3

& Mo Pt

1 1
2+j0 3+jo

Here we will use the fourier transform pair,

e u(t) ——1—
a+jo
h(t) = IFT {H(w)}

[2e-% -3 e-3]u(t)
This is the impulse response of the cuctem
Impuase response I (t) is given by
h(t) =
x(t)

e tu(t)+et u(-t) The system is excited by
et u(t)

I

Solution : Output Yy =x(t)«h()

X(f) H(f)
Here y(t) = Iy

'

& Y(f)

By definition of FT,*

¥

F{h(t)) = J' [('““(—f)'rc !

&

l

H(f
(j) u(f)\c—}lnf!] dt



Now,

Here,

) L2
=z J’ e2t ¢ 1271 dt+l’ et e-ixft gy
7 0

1 (2-j2nfy |© -1 s-(Leg2rfyr |
= 35j2nf Lm+]+i2nf‘ 0
1 -1
. S} § I 3 | P —
T 2-j2=nf 1+j2nf
1 1 3

2-j2xf 1+j2nf ~ (+j2nf)@-]27))
X(f) = Flx()
= jm e-2 e i St =Iv, g=TRwjanfor dt
0 0

e
2+j2nf

Y(f) = H({f) X(f)

3
A+j2=f)@-j2n/)@+]27f)

a ) b % c
l1+j2nf 2-j2nf 2+j2=nf

3
a = = ; : -1
1 2-j2nf)(2+j2nf) g
- 3 | . _
v e +j2nf)2-j2=f)| /*/=2 1/4
3 -
i - = -3/4
¢ (L+j2=f)(2-j2nf) T
) 1/4 -3/4

YU) = 15737 * 5=j2=F * 37i2w]

- The inverse fourier transform of

Faf 174 1 | pa {__1_/1__} 3-; )

|2-j2=f |
—— 3 -2 LS TIE
yt) = e tuft) - g e ttult)+g ¢ w(=t).

—(-2+j2nf)



Solve the differential equation,

WO L sy @y =x)

with initial condition y(0*) =-2 and input x(t)=3 e~2' u(t)

Solution : The given differential equation is,

-‘1%:;0 +5y(t) = x(t)

Taking unilateral laplace transform of above equation,
sY(s)-y(0-)+5Y(s) = X(s)

The initial condition is given as y(0*) =y (0-)=-2
Input x(t)= 3 ¢=2 u(t). The laplace transform of exponential function is,

el s 1
s—a

X() = £{3eup=s Ly

Putting for y(0-) and X(s) in equation

SY(s)+245 Y (s)

v
W +l03
N

Y(s) {s+5} = s ~2

N

3 2

Y(s) = - iy
(*) (s+2)(s+3) §+2

Expanding Y (s) into partial fractions,

e S
(s) = s+2 - s+5 545
1 3 '

s+2 s+5

Taking inverse laplace transform of above equation

y(t) = e~ u(t)-3 e~ u(t)
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Solve the following differential equation,

d?y(t dy (¢
d{z( ) + 4 {1(t ) +5 y(t)=5 .\‘(t)ﬁ—

with y(0-)=1 and dgﬁf) =2

And input x(t) =u(t)
Solution : The given differential equation is,
2y |, it

T i Sy(t)=5x(t)

Taking laplace transform of both sides,

s2Y(s)-s y(0-)- %—E'_) J+ 4 [sY(s)-y(0-)]+5 Y(s)=5 X(s)
-

Here X (s):% and putting initial conditions,

[s2Y(s)-s-2]+4 [s Y(s)-1]+5Y(s) =

“wl,

11



s24+65+5
s(sz+4s+5)

Y(s) =

$24+65+5
S(s+2+)) (s+2-))

Expanding above equation in partial fractions,

Yy e Lo ]
S S+2+]  5+2-j
1 2
= -4 —
S (s+2)%+1

0)

: y
e 'sin ot «—— g
(s +@)" 4w

s 1
and ulye—*

Taking inverse laplace transform of equation
v(t) = u(f)+2 e 2 sint

This is the required solution.

3.3. SYSTEM TRANSFER FUNCTION

12



- We know that the output of the LTI CT system is given as,

y() = h(t)* x(t)

Taking the laplace transform of above equation,

Y(s) = H(s) X(s)
H(s) = %

Here H(s) is called the system transfer function. The impulse response of the system
can be obtained by taking inverse laplace transform of H(s).

The system transfer function can also be obtained from the differential equation.
Consider the differential equation,

N dk M ‘dk =
Z& a =5 y(t)- = z.o b = x(t)

At the beginning of this section we have seen that e is the eigen function of the

system and eigenvalue is H(s). Hence if x(t)=e¥, then y(t)= e H(s) Putting these values
in the differential equation,
N dk X M dk
a et H(s) = by —— est
‘ZO st E{) “ otk

L .
Here use = est = sk est, Then we get,

Mz

> ax skest H(s)

k=0 k=0

bk Sk L)Sf

H(s) = &0

This is the rational fomn of the system tansfer function, lmpuise response can be
obtained by iaking inverse laplace transform,

13



Find the impulse response of the system given by,

dy(t)
dt

T0 + y(t)=x(t)

Ty (t
or RC -‘—% + y(t)=x(t)
Solution : The given difference equation is,

WO 4 y@y = =)

To

Taking laplace transform of above equation,

105 Y (5)+Y (5)

_Y(S) (1 +To S)‘ :

Il

X(s) —assuming zero initial conditions -

X(s)

,:Y(S) _' 1=
vX‘(;s)'— T+105 -

H(s) ==

: trs-o-i-l— 7
0 - To

Taking inverse laplace transform of above equation,

nm;%&%uq

This is the impulse response of given system.

For the second differential equation, t=RC, hence impulse response becomes,

h) = R u()

14



The input-output relation of a system at initial rest is given by,

dzdytgt)wd%t) 3y(t) = ()FZ\(I)

Find the system transfer function, frequency response and impulse response.
Ul F P

Solution : (i) To obtain system transfer function
Since the system is at rest initially, we can assume Zz€ro initial conditions. Taking
laplace transform of the differential equation (with zero initial conditions), .

s2Y(s)+4sY(s)+3 Y(s) =5 X(s)+2 X(s)
X(s) [s+2]

Y(s)  s+2
X(s) s2+4s+3

L Y(s) [s%+4s+3]

H(s)

This is the rational form of system transfer function. It can be directly obtained using
equation 2.12.25 also.

(ii) To obtain frequency response

We know that s =c +jo Hence frequency response can be obtained by putting s=j®
in equation 2.12.26. i.e.,_
_ jw+2
H(w) = H(s)|s=f.m=

(jm)2+4(jm)+3

(iii) To obtain impulse response
Consider the system transfer function,

s+2 >, 5+2
s2+4s+3  (s+3)(s+1)

Expressing this equation into partial fractions,

1/2 1/2
H(s) = c+3 S+1

Taking inverse laplace transform of above,

h(t) = [ -3 4 = "]u(l)

Determine the transfer function of the system described by the

differential equation,

24 dt d? d
ddfgt)'* {1(t) 9y(t)= idxtz(t) \(t) 2% (t)

15



Solution : Assuming zero initial conditions and taking laplace, transform of the given
differential equation,

s2Y (5)+65 Y(5)+9 Y(s) = s2X(s)+3 sX(s)+2 X(s)
o Y(s) [s2+65+9] = X(s) [s2+35+2]

- Y(s) _sz+3s+2
H(s) = )_(féj_sz+6s+9

This is the required system transfer function.

The system transfer function is given as,

S

H(s)= 52+55+6

The input to the system is x(t)= e~ u(t) Determine the output assuming zero initial
conditions.
Solution : The input is x(t)= e~ u(t)
Hence laplace transform of the input will be,

1
s+1

X(S) -

The output of the system is given as,

y(t) = h(t)*x(t)
Taking laplace transform of the above equation,
Y(s) = H(s) X(s)

s o 1
s24+5s+6 s+1

16



_ s 5
" (s+2)(s+3) s+l

Expressing the above equation into partial fractions,

_ 3 Brzap®
(5) = s+2 s+3 s+l

Taking inverse laplace transform of above equation,
w 8o 1.
y(t) = [2 = “ o 5 ¢ “lu(t)

3.4. PROPERTIES OF CONVOLUTION

1. Commutative property of convolution :

This property states that convolution is commutative operation. The convolution is

jven as,
g

y@) = [x@h-1d
Here putt-t=m, then dt =—dm

When T = 0,m=-0

-0 ,M=0

and T

y(t) = —_.f x (t=m) h(m) dm

[©]

I x (t=m) h(m) dm

-0

17



- T I (m) x(t —=m) dm

-0

Since 'm'’ is just a variable we can write t in the above equation,

y(t) = Th(t) x(t-1)dr

-0

h(t)*x(f)
Thus y(t) = x()*h(t) =h(t)=x()

2. Associative property of convolution :

Consider the cascade

Vit connection of the two systems as
“ i el shown in Fig.

, t y() of the second
Cascade connection of two LTI The outpu y ®
systems system can be given as,

y(O) = n(t) ()

= T V(1) I (t=7) de

The output of first ‘system is y; (f). It can be given as,

18



(1) % In (1)
T x(m) Iy (i—m) dm

-0

yi(1)

Here separate variables tandm are used. Putting above equation for y (1) in
equation 2.9.20.

0 o

y(t) = j' '[x(m)hl(r—rh)hz(t—'r)dmdr

- -0

Here put t-m=n, then we get

"
—— s
«—\ 8

y(t) x(m) by (n)~hz(t—n'1—n) dman

x(m){ ]‘D‘hl»(-n)-hz((t—m) ~11) dn] dm-

-0

The integration in square brackets indicate convolution of iy () and hy(t) evaluated at i
-m. ie, 5

19



]? In(n) hy ((t=m)—n) dn="h(t-m)

-N

Putting this value in equation

y() = j' x(m) h(E-m) dm
= x(t) *h(t)
Thus if the two systems are
X(t)—— h(t) = hy(t) « hy(t) —wy(t) connected in cascade, the overall

impulse  response  is  equal to

Equivalent of cascade convolution of two impulse responses.
connection of Fig. 2.9.21 This is shown in ~ Fig.

We know that,
) = x(t) *hy ()
dnd YO = () *hy)

Putting for y1(£) in above equation,

y() = [x@®)*h ()]t

And from Fig.  we can write,
y(t) = x() *h(t)
= x(t) [l () *ha ()]
Thus equation and above equation prove associative property. i.e.,

[.I‘(t) *Il] (t)]*hz(t) = .\'(t) *[’11 (t) *112 (t)]

20



3. Distributive property of convolution :

yq(t) -

hy(t)

x(t) - @—»y(t) Consider - the two systems

connected in parallel as shown in
ha(t)

) Fig.

Parallel connection of the systems

The overall output is,

y()

n®+y2 ()
= x(8)* Iy () +x(t) *ha(t)

= r x(0) Iy (t—1)dr+ f x(7) ha (t=1) dr

o

= I x() {n (t=0)+hy (t-D)}dr = I x()h(t-1)d
= x(t) *h(t)

Here hi(t) =y (t)+h2(t). Thus
impulse responses of the parallel
connected systems are added. i.e.

X()——={  hq(t) + hy(t) |—sy(1)

This proves the distributive
property which can be stated as,

x() *m (O +xt) *ha () = x@ *{m O)+h2 @)}

Derivation of Convolution Integral

« Let us consider the continuous time

Input : Output system as shown in Fig. Let the
signal ——g == Sl * signal x(t) be applied to the system.
x(t) y(t) 2

Consider that the system produces output

y(t). This input and output is related as,
y®) =T {0}

Continuous time system

Putting for x(t) from equation 2.9.1
y(t) = T{ [ x@8¢-v dt}

Here x(7) is the amplitude of x(t) at t =7 It is constant. Since the system is linear we
can write above equation as,

"

y® = [ x@T&¢-9)de

-

21



If unit impulse is applied as input

lnp(_)jt Tt O::z?)ut to the system, it produces unit impulse
() — i " g e ¥
B system or ht—1) response. This is shown in Fig, The

unit impulse response is denoted by
h(t). Since the system is time invariant

the response to 5(t-1) will pe h(t-x)
ie., <

LTI system produces unit impulse
response if 5(f) is input

T[S(t—t)] = h(t-1)

Thus if unit impulse is delayed by T, the impulse response is also delayed by the same
amount. With the above result equation becoems,

y(t) = ]? x (1) h(t—7) dt

-0

This equation relates the impulse response to the output. The output y(t) is equal to
convolution of x(t) and h(t). Hence above equation is also called convolution integral. i.e.

Convolution integral : y(t) = j x (1) h(t—7) dt

— oo

The convolution of above equation can also be represented symbolically as,

y () x(t) «h(t)

x(t)*h(t)

T x(t) h(t—1)dx

22



rTh_e impulse response of_ thé' LTI éysterﬁ is h(t) = u(t). Determine the

of the systém xf input x(t) = e~ ut), a > 0.

output
Solution : The given functions are,
Impulse response, h(t)- = u(t)
Input, x(t) = e ®u(t), a>0

Then output of the system will be equal to convolution of x(t) and h(t). i.e.,

y) = x@)*h(t) -
]3 x() h(t-7)dre

-

Fig shows the plots of x(t) and /i (%).

Now let us determine y(t) at t = 0. Hence putting t = 0 in equation

y(0) = j x (1) h(=7)

-0

we get,

e R ey M R

POy SESOL PRGN SLAES ESSad L
1= S e 19

oo of-"o .

Fig. 2: Exponential signal
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y(t) will be,

Now let us consider that t >0. Then as per equation
o

t>0

y(t) = j x () h(t-1)dr

24



t

y(t) = J‘x(t)h(f—f)dt for t >0

3 i

e
I
b

v
-

™~y

1 h(t- 1) for t >

et fe

T
Bt

Fig. 4: Exponential signal

From Fig. it is clear that h(t—1)=u(t-1)=1 from 0 to t. Hence above equation
becomes,
t

y(t) = I e 1= J" e de
0 0

3 t
e
a 0

%(l—c"") for t>0

Note that above result holds for t > 0.

Now let us consider that t <.0. The convolution equation will be,

yO = [x@h(t-9d,  t<0
The plot of l(t-1) for t < 0 is shown in Fig. below. In this figure observe that

h(t-1) is obtained gy shifting li(~1) by t towards left.
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(1

1
a
0

|

will be zero. i.e,

_l/(t) = 0=

y(t)

The product of x(1) and h(t-7) will be zero since there is no overlap between them.

For t > 0, Ii(~1) is shifted right and

For t < 0, h(-7) is shifted left.
Thus we obtained the output- y(t) as,
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The imyalse response and the input to the system is given as,

x(t) = u(t+1)
hit) = w(t=2)  Determine the output of the systen.

Solution : The output y(f) is given as the convolution of x(f) and h(t). ic,,

n

y) = x()+hO)= [ x@h-o)de

The two functions x(t) and h(z) will be,
() = u(t+l)=1  for t2-1
and h(t) = u(rt-2)=1  for t22

These two functions are plotted in Fig. below. In equation we need the
function i1(t -t). We know that

h(x) = u(t-2)

by =1 fort-220 ort22

27



u(t—2)

h(z)

¥ Tt bt 5t

i
=3

integral

1on

28

Convolut

Fig. 6

i
03 0] MG

QL3 RS 11 S




i can write
This waveform is shown in Fig. (b) above. From the above equation we ’

ht-1) = 1 for t—t=2

Here t—1>2 can also be written as f—2 21 or t<t—2. Thus

hit-t) = 1 for t<t-2
This waveform is shown in Fig. (c) above.
As per equation the product x(t) h(t—1) is integrated for ev.ery value of t. The
variation of t shifts h(t — 7). Fig. shows the plot of hi(t —1) for arbitrary value of t. In

this figure observe that hi(t —1) = 1 for t<t-2 as per equation

e

{5

TSRS

i

Fig. 7: Convolution integral
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From the above figure we have three separéte regions aé-follows,
From —w<t<-1, x(t) h (t-7) =0. Since there is no overlap.
From -1<t<t-2, x(1) h(t-1)#0. Since there is overlap.
From t-2 <1<, x(1) h(t-1) =0. Since there is no overlap.

Based on the above we can write convolution integration

y(t)

=] -2 ©
I(Oxl)dwj (1x1)de+ J’ (1x 0) dt
- -1 -2

t-2 b5
I dt =[1]
&
-1
= t-1
Thus the result of convolution of the two functions is
y) = t-1

for t-22-1 le. t>1

This function can also be written as,

y(t) = _f——l Zl(t"l)

30



Solution : Here the input and i:r'npulsevresp'ohse are
x(®) = e {ult)-u(t-2)}

Here u(f)-u(t-2) has the value of 1 from {=0 to 2. Hence above equation can be
written as,

%) = for 0<t<2
Similarly impulse respbnse is,
h() = e for t20

The output of the circuit can be obtained by convolution of x(f) and h(t). From
equation we can write convolution as,

y(t) = x()=h(t) = T x(t) h(t-7)de

Let us write x(t) and h(f) in terms of 1. i.c.,

x(1)
and | h(z)

1}

e for 0st<2

I

er for 120

The plots of x(t) and /i (7) are shown in Fig.
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for t—120
for 1<t

ef““l’}

h(t-1)

e—(t-t)

h(t—-1)

t

Ox (k=) de+ [ x(v)-h(t

'I:)df-&-f x(t)x0dr

0

t

o

y@) =

Fig. 9: Convolution integral
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Hence we can write the convolution equation as,

0 2 t
I Oxlz(t—t)dr+j x(1)- li(t=1) d‘t+j Ox h(t-1)dt
0 2

-0

y(b)

I

2 *
I x(t)-h(t-1)dr
0

2
= [ e¥ et dn
0

2
= I e~ .et.et dr
0

2
— U-f ‘[ L)-Zf dt
0

2
= e"‘ [—_1_.0‘2K ]
B 0

= 13(1—6'4)8" for t >2

Thus we obtained convoluton as,

¢

0 for t<2
Y. = 4 %(l—e'z‘)e"‘ for 0<t<2

%(1—8"‘)8" for t>2

.~

Obtain the convolution of two functions given below.

x(H) = 0 elsewhere
0<t<2

4 for
h(f) ={ 0 elsecwhere

34



Observe that x(f) is a pulse of
m 0 to 2.

s are plotted in Fig‘.j
nd /i(t) is the pulse of amplitude 4 fro

Solution : The two function
amp]itude 2 from — 2 to 2. A

Fig. 11: Convolution integral

The convolution is given as,

0

y(t) = Ix(t)h(t—t)dr

-

Here we require 1(t-1). Hence we can write from equation

4  for 0<t-1<2
ie —tg-1<-t+2

hit=1) = ° )
1.C. t:-2 <t<st
0 clsewhere
Fig. shows the plots of x(1) and i(t-1) as per above equation.

Now the next step is to actually evaluate convolution integral.
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0

y(t)-

In the above figure observe that t < - 2. Hence there is no overlap between x(r) and

h(t-7) Therefore the product x() h(t-1) will be always zero.

(i) To evaluate y(t) for t < -2



(ii) To evaluate y(t) for -2 <t <0
Fig. shows the waveforms of x(t) and h(t-1) for -2 <t <0. The overlap of x()
= - 2. For -2< <0, both the pulses partially overlap. The shaded

and hi(t-1) starts from t
area shows the overlap of x(t) and h(t-1)
. = R B i B
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Fig. 13: Convolution integral
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The convolution can be written as,

o0

y(t) = Ix(t)h(t—r)dt
=2 ! .
- j' Oxh(t—t)dt+j x (1) h(t—‘t)dt+j x(1) x 0 dt
-® -2 t

j (1) h(t-)dt

-2

1}

j 2x4dr
;.

=8idt

-2
81,

8 (t+2) for -2 <t <0
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(iii) To evaluate y(t) for 0 <t <2 '

shows the waveforms of x(1) and h(t-1) for <t <2. For this range of t,

both the pulses fully overlap each other. The shaded area shows the overlap of the pulses.
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We can write convolution for this range as,

y(

y(®)

”n

I x(t)h(t=7)dt

-

t-2 t )
j x(t)x 0dr+ J' x(1)- h(t-r)dt+j x(r)xOfir
=2 t

-

!
j x()- h(t-7)dz

-2

j 2x4dr= j 8dr
-2 §=2

8[x], , =8[t-t+2]=16

16 for 0<t<2
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(iv) To evaluate y(t) for 2<t <4

The plots of x(t) and h(t-t) are shown in Fig. for 2<t <4. For this range x(7)
and (t-7) partially overlap cach other. The shaded region shows.the overlap in figure.
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For this range we can write lhé convolution as,
-2 2 -
yO) = [ x9x0de+ [ x(9- hit-v)de+ [ 0xht-7) de
2

=% -2
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2

[ x@h (t-1) de

=2
b 2
z I 2x4dt= I 8drt
1-2 t-2
2 2 g
" 8] dr = [T]c-z
12
& -G =1) for 2<t<4

For t > 4, there will be no overlap between x(t) and h(7) and result of convolution will
be zero. i.e.,

yi®) = 0 for t > 4
Let us write all the values of y(f) combinely,
0 for t<-2
| 8(t+2) for -2<t<0
yt) = % 16 for 0<t<2
8(4-t) for 2<t<4
0 for t>4

This is the result of convolution.
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ANALYSIS OF DISCRETE TIME SIGNALS

4.1. Z TRANSFORM

For any input sequence, the z-transform is complex. It has real and
imaginaty parts,

X(N)——|  z-transform |——X(2)
Real and imaginary
parts

It can be used for

i) Analysis of DT signals and systems
ii) Digital filter design
iii) Digital filter /systems synthesis

4.2. Definition

The z-transform of x(n) is denoted by X(z). It is defined as,

X(z) = ix(n)z‘"

Here z-is complex variable. x(n) and X(z) is called z-transform pair. It is represented

z-transform pair : x(n) <= X(z)
Unilateral or one sided z-transform : It is defined as,

0

X@ = D x(mz™"

n=0
It is also known as Bilateral Z transform

4.3 Region of Convergence



Definition : ROC is the region where z-transform converges. From definition, it is

clear that z-transform is an mfinite power series. This series is not convergent all values of
z. Hence ROC is useful in mentioning z-transform.

i) ROC gives an idea about values of z for which z-transform can belcalculated.

if) ROC can be used to determine causality of the system.

iii) ROC can be used to determine stability of the system.

4.4, PROBLEMS

Determine z-transform of following sequences
D) x1() = (1,2 3,45 0.7
ii) xo(m) = {1,2,3, 4,5, 0{7.}.
r
x1(m=11,2,3,4507
e x1(0) = 1, 0 =2, 1) = 3, (3 = 4 11(8) = 5, 116) = 0, 11(6) =7

-
By definition, X(2) = Z x(n)z™"
n=0

| 6
X)(z) = Y x(m)z"

n=0
Putting for x1(n), = 1+2z71+3272 +4273 +5z74 +02-5 +726)
X1 = 1+E+—3-+ 4 +_5_+_7_

Z g2 z3 .gz& 26

Result : i) X;(2) is as calculated above.
ii) X1(2) = o for z = 0, i.e. X1(2) is convergent for all values of z, except z = 0.

iii) Hence ROC : Entire z-plane except z = 0.



i) x2(n) = {1,2,3,4,5,0,7)
T
ie. x2(0),= 4, x2(1) = 5, x2(2) = 0, x2(3) = 7 and
x3(-1) ‘= 3, 22(-2) =2 x22(-3) =1
' 3
X202 = sz(n)z’“
© on=-3

Putting for x, (n), = 1.z3 +2.22 + 321 +420 +5271 +0z72 +7273

V4
= z3 +222 +32+4+5+—3—

Result : i) Above equation gives X5 (2).
ii)Xz(z)=oof0rZ=0andz=oo

iii) Hence ROC : Entire z-plane except z = 0 and oo.

z-transform of 8(1).

We know that 8(1) (1 for n=0
e know that 5(n) = IOfr o
o0
X(z) = ) xmz™"
n=-®w
o0

= ) 8(mz™"
. n=0
= lat=1

This is fixed value for any z Hence ROC will be entire z-plane.

3(n) = 1, ROC : Entire z-plane




z-transform of unit step sequence, u(n).

1 for. n20
0 for n<0

Y

Unit step sequence, u(n) = {

g by,
X(z) = Zu(n)z"’
"=—Qi'
) o0 v 2l
Putting u(n), = Y1z = Z(z‘l)’i
n=0 ° n=0
= 1+E )+ )2 +E1)3 +(21)4 +...
i
Here use, 1+A+A2+A3 + A% +...= ﬁ, | Al < 1. Then above equation will be,
. ) .
X(z) = Je# < 1
. -' 1-2_10
1:(:1}(——91—_;, ROC :|z] > 1
_________________ I raains l x i |

|- This shaded area _
is |z| > 1. Itis
“—tout side of the circle.

.. Realz

¢ This is called
unit circle *

Fig. 1: Region of convergence



z-transform of right hand sided sequence x(n) = a” u(n).

By definition of z-transform, X(z) = ) x(m)z™"

n=-—a

0
> au(n)z™"

n=-—c

- .
= > a"z™" since u(n) =1 for n = 0 to o
n=0 ‘

i(nz-l)n
n=0
= 1+(az71)+(az71)2 +(az71)3 +(az71)4 +...

Here use 1+ A+ A2 +A3 +... = 1—1- |A| < 1. Then above equation will be,

= %

ROC of the right hand sided sequence (i.e. causal sequence) is outside the circle.

_This shaded area __
Tis |z| > |al. 1tis ROC

:

= - S B

|Real z i

12\ [(Circleofradius _ |
la]
AN

i I

Fig. 2: Region of convergence



n L,
a u(n) = T3’ ROC:|z|>]|al

z-transform of left handsided sequence.
x(n) = —a™u(-n-1)
—-a" for n<-1

u(-n-1)=1forn=-1 to —
0 fornZO} ( : = : iy

Here x(n) = {

X(z) = 3 xmWz"

n=-—a
r

-1

Z —qllz=n

n=-ow
‘

n

1.
ETTI, e

h=o
-

= -i (a1 2)!
=1

= {19 +@ D2+ @13 + (a1 4 ..

= =@ {1+a712+@72)? +(a712)3 4+ (a1 4.}



For the term in bracket use,

1+A+A2+A3 vy = T%"A‘rl’ﬂ <L i.(.’.,

R 1% 4
X(z) = ~(a72) l—a‘lz'l“ 7| < 1
7S ’
= e 1870 2] € ]
1-az7! 74

Here |a~'z|< 1 is equal to |z[<[a]|. This ROC is the area that lies inside the circle of
radius | a|. It is shown in Fig.

Imaginary z

-

Regl Z

This shaded area
inside the circle of
radius |a] is ROC -
o U B LA

Fig.3: Region of convergence

z-transform of both sided sequence.
x(n) = a" u(n) +b"* u(=n-1)
Here let x1(n) = a” u(i) and x(n) = b" u(-n-1)

x(n) = x100)+x2(n)

i

Z [x101) + x5 (m)]z7"

n=-—m

X(z)



From the previous problem's result
a0

o0
= N Epbe M 8 D xa(m)z™"

H=—o0 ==

Xz) = —1 _+—L _ ROC: |z|>|al and |z|<|b|
1—az~! 1-bz7]

ie |a| < |z| < |b]

When |a|>|Db]|

As shown Fig, there is no overlap between the shaded areas for |z|>]al an.d
|z|<|a|. Hence both the terms of X(z) do not converge simultaneously. Therefore ROC is
not possible.

[Tlal>1b] | |imaginary (z)

Fig. 4: Region of convergence



When |a|<|b]|
For this case, as shown in Fig. the shaded area shows the overlap of |z|>|a]
and |z|<|b]|. This area is |a|<|z|<|b[. In this area both the terms of X(z) converge
simultaneously. Hence the ring shown by la]<|z|<|b] is ROC of X(2).
la] < |b} lmagmary (2) ¥
ol Y §

|z| < b}

= Real ()i

His lz| > |a] and |z| < |b] -
\ : This is poss:ble ROC

R i

Fig. 5: Region of convergence

4.5. PROPERTIES OF ROC

10



Property 1 : The ROC for aMfinite duration sequence ‘includes entire z-plane, except
z=0, and/or |z| = . :

Proof : Conside_r the finite duration sequence x(n) = {1 21 2

A

|
X(z) = 1.22+2:z2+120 4221 =22+22+1+§

Here X(z) = o for z = 0 and o. This proves first property.
Property 2 : ROC does not contain any poles.
Proof : The z-transform of a" u(n) is calculated as,

1
1-az"1

X(z) =

2 ROC :|z|>|a|
Z-a ;

This function has pole at z = a. Note that ROC is |z|>|a|. This means poles do not
ie in ROC. Actually X(z) = o at poles by definition of pole.

Property 3 : ROC is the ring in the z-plane centered about origin.

Proof : Consider a u(n) <= l;‘l , ROC : |z|>|a|

or —a"u(-n-1) <> -L_l- , ROC :|z|<|q]

Here observe that |z| is always a circular region (ring) centered around origin.
Property 4 : ROC of causal sequence (right hand sided sequence) is of the form |z|>r.

Proof : Consider right hand sided sequence a"u(n). It's ROC is |z| > |a|. Thus the ROC
of right hand sided sequence is of the form of |z|>r where 'r' is the radius of the circle.

Property 5 : ROC of left sided sequence is of the form |z <r.

Proof : Consider left sided sequence -a" u(—n'—l).. TIts ROC is |z|< |a|. Thus the ROC of
left sided sequence is inside the circle of radius 'r'

Property 6 : ROC of two sided sequence is'the concentric ring Tn z-plane.

Proof : We know that ROC of x(n) = a" u(n)#b" u(-n-1) is |a|<|z|<|b| , which is the
concentric ring

11



4.6. PROPERTIES OF Z TRANSFORM

Linearity
aq xq(n) +ay x (1) E a1 x1(2)+ap xp (z)j|
o0
Proof : X(z) = Y xmz™"
n=-=m

. i[alxl(n)ﬂz‘ Xy (™"

n=-w

o0 o0
= Z apx1(mz=" + Z arxa(n)z™".

nN==-w' i n=-=w

® ®
= ap ) Mz +ay Y, xp(mz™  Since ay and a, are constants

Nn=-o HER¢]

= mX1@)+a2 X, (2

Time Shifting

x(n-k) <> 27 X(2)

Proof : Zx(n—k)}= ix(n-k)zi" _

n=-w

Let n—-k =m. Hence n = k+mand m = - to + . ie,

Zlx(n-k)} = i x(m)z~(k+m)

m=-0o

= ix(r;z)z"‘ z-m = z-k i'x(m)z‘"'

" m=-m Mm=—o0

z7F X(2)

12



Sc}lling in z-Domain
Let - x(n) «2>X(z), ROC :r <|z|<n

fhan a" x(n) < X(%) ’ ROC : |a|n <|z|<|a|r,

o0
Proof: Z[a" x(n) = Za" x(n)z—"n-

==

i x(n)(a -1 2)

1]=—00

i

= X(ﬂ—] Z)‘ ‘

: x(f"-) ROC i <
a

z ;
—|<n te. |a|r <|z| <|a|r

Time Reversal
Let  x(m)«=—X(z), ROC : n <|z|<n,

then x(-1) <> X(z1), ROC : rl<|z| <%
2

Proof : Zix(-n)} = i x(-n)z"

n=-m

-0 o

Zx(m)z’" = Zx(m) (z~1)-m

n=o m=-—w

withn=-m,"

X@z™) ROC :n<|z7l| <np ie - <|z| < L
r n

13



Differentiati

on in z-Domain

nx(n) «Z— ~z L X@z)
dz

@0

Proof : X@ = D amz™"
* n=-a.
d . <« d ; —n._ 3 'li -1
-‘T;;X(,~ = ”;mgz-[.x(n)z ]= ";m x(1) =
o0 2]
= z.\'(n)-(-—n)-z‘"‘l == an(n)z‘“-z‘1
N=-w Nn=-w .
= =z~ Z[nx(n)]z'" = -z"1.Z(n x(n))
N==—c0
o Zin x(n)) = —Z%X(z) ,  ROC : Same as that of x(n)

Convolution in

Time Domain

x1(m)* x2(n) <> X1(3)-X2(2)

Proof : xq(n)* x5 (1)

Zx1(m)* x2 ()

ixl(k) xo (n-k)

k=-w

i [ i xl(k)xz_(rz—k)]z"’

n=—ool k=—o

Interchanging orders of summation,

k=—w H=-0o0

= i xl(k){ i X2 (n—k)z‘”}

Since x5 (1—k) <X z7kX,(2),

= 3 aw{tx o)

= { Zw: xl(k)z_k}‘XZ(z) = X1(2)-X2(2)

k=—»n

14



Correlation of Two Sequences

i x1() xp (1=1) <Z> X1(2) X5 (z7}) :

n=-®

1

Proof : Correlation of two sequences is given as,

2

mx () = Z xq(m) xo (n-1)

Nn==—w

22}

= 3 xxy -] = xy()*xa(-))

nN=-w

Z[ > x1(n)xy (;1—15] Z{xq(N*x2 (=D

= Zxy(D)-Z {xy(-1)
= X1(2)-Xp(z1)

15



Multiplication of Two Sequences

z 1
x1(n) xa(n) «— z—mﬁ X, (z))Xz(g)v‘1 dv

Here 'c' is the closed contour. It encloses the origin and lies in the ROC which is

1
common to both X;(v) and X3 (5) .

Proof : Inverse z-transform is given as, x(n) = Lﬂ}ﬁx (vo™*1do

Let x(n) = x4(n) x,(n)

Putting inverse z-transform of x1(n) in above equation,

x(n) = 2n}§ X1 @)1 dv-xo(n)
X(z) = ,,;.JZM& X; ) v"~1dv- 12(n)}z -n
Interchanging the order of integration and summation,-
X(z) = —§ X1 (v) Z v" v~ xo(mz™" dv
n=-m
= X1 (@) X (n)( ) v-ldv
2 ]ﬁ 1 {"-Z—coz

- 2n}§xl(v) xz() vl dv

Conjugation of a Cdmplex Sequence

' 1

x* () < X* (z*)

Z X (n)z™" = z [x(m )"

n=-m l==w

Proof: Z {x‘ (n)}

*

> k)

HnN==w

1l

[X@*)* = X* )

I

16



z-Transform of Real Part of a Sequence

Re[x(n)] «=—> -12- [X(z) + X* (z*)] j

Proof : x(n) = Relx(m] + j Im [x(m)] and x* (1) = Re [x(m)] = j Im [x(n)]

Re[x(n)] = %[x(n) + x* )]

Z |Re[x(n)] Z {-;—[.\'(.H) +x* ()1)]}
= S 1ZI)]+ Z I o))
= SX@+X* @)

z-Transform of Imaginary Part of Sequence

Im[x(1)] «2—> 2l}.[X(z) —X* (z+)]

Proof : Im [x(17)]

Il

517 [.\'(ll) —x*(11)]

Z {Im[x(m)]}

Z {717 [x(17) —x* (n)]} 3 2l} {Z[x(n) - Z [x* (n)]}

1 .7,
L Z—j{X(z)-.—X =)}

17



Parseval's Relation

le(n)x () = §X1(v ( ) -1dy

==

Proof : Inverse z-transform of X;(z) is, xy(n) = : § X; (0)v"-1dy

" 2nj
c
le(n)x;(n) = § X1 @)1 dvx; (n)
n=-o u:-—w c
! 2n}§’ X1 () L-Z-‘,: (n)o"- l}dd :

1\™"
_) -v~1 then above equation will be,

Here v"~1 = o" v~ = (p-1)~" 071 = 5

2. x1(n) x5 (1)

n=-—om (==

w78 %10 Sxuo3) -v‘l} v

= -2-1;—{]-? X1(@) 212()1)( ) ] v-ldv

l-——CD

= 2n}§ X1 (v) Xz (vi‘)]. v-ldy

1 ayve (1) -
71“—}% XI (d)X2 (-v—‘-)v ldv

18



Initial Value Theorem

A0) = lim X@2)

Z=-r®

Proof : z-transform of a causal sequence is given as,

o0
Zx(n)z‘", since x(n)=0forn <0
n=0

X(2)

= x0)+x(1)z71 +x(2)z72 +x(3)273 +++-
lim X@) = lim x(0)+ lim x(1)z"! + lim x(2)z72 +---
ol e i Z9® Z®

= x0)+0+0+0+0:-.-
1(0) = lim X(2)

2
4.7. PROBLEMS
x1(n) = 8(n—k)
0(1n) «2-'1, ROC : entire z-plane
(k) 25 z-k X(z), By time delay property.
Z3(n-k)} = z7k Z{8@n))
= z=k.1 =2k, ROC : entire z-plane except z = 0.
x2(n) = 6(n+k)

ZIdm+k)) = zk Z(8(n)

= zk.1=2zk,  ROC : entire z-plane except z = o

19



x3(n) = u(-n)

x(m) «“ X(z), ROC :r <|z|<r
x(-4) «=— X(z1), ROC : %<Iz| <rl, By time reversal property
- 1

u(n) «=— -11—_1, ROC :|z|>1. Here ry = 1

su(-n) «Z— lsz’ ROC : |z| <1, By time reversal property

xq(n) = na™ u(n)

Zla"u(n)} = L ROC : |z|>]a|

1-az1’

And Z{n x(n)} = —;-{;—iZ—X(z), differentiation in z-domain property

d 1

Z {n-a"u(m)) i

Il
|
N
|

Here x(n) = a" u(n)

Y d
o=t Yo Y T e 1 a1
.(1 az )dzl 1 dz(l az™t)

(1-az"1)2

= -

.0+a(—1)z‘2
(1-az™1)2

az-1
= m, ROC :|z|>|a|

az-1

m ’ ROC : |z|>|a|

Thus , na" u(n) «=—

20



x(11) = cos(wg 1) 1)

¢/ @on 4 o= jopn

= 5 1 (n)

ejoon 4 p-joon ]

X = Z { 5 f 1(n)

% Z {ei"’o" u(n)} + —]2- Z (e~ @0y ()}

1

-0z

-, ROC |z|>]a| i.e.,

Here use a" u(n) «—> —~

1 .1 w1 1 , ROC :|z|>|e/®0| and
2 1-¢j©0z-1 21-p-jopz-1

X@2) =

|2|>|e=Te0]

X@) =

N =

.1 + 1 ROC :|z|>1.
1-¢Jj90z-1 1-¢-jo0z-1

! St Jio
{ 1-e=j©0z-1 4+1-¢j®0z-1 }

N =

(1-ej®0z-1)(1-¢~j®0z-1)

1 2-z"1(eJ®0 +¢-j®0) e ] 2-z"1.2cos wy .
211-2-1(eJ©0 +¢-j©0)+2-2 [  2|1-2-1-Zcoswy +2-2

g5l .
A e ROE A B,

1-2z"1 coswy +272

x(n) = sin wg n u(n)

jogn _p-jogn
s 2?. )u(n)

21



jwon _,—joon
X(z) = Z{el 2‘;. o )}u(n)

= 517[2 eJ@0" y(n)) —Z (e~ won u(n)}]

1 .
2j|1-¢jw0z-1 1—¢—jwoz-1 |’

ROC : |z|>|e/®0| and |z|>|e~i®0|

ie. |z|>1
1[1-e7790271 1 4 pjo0z-1 % |
T 1—el®0z-) (I —e-jo0zT) |" OC :|z|>1
1 (eJ®0 —e=jmg)z-1
T 2j|1-z71(eJ®0 +e~jwo) 422
1 2jsin wg z~1
T 2j|1-z71-2cos wg +22
z~1 sin wy
= , -ROC :|z]>1

1-2z"1 cos wy +z72

22



x(n) = a" cos(wq 1)1(n)

1-z71 cos g

Let x1(n) = cos(wo n)u(n), hence X;(2) =
| 1-2271 cos g +272

From above equations, xn) = a"xy(n) J

X@) = Z{a" x,(n)

= Xl(g), ROC : |a|n <|z|<|a|ry, By scaling in z-domain

=]
; 1-(5) oS &y :
Replacing z by % in X1(2), = ~ -+ ROC: |2| > 1]a] ie.|2] > [al
1 —2(5) €08 0 +(-z-)
a a

X() = a” sin (wq 1) 1 (1)

z71 sin wy

" Let : = sin(wg N ), hence X1(2) =
x1(). (S 2L e Rela) 1-2271 coswg +2z72

From above equations, x(1) = " x(1

X@)

za" xy(n)

Xl(g)’ ROC : |a|ry <|z[<|a|ry, By scaling in z-domain |

(z)-l |
.(; SIn @y
o ROC:|z| > 1{a] ie. |2 > [a]

Replacing z by Sin X1(2), =
} ) Z

1-2(-) €08 0} +[-)
0 0

23



4.8. INVERSE Z TRANSFORM

The inverse z-transform can be obtained by,
i) Power series expansion
if) Partial fraction expansion

iii) Contour integration.
iv) Convolution method

Inverse z-Transform using Power Series Expansion

By definition z-transform of the sequence x(n) is given as,

o0

Y iz

=~

Xe)

w222 +x(-Dz+ o0 45127 #3222 4
From above expansion of z-transform, the sequence X(n) can be obtained as,
o) = b2, 1), 20, (0,202,
The power series expansion can be obtained directly or by long division method.
Determine inverse z-transform of the fallowfng

1
X(2) = — ,
() 1-az"1

ROC : |z|>]a|

24



1+az71 442 272 423 273 < Negative power of 2
l-ar

1-0z7)

-1
v

az7l - g2 772
a2z

az z"z - a3 2‘3

a3z
a3z3 - gy

atz4 ..

1 R RS B JE - B
Thus we have,X(z)=—1-——;_—_—=1+az +a%z7* +a°z
-a

Taking inverse z-transform, x(n) = {1, 4, a2, a3,

= a"u(n)

25



AE) . = L =y ROC :|z|<|a|
1-az

—a1z-a-222 —g-323 g4 4 « Positive powers of 'z
~az 1)1,

1-a-1z

a-lz

a~lz - qg-232

a-2z2

a=2z2 — =323

a-3z3

a=%23 .

1
Thus we have, X) 2 —— = ~alz-02g2 g3 78 g4 4.,
1-nz°]
Rearranging above equation, = e og=323 L0252 g1,
Taking inverse z-transform, M) = fomad 073,72 g

!

=" u(=n-1)

26



Inyerse z-Transform -using Partial Fraction Expansion

Following steps are to be performed for partial fraction expansions :

Step 1 : Arrange the given X(z) as,

X(2) Numerator polynomial
"z (z-p1)@E-P2)(-py)
X(z A Ar A A
Step 2 : X@ _ L+ = +_3 Joss _N
z Z2-p1 %27P2 2-P3 zZ-pyN
X(z
Where, A, = (z—pk)-¥ 1 K= 1, 2 e N
Z=pk
X
If\g has the pole of multiplicity 'n' i.e.,
X(z) _ Numerator polynomial
z G—p)"
Aq A Ap-

+ Jssion
PG s Gt

Where A1, A, ,---A, are given as,

27



k=128 .1 ‘
Step 3 : Equation (3.7.1) can be written as,

A A
X w21, 2% ANZ
=Py Z-py Z-py

Aq . Ay st AN
l—pl Z—l 1"p2 Z—l l—pN Z-l

"

Step 4 : All the terms in above step are of the form ] A -
—.pk Z—
following standard z-transform pairs must be used.

Depending upon ROC,

P : u(ny > 7 +ROC: 2| > |a] ie. causal sequence
1-pp 27!,

2 1
=P ) u(-n-1) ,
k) ( l—pk 2_1

ROC : |z| <|a] i.e. noncausal sequence

1
1-1.5z7140.5272

Determine inverse z-transform of X(2) =

For (i) ROC : |z| > 1, (i)) ROC : |z|< 0.5 and (iii) ROC: 0.5 < |z]<1

Step 1: Firét convert X(z) to positive powers of z. i.e,,

i
e z2-1.5z+0.5
X(z) _ z
"z 22-152405.

el Z '
~ z-1)(z-0.5).
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X®) . Al; Ay
2ok 2ol m 220

& '~ - Z = l S L
5 ‘.(Z-'l) z-D(-0.5)|,_, 1-0.5 " :
s 0.5
and A = (2—0.5)'—(2_1)(2»_0_5) Sae 06-1% 3
. 5 X@) - 2ed
Equation .w111 be, 'Z_‘,= ] '2_95
2‘7,  19
Step 3 : M) e
/, 230y
3.
1zl 1-0527

Step 4 : i) x(n) for ROC of |z]| > 1

¢ Here the poles are at z = 1 and z = 0.5 from equation
* Now ROC of |z|> 1 indicates that sequence corresponding to the term —i-l- in
1-z7V
equation (3.7.7) must be causal, |

v Tigl. 37.1 shows the ROCs of |z|>1 and |z|> 0.5, Observe that 12| >1 includes
z|>05.
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08 & S e S
Circle of
'Z - E L 4R B

.............................

- Rgal (2)

\ Inthisarea  —
A Sl 2>t and 2] > 0.8
gbotlh are trtlxe :

Fig. 6: Region of convergence

Hence the sequence corresponding to the term O 015 7 in equation
- o Z—

Therefore from equation (3.7.7) inverse z-transform becomes,
() = 201)" u(n)-1.(0.5)" u(n)
[2-(0.5)"]u(n)
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x(n) for ROC: |z]|< 0.5

x(in)

Fig. 7: Region of convergence

2[-1" 1(-n-1)]-[-0.5" u(-n-1)]

[-2+0.5"]u(-n-1)

31
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\(n) for ROC: 0.5 <|z|< 1

e This ROC can be written as |z[> 0.5 and |z|< 1.}

2
e The sequence corresponding to -7 in equation
ROCis |z|< 1.
e The sequence corresponding to ———— in equation
> 1-0.5z1

ROC is |z|> 0.5.

Taking inverse z-transform of equation
x(n) = 2[-1"u(-n-1)]-(0.5)" u(n)
= =2u(-n-1)-(0.5)" u(n)
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X(z) =

Solution :

Step 2 : Here there is multiple pole at z = 1. Therefore the

will be,

1
(1+z-H(1-z1)2

Step 1: Converting X(z) to positive powers of z

53
Xz) = ———
L (z+1)(z-1)2
2 z+1)(z-1)?

X(z) ./h_ Ay Aj

-
=

o —
A = (:+1)-‘\(T:) == .
LI ) of S
+ X(2 -2
A3 = (2 1)~ﬁ Ll
218 z+1 .
-=1 ~=1 -

33

,ROC: |z|>1

’

e
partial fraction expansion



X
Ay = ii_{(z—l)2 g} By equation (3.7.3)

dz

[
= Tz |2+1

Putting values in equation (3.7.8),
X@ _ 14, 3/4 i 1/2

z=1

(z+1)22—22l
(z+1)2

_3
T4

z=1 |z=1

z z+1 z-1 (z-1)2

14z 34z 12z

Step 3 : X@) = e R =y

4 | 34 1/2z7!

X(z +
? 1+z71 1-z71 (sz‘l)z
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Step 4 : ROC is |z|> 1. Let us use following relations :

1

m () «——>
i 1-p z~

+ROC: |z|>|pp |7

Hence inverse z-transform of first two terms of X(z) will be;”

1ZT { Lk } = %(-l)" u(n) and 1ZT {1 : s } = g(l)" u(n)

1+z71 =z1] 4

For 3™ term of X(z) let us use,

Pk 2
(1-pyz7)?

. 12et " 1 U o P
ie IZT {m} = ZIZT{(I—Z‘l)Z} 51(1) u(n)

Putting all the sequences together,

np't u(n) <

, ROC : |z|>|ps |

x(n) = -i—(—l)" u(n) +%(1)" u(n) +-1§n(l)" 1u(n)

[%(_1)" + % +%;1]11(:1)

35



142z 14272 ,
X(z) = 3 E ,ROC : |z|>1

251 po -2
1 5% 5277

Solution : To arrange X(z) in proper form suitable for partial fraction expansion.

e The highest negative powers of numerator and denominator in X(z) are same.
Hence such equation cannot be expanded in partial fractions.

o Let us rearrange X(z) as _follows.:

z72 +2z71+1

X(z) = R
54 —EZ. +1

* Now perform the division,

2
.1 ..
e Fed -2 -1
52 k +lm
272-3z7142
5:71-1
5271 - -1+5z71
X) = 24— 3‘ afal T
'2‘7-'2 "72’1 +1 l-~§::'l +-§:’2
-1+5z7!
= 2+X1(2),  where X1(2) =
3 <9 1 :‘Q
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Now apply step 1 to step 3 for X,(z)

i ~145z71
Stepl: N2, = 3 1
B Oy
§ 2z +22
z2(~z+5) , i f
= —— By converting to positive powers of z
¢ i W P
z 2z+2
X12) -2+
TR
2 -51t5
e
) 1
(Z-l)(z-i'j
: _ A, A
Step 2: X(z) = = +Z_-1-
2
where A = (z-1).xl(z) = _“15 =8
% z=1 A
' 2 121
3 1) X102 _.—Z+5
and A2 = (Z—'i)‘ > Z=l = P | z_l =-9
2 g
X1 _ 8 9
z = z-1 z—l
2
Step 3 : X,(z) = 8§ 9
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Step 4 : Putting for X)(z) in equation

Xe) = 2+ 8 = lgﬁ
-77 "1 =1
1 23

* Here ROC is |z|>1. Hence sequence corresponding to 8 will be causal
: .

1-z-

n
will be 9-(1) (1), Tt has ROC of

o The causal sequence corresponding to 5

1--52'l

2>
L

o Note that given ROC of |2[>] includes |z|>% also. Hence x(n) will be,

x(n)

250)+8(1 u(n)-9(§)" "

28(n) +[8-9(%)"}u(n)
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Inverse z-Transform using Contour Integration

Cauchy integral theorem is used to calculate inverse z-transform. Following steps are
to be followed :

Step 1: Define the function Xy(2), which is rational and its denominator is expanded
into product of poles.

ic., X2)

X@)z"-1 -
N@)

[ @-p)"

i=1

Here 'm' is order of the pole.

Step 2 : i) For simple poles, ie. m = 1, the residue of X(z) at pole p, is given as,

lim [(z-p;) Xo (2]

Z:pi Z—)pl

(z-p;)Xo (Z)|

=
©
w
N
_——
=
]

=P

i) For multiple poles of order m,, the residue of X(z) can be calculated as,

iii) If X(z) has simple pole at the origin, ie. n = 0, then x(0) can be calculated
independently.

Step 3+ i) Using residue theorem, calculate x(n) for poles inside the unit circle. ie,,
N
x(n) = Z Res Xo(Z)

i=1 ==

i) For poles outside the contour of integration,

N .
xn) = -, Res Xo(2) withn <0

i=1 #=h
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~2

(z-a)2’

Determine the inverse z-transform of X(z) =

ROC : |z|>|a| using contour integration (i.e. residue miethod).

~
~

Zn—l

X(z) 21 =

Step 12 Xo(Z) ‘ (z—a)z

zn+1

(z~0)2

Step 2 : Here the pole is at z = a and it has order m = 2. Hence using equation
we can calculate residue of X(z) at z = a as,

Res Xpld) = o 44" 6 02 %
2= 0 (21| gz2-1 -
=0
= iz""l =(n+1)z”| = (n+1)a"
dz s -
Step 3 : By equation the sequence x(n) is given as,
x(n) = Z Res X(2)
j=1 258

(n+1)a" um) since ROC : |z|>|a|
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Using residue method find the inverse z-transform of X(z) =
. 1 .
G+of‘2§tz—"1jr |2] > 1

n-1
z(n) 2” f X(2)2"dz

=E residues of X (z,)z""1 atpolesof X(z)2"~' within C

(z2+1)2™1
Z+02)z=1)

The closed contour C, begin in the ROC |2| > 1 encloses the poles at z = —0.2,
z = 1 and, for n = 0 the pole is at z = 0. Therefore forn =0

at poles of same within C

= Z residues of

z(0) = 2 »residucs of atpoles z=0,z=1and z = —0.2

z2+1
z2(z+0.2)(2+1)

2Z+1 (2+1)
4ﬁﬂu+omu— #=0 Liﬁ%Li“Mr' Jhea3
+ (21 z+1)
10 5
=-8+=+3=0
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ie., z(0) =0.

Forn>1
z(n) = Z residues of (z(:;;))f::l ) at polles z=-02 and z=1
= residue of (z(:--(')-. 21))21::1 ) at z=-0.2
+ residue of ( (:g 21))(2:-_1 )" a z=1 |
1"
- (08 T e r G 03
= —5(—’0.2)"-’1 + g

| )
Therefore, =(n) = -.g,(-.o.z)"—lu(n - 1)+ 3u(n - 1),

Use the residue method to find the inverse z-transform of X (2) =

|z| <2

z
G-2(-9) |
Solution In this case there afre two poles z = 3 and z = 2 outside the ROC 2| <-2.

So the sequence is non-causal. Forn < 0

z(n) = — Z residues of X (2)z"~! atpoles z=2 ‘and z=3

zem Y z2n1
=" [Mg/za(z—s) - 3]
= ~[~@)" + (3"

=@ - @

Forn <0 z(n) can be written as

z(n) = 2" = 8"u(~n 1)
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Using.Cauchy integral method find the inverse z-transform of X (2) =
1< 2| <2 ' '

: z
z-1)(z-2)
Solution The contour of integration C lies in the annular region of ROé, and the
inverse 2-transform is

z(n) = - Z residue of * X (2)2"~! “atpole 2=2 for n<0
= Z residue of X(2)z"! atpole z=1 for n é 0

Forn <0 _
—_— z" = n
x(n) - M(Z X I)M oy -(2)
Forn >0 , .
o) = ) gl = -
Therefore
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LINEAR TIME INVARIANT DISCRETE TIME SYSTEMS
5.1. LINEAR CONVOLUTION

Linear convolution is a very powertul technique used for the analysis of LTI systems.
In the last subsection we have seen that how the sequence x(1) can be expressed as sum of

weightéd impulses. It is given by equation

x) = Y x(Kdn-k

k:-oo

If x(n) is applied as an input to the discrete time system, then response y(n) of the
system is given as,

y(m) = Tx()]

Putting for x(n) in above equation from equation (4.3.7),

= =0

yn) = T{ i x(k)8(n-k)}
k

The above equation W€ have written on the basis of scaling property. It states thy i
y(n) =T[ax(m) then (1) =aT[x(m)] for a= constant. The above equation can be written n
'cdmpact form with the help of z sign. i.e.,

y() = i x (k) T[301=K)]

(==~

The response of the system to unit sample sequence (1) is given as,

T[3()] = h()
Here (i) is called unit sample response or impulse response of the system. If the
discrete time system is shift invariant, then above equation can be written as,

T[3(n-k)] = h(n-k)

Here 'k is some shift in samples. The above equa
the shift invariant system is delayed, then its response: is also delayed by the same

tion indicates that; if the excitation of

amount. Putting for T[8(n-k)]=h(n=k) in equation we get,
yi = Y x(k) h@-k)
k=-w



This equation gives the response of linear shift invariant (LTI) system or LTI system to
an input x(1). The behaviour of the LII system is completely characterized by the unit
sample response /(1. The above equation is basically linear convolution of x (1) and ().

This linear convolution gives (). Thus,

Comolution sum : y(n) = x () *h (1)

0

yi= Y x(®h-K

k==~

Conwolve the following two sequences x (n) and h (n) to get y(i)
x(m={,1,1,1}
h(n)=1{2, 2} '

Solution : Here upward arrow (T) is not shown in x(1n) as well as /(1) means, the first

sample in the sequence is 0™ sample. Thus the sample values are :

x(k=0) = 1
x(k=1) = 1
v(k=2) = 1
x(k=3) =1
and (k=0 = 2
hk=1) = 2

The convolution of x(17) and h(n) is given by equation

yoy) = 3 x(Ryh6i-k)

= —f)



(a). Sequence *(%)

x(k)

r ¢ %
B -
Io 1 2 3
(b). Sequence h(k)
bx) 2 2
- T » Kk
‘o 1
(c). Folded h(-k)
sequence
h(=k)
(). h(-k) shifted h(1-k) | #=F)
to right by .
one sample

(g). h(-k) shifted h(2-k)
to right by
two samples

2 2
T TJ. > k
o 1 2 3
(i). h(=k) shifted
to right by h(3-k)

three samples

2 2

+—o0 o T T » k
-1 {01 2 3

(k). h(-k) shifted  h(4-k)
to right by 1\
four samples

x(k) h(-k)

(d). Zx(k) h(-k)
= 0+2+0+0+0

2 3

(). =x(k) h(1-k)
x(k) h(1-k) = 0+2+2+0+0
=4
2| 2 4x2=2

T 1x0=0
o—o —

|o1§§

x(k) h(2-k)

(h). Tx(k) h(2-k)
= 0+2+2+40
=4

- ) N

x(k) h(3-k)
[ )

N O N

wo

0. ix(_'_‘)“h(H)

» Kk

h(k) h(4-k)

1\

O p——D N

(1). £x(k) h(4K)
=2
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5.2. ANALYSIS OF LTI DT SYSTEMS




The general form of difference equation of a N'th order system is given by
N M
1+ Z ayy(n — k) = Z brxr(n — Ky N>M
A=1 k=0
For input x(n) ="§(n), we obtain

N WY
1 Z apy(n — k) = k;)bké(n - k)

k=1

Forn > )M, Eq. reduces to homogeneous equation

N
Zaky(n -k)=0; a= L.
k=1

If N = M, we have to add an impulse function to the homogeneous solution.
PROBLEMS

Determine the impulse response () for the system described by the

second-order difference equation

y(n) = 0.6y(n — 1) — 0.08y(n — 2) + z(n)



Solution
Given
y(n) = 0.6y(n — 1) — 0.08y(n — 2) + z(n)
We know the total response
(1) = ya(n) + yp(n).
For impulse z(n) = §(n), the particular solution
Yp(n) =0
= y(n) = yn(n).
The homogeneous solution can be found by substituting z(n) = 0

= y(n) - 0.6y(n - 1) + 0.08y(n—2) =0

Let the solution

yn(n) = A" Substituting

we obtain
A - 06 R 0.08A" 2 =10
A"-2(02 _ (.6A 4 0.08] =0
A2 - 0.6)+0.0%8=0

Lo

The roots of the characteristic equation are
A; = ”.4:); = 0.2

: : - — . uation is
The general form of the solution of the homogencous €4

.'/;,(H) — (-l/\vll 1 ('2/\,2,
n
= ¢1(0.4)" + c2(0.2)



y(0) = e¢; +c2
y(l) = 0.4cy + 0.2¢;
From the difference equation we have
y(0) = 0.6y(~1) — 0.08y(—2) + x(0)

y(—l): y(=2)=0
z(0)=46(0) =1

=]

(1) = 0.6y(0) — 0.08y(-1) + z(1)
= 0.6(1) — 0.08(0) +0

= 0.6
= y(0) =1
y(1) = 0.6

Comparing

C) -+ ey =1

0.4c; + 0.2¢9 = 0.6

and solving for ¢y and ) We pel

(.l - ‘3
€y = -]
Substituting the valyes i Lq. (1.235) yields

y(n) = 200.4)"u(n) - (_().2)”11(:1)

Delcrm_ine the impulse response h(n) for the system described by
difference equation
y(n) +y(n—1) — 2y(n — 2) = z(n — 1) + 2z(n — 2)



Solution
Given
yn)+yn—1) —-2y(n—2) =z(n—1) + 2z(n — 2).

Since M = N = 2, the homogeneous solution includes an impulse term.
The total response is given by

y(n) = ya(n) + p(n)
For input z(n) = &(n), the particular solution y,(n) = 0
= y(n) = ya(n)
The homogeneous solution can be found by equating the input terms to zero, that is
y(n)+y(n—-1)—-2y(n—-2) =0

Let the homogeneous solution y,(n) = A™. Substituting this solution
we obtain the characteristic equation

A A a2 =0
A"2A2 4+ 0 -2]=0
= M+A-2=0

Therefore, the roots are 1, —2 and the general form of the sdlutioq_to the homoge
neous equation is '
yr(n) = c1(1)" + c2(—2)" + Ad(n)

From the difference equation

y(0) +y(—1) — 2y(-2) = z(-1) + 2z(-2)

y(0) =0
y(1) + y(0) — 2y(—1) = z(0) + 2z(-1)
y(1) =1
= y(0)=0
y(1) =1
y(2)=1

Substitutingn = 0,n = 1 and n = 2 in Eq.

y(0) =c1+c2+ A
y(1) = c1 — 2¢2
y(2) = c1 — 4e2

10



from which ¢y = 1500 = 0: A = 1,
Substituting these values in Eq.

y(n) = u(n) - 6(n)
=u(n-1)

Find the impulse response and step responsc of a discrete-time linear

time invariant system whose difference equation is given by
y(n) = y(n — 1) + 0.5y(n - 2) + z(n) + z(n — 1).

Solution
Given
y(n) =y(n —1) +0.5y(n — 2) + z(n) + z(n — 1).

For impulse response the particular solution y,(n) = 0.

Therefore
y(n) = yn(n)
The homogeneous solution can be obtained by solving the homogeneous equation
AM-A-05=0
from which
A1 = 1.366
A2 = —0.366

Yn(n) = ¢1(1.366)" + c2(—-0.366)"

11



"y(0) =

From the difference cquation we can find (1)

1
2

Il

y(U) =0 + Co

y(1) =1, ~
366c1 — 0.366¢, Comparing Eq. e get

c1+cp =1
1.366¢; — 0.366¢c; = 2
= ¢ = 1.360
C = -0.366

y(n) = 1.366(1.366)" — 0.366(—0.366)™

Step response

For step input z(n) = u(n), the particular solution y,(n) = ku(n). Substituting
z(n) and y,(n) in difference equation

ku(n) = ku(n — 1) + 0.5ku(n — 2) + u(n) + u(n — 1)
For n = 2 where none of the terms vanish we get
k=k+05k+1+1
= = —4

Therefore
yp(n) = —'4u(n)

The total response

y(n) = ya(n) + yp(n)
= ¢1(1.366)™ + c2(—0.366)™ — 4u(n)

For step input from the difference equation

y(0) =1
y(1) =3

12



From Eq.

y(O) f=C1+Cg-f4
y(1) = 1.366¢; — 0.366¢2 — 4

Comparing Eq.
cp+cr=95
1.366c; — 0.300¢c0 =7
¢ = 5.008
co = —0.098
The step response

y(n) = 5.098(1.366)" — 0.098(-0.366)" =4 n>0
= 5.098(1.366)"u(n) — 0.098(-0.366)"u(n) — 4u(n).
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